Lecture Notes in Physics

Volume 840

Founding Editors

W. Beiglbock

J. Ehlers

K. Hepp

H. Weidenmiiller

Editorial Board

B.-G. Englert, Singapore
U. Frisch, Nice, France
F. Guinea, Madrid, Spain
P. Hinggi, Augsburg, Germany
W. Hillebrandt, Garching, Germany
M. Hjorth-Jensen, Oslo, Norway
R. A. L. Jones, Sheffield, UK
H. v. Lohneysen, Karlsruhe, Germany
M. S. Longair, Cambridge, UK
M. Mangano, Geneva, Switzerland
J.-F. Pinton, Lyon, France
J.-M. Raimond, Paris, France
. Rubio, Donostia, San Sebastian, Spain
. Salmhofer, Heidelberg, Germany
. Sornette, Zurich, Switzerland
S. Theisen, Potsdam, Germany
. Vollhardt, Augsburg, Germany
W. Weise, Garching, Germany

A
M
D
D

For further volumes:
http://www.springer.com/series/5304



The Lecture Notes in Physics

The series Lecture Notes in Physics (LNP), founded in 1969, reports new
developments in physics research and teaching—quickly and informally, but with a
high quality and the explicit aim to summarize and communicate current knowledge
in an accessible way. Books published in this series are conceived as bridging
material between advanced graduate textbooks and the forefront of research and to
serve three purposes:

e to be a compact and modern up-to-date source of reference on a well-defined
topic

e to serve as an accessible introduction to the field to postgraduate students and
nonspecialist researchers from related areas

¢ to be a source of advanced teaching material for specialized seminars, courses and
schools

Both monographs and multi-author volumes will be considered for publication.
Edited volumes should, however, consist of a very limited number of contributions
only. Proceedings will not be considered for LNP.

Volumes published in LNP are disseminated both in print and in electronic
formats, the electronic archive being available at springerlink.com. The series
content is indexed, abstracted and referenced by many abstracting and information
services, bibliographic networks, subscription agencies, library networks, and
consortia.

Proposals should be sent to a member of the Editorial Board, or directly to the
managing editor at Springer:

Christian Caron

Springer Heidelberg

Physics Editorial Department I
Tiergartenstrasse 17

69121 Heidelberg/Germany
christian.caron@springer.com



Alexander Umantsev

Field Theoretic Method
in Phase Transformations

@ Springer



Alexander Umantsev

Department of Chemistry and Physics
Fayetteville State University
Fayetteville, NC, USA

ISSN 0075-8450 e-ISSN 1616-6361

ISBN 978-1-4614-1486-5 e-ISBN 978-1-4614-1487-2
DOI 10.1007/978-1-4614-1487-2

Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2012933792

© Springer Science+Business Media, LLC 2012

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



To my father Rudolf






Contents

1 Introduction.......... ..o e
1.1 What Is This Book About?...........cccooiiiiiiiiiiiiiiiii .

1.2 Who Is This Book For? ...

1.3 Historical NOte ......uviieiie e e e

1.4 Nomenclature. .........ooiiuiiiii i i i

S5 5] 131167

2 Landau Theory of Phase Transitions....................................
2.1 A Phase and Phase Transition...............oooiiiiiiiiiniiinnaa...
2.2 Phase Transition as Symmetry Change: the Order Parameter.......
2.3 Phase Transition as a Catastrophe: the Free Energy.................
2.4 Ehrenfest Classification ............ooiiiiuiiiiiniiiiiiiiiiiinneeeee.
2.5 The Tangential Potential ..............coooiiiiiiiiii i
2.6 Phase Diagrams and Measurable Quantities.........................
2.6.1 First-Order TranSitions. .........c.oeiiieeineeineiineenneennns

2.6.2  Second-Order TranSitions..........oveeiiineeriiieeennnaennn.

2.7 Effect of External Field on Phase Transition........................
References. ... .uuu et

3 Heterogeneous Equilibrium Systems....................................
3.1 Theory of Capillarity.........ccouiiiiuiiiiiii i
3.2 The Free Energy......ocoouuiiiiiiiiii i
3.3 Equilibrium States............uiiiiiiiiii e
3.4 One-Dimensional Equilibrium States.................cooviviiinn...
3.4.1 Classification of the States..............ccoviiiiiiiiiii...

3.4.2 Type-el Solutions: Bifurcation Off the Transition State....
3.4.3 Type-e3 Solutions: Approach to Thermodynamic Limit....

3.4.4 Type-e4 Solution: Plane Interface ...........................
3.4.5 Interfacial Properties: Gibbs Adsorption Equation..........
3.4.6 Type-n4 Solution: Critical Plate—Instanton ................

vii



viii

Contents
3.5 Free Energy Landscape ...........oooiiiiiiiiiiiiiiiiiiiiiiiiinn... 67
3.6 Multidimensional Equilibrium States..................cooviveeinn... 70
3.6.1 Quasi One-Dimensional States: Drumhead
(Sharp Interface) Approximation .....................ooo... 70
3.6.2 Critical Droplet: 3d Spherically
Symmetric InStanton ............oooiiiiiiiiiiiiiiinieaiia. 73
3.6.3 Small Deviations from Homogeneous
Equilibrium States: Fourier Method ........................ 79
3.7 Thermodynamic Stability of States: Local Versus Global ......... 82
3.7.1 Type-e4 State: Plane Interface.............................. 84
3.7.2  General Type-e and Type-n States .............c....cc..... 85
3.7.3 3d Spherically Symmetric Instanton........................ 86
3.8 Gradients of Conjugate Fields .............coooviiiiiiiiiiiniinnn.. 88
References.........oooiii 90
Dynamics of Homogeneous Systems...................ooooooii... 91
4.1 Evolution Equation: The Linear Ansatz............................ 91
4.2 Solutions of the Linear-Ansatz Dynamic Equation................. 94
4.2.1 Evolution of Small Disturbances ........................... 94
4.2.2  Critical Slowing Down..........c.oovviiiiiiiiiiniiiinn .. 95
4.2.3 Nonlinear Evolution.................oooiiiiiiiiiii .. 96
4.24 More Complicated Types of OPS.........cccovviiiiiii... 97
4.3 Beyond the Linear ANSatz. .........coouuuuiiiieiiiiiiiiiiinneeaennn. 98
4.4 Relaxation with Memory..........coiiviiiiiniiiiiiiiiin i, 98
4.5 Other FOICES. ....uuuuiii 100
References..........oooiiiiiiiiiiiiii 100
Evolution of Heterogeneous Systems.......................iiit 101
5.1 Time-Dependent Ginzburg-Landau Evolution Equation........... 101
5.2 Motion of Plane Interfaces................ooooooiiiiiiiiiiii, 102
5.3 Dynamic Stability of Equilibrium States ........................... 107
5.3.1 Homogeneous Equilibrium States .......................... 108
5.3.2 Heterogeneous Equilibrium States.......................... 110
5.3.3 Morphological Stability of Moving Plane Interface........ 111
5.4 Motion of Curved Interfaces: Drumhead (Sharp Interface)
APPTrOXIMALION .. ettt ettt e e e e e iee e e e ie e e 112
5.4.1 Nonequilibrium Interface Energy........................... 114
5.4.2 Evolution of a Spherical Droplet ........................... 115
5.5 Domain Growth Dynamics............cooeuuiiiiiiiiiiiiann.... 116
ReferenCes. .. . 119
Thermomechanical Analogy.................cooiiiiiiiiiiiiiin i, 121

ReferenCes. . .ov i 126



Contents ix

7 Thermodynamic Fluctuations...........................oooiiiiin.. 127
7.1 Classical Nucleation Theory .........oovviiiiiiiiiiniiiineiiinn.. 128
7.2 Free Energy of Equilibrium System with Fluctuations............. 130
7.3 Levanyuk—Ginzburg Criterion ..........oeuuieiiiineeiiineeennnnns 135
7.4 Dynamics of Fluctuating Systems: Langevin Force................ 136
7.5 Evolution of the Structure Factor..................ooooiie 141
7.6 Drumhead Approximation of the Evolution Equation.............. 144

7.6.1 Evolution of the Interfacial Structure Factor............... 145
7.6.2  Nucleation in the Drumhead Approximation............... 147
ReferencCes. .. ..ovee e 150
8 More Complicated Systems .................cooooiiiiiiiiiiiiii.. 151
8.1 Conservative Order Parameter: Theory
of Spinodal Decomposition ...........uveiiiineiiiieeiiiineeiinns 151
8.1.1 Thermodynamic Equilibrium in a Binary System.......... 151
8.1.2 Equilibrium in Inhomogeneous Systems ................... 157
8.1.3 Dynamics of Decomposition in Binary Systems ........... 159
8.1.4 Evolution of Small Disturbances ........................... 162
8.1.5 Role of Fluctuations................ooiiiiiiiiiiiiiiiiinn 165
8.2 Complex Order Parameter: Ginzburg—Landau’s Theory
Of SUPercoONdUCHIVILY ..o vvuet ittt 168
8.2.1 Order Parameter and Free Energy .......................... 168
8.2.2 Equilibrium Equations ..............cccooiiiiiiiiiiiinn, 171
8.2.3 Surface Tension of the Superconducting/Normal
Phase Interface ... 175
8.3 Multicomponent Order Parameter: Crystallographic
Phase Transitions. . .......ooeuuieeiiie i i 178
8.3.1 Invariance to Symmetry Group...........cccooeeeinieeennn.. 178
8.3.2 Inhomogeneous Variations............c.uuuuineeeeeeeennnn.. 179
8.3.3 Equilibrium States ..........cciiiiiiiiiiiiiiiiiiaen 181
8.4 Memory Effects: Non-Markovian Systems......................... 188
8.5 “Mechanical” Order Parameter.................coooiiiiiiiiiiinn.. 194
ReferenCes. .. ...t 199

9 Thermal Effects of Phase Transformations............................ 201

9.1 Equilibrium States of a Closed (Adiabatic) System................ 202
9.1.1 Type-El States .....coouuiiiiiiiiiii i 202
9.1.2 Type-E2 States ...ttt 210

9.2 Generalized Heat Equation.................ooooooiiiiiiiiiia, 215

9.3 Emergence of a New Phase..............oooiiiiiiiiiii i 220



X Contents
9.4 Motion of Interfaces: Non-isothermal Drumhead

(Sharp Interface) ApproXimation ...........c.coovveiuineeinnneannn. 225

9.4.1 Generalized Stefan Heat-Balance Equation .............. 227

9.4.2 Generalized Kinetic Equation............................. 230

9.4.3 Gibbs—Duhem Force ................cooiiiiiiiiiii.... 232

9.4.4 Interphase Boundary Motion: Heat Trapping ............ 234

9.4.5 APB Motion: Thermal Drag ...................ccoouunn, 236

9.5 Length and Energy Scales............cccooviiiiiiiiiiiniiiinnann. 239

9.6 Pattern Formation ............coooviiiiiiiiiiini i, 240

9.6.1 One-Dimensional Transformation........................ 241

9.6.2 Two-Dimensional Transformation........................ 242

S5 5] (2117 244

10 Transformations in Real Materials........................... ... 245

10.1 Parameters of FTM ...t 245

10.2 Boundaries of Applicability of the Method ...................... 247

11 Extensions of the Method ............... ... ..o 249

11.1 Cellular Automata Method: “Poor Man’s Phase Field”.......... 249

11.2  Continuum Models of Grain Growth........................ ... 254

11.2.1 Multiphase Field Models ......................ooooan. 255

11.2.2  Orientational Order Parameter Field Models ........... 257

11.2.3 Phase-Field Crystal ...........coooiiiiiiiiiiiiii i 258

11.3 Epilogue: Challenges and Future Prospects...................... 259

R eIeNCeS. .. ettt 260

Erratum. . ... El

Appendix A Coarse-Graining Procedure ................................ 261

Appendix B Calculus of Variations and Functional Derivative........ 267

Appendix C  Orthogonal Curvilinear Coordinates ...................... 273

Appendix D Lagrangian Field Theory ................................... 279
Appendix E Eigenfunctions and Eigenvalues of the Schrodinger

Equation and Sturm’s Comparison Theorem............. 285

Appendix F  Fourier and Legendre Transforms......................... 291

Appendix G Stochastic Processes...................c.oiiii, 297

Appendix H Two-phase Equilibrium in a Closed Binary System...... 315

Appendix I The Stefan Problem..................................o... 319

Appendix J On the Theory of Adsorption of Sound in Liquids........ 325

IndeX ... 341



Chapter 1
Introduction

1.1 What Is This Book About?

Phase transitions are significant changes in the system’s properties and symmetry,
which happen as a result of changes of the external conditions (temperature,
pressure, chemical potential, etc.). Although various phase transitions are discussed
in the book as physical phenomena, the book is more about the method to study the
phase transitions than about the phenomena themselves. A lot has been written about
behavior of a system close to the critical point; it is characterized by special features
such as scale invariance. However, these are rare cases and most of the systems
spend most of their time far away from the critical points. Rephrasing Feynman we
can say that there is plenty of room away from the critical point. Evolutions of the
systems when they are not close to the critical points are characterized by completely
different physical features, such as rate of nucleation and growth, microstructure or
pattern formation, structure modification and coarsening, etc. Physical descriptions
of these features require that special consideration is taken to the free energies of the
phases involved in the transformations, which in many cases are known either from
thermodynamic calculations or direct experimental measurements. All of that sets
the stage for different approach to phase transitions, more phenomenological, which
is the main subject of this book.

One of the most convenient ways of addressing the general problem of phase
transformations is the Field-Theoretic Method (FTM) based on the Landau para-
digm, which assumes that the free energy, in addition to temperature, pressure, and
composition, is a continuous function of a set of internal (hidden) parameters
associated with the symmetry changes, which are usually called long-range order
parameters (OP). Different transitions may be laid out into the same framework if
proper physical interpretations of OPs are found. Although significant strides in the
direction of rigorous derivation of the basic equations of the method from the first
principles have already been made (see Appendix A), this task is not finished yet.

A. Umantsev, Field Theoretic Method in Phase Transformations, 1
Lecture Notes in Physics 840, DOI 10.1007/978-1-4614-1487-2_1,
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2 1 Introduction

That is why the issue of thermodynamic consistency always played and still plays
significant role in the development of FTM. This issue can be expressed as follows:
whatever the equations of the method are, their implications should not contradict
the basic laws of thermodynamics.

1.2 Who Is This Book For?

This book is for researchers who are interested in all aspects of phase transformations,
especially for practitioners who are involved in theoretical studies or computer
simulations of the phenomena and would like to expand their knowledge in the
direction of the field theory of phase transitions. This book can be used as a textbook
of a graduate or upper level undergraduate course in physics of phase transitions.
The students should be familiar with the basic tenets of Physics: Thermodynamics
and Statistical Mechanics, and Mathematics: Calculus and Differential Equations.
Although the basic knowledge is assumed, more specific topics, critical for the
subject of the book, are presented briefly in the Appendices. There is an advantage
of having all the components of the method collected in one place. Please feel free to
send your comments to the author via: aumantsev@ gmail.com

1.3 Historical Note

Although phase transitions are always associated with some kind of singularity,
application of continuum ideas in this scientific area has a very long history.
The first attempts in the contemporary history to consider phase changes using
continuous methods belong to Gibbs [1] who considered coexistence of phases and,
in the first paragraph of his “Theory of Capillarity”, delineated the main reason for
the continuity between them—the finite size of the “sphere of molecular action.”
Although most of his treatment of the interface between the phases uses the concept
of “the surface of discontinuity,” he always thought of it as merely an abstraction.
Later, Van der Waals [2], in his study of the equation of state of the liquid—gas
transition, introduced the gradient of density contribution into the system’s local
energy (not entropy). This allowed him to calculate the surface tension of the
system and estimate the thickness of the interfacial layer.

Path of science through history is unpredictable. No matter how much we try to
control it by moral and financial support, science usually chooses serendipitous
routes. The Field Theory of Phase Transformations is a case in point. The funda-
mental basis of what this book is about was laid out not only in 1 year but also in one
city: Moscow, Russia of 1937. That year Landau [3, 4] published three papers on
the theory of phase transitions and scattering of X-rays, which introduced the
concept of the order parameter, started the new theoretical method, and explained
how the theory should account for the system’s heterogeneities. That same year
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Mandelshtam and Leontovich [5] published a paper on the theory of adsorption of
sound in liquids where they developed an approach to an evolving system which was
pushed away from equilibrium. As if all that is not enough for a coincidence, all four
papers were published in the same volume—seventh, of the same journal—Journal
of Experimental and Theoretical Physics, although in different issues. It is worth
mentioning here that 1937 was a very difficult year for Russia when the Stalin purges
had started; very soon Landau himself fell victim of those. So, 1937 was the theory’s
most successful year; the crossroads of science and politics are intertwined.

The Landau’s papers received significant attention in the “western” scientific
community (yet the third one [4] significantly less than the first two [3]), but the
Mandelshtam—Leontovich’s paper [5] remains virtually unknown to this community.
Although the author of this book does not know the exact reason for that, one possible
explanation is that the Landau’s papers were translated into English (and German)
while the Mandelshtam—Leontovich’s—not. That is why the author decided to
publish a translation of that seminal paper in Appendix K of this book. An interesting
discussion of that paper can be found in the section “Second viscosity” of Landau and
Lifshitz “Fluid Mechanics” [6], the first edition of which appeared in 1944. Later on,
in 1954, Landau and Khalatnikov [7] adopted the Mandelshtam— Leontovich’s ideas
of how to deal with disequilibrium and implemented them in their important paper.

In 1950, Ginzburg and Landau [8] expanded the early phenomenological ideas
of the theory and applied them to superconductivity. However, the significance
of that work for the Russian reader was not in the introduction of the gradient
energy term into the free energy functional (which seems to be the main novelty
of that paper for the “western” readers) but in coupling of the order parameter to
the magnetic field and the method of calculating the interfacial energy between the
phases. In the late 1950s, Cahn and Hilliard [9, 10] published a series of papers on
the application of the continuum method to the phenomenon of spinodal decompo-
sition and after that the whole field of the continuum theory burst in many different
directions.

In the past decade, there has been inflation of theoretical and computational
research using FTM when the method has become very popular in theoretical and
computational studies of very different phase transitions in materials (crystallization
of pure substances and alloys, precipitation in the solid state, spinodal decompo-
sition, martensitic transformation, and grain growth), in cosmology (phase
transitions in early universe) and high energy physics, in biophysics (chemotaxis,
protein folding) and even in the studies of human’s societies (revolutions and other
social events). FTM is successful because it is

e Accurate enough to correctly predict the transition path in many different
situations

» Simple enough to allow theoretical analysis

« Comprehensive enough to be interesting for practical applications

« Computationally friendly enough to be used for numerical simulations

The success of the method is due to its computational flexibility and ability to
transcend the constraints of spatial/temporal scales, imposed by strictly microscopic
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or macroscopic methods, hence becoming a truly multiscale one with significant
predictive power. However, this book is not about the numerical methods. A number
of good books have been written about the method; some of them are listed below
[11-16]. However, in the opinion of the author, they do not give the complete and
unified approach to the method, which is the goal of this book.

1.4 Nomenclature

In addition to the standard scientific-literature designation of functional dependence:
y = func(x), the author uses in this book a nontraditional designation:

y = const(x), (1.1)

when he means to say that the variable y is independent of the variable x. The author
chooses to use the designation (1.1) instead of the traditional y = const because the
latter designation implies that the variable y does not vary at all, while (1.1) means
that the variable y does not vary with x, although it may vary with other variables of
the problem.

The chapters contain untitled introductions that provide a classical, macroscopic
description of the related problem and a brief summary of the main results of
the chapter. The referenced equations are numerated in each unit (Chapter or
Appendix) separately with the first equation showing with the unit’s number
separated from the equation’s number by a period, e.g., (1.1). When an equation
is referenced from within the unit, the unit’s number is omitted for brevity, the
unit’s number is restored when the reference is made form another unit [e.g., Eq.
(1.1)]. The book does not have homework problems. But there are worked out
examples in each chapter and in a few appendices. Important equations in the
examples are referenced with the chapter number preceding letter E [e.g., (3E.7)].
Some details of derivations in the text have been left for self-analysis; they are
marked throughout the text as (Why?) or (Verify!). The author suggests that the
reader finishes the derivations on his/her own because no knowledge can be
acquired without hard work.

Often another term, “the phase field,” is used to designate practically the same
method as the one considered in the book. This term was born somewhere in the
mathematical community. It is time to bring this method back into the realm of
physicists. In this book, different terms, which have practically same meaning, are
used for the phases before and after the transition: old—new, initial-final, parent
(mother)—daughter, matrix—precipitate, or nutrient—incipient (emerging). The choice
is merely a literary convenience.

Many Latin and Greek letters have multiple uses in different chapters, which
should not cause any confusion. Exception is made for the following list of letters,
which retain the same meaning throughout the entire book.
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G—Gibbs (or Landau-Gibbs) free energy of the whole system
V—volume of the whole system

g—Gibbs (or Landau-Gibbs) free energy density

X, ¥, z—Cartesian coordinates

n—order parameter

k—agradient energy coefficient

o—interfacial energy

y—Xkinetic (relaxation) coefficient

The following abbreviations are used:

APB—anti-phase domain boundary

BC—boundary conditions

CAM—-cellular automata method
ELE—FEuler-Lagrange equation
FTM—Field-Theoretic Method

GB—grain boundaries

GHE—generalized heat equation
GL—Ginzburg—Landau

OP—order parameter

TDGLE—time-dependent Ginzburg-Landau equation

Acknowledgments The author would like to thank Dr. P. Galenko for his help in translating the
paper in Appendix K.
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Chapter 2
Landau Theory of Phase Transitions

In this chapter, starting with the classical approach, we define a phase as
homogeneous stable matter and classify phase transitions according to the Ehrenfest
classification. Then we introduce a concept of an order parameter as a hidden
variable responsible for symmetry changes during the transition. We consider
different thermodynamic functions and choose the Gibbs free energy as a function
of temperature, pressure, and order parameter (the Landau potential) to identify the
equilibrium states in open systems. Using the concept of the order parameter, the
phase transitions are considered as mathematical catastrophes of the Landau poten-
tial. The “catastrophic™ approach helps us to classify the phase transitions and see
how different forms of the Landau potential are applicable to different cases of phase
transitions. We also look at the special lines and points of the phase diagram
from the point of view of the “catastrophic” changes of the order parameter.
We conclude the chapter with the analysis of the external field on the phase
transition, using the properties of conjugation between the field and order parameter.

2.1 A Phase and Phase Transition

There are many physical situations which may be called phase transitions. They are
always associated with significant changes of properties in the physical system.
If water is cooled below 0°C at the atmospheric pressure, it solidifies and stops
flowing from one vessel to another. If a bar magnet is heated above a certain
temperature, called Curie temperature (approximately 770°C for an iron magnet),
it abruptly loses its property to attract small pieces of steel. If a piece of steel is
quenched rapidly its hardness increases dramatically. Under the microscope one
can see that characteristic plates, called martensitic, appear which have not been
there before the quench. Although the concept of phase transitions was conceived
and developed in the realm of physics and chemistry of materials, it has long since
crossed these borders and is now used in many other branches of science (e.g.,
sociology and cosmology). There is one significant difference between the

A. Umantsev, Field Theoretic Method in Phase Transformations, 7
Lecture Notes in Physics 840, DOI 10.1007/978-1-4614-1487-2_2,
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8 2 Landau Theory of Phase Transitions

examples of phase transitions above. Water can be supercooled below 0°C and ice
can be superheated above 0°C (at least slightly); however, one cannot superheat a
magnet above its Curie temperature. This difference brings up a distinction between
transitions of different kinds—first order and second order—discussed below.
Phase transitions may also have critical points where the phase transition pattern
changes from what it was away from this point. (Do not confuse with critical points
in mathematics which occur when the first derivative of a function vanishes). For
instance, in compression experiments, below the critical temperature of water there
are two distinct phases, liquid and vapor, while above this temperature water
changes its state (density) continuously.

For a substantive discussion of phase transitions, we need a reliable definition of
phase. So far, we have been using an intuitive one based on the physical properties
of the state of a system. However, the context of our discussion merits a rigorous
definition; we suggest the following: a phase is a homogeneous part of a system
distinguishable by a set of intrinsic properties, which has attained a state of
thermodynamic equilibrium under the specified external conditions.

A few comments are in order here: (1) Of course, “a part of a system” may be the
whole system; however, important is that it is “a homogeneous part.” In the litera-
ture, one can find definitions of a phase that are based on the ability of phases to
coexist (see Sect. 81 of ref. [1] for an example). There are two problems with such a
definition: for one, some phases do not allow coexistence (e.g., in a second-order
transition, see below); for another, such a definition implies that some kind of
inhomogeniety is necessary for a phase to exist, which is not correct. Under certain
conditions, a phase may be spatially non-uniform. For example, air in the gravita-
tional field of Earth changes density with altitude or a dielectric material in the
electrical field has inhomogeneous distribution of polarization. But these
inhomogenieties are imposed on the system from outside and may be easily removed
by removing the external fields. The system may have other inhomogenieties which
are harder or impossible to remove, such as internal interfaces between the
coexisting phases; these inhomogenieties must not be a part of the definition of
a phase.

(2) “A thermodynamic equilibrium” does not necessarily mean globally stable
equilibrium; a phase can be in the state of only local equilibrium—a metastable
phase (see below). However, an unstable (although equilibrium) state of a system is
not a phase.

(3) To be called a phase, we do not require a system (or its part) to be at
equilibrium under any “external conditions,” only “under the specified” ones.
Certain phases may exist under specific conditions (e.g., isothermal) but not exist
under others (e.g., adiabatic). For example, a solid phase that is stable in a closed
system may fall apart if the system is exposed to the environment.

In thermodynamics, we define special functions of state as entropy S and free
energy (Gibbs-G or Helmholtz-F) which clearly identify equilibrium states and
even distinguish between the equilibrium states of different levels of stability.
For example, in a system closed for thermal exchange with the environment,
the entropy must attain maximum at a stable equilibrium state. If the system is
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open to the thermal exchanges, then the equilibrium states are identified by the
minima of the free energy. One has to keep in mind that the maxima and minima of
the respective thermodynamic functions are taken not with respect to the thermo-
dynamic variables (energy E, enthalpy H, volume V, temperature T, pressure P,
etc.) but with respect to the internal—hidden—variables that characterize different
states for the same set of the thermodynamic variables.

As a consequence of the second law of thermodynamics, at equilibrium, the
chemical potentials of the phases are equal. In different physical systems, the role
of the chemical potential is played by different physical quantities. In an open, one-
component system, which will be of primary interest for us in this book, the
chemical potential is the molar Gibbs free energy G. Thus, the condition of phase
equilibrium in an open, one-component system is expressed as follows:

Gphasea,(P7 T) = Gphase/f(P7 T)~ 2.1

A convenient, geometrical way of describing phase transitions is with the help of
a phase diagram—a map in the plane of the thermodynamic parameters of regions
where each phase of the substance is the most stable; these regions are separated by
lines known as phase boundaries. Equation (2.1) describes a phase boundary in the
(P, T)-plane of the phase diagram; it may be expressed as the equilibrium tempera-
ture that varies with pressure:

T =Tg(P) (2.22)
or pressure with temperature:
P = Pg(T). (2.2b)

There are different classification systems for phase transitions; the most popular
one was introduced by Ehrenfest. It is based on the discontinuity of the appropriate
thermodynamic potential—G, F, or S—with respect to the appropriate thermody-
namic variable—P, T, V, or E. According to this classification, if at the transition point
(phase boundary) the first derivative(s) of the thermodynamic potential with respect to
its variable(s) experience discontinuity, such transition is called first order. If the first
derivative is continuous but the second one experiences discontinuity, the transition is
called the second order; the latter is closely associated with the critical phenomena.
Such classification may not work for all transitions. However, in this book, we are
using the Ehrenfest classification because it is the most convenient one. For instance, it
may be expanded on the transitions of nth-order as such that the nth derivative is the
first one to experience a discontinuity at the transition point.

Introducing a jump quantity at the transition boundary:

[Q} = Qphase/; (Pv TE) - Qphasey(P7 TE) (2.3)



10 2 Landau Theory of Phase Transitions

the Ehrenfest classification may be expressed in a succinct form. For instance, for a
transition to be of the first order, the latent heat

and/or the transformation volume
0G

cannot be zero. Differentiating (2.1) along the equilibrium line (2.2a), we find the
Clapeyron-Clausius equation:

dTg V]
— =-Tg—. 2.
dP o (23)

The jump quantity may be taken at any point of the (P, T)-plane; then, the
relation (2.4a) can be expanded beyond the equilibrium line as follows:

0
L(P,T)=T—[G| — [G]. 2.4
(P, T) =T 5[G] - (6] (240
As a consequence of the second law of thermodynamics, condition of stability of
matter (phase) may be expressed as positivity of the specific heat Cp:

OH >G
Cr=|—| =-T|= 0 2.6
P <8T>P (6T2>p> | o
and isothermal negativity of the isothermal compression Pr:
1 /oV
=——|= 0. 2.6b
Br % ( ) P> T> (2.6b)

Then, for a transition to be of the second order, the latent heat and transformation
volume must vanish but the jumps of the specific heat

7] ?
[Cp] = T L= TW [G] (2.7a)
and/or isothermal compression
1 0
[Br] = " Vorer \OP V] + Br phase plV] (2.7b)

cannot be zero at the same time.
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The condition of equilibrium (2.1) is not identical with the condition of
coexistence. For instance, two phases of a substance which can undergo a first-
order transition may coexist under the conditions of a closed system; however, two
phases of a substance that undergoes a second-order transition cannot coexist at
equilibrium under any conditions.

The third law (Nernst heat theorem) basically says: at T = 0 K, the entropy of the
most stable phase is zero. This law is more important for the low-temperature phase
transitions than for those where the equilibrium temperature T is far away from 0 K.

Clearly, the concept of a phase transition is associated with some kind of
discontinuous, nonanalytic behavior of the thermodynamic functions that describe
the system. A statistical mechanical approach to phase transitions is to write down
the partition function Zy of a system of N particles interacting with each other
according to a certain interparticle potential energy u(r;, r;), where r; is the position
in space of the ith particle. Thermodynamic functions of the system can be easily
expressed through the partition function. The partition function of a system that can
undergo a phase transition must be such a function of its variables—volume V and
temperature 7—that the regions of analytic behavior are bounded by curves on
which the function is not analytic. The problem of the statistical mechanics descrip-
tion of phase transitions is that the partition function of a finite number N of particles
is a well-behaved, analytic function of its variables, hence, does not describe a phase
transition. The resolution of the analyticity paradox was found in the thermodynamic
limit, that is in the limit (V, N) — oo. The trick is that even though Zy(V, T) is
analytic for every finite N, it is still possible for z(V,T) = lim Zy(V,T)/N to
be nonanalytic. oo

2.2 Phase Transition as Symmetry Change:
the Order Parameter

Landau [2] suggested a different approach to phase transitions, an approach that
uses the concept of “hidden variables” in thermodynamics. A hidden variable is an
internal variable which affects the properties of the system, hence its thermody-
namic functions (e.g., free energy), even when the thermodynamic variables—e.g.,
P, T,V, E—are set by the conditions outside the system. For instance, it may be the
reaction progress variable in a system where a chemical reaction occurs or the
composition of a mixture of phases in a system of given pressure, temperature, and
number of particles. A hidden variable can measure deviation of the system from
the state of equilibrium. Then, according to the laws of thermodynamics, equilib-
rium state of an open system with given P and T corresponds to the minimum of
Gibbs free energy. Hence, it will be found among the critical points of the free
energy as a function of the hidden variable:

oG
— =0. 2.8
( on ) P.T 250



12 2 Landau Theory of Phase Transitions

Stability of this equilibrium is determined by the sign of the second derivative of
the free energy with respect to the hidden variable:

2
(277—(2;) >0. (2.8b)
PT

Utility of the concept of hidden variable is also found in the fact that the first
derivative of the free energy of a nonequilibrium state may be identified as a
thermodynamic driving force toward the equilibrium.

In a way, Landau’s idea intended to express that a phase transition looks discon-
tinuous only in the space of the thermodynamic variables, but if you introduce
another variable, inner or hidden, then the thermodynamic potentials of the system
will be continuous (even analytic) functions of the set of thermodynamic and inner
variables. In the theory of phase transitions, it is accustomed to call this variable an
order parameter (OP), n, in recognition of the fact that many phase transitions are
associated with some kind of ordering. It is important to understand that the OP is
not equivalent to the thermodynamic variables because the latter can be set in the
system arbitrarily, while the former, at the thermodynamic equilibrium, becomes a
function of the latter and takes on the value, 7(P, T, V, E), which delivers extremum
to the respective potential at the given values of the thermodynamic variables—P, T,
V, E. The concept of OP is very helpful in defining a phase because the “homogeneity”
and “equilibrium” should be understood in the sense of OP. Then, a phase is defined as
a locally stable, homogeneous in the OP part of a system.

Landau realized that many phase transitions are associated with symmetry
changes in the system. The OP may represent a physical quantity that is, be
described by a dimensional variable, or it can be defined as a measure of the
symmetry difference between the phases before and after the transition. As a
quantity, 1, can be defined such that it is zero in the high-symmetry phase and
non-zero (positive or negative) in the low-symmetry phase. The OP should describe
the phase transition and its changes should reflect the symmetry changes essential
for the transition. 7 can be a scalar, a vector, or a tensor; tensorial properties of the
OP should reflect the tensorial properties of the microscopic quantity that
characterizes the transition. The OP can be a complex or a multicomponent
quantity, depending on the physical nature of the transition. Identification of the
physical nature of the OP is the first step in the description of a phase transition.
The OP is obvious for some transitions and not so obvious for others. For instance,
for a martensitic transition, which has “mechanical” origin, the OP 7 is a crystalline
lattice-parameter change; the relation G(1) = Go+1G"(7)n* 4+ --- may be
interpreted as the Hooke’s law and G”(7) as the bulk modulus. For the
ferromagnet/paramagnet transition, the OP represents spontaneous magnetic
moment of the sample. The OP of a crystal/melt transition is not so obvious: it is
the amplitude of the lattice periodic component of the density function. For a
liquid—gas transition, the difference in densities of the phases plays the role of
the hidden variable; however, it is not an order parameter because the symmetry
of the phase does not change after the transition. Another reason not to consider
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density as an order parameter is that dynamically density obeys equations which
differ from the dynamical equations that we will derive for the OP in Chaps. 4 and 5.

For mathematical purposes, the OP may be scaled and, although initially it had
simple physical interpretation, after scaling the OP may lose it. Nevertheless, in
many cases, the mathematical transparency outweighs the physical simplicity.

The Landau approach allows us to bridge the gap between the atomistic theories
and macroscopic observations. The OP of a specific system can be derived as
volume average of a microscopic quantity, which characterizes the transition—
the coarse-grained quantity (see Appendix A). Then, thermodynamic properties of
the system will be described by the coarse-grained free energy which is a function
of the OP and whose minima are associated with the equilibrium states of the
system, see (2.8).

Which thermodynamic potential is the most appropriate for the theory that
describes the phase transition? One can choose any appropriate thermodynamic
potential: the Gibbs free energy G as a function of (P, T, 1), the Helmholtz free
energy F as a function of (V, T, ), or the entropy of the system S as a function of its
internal energy E and (V, n). For the thermodynamic consistency of the description
of the system, the potential must obey the laws of thermodynamics. In their most
natural forms, the first and second laws are expressed through the internal energy
E and entropy S of the system, which may seem to indicate that these potentials
should be chosen for the phase transition description. In fact, this is not the case
because first, the thermodynamics provides an easy recipe for how to convert
one thermodynamic potential into another—the Legendre transformation (see
Appendix F). Second, the issue of intuitive clarity of the potential is paramount
for the Landau theory because it is a phenomenological theory. From the standpoint
of the second argument, the Gibbs free energy, G(P, T, 1), has a significant advan-
tage in that it naturally represents an open system as opposed to S(V, E, n)—
representing a closed one.

Analyticity of the thermodynamic potential means that, in the space of the
thermodynamic variables plus OP, in the vicinity of the transition point the poten-
tial can be represented by a Taylor polynomial. According to Taylor’s theorem,
if the first n + 1 derivatives of the function G(n) exist at the point 7 = 7} then

Gln) = GG) + G () n — 1) + 3, ()n — )"

1 1 .
57 G MM =)+ + G @) =)+ Ra), (29)

where R,(n) is the nth degree remainder, which is of the order of the (n + 1)st
derivative of G estimated at some point between 7 and 7). For small values of () — 7)),
the remainder may be dropped. How small must the difference (n — 77) be for this
approximation to be valid? As known, the accuracy of the approximation depends on
the degree of the Taylor polynomial. Although the accuracy of the approximation
increases with the degree of the polynomial, its “convenience” decreases. Thus,
one has to find a rational compromise to the accuracy/convenience trade-off.
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This problem will be resolved only if the terms that make comparable contributions
into the free energy approximation remain in the polynomial. For the point = 7 to
be associated with the symmetry change, it must be a critical point (G'(77) = 0), see
(2.8a). Therefore, the linear term in the expansion (2.9a) must vanish. To take full
advantage of Taylor’s formula, the polynomial expansion should be truncated at
the lowest possible order #n,,. The number n,, determines many properties of the
transition, most importantly its kind—first or second.

What is the highest degree of the polynomial n, and which terms in the
expansion (2.9a) should be retained?—are the core questions of the phase-transition
modeling. Obviously, they cannot be covered here completely; however, some of
them may be answered based on the following criterion. Often one sees in the
literature a statement that “the expansion (2.9a) is valid only for small values of n”
without specification of what this means. This is not accurate and must be corrected.
According to Taylor’s theorem, the requirement must be that the remainder R, (1)
is smaller than any of the nonvanishing terms of the polynomial in the interval of
interest of the OP. The boundaries of the interval (7, n,) are either known from the
physical constraints of the problem or should be found from the mathematical
analysis of the free energy. Once we have them, the criterion takes the form

1
max | — G (7)(n — )" |>> max |R,, (1) (2.9b)

M<N<N, [Ny n,<n<n,

2.3 Phase Transition as a Catastrophe: the Free Energy

Many properties of the expansion (2.9a) can be understood on the basis of the
mathematical Catastrophe theory [3]. Let us identify the minimal set of properties
of a function G(n) that can be used as the Landau—Gibbs free energy to describe a
phase transition between two phases, o and f5. It must have at least two minima of
different magnitudes—the local (Imin) and the global (gmin)—separated by a local
maximum (Imax), which represents the free-energy barrier state ¢:

Gy = gminG(n) <G, = IminG(n) <G, = Imax G(n). (2.10)
n n n
A polynomial of the degree not less than 4th possesses these properties. Without
any loss of generality, we can assume that (2.9a) is an expansion near the high-
symmetry phase with 7 = 0. Then, the OP can be scaled such that G" (1) = 6 and
we obtain the Landau potential:

1 2 1
G(P,T,n) = Go(P,T) + EA(P, T)n? — gB(P, )y’ + 1774, (2.11)

where Go(P,T) is the Gibbs free energy of the high-symmetry phase and the model
coefficients A(P, T), B(P, T) are assumed to be smooth functions of P and T. A(P, T)
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and B(P, T) determine all the properties of the transition and can be used as the
system’s thermodynamic variables instead of (P, T). Hence, the equilibrium values
of the OP can be found among the critical points of the Landau potential (2.12) and
(2.8a) is replaced by

oG
<—) =n(A—2Bn+7") =0. (2.12)
M) an

Unsurprisingly, 1, = 0 is a solution of this equation. In addition to this root, the
equilibrium set contains two more solutions:

7. =B+ VBZ—A. (2.13)

Equation (2.13) has real solutions—equilibrium states—only if A < B For
A =B (2.14)

7, and 7_ are identical and for A > B? the solutions 7, are complex. Thus, in the
plane (B, A), the curve (2.14) separates the regions with one and three equilibrium
states (see Fig. 2.1). The (B, A)-plane is an example of an equilibrium or phase
diagram in the Landau theory. Notice that the phase diagram is symmetric with
respect to the B(P, T) = 0 axis; indeed, if B(P, T) changes sign the simple reflection
n — —n will restore the Landau potential (2.11).

As known, equilibrium states may be stable or unstable. The same thermody-
namic principle of the minimum Gibbs free energy provides the recipe for the
stability of the states in the open system. For the Landau potential (2.11) condition
of stability, (2.8b) is replaced by

2
(a—G) = A — 4Bn + 31°>0. (2.15)
o AB
Analyzing (2.15), we can see that the stability of the state 7, depends on the sign of

A only: 7, is stable if A > 0 and unstable if A < 0. Hence, in the (B, A)-plane, the
region of stability of the state 7, is separated from the region of instability by the line:

A=0. (2.16)

For B > 0, the state 7}, is always stable when it exists, i.e. A < B?, the state n_1is
unstable for

0<A<B? (2.17)

and stable for A < 0. [Verify (2.17)! Hint: substitute (2.13) into (2.15)]. For B < 0,
the stability conditions for the states 7, and 7j_ switch places. The regions of
existence and stability of the states 7} are shown in Fig. 2.1.
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Fig. 2.1 Phase diagram of
the system described by the
Landau potential (2.11).

The triple symbols identify
levels of stability of the states
in the respective regions

of the phase diagram: lower
symbol—globally stable; 0
middle symbol—Iocally
(meta-) stable; upper
symbol—unstable. Curves:
red—spinodals: 1—low
symmetry, (2.14); 2—high
symmetry, (2.16); blue—
phase boundaries: 3—(2.19);
4—(2.21); purple—constraint
of the tangential potential,
(2.30). LCP—the Landau
critical point =

o+

The analysis that we have conducted so far identifies only the local stability of
the equilibrium states 7, i.e., stability with respect to small perturbations. However,
the locally stable states may differ by the amount of free energy: the one with the
least amount of energy is called globally stable. To determine which state, 7j, or 77,
is globally stable we need to calculate

) 1 2 _
G+ =G(A,B,1.) = Gy — 2\A- §B77i (A—2B7n,)
1 2., 2
=Gy + AB? — ZAZ - gB“ :FgB(BZ —A)*? (2.18)

and compare it with G. Depending on the magnitude of B, three different cases are
possible.

Case I: B =0, the Landau condition. This condition may be required by the
symmetry constraints of the transition. In this case, there is only one (real) solution
Mo =0 for A >0 and three real solutions 7, =0, 7, = +v/—A for A <0
[see (2.13)]. From (2.15), we can see that the state 7), is stable for A > 0 and unstable
for A < 0; the states 77, are stable in the domain of their existence, i.e. A < 0. From
(2.18), we can see that G < Gy, that is, the global stability of the equilibrium states
is identical to the local one.

Case 2: B > 0. The bifurcation structure of the equilibrium diagram of the system is
different from that of Case 1. The most important change is in the appearance of the
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domain of coexistence of the equilibrium states, 77, and 77,, (2.17). Outside this
domain, Case 2 is similar to Case 1 with only one state, 7, existing for A > B? and
three states (7. and 7)) for A < 0. Inside the domain of coexistence, (2.17), exchange
of the global stabilities between the states is taking place. To analyze this “process,”
we need to equate G, to Gy in (2.18). Representing the solution in the form:

A = kB?. (2.19a)
we transform (2.18) into

1 2 3/2 2

which has the only solution (Verify!)

k== (2.19¢)

Thus, on the boundary A = (8/9)B2, (2.19a,c), the states 1), and 77, exchange
their global stabilities so that 7, is globally stable for A > (8/9)B* and 7 , —for
A < (8/9)B?, although both states are locally stable on both sides of the boundary.
Notice that on the boundary (2.19a,c) we have:

0, =27 (2.19d)

Let us analyze this case further. Using (2.18), we can also find the condition for
the states 77, and 7)_ to exchange the global stabilities:

4
G. -G, = 513(132 — A2 =o. (2.20)
This equation has a true solution:
B=0, A<O0. (2.21)

and a spurious root (2.14) because both states are unstable for A < B?. Hence,
(2.21) represents the true boundary of stability. The Landau potential G(A, B, 1)
(2.11), as a function of the OP, is shown in Fig. 2.2 for different values of the
parameters A and B.

Case 3: B < 0. Case 3 is analogous to Case 2 if the state 7)_ replaces the state 7, .
The substitution (2.19a) and solution (2.19c) apply to Case 3 also. (Why? Hint:
v/ (x?) = |x|). Equation (2.21) represents the boundary between Cases 2 and 3.

In the process of analyzing stabilities of the equilibrium states, we found two
types of bifurcational loci: Type I—the states exchange their stabilities, global
versus local; Type II—at least one of the states loses (or gains) the local stability.
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Fig. 2.2 Landau potential,
(2.11), as a function of the
order parameter 7 for
different values of the
parameter A. (a) B = 0;
b)B =1

2 Landau Theory of Phase Transitions

-0.8 -0.4 0.0 0.4 0.8
order parameter n

\ \ \ \ \
-0.5 0.0 0.5 1.0 1.5 2.0

order parameter n

The first type is called the equilibrium phase boundary, the second type is known
as the spinodal (to be exact, the mean-field spinodal). In the case of two parameters
(B, A), these loci are curves; in the case of multidimensional parameters, the loci
are surfaces, or multidimensional hypersurfaces. The equilibrium phase boundaries
are obtained by equating expressions (2.18) of the respective phases; the spinodals
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are found by equating 0%G/0n” in (2.15) to zero and solving for the state of interest.
Thus, for the Landau potential (2.11), the curve (2.19) is the 7, /7, phase equilib-
rium boundary and (2.21) is the boundary of 7, /7_ phase equilibrium; (2.14) and
(2.16) are the spinodals of the low-symmetry 7, and high-symmetry 7, phases,
respectively (see Figs. 2.1 and 2.2). Furthermore, compare 02G/dn” for the stable
and metastable phases:

(82G) A for n = 7, (2.22)
on? A,B_ 2(B* ~A+BVB*—A) forn=1, '

and notice that 0°G/0n” of the stable phase is always greater than that of the
metastable phase.

When compared with Cases 2-3, Case 1 has additional symmetry, which is
revealed in the degeneracy of the equilibrium. For the system described by the
Landau potential (2.11), at A > 0 the stable state may have only one value 7),, while
at A < 0 the stable state (phase) is represented by two different values: 77, and 7)_.
These conditions A > 0 and A < 0 are separated by the “Landau critical point” (see
Figs. 2.1 and 2.2)

B=0, A=0. (2.23)

Relevance of this point to real physical transitions has not been confirmed yet.
An auxiliary function

1 0G

®(n) = G(n)

associated with the Legendre transform of the free energy G (see Appendix F) is
useful in the study of the transitions. Notice that ® and G take on equal values at the
equilibrium states.

In many situations, it may be useful to express the conditions of equilibrium and
boundaries of stability in the plane of the OP and one of the model parameters, A or B.
Equation (2.12) expresses the first one and (2.15) (equated to zero) the second one.
These conditions are depicted in Fig. 2.3.

2.4 Ehrenfest Classification

As B(P,T) and A(P, T) are smooth functions of P and 7, the order of the transition
may be determined by the jumps of the derivatives with respect to A and B, that is,
the differences between the derivatives of the Landau—Gibbs free energies, G.. and
Gy, at the equilibrium lines. There are two ways to calculate these derivatives: one
way is—directly by substituting the appropriate expression of 7(A, B) into (2.11)
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Fig. 2.3 Equilibrium state diagrams of the system described by the Landau potential, (2.11), with
B = 0(a)and B = 1 (b). Solid lines—the equilibrium states, double solid lines—the locally stable
states, triple solid lines—the globally stable states, dashed lines—the local stability boundaries
(spinodals)

before taking the derivative; another way—by using the expressions (2.4) and(2.7)
considering 7 as a function of A and B in it. The second approach is instructive and
will be demonstrated here. First, using the rule of chain differentiation we have:

OG(A,B, 7])) <8G> <8G) (5‘77)
— ] = |5 + 5 = - (2.25a)
( 0A B 0A B 877 AB 0A B
Then, applying condition of equilibrium (2.12), we obtain:
0G(7) oG
—) == . 2.25b
(50),= (@), &2

Second, applying the same chain differentiation rule to (2.12), we have:

PG\ 0 ((0G oG an (G
(aAz>B oA (aA)B,y, i (an>A,B (aA)B . (m)

(i), (), (50, ), (57),, 30,

(2.26)
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Table 2.1 Jumps of the

v Order of transition B A
derlvg@ves at th.e phase [0G/OB] [0G/0A]
transitions for different _ N > N >
special values of the T [0°G/0B"] [0°G/0A"]
parameters A and B of the [G] [0°G/0ADB] [0°G/0A™)
La.n.dau potgntial, (2.11). Zeroth order >0 B2
Initial state is 1’7~0, the state B33 B2
after transition is _

o L n, =8 —00 —00
Ty = T Oy =1 BY(3 x 2% +00
First order >0 2382/32
-2'B3* 2°B%/3?
n,=2%B/3 —2'B%/3? -2
0 2°B/3
Second order 0 0
0 0
1n.=0 0 -12
0 0
Third order >0 0
0 0
n_=0 0 0
0 0 1/(2*B?)

Taking the full differential of the left-hand side of the equilibrium condition (2.12)
and equating it to zero, we obtain the following condition that applies to = 7)(A, B):

0*G > (82G) (877)
+ | = — ] =0. (2.27a)
(814&7 B on? AB 0A) g
Applying (2.12) and (2.27a) to (2.26), we obtain:
G (1) G G o\’
), = Gy~ (57) ), e

In (2.27b), the left-hand side is the second-order A-partial along the equilibrium
line 1 = 7(A, B), while the first term in the right-hand side is (2.27) is the second-
order A-partial along the = const(A, B) line at the equilibrium point 1 = 7(A, B).
Importantly that these partials may not be equal. Finally, applying (2.25b) and (2.27b)
to equation (2.11) we obtain expressions for the derivatives at the equilibrium line:

aGm)\ _ (9Go 1,
< oA )B‘<8A)B+2”’
PGm)\ _ (9Go _(on
), - G, (&), @28

Similar expressions can be derived for the B- and mixed AB-partials.

(2.28a)
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In Table 2.1, the jumps of the derivatives at the transition points from the state 7,
into another state 7, or 7)_ are calculated using (2.28). Classification of the
transitions given in Table 2.1 can be compared to the curves and points that express
the special conditions on the diagram in Fig. 2.1. Namely, the Landau critical point,
(2.23) is the locus of the second-order transition; (2.19) (blue line 3) is the locus of
the first-order transitions. Transitions that take place on the line 3 close to the
Landau critical point are called weak first order. In the spirit of the Erenfest
classification, the low-symmetry spinodal (red line 1) may be called the line of
the zeroth order and the high-symmetry spinodal (red line 2)—the line of the third-
order transition. These transitions are not of the same level of significance as the
first two because they are not experienced by the globally stable phases—ij, on line
1 and 7, on line 3. They occur “under the radar” of the Gibbs free energy. Yet they
may appear in physical experiments or numerical simulations, and that is why they
are also analyzed in this book.

2.5 The Tangential Potential

The physical nature of many phase transitions is such that the OP values of the
globally stable states on both sides of the phase boundary are nearly constant, that
is, do not change much as the parameters A and B vary. Crystal/melt transition is
one of the examples. In this case, it is convenient to associate 7j, with the liquid state
and 7, with the solid one and require that the branch 7, does not change its value in
the domain of its stability (see discussion after (2.16) and Fig. 2.3b):

7, = const(A, B)=C #0 for A<B>. (2.29)

Requirement (2.29) destroys independence of the parameters A and B and yields
the constraint:

A =2CB - C%. (2.30)

Then, for the free energy jump between the equilibrium states 7, and 7j, we
obtain:

!

[G]:G+—Go:6

1
C? (A - 202> for A<C?. (2.31)

Great advantage of the constraint (2.30) is the simplicity of relation [G](A, C),
(2.31), as compared to (2.18).
Rescaling the OP

n=Cpn, C*=2W (2.32)
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we can write down the Landau—Gibbs free energy, (2.11), in the following form:
GOW, [G, ) = Go -+ 3 o i) + [GIv () .33
where
o(x) =x(1 —x); v(x) =223 - 2x). (2.33b)
Notice a useful property of the functions that make up this potential:

dv
i 6m(x). (2.33¢)

As we established, (2.31) is more convenient for the phase transition analysis than
(2.18). But convenience comes at a price. First, the constraint (2.30) does not allow for
the Landau critical point, (2.23). This means that the potential (2.30) cannot describe
the second-order or weak first-order transitions. Second, as we can see on the diagram
in Fig. 2.1, the purple straight line, (2.30), never crosses the red line 1, (2.14);
the former is tangent to the latter at (B = C, A = Cz). Hence, both branches, 7,
exist as stable or unstable states (i.e., are real) for all values of the parameter A. In the
domain of the stability of the branch 77, (B > 0, A < B?), the branch ;_ = A /C is
unstable. At the point of tangency, the branches 7, and 7j_ exchange their values so
that for (B > C,A > C?), the branch 7 = C is unstable and the branch 7 ., =A/Cis
locally stable. The branch 7, = 0, however, remains globally stable.

For the purposes of phase transition modeling, it is more convenient to reconnect
the branches 7, and 7)_ at the point of tangency and relabel as follows:

_ 7., forA < C? = A 7_, for A < C?
cn=C= ; Ch=—== . 2.34
g {7-7_, forA>C> ~M=CT @, forA > C? (2.342)
Also we redefine the free-energy jump for the reconnected branches:
D =[G =G, -Gy, Gy =GW,D,n). (2.34b)

Equation (2.34b) applies in the entire domain of variation of the parameters
of the potential (2.33). Equations (2.18), (2.30)—(2.32), and (2.34) establish the
relations between the coefficients (W, D) and (A, B).

For the potential (2.33), (2.34), the condition of equilibrium of the phases
7, and 7), takes the form

Di =0, (2.35a)
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It identifies the parameter D as the “driving force” for the transition. In the
vicinity of the equilibrium, the two phases (stable and metastable) are separated by
the unstable—transition—state:

__ D
n==-+3—. 2.35b
hn=5+3 (235b)
At the equilibrium
E _ = 4
G, =GW,Dg,n,) =Go+ 5= (2.35¢)

32

which shows that W is related to the free-energy barrier height between the
equilibrium phases. For 02G/0n? of the stable and metastable phases we obtain:

2 e
GGy _ WD fory =1, (236)
on? WD W —6D forn=r1n,

Similar to the Landau potential (2.11), 0°G/0n* of the stable phase is always
greater than that of the metastable one. The mean-field spinodal conditions for the
low-symmetry 77; = 1 and high-symmetry 7, = 0 phases are (Verify!):

w 14
DS = ~% and DS = +e (2.37)

Due to the constraint (2.30), the potential (2.33)—(2.37) can be called tangential.
In Fig. 2.4 is depicted the potential (2.33) as a function of the rescaled OP and
driving force D. In Fig. 2.5a, b are depicted, respectively, projections of the surface
from Fig. 2.4 on the (, G) and (), D) planes; the latter represents the equilibrium
state diagram for this potential. Notice that inside the spinodal region and the region
of equilibrium OP values (—W/6 < D < W/6, 0 < n < 1) the two terms of the
tangential potential (2.33) that depend on OP are of the same order of magnitude.
This means that the remainder in the expansion (2.10) may be made arbitrarily
small, which validates the truncation at n,, = 4.

Sometimes it is advantageous to expand the free energy G(7) about the unstable
equilibrium state 7,:

1 1 1
G(77) :Gf"‘EGNtA?f"‘gGmtAnS +ﬂG///lt A774;

An=n-7; G =0G(AB,7,)/on";
Gl[ = 0, GU[<O, G”/,[>O.

(2.382)
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Fig. 2.4 Landau-Gibbs free-energy of the system with tangential potential, (2.33), as a function
of the order parameter 7 and driving force D

The equation of equilibrium 0G(7)/0n = 0 has an obvious root An = 0 that
corresponds to the unstable state. The other two roots, An, < 0 and Ang > 0:

1

1
G/ +5 G Anygp) + g G Ay = 0. (2.38b)

correspond to the local and global minima. If G/ = 0 then:

3(G”t)2

Ga:Gﬂ:G[—W.

(2.38¢)
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[
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order parameter n ~
order parameter n

Fig. 2.5 (a) Projection of Fig. 2.4 on the plane (7, G) for different values of D. (b) Equilibrium
state diagram of the system described by the potential from, (2.33)—projection of the lines of
equilibrium from Fig. 2.4 on the plane (7, 3D/W). Solid lines—the equilibrium states, double
solid lines—the locally stable states, triple solid lines—the globally stable states

Resolving (2.38b) for A7,g, and relating them to 7, and 7, of the Landau
potent(ia)l (2.11) we can establish a relationship between the coefficients (A, B)
and G,":

G/ = 2(32 —A-BVB?— A), (2.39)
G" = 2(3 —3VB - A), (2.39b)

G" =6. (2.39¢)

If the last relation does not hold, the OP Az can always be rescaled for this to
be true.

Potentials of the order higher than the forth can also be used for the phase
transition modeling. For instance, the fifth-order “10-15-6" potential has the same
property as the tangential potential of preserving the values of the stable phases
around the equilibrium point. However, this potential cannot be used in cases of
large values of OP variations because the state with infinitely large OP value
becomes globally stable. The free energy potentials of the sixth-order have more
complicated phase diagrams and many new, interesting properties [4]. For instance,
such a system may have a ftricritical point where the lines of the first- and second-
order transitions cross. Also notice that the free energy expansion [e.g., (2.10)] does
not necessarily need to be polynomial; for instance, it can be an expansion in
harmonic functions.
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2.6 Phase Diagrams and Measurable Quantities

2.6.1 First-Order Transitions

To verify a theory of phase transitions, we need to identify in the theory the
quantities which can be compared with the experimentally measurable ones. The
real world experiments are not controlled by the model parameters A, B, W, D,
but by the temperature and pressure. That is why we have to establish relations
between (A, B) or (W, D), and (P, T). Let us concentrate, first, on the description of a
first-order transition by the Landau potential (2.11). The phase equilibrium condi-
tion in the (P, T)-plane describes a line (2.2), which is isomorphous to the line
(2.19a), (2.19¢) in the (B, A)-plane. To resolve for A(P, T) and B(P, T), we need
the relations for these quantities near the equilibrium line, (2.2) and (2.19).
Such relation is provided by (2.18) where G. and G are functions of P and 7.
Unfortunately, parameters A and B are convoluted in this equation, making it
difficult to resolve for either one even if you assume the other one a constant.
Of course, one can work backwards by assuming the functional dependence A(P, T)
and B(P, T). But in this case, it is difficult to obtain a function equal to G, — G =
func(P, T) of the real substance in question (see Sect. 10.1).

For the purposes of quantitative analysis of transitions, it is more convenient to
use the tangential potential of (2.33), for which the resolution problem for the
parameters W and D decouples and the equilibrium line in the (P, T)-plane, (2.2),
is isomorphous to the straight line, (2.35a), in the (W, D)-plane. Furthermore,
thermodynamic functions, such as free energy, enthalpy, and entropy, are not
measurable in phase transition experiments, but their jumps across the phase
transition boundary are. The functional dependence D = D(P, T) may be resolved
as follows. Substituting (2.34b) into (2.4c) we obtain a differential equation

oD
T——-D=LP, T 2.40
a7 (P, T) (2.40a)
which, using D(P, Tg) = 0 from (2.35a) as the boundary condition, can be resolved
as follows:

TL(P, T
D(P,T) = TJ (72) dr'. (2.40D)
T (Tl)
For a system with
L = const(T) (2.40c)
we obtain:
T —Tg(P)
D(P,T) =L(P)—— 75— (2.40d)

Te(P)
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A comment needs to be made with regard to the specific heat. For a system with
variable OP, the definition of the specific heat (2.6a) takes the form:

OH 0*G
Cp, = (—) = —T(—) , (2.41a)
"\OT )y, ) p,
Applying it to (2.27) we obtain a formula
G am\*
Cp(T,n)=Cps(T)+T| = | — 2.41b
o= o+ 7(57) (), @a1b)

where in the left-hand side we have the specific heat of a phase along the line of
equilibrium with another phase, while in the right-hand side we have the specific heat
of the same phase at the same equilibrium point 7, but along the line of constant
OP value, n = const(P, T). As (2.41b) indicates, in general, these quantities are
not equal (cf. Figs. 2.3b and 2.5b, see also (J.5) and Appendix J). However, for a
system described by the tangential potential, these quantities are equal because
(dn/0T)p = 0 for the phases ‘0’ and ‘1°. Also, for the system where (2.40c) is true,
the specific heat jump, (2.7a), (at the equilibrium line and beyond) is zero.

On the (P, T)-phase diagram, there are two more special lines, the high-symmetry
T = T(P) and low-symmetry T = Ts'(P) spinodals. Using (2.35b, 2.40b) we
obtain the equations for them:

0/1

on (S L(P, T)
w(P,T° J

) = FO6I 77 dT. (2.42a)
Tg

For the system where (2.40c) is true (2.42a) turns into

Tp — TV

W = +6L
T

(2.42b)
where all quantities are functions of pressure. Equations (2.42) may be used to find
W(P, T). Unfortunately, in most of the cases the mean-field spinodals are not
attainable, which renders (2.42) impractical. In this case W(P, T) can be found
from the measurements of either the interfacial quantities (Chap. 3) or thermal
fluctuations (Chap. 7), see also Sect. 10.1. As we can see from (2.40), (2.42), the
tangential potential has an advantage over the Landau potential for the purposes of

the phase-transition modeling because it provides simple relations between its
internal parameters and measurable quantities.

2.6.2 Second-Order Transitions

As we saw in the previous section, the constraint (2.30) does not allow for the
Landau critical point; hence, the tangential potential is not adequate to represent a
second-order transition. Table 2.1 indicates that the latter can be reproduced by the



2.6 Phase Diagrams and Measurable Quantities 29

Landau potential (2.11) with B = 0. The Landau critical point may be interpreted
as the temperature T¢ at which A(P, T¢) changes sign. Taking into account that
the critical temperature may depend on pressure, Tc = func(P), we obtain that
AP, T) > O0forT > Tc(P) and A(P,T) < O for T < Tc(P). Since A is a continuous
function of (P, T) and we are interested in the properties of the system in the vicinity
of Tc(P), it is adequate to treat A(P, T) as a linear function of temperature with a
zero at Tc(P):

A(P,T) = ar, T%(Cp()m,

a(P)>0. (2.43)
Then, using (2.13 and 2.18), the OP value and the free energy of the equilibrium
states are:

Ny = £V —ar, (2.44a)
1
G+(P,T) = Go(P,T) — Za%z. (2.44b)

Equations (2.44) show that the states 7j, and 7)_ are completely equivalent.
Using (2.28), (2.44) for (2.4a), (2.7a), we find that, at the second-order transition
point A = 0, the latent heat is zero and the jump of the specific heat is

A\ ? [6°G a2
[Cp] = —Tc <6T>P L()AZ] = (2.45)

However, another interesting transition may be considered in the system
described by the potential (2.11), (2.21), (2.43)—transition between the states
with 7, and 7j_. Although, from the thermodynamics point of view, these states
are completely equivalent, they will be recognized as different if they occupy
contiguous regions. Such regions are called anti-phase domains or phase variants.
There are many different situations when the OP transition between the variants is
possible. One of them— introduction of a conjugate field—is considered in the next
section. Another one— existence of a curved boundary between them—is consid-
ered in Sects. 3.6 and 5.5.

It is possible to show that the linear-in-temperature assumption of (2.43) is
equivalent to the assumptions of the mean-field theory, which states that every
atom of the system “operates” in the average local field produced by all the
neighbors. This approach excludes effects of the fluctuations and, as a result,
makes predictions which are not confirmed precisely by experimental
measurements [e.g., the finite jump [Cp] (2.45) or the temperature dependence of
the OP at the transition point (2.44a)]. Although it is important to know the
shortcomings of the Landau theory, it is imperative to say here that this theory
not only presents a correct general picture of the second-order transition, but it also
provides a reasonable approach to complicated dynamical problems, which, in
many cases, has not been surpassed by other approaches.
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2.7 Effect of External Field on Phase Transition

If an external field conjugate to the OP is applied to the system, the phase transition
will be affected by the field. The contribution of the external field into the free energy
is equal to the work done by the field on the system. Conjugation of the field and the
OP means that they have the same symmetry (e.g., scalar, vector, or tensor—the
Curie principle). For instance, we may talk about influence of the magnetic field on
ferromagnetic transition, electric field on cegnetoelectric transition, or stress on the
martensitic transition. For a scalar OP and field, the field contribution is equal
to — Hn, where H is the field strength scaled with the volume of the system (the
contribution of the field in vacuum ~ H?/2 is not included because it does not have
an effect on the OP). A particularly interesting example is the application of the field
to a system that, without the field, can undergo a second-order transition. Then, the
free energy of the system is expressed as follows:

1 1
G=Gy+ EAnz + ZQn‘* — Hn. (2.46)

When compared to (2.11), three changes have been made. First, we took into
account that B = 0 in the system that can undergo the second-order transition.
Second, we added the field contribution. Third, we rescaled the OP back to allow
more flexibility, which resulted in appearance of the coefficient Q in front of the
fourth-order term. For H # 0, although the free energy into (2.46) contains three
parameters (A, Q, H), the OP can be scaled such that there will be only one free
parameter left. To find the right scaling, first, we introduce the scaling factor o:

n = an. (2.47a)

Then we plug this expression into (2.46) and transform as follows:

Q0 A7
= H| — . 2.4
G=Gy+u <2H77 +— 4H -7 (2.47b)

Now we can see that by selecting the proper scaling:

H 1/3 Q1/3 A

the scaled free energy of the system will be expressed by the potential with only one
dimensionless parameter a, which incorporates effects of pressure, temperature,
and external field:

1, 1,
=— gt —q. 2.4
8 =5 +477 n (2.49)
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Fig. 2.6 (a) Scaled
Landau-Gibbs free energy

g of a system capable of
undergoing a second-order
transition and exposed to the
scaled external field a, (2.49).
The arrows show the
equilibrium states.

(b) Equilibrium state diagram
of the system in (a). Dashed
lines are the equilibrium
states of the system without
the external field
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This free energy is shown in Fig. 2.6; it is instructive to compare it with

Fig. 2.2, 2.3.

Simplification of the free energy, which will be helpful below in the equilibrium
and stability analyses, is not the only benefit of scaling. There is a large “amount” of
physics to be learned from scaling even without the use of any more mathematics.
As the scaled free energy contains only one parameter, effects of different physical
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factors, such as temperature, pressure, and external field, may be easily assessed
against one another. For instance, influence of temperature upon the transition
enters the Landau expression for the free energy (2.46) through the coefficient A,
which increases with the temperature, see (2.43). Then, you can see from the
expression for a in (2.48) that the external field has an effect on the transition
opposite to that of temperature. Hence, the field plays the role of an ordering agent,
opposite to temperature—a disordering agent. Moreover, this expression allows us
to quantitatively compare the effects of temperature and field: the influence
of temperature is stronger than that of the field because a ~ T but a ~ H .
Also notice from (2.47)—(2.49) that sign change of the field does not effect the
scaled free energy but changes the sign of the OP.

