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Chapter 1

Introduction

1.1 What Is This Book About?

Phase transitions are significant changes in the system’s properties and symmetry,

which happen as a result of changes of the external conditions (temperature,

pressure, chemical potential, etc.). Although various phase transitions are discussed

in the book as physical phenomena, the book is more about the method to study the

phase transitions than about the phenomena themselves. A lot has been written about

behavior of a system close to the critical point; it is characterized by special features

such as scale invariance. However, these are rare cases and most of the systems

spend most of their time far away from the critical points. Rephrasing Feynman we

can say that there is plenty of room away from the critical point. Evolutions of the

systemswhen they are not close to the critical points are characterized by completely

different physical features, such as rate of nucleation and growth, microstructure or

pattern formation, structure modification and coarsening, etc. Physical descriptions

of these features require that special consideration is taken to the free energies of the

phases involved in the transformations, which in many cases are known either from

thermodynamic calculations or direct experimental measurements. All of that sets

the stage for different approach to phase transitions, more phenomenological, which

is the main subject of this book.

One of the most convenient ways of addressing the general problem of phase

transformations is the Field-Theoretic Method (FTM) based on the Landau para-

digm, which assumes that the free energy, in addition to temperature, pressure, and

composition, is a continuous function of a set of internal (hidden) parameters

associated with the symmetry changes, which are usually called long-range order

parameters (OP). Different transitions may be laid out into the same framework if

proper physical interpretations of OPs are found. Although significant strides in the

direction of rigorous derivation of the basic equations of the method from the first

principles have already been made (see Appendix A), this task is not finished yet.

A. Umantsev, Field Theoretic Method in Phase Transformations,
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That is why the issue of thermodynamic consistency always played and still plays

significant role in the development of FTM. This issue can be expressed as follows:

whatever the equations of the method are, their implications should not contradict

the basic laws of thermodynamics.

1.2 Who Is This Book For?

This book is for researcherswho are interested in all aspects of phase transformations,

especially for practitioners who are involved in theoretical studies or computer

simulations of the phenomena and would like to expand their knowledge in the

direction of the field theory of phase transitions. This book can be used as a textbook

of a graduate or upper level undergraduate course in physics of phase transitions.

The students should be familiar with the basic tenets of Physics: Thermodynamics

and Statistical Mechanics, and Mathematics: Calculus and Differential Equations.

Although the basic knowledge is assumed, more specific topics, critical for the

subject of the book, are presented briefly in the Appendices. There is an advantage

of having all the components of the method collected in one place. Please feel free to

send your comments to the author via: aumantsev@gmail.com

1.3 Historical Note

Although phase transitions are always associated with some kind of singularity,

application of continuum ideas in this scientific area has a very long history.

The first attempts in the contemporary history to consider phase changes using

continuous methods belong to Gibbs [1] who considered coexistence of phases and,

in the first paragraph of his “Theory of Capillarity”, delineated the main reason for

the continuity between them—the finite size of the “sphere of molecular action.”

Although most of his treatment of the interface between the phases uses the concept

of “the surface of discontinuity,” he always thought of it as merely an abstraction.

Later, Van der Waals [2], in his study of the equation of state of the liquid–gas

transition, introduced the gradient of density contribution into the system’s local

energy (not entropy). This allowed him to calculate the surface tension of the

system and estimate the thickness of the interfacial layer.

Path of science through history is unpredictable. No matter how much we try to

control it by moral and financial support, science usually chooses serendipitous

routes. The Field Theory of Phase Transformations is a case in point. The funda-

mental basis of what this book is about was laid out not only in 1 year but also in one

city: Moscow, Russia of 1937. That year Landau [3, 4] published three papers on

the theory of phase transitions and scattering of X-rays, which introduced the

concept of the order parameter, started the new theoretical method, and explained

how the theory should account for the system’s heterogeneities. That same year
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Mandelshtam and Leontovich [5] published a paper on the theory of adsorption of

sound in liquids where they developed an approach to an evolving systemwhich was

pushed away from equilibrium. As if all that is not enough for a coincidence, all four

papers were published in the same volume—seventh, of the same journal—Journal

of Experimental and Theoretical Physics, although in different issues. It is worth

mentioning here that 1937 was a very difficult year for Russia when the Stalin purges

had started; very soon Landau himself fell victim of those. So, 1937 was the theory’s

most successful year; the crossroads of science and politics are intertwined.