The equilibrium states of the system are described by the solutions of the
following equation:

d
B g+ —1=0. (2.50)
dn

This equation can be analyzed easily if we consider a as a function of 7:

1 — =3
a=—T, 2.51)
n
The maximum of this function is:
dp = max a(n) = — s~ —1.89 (2.52)

with only one solution of (2.50) existing for a > a,,, two solutions for a = a,,, and
three solutions for a < a,,. Resolving (2.48) and (2.52) for H allows us to find the
critical value of the field

(A/an)’

=g

(2.53)

such that there are three solutions (similar to the case of no field at all) in the region
of the weak field (0 < H < H,,,a < a,, < 0) and only one solution in the region of
the strong field (H > H,,, 0 > a > a,,). In the former case, the three solutions are:

13<1),, <1, <0<7),
1 (2.54)

In Fig. 2.6b, the solutions of (2.50) are depicted in the plane (7, a). Notice that, due
to the ordering effect of the field, in its presence, the transition takes place at A =
A, < 0(a = a, < 0) that is, at a lower value than that without the field, A = 0.
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The local stability of the equilibrium state is determined by the sign of the
second derivative:

d2
d—g—a+3772:2

_ 7=,
7 7

n

(2.55)

The last expression shows that the equilibrium states 7, and 7; are always
locally stable, while the state 7, is always unstable. That is, there is no exchange
of stability between the states as is in the case of the first-order transition.

The global stability of the states 77, and 7; can be assessed by comparing the free
energies of the locally stable states. This can be done by using the following
expression for the free energy:

1

8(7) = 7 (a7 = 37), (2.56)

which is obtained by substituting (2.51) into (2.49). In the weak field (a < a,,):

—_

g(m) —g(ns) = 2(7_71 — i3)la(y + 13) — 3]<0. (2.57)

The sign of the inequality in (2.57) follows from 7, —75;>0, a < 0, and
M + 73 = —1,>0. The latter follows from the fact that the sum of the roots of a
cubic equation is equal to the coefficient in front of the quadratic term, which is
equal to zero as we can see from (2.50). Thus, the state 7, is always globally stable,
meaning that the applied field effectively destroys the phase transition in the
system. From the physics point of view, it is not difficult to understand why this
happens. Indeed, the applied field breaks the symmetry between the two locally
stable equilibrium states 7, and 7); in favor of 7;, which has orientation in the
direction of the field, see (2.47)—(2.50). As a result, this state has less free energy.

Dependence of the OP of the globally stable state on the parameters of the
system can be found from (2.51):

1 1
= for a — 400
a a

a

n = l—g, for |a] — 0 (2.58)

a4

al +— ora — —00.

2|al’

The scaled equilibrium values of the OP can help solve many different real-
world problems. For instance, we may need to determine the strength of reaction of
the system on the applied external field. This property is characterized by the
isothermal susceptibility:

(O
2= lim (a_H>A. (2:59)
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Here, the fixed temperature is replaced with fixed A because, as we discussed
above, the temperature dependence of the free energy enters through the coefficient
A. As you can see from the scaling in (2.48), if H — 0 + O for A = const, then
lal — oo and sign(a) = sign(A). Then from (2.48, 2.58) follows that:

3
g—%, for H— 0 and A>0
_ A At
nm = o = AN?  H (2.60)
(5) +M, for H— 0 and A<O.

Then for the susceptibility of the globally stable state we obtain:

1
1 for A>0
= 1 (2.61)
—— for A<O.
2|A|’ or AL

The jump of the susceptibility at A = 0 reaffirms our previous conclusion in
Sect. 2.4 that, in the absence of the applied field, A = 0 is the locus of the second-
order phase transition.

As we found in the previous section, there is another type of a transition possible
in the system described by the free energy (2.46) namely between the variants
7, and 73 at A < 0. To analyze the properties of this transition and identify its
Ehrenfest class, let us calculate the free energy difference between the variants.
Using (2.46), (2.48), (2.57) we obtain:

H4/3

[G]=G(m) —G(i3) = 1017 (M = 03)la(@; + 73) — 3]<0. (2.62a)

For weak fields (large lal): ;3 =~ —7n,. Then, using the scaling (2.48), we obtain:
[G] = 3H = H (2.62b)
- 2 m= 2 . N
Differentiating this expression with respect to the applied field, we find that

=—=4/—=<0 (2.63)

oG 3 [-A
{64 -2\

which means that, according to the Ehrenfest classification, this is a first-order
transition.
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Chapter 3
Heterogeneous Equilibrium Systems

In this chapter, we are looking at the heterogeneous equilibrium states using the
classical Gibbsian approach—Theory of Capillarity and the field-theoretic one,
which considers an interface as a transition region between the phases. To do that
we generalize the free energy to a functional of the spatial distributions of the order
parameters and introduce a gradient energy contribution into the free energy density.
We analyze various forms of the gradient energy and find the square-gradient one to
be preferable. Equilibrium conditions in the heterogeneous systems yield the
Euler-Lagrange equation, solutions of which are called extremals. We study pro-
perties of the extremals in the systems of various physical origins and different sizes
and find a bifurcation at the critical size. The results are presented in the form of the
free energy landscapes. Analysis of the one-dimensional systems is particularly
illuminating; it shows that, using qualitative methods of differential equations,
many features of the extremals can be revealed without actually calculating them,
based only on the general properties of the free energy. We find the field-theoretic
expression for the interfacial energy and study its properties using different Landau
potentials as examples. We introduce a concept of an instanton as a critical nucleus
and study its properties in systems of different dimensionality. Multidimensional
states are analyzed using the drumhead approximation and Fourier method. To
analyze stability of the heterogeneous states, we introduce the Hamiltonian operator
and find its eigenvalues for the extremals. Importance of the Goldstone modes and
capillary waves for the stability analysis of the extremals is revealed.

3.1 Theory of Capillarity

So far we have looked at the homogeneous (one-phase) systems, which can be
described by uniform spatial distributions of the OP. Let us now look at a hetero-
geneous equilibrium system composed of two or more phases. As we learned in
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Chap. 2, if the conditions in the system change (e.g., temperature drops) then a
previously stable homogeneous state may become metastable (or even unstable)
and we may want to know how this phase transforms into a stable one. In his
seminal treatise, Gibbs [1] identified two different scenarios of how a metastable
(or unstable) phase may transform into a stable one. Both scenarios involve reaction
of the system on infinitesimal changes inspired by thermal fluctuations. In the first
scenario, the critical role is played by the fluctuations—large in degree but small in
extent; this scenario is called nucleation. In the second scenario, the critical
fluctuations are infinitesimal in degree but large in extent; this is called spinodal
decomposition. Let us take a closer look at the nucleation scenario first and consider
the spinodal decomposition later (see Chap. 8).

In Chap. 2, we established that if large pieces of phases are at equilibrium with
each other, then the chemical potential takes on the same value in all phases. In the
case of an open system with a monatomic (one-component) substance, where the
two phases o and B are separated by a plane interface, the role of the chemical
potential is played by the Gibbs free energy, see (2.1). For the heterogeneous
systems, this criterion must be expressed for the specific (per unit mass) free energy:

2.(P,T) = gp(P,T). (3.1)

If we need to calculate the total Gibbs free energy G of the entire two-phase
system, a naive resolution of the problem may be presented by the following
formula:

G = gumy + gpmp = ga(ﬂ)Ma (3.2)

where myg) is mass of the phase o(B) and M is the total mass,
M = my + mg. 3.3)

However, there are two problems with this formula. First, we assume that the
specific Gibbs free energies of the phases o and [ at equilibrium are the same as those
of the noninteracting homogeneous phases o and . When transformations affect
finite amounts of matter the thermodynamic calculations become more complicated
because we have to take into account variations of pressure in the transformed region.
Second, the two contiguous phases are separated by an interface, which makes a
contribution into the total free energy of the system. In the classical thermodynamics
of macroscopic objects, the interface between the phases represents a sheath of finite
area S and zero thickness (M, = 0, Vi, = 0), which “wraps up” a phase and
separates it from the contiguous ones [1, 2]. The interface’s free energy contribution
is equal to the product of its area and the interfacial energy o, which is the excess of
the Gibbs free energy of the system compared to that of the homogeneous one, per
unit area of the interface. To find conditions of equilibrium of the minority phase in
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the majority phase, let us say [ in o, we present the total Gibbs free energy of the
system as follows:

G(P,T) = F(V,T) + PV + a8, (3.4)

where P and T are the external pressure and temperature, respectively and F is the
Helmbholtz free energy of the system:

F(V,T) = myfy(vy, T) + mpfp(vp, T). (3.5)

Here v, is the specific volume (v = V/m) and f, is specific Helmholiz free
energy of the o) phase, respectively. Because the interface is “massless,” the
o — P transformation does not increase or decrease the mass of the system; hence,
M in (3.3) remains unchanged. However, the total volume of the system

V=V, + Vg =myv, + mpvg 3.6)

may change because v,#vg.

For the system to be at equilibrium, its total Gibbs free energy must reach
minimum with respect to all independent internal variables. In addition to the
external variables (P, T), the system has internal variables (v,, vg, m,, mp), see
(3.4)—(3.6); however, due to the condition (3.3), not all of them are independent.
We can choose (v,, vg, mg) as independent variables. Then, the following partial
derivatives of G are equal to zero:

oG (0f, _
aVa — <8Voc N P) B O’ G
oG Iy s
Ovp " (8\//} " > i Ua"ﬁ o
({inGﬁ_fﬁ(VmT) +PVﬁ+a;ni—f&(va) — Py, =0. (3.70)

Notice that out of three variations of G with respect to the independent variables
only the one with respect to myg is entirely due to the phase transition; the other two
are due to the pressure changes in the respective phases.

Minimization of the total free energy also includes minimization of the interfa-
cial energy contribution. In an isotropic system, this leads to the minimization of
the surface area for constant volume of the nucleus (we may think of the shape of
the nucleus as an independent variable). As known, the solution of this problem is
a sphere. Hence, the nucleus of the minority phase takes on the shape of a sphere of
radius R:

4
S =47R?; Vy= §R3. (3.8)
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Using (3.4) and (3.5) and the Legendre transform, (F.16)—(F.18):

a dg

g(P) =f(v) + Pv; O DY (3.9)

we obtain from (3.7a) that the pressure in the majority phase is equal to the external
pressure:

P =P, (3.10)

Then, taking into account that Vg=myv g, from (3.7b), (3.8), (3.10) we obtain the
celebrated Laplace’s pressure equation for a spherical bubble:

2
P,;:P+§. 3.11)

Furthermore, (3.7¢c) together with the Laplace’s equation (3.11), tell us that the
specific Gibbs free energies of the majority and minority phases are equal at
equilibrium

gﬁ(PﬁaT) = go:(PmT)v (3.12)

which makes this quantity the chemical potential of the system. However, there is a
difference between (3.12) and (3.1): in (3.12), the pressure in the two phases is not
the same. Differentiating gz with respect to the pressure and taking into account
(3.9)—(3.11), (3.12) yields an equation:

20

7= 8«(P,T) — gp(P,T). (3.13)
Equation (3.13) allows us to find the radius of the critical nucleus, that is, the

nucleus of the  phase which is at equilibrium with the “sea” of the o phase:

R =2 (3.14a)
C T AP T) o

where

— ga(P,T) —g[;(P,T).

AG(P.T) ”

(3.14b)

Notice that R«>0 only if g, (P, T) > gs(P, T), that is, the minority phase is
stable. In this case, the majority phase is said to be supersaturated (or supercooled)
and Ag is called the supersaturation.
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Fig. 3.1 AG;, of a spherical

nucleus of the minority phase G Unsaturated
in the “sea” of the unsaturated
(Ag<O0) or supersaturated AZ<0

(Ag>0) majority phase as
a function of its radius R

AG, F-————————f = Supersaturated

Ag>0

0 R. \R

Now we can ask a question: How much work needs to be done on the homogeneous
o phase to create in it a critical nucleus of the f phase? The answer provided by
thermodynamics is that, although the specific amount of work depends on the
process, the smallest amount equals the difference in the Gibbs free energies
between the final and initial states:

AGn = G(P7T7 Vctavﬁamaamﬂ) _Mgu(P7T)
= myg,(P,T) + m/;g/;(P, T)+aS — (my + m[;)gm(P,T)
= aS(R) — AgVj(R). (3.15)

The last expression in (3.15) is plotted in Fig. 3.1 as a function of R for different
values of the supersaturation Ag. In the unsaturated o phase (Ag<0), AG, is a
monotonic function of R meaning that the B phase nuclei are not favorable. In the
supersaturated o phase (Ag>0), AG,—0 for R—0 and AG,, < 0 for R— o0, meaning
that thermodynamically the system favors large nuclei of the  phase. However,
as ¢ > 0 the function AG,(R) has a maximum at the critical radius R = Rx:

=" (R,) =0. (3.16)

AG, = AG,(R.) = =aS(R.) = =AgV4(R.) = —— (3.17)
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This means that the favorable (R—oo, B phase) and unfavorable (R = 0,
o phase) states of the system are separated by a “barrier” of the height AG-,
which needs to be overcome for the transformation to happen.

At this junction, it is important to recognize the main assumptions made in the
Theory of Capillarity, which may or may not be true in a concrete problem. First, it
was assumed that the minority phase is homogeneous all the way to the interface
and has the specific free energy of the bulk phase [3, although, at a pressure different
from the external one. Second, we assume that the interface, which separates the
phases, is infinitely thin. Third, we assume that the interfacial energy is isotropic
and independent of the radius of the nucleus R. It is also implied in the Theory of
Capillarity that the critical nucleus of the radius R« can be formed by the thermal
fluctuations in the system. This assumption will be tested in Chap. 7.

Unlike the macroscopic one, the field-theoretic approach to the problem of phase
equilibrium considers an interface between the coexisting phases as a transition zone
of certain thickness with spatial distribution of OPs and possibly other parameters.
Hence, for the continuous description of such systems one has to know not only
the average values of P, T, and OPs, but the spatial distributions of these parameters
also. In this chapter, we are discussing only the equilibrium properties of the system;
nonequilibrium systems will be considered in Chaps. 4 and 5.

3.2 The Free Energy

In a heterogeneous equilibrium system, some of the thermodynamic parameters
turn into functions of space and the states of the system should be mathematically
described by a class of functions instead of numbers. The free energy of the whole
system becomes a functional of the state variables and their spatial derivatives:

G= j H{P(x), T(x), H(x), (%)} x (3.18)

and the equilibrium states can be found as the functions that minimize this func-
tional. In (3.18), V'is the total volume occupied by the system (V = V,+Vg+Vj,) and
the integrand ¢{P, T, H,n} may be called the Gibbs free energy density. Although in
the previous section we used the specific free energy (per unit mass), most of the time
in this book (unless it is specifically pointed out) for the sake of simplicity we will be
using the free energy density (per unit volume). As a consequence of the inclusion
of heterogeneities, we have to change the mathematical tool used to find the
equilibrium states of the system: instead of the Calculus of Functions of Several
Variables, we have to use the Calculus of Variations (Appendix B).

The crux of the problem of description of heterogeneous equilibrium systems by
the functional (3.18) is the following question: Spatial derivatives of which ther-
modynamic variables must be included into the free energy density of the system?
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Below we will discuss the problems associated with the inclusion of the gradients of
the thermodynamic variables, such as P, T, and H into the free energy density
(3.18). For now, we will be considering only the gradients of the OP.

Let us first assume that the OP of the system has only one scalar component,
which is a function of x. In principle, the density ¢ may be a function of the spatial
derivatives of the OP of all orders:

2
O 9 } (3.192)

g :gA{P’TvH7n(X)7a76X‘6X"“
i 10Xj

where i, j are the Cartesian indexes. The density ¢ may be expanded into a Taylor
series:

g=g(P,T,n) —Hn+ai@

('9xi
1, oponp 1 &
b dx; Ox; TR Ox;0x; (3.19b)
Ly onon, .

—dy 21T
g Ox; Ox; Oxy

Functional dependence of the expansion coefficients a;, bj;, ¢;j, djjx, etc. is sub-
ject to the following constraints: first, the free energy density must be invariant with
respect to the transformation of the coordinates, that is a scalar; second, the contin-
uum description is valid only if the spatial derivatives of the OP are not very large.
Otherwise, the inhomogeneous part of the free energy density is much greater than
the homogeneous one, and the details of the OP variations, discussed in Chap. 2, do
not matter. These constraints show that the expansion coefficients may depend on
the scalar quantities (P, T, H, ) and on the Euler angles 0,; defined as follows:

On/ Ox;i
In/ox;”

tan 0;; = (3.20a)

The latter dependence causes anisotropy—dependence on orientation in space—
of the free energy of the system. In this book we will not be considering anisotropy
in greater depth and will assume that the expansion coefficients are independent of
the Euler angles.

The linear term in the expansion (3.19b) is a scalar if a;s are components of a
vector, so that

on _
i =av.
aax,- g

We have to ask ourselves a question: How can the free energy density of our
system depend on a vector @? If the system is isotropic then by definition its free
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energy cannot depend on an external vector &. If the system’s isotropy is broken by
an applied external vector field, the Curie principle says that a scalar function
cannot be affected by a vector field, rendering the term @ V7 unphysical again.

However, there may be a case when this term makes physical sense, namely,
when & is proportional to the gradient of a nonuniform, scalar, external field
conjugate to the OP: @ = vWH. Then, the free energy density expansion may
contain an invariant linear term in the form:

afﬁ =vWHVn. (3.21)
(9)(,‘
But, in Sect. 3.8 on the basis of the LeChatelier—Braun principle, we analyze the
consequences of inclusion of this term into the free energy density (3.19a) and
conclude that

v =0. (3.22)

Furthermore, the two second-order-in-spatial-derivative terms in expansion
(3.19b) can be reduced to each other. Indeed, let us calculate the contribution of
the second second-order term into the total free energy (3.18):

a277 3. 0 877 3 36,70175773
Jf"f‘axfax,»“—Jva—x,-(‘lfa—x,)d’“ﬁaa—m—)@“

on J 85!’/’ In on 3
— 2 g 2T By 2
i} Cjj » ds; , i 0%, d’x (3.23)

The Gauss theorem was used here to transform from the second expression to the
third and ¢, ds; means integration over the surface Q enveloping the volume of the
system V. The surface term in (3.23) is of the order of the surface free energy of
the system and may be disregarded compared to the volumetric term for sufficiently
large systems. For small systems, which are of great interest for nanoscience,
the surface and volume terms may be of the same order. In this book, we will be
considering only systems that are large enough for the surface contribution to be
disregarded.

If ¢;; = const(n), the last term in (3.23) vanishes and the entire contribution of the
second second-order term in (3.19b) is zero. If ¢;; = funct(n), the last term in (3.23)
is of the same form as the first second-order term in (3.19b). Thus, the contribution of
the second-order spatial derivatives into the free energy density may be expressed by
the term 1/2 b;;(0n/0x;)(0n/0x;) with the properly defined second-rank tensor b;;.

The free energy density, (3.19b), will be a scalar if each of the remaining
irreducible terms is a scalar. For the second-order term to be a scalar, the second-
rank tensor b;; must be proportional to the Kronecker tensor:

0, foriz#j

1 (3.24)

bij=x(P,T)d;, d;= {

, fori=j
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Then the total contribution of the second-order-in-spatial-derivative terms will
be represented by

1
SKIval, (3.25)

where the coefficient x is called the gradient energy coefficient. The physical
meaning of the gradient energy coefficient depends on the physical interpretation
of the OP. For instance, if the OP represents the magnetic moment of the system, the
gradient term is the exchange energy and the gradient energy coefficient is its
strength.

The following must be said regarding the sign of this coefficient: if ¥ > 0, then
the global equilibrium in the system described by the free energy, (3.18)—(3.25),
will be achieved at a homogeneous state, 7 = const(x), because any OP inhomoge-
neity increases the free energy of the system. If ' < 0, then the OP inhomogeneities
decrease the free energy, which leads to an unphysical state of “infinite mixing”
where the coexisting phases create infinite amount of infinitely sharp interfaces.
To prevent our system from “going unphysical,” we have to include the higher-
order-in-spatial-derivative terms [e.g., the third-order ones, see (3.19b)]. In this
case, you can estimate a typical scale of the OP inhomogeneity /. Indeed, the order
of magnitude of the derivative is 9"n/dx;...0x; ~ An/I". Then, as the second- and
third-order derivatives must balance each other, we obtain [/ ~ ’And,-jk / K|.

Mostly, in this book, we will be concentrating on the systems where the gradient
energy coefficient is positive:

k(P,T)>0 (3.20)

and the terms of the order higher than the second may be neglect, that is, d;;; = 0.
In such systems, the global equilibrium is achieved at the uniform distribution of the
OP. However, except for the global equilibrium, such systems allow locally
stable—metastable—heterogeneous equilibrium states.

Now we have to ask the following question: Do we need to include the gradients
of the thermodynamic variables, such as P and 7, into the expansion of the free
energy density, (3.19a)? Let us look at the temperature gradient (VT), first. A linear
term, (aVT), may not be included because, as we concluded above, an isotropic
system cannot support a vector a. A quadratic term, b(V T)?, withstands the tests of
isotropy and homogeneity if b > 0. However, it contradicts the zeroth law of
thermodynamics. Indeed, according to this law any thermally isolated system
must eventually come to the state of equilibrium characterized by uniform temper-
ature distribution. But if the quadratic term is included into the free energy
functional, (3.18) and (3.19a), then the state of equilibrium will allow for a
heterogeneous-in-temperature equilibrium state in a thermally isolated system.
This contradiction proves that the free energy density ¢ is independent of the
temperature gradient. A similar argument may be laid out with respect to the
gradients of pressure.
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Thus, the total free energy of a heterogeneous system with a one-component
scalar OP may be expressed as follows:

G= J §dx (3.27a)
14
1
§=g(P.T Hyn) + (V)" (3.27b)

A profound analogy may be established between our system and the Lagrangian
system considered by the field theory (see Appendix D). In the framework of this
analogy, the total Gibbs free energy of (3.27a) is analogous to the total energy E of
the Lagrangian system, (D.18), and the Gibbs free energy density (3.27b)—to the
T% component of the stress-energy tensor, (D.16). This analogy hints at another
quantity which may be significant for our system:

1
g=g(P,T,H,n) — EK(Vn)z- (3.28)

Significance of this quantity comes from its analogy to the T'' component of the
stress-energy tensor, which has the first integral [conservation property, see (D.19)].
Existence of the first integral is one of the consequences of the Euclidean invariance
of the free-energy density (3.27b)—independence of the spatial coordinates.
Another (however, not unrelated) consequence of the Euclidean invariance is
existence of the Goldstone modes (Sect. 3.7).

3.3 Equilibrium States

As we discussed in Chap. 2, a thermodynamically stable equilibrium state of an
open system with specified temperature and pressure must deliver minimum to the
Gibbs free energy of the system. Because the free energy of the heterogeneous
system is a functional, [see (3.27a)], the equation for the state 7g, either differential
or integral, should be obtained by minimization of the functional, that is the
variational procedure. As explained in Appendix B, the states ng can be found
among the solutions of the Euler-Lagrange equation (ELE):

0G _ (ﬁ) V=0, (3.29)
on on P.T.H

Solutions of ELE (3.29) are called extremals of the functional G (3.27a): ng =
func(x;P,T,H). There is one more parameter that is important for the extremals, this
is dimensionality of the geometrical space d—the number of space variables that
essentially influence it.
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A physical state is not uniquely specified if we simply give the differential
equations which the state must satisfy. For the extremals to describe a physical state
of a system uniquely, it is necessary to set the boundary conditions (BC) on the surface
Q of the volume V of the system even in the thermodynamic limit: V — co. BCs (and
initial conditions in the case of time-dependent problems) are sets of elements of the
physical behavior of the system, which are not regulated by the physical laws that
entailed the equations for the system. The kind of BC that shall be used depends on
the physical problem; changing BC may have dramatic effect on the properties of the
state, that is, solutions of ELE (3.29). Notice in Appendix B that the variational
procedure itself yields different kinds of BCs depending on the physical properties
of the boundary: Dirichlet’s BC on the boundary where OP is fixed (B.3):

n=F(s) on Q (3.30a)
or the Newmann type BC on the boundary Q where the OP may vary (B.11):
JoVn=0o0nQ. (3.30b)

Here jq is a unit outer vector of the boundary Q. Solutions of ELE (3.29) that
satisfy BC (3.30a) or (3.30b) represent the equilibrium states of the system:

ng € {f(x);P,T,H,V,d,BC}. (3.31)

A more complicated case of a completely free boundary (Eq.(B. 17)) is also
possible. In this book we will be using the Newmann type BC more often than other
types. In Chap. 2, we analyzed the homogeneous (0d) equilibrium states 7; the 1d
heterogeneous states will be considered in Sect. 3.4; 3d states will be considered in
Sect. 3.5; the 2d states have intermediate properties between 1d and 3d.

A set of functions {7(x)}, which can generate a functional, is called a functional
space. For our purposes, the most convenient functional space is the Hilbert space
where each element is defined and continuous together with its gradients in the
domain V and is characterized by its “size”—called norm. How can we “measure”
an infinite-dimensional element of the functional space? Here is one way to do that.
For each element 7(x) of the functional space we define four numbers: average

(n) == JV n(x) d’x, (3.32a)

range (the largest difference between the values of the element)

IT = max |n(x) — n(x')], (3.32b)

x,x' eV

amplitude

N = max In(x) — (n)], (3.32¢)
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and slope

A= max [Vn(x)]. (3.32d)

Then each element of the Hilbert space {n(x)} will be characterized by its skew
(asymmetry):

Y=2N-11 (3.32¢)
length scale:
11
L=— 3.32
A (3.321)
and the norm:
[nx)[| = (m) + I+ A. (3.32g)

For the dimensions of the terms in (3.32 g), see (B.8) and the comment after that.
To elucidate the properties of the equilibrium states 7g(x), we will derive a few
other forms of the equilibrium equation useful for the analysis below. First, by
partially differentiating the left-hand side of ELE (3.29) and using the fact that it
does not depend explicitly on the coordinates, we find an equation for the gradient of
the extremal 7g(x). In the most convenient form, this equation can be written down as

H(1z(x)) Vg (x) =0 (3.33)
using a linear operator
. P
e = (5.5) ) - w7 (.34)
PT

called Hamiltonian, which plays an important role in the analysis of the properties
of the system. An advantage of the form (3.33), (3.34) is that the properties of the
Hamiltonian operator are well known from quantum mechanics (see Appendix E),
where it plays a role of an operator of total energy of a particle with the term 0%g
(ng)/ 01 being analogous to the potential energy of a particle and (—x V*)—kinetic
one. Another advantage of (3.33), (3.34) is that in the case of radially symmetric
extremals it is convenient to consider the Hamiltonian in the spherical polar
coordinate system (see Appendix C). A disadvantage of the form (3.33), (3.34) is
that the operator depends on the extremal ng(x) itself.

Second, integrating ELE (3.29) and applying the Gauss divergence theorem with
the Newmann-type BC (3.30b), we obtain an integral property of the equilibrium states:

g 3
% $x=o. 335
Jvén ¥ -3
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This formula tells us that although 0g/0n{ng(x)} does not vanish everywhere, as
it is the case in a homogeneous system (see Chap. 2), on average it still does.

Third, let us derive another integral form of the equilibrium equation. For this,
we apply the vector-calculus formula

V(uVv) = VuVv + uV?y

to the functions # = v=n(x) and obtain
V(i) = (Vn)* + 4V, (3.36)

Then, multiplying all the terms of ELE (3.29) by 7, using the formula (3.36),
integrating over the entire volume V occupied by the system, and applying the
Gauss divergence theorem, we obtain the integral form of the equilibrium equation:

J |:K(V77)2 + n%} dx = Kff nVnds. (3.37a)
\4 877 Q

For the Newmann-type BC (3.30b), the integral equilibrium equation (3.37a)
takes on a very appealing mathematical form:

Jv |:K(V77)2 + n%] dx = 0. (3.37b)

This relation allows us to represent the total free energy of the equilibrium
system in another form which involves the auxiliary function from (2.24) and
does not involve the OP gradient:

G(ng(x)) = JV (g - ;nag) dx. (3.382)

Subtracting g(7)V from this expression and using the integral equilibrium
equation (3.35) we can define the free energy excess

1

AGg = JV {[g(nE) =] =5 (g — ﬁ)%(%)} d’x (3.38b)

which is a measure of the free energy of the state ng relative to that of the
homogeneous state 7).
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3.4 One-Dimensional Equilibrium States

Let us first consider equilibrium states in a one-dimensional (1d) open system,
which is a box with a base S, thickness X and volume V = XS, and where the OP
depends only on one space coordinate, n=ng(x). Then, ELE (3.29) takes the form:

&’y Og
This is an ODE of the second order, which needs two boundary conditions to
identify its solution 7g(x) uniquely. Although in some physical situations
Dirichlet’s conditions may be justified, here, we will be using the Newmann’s one:

d
a”:o atx =0, x = X. (3.40)

Instead of (3.39a), one can use the 1d version of (3.33), (3.34), which takes the
form

_ &y g dn
—H(U(x))azkﬁ—w(ﬁ(x))azo- (3.41)
As we pointed out in Sect. 3.2 (see also Appendix D), the 1d-ELE (3.39a) has the
first integral in the form of the conserved quantity (3.28). Because this is such
an important property of the 1d-equilibrium states, we will demonstrate it again.
We multiply both terms of (3.39a) by (dn/dx), transform them as follows:

k d (dn : dg
() 2= .39b
2dx(dx> dx (3.390)

and integrate (3.39b) using that (P, T) = const(x). The first integral takes the form:

—g :g (%)2 —g(P,T,n) = const(x) = —p, (3.42a)

where
p=gP,T,m) =P Tn,), (3.42b)
n =n(0), 0 = ng(X). (3.42¢)

Because of the condition (3.26), (3.42a) yields
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According to Gibbs, the constant u is the chemical potential of the system; its
relation to the pressure, temperature, and size of the system will be discussed below.
Existence of the first integral of ELE (3.29) in the form (3.42a) may be interpreted
as the conservation law for the quantity g. As any conservation law, it is connected
to certain symmetry of the system, which will be analyzed in Chap. 6.
The conservation law (3.42a) is very helpful as it allows us to analyze the equilib-
rium states for a general form of the potential g(P, T, n). Unfortunately, the first
integral and the conservation law exist for 1d extremals only.

Equations (3.39), (3.41), or (3.42a) plus BC (3.40) represent the boundary-value
problem for the 1d equilibrium states (3.31). Let us resolve (3.42a) as follows:

dn 2

— ==x4/—[g(P,T,n) — u. 3.43

o ~lg(P.T.m) — g (3.43)
This equation shows that there are two categories of 1d states: monotonic and

non-monotonic, that is, with alternating sign of dn/dx. Equation (3.43) can be

integrated in the domain of monotonicity of the OP. Selecting the positive branch

of (3.43) and separating variables, we obtain a general solution in quadratures:

x= Ejd—". (3.44a)
2)\/e(P,T,n) —

Notice that, because of the conservative property (3.42a), the particular solution
(3.44a) of the boundary-value problem, (3.39a) and (3.40), requires only one
arbitrary constant, which is specified by (3.42c). Taking into account that 7,<n,
for the positive monotonic branch of (3.44a), we arrive at the relationship

I d
¥ = EJ 4 (3.44b)
2)y, \/e(P,T,n) —

between the size of the 1d system X, its thermodynamic parameters, P and T, and
parameters of the equilibrium state 7g(x), the chemical potential y and range
II=In,—n,l, (3.32b).

The non-monotonic states are periodic with a monotonic half-period D4 and
the BC, (3.40) and (3.42c), which apply on the boundaries of the domain of
monotonicity x; < x < x,. In a finite-size system, the non-monotonic states are
characterized by index—the number of half periods:

X
ng=—, Du=x —x (3.45)
Dyq

For the monotonic states, obviously, niq = 1.
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To find the free energy of the 1d state, we substitute (3.42a) into (3.27a) and
obtain:

_X’. d 2
Gia=Vu+t Snldj K(%) dr. (3.462)
X

Changing the variables of integration and using the monotonic branch of (3.43),
we obtain

7,
Gua=Vu+ SnldJ V2x[g(P, T;myq) — p) dn. (3.46b)

m

There is a lot that we can learn about the extremals ng(x) without calculating the
integrals in (3.44b) and (3.46b). The monotonic heterogeneous state must have an
inflection point (x;) and (3.39a), (3.41) with BC (3.40) help us find it. Indeed, the
necessary and sufficient conditions of the inflection point of a smooth function is

d d?
é(x,-) =0 and a2’()@) £ 0. (3.47a)

Then we conclude from (3.39a) and (3.41) that

B) 92
%g(m) =0 and gf(m) # 0. (3.47b)

Moreover, expanding the derivative near the inflection point

d d 1d
an(x) =£(xi) +§§?(x,-)(x—x,-)2+--- (3.47¢)

and applying the BC (3.40) to the expansion we obtain that

&n(xi)/dr’
————<0. (3.474d)
dn(x;) /dx
Using (3.41), this yields
g

Equation (3.47b) means that the inflection points can be found among the critical
points of the potential g(n); (3.47¢) means that the inflection point 7; corresponds to
the maximum of the potential g(n), that is, unstable, transition states 7, of (2.38).
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The fact that 7; is a maximum of g(7) can also be observed from (3.42b—d) (Why?).
This fact can also be used to find the length scale L4 from (3.32f). Indeed,
according to (3.43) and (3.47), the greatest value of the OP gradient is reached at
the inflection point ng(x;)=n,. Then [cf. (D.26)]:

Lig= i tm=ml (3.48)
2(g — )

3.4.1 Classification of the States

The 1d equilibrium states are the cornerstones of the FTM, that is why we need to
study their properties in detail. To elucidate the properties of the heterogeneous
states, we can use the phase-plane method (no relevance to the thermodynamic
phase) [3, 4], which is based on the qualitative analysis of the solutions of ELE
(3.39) in the plane (7, n,) (see Fig. 3.2ii). The homogeneous equilibrium states of
Chap. 2 are the rest points and the heterogeneous states are trajectories on the plane.
Let us now classify the 1d heterogeneous extremals. First, let us find all possible
values of the chemical potential p that allow for solutions of the boundary-value
problem (3.39a) and (3.40), using the general potential g(P,T,n) that satisfies
condition (2.10). The equation

g(P,T,n) =pu (3.49)

may have up to four solutions (see Fig. 3.2i). However, only the two, which are the
closest to the transition-state OP 7,, are of interest for us here: 7, < n, and 1, > n,.
Therefore, it is advantageous to expand the function g(P, T, ) that satisfies condition
(2.10) about the homogeneous transition state and truncate after the fourth-power
term, see (2.38). Then, from (2.38c) we find that gz < u < g,. Also notice that if
gp < & then no equilibrium state is possible for gg < p < g,. Then, all possible
solutions of the boundary-value problem (3.39), (3.40) can be classified depending
on the values of (P, T) into

type —e: gy =gp

(3.50a)
type —n:  g,>gp
and depending on the value of the chemical potential u into
type—1: u—g -0
type—2: g <p<g: (3.50b)

type—=3: pu—g,+0
type—4: u=g,.
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Fig. 3.2 Different types of the chemical potential u and corresponding heterogeneous solutions of
the 1d-ELE (3.39a). (a) -general case of (P, T)—type-n (b) -the symmetric case of (P, T)—type-e.
(i) Potential g = g(P, T, n); (ii) phase plane (7, n,); (iii) heterogeneous states 7g(x)
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In this classification, the numbers 14 combine with letters e—n to form specific
types of heterogeneous states. To complete the classification, we have to distinguish
between the monotonic and non-monotonic states. Different types of states, see
(3.45) are depicted in Fig. 3.2.

Let us consider, first, the monotonic type-e states with different values of the
chemical potential. They are generated by the symmetric potential (2.38) with

g’ =0. (3.51a)

This condition appears either due to the symmetry of the system (second-order
transition, Sect. 2.4) or as a result of the specific external conditions (equilibrium
temperature for a first-order transition). Using the phase-plane method, we can see
that for the type-e states:

1
M) =m;, Ze=0, Ne= 5 M. (3.51b)

Then, using the fact that in the phase plane the trajectory 7,(x) is symmetric with
respect to the transition point 7, (see Fig. 3.2bii), we can find the solutions of the
boundary-value problem (3.39a), (3.40) by substituting (2.38) into (3.44a):

dAn

J\/g// N2 Jr g//// (ATI4 7N§)

(3.52)

where An = 7, — n,. The end points of the solution (3.52) are An, = —An; = N,
they are the turning points of the phase plane (Why?). The solution (3.52) yields the
expressions for the amplitude (3.32c) and length (3.32f) (Verify!):

2 2. _ lg”]
N; =2mO~; O =,/6 W’t, (3.53a)
2 K
Le=—I;, I=,/—, (3.53b)
¢ V1—m |g”t|

1 — // 2
m:§|:1 a ! _4¥:|; EE' |®2_6( ////) ’ (3'530)
\/ = t

where m is a normalized chemical potential and ®, /, and E are the fundamental
OP amplitude, length, and energy density scales, respectively. Notice that if
the system approaches its spinodal point, that is g”’, — 0, then ® — 0, 2 — 0,
and / — oo.

Equations (3.53) allow us to establish explicit relations between the
characteristics of the state 7.(x), see (3.32). For instance, by excluding the
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parameter m from (3.35a) and (3.53b) we can obtain the slope as a function of the
amplitude:

A N2
Ae="\1-2r (3.53d)

A length scale, similar to the fundamental length /, can also be defined at a stable
equilibrium state 7). It is called correlation radius rc, see (7.17), because, as we will
learn in Chap. 7, the OP fluctuations of the state 7 are correlated on the scale of 7.

Now, using the substitution u=An/N, for (3.52), we can clarify the relationship
(3.44Db) for the type-e states:

X =2k IJV“ dA’{
0
g (AP = N) + 58" (At = N) (3.54a)

) ()

where K(k) is the elliptical integral of the first kind [5]

2
1 du g(l—&-kz), fork — 040

K(k EJ — (3.54b)
W oV1—urvV1—ku? In fork —1-0.

4
V1-k2'

Notice from (3.53) and (3.54a) that for the type-e states L. is always smaller than
X and the difference between the two grows as lg—ul grows.

To find the free energy of a type-e state, we again use the substitution u = An/N,
and (3.53) for (3.46b) with the potential (2.38). Then we obtain an expression for
the free energy of the type-e (not necessarily monotonic) state:

" +1 1 —
GeZV,u—i-S\/KgT’NSneJ \/(1—u2)(—m—u2) du
-1 m
Vxlg" P
=puV+ 87f(l)(m)neS

8" (3.55a)
4
= lgr = Em(1 = m)]V + S E®(m)ncS!
~(1 o
= |&u(p) T2 77 V+ gdq)(m)neSl,

where we defined the function
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D(m) = M[E<\/1—T—m> —(1- Zm)K( le)] (3.55b)

and E(k) is the elliptical integral of the second kind [5]:

2
1 E(l—k—) fork — 0+ 0
1252 ’
B = [ =g, 12\ 4 (3.55¢)
v1—u? QT . S PR
0 2 vi-e 2) '
There are two limiting cases of the function in (3.55b) which are of interest:
3
—nm, form —0+0
®(m) — 1 1 | (3.55d)

The slope, amplitude, and free energy as implicit functions of the system’s size
are best represented in the scaled form as follows:

lAe Ne Ge - ga(ﬁ)v X
A=— =—, j=E—————; =—. 3.56b
o’ ‘"o / zv 0 ST ( )
Notice that j represents the dimensionless free energy excess quantity. The
functions a(s) and j(s) for the monotonic states (n, = 1) are depicted in Fig. 3.3.
For the non-monotonic states (n.>1) the size X is replaced in (3.56) by the length of
monotonicity D., see (3.45).

3.4.2 Type-el Solutions: Bifurcation Off the Transition State

Although the implicit functions j(s) and a(s) solve the problem of the 1d extremals,
it is instructive to analyze them further. For type-el states (3.50b), (3.53) yields:

me =S H 0, N~ 2% —0; Lo — 2L (3.57)
= 8t
Notice that, while the amplitude N, of the type-el heterogeneous state depends
strongly on the chemical potential value through (g, — ), the characteristic length
L. is practically independent of it. Excluding the parameter m from (3.53a) and
(3.54a) for type-el solutions we obtain:

X-X
Nep ~ 24 /ZGT' (3.582)
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Fig. 3.3 Size-amplitude bifurcation diagram for type-e heterogeneous monotonic states. Red
lines—scaled amplitude, blue lines—scaled energy; solid lines—1d systems, dashed lines—3d
systems. (X/I, 0)—the 1d bifurcation point; numbers—the classification types

Equation (3.58a) shows that the heterogeneous solutions 7.;(x) branch away or
bifurcate from the homogeneous transition state 7 = 7, at the point X = X where

X=nl (3.58b)

Notice that the bifurcation length X is of the same order of magnitude as the
fundamental length /. The bifurcation (3.58) may be called “size-amplitude”
(SABI). Equation (3.58a), depicted in Fig. 3.3, is the SABi diagram and (7, )?) is
the SABI point, near which (X — X ) the solution 7);.(x) is a harmonic function with
the period 2X [Verify! Hint: take the integral in (3.52) or see Fig. 3.2biii].

Now, let us look at the SABi diagram from the stand point of the free energy.
To do this, we exclude parameter m from (3.54a) and (3.55a) and analyze the
(u — g»m — 0,X — X)-limiting cases of the relationship between the free energy
and the system’s size V = XS for the type-e1 monotonic state:

~.2
i XX
Gei = Vg, +EmS(X —X) =V |g, — 45% (3.59)

This expression is also depicted on the SABi diagram, Fig. 3.3, in the scaled
form [see (3.56)].
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3.4.3 Type-e3 Solutions: Approach to Thermodynamic Limit

For the type-e3 state, u— g4y and (3.50b) and (3.53) yield:
1
My = Moy =3 Neg = Ne = ©; Lo = Loy =2V21. (3.60)

Then, using properties of the elliptical integral (3.54b), we obtain the following
expression for the amplitude:

N = ©? (1 - 8e’(2X/LC“)). 3.61)

Equations (3.60) and (3.61) yield that the type-e3 states appear X — oo. For the
free energy of the monotonic state, (3.65) yields:

2
Ges = Vgyp) + Sl:§ \/5(1 + 4e*(2X/Le4)>

;s (3.62)
=V[g“<ﬁ>+ = ﬁ(1+4e<—2X/Le4>)].

The normalized free energy densities and amplitudes of the type-e1—e3 states are
depicted in Fig. 3.3 as functions for the system size.

3.4.4 Type-e4 Solution: Plane Interface

As pu — g, the elliptical integral in (3.54b) grows without bound. This means
that the boundary-value problem (3.39a) and (3.40) has no type-e4 solutions in
the finite domain (X < co), but may have solutions in the infinite domain
(X — o0), that is, the thermodynamic limit. To find the type-e4 solutions,
the phase-plane method must be supplemented with the exact calculations of
the solutions ng(x) using quadratures of (3.52). Substituting (3.60) into (3.52) we
obtain:

1
X=X +4_1Le4 In

@ + Ane4

3.63
©— Al (3.63a)

where the constant of integration, x;, may be interpreted as the x-coordinate of the
inflection point of the solution:

Anu(xi) = 0. (3.63b)
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For a bounded solution, IA7,,|<®, (3.63a) can be resolved as follows:

Mo = n,+®tanh<2x_x">. (3.64)
Le4

In materials physics, this type of solution is called an interface, in the theory of
micromagnetism—domain-boundary wall, in the mathematical theory of waves—
kink. Although the elementary-function solution (3.64) resolves the boundary-value
problem (3.39a) and (3.40) completely (see Fig. 3.2biii), it is useful for the following
to analyze the properties of the solution even further:

1. Equations (3.60) and (3.52) show that for the type-e4 state x; — —oo and
X, — +00.

2. Solution (3.64) is odd with respect to the point (x;,7,) so that An(—x) = —An(x).

3. Because X — oo, BC (3.40) yields d277/dx2 = 0, which, due to ELE (3.39a),
results in

) =5 ) =0, (3.65)

This relation shows that the type-e4 solution connects two equilibrium phases
with 7, = 7, and 1, = 7.

4. The heterogeneities of the solution (3.64) are localized in an interval of x-axis of
the characteristic length practically the same as that of type-el state:
Les = V2Le1, see (3.57) and (3.60). But, solution (3.64) has infinitely long
“tails” in both directions, x — +o00.

5. Selecting the positive branch of (3.43), we may express the slope as a function
of n:

2
dney _ 2@) — Ani
dx L4©

>0. (3.66)

The slope is a pulse-type function, which is essentially non-zero only on the
interval of localization of heterogeneities.

6. Because the slope (d7.4/dx) does not depend on x explicitly (only through 7) the
solution must be translationally (with respect to the Euclidean group of spatial
transformations) invariant: 7.4 = func(x—x() for arbitrary xy. The translational
invariance of the solution (3.64) was removed by setting x, = x;.

7. We can show (Verify!) that

d277e4 — 4 Ane4 dne4
dx? Les® dx -

(3.67)
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8. Using the mathematical formulae

sinh(x — y
tanh(.x) — tanh(y) = C()sh(_xgcosh)(y)’
dtanh(x) 1
dx  cosh’(x)’

for solution (3.64) it is easy to show (Verify!) that

dne4
-

Tea (X — 0x) — 14 (x) & —dx (3.68)

This relation shows that the difference between two slightly displaced solutions
is equal to the shift times the slope of the unperturbed solution.

Furthermore, let us compute the free energy of the type-e4 state. Equation
(3.46a) and Property 1 yield:

00 d’l] 2
Ges = Vgu(p) + SJ K(ﬁ) dx. (3.69)

—00

Compare this expression with (3.55a) and notice that G., separates into a
term proportional to the volume V and the term proportional to the area S of the
box, with the coefficients of proportionality independent of m and, hence, of X. This
fact allows us to compare (3.69) with the free energy of the two-phase equilibrium
system in the Theory of Capillarity [see Sect. 3.1, (3.1)—(3.6)] and identify the

quantity:
+00 d 2
= LO ;«%) dx (3.70a)

as the interfacial energy of the system in the FTM. This expression shows that
o > 0, provided condition (3.26) is true. Notice that (3.70a) allows to interpret the
Newmann-type BC, which we adopted in this book, as corresponding to the case of
absence of the additional energy on the surface of the system.

The interfacial energy is an important quantity because it is measurable.
This justifies more thorough analysis of expression (3.70a). Compare (3.27a) and
(3.42a) with (3.70a) and see that other expressions for the interfacial energy are
possible:

—+00
o= J (& - wdx, (3.70b)
400
o=2[ (P Teing - ax. (3:700)
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Taking (3.37b) into account, we also find that

+00 o
0= J Mes %g (P7 TE; 7764) dx. (370(1)

Using the positive branch of (3.43) we obtain another expression:

T
o= \/ZKJ V&P, Tg;ney) — pdn. (3.70e)
n’l

Compare (3.70e) to (D.27) and see that the interfacial energy is analogous to the
abbreviated action from the Lagrangian field theory. This analogy will be addressed
again in Chap. 6.

Example 3.1 Find relationships between the interfacial energy and the thermo-
dynamic parameters for the systems with the general, Landau, and tangential
potentials.

The best way to find this relationship for the general potential (2.38) is to use
formula (3.70e). Then, we obtain the following relation:

" +0 2
o=/ 8t J (@2 — Ai2)* dAn = = V251 (3E.1)
12 ) 3

Using the Landau potential (2.11) for (3.70e), we obtain the following relation:
B3 2\*
o= \/2;<J 77(53 - E”) dn = (g) V2KB3. (3E.2)
0

For the tangential potential (2.33) first notice that, because the OP is rescaled
compared to the OP of the Landau potential, the gradient-energy coefficient of the
tangential potential must be rescaled too. From (3.27b), (2.32) we find that

k= kC%. (3E.3)

Then using (2.33) we find that for the tangential potential at equilibrium
|¢”,| = W /2. Substituting this into (3.53b) and using (3.60) leads to

2K [ K
l=1\—; Lea=4/—. 3E4
W? 4 w ( )

Although the expression for the interfacial energy can be obtained from (3E.1), it
is advantageous to derive it directly from (3.70e) using (2.33). Notice that the
expression in (3.70e) is invariant to the rescaling (Why?). Then, taking into account
that ), = 7y, 17z = 7, we obtain:

I
a:vchJ \/wz(n)dn:évch. (3E.5)
0
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3.4.5 [Interfacial Properties: Gibbs Adsorption Equation

The interfacial energy is an important property of a system, which deserves a
closer look. At this juncture, we may ask a question: how many variables does
the interfacial energy depend on? First, notice that ¢ can be defined properly only in
the thermodynamic limit of V' — oo or at least X — oo (dependence of the inter-
facial energy on the system’s size is an important subject in its own rights, but we
will not be looking at that in this book). At first glance, it seems that ¢ is a function
of three variables: o=func(P, T, u). However, considering equilibrium conditions
(3.42b), (3.65), (2.2), we find that not all of them are independent. If 7, and 7
represent different phases then five variables (7,, 13, P, T, 1) are constrained by
four conditions, which leave only one independent; if 7, and 7); represent the same
phase then four variables are constrained by two conditions, which leave two
variables independent. Thus, using (3.42b) and (3.70b) we obtain:

do = Dro -dT + Dpo - dP, (3.71a)
where the partials of ¢ are

Dro= — [ (5 — 5,) dx;

. 8 ou dg (3.71b)
S(P7T7n):_ﬁ7 sec:_ﬁ:_ﬁ( 7T177a)‘

Dpo=p [ (5 —v,)dx
. 1 0g 10 10 (3.71¢)
WPTm) == o5, va=— b == 8(P.T,,);

- e
poP’ " poP poP
where § is the entropy density, v is the specific volume, and p = M/V is the average
density. If n, and 7, represent the same phase then the partials represent the proper

(that is non-diverging) quantities, the interfacial entropy and volume:

D
1= -Dro, v=-r2 (3.72)
D

If 7, and g represent different phases, then according to the Clapeyron—
Clausius equation (2.5)

s) ar = ppv)’ ap, (3.73)
and:

do = -\ dT, (3.74a)
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where the proper, non-diverging, quantity is the relative interfacial entropy:

o) = Jm (s s (= w) Mf) dx (3.74b)
s = o o« B : :

M

If density of the system does not change from one phase to another or is not
essential for the problem, the relative interfacial entropy may be defined with
respect to the OP:

rm = o §—s_—(n— E
W = ——(np=n) dx. (3.74¢)

Example 3.2 Find the fundamental length scale, interfacial energy, and entropy of
the anti-phase domain boundary.

Anti-phase domain boundary (APB) is the type-e4 state that appears in the
system after the second-order transition. Hence, the problem can be solved by
using the Landau potential, (2.11), with B = 0 and A < 0, see Sect. 2.6.2, (2.43).
Then, n, =0, g/ =6, and g/ = A = ar, where 1<0, which yields:

t
I = /ﬁ, =14, ==|A" (3E.6)

For the interfacial energy, using (3E.1), we obtain:

2 ;
o =3\ 2xA| (3E.7)

and for the interfacial entropy

x :i\/2K|A|. (3E.8)

T.

Notice that y, > oT¢ for Itl — 0, that is, close to the LCP, (2.23). The type-e4
state is

Tea(x) = /JA] tanh (x\/|A| /2K>. 3E.9)

It is depicted in Fig. 3.4.



3.4 One-Dimensional Equilibrium States 65

2 J—
>
o
2
[}
c
(0]
o
=
c
[}
)
o
o
- 1 —
@
c
kel
=
13}
c
S
2
= i
()
2
()
o
c
3 o
o
o)
2
©
3
73
IS i
S
=
2
5
g
-1
| ' | ' | ' | ' | '

-4 2 0 2 4
spatial coordinate x
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3.4.6 Type-n4 Solution: Critical Plate—Instanton

Type-n states are more complicated; they appear when the condition (3.51a) does
not hold and g"’;, becomes a measure of deviation from the phase equilibrium.
The phase-plane method, however, may elucidate some of the properties of the
type-n states in sufficient detail. Let us consider type-n4 state. Two comments are in
order here. First, to preserve consistency with the analysis above, we will be
analyzing the monotonic branch of the state. Second, it is more convenient here
to use the Landau potential (2.11) instead of the general one (2.38). The relation
between the two is established by (2.39), e.g.,

¢" =2B—6VB>—A <0. (2.39b)
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The phase-plane method (see Fig. 3.2aii) suggests that 7,4(x) varies between
7, = 0 and 7} where:

4 9A
1_ 7 _ _ 22
N, = 3B (1 1 SBZ>' (3.75)

Taking the integral in (3.44a), we obtain the full solution (see Fig. 3.2aiii):

3A 32, — 8B,
1—— |1 1+ (376
2MM<+¢+ 6A (3.76)

9A
In lf@fln

K
xX=4/=

A

It has an inflection point at

n,=7n_=B— VB2 —A. (3.77a)
The characteristic length (3.48) of the solution 7),4(x) is represented as follows:
2,/

(3.77b)

Ln4 = .
i_\/2A — 4/3Bi_

The “tail” of the solution in (3.76), that is, the part 0<7,,<<7_, may be
represented as 7,4 & const X exp(x/Ls,). Notice that the characteristic length of
the tail of n,4(x) is different from that of 7.4(x) in (3.64). Another important length
scale of this solution is the distance between the center (1!) and inflection point (m_):

n d77
7 mV/A = (4/3)Bn+ (1/2)n

To calculate the free energy of the type-n4 state we use the Landau potential
(2.11) for (3.46b) with ny,, = 1 (Why?):

Dy = \/%J (3.78)

771

Gui= Vi + SV | /(o) =~
0

e
4 1
= Vu+S\/EJm/A—§Bn+§nzdn

0

3 1-R
= R—2R*+=(1-R*1 .
Vu+SJF +2( )n1+R} (3.792)
where
3VA
R::——XCi (3.79b)
2V2B

Notice that as g’”/,—0: R — 1 and G 4,—Vu + So.
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Type-n4 represents a 1d pulse of ordering of one kind in the “sea” of ordering of
another kind (e.g., B-solid in a-liquid). Notice from (3.42a) and Fig. 3.2 ai that the
ordering of the “sea” is that of the metastable phase (e.g., liquid), while the ordering
of the pulse comes close (although not quite there yet) to that of the stable phase
(e.g., solid). For type-n4, the chemical potential, u=g,, corresponds to the critical
value between the cases of general periodic distribution of ordering in the system
and absence of the equilibrium states at all; that is why this case is called the
instanton—a localized, critical, equilibrium excitation of the old phase with finite
amount of the free-energy excess. Instanton is described by a homoclinic orbit
while the kink—by the heteroclinic orbit (cf. Fig. 3.2aii and bii). In that regard,
actually, (3.76) describes half-the-instanton; the whole instanton has n,4 = 2.
Hence, as R — 1 the total energy of the whole instanton approaches Vi + 2So.

3.5 Free Energy Landscape

Various types of solutions of the 1d equilibrium boundary-value problem (3.39a) and
(3.40) obtained above are in need of physical interpretation. The finite-domain
solutions can be interpreted as the equilibrium states of a slab of the thickness X,
while the infinite-domain solutions (—oo < x < + oo) are the equilibrium states
in the thermodynamic limit, X — oo. In the infinite domain, there are periodic type-
1,2,3, pulse type-n4, and kink type-e4 solutions. The periodic and pulse solutions are
non-monotonic. For the periodic solution 7e,(x), the right-hand side in (3.54a)
describes the half-period D, and (3.45)—the index n., of the state. Type-e states
correspond to the conditions of phase equilibrium, T = Tz(P), when the free energies
of the phases o and B are equal (see Fig. 3.2bi). For type-n states, the free energies of
the homogeneous phases are different; hence, T#T(P). Then, the type-e4 state can be
interpreted as a two phase equilibrium state where the phases are separated by an
interface and type-n4—as a 1d pulse of critical ordering (instanton).

At this stage, we have learned enough about our system to be able to understand
the relationships between the physical parameters that control it. First, let us ask the
question: What are the factors that may influence a state of the system ng(x), (3.31)?
Obviously pressure P, temperature T, and the external field H do. In the previous
section, we saw that the linear size X of the system’s domain Q makes a difference:
the states may be finite, infinite, or semi-infinite. A less obvious factor that may
change the equilibrium state is the type of the boundary conditions on the surface of
the system. The latter becomes less important in the thermodynamic limit, X — ooc.

In a laboratory experiment, all of the above mentioned parameters can be altered
more or less independently including the dimensionality and boundary conditions.
The former can be changed by preparing the samples of different shapes; the latter
by changing the interaction of the system with the environment (e.g., lubricating the
surface). However, the pressure P, temperature T, and system’s size X are the most
flexible control parameters of the system; they constitute the thermodynamic
degrees of freedom of the system.
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As we saw in the previous sections, there is one more parameter that influences
the equilibrium states of the system: the chemical potential u. At first glance, the
chemical potential is independent of the other parameters and, hence, constitutes a
thermodynamic degree of freedom. However, this perception is false. The crux of
the matter is that an important factor, stability of the solutions, has not been taken
into account yet. In the oncoming sections, we see that the stability considerations
present a selection criterion for the equilibrium states. That is, when all the
thermodynamic degrees of freedom are specified a unique value of the chemical
potential ¢ will be selected based on the principle of the minimum of the free energy.

A geometrical concept of the free energy landscape may help us visualize
distribution of the equilibrium states 7z(x) in the Hilbert space {7(x)}. The free
energy landscape is the “elevation” of the functional G{P, T, H, V, d, BC; n(x)},
(3.27a), with respect to an arbitrary “sea” level. The extremals are the stationary
points of the landscape: minima, maxima, and saddle points. How can we visualize
the “real estate” of the infinite-dimensional functional space {7(x)} over which the
landscape will be constructed? This space consists of functions, which are continu-
ous enough (usually continuous are first two partial derivatives) and satisfy the BC,
e.g., (3.30b). Then the free energy functional G{n(x)}, (3.27a), may be viewed as a
hypersurface in the functional space {n(x)}. Each element {n(x)} is characterized
by five numbers, see (3.32), (3.45). Then, each element of {7n(x)} may be
represented by a point in the 4-space (<n>+I1, A, Z, n) and the landscape will
be the hypersurface over that space:

G=G{(n)+1I, A, £, n}. (3.80a)

Notice that in (3.80a) there is no explicit dependence on the system’s size; it
enters (3.80a) implicitly through the relationship between the range, slope, and
index. Using this geometrical image, one can formulate a better idea about the
equilibrium states and their stability. The equilibrium states are represented by
the extremals ng(X), (3.31); they correspond to minima, maxima, or saddle points of
the hypersurface (3.80a). The former means that some small deviations from the
extremal nz(x) make the functional to increase while others to decrease.

We may start constructing the landscape (3.80a) with the 1d type-e monotonic
states with different values of the chemical potential u. For the landscape-dependent
coordinate, we use j, see (3.56b). As X, = Oand n;q = 1 [see (3.45,3.51b)], we may
reduce the number of the real-estate independent coordinates to two: the dimension-
less slope A and size (<> + N), which, for convenience, is shifted by 7, and scaled
with ©:

1
y=@«m+N—m) (3.80b)

To visualize the landscape, we are depicting it in Fig. 3.5 and projections
of its characteristic lines on the planes (y, j) and (y, 4) in Fig. 3.5a. For the
homogeneous elements {n(x)} N = 0 = A; they are represented by the red line.
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0.5 -

Fig. 3.5 Free energy landscape of the 1d system, j = func(y, A). (a) Projections of the free energy
landscape on the planes (y, j) and (y, 1)
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For the homogeneous equilibrium states <n>=n,, or 7, or g, hence, y = —0.5 or
0 or +0.5. For the heterogeneous equilibrium states N#0#A and <n>=n,,
see (3.51b), and y equals a of (3.56). Then, (3.56a) expresses the projection of
the line of the extremals on the plane (y, 4) and (3.53)—(3.55) on the plane (y, j).
The dimensionless forms of these relations are

A=y 1—%)}2, (3.81a)
Ely/+/2—y?
j:%(l_yz)Jr%(z_yZ) y21+M . (3.81b)

3.6 Multidimensional Equilibrium States

In the previous sections, we analyzed properties of the 1d equilibrium states.
We may wonder now if the free-energy landscape of a thermodynamic system
G{n(x)}, (3.80a), contains multidimensional equilibrium states, that is those where
essential variations take place in more than one spatial direction. In fact it does and,
actually, “many” (infinitely many); it is more difficult to find the multidimensional
equilibrium states than the 1d ones. However, some of the multidimensional states
have structures similar to those of the plane ones studied in Sect. 3.4—quasi-1d
states (Sect. 3.6.1), others have spherical symmetry, which helps treating them
rigorously (Sect. 3.6.2). In Sect. 3.6.3, we demonstrate how one can find multidi-
mensional equilibrium states which can be thought of as small deviations from one
of the homogeneous states, 7, studied in Chap. 2.

3.6.1 Quasi One-Dimensional States: Drumhead
(Sharp Interface) Approximation

As we saw in Sect. 3.4.4, a heterogeneous equilibrium state is possible where the
OP changes quickly from one bulk-phase value to another one in a plain transition
zone, called interface, while remaining practically constant or changing very slowly
outside this zone. This result should prompt us to search for geometrically more
complicated equilibrium states that are represented by a thin transition layer where
most of the OP change occurs, which, on the “outside”, may have rather compli-
cated geometrical shape, see Fig. 3.6. To find such multidimensional states, we shall
introduce, instead of the Cartesian coordinates x = (xj, X,, x3), new curvilinear
coordinates {u = U(x), v =V(x), w = W(x)} (see Appendix C). The main
requirements to the new coordinates are that they are orthogonal and that the OP is
a function of one coordinate only: n=n(u). To eliminate the remaining arbitrariness
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Fig. 3.6 Curvilinear
coordinate system (i, v, w)
associated with a curved
interface. V,—velocity of the
interface motion

ao-phase

Mo

of the new curvilinear coordinates, we assume that the coordinate u = U(x) obeys the
eikonal equation everywhere:

(VU)* =1, (C.16)

and we specify the level surface U = 0 as follows:

1 0)=0. (3.82)

Then, according to (3.39a), the level surface U = 0 corresponds to one of the
equilibrium values of the OP, 7.
The level surfaces U = const may be characterized by a unit normal vector:

Vi 1 (377 . On. On. >
u= o (915 9, 90, C.11
|V'I’]‘ |vn‘ axl.ll axz-]2 ax3~]3 ( )

The unit normal u is invariant with respect to the rotation of the reference frame
(see Appendix C). Then the curved interface may be represented by the direction
cosines of u or by the Euler angles of inclination 0;; with respect to the coordinate
axis, see (C.12):

On/ox; _ Ou/ox;
on/ox;  Oufox;

tan 0 = (3.20b)
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The unit normal u has many practical applications; for instance, it may be used to
express the anisotropic properties of the interface, e.g., anisotropy of the interfacial
energy.

Another way to characterize the curved surfaces is by describing their curvature
K or radius of curvature R as a function of the curvilinear coordinates. Using the
formula

Vu = 2K (u,v,w) = ki + ka, (C.21D

where K is the mean curvature and kq, k, are the principal curvatures of the level
surface U = const and expressing the Laplacian operator in the new coordinates:

V= o + 2K (u, v, w) = 0 (C.23)
ou? Ou’ ’
ELE (3.29) transforms as follows:
d*n dn  9g(T,n)
2kK —— . .
d2+ K (uvw)du 877 =0 (3.83)

The level surfaces U = const are equidistant; hence the radius of curvature of
these surfaces is R = Ry(v, w) + u. Then for the mean curvature we obtain:

1
WEK:KO{I + uKo + ’Kg + O(u’Ky) }, (3.84)
where Ro(v, w) and Ky(v, w) are the radius and the curvature of the level surface
U = 0. In Sect. 3.4, we saw, (3.64), that L., is the characteristic length of variation
of the OP field of the equilibrium state. Then, if:

Ge = 2|Ko|L.4<<1, (3.85)
then (3.83) can be rewritten in the form:

d*n dny  9g(T,n)
Kd 5 +2 kKo 09 an =0, (3.86)
where the coordinates u# and (v, w) separate. This equation is the drumhead (or
sharp interface) approximation of the ELE (3.29) and the smallness of the number
Ge, called geometric, is the criterion of its validity. Geometrically, this means that
the level surface U = 0 does not have very sharp folds with the radii of curvature on
the scale of the interfacial thickness.

As we can see from (3.86), if the 3d equilibrium state ng has the same internal
structure as the 1d one, that is, the first and third terms add up to zero, then the mean
curvature Ky is zero everywhere. In two dimensions, this is possible only for a plain
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interface. In three dimensions, the mean curvature of a curved surface can be zero
if the two principal curvatures at a point of the surface are equal in magnitude but of
opposite sign:

k1(0,v,w) = —k2(0,v,w). (3.87)

It is possible to construct a surface that has zero mean curvature everywhere
by translating a specially designed unit cell. Such surfaces are termed ‘“periodic
minimal surfaces.”

3.6.2 Critical Droplet: 3d Spherically Symmetric Instanton

The mathematical complexity of the 3d states comes from the fact that ELE
(3.29) cannot be integrated, that is, there are no first integrals that describe equilib-
rium for d > 1. However, for an isotropic system, some of the extremals may
have very simple symmetry: cylindrical for d = 2 and spherical for d = 3. In a
cylindrically/spherically symmetric system, the divergence operator takes the form
(Appendix C):

d? d—14d

2 _ = -
v _dr2+ roodr’

(C.26)

where r is the spatial coordinate. The singular point » = 0 is called a center and

il = ng(r = 0). (3.88)

Then ELE (3.29) takes the form:

d’n d—14dp g
K(W + , a) - % =0. (389)

Notice that this form also applies to a d = 1 system with translation invariance.
Formally, it can also be applied to a d > 4 system and even to systems with
fractional dimensionalities.

A physically acceptable solution has to be continuous everywhere. Thus, to
avoid discontinuity at the center, the cylindrically/spherically symmetric solutions
have to satisfy the following boundary condition:

d
D _0 atr=o0. (3.90)
dr
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If the boundary Q of the system is also cylindrically/spherically symmetric then
(see Appendix C):

r d
jo=j =—; j,V=-—onQ
Jo J; |l'" J; dr on

In the thermodynamic limit, the boundary condition, (3.30b), takes the form:

d
d_n — 0 atr — oo. (391
,

One of the goals of this section is to look at the process of & — [ transformation
from the metastable into the stable phase of the system and compare the solutions
of (3.89)—(3.91) with those of the Theory of Capillarity. The solution that we are
looking for, ng(r; d), represents a critical nucleus (instanton), that is, a localized
heterogeneity in the “sea” of a homogeneous metastable phase. Thus, the third
boundary condition appears:

ng—m, at r— oo (3.92)

where 7, corresponds to the metastable phase. For d = 1, the nucleus has a shape of
aplate, d = 2—acylinder, and for d = 3 the nucleus is a sphere with r representing
the distance from the center.

Equation (3.89) is known in the literature as a generalized Emden equation [6].
If g(n) is a single-well parabolic function, its solution is a Bessel equation of the
zeroth order. If g(n) is a double-well function, like in (2.11) or (2.33), (3.89) is not
known to have a general solution which can be expressed through elementary or
special functions in a closed form. Solutions of the special cases that possess the
Painlevé property (not to have movable singularities other than poles) can be
expressed in quadratures.

The boundary-value problem (3.89)—(3.92) can be qualitatively analyzed using
the phase-plane (7, dn/dr). The critical nucleus solution is not a regular trajectory in
the plane but a separatrix because there are three boundary conditions for a second-
order ODE. Some of the properties of the critical nucleus can be deduced from the
general properties of the ELE (3.89) and function g(n) [7]. Indeed, if we multiply all
terms in (3.89) by (dn/dr) and integrate from r to co we obtain:

00 32 0 q 2 00
KJ M@dwrx(d—l)] —(d—") dr—J %3—”&:0. (3.93)
;.

, , r\dr ,

Taking the BC, (3.91) and (3.92), into account we obtain [cf. with (3.42a)]:

00 dr/

PTim) = —gP.Tim) + e (1)~ a1 W\ (304
_g(a 77734)—_8(, 777>+§KE _K( - )J]’—, ) (3.94)
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This relation shows that g(P,T;n,,) plays the role of the chemical potential for this
type of states. Applying this relation at the center of the critical nucleus and using
the BC, (3.90), we obtain:

g(P,T, 1) — g(P,T,n,) = —x(d — 1) Jml <dn)2dr

o I r

1. From (3.95), we can see that g(n!) = g(n,) and g(n?!

(see Fig. 3.2ai) that

)<g(n,), which means

My <n<ni<nl”'<ng. (3.96)

From this inequality follows that the critical nuclei of the anti-phase domains
are not possible because for this transition g(1,) = g(n;) (see Sect. 2.6.2).

2. Equation (3.95) also indicates that for d — oo: nl,d — ng because g(n(,d)— g(ny)
becomes more negative as d — oo. Indeed, the integral in (3.95) decreases with
d — oo but not as “fast” as (d—1) — oo.

3. If T — Tg(P) then g(np)—g(n,) and n(.d—mﬁ. This follows from the inequality
(3.96) and the fact that ncl—mﬁ as g(npg)—g(n,) (see Fig. 3.2bi).

4. If T — Tg(P), the spatial distribution of OP becomes similar to that described
by the 1d equation (3.39a) instead of (3.89). Indeed, as the critical nucleus
represents the separatrix in the plane (7, dn/dr), the derivative (dn/dr) does
not change sign in the entire domain 0 < r < oo [dn/dr < O in the above
considered case of oo — P transformation; cf. to the monotonic branch of
(3.43)]. Then, the “multi-dimensional” term in (3.89) can be neglected, com-
pared to the two other terms which alternate, because the former cannot balance
the latter. Basically, as T — Tg(P), the critical nucleus of the field theory tends
to look more like that in the Theory of Capillarity, that is, a sphere (cylinder) of
the phase P in the “sea” of phase o separated by the sheath of interface; the only
difference of that from the plane one is its curvature.

Now let us use the fact that (dr/dr)? is a bell-like, sharply peaked function of r
that reaches maximum in 0 < r < oo (cf. Fig. 3.4) and define R
1

Applying the Laplace method of asymptotic expansion [8] to slowly varying
functions of r, F(r), and H(r), we obtain:

S AF(G d”2~FR T dn)* 3.98
JOI(’)EN(d)JOra7 (3.98a)
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Jx drH(r) JOC d'F() <%) g ro drF(r) (3—”) ’ JRd arH(r).  (3.98b)

0 r r r 0

Then, replacing the lower limit of integration in (3.98a) with (—oo) and using the
definition of the surface energy, (3.70a), we obtain from (3.95):

B (d—1a
Ra= o) — 50 G99

The distance R; defined by (3.97) may be called a d-dimensional radius of the
critical nucleus. In the limit 7 — Tg(P) and d = 3 this expression corresponds
to (3.14) for the critical nucleus R« in the Theory of Capillarity because
g(nf) — g(nﬁ), but R3 > R if the difference (Tg—T) grows. Resolving (2.4c) for
L = const(T) [see (2.40b), (2.40c)] and using it for (3.99) we obtain

_ d—1 JTE
T Ty—T L’

Rq (3.100)

which shows that R; — oo not only if T — Tg(P) but also if d — oo for T = const.
Let us now introduce the total free energy excess due to the presence of the
critical nucleus in a previously homogeneous phase o:

AG., = G{T,P,ng(r)} — g(T,P,n,)V, (3.101a)

= | e o+ 3007 —r P G0t
\4

Substituting (3.94) into (3.101a) and taking into account that

dix = dV, = S,(r) dr;
d—1 (3.102)

r;

Sq(r) =2n(d — 1)r'7"; Vu(r) =2n

where S; and V; are surface and volume of the d-dimensional sphere, we obtain an
expression for the free energy excess of the d-dimensional, spherically symmetric
critical nucleus:

[ ) dn 2 ®dr (dn 2
AG,., = Jo drS,(r) |j€ (E) —(d-1) Jo 7K(W> ] ) (3.103a)
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Again, using (3.98a), (3.98b) with the lower limit of integration replaced by
(—o00) and the definition of the surface energy, (3.70a), we obtain:

AGep =0 [Sa(Ry) — (d — 1)@ = éan(Rd). (3.103b)
d

This expression corresponds to the free energy excess AGs, (3.17), due to the 3d
critical nucleus in the Theory of Capillarity. It also shows that the solution ng(r; d)
indeed represents a d-dimensional instanton because it corresponds to the final
amount of the free energy excess.

When the approximation of sharply peaked function (dn/dr)* is not valid, the
free-energy excess of the critical nucleus, (3.101a), may be efficiently calculated
using expression (3.38a) for the free energy:

AGer = 2(d — 1)nJ
0

1 0
[g(T,P,n) —g(T,P,n,) —= _g} AN dr. (3.104a)
270
Notice that the Newmann-type BC (3.91) is already accounted for in the
expression (3.38a). For the Landau potential, (2.11), we obtain the following
expression

2 1
AG., = n(d — 1) (gBlg — §1§>7 (3.104b)

where we introduce the d-dimensional nth order moments of the OP distribution

o0
IZ = J n'rd=tdr. (3.105)
0
These moments may help us calculate many different quantities related to the
critical nucleus. For instance, as the radius of the nucleus is not well defined now

and (dn/dr)* is not sharply peaked, the volume of the nucleus may be defined as
follows

1 J d
= n—1,)dx
Np — My v< :)

1 © 2n(d — 1
= J Sa(r)yndr = 2nd = 1) )I‘ll
Mg — My Jo g — My

VCV!

(3.106)

The moments 7, may be estimated analytically or calculated numerically using
numeric solution of the boundary-value problem (3.89)—(3.92).
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Example 3.3 Find the instantons of the tangential potential.
For the tangential potential, (2.33), the space coordinate r can be scaled as
follows:

r=r W (3E.10)
K
and the boundary-value problem, (3.89)—(3.92), takes the form:
En d—1dn a0 — ) =0 GE.11)
a2 FRNFE nn—=mn n) =y, .
d
D0 ati=o0, (3E.12)
dr
dn -
?HO,UHO at 7 — oo, (3E.13)
E

Notice that in the scaled form the problem has only one external parameter—the
transition state OP:

1 D
== —. 2.
m=5+3 W (2.37)
The 1d instanton solution can be obtained analytically similar to (3.76):
6m 4
Fy/2n,=In ! —=(1+mn,)
' 1+77r_\/(1/2_771)<2_77t) 3 t
—2/3(1 1/2)n?] 4
n

For d > 1 and 7, < 0.5, the OP in (3E.11)—(3E.13) can be scaled as 7) = /7,
and the problem can be reduced to the universal (parameterless) form (Verify!).
For 1, not small (~0.5), the instanton solution can be obtained numerically using
the shooting method. According to this method, we pick a test value of nf , present
the solution as

o)

=l =l —m)(1 )T 0<F<o<<l,  GELS)

(Why?) and solve (3E.11) numerically for 7>>1. If the solution satisfied the BC
(3E.13) to the desired accuracy, it is declared a success; if not, the test value is
adjusted and the numerical run is repeated until the BC (3E.13) is satisfied.
In Fig. 3.7, the solutions for d = 1, 2, 3 are presented as functions of 7.
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Fig. 3.7 Instantons of the 1—
tangential potential with

1, = 0.353 and different .
dimensionalities of the space d.

For d = 1, the solution 0.8
is (3E.14); ford = 2, 3,
the solutions are numerical

0.6—

order parameter

0.4—

0.2—

distance from center r

3.6.3 Small Deviations from Homogeneous Equilibrium
States: Fourier Method

Let us look for an equilibrium state 7g(x), which on average is equal to 7, that is:

(e) =1 An(x) = ng(x) — 7. (3.107)

Applying the equilibrium integral equations (3.37b) and (3.35), we obtain:

% (ng)An] dx = 0. (3.108a)

2
Jv [K(VAn)~ + n

Expanding 0g/0n about 7 and taking into account (2.12), we obtain:

j[x(mnf W( 7) (An)?
Vl e | o (3.108b)
3 G @A)+ TE @+ 1dx =

Equation (3.108b) may be analyzed using the method of Fourier transform
(Appendix F). For this let us present An(x) in the form of a Fourier series:

Z Ay ™, (3.109a)
VA
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where k = (k,, ky, k.) is a separation parameter called wave vector. In a parallelepiped
with the sides (X, Y, Z) and volume V = XYZ, Kk has the following components

k= (n}’;x 5 % 5 %) , Ny integerS, J =X,y,Z. (3.109b)

The summation in (3.109a) is over all integral-number combinations (., ny, n.).
A7), are called the Fourier coefficients of An(x) and can be found as:

1 A
Ay = N JAn(x)e*""‘ dx. (3.110)
\4

Due to the condition (3.107), the k = 0 Fourier mode of A7(x) vanishes:
Afy =0 (3.111)
If the OP field n(x) is represented by real numbers (fields of different mathe-
matical origin will be considered in Sect. 8.2) then, as you can see from (3.110),
the Fourier coefficients of the opposite wave vectors k are complex conjugate:

ARy = AL (3.112)

Using the Fourier representation, we can express the gradient of An(x) as

VAn(x Z kA7, e (3.113)
W

Substituting (3.109a) and (3.113) into (3.108b) we obtain:

0= 3 [k + 55 o

i}
L %) > Ay Ay, A (3.114)
AY/'NAY .
2\/_ 8’73 {k|+k,+k3;=0} l ’ '
1 9% A e e ae
o em @ N A A, Ay, Ay, +

4
6V on {ki+k+ks3+ky =0}

In the summations of the third and fourth order of the Fourier coefficients, the
sums of the wave vectors add up to zero because

Jef"x dx — (21)°3(k), asV — oo. (F.10)
Vv
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On the boundaries of the system, x = (0 or X, y, z2), jo=(£1,0,0) or x = (x, 0
orY, z), jo=(0, £1, 0) or x = (x, y, 0 or Z), jo=(0, 0, £1). Then, to satisfy the
boundary conditions (3.30b), the Fourier coefficients must obey the following
relationships (Verify!):

+00

Z (_l)n/njAfl{nM ny, Nz} =0. (31153.)

nj=—00

If the OP field can be represented as An(x) = f(x)g(y)h(z), the Fourier
coefficients break down into products of the separate components:
Apy = Af],uAﬁ”yAf)n:. In this case, condition (3.115a) may be simplified as

+o0

S (~1)"n; Im (Ann/) = 0. (3.115b)

nj=1

This condition shows that the BC (3.30b) will be satisfied if all the Fourier
coefficients are real. Advantage of (3.114) and (3.115a) over (3.29) or (3.37b) is
that these are algebraic equations; the disadvantage is that we have to deal now with
many components A7y instead of one function An(x).

For the state ng(x) to be close to 7, the Fourier coefficients A7), must be small.
Then, (3.114) yields that the necessary condition for this is that the coefficient in
front of the quadratic term vanishes

d%g
o
This is possible only at the point of unstable equilibrium, dg(7)/dn<0, that is, at

the transition state 77 =17,. In a cube with the side X, this condition may be
expressed as follows

K|k|* + == (7) = 0. (3.116a)

X* = (0} +n} +n2)X*(P,T). (3.116b)

As n;s are integers, this equation defines the SABi point X4, which is a 3d analog
of the 1d SABI point in (3.58b). Notice that for the 2d and 3d states the bifurcation
is deferred until greater lengths, than for the 1d states, V22X and v/3X, respectively,
see Fig. 3.3. Equation (3.114) can be used to find the coefficients A7), beyond the
SABI point.

Let us resolve (3.114) for a An(x) that has

ki =k, = —-k; = —k4
in a system where T = Tg(P), that is, (3.51a) applies. Then the third-order summa-
tion term vanishes and the fourth-order one turns into
"

L3 ()

{k}
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Then (3.114) can be resolve as follows

18" X3 lg" | X — X4
AR > = 6V o -5 leVgW’ o (.117)
t

Expanding g(ng) in (3.27a) and substituting (3.117) into the expansion, we
obtain (Verify!):

1
" /N/
dem%[ (I 4. 180k + ¢ (180

o 6l8 € —xd)2
t
g////[ Xd

Compare this expression with (3.59) and notice that for the extremals with
@a>1

(3.118)
=V

Gd>1(V)>G1(V) (3.119)

because of two reasons: (1) the deviation from Vg, starts at the linear size X, greater
than that for d = 1, that is X ; (2) the curvature of the deviation is d times smaller
than for d = 1. In Fig. 3.3, the Fourier coefficients (3.117) and free energy (3.118)
are expressed through a and j of (3.56) and presented in comparison with the 1d
type-e extremals.

3.7 Thermodynamic Stability of States: Local Versus Global

According to the thermodynamic stability principle discussed above, only the states
that correspond to the free energy minima are thermodynamically stable. A theorem
from the calculus of variations (see Appendix B) says that the necessary condition
for an extremal 7z(X) to deliver minimum to the functional G{n(x)} is for the
second variation to be positive:

0*G > 0; T, P = const(x). (3.120)

For the functional (3.27a), the second variation takes the form of a quadratic
functional:

8°G = Jénﬁ(nE)éndv, (3.121)
v

N =
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where H is the Hamilton’s operator from (3.33) and (3.3{) and the variation o7
obeys the Newmann-type BC (3.30b). The linear operator H has a complete set of
eigenfunctions {¥,(x)}

I:I(UE)\PH(X) [(azg)PT(nE) - sz LIIn (X) = Aann (X)v (3122)

o

and the variation o7 can be expanded in {V,(x)}

on = Z 0, W (X). (3.123)
n
Substituting (3.123) into (3.121), we obtain

1
8’G = 3 Z A, (3.124)
n

Thus, the problem of the thermodynamic stability of a state described by the
extremal (3.31) is reduced to the problem of the spectrum of the eigenvalues of H.
Indeed, if all the eigenvalues A, are positive, the second variation, (3.124), is
positive definite, that is, 7g(x) is a minimum. If all the eigenvalues A,, are negative,
the second variation is negative definite, that is, ng(x) is a maximum. Finally, if
some of the eigenvalues A,, of H are positive and some are negative, the second
variation takes on a positive or negative value depending on the variation of the
state 07. That is, the extremal 7g(x) is a saddle point. If ng = const(x) is uniform in
space, then (3.122) yields that for the stability of this state we need A=0%g(ng)/
On” > 0, which is precisely the criterion we used in Chap. 2.

For the nonuniform equilibrium states, ng(x) (3.122) is analogous to the
Schrodinger equation from quantum mechanics, which describes stationary motion
of a particle of mass (/%/2x) in the potential field &g(n)/dn%. Then, H is
analogous to the energy operator, '¥,,(x) is the wave function, and (A,,) is the energy
of the particle. Review (3.33) and (3.34) and notice that we already know d
eigenfunctions of H that correspond to the zero eigenvalue A, = O—the
d-components of the gradient of the extremal 7ng(x):

¥, (x) _ e (x); A, =0; i=1,...4d. (3.125a)
’ axi
These eigenfunctions are called the Goldstone modes. Although very important
for the stability of the state ng(x), they do not solve the problem completely because
the zero eigenvalue may not be the smallest one.
To resolve the problem of stability of the 1d equilibrium states 7g(x), motivated
by the fact that they vary only in one, x-direction, we will be seeking the
eigenfunctions in the form of the capillary waves—the Fourier modes:

W, (x) =y, (x)e"*, (3.126a)
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where k, = (k,, k.), X, = (¥, z), and the amplitudes satisfy the following eigenvalue
problem

g Py, (x)
el (g ()W, (x) — e Il (X);
ay, () (3.126b)
X
—2 2 =0 atx=0andx=X.
I at x and x
where s are the 1d-eigenvalues of ﬁ(nE(x)). Substituting (3.126a) into (3.122) we
obtain the relation

Ap = I + KK [* > 2, (3.127)

which basically shows that, for the stability of 1d-states, the capillary-wave-amplitude
eigenvalue problem is the most important part because the 3d-eigenvalues A,s are not
less than the 1d-eigenvalues 4,s.

3.7.1 Type-e4 State: Plane Interface

Let us start with the plane interface state 7.4(x), Sect. 3.4.4. As the Goldstone mode
does not solve the stability problem of this state, we need to find other
eigenfunctions and eigenvalues of the Hamilton’s operator (3.122) where the
state 7.4(x) is used for the “quantum mechanical potential energy” 02g(1je)/01>.
Here we have to be more specific in the choice of the function g(n). Let us look at
the Case 1 of the Landau potential, that is, (2.11) with B = 0 and A < 0, which has
the type-e4 APB equilibrium state:

7,4(x) = V—A tanh <x ;—:) (3E.9)

The spectrum of ﬁ(nE(x)) is discrete for 4,<—2A. The 1d Goldstone mode

d 1
o o (’1’;“ x i A =0 (3.125b)
cosh (x, /5—{3)

has the smallest eigenvalue zero. There is one more bound, real eigenfunction (see
(3.67) or Appendix E):

dn,  tanh (vy/=A72¢)

x C A= —2A. (3.125¢)

dx  cosh <X\/T/2K> ’

N W

W1 ¢ 1es ()
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Normalization of the eigenfunction does not matter because they obey a linear
equation. The rest of the eigenfunctions (n = 2, 3, ...) are “scattering states”
(unbound, complex valued) with A, > —2A. Thus, the APB is neutrally stable
inhomogeneous state in the sense that it can be relocated in the x-direction to any
part of the system without any additional free energy cost. Same is true about any
type-e4 state (3.64), which represents the equilibrium interface. (Verify!) The
equilibrium state 7.4, “potential energy” 0°g(1.4)/0n” for this state, and bound
eigenfunctions are shown in Fig. 3.4.

3.7.2 General Type-e and Type-n States

For other type-e and type-n states, exact solutions of the respective Schrodinger
equations are not known and we have to look for other means to determine type of
stability of these states. That is when the Sturm’s comparison theorem (Appendix
E) is of great help. According to that theorem, the discrete band of the spectrum of
the eigenvalues {4, } can be ordered such that the greater eigenvalue corresponds to
the eigenfunction ¥, with greater number of zeros:

n=0,1,..., n,—1, ny...
A< < o <Apo1 <Ay, =0< -+ (3.128)

l//07 lpl?"‘a lpn*—h lpnw"‘

Then, (3.128) shows that i,+(x) = dn,4/dx is the eigenfunction with the eigen-
value 4,+ = 0 and all we need to know is how many zeros this function has. Indeed,
if ,+(x) has at least one zero in the domain (0, X) then there exists another
eigenfunction i« (x) with fewer zeros that corresponds to a smaller eigenvalue:
A 1<+ = 0, and the solution 7, 4(x) is unstable. Otherwise it is stable. (3.43) and
(3.50) show that d7e;/dx, dne/dx, dnes/dx, and dn,/dx have zeros in the domain
0 < x < X. Hence, on the hypersurface G{n(x)} the functions 7.;_3 and 7,
represent saddle points. Notice that because dn.s/dx does not have zeros in the
domain —oco<x < +00, the Sturm’s comparison theorem proves our previous point
that 7.4 is a state of neutral stability.

Example 3.4 Find the 1d instanton (critical plate) and determine its stability in the
system described by the following free-energy density:

1
g =80 +gn2 =gt a>0. (3E.16)
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This potential may be used to model a metastable state (7,, = 0) in a system
where stable states (7), — +00) have much lower level of the free energy. ELE
(3.29) for this system is resolved in the following form [see (3.43)]:

dn a s
— =dm/—(1-=). 3E.17
dx N < 2a ( )
Its instanton solution centered at xo = 0 is
Npa(X) = £V2a sech(\/%x) (3E.18)

The eigenvalue equation is

. 2 2
Hy ,(x) = <af;§72”4) - foz) U,(x) = A, (x). (3E.19)

The Goldstone mode of this equation is

Yy o tanh <\/gx) sec h(\/%x>; Ao =0. (3E.20)

The eigenvalue equation has one more bound eigenfunction:

¥, o sech? <\/%x); J_1 = —3a. (3E.21)

The 1d instanton is unstable because the eigenvalue A_; < 0. Compare this
example to the domain wall and notice that the Goldstone and second bound state
switch their places. The potential, (3E.16), ELE (3E.17), solution, (3E.18), and the
bound eigenfunctions (3E.20) and (3E.21) are shown in Fig. 3.8.

3.7.3 3d Spherically Symmetric Instanton

Now let us consider thermodynamic stability of the critical droplet—3d radially
symmetric instanton (see Sect. 3.6.2). Based on the success with using the Gold-
stone mode and Sturm’s comparison theorem for the analysis of stability of the 1d
states, it is tempting to try to use the same combination for the 3d case. We will do
that by presenting here the stability analysis on the “physical level of rigor,” which
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Fig. 3.8 A 1d system
described by the free energy
(3E.16). The potential (i),
the phase plane (ii), and the
spatial distribution of the
modes (iii): 1—instanton
(3E.18), 2—the Goldstone
mode (3E.20), and 3—the
bound eigenfunction (3E.21)
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is very illuminating and sufficiently rigorous for our purposes. First, let us present
the 3d Goldstone modes in the vector form:

dns,(r).  dnsu(r . .
W, (x) = V() = S0 YDy oy 003 3a9)

where j; and f; are the Cartesian unit vectors and projection coefficients,
respectively (see Appendix C). Then, substituting (3.129) into (3.122) and using
(C.27), we obtain an equation (Verify!):

0 = H(n3,(r))Wa.(x)

52 Lo/ o\ 211d (3.130)
= {Wf (7]3(1) — K|:r—2 5 <r25) l'_2:| }%mﬁ(ﬂv¢)Jza

which shows that the eigenfunction

dnsq(r)
= 3.131
lﬁn, (r) dr ( )
is the zero-eigenvalue solution of the following Sturm-Liouville problem
d [ ,dy, r? O%g
ar <r ar > - {2 + - w(nsd(r)) Wy =¥l (3.132)

in the domain 0 < r < oo. Taking into account that i, (0) = 0 [see (3.90)] and
applying the Sturm’s comparison theorem (see Appendix E) we deduce that there
exists an eigenfunction y/o(r) such that it does not have zeros in 0 < r < oo and

Jo < Jm. = 0. (3.133)

This proves that the 3d-instanton has at least one eigenfunction with negative
eigenvalue, that is, this is a state of the saddle-type stability. Notice that we also
proved that the “most dangerous” mode Yr((r) has the spherical symmetry similar to
that of the instanton 7s4(r) itself.

3.8 Gradients of Conjugate Fields

In this section, we come back to the question of inclusion of the linear term in (3.21)
into the free energy density, (3.19a), and analyze its consequences. This term has
proper symmetry and, comparing its contribution with the other terms in (2.45), we
can see that the coefficient v has the units of length squared. This term may allow us
to account for the heterogeneous variations of the applied conjugate field H(x).
Hence, in addition to the OP-field coupling terms, we have to include the “vacuum”
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contribution of the field—the term ‘/2,uH2, where u is, for the time being, an
undetermined field-scaling coefficient. Then

1 1
G= J {g(P, T,n) + EK(Vn)Z —Hy+ vWHVn + 5 pH?*| dx. (3.134)
\4

Now let us apply the LeChatelier—Braun principle to a stable homogeneous equi-
librium state 7, which sets in a field-free system. The principle says that the reaction of
the system on small disturbances must be such as to minimize the effect of the
disturbances. Variation of the functional (3.134) yields that the equilibrium distribution
of the OP, which appears as a result of the applied field, is described by the ELE:

)
%g — kY2 = H + vWH. (3.135)

Reaction of the system on the applied field can be analyzed with the help of the
superposition of the plane waves with different wave vectors k (see Appendix F):

H(x) =Y he™; nx) =0+ Ape™, (3.136)
k k

where the amplitudes obey the following relations h_x = Ay and An_, = Any
because the waves represent the real fields. Substituting (3.136) into (3.135) and
linearizing it (the disturbances are small) we obtain the expression for the
generalized susceptibility:

Any 1 —vk? )
T e Pe()/0nt + K2
Now we can find the reaction of the system on the disturbance by calculating the

free energy change as the result of the applied field. Substituting (3.136) and (3.137)
into (3.134) we obtain (Verify!):

k= |K|. (3.137)

G{P,T,H,n+ An} =V |g(P,T,7) + > _ ||’R(k)|, (3.138a)
k
where
Rk = p— L= ey’ [0e(m) (3.138b)
=Hu 1+ 22 8772 :

is the field amplification factor and the fundamental length / is defined in (3.53b).
A homogeneous field H will be balanced by the OP changes only if R(0) = 0;
hence, the field-scaling coefficient is

(3.139)
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Fig. 3.9 The scaled field
amplification factor R as a

. =0
function of the scaled 0 Y
wavenumber k for different V>
values of the coefficient v

v<0
0 scaled wave number /k

scaled amplification factor 2Rg"

Then

(3.140)

Pg(m)] " 24 2v — k> )
on? 2(1 4+ Pk2) 7

The state 1 will remain stable and the influence of the applied field will be
minimized only if R(k) > O for all values of k£ > 0. Indeed, if R(k) is negative, at
least for some values of k, then another state, possibly heterogeneous 7y(X), is more
stable than 7, which means that a transition into that state is probable. Analysis of
(3.140), see Fig. 3.9, shows that R(k) > O for all values of £k > 0 only if v = 0.
Hence (3.22) is true.

R(k) = {
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Chapter 4
Dynamics of Homogeneous Systems

In this chapter, we conjecture the “linear ansatz” equation of evolution of the order
parameter, which is consistent with the laws of thermodynamics. We analyze
solutions of this equation in different situations: close to the equilibrium state, far
away from it, or when the evolution is taking place close to the spinodal point.
Analyzing stability of homogeneous equilibrium states we find that the criteria of
their dynamic and thermodynamic stability coincide. We also take a step beyond
the linear ansatz and look at the order parameter evolution in systems with memory.
One of the conclusions that we arrive at is that all of the above considered cases do
not describe a phase transition completely because they cannot describe
overcoming of a potential barrier by the system. Hence, other forces ought to be
included into the complete theory.

4.1 Evolution Equation: The Linear Ansatz

So far we have been dealing with the states of thermodynamic equilibrium. We now
turn our attention to the situations when the system is initially not in one of these
states. Experiments show (the Zeroth Law of Thermodynamics) that in all systems
there is a tendency to evolve toward equilibrium states, which are determined by
intrinsic properties of the system and not by the initial influences. Here we want to
answer the following question: What is the equation that describes evolution of the
OP in a nonequilibrium system? We will start with a homogeneous system.

The OP evolution equation can be conjectured based on the following arguments
(see Appendix J).

First: We know that

oG
dG = —SdT +VdP + (—) dn. @.1)
877 PT
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Then at P = const, T = const the condition of equilibrium is expressed as

following
8G)
- =0. 4.2)
(% P

Hence, deviations of the system from the equilibrium state 7 will result in the
deviations of the left-hand side of (4.2) from zero. This term may be called “the
driving force” of the evolution.

Second: The evolution equation should be able to describe relaxation of the system
to the equilibrium state. Hence, it should contain the first-order temporal derivative
of the OP. Presence of the higher-order temporal derivative of the OP is possible but
not necessary.

Third: The evolution equation should be able to describe small deviations from the
equilibrium state. Hence, it should contain the linear in the driving force term. The
equation may contain the nonlinear in the driving force terms but not necessarily.

Fourth: The evolution equation should be consistent with the coarse-graining
procedure (see Appendix A).

The four arguments discussed above suggest the following equation that
describes the nonequilibrium homogeneous OP evolution [see (J.1)]

dn = —y (6—G> . (4.3)
de on)er

Here y is a constant that characterizes the rate of evolution. This equation
sometimes is called “the linear ansatz.” Notice that the linear ansatz equation is
linear only with respect to the driving force but, in general, is nonlinear with respect
to the OP change.

To determine possible values of the rate constant y, we will use the second law of

thermodynamics. According to this law in the system with P = const, T = const,
the equilibrium state 7) has less Gibbs free energy than any other allowed state:

G(m)<G(n) if n#7. (4.4)
Hence, on every evolutionary path 7 (#) — 7 that leads to 7 it must be

dG

5 <O 4.5)

Now let us calculate the rate of change of the Gibbs free energy G that
accompanies evolution of the OP 7(¢) which is a solution of (4.3). First, we have

dG _ (9G oG\ dy
E B <E> P.Tn * <%> P.T a . (46)
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The first term will be present in a system exposed to a time-dependent external
field. In this chapter, if not indicated otherwise, we will be assuming that such fields
are absent. Hence, the first term vanishes. Then, using (4.3) for (4.6) we obtain

dG oG\ ?
©_ () 4.7
dr y(%)P,T @D

Comparing (4.5) and (4.7) we can see that
y>0. (4.8)

A few comments are in order here.

1. In the function space {7} the left-hand side of (4.3) represents a flow, while the
right-hand side a gradient of G(7). Because of that, evolution of a system
according to (4.3) is called gradient flow.

2. From (4.3) to (4.8), we can see that the free energy of the system G (strictly
speaking the difference G() — G(7)) is a Lyapunov function at the equilibrium
state 7. Remember that a continuous function L(x) with continuous partial
derivatives is called a Lyapunov function for the system of differential equations
dx/dt = D(x), where D(x = 0) = 0, if it is positive definite, i.e. such that
L(x = 0) = 0 and L(x#0) > 0, and if its total derivative due to the system D
(x) is non-positive: (dL/df)p = OL/0x-D(x) < 0. Existence of a Lyapunov
function allows us to analyze stability of the equilibrium states of a dynamical
system and distinguish between the locally stable and unstable equilibrium
states. It also proves that the states of the evolutionary trajectory are time ordered
and the reverse evolution is impossible, that is, the evolution is irreversible [1].

3. One may argue that the system may have evolutionary paths, which do not lead
to the equilibrium state 7. However, they must lead to some other equilibrium
state (e.g., local equilibrium state instead of the global one) because otherwise
the zeroth law of thermodynamics is violated. Hence, (4.8) is true on this
path also. This analysis helps us recognize that the domain —oo < 1 < +00
may be broken into “basins of attraction” of different equilibrium states
N1, M, - - . (see Chap. 2).

4. A word of caution is necessary here regarding the concept of nonequilibrium
free energy of the system. Rigorously speaking, Statistical Mechanics provides a
recipe for how to calculate the free energy at an equilibrium state only. Then,
how can we define the free energy at a nonequilibrium state? The concept of
the conjugate field developed in Chap. 2 may help us clarify the concept
of nonequilibrium free energy. Indeed, using (2.46), we may define the free
energy at a nonequilibrium state of the OP 7 as equal to the free energy at the
same value of the OP, which has attained equilibrium in the presence of
the conjugate field H, plus H times the OP value (see Appendix J):

G(P,T,0,n) = G(P,T,H,n) + Hn, ifn=n(P,TH).
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4.2 Solutions of the Linear-Ansatz Dynamic Equation

4.2.1 Evolution of Small Disturbances

Now we can analyze the general dynamic features of the linear ansatz. Let us start
with the situation when in the beginning the system was slightly pulled away from
the equilibrium state 7. Then we can expand the free energy near this value

0G _9G[m)  *Gm) ,  19°G@), , 18'GH) :
oot iy T AT
An=n-—n.

Taking into account that G(7})/0n = 0, we obtain an equation for the small
disturbances A7
ddn  _, O°G()
a on?
This is a linear differential equation of the first order which has a general
solution

An. (4.10)

32 G(m)
i
Here f3; is called the amplification factor. As you can see from (4.11), the sign of
the amplification factor determines asymptotic behavior of the small disturbances:
if f; < 0 then IAn(f)| decreases with time (decays)—relaxes, if f; > 0 then IAn(¢)!
increases with time (grows) and soon leaves the domain of validity of the expansion
(4.10). If B; = 0 then, according to (4.11), IAn(#)| neither grows nor decays, which
means that our expansion in (4.10) is not sufficient and we have to include the
higher-order terms from (4.9). Given the condition, (4.8), the sign of the amplifica-
tion factor f3, is fully determined by the sign of 9>G (7 / ) /On?. Hence, 0°G (7 / )/On? is
a very good indicator of stability of a homogeneous equ1hbr1um state:
G(7))/On*>0 at the stable equilibrium, 9°G (7)) /0n*<0 at the unstable equilib-
rium, and 6°G(7)) / On* = 0 at the neutral equilibrium (spinodal point).
The characteristic time scale of the relaxation

An = An(0)e; B = —

4.11)

11 82G(n)’
- |92\ 4.12
Bl v | on? ( )

determines the rate of the evolution. If the system has more than one stable
equilibrium, the time scales near them may be different. For instance, for the
system described by the free energy, (2.11), the time constant of the globally stable
state is smaller than that of the locally stable one. If |0°G (7)) / On?| — 0, that is, near
the spinodal points, then T — oo. All of these cases are depicted in Fig. 4.1.
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Fig. 4.1 Evolution of the system near equilibrium states according to the solutions (4.11) of the
linearized dynamic equation (4.10)

The type of stability associated with f3; is called dynamic because it originates
from the dynamic equation. It is very closely related to the thermodynamic stability
studied in Chap. 2. Indeed, f/; < O for all locally stable homogeneous states and
f1 > 0 for the unstable ones. However, [ is not a perfect indicator of the global
stability because one can envision a potential G (not considered in the previous
chapters), where the curvature of the deeper well is less than that of the shallower
one. The situation is even more complicated for the heterogeneous states; it will be
considered in the next chapter.

4.2.2 Critical Slowing Down

As we observed from (4.10), our analysis of the dynamic stability fails at the
spinodal point, that is, if G'(7) = 0 and G”(7)) = 0. A general effect that takes
place at this point is called critical slowing down. But the details depend on the
higher-order expansion terms in (4.9). If G”'(7) # 0, then

dAn
dr

1 &Gy
= ol B = 57 877(377)

(4.13a)
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and

__ Mn(0)
1 — An(0)B,t

Important feature of (4.13b) is that the temporal behavior of An depends not
only on the sign of G”(7) but also on the sign of the initial condition An(0).
Indeed, if An(0)G™(77)>0, then A7(¢) is a monotonically decaying function with
the asymptotic behavior of r~' instead of the exponential, exp(f;7). But if
An(0)G"(77)<0, then An(r) increases without bound (finite-time blow-up) and
quickly leaves the domain of small disturbances. The rate of this process is
characterized by the blow-up time 75 = (An(0)f,)”". Thus, if G"(7)) #0, the
system is dynamically unstable because the runaway scenario is always possible:
all you need to do is to choose the initial disturbance such that An(0)G" (7)<O0.

IfG"(n) =0 butG"™(n) # 0, then

An (4.13b)

dAr
dr

1 0'G(n)
6 o

=~ BAp; By =— (4.14a)

and

n = An(0) (4.14b)

V1 =2A02(0)Bst°
As we can see in this case the asymptotic behavior of the OP disturbance
depends on the sign of G"(7) but is independent of the sign of An(0). If
G""(77)<0, the system is unstable with the blow-up time #; = (2A7%(0)B5) "
If G"()>0, the system is stable but its asymptotic approach to the equilibrium

is An»«t_'/2 instead of the exponential one, that is, much slower than near the regular
point of equilibrium.

4.2.3 Nonlinear Evolution

Although many features of the evolution in homogeneous systems may be under-
stood from the analysis of the linearized equation (4.10), some of the features can
be revealed only if we solve the full nonlinear equation (4.3). We will demonstrate
the solution using the tangential potential of Sect 2.5. Then

d
T =2Wn(l = m)(n—n,), (4.15)

where 7, is the OP value of the transition state (2.35b). Taking into account that

1 1 1 1

x(1 —x)(x —a) a(l—a)(x—a)+(1—a)(l—x) ax’
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Fig. 4.2 Solutions (4.16) of the nonlinear homogeneous dynamic equation (4.15). The arrow of
time is from left to right. Notice the basins of attraction of two stable states, n = 0, 1, and the
repulsive basins of the unstable state 1 = 7,

we obtain a general solution of (4.15)

Injp—mn| In[l —n[ Inn
771(1 - 77r> 1 —mn, My

29Wt = — const (4.16a)

where

In|n(0) —n,| In[l —n(0)] In[n(0)]
771<1 - 77:) I—n, M

const = (4.16b)

and 7n(0) is the OP value at t = 0. The solution, (4.16a), is depicted in Fig. 4.2.
As we can see the equilibrium values 7 = 0, 7,, 1, divide the OP domain into four
“watersheds”, each controlled by one manifold. Approaching the stable equilibrium
state or departing from the unstable one the OP exhibits exponential tails, which
have been revealed by the linearized analysis of (4.11). Compare solution (4.16a)
with the Sect. G.2 of Appendix G and notice the similarities.

4.2.4 More Complicated Types of OPs

If the OP of the system is a complex variable, the driving force in (4.3) should be
understood as a derivative of the analytic function G(n). In this case,
Red*G (1) /On? serves as an indicator of stability and Im9*G(7}) /9n? is proportional
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to the frequency of oscillations. If the OP is a multicomponent variable, the
linear-ansatz dynamic equation should be written for each component separately
(see Appendix J, §3). The dynamic equations for the components will contain the
cross-terms, which obey the Onsager symmetry relations. The cross-coefficients
affect stability of the equilibrium states.

4.3 Beyond the Linear Ansatz

Now let us analyze a “nonlinear ansatz,” that is, a possibility that the OP evolution
equation is a nonlinear function of the driving force

2-o{(3),)

The function ®(x) is subject to the following the constraints

1.®0)=0
. (4.18a)
2. ®(x) — analytic near x = 0.
Substituting (4.17) into (4.6) and comparing it with (4.5), we find another
constraint on the function ®(x) in the domain of its definition:

3. x®(x)>0 near x = 0. (4.18b)

An example of a nonlinear ansatz, the function (D(x):yx+ocx2+/3x3, satisfies the
conditions of (4.18) if y > 0, « = 0, and § > 0. Thus, the linear-ansatz equation
(4.3) is a valid, but not the only, choice of the OP evolution equation. The nonlinear
ansatz may be thought of as a system with the relaxation coefficient that depends on
the OP itself—y(n). Then the conditions of (4.18) limit the allowed functional
dependencies of y(n).

4.4 Relaxation with Memory

The linear and nonlinear ansatz provide instantaneous connections between the
driving force and the reaction of the system. Some systems, so to speak, may have
memory, that is, current reaction of the system is affected by the values of the
driving force from the past. This property may be expressed by the “memory
integral” over the driving force

d777 ! / oG / /
af—J_ocM(t—t)%(n(z))dt, (4.19)
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where the integral kernel M(t—¢') is called the memory function. The memory
integral summarizes contributions of the driving force from all the moments in
time up to the current one—. It does not spread into the future (' > ¢) in order not
to violate causality.

Different functional forms of the memory function determine different evolu-
tionary paths of the system.

1. If the system has “no memory:
M(t—1)=795(t—1) (4.20)

then (4.19) reduces to the linear-ansatz (4.3).
2. If the system has “full memory”:

1
M(t—1{)=—=const(t, ') (4.21)
m

then (4.19) can be differentiated with respect to ¢ once to yield:

d*n oG
mog = o (n). (4.22)
This equation is analogous to the Newton’s equation of motion of a particle of
mass m in the force field G(n), where 7n(¢) is the position coordinate of the
particle. Solutions of this equation are known to have completely different
dynamics than those of the linear-ansatz (4.3). For instance, the small deviations
from a stable equilibrium A7, instead of relaxation as in (4.11), represent motion
of a frictionless harmonic oscillator

An(t) = Acos(wt + ¢y); o = . (4.23)

3. If the memory function is
M(t — 1) = Re =)/ (4.24)
then differentiating (4.19) with respect to ¢t we obtain (Verify!)

&y 1 dp oG
— T _RI=(n). 4.2
a2 +Tm ” an (n) (4.25)

This equation has features of both equations—no memory and full memory;
hence, the integral kernel, (4.24) can be called the partial-memory function. Equa-
tion (4.25) describes motion of a damped oscillator. Properties of its solutions are
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well known [2]. Compare (4.3, 4.22, 4.25) and notice that for the full-memory and
no-memory functions to be the limiting cases of the partial-memory function it
must be

R=1/m, 1, =my. (4.26)

4.5 Other Forces

A closer inspection of Fig. 4.2 shows that starting with any initial condition 7(0) the
system stays in the same basin and never crosses the divider. This means that (4.3)
does not actually describe a phase transition in its entirety, only the relaxation-
to-equilibrium part of the process. Neither memory nor nonlinearity can fix this
problem. What changes do we need to make in (4.3) in order for it to be able to
describe the phase transition?

In Chap. 2, we reached the conclusion that a phase transition implies overcoming
the potential barrier, that is, moving “uphill” in the representative space of the
system. This cannot be accommodated by the driving force (0G/0n) alone because
this force drives the system “downhill.” We must include into the dynamic equation
“other forces” that can push the system uphill:

dn <8G>
- (=2} +F 4.27)
&=\ )y

One way to overcome the barrier is to include the spatial diffusive force, szn,
which, as we discussed in Chap. 3, appears as a result of the gradient energy
contribution. According to (3.29), the diffusive force can balance the driving
force, hence push the system uphill. This will be discussed in Chap. 5.

Another possibility is to take into account thermal fluctuations, which arise due
to the atomic/molecular nature of the physical systems, that is, microscopic degrees
of freedom. In the framework of the dynamic equation, the effect of the fluctuations
can be expressed by adding the so-called “Langevin force.” This will be discussed
in Chap. 7.
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Chapter 5
Evolution of Heterogeneous Systems

In this chapter, we apply the ideas of the previous chapters to the dynamics of
heterogeneous systems and obtain the celebrated time-dependent Ginzburg-Landau
equation (TDGLE) of the order parameter evolution. This equation was applied to
various heterogeneous states of the system. Application of TDGLE to an equilib-
rium state shows that the criteria of the dynamic and local thermodynamic stability
coincide. In case of a plane interface, TDGLE yields a traveling wave solution with
a finite thickness and specific speed proportional to the deviation of the system from
equilibrium. The drumhead approximation of this equation reveals different driving
forces exerted on a moving interface and allows us to study evolution of droplets of
a new phase. We extend the definition of the interfacial energy into the nonequilib-
rium domain of the thermodynamic parameters (phase diagram). We analyze
growth dynamics of the anti-phase domains using results of FTM and the Allen-
Cahn self-similarity hypothesis. The analysis reveals the coarsening regime of
evolution, which was observed experimentally.

5.1 Time-Dependent Ginzburg-Landau Evolution Equation

Let us now look at the evolution of a spatially nonuniform system. In the spirit of
discussion of the nonequilibrium systems in Chap. 4, we assert that the evolution
equation should guide the system toward one of the equilibrium states, and the rate
of change of OP should be proportional to the driving force. The only difference
between the homogeneous and heterogeneous systems is that in the latter the
driving force includes spatially diffuse forces. On the basis of this argument and
comparing the equilibrium (2.12) with (3.29) a following evolution equation has
been proposed instead of (4.3):

dn <6g> 2
— == —kV
dr y[ M) pr !
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In the literature, this equation is known as the time-dependent Ginzburg-Landau
equation (TDGLE). Using the expression of the variational derivative of the total
free energy functional G{n}, with respect to the OP (see Appendix B), (5.1) can be
written as follows

dn oG
dr y(én)P,T' G-

Comparing TDGLE in this form with the linear-ansatz (4.3), we see that the
variational derivative in the former replaces the partial functional derivative in
the latter. This is important for our understanding of the general properties of the
evolution according to TDGLE. For instance, again it can be recognized as a gradient
flow. The difference, of course, is that now the Lyapunov function(al) is the total free
energy functional, (3.27), not the function G(7). Indeed, using (5.2), we find that if
(4.8) is valid then the total free energy of the system decreases (dissipates)

dG  [0Gdn 5 3G\ 5
E_Jén dtdx_ VJ(57I> d’x<O0. (5.3)

That is why the systems described by TDGLE are called dissipative. Notice,
however, that evolution of the total ordering in the system is not determined

d d oG
ajnd‘%x:Jd—?d‘%x:—yJ%d%zO. (5.4)

Also, our conclusions regarding the nonlinear rate/driving force relation (Sect.
4.3) and memory function (Sect. 4.4) are valid here, if the variational derivative
8G/3n replaces partial functional derivative 0G/0.

Notwithstanding, even evolution of small disturbances in a heterogeneous
system may be very different from that in a homogeneous one due to two major
aspects. Firstly, in a heterogeneous system, there are small perturbations of
the homogeneous equilibrium state which are spatially nonuniform; this changes
the rate of their evolution. Secondly, and more significantly, in a heterogeneous
system there are essentially heterogeneous equilibrium states, near which the
evolution of small perturbations is significantly different from that near the homo-
geneous ones.

5.2 Motion of Plane Interfaces

In addition to the small perturbations of the equilibrium states, there exists another
important group of solutions of the dynamic equation (5.1)—group-invariant
(similarity) solutions. The idea behind these solutions is to reduce a partial
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differential equation (5.1) to an ordinary differential equation by using a particular
symmetry of the system. Important examples of such solutions are called traveling
waves, which use the translation invariance, expressed in the existence of the
Goldstone modes (Sect. 3.7). That is, we seek a solution in the form

n(x, t) =n(u), u=nx—vt (5.5)

Here n = (jy, j», j3) is a unit vector and v is a constant, the wave speed, which needs
to be determined. A traveling wave solution of (5.5) may be visualized as a plane
structure with profile given by 7(x) moving through the 3d space with speed v in the
direction n. This wave has the Goldstone mode in the direction n and translational
symmetry in any direction perpendicular to n. Using the chain rule of differentia-
tion you can see that

d d
% - —d—;’v; Vi = d—Zn, (5.6)
Vz _d_’f] @4’@4‘@ +@ % 2_|_ @ 2+ @ ’
T \ox? oy? 022 du? | \Ox dy 0z
d2
:d_uz' (5.7

In (5.7), the parenthesis with the second derivatives vanishes due to (5.5) and the
bracket is equal to one because Inl = 1. Using (5.6) and (5.7) for (5.1), we arrive at
the ordinary differential equation

d*n vdp O0g
i a (o), =" oy

This is an autonomous equation, that is, an ordinary differential equation in which
the independent variable does not appear explicitly. An autonomous equation is
invariant under the Euclidean transformation # — u + a. Since we know that the
solution must be translation invariant we can reduce the order of the differential
equation. First, we change the dependent variable from 7(u) to

dn
=—. 5.9
a(n) =4 (5.92)
Second, by chain differentiation of (5.9a) we find that
dg d
“_°o1 (5.9b)

qdniw'
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Third, we substitute (5.9) into (5.8) and obtain the first-order Abel-type ODE

dg v) dg
g k—=+~-| =—. (5.10)
( )( dp 7/ dn

In Chap. 3, we analyzed the equilibrium properties of (5.10), that is with v = 0,
and obtained an exact solution for a general function g(P, T, 1) in the form
q(n) = £4/2(g(n) — 1)/« [see (3.43)]. In the infinite domain, the solution takes
the form of (3.66) or (3.67). Unfortunately, for a moving interface (v#0) such a
general, exact solution does not exist.

However, in the case of a polynomial function g(7) one may try to guess a
solution. For instance, when g(n) = P4(n) one may try to find the solution in the
form g(n) = P»(n). Indeed, let us try to solve (5.10) for the Landau free-energy
potential (2.11). Using the expression, (2.13), for the stationary points (the equilib-
rium set) we can write

(Zi)P’T=n(n—n)(n—m)~ 5.11)

Then the dynamic equation (5.8) takes the form
dq v) _ _
g\ k—+- ) =nn—n_)"n—"n). (5.12a)
(52 +2) =atw=n )= n.)

Physically, if we intend to analyze a first-order transition, we are looking for a
solution of (5.12a), which approaches the equilibrium states 7 = 0 and n = 7, far
away from the wave. This motivates the following BC: (Why?)

q(0) =q(n,) =0. (5.12b)
The problem (5.12) has a solution of the form
q=0n(n—n,). (5.13)

Substituting (5.13) into (5.12a) and balancing the terms of the same power in 7,
we find that indeed this is the case if

+1 K
=——; v==%9/=(n,—27n_). 5.14
ST 30 -20) 1D
Now 7(u) can be found by integrating (5.9a). It has the form
M s s o4
77»'(”) - 1 + e(;(,hLa) ) 5 - 7’+Q - :l: \/ﬂ’ (515)

where the constant of integration « is specified by the boundary or initial conditions.
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Fig. 5.1 Waves traveling in 1 —
different directions
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Equation (5.14) identifies the quantity (7, —27_) as a “driving force” for
the interface and establishes the relationship between the speed v and parameters
of the system. It shows that in a system with B # 0 at equilibrium (T = Tg)
the interface is not moving [see (2.19d)] and that for T > Tg and T < Tg the
interface is moving in opposite directions because the quantity (77 L — 27’7,) has
opposite signs (Verify!). However, the sign of v can be reversed not only by
changing the thermodynamic conditions but also by the reflection (Q — —0).
Two possible signs of Q manifest mirror symmetry of the system: for Q > 0 the
wave is traveling in the direction of increasing u, for O < 0 the opposite is true
(see Fig. 5.1).

Comparison of (5.13) with (3.66) and Eq. (5.15) with (3.64) shows that the
moving interface has pretty much the same structure as the stationary one. The
following questions are in order here: What structural changes do occur when
the interface solution “starts moving”? Does its thickness change? The thickness
of the moving wave can be estimated by using the definition (3.32f). For the wave
(5.15) we have

dn. on ou
Th_ _ e (5.162)
du (1 + o)
This is a bell-like function with max, |dn,/du| = |67, |/4. Hence,
4 42
L, =— =2V (5.16b)

|9] gn
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As you can see the thickness of the traveling wave changes if x or 7, (or both)
change, that is, if (P, T) change. On the other hand, for the tangential potential
7, = const(P, T);hence,if x = const(P,T)thenL, = const(P,T),thusL, = const(v).

Equation (5.14) is very important for understanding mathematical features of our
system. First, it shows that a nonlinear parabolic differential equation can support
traveling wave solutions. However, unlike the linear wave equation, which is
hyperbolic and propagates any wave form with the same speed, the nonlinear
parabolic equation allows only certain wave profiles to propagate, each one with
its own velocity. In other words, our system is not Galilean invariant (Why?).
Second, (5.14) shows that the velocity is proportional to the deviation from
equilibrium, for which (7, —27_) is a measure. Third, together with (5.15),
it helps find the characteristic scales of the system: length 1/5 and time 1/(y72),
and a useful expression for the velocity v = (y/28)7, (7, — 27_). Fourth, the
function dn/du from (5.16a) is a solution of the equation

2
{ @ vd Bg(m)}%o. (5.17)

a2y de oy [ du

Fifth, it is possible to resolve (5.8) or (5.10) for a more complicated potential that
g = Ps(n).

Example 5.1 Find the traveling wave solution for the anti-phase domains.

The anti-phase domain boundaries appear in the system that underwent the
second-order transition (see Sects. 2.6.2, 5.5 and Example 3.2). Hence, we are
looking for the solution of (5.12a) for the potential (2.11) with B = 0, A < 0 and
with the BC

q(n-) =q(m,) =0. (5E.1)
This is
g=01n—n_)n—-"n;). (5E.2)

Substituting (5E.2) into (5.12a) and balancing the terms of the same power in
1 we find that

+1
0 = E% vi = ykQ1 (1, +7_). (5E.3)

However, after the second-order transition, see (2.44a)
n, +n_=0. (5E.4)

Hence, a plane interface separating two variants of the same phase cannot move at all.



5.3 Dynamic Stability of Equilibrium States 107
Example 5.2 Show that qg=0mn—7.) (5E.5)

is another solutions of (5.12a) and try to find an application for it.

Example 5.3 Find the relation between the velocity v and temperature of a system
described by the tangential potential.
Similar to Example 3.1, first, we find the rescaled value of the rate constant
~ 7
= (5E.6)
Then, substituting 7, =C, 7_=C%q, #,=1/24+3D/W from (2.34a),
(2.35b), (5.37) and (3E.3), (SE.6) into (5.14) and (5.16b) we obtain

v=uTg—-T), p= o m = Kk, (5E.7)
K

L, =44/—. SE.8

W (5E.8)

Here p is called the kinetic coefficient (do not confuse with the chemical potential
of Sect. 3.4); it is a measurable quantity in the experiments on the kinetics of phase
transformations, e.g., crystallization. Notice that the mobility m and kinetic coeffi-
cient x4 in (5E.7) are OP-scale invariant. Because for the tangential potential the
thickness (5E.S8) is velocity-independent, (5.13), (5.14), (S5E.7) is also a 1d solution
of (5.1) for the uniform but time-dependent temperature field 7(¢). (Verify!)

5.3 Dynamic Stability of Equilibrium States

Dynamic stability of equilibrium states can be studied in a systematic way by
analyzing evolution of small perturbations near these states. The perturbations
are expressed as a superposition of some suitable set of normal modes, which
must be complete for such a superposition to be possible, and examine equations
of motion of each mode. In obtaining these equations from the relevant equations of
motion of the whole system, we retain only terms which are linear in the
perturbations and neglect all terms of higher order. Then, inserting

n(x, 1) = ne(x) + An(x, 1) (5.18)

into TDGLE (5.1) and presenting 0g/0n by its Taylor series near the equilibrium
state ng we obtain:

1 0An ) o*g
~ T VP A — S (A
S o kV=An anZ(nE) n

1 &g

~3gp E)AD)—(519)
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(Why is 0g(ng)/Onmissing in (5.19)?) Neglecting all terms beyond the first
order in A7, we get the linearized problem

1 0An - D*g

—-— = —H(ny)An, H(ng) = a2 % () — KV, (5.20)

Not surprisingly the problem of dynamic stability came down to the problem
of the eigenvalues of the Hamilton’s operator of the equilibrium state in question.
We can benefit greatly from the analysis of the properties of this operator that was
done in Chap. 3. Here we will repeat briefly some of the critical steps of that
analysis.

5.3.1 Homogeneous Equilibrium States

Let us first consider evolution of the small perturbations Az near the homogeneous
equilibrium states 1 = 7. In this case, (5.20) turns into a linear PDE with constant
coefficients. Again, as done in Sect. 3.6.3, we use the method of Fourier trans-
form (see Appendix F). The only difference is that now we use the integral
transform instead of the discrete one. Replacing An(x, ) in (5.18) with its Fourier
transform

An(x, t) = JAﬁ(k, 1) e™ dk

. ‘ (F.13)
Ak, t) = —= JAn(x7 1) e ™ dx
(2m)’
we obtain the ODE for the Fourier transforms A7(k, ¢)
dA7
= = pk)Ad, (5.21a)
dt
B(k) = {Klkl +—= o7 & )} (5.21b)
This equation can be solved as an initial value problem
A (K, 1) = Afjy(k) e,
(5.22)

Afyy(K) = ﬁ JAn(x, 0) e '* dx,

where the coefficients A7, (k) are the Fourier transforms of the initial condition.
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Fig. 5.2 Amplification B
factors for the homogeneous £
equilibrium states 7 in a 8
system described by TDGLE _5
(5.1). The state is (1) stable, §
(2) neutral, and (3) unstable % 3
§
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Same way as for the homogeneous perturbations, (4.11), the amplification factor
of the small heterogeneous perturbations f§ determines the direction and rate of the
evolution—recall that the time scale of evolution is 7 = Iﬁlfl, (4.12). Similar to
the homogeneous case f is a real number for all parameters of the system and
perturbations, but differs from that of the homogeneous case is that now f§ depends
on the wave number k = Ikl of the wavevector k = (k,, k,, k.) of the Fourier
transform A7 (k, t). If 9*g(7) /On* > O (the state 7) is stable—a phase) then 8 < 0 for
all wavevectors; if 3°g(7)/0n* < 0 (the state 7} is unstable) then § < 0 for the wa-
vevectors with the wave numbers k > k,, f > O for 0 < k < k,, and f = O for the
wavevectors with the neutral wavenumber k = &,

2 _ _l P g()
k= < OP (5.23)

These cases are depicted in Fig. 5.2. For instance, for the transition state 7), of the
tangential potential (2.33)

W2 — (6D)?

5.24
W (5.24)

t
kn*

which shows that the transition state is dynamically unstable if IDI < W/6, that is,
between the spinodal lines of the phase diagram.

It is convenient to think about individual harmonic wavemodes defined by the
components of the wavevector k = (k,, k,, k). For instance, the “most dangerous”
wavemode is the one with the greatest value of the amplification factor f.
For TDGLE (5.1), it is the one with k,, = O (see Fig. 5.2). Then you can see that
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for TDGLE there is only one most dangerous mode k,, = (0, 0, 0)—uniform
disturbance, but there are many neutral modes k,, = (k,_., k,,.,, k,,.) defined by the
equation

nys

ko + ko ko =k (5.25)

As you can see from this equation, the neutral modes belong to the sphere of
radius k, centered at the origin of the Fourier space k.

Comparing the dynamical stability analysis of this section and Sect. 4.2.1 to the
thermodynamic stability analysis of Sect. 2.3, we can see that they lead to the same
conclusion that the stability of the state 7 is determined by the sign of 9*g(7)/0n>.
The advantage of the dynamical analysis is that we can learn more about the rate of
attainment of the state in the system.

It is prudent here to make another comment regarding the normal modes; they
must be not only small in amplitude, but also they cannot have very high
wavenumbers, so that |kl < (interatomic distance)fl, see (7.27) and Sect. 10.2.

5.3.2 Heterogeneous Equilibrium States

In Sect. 3.7.1, we found the plane, stationary interface ng = 7.4(x), which separates
two phases at equilibrium, to be thermodynamically stable. Let us analyze now the
dynamical stability of this state. Taking into account our success with the analysis
of the thermodynamic stability of this state, we shall represent the small
perturbations An(x, y, z, ¢) in the form of the capillary waves, i.e., normal modes
on the interface

An oc exp Bt + i(kz + kyy) | ¥, (x), (5.26a)

where /,,(x) are the eigenfunctions of the Hamilton’s operator I:I(ne4(x)) with the
eigenvalues 4,. Substituting this expression into (5.20) we obtain the following
dispersion relation

B= vt r(k+2))]. (5.26b)

The solution (5.26a) represents motion of transverse (y, z)-plane waves
superimposed on the normal x-deformations of the interfacial structure ng = 7e4(x).
Their evolution depends on f8. As f§ in (5.26b) is a real number (why?), the separated
solutions will diminish if § < 0, grow if f > 0, and remain stationary if § = 0.
Notice from the dispersion relation (5.26b) and condition (3.26) that the second
term is always negative due to the stabilizing influence of the gradient energy. This
effect may be compared to the effect of the surface tension on the capillary waves
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on the water surface. The first term in (5.26b) is almost always negative (review
Appendix E). The only other option for this term is to be equal to zero for the bound
state with n- = 0. Hence, our dynamic stability analysis of the domain wall (interface)
shows that it is neutrally stable with the Goldstone mode (7« = 0, k, = 0, k. = 0)
being the “most unstable.” This mode represents a parallel shift of the interface, which
does not change the thermodynamic balance in the system because the phases on both
sides of it are at equilibrium. Notice that the conclusion from the dynamic stability
analysis is equivalent to that of the thermodynamic one. The significant advantage
of the former is that it can reveal the rate of growth or decay of different modes.

5.3.3 Morphological Stability of Moving Plane Interface

At this juncture, it is natural to ask the following question: “Is the moving plane
interface solution 7,(#) stable with respect to the “capillary waves:” on it?
To answer this question, we perturb the solution (5.15) with the capillary wave of
small amplitude N(u)

n(x,1) = n, (1) + N(u)ePH%x), (5.27a)
where (nk;) = 0 and x, = (0,, z), and substitute (5.27a) into (5.1). After lineariza-

tion, application of (5.8), and factorization of the exponential, it reduces to the
following equation

+ K|k |* + g}N =0. (5.27b)

&N  vdN {azg(m)

a2 Ty A\ op

Compare (5.27b) with (5.17) and notice that it has a solution

dn,
N=b (5.27¢)
du
with the solvability condition
B = —y|ka|*. (5.27d)

The latter tells us that the moving plane interface (5.14), (5.15) is neutrally stable
(see Fig. 5.2). Notice that the dispersion relation is independent of the barrier-height
parameter. We may interpret this result as following: for the fixed kinetic coefficient
and interfacial energy the stability criterion is independent of the interfacial
thickness.
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5.4 Motion of Curved Interfaces: Drumhead
(Sharp Interface) Approximation

As we have seen in the previous section a plane interface moving with a constant
speed may have practically the same structure as that at equilibrium. This is a result
of a delicate misbalance of the “thermodynamic,” (Jg/0n), and “gradient,”
(1 d*n/du?), forces, which drives the interface with speed v leaving its structure
practically unchanged. We may ask a question: Is it possible that a moving curved
interface also preserves its structure? The problem is that in addition to the forces
affecting the plane interface the curved interface will experience one more force,
“geometric,” which can be identified through a transformation to a curvilinear
coordinate system. Capitalizing on our success in Sect. 3.6.1 with the application
of the curvilinear coordinates to the study of equilibrium interfaces, we introduce
curvilinear time-dependent coordinates {u = U(X, 1), v = V(Xx, 1), w = W(X, 1)}
such that during the entire process OP is a function of one coordinate only: n = n(u)
(see Fig. 3.6). Velocity of motion v,(v, w, f) of the surface U = const is determined
by the relation

ou
S, TV =0, 5.28
o + v |VU| (5.28)

where v, defines the normal component of the velocity, that is, the component
perpendicular to the level surfaces U = const. The tangential component of
the velocity is not specified by this method. The latter may be defined separately
if there is a need. In the curvilinear system of coordinates, TDGLE (5.1) takes
the form

&> n (v dn  0g(T,n)
S0 (I g | S _EELT 52
Kdu2+(y+ K)du o (5.29)

To solve (5.29), a number of different techniques may be used. We will
demonstrate here how the method of averaging can be used to derive the evolution
equation for a piece of an interface. First, we introduce the averaging operator

Uy,

A f= J F(n(u), u)du, (5.30)

u, B

where the integration is over the thickness of the interface, that is, the interval
(up, u,) end points of which are located outside the interface zone in the regions
occupied by the respective phases: n(ug)=ns and n(u,)=n, (see Fig. 3.6). However,
straight averaging of (5.29) will eliminate the driving force term because
ff;? 0g(TE,Mes)/Ondu = 0, see (3.35). Hence, proper averaging of the TDGLE
should include a weight factor. As the weight factor for the averaging of (5.29) we
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use dn/du (for the choice of the weight factor, see Appendix D). Then, taking into
account that dn/du vanishes at u, and ug we obtain

< (d*ndny
A [—) =o. 31
(du2 du) 0 31
Using the relation
dg
dg =—=dn (5.31b)
on
we obtain
. (O0gd
A- <%g d_Z> = g(uy) — g(up) = [gly, (5.31¢)

where [g};is the jump of the free energy density from one phase to another.
The difference between this quantity and the one defined in Sect. 2.1 is that now
we are dealing with the phases which are not at equilibrium with each other and,
hence, [g]; # 0. Furthermore, using (3.70a), the condition of the small geometrical
number, (3.85), and the fact that (dn/du)2 is a bell-like, even function of u
(see Sect. 3.4), we find

. Vn % . a dn\’ 3,3
A. {(7+2KK> <£) } — kA - {K(a> +0(LK) ~ ko, (5314)

that, in the curvilinear system, the coordinates in TDGLE (5.1) separate (cf. (3.86)).
In (5.31d) k,, may be called the dynamic wave number of a curved interface
v

ky = — + 2Ko. (5.31e)
m

The mobility m = yx is defined in (SE.7), and L, is the thickness of the interface.
Finally, applying the averaging operator (5.30) to the properly weighted (5.29) we
obtain the equation of motion of a phase separating interface, which relates
different local characteristics of the interface

Vo = m (ﬁ - 21(0) . (5.32)

[

The free energy density jump in this equation depends on the temperature
and/or pressure on the level surface U = 0 that represents the interface. Thus, all
variables in this equation depend only on the local coordinates (v, w) and time f.
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Equation (5.32) is an important result. First, it shows that introduction of the
time-dependent curvilinear coordinates has an advantage in that the evolution of
the OP field may be described by the motion of the surface U = 0 in space and time.
Second, and most importantly, it reveals the “driving forces” for the interfacial
motion: its curvature (—2K) and the free energy density difference on both sides of
the interface, [g]; Compare (5.32) to Example 5.1, where we found that a plane
APB cannot move, and notice that a curved APB should move toward the center of
its curvature. Compare (5.32) with (5E.7) and notice that m/c may be considered the
kinetic coefficient for the driving force [g].

5.4.1 Nonequilibrium Interface Energy

The integral in (5.31d), although having the form of the interface energy, actually is
a more complicated quantity because it relates to a moving interface and the
interface energy of the moving interface needs to be defined. The main difficulty
here comes from the fact that, contrary to equilibrium, the free energy densities of
phases on opposite sides of the interface are not equal. For a first-order transition,
the difference between these densities constitutes the bulk driving force for the
interface motion. Even if the densities of the free energy are equal, (e.g., for an
APB), the interface is not flat and is moving under influence of its own curvature
and surface energy.

To define the nonequilibrium surface energy, we suggest the following proce-
dure. Let us allow the interface to move during dt and calculate the change of the
Gibbs free energy in the system as a result of such motion. Using (3.27), (3.29), we

obtain
oG og
dG = J—a d3x = dtJ <> — kV?
on " [ ) s K

)

dn 4
—d’x. 5.33
P (5.33a)

Noticing from (5.29) that in the curvilinear time-dependent system (u, v, w, t) the
coordinates separate, we transform the coordinates and use (5.28), (C.16), (C.23).
Then we find that this change is divided into two contributions

. dn\ 2
dG = —[gl2dt | vedvdw—A-{x(SL) Sdr|  2Kgvedvdw.  (5.33b)
B U=0 du U=0

The first term is proportional to the volume of the system swept over by
the interface; the coefficient of proportionality in front of this term is the bulk free-
energy jump that represents the driving force for the interface motion. The second
term is proportional to the change of the area of the interface, which came about as a
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result of the motion. Hence, the coefficient of proportionality of this term may be
defined as the nonequilibrium interface energy o:

+oo 2
o= J K (%> du. (5.34)

e du

Thus, the equilibrium definition of the interfacial energy, (3.70a), is extended into a
nonequilibrium situation of a moving boundary. The equilibrium definition of the
length scale of the interface, (3.32f), may also be extended into a nonequilibrium
region.

5.4.2 Evolution of a Spherical Droplet

Equation (5.32) may help us understand the evolution of the droplets, which we
considered in Sect. 3.1 in connection to the classical nucleation problem. Indeed,
according to the definition of Sect. 3.1, the critical nucleus is the sphere of a new
phase which does not grow larger or becomes smaller. Hence, its interfacial
velocity is zero. Then, (5.32) yields the formula

L_r -2 (5.35)

This expression coincides with (3.14). However, with (5.32), we can go one step
further and determine the rate of evolution of the spherical droplets. Indeed,
recalling that for a spherical droplet

1 dR
R=—, vp=— 5.36
AT (5.362)
or
dK,
T K3 (5.36b)

(for simplicity we drop the subscript “0” in the radius R) we can solve the first-
order ODE (5.32) and obtain the solution in the following form

R, R—R,
—ti=-"(R—R +R,1 , .
t—t 2( n|—- ) (5.37)

1 *

where R; is the initial radius of the droplet at # = ¢;. This solution shows that the
droplets are dynamical unstable: they grow without a limit if R; > R or shrink to
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zero if R; < R« More specifically, if the initial radius of the droplet is greater than
the critical, it will be growing with a speed approaching m[g]/o. On the other hand,
if the initial radius of the droplet is smaller than the critical, it will disappear after a
finite amount time, which depends on the initial radius R;. These cases of evolution
are depicted in Fig. 5.3.