The Landau’s papers received significant attention in the “western” scientific

community (yet the third one [4] significantly less than the first two [3]), but the

Mandelshtam–Leontovich’s paper [5] remains virtually unknown to this community.

Although the author of this book does not know the exact reason for that, one possible

explanation is that the Landau’s papers were translated into English (and German)

while the Mandelshtam–Leontovich’s—not. That is why the author decided to

publish a translation of that seminal paper in Appendix K of this book. An interesting

discussion of that paper can be found in the section “Second viscosity” of Landau and

Lifshitz “Fluid Mechanics” [6], the first edition of which appeared in 1944. Later on,

in 1954, Landau and Khalatnikov [7] adopted the Mandelshtam– Leontovich’s ideas

of how to deal with disequilibrium and implemented them in their important paper.

In 1950, Ginzburg and Landau [8] expanded the early phenomenological ideas

of the theory and applied them to superconductivity. However, the significance

of that work for the Russian reader was not in the introduction of the gradient

energy term into the free energy functional (which seems to be the main novelty

of that paper for the “western” readers) but in coupling of the order parameter to

the magnetic field and the method of calculating the interfacial energy between the

phases. In the late 1950s, Cahn and Hilliard [9, 10] published a series of papers on

the application of the continuum method to the phenomenon of spinodal decompo-

sition and after that the whole field of the continuum theory burst in many different

directions.

In the past decade, there has been inflation of theoretical and computational

research using FTM when the method has become very popular in theoretical and

computational studies of very different phase transitions in materials (crystallization

of pure substances and alloys, precipitation in the solid state, spinodal decompo-

sition, martensitic transformation, and grain growth), in cosmology (phase

transitions in early universe) and high energy physics, in biophysics (chemotaxis,

protein folding) and even in the studies of human’s societies (revolutions and other

social events). FTM is successful because it is

• Accurate enough to correctly predict the transition path in many different

situations

• Simple enough to allow theoretical analysis

• Comprehensive enough to be interesting for practical applications

• Computationally friendly enough to be used for numerical simulations

The success of the method is due to its computational flexibility and ability to

transcend the constraints of spatial/temporal scales, imposed by strictly microscopic
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or macroscopic methods, hence becoming a truly multiscale one with significant

predictive power. However, this book is not about the numerical methods. A number

of good books have been written about the method; some of them are listed below

[11–16]. However, in the opinion of the author, they do not give the complete and

unified approach to the method, which is the goal of this book.

1.4 Nomenclature

In addition to the standard scientific-literature designation of functional dependence:

y ¼ func(x), the author uses in this book a nontraditional designation:

y ¼ constðxÞ; (1.1)

when he means to say that the variable y is independent of the variable x. The author
chooses to use the designation (1.1) instead of the traditional y ¼ const because the

latter designation implies that the variable y does not vary at all, while (1.1) means

that the variable y does not vary with x, although it may vary with other variables of

the problem.

The chapters contain untitled introductions that provide a classical, macroscopic

description of the related problem and a brief summary of the main results of

the chapter. The referenced equations are numerated in each unit (Chapter or

Appendix) separately with the first equation showing with the unit’s number

separated from the equation’s number by a period, e.g., (1.1). When an equation

is referenced from within the unit, the unit’s number is omitted for brevity, the

unit’s number is restored when the reference is made form another unit [e.g., Eq.

(1.1)]. The book does not have homework problems. But there are worked out

examples in each chapter and in a few appendices. Important equations in the

examples are referenced with the chapter number preceding letter E [e.g., (3E.7)].

Some details of derivations in the text have been left for self-analysis; they are

marked throughout the text as (Why?) or (Verify!). The author suggests that the

reader finishes the derivations on his/her own because no knowledge can be

acquired without hard work.

Often another term, “the phase field,” is used to designate practically the same

method as the one considered in the book. This term was born somewhere in the

mathematical community. It is time to bring this method back into the realm of

physicists. In this book, different terms, which have practically same meaning, are

used for the phases before and after the transition: old–new, initial–final, parent

(mother)–daughter, matrix–precipitate, or nutrient–incipient (emerging). The choice

is merely a literary convenience.