5.5 Domain Growth Dynamics

Another interesting application of (5.32) comes about in systems that have
undergone a second-order transition. As we discussed in Example 3.2, the interface
in this case is called anti-phase domain boundary (APB) because phases that appear
on both sides of the interface are not different phases; they are just different variants
of the same phase. That is why in APB motion [g] = 0. Then, applying (5.32) to the
APB motion we obtain

vh = —2mKj. (5.38a)

Hence, in APB motion, all spherical domains shrink starting with the initial size
of R i

R* = R? — 4mt. (5.38b)

However, due to possible interconnectedness of the domains of the same variant,
the problem of APB evolution is more complicated than just the rate equation (5.38a).
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A full (so to speak “honest”) resolution of the problem of APB motion starting with
the initial configuration of the interconnected domains is very complicated (although
not entirely impossible). That is why we will be concerned here only with the
evolution of the average size of the domains. Quite naturally, this size is related to
the size of the separating surface, which is measured by its area. Thus, at first we
have to review some of the general properties of the evolving surfaces.

Let us consider a small piece of smooth surface [without sharp corners, see
condition (3.85)]. It may be represented by a tangent plane and characterized by its
orientation in space. Any larger (but still small) piece of the surface is represented
by a tangent sphere and characterized by its radius R and solid angle dQ2. Then for
the area of this piece we obtain

dS=R*d Q. (5.39a)

Locally, evolution of this piece of surface can be described as the change of the
radius AR. Then for the change of the area within the same solid angle dQ2 we obtain

2
AdS) = 2R ARA Q = = AR S, (5.39b)

If the entire surface S is smooth then (5.39a), (5.39b) apply to every part of it and
we obtain an expression for the area change

2
S= J ds;  AS = J = ARds. (5.39¢)
S SR

As we discussed in Sect. 5.4, the temporal changes of the radius of curvature can
be related to the normal velocity of the interface

AR = v, dt. (5.39d)

Substituting (5.39d) into (5.39¢) and replacing (1/R) with the mean curvature Ky
of the surface, we arrive at the equation for the total surface area change

ds
e 2J 1Ko ds. (5.40)
a7

To complete the system of equations for the surface evolution, (5.32) should be
used for v, in (5.40). In the case of APB motion, substituting (5.38a) into (5.40) we
obtain

ds
—= —4mJ K} ds. (5.41)
dt s

The integro-differential equation (5.41) shows that the total surface area of the
domain boundaries monotonically decreases in time, which implies that the average
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domain size increases. This regime may be called “coarsening”. Equation (5.41)
does not allow us to make more detailed predictions regarding the behavior of the
system.

The breakthrough may be achieved with the help of the self-similarity hypothesis [2].
To understand the hypothesis, let us review the length scales that characterize our
system. Vanishing of the free-energy jump for APB eliminates only the time-indepen-
dent length scale of the system, R« = 2g/[g] — oo, see (5.35). The system of
interconnected domains has two time-dependent length scales. The product of the
mobility 7 and time has the units of [length®], hence, the first relevant length scale is

d(t) = Vmt. (5.42)

The radius of curvature of the surface, R = 1/Kj, is the second relevant length
scale; it characterizes locally the size of a domain occupied by one variant, e.g., o.
This opens up a possibility for a self-similar regime of evolution. However, K
changes from place to place and to characterize the entire system we need to
introduce an average quantity. Taking into account that the average curvature
vanishes, fs Ko ds = 0, we introduce the average square mean curvature of the
surface

o _ 1 2
K== | K}ds. (5.43)
S s

Then R = 1/K characterizes the average domain size in the system.

Now let us see how these domains fill up the space. Imagine that entire volume
of the system V is densely filled by the spheres of radius r of the variant « with the
variant f5 filling the rest of the volume. Then we can write that

1
V=c ger, (5.44a)

where s = 4n7? is the surface of a sphere, N is the number of them, and c is the
packing coefficient which depends on the arrangement of the spheres. For instance,
¢ = 6/n if the spheres are arranged in a simple cubic lattice. The product sN equals
the total surface area in the system S. Then

3
S = VIKo|. (5.44b)

As time passes, the total area S and domain curvature K change while the total
volume V stays constant. If we assume that the growing or decreasing spheres
always form the same type of lattice—self-similarity regime—then the packing
coefficient ¢ = const and

K(t) = S(1), (5.45)
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where @=c/(3V) in our example. Substituting (5.43), (5.45) into (5.41), we obtain
an ODE for the average square mean curvature only

= —4mK>. (5.46)

K2(t) = K %(to) + 4m(t — to), (5.47)

where K (to) is the average square mean curvature at the moment in time #, when the
self-similar regime started. Equation (5.47) shows that in the self-similarity regime
the average domain size, 1/K(t), monotonically increases, which justifies the term
“coarsening.”

For the total surface area (5.45), (5.47) yields

S72(t) = S2(to) + 4’ m(t — to). (5.48)

Initial decrease of the curvature and surface area is linear in time with the rate
dependent on the initial condition

K(1) ~ K(to) [1 — 2mK” (10) (1 = t")}’ (5.492)
(

S(t) = S(to) [1 — 2mp?S* (o) (1 — 10)].

Asymptotically the system approaches the regime when all three length scales
are proportional

VK0~ - (5.49b)
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Chapter 6
Thermomechanical Analogy

A profound physical analogy can be established between the thermodynamic
system undergoing a phase transition and a classical-mechanical point mass moving
in a potential field. According to this analogy, the spatial coordinate, x, of a 1d
thermodynamic system is analogous (=) to the time, 7, of the mechanical system;
OP n is analogous to the generalized coordinate of the particle; gradient free energy
coefficient is analogous to the generalized mass of the particle. In the framework
of this analogy, the negative of the homogeneous density of the Gibbs—Landau free
energy (—g) is analogous to the mechanical potential function U

U=—g(n), (6.1)

while the gradient free-energy contribution is analogous to the kinetic energy of the
particle, K

L1 (dn\?
K_§K<a> . 62)

The density of the Gibbs—Landau free energy, g, (3.27), is analogous to the
Lagrangian of the mechanical system and the quantity g, (3.28), to the negative of
the Hamiltonian. The quantity g can be obtained from the density ¢ with the help of
the Legendre transform (LT) using the OP gradient (dn/dx) as the variable. The OP
itself (1) is not involved into the LT; that is why the homogeneous density g(n) flips
its sign when it is put into the LT (see Appendix F and Example F.2 therein).
Then (3.29) corresponds to the Newtonian equation of motion of a particle in either
Lagrange’s or Hamilton’s formulation; the condition of thermodynamic equilib-
rium, (3.42a), corresponds to the conservation of the mechanical energy; and
negative of the chemical potential (—) corresponds to the total mechanical energy
of the system (K + U). The energy is conserved because the Hamiltonian does not
depend explicitly on time, that is g does not depend explicitly on the coordinate x.
The total Gibbs free energy of the thermodynamic system, G in (3.27), is analogous
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Table 6.1 Dictionary of the thermomechanical analogy

Continuum thermodynamics (1d systems) Classical mechanics of many particles
Equilibrium in an open system Dynamics in a conservative system
Clausius’ principle Hamilton’s principle

Spatial coordinate: x € [xy, x2] Time: t € [ty, 5]

Thermodynamic variables: {p;, 7;} Generalized coordinates

Gradient free energy coefficients #,,; Generalized masses

Negative of the homogeneous density of the free energy ¢ Potential function U

Density of the gradient energy Kinetic energy K

Density of the free energy ¢ Lagrangian

The quantity g Negative of the Hamiltonian
Equilibrium equations Lagrange equations

Negative of the chemical potential (—p) Total mechanical energy (K + U)
Total free energy G Action

The interface energy “Abbreviated action”

Relaxation dynamics Dissipative dynamics

TDGLE Lagrange equation with dissipation
Velocity over relaxation coefficient v/y; Dissipative coefficient

Dissipative function F Rayleigh’s function
Non-isothermal dynamics Dynamics in external fields
Temperature Time-dependent external field

to the action of the mechanical system and the interface energy, ¢ in (3.70a), to the
“abbreviated action” [1, 2]. Minimization of the interfacial energy is analogous to
the principle of least action for the mechanical system. Table 6.1 summarizes the
analogous terms in thermodynamics and classical mechanics and Fig. 6.1 shows
different kinds of motion of a particle in the potential field U.

The thermomechanical analogy helps us to identify and interpret different equilib-
rium states in the system: the bulk phases o and 3 correspond to unstable (saddle-type)
rest points separated by a stable (center-type) rest point y of the mechanical system
with one degree of freedom. Heterogeneous equilibrium states correspond to bound
solutions of the mechanical system, e.g., periodic thermodynamic states to periodic
mechanical solutions (Fig. 6.1a). Due to unboundness of the free energy, g, Fig. 3.2bi,
and, hence, potential, U, (6.1), only one type of periodic motion is possible, oscillation
(no rotations). The interface between the bulk phases o and B corresponds to the
heteroclinic trajectory that connects two different rest points with equal potential
energies U as shown in Fig. 6.1b (c.f. Fig. 3.2bii, iii). A critical-nucleus (instanton)
corresponds to a homoclinic orbit that connects one rest point of lower potential
energy U to itself, which is possible only for a “tipped-off” potential U (not equal
depths of the wells, shown in Fig. 6.2, c.f. Fig. 3.2ai, ii, iii). Notice that due to the
negative sign in (6.1) the equilibrium states switch their stabilities when “going” from
the thermodynamics to mechanics. For instance, mechanical periodic solutions
(Fig. 6.1a) are stable, while their thermodynamic counterparts (c.f. Fig. 3.2biii) are
not. The unstable periodic states, however, do appear in the processes of phase
transformations and the systems may spend a great deal of time in the vicinity of
these states. Another interesting analogy can be established between the instanton



6 Thermomechanical Analogy 123

U

n

Fig. 6.1 Undamped oscillator as the mechanical analog of an equilibrium heterogeneous 1d
thermodynamic system. Even potential function U= — g(n) corresponds to the thermodynamic
equilibrium between phases o and f. o, 3, and y —rest points of the point mass in the potential U.
(a) Periodic oscillator: the shaded circles indicate the turning points of the point mass.
(b) Heteroclinic orbit: the filled () and open (o) circles indicate initial and final positions of the
point mass (stable bulk phases)

described in Example 3.4 and a homoclinic orbit describing motion of a particle in one
well of a double-well even potential (Verify!).

The dynamic equation (5.8) describes translation-invariant wave of OP, n =
n(x — vt), which represents an interface between stable () and metastable (a) states
and which travels with constant speed v. The wave cannot move at a steady pace
with an arbitrary speed and have an arbitrary shape. Instead, the speed v, (5.14), and
shape n(u), (5.15), of the wave interface are selected as an eigenvalue/eigenfunction
of the boundary problem (5.12). The thermomechanical analogy will be established
if, in addition to the above described equilibrium analogy, the coefficient v/y in (5.8)
is brought into correspondence to the friction coefficient (see Table 6.1). Then the
wave is analogous to the heteroclinic trajectory between two rest points with
different potential energies U, see Fig. 6.2a. The analogy clarifies that for the
friction coefficients smaller than the critical, trajectories are unbounded while for
the coefficients that are greater—trajectories never reach the rest point (). Hence,
the selected wave-interface also possesses the “critical property,” which is best
revealed by the thermomechanical analogy. The thermomechanical analogy clearly
shows that (5.8) has many solutions, which do not satisfy the boundary conditions,
(5.12b), and only one that does.
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Fig. 6.2 Damped oscillator as the mechanical analog of a traveling wave in the thermodynamic
system. Tipped-off potential function U corresponds to thermodynamic preference of a stable
phase, B, compared to a metastable phase, o. The filled circles indicate the initial positions and
the open circles indicate the final positions of the point mass. (a) Critically damped oscillator;
(b) “marginally” damped oscillator; (¢) “marginally”” damped oscillator from the lower hump

The thermomechanical analogy helps us better understand the phase transitions
processes by developing an intuitive approach to the dynamical problems. For
instance, it clearly shows that the phase-transition dynamics destroys the equilib-
rium types of heterogeneous solutions: periodic, critical nucleus (instanton), and
stationary interface (domain-wall), because they correspond to the conservation of
the mechanical energy, and replaces them with the traveling waves with different
speeds, v (c.f. Figs. 6.1 and 6.2). The thermomechanical analogy also helps
interpret the principle of selection of such waves, that is, the answer to the question:
“How can we determine the unique velocity of a wave that will be realized in a
physical or numerical experiment with given temperature and pressure?” One
example of that principle was considered above: moving interface that replaces a
metastable phase with the stable one. Another example is decomposition of an
unstable state y [3]. According to (5.8), such wave may propagate with many
acceptable velocities, v, which correspond to the damped oscillations of a particle
about a stable rest point y with different values of the friction coefficient, see
Fig. 6.2. (Recall that the thermomechanical analogy switches stabilities between
the equilibrium states of the thermodynamic system and the mechanical rest
points.) The asymptotically stable traveling-wave solution, however, corresponds
to the case of “marginal stability” [4, 5], that is, the waves that move slower are
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unstable to perturbations while those that move faster are stable. From the
standpoint of the thermomechanical analogy, the asymptotically stable wave of
decomposition of the unstable state into the stable one (3, Fig. 6.2b) corresponds to
a particle motion with the marginal damping. The analogy also indicates that the
unstable state may be replaced by a metastable one (o, Fig. 6.2¢). The speed of the
latter process is smaller than that of the former because its mechanical analog
requires smaller coefficient of friction.

The thermomechanical analogy can be expanded beyond the boundaries consid-
ered above. For instance, several OPs will be analogous to several coupled mechan-
ical point masses; however, the system must be one-dimensional for the analogy to
work (Why?). The thermodynamic system at equilibrium will be analogous to a
conservative (Hamiltonian) mechanical system while the 1d translation-invariant
motion—to the motion of particles in a dissipative mechanical system with the
frictional forces proportional to their velocities. Two- and three-dimensional equi-
librium equations, (3.89), are analogous to the equation of motion of a mechanical
system with the time-dependent friction coefficients. The thermomechanical anal-
ogy may be generalized on the case of a system, which is not kept at constant
temperature, see Chap. 9.

The thermomechanical analogy also allows us to generalize the relaxational
dynamics, TDGLE (5.1), by including the cross terms between the thermodynamic
“driving forces” and responses. Such system is described by Rayleigh’s dissipative
function F, whose partial derivatives yield the frictional forces that should be added
to the right-hand sides of the Lagrange equations [1, 2]. Then the simultaneous
generalized TDGLEs take the form

5£+ oF
on; 8(8,77j)

=0, (6.3)
where F is a positive definite dissipative function:

1
F= 5 (Om;) T (Dmy) > 0; (6.4)

. |
Tik = Ty Tj =7, > 0.

Using (6.3) and Euler relation for homogeneous functions of the second order:

if Y(O(X17OC)C2,OCX37 N cxx,,) = OCZY(Xl,Xz,)Q, .. .Xn)

oY
then —x; =27,
ox;
it is easy to see that the rate of the free-energy change in the system is
dG J oG

— = Om, &Px = — | 2FdPx <0 6.5
dl 577] t77/ X J .X< k) ( )
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where the last inequality follows from (6.4). For a traveling wave {n; = n;(x—vt)},
(6.5) can be represented as follows

d%g(ng =2vF > 0. (6.6)

For a thermodynamic system, (6.5) and (6.6) mean that 2F is the local rate of
dissipation, which is analogous to the dissipation of the mechanical energy due to
friction in a mechanical system. Thermodynamically, (6.6) can also be interpreted
as that the wave speed v is proportional to the chemical potential gradient with
(2F)™" as the mobility.

It is important to find the root cause of the analogy that we consider in this
chapter. In other words, we ask a question: “What is the reason for the thermome-
chanical analogy to exist?” We were able to establish the analogy between the
equilibrium thermodynamics of phase transition and conservative mechanics of a
system of particles because both problems allow variational formulation. There is a
deep connection between the Clausius’ principle of thermodynamics and
Hamilton’s principle of mechanics. After that, we were able to match the nonequi-
librium extension of the phase transition problem to the dissipative dynamics of
particles because both are linear extensions of the equilibrium problems. However,
we can make one step further and pose another question “What property of a system
entails applicability of variational principles?” Answer to this question may
be found in the connection of both theories to the Lagrangian field theory
(see Appendix D). However, a more complete discussion of this problem is beyond
the scope of this book [6].
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Chapter 7
Thermodynamic Fluctuations

As we noticed in Chap. 5, TDGLE is not able to describe a phase transition itself,
only the evolution of the system after the transition. Obviously, something very
important for the complete description of the system is missing from that scheme.
What is it?

These are fluctuations of the thermodynamic parameters of the system, including
the order parameters. Fluctuations are defined as the deviation from the average
value. Several different sources of fluctuations may be pointed out; usually they are
categorized as internal or external noise. Examples of the internal noise are thermal
Sfluctuations and quantum mechanical ones. The former are due to the microscopic
structure of matter and unpredictability of atomic hits. The latter are due to the
fundamental unpredictability of Nature. Examples of the external fluctuations are
noise in the electrical circuits containing ohmic resistances or electromagnets that
create the magnetic fields. Surely, depending on its type, the internal and external
fluctuations enter differently into the theoretical description with the former usually
representing an additional “driving force” in the system, while the latter appearing
as a random parameter that is coupled to the state of the system.

In this book, we are considering only the influence of the thermal (internal)
fluctuations on the phase transformations. As we pointed out, this type of
fluctuations originates from the atomistic structure of matter and comes into the
field-theoretic description through the coarse-graining procedure (see Appendix A).
From the statistical mechanics point of view, without the account of the fluctuations
the system is confined to a set of parameters that corresponds to one phase. When
liquid is cooled down below its freezing point the conditions for the emergence of
solid phase appear but the transition may not happen. The thermodynamic
fluctuations “move” the system in the phase space from one region to another
“exploring” different options and “finding” the most favorable one for it.

Although this is the most significant role of the fluctuations for us, it does not
exhaust the relevance of fluctuations to physical systems. Firstly, the fluctuations
provide a natural framework for understanding a class of physical phenomena that
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relate the dissipative properties of a system, such as diffusion of particles in a fluid
or the electrical resistance of a conductor, with the microscopic properties of the
system in a state of equilibrium. This relationship was first discovered by Einstein
and is often formulated in the form of the so-called fluctuation-dissipation theorem.
Secondly, fluctuations can assume considerable significance in the neighborhood of
the critical points on the phase diagrams of the systems where they obtain a high
degree of spatial correlation. This gives rise to phenomena such as the critical
opalescence and unlimited increase of the specific heat (the A-point transition).
Although these phenomena fall into a general category of phase transitions, they
are not considered in this book in any significant depth because they require a
different set of methods. From the point of view of Statistical Mechanics, different
states of a system have different probabilities to be observed in the system, e.g.,
experimentally.

In this chapter, we look at the equilibrium distribution of fluctuations and their
evolution under the influence of the stochastic environment. First we calculate the
average values of the fluctuations of the OP and free energy of the system. These
calculations reveal an important characteristic length scale of the fluctuations—the
correlation radius, which defines the length scale of the two-point space correlation
function. Then we derive the Levanyuk—Ginzburg criterion, which expresses valid-
ity of FTM in a system with fluctuations, and apply this criterion to the system
undergoing the second-order transformation. To describe dynamics of fluctuating
systems, we introduce irregular Langevin force, whose correlation properties obey
the fluctuation-dissipation theorem. On average, evolution of the fluctuations can be
described by the structure factor, which asymptotically approaches the equilibrium
value. Finally, we derive the drumhead approximation of the evolution equation
and apply it to analyze dynamics of the interfacial structure factor and the nucle-
ation problem. The former reveals the length scale of the fluctuations of the
interfaces. The latter allows us to find the escape time of the system and compare
it with the nucleation rate of the classical nucleation theory (CNT).

7.1 Classical Nucleation Theory

Depending on the supercooling (supersaturation) of the system emergence of a
new phase may take different routes. Theoretical methods for the analysis of this
process may also differ depending on the magnitude of supercooling. At small
supercoolings, the new phase appears in the form of small nuclei (droplets) and is
characterized by the nucleation rate, that is, the rate of production of droplets larger
than the critical size (those that will grow instead of decaying back to the old
phase). According to the CNT, heterophase fluctuations in the initial phase are
responsible for the nucleation of the final one; they produce a rise in the free energy
excess AG, [see (3.15) and Fig. 3.1]. If the initial phase is stable (unsaturated,
Ag < 0, see Sect. 3.1) the probability of occurrence of these fluctuations is



7.1 Classical Nucleation Theory 129
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Fig. 7.1 Size distributions of embryos in the systems of different levels of saturation

proportional to exp(—AG,/kgT). The number of embryos (nuclei) of size R is thus
given by (see Fig. 7.1)

Ng = Nae 2GiR)/ksT (7.1)

where Ny, is proportional to the distribution function of the nuclei of size R and N is
a total number of atoms in the initial phase. The simplification of (7.1) is that we
assume that the number of atoms in all nuclei is much smaller than N. Applying
(7.1) to the situation when the initial phase is metastable (supersaturated, Ag > 0),
we find that large heterophase fluctuations (R > R:) are more probable than the
small ones to the extent that all atoms should belong to very large fluctuations; this
is merely the CNTs way of saying that the final phase is stable. We are interested,
however, in the transformation stage, which starts with almost all the atoms in the
initial phase. Thus the most probable nuclei must be excluded from the distribution.
To make (7.1) applicable to the metastable initial phase, we require in CNT that no
nuclei are allowed to grow beyond a limiting size Ry, which is considerably larger
than the critical size R« and the nuclei with R > R; are removed from the system.
To preserve the total number of atoms in the system, the removed nuclei may be
regarded as taken apart to individual atoms and returned into the system. Such
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distribution of nuclei is called restricted (see Fig. 7.1); it has a minimum at R+« while
the actual nuclei size distribution should decrease to zero for large sizes.

In CNT, the nuclei are allowed to grow or shrink by adding or losing one atom at
a time (impingement of nuclei is not allowed). The growth process is characterized
by the nucleation rate, that is, the number of the critical nuclei formed per unit time
in the entire volume V of the initial phase. The conditions of the restricted
distribution produce a quasi-steady state of growing nuclei with the stationary
nucleation rate of (e.g., see [1])

3qV AG., 4G,
= — g .2
4k \ 3nkpT- 72)

N

where ¢ is the rate at which single atoms from the initial phase join the nucleus or
are lost by the nucleus to the phase.

In CNT, a nucleus of a new phase is regarded as a small piece of bulk matter
surrounded by a geometrical surface with a specified surface energy o. However,
even simple estimates show that the size of the nucleus is comparable with the
thickness of its surface. The FTM allows us to avoid this problem.

7.2 Free Energy of Equilibrium System with Fluctuations

Let us calculate the free energy of a system at one of the homogeneous equilibrium
states, 7, taking the fluctuations into account. The OP fluctuations An are introduced
as follows

An(r) = n(r) —n, (7.3)

n(r) may also depend on time; we will consider this in Sect. 7.4. According to
Boltzmann’s principle, the probabilities of the nonequilibrium states are propor-
tional to the factor exp(—G/kgT), where G is the free energy of the state, T is the
temperature of the system, and kg is the Boltzmann’s constant. Different states of
our system are described by different values of the OP, 7. Thus, the distribution of
probabilities of the states is

P(n) = Ze C/kT, (7.4)
where Z is the normalization constant, called the partition function. To evaluate the

probabilities, we expand the free energy density of a fluctuating system about the
equilibrium state
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2

g(n) =g )+§W( (A’ + -, (71.5)

substitute (7.5) into (3.27) and obtain an expression

2
6~ 6+ [ [GEmC a0t +uw anp|en
G(1) = s()V.

To represent the increment Az in this expression, we will use the 3d discrete
Fourier transform (Appendix F)

r)=>" An(k)e", (7.72)
()
Any (k) = é JV An(r)e ™ dr, (7.7b)

where {k} is a discrete set of wavevectors [see (F.6)] and E]v (K) is a fluctuating
variable. Notice from (7.7b) that An,(0) is the volume average of the OP
fluctuations; it does not need to be zero. In a homogeneous equilibrium system,
however, the ensemble averages:

(An(r)) = (Any(K)) = 0. (7.8)

Here the probabilities of different configurations, (7.4), are used for the statistical
averaging.

Using Properties #3 and #5 of the 3d discrete Fourier transform (see Appendix F)
for (7.6) we obtain an expression for the free energy fluctuations in the Fourier
space

46.=6(0) -0~ 3 ZL w0l a9

Equation (7.9) shows that the “fluctuating part” of the free energy, AG, can be
diagonalized in the Fourier space that is, represented as a sum of the terms that
depend only on one wave vector k. Notice that the coefficients of the terms are
proportional to the amplification factor f(lkl), which we encountered in Sect. 5.3.1,
where we studied evolution of the small perturbations of the equilibrium states.
Applying (7.4), (7.9) to the fluctuations near the homogeneous state 7 we find that
the joint probability distribution of different fluctuations
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P(n) =Zexp

- Z[@(mwlklzhﬂw(k)\z (7.10)
2keT 4 0P

can be expressed as a product of Gaussian distributions, each of which depends on
the opposite wavevectors only. Hence, the individual Fourier modes A7y, (k) are
statistically independent

(Any()Any (K)) =0, if k+K # 0. (7.11)

Evolution of the Fourier modes with {k} and {k’#—k} may be considered
independently.

Applying (7.10), Property #2 of the Fourier transform (Appendix F), and the
mathematical formula

ZﬂJ e P dx = J e P dx
0 0

to the statistically dependent modes with k + k' = 0, we obtain an expression for
the average square of the Fourier mode

ey Ao PenalAn 9] T
()= [y PdBn,®)|  v]ore/or@m) + k]

(7.12)

Equation (7.12) can be used for the average square of the fluctuations only if

2
% (m)>0 (7.13)
because otherwise we obtain a negative expression for the mean square fluctuations
of the long-wavelength modes (Ikl — 0). This means that (7.12) is applicable at
the stable equilibrium states only. Formal application of formula (7.12) at an
unstable state yields an imaginary value, which may be interpreted as finite lifetime
of the state. This interpretation, however, will not be used in this book.

With the help of (7.12), we can calculate the average fluctuation of the free
energy (7.9)

1
AG = = kgTN 7.14
> kTN (i}, (7.14)

where Ny, is the number of the k-modes in the system. Comparison of this result
with the theorems of the Canonical Ensembles in the Statistical Mechanics allows
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us to interpret the k-modes as noninteracting independent degrees of freedom,
AG (Eyv(k)) as the effective Hamiltonian, and (7.14) as the equipartitioning of

the thermal energy among the various degrees of freedom of the system.
The statistical independence of the Fourier modes with {k’ + k#0} is a result of
the truncation of the expression (7.5) up to the second order, which eliminates the
mode interactions. Because of that, a system described by the free energy
expressions (7.6) and (7.9) is called the free field. The higher-order terms in (7.9)
can be calculated with the help of the methods of the Statistical Mechanics [2, 3].

Using that Any,(0) is the volume average of the fluctuations, we obtain from
(7.12) an expression for the mean square of the fluctuations averaged over the
volume of the system

((an}) = <\377v(0>]2> - T (7.15)

This expression shows that the intensity of OP fluctuations is inversely propor-
tional to the volume occupied by the system. The microscopic scale of the
fluctuations is expressed by the factor (kg7/Vg). Although under “usual” conditions,
the fluctuations in (7.12) are small, there exist “unusual” conditions when the
fluctuations become large. The “unusual” conditions are achieved when V' — 0 or
simultaneously

82
ﬁj (@) — 0 (7.162)
and |k| — 0. (7.16b)

Condition (7.16a), as discussed in Chap. 2, means that the system approaches the
critical point in the parameter space; condition (7.16b) means that the fluctuations
increase for the longest wavemodes. The latter justifies the introduction of the
characteristic length scale, called the correlation radius of fluctuations

re =\ gEeront 71D

which plays an important role in the analysis of the fluctuations. Compare (7.17)
with (3.53b) and notice that the correlation radius and fundamental lengths have
similar expressions. The difference is that the former is defined at the stable state,
see (7.13), while the latter at the unstable one, see (3.46¢) and the comment after the
equation.

Expressions (7.9) and (7.10) may be used to calculate the two-point space
correlation function
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K (r1.12) = (An(r)An(r2) = ((rn(r2) = (n®)?),  (7.18)

where the averaging is over the thermodynamically equilibrium state of the system
expressed by the joint probability P{An(r;), An(r,)} (see Appendix G). Some of the
properties of the correlator (7.18) may be pointed out right away.

1. For large distances (Ir;—r,| — o0), the correlator (7.18) breaks down into the
product of the averages

Kn(r17r2)|r17rz\~>oo - <A77(r1)><A77(r2)> =0. (7.19)

2. At the homogeneous equilibrium state, the correlator is a function of the distance
between the points only

K,,(rl,rz) = K,](I’), r = |l‘1 - l’2|. (720)

3. Using the Fourier representation of fluctuations, the correlator (7.18) takes the
form

Ky(r) = 3 D™ (Any (k) A () pellbrr k), (721)
{kt {k}

4. As we established earlier, the {k} and {k’'#—Kk} Fourier modes are statistically
independent. Then, using (7.11) we obtain

Ky(r)=>" <’§7v(k)’2>e“‘r. (7.22)
W

This expression shows that the mean squares of the Fourier modes of the
fluctuations (7.3) are the Fourier modes of the correlator (7.18). In the Probability
Theory, this statement is called the Weiner—Khinchin theorem.

Substituting (7.12) into (7.22) and taking (7.17) into account we obtain

k Teikr
Ky(r) =) —" ——=. (7.23)
(k) VK(rc + [K] )

Transforming summation in (7.23) into integration (>, — [, V dk/ (2n)3) we
obtain

K,(r) =

ks T ike gk
B J © (7.24)
k

(2m)* Jirg? + [k[*
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The simplest way to evaluate the integral in (7.24) is to use the Fourier transform
formula (F.14). Thus,

keT e e

Ky(r) = —— (7.25)

Several comments are in order here.

1. Expression (7.25) shows that r¢ determines the length scale of the decrease of
the fluctuations.

2. If r¢ — oo, which is the case if the critical point is approached, then K,, o< 1/r,
that is, the fluctuations in the system become correlated over very large
distances.

3. Expression (7.25) can be used to obtain expression (7.15). Indeed,

<(A77)%,> - % JJKn(rl,rz) dry dr, :% JKn(r) dr. (7.26)

4. At r — 0 we have K, — oo. This result is a consequence of the fact that
expression (7.12) is not applicable for very large values of the wavevector [k,
which correspond to very small distances. The upper-lkl limit is due to the
atomic nature of matter. Hence, expression (7.12) is applicable to the
wavevectors with absolute values

1
K| <, (7.27)
a

where a is a typical interatomic distance. Equations (7.17) and (7.27) reveal the
constraint rc » a, which presents one of the limits of applicability of the method
(see Sect. 10.2).

7.3 Levanyuk—Ginzburg Criterion

In addition to the constraint (7.27), the Filed-Theoretic Method has certain
limitations associated with the presence of fluctuations in the system. The principle
argument may be laid out as following: For the Method to be valid the scale of the
OP fluctuations must be smaller than the characteristic scale of the OP change.
The natural measure of the OP change is its jump on both sides of the transition
point: [n] = |7, — 7|; the natural measure of the level of the OP fluctuations is the
square root of its volume average in (7.15). However, such criterion has a caveat.
First, it cannot be applied to the free field because we use the OP jump as the scale.
Second, formula (7.15) shows that the scale of the OP fluctuations is inversely
proportional to the volume occupied by the system. Hence, we should identify the
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characteristic volume for the fluctuations. Based on the analysis in the previous
section, we select a cube with the correlation radius r¢ on the side. Thus, the criterion
formulated above can be presented as follows

kgT oo
- . 7.28
A @e/or() < e

This is called the Levanyuk—Ginsburg criterion. Using (7.17), it may be
rewritten as follows

(ks T)z Pg = = \4
g (1) ) < (e =)' (7.28D)
To analyze the role of the mode interactions let us apply criterion (7.28b) to the
second-order transition in a system described by the free-energy density

1 1
g = g0+ 5 A" + 20" — H (245)

with A < 0,Q > 0,and H = 0. Then

/|A ?
Np=0;n, == %Q Wg(ﬁi) = 2|A|. (7.29)

Substitution of (7.29) into (7.28b) yields the criterion

|A] > Gi = (7.30)

K3

This criterion shows that the method based on the Landau theory of phase
transitions is valid outside the region of size Gi (Ginzburg number) around the
transition point Tc. Notice that Gi is proportional to the square of the mode-
interaction coefficient Q.

7.4 Dynamics of Fluctuating Systems: Langevin Force

At this juncture, we may pose the following questions: How do the fluctuations
enter into our scheme? In other words, where did we miss or omit the fluctuations in
the development of the Field-Theoretic Method? How can we bring the fluctuations
back into our description?
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In general, the thermal fluctuations appear because a real system consists of
discrete atoms and molecules and not of a continuum medium. As we explained
above the OP represents the most probable evolution of the system. To bring the
fluctuations back into the Field Theory, we can use the method suggested by
Langevin in solving the problem of Brownian motion. To describe the incessant
and random bombardment of the tiny grains of a plant pollen by the molecules of
the surrounding fluid Langevin suggested to use a force that consisted of two
parts: a “rapidly fluctuating” part, which averages out to zero over the interval of
time long compared to the time of molecular impact and an “averaged-out” part,
which represents the viscous drag. In our case, the latter is represented by the
thermodynamic force (—y3G/6n). Thus, the dynamic equation for the OP evolu-
tion takes the form

— = —y—+&(r,1). (7.31)

To represent the rapidly fluctuating part, we introduced Langevin force &(r, ¢),
which averages out to zero over a long period of time Q at every point r of the
system

_ 1 (@
ég = a J E(r,r)dt — 0 for Q — oo and all r. (7.32)
0

To find the properties of the Langevin force, we will consider evolution of the
OP near the homogeneous stable equilibrium state 7. Assuming that our system is
ergodic (see Appendix G), we obtain the first condition on the Langevin force:

(&(r,1)y =0 forallrandz, (7.33a)

where < - > means averaging over the same distribution function as in (7.4),
(7.10), but now the OP deviations are functions of time. Due to irregularities of the
Langevin force, we may assume that it is completely uncorrelated with the thermo-
dynamic force, that is,

<55—G (ry,11)&(ry, t2)> =0 forallr;and¢. (7.33b)
n

Notice that the Langevin force does not change the dissipative property of the
OP evolution. Indeed, using (7.33b) for (7.31), we obtain [c.f. (5.3)]

516 (32) = (3% o [ (22 ) [ 30c)
VJ< <(;;;)2>d3x<0.

(7.33¢)



138 7 Thermodynamic Fluctuations

Now let us find the third condition on the Langevin force. To do that we consider
evolution of the small deviations A7n(r, t), (7.3), using two different approaches:
one—Statistical Mechanics (see Sect. 7.2) and another—Stochastic Dynamics, (see
Appendix G). Equating the results should yield the sought condition. Linearizing
(7.31) we obtain the equation for the small deviations

onn _ _ 0%

(7)) An+ kV2An + &(r,1). (7.34)

o o

Let us start with the analysis of the homogeneous deviations An(¢), which come
from the homogeneous force &(f). Equation (7.34) turns into an ODE, whose
solution that satisfies the initial condition An(t = 0) = An(0) takes the form:

!
An(f) = An(0)e /™ 4 e~ '/% J "/ & (u) du, (7.35)
0

where the characteristic time of relaxation of the homogeneous fluctuations near the
equilibrium state 7 is

P -
0= {"/anf(n)} - (4.12)

Deviation of the OP away from this state is a random (stochastic) process
because it is driven by the Langevin force. Since <&(u) > =0 for all u, the mean
increment of the OP vanishes

(An(1)) = An(0)e™™ — 0 for t — oo.

For the mean square increment, we obtain

(AP (1)) = Af?(0)e /™ 4 2An(0)e~2/® Jr e/ (£(u)) du
0 (7.36)

t t
+e—2f/foj J eltu2)/%o (& (y ) E(uy)) duy duy.
0JO

The first term on the right-hand side of this equation vanishes over time. The
second term is identically zero due to (7.33a). In the third term we have a quantity

Ke(s) = (C(u)¢(u +5)) (7.37)

which is called the autocorrelation function of ¢ and is a measure of the stochastic
correlation between the value of the fluctuating variable £ at time u#; and its value at
time u, = u; + s (see Appendix G). Using the expressions (G.54) and (7.33a) for
the integral in the third term, we arrive at the expression:
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2 2 \e-2t/10 | F0 g [ L
(A(1)) = A2 (0)e +5(1_e ) Ke(s)ds = 2| Ke(s)ds

—00 —00

(7.38)

Notice that if A*(0) were itself equal to the limiting expression, then <An?(r)>
would always remain the same, which proves that statistical equilibrium, once
attained, has a natural tendency to persist.

On the other hand, from the Statistical Mechanics analysis in Sect. 7.2, (7.15),
we know that the average square of the homogeneous deviation of the OP is equal to
kgT/[VO?g(1)/On?). Equating it to the limiting expression in (7.38), we obtain an
integral condition on the autocorrelation function of the Langevin force

—+00
J K:(s)ds = 2Vk"jT. (7.39)

—00

Now think about how properties of the Langevin force determine its autocorre-
lation function. If the process () has some sort of regularity then the correlator
K(s) extends over a range of the time interval 7., defined in (G.52). On the
contrary, if we assume that £(¢) is extremely irregular, then 7., is zero and we need
to choose K:(s) o 6(s). Thus, we obtain the third condition on the spatially homo-
geneous Langevin stochastic force:

’))kBT

(E(t)E(r)) =2 ot — ). (7.40)

Next, let us analyze the autocorrelation function of the inhomogeneous Langevin
force &(r, t). For a stationary process in a statistically homogeneous system, the
autocorrelation function depends only on the distance in space Irl and time
s between the points (ry,t;) and (r5,t,)

Ke(r,s) = (E(ri,11)¢(ry,0)); r=r2—T,s=1hH —11, (7.41)
where the averaging < -+ > is meant over time or the equilibrium ensemble (7.10),

see (G.5) and discussion of ergodicity in Appendix G. Also in (7.41) we took into
account condition (7.33a). Introducing the Fourier transform of the Langevin force

&)= &k, e, (7.42a)
{k}

Ey(k, 1) :% J E(r,)e %" dr, (7.42b)
|4

rearranging the product of the Fourier modes of the Langevin force as follows
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1

Bl )&k, 1) =

J J E(ry, 1) E(ra, 1) ™7 dry dry

and averaging both sides of the equation, we obtain the relation

<gv(k n)&(k, t2)> vlzj J K:(r,s)e " dRdr, (7.43a)

where R = 1/2(r; + r,) and dr,dr, = dRdr. Integration over R in (7.43a) can be
completed because the integrand is independent of this variable. The resulting
relation

N A 1 .
(&0 n)E00)) = J Ke(r,s)e ™ dr (7.43b)
14
may be rewritten in the form
Kev(k,s) = (&u(k, )6y (k. 12)) (7.43¢)

which shows that the Fourier transform of the two-time correlator of the Langevin
force equals the averaged two-time product of the Fourier transforms of the same
process. This result may be considered a space analog of the Wiener—Khinchin
theorem (see Appendix G).

The properties of the Langevin-force correlator can be found from the analysis
of evolution of the OP fluctuations in (7.34). In the Fourier space, it turns into the
following ODE

d Any(k g A
%‘ {3772( ) + xlk ] Any (K, 1) + &y (K, 7). (7.44)

This equation is similar to the ODE for the homogeneous deviation, if the
homogeneous Langevin force &(f) is replaced with the Fourier component of
the inhomogeneous one and the relaxation time constant 7, (4.12), is replaced
with [cf. (5.21a)]

Tk = {V[anz( ) + kK| ”1 = —m. (7.45)

Hence, we may write down the solution of (7.44) in the form similar to that of
(7.35). Following the logic of the previous derivation, we may write down the
integral condition on the Fourier modes of the Langevin force similar to that of
(7.39) because the Fourier modes Anv(k t) are statistically independent
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+00 N
J <&V(k, )& (k, t2)> ds =27 k“jT. (7.462)
Hence,
. . ks T
(&km)E (k1)) =2720=0(2 — 1), (7.46b)

Notice that due to the equipartitioning of energy (see Sect. 7.2), the right-hand
side of this equation is independent of the wavevector k. Let us sum up both sides
of (7.46a) overall wavevectors {k} with the weight factor exp(ikp). Then, using
(7.43) we obtain

+00 . . k T .
Jioo ZKﬁ‘V(k’ s)e* ds = ZVTB Zelk”.
{k} {k}

Using the inverse Fourier transform formula, (F.5a), and the formula

Y ek~ Vi(r)
{k}
we obtain
+00
J Kg(r,s) ds = 29kgT(r). (7.47)

Above we assumed total irregularity of the homogeneous process £(¢), which led
to the condition, (7.40). If we assume the same irregularity for the process &(r, £) at
each point r, then we obtain the third condition on the inhomogeneous Langevin
stochastic force

Kg(l‘,s) = <é(l’],l‘1)é(l‘2,l‘2)> = 2"/](]3T(3(l‘2 — I‘])(s(l‘z — 1‘1). (7.48)

Notice that d(r) appears in (7.48) because the k-modes are statistically indepen-
dent, §(t)—because they are irregular (no memory).

7.5 Evolution of the Structure Factor

In Sect. 7.2, we came close to introducing a very important quantity—structure
factor. Physical significance of this quantity is in that it is experimentally measurable
in the experiments on diffuse X-ray and neutron radiation scattering during the phase
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transformations. The structure factor K,y (k, 7) is the Fourier transform of the two-
point one-time correlation function K, (ry, 12, 7)

. 1 A
K'mV(ky I) = V J K,,(l‘], I, l)eilkr dr, (7.49a)
14
(r1, e, 1) Z 1elkr. (7.49b)
{k}

We already know something about this quantity. Indeed, compare (7.49b) to
(7.12), (7.21) and notice that the equilibrium value of the structure factor at the
stable homogeneous state 77 is

kT

nE (7.50)
v|0g /o () + Ikl

Ky (&, 0,72( A0y (K)[?) =

Let us find the expression for the structure factor away from the equilibrium.
To do that we substitute (7.21) into (7.49a) and obtain

~ l — —_ B "
Kiv(k, 1) = J SNy <Anv(k’,t)AnV(k”,t)>e‘(k rAknoke) ge o (7.51a)
V {k/} {kll}

As the averaging in this expression is over the distribution function of (7.10), the
modes with K’ + K” # 0 are independent, hence

1 2 H /
Kov(k, 1) = <‘Anv (K, )‘ >J eiK—Kr g (7.51b)
7 V{ V
Taking into account the mathematical formulae

J i (2n) o) TR J dk
% {k}

we obtain that in the thermodynamic limit of V — oo

Ky = <’577v(k, t)’2> (751¢)

the structure factor is the averaged square of the Fourier modes of the OP
fluctuations.

To derive an evolution equation for the structure factor, we differentiate (7.51c)
with respect to time and use (7.44)
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T (k, 1) = 2P, 1)

+ (A, D&, 0+ &k DAk, D). (752)

To estimate the second term in the right-hand side, we use the solution of (7.44)
with the initial condition A7y (k, 0):

t
Any (K, 1) = Ay (k, 0)e /™ +e”/”J /&y (K, u)du. (7.53)
0

Substitution of (7.53) into (7.52) yields two types of averages. For the first one
we obtain

(B (k. 0)Ey (1, ) = (& (k, DAy (k,0)) =0 (7.54)

because the initial conditions and the Langevin force are completely uncorrelated.
The second type of averages was calculated in (7.46b). Then we substitute (7.46b),
(7.54) into (7.52) and obtain an evolution equation for the structure factor that we
sought

dKyv

—V (K, 1) =2B(K)K, v (K, t) + 4 7.55
(1) = 2B(00K, (K, 1) +47°8 (7.55)
A general solution of this equation takes the form

. . vkgT 2kpgT

Kyv(k, 1) = Ky (k, 0™ —2 (7.56)

VB v g o ) + k|

—~ 2
Strictly speaking, the initial value ‘Anv (k, 0) ‘ is not a stochastic quantity because

it is completely independent of the Langevin force (although this quantity may be
random but for completely different reasons); it is presented in (7.56) as If;],v (k, 0) for
the sake of similarity. Many features of (7.56), for instance, dependence of the
structure factor on the initial value and wavenumber, can be verified experimentally.

Although (7.55) was derived for a stable homogeneous state 7, it can be used for
an unstable one, but for a limited time (/)i evolution only. The limitation comes from
the magnitude of the Fourier modes ‘Anv (k, 1) ‘ Indeed, (7.44) can be used for as
long as the modes are small. Imagine a system, which was initially equilibrated at a
state where (7.13) was true. The structure factor of the system is described by the
asymptotic value of (7.56). After that, suddenly, we change the conditions, e.g.,
lower the temperature, such that condition (7.13) is no longer true. Then solution
(7.56), where (k) is positive or negative depending on Ikl, can be used to describe
initial stages of growth of the modes. When the modes are not small anymore,
the linearized (7.44) should be replaced by the full evolution equation (7.31) in the
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Fourier space. In this case, the evolution equation for the structure factor will
depend on the Fourier transforms of the higher-order two-point correlation
functions [4, 5].

7.6 Drumhead Approximation of the Evolution Equation

In Chap. 5, we found that theoretical analysis of the OP evolution may be signifi-
cantly advanced in the situations when a thin transition layer develops in the system.
In Sect. 5.5, we derived the drumhead approximation of TDGLE, see (5.32), which
allowed us to identify the “driving forces” of the interfacial motion. In this section,
we will apply the drumhead approximation to the fluctuating system. The starting
point is the Langevin TDGLE (7.31) for the OP filed with the correlation condition
(7.33a), (7.48) on the stochastic force. Let us repeat here some of the key steps of the
derivation of Sect. 5.5, including the Langevin force now. Assuming that a thin layer
develops in the system where the OP field changes quickly, while in the rest of the
system it changes slowly, we obtain an equation (cf. (5.29) and Fig. 3.6)

d*n dn og
_ n 2 _— —y— = O, 7.57
ykdu2+(v+ yKK)du 5 +¢ (7.57)

where 1 = n(u), v,,, and K depend on (v, w, 1), and £ depends on (u, v, w, t). Then,
multiplying the left-hand side by drn/du and averaging it over the thickness of the
layer (cf. 5.31) we obtain

n A d ? L4
y(%+2K)A-{x(d—Z> }—v[g],ﬂrg:O, (7.58)

where we introduced a new stochastic force

_ 1 dn\ _ [* dn
(v, w, 1) =A- <€du> = Lﬁ E(u,v,w, 1) i du. (7.59)

The correlation properties of the force { need to be analyzed. Obviously [cf.
(7.33a)]

({(v, w, 1)) =0. (7.60)

For the autocorrelation function of {, we may write

Uy Uy
(v, w, )LV, W, 1)) :J du @J du/ d—”/(.f(u, v, w, )EW, V', W, 1)),
w o du )y, du



7.6 Drumhead Approximation of the Evolution Equation 145

Then, using (7.48) we obtain

v, w, OV, W, 7))

o dn dn
— 2kn TS (v — V' ) oy ¢ 4n an o
ykgTo(v —v)o(w —w')o(r — 1) Lﬁ Lﬂ dudu % 3 o(u—u)

2
= 29kgTA - <%) (v —v)o(w—w)o(t—1). (7.61)

In the second line of (7.61), one integration was removed by the d-function.
Using the definitions of the interfacial energy o (3.70a) and mobility m (SE.7) we
obtain from (7.57) to (7.61) the drumhead approximation of the Langevin-TDGLE

Vo =m (ﬁ - 2K> L (7.62a)
o o

(v, w, 1)) =0; (7.62b)
v, w, )LV, W, 1)) = 2kaT£5(v —V)o(w —w)o(t—1). (7.62¢)

In the following sections, we will use this equation for the purposes of the
interfacial stability analysis and nucleation problem.

7.6.1 Evolution of the Interfacial Structure Factor

For the analysis of evolution of the capillary waves on the plane interface (see the
definition in Sect. 3.7), let us use the drumhead approximation, (7.62a), instead
of the method used in Sect. 5.3.2. To do that we resolve the u-coordinate equation
U(x, t) = 0 as follows

r=z2(x0,0) = Y 2(ky, 1)e, (7.63a)
{ka}
1 .
f(kz, [) = g J Z(Xz7 Z‘)C_lkzxz dX27 (7.63b)
S

where z is the deflection of the drumhead interface from the plane, zZ(k;, ¢) are the
Fourier transform components of the deflection, x, = (x, y), ky = (k,, k) are
the two-dimensional vectors in the geometric and Fourier spaces, and S is the
area of the interface. In general (see Appendix C)

Vp = %u “Js (7.64a)
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1 \% t . 0
K=-1v, 22(X2, 1) .V, = (8_jx’6_jy>' (7.64b)

1+ [Vaz(xa,0)[* v

For the capillary waves (v, w) = (x, y) and
0z 0z ik
R = Z o (ky, r)e’*% (7.65a)
{k2}
K~—2 8—22+8—22 _! > kg, 1)k P (7.65b)
T2\ T oy2) 2 * : ’ ’

{ko}

Then, substituting (7.65) into (7.62a) we obtain an equation

5 (5 + el + ) 0. (7.663)
o ot o

where the Fourier components of the Langevin force { have the following
properties

<€(kz, t)> =0 (7.66b)

400
J <i(k2, 0 (koyt + s)> ds — 27 oksT (7.66¢)

oo KS

Because each term in the sum in (7.66a) depends on the value of only one
wavenumber they must vanish separately. Then, using our experience with (7.34),
we obtain the solution

t
2(ky, 1) = 2(ky, 0)e "/ —Se*’/ffj e/ {(ky, s) ds (7.67a)
0

I S
T omkof? B.(k|)’

(7.67b)

where Z(ky, 0) is the initial condition for the capillary wave and t, is the time scale
of the evolution of the waves. Notice that the latter depends strongly on the
wavenumber of the wave, diverging for the very long ones. Taking (7.62a) into
account, we obtain expressions for the averaged Fourier components of the
deflections

(2(ky, 1)) = 2(ky, 0)e™/™ 7520 for allk,| (7.68a)
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and the two-time autocorrelation function
(Z(ka, 1)Z% (kp,0)) = |2(k2,0)|2e”/“ —o 0 for all|ks|. (7.68b)
Then, introducing the interfacial structure factor

K.s(ky,t) = <|§(k2, z)|2> (7.69)

we obtain an equation of its evolution

K.s(ka,t) = K.s(ka,0)e2/= + = (g) ? (1 - e*2’/12> rm <2(k2, N (ko1 + s)> ds

2 -0
¢ - ksT - keT
=K.5(ks,0)e 2I/T;+—(1_e 2z/rz) T) .
s(k2,0) olko 'S ‘ oo]—0|k2|2S

(7.70)

Equation (7.70) shows that the destabilizing effect of fluctuations and stabilizing
effect of the surface tension bring up one more length scale, the fluctuation length

keT
Ip =y —, (7.71)
o

which sets up the scale for the structure factor. Compare (7.70) with the expression
for the bulk structure factor, (7.56), and notice that I?Z,s(kz, t)diverges for Ik,l—0.
Using the inverse Fourier transform, (7.63b), we can interpret this result to mean
that the surface-average square of the long waves of the interfacial deflection grows
without bound because the stabilizing influence of the surface tension for these
waves vanishes.

7.6.2 Nucleation in the Drumhead Approximation

In this subsection, we will apply the stochastic drumhead equation (7.62a) to the
problem of nucleation of a new phase and compare the results to those of CNT (see
Sect. 7.1). One of the challenges that we have to face is to define the main quantity of
CNT—rate of nucleation, using the proper fields. The approach that we are using here
is to apply the field-theoretic quantity—escape time, which is inversely proportional
to the nucleation rate. For a bistable potential, the escape time is defined as time
needed for a system, which was initially in the vicinity of a minimum with higher
value of the potential, to reach for the first time a vicinity of the minimum with lower
value of the potential. In Appendix G, we calculated the escape time for a “particle in
a bistable potential” if the Langevin equation for the particle is known. In what
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follows we will derive the Langevin equation for the nucleus in the drumhead
approximation, calculate the escape time using the “particle in a bistable potential”
formula and compare the escape time to the stationary nucleation rate of (7.2).

We assume that the transition layer has a shape of a sphere Qg, which surrounds
a particle of the new phase. In this case

_dR@) 1
Vp = T, K= m on QR, (5363)

where R(f) is now a random variable that represents the radius of the particle.
The stochastic force depends not only on time but also on the coordinates of the
surface of the sphere (v, w). To eliminate this superfluous dependence, we average
(7.62a) over the surface of the sphere taking into account (5.33) and that

J dvdw = 47R?.
Qr

Then
dr 1 1 K
where R is the radius of the critical nucleus [cf. (5.35)] and the new force is
() = J (v, w, t)dvdw (7.72b)
Qp
W) =0 W () = 8mkaT ZR3(t — 7). (7.720)

Notice from (7.72) that the effect of the stochastic force is greater on smaller
particles.

In principle, the particle equation (7.72) can be used for (G.40c) or (G.41c) to
derive an expression for the escape time. The problem is that those formulae apply
to the stochastic force that does not depend on the random variable itself, the radius
R(?) in this case (additive noise). To eliminate the R-dependence from the intensity
and autocorrelation function of the random force, we multiply all terms of (7.72a)
by 8nR and introduce a new random variable—the area of the particle’s surface Qg

S = 4nR? (7.73)
and the new force
2K
= ——lt 7.74
o) = =25 u(0), (71742

(p() =0;  (p(t)p(t)) = To(t—1), (7.74b)
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Fig. 7.2 Bistable potential
U(S), (7.76), with the two o bov oo _
wallsat S = 0and S = S¢ N7 |
el I
I
I
I
) [
T |
€ |
L I
3 |
I
I
o area s Sk St
r= 32n§kBT. (7.74¢)

Contrary to the previous subsection, S is a variable quantity now. The Langevin
equation for S takes the form:

ds S
= = 16nm<\/\/S;*) + (1), (7.75)

dr
where S is the surface area of the critical nucleus. This equation describes “random
walk of a particle” in the potential field

U(S) = 16mm (S - %53/2), (7.76)

which is normalized such that U(0) = 0.

In the spirit of CNT, particles cannot grow to infinite sizes. To terminate the
particle growth past certain size, we erect an infinitely high “wall” at § = S,
although precise value of St does not matter for as long as S¢ > S«. Also, an infinite
wall is erected at S = 0. The potential (7.76) with the two walls, designated as U (S),
has two minima at 0 and Sy and a maximum at S=; hence, this is a bistable potential,
see Fig. 7.2. If the potential barrier is high [the fluctuations are weak, cf. (G.39)]
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U(s.) >T. (1.77)

then, for the escape time, we can use the expression (G.41c). Establishing the
relations

~ 16 ~
U(wp) — U(S,) = ?nmS*; U'(wg) — U'(0) = 16mm;

R 87tm (7.78)
U'(wp) — U"(S,) = g @7 I.
and substituting them into (G.41c) we obtain
ror = 2[R e T — VRBTO e gt (7.79)

8m\ mo N 2mg];

The last expression in (7.79) was obtained by expressing S through the interfacial
energy and driving force, (7.73), (5.35). Notice that this expression is independent of
the cut-off radius Ry.

Comparison of (7.79) for the escape time with (7.2) for the stationary nucleation
rate Jg shows that the FTM result has the correct exponential and the Zeldovich
factor (the square root) but fails to reproduce the dependence on the volume of the
system. The reason for that is that the presented method takes into account only
spherically symmetric fluctuations of the shape, that is growth or shrinkage, and
omits the shifts and distortions of the nucleus.
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Chapter 8
More Complicated Systems

Although the description presented in Chaps. 2—7 lays out a rich picture of a phase
transformation, it is not rich enough to describe most of the transformations that we
find around us. The problem is that so far we have been looking at the systems that
can be described by a scalar, one-component order parameter while order para-
meters of real transformations may have many components or essential internal
symmetry, not captured by a simple scalar. A few examples of more complicated
systems are considered in this chapter. Specifically, we are looking at the systems
where the order parameter is subject to a conservation law and go over all major
steps of the method deriving the equilibrium equations in homogeneous and
heterogeneous systems, dynamic equation, and analyzing the role of fluctuations.
We lay out the phenomenological theory of superconductivity where the OP is a
complex number and demonstrate how the method can help in calculating different
properties of a superconductor. A section is devoted to a system that undergoes
crystallographic transformation described by the OP that has more than one com-
ponent, which interact with each other. We also look at the systems which have long
time-correlation property—memory or are described by two fields of completely
different symmetries.

8.1 Conservative Order Parameter: Theory
of Spinodal Decomposition

8.1.1 Thermodynamic Equilibrium in a Binary System

Spinodal decomposition is a process of unmixing, i.e., spatial separation of species,
which takes place in thermodynamically unstable solutions, solid or liquid.
Spinodal decomposition provides an example of a phase transformation which
can be described by an OP that obeys a law of conservation. In case of a system

A. Umantsev, Field Theoretic Method in Phase Transformations, 151
Lecture Notes in Physics 840, DOI 10.1007/978-1-4614-1487-2_8,
© Springer Science+Business Media, LLC 2012
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that consists of different species, it is advantageous to deal with the partial molar
thermodynamic quantities instead of the densities (see Appendix H). Consider a
binary solution that contains n, moles of species A and ng moles of species
B isolated from the environment so that the total number of moles, n = na + ng,
and the molar fraction (concentration) of the species A (B), Xp = na/n Xg =
ng/n) does not change. By definition, the variables X, and Xg are not independent as

Xa+Xpg = L. 8.1)

A regular solution is a popular model of a binary system:
GS :XAGA +XBGB +RT(XA lnXA —|—XB IHXB) + QXAXB. (82)

Here R is the gas constant, G° is the molar Gibbs free energy of the solution, G »
and G are the partial molar Gibbs free energies of the species A and B, and the total
Gibbs free energy of the system is, of course, nG>. The first two terms in (8.2)
represent the free energy of a mechanical mixture of the components A and B. Since
after mixing the atoms are in a much more random arrangement, there will be a
negative entropy contribution into the free energy, called the entropy of mixing,
which is the third term short of the temperature T. The fourth term represents the free
energy excess (positive or negative) due to interactions of pairs of atoms of the same
or different kinds. This contribution is proportional to the number of A—B pairs
expressed by the product of the molar fractions with the coefficient of proportionality

Q= ZNAVCO, W = WAB — % ((DAA + U)BB), (83)
where Z is the coordination number of A and B, that is, the number of nearest
neighbors to A or B, N, is the Avogadro number, and w;; designates the interaction
energy of the i—j pair. Positive w corresponds to the mixture where the like atoms
attract more strongly than unlike atoms (attractive forces are negative, so that
stronger attraction between like atoms means the wp is a smaller negative number
than the average of wa 4 and wgp). It is a good approximation when the atoms A and
B have nearly the same radius. This model can be used for solids and liquids,
although in liquids instead of Z and w one has to use the average values.

Using condition (8.1), the free energy (8.2) may be expressed as a function of
one variable, e.g., X = Xp (see Fig. 8.1a, b)

G5(X) =Ga+(Gy — GA)X +RT[XInX + (1 - X)In(1 - X)] + QX(1 - X). (8.4)
To estimate the roles of different contributions, first, notice that if Q = 0 (ideal
solution) then for all compositions and all finite temperatures the free energy of the

solution is less than that of the mechanical mixture of the pure components because

—I2<XInX+(1-X)In(1 —X)<0 for0<X<I. (8.5)
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Fig. 8.1 Regular solution
model of a binary system.

(a) Contributions of entropy
of mixing (negative) and
energy of interactions
(positive) of species into the
Gibbs free energy. (b) Gibbs
free energy of the system with
Ga =~ Gg at T<Tc. Dashed
lines are the free energies of
mixtures of the solutions. (¢)
Solid line—miscibility gap,
(8.14); dashed line—spinodal
curve, (8.13b); arrow—
critical quench
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This means that the first minute additions of any solute to any pure substance
will always dissolve to form a solution (not necessarily an ideal one). Due to
downward convexity of the ideal-solution free energy function, a single ideal
solution is more stable than any mixture of the ideal solutions (Verify!).

Second, if Q < 0 (ordering solution) the situation is pretty much the same
because the type of convexity of the free energy does not change. However, if
Q>Qc>0 (phase-separating solution) the situation is more complicated because the
free energy is not convex definite anymore (Fig. 8.1b). The critical value of the
interaction parameter ( is defined as such that changes the state of convexity of the
function G5(X), (8.4), that is, the value of Q which allows the function

d*GS RT

to vanish exactly at one point. The latter point is called a critical point

1
Xe== 8.7
c=5 (8.7)
and the critical interaction parameter value is Qc = 2RT. It is accustomed to
express the critical condition through the critical temperature of the system with
the given strength of interactions Q

Q_Za)

C

Notice that T can be expressed through microscopic characteristics only.

Although for T<T¢, G5(X) looks similar to G(n) (cf. Figs. 8.1b and 2.2a), the
coordinates of the stable states in these systems have very different properties.
For instance, because the overall composition of the solution X, must be set as the
initial conditions, the molar fraction of a stable state may not correspond to a local
minimum of G3(X). This does not mean that the principle of minimum of the total
free energy does not apply to this system, but only that this principle must be
supplemented with another condition or conditions because the physical nature of
the variable X is different from that of the OP 7. Most importantly, the OP value can
change freely while “searching” for the free energy minimum, but the value of the
variable X is influenced by the mass conservation condition. The latter means that in
a closed system the total number of moles of a species does not change. In a binary
system of A, B species, the mass conservation can be expressed as follows

na, ng = const(?). (8.9)

It applies equally to a system which was initially set as a heterogeneous or
completely homogeneous one.
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To examine the nature of the spinodal instability, let us consider an initially
homogeneous system at constant temperature 7<7T¢ and concentration X,. Because
of the movement of the atoms in the solution, there are local composition
fluctuations of very small values. Through these fluctuations the system or any
part of it may decompose into a mixture of solutions characterized, at least initially,
by compositions very close to that of the first homogeneous solution. If the Gibbs
free energy of the mixture is lower than that of the homogeneous solution, then the
latter is unstable and further decomposition may occur to produce states which have
still lower free energy. Otherwise the decomposition will not occur. Suppose that the
molar numbers and fractions of the neighboring solutions are 7, ng and X,, Xg. Then

B o 0 BB
nt +n nkn ny 1
:¥:n_§7+n—‘;7:xax+xﬁ(1—x), (8.10)

Xo
where x is the relative proportion (fraction) of o in the solution. Graphical repre-
sentation of this result is called the lever rule.

The molar Gibbs free energy of the two-solution mixture is

X=X s Xa—Xo

mX — S 517 .
G"(0) = G+ Gi(1 —x) = Gi "L+ G

8.11)

Equation (8.11) is the equation of a straight line passing through the two points
with coordinates (X, G,°) and (X B> GBS); a point on this line represents the free
energy of the mixture G™ of the overall composition X, (Fig. 8.1b). It may be seen
that if a free energy vs. concentration GS(XO) is convex downward, the free energy
of a two-solution mixture of neighboring compositions G™(X,) is always higher
than the free energy of the homogeneous solution G5(Xo). Similarly, if G5(Xo) is
convex upward, G™(X,) is lower than GS(XO). Consequently, the solution is stable if
d’G%/dX* > 0 and unstable if d>G5/dX* < 0. The inflection point,

°GS

o =0 (8.12)

separates the regions of stability and instability of the homogeneous concentration
X, with respect to small fluctuations. According to our definition in Sect. 2.3, it is
the spinodal point. The decomposition of a homogeneous solution resulting from
infinitesimal fluctuations is called the spinodal decomposition.

Equations (8.4) and (8.12) yield an expression for the spinodal curve, that is, the
locus of the spinodal concentrations at different temperatures

T

S S _
X“(ﬁ)<1 —X“(m) =i (8.13a)

Obviously, the same equation may be interpreted as an equation for the spinodal
temperature T as a function of the concentration X (Fig. 8.1c)
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Ts = 4TcXo(1 — Xo). (8.13b)

Notice that for each T<Tc there are two spinodal concentrations,
XS <Xc and X% > X¢, but T5(Xp) is a single-valued function.

The analysis of stability presented above may be expanded beyond the
boundaries of small fluctuations of the neighboring regions (local stability) into
the domain of global stability, that is, stability with respect to any compositional
changes in the entire system. Indeed, applying results of the analysis of a two-phase
equilibrium (Appendix H) to our system, we find that the condition of the global
stability of the system is the common tangency between the molar fractions of
the solutions XE and X}?. Then, inspecting the calculations of (8.10)—(8.11) and
Fig. 8.1b you may see that if the overall composition of the solution X, is between
the points of common tangency, Xt and XE then a mixture of two solutions

with these molar fractions and the relative proportion of o« solution xE =

(Xo - Xg) / (XE — Xg)is more stable (has less total free energy) than the homo-

geneous one. For a regular solution with G, ~ Gg, the condition of common
tangency, (H.12), is

% o =0. (8.14)

dGS X,
4 (xE,) =R [Tln“"”(Jr 2T (1 - 2xEy))
()

The temperature vs. concentration graph of this condition, called the solubility
curve or miscibility gap, is depicted in Fig. 8.1c. From the stand point of the
definition in Sect. 2.3, this curve represents the equilibrium phase boundary because
at the points of this curve the equilibrium states, one-phase and two-phase,
exchange their stabilities.

Example 8.1 Show that near the critical point:
’XC —Xfw)‘ ~ \/E‘Xc —Xj(ﬂ).( SE.1)
Let us represent the solubility and spinodal curves as follows
Xy = Xe(1+a(T)), X5 = Xc(1+es(T)). (8E.2)

Then, taking (8.7) into account, in the vicinity of the critical point (8.13a) and
(8.14) turn into

T T 2¢eg 1
— =1 ,2 _— = ~1—- ,2 . E.
Tc S Te " In(l +ép) — In(1 — ¢5) 3°E (8E.3)

Comparing these equations we obtain the desired result. Notice that (8E.3) apply
to both o and [ sides of the curves.
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8.1.2 Equilibrium in Inhomogeneous Systems

To describe inhomogeneities in a system that may appear as a result of the spinodal
instability, Cahn and Hilliard [1] introduced a continuously varying molar fraction
X(r) and suggested to use the Ginzburg—Landau functional for the total Gibbs free
energy of the system

1 S
G= J [gs(X) + E;cc(vx)2 &r, &= f— (8.152)
m

In (8.15a) g°(X) is the Gibbs free energy density, v,, is the molar volume, k¢ is
the concentration gradient energy coefficient, and the integration is over the entire
volume of the system V. In the following v,, and k¢ will be considered constant, that
is, independent of the composition of the solution.

As we know, in the state of thermodynamic equilibrium, X(r), the total free
energy of a system that exchanges energy with environment approaches minimum:
G{X} < G{X} if X # X. However, in a closed system, where mass exchange with
the environment is not allowed, this condition is subject to the species conservation
constraint (8.9), which is expressed as follows

JX(r) d*r = XoV = const. (8.16)

Notice from Appendix H that the proper minimization of the free energy in a closed
binary system requires two species conservation constraints. In the case of a system
where the molar volume is independent of the composition, the role of the second
condition is played by the condition of conservation of the volume of the system

V= Jvm dn = Jd3r = const. (8.17)

If the molar volume depends on the composition, a whole host of other effects,
including coherency strain effect, come about, none of which are of particular
importance to the subject of this chapter.

Minimization of the functional G, (8.15a), under the constraints (8.16), (8.17) is
called the isoperimetric problem in the calculus of variations (see Appendix B). From
the physics stand point, the most appealing method to solve the problem is the method
of Lagrange multipliers. It says that there exists a constant 4 such that the functional

G+/1JXd3r (8.15b)

approaches an unconditional minimum at X = X. The volume conservation condi-
tion for a system with constant molar volume, (8.17), is trivial and does not affect
the minimization procedure. Hence,

S S
5—? = é;ix — ke VX = —J. (8.18)
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Value of the molar fraction X on the boundaries of the system may change freely.
In this case, the variational procedure yields the following boundary condition

nVX =0onS. (8.19)

To find the Lagrange multiplier A, one needs to substitute the solution X (r) of
(8.18), (8.19) into the conservation condition (8.16).

Let us consider now a 1d inhomogeneous binary solution of infinite size, that is,
the thermodynamic limit. As we saw in Chap. 3, in this case (8.18) has the first
integral, cf. (3.42a):

o1 axy?
(X)) + X — Zkc (—) = u = const(x). (8.20)
2 dx
Because in the thermodynamic limit the boundary conditions (8.19) are placed at
x — =00, all higher derivatives of X(r) will also vanish on the boundaries. Then
(8.18) yields another boundary condition

0gS
8—X+ A=0 forx — Foo. (8.21)

Hence, from (8.20), (8.21) we obtain

0gS 0gS

S — _— = = S — _—

SX) =X (X)) = =g (X)) = X, o ) (8.22a)
0g% B B 0gs
X (X-)=—4= X(X,), (8:22)

where X4 = X(x — $00) are the terminal (bulk) values of the molar fraction of the
solutions. Comparison of (8.22) and (H.12) shows that we recovered the condition of
common tangency between the terminal solutions of the system X_... Consequently,
they should be identified as X f( 8 Then (8.22) can be used to find the constants A and u
and constraint (8.16) can be used to find the X*—the equilibrium fraction of a.

Furthermore, the solution of (8.20) with the boundary conditions X = Xf(ﬂ)
represents the transition layer between the bulk regions. It is analogous to the one
studied in Chap. 3 if the OP 7 is replaced by the molar fraction X and functional
(3.27) by (8.15b). The n +» X analogy can be used for the analysis of the multidi-
mensional solutions of (8.18).

Examples 8.2 Estimate the thickness and free energy of the transition layer
between the bulk solutions of the molar fractions X= and Xg in the regular solution
with GA ~ GB-

First notice that in this case in (8.22)

1=0, u=4g° (Xf(ﬁ)). (S8E.4)
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Then, adjusting the definitions of the interfacial thickness, (3.45), and energy,
(3.71), to the binary system we obtain

X - X E _ yE
max | N X - xt

XE—XE
- L . (8E.5)

" = max [aX /] aX/dx(Xe)] \/2 [590x0) — g5 (x5 )| /e

op = JW ke (%)2 dx = K’ \/ 2 [g5(X) — 8 (X3, )] ax. (8E.6)

—00 £

Notice in (8E.5) that the layer has the greatest slope at the critical concentration.
Substitution of the expressions from (8.4), (8.8), (8.15) reveals two important

scales: length and surface energy
RT,
= ke = et (8E.7)
RTC Vm
Let us analyze two limiting cases of these expressions: 7—0 and T—Tc.
Applying representation (8E.2) of the equilibrium molar fractions, expanding

(8.4) up to the fourth order in small ¢g, and then using the solution in (8E.3) we
obtain

Ig 1 ) forT — 0
75 for T — Tc (8E8)
and
y 2jgw/x(1—x)dng for T — 0
—_— +¢ 3/2
TC - T E 3n TC - T
o Xc o J_SE\/sé—szde:Z( o ) for T — Tc.

(8E.9)

Notice the typical mean-field exponents (—1/2) and (3/2) of the thickness and
interfacial energy in the limit of 7—T¢.

8.1.3 Dynamics of Decomposition in Binary Systems

Description of the dynamics of decomposition in mixtures should take into account
the conservative nature of the variable molar fraction X(r, 7). One way to write down
an evolution equation for the system is to generalize the continuity equation [2, 3]
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0X
—=—-V], 8.23
T J (8.23)
where J is a flux of species B. Notice that the conservative nature of X is “automatically”
taken into account by the general form of (8.23). Indeed, integrating this equation over
the entire system and using the divergence theorem we obtain

) 5
P JXd r= ]{n.]ds, (8.24)

where integration in the second integral is over the boundary of the system S. In a
closed system, that is, no mass exchange with environment, the equilibrium BC
(8.19) is replaced by

nJ =0onS. (8.25)

Hence, the surface integral in (8.24) vanishes and the total amount of the species
B does not change in time. This is consistent with the conditions (8.9) and (8.16).

In the naive theory of diffusion the flux J in the continuity equation (8.23) obeys
the Fick’s law: the flux is proportional to the gradient of concentration. To general-
ize this equation on the case of spinodal decomposition, notice that, in fact, the
driving force for diffusion is the difference of the chemical potentials for the species
at two nearby points, that is, the gradient of this quantity. Compare (8.18), (H.12)
and notice that in our system the role of the chemical potential is played by the
functional derivative 6G/0X which, according to (8.18), is equal to a constant when
the system is in equilibrium. Hence, a phenomenological flux equation can be
written in the form

oG

I=-MV-<

(8.26)

where M is called a mobility or linear response coefficient. Then, substituting (8.26)
into (8.23) we obtain an equation that describes evolution of concentration in a
binary system [3]

0X oG
e VMVE. (8.27a)

Functional dependence of the linear response coefficient is a subject for discussion.
Some authors suggested to use the molar-fraction dependence of the type: MocX(1-X)
to offset the infinite values of the chemical potential gradient at the concentrations
approaching those of the pure A (X — 1) or pure B (X — 0) solutions. However, these
situations are not typical for spinodal decomposition which takes place mostly inside
the miscibility gap. That is why we will be considering
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M = const(X, x). (8.27b)
Then:
oxX ,0G G 8g ’
i MY 35X’ X X — kcVX. (8.27¢)

To get a sense of the value of the linear response coefficient M, let us calculate
the rate of the total free energy change that goes along with the evolution X(r, #)
near the equilibrium state X(r)

dG—J5G8Xd3 JészéG
de ) oX o oX
Here, to obtain the final formula, we used the formula for differentiation of a

functional with respect to a parameter (see Appendix B) and equation (8.27b).
Then, applying a formula from the vector calculus

V2 (uv) = uV?v +2Vu - Vv +vVu

to u = v=0G/dX and the divergence theorem we obtain

dG oG\ o o
——M|= —nV —
dr J (V 5X> Ere P ox™Vox )
Applying (8.26) and BC (8.25), we obtain
o _ MJ v 2d3 (8.28a)
e 3% r. .28a

Using the fact that the integral in (8.28a) is nonnegative and that there exists an
equilibrium state X(r), which minimizes the functional G{X}, we arrive at the
condition

M>0 (8.28b)
because otherwise the state X(r) is not attainable. Also we find from (8.28a) that the
functional (8.15a) is a Liapunov functional for the system described by (8.27a).

There is another way to derive (8.27c) which is of interest for us. Notice that this
equation can be obtained from (5.2) by the formal substitution

— 7y = MV3(r). (8.28¢)

Equations (8.27c) and (5.2) have a common origin: these equations can be
derived from the same master equation for the probability of the state characterized
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by X(r;, t) or n(r;, t) by either imposing the condition that the sum of all the changes
of the variables is zero or not [4]. The common origin of the equations can be
understood by considering a general relationship between the rate of the OP change
0n/0t and the driving force 8G/8n

% = J I'(r— r’)(;—;; () dr

and imposing different properties, conservative or nonconservative on the kernel I'(r).

8.1.4 Evolution of Small Disturbances

To analyze dynamics of the system controlled by (8.27c), we consider first what
happens to small deviations of the uniform state of concentration X,. We write

X(r, t) =Xo +u(r, 1)
and then linearize (8.27¢c) about X:

u _ 2[0g° >g 2
e MY 8_X(X0) +W(X0)u —kcVeu|. (8.292)

Notice that, contrary to the expansion of 0g/0n about 7 in (5.19), the term 0g>/
0X(X,) does not vanish now because X, may not correspond to the “bottom of the
well” of gS(X). Yet, this term does not affect behavior of u(r, f) because it is a
constant. Hence,

5 Vu — kcViu|. (8.29b)

Ou 9g°(Xo)
[P

Because of the conservation conditions (8.16) and (8.17), the average of the
deviation u(r, t) is zero

Ju(r, Hdr=0. (8.29¢)

Hence, for the solutions of equation (8.29), we may try the normal modes (sine
waves) of u

u(r, 1) = Ae* P, (8.30)

Substituting (8.30) into (8.29) we find the dispersion relation
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Bs(k) = —Mk [6 > (Xo) + rck :| k= K| (8.31)

If 0°g%/0X*(Xy) > 0 then fs(k) < O for all kK > 0, which means that the normal
modes of all wavelengths decrease in amplitude: Ae*P' 0 as r—o0. Hence, the
system is stable. In this case for the normal modes with

1 g
k<[ e X0)

we can drop the gradient-energy term in (8.29b) and obtain a conventional diffusion
equation

Ou ) 82 S
= Dov u, Do 8X2

o (Xo) (8.32)

with positive diffusion coefficient D, see (8.28b).

On the other hand, if 0%g%/0X?(X,) < 0, that is, X, is in the spinodal region, then
there are normal modes with fg(k) > 0, that is, increase in amplitude: Ae*Pt -
as t — oo. Hence, the system is unstable. In this case, the dispersion relation (8.31)
takes the form (Fig. 8.2):

1 0%gs

o X0 (8.33)

Bs(k) = Micck? (ki — k2), k=
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where k,, is the wavenumber of the marginally unstable mode for which the
destabilizing (spinodal) and stabilizing (gradient-energy) contributions into the
free energy cancel out.

In the case of 0%¢%/0X,> < 0, formally, the diffusion coefficient in (8.32)
becomes negative—"“uphill diffusion.” The species acquire tendency to cluster
instead of diffuse and the dynamic problem takes on an entirely different complex-
ion. Obviously, the gradient-energy term in (8.29b) cannot be dropped because it
plays the central role in opposing the clustering forces. The amplification rate fi5 in
(8.33) shows that the clustering prevails at small ks and spreading—at large ks. As a
result, the most rapidly growing mode—"“most dangerous mode”—is that for which
the wavenumber is equal to

Kim
ke =—. 8.34
=75 (8.34)

Compare (8.33) and Fig. 8.2 with (5.21a), (5.23) and Fig. 5.2 and notice that:
(1) in the case of spinodal decomposition the long-wavelength disturbances grow
very slowly, while in the case of a first-order transition the growth is fast—explosive;
(2) in the case of spinodal decomposition, the amplification rate of the unstable
modes reaches maximum at the finite wavenumber (pattern formation, see Sect.
9.6), while in the case of the first-order transition this wavenumber is zero (homoge-
neous structure formation). Presence of the finite-wavenumber maximum is a direct
consequence of the conservation condition (8.16).

Using the regular-solution expression for GS(X), (8.6), (8.8), (8E.7), the
marginal wavenumber k,, can be expressed as

1 T
e —_—— 8.35
m =2 " TeXo(1 — Xo) (8-352)
Comparison of this expression with (8.13b) shows that for a given composition
of the solution X, the marginal wavenumber k,,, decreases with temperature from
the maximum value of 2//atT = Oto O at T = Tg (Fig. 8.3). Expression (8.35a) can
be resolved for the temperature

T=Tc [4 - (lkm)2]X0( 1 - Xo) (8.35b)

and presented in the (X, T) plane (see Fig. 8.1c), which allows interpretation of the
spinodal curve as the locus of points where &k, = 0.

The linear stability analysis presented above suggests the following scenarios of
evolution of the concentration in the solutions starting from any almost homoge-
neous initial distribution X(r, 7). If the average concentration X is outside the
miscibility gap, the solution is stable and will remain as an almost homogeneous
state. If X, is between the miscibility curve Xf( /3)(T) and spinodal
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Fig. 8.3 Scaled
wavenumbers of the
marginally unstable &,
(solid line) and “most
dangerous” k4 (dashed line)
normal modes
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(XS( 5 (T))the solution is still stable with respect to small variations, that is locally

stable, but unstable globally that is with respect to full separation into two solutions
of concentrations X and XE In this case, the process of separation will start with
the formation of a small nucleus of the concentration close to, e.g., X}}: surrounded
by large region where the concentration had depleted from X to XE. If X, is inside
the spinodal (X5 <X, < XIS; then the solution is unstable even with respect to
small variations of concentration and the initial solution will be decomposing from
the beginning. The initial deviations from the average concentration may be divided
into the sine waves. Those with the wavenumbers k greater than the marginal—
shrink, while those with the wavenumbers smaller—grow with the amplification
factor fs(k). Because fis(k) has a steep maximum and because the growth rate is
proportional to the exponential of Ss(k), it is possible to concentrate on the growth
of the most dangerous mode k4 and those which are near that one. Such picture may
be valid only for as long as the deviations « are small and the nonlinear terms in the
expansion of (8.29b) can be ignored, that is, early stages of spinodal decomposition.

8.1.5 Role of Fluctuations

The experimental results, however, did not follow the latter scenario closely even
when experimenters were pretty sure that they were dealing with the early stages.
Among the most notable discrepancies they named the following: (1) the
amplitudes of the sine waves rise much more slowly than exponentially (AeP"y;
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(2) the dispersion relation does not follow (8.33); (3) the observed values of k4
decrease with time. The conclusion was that the linearized thermodynamic analysis
of the spinodal instability, containing many of the crucial features of the pheno-
menon, was missing at least one more ingredient. The key to the problem are the
thermal fluctuations that may drive the system away from the linear, thermody-
namic regime even on the early stages.

As we discussed in Chap. 7, a consistent way to include the thermal fluctuations
into the field-theoretic method is to add the Langevin-type force to the evolution
equation

X G
=MV (), (8.36)

As ((r, t) represents the random force exerted by the rapid, thermally
equilibrated modes of the system, the average value of {(r, ) is zero [cf. (7.33a)].
To find the autocorrelation function of {(r, f) we may use the substitution (8.28¢) for
(7.48). Then

({L(r, 1)(ro, to)) = —2MkgTV?*(r)d(r — 10)d(t — to). (8.37)

Equation (8.36) with G from (8.15a) and { calibrated by (8.37) describes
evolution of the conserved quantity X, the molar fraction, in a process like the
spinodal decomposition. Solutions of this equation may be obtained by direct
numerical simulations.

Some key features of the solutions, however, may be revealed through the
analysis of the two-point correlation function (cf. Sect. 7.5)

S(|r —ro|, 1) = (u(r, Hu(ro, 1)). (8.38)

(In this section, instead of K, we use designation S for the correlation function
and its Fourier transform, the structure factor, because this is a customary designa-
tion in the literature on the spinodal decomposition.) The averaging in (8.37) and
(8.38) is performed with respect to P{u}—the probability distribution function for
u(r, t). Notice that the correlation function in (8.38) is assumed to be translation
invariant. The Fourier transform of S(r, t), called the structure factor S (k, 1), is

S(k,t) = JS(r, t)e k* dr (8.39a)

1

S(r, 1) = 2

J§(k, t)e™r dk. (8.39b)
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Expanding (8.36) about X,, multiplying the product u(r, f)u(ry, ) by the

probability distribution function, taking the Fourier transform of the averaged
quantity, and using (8.37) we obtain the evolution equation for S(k, 7) [cf. (7.55)]:

oS P . 1%

~ g ~
o 2B (k)S + 2MkgTk* — Mk* a (X0)S3 + G (X0)Sa+-++|. (8.40)

I-[ere Ps(k) is the amplification factor given in (8.31) and the quantities denoted
by S,(k, ) are the Fourier transforms of the higher-order two-point correlation
functions

Sa(lr —ro|, t) = (u"'(r, t)u(ro, 1)),

where the subscript is dropped for n = 2. Neglecting the correlation functions of
orders higher than two and the fluctuation term (2MkgTk?), we obtain the linear
evolution equation for the structure factor, which follows from the linear evolution
equation for the normal modes (8.29). Retaining the fluctuation term gives us the so-
called Cook’s equation [5], which is an improvement over (8.29)—(8.31) in that the
stable modes with k>k,, are predicted to equilibrate at § = kgT/(k> — k2,), rather
than relax to zero. But the unstable modes in the Cook’s approximation still exhibit
unlimited exponential growth. Equation (8.40) indicates that the latter can be
stopped only by the nonlinear terms of the free energy expansion that couple to
the higher-order correlation functions. The problem in (8.40) is to find a physically
reasonable and mathematically tractable way of relating S, to S. Langer [6] obtained
an approximation, which is reasonable for the critical quench, that is, lowering the
temperature from 7>T¢ to T<T¢ at X=Xc. In these conditions, we may assume that
the probability distribution P{u} is always a symmetric, Gaussian function of u,
centered at u=0. Then, all S'ns with odd numbers vanish and

Sa(k, 1) = 38(0, 1) S(k,1). (8.41)

where S(0, t):<u2(t)>, see (8 .38). If in (8.40) we drop the terms with n>4, we find
that the resulting equation of motion for S has the same form as in the linear theory,
but the previously constant free energy curvature 02¢g%/0X,” is now replaced by the
time-dependent expression

62 S 164 S
a—;’z (Xc) +35 ot (Xc) (12(1)). (8.42)

Because 0%g%/0X(" is a positive constant and <u’(r)> is a positive, increasing
function of time, the marginal wavenumber k,, in (8.33) must decrease. This implies
coarsening of the emerging structure, which is observed in experiments and
numerical simulations.
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8.2 Complex Order Parameter: Ginzburg-Landau’s
Theory of Superconductivity

8.2.1 Order Parameter and Free Energy

There are systems where the OP should be represented by a complex function
n = |nle'®. (8.43)

Here @ is the complex argument or phase of 7. Most interesting examples of
such systems are those where the quantum nature of matter is essential for its
macroscopic behavior, for instance a superconducting metal. Full theory of super-
conductivity is very complicated and is not finished yet. In this section, we will
discuss only the situations where the phenomenological Ginzburg—Landau theory is
applicable [7, 8], leaving the question of the physical conditions of applicability to
the end. For a superconducting phase of the material, the OP may be associated with
the wave function of the superconducting electrons. Then, according to the quantum
mechanics, the OP is a complex quantity defined with accuracy of an arbitrary
additive phase and all observable quantities must depend on 7 and n* (complex
conjugate, CC) in such a way that they do not change if 7 is multiplied by a constant
of the type el’:

n— neie, 0 — n*e_ie. (8.44)

The OP should be normalized such that in the superconducting phase Inl* = ng
where 7 is the density of the “superconducting electrons.”

Let us, first, consider a homogeneous superconductor outside of a magnetic field.
Then 7 is independent of the spatial coordinates and the free energy density of a
superconductor can be expanded in powers of the OP as follows

1
g, P,T) = go(P,T) +a(P,T)mm" + Eb(P, T) (') + - (8.45)

where g is the free energy density of a normal phase (7,,) and a, b>0 are constants.
The requirement of invariance to the addition of the arbitrary phase 0, (8.44), yields
that the free energy expansion (8.45) cannot contain terms of the third order in 7 (or
1n*). Hence, in the absence of the magnetic field, the superconductivity is a phase
transition of the second kind.

In inhomogeneous systems, we have to account for the contributions of the
components of V7 into the free energy density. Taking into account that the
complex OP is invariant with respect to the transformation (8.44), this contribution
may be presented as const x|V nl*. Recall that the OP 7 is introduced here as an
effective wave function of the superconducting electrons. Then the operator (—/V)
represents the quantum mechanical operator of momentum of the particle and the
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contribution of the inhomogeneities into the free energy density of the system is
analogous to the density of the kinetic energy in quantum mechanics. It can be
presented as

1
const|Vn|* = o |—iliVn|?,

where 71 = 1.05x1073* J s is the Plank’s constant and m is an effective mass of a
particle. Thus, the free energy density of an inhomogeneous system takes the form

[ " b
&0, VP T) = go 5 |Vl +alnl* + 5 . (8.46)
In quantum mechanics, the vectors

. 1
1=

h
m (V" —n'Vn) = = |n’V @ (8.47a)
m m

J=qi (8.47b)

are identified, respectively, as the probability flux density and electrical current
density due to a particle with the electrical charge ¢ and the wave function n(r, ).
These expressions can also be used in our case assuming that n(r, 7), m, and g=—lel
are the effective wave function, mass, and charge of the superconducting charge
carries (e is the electron’s charge). A few years after the introduction of the GL
theory, it was discovered that the electrical current in a superconducting metal is
transferred by paired electrons. This means that e and m in the GL theory should be
replaced by 2e and 2m. However, because we do not intend to present here a
quantitative theory of superconductivity we will leave e and m in their original
form. In a superconducting state, the conducting electrons break up into two parts,
normal and superconducting, with the respective current density j, and j. Contrary
to the normal current, the superconducting one does not carry heat or dissipate
energy, hence, can be sustained without external sources.

So far we have been ignoring presence of the magnetic field in the material,
which may appear as a result of an external source and/or the current. Now we have
to ask the following questions: What will happen if the superconductor is placed
into a magnetic field H created by the external sources? How do we introduce the
magnetic field into the description of the system? What are the additional
contributions into the free energy due to the presence of this field?

First, recall that in Chap. 2 discussing the influence on the transition of the
external real-valued field H (which might be magnetic) we described it by the
contribution (—Hn) into the free energy density. However, such approach does not
work for a complex OP because this contribution does not have the right symmetry.
Second, as known [9], if a material is introduced into the external magnetic field of
strength H, it will develop the magnetic moment M which will change the field in
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the material. The latter may be characterized by the magnetic induction (in CGS
unit system)

B = H + 47M. (8.48)

B satisfies Maxwell’s equations (we consider only the case of the stationary
field)

VxB= 4—”j, (8.492)
C

V-B=0. (8.49b)

Third, to satisfy the condition of gauge invariance in the magnetic field, the
operator V must be transformed as follows [9]:

Vv —LXa, (8.50)
hic

where A is the magnetic vector potential related to the induction as
B=VxA. (8.51)

Fourth, the work done on the material to increase the field from B to B + dB is
H dB/4n. As the magnetic moment M of the normal phase (non-ferromagnetic) is
practically zero, introduction of the magnetic field will change the free energy
density of this phase as follows

2
gn(P,T,H) =go + B— (8.52)
8n
The “self-contribution” of the magnetic energy density should be included into
the free energy density because the magnetic field itself may be influenced by the
state of ordering.
Thus the free energy density of an inhomogeneous superconductor in a station-
ary magnetic field is

A . B2 hz
g(77777 7V777P7T7B) =8 to-+-—

8t 2m

. 2

ie b

V——A)n| +an+5* 852
hic 2

and the total free energy of the whole system is
G= J gdx

—Go(P,T)+J{B—2+h—2

87 2m hic

) 2
b
(V — KA)n‘ + a|77|2 + > |77|4} d*x.  (8.54)
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8.2.2 Equilibrium Equations

At equilibrium, the total free energy G must take on the smallest possible value.
Hence, equations that describe the fields at equilibrium should be obtained by
minimizing G with respect to the three independent functions (7, n*, A). Indeed,
n and n* are independent because a complex quantity is characterized by two real
ones and A is independent because the OP field affects the magnetic field through
the currents in the system. Varying G, (8.54), with respect to n* and applying the
Gauss theorem we obtain

hz . 2
oG :Jén*{—ﬁ (V —%A) n+an+b|n|2n}d3x +

n? . ie

where n is the unit vector normal to its surface and the second integral is taken over
the surface of the superconductor. Setting G = 0 and assuming that the variation
On* is arbitrary inside the superconductor and on its surface we obtain the following
equation and the BC

(8.55)

1 , e \ 2
—%(—th—;A) n+an+bln'n=0 (8.56)

(—ihv - §A>n ‘n=0ons. (8.57)

Variation of G with respect to 7 yields the equations which are CC to (8.56), (8.57).
Varying G, (8.54), with respect to A, using the following formula from the
vector calculus

U-(VxV)—-V.(VxU) =V (VxU)

and applying the Gauss theorem we obtain
_ 1 ihe , . 1 re\2 2| 3
G = JSA {4n(v X B)+ 2 (' Vi = V) + (C) Al }d X
1
+E }1{5A~ (B x n)ds. (8.58)
Setting 6G = 0 and assuming that the variation 8A is arbitrary inside the

superconductor and on its surface we obtain Maxwell’s equation (8.49a) with the
current density j [cf. (8.47), (8.50)]
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. e |inh
J=—— |5

* _ * E 2
ol (n"Vn —nVn )+C\77| A (8.59)

and the BC
Bxn=0onS. (8.60a)

This is not surprising because the stationary Maxwell’s equations can be derived
from the variational principle of thermodynamics [9]. Notice that in (8.59)
Jj represents the superconducting current only, because the normal current dies out
at equilibrium.

The BC (8.60a) yields that on the boundary of the superconductor

B, =0, B,=B. (8.60b)

Applying Maxwell’s equation (8.49a) to BC (8.60a) we obtain a BC on the
current

%j_n:(VXB).n:V.(Bxn)+B-(Vxn)=0- (8.60¢)

Notice that this BC can also be derived if BC (8.57) and its CC are applied to the
current defined by (8.47), (8.50). Equations (8.49a), (8.56), (8.59) with BC (8.57),
(8.60a) define the distributions of the OP and magnetic fields in the superconducting
material at equilibrium.

Let us analyze now the homogeneous solutions of the equilibrium equations.
First, notice that if B = 0 then we may choose the gauge A = 0 which will allow us
to define the OP in (8.56), (8.59) as a real number (e.g., the absolute value of the
wave function), that is, to reduce our equations to those that have been analyzed in
Chap. 2. Second, for weak but nonvanishing magnetic field, the equations take the
form

an+ bln|*n =0, (8.61a)

. €2 2

i=——Inl"A. (8.61b)
mc

The 7, = 0 solution of (8.61a) corresponds to the normal phase; then (8.61b)
tells us that j, = 0. For the superconducting phase

ng=n|"=——. (8.62a)

This phase becomes stable when a<0 (see Chap. 2). Then

2 2
A= lade, (8.62b)

Jg = —ns—
s * mc bmc
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Fig. 8.4 (a) A boundary of a superconductor with vacuum. (b) Superconductor/normal phase
transition layer

Applying operator V x to both sides of (8.62b), using Maxwell’s equations
(8.49), (8.51) and the formula from vector calculus

V x (VxU)=V(V-U) - VU

we obtain the Londons’ equation [10]

1 c bm c m
VB=—B, 0=-—/——==\/— 8.63
5 2le| | wla| 2le| Y mns (8.63)

Notice that the Londons’ equation is gauge invariant.

Let us use this equation to find the magnetic field distribution close to a plane
boundary of a superconductor with vacuum, which will be considered to be a
yz-plane with the x-axis directed into the superconductor (see Fig. 8.4a). Then
B=B(x) and, as it follows from (8.60b), B, = 0, that is, only the component of
the magnetic field parallel to the surface is not zero: B, # 0. Then (8.63) and BC
(8.60b) take the form d’B,/dx*> = B,/5> and B,0) = B, where B is the external
field applied parallel to the surface. Hence

B, = Boe /°. (8.64)

As you can see, the magnetic field penetrates only a thin surface layer of
thickness ¢ of the superconducting sample and decays quickly below this layer.
In the theory of superconductivity, this is called the Meissner effect.

Now let us calculate the free energy of a superconductor, e.g., a long cylinder,
which is placed into a constant magnetic field parallel to its axis. In this case, the
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equilibrium equations should be obtained by minimizing not the free energy G but
the following potential

O({n):P, T, H) = G({n}:P, T, B) — 1 jH Bd'. (8.65)

The integral in this potential, as we discussed above, accounts for the work done
by the external forces to maintain H = const(f). Let us call it the Gibbs magnetic
potential. Equation (8.65) is an example of Legendre transformation (B, G) — (H, @),
analogous to (V, F) — (P, G) (see Appendix F). As the OP is not involved into this
transformation, minimization of @ yields the same equation (8.56) and BC (8.57).
Variation of the additional term in the Gibbs magnetic potential gives

5JH-Bd3x=JH-(V x 0A) d’x
= JéA- (V x H)dx + 7{ (n x H) - 5A ds. (8.652)

Because there are no external currents jey, the volumetric term in this expression
vanishes

V x H= 7” jou = 0. (8.65b)

Hence, the equilibrium equation (8.59) remains the same but all parameters now
should be expressed as functions of H instead of B. The surface term will change
the BC (8.60a) to

(B—H)xn=0onS. (8.60d)
For the normal phase: , = 0, j, = 0, M,, = 0, and B = H. Hence,

H2
O, =Gy——V. (8.66)
8w

In the bulk of the superconducting phase: |n,| = /|a|/b and B; = 0. As the
magnetic field penetrates only a thin surface layer of the superconducting material,
the contribution of the first two terms in the integral in (8.54) is proportional to the
thickness of this layer times the cross-sectional area and can be neglected compared
to the contribution of the last two terms, which is proportional to the total volume of
the sample V. Hence,

2

@, = Go — %v. (8.67)

Comparing expressions (8.66) and (8.67) we can see that application of the
strong enough magnetic field makes the normal phase thermodynamically more
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favorable than the superconducting one. As the condition of the phase equilibrium
is O, = ®,, we obtain an expression for the critical field, that is, the external
magnetic field strength H. that renders the superconducting phase thermodynami-

cally (globally) unstable:
H. = 2|a|\/§ (8.68)

Assuming the linear temperature dependence of the coefficient a
a=oao(T-T.), (8.69)

where o>0 is a constant and T is the critical temperature of the transition (cf. Sect.
2.6.2), we obtain

H. =2a E(TC -T7). (8.70)
This relation is applicable only to T — T.—0 because in the derivation of (8.61)
we used the condition of not strong magnetic field. Notice that our analysis of the

superconducting transition yields that this is a second-order transition for H = 0
and the first-order one for H # 0.

8.2.3 Surface Tension of the Superconducting/Normal
Phase Interface

As we concluded in Chap. 3, the first-order transitions allow for a state of phase
coexistence, that is the state where two phases, which are at equilibrium with each
other, are separated by a transition zone of particular thickness. Hence, coexistence
of the superconducting and normal phases is possible at T<T, and H=H.. In the
theory of superconductivity, such state is called intermediate. We define the
interfacial energy (surface tension) as the excess of the total Gibbs magnetic
potential of the system with the interface, per unit area of the interface, compared
to that of one of the equilibrium phases. Let us calculate the surface tension o5 and
thickness of the plane n/s transition layer, which we choose to be parallel to
yz-plane with the x-axis directed into the superconducting phase (see Fig. 8.4b).
Then

Ons = J (Sb - 90;7) dx, (8.71a)

where all quantities depend on x only and

H-B a2
=g ——— d =gp——. 8.71b
p=8-—— amd p, =g -5 ( )
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For the vector potential, which has not been “calibrated” yet, we choose the
transverse (or Coulomb or London) gauge

VA = 0. (8.72)

Then we obtain that dA,/dx = 0 and we can choose A, = 0. Remaining two
components of the vector potential may be chosen as A, = 0 and A, = A(x). Then
B. = dA/dx. As the term iAV7 in the equilibrium equation (8.56) and the free
energy density (8.53) vanishes we arrive at the following boundary value problem

1 & 2 2
—%< hdx2+ An +an+bin'n=0 (8.73a)
dB, 4n e |ih [ ,dn dn* e
o U ~Inl"A, 8.73b
dx cmL (de de>+c|7l| ! ( )
x — —oo: n - phase, n=0, B,=H (8.74a)

F--

X — 4o0: s - phase, |n B.=0. (8.74b)

a
E )
The surface tension is

hZ

— 1 2
Ons = J {8—n (B2 —2H.B.) +5-

dn 2
dx

e 2 2
—) A2
+ (hL) Y Il

3
+a|n| + = \77| +2b}dx.
(8.75)

Given the BC (8.74) and formula (8.68) it is not surprising that the integrand
vanishes in the bulk of both phases. Notice that the OP in (8.73), (8.74) may be
selected as a real function. Then the variables may be scaled as follows

b dA  B.

55:%, i=m/i A:Hcé, B=o i (8.76)
and (8.73), (8.74) may be represented in the scaled form
& KzKA;— 1)’7“73}’ (8.77a)
i—? = A, (8.77b)
x — —oo, n=0, B—%zl,
x— 400, n=1 BZ%ZO7 (8.78)
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mc | b

and the tildes have been dropped. “These equations, unfortunately, cannot be
integrated in quadratures, but we can provide its first integral” [7]

where

2

dn\ 2 dAy’
(8 +e-mp ot (f)—eomi=1 650

where the value of the constant comes from the BC (8.78). Then expression (8.75)
takes the form

OHZ (> |2 (dn ? 2 2 4 daA ’
Ons = o J, [F(&) + (A =2)p" + 1 +(5_1) dx  (8.81)

oo

_OH2 [* |2 (dpY | dA (dA
_ OHE ™ d‘412 | dx 8.81b
=2 LO o 1) T (8.81b)

(Verify (8.81a) and (8.81b)!). Notice from (8.81b) that the surface tension may
vanish. One can prove (see [7]) that this takes place for the critical value of

1
o 8.82
K 7 (8.82)

Vanishing of the surface tension is an important phenomenon which comes
about as a result of interaction of the OP field and the magnetic field. It causes
many interesting effects in superconductors, including appearance of the electro-
magnetic vortices.

As for the thickness of the transition zone, (8.77a) shows that the length scale of
the OP variation is

& = Kd. (8.83)

This length is equivalent to the correlation radius because it determines the
range of statistical correlations of the OP fluctuations.
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8.3 Multicomponent Order Parameter: Crystallographic
Phase Transitions

Many cases of phase transitions cannot be described adequately by a scalar order
parameter. They require an OP of more complicated structure, e.g. a “vector.”
An example in the previous section, to some extent, is a case in point. Another
example is a crystallographic transition, i.e. symmetry change in a crystalline solid.
In this section, we will consider only equilibrium characteristics of such
transformations, which is well described by the Landau Theory of Phase
Transitions.

8.3.1 Invariance to Symmetry Group

Consider a transition from a “high-symmetry” crystalline phase to a “low-symmetry”
one, which may be characterized by the densities of atoms po(r) and p(r) so that

p(r) = po(r) + 3p(r). (8.84)

The functions py(r) and p(r) have different symmetries, that is, sets (groups) of
the transformations of the coordinates I" with respect to which the functions are
invariant. In this case, I'(p) = I'(8p) is a subgroup of I'(p,) because otherwise no
symmetry change occurs at the transformation point. As known from the group
theory [11], an arbitrary function may be represented as a linear combination of the
base functions {1, (y, ...} which transform through each other under any trans-
formation from the group I'. Moreover, the base functions may be broken into a
number of the linearly independent sets where the functions from each set transform
through the base functions of the same set only and the number of the base functions
in the set cannot be reduced any further. Such sets are called irreducible
representations and play a special role in the Landau theory because the symmetry
change associated with a particular transition may be described by one of the
irreducible representations only. Then we represent

f
Sp(r) = mig(r), (8.85)
i=1

where {¢;} is the set of normalized base functions of the group I'(py) and fis the
order of the representation. Because any transformation from the group I'(pg)
transforms the base functions {;} through each other leaving the coefficients
{7n;} unchanged, we may think of it as transforming {7;}s leaving {¢;}s unchanged.

If the set {¢;} is specified, the coarse-grained free energy G of a homogeneous
crystal with the density of atoms p(r) becomes a function of 7, P, and {7;} and may
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be expanded about p(r) if Sp(r) is small compared to po(r). However, this is an
expansion in powers of 7; as opposed to dp(r) because the coarse-grained free
energy of a homogeneous system cannot depend on the space coordinate r. As the
free energy of the crystal is independent of the choice of the coordinate system,
it must be invariant with respect to the transformations of the group I'(p). Hence,
the free energy expansion in powers of 7); should contain only invariant
combinations of certain powers I(”)(n,») and {7;} may be called a multicomponent
order parameter (MOP).

First, notice that the expansion of G in {7;} contains no linear invariants. Indeed,

f
existence of such, e.g., > o;n; = const, would mean that the set of base functions
i=1
{ii = 1,2,..., f} is not linearly independent, which contradicts our assumption.
Second, the only invariant of the second order—a positive definite quadratic

f
form—can always be normalized to the sum of the squares, 1 (n;) = > n?.
i=1

Third, the invariants of different orders I(”)(n,») are independent of each other.
Hence, the free energy expansion should take the form

f

G(T,P,{n;}) = Go(T,P) +A(T,P) > 1} + > B,(T,P)I) (1))

i=1 V4

+ 3 C(T P () + -,
q

where I,(,B)(n,-) and 1,54)(77,-) are invariants of the third and fourth order, respectively.
Crystallographic symmetries of the system determine what invariants should be
included into the expansion, which in turn determines what kinds of transitions may
take place in the system. The coefficients of expansion determine the characteristics
of the transition, like phase diagrams and thermodynamic quantities. Thus, the
proper irreducible representation converts description of the system through the
atomic density into the one through the MOP.

8.3.2 Inhomogeneous Variations

As in the case of a one-component OP, the total free energy of an inhomogeneous
system is an integral over the entire volume of the system

G= J gd3x (3.27a)
%
of the free energy density ¢, which depends on the variables that characterize the

state of the system and their spatial derivatives. Hence, the spatial derivatives of
MOP must be included into the free energy density function

(o (32))
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A physically consistent functional dependence of ¢ on {8” n;/0x!'} is the subject
of this subsection.

Because the equilibrium free energy comes from minimization of the integral
(3.27a), two points regarding the functional dependence of § on {8” n;/ axf,j} should
be kept in mind. First, only spatial derivatives of the first order should be included
into the first approximation of ¢ because through the integration by parts the higher
derivatives can be reduced to lower derivatives plus the surface term. Second, the
inhomogeneous contributions may be broken into invariant combinations and
considered separately. Hence, ¢ should not contain linear combinations of
(On;/Ox) because they may be integrated into the surface term (recall the Gauss
theorem). The bilinear in MOP and linear in spatial derivative terms may be divided
into two contributions: symmetric

377,‘ on; 877[77j

- . = 8.86
" 8xk 77] axk 8xk ( a)
and antisymmetric
On; o,
=== 8.86b
"l axk 77] 8xk ( )

The former are not essential because they are perfect differentials and can also
be integrated into the surface terms. The latter, called Lifshitz invariants, cannot be
integrated out and deserve special attention. Notice that the group I'(p() transforms
components {07,/0x;} as the components of the position vector times the compo-
nents of the MOP. Hence, the Lifshitz invariants transform as the components of the
vector times the “antisymmetric square”

e (0)n, (1) — 1y (r) i (x'). (8.87)

This means that the Lifshitz invariants are not true scalar invariants of the group
I'(po), but they can be linearly combined into such. If the system of interest supports
only homogeneous equilibrium phases then the Lifshitz invariants must be absent
because their presence does not allow a homogeneous in MOP state to minimize the
total free energy. (Why?) The condition of absence of the Lifshitz invariants in the
free energy expansion is equivalent to the condition that the antisymmetric square
(8.87) does not transform as a vector. Crystallographic conditions for this are beyond
the scope of this book, they can be found in [11]. If, on the other hand, the system of
interest may sustain heterogeneous equilibrium phases (e.g., the so-called incom-
mensurate phases), then presence of the Lifshitz invariants is warranted.

In this section, we consider systems that support the homogeneous phases only.
Hence, the inhomogeneous part of the free energy density should include only the
bilinear in MOP and spatial derivatives terms

- 1) ekt O Oy
§=g(T,P,{n;}) +xj ox; Oy, (8.88)
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where KU is the fourth rank tensor of the gradient-energy coefficients and the
summation over the repeated indices is assumed. For the homogeneous state of
the crystal to be stable, the inhomogeneous term should allow partitioning
into positive definite invariants of the second order in the components of the
gradient {0n,/0x;}. Hence, the transformation properties of the components of
the gradient {5nk/8xl} determine the symmetry of the tensor rc . Also, symmetry
of the tensor x jIS determined by the symmetry of the system e.g., crystalline

anisotropy [cf. (3.20a) and the discussion afterwards].

8.3.3 Equilibrium States

Equilibrium states of the system described by the free energy (8.88), (3.27a) obey
the following simultaneous equations (see Appendix B)

oG 08 1o} 0g
=5 _ 7 =0. (8.89)
5771< SO Ox (aﬁk/axi)

Let us consider a system where rj| = dx,d;} /2, that is

= o(T.P, () + o (20, 890)

Then the simultaneous equations (8.89) take the form

% _ « 01

- =0, k=1,...,f. 8.91
8771{ K; 8)(12 ) ) >f ( )

Notice that in the second term there is no summation over k but there is
summation over i (Why?).

Thermodynamic stability of a heterogeneous equilibrium state {7 (x)} is deter-
mined by the sign of the second variation of the functional

8°G = % JV onHon, dx, (3.121)

where now 8n = (d7;). The sign of the second variation is determined by the
spectrum of its Hamilton’s operator

I:I \Pk,n = An LIlk.,n;
P g P4 N
B(Bnk/ax,-)a(ﬁr],/axj) ax,- ij '

(8.92)
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Same as in the case of the one-component OP, the gradient

O

Yikn = .
1

(8.93)

is the Goldstone mode of the equilibrium state, that is, the eigenfunction with zeroth
eigenvalue: A, = 0.

A particular interesting situation arises in a one-dimensional system where all
variables depend on one coordinate only, e.g., x; = x. Then (8.91) take the form

k d277k 0g
w2 oy k=1, ..., f. (8.94)
Using the thermo-mechanical analogy of Chap. 6, these equations may be
interpreted as describing a conservative mechanical system of f interacting particles
with x as the time, n;—coordinate of the kth particle, x;,—its mass, and (—g) as the
potential energy of the whole system. Such system has the first integral—the total
mechanical energy, kinetic plus potential [12]. To see this in our case, we multiply
both sides of (8.94) by (dr,;/dx) and sum them up over k. Then

d (1 (dy Y| _ 9g dn _dg
deK (dx) _&nkdx_dx' (8.95)

Hence, the “conservation of mechanical energy” expression takes the form

Uoafdn (T,P,{n}) = — 8.96)
2K dx 8\, 7{77i} =M (

where i (negative of the “total energy”) is the value of g inside the homogeneous
phases [cf. (3.42a)].

An interesting application of this relation appears if one wants to calculate the
interfacial energy ¢ between two coexisting phases. As we discussed in Sect. 3.4.4

GEJ (g'—,u)dx:2J (g — p)dx. (3.70b, c)

—00 —00

Then, using (8.90) and (8.96) we obtain an expression

00 dn2
k k
= —_— dx 8.7
o me<dx> , (8.97)

which may be interpreted that the interfacial energy is, so to speak, a weighted sum
of the squares of all the gradients of the OPs.
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Fig. 8.5 The surfaces (g—go) from (8.98) as functions of (1, 17,) forA = —1, C, = 1 and different
values of C;: 1.25 (a) and —0.25 (b)

As an example of a system with MOP let us consider the following free energy
density

1 1 1
g =2o(T,P) +5A(n} +75) +5Cuminm + 7 Ca (i +73). (8.98)

This potential describes transitions in a crystalline structure that belongs to the
crystallographic point group Dyy,. It may be visualized by a body-centered tetrago-
nal Bravais lattice in which the transitions constitute displacements of the central
atom away from its most symmetric position [13]. The surfaces (g—go) as functions
of (ny, mp) for A = —1, C, = 1 and different values of C; are depicted in Fig. 8.5.
At C; = C, the surface (g—gy) is called the “Mexican hat potential” because it is a
function of (7]12+ 7]22) only.
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The homogeneous equilibrium states of this system are obtained from the
following system of simultaneous equations

98 _

= (A+ Cims + Canf) =0, (8.99a)
1

98 Ci? +Con) =0 8.99b
5772—772( + Cui + Cop) = 0. (3.99b)

The system has nine solutions, which may be divided into three groups

Ey= (7, =1, =0), (8.100a)

A A
E, = (771 =0, 77% = ——> or (nf =——, 1 =0>, and (8.100b)

c, C,’
A
Ey = (n? =1 = o C2). (8.100¢)

In Fig. 8.6, the equilibrium states E, E, E, are depicted in the plane (1, 7,).
Conditions of local stability of the equilibrium states are the following

g

=_—2>
2
om

D(E)

2 2 2
g ( o8 0. (8.101)

2
=on o 5‘7715772) >0 and gu(E)

Applying this criterion to the states (8.100) we obtain their respective regions of
local stability

Eo:A>0, (8.102a)
C
E :A<0, Z's1, (8.102b)
C
Cq
E:A<0-1<Z<l. (8.102¢)
>

For the states E; to be real valued in the domain of their stability it must be
C,>0 (8.102d)

which will be also assumed for all other cases. According to our definition of a
phase as a locally stable homogeneous-in-OP state of a system (see Sect. 2.2), the
states Eq, E;, E, are phases in the domains (8.102a), (8.102b), (8.102c), respec-
tively. Each phase, E; and E,, has four variants of different “orientation” in the
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n2 00—

-1.5 -1 -0.5 0 0.5 1 1.5

Fig. 8.6 Equilibrium states E(, E;, E, of the system with the free energy density, (8.98), for
—A/C, = 1 and C,/C, = —0.25 in the order-parameter plane (7, 7,). Colored trajectories are the
domain-wall transition paths for different values of the gradient energy coefficients:x = 0 (purple),
x = 0.2 (pink), k = 0.5 (red), k = 1 (black), k = 1.5 (blue), k¥ = oo (brown). For C; = 0 states,
E, will be in the corners of the square described around the circle “a”; for C;/C, = 1—on the arch

[TPuIn

of the circle of radius equal to “a”; for C1/C,>1—on the circle of radius smaller than that of “a.”
Dashed lines are the trajectories of the domain-wall transition paths for C,/C,>1

domain of its stability. The phase diagram of the system (8.98) is presented in
Fig. 8.7 for C, = const > 0. As you can see, this system has three phase transition
lines: (A=0, —C»<C<C>), (A=0, C;>C5), and (A<0, C;=C,). All transitions are
of the second kind because at the transition lines the stable states exchange their
stabilities with the unstable ones and there are no regions of coexistence of the
stable states (phases).

Analysis of inhomogeneous equilibrium states of the system presents another
interesting problem for us. As we saw in Sect. 3.4, the stable 1d inhomogeneous
state represents a transition zone between two phases separated by an unstable
barrier state. Using the free energy (8.98) for (8.94) we obtain

d2
K1 d):]zl = An, + Cimymj + Corj, (8.103a)
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Fig. 8.7 Projection of the AA
parameter space (A, Cy, k,) of E Eo
the system with the free 0
energy density (8.90), (8.98) —Co 0 Co C1
on the plane. The phase @~  =——==== | > -
(stability) diagram (A, C,) for I % g
C,r=const >0 | o <
no stable || Es 2 Es 2 Eq
states | 3 [}
| £ £
! &
|
|
| —+
| K1
A\ Ko
d2772 —A 2 3
KZW— 1, + Cimyn, + Cany. (8.103b)

Physically, there are two main types of the interfaces: inter-phase boundaries
between two phases of different symmetries, e.g., solid/liquid or fcc/bee, and anti-
phase boundaries (APB, domain walls) between two different variants of the same
phase, e.g., magnetic or order/disorder. For the system described by the free energy,
(8.98) only the second type, APB, is possible. (Why?) The APBs exist only for
A < 0 because the phase E has only one variant. Six different types of APBs may
be found in each phase, E; and E,. Their symmetries depend on the kinds of the
variants that are connected by the APB and the barrier state that separates them. The
base symmetries, (E1«—Ey—FE, or E,«—E,—FE;) and (E,—Ey—E, or Ey—FE|—E>)
are broken by the gradient-energy anisotropy. As a result, there appear six main
types of the APBs, which may be found in the phase E; or E, in different
modifications (see Fig. 8.6). Their interfacial energies depend on the values of
C,, C,, and K, K,. Effect of these parameters on the interfacial energy of the
domain wall depends on its symmetry. If C; = 0, the simultaneous equations
(8.103) break down into two independent equations for two different OPs.
This means that the domain wall consists of two parts which coexist without
interactions. In the scaled units

X o A C K>

— — X, — 0, a = —— Cc =
VK1/Ca VK1Cy

— 8.104
C,’ C, K . ( )

the dimensionless parameter k is a measure of the gradient-energy anisotropy in the
OP space (1)1, 72)-

In the isotropic E, phase (x = 1), the OP symmetry is not broken and the
transition path is represented by the straight-line diagonals connecting the
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equilibrium states in the OP plane (Fig. 8.6). The energy of the special cases of
(E, «— E¢ — E>,) interfaces are

2V2(1+ Vi)a?/3, ifc=0

(8.105a)
W24 /3(1 4 ¢), ifk=1

OB, —E—E,(a,—1<c<1,K) = {

For the nonspecial cases of ¢ and k, the solutions may be obtained numerically
using the ideas of the thermo-mechanical analogy from Chap. 6. In Fig. 8.6, the
results of the computations are presented in the OP plane. Notice two features of
the trajectories. First, in both cases, they pass through the state E as the barrier,
which is the local maximum of the free energy (see Fig. 8.5b). Second, they press to
the “hard” OP axis more than to the “soft” one. (Why? Hint: think about the
interfacial thicknesses of the soft and hard OPs separately). The interfacial energies
of the respective domain walls are

2.16, ifxk=0.5

2.80, ifx=1.5. (8.105b)

O'E2<—E0—>E2(a = 17 Cc = —0.25, K) = {

For the (E, «— E; — E,) interfaces, the symmetry between the OPs is broken
even if k¥ = 1 and the transition-path trajectories are represented by the respective
hyperbolae in the OP plane (Fig. 8.6). The interfacial energies of these layers are

2/2(1=¢)a*?/3(14¢), k—0
OF, E,—E, (Cl, —1<c<l, K) — (8.106)
2¢/2k(1—c)a*?/3(14¢), k—o0-

The type of the interface, (E>«—Ey—E>) (8.105) or (E,«—E;—E;) (8.106),
depends on the symmetries of the terminal phases that the interface connects.
Both types of interfaces are thermodynamically stable, that is, their Hamilton’s
operators, (8.92), do not have negative eigenvalues. In Fig. 8.8, the interfacial
energies of the two types of interfaces are plotted as functions of x. As you can
see the interfaces of different types may coexist in the same phase although they
have different amounts of energy.

In the £ phase (c>1), there are two types of the APBs: (E;«—0—FE;) where only
one OP varies while the other one is zero and (E,;+2—FE;) where both OPs vary
simultaneously. The symmetry of the (E{«0—E;) interfaces is broken by the
gradient-energy coefficients and the trajectories of these interfaces in the OP
plane represent, respectively, the horizontal and vertical straight lines (see
Fig. 8.6). Trajectories of the (E;«2—FE) interfaces in the OP plane are arches.
The interfacial energies of the (E;+—0—FE)) interfaces are

Op, £y, (@, c>1, k) = (2V2/3)d*? (8.107a)

Or1Ey—k (@, ¢>1, K) = (2V2/3)\/ka*/? (8.107b)
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interfacial energy o

\ \ \ \
0 0.5 1 1.5 2
gradient energy coefficient k

Fig. 8.8 Scaled interfacial energy o of the domain walls in the phase E, at ¢ = —0.25 as a
function of the scaled gradient energy coefficient k. Blue curve—(E, «— Eq — E) type, (8.105);
green curve—(E, — E; — E5) type, (8.106)

Example 8.3 Find the equilibrium states of the free energy density that describes
transitions from fcc to L1, crystalline structure

. 1 1 1 2
§=2g0 +§A(7ﬁ +m5 +173) +3Bmmn; +5C (11 +m3 +13)

| 1
4 (i + 713+ 113) + EK(IVm ’+ [V, + |V773|2)- (8E.10)

8.4 Memory Effects: Non-Markovian Systems

In Chap. 7, we proposed the dynamic equation for the OP evolution (7.31) that takes
into account effects of the driving force (first term in rhs) and fluctuations (second
term in rhs). Let us look closer at the following property of this equation: the
response of a system to the driving force is simultaneous with the application of the
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force. As a general rule, such simultaneity in a macroscopic theory turns out to be
an approximation to causal behavior, where the response to a force comes after the
application of the force. Usually simultaneity is associated with ignoring certain
molecular variables. Indeed, although the time dependence of a system is governed
by equations (Hamilton’s or Schrodinger’s) that show an instantaneous response,
complete specification of the microstate of the macroscopic system requires know-
ledge of a very large number of molecular variables. In our mesoscopic description,
the microscopic variables are coarse-grained and we deduce evolution of the system
from the equations for the OPs, pretending that other variables do not chgange
(see Appendix A). This is where the causality is violated. The reason why we want
to reexamine the dynamic Langevin equation (7.31) instead of TDGLE (5.1) is that
we would like to assess and compare the effect of causality and fluctuations at the
same time. To do that, we need to derive (or at least substantiate) a causal evolution
equation, which we will call the generalized Langevin equation, and then investi-
gate the validity of simultaneity as a limiting case.

First, let us ask ourselves a question: how did simultaneity “enter” our theory?
In Appendix G, we showed that the Langevin equation is equivalent to the Fokker-
Plank equation (G.10), which can be derived from the master equation (G.6). In the
master equation, evolution of the system depends on the transition probabilities
W(wlw"), which depend only on the states between which the transition occurred
and does not depend on the previous states of the system. This Markovian property
is the source of simultaneity in the system.

If the Markovian condition is relaxed, evolution of the system will depend on its
“history.” In the Fokker-Plank equation, this will result in the jump moments a;, a,
being dependent on the memory effects. The Langevin equation with the memory
effects takes the form

dn ' NG
i L I'it—1) o ()dd + &(r, 1), (8.108)
where I'(s) is the memory function, which depends on the time difference between
the present 7 and past ¥ moments and assigns certain weights to the driving force
applied in the different moments of the past. The instantaneous Langevin equation
(7.31) can be recovered from (8.108) if the memory function has “very short
memory”

[(t—1)=7y5(t—1). (8.109)

On the other hand, if the system is characterized by a finite “memory time” 7,
its memory function can be written as follows

[(t—1)= Loe =)/, (8.110)
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Notice that the instantaneous case, (8.109), can be recovered from the memory
case if

Tm — 0, Tp— o0, and 1, ' = 7. (8.111)

(Verify! Hint: Integrate (8.109), (8.110) from ¢ to co!)
Differentiating (8.108) with respect to the time (recall the rules of differentiation
of integrals with respect to a parameter) we obtain

dé

d’n oG 1 oG, .,
JF(r—t)(S—n(t)dt+E(r,t) (8.112)

= TG 0+

Tm Jo

(see Appendix G regarding d&/dr). Excluding integrals from (8.108), (8.112) we
obtain differential equation for the OP evolution in a system with memory
described by the memory function (8.110)

d’n 1 dpy 0G 1 dé
—+——=-T t)+—E&(r,t) +—
de 1, dt (0 +—&r0) + dr

0% o (r,1). (8.113)

Notice that in the limit (8.111) we recover from this equation the instantaneous
case, (7.31).

As you can see from (8.113), the memory gives rise to two different effects in the
system’s evolution. First, the driving force (—8G/0n) “excites” not only the first
derivative of the OP (speed) but also the second one (acceleration), which causes
more long-term effect than in a system without memory. Second, the memory
enhances the effect of fluctuations on the system by “engaging” the first derivative
of the Langevin force &(r, £). Let us study these effects separately.

First, let us look at the effects of memory on small deviations from equilibrium
states. For the present purposes, it will suffice to study homogeneous deviations only
An = n(t) — 7 (see Sect. 4.4) because heterogeneities do not incur any new features
on the system. Expanding the driving force about the stable equilibrium state 7, the
evolution equation without the effect of the fluctuations will take the form

1 .1 2g 1712
An+—An+=An=0, 1, = |To==(7 . 8.114
nt 77+T% n=0, [oanz(n)} ( )

Using the thermo-mechanical analogy of Chap. 6, this equation describes motion
of a damped linear oscillator [14]: adding the memory term is equivalent to adding
mass to a dissipative system.

Equation (8.114) is a linear homogeneous ODE with constant coefficients,
properties of which are very well known [15]. The nature of its solution depends
on whether the characteristic equation

1 1
P+ —q+—=0 (8.115)
Tm T

r
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has the roots

1 J2—412
ge=—5 Vo (8.116)

that are real and different or coincident, or complex.

Short memory: 1,<7,/2. Both roots are real and negative: ¢_<gq,<0, and the
solutions of (8.114) are given by

An(r) = Ae?' + Bed-, (8.117)

where A, B are constants. The most important difference of these solutions from
those in the instantaneous case (see Sect. 4.2.1) is the dependence of the relaxation
rate on the memory constant 7,,,. Even in the case of very small memory time:
Tm<T,, the largest relaxation time in the system, which determines its long-time
properties, is 7,°/7,,. Mathematically, as one can see from (8.114), this happens
because the memory constant multiplies the highest derivative of the evolution
equation. Physically this means that the memory effects are always significant in
the long run.

Long memory: 1,>7,/2. The roots (8.116) are complex with negative real parts and

the solutions are
/42 — 12
A(t) = Ae"/*™ cos (Mr + oc) , (8.118)

TmTr

where A, « are constants. A typical solution of this type represents an oscillation
about the equilibrium state Ap = 0 with the exponentially decreasing amplitude,
decaying slower for large memory constant 7,,,. Notice that the rate of approach to
equilibrium is determined by the memory property instead of the relaxation one. In
the case of very long memory: 7,,>>1,, the system approaches equilibrium at a very
slow pace, 7., ', during which many oscillations about it will be made with high
frequency of 7, .

Critical memory: 1,=1,/2. In this case ¢_=qg,=—1/21,,. The solution
An(t) = (A 4 Br)e /% (8.119)

represents aperiodic approach to the equilibrium with the rate determined by the
memory constant Ty,.

Now let us pose another question: What changes in the properties of the
Langevin force &(r, f) will be caused by the memory effects in the system? To
answer this question let us try to do what we have done in the case of the
instantaneous response, that is, to calculate the long-time limit of the equilibrium-
averaged square of the deviation of the OP from the equilibrium value. The linear
generalized Langevin equation (8.113) takes the form
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1.1 1 ;
An+T—An+§An:T—£(I)+£(I). (8.120)

T

The solution that satisfies the initial conditions
An(0) = An(0) =0 (8.120a)

may be written in the Cauchy’s form

) = [ M) | 66+ 60 8.121)
0 m
where the kernel
+(t—s) _ aq-(t—s)
Mlt,s) = M(r—s) =S =77 (8.121a)

is a one-parameter solution of the homogeneous equation (8.114), which satisfies
the following initial conditions:

M(s,s) =0, M(s,s)=1. (8.121b)

(Verify (8.121)!) The kernel M actually depends on the difference (—s) because
the coefficients of its differential equation are const(?).
Integrating (8.121) by parts and taking (8.121b) into account we obtain

An(t) = —M(1)&(0) + J L(t — s)&(s) ds, (8.122)
0
where
- 1 qie”" —q et
L(t)y=M —M(t) = ————. 8.122
(0 = Mo) + () = 15— (8.1220)

To satisfy the BC (8.120a), we must choose £(0) = 0. Then the equilibrium-
averaged square of the OP deviation (8.122) takes the form

@) = [ [ 1= st s2)e(o0) 2050 s s, (8.123)

0Jo

In the long-time limit, the autocorrelation function K:(s,—s1)=<&(s1)E(s2)>
depends only on the difference (s,—s;), and the kernel of the double integral depends
only on the sum (s, + s7). To verify the last statement you may consider the function
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2
R(1,12) = (g1 = g-)'L(0L(ts) — [l /210) - g_elan/2ise)]

=q.q_ [ze(qf+q+/2)(n+fz) _ ed+hta-b _ eqfnﬂmz}

and notice that

dR
— =R =0.

Then, changing the variables in (8.123) to u = (s, — 81), U = t—1/2(s5 + 51)
and using the same method as in the integration of (7.36), we obtain

00 g U _ g, U172 +00
<A772(oo)>:J {u} dUJ K (u) du, (8.123a)
0 4+ — q4- —o0
1 T Tm\ [T
g (g K:(u)d 123b
21 (Ter‘fr)Joo ¢(u) du (8.123b)

(Verity (8.123b)!).
Regardless of the memory, in the long-time limit, the system approaches the
equilibrium state where (An?) = kgT/[V0*g(7})/On*], see (7.15). Hence,

) = G o) + e 2P0 )

-+00 2 T
J ks (8.124)

This relationship sometimes is called the second fluctuation-dissipation theorem.
It provides the foundation for a discussion of the properties of the Langevin force in
the system with memory. Notice that in the asymptotic limit (8.111) we recover
(7.39). However, if the characteristic memory time is very long, 7,,>>1,, then the
correlation function of fluctuations depends on the memory and is independent of
the relaxation properties of the system.

If the Langevin force is irregular, the correlator K is proportional to the delta
function. However, it is reasonable to assume that in a system with memory the
fluctuation process is correlated over the time period equal to the time constant 7,,.
Then, taking into account, the property of symmetry of the correlator [see (G.45)]
and the second fluctuation-dissipation theorem, (8.124), we obtain

ke T

— e Tge 2l 8.125
vy @) (8:129)

(€(n)é(n)) =
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8.5 “Mechanical” Order Parameter

Consider a system, which is described by two scalar OP fields, ¥/(r, f) and 7(r, 1), of
different nature. The OP i/ represents generalized coordinate characterized by the
mass density p, while the OP n(r, #) is “massless,” that is, its mass density is zero.
Then, in addition to the potential energy and gradient energy, the system is
characterized by the kinetic energy. In the spirit of our previous discussion, we
will assume that the field 7n(r, ¢) is responsible for dissipation of the mechanical
energy of the system. The field y/(r, f) may be called mechanical (Lagrangian) and
the field 7(r, f)—thermodynamic. In the field theory (see Appendix D), such system
is described by the Lorentz-invariant Lagrangian density

1y =20 () - Ly (9057 — LW = atom) (8.126)
=sp| 5 ) 5K — 5K —u(y,n), :
=P o) 2 PR

where 1, K, are the gradient-energy coefficients of the fields y/(r, ), n(r, f), and u is
the potential energy density of the system, assumed to be nongravitational. For the
Lagrangian density (8.126), the mechanical energy of the system is [see (D.18)]

N . 2 Y P 2272 R P B
E:Ld%{mg—l} Ld%x{z,o(at) +§k,/,(Vl//) +§k,,(V7]) +u(p,n)|.
(8.127)

Many physical systems can be described by the fields y(r, ¢) and n(r, ?).
The following two examples are of interest for us. Martensitic transformation is a
distortion of a crystalline lattice that does not need long-ranged diffusion of atoms.
It is often characterized as a polymorphic (e.g., fcc-to-hep) diffusionless transfor-
mation controlled by shear stress and strain. The field iy may describe distribution
of shear strain in the material of mass density p with the gradient energy coefficient
Kk, related to the nonlocal elastic behavior of the lattice. However, the purely
mechanical description does not account for the dissipative interatomic
interactions, which lead to the losses of the mechanical energy. These interactions
may be described by the field n(r, f). Another example comes from the area of
cracks propagation in brittle materials. In this case, the Lagrangian field iy may
characterize displacement of the material perpendicular to the plane of the crack;
then, displacement gradients correspond to components of strain. The dissipative
field n represents defective material and distinguishes between broken (n=0) and
unbroken (n=1) states.

For the equation of motion of the field y(r, f) we may try to use the Lagrange
equations (D.14); their right-hand sides may be expressed as the partial functional
derivatives of E, that is, with respect to the spatial variations of the respective fields.
So, for the field Y (r, f) we have
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0*y OFE

0 a2 oy (8.128)

For the massless field n(r, t), the Lagrange equation of motion (D.14) turns into
an equation of equilibrium, which means that the dynamical evolution of this field
is not governed by the Hamilton’s principle. Hence, the Lagrange equation for this
field must be replaced with the dissipative one. For the massless field 7(r, f)
deviation of the partial functional derivative of E from zero is a measure of
the deviation of the system from equilibrium, that is, the thermodynamic force.
Hence, we may assume that the rate of change of the field 7(r, ¢) is proportional to
this force

- (8.129)

This equation is analogous to TDGLE (5.2) with the mechanical energy E
replacing the free energy G.

Let us calculate the rate of dissipation of the mechanical energy E.
Differentiating (8.127) with respect to time as a parameter, integrating by parts
and dropping the boundary term we obtain the time derivative of the mechanical
energy E

dE 5 0%y oY SOE Oy OE On
— = -+ — —+— —. .1
dt de[p o2 or oy ar "oy or (8.130)
Due to the equations of motion (8.128), (8.129) this is
dE OEN
—=—| &x[ ). 8.131
dr ‘ JQ x(577) ( )

Equation (8.131) shows that, indeed, changes of the field energy E occur due to
evolution of the field 7(r, ) only with no effect of the field y(r, 7). As the energy of
a mechanical system cannot be produced but may be dissipated, we conclude
that ¢>0.

According to the Lagrangian field theory (Appendix D), the states of mechanical
equilibrium are described by the following simultaneous equations

— =1,V =0, (8.132a)

—=——1,Vn=0. (8.132b)
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Notice that in the nongravitational system the mass density p has no bearing on
the equilibrium states. For a homogeneous equilibrium state, (8.132) yield that

Ou @

_(‘//777) :3”

3 (,m) = 0. (8.133)

For a heterogeneous equilibrium state let us consider an interface, that is, a 1D
transition region between large regions of two different homogeneous equilibrium
states (,, 1) and (¥, 7). Such state has the first integral (D.19)

1 (dyY 1 (dp)
>k <dl)€> +§Kn <d;7) —u(¥,n) = const(x) = —v. (8.134)

The first integral (8.134) yields that in the terminal phases

u@W,m) =v, i=op (8.135)

because

d d

aw:an:(), at x — $oo (8.135a)
and

du

a(%m) =0, atx— oo (8.136)
because

du  Oudn  Ou dy

5= ey (8.137)

The interface can be characterized by the surface tension

+00 2 2
o= J, l;c,, <3;7) + Ky Clb)] dx = 0, + gy, (8.138)

where ¢, and g, are the partial tensions

+00 2 +00 2
o= [K,ICZZ)}dx; =l lw@”)]dx. (8.138a)
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To analyze the dynamical properties of the system described by (8.128), (8.129)
we look first at the evolution of the small deviations of the fields from the
homogeneous equilibrium {/;, 1;} described by (8.135)

o =y(r,1) =y, 0=n(r1)—n. (8.139)

Expanding the potential energy function about the equilibrium state {i;, 1;} we
obtain

1 1
u(,n) = v+ Eul/,,/,goz + thy 00 + Eunnez +h.ot, (8.140)
where
O%u
Upg = M(W,«,m); pa=,n (8.140a)

Then dropping the higher-order terms (h.o.t.), (8.128), (8.129) transform to

P )

Pgp = KNP = (upyp + uy,0), (8.141a)
190
— = V0 = (o + uy0). (8.141b)

Here uy,, plays the role of the interaction coefficient in the sense that if u,, = 0
the two fields have no linear interactions and evolve independently (to be exact—
almost independently because still there may be nonlinear interactions between
these fields). In this case, the independent fields i and 7 have significantly different
dynamical properties: evolution of the field i is described by the wave equation
with the phase velocity

Coh > ¢y = %W (8.142)

and linear dispersion proportional to u,,,, while evolution of the field 7 is described
by the heat equation with Newton’s cooling (or heating) proportional to u,,,, which
determines growth or decrease of the field.