Many Latin and Greek letters have multiple uses in different chapters, which

should not cause any confusion. Exception is made for the following list of letters,

which retain the same meaning throughout the entire book.
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G—Gibbs (or Landau-Gibbs) free energy of the whole system

V—volume of the whole system

g—Gibbs (or Landau-Gibbs) free energy density

x, y, z—Cartesian coordinates

�—order parameter

k—gradient energy coefficient

s—interfacial energy

g—kinetic (relaxation) coefficient

The following abbreviations are used:

APB—anti-phase domain boundary

BC—boundary conditions

CAM—cellular automata method

ELE—Euler-Lagrange equation

FTM—Field-Theoretic Method

GB—grain boundaries

GHE—generalized heat equation

GL—Ginzburg–Landau

OP—order parameter

TDGLE—time-dependent Ginzburg–Landau equation
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Chapter 2

Landau Theory of Phase Transitions

In this chapter, starting with the classical approach, we define a phase as

homogeneous stable matter and classify phase transitions according to the Ehrenfest

classification. Then we introduce a concept of an order parameter as a hidden

variable responsible for symmetry changes during the transition. We consider

different thermodynamic functions and choose the Gibbs free energy as a function

of temperature, pressure, and order parameter (the Landau potential) to identify the

equilibrium states in open systems. Using the concept of the order parameter, the

phase transitions are considered as mathematical catastrophes of the Landau poten-

tial. The “catastrophic” approach helps us to classify the phase transitions and see

how different forms of the Landau potential are applicable to different cases of phase

transitions. We also look at the special lines and points of the phase diagram

from the point of view of the “catastrophic” changes of the order parameter.

We conclude the chapter with the analysis of the external field on the phase

transition, using the properties of conjugation between the field and order parameter.

2.1 A Phase and Phase Transition

There are many physical situations which may be called phase transitions. They are
always associated with significant changes of properties in the physical system.

If water is cooled below 0�C at the atmospheric pressure, it solidifies and stops

flowing from one vessel to another. If a bar magnet is heated above a certain

temperature, called Curie temperature (approximately 770�C for an iron magnet),

it abruptly loses its property to attract small pieces of steel. If a piece of steel is

quenched rapidly its hardness increases dramatically. Under the microscope one

can see that characteristic plates, called martensitic, appear which have not been

there before the quench. Although the concept of phase transitions was conceived

and developed in the realm of physics and chemistry of materials, it has long since

crossed these borders and is now used in many other branches of science (e.g.,

sociology and cosmology). There is one significant difference between the

A. Umantsev, Field Theoretic Method in Phase Transformations,
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examples of phase transitions above. Water can be supercooled below 0�C and ice

can be superheated above 0�C (at least slightly); however, one cannot superheat a

magnet above its Curie temperature. This difference brings up a distinction between

transitions of different kinds—first order and second order—discussed below.

Phase transitions may also have critical points where the phase transition pattern

changes from what it was away from this point. (Do not confuse with critical points

in mathematics which occur when the first derivative of a function vanishes). For

instance, in compression experiments, below the critical temperature of water there

are two distinct phases, liquid and vapor, while above this temperature water

changes its state (density) continuously.

For a substantive discussion of phase transitions, we need a reliable definition of

phase. So far, we have been using an intuitive one based on the physical properties

of the state of a system. However, the context of our discussion merits a rigorous

definition; we suggest the following: a phase is a homogeneous part of a system
distinguishable by a set of intrinsic properties, which has attained a state of
thermodynamic equilibrium under the specified external conditions.

A few comments are in order here: (1) Of course, “a part of a system” may be the

whole system; however, important is that it is “a homogeneous part.” In the litera-

ture, one can find definitions of a phase that are based on the ability of phases to

coexist (see Sect. 81 of ref. [1] for an example). There are two problems with such a

definition: for one, some phases do not allow coexistence (e.g., in a second-order

transition, see below); for another, such a definition implies that some kind of

inhomogeniety is necessary for a phase to exist, which is not correct. Under certain

conditions, a phase may be spatially non-uniform. For example, air in the gravita-

tional field of Earth changes density with altitude or a dielectric material in the

electrical field has inhomogeneous distribution of polarization. But these

inhomogenieties are imposed on the system from outside andmay be easily removed

by removing the external fields. The system may have other inhomogenieties which

are harder or impossible to remove, such as internal interfaces between the

coexisting phases; these inhomogenieties must not be a part of the definition of

a phase.
(2) “A thermodynamic equilibrium” does not necessarily mean globally stable

equilibrium; a phase can be in the state of only local equilibrium—a metastable
phase (see below). However, an unstable (although equilibrium) state of a system is

not a phase.