If the interaction coefficient is not zero, uy, # 0, properties of the fields
described by (8.141) change significantly. To reveal an important property that
appears as a result of the interaction, we could represent the waves ¢(r, t) and 0(r, )
as Fourier modes and study their spectrum, as we have done that in Sect. 5.2.
However, we find it here more instructive to demonstrate different method.
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It will suffice to consider evolution of the homogeneous modes () and 6(¢) only.
Then (8.141b) can be resolved as follows

iy = 47/

n (8.143)
55 (—etty)

t
0= J gt (!=1) [—sum/,go(t')} dr =

The second equality in this expression is obtained by applying the Taylor’s
formula to (). Restricting the series in (8.143) by the first three terms and
substituting them into (8.141a) we obtain

ur \ d? uj, d u,
<p ¢n>_‘p+ﬂ_@+ tyy — 22 o = 0. (8.144)

T 2.3 2 2
ey, | A euy, dt -

This equation is analogous to an equation of 1d motion of a particle with the
generalized coordinate ¢ in a potential field ~o® and medium with a dissipative
force which depends on the speed of the particle. The generalized mass of the
particle and the potential function are affected by the interaction coefficient uy,, and
the dissipation coefficient

2
_ My

ey
ety

(8.145)

is proportional to the interaction coefficient squared. Similarly, taking into account
the gradient energies of the field y and 7, we can derive from (8.141) the telegraphic
equation [16], which describes propagation of the damped waves in a medium with
damping proportional to the interaction coefficient squared.

The series in (8.143) can be approximated by the first three terms only if the
characteristic time of oscillations of the field i is much greater than that of the field 7).
If the y—n interactions are not strong

2
u;,
— < (8.146)
Uy U

then the former is / p/u./,l/, and the latter is (8u7m)71, see (8.141). Hence, the
condition of applicability of (8.144) is

ety L= > 1. (8.147)
tyy

This mean that the dissipation coefficient (8.145) is small

o K \/PUyy . (8.148)
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Equations (8.144)—(8.148) shed light on the physical nature of dissipative forces
in mechanical systems: they come from the interactions with other degrees of
freedom, dynamics of which is dissipative.

The dynamic equations (8.128), (8.129), (8.132) support the 1d train waves
traveling with speed v. The waves are described by the nonlinear equations

v2\ d*y  Ou
Ky <1 _%>E:wv (8.149a)

&®n vdn Ou
= 8.149b
Kndx2+sdx on ( )

Compared to the system of two Lagrangian fields (see Appendix D) (8.149) do
not have the first integral. Exact solutions of (8.149) with interacting fields s and n
are possible but not known to the author. However, there is a lot that we can learn
about the system (8.149) without solving it exactly. Let us multiply (8.149a)
by dn/dx and (8.149b) by dy//dx, add them together, and integrate the sum from
—0o0 to +o0. Then, using (8.137) we obtain the relation for the wave speed

€Ky

v =—{u(n, ,) —u(ngvg)l. (8.150)

oy

Notice that, contrary to the Lagrangian system of Appendix D, the selection
problem—finding the unique value of the velocity of the train wave—is resolved
for the system (8.149). This is a consequence of the dissipative nature of the field .
The velocity v is proportional to the potential energy difference between the
equilibrium states o and f§ with the coefficient of proportionality that may depend
on the speed v through the partial tension o,. However, to estimate the kinetic
coefficient in (8.150), we can use an equilibrium estimate of the surface tension or
abbreviated action as 0,/ =k, [na — nﬁ]z, where [ is the thickness of the transition
region [see (D.26), (D.28) and Example 3.1]. Then

“(%a ‘//:x) - “(77/;7 wﬁ)
[771 - 77/3]2

v el

: (8.151)

References

1.JW. Cahn, J.E. Hilliard, Free energy of a nonuniform system. III. Nucleation in a
two-component incompressible fluid. J. Chem. Phys. 31, 688—699 (1959)

2. M. Hillert, Acta Metall. 9, 525 (1961)

3. J.W. Cahn, Acta Metall. 9, 795 (1961)

4. H. Metiu, K. Kitahara, J. Ross, J. Chem. Phys. 65, 393 (1976)



200

O 0 3 O\ W

10.
11.

12.

13

14.
15.

16.

8 More Complicated Systems

. H.E. Cook, Acta Metall. 18, 297 (1970)

. J.S. Langer, Annal. Phys. (NY) 65, 53 (1971)

. V.L. Ginzburg, L.D. Landau, Zurn. Exper. Theor. Phys. 20, 1064 (1950). in Russian

. L.D. Landay, E.M. Lifshitz, Statistical Physics, Part 2 (Pergamon, Oxford, 1980)

. F.E. Low, Classical Field Theory. Electromagnetism and Gravitation (Wiley-Interscience,

New York, 1997)

F. London, H. London, Proc. Roy. Soc. A 149, 71 (1935)

L.D. Landau, E.M. Lifshitz, Quantum Mechanics. Non-Relativistic Theory, (Pergamon,
Oxford, 1958)

H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, MA, 1980), p. 5

.P. Toledano, V. Dmitriev, Reconstructive Phase Transformations, (World Scientific,

Singapore, 1996); see also L.D. Landay and E.M. Lifshitz, Statistical Physics (Pergamon
Press, Oxford, 1958)

L.D. Landay, E.M. Lifshitz, Mechanics (Pergamon, Oxford, 1960), p. 74

D.W. Jordan, P. Smith, Nonlinear Ordinary Differential Equations (Clarendon, Oxford, UK,
1990)

A.N. Tikhonov, A.A. Samarskii, Equations of Mathematical Physics (Dover, NY, 1963), p. 72



Chapter 9
Thermal Effects of Phase Transformations

A very simple set of arguments will convince you that, for the theory of phase
transformations to be realistic, we have to consider the OP evolution together with
other processes that take place simultaneously with the phase transformations.
For instance, as we noted in Chap. 2, a phase transition of the first kind is
accompanied by the release of the latent heat, which amounts to the difference of
the internal energies (or enthalpies) of the phases on both sides of the transition.
The heat does not remain localized at the sites where it was released, usually
positions of the interfaces. Due to the mechanism of heat conduction, it will diffuse
to the places with lower temperatures causing the temperature field to vary.
The redistribution of heat and equilibration of temperature causes the feedback
effect on the phase transition in the form of changing rate and in some cases even
the direction of the transformation. Another example comes from transformations
in systems of varying density, e.g., mixtures or substances in gravitational fields.
Such transformations cause flow of matter, which also has a feedback effect on the
transformation. Many of these processes have characteristic length and time scales
longer than those of the OP variations; that’s why sometimes they are called
“hydrodynamics” modes. The questions that we have to answer are: How do we
couple the OP evolution to these processes? What physical principles are important
here? How do we maintain the thermodynamic (physical) consistency between the
descriptions of all processes in the system? The main question, which is discussed
in this chapter, is: How can we incorporate the mechanisms of heat release and
redistribution into our method in a physically rigorous and consistent way? Another
question that we will look at is: What are the new effects or features that we may
expect from the transformations that are accompanied by the latent heat release?
In this chapter, we review practically all aspects of the book with the energy
conservation constraint included. One interesting and counterintuitive conclusion
of our analysis is that the thermal effects appear even in transformations that
proceed without any latent heat release.

A. Umantsev, Field Theoretic Method in Phase Transformations, 201
Lecture Notes in Physics 840, DOI 10.1007/978-1-4614-1487-2_9,
© Springer Science+Business Media, LLC 2012



202 9 Thermal Effects of Phase Transformations
9.1 Equilibrium States of a Closed (Adiabatic) System

Let us consider first equilibrium states in a closed (adiabatic) system that is, a
system that does not have heat exchange with the environment. As we know from
thermodynamics, for such a system the variational principle must be changed:
instead of minimizing the total free energy for the constant temperature
(see Chap. 2) we must maximize the total entropy of the system keeping the total
energy (enthalpy) of the system constant. Then,

S{n} = | §(n, Vin)d’x — max, ©.1)
Vv

for

E{n} = | é(n, Vn)d’x = const. 9.2)
v

Here § and ¢ are the entropy and energy (enthalpy) densities of the system. Thus,
from the viewpoint of the calculus of variations (see Appendix B), the equilibrium
states in the closed system obey conditions of the isoperimetric problem. There
exist two types of the solution of this problem (see Appendix B): type-El: the
equilibrium state is not an extremal of the energy functional (9.2) and type-E2:
the equilibrium state is an extremal of the energy functional (9.2). Although in each
case one has to consider both homogeneous and inhomogeneous equilibrium states,
we will find that type-E2 applies to the inhomogeneous states only. Let us consider
these cases separately.

9.1.1 Type-EI States

If the sought state {ng} is not an extremal of the energy functional (9.2), then there
exists a constant A such that the state is an unconditional extremal of the functional

[(§ + 2¢) d*x that is, the following relation is satisfied:
0S+ A 0E=0. 9.3)

Since (9.3) is true for an arbitrary variation of o7, 4 = —1/T where T is the
absolute temperature and the state {7g } is an extremal of the free energy functional
G{n, T} = E — TS that is, satisfies the same necessary conditions as in the
isothermal system (see Chap. 3). This hints that the Legendre transformation
(see Appendix F):

dE dE
ES) 5{T=— G=E—— 4
{E.S) { 50 dSS} ©:4)
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may be useful here because it allows us to express the equilibrium conditions using
a more convenient function of G(7) instead of S(E). The entropy and energy
(enthalpy) densities of the system also must be Legendre transformed:

s (98 ., _r(98
§= <8T>U,e—g T(&T),/‘ 9.5

Rigorously speaking in (9.4) and (9.5) we have to consider also the Legendre
transformation from the volume V to pressure P, but the compression effects are not
of interest here. For that matter, you may think of G as the Helmholtz function
instead of the Gibbs one. It is important to note that the OP is a part of the description
in both sets {n, E, S} and {n, T, G}, but remains unaffected by the Legendre
transformation.

The above obtained result that the set of the equilibrium states of the open and
closed systems are the same is not surprising because it is a consequence of a more
general fact that in the thermodynamic limit of V— oo the canonical and
microcanonical ensembles have the same equilibrium states [1]. However, the
thermodynamic stability of the equilibrium states in the microcanonical ensembles
may be different from that in the canonical one. Let us consider stability of
homogeneous {7, } and inhomogeneous {7g;(x)} states separately.

For a homogeneous system

1 )
ds = 7de + (é)edn 9.6)

and the equilibrium state in a closed system is characterized by the condition

s
<%)F —0. 9.7)

Differentiating the Legendre transformation (9.4) with respect to the OP we

obtain:
98\ _ (%e\ _ (0
(&7>T(an>r T(@n)f e

Then, applying a mathematical formula for a partial directional derivative of a
function f(x, y) in the direction A(x, y) = const:
<5f ) of of | Ofdy
- = - — + - <
ox/), Ox

Ox  Oydx ©9

h=const h=const
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to the energy and entropy functions in (9.8) we obtain the condition of equilibrium:

which shows that, indeed, the closed and open systems of the same substance have
the same homogeneous equilibrium states.

The condition of local thermodynamic stability in the closed system, that is, the
condition that the equilibrium state corresponds to a maximum of the entropy for

constant energy is
s
(ﬁ) <0. (9.11)

Applying formula (9.9) to (9.10) we obtain

2 2 2
) @A e
on e on T T \0n T OndT | dn e
Taking into account that the slope of the constant-energy line is
g
dn|, (0e/0T), N T(0%g/0T?), '

and that we are analyzing an equilibrium state with (9.7) and (9.10) we obtain that

Ps\ __(Ps\  (0%g/ono1)’
r(5:) —-(55) + Al ©.14

Hence, the condition of the local thermodynamic stability of a homogeneous
equilibrium state {7z, } in the closed system is

2
(82g> _(@g/mory” (9.15)
T

o (0°¢/012),

Since the specific heat of a stable state is positive

[ 0Oe D*g
C’Y = (ﬁ) \ = _T<W>n>07 (2413)
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the condition of the local thermodynamic stability in a closed system (9.15) is less
restrictive than that in the open one:

2
<%>T>O. (2.15)

In other words, a homogeneous equilibrium state may be adiabatically stable,
that is, unstable in an open system but stable in a closed system, that is, (2.15) is not
fulfilled but (9.15) is fulfilled. A necessary condition for that is 0%g/0T0n # 0; a
sufficient condition is

(6%g/onaT)’

My(T) = (82g/8T2)n(828/a772)T

>1, (9.16)
n=n(T)

where Mj, is a parameter, called the interaction module. It determines the strength of
interactions between the thermal and ordering modes of the transition. The partials
that make up Mj, in (9.16) should be taken at the equilibrium state in question.

An interesting interpretation of the condition of the adiabatical stability may be
revealed if we find the temperature/OP slope of the line of equilibrium for this state:

9\ _ %) >g
d(@n)f<an2 1 aar T =0

and compare it with that of the constant-energy line (9.13). Then, criterion (9.16) means

(dT /dn)],

M) = {ar fan)|,

> 1 .17

that the slope of the constant-energy line is greater than that of the equilibrium-state
line. Another application of the criterion (9.16) may be found in calculating the
specific heat of the adiabatically stable state:

_ de(n) _ (0e de\ dip _

Applying (9.16) to (9.18) and (2.41a) we find that when an isothermally unstable
state gains adiabatic stability its specific heat becomes negative, which means that
such state is unstable in the bulk.

Two comments are in order here.

1. Equation (9.16) is only a condition of homogeneous (local) stability of the state
while it may be unstable globally, that is, with respect to an inhomogeneous
state, e.g., heterogeneous mixture of coexisting phases at the same temperature.
This possibility is alluded to by (9.18) and the analysis that follows from it.
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The global-stability analysis is more complicated. Its general conclusion is that
the homogeneous state may be stable against the inhomogeneous states in a
certain range of energies but only if the size of the system is below the bifurca-
tion length X, see (3.58b) [2]. In the systems of the size less than the bifurcational
creation of a phase-separating interface is not favorable and the homogeneous
state turns into the global optimizer.

2. In Chap. 2 we represented the free energy of the system as a sum of the regular g¢
and singular (transition) (g—go) parts; in an open system, they do not “interact”
with each other in the sense that go does not affect the transition equations
(see Sect. 2.3). This is not the case in the closed system where, as we can see
from (9.15) and (9.16), the regular and singular parts are convoluted in the same
equations that determine stability of the outcome of the transition. Physically,
this is a result of the absence of the thermal bath in the closed system. In the open
system the regular and singular parts of the free energy, so to speak, thermally
interact with the bath to achieve equilibrium. In the closed system the interaction
with the bath is prohibited and the regular and singular parts are “forced” to
interact with each other. Because of that, we have to look at the thermal
properties of the terminal phases in greater detail. Theoretically there is an
advantage in dealing with a thermodynamic system with equal and tempera-
ture-independent specific heats in both high-symmetry (o) and low-symmetry
(B) phases C,, = Cp = C = const(T). Technically, it is convenient to reckon the
energy and entropy from the o phase at the temperature Tk of its coexistence
with the 3 phase. Then the entropy, energy, and free energy densities of the o and
[ phases are

T
es(T) = C(T = Tg), 55(T) = Cln—, (9.19a)
E
T L
ep(T) = C(T = Tg) — L, sp(T) = Cln— — —, (9.19b)
T Tg
T T-T
¢,(T) = C(T —Tg) — CTln—, [g] =L £ (9.19¢)
Te Te

The approximation of the temperature-independent specific heat simplifies our
calculations in the vicinity of Tg but, apparently, cannot be extended to very low
temperatures (Why?).

Example 9.1 Find conditions of the thermodynamic stability for the transition
state of the tangential potential in the system with C = const(T).
The free energy density of the system is [see (9.19¢), (2.33)]:

T—Tkg
Tg

T 1
g = C(T = Tg) = TCln-— + EW”Z(”) +L v(n). (9E.1)
E
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Its partials are:

g C g L 0%

_ L, P8 _ r-Tg
or> T’0Ton " Tg O '

E

W(co’2 _ Zw) +6L (9E.2)

Notice that the interaction modules of o and [ phases are zero, which excludes
any thermal effects around these states. Application of the transition-state equilib-
rium condition (2.35b) to (9E.2) yields (do not confuse P with pressure):

&g

oP

To calculate the interaction module of the state we substitute (9E.2) and (9E.3)
into (9.16), which yields:

2

w

1 Te — T 6L
<m>—2Ww<m>;m(1+P E )

)P =y (9E.3)

L

M, =30(1+P —2n)o(n,); 0 = C—TE

(9E.4)

According to (9.16) for the adiabatic stability of the state its interaction module
must be greater than one. As you can see from (9E.3) and (9E.4), M, varies
depending on the temperature and material parameters (P, Q). Let us find the
maximum value of M, among all possible values of the temperature in the system.
The maximum is attained at

1 P—V3+P?
W=t (9E.5a)
2 6
or
2 V3+P?
™= (5 + %) Tg — Tgfor P — oc. (9E.5b)

Then (9E.4) and (9E.5a) yield an expression for the largest interaction module of
the transition state for given parameters (P, Q):

1 3
Mp = 0| (3+P) +P(9—P)]

1
mQ(l n \/§P), P—0 (9E.6)
\ :
ZQP7 P — o0

Thus, the transition state of the tangential potential may be adiabatically stable
[see (9.16)] if the material properties of the system obey the following condition:

4
3p
(Verify criterion (9.17), (9E.7) in Fig. 9.1!)

for P — oo’ OE.7

2v/3 forP — 0
0>



208 9 Thermal Effects of Phase Transformations

temperature T

|
0 0.5 1
order parameter n

Fig. 9.1 OP-temperature plane of the equilibrium state diagram of a system described by the
tangential potential with Q = 1 and P = 2. o, §, —equilibrium states; red lines—constant energy
trajectories (dashed line—for Q = 1.1); circles—equilibrium transition states of the closed
(adiabatic) system (full—stable, open—unstable); crosses—1d nonequilibrium inhomogeneous
states from the numerical simulations of (9.86) (blue—t = 1,100, green—t = 4,200)

The type-El inhomogeneous state {ng;(x)} of a closed system obeys the
same ELE:

0G_08_ o 0

on —dn  A(Vn)

To analyze the thermodynamic stability of this state we need to find the sign of
the second variation of the entropy functional:

=0. (3.20)

) 1J 0%s 9 %5 0%s 2 07§ 2| 5
= | |= 202 SpdT + o (dT)? + —— :
678 2], 5 (on)” + 3T, ondT + a2 dn-+ o) (V on)”|d’x

(9.20)
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for the variations of the OP and temperature that leave the energy functional (9.2)
unchanged:

AE =E{n+ on,T+dT} —E{n, T} = SE+ 0 °E+---=0. (9.21)

To find the sign of 3°S we may choose the variations of the OP and temperature
such that the first variation of the energy functional vanishes:

OF oe
E— = —dT |d&x=0. 22
0 JV(&] 577+8Td )dx 0 (9.22a)

For such variations, using (9.4) and (9.5) we obtain:

_(8G/on) —T(@/OT)( 5G/on)
(0¢/0T) g
_ V(9?¢/9TA(Vn)) — (8°§/0Tn)

- ) on. (9.22b)

dT =

Notice that although the variational derivative of the free energy at the equilib-
rium state is zero, its partial derivative with respect to temperature is not.
Then (9.21) and (9.22a) yield that the second variation of the energy functional
also vanishes and %S has the sign opposite to that of the second variation of the free
energy functional:

53G = 8’E—T S

L[]8, 502, , 08 P8 2 8 2|
= E Jv [W( 5’/]) + 26T6n 57’]dT + W(dT) + 8(V77)2 (V 577) d x.

(9.23)

Although the sign of 8°G can be estimated for a general expression of the free
energy we will proceed with the density in the form adopted in Chap. 3:

N 1
§=28(n.T)+5x(V)’ (3.27b)
with
K = const(T). (9.24)

Then, integrating the last term in (9.23) by parts and substituting (9.22b) we
obtain:

1 R
G = 3 J onHg, 0nd’x, (9.25a)
|4
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&g (9g/onaT)’
o~ (Pg/0T?)

Notice that the non-differential term of the Hamilton’s operator in (9.25a) is
greater than that in (3.34). This means that, similar to the homogeneous case, the
closed system is, so to speak, more stable than the open one. To see this let us
assume that 0°g/0T 01 = const(n) and consider as an eigenfunction of the operator

I:IE] (x) the gradient of an interface-type state [cf. (3.125b)]:

Hg, = — kV2. (9.25b)

Y.(x) = d%;“ (x).

Differentiating ELE (3.29) we obtain

- d oG
HEl \.IJ*(X) - a TT] (7734) + AEI*IP*(X) = AEI*IP*(X)v

where

1 [ 9% ?
El Cn <8T877> const>

Because Ag;+ is the smallest eigenvalue of W+ (see Appendix E) the interface-
type solution 7.4 becomes absolutely stable in the closed system, as opposed to
being neutrally stable (the Goldstone mode) in the open one. Physically, destruction
of the Goldstone mode in a closed system is a result of elimination of the translation
invariance, which in turn comes as a result of the energy conservation constraint
(9.2). Indeed, any shift of the interface changes the energy balance in the system
because the energy densities of the phases on the opposite sides of the interface are
not equal, although their free energy densities are. Additional stabilization caused
by the energy conservation constraint (9.2) may cause an unstable inhomogeneous
equilibrium state of the open system to gain stability in the closed one.

9.1.2 Type-E2 States

If the sought state not only imparts a maximum on the entropy functional (9.1) but
also is an extremal of the energy functional (9.2), then, instead of (9.3), this state
satisfies the following simultaneous relations:

08{ngs, Te2; 0m, 0T} =0, (9.26a)

OE{ng, Tga; om, 0T} = 0. (9.26b)
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Importantly that because of the two variational conditions (9.26), it may not be
possible to properly characterize the state with just one variable field of OP:
{ne2(x)}. Then, another variable field, e.g., temperature {7Tg>(X)}, may be needed
to complete the characterization of the state, so that the equilibrium state {ng,(x),
Te>(x)} becomes inhomogeneous in the OP and temperature [3].

However, the fields {ng,(x)} and {Tg,(x)} are not independent because the
conditions (9.26a) and (9.26b) result in a system of simultaneous equations:

oS 05 dT
_5?7 + a7 d_n =0, (9.27a)
OE Qe dT
5—77 + ar % =0 (9.27b)

where (8/6n) is understood now as a partial functional derivative with respect to the
OP for non-varying temperature field.

To better understand the properties of the state {ngx(x), Tga(x)} let us calculate
the partial variational derivative of its free energy with respect to the OP:

5G 9 _ 0g OE . o6S 0%
— = —=—-T—+—VT. 9.28
on K on ovVn  on on + OV v (9.282)

Here we used the Legendre transform (9.5) and rearranged the terms. Applying
the equilibrium equations (27) we obtain:

R . R
5—G{n7T = —(%H) d—+ﬁw = —d—KVnVT. (9.28b)
on n dr

Here we used the Legendre transform (9.5) again and (3.27b). As you can see, in
general, this partial functional derivative is not zero. If the gradient energy coeffi-
cient k is temperature independent [see (9.24)] then 6G/6n in (9.28) vanishes.
However, even in this case the equilibrium state {ng,(Xx), Tgx(x)} is different
from that of type-E1 because the temperature distribution is inhomogeneous.

In order to analyze the thermodynamic stability of the state {ng>(X), Tea(X)} we
need to substitute 87 expressed from (9.27a) into the expression for 8°S in (9.20)
and perform the integration by parts in the latter. This brings the second variation to
the form (9.25a) and again reduces the problem of stability to the analysis of the
spectrum of the respective operator Hg, (x). In a system where condition (9.24)
applies this criterion takes on a particularly simple form:

2 2 2 2
B = 25 O 8s/(3‘l7+6s(8s/677) <0. 9.29)

o> “9Ton ds/OT ' 9T \ds/OT
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Example 9.2 Find a 1d type-E2 state of a system described by the tangential
potential with C = const(T) and k¥ = const(T).
In the 1d case the system (9.27) reduces to

d
&, (9E.8a)
dn
de _ &n_, (9E.8b)
dp  —dx2 '

Multiplying (9E.8) by dn/dx and integrating them separately we find that the
equilibrium states obey the following simultaneous equations:

s(n, T) = const, (9E.9a)
K (dn\?
e(n,T) — 3 (an) = const. (9E.9b)

The first equation shows that the state {ng,(x), Tgx(X)} is isoentropic, which
confirms our earlier conclusion that the temperature distribution in this state must
be inhomogeneous if the OP is not uniform. The second equation shows that the
regions of the system far away from the transition zone have the same energies, but
not the free energies because the temperatures may be different.

For the tangential potential with (9.19), (9E.1) the entropy and energy densities are

T L
=Cln— — — E.1
s CnTE TEv(n)7 (9E.10a)
1
e=C(T—Tg) + 5sz(n) — Lv(n). (9E.10b)

From (9E.9 and 9E.10) we find the distributions of the temperature and OP fields
in the type-E2 state:

T = T, exp{Qv()}. T, = TEGXPQ%, (9E.11a)
dn\* _ explQv(n)] — 1

where T, is the temperature of the o-phase. In Fig. 9.2 are depicted the scaled
distributions:

Cr-T,) _ zj\/é_j, (9E.12)
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Fig. 9.2 Distributions of the Mg _ o
scaled temperature (blue) and 4
OP (red) as functions of the
scaled coordinate x for the 1d
type-E2 equilibrium state
after a first-order transition
[0}
g E
g a-phase B-phase g
g g
g o
g 3
° 3
Mg, : Tot
0 5 10

scaled coordinate x

To analyze the thermodynamic stability of the type-E2 state (9E.11) we need to
calculate the left-hand side of (9.29):

He, = —6CQ[600% (1) + o' (1)]. (9E.13)

This expression is not sign definite in the domain 0 < n < 1, which means that
this state is not absolutely stable but of the saddle-type stability. Nevertheless the
type-E2 states are important because the system may spend a great deal of its time
in the vicinity of the state during a transformation process. The type-E2 states can
be achieved in thermodynamic systems with the vanishing thermal conductivity
(A — 0) that is, ideal thermal insulators.

Example 9.3 Find a type-E2 APB in a system with C = const(T) and x = const(T).
An APB is a 1d equilibrium state, which comes about after the second-order
transition, see Example 3.2. The system is described by the free energy density:
1 T-T. 1,

1
6 = go(T) + ~an? [ ——C + — - 2 E.14
&= go( )+2an ( T. +2n>+2K(Vn) (9E.14)

It undergoes a second-order transition at T = T¢, see (2.43) and (2.44). If the
temperature is lowered to Tg < T two stable variants

Tg — T,
T

Ny =%V-1T,71= (9E.15)
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appear after the transition with equal likelihood. They will be separated by the
transition region of the thickness of the order of magnitude

Laps =2V21, 1= |- (9E.16)
a(—1)

If after the cooling to Tg < T the system is isolated from the environment, a 1d
type-E2 state may establish in the system. For such state (9.27) yield:

ar a

— =pTn,p= , 9E.17
d?’] pLn,p CTC ( a)
d’n ) T
dezan<n _HTL-)' (9E.17b)
The BC are
dn _
a(ni) =0,Tg =T (7). (9E.18)

These equations can be integrated one after another. Integrating (9E.17a) we
obtain

T = Toe™" (9E.19a)
where Ty = T(n = 0). Using the BC (9E.18) we obtain that

T = Te(1 + 1)t 7). (9E.19b)

Substituting (9E.19b) into (9E.17b), multiplying by dn/dx, integrating once, and
applying the BC (9E.18) we obtain

d 1 4
4= \/ = 2P = (4 20) = (L[ e, (9E-20)

Equation (9E.20) can be integrated numerically (see Fig. 9.3).
To analyze the thermodynamic stability of the type-E2 state (9E.18) and (9E.20)
we calculate the left-hand side of (9.29):

I:IEZ =

—%(1 +ar?) <0, (9E.21)

C

This expression is sign definite, which means that this state is stable, at least
locally.
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Fig. 9.3 Distributions of the
scaled temperature (blue) and
OP (red) as functions of the
scaled coordinate x for the 1d
type-E2 equilibrium state 0.4~
after a second-order transition N g
g g
& 0 oa-variant B-variant| ©
o 3
= ©
° 3
-0.4 -
\ \ \
0 1 2 3

scaled coordinate x

9.2 Generalized Heat Equation

As we concluded in the introduction, evolution of our system is accompanied by
energy redistribution and heat propagation. Hence, in addition to TDGLE

dn oG

a7 on’

>0, (5.2)

our system must be described by a coupling heat equation, which takes into account
heat production due to the ongoing phase transition and distribution due to the
conduction. To derive such equation, we will call it generalized heat equation
(GHE), we apply the First and Second Laws of Thermodynamics to a small volume
SV of a heterogeneous nonequilibrium medium:

dée = 6qg+ ow, (9.30a)

5q = —divJrdt, (9.30b)
L1

ds > T 0q. (9.30¢)

Here dw is the work done on and ¢ is the amount of heat given to the volume 6V.
Let’s assume that our medium is incompressible. Then the work term vanishes and
to find the GHE we have to derive the expressions for the internal energy density
variation dé and the heat flux Jthat account for nonlocal interactions in the medium,
which we considered in Chap. 3. The derivation of the former is based on
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the calculation of a small variation of the internal energy functional E of the
whole system, (9.2), which comes as a result of a small inhomogeneous variation of
the OP on:

OF = J ded®x. (9.31)
ov

Let’s assume that the variation 87 occurred at constant temperature and in the
volume 8V independently from neighboring volumes of the system. Such variation
On vanishes everywhere outside of the considered volume. Then, using the defini-
tion of the variational derivative, we obtain:

OF = J OF ond’x. (9.32)
sv 0N

Here, as before, the variational derivative is understood as for the invariable
temperature field. Finally, comparing (9.31) with (9.32) and using continuity of the
variations 6¢(x) and 67(x) as functions of the position, we arrive at the expression
for the energy density variation:

5o =% 5. 9.33)

When the temperature varies simultaneously with OP the nonlocal energy
density variation takes the form:

dé = C,dT + ——dn. (9.34a)

The specific heat for constant V and 7 per unit volume may include the gradient

energy contribution:
A oe
== . .34b
¢=(57) ,, O30

Substitution of (9.34a) into the First Law (9.30a) yields the GHE for the
incompressible medium (d/dt — 0/0t):

oT
Cy gy = —divdr +0(x.1), (9.35)

where Q(x, f) is the density of instantaneous heat sources in the energy
representation:

Q(x,r)=———=—(——xgv2n)%, (9.362)
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dx
=k—-T—. 9.36b
kp=Kk—-Tr ( )
Using the Legendre transformation [see (9.4), (9.5) and Appendix F] the heat
source Q(X, ) may also be represented in the entropy form:

B 5S  8G\ on
o(x,1) = — <T777 + Tn) - (9.37)

o’
Same variational procedure as was used in (9.31-9.34a) may be used to find the
entropy variation in the volume dV:

1 4 oS
ds ==C,dT + —dn. 9.38

Comparing (9.38) with (9.34a) and using the Legendre transformation (9.4) we
arrive at the expression of the First Law in the form:

d§ = 6q —~ —ndn. (9.39)

Application of the Second Law (9.30c) to (9.39) yields a constraint on the rate of
OP change:

oG dn
oy dr <0. (9.40)

Constraint (9.40) manifests the Le Chatelier—Braun principle in the nonlocal
nonequilibrium medium and proves that the linear TDGLE (5.2) is acceptable, but
not a unique, choice of the evolution equation for the OP. It also hints at the
nonlinear extension of the TDGLE (see Sect. 4.3).

The energy (9.36a) and entropy (9.37) representations reveal many important
properties of the heat source Q(X, t). They show that the source does not need to be
sign definite that is, there may be local sinks of heat inside an overall heat source.
The energy representation shows that, in addition to the homogeneous part (0e/0n)
responsible for the latent heat L (see below), the source contains the inhomoge-
neous part (kg V?n), which may affect the overall heat production in the system.
The entropy representation shows that the heat source consists of the entropy
contribution, which may be either positive or negative depending on the direction
of the transition, and the dissipation which, due to the constraint (9.40), is propor-
tional to the rate of the transition squared and, hence, always positive.

To complete the First Law (9.30a) we need an expression for the heat flux in the
heterogeneous nonequilibrium medium. Notice from (9.30) that the expressions of
the heat flux Jt and heat source Q(x, ¢) are independent. The heat flux J1 depends on
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local values of temperature, its gradients, properties of the medium, and is known to
vanish with VT (Fourier’s law). In [4] the following expression was used for the
flux:

oS

—A .
Jr=AV-

Another possibility would be to consider an integral expression for the heat flux
in a medium with the “spatial memory”; these effects are not considered in this
book. Expanding the flux Jt in VT and disregarding terms of the order higher than
the first one, we obtain the regular expression for the heat flux:

Jr = —AVT, 9.41)

where the thermal conductivity A may be a function of 7 and 7. Then the GHE takes
the form:

C, % = V(AVT) + Q(x,1). (9.42)

A phase transition is accompanied by the transfer of the internal energy, which is
described by the energy density flux vector Jg, defined as follows:

oé .
5? = —divJg. (9.43)

In order to obtain an expression for the energy density flux, we should find the
partial derivative of ¢ with respect to time:

9¢ . 0T  SEon M
o c, o " on o + div (KEVn 8t>' (9.44)

Substituting the GHE in the energetic representation, (9.36a) and (9.42), into
(9.44) we obtain the expression for Jg in the incompressible motionless medium:

Je=Jr — KEVW%- (9.45)

This result shows that except for the heat flux, the expression for Jg contains the
work flux associated with the interactions that appear in the system due to
inhomogeneities in a nonlocal nonequilibrium medium. The work flux entails the
inhomogeneous term in the heat source, (9.36a), and is responsible for the surface
creation and dissipation effect, analyzed in the next section. The work flux is
analogous to the intensity of a sound wave in a fluid with 7 replacing the displace-
ment of an element of fluid and kg replacing the adiabatic bulk modulus.
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GHE (9.42) with the heat source expressed by (9.36a) or (9.37) is thermodynamically
rigorous and absolutely invariant with respect to the derivation from the First
or Second Laws of thermodynamics. This equation couples to TDGLE (5.2) and
makes up a system of simultaneous equations that describe all stages of evolution
of a phase transformation in a medium with the specified thermodynamic and
kinetic properties of the system: C, k, 4, 7, Tg (or T¢), L, W (or a). Both equations
are of the diffusion type; (9.42) is characterized by the thermal diffusivity o and
(5.1)—the ordering diffusivity m. The ratio of the diffusivities R:

A A

R=—=L 4= m= 9.46

3R

is called the kinetic number; it determines different regimes of the evolution. As we
concluded in Chap. 5, a transformation process may be loosely divided into the
following stages: nucleation, growth, and coarsening. All the stages will be affected
by the processes of heat release and redistribution. Let us consider the stages
separately.

Example 9.4 Find the spatial distribution of the heat source in the plane interface
moving through the isothermal system described by the tangential potential with
k = const(T).

Using the transformations (5.5-5.7) for (9.36a) we obtain an expression:

dn (9e &
0u) =" (%e _ Kd_lg)_ (9E.22)

In order to use for our system the solution (5.15), which was obtained for the
Landau potential, we need to scale the variable 1 and parameter x in (9E.22). Using
the scaling (2.32) and (3E.3), the internal energy density expression (9E.10b), and
the solution (5.9b), (5.14), and (5.15) we obtain the expression for the source in the
scaled variables:

W -\ 1
0(n) = 6vLy [~ ()s () = (1 + V) (9E.23)
K
where v is the velocity of the interface
v =u(Te — To) (5E.2)
and T is the temperature of the system. Notice that both branches (+ and —) of the

solution (5.9b), (5.14), and (5.15) have the same expression for Q. The latter is
depicted in Fig. 9.4.
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Fig. 9.4 Distributions of the 1

OP and heat source Q in the
plane interface moving
through the isothermal system
described by the tangential 0.8 — .
potential with x = const(T)
0.6 —
0.4 —
0.2 — Q
0 { | { |
-8 -4 0 4 8

distance from center u
9.3 Emergence of a New Phase

Heat release and redistribution may affect emergence of a new phase in many
different ways. A full theory of thermal effects in nucleation is not completed yet.
In this section, we will consider only one particular thermal effect of this type—the
so-called nonclassical nucleation. It manifests when a stable phase is cooled down
into a vicinity (above or below) of the spinodal point of the first-order (discontinu-
ous) transition or undercooled below the critical temperature in the second-order
(continuous) transition. Whether the small fluctuations will grow or decay depends
on the stability properties of the adjacent homogeneous equilibrium states. Given
our experiences in Sects. 5.3.1 and 8.1.4, let us study evolution of the small
disturbances in the form of harmonic waves superimposed on an equilibrium state

in question (7, T):
n(x,1) = 74 N Ptk (9.47a)
T(x,1) = T + @elrik, (9.47b)

Here k is the wave vector of the permitted perturbations and B(k) is the amplifi-
cation factor, which determines the “fate” of the small disturbances. When these
waves are substituted into (5.1), (9.42), they yield two simultaneous equations for
the small amplitudes {N, ®}:

B g 2\ 0%
()} + o + k|k|* |N = —8178T®’ (9.48a)
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. 2
(; k| — 128 o7 ﬁ) O="T T BN, (9.48b)

where the functions with a bar should be taken at the equilibrium point (7, T). Not
surprisingly the OP/temperature interactions depend on the mixed partial

0%g/OTom. If this quantity is zero the simultaneous equations (9.48) break up into
two independent equations for the amplitudes { N, ®}, which means that the OP and
temperature waves evolve independently. In the limit of 4 — oo we recover from
(9.48) (5.21a), that is, the isothermal expression for the amplification factor. If 4 is
finite and the quantity 92g/9Tdn is not zero the OP and temperature waves interact.
In this case, the system (9.48) has nontrivial solutions only if its determinant
vanishes. Then,

__ 2
7 (Ps/onor)
o 92g/or>

( Vo m|k| > k> = 0. (9.49)

This solvability condition relates the amplification rate f to the wave number k
of the perturbations, that is, is the dispersion relation. For the equilibrium state
(9, T) to be linearly dynamically stable, the real parts of all the roots of (9.49) must
be positive. According to the Routh—-Hurwitz theorem [5], the free term and the
coefficient of the linear term of (9.49) must not be negative:

B+ | + (o + m) k[

oy (Paiowt)

Ay + (@ +m)|k|* >0, (9.50a)

( Yo &+ mlk| >|k|2 > 0. (9.50b)

Because o > 0 and m > 0 condition (9.50a) is less restrictive than condition
(9.50b). Then we obtain that for the linear dynamic stability of the state (7,T) there
must be

82
("}’72

Hence, the criterion of the dynamical stability of the system described by (9.42),
(5.1) coincides with the criterion of thermodynamic stability of the open

> 0. (9.51)
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(isothermal) system, but not the closed (adiabatic) one. This is a result of the fact
that the normal modes (9.47) do not, so to speak, conserve the energy of the
functional (9.2).

Now let us study the dynamical behavior of different modes of an unstable
equilibrium state that is, a state where (9.10) is true but (9.51) is not. Many of the
features of this behavior depend on whether (9.15) is true or not. It is more
convenient to study the dispersion relation in the form where the amplification
factor B and the wave number k are scaled as following:

0%g ’ 1 9%g
p= g k™= -~ o (9.52a)
Then the dispersion relation takes the form:
o+ M—-1ow+((R+1)wg—Rqg+Rq* =0. (9.52b)

Thus, different regimes of nonclassical nucleation in discontinuous
transformations are determined by the kinetic number R and module M.

The left-hand side of the dispersion relation (9.52b) is a second-degree polyno-
mial in two variables; its solutions, as known, are conics with two branches. Because
the discriminant of the dispersion relation (9.52b) or (9.49) is not negative, both of its
branches are real (at least for the real waves numbers g). Hence, the modes may grow
(f > 0)ordecay (f < 0) but cannot oscillate (Imf; # 0). The lower branch is never
positive, that is, does not have unstable modes and, hence, does not present any
interest for us. The upper branch, that is the one with the greater amplification factor,
may have unstable modes and will be analyzed further. The wave number of the
neutral mode (w = 0) is ¢y = 0 or 1. However, the two values may belong to two
different branches. Let us find the wave number g,,, of the most dangerous mode, that
is, the one with the greatest amplification factor . For this we differentiate (9.52b)
with respect to g, equate dw/dq to zero, and present the result in the form:

_ 2
MR+ 1) = W. 9.53)

Depending on the values of the interaction module M and kinetic number R,
several cases of instability of the equilibrium state may be found. These cases are
presented in Fig. 9.5 in the plane (R, M) with the Inserts representing the dispersion
relations in the dimensional form B(k).

Casea.0 < M < (R +1)"' < 1, weak interactions. Equation (9.53) does not have
solutions. Hence, the uniform mode (¢ = 0) is the most dangerous one: wg = 1 —
M. This is similar to the evolution in isothermal systems, cf. (5.21a). The difference
is that the amplification factor of the most dangerous mode is determined by the
thermal interactions and amplification factors of other unstable modes depend on
the coefficient of thermal conductivity—semi-isothermal case.
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Fig. 9.5 Instability diagram in the plane (R, M). Blue line: M(R + 1) = 1. Inserts: the amplifica-
tion factors f3 for the unstable branches of the dispersion relation (9.49) as functions of the wave
number & for the cases (a)—(c) described in the text

Case b. (R + 1)7l < M < 1, medium interactions. Equation (9.53) has solutions:
the uniform wavemode is unstable but the most dangerous mode has a finite wave
number—intermediate case.

Case c. M > 1, strong interactions. The uniform mode is neutral: wy, = 0, and the wave
number of the most dangerous mode is finite: 0 < ¢, < Y2—semi-adiabatic case.

Case d. M > 1, very strong interactions. An example of this case is a system near
the spinodal point (9g/dn = 0,9%g/0n* = 0), that is, the absolute stability limit of
a homogeneous equilibrium state. From the stand point of thermal effects, Case d is
the most interesting and deserves a rigorous study beyond the limit of small
amplitudes. To examine the nonlinear regime of evolution of the unstable waves,
we should introduce a small parameter ¢, scale the modes with respect to this
parameter, and balance the linear and nonlinear terms of the same order of
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magnitude of ¢ in TDGLE (5.1) and GHE (9.42). The parameter ¢ that we introduce
here defines the departure from the spinodal point:

o
% — e, (9.54a)

As the most dangerous mode is long (k — o0) and slow (f — 0), see (9.52a) and
(9.54), we scale the spatiotemporal coordinates of (9.42), (5.1):

X=ex,1=¢t (9.54b)
and the disturbances of {7, T} as follows:
n=n+eéX,1), T=T+e"'m0X,1), v>0, (9.54c)
where the positive quantities n; and amplitudes ¢, 0 are of the order of one and the
exponent v needs to be determined.
For v > 2, we can balance only linear terms. For v = 2, we can balance the non-

linear terms at the leading order of ¢ if we the temperature is high and the mixed
partial is small:

_m rg
T= S 9T — ne. (9.544)
Then (9.42) and (5.1) become
13g o¢
2 2 2 172
n20 =mé— 5—335 + xkV f, n3a = —AV-0. (9.55)

This system governs stability of the state (77, T) and shows that in the early stages
of its decomposition the temperature deviations are determined by the departure
from equilibrium and that the heat sources are balanced by the heat conductivity in
the system. Excluding 6 from (9.55) and returning to the dimensional variables we
obtain for the OP field the nonlinear evolution equation:

d J 0
= e — {%g - szn] : (9.56)
T(a g/anar)

This means that in this case the growing waves of the new phase obey the
nonlinear Cahn—Hilliard equation from spinodal decomposition, cf. (8.27c¢), so that
the order parameter manifests temporary conservation law. Using the scaling (9.54)
we can see that the mobility of this regime
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) 1
~2 (9.56a)

T (@e/mor) ¢

is large and independent of the relaxation constant y of (5.1), which means that
such decomposition is totally controlled by heat transfer. The scaling (9.54) also
shows that

[y S )
T(azg/anar) |
CyPg/om® &

which means that, indeed, the interactions between the OP and temperature modes
are strong. The scaling (9.54d) also manifests large entropy contribution to the free
energy. The scaling (9.54c) shows that in this regime the fastest modes to develop
are “quasi-isothermal” because the temperature deflection is of higher order than
that of the OP. This regime is characterized by modulations of the OP field; it is
analogous to the spinodal decomposition in a system with a conserved OP.
The difference is, first, that in the latter case modulations accompany the process
from the beginning to end while in the present case the modulations are temporary
and, second, that for a system with the nonconserved OP modulations are
governed by the energy conservation instead of mass conservation in the spinodal
decomposition.

9.4 Motion of Interfaces: Non-isothermal Drumhead
(Sharp Interface) Approximation

Solution of the full problem described by TDGLE (5.1) and GHE (9.42) is
complicated; it may be obtained with the help of different methods including the
numerical one. However, there is plenty of information about the system’s evolution
that can be gleaned from the drumhead equations. To obtain these equations we will
use the averaging method similar to that used in Sect. 5.4 where, in order to derive
the drumhead equation for a moving diffuse interface, we introduced the time-
dependent curvilinear coordinates (i, v, w) such that in the new coordinates n = n(u)
(see Fig. 9.6). That allowed us to characterize the interface by the thermodynamic
and kinetic properties (o, Ly, 1) and drumhead variables (v,, K). In this section,
we will extend our analysis on the systems of varying temperature. We will derive
the drumhead equations that reflect the fact that the non-isothermal interface has
finite thickness and curvature. We expect these equations to reveal the physical
effects due to release and redistribution of the latent heat L (2.4a), deviations from
equilibrium, and multidimensionality, see Fig. 9.7.
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Fig. 9.6 Curvilinear coordinate system (u, v, w) associated with a curved interface. v,—velocity
of the interface motion, Fgp—the Gibbs—Duhem force. APB anti-phase boundary, /PB interphase
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Fig. 9.7 Three characteristic properties of moving interfaces that separate phases in the first-order

transformations
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In order to derive the drumhead approximation of the dynamic equations for a
piece of interface that moves through a variable temperature field we need to
transform to the time-dependent curvilinear coordinates (u#, v, w) not only
TDGLE (5.1) but GHE (9.42) also. In the new coordinates T = T(u, v, w, t) as
opposed to n = n(u). However, if the characteristic length of the thermal field It is
much greater than that of the OP field L, then the temperature field is “enslaved” by
the OP field and we may expect that T = T(u) also. For an interface moving at the
speed v, (see Appendix I):

—— (9.57)

Vn

Then the criterion for the non-isothermal drumhead approximation can be
expressed with the help of the generalized Peclet number as follows:

L vl
v, (9.58)

Pe = —
¢ ZT o

The heat redistribution (Appendix I) expanded our characterization of the
interface on the properties (L, ) and variable [d7/du]. The temperature gradient
across the diffuse interface introduces one more interfacial (drumhead) variable:

T =Tp-T, =L,

I (9.59)

dr ’

9.4.1 Generalized Stefan Heat-Balance Equation

Any heat released at the interface should be removed from it by means of thermal
conduction mechanism. To obtain the heat-balance equation for a curved interface
in the drumhead approximation we present GHE (9.42) for the “enslaved” temper-
ature field in the form:

T dT dn
M—+kr— T,n,— | =0 .60
(du2+ Tdu)+Q< 7777du> ) (9 )
where the source in the energy representation is
dn Oe d*n dn\ ) dn
T,n — )= — | - — +2Ko— ) r — 9.60
Q( » 1 du> Vn{<an)T KE(du2+ Odu du ( a)

and k1 may be called the thermal wave number of a curved interface:

V“f +2K,. (9.60b)

kr =
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If we integrate the quasi-stationary GHE (9.60) from ug = —oo till u,, = +oo for
the case of a plane interface (K, = 0) we obtain the condition of conservation of
energy in the form:

C(Ty—T,) =L. (9.61)

In the case of curved interfaces (Ko # 0) there is no conservation of energy
along the coordinate lines (1, v = const, w = const). Absence of the conservation
law does not allow us to resolve the large-scale thermal problem for a curved
interface like it is done for the planar one, e.g., (9.61). Instead, we average GHE
(9.60) in the interval (ug, u,), the end points of which are in the regions of the
respective phases: n(ug) = ng and n(u,) = 7, (see Fig. 9.6). The difference from
the isothermal case of Sect. 5.4 is that the temperature field at these points may not
have reached yet its asymptotic values of T(—oo) = T or T(+oo) = T,. Using
the separation-of-scales condition (9.58) we can introduce the quasi-isothermal
averaging operator as follows:

Ar-f = Jf(T = const, n(u), u)du. (9.62)

ug

Contrary to the averaging of TIPGLE (5.29), to average GHE (9.60) we do not
need any weight factors because Ap-Q(Tg, 7.4)du # 0. In addition to (5.31a) and
(5.31d) we obtain:

Ar- (‘31275) = E—ﬂ; Ar- (i—D =[T); Ar- (% j—;’) =L(T). (9.63)

Then, application of (9.62) to (9.60) yields an equation for the jumps of
temperature and temperature gradient across the interface:

2{ [%ﬂ + kT[T]} + (L — 2eKo)vy = 0, (9.64a)

where

do
=g — T — 9.64b
e=o0 T ( )

is the interfacial internal energy. If at equilibrium an interface exists at a specific
temperature only, as is the case for a first-order transition, differentiation in (9.64b)
is understood in the sense of disequilibrium because expressions for the surface
energy at equilibrium, (3.70a), and away from it, (5.34), coincide.
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Fig. 9.8 Motion of a piece
of interface bound by a fixed
solid angle dQ. K—curvature
of the piece before the move,
v,—the normal component
of the velocity of the
interface, e—the interfacial
internal energy, L—the latent
heat of transformation

The drumhead (9.64a) is a heat-balance interface condition; however, it differs
from the traditional (Stefan) condition (I.2) in the terms kp[7T] and (—2eKgvy).
The latter is due to the gradient internal energy contribution (~kg) to the heat
source (9.36a); it vanishes for a flat or immobile piece of interface, i.e., when the
interfacial area does not vary. To reveal this effect we may analyze the heat balance
before and after a curved interface sweeps material during a first-order transition
(see Fig. 9.8). The amount of heat released is called the heat of transformation.
Traditionally, it is attributed to the product of the latent heat and the transformed
volume: f Lv,dvdwdt. However, one must realize that if the moving interface is
curved, the area of the interface before and after the move is different by the amount
of the surface area created or destroyed: f 2Kyv, dvdwdz. As the interface carries
energy, the change of the surface area will result in the positive or negative
additional quantity of heat liberated at the interface. A simple way to see this
difference is to consider motion of a piece of interface dX, = v,dr bound by a
fixed solid angle dQ (Fig. 9.8): the area of the interface is smaller after the move if
the velocity is directed toward the center of curvature of the interface and is greater
if otherwise. As the latent heat is the internal energy difference of the liquid and
solid phases, the additional amount of heat due to surface area difference should be
proportional to the interfacial internal (not free) energy. Hence, the heat of trans-
formation will differ from the above described amount by the amount of the surface
area created or destroyed times the surface internal energy; in the boundary
condition (I.2) the latent heat L must be replaced by (L — ¢K). This effect, which
may be called the surface creation and dissipation effect, vanishes for a flat or
immobile interface when the interfacial area does not vary.
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Fig. 9.9 Different regimes of motion of a plane interface separating phases o and f after a
first-order phase transition. (a) Peclet number Pe and (b) final temperature of the B-phase T versus
the initial supercooling A® of the a-phase. Blue lines—solution of the Stefan problem (1.9-1.11),
(1.14), (1.15); red lines—FTM solution for a plane interface (K, = 0), (9.72)

9.4.2 Generalized Kinetic Equation

Let us summarize briefly on Fig. 9.9 what we already know about the motion of a
plane phase-separating interface. If the entire system is maintained at constant
temperature T then the velocity of the interface is expressed by (5E.7) and the
FTM allows us to relate the kinetic coefficient i to other material properties. On the
other hand, if T is only the initial temperature of the parent (o) phase then motion
of the interface is more complicated. In the sharp-interface approximation (see
Appendix I) the velocity is

ﬁ\/g, Vapellerfcp=A @, if T —L <Ty<Tg (L9 — L11)
: L
V= (%)3, ifTO:TE_E (1.15)
L
vo(A ® — 1), if Ty < T, -C (1.14)
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where the dimensionless supercooling and characteristic velocity are defined as
follows:

_C(Te—Ty) _pL
A® = T ,Vo = c (1.10, I.14)

This solution is shown in Fig. 9.9a as a blue line.

The regimes of interface motion (I.9-1.11, 1.14, 1.15), can be obtained without
any consideration of the internal structure (diffuseness) of the interface, e.g., for
a very thin interface. However, there is a group of thermal effects of motion of
phase-separating interfaces, which appear as a result of the interface having the
internal structure and thickness. To generalize the kinetic interface equation
we average (5.29) over the thickness of the interface taking into account that the
temperature is a variable. In many ways this procedure is similar to the one that led
us in Sect. 5.4 to (5.32). However, an important difference exists. Because
the temperature is not constant anymore (5.31b) has to be replaced by

_%

Jg
dn+22.dT. (9.65)
on

a aT

Averaging TDGLE (5.29) we multiply all the terms of this equation by the
weight factor dn/du and integrate them over the interval (ug, u,) (see Fig. 9.6).
Taking into account that dn/du vanishes at ug and u,, we obtain the equation of
motion for a non-isothermal phase-separating interface:

R \ dn\? . [_ar
At - ((‘:7 + ZKK) (ﬁ) ) = [g] + At - (S E), (9.66a)

where

_ 1 [fdn\* di
=5 ——K¢|— | ,Kg=——. .66b
S=s—gk (du) K a7 (9.66b)

[Verity (9.66)! Hint: k=func(T)]. Using (3.84) and the fact that (dn/du)2 is a bell-
like, even function of u (see Sect. 3.4), the left-hand side of (9.66a) may be
represented as follows:

ok, + O (Lik;) , (9.67)

where ¢ is the nonequilibrium surface energy, see (5.36), and k,, was called the
dynamic wave number of a curved interface:

k) = %Jr 2K, (5.31¢)
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The first term in the right-hand side of (9.66a) is the free energy jump across the
interface whose temperature changes together with the OP. The free energy jump ina
system where the latent heat is temperature independent [see (2.40c)] can be
expressed as follows:

Tg — Tq

E

gl =L s [T] + c{ 7] — TyIn(1 + ?)} (9.68)

I
where T7 is the average temperature of the interface, more specifically—temperature

of the U=0 level surface. Substituting (9.67) and 9.68) into (9.66a) we obtain an
evolution equation, which relates different local characteristics of an interface:

7}’

Te —T 1
oky = L2 14 Fop +—C—+0([T]3,L3k3). (9.69a)
E 2 Ti K
) ) ar
Fop = Ag - ((s . s) $>. (9.69b)

The interface condition (9.69a) reveals the “driving forces” for the interfacial
motion: the free energy difference on both sides of the interface, L(Tg — T7)/TE, the
Laplacian pressure due to the curvature (2K,) (I.21), and the force, Fgp, (9.69b),
which appears due to the temperature gradient inside the transition zone. The force
Fgp may be called Gibbs—Duhem force because it may be derived from the
Gibbs—Duhem relation. Notice that the driving forces in (9.69a) have units of
pressure because they act on a unit area of the interface. Equations (9.64a) and
(9.69a) identify the local interfacial variables v,, Ko, Tt, [T], [dT/du], and relate
them to the thermodynamic interfacial quantities, L, o, ¢, L, and kinetic properties
of the medium, o, m. These equations are independent of the history and may
be used as the interface conditions in long-time, long-range problems of phase
transformation where heat diffusion is essential (see Sect. 9.6).

9.4.3 Gibbs—-Duhem Force

To elucidate the physical meaning of this force, condition (9.61) is not enough;
we need to have detailed knowledge of the temperature gradient field inside the
interface, see (9.69b). Let us solve the quasi-stationary GHE (9.60) for d7/du inside
the interface, using a method of asymptotic expansion, in the case where the tempera-
ture gradient in the final phase (u = ug) is zero. In this case, obviously, Ty = T. First,
we obtain integral representations of the temperature gradient:

T “ i
P —e_kT”J daQ (it)er. (9.70a)
ou up
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Then we integrate expression (9.70a) by parts:

29T J diiQ (i) + kr J dii J diQ () + O(Lik3). (9.70b)
B

8” ug u ug

Expansion in (9.70b) in increasing powers of kT may be considered an expansion
into “powers of disequilibrium.” If L,kr < 1 that is, if the conditions (9.58)
and (3.85) are true, expansion (9.70b) can be truncated after the second term and,
for the heat-source density, we can use the energy representation (9.60a) with the
equilibrium solution 7.4(1) (3.66). Finally, substituting (9.70b) into (9.69b) gives us
the expression for the Gibbs—Duhem force (Verify!):

n C
FGD = _V7 (11 —Evnlz — 2K0[3>, (9713.)

where the entropy density moments /;’s are defined as follows:

I =Ar- (5 =) p))s o = Ar- ((E —s)| dzzpm));

up
I =Ar- <(§ —5,) J; dﬁ{KE(ZZ)Z +p(ﬁ)}>. (9.71b)

p(u) =e—ep=Te(s — sp). (9.71¢)

Substitution of (9.71a) into (9.69a) yields the evolution equation for the interface
motion:

Te —Tp 1
Y el it
Te 2 Ty

T)? I C 2
cl_ (e, h Vo + 20Ko — 12 — “LvaKo.  (9.72)
m A 22 2

Exact expressions for the moments /;’s depend on the type of the potential used.
However, one can see from (9.71b) that I3 =~ I, ~ I,L,. This means [see (9.71a)]
that the Gibbs—Duhem force is either parallel or antiparallel to the interfacial
velocity depending on the value of the moment /;. It is instructive to express this
moment and Fgp using only measurable quantities that characterize an interface
such as the interface energy o, entropy y, and latent heat L. In the medium with
Kk = const(T), the entropic representation of p(u) in (9.71c) yields:

Iy = TeAr - ({s(u) — 5.} - {s(u) — s3})
=TgAr- | 05 + 2M (Neg — 1) 05 + [S}Z (ea nﬂ)(jeét —1,) 7 (9.73)
] ]
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where 7 = (15 +1,)/2. Using (3.74¢) and the bell-like shape of 3s we obtain:

. 1 . )
At ( 532) ~ L_(ng))z; At - ((Neg — 1) Is) = 0;

v

Ar. ((m - n,E)](;?e4 - m)) ol (9.74)
0

6
Taking into account that [s(Tg)] = L/Tg, see (2.4a), and substituting (9.74) into
(9.73), we obtain:

Ly

Tx
6Tk

I~ (rimy? L. (9.75)

Finally, substituting (9.75) into (9.71a) we arrive at the linear approximation for
the Gibbs—Duhem force:

(L o TE )2
Fop ~ (6TEL L Ty’). (9.76)

Significance of this relation is in that it is expressed through measurable quantities
and thermodynamic properties of a system only, yet it is applicable to many different
situations. The type of transition affects the relative magnitudes of I'"” and L (e.g.,
L = 0 for APB), which in turn dramatically affects the magnitude of /;, being
negative for a typical first-order transition and positive for a second-order transition.
Hence, Fgp propels the motion of an interface that appears after the first-order
transition serving as a driving force and opposes motion of an interface after the
second-order transition manifesting a drag force [see (9.69a) and (9.76) and Fig. 9.6].

9.4.4 Interphase Boundary Motion: Heat Trapping

Now let us analyze various regimes of interface motion in the process of a phase
transformation of the first order. To be specific, let us consider growth of the B-phase (e.
g., crystal) replacing the a-phase (e.g., liquid). This case corresponds to the u-axis in
Fig. 9.6 directed from B-phase to a-phase and the growth of the -phase corresponds to
v, being positive. Then an interesting observation can be made from inspecting (9.72)
and (9.75) (see Fig. 9.9). For a stationary motion of a plane interface (v,=const(t),
Ky = 0) it is possible to have -phase growing (v, > 0) even when its temperature
after transformation is above the equilibrium value (Tg > Tg). Mathematically, if I, in
(9.75) is negative and large enough it is possible to balance the first term in the right-
hand side of (9.72). Physically it means that if the Gibbs-Duhem force in (9.76)
becomes large enough, it propels the interface against the negative bulk driving
force. However, in this case looking only at the linear terms in (9.72), we obtain a
wrong result that v, < 0 for Tg < Tg that is, the B-phase is shrinking although it is
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favored by the phase diagram (its temperature is below the equilibrium value). This
means that, although condition (9.58) applies, in order to balance (9.72) we must take
into account the nonlinear terms. This effect is called heat trapping.

To elucidate this effect let us analyze it in the system described by the tangential
potential. First, as we can see from (9.72), for the heat trapping to be possible, the
coefficient in front of the term linear in v, must be negative. Hence, using (9.75)
as an estimate, taking into account that for the tangential potential l"g’” =0
(Verify!) and finally using (5E.7) we obtain the heat-trapping criterion:

/IGTE A 1

Ht = = - .
ml’L,  ilL, =6 ©.772)

It may be interpreted as the upper limit on the rate of thermal conduction or the
lower limit on the interfacial thickness in the system. In this equation, Ht is called
the heat-trapping number and (SE.3) was used. Furthermore, using (9.46) and

1
L, =4 % G — 6’/KW’ (9.3E.4, 3E.5)

the heat-trapping criterion can be presented as follows:

2

R<d——
Wty

(9.77b)

Second, for the tangential potential the coefficients /; of the Gibbs—Duhem force
are (Verify!):

2 2

L L
I = —0-1583LvT—; = —0.0403L$T—;
5 E (9.78)

L WL
Iy = —0.0403 L2 —— + 0.0066 L2 — .
Tg Tg

Now, substituting (9.78) into (9.72) with K, = 0 and taking into account (9.58),
(1.10) and (9.61), which relates the final temperature of the B-phase T to the initial
temperature of the a-phase T,, = T,,, we can obtain an equation for the stationary
velocity, v,=const(t), of a plane interface:

A © = 1 + (Ht — 0.1583)Pe + 0.0403Pe” — O (Pe?). (9.79a)

If the criterion (9.77a) is not fulfilled then the stationary regime (Pe > 0) exists for
A® > 1 only and the difference from the sharp-interface case (I.14) is insignificant. If
the criterion (9.77a) is fulfilled then the stationary regime (Pe > 0) exists also for

_ (Ht—0.1583)°

= < . .
4 % 0.0403 A <ABO<I (9.79b)



236 9 Thermal Effects of Phase Transformations

The function Pe(A®) of (9.79a) is depicted in red on Fig. 9.9a. Compare this curve
with the blue line, which expresses solution of the same problem without the effects of
the interfacial diffuseness taken into account. Important difference is that the diffuse-
interface stationary solution does not vanish for 7y > Tg — L/C and remains positive
for Tg — L/C < Ty < Ty One may say that in this case the kinetic regime of growth
“penetrates” the temperature domain of the diffusion regime. However, the most
interesting part of the story is revealed if, using (9.61) and (9.79a), we calculate the
final temperature of the B-phase after the transformation. We can see (red line in
Fig. 9.9b) that this temperature is above the equilibrium point 7g > Tg. During this
process the low-symmetry -phase grows (v, > 0) at the expense of the high symme-
try o-phase at a temperature above the equilibrium point (Tg > Tg). In case of
crystallization of water, for instance, this would have meant growth of superheated
ice from supercooled water. For the crystallization of ice, however, criterion (9.77a) is
not fulfilled but is quite feasible for crystallization of other substances.

Another possibility of growing B-phase (v, > 0) with the temperature after trans-
formation above the equilibrium value (Tg > Tg) is due to the Gibbs—Thompson
effect that is, the change of the equilibrium temperature due to the curvature of the
phase-separating interface if the center of the curvature is in the a-phase (K < 0), see
(9.72) and (1.21).

94.5 APB Motion: Thermal Drag

In Sect. 5.5 we considered motion of the isothermal APB, driven by its own
curvature. Conventional logic dictates that APB’s do not cause temperature
gradients and/or thermal effects because the latent heat that generates the effects
vanishes in continuous transitions: L = 0 [see (2.4a), (2.44b)]. What is overlooked
by such logic is a contribution of the surface internal energy associated with the
interface. To properly describe this effect we need to apply TDGLE (5.1) and GHE
(9.42) to the APB motion (see Fig. 9.10). However, we will show here that the non-
isothermal drumhead equations (9.64a) and (9.72), applied to the APB motion,
describe the temperature waves of the amplitude [T] and average temperature
gradient ’dT/ dU| = [T]/L,, see (9.59). Indeed, due to the symmetry of the contin-
uous transition we may assume that [dT/du]=0 (still [T]#0; why?). Hence, the wave
represents a temperature double layer, see Fig. 9.10. Then a system of two simulta-
neous equations, (9.64a) and (9.72) with (9.75), for the three drumhead variables of
the layer: v, Ko, [T], can be resolved as follows (Verify!):

2¢K,
1] = 38 ° L= CLT (9.80a)
C{1R4(1+r)q} ¢
20K,
v xR0 (9.80b)

TR+3(1+1)q
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Fig.9.10 Temperature distribution inside a curved APB moving towards its center of curvature at
u=0 [calculated using TDGLE (5.1) and GHE (9.42)]

Notice that the temperature wave amplitude [T] is proportional to the curvature
of the interface; for a spherical particle (9.80b) can be resolved using the bubble
differential condition:

ko = VaKj. (5.36)
Also notice that the wave amplitude [T] is critically dependent on the temperature

7. To see that we need to take into account that ¢ = ¢ + Ty o< 4/7 and recall that

Lapp = 24| —=, (3E.6)

ozgmemﬂ (3E.7)

1= T 2a k(7). (3E.8)

Comparison of (9.80b) with (5.38a) reveals thethermal drag effect: a piece of the
APB with the temperature gradients inside the transition region moves slower than
the isothermal one. The interfacial dynamics is limited not only by the mobility of
the interfacembut also by the thermal conductivity N of the system with the kinetic
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Fig. 9.11 Borrow-return
mechanism. Internal energy
of a substance as a function
of an order parameter

internal energy excess

transformation

order parametern

number R measuring the relative roles of these processes. The thermal drag creates
a temperature wave around the moving APB even when far away from the interface
isothermal conditions are maintained. The drag effect is explained by the Gibbs-
Duhem force being antiparallel to the boundary’s velocity, hence, playing a role of
a drag force (see Fig. 9.6). “Dissolution” of a small particle of a minority-variant is
caused by the Laplacian pressure from the curved interface. At the same time, the
Gibbs-Duhem force generates the thermal pressure in the particle that opposes the
Laplacian pressure. In the ideal insulator, that is, a material with N=0, these
pressures may neutralize each other.

The FTM provides an “energetic” an explanation of the drag effect based on a
borrow—return mechanism (see Fig. 9.11). Both variants (o, ) on either side of the
interface are characterized by the same amount of internal energy density: eg = e,.
Transformation inside the interface from one variant to the other, however, requires
crossing the internal energy barrier (maximum), which corresponds to the disor-
dered phase with 7, = 0. So, a small volume of substance must “borrow” a certain
amount of energy proportional to Ae = e, — e, from the neighboring volumes
while moving uphill on the internal energy diagram (Fig. 9.11) and “return” it later
on the downhill stage of the transformation. The borrow-return mechanism entails
the internal energy flux vector (9.45) through the interface. In the non-isothermal
drumhead approximation it is

2
) = vy(é — ep) + O(Pe* + PeGe)

~— (=0t =7 =), (9.81)

RN
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where we used the equilibrium solution 7.4(u) of Example 3.2 and (2.11) and (9.42)
to calculate the last expression. (Verify!) Notice that the energy flux inside the
interface does not vanish even when the energy densities outside the interface are
equal, eg = e,. One can see that Jg is a bell-like function of space, peaked at the
point where 7, = 0. Such internal energy exchange requires a transport mecha-
nism, which is served here by the heat conduction. Thus, the drag effect is due to the
finite rate of heat transfer measured by the conductivity A. Thermal drag occurs
because the conversion of one variant into another is accompanied by the transmis-
sion of energy between neighboring pieces of a material, which cannot occur
infinitely fast. It is important to note again that the thermal drag exists despite of
the vanishing latent heat of the transition, which causes thermal effects in discon-
tinuous transformations.

9.5 Length and Energy Scales

To better understand various features and effects of the phase transformations with
varying temperature field we need to analyze different length and energy scales
relevant to the process. Let us concentrate on the first-kind transformation with the
tangential potential. To this end we have encountered three relevant energy scales:
the thermal energy density CTFg, the latent heat L, and the free energy density barrier
W. Two parameters describe their ratios: P = 6L/W and Q = L/CTg (9E.3 and
9E.4). However, a unified parameter, called the thermodynamic number, may be
defined such

1 WCT:

U=po~ o2

(9.82)

that, together with the kinetic number R, it determines practically all different
regimes of the transformations. For instance, according to (9E.6) for P — oo the
maximum value of M, is 3/4U, which means that all different cases of the nonclas-
sical nucleation can be classified in terms of the numbers R and U (see Fig. 9.5).
Moreover, the heat-trapping criterion (9.77a) can be expressed as RU < 2/3. This
means that all thermodynamic systems may be divided into a few universality
classes with similar thermal behavior depending on the magnitudes of U and R.
For the continuous transformation there are only two relevant energy scales and
their ratio ¢ = a/CTc (9.80a) plays the role of the thermodynamic number for the
continuous transformations.

On the other hand, the thermal properties of the system give rise to the capillary
I and kinetic /,, length scales:

_ oCTg A kL

=00 =L =T 9.83
2 WLt Teo ©-83)
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which, together with the fundamental length scale L, =4+/x/W, determine
system’s behavior. It is important to note that the thermodynamic and kinetic
numbers may be represented as the ratios of the length scales of the system:

(9.84)

Equation (9.84) makes it possible to interpret the thermal effects as an interplay
of different length scales in the system.

9.6 Pattern Formation

In this section, FTM will be applied to a few of the real-life problems which result
in the formation of complex structures—patterns. In some sense, this section is
central in this book because it demonstrates many of the advantages of the Method.
Up to this point all the problems that we encountered were tackled with the help of
different theoretical methods. Although these methods can also be applied to the
problems of pattern formation in phase transformations, we will take advantage of a
very effective method of numerical simulations. The purpose of this section is not
to present results useful for practical applications but to provide a useful framework
for the theoretical and numerical analyses of the system. One of the advantages of
the numerical simulations is that this approach allows intuitive, graphical analysis
of the results. We will show that a combination of only two processes, phase
transition described by TDGLE (5.1) and heat redistribution described by GHE
(9.42), is capable of generating very complicated patterns, which are similar to
those observed in experiments, specifically crystallization. These equations should
be supplemented with a free energy potential that specifies the system and the
boundary and initial conditions that specify the physical situation. To describe the
system we use the tangential potential (9E.1). For the boundary conditions we
choose thermal isolation of the system. Any realistic phase transformation starts
with a nucleation stage when the first traces of the product phase emerge from the
bulk of the parent phase. In this section, we do not intend to reproduce this stage
adequately and the simulations start—the initial conditions—with a very small
fraction of the product phase [ already present in the almost uniform parent
phase o at the same temperature T, < Tg as the phase f.

Although one can descretize these equations as they are, a more physically sound
approach calls for the scaling of these equations. The latter has the following
advantages. First, the scaling helps find the number of independent variables and
reveal important physical quantities that determine behavior of the system. Second,
computationally, it is easier to deal with dimensionless quantities than the dimen-
sional ones. We scale the space, time and temperature as follows:

W . T-T
F=\|—xi=yWi,T=C 0 (9.85)
K L
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where the tilded variables are dimensionless and X is the dimensionless size of the
system. From now on we will be using only the dimensionless variables; hence, we
may drop the tildes without any confusion. Then the dimensionless evolution
equations for our system take the form:

a'7—V277—co(n)(1—277+

T— A®
o > (9.862)

4U

or :RV2T+2 V20— w(n)(1 —2n —P)] %,

T (9.86b)

where U, P, R, and A® are defined above. Notice that the original, dimensional
system of equations (9.42), (5.2), and (9E.1) has seven independent material
properties that describe the system: (C, L, Tg, W, 4, k, y) while the scaled system
(9.86) has irreducible set of only three material parameters: (U, P, R). Together
with the initial temperature Ty, or supercooling A® and the system’s size X, they
determine different regimes of evolution of the system.

9.6.1 One-Dimensional Transformation

In Fig. 9.12 results of the numerical calculations of the discontinuous phase
transformation in a simple one-component, 1d system under conditions of thermal
isolation are presented. The simulations started at the state just below the o spinodal
point with a small-amplitude noise added to the initial distribution of the OP.
Significant advantage may be gained by looking at the simulation results against
the backdrop of the equilibrium state diagram (see Fig. 9.1). The following features
of the inhomogeneous transformation may be observed. On the early stage
(t < 1,100, Fig. 9.12a) we observe formation of the (drumhead) interface and
structural period (the OP spacing). The oscillatory mechanism emerged from the
finite wavelength instability of the adiabatically stable transition state (see Fig. 9.1)
and in the early stages of decomposition (¢ < 1,500, Fig. 9.12a) created an almost
perfect periodic domain structure with the wave number described by (9.53). On the
later stage (¢ ~ 2,000) we observe development of the coarsening process, which
starts practically immediately after the emergence of the almost perfect periodic
domain structure. The coarsening takes one of two routes: dissolution of a layer
accompanied by a local temperature dip or coalescence of two neighboring
layers accompanied by a temperature spike. Both types eventually lead to a new
equilibrium state with the new period. On the later stage (+ > 4,000, Fig. 9.12c) we
observe the end of the first stage of coarsening with the formation of an almost
perfect periodic structure of the B- and a-phase plates with the doubled period.

It is customary to view coarsening as a curvature-driven motion. In this case,
there would be no coarsening in a 1d system where all boundaries are flat. In fact,
coarsening is driven by the reduction of surface energy, which makes coarsening
subjected to the thermal effects. Analysis of the coarsening scenario in the 1d closed
system reveals the mechanism of the sequential doubling of the structural period,
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Fig. 9.12 Numerical simulation results of the 1d closed system (86) withU = 0.5,P = 2,R =1,
A® = 0.505: (a) r = 1,100, (b) t = 1,500, (¢) r = 4,500

which is completely different from the traditional Lifshitz—Slezov—Wagner mecha-
nism of coarsening.

9.6.2 Two-Dimensional Transformation

Even more interesting results come about in the numerical simulations of the two-
and three-dimensional systems. In Fig. 9.13a, b the 2d color maps of the OP and
temperature fields after long-time (f ~ 1,000) simulation of the transformations
described by (9.86) in a large system of X = 1,000 for the values of (U = 0.5,
P = 20,R = 2,A0® = 0.5) are depicted. The simulations started with a small circular
seed of the B-phase (initial radius equals ~20/) in the sea of the a-phase, all at the
temperature Ty < Tg. Very quickly (¢zq4 ~ 10) the system develops the drumhead
interface, visible in Fig. 9.13a. However, growth of a circular disk is not a stable
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Fig. 9.13 Simulations of the growth of a spherical (circular) particle of B-phase in a sea of
a-phase in the system with U = 0.5, P = 20, R = 2.0, A® = 0.5. (a) Order parameter field;
(b) temperature field
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Fig. 9.14 Distribution of the temperature and OP along the axis of symmetry of the needle in
Fig. 9.13 (the factor /2 is due to the diagonal direction of the needle). The equilibrium temperature
corresponds to 7' = 0.5

into long needles. The process of breaking the spherical (circular) symmetry of the
growing B-phase is called the Voronkov—Mullins—Sekerka instability.

In Fig. 9.14 the distribution of temperature and OP along the axis of symmetry of
the needle are presented. Notice two important features of the temperature field.
process and after the time #yys ~ 100 small protrusions develop, which later on turn
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Fig. 9.15 Numerical simulations of the “dendritic forest.” (a) Order parameter field; (b) temperature
field

First, there is the jump of the temperature gradient across the drumhead interface at
the tip of the needle due to the latent heat release. Second, there is visible
overheating (T > Tg) at the root of the needle due to the “negative” curvature of
the needle’s interface close to the center (why?).

In Fig. 9.15 the 2d color maps of the OP and temperature fields of the simulations
of the “dendritic forest” when the initial perturbations were placed on the plane
crystal are depicted. To obtain the side branches one has to “turn on” the noise
generator, which we considered in Chap. 8.
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Chapter 10
Transformations in Real Materials

We have explored many interesting properties of the Field-Theoretic Method and
saw how it can help us better understand phase transformations at equilibrium
and in dynamics. As the Materials Physics is moving into a new era of quantitative
modeling and design of real materials, it is important to assess the challenges of
the Method. One of those is obtaining reliable material parameters for it. FTM
depends on a number of new parameters, which, although can be classified as
material’s properties, cannot be found in a table of physical and chemical constants.
For example, the Method uses the Landau—Gibbs free energy of the system
expanded in powers of the order parameter (Chap. 2) with the coefficients of
expansion (A, B) or (W, D). A partial list of other parameters used by the method
is: the gradient energy coefficient x (Chap. 3) and the rate constant y (Chap. 4).
The problem is that these parameters cannot be easily identified in experiments and
obtained through direct measurements because they are not measurable quantities,
that is, do not have direct experimental meaning. In this chapter, we discuss the
strategies and challenges in obtaining these parameters for realistic materials and
the boundaries of applicability of the Method.

10.1 Parameters of FTM

The first attempts to find the coefficients of expansion of the Landau—Gibbs free
energy consists in guessing their (7, P)-dependence, deriving the (7, P)-phase diagram
of the system or its specific heat and compressibility, and comparing the theoretical
results with the experimental values. This strategy seldom works for the Landau
potential because of a complicated relation between the free energy and the expansion
coefficients, (2.18). Identification of the material parameters was our primary motiva-
tion behind deriving the tangential potential of Sect. 2.4: for this potential, one
parameter, D in (2.33), is equal to the difference of the free energies of the phases
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(not necessarily equilibrium) and can be found through the thermodynamic integration
of the experimental data. Parameter W of (2.33) cannot be found from the thermody-
namic measurements because the transition barrier height is not a thermodynamic
(macroscopic) quantity.

One way to obtain the interfacial parameters is to derive them from the micro-
scopic models through the coarse-graining procedure (Appendix A). This is a
treacherous road, not well traveled yet. Another option is to obtain them from the
experiments or atomistic (e.g., molecular dynamics) simulations. To realize this
strategy, we need to identify the experimentally measurable or atomistically
simulated counterparts and compare them with these parameters. For instance,
the barrier-height parameter W can be found from the measurements of the interfa-
cial energy and thickness

1
o= Vi Lu =4 /%. (3E.4, 3E.5)
These equations can be easily resolved for the parameters W and «
3 g
=—0gLeyy; W=24—. 10.1
ke = 0Les; I (10.1)

This approach has a drawback: it is difficult to extract the interfacial thickness
from the experimental (or atomistic simulations) measurements.

Another strategy to identify the parameters of FTM is to use the data on the
structure factor (see Sect. 7.5). This quantity is directly proportional to the intensity
of the scattered radiation in any experiment on scattering of neutron, light, or X-rays.
The wave vector Kk is the difference between the wave vectors of the incident and
scattered radiations. The small-k (long wavelength) limit of I%;,y(k, t) can be
measured by the light scattering and the large-k (short distance) part of
I@—,,V(k, t)—Dby the neutron scattering. Theoretically, equilibrium value of the struc-
ture factor can be found as the long-time asymptotic limit of the following
expression

) A T — 2knT
K, v(k,t) = K; v (K, 0)e2fr _2 i F— o0 . (7.56)
" " VB v g/ ona) + kP
32
Bk = =1 |55 () + ik (7.45

On the other hand, for the Landau potential

g A
Wi(”) - { 2(B* — A+ BVB2 — A) @22)
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and for the tangential potential

2
% (n) =W(P,T) £6D(P,T), (2.36)
where the options in the right-hand side depend on the phase of the system. These
relations can be resolved for the parameters of the potentials if the structure factor is
measured for k = 0 in the domains of stability of both phases separately and then
extrapolated into the metastable region of at least one of them. The gradient energy
coefficient can be identified as follows

ke T dKG, (K, 00)
= (10.2)
Voo dkf?

The surface tension can be extracted from the measurements of the interfacial
structure factor [see (7.70)].

The rate constant y can be extracted from the experimental (atomistic
simulations) measurements of the speed of motion of the inter-phase interface in
a transformation at a specified temperature below the equilibrium one Tg, and
compared to the theoretical expression for the speed (S5E.7). Then

w_JTE %
TNl T —T°

(10.3)

An alternative approach is to extract the rate constant y from the expression for
the dynamic structure factor, (7.56), (7.45). (Verify!).

A similar strategy can be used to extract the FTM parameters of the system
with the OP conservation constraint (see Sect. 8.1). For instance, to find the concen-
tration gradient-energy coefficient k¢, one may identify the most pronounced
wavelength of the structure, evolved in experiments or simulations, and compare
it to the formula for the maximum marginal wavenumber kq, (8.33), (8.34).

10.2 Boundaries of Applicability of the Method

One of the greatest advantages of FTM is that the method allows finding its own
boundaries of applicability. They come from the thermodynamic constraints and
limitations on the speed and dimensions of the evolving structures. Throughout the
book we have identified several conditions of applicability. Here we will succinctly
summarize these criteria.
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1. Equation (2.9b) expresses limitations on the order of the polynomial expansion
of the free energy in powers of the OP. It says that all essential contributions into
the free energy must be accounted for.

2. The method is not applicable when the evolving structure has very fine scale.
For instance, one of the limitations of the method is that the thickness of the
inter-phase interface or APB is greater than the interatomic distance a

[>a (10.4)

3. Mean-field methods do not take into account thermal fluctuations in the system.
Hence, fluctuations can be added into the theory by hand. In FTM, they appear in
the form of the Langevin force (see Chap. 7). Levanyuk—Ginzburg criterion,
(7.28), (7.30), identifies constraints on the parameters of the theory. For instance,
it says that the method is not applicable in the vicinities of the critical points,
which are the high-fluctuations regions.



Chapter 11
Extensions of the Method

In the previous chapters, we demonstrated advantages of the FTM in describing
phase transformations in material systems. However, the world of phase
transformations is so diverse that the tools of one method may not be enough to
describe all its wonders. There are many dimensions in which the method may and
should be extended. First of all, we need to discuss the problem of computational
efficiency of the method. Indeed, a rough estimate shows that in its full implemen-
tation the FTM is not very efficient in describing structural features of a macro-
scopic object because the method must naturally resolve the mesoscopic features,
such as interfacial structure, which may not be critical for the overall structure and
properties of the material. This problem may be resolved by using an adaptive
mesh, that is, the computational grid of variable size [1]. Another strategy is to
use a cellular automata method, which we discuss in this chapter. Second of all, the
real-world materials manifest many features which are not directly related to phase
transitions, e.g., grains and grain boundaries. These features and the problems
associated with their modeling are also discussed in this chapter. We conclude
this chapter and the book with an epilogue where we try to outline the challenges
and future prospects of the Method.

11.1 Cellular Automata Method: ‘“Poor Man’s Phase Field”

As we saw in Sect. 5.4 not all details of the OP field are important for the global
structure and rate of transformation in a material system. For instance, the fine
details of the OP distribution inside the solid—liquid interface are not essential for
the dendritic structure that grows from the supercooled liquid. However, being an
integral part of the Field-Theoretic Method, the fine details need to be resolved in
any simulation strategy, and this requires significant amount of the computational
resources. To alleviate this problem many different methods were suggested; one of
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Fig. 11.1 Cellular automata X
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them, a cellular automata method (CAM), is essentially the Field-Theoretic
Method coarse-grained one more time on the larger length scale [2, 3]. In essence,
the CAM consists in dividing the whole system into cells of linear size /- and
volume Qcp and averaging the field quantities in each cell (see Fig. 11.1). For the
method to work, the cell size should be much larger than the interfacial thickness

lea > L, (11.1)

but much smaller than the essential length scales of the problem in question.

To derive the CAM dynamic equations for the problem considered in Sect. 9.6.2,
we will compute the thermal balance in each cell. For this, we integrate GHE (9.35)
over the volume of the cell. Then

CQ J Tdx = —{) Jrds + Q(r, 1) dx. (11.2)
ot Qca QCA QCA

The first integral we can present as T Qca, where T is the temperature averaged
out over the volume of the cell. The second integral is the sum of the fluxes on all
boundaries of the cell TQcaJr. The third integral can be computed using the
expression (9.36) for the heat source Q and the assumption that the OP field in the
cell represents a train wave (interface), that is, it moves as a whole with
the unchanging internal structure. Then, introducing the unit normal n directed
toward the parent (liquid) phase and using (2.4a), (5.31a), we obtain
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*© de 9*n\ on
3 == - — b _— =
JQCA o(r, ) d*x =V, LO ds LO dn< Ke 6n2> S =VaSoL, - (113)

where S is the area of the piece of interface in the cell, L is the latent heat of the
transformation, and V/, is the velocity of this piece in the direction of n. Introducing
a new variable, portion of solid in the cell

Qg

0} )
Qca

(11.4)

where ()g is the volume of the solid phase in the cell Q¢a, the heat-balance equation
(11.1) can be rewritten as follows

—=—-2 L— 11.5
C o Ocn Jr+ o ( a)
o Sy
— = V- 11.5b
ot QCA ( )

To obtain an equation that relates V,, to the average temperature in the cell and
local curvature of the piece of interface we need to average TDGLE (5.1) over the
volume of the cell. Due to (11.1), this is pretty much the same procedure that led us
to (5.32). Then (disregarding the effects of heat-trapping) we obtain

T
Vn:y(TE—T—ZUL—EKO). (11.6)

Equations (11.4)—(11.6) are a system of simultaneous equations for the new cell
variables 7 and @. However, the system is not complete—the missing information
has been lost “during” the coarse graining. First, we need to compute the quantities
So and K; they can be found using values of the function @ in the cell of interest (0)
and the surrounding cells (front tracking). Second, we need a transition rule, which
indicates when (on what time step) the interface appears in 0-cell if before the cell
was void of the interface. This rule can also be established based on the knowledge
of the function @ in the surrounding cells. Hence, we can see that CAM depends
heavily on the neighborhood of the 0-cell—{w;}. The extent (nearest neighbors,
next-to-nearest, etc.) and symmetry (e.g., square or triangular lattice) of the neigh-
borhood enriches the method at the expense of the computational resources (there is
no free lunch!). The rules themselves depend on the physics of the transition
process (nucleation, etc.) and properties of the system (e.g. anisotropy).
They may be restored from the underlying FTM.

Let us consider a 2d system (you can think of it as being uniform in the third
dimension) with crystallographic symmetry that corresponds to the square cell
grid (<10> is the fastest growth direction), for which we will be using the
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nearest-neighbor (left, right, up, down) neighborhood (see Fig. 11.1). One may
consider more complicated anisotropy of the system than its crystallography, but
for the sake of simplicity we will not be doing that. Furthermore, we will rule
out nucleation in front of the interface, which leaves only one mechanism of
transformation—advancement of the phase interface. Then the transition rules
may be realized in the CAM by introducing one more, subsidiary variable—the
cell type W, which multiplies the right-hand side of (11.5b). By definition, W, = 1
if 0<@o<1 (two-phase cell, that is with the interface inside) or if @y = 0 (liquid
cell) but @w; = 1 for at least one of (i = [, r, u, d); all other cells, that is with
wo = 1 or 0, have W, = 0 (see Fig. 11.1).

There is a number of ways how the functions S, and K, can be calculated given
the state of the neighborhood {®;}. For instance, one can assume that the interface
describes an arch of a circle in the neighborhood and use {®;} to deduce its length,
radius, and angle of inclination in the central cell. Below, we will be using the
following formulae for the curvature and slope

“ W1+ (dx/dz); 20 10

Now the system (11.4)—(11.7) can be dimensionalized using the following
length, time, velocity, and temperature scales, respectively:

) i I, uL L
l, =— =X =L = 11.8
o ,LLL y Tu o ) Vo T C ) C’ ( )
and completely “cellularized,” that is, discretized in space and time

— — u’d — —

T3 = ToJra(Z T 4T0> + Awy, (11.9a)
i=lr
og' = @y + Awy, (11.9b)
_ 1

Aa)o = bW()éO (A@ - T() - I—eKo), (1190)

where a = JA/CAX?, b = voAt/AX, &g = So/lca, the supercooling A® = C(Tg —
Tinitia)/L s defined in (I.10), and kinetic number R = ucTg/aL—in (9.46), (9.83),
(9.84). The system of equations (11.9) should be supplemented with BC and initial
conditions. We will assume that initially the system consisted of a crystal with
plane surface and a small bump with the size of a single cell on it immersed into a
large volume of supercooled liquid phase at A® > 0. For the sake of simplicity for
&g, we will be using its isotropic average value of one. The method may be
expanded to include the effects of anisotropy and presence of other components.
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Fig. 11.2 Dendritic morphologies at different values of the supercooling: (a) A® = 0.6,
(b) A® = 0.85, and (c) A® =1

In Fig. 11.2 are presented numerical calculations using the system (11.9) for
different parameters A®. The simulated patterns have many features of the real
dendritic structures; namely, a little bump on a smooth interface turns into a long
stem covered by side branches. A few interesting observations regarding the side-
branch structure can be made. First, it is highly periodic with the period depending
strongly on the supercooling. Second, the side-branch structure has a well-defined
envelope. Third, at large supercoolings (A® > 1), the side branches disappear
altogether; this effect is called the absolute (or second) stability. Fourth, moving
away from the tip, the side-branch structure coarsens by doubling of its period.
All of these features were observed experimentally.

Comparison of these results with those of the FTM presented in Sect. 9.6.1 and
9.6.2 is illuminating. First, both methods efficiently capture instability of a smooth
interface to capillary-wave perturbations and “translate” this instability into long
needles with rather smooth tip. However, to produce the side branches the Field
Method needs an additional source of fluctuations, while CAM has, so to speak, the
built-in fluctuations of sufficient amplitude to inspire the side branches. These
fluctuations are related to the coarseness of the CAM grid, which also brings
about grid-related anisotropy of the method. These features of the CAM do not
allow it to resolve the subtle small-scale issues of the dendritic tip stability but make
it an effective tool in large-scale microstructure modeling. Second, compare the
process of side-branch coarsening with that of the 1d plates, which we observed
in Sect. 9.6.1 and notice that in both cases the coarsening is a result of strong
long-range interaction through the temperature field between the structural units of
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high-volume fraction; that is why both processes take similar paths of period
doubling. Thus the mechanism of sequential period doubling is robust for coarsening
in 1d or quasi-1d (dendritic branches) systems with a conserved quantity (energy).

11.2 Continuum Models of Grain Growth

Many solid materials consist of small crystallites called grains, which are domains
of the same phase with different spatial orientations of their crystalline lattices.
The grains are separated from each other by the grain boundaries (GB), which are
2d-extended defects with positive excess free energy and, therefore, thermodynam-
ically unstable. Due to their global instability, curved GBs are known to move
toward the centers of their curvatures. However, overall the GBs move such as to
increase the average size of the grain R, reduce the total GB area and thus the total
free energy of the system. Simple dimensional analysis provides an approximate
time dependence for R(¢). Indeed, if we assume that GB energy is the only driving
force for its motion then [4]

dR

dr

= 4=, (11.10)

TN

where the coefficient a is a product of the GB energy and mobility. Notice that the
right-hand side of (11.10) is positive because we apply this formula to the average
size R not the individual grain radii [cf. (5.36b) and (5.46)]. Solution of (11.10) is

R® — R} = 2at, (11.11)

where Ry is the average grain size at t = 0 [cf. (5.38b) and (5.47)].

However, R is not the only characteristic that determines global evolution of the
grain structure because grains of the same R can have different topological
properties. The latter are characterized (in 2d case) by the topological class of a
grain, k—the number of neighbors (or sides or triple junctions). Then the area of the
2d grain A obeys the following relation [5]:

dA an

@& “30k—6), (11.12)
which shows that grains with more than six sides grow while those with fewer than
six sides shrink.

A variety of models of grain growth have been proposed with a common feature
that the GBs have zero thickness—the sharp interface models. However, recently
several authors proposed rather different models of grain growth in which the GBs
are assumed to be diffused, that is have finite thickness. To describe evolution of the
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grain structure, these models use the gradient-flow paradigm, which includes
TDGLE with random forces but without the cross terms

on; oG
2 T (r.t 7.31
8t ))1577[+él(r? ) ( )
and the free energy functional
G = J gdx (3.27a)
Q

with different free-energy density functions g, which are the subject of discussion in
this section. It is not our intention here to pass judgment on which model is better—
this is a complicated question, which is still very much under consideration in the
literature. Our goal here will be only to introduce the models and present their
advantages and disadvantages.

11.2.1 Multiphase Field Models

Based on some similarities between the properties of the grains and antiphase domains
(see Sect. 8.3). Chen et al. [6] proposed a model, in which a polycrystalline micro-
structure is described by a number of OP fields, {n;(r,7);i = 1..., N}, which designate
different orientations of the grains. The free-energy density of the system is

X 1 ¢ 5
=g{m(r,0} +3 ;Ki|vni| , (11.13)

where k; are the gradient energy coefficients. The main requirement for the homo-
geneous part of the free-energy density is that it has degenerate minima of equal
depth. A simple function which satisfies this requirement is

N
1
g=8(PT)+AY | =5 +1 R Z . (11.14)
i=1 ]—1
J#i
It has 2N minima located at {n; = £1;7; = 0,j = 1...,i—1,i + 1...,N} in the

N-dimensional space, each one representing a specific crystallographic orientation
of a grain. The free energy of a plane GB is

& dn; ?
aGB:L Z o) 4 (11.15)
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The main contributions into the GB energy between two grains of orientations 7;
and 7; come from the gradients of 7); and 7; because other OPs practically do not
vary in the transition zone.

This model provides correct temporal variation of the average grain size as being
asymptotically proportional to the square root of time and reasonably well
reproduces evolution of the grain-size distribution function and local topological
classes (number of sides) of the individual grains. However, deficiencies of the
model are prominent. First, the model allows for a finite number of orientations
only, while in a real material any grain orientation is possible. Second, in the model,
the set of 2N allowed orientations is doubly degenerate and the orientations
{n: = +1;m,; = 0} and {n; = —1; ,; = 0} form, so to speak, an anti-orientation
GB with a finite GB energy (see Sect. 8.3), while in a real material they are totally
equivalent and do not form a GB.

To describe evolution of multiphase systems, Steinbach et al. [7] developed a
method where, instead of the OPs, the main field variables are partial phase contents
pir, 1), i = 1,..., N. These phase-field variables are not independent; they are
defined on the Gibbsian simplex

N
> pilr,) =1 (11.162)
i=1

and allowed to vary only between 0 and 1
0<p <1 (11.16b)

The free-energy density of the system is

N i
g=> {gi(P; T)pi Jr% > [Ofijﬁ,-zl?_,2 + 15 (piVp; — Piv[’i)z} }, (11.17)
i=1 Jj=1

where g,(P, T) is the free-energy density of the individual phase i. Notice that the
gradient energy contribution in (11.17) is a weighted sum of the squares of the
Lifshitz invariants [see (8.86b)]. For the dynamics of the system, the authors used
the relaxation ansatz (7.31).

The method has a number of inconsistencies. First and foremost, application of the
relaxation ansatz (7.31) is not justified here because vanishing of the variational
derivative is not the condition of equilibrium. Indeed, because the system is defined
on the geometrically bounded simplex (11.16), the total free energy minimum can
be achieved on its boundary where the functional (3.27a) is not differentiable.
The method also has a computational disadvantage in modeling a multiphase system
as it needs N field variables p;s to describe a system with N phases, while the method
described in the book requires ~ log,N OP fields. However, the multiphase method
had some success in simulations of evolution of the grain structure in monatomic
systems as the average grain size was found to be proportional to time in power ~0.38.
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11.2.2 Orientational Order Parameter Field Models

Morin et al. [8] introduced a model of evolution of a polycrystalline material in the
d-dimensional space where the grains are characterized by a d-component vector
field m(r, ) whose magnitude represents the local crystalline order and direction
represents orientation of the grain. The latter is characterized by the angle 0(r, £)=
arcos(i-n/ml) that the vector field n(r, ) makes with the fixed direction in space i.
The free-energy density of the system is

g Zf{|*l(l‘7f)|2, c(r,1), Vm, Ve, cos[N@(r,t)]}, (11.18a)

where c(r, t) represents the local atomic concentration and N is the order of
breaking the rotational symmetry of the system, that is, the number of distinguished
orientations of grains. Evolution of the system is governed by d TDGLEs (7.31) for
the nonconservative field n(r, ) and a Cahn-Hilliard equation (plus the thermal
fluctuations) for the conservative field c(r, 1) [cf. (8.27)]

Oc ,0G
E =DV E‘FC(I’,[).

The long-time behavior of the studied 2d system was dominated by the scaling
regime when the structure factors of the concentration and ordering exhibited the
so-called Porod’s law, that is S(g, N—q~“*" for ¢ — oo, where ¢ is the magnitude of
the Fourier wave vector. This result was attributed to the coupling between
the nonconservative field n(r, #) and the conservative field c(r, 7). However, validity
of the results may be called into question by the contribution to the free-energy density

cos[NO(r, 1)] {m(r, r)ﬂ ’ (11.18b)

which violates isotropy of the system. Indeed, just a mere rotation of the reference
frame (i, j, k) causes irreducible changes in the free energy differences between
the grains of different orientations, which in turn should change the dynamics of the

system.
Lusk [9] suggested a model where the lattices of differing orientations are
distinguished by a set of lattice parameters {s, s, . .., Sy}, where N is the number

of allowed grain orientations. However, in contrast to the previous model, these
parameters do not enter into the free energy function. Instead, the free energy of the
system depends on the gradients of these parameters only

N
g=2g(n, P, T)+i(n) (Vs (11.19)

i=1
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The lattice parameters obey the relaxation dynamics of the type (7.31). Using the
matched asymptotic analysis, the author was able to recover the GB motion by
mean curvature. He also obtained 1d analytical and numerical solutions for a
stationary GB. However, this solution presents a GB as a layer of melt sandwiched
between two solid crystallites—a wetted GB model, which is not the case in the
polycrystalline materials far from melting point.

Kobayashi et al. [10] introduced a model of grain structure, which allows for an
arbitrary orientation of grains and is invariant with respect to the reference frame. In
the 2d realization of the model, the grains are characterized by two nonconservative
fields, the OP field 7(r, ) which is interpreted as the level of local crystalline order
and the field 0(r, r) which is interpreted as the local orientation of the grain lattice
with respect to the fixed axis in space, say x. This is similar to the model [8].
However, what is different from the latter is that the free-energy density in this
model depends only on the powers of the gradient of the field 0(r, ¢)

¢ =g(n,P,T) +a(n)|V0] + B(n)|VO[. (11.20)

The presence of the linear term 1V 0l is required in the model for the localization
of the GB at equilibrium. The equilibrium structure of the GB is accompanied by
lowering of the value of the OP 7, that is, disordering of the GB. Evolution of the
ordering field is governed by the relaxation dynamics of the TDGLE type (7.31)
with the relaxation coefficient that has singular dependence on 7. The authors were
able to reproduce some of the features of the grain structure in materials like
dependence of the GB energy on GB misorientation (change in angle across the
boundary), GB wetting and motion, and grain rotation (time change of orientation
in the grain interior). However, due to significant singularity in the free-energy
density (11.20), for its computational implementation, the method requires a num-
ber of physically unappealing fixes like the singular mobility or smoothing
functions to emulate the singular term |V 0l. These measures also make the model
computationally taxing.

11.2.3 Phase-Field Crystal

Elder et al. [11] introduced a method for modeling of transformations in materials
including effects related to multiple crystal orientations. They called it the Phase-
Field Crystal method because it describes phase changes as evolution of the atomic
density field according to dissipative dynamics driven by minimization of the free
energy of the system. The free-energy density is approximated as

o1 1
g=y[o«+i(g§+vz)2]@+1ﬁ@4, (11.21)
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where o, 5, 4, qo are material parameters and o(r, f) is the deviation of the atomic
density from the density of the liquid state, which is at equilibrium with the solid
state at the temperature of the transformation. In the framework of this method,
formation of a crystalline solid is signaled not by the value of an OP being greater
than zero, but by the field (r, #) being unstable to the formation of a periodic
structure. A full nonlinear solution of the minimization problem is very compli-
cated even in 1d. The authors studied a one-harmonic-mode approximation of the
linearized problem (the free-field problem). In the 2d small-a limit, the functional
(3.27a) with the free-energy density (11.21) is minimized by the deviation

R A | o B V3x y 1 y
= - =4/—15-—36 2 ——CO0S=—— — —COS— 11.22
©m 90+5 (<p+3 5 © ) {cos 20 coszq0 ZCOSqo ,( )

which represents a triangular distribution of “particles” with the reciprocal lattice
vectors

Blzl(ﬁfﬂf), Bzzij. (11.23)
g \2 2 40

For this solution, the parameter g, represents the distance between the nearest-
neighbor “particles,” which correspond to the atomic positions.

To obtain the “phase diagram” between the average density ( and parameter o
the authors used the Maxwell equal-area construct. Given that the field ¢(r, f) is
conservative and assuming that its dynamics is dissipative and driven by the
minimization of the free energy, the authors used the Cahn-Hilliard equation
(8.27) for the evolution of the field. Using the phase-field-crystal method, the
authors obtained reasonable scenarios of evolution of the grain structure in
materials, including grain growth and rotation.

11.3 Epilogue: Challenges and Future Prospects

We came to the end of our journey of studying the Field-Theoretic Method that
helped us analyze various properties of phase transformations. It is the right time
now to assess its pros and cons and speculate about its future. The greatest
advantage of the Method is that it is on the solid theoretical footing, which allowed
us on one hand to expand it on a broad variety of transformations found in materials
and on the other hand to find its own limitations and boundaries of applicability.
Another advantage of the Method is its transparent mathematical structure. This
feature allowed us for both, to use the method as a theoretical tool and develop
efficient computational schemes for practical purposes.

One of the greatest challenges of the Method is the need for parameters that
correspond to the real materials or systems that undergo the transformations. These
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parameters cannot be measured in experiments. They can be calculated from the
first principles, but this option is laborious and encounters significant difficulties.
The author’s hope is that these parameters will emerge from the computations, e.g.,
Monte Carlo or Molecular Dynamics with realistic interatomic potentials. Another
challenge, particularly in computational applications, is to develop efficient
algorithms that help offset the drawbacks of the method and bring the “computa-
tional cost” down. Both of these challenges need to be overcome for the successful
application of FTM for quantitative modeling of material transformations in the
three dimensional space.

The Method’s advantages secure its great prospects. It may be expanded in many
different directions. For instance, it naturally allows inclusion of the external
physical fields (other than temperature and pressure), such as electric, magnetic,
gravitational, into the analysis of transformations, which makes the Method more
practical. Mainly in this book, we discuss the macroscopic systems of large
(virtually infinite) sizes. However, the Method can be applied to systems of limited
sizes, with small systems being the most interesting in this category. This is very
useful because the Statistical Mechanics of Small Systems has not been developed
yet. The Method is already expanding in the directions, which are not traditional for
the science of phase transformations. For instance, it finds applications in biology,
psychology, sociology, and even cosmology.

However, the Method experiences healthy competition from other methods,
such as the Molecular Dynamics and Phase-Field Crystal. Both methods allow for
microscopic resolution of the process, which on one hand is an advantage, but on
the other hand, computationally slows them down considerably. We may be sure
that all these challenges will make the Method stronger and more relevant to the
theoretical and practical needs of the science of phase transformations.
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Appendix A: Coarse-Graining Procedure

Intention of this appendix is to show how a set of many microscopic variables can
be converted into a smaller set of mesoscopic variables or even one continuous
function through the procedure called coarse-graining (CG). There is no denial that
after CG certain features of the system are lost; the hope is, however, that the
essential ones are retained. We will demonstrate the CG using a simple model of
ferromagnetism. Each atom in a crystal is supposed to have a magnetic moment y,
which may point in any direction. The concept may be clearly demonstrated on a
particularly simple example of a unidirectional ferromagnetic “crystal,” that is, a
lattice of atoms with the magnetic moments pointing in only one of the two
directions: upward or downward. Such model is called Ising model of a ferromagnet
and the atomic magnetic moments—Ising spins. The state of each atom is
represented by a variable g; (i = 1, 2,..., N; N being the total number of atoms in
the “crystal”), which takes on the values +1 or —1. Neighboring atoms in the lattice
experience exchange interaction of the strength J > 0 and sign that depends
on whether the moments are parallel or antiparallel, so that J(¢; = 0;)=—J/ and
J(o; = —0j) = +J. Therefore, the magnetic interaction energy of the atoms can be
expressed by the following Hamiltonian

H{oi} =] Y oo, (A.1)

nn<ij>

where the summation is over the nearest-neighbor pairs of atoms. We will look at
the one- and two-dimensional Ising models.

If the system is interacting with a heat reservoir of temperature 7T then each of
the N Ising spins o; is a random variable. According to the Boltzmann’s principle,
the probability distribution of the microstate {g;} is

1 N
Ploi} = e o), (A2)

A. Umantsev, Field Theoretic Method in Phase Transformations, 261
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where ff = 1/kgT (kg is the Boltzmann’s constant) and Z is the normalization
constant called the partition function

Z=Y et N =N N (A3)

{oi} {oi} {6} {0} oy==%1

In (A.3), the summation is overall N Ising spins. The expectation value (average)
of the spins is

g; = GjP{O','}. (A4)
{oi}

To describe the spin dynamics, let us consider the one-dimensional array of
N spins with the probability distribution P{o;, ¢}, which is a function of time that
obeys the master equation [1]

d N N
et =[S plod + oo
J=1 J=1
x{o1,...—aj,...0n,1}. (A5)

The first term in the right-hand side describes destruction of the microstate {o;}
by a flip of any of the spins, while the second term describes creation of the
microstate by the spin flip from any of the microstates {o},...—gj,...on}. If we
want to describe a tendency for each spin to align itself parallel to its nearest
neighbors we may chose the transition probabilities w;(a;) to be of the form

1 1
wj(aj) :Ey{l —Eocaj(aj,l +a]—+1)}. (A.6)

Here 7/2 is the rate per unite time at which the spin flips from either state to the
opposite if it were disconnected from the other spins and o describes the tendency of
spins toward alignment. Positive values of o favor parallel configurations (ferro-
magnetism), negative values favor antiparallel configurations (antiferro-
magnetism), and in all cases lal<1. Comparing the equilibrium state (A.1), (A.2)
with the asymptotic state of the master equation (A.5), (A.6) we may identify

2J
o = tanh (/(B—T> . (A7)

If we multiply both sides of the master equation (A.5) by ¢, substitute (A.6), and
sum overall values of spin variables we obtain an equation

L d(o;(r)) !
T w —(aj(1)) + 506{<0_,;1(f)> +(o71(1)) }

=—(1—a){o;(t)) + %a{<aj,1(t)> = 2(0j(1)) + {1())}, (A.8)
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Fig. A.1 Partitioning of the
lattice of the cell size a by the
blocks of b x b cells. Each
block is associated with a spin ba I 1 l l

(black arrows) between —1
and 1

which shows that the rates of change of the average spins depend on the states of the
neighbors. Extension to the 2d case is straightforward.

Unfortunately (A.1)—(A.8) are not very helpful analytically because Hamiltonian
(A.1) depends on very many (V) independent variables. The number of variables of
the Hamiltonian (A.1) can be significantly reduced if we are not interested in all the
details of the system’s behavior on the scale of the interatomic distances a. The 2d
“crystal,” for instance, can be divided into square blocks, each one consisting of
b x belementary cells, (see Fig. A.1). For each block, we define the block spin as a
sum of b* Ising spins divided by b? that is, as the block-mean Ising spin.
Designating blocks by the position vectors of their centers we obtain

b2
o(x) = (o) = b_12 > o= > oP{o} (A.9)
=1 {ol0*}

Notice the change of the structure of the independent variables. First, there are
N/b* block spins instead of N Ising ones. Second, although the block spins are
discrete variables as the Ising ones, their “degree of discreteness” changes. Indeed,
while the Ising spin is just a simple binary variable, the block spin can take on
(b2 + 1) different values, that is, practically becomes a continuous variable for large
b. Hence, the coarse-graining smoothes out the variables at the expense of their
“information content”: the Ising spins describe interactions on the interatomic scale
a while the block spins—on the block scale ba.

How can we find a block-spin Hamiltonian from the Hamiltonian (A.1) for the
Ising spins? Let us find the probability distribution of the block spins P{o(x)}.
This can be done using simple rules of the probability theory. Consider joint
probability distribution function p(q;, ¢g») of two random (continuous) variables
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¢1 and g,. If we are interested only in one variable, say ¢;, we can obtain its
probability distribution p(g,) by integrating p(q1, g») over ¢,

Pq) = /dqu(m,fn)-

If we are interested in the mean value of ¢, and ¢,, that is ¢ = (¢; + ¢»)/2, then

p'(g) = /dfh dgp(q1,92) 5(‘1— o ;(h) = < 5((] _a ;q2>>.

For as long as we consider only functions of ¢, their average values can be
calculated using p'(q) or p(qi, ¢») yielding the same result because the -function
replaces integration over ¢ with the integration over (g, ¢»). For instance,

() = /dqqu’(Q) = <(Ch ;q2)2>~

Using these rules, we write the block-spin probability distribution function as
follows

P{o(x)} = P'{o;}
. b? »
= {Z}e*ﬁH{a,} 1:[ 5(0()() 7% ZU_,-) = <1:[ 0 (O’(X) f% Zq) >
(A.10)

Now, using the Boltzmann’s principle, we can define the block-spin Hamiltonian
H{o(x)}

P{o(x)} = %e*ﬁ”{“x)}, (A.11)

where Z is the partition function of the CG system

1 N/b?
Z= Y e fMetx % [ doe e, (A.12a)
{oilN/p2} —li=1

+1

=Yy > (A.12b)

N/} oG o0e)  o(xym)=-1
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The procedure (A.9)—(A.12) of reducing the Ising Hamiltonian to the block
Hamiltonian is called the Kadanoff transformation

H{o(x)} ZK})I:[{GI‘}7 (A.13)

where we define K; = 1. The transformation K}, can be applied multiple times with
the property that K,K;; = K;;. Each application of the Kadanoff transformation
smoothes out the spin variables at the expense of the reduction of the spatial
resolution of the Hamiltonian. The block Hamiltonian H{a(x)} contains parameters
that average out interactions of the b* Ising spins on the scales of the block (<ba).
In this respect, the exchange interaction constant J of the Ising Hamiltonian (A.1) is
the averaged out interatomic interactions on the scale <a.

There are several advantages in dealing with the smoothed, averaged variables
instead of the discrete ones. First, one can use the tools of the calculus. Second, one
can apply the Fourier transformation to the spin variables and represent the Hamil-
tonian H as a function of the Fourier components g(k). In this case, the function
H{o(k)} contains only the components with the wave vectors |kl<2n/ba because
the wave vectors outside this sphere describe details of the functional behavior on
the scales smaller than ba, which were eliminated from the Hamiltonian H{o(x)}.
Third, dynamics of the smoothed variables is more tractable.

As known [2], the macroscopic properties of a system can be computed from the
partition function. For instance, the Helmholtz free energy is

InZ
5

For the stability of the system, this free energy must be a convex (concave)
function of its extensive (intensive) variables, e.g., 0°F/0T* < 0. Equations (A.11)
and (A.14) motivate us to expect that the block Hamiltonian H{a(x)} possesses
some properties of the free energy. Because H{o(x)} depends not only on the
thermodynamic variables such as temperature and volume but also on the internal
variables such as block spins {g(x)}, it may not be convex (concave) function of its
extensive (intensive) variables in the entire domain of definition. However, great
advantage of the block Hamiltonian H{a(x)} over the actual free energy F(T) is that
it is much easier to calculate the former than the latter. In particular, this is true if
the block-spin variable g(x) is transformed into a continuum, field variable defined
everywhere in the space of the system.

How can we transform the block-spin variables into field variables? First, notice
that

(A.14)

-y gi(;j:% > (ai=0)"+ Y flo), (A.15)

nn<ij> nn<ij>

where the function f(o;) depends on the number and orientation of the nearest
neighbors, that is, the symmetry of the “crystal.” Also notice that the discrete
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quantity (o,—a;)/a is the first approximation to the continuum quantity I'Val, where
the gradient is taken in the direction j—1i. Then, replacing the summation overall the
nearest-neighbor pairs by the integration over the space of the system we obtain the
so-called Ginzburg—Landau (GL) Hamiltonian

Heu{o(x)} = /de[f(a)JrgNaﬂ, (A.16)

which is a continuum equivalent of the discrete Ising Hamiltonian (A.1). Parameter
K in (A.16) is proportional to the number of the nearest neighbors

K= JNnn<zj>a (A17)

hence, determines the radius of correlations in the system. Because the GL Hamil-
tonian was obtained through the Kadanoff transformation (A.13) it possesses at
least some of the properties of the actual free energy F. That is why it is often called
the CG free energy.

Moreover, noticing that the discrete quantity (0,1 — 20; + gj,1)/a is the first
approximation to the continuum quantity V2, the dynamic spin-variable equation
(A.8) hints at the following continuum equivalent

% W — Bo(x, 1) + %Vza(x, 1), B>0. (A.18)

Further development of the continuum model may be achieved by noticing the
connection between the parameters « and x through the relations (A.7) and (A.17).
However, CG may break consistency between other parts of the model, which must
be restored independently.

The GL Hamiltonian (A.16) can be extended on the systems more complicated
than the 2d free Ising spins. First, the system may be subjected to the external field
B, which adds the contribution (— B>, a,») to the Ising Hamiltonian and
(—uoBo) to the integrand of the GL Hamiltonian (A.16). Second, magnetization
of an atom may not be directed parallel to the same axis, which makes the “spin” a
vector with #n components. Third, the system may vary in all three spatial directions,
which changes the integration in the GL Hamiltonian. A more complicated issue of
appearance of the singularities in the system associated with a phase transition is
considered in the main text.
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Appendix B: Calculus of Variations
and Functional Derivative

Many physical problems may be reduced to a problem of finding a function y of x
(space and/or time), which delivers a maximum (or minimum) to the integral

[=1I[y(x)] = /abF(x,y,ji;> dx. (B.1)

Such an integral is often called a functional. It is a generalization of a function in
that it is a number which depends on a function rather than on another number [1, 2].

To find a maximum (or minimum) of the functional means to find a y(x) such that
if it is replace by y(x) + dy(x), I is unchanged to order dy(x), provided dy(x) is
sufficiently small. More generally, the function y(x) makes the functional / station-
ary. To reduce this problem to the familiar one of making an ordinary function
stationary, consider the replacement

oy(x) = eu(x), (B.2)
where ¢ is small and u(x) is arbitrary but such that (Fig. B.1)
u(a) =u(b) =0. (B.3)
Considering x, y, and ¥’ as independent variables of F, we obtain

b b
](8)2/ F(x,y+8u,y’+8u’)dx:l(0)+a/ (Z—I;u+g—5u')dx+0(82).

(B.4)

If I[y(x)] is to be stationary, then we must have

dI
5 l.—o =0 forall u(x).
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g(x,y)=0

a b b+dx!
|

a b X

Fig. B.1 Function y(x) and its variations of different smoothness, dy; and dy,. Inset: transversality
condition (B.12)

Thus we require that for all u

b

OF OF ,>
—u+—u |dx=0. (B.5)

/a <8y dy'

Integrating the second term in (B.5) by parts, the equation becomes
b
OF d OF OF .,
————|udx+u—/[_ =0. B.6
/a <3y dx 8y’>u oy = (B0

The integrated part vanishes because of (B.3).

The fundamental lemma of the calculus of variations says that if the integral is to
vanish for arbitrary u(x), then the term in the parenthesis must vanish [1]. There-
fore, we must require

OF d oF
a—y—aa—yﬁo. (B.7)

This differential equation is called the Euler—Lagrange equation; solutions of
this equation are called extremals. As expected, this equation is Euclidean
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invariant, i.e., invariant under the combination of translations and rotations in the
space. When combined with the appropriate boundary conditions, (B.7) is equiva-
lent to the original variational problem. The left-hand side of this equation is often
written as 0//8y, and called the variational, or functional, derivative of I with
respect to y.

There is one caveat in the derivation of the Euler-Lagrange equation (B.7).
For the expansion in (B.4) to be valid, we assumed that y(x) and y(x) + dy(x) are
close not only “point-by-point” but with respect to their derivatives also. This may
be verified by a measure of function’s magnitude, called the norm lly(x)ll. If the
norm is defined, then Ily;(x)—y,(x)Il is a measure of the proximity of the functions.
The full set of functions y(x) with a norm is called a Hilbert functional space.
Although a few different definitions of the norm are possible, we find the following
one to be the most useful for our purposes

[y()]| = max |y(x)| + max |y'(x)]. (B.8)
a<x<b a<x<b

In Fig. B.1, for instance, the function y(x) + dy;(x) is close to y(x) in the sense of
the norm (B.8) but the function y(x) + dy(x) is not. Notice that physically defini-
tion (B.8) may not be correct because it may be a sum of two quantities with
different physical dimensions. Notwithstanding, it makes perfect mathematical
sense as a measure of the proximity of functions.

If the integrand F does not depend on x, we can integrate the Euler—Lagrange
equation once. Indeed, when multiplied by y’, added and subtracted y”(OF /9y'), the

Euler—Lagrange equation is
d OoF
—(F-y—]=0
dX< ' 5y’> ’

(Why? Hint: OF /Ox = 0) which gives a first integral in the form of the first-order
equation

OF
—y =~ = const. B.9
y ay (B.9)
The following generalizations of the basic problem are possible.
Variable end points. Suppose we want to maximize the functional (B.1) but we

allow y(b) to be arbitrary. As before, if y is given an increment (B.2) the variation of
I (change of the order not higher than the first in the small parameter ¢) is

brorF d oF oF _
I = — — . B.1
0 / <8y dx@y’) 5ydx+8y’ Ol ®-10)
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Clearly, the Euler—Lagrange equation must still hold; otherwise, we could find a
function dy with dy(b) = 0 which changed /. But in addition, if &/ is to vanish for
arbitrary dy(b), we must have

OF
8_y’|":” =0. (B.11)

If both end points are free, clearly OF /0y’ must vanish at both ends.
Transversality condition. As another possibility, suppose y is fixed at x = a, but
the other end point is free to lie anywhere on the curve (Inset of Fig. B.1)

g(x,y) =0. (B.12)
Now from (B.4) we obtain that
brorF d oF oOF _
ol = ———— ] dydx+— ¢ F(b) ox. B.13
[ (G5 o) o0 ol ero) o @13

Then the condition 8/ = 0, besides the Euler—Lagrange equation, gives the end-
point condition

F(b) éx+ 2—5 (b) Sy(b) = 0. (B.14)

The coordinates of the displacement (dx, 6y) of the upper end point are constraint
by (B.12)

og og
— — Ay =0. B.1
P ox + By y=20 (B.15)

Here Ay is not equal to dy of (B.14) since Ay is the increment of y when the
boundary point is displaced to the position (b + 6x,y + Ay) and dy is the increment
of the ordinate y at the point » when going from the extremal passing through the
(b, y) to the extremal passing through the (b + dx, y + Ay) (see Inset of Fig. B.1).
Naturally

Ay = dy(b) +y'(b) ox. (B.16)
Eliminating dx and dy from (B.14)—(B.16) leads to the condition

OF\ O, OF 0
(F_y/a_y’>8_§_6_y’8_izo atx =b, (B.17)

which is called the transversality condition.
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Isoperimetric problem. Suppose we need to maximize one functional, (B.1)
subject to the constraint that another functional be held constant

b
Jhy(x)] = / G(x,y,y’) dx = const. (B.18)

The conventional technique for handling this problem involves the use of
Lagrange multipliers.

The theorem [1] says that if y(x) is an extremal of the functional (B.1), satisfies
the constraint (B.18), but is not an extremal of the functional J[y(x)], then there
exists a constant 4 such that y(x) is an extremal of the functional

b
/ (F — JG) dx. (B.19)

Inclusion of higher derivatives. Suppose we want to maximize the functional

b
Iy(x)] = / F(x,y,y',y") dx (B.20)
with y and y’ held fixed at a and b. The condition is easily shown to be

8 OF d oF d* OF
= 4. B.21
oy 0Oy dx oy + dx2 9y” ( )

Note that we have generalized our definition of the variational derivative.
Multiple dependent variables. Suppose we want to maximize the functional

b
b0, 20] = [ Flxyy'z, ) (B.22)
a
subject to fixed end-point conditions

y(@) =y1 y(b) =y, (B.23a)
z(a) =z1 z(b) = 2. (B.23b)

We just write down an Euler—Lagrange equation for each dependent variable
separately

o T _4F_y (B.24a)
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of_or_dor_ (B.24b)

Multiple independent variables. Consider the functional

Iz(x,y)] = / / Flx, v, 2 20, 2,) drdy, (B.25)

where Q is some region of the xy-plane, z,=0z/0x and z,=0z/0y. The function z is
to be varied in such a way that its values on the boundary of € remain constant.
Then the condition for /[z] to be stationary is

ol OF 0O OF 0O OF
0z 0z Ox 0z Oy 0z 0 (B.26)

Again we have extended the definition of the variational derivative.
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Appendix C: Orthogonal Curvilinear
Coordinates

Depending on the symmetry of the problem, advantage may be gained by using
a curvilinear coordinate system instead of the Cartesian one. Suppose that the
rectangular coordinates are expressed in terms of new coordinates: uy, u,, uz, by
the equations

Xi :)C,'(Ll,'), 1= 1, 2, 3 (Cl)

and that, conversely, these relations can be inverted to express u; in terms of x;.
Then, at least in a certain region, any point with coordinates (x;) has corresponding
coordinates (u;). If a particle moves from point P in such a way that u, and us are
held constant and only u;, varies, a curve in space is generated. If only one
coordinate is held constant, we generate successively three surfaces passing through
the point P; these surfaces intersect in the coordinate curves. It is often convenient
to choose the new coordinates in such a way that the coordinate curves are mutually
perpendicular at each point in space. Such coordinates are called orthogonal
curvilinear coordinates.
Let r represent the position vector of a point P in space,

r=Xj; +x2j; +x3j3- (C2)
Then a tangent vector to the u; curve at P is given by

_8r_8r@

U= 5w = o duy’

(C.3)

where s; is the arc length along the u; curve. Since Or/0s; is a unit vector, we can
write

U,‘ = h,‘ll,', (C4)
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where u; is the unit vector tangent to the u; curve in the direction of increasing arc
length and

dS,' or
h=—=|— C.5
du,- 6ui ( )
is the length of U;. These equations can be written in the differential form
dS,' = /’l,‘ dl/l,‘. (C6)

We thus see that 4; are the scale factors that give the ratios of the differential
distances to the differentials of the coordinate parameters. If the coordinate curves
are orthogonal, so that

Ul‘ X Uﬁé,’ =0 (C7)

there follows that the length of the infinitesimal line element ds is given as
3 3
ds = dg =) k7 ds], (C.8)
=1 =1

the vector element of surface area on the surface u; = const
do; = wihjhy du; duy, j, k #i, (C9
the element of volume
dt = hyhyhs duy duy dus, (C.10)

Direction cosines of the unit vectors u; with respect to the old axes x; may be
expressed in terms of the derivatives and the scale factors in either of the two ways

depending on whether x; are given in terms of u; or other way around. In two
dimensions, the unit vectors are characterized by one angle ¢, e.g., with axis x, such
that

Ou; /Oy
8141‘/8)6.

tan ¢ = (C.12)
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In the Cartesian coordinates, the gradient ¥ and Laplacian V2 operators are
expressed as follows

0 0
=jhi—+h=—+j— C.13
\% J axl +-]28x2+.]3ax37 ( )
oo L &
Vi= S +4-—+—. C.14
Ox? N 0x3 * Ox% (19
In the curvilinear coordinates, the gradient of a scalar function f'is
%) 0] o)
hl 8141 h2 8142 h3 31/13
Applying (C.15) to u;, we find the eikonal equation
» 1
(V)" =—. (C.16)
hy
The divergence of a vector function F is
1 0 0 0
=—— | 7— (hsF — (s F — (hhF3)|. C.17
h1h2h3[8u1(231)+au2(312)+8u3(123)] (C.17)

By applying the vector operator in (C.17) to the vector operator V of (C.15)
instead of the vector function F, we find the expression for the Laplacian operator,

Vi=vVv.Vv
1 0 (hhy 0 0 (hshy 0 a (hihy 0
= — — )+ — (=) +—(—=—]]|. 18
h1h2h3 |:8M1<l’l1 8M1>+6M2<h2 8u2)+8u3<h3 (9143):| ( )

The change in direction of the unit vectors u; can be expressed in terms of the 4s.
For instance

Ow _ 2 Oy us Ol 0w _ uz Oy (C.19)
8111 o I’lz 81/{2 h3 8”3’81/{2 _hl aul' )

Then one can define curvature of the u, coordinate line in the direction u; as

up 8u1

ky=—=2—
2 h28u2

(C.20)
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and for the mean curvature K of the surface u; = const we obtain the formula

uy 8111 us3 (‘)ul 1 0

2K=ky+kz=——+—
2+ 3 ]’12 auz h3 8”3 ]’lhzh; 8”1

(h2h3) V- up. (C21)

Notice that with this choice of sign in (C.20), (C.21) the curvature of a sphere is

positive.
If iy = const(uy, Uy, u3) = 1 then the Laplacian can be represented as follows
0? 0 1 0 (hy 0 0 (hy 0O
Vie——42K—+—|— (=2 — — == C.22
au% * 81/[1 * h2h3 |:6M2 (hz 81/{2) * 8143 <hg au3):| ( )

For the functions which do not depend on coordinates u, and u3, expression
(C.22) takes the form

2
O 1ok D

2_ 7 -
v e Ouy

(C.23)

In the spherical polar one (7, ¥, @) where r (0 < r <o0) is of the absolute value
of the radius vector r or the distance from the center of the coordinate system, O
(0 <9 < 7) is the colatitude, and ¢ (0 < ¢ < 27) is the azimuth. Then the
projection of the radius vector r on the Cartesian coordinates x; can be expressed
as follows

i = 17i ’197 ;
= 9) . (C.24)
f1 = sind cos ¢; f» = sindd sin ¢; f3 = cos .
The gradient and Laplacian in the spherical coordinates take the form
0 jy O g 0
=j,=+= = — C.25
V=gt 59 sing 99 (€25
1 .
VI=V2+ r—2L2(19, ®), (C.26a)
1 0 0 ? 20
2_ — “ (22 2 =27
Vi r2 or (’ 87‘) or? + ror’ (C.265)
2 1 0 0 1 o
L = — | sind — —_— . 2
sind 99 (S“”g &9) T int0 0¢? (C.260)

Here V,? is the radial component and I:Z, called the Legendrian, is the angular
component of the Laplacian. Compare (C.23), (C.26b) and notice that K =1/ r.
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Also notice that the projection coefficients f;, (C.24), are the eigenfunctions of the
Legendrian with / = 1 and eigenvalue —I(! + 1)=—2 (Verify!)

L’ (9, ¢) = ~24(0, ). 27

In quantum mechanics, important role is played by a linear operator called
Hamiltonian of a particle

H(x) =P (x) —mV?, (C.28)

where P(x) is the potential energy of the particle of mass m. The radial component
of the Laplacian represents the square of the radial component of the momentum
and the Legendrian is the operator of the square of the angular momentum of a
particle. The eigenfunctions of the Hamiltonian with the radially symmetric poten-
tial energy can be represented as the products of the radial and angular parts, with
the latter being the eigenfunction of the Legendrian. The eigenvalues of the
Hamiltonian depend on three quantum numbers, which are called the radial n,,
angular /, and magnetic m;.



Appendix D: Lagrangian Field Theory

Fields are objects with an infinite number of degrees of freedom: the fields s and
field time/space derivatives 0,,s at every point in space and time. A physical
system at a point in space Q at a given time #; < t < f, may be described by a
Lagrangian density

l(lrbom aflpom ailpou )7 (Dl)

which gives rise to the Lagrangian:

L= / &Sy, O, O,) (D.2)
Q

and the action

15}
S = / dtL = / d*xl(y,, O, O,). (D.3)
2 Qx|t1,t]

In this section, we write the generalized time/space coordinates and field
derivatives in the Lorentz-invariant form where the covariant components of the
four-position-vector are

and the four-dimensional volume element of Q x [f, t,] is d*x = dr &*x.
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A general formulation of the laws of motion of a Lagrangian system is expressed
by the Hamilton’s principle: The action must be stationary for arbitrary variations
of the fields 3\, that vanish on the boundary of Qx[t;, t»]. Making in (D.3) an
infinitesimal transformation y,, — V, + d/,, we obtain

= 4| O ol
%= Z /Qx [t1,12] ¢ [8wy 5170 REEYERVY (8Hlpa) 5(aﬂwa)] (D.4)

Here and below u = 0, i and we use the Einstein summation convention. Notice
that the variations 6y, in (D.4) differ from the ones we use in the text and Appendix
B in that now they are functions of space and time (four variations) because the
action S is a functional in the four-dimensional space—time. Integrating the last term
in (D.4) by parts we obtain

ol ol
55 = / L BL S
Z%: { Qx[t1,12] ! [a% . a(aulpx)

0 + . d 0
l,ba /Q(rl) " D(0u)y) 6(8 ‘/f ) lﬂ
(D.5)

where ds, is the elemental four vector of the boundary hypersurface €(r).
The boundary term in (D.5) vanishes because oy/,[€(#)] = 0. Using that 6i,s are
arbitrary in the interior of QX [#;, #,] we obtain the Lagrange equations for the fields

oS ol ol ol
a[ 8,- :0 D6
0, ov, Yatewy) T Y ataw) (B0)

Solutions of the Lagrange equations are called extremals.

In some systems, vanishing of the variations of the fields on the boundary is not
justified. Instead, the variations on the boundary may also be considered arbitrary,
that is, free boundary. Then for dS in (D.5) to vanish another boundary condition
must be met (see details in Appendix B)

ol |
3(0p,)

where 7, is a unit four vector of ds,,. If the fields are specified on the boundary of the
time interval [t;, ;] but not the space, e.g., spatially infinite systems, then the
condition (D.7) for u = i applies at ¢t = ¢, and t = t,. These boundary conditions
replace the condition oy ,[€(7)] = O for the extremals (D.6).

The Lagrange equations (D.6) permit the construction of a canonical stress-
energy tensor

=0, (D.7)

ny

ol
T =N"_% gy —emy D.8
2 50" -



Appendix D: Lagrangian Field Theory 281

where the metric tensor,

1, ifpuandv=20
=400, ifu=00rv=0,
=0 ifu=i,v=j

is used to lower or raise the Lorentz indices. The stress-energy tensor is locally
conserved

8T =0 (D.9)

if the Lagrangian density (D.1) does not explicitly depend on space and time.
The issue of symmetry of the tensor 7" is not important here because we will be
considering scalar fields /s only.

The local conservation of 7" makes possible the definition of an energy—
momentum four vector

Pt = / d>xTO", (D.10)
Q

which is globally conserved, that is,

dpr A .

— = [ &xoT% = - / x0T = — f ds,T" =0 (D.11)
dr o o o

provided that no energy or momentum escapes the volume Q (the last equality),
e.g., at the boundary Q(r) the Lagrangian vanishes together with its derivatives,
see (D.7). The total energy of the system is defined as

E=P°= / d3x7%. (D.12)
Q

Consider a system which is described by the scalar fields (7, r) and a Lorentz-
invariant Lagrangian density

l(l//om 3t%a 811//1) :% Z {pa(atlpx)z — Kq (allpaallpx)} - M(lp“), (D.13)

where p,s are the mass densities and x,s are the gradient energy coefficients
associated with the fields (¢, r), and u(y,) is the potential energy density.
For the Lagrangian density (D.13), equations of motion (D.6) take the form of the
wave equations

Ou

puafaf‘//a = Ky (aiailpa) - Wa

(D.14)
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which are field analogs of the Newton’s laws for particle motion. Each field i, has

its own characteristic wave speed
fic
cy =42 (D.15)
Py

The components of the stress-energy tensor (D.8) are

1

1% =237 [0a00,) + 1 (00,0,) | + (), (D.16)

1 =3 3 {onown ) 4 (0w = ()~ O]} i)

£ A kA
) (D.17)
and the total energy of the system (D.12) is

o

1 2 .
E= /Qcpx{E Z {pa(a,lﬁ“) + 15, (0,0 x//“)} + u(x//%)}. (D.18)

This expression shows that the gradient energy coefficients x, cannot be nega-
tive because otherwise £ would be unbounded below, which makes the system
mechanically unstable.

In a stationary one-dimensional (1d) system where the fields /, depend only on
one space coordinate, e.g. i = 1, the local conservation condition (D.9) has the first
integral

™ :% Z K,(01,)> — u(,) = const = —u, (D.19)

and the total energy is
E=u. Q+dA, (D.20)

where A is the cross-sectional area of the volume Q

A= / / ds, = / dx?
Q) xQ3 Q) xQ3

and o is called the abbreviated action

0= /Q dX[% Z Kx(allpoc)z + u(l//at) - ui‘|
=szmwﬁ=;% (D21)

o

= dxre, (0 lﬁa)2.
Q
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If the system is described by a single field ¥/, we can further our analysis and
resolve the first integral (D.19) for the space derivative as a function of the field

o = 2 uy) — ], (D.22)

By choosing one of the branches, e.g. positive, this relation can be integrated to
obtain the field as a function of the coordinate

(D.23)

In the infinite system, the boundary condition (D.7) yields
01 (—00) = O (400) = 0, which, together with (D.22), allows one to find y_ =

lp(—oo) and l//+ = l//(—|—oo) as
u( ) =u(y,) = ux. (D.24)

If u(y)) is a continuous function on [/ _, ¥, ] then, according to Rolle’s theorem,
Ou/Oy = 0 for some value Y, in [_, ¥,]. Then, the 1d stationary form of the
Lagrange equation (D.14)

o), . Ou
K=o (x) = %(W) (D.25)

shows that the functions 0}/(x) and u(y) attain maxima (or minima) at the same
point in space x,, where ¥/(x,,) =, and that du(y,,)/0y = 0. This allows us to
characterize transition of the field between the values of _ and . with the
characteristic length of

Yy -y

VRl — v
allﬁ(xm) .

Z[M(lpm) - ui]

(D.26)

The abbreviated action (D.21) of this transition can be represented in the form of
quadratures

v,
o=« [ dx(dy)’ = K/Q dy (1) \/QE/W Ay u) —ux  (D.27)

Q

and estimated as follows

ox VW, — Y |V2lu(p,) — uxl. (D.28)
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The abbreviated action (D.28) is a product of the same terms of which the length
(D.26) is a quotient.