(3) To be called a phase, we do not require a system (or its part) to be at

equilibrium under any “external conditions,” only “under the specified” ones.

Certain phases may exist under specific conditions (e.g., isothermal) but not exist

under others (e.g., adiabatic). For example, a solid phase that is stable in a closed

system may fall apart if the system is exposed to the environment.

In thermodynamics, we define special functions of state as entropy S and free
energy (Gibbs-G or Helmholtz-F) which clearly identify equilibrium states and

even distinguish between the equilibrium states of different levels of stability.

For example, in a system closed for thermal exchange with the environment,

the entropy must attain maximum at a stable equilibrium state. If the system is
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open to the thermal exchanges, then the equilibrium states are identified by the
minima of the free energy. One has to keep in mind that the maxima and minima of

the respective thermodynamic functions are taken not with respect to the thermo-

dynamic variables (energy E, enthalpy H, volume V, temperature T, pressure P,
etc.) but with respect to the internal—hidden—variables that characterize different

states for the same set of the thermodynamic variables.

As a consequence of the second law of thermodynamics, at equilibrium, the

chemical potentials of the phases are equal. In different physical systems, the role

of the chemical potential is played by different physical quantities. In an open, one-

component system, which will be of primary interest for us in this book, the

chemical potential is the molar Gibbs free energy G. Thus, the condition of phase

equilibrium in an open, one-component system is expressed as follows:

Gphase aðP; TÞ ¼ Gphase bðP; TÞ: (2.1)

A convenient, geometrical way of describing phase transitions is with the help of

a phase diagram—a map in the plane of the thermodynamic parameters of regions

where each phase of the substance is the most stable; these regions are separated by

lines known as phase boundaries. Equation (2.1) describes a phase boundary in the
(P, T)-plane of the phase diagram; it may be expressed as the equilibrium tempera-

ture that varies with pressure:

T ¼ TEðPÞ (2.2a)

or pressure with temperature:

P ¼ PEðTÞ: (2.2b)

There are different classification systems for phase transitions; the most popular

one was introduced by Ehrenfest. It is based on the discontinuity of the appropriate

thermodynamic potential—G, F, or S—with respect to the appropriate thermody-

namic variable—P, T,V, orE. According to this classification, if at the transition point
(phase boundary) the first derivative(s) of the thermodynamic potential with respect to

its variable(s) experience discontinuity, such transition is called first order. If the first
derivative is continuous but the second one experiences discontinuity, the transition is

called the second order; the latter is closely associated with the critical phenomena.

Such classification may not work for all transitions. However, in this book, we are

using the Ehrenfest classification because it is themost convenient one. For instance, it

may be expanded on the transitions of nth-order as such that the nth derivative is the
first one to experience a discontinuity at the transition point.

Introducing a jump quantity at the transition boundary:

½Q� � Q
phase bðP; TEÞ � Q

phase aðP; TEÞ (2.3)
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the Ehrenfest classification may be expressed in a succinct form. For instance, for a

transition to be of the first order, the latent heat

LðP; TEÞ � � H½ � ¼ TE
@G

@T

� �
¼ TE S½ � (2.4a)

and/or the transformation volume

V½ � ¼ @G

@P

� �
(2.4b)

cannot be zero. Differentiating (2.1) along the equilibrium line (2.2a), we find the

Clapeyron-Clausius equation:

dTE
dP

¼ �TE
V½ �
L

: (2.5)

The jump quantity may be taken at any point of the (P, T)-plane; then, the
relation (2.4a) can be expanded beyond the equilibrium line as follows:

LðP; TÞ ¼ T
@

@T
G½ � � G½ �: (2.4c)

As a consequence of the second law of thermodynamics, condition of stability of

matter (phase) may be expressed as positivity of the specific heat CP:

CP � @H

@T

� �
P

¼ �T
@2G

@T2

� �
P

>0; (2.6a)

and isothermal negativity of the isothermal compression bT:

bT � � 1

V

@V

@P

� �
T

>0: (2.6b)

Then, for a transition to be of the second order, the latent heat and transformation

volume must vanish but the jumps of the specific heat

CP½ � ¼ @

@T
L ¼ T

@2

@T2
G½ � (2.7a)

and/or isothermal compression

bT½ � ¼ � 1

Vphase a

@

@P
V½ � þ bT;phase b V½ �

� �
(2.7b)

cannot be zero at the same time.
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The condition of equilibrium (2.1) is not identical with the condition of

coexistence. For instance, two phases of a substance which can undergo a first-

order transition may coexist under the conditions of a closed system; however, two

phases of a substance that undergoes a second-order transition cannot coexist at

equilibrium under any conditions.

The third law (Nernst heat theorem) basically says: at T ¼ 0 K, the entropy of the

most stable phase is zero. This law is more important for the low-temperature phase

transitions than for those where the equilibrium temperature TE is far away from 0K.

Clearly, the concept of a phase transition is associated with some kind of

discontinuous, nonanalytic behavior of the thermodynamic functions that describe

the system. A statistical mechanical approach to phase transitions is to write down

the partition function ZN of a system of N particles interacting with each other

according to a certain interparticle potential energy uðri; rjÞ, where ri is the position
in space of the ith particle. Thermodynamic functions of the system can be easily

expressed through the partition function. The partition function of a system that can

undergo a phase transition must be such a function of its variables—volume V and

temperature T—that the regions of analytic behavior are bounded by curves on

which the function is not analytic. The problem of the statistical mechanics descrip-

tion of phase transitions is that the partition function of a finite number N of particles

is a well-behaved, analytic function of its variables, hence, does not describe a phase

transition. The resolution of the analyticity paradoxwas found in the thermodynamic
limit, that is in the limit (V, N) ! 1. The trick is that even though ZN(V, T) is
analytic for every finite N, it is still possible for zðV; TÞ ¼ lim

N!1
ZNðV; TÞ=N to

be nonanalytic.

2.2 Phase Transition as Symmetry Change:

the Order Parameter

Landau [2] suggested a different approach to phase transitions, an approach that

uses the concept of “hidden variables” in thermodynamics. A hidden variable is an

internal variable which affects the properties of the system, hence its thermody-

namic functions (e.g., free energy), even when the thermodynamic variables—e.g.,

P, T, V, E—are set by the conditions outside the system. For instance, it may be the

reaction progress variable in a system where a chemical reaction occurs or the

composition of a mixture of phases in a system of given pressure, temperature, and

number of particles. A hidden variable can measure deviation of the system from

the state of equilibrium. Then, according to the laws of thermodynamics, equilib-

rium state of an open system with given P and T corresponds to the minimum of

Gibbs free energy. Hence, it will be found among the critical points of the free

energy as a function of the hidden variable:

@G

@�

� �
P;T

¼ 0: (2.8a)
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Stability of this equilibrium is determined by the sign of the second derivative of

the free energy with respect to the hidden variable:

@2G

@�2

� �
P;T

>0: (2.8b)

Utility of the concept of hidden variable is also found in the fact that the first

derivative of the free energy of a nonequilibrium state may be identified as a

thermodynamic driving force toward the equilibrium.

In a way, Landau’s idea intended to express that a phase transition looks discon-

tinuous only in the space of the thermodynamic variables, but if you introduce

another variable, inner or hidden, then the thermodynamic potentials of the system

will be continuous (even analytic) functions of the set of thermodynamic and inner

variables. In the theory of phase transitions, it is accustomed to call this variable an

order parameter (OP), �, in recognition of the fact that many phase transitions are

associated with some kind of ordering. It is important to understand that the OP is

not equivalent to the thermodynamic variables because the latter can be set in the

system arbitrarily, while the former, at the thermodynamic equilibrium, becomes a

function of the latter and takes on the value, ��ðP; T;V;EÞ, which delivers extremum

to the respective potential at the given values of the thermodynamic variables—P, T,
V,E. The concept ofOP is very helpful in defining a phase because the “homogeneity”

and “equilibrium” should be understood in the sense ofOP. Then, a phase is defined as
a locally stable, homogeneous in the OP part of a system.

Landau realized that many phase transitions are associated with symmetry
changes in the system. The OP may represent a physical quantity that is, be

described by a dimensional variable, or it can be defined as a measure of the

symmetry difference between the phases before and after the transition. As a

quantity, �, can be defined such that it is zero in the high-symmetry phase and

non-zero (positive or negative) in the low-symmetry phase. The OP should describe

the phase transition and its changes should reflect the symmetry changes essential

for the transition. � can be a scalar, a vector, or a tensor; tensorial properties of the

OP should reflect the tensorial properties of the microscopic quantity that

characterizes the transition. The OP can be a complex or a multicomponent

quantity, depending on the physical nature of the transition. Identification of the

physical nature of the OP is the first step in the description of a phase transition.