If time evolution of the fields y,(¢, x), described by the 1d dynamic Lagrange
equations (D.14), can be presented as the motion of train waves with constant speed
V, Y,(x—V?1), then the local conservation condition (D.9) takes the form

1" +0,T" = §, (T“ _ VTOI) =0, (D.29)

which yields the first integral

2
T — v = % >k (1 - %) (O, —u(y,) = —u, (D.30)

o o

In the case of a single field, comparison of this equation with (D.22) shows that
the train wave has the same spatial distribution as the stationary field but
experiences the Lorentz contraction of the characteristic length

2
wy = /1 — Y—zw. (D.31)
y

The speed V cannot exceed the characteristic speed cy—the relativistic effect,
but its actual value cannot be found from the Lagrangian and needs to be deter-
mined based on other conditions of the problem—the selection problem.



Appendix E: Eigenfunctions and Eigenvalues
of the Schrodinger Equation and Sturm’s
Comparison Theorem

Many physical situations may be formulated in terms of the Sturm-Liouville
problem where the unknown function W (x) obeys the Liouville equation

% {K(x) %} + 4 —u()]¥(x) =0 (E.1)

with the homogeneous boundary conditions

d¥

axa_ﬁquzo, x=aorx=h. (E.2)

In (E.1), 4 is an arbitrary constant, k(x) > 0 and u(x) does not have singularities
in the range of x—(a, b). A solution of the Sturm—Liouville problem is called an
eigenfunction, the constant /—eigenvalue, and the set of its values that allows the
solutions—spectrum.

According to the Sturm’s comparison theorem, the spectrum of the
Sturm—Liouville problem has the following properties:

1. If (a-b) is finite, the spectrum is discrete

2. There exists the lowest eigenvalue Aq of the spectrum

3. The sequence /y < 4; < A, < ... can have no limit point nor any upper bound
but must continue on to +0o

4. The larger the eigenvalue 4, the closer together lie the zeros of the eigenfunction

5. If (a-b) is infinite, the spectrum is discrete in the half space 1< lim x(x)and
##2, 3, 4 are also valid e

6. For 1> \Llrinoo Kk(x), the spectrum is continuous.

If k = const(x) the Liouville equation is similar to the Schrodinger equation
from quantum mechanics, which describes stationary motion of a particle of mass
(#%/2K) in the one-dimensional potential energy field u(x), the eigenfunction
‘Pp(l)(x) is the wave functionand 4 = E p(l) is the total energy of the moving particle
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(the superscript refers to the dimensionality of the motion). In the case of infinite
range, the eigenfunctions of the discrete spectrum are called bound states and those
of the continuous spectrum—scattering states.

If there exists a potential function g(n) such that the potential energy
u(x) = 0*g(7)/On?,where 7(x)is a heterogeneous solution of the equation

d*n o
—1_Z5_9 E.3
g "oy =" (E.3)
then the Sturm—Liouville problem (E.1), (E.2) can be reformulated as an
eigenfunction/eigenvalue problem for the one-dimensional Hamiltonian operator
H:

&g d?

= 0—772 () — K@ (E.4)

A 0P () = VD () A )

with at least one eigenfunction already known. Indeed, differentiating (E.3) with
respect to x and noticing that neither term depends on x explicitly, we obtain

& (dﬁ) _Peln) di _ (E.5)

e \dx o dx

Comparing (E.4) and (E.5) we can find the non-normalized eigenfunction of
ﬁ(f;; x)which corresponds to the zero eigenvalue

P
p=1, EV =0, ¥V <. (E.6)
dx
This eigenfunction is the so-called Goldstone mode of the Hamiltonian.
A particular interesting situation appears in the case when
1, 1 5
gn) =go+ G + 3¢ ) a<0, ¢>0. (E.7)

In this case,

[—a [—a
n=4/— tanh {/— E.
n c tan 2Kx (E.8)

and, by scaling the eigenvalues and independent variable as follows

2 —a .
0 =25, \/2_ fiolz) =¥ (), (E9)



Appendix E: Eigenfunctions and Eigenvalues of the Schrodinger Equation. .. 287

2 —

spatial coordinate z

Fig. E.1 The “quantum mechanical potential energy” u(z) = 0%g(7)/0n? for the potential func-
tion (E.7)—»black line and two bound states with p = 1—blue line (Goldstone mode) and p = 2—
green line. The two bound-state energy levels E,,(l) are shown in respective colors.

the problem (E.4) can be reduced to the following

d2
<@ +2 — 6 tanh® z>fp(z) = 0pfy(2). (E.10)

Using representation (E.10) and the formula

dtanh(x) 1
dx  cosh’(x)

= 1 — tanh®(x), (E.11)

we can find two bound states with p = 1, 2 and a continuum of the scattering states
with p >3 for the Hamiltonian H. The eigenvalues and non-normalized
eigenfunctions of the bound states are (Fig. E.1)

p=1, 0, =0, fi =1—tanh’

p=2, 0,=-3, fo =tanhzV1 — tanh’z.

(E.12)
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The eigenvalues and non-normalized eigenfunctions of the scattering states are

p237 Qp<_47

A (E.13)
f, =€V % *(-0, -3 - 3tanh’z + 3i\/—0, — 4tanhz).

Rescaling (E.12), (E.13) back to the Hamiltonian’s representation we can see
that the bound state f; represents the Goldstone mode of 7j(x). Using the formula

h(y —
tanh (y) — tanh (x) = %, (E.14)

we can see that the Goldstone mode represent a small shift of 7(x)in the normal
direction. The second bound state is

3 d
p=2 E=-3a>0, () oq a". (E.15)

The eigenvalues of the scattering states are
p=>3, EV>-2a>E>EY = 0. (E.16)

Sometimes there is a need to solve an eigenfunction/eigenvalue problem for the
three-dimensional Hamiltonian operator H. In this case, we may attempt to find
particular solutions by separating the variables. If this works, a general solution
can be expressed in terms of a linear combination of the separated solutions,
which satisfy the boundary conditions with [V (Ixl—o0)l < oo. The sum of the
separation constants is called the dispersion relation. For instance, for

o 8o -
H(i; x) = %f (i) = V2, H(ip )P (x) = BV ¥ (x), (E.17)

we find that
PO (x) oc W (x); ES) = EV + kq?, (E.18)

where x> = (y, z), q = (k,, k.), and ¢ = Iql. Equation (E.18) means that slight
corrugations of 7f(x)are the eigenfunctions of the three-dimensional Hamiltonian
operator H. Indeed, using the formula (E.14), the corrugation An can be represented as

A = fjlx — X(x2)] — 7(x) = —X(x:) ¥ (),
X(x2) = ZAqeiq"z. (E.19)
q
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The eigenvalue of this eigenfunction is
EN =k > (E.20)
q

An in-depth discussion of the solutions of the Schrodinger equation can be found
in L.D. Landau, E.M. Lifshitz, “Quantum Mechanics Non-Relativistic Theory”
(Elsevier, Oxford, 1958), §24 and J. Zittartz, Phys. Rev. 154 (2), 529-534 (1967).



Appendix F: Fourier and Legendre Transforms

The goal of any functional transformation is to express the information contained in
the function in a more convenient way. Let f(x) be a smooth (continuous, together
with its derivatives) function in the interval (—X/2, +X/2). Then f{(x) may be
expanded in the Fourier series

Z f 127‘[}1,\‘/)(’ (Fla)
R 1 +X/2 .
Feln) = / f(x)e—ﬁmu/X dx, (F.1b)
X Jxp

which represents a discrete Fourier Transform (FT) in one variable. Actually, the
Fourier series is defined also beyond the range (—X/2, +X/2), where the function f(x)
is periodically continued on (—oo, +00) with fy(x + X) = fx(x).

If X — oo, it is possible to replace

+X/2 +oo
/ o [ d / 2
7X/2 27'[ X

and we arrive at the Fourier integral transform in one variable

) = % f( e dk, (F.32)

flk) = +Oof(x)e*i’“ dx. (F.3b)

—00

The number k is cal}ed the wavenumber, the function exp(ikx)—the Fourier
mode, and the function f(k)—the Fourier amplitude. Notice that the Fourier mode
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with k = 0 is just a const = 1, while the Fourier modes with large k are periodic
functions with small periods.

Substituting the second equation into the first, one can derive a useful
relationship

1 +00 . ,
dx—x) = > / k=) g, (F.4)

—00
where 90(x) is a Dirac function. However, most of the time we will be using the
discrete Fourier transform (F.1). Physically, the maximum value of & in the Fourier
series is restricted by the interatomic distances.

If a smooth function f{r) depends on several variables, e.g. r = (x, y, z), then it
can be conveniently represented by its discrete FT as follows

)= frlk)e™, (F.5a)
{k}
Ho(K) =% /V f(r)e *rdr, (F.5b)

where Kk turns into a wavevector (reciprocal vector)

(F.6)

{k} = {kkawkz} — {% % zﬂ}

X 'Yy’ Z
and summation over {k} means triple summation over {—oco<n, < +00, —oo<n,

< 400, —oo<n, < +00}.
Properties of the 3d discrete FT are

1. The uniform (k = 0) Fourier mode of a function f{r) represents the volume
average of this function—homogeneous part of the function

fv(0) :é /V f(r)dr. (E.7)

2. For a real-valued function f(r), the amplitudes of the opposite reciprocal vectors
are complex conjugates

fv(=K) =fv (k). (F.8)

3. The gradient of f(r) is

VA(r) =i> kfy(k)e". (F.9)
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4. Using (F.4) three times, one can see that as V — oo
/ " dr — (21)° o(k) = (21)*9(k.)d (ky)d(k.), (F.10a)
1%

which means that

o 5(K). (F.10b)

5. Using properties #2 and #4 one can see that

/sz(r) dr = /v Z va(k)fv(k/)ei(mk’)rdr

{k} {k}

=SS AR [,
{k} {k} v

v 3 Y 3 / /
> o [ A A" dk+ 1) ak

=V ALK =V ) (F.11)
{k} {k}

Similarly, if X, ¥, Z — o0, it is possible to replace

1 1
/Vdr—>/dr; ‘—/Zaw/dk, (F.12)

{k}

and arrive at the integral FT in three variables

f(r) :ﬁ / f(k)e*rdk, (F.13)

79 = [ £(r)e ar.
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Example F.1
Find the FT of the function e~ [r, which depends on [r| only.
—or . 4 ikr dk —ar
/e—e"k’drzinz; /e_2_3:e . (F14)
r o + [K| o +[k|” (2m)”  dnr

These relations can be obtained by noticing that the function ¢ = e™*"/r satisfies
the differential equation

Ap — dp = —4nd(r). (F.15)
Multiplying both sides of this equation by e~ k"
space we recover the previous formula.

Another way to reveal information encoded in a function f(x) is through
the Legendre transform (LT). If the function f(x) is strictly convex (second
derivative never changes sign or is zero) then the function’s derivative with respect
tox

and integrating over the entire

df
s=—,

o (F.16)

can replace x as an independent variable of the function. To reveal the symmetry
associated with the LT, it is accustomed to redefine the function as follows

8(s) = s - x(s) = f(x(s))- (F.17a)

The redefined function g(s) has the property that its derivative with respect to s is x

= x(s) + 50— —— — = x(s). (F.18)

Properties of the LT are

1. The LT of an LT is the original function. To see this, it is instructive to rewrite
(F.17a) in a symmetric way

g(s) +f(x) = sx(s). (F.17b)

2. The extremes of the original function and the transformed one are related as
follows

[ (min) = —£(0) and g(smin) = —£(0). (F.19)
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3. The higher derivatives of the original and transformed functions also show
symmetric relationships

bl S (F.20)

Example F.2
Find the LT of a quadratic function f(x) = ax?/2.
For this function, we can easily find that

s(x) =ox, x(s)=-=, g(s)==s" (F.21)

g(s) = zax’(s), (F.22)

which shows that the LT of a quadratic function is equal to the original function
expressed through the original independent variable. Of course, this is the case of a
single classical particle of mass o moving with a velocity x, where f(x) and g(s) are
the particle’s kinetic energy expressed as a function of the velocity x or momentum s.

LT can be applied to a function that depends on many variables—multivariable
LT. An in-depth discussion of the Legendre transform can be found in R.K. P. Zia,
E.F. Redish, S.R. McKay, “Making sense of the Legendre transform”, Am. J. Phys.
77, 614 (2009).



Appendix G: Stochastic Processes

Suppose a physical system of interest can be found in different states of an ensemble
Q={m} and suppose that we need to measure a quantity f that varies not only from
state to state but also with time ¢. If the quantity f depends on other parameters, not
included into the characterization of the states Q (which is usually the case
in physical systems), its values appear to be random. In this case, the quantity is
said to fluctuate; the function f(Q, ) is called a stochastic process and may be
characterized by various average quantities. There are different ways to define these
quantities. For instance, one may define a “time average” of f over a certain period
of time T

~ 1 T
=g /O F(Q0)dr G.1)

Instead of averaging over the period of time T, we may identify different states of
the ensemble Q = {w}, introduce a probability density P(w) of the state such that
the probability for the system to be in the states with (0 < Q < w + dw) is

P(w)dw, G.2)
and define the average as
+00
{f(w,1) = flo,)P(w)dw. (G.3)

Of course, the probability density P(w) is normalized such that

+00
/ P(w)dw = 1. (G4)

oo
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The quantity (G.3) is called “ensemble average.” The probability density may
itself depend on time, P(w, f), making the process time-dependent. A process
is called stationary (do not confuse with equilibrium) if all the functions that
characterize it are invariant in time, that is, do not change if every time variable
t is replaced by ¢ + s, where s is an arbitrary time interval. For very many systems,
which are called ergodic, the time average over a long period of time is equal to the
ensemble average

foo = (f)- (G.5)

The Master and Fokker—Plank Equations

To describe a time-dependent stochastic process, one can write an evolution
equation for the probability density of the state w, P(w, f). In a short period of
time dt, this quantity will decrease if the system makes a transition from the state @
to one of the states between ' and @’ + dw’; let us denote the probability of this
event as W(w'lw)dw’ dt. However, during the same period of time P(w, ) will
increase if one of the states between ' and ' + dw’ makes a transition to w.
The probability of the latter event is W(wlw')dew' dt. Here we assumed a “Markov-
ian” property of the system expressed by the fact that “jump probability” W depends
on w and @’ but not the previous states of the system. Integrating over all states o’
we find the desired equation which is called the master equation

e /Z do) (W (o|o)P(o),0) = W(@[0)P(0.0)].  (G.6)

The transition probability W may be expressed as a function of the starting point
and the size of the jump

W) =W(@;2), =0 - (G.7)

To derive the Fokker—Plank equation from (G.6), we use the basic assumption
about the system that only small jumps between the neighboring states occur, that
is, W(®'; 2) is a sharply peaked function of A but varies slowly with @’. Then we
may expect the solution P(w, t) to vary slowly with @ also. It is then possible to
expand the first term in the integrand of (G.6) into a Taylor series near o and retain
only the terms up to the second order in A

P(w, ) [ B 9 B 1, & , o
o 7/700d/b [W((U,A)P(w,t)7/LOU){W((U,/V)P((UJ)+2A awz{W(m,).)P(w,t)}7W(w,f/v)P((u,t) .

(G.8)
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Note that the dependence of W(w; 1) on 4 is fully maintained because we do not
expand it with respect to this argument. Integrals of the first and fourth terms cancel.
Integrals of the other terms can be written with the aid of the jump moments

ay(w) = /0C W (w; 4) dA. (G.9)

The result is the Fokker—Plank equation

AP (w, 1) ) 1 P

or = —8—60{@1(0))P(60,t)} + 5 W{a2(a))P(w7t)} (GIO)

This equation can be presented as a continuity equation for the probability
density

OP(w,1) _ OJ(w,1)

= G.11
ot Ow ( )
and a “constitutive equation” for the probability flux J(w, 1)
1 0
J(w,t) = a;(w)P(w, ) — 390 {aa(w)P(w,1)}. (G.12)

Such representation helps interpret the first term of the flux as the drift term and
the second one as the diffusion term. The Fokker—Plank equation has a stationary
solution, that is, the one with J(w,) =0

Po) = 2 exp [2 / Ca(o) dw']. (G.13)
0

az(w) a ((U)

Many features of the process can be illuminated by using a potential U(w)
Ulw) = —/al(a)) do. (G.14)

Using the Fokker—Plank equation, one can derive the following equations for the
evolution of the average quantities

d(w) _
dt — <a1(w)>’ (G15a)
w2
He?) = (ax(w)) + 2{(wa; (w)). (G.15b)
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Indeed, differentiating (G.3) with respect to time, using the Fokker—Plank
equation, and integrating by parts two times we have

ﬂ:/ wa—dw:—/ 0 4o = ol + 5 aP +/ a\Pdo.
dr oo O oo O® 2 Y A

As the flux J and density P vanish at 0o we obtain (G.15a). A similar procedure

leads to (G.15b).
Defining the average and variance of the random variable w as

o= (0), o= <(w - (D)z>, (G.16)

expanding a,(®) near the value of w, and retaining only the leading terms one can
derive a system of coupled evolution equations

do - 1 ) 82a1

T a(®) + 3% St (), (G.172)
@ _ (@) + 2022 (@) (G.17b)
@@ 7 B ’

Although the retained terms in (G.17a) were obtained as expansion terms of the
first and second order, they can be of the same order of magnitude. This is a
consequence of the fact that averaging of an alternating quantity yields greater
cancelation than averaging of its square. It is important to notice here that the system
(G.17) can be derived directly from the master equation (G.6), which means that
these equations are accurate up to the second order at least. Equation (G.17a) shows
that the evolution of the average value is not determined only by its own value, but is
influenced by the fluctuations around it. The macroscopic approximation consists in
ignoring these fluctuations, hence keeping only the first term in the expansion
(G.17a). The zeroes of the first jump moment (G.9) may be called the nodal points.
Hence, (G.17a) shows that in the macroscopic approximation of a stationary process
the average value tends to one of the nodal points, if such points exist.

Equation (G.17b) shows that the tendency of the variance ¢ to increase at a rate
a> > 0 [see Eq.(G.9)] will be kept in check by the second term if a,’(w) < 0. Then

@
2|0a, [ 0w|

0,2

and the criterion of the validity of the macroscopic approximation becomes

a,0a; /0w

LA\ —"=—=
“ 0%ay | 0w?

. (G.18)
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This criterion shows that the fluctuations are always important for the evolution
of the physical system near a nodal point. However, the level of importance of the
fluctuations is different in different systems. In the following sections, we will
elucidated the cases of systems where the second jump moment does not vary
significantly

az(w) = const(w)>0. (G.19)

This condition corresponds to the additive fluctuations as opposed to the multi-
plicative ones when the fluctuation strength depends on the stochastic variable
itself. The latter case creates the so-called Ito—Stratonovich dilemma, which is
beyond the scope of this book.

Decomposition of Unstable States

Consider a process of decomposition of an unstable state in a physical system.
Mathematically, it can be described as switching of 0a;/0w in (G.17) from negative
to positive value so that the system finds itself in a state, which suddenly becomes
unstable although it was stable before. Suppose that the first jump moment of the
process vanishes at w = @, and has an essential nonlinearity

1
a1 (w) = a (o — wy) +§a12(w - coo)z, ay 70, ap #0. (G.20a)

This process has two nodal points

wo and w; = wy — 221 (G.20b)
an

which are the critical points of the potential U(w), (G.14)

U(w) :const—%(w—wo)2 —%(w—wo)3. (G.21)
Let us first analyze the process with
ap >0. (G.22)
Then, introducing the scaled variables
T=a; v(1)= a2 (®—wo); w(r)= a—izaz; (G.23a)

ai all
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scaled potential

u(v) = a—iz Ulw) = — 1a_ lv3; (G.23b)
ay, 2 6
and scaled parameters:
a=Msp, p=22 (G.23¢)
a an

we obtain the scaled form of the evolution equations (G.17)
v = %v(z )+ %w, (G.24a)

W= B4 20w(1 4 v), (G.24b)

where the dot means differentiation with respect to 7. In Fig. G.1 is depicted the
(v,w)-phase plane of the system of equations (G.24) and the potential (G.23b).

Evolutionary system (G.24) has the stationary points (v; = w; = 0) that satisfy
the following conditions

Wy = —vs(2 4+ vy), (G.25a)
B = —20w,(1 4 v,). (G.25b)

Substituting w, in (G.25b) with (G.25a) we transform the simultaneous (G.25)
into a single nonlinear equation for vy, which is also depicted in Fig. G.1

2
() = v (1)@ +v) = 2 (G.26)

Analysis of this equation shows that there are three branches of the stationary
points: s = 0, 1, 2. If f = 0, which is the case if a;; = 0 but a;;7#0, then the
stationary points are

(Vl = —2, w1 :O), (V2 = —l7 Wy = l), (Vo :O, wo :O), (G27)

that is, the nodal points of (G.20a) with zero variance and the intermediate point
with the finite variance (see Fig. G.1). If § # 0, then

(=2<vi<v_,w1>0); (vo<va< — 1,wy ~ 1); (vo>0,w(<0), (G.28)
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Fig. G.1 Phase plane (v, w) of the dynamical system, (G.24), with & > 0. Purple line—potential u
(v) (G.23b); black line—stationary points wy(v) (G.23b); red line— function z (v) (G.26); blue
lines—stable stationary branches; open circle—the nodal points, horizontal dash—graphical
solution of (G.26).

where

3
Ve =1+ % (G.29)

As 62 > 0, the third relation in (G.23a) yields the constraint
w>0, (G.30)

which makes the “0”-branch superfluous. On the “1”-branch the average of the
stationary process w3, deviates from the node w;. To evaluate the deviation, we
need to compare it with the square root of the variance ¢, at the stationary point.
Using (G.23a) and (G.25) we obtain
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1 ﬁ2
o — = 7 G.31
1 — o1 WA P ( a)

which means that

O, — v < /02 1f — << 1. (G.31b)

S

There is a limit to the nonlinearity beyond which the evolutionary system (G.24)
has no stationary points. Indeed, differentiating z(v) and equating it to zero we
obtain

Z(vg) =24+ 6v, 4+ 312 =3(vy — vy ) (v, —v_) = 0. (G.32)
Substituting the extreme values v, into (G.26) we obtain that for —2 < v, < 0

4
2 _
B < 2<—2H<1%3(<0 |z(vs)|>oc = 3\/§oc. (G.33)

Although ¢ (or w) explicitly represent the fluctuations of the physical system,
the stationary points of the evolutionary system (G.24) need to be analyzed on their
stability because this system is an expansion of the master equation. Representing

the variable as v = v, + dv, w = w, + dw, substituting this into (G.24), linearizing
the system, and taking into account (G.26) we obtain

dv = a(l +vy) 5v+ ow, (G.34a)

dw = 2aw; Ov + 2a(1 + vy) ow. (G.34b)
The characteristic equation of this system is
K = 3o(1 4 vk + o (2 4 6v, + 3v2) = 0. (G.35)
Notice that the free term of the characteristic equation is proportional to z'(v,)
(Why?).
As known, for the stability of a system of linear differential equations the real
parts of all the roots of the characteristic equation must be negative. For (G.35) with
the condition (G.22) this is the case if

<1, (G.36a)

(vs —v_)(vs —v4)>0. (G.36b)
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Condition (G.36a) is a simple consequence of the condition (G.30) and brings no
additional restrictions on the stationary branches. Condition (G.36b) shows that the
“1”-branch is stable, while the “2”-branch is unstable (see Fig. G.1). Hence

v — stable; v, — unstable; vy — superfluous. (G.37)

If the condition (G.22) is not true, the branches “1” and “0” switch the roles,
while the branch “2” remains stationary unstable. Summarizing results for the
decomposition process, the evolutionary system (G.24) shows that the average
value of the process will be moving from (v ~ v,) where it was stable before the
switch toward that of the stable stationary state (v;, w;). For a weakly nonlinear
process (f — 0), this value (v;) stays well inside the root-mean square range (w;) of
the nodal point w; (v; = —2) while for a strongly nonlinear process this is not true.
During this transition, the variance w goes through the maximum when the system
is about half-way to the final state. The dimensionless time scale of the process is
1/o and the dimensional one is 1/la;l.

Diffusion in Bistable Potential

Consider a stochastic process that can be described by the Fokker—Plank equation
(G.10) with a, = const(w) as in (G.19) and the potential function U(w) (G.14),
which has three nodal points ,, @, ©., of which w, and w, are locally stable and
)y, is unstable, cf. (G.21). The potential function U(w) and stationary probability
density, (G.13), are depicted in Fig. G.2. A system in o, would be caused to move
into either w, or w. by the smallest external perturbation via a process of decom-
position similar to the one described in the previous section. Potentials having such
characteristics are called bistable. Analysis of the evolution equations (G.17) for
such system shows that there is a domain of attraction D, such that if w(0) € D,
then w(f) — w, for t — co. Of course, same applies to w,. Yet this description is
not entirely correct, because even when the system is inside D, there is still a
probability, however small, for a giant fluctuation to occur, which takes it across ®,
into D,. Thus fluctuations give rise to a macroscopic effect.

The problem of evolution of the system may be reduced to a first-passage
problem: suppose at t = 0 a system starts out at w,; how long will it take it to
reach the state w, for the first time? If at w. we set the absorbing boundary
condition, the average or mean first passage time is called the escape time 7.
For the Fokker—Plank equation (G.10) one finds

2 S| )
Tac / Q@ / P (') deo, (G.38a)

_61_2 W, Ps(w) ]
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T I I
0.0 0.5 1.0 ®

Fig. G.2 Potential U (black line) and probability distribution P (blue line) as functions of the state
variable ®

where P*(w) should be taken from (G.13). In case of weak fluctuations
ay K U(wp) — Ulwy). (G.39)

(P*)~" of (G.13) is sharply peaked at @ = ), that is, the statistical probability of
the unstable state @ = w; is much smaller than that of the stable ones
(see Fig. G.2). In this case, the escape time 7, is much longer than the time needed
to establish local equilibrium in each separate valley and integration in (G.38a) can
be performed using the Laplace method of asymptotic expansion [2]

s W,
v = 2 g2/ / eV @)@ g
a [on

- , (G.38b)
— ZZT[V eZU(w;,)/az -
“ az|U" ()|
where
1 [
T = 7 / P (w)dw (G.38c)
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is the splitting probability, that is, probability for the particle to be found left of the
potential barrier at w,,, and

+o00
7= / P*(w)do (G.38d)

o

is the normalization constant (partition function) of the distribution (G.13).
In (G.38b), the exponential (Arrhenius factor) is inversely proportional to the
probability of the barrier state, U” is the second derivative of the potential and
the square root (Zeldovich factor) expresses the probability for the variable w to
return back from the region beyond the barrier. In the parabolic approximation

U(w) = U(w,) +%U”(wa)(w —wa)? + 0((w - wa)3) (G.40a)
and

- - (G.40b)

+
~ o~ 2U(0)/a / e U000 /gy _ g-2U(o)fa [T
—0 U"(wq)

Substitution of (G.40b) into (G.38b) yields

2n Ulwp) — Ulw,)

Toe = ex
ST @0 @) T @2

Notice that the escape time is very sensitive to the height of the potential barrier,
U(w,)—=Ulwy).

In fact, the concept of escape time can be extended on nonsmooth potentials
which obey the condition (G.39). Depending on the analytical properties of the
potential U(w) at the point of minimum w,,, the splitting probability and escape time
take on different values. For the potential

(G.40c)

U(w) = { Ulw,) +U’(wa)(w—a)a)+0((w—wa)2), for v > w,

0, formw < a)a’
(G.41a)
we have
In, = / mh e 2U(@)/a g,
o (G.41b)

~ o0/ / T 0o e ggy 92 —2U(w,)a
, ZU/(wtl)

a
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and

1 na, Ulwp) — Ulw,) .

€ G4l
U'(0a) \| 10" ()] a2 G419

Tac =

Compare the expressions of the escape time, (G.40c) and (G.41c), and notice
that the difference in “smoothness” of the potential U(w) at the point of minimum
w4 (G.40a) or (G.41a), does not change the exponential but leads to different
dependences of the prefactor on the fluctuation strength a,.

Autocorrelation Function

The average values do not characterize the stochastic processes completely. For
instance, they say nothing about the internal mechanism that makes the quantity to
fluctuate. We need a measure of the influence of the value of the fluctuating variable
at the moment #; on its value at the moment 7, > #;. Such measure is expressed by
the time average autocorrelation function

T
Flonaflonn = Jim 7 [ oy, @G

One can also introduce a correlation function between two different processes
f(wr,t1)g(wa, 12) but we will not need that.

The ensemble average autocorrelation function can be introduced with the help
of the joint distribution function P(w1,t1; wy,t>) such that

P(Cl)],fl; (,027I2) dCU] da)2

is the probability for the system to be in the states with (w7 < Q < w; + dw) at
time ¢, and in the states with (w, < Q < @, + dw,) at time #,. Then

+o00 +o0
{f (o1, 11)f (02, 12)) E/ flont)f (w2, 62)P(01, 15 w2, 1) doy dos.
(G.43)

In the spirit of the ergodic hypothesis, the time average and ensemble average
autocorrelation functions are equal

.f(a)latl)f(w27t2) = <f(QJ1,tl)f(w2,[2)>~ (G44)

Below are some of the properties of the autocorrelation function of a stationary
process.
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1. For a stationary process, the average (f(w,)) is time independent and autocor-
relation function (f(wi,#)f(w2,t)) depends only on the time interval
s =1 — 1.

2. For s = 0, the autocorrelation function is the mean square value of f, <f 2(w, t)>
and, hence, must be positive definite. In a stationary system, it is independent of
t that is, a constant.

3. The function (f (wy, £)f (w2, + 5)) is symmetric about the value s = 0, that is a
function of Isl only. Indeed,

(FOf (1 +5)) = (f(t = 9)f (1)) = {F(O)f (1 = 5)). (G.45)

The first equality in (G.45) is true because the system is stationary.
4. For any value of s, the autocorrelation function is

[(F(0)f (e + $))] < (2 (D). (G.46)

Indeed, since

(ro ££+97) = (P >+<fz(t+5)>i2<f(t)f(t+~v)>
=2[(*() = () (t +5))] >0,

the function (f(¢)f(t + s)) cannot go outside the limits of =+ (f?(r)).

5. As known, the joint probability distribution function of statistically independent
stochastic process factors into the product of the probability distribution
functions of the individual processes. For our system, this means that if (o,
t1), for some reason, is statistically independent of (w5, #,) then

P((,L)],ll;(l)z,lz) :P(wl,ll)P(wz,tz) (G47)
and, hence,

(f (w1, t1)f (2, 12)) = (f (w1, 11)) (f (02, 12))- (G.48)

One may introduce a function, which is called a two-time irreducible autocorre-
lation function of f

Kp(t1,12) = (f(o1, t)f (02, 12)) — {f(01,11)) (f (02, 12)). (G.49)

This function characterizes statistical dependence of the values of the stochastic
process f(w, t) at different moments in time. For a stationary process, it depends
on Isl = It — #| only
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Ke(t1,12) = K¢ (|s]). (G.50)

6. It statistical correlations diminish with Isl, that is
K(|s])) = 0 for |s| — oo, (G.51)
then the stochastic process f{w, f) may be characterized by the correlation time 7.,

1

Teor = m A {Kf(s)| ds. (G.52)

The magnitude of the function Ki(s) is significant only when the variable s is of
the same order of magnitude as t... In other words, as s becomes larger in
comparison with ., the values f(¥) and f(¢ + s) become uncorrelated, that is the
“memory” of the physical activity during a given interval of time around ¢ is
completely lost after a laps of time large in comparison with 7.

A useful exercise in the correlation functions is the evaluation of the double
integral

t t
I :/0 /0 e<’l+’2)/f1<f([2 — t1) dt; dy. (G.53)

Changing to the variables T = Y(#; + t,) and s = (¢, — t;) the integrand takes
the form exp(27/7t)K((s), integration over (d#; dt,) gets replaced by (dT ds), while
the limits of integration, in terms of the variables T and s, can be read from Fig. G.3;
we find that, for 0 < T < #/2, s goes from —2T to +2T, while for #/2 < T <t, it
goes from —2(¢ — T) to +2(¢t — T). Accordingly, we have

/2 +2T t +2(¢=T)
I= / e?/Tdr / Kp(s)ds + / e?l/dr / Kf(s)ds.
0 — _

2T t/2 2(t=T)

In view of the properties #5, 6 of the function K/(s) the integrals over s draw
significant contributions only from a very narrow region, of the order of 7., around
the central value s = 0; contributions from regions with larger values of Isl are
negligible. Therefore, if t > 1.4, the limits of integration for s may be replaced by
—oo and +oo, with the result

! —+00 +o00
I~ / e?T/Tdr / Ky (s)ds = %(e”/r -1) / K¢ (s)ds. (G.54)
0 — —

oo
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Fig. G.3 Limits of integration of the double integral in (G.53) in terms of (7, s)

The Langevin Approach

If the properties of the jump moments (G.9) are not known, an alternative way of
writing an evolution equation for the time-dependent stochastic process is by
including the fluctuations explicitly into the phenomenological equation for the
state variable w(f)

99 _ A(w) + &(0). (G.55)
dr

Here A(w) is a phenomenological force that depends on the state of the system w
and &(¢) is a fluctuating force statistically independent of A. Such equation is called
the Langevin equation. We are not looking for an exact solution of the Langevin
equation, only for a stochastic one. Another way to include the fluctuations into the
evolutionary problem is to consider stochastic initial conditions; this alternative,
however, will not be pursued in this book.

Properties of the fluctuating force can be deduced from the following
calculations. An obvious short-time solution of the Langevin equation is

ot + A = o) + / Y oyl + / ey
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Hence the average of the increment Aw is

( Aw) = A(w(?))dl At + (E(1)) A+ O( Ar)*. (G.56)

This relation shows that for the phenomenological force to be representative of

the dynamics of the system the ensemble average of the fluctuating force must be
zero

(€() =0. (G.57)

Next

(( 80)?) = < | "™ A()) dr’]2> = " ar / " a@)E)
+ /tHAr dt’/ttMt d"(E(1)E()).

The first term in the right-hand side is of order (At)%; the second term vanishes
due to (G.57) and the statistical independence of A and &; in the third term we have
the autocorrelation function of &, K:(s) = (£(¢)&(¢ + s)), which is a measure of the
stochastic correlation between the value of the fluctuating variable & at time ¢ and its
value at time ¢ + s. If the process &(¢) has some sort of regularity then the correlator
K#(s) would extend over a range of the time interval 7., (G.52). On the contrary, if
we assume that £(7) is extremely irregular, then 7., is zero and we may choose

(€(1)e()) =K 6(r2 — 1n). (G.58)
Then
<(Aw)2> =K At +O( Ar). (G.59)

Comparison of (G.56) with (G.15a) and (G.59) with (G.17b) shows that the
Fokker—Plank and Langevin descriptions are equivalent if

A(w) =ai(w); K = a(w) = const(w). (G.60a)

Of course, if the potential function of the system U(w) is known, the phenome-
nological force may be written in the form

Alw) = — . (G.60b)
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A comment regarding the derivative of the Langevin force is in order here.
In principle, it is so irregular that its derivative is not defined. However, the rate of
change of the stochastic process can be defined by its moments. This approach to
the time derivative of &(¢) is used in the text.
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Appendix H: Two-phase Equilibrium
in a Closed Binary System

Consider a closed system, which consists of two species A and B and is capable of
existing as a phase o or B or a combination of both. The number of moles of
different species in different phases will be designated as nf, where i, j = AorBis
the species index and k, [ = o or [ is the phase index. The fact that species do not
transform into each other (no nuclear transformations) and remain in the same
quantities (closed system) is expressed in the form of the species conservation
conditions

n¥ + nfg = const. (H.1)

However, because the o < B phase transformations may go, there is no conser-
vation of the phase amounts nk + 1% # const.

Compositions of the phases may be described by the molar fractions of the
species B in each phase

X (H.2)
=t .

Considering the mole numbers of different species in different phases indepen-
dent of each other, we obtain

onk
= 3y du, (H3)

J
where §;; is the Kronecker’s symbol. Then

oxt  p(i) - x*

L fo0, ifi=A
ol o O p(l)_{l, ifi—B (H4)

315
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Each phase can be characterized by its molar Gibbs free energy G*, which is a
function of this phase’s molar fraction only

G' = GH(x). (H.5)
The total Gibbs free energy of the whole system is
G = (ny + 1) G* + (nf + ) G, (H.6)

Then the condition of thermodynamic equilibrium of the system may be
formulated in the form of a constraint extremum

G5 — min for n? + nlﬂ =const, i=A, B. (H.7)
To find the mole numbers n{‘ that deliver the constraint minimum to G> we will

be using the method of Lagrange multipliers, according to which there exist
constants a and b such that the function

GS+ a(ni + nﬁ) + b(n% + ng) (H.8)

has unconstrained minimum with respect to the variables n¥. Then, differentiating
function (H.8) with respect to nf?we obtain

oGS o’ on’ o onb
57+ (a? aA +b a]’? aB =0. (H.9)

1

Using (H.3)—(H.6) for (H.9) and the relations
Oai+ OBi=1, Ou+ op=1, (H.10)
we obtain four simultaneous equations for four unknowns, X%, X B, a, and b

o B
o |67+ () X | + o6+ (o) - X 5

+ a da;+b 0g; = 0. (H.11)

To exclude the constants @ and b we first compare the equation for (k = a,
i = A) with that for (k = B, i = A). Then we subtract the equation for (k=o,
i = A) of the equation for (k=o, i = B) and compare the difference with that of
the subtraction of the equation for (k=f, i = A) of the equation for (k=f, i = B).
The result is the system of two simultaneous equations for X* and X p
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dG* dG?

*_ yo _ o _xp8Y

G* - X dX“_G X X (H.12a)
dG*  dGF H.12b
KR (H.12b)

Mathematically, (H.12) express the condition of common tangency for the
functions G*(X*) and GP(XP). Physically they mean that the chemical potentials
of the species A (—a) and B (—b) in both phases, o and B, are equal. Notice that the
derivative of the molar Gibbs free energy with respect to the fraction, see (H.12b),
is the difference of the chemical potentials of the species.



Appendix I: The Stefan Problem

The Stefan problem occupies a special place in the science of phase transformations
because it was the first mathematically rigorous and physically realistic, significant
problem, which was solved exactly. The Stefan problem belongs to a class of
so-called free-boundary problems, the essential new feature of which is the existence
of a moving interface of separation between the two phases. The way in which this
interface moves has to be determined. The original Stefan problem may be
generalized in many different ways, some of which will be considered here.

According to the Stefan problem, a substance has a transformation point at
which it changes from one phase to another with emission of absorption of heat.
To clarify the ideas, we will be discussing specifically the problem of crystallization
of supercooled liquid. Suppose that the melting point of the solid is T}, and that L
(J/m?) is the latent heat of fusion of the substance. Then if the interface of separation
between the solid and liquid phases is at X(#), one boundary condition to be satisfied
at this interface is

=T =Ty, atx=X(1). (N

A second boundary condition concerns liberation of the latent heat at the
interface. Suppose that the region x > X(¢) contains liquid at temperature Ty(x, t)
and that the region x < X(#) contains solid at temperature T(x, t). Then when the
interface of separation moves a distance dX, a quantity of heat L dX per unit area is
liberated and must be removed by conduction. This requires

T, T 0K

e e IR atx = X(1), (1.2a)
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where A, and 4; are the thermal conductivities of the solid and liquid, respectively.
Temperatures in the solid and liquid regions must satisfy the equations of linear
flow of heat

T ’T,
CS% = —%xz‘ ,  when x<X(¥). (I1.3a)
2
C % =1 %, when x>X(7). (I.3b)

where C and C are the specific heats of the solid and liquid, respectively.

In addition to (I.1)—(1.3), there will be initial conditions and conditions at the
fixed boundaries of the regions under consideration. Suppose that the crystallization
starts at the plane x = 0 and moves to the right and initially the regions x > 0
contained liquid at temperature Ty < T, (supercooled liquid) and x < O contained
solid at the temperature Ty = T,,. Then the temperature of the crystallized material
has to have the constant value T}, throughout and no heat will be removed through it.
Temperature of the liquid will vary, but the following boundary condition will be
satisfied

Ti(x,t) — Ty, asx — oo. 1.4)

First, notice that (I.2a) may be put into an alternative form by considering the curves
of constant temperature T(x, f) = Ty, = Ty(x, f) in the (x, £)-plane. On these curves

or, oI, 9T, 0T
Ee dx + o dtfofadx+5dt,

so that (I.2a) may be written as follows

AS%—E @: L@Ts/at B LaT,/ar

ox  ox ToTox  OT/ox 1.20)

In this form, the nonlinearity of the Stefan problem becomes apparent. Second,
analysis of the (I.3) and boundary condition (I.2b) should convince you that the
Stefan problem admits similarity solution, that is, a solution in the form where the
spatial and time variables enter in the dimensionless combination (x/ \/ﬁ) and
o = A/C is called the thermal diffusivity of the respective phase. Then, substituting
the similarity solution

X

X =2/t (16)
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where f§ is a constant, into (I.3), (I.4) we obtain that

Ts(x,t) =Ty, whenx<X, (1.7a)
Ti(x,1) = Ty + Aerfc < 2\2(7) . when x>X, (L7b)

The error function is defined as follows

erfc(x) = 1 —erf(x) = % /00 e ¢ de.

The boundary conditions (I.1), (I.2a) then give an expression for the coefficient
A as

T —To
A= I.8
erfc f a8

and a transcendental equation for f§

C(T, — T
VB exp B erfc f = % (L.9)
The root of (I.9) can be read from Fig. I.1 as a function of the parameter
Ci(Tm — T
A®= y (1.10)

which is called the dimensionless supercooling of the liquid. Differentiating (1.6)
with respect to time we obtain an expression for the velocity of the interface

dX 04
V=—= —. I.11
Pl Yo (L11)

This expression has a singularity at + — 0, which is due to improper initial
condition. However, a greater problem of the solution (I.7)—(I.11) is that it does
not work at A® > 1, see Fig L.1.

As we mentioned above, the original Stefan problem may be generalized in
many different ways. Some of these generalizations are caused by the practical need
of applications.There are also deep physical reasons for the generalization of the
Stefan problem; the latter are of greater interest for us here. Notice that the roots of
(1.9) exits only for A®@ < 1. We may ask a question: What happens if the initial
supercooling of the liquid is greater than one? To answer this question, we need to
look at the rate of motion of the interface.
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V(m)x exp(x2) erfc(x)
]
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Fig. L1 Function y = /7ixe® erfc x

The condition (I.1), which requires that the state of thermodynamic equilibrium
is established at the interface. Clearly, an interface does not have an “incentive” to
move if it is at equilibrium. Hence, to eliminate this singularity, we have to correct
the boundary condition (I.1) such that it will allow for disequilibrium at the
interface.

To fix this problem, a “kinetic” boundary condition was suggested [1]:

1%
Ty=T,=Tn——, atx=X(1). (1.12)
u

where u was called the kinetic coefficient. The solution of the Stefan problem
(1.2)—(1.4) with the generalized boundary condition (I.12) (and C, = C, 4; = )
has the form

L
Ts(x7 [) =Tn+—

c’ when x<X, (I.13a)
L %
Ti(x,t) =To + o (x=Vr)|, whenx>X, (I.13b)
L
V=vo(AO®—1), mz%. (L14)

Notice that this is not a similarity solution. This type of a solution is called a
traveling wave.
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The traveling wave solution (I.13), (I.14) supplements the solution (I.7)—(I.11)
when A® > 1, but leaves the value A® = 1 open for consideration. One may say
that the solution at A® = 1 was overcorrected. Another problem with the solution
(I.13), (I.14) is that it was obtained by a method which is completely different from
the one that led to the solution (I.7)—(I.11) and the connection of one to the other is
not clear. A full solution of the Stefan problem with the “kinetic” boundary
condition (I.12) may be obtained with the help of the source function of the heat
equation [2]. At A® = 1, the solution for the velocity takes the form

V= (%)1/3. (1.15)

Another shortage of the original Stefan problem is that it allows for a plane-
boundary solution only while, in reality, the plane interfaces are morphologically
(shape-wise) unstable and the real interfaces have a complicated three dimensional
shape. To account for this discrepancy, all equations and boundary conditions must
be reformulated. In three dimensions, the heat equation is

oT, X
Cql 7;1 = JAMy, (L.16)

and the boundary condition (I.2a) becomes

or, . an

“an "M on

LV, (L17)

where 0/0n is a derivative in the direction normal to the interface and outward of
the respective region of the solid or liquid phase and V,, is the velocity of the
interface measured in the direction normal to itself. Ivantsov [3] found a mathemat-
ically beautiful and practically important solution of the three dimensional problem
with the boundary conditions (I.1), (I.17). According to his solution, the
solid—liquid interface may take on different shapes and move with different speeds,
some of which are similar to the square-root-law of equation (I.11). However, one
kind of the shape is particularly interesting because of its relevance to the dendritic
growth of crystals. In this case, temperature of the solid is constant and equal to T,.
Temperature of the liquid varies and the isotherms are cofocal paraboloids of
revolution (parabolic cylinders in the 2d case)

T — T
Tl(x7y7zat):T0+ - 0
1

E, (Po) E|(Pe u), whenu>1, (1.18)
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where E|(x) is the exponential integral function

E1<x>:/x°o§dé,

2442 —VA\? -Vt VR
u\/x bl +<Z ) _ Pe — —— (L.19)

R? R R’ 20

The phase separating interface (u = 1) is the paraboloid with the radius of
curvature of its vertex R and speed of motion V = const(t) in the direction of its
axis (z-axis). Pe is the so-called Peclet number; it can be found from the following
equation

A © = Pe e™E, (Pe). (1.20)

As we can see, the Ivantsov’s solution allows one to find the product of V and R
but does not allow to resolve them separately, that is, for the same supercooling it
allows for a sharp needle (small R) to grow fast (large V) or a dull one to grow
slowly. This problem became known as a problem of the operational point of a
dendrite; many authors tried to solve it with the help of different selection
principles. However, the theories of the dendritic growth and morphological stabil-
ity of a plane interface are beyond the scope of this book.

As closing notes of this appendix, we discuss another modification of the Stefan
problem. Notice that the temperature of phase equilibrium was always assumed to
be constant, Ty,,. As known, however, this temperature varies if the phase separating
interface is not a plane, the so-called Gibbs—Thompson effect. According to this
effect, the equilibrium temperature is

T, — Tm(l —2%1{), 121
where ¢ is the interfacial free energy and K is the curvature of the interface.
This expression should replace T, in the boundary condition (I.12).
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Appendix J: On the Theory of Adsorption
of Sound in Liquids”

L.I. Mandelshtam' and M.A. Leontovich"

Abstract: In this paper, an attempt is made to expand the ideas that explain
adsorption of sound in multiatomic gasses on the case of liquids.

Previously,' it has been shown that a large number of phenomena, dealing with
adsorption of sound can be qualitatively explained by assuming that this process is
very similar to the adsorption of sound in multiatomic gasses.

In the present Letter, an attempt is made to develop this point of view for
propagation of sound in liquids, formulating the problem in a most general form.

Several general remarks are in order here. We can reformulate the question as
follows: How can we account for “viscosity” in hydrodynamic equations when
density varies with time? As is known, the theory of viscous fluids assumes
existence of two coefficients of viscosity.” The first one is the standard coefficient
1 which takes into account tangent stresses under shear, and the second coefficient
7 accounts for the “viscous” stresses of uniform dilatation. Very often one assumes
7' = 0 even if the density changes, e.g., in acoustics. However, in his famous work
Stokes writes™:

Of course, we may at once put 7/ = 0 if we assume that in the case of a uniform motion of
dilatation the pressure at any instant depends only on the actual density and temperature at
that instant, and not on the rate at which the former changes with the time. In most cases to
which it would be interesting to apply the theory of viscous fluids, the density of the fluid is
either constant, or may, without sensible error, be regarded as constant, or else changes
slowly with the time. In the first two cases the results would be the same, and in the third

“Zh. Eksp. Teor. Fiz. 7(3), 438—449 (1937) (in Russian).

TInstitute of Physics of the Academy of Sciences, Moscow.

'M.A. Leontovich, Dokl. Akad. Nauk SSSR IIL, 111, (1936); Zh. Eksp. Teor. Fiz. 6, 561 (1936).
2 See, for example, Rayleigh, Theory of Sound, 11, §345.

3 G.G. Stokes, “On the theories of the internal friction of fluids in motion, and of the equilibrium

and motion of elastic solids”, Philos. Trans. Cambridge Soc. 8, 287 (1849). For the quote above see
page 294.
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case nearly the same, whether 1 were equal to zero or not. Consequently, even if the theory
and experiment agree in such cases, this should not be regarded as confirmation of the
assumption that 7/’ is equal to zero.

Thus, Stokes himself did not deem it possible to put ;' = 0 in applications of the
theory to the problems like sound propagation, and we doubt that the authors, who
justify by referencing Stokes taking 1’ = 0 in the processes associated with the
density changes, are correct.

The points of view expressed below to some extent can be considered as a
development of the Stokes idea laid out in the first sentence of the quote above.
We assume that, in addition to pressure p, density p, and temperature 7, the
equation of state contains a parameter ¢ (or several parameters), which, at equilib-
rium, is a function of p and T. In a general case of absence of equilibrium, the
parameter & obeys some kind of a “reaction” equation. Under these assumptions, as
expected, the viscous stresses arise during uniform dilatation.

For sufficiently slow processes, the stresses, as it appears, can be accounted for
by the second coefficient of viscosity, i.e., the processes satisfy the Stokes equation
with 7/ # 0. From this follows, by the way, that the second coefficient cannot be
neglected, no matter how slow the process is because we are interested in the effects
of viscosity, in general. The point is that with the gradual slowing down of
the process, of course, the influence of the “second viscosity” approaches zero;
however, at the same time, influence of the standard viscosity tends to zero too. For
instance, for the elastic waves of low frequency, the adsorption coefficient is
proportional to (41/3 + 1')w?, where w is the frequency of the acoustic wave
and, therefore, in the domain of low frequencies, the relative contribution of the
“second viscosity” does not depend on frequency at all.

For the fast processes, as we will show below, the influence of viscosity cannot
be accounted for just by introducing the second coefficient. For instance, for the
attenuation of short acoustic waves one obtains that the adsorption coefficient is not
proportional to the square of the frequency. In the simplest case, it appears that the
frequency dependence of the adsorption coincides with that of the multiatomic
gasses derived by Kneser et al.

§1

We assume that at a given point the state of liquid is defined not only by its
temperature T and density p but also by a quantity £ (or several quantities &;, &,,
...) which defines internal state of the liquid. The quantities £ can be, for instance,
concentrations of components that make up the liquid, concentrations of excited or
associated molecules. One can suppose that £ somehow defines the internal struc-
ture of the liquid. For the time being, it is not necessary to attribute any special
meaning to these variables. At first, we will assume that the internal state of liquid
can be described just by one variable £, similar to the case of multiatomic gasses
with only one excitational degree of freedom.

We consider states away from equilibrium. That is why the state of the system is
not defined just by its temperature (and density). For instance, in the Kneser case,
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when the gas contains the excited molecules, the state of the system depends not
only on its temperature, which defines the average energy 3kT/2 of the translational
motion of molecules, but also on the concentration of excited molecules &,which
may differ from its equilibrium value of

e—s/kT

= e

This situation could be described by characterizing the nonequilibrium state of
the system by two temperatures T and T, the latter one defining the internal energy
of the system. In general as in the aforementioned example, the temperature T is
related (at constant density) to the energy of the system so that its change
determines change of energy of the system at the given value of &,

AE = CAT,

where C is the heat capacity at constant £ (and constant density). Notice that in
what follows one does not need to introduce the temperature of nonequilibrium
states; instead, one can characterize the state by its energy (per unit of mass),
density, and parameter £. For this choice of variables, the treatment and results
remain the same: instead of the free energy W(T,p, ), one just has to use the
thermodynamic function, which is appropriate for the new choice of variables, that
is, entropy S(E, p, &).

At equilibrium, the variable ¢ has some specified value which depends on
density and temperature; this value can be found from the condition of thermody-
namic equilibrium

ov

87570

)

where W(T, p, £)is the free energy per unit mass. For the propagation of sound with
vanishingly low frequency one can assume that at every moment the state of the
system is consistent with the equilibrium and, therefore, the speed of the sound is
defined by the static value of adiabatic compressibility. In the opposite case of very
high frequencies, the internal state of liquid, that is, the quantity &, does not change
during one period of oscillations and the speed of the sound is defined by the
adiabatic compressibility at the constant value of £. In the crossover region of
frequencies, the dispersion of sound is taking place.

To solve this problem, one has to have an equation, according to which the
quantity £ changes in the processes that take place in the fluid. This equation should
correspond to the “excitation reaction equation” of the Kneser theory. It can be
written based on the following ideas.

First, because we are interested in small deviations from equilibrium (small
amplitudes of sound) the equation must be linear.
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Second, this equation should be of the first order in the derivatives of T, p, and &
with respect to time. This assumption is natural when ¢is concentration of a
component and, hence, when the equation of interest represents the reaction rate
equation. In general, this assumption means that the variation of £ proceeds without
effects of inertia.

Third, the equilibrium condition at the constant p and T, that is, the condition of
& = const is the equality of O /¢ to zero.

It follows from these tree requirements that the sought “reaction equation” for
the appropriate choice of the variable¢ must have the following form

oY

éZ_K8—§7

J.1)

where J is a constant. Here, in the expression for 0¥ /0¢ we should retain only
linear terms (in W itself—quadratic) with respect to AT, Ap, and A&, which are
deviations of temperature, density, and &, respectively, from their equilibrium
values.

We can arrive at (J.1) using the following ideas.

At constant, time independent, density and temperature, regardless of the choice
of ¢ the reaction equation must have the, form (J.1) because, due to the assumptions
made, the equation has to be linear in ¢ and approach zero together with 9W¥/9¢.
In this case

%? =WeAC,
where A = & — &y and &, is the equilibrium value of £.

We are interested in the reaction equation when AT and Ap are changing with
time. In this case, in addition to the terms that are present when T and p are constant,
there may be terms which depend on T and ,Z) ; in the framework of our assumption
the most general form of the equation is the following

. . . oY
bT = —K—,
Etap+ 3¢
where a and b are constants.
Using the substitution A + aAp + bATinstead of Afwe arrive again at (J.1)
where 0¥ /¢ takes the following form

oY
8_5 = lPééAé + q’éTAT =+ \Pcprp~ (J.ll>
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In the case when the auxiliary variable somehow determines concentration of a
certain component of the liquid, the parameter satisfies the latter condition if ¢ is
chosen as a relative concentration of this component.

Indeed, let the volumetric concentration /% to be selected initially as the auxiliary
variable. At constant T and p, the reaction equation has the form

. ov
h=—K%.
oh

When density varies, in addition to the change of the amount of the component
due to this equation there will be variation due to the flux of matter, and the equation

takes the form

oY

h+div(hif) = —K' 2
“+div(hi) T

(uis the velocity of liquid). Because at small velocities and small variations of &
P - h e
div(hit) = hdivii = —— p,
p

the equation can be rewritten as

but

where ¢ is the relative concentration ¢ = h/p.
Moreover,

or_ovor 1o
Oh — 9¢ Oh  p OE’
so that the reaction equation takes the form of (J.1)

oY

6:_[(8—67

where
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1
K=—K.
0

In addition to the “reaction equation” (J.1), one has to write an energy equation.
If we disregard the effects of regular viscosity and heat conductivity, whose
contribution into the sound adsorption in most of the fluids, in our opinion, is
several times smaller than that of the processes considered here, then the energy
equation takes the following form

pE—pP—o, d:2)

T

where E is the energy per unit mass and p is the pressure.
Differentiating (J.2) we obtain

The second derivatives of W (taken at the equilibrium state), which enter the
expression for 0¥ /9¢, and the derivatives of energy in the last equation can be
expressed through other quantities, if we take advantage of the fact that we know
the free energy as a function of T, p, and £. Then we have

p=P(T,p,&) = p*¥,;

(here P(T, p, £) means the pressure as a function of T, p, and £) and, hence, at
equilibrium, when 0¥ /9¢ =Wy =0

E: = —TY¥,r,
Pf = pZ\Péﬂv
p’E, —p = —TPr.

Using these relations, one can bring (J.1) to the following form

< 1 E; P:
5:——<A5— S AT + -2 A), J.3)
T T P

where 1/7 = KW¢: and 7 is a constant which determines the time of establishing
equilibrium. Equation (J.2) can be rewritten in the form
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E:é+ErT——L)p=0. (4.4)

One has to keep in mind that the derivative E7 and Py in this equation are taken
at constant £. Hence, for instance, C = E7 is the heat capacity at constant & (and at
constant p, that is, at constant volume). This quantity is not equal to the heat
capacity obtained from static measurements. Regular heat capacity ¢ corresponds
to the equilibrium state; therefore, it is equal to the derivative (OE/OT),, taken at a
constant (and equal to zero) value of p = ¢

-3
ar)

OP(T,p, &)
oT

Likewise the derivative
Pr=

is not equal to the derivative

Pr =\ 57 >
or u
taken at the equilibrium state.
It is easy to find the relationship between the derivatives taken at ¢ = const and
at i = const, equal to zero. We have

OE OE OE (O OE (0u
c=fr (8T>¢ <5T>H+3u <8T)¢ ‘T ou (8T>5

Taking into account, the aforementioned expression for Wer
3u Eg
) .
(6T>é a T’
and

g = EOR _OEy,
C_auaé_au S5

we obtain
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OFE _ E
o W'
and hence
Coem B (.5)
TY:
Similarly, we obtain the following relations
0 19) P:E P:E;
Pr= (3_1;>g N (3_1;> . T‘i’:c - T‘i’;é ’ (70
P2
P, :pp—&-W;, J.7

where p(T, p) means dependence of p on T and p at the equilibrium, so that, e.g.,

_ (% _ (%
pr = T u’ Pp = ap #.

Also notice that in the considered problem the deviations of the state of fluid
from equilibrium can be accounted for in a different way, namely, as it has been
done by some authors for gasses, by introducing the second temperature T;.
This can be reduced to simple change of variables. We may introduce the tempera-
ture T, as the temperature at which the internal state of liquid at equilibrium is
determined by the specific value of &. Then, the deviation AT of this temperature is
defined by the condition

8‘P(T1,p, é) -0
o¢ -

or
WeeAs + WerAT + We,Ap = 0.

Using this equation and introducing AT, instead of A¢ in (J.1) and (J.4), we
obtain the following equation that determines variations of both temperatures

hd PV [
T———p=—(AT — AT
1 szEgp ( 1)7
. s TPr.
CT+(c—C)T+p—2T =0
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§2
Considering propagation of sound wave with the frequency w, the quantities AT,
Ap, and A¢ are proportional to exp(iwt) and (J.3) and (J.4) turn into

. E; P
1 +iwt)é = ——AT — =— Ap, J.8)
( ) T p?Wee
TP
E:¢ = —CAT + p—zTAp. )

Square of the complex velocity of propagation of sound is determined by the
ratio of the pressure change Ap to the density change Ap and is equal to

Ap AT A&

Wr=—_—=PpP —+P:—. J.10
Ap p+PTAp+ “Ap (J.10)

Determining the ratios AT /Ap and A/Ap from (J.8) and (J.9) and substituting
them into (J.10) after algebraic transformations, which use expressions (J.5), (J.6),
and (J.7) and also the thermodynamic relationship

T 2
Sp =1+ %,
c cp°pp
we obtain
[ et ve/voy - 1}
W=V 1 J.11
0 + 1+ 1wt ( )
Here,
Tp}

c
V2:—p = —_
0= Pr pp+cp2’

so that V) is the standard Laplace’s speed of the sound;

that is,Vas Vyis a function of the derivatives of pressure and heat capacities, but
taken at constant¢; moreover, t' = tC/c.



334 Appendix J: On the Theory of Adsorption of Sound in Liquids

Atvery low frequencyw, as one can see from (J.11), W becomes real and equal to
the Laplace’s value V. With @ — oo, W also approaches the real value, but
now V.

The real speed of propagation V and the attenuation coefficient per unit lengtho
are obtained from the relations

1 1 1
—=Re—, o=wlm—.
Vv w w

Separating the real and imagine parts of 1/W and taking into account that W is
always close to Vjy (Vi /V) is close to one), with sufficient accuracy we obtain

Vo 1 CUzT'Z[(Voo/Vo)2 - 1]
w=1-5 e , (1.12)

1o [(Vae/Vo) — 1]
T2 1 + w?7'? '

(J.13)

Expressions (J.10), (J.11), and (J.12) have the same form as the corresponding
expressions in the Kneser theory for gasses; they differ only in the value of the
constant V.

In the case of gasses,

2
(‘%) - g (J.14)

where C is the heat capacity that corresponds to the translational motion of
molecules in gasses. In our, more general case

2 2
(v_m> ! {P2+T@T—P¢E¢/T%¢> _TL} 0.14)

V() 2V2 LI"gg Cc— E%/qucfé Cc

Thus, this quantity depends, first, on the values of ¢ and pr related to the
equilibrium state—their values for liquids may be considered known—and, second,
on the values of E¢ and P, which define, respectively, variations of energy and
pressure with the variation of ¢ during the reaction. These quantities can be
obtained only if certain hypotheses about the characteristic features of the processes
in liquids are made. Moreover, (J.14) includes the quantity'¥'ss, which could be
found if the magnitude of thermal fluctuations of the parameteréwere known from

some experimental observations. Indeed, the mean square of fluctuations Aéz is
equal to kT /W¢s. The constant 7, which defines the magnitude of adsorption and
location of the maximum of the curve adsorption-per-one-wavelength as a function
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of the frequency, is inversely proportional to the rate of reaction proceeding in the
liquid. As known, the rate of reaction in liquids can often be estimated qualitatively
following Smoluchowski’s ideas developed in the coagulation theory of colloids.
For instance, as known, the processes in fluorescent liquids can be understood from
this point of view. The value of 7 must be proportional to the standard viscosity of the
liquid n. Therefore, according to (J.13), the attenuation coefficient « (at low frequency
when the terms w?1”? in the denominator can be omitted) must be approximately
proportional to the standard viscosity 7. Hence, in the cases when the viscosity is
strongly dependent on temperature so that its variation covers over the variations of all
other quantities that determine the attenuation coefficient o, the latter should be
approximately proportional to the viscosity n and, with changing viscosity 7, should
vary proportionally to the Stokes’ attenuation coefficient. Perhaps, the temperature
dependence of the attenuation coefficient observed by Baumgardt* for water at the
frequency 8 x 10° Hz can be understood from this point of view.

In a particular case of gas, where the considered reaction is excitation of particles
and & = ny/n, i.e., £ is the relative concentration of excited molecules, we obtain

EéZS,

where ¢ is the energy of excitation and, due to the fact that the reaction is not
accompanied by the change of the number of particles and, hence, pressure

P: =0.
Moreover, in this case
W = RT{EInE + (1 - &)In(1 — &) + E¥(T) + (1 - ¥a(T) + Inp},
and due to (J.5),

RT RT &

Substituting these values into (J.14’) we find the Kneser expression (J.14).
§3
The above considered case of the nonequilibrium state of liquid that comes about
with propagation of sound, which can be characterized by one additional parameter
Erepresents, of course, just the simplest case. Generally speaking, we have to
introduce several additional parameters &;,&,,. ..

In the gas, this corresponds to the situation when one has to take into account
excitations of different normal modes of a molecule, with the parameters &,¢,,. ..

“E. Baumgardt, C.R. 202, 203 (1936).
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representing concentrations of molecules in various excited states. In these cases,
the functional dependencies of adsorption and dispersion on the frequency as well
as the dependence of adsorption on temperature can be essentially different from
the case of one parameter. That is why we will outline briefly the way to solve this,
more general problem.

Using the same ideas as above, one can come to the conclusion that for small
deviations from the equilibrium state the “reactions equations,” that is, equations
for £;,&,,. . ., have to have the following form

ZKU 0% (J.15)

On the basis of the well-known general considerations,’ coefficients K;; must be
symmetric: K;; = Kj;. Due to this condition and with the proper choice of variables
£1,&,,. . . the system of equations (J.15) can be reduced to a very simple form, such
that every equation has only one variables ;. To prove this we note, first, that if we
introduce

2K = Z[(‘P‘P

where

oY

\Pi = a7 >
0¢;

then (J.15) may be written in the following form

oK

v (1.16)

Foo

The quadratic in AT, Ap, and A¢;part of ¥, which is of interest for us, can be
written as follows

e g 2
2¥ = ZT,,A§A§,+2Z(aéaTAéAﬂaw AgAp), (J.17)
where
PV
Yi =z,

3 See, e.g., L. Onsager, Phys. Rev. 37, 405 (1931); 38, 2265 (1931).
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The expression for ¥ in (J.17) can always be linearly transformed to the sum of
the squares so that in the new variables ¥';; = J;; and ‘¥ has the form

2 =3 +2Y (VaATE + WiAps), (1.17)
where
il Py
lPiT - aélaT’ \pr - 6516P’ éi - Aél

Now, applying the second transformation, which should be orthogonal and,
therefore, keep the form of (J.17’) unchanged, and which transforms the quantities
W;same way as &;, we bring the quadratic form J to the following expression

2
2K = ZE, (J.18)

Ti

where t; are some constants.
Due to (J.17) and (J.18), the reaction equation (J.16) in the latter variables takes
the following form
. 1
Gi=—— (& + WirAT + Wi, Ap). (J.19)

Ti

Energy equation takes the form quite similar to that of (J.3)

. TPr. .
ETT—p—ZT P+ E& =0, (1.20)
where
g =&
0¢;

For the case of propagation of sound with the frequency w, these equations turn
into

é,(l + i(i)’l.',') = —(lPiTAT + lII,‘pAID), (JZI)

TP
ErAT — p—zTAp +Y E& =0. J.22)
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Square of the complex velocity of sound propagation is equal to

Ap AT &
W2="2=P,+Pr— P2t 123
3, = Fot TAerZ: Ay (J.23)
where
oP
P =—.
¢;

Defining AT /Ap and &;/Ap from (J.21) and (J.22) and substituting into (J.23)
we obtain

2
|:PT—|— I/TEPkEk/l +iCOTk
k

iw P21, T
W2=P,+— g = 124
p+p2 —~1+iot,  p2  C+1/TY Ef/1+ioty J-24)
k
For the Kneser case (excited molecules of gas) P, = 0 and we obtain
C iw/TCY, E2ti /1 +i
W2 = V2 + (V2 = V2) w/TC )y Eyui/1 + o (1.25)

c—C1—iw/TCY B2t /1 +iot’

where

Tpr ¢
2
Vo=ppt- ="

C E?
2 _Lp _ k
Vocf—cp,,7 c=C+ Ek T

Discussion of these expressions will be presented elsewhere.

As mentioned above, for slow processes, the phenomena discussed here manifest
in the emergence of the “volumetric viscosity.” Let us show briefly how this follows
from our equations, restricting ourselves to the case of one parameter £.
Differentiating (J.3) with respect to time and then excluding the first derivative

£ from the obtained equation and (J.3), we obtain

AE—2E = Ti; (AT _z %) - pfééé (Ap _z 5). (7.26)

For slow processes, we drop the term 72 ¢. Using (J.26), (J.4), and the
relationship
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TP
E:AE + ErAT ——Ap =0
p

[obtained by integrating equation (J.4)], AT and & can be expressed through Ap
and p . Substituting these expressions into Ap in (J.10) and, after some rearrange-
ment, we obtain

Ap =V2Ap +7 (V2 —V3)p.
Taking into account that
b = —p div u,
where i is the velocity of the liquid, expression for Ap can be written in the form
Ap = ViAp —1/div i,
where 7 is the “second coefficient of viscosity,” given by

n =7 (Vi =Vg)p.

oo
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