The OP is obvious for some transitions and not so obvious for others. For instance,

for a martensitic transition, which has “mechanical” origin, the OP � is a crystalline
lattice-parameter change; the relation Gð�Þ ¼ G0 þ 1

2
G00ð��Þ�2 þ � � � may be

interpreted as the Hooke’s law and G00ð��Þ as the bulk modulus. For the

ferromagnet/paramagnet transition, the OP represents spontaneous magnetic

moment of the sample. The OP of a crystal/melt transition is not so obvious: it is

the amplitude of the lattice periodic component of the density function. For a

liquid–gas transition, the difference in densities of the phases plays the role of

the hidden variable; however, it is not an order parameter because the symmetry

of the phase does not change after the transition. Another reason not to consider
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density as an order parameter is that dynamically density obeys equations which

differ from the dynamical equations that we will derive for the OP in Chaps. 4 and 5.

For mathematical purposes, the OP may be scaled and, although initially it had

simple physical interpretation, after scaling the OP may lose it. Nevertheless, in

many cases, the mathematical transparency outweighs the physical simplicity.

The Landau approach allows us to bridge the gap between the atomistic theories

and macroscopic observations. The OP of a specific system can be derived as

volume average of a microscopic quantity, which characterizes the transition—

the coarse-grained quantity (see Appendix A). Then, thermodynamic properties of

the system will be described by the coarse-grained free energy which is a function

of the OP and whose minima are associated with the equilibrium states of the

system, see (2.8).

Which thermodynamic potential is the most appropriate for the theory that

describes the phase transition? One can choose any appropriate thermodynamic

potential: the Gibbs free energy G as a function of (P, T, �), the Helmholtz free

energy F as a function of (V, T, �), or the entropy of the system S as a function of its
internal energy E and (V, �). For the thermodynamic consistency of the description
of the system, the potential must obey the laws of thermodynamics. In their most

natural forms, the first and second laws are expressed through the internal energy

E and entropy S of the system, which may seem to indicate that these potentials

should be chosen for the phase transition description. In fact, this is not the case

because first, the thermodynamics provides an easy recipe for how to convert

one thermodynamic potential into another—the Legendre transformation (see

Appendix F). Second, the issue of intuitive clarity of the potential is paramount

for the Landau theory because it is a phenomenological theory. From the standpoint

of the second argument, the Gibbs free energy, G(P, T, �), has a significant advan-
tage in that it naturally represents an open system as opposed to S(V, E, �)—
representing a closed one.

Analyticity of the thermodynamic potential means that, in the space of the

thermodynamic variables plus OP, in the vicinity of the transition point the poten-

tial can be represented by a Taylor polynomial. According to Taylor’s theorem,

if the first n + 1 derivatives of the function G(�) exist at the point � ¼ �� then

Gð�Þ ¼ Gð��Þ þ G0ð��Þð� � ��Þ þ 1

2!
G00ð��Þð� � ��Þ2

þ 1

3!
G000ð��Þð� � ��Þ3 þ � � � þ 1

n!
GðnÞð��Þð� � ��Þn þ Rnð�Þ; (2.9a)

where Rn(�) is the nth degree remainder, which is of the order of the (n + 1)st

derivative ofG estimated at some point between �� and �. For small values of ð� � ��Þ,
the remainder may be dropped. How small must the difference ð� � ��Þ be for this
approximation to be valid? As known, the accuracy of the approximation depends on

the degree of the Taylor polynomial. Although the accuracy of the approximation

increases with the degree of the polynomial, its “convenience” decreases. Thus,

one has to find a rational compromise to the accuracy/convenience trade-off.
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This problem will be resolved only if the terms that make comparable contributions

into the free energy approximation remain in the polynomial. For the point � ¼ �� to
be associated with the symmetry change, it must be a critical point ðG0ð��Þ ¼ 0Þ, see
(2.8a). Therefore, the linear term in the expansion (2.9a) must vanish. To take full

advantage of Taylor’s formula, the polynomial expansion should be truncated at

the lowest possible order nm. The number nm determines many properties of the

transition, most importantly its kind—first or second.

What is the highest degree of the polynomial nm and which terms in the

expansion (2.9a) should be retained?—are the core questions of the phase-transition

modeling. Obviously, they cannot be covered here completely; however, some of

them may be answered based on the following criterion. Often one sees in the

literature a statement that “the expansion (2.9a) is valid only for small values of �”
without specification of what this means. This is not accurate and must be corrected.

According to Taylor’s theorem, the requirement must be that the remainder Rnmð�Þ
is smaller than any of the nonvanishing terms of the polynomial in the interval of

interest of the OP. The boundaries of the interval (�l, �r) are either known from the

physical constraints of the problem or should be found from the mathematical

analysis of the free energy. Once we have them, the criterion takes the form

max
�l<�<�r

1

nm!
GðnmÞð��Þð� � ��Þnm

����
����>> max

�l<�<�r
Rnmð�Þj j: (2.9b)

2.3 Phase Transition as a Catastrophe: the Free Energy

Many properties of the expansion (2.9a) can be understood on the basis of the

mathematical Catastrophe theory [3]. Let us identify the minimal set of properties

of a function G(�) that can be used as the Landau–Gibbs free energy to describe a

phase transition between two phases, a and b. It must have at least two minima of

different magnitudes—the local (lmin) and the global (gmin)—separated by a local

maximum (lmax), which represents the free-energy barrier state t:

Gb � gmin
�

Gð�Þ�Ga � lmin
�

Gð�Þ�Gt � lmax
�

Gð�Þ: (2.10)

A polynomial of the degree not less than 4th possesses these properties. Without

any loss of generality, we can assume that (2.9a) is an expansion near the high-

symmetry phase with �� ¼ 0. Then, the OP can be scaled such that G0000ð��Þ ¼ 6 and

we obtain the Landau potential:

GðP; T; �Þ ¼ G0ðP;TÞ þ 1

2
AðP; TÞ�2 � 2

3
BðP; TÞ�3 þ 1

4
�4; (2.11)

where G0(P,T) is the Gibbs free energy of the high-symmetry phase and the model

coefficients A(P, T), B(P, T) are assumed to be smooth functions of P and T. A(P, T)
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and B(P, T) determine all the properties of the transition and can be used as the

system’s thermodynamic variables instead of (P, T). Hence, the equilibrium values

of the OP can be found among the critical points of the Landau potential (2.12) and

(2.8a) is replaced by

@G

@�

� �
A;B

¼ ��ðA� 2B�� þ ��2Þ ¼ 0: (2.12)

Unsurprisingly, ��0 ¼ 0 is a solution of this equation. In addition to this root, the

equilibrium set contains two more solutions:

��� ¼ B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � A

p
: (2.13)

Equation (2.13) has real solutions—equilibrium states—only if A � B2. For

A ¼ B2: (2.14)

�þ and � are identical and for A > B2 the solutions ��� are complex. Thus, in the

plane (B, A), the curve (2.14) separates the regions with one and three equilibrium

states (see Fig. 2.1). The (B, A)-plane is an example of an equilibrium or phase
diagram in the Landau theory. Notice that the phase diagram is symmetric with

respect to the B(P, T) ¼ 0 axis; indeed, if B(P, T) changes sign the simple reflection

� ! �� will restore the Landau potential (2.11).

As known, equilibrium states may be stable or unstable. The same thermody-

namic principle of the minimum Gibbs free energy provides the recipe for the

stability of the states in the open system. For the Landau potential (2.11) condition

of stability, (2.8b) is replaced by

@2G

@�2

� �
A;B

¼ A� 4B�� þ 3��2>0: (2.15)

Analyzing (2.15), we can see that the stability of the state ��0 depends on the sign of
A only: ��0 is stable if A > 0 and unstable if A < 0. Hence, in the (B, A)-plane, the
region of stability of the state ��0 is separated from the region of instability by the line:

A ¼ 0: (2.16)

For B > 0, the state ��þ is always stable when it exists, i.e. A < B2, the state ��� is

unstable for

0<A<B2 (2.17)

and stable for A < 0. [Verify (2.17)! Hint: substitute (2.13) into (2.15)]. For B < 0,

the stability conditions for the states ��þ and ��� switch places. The regions of

existence and stability of the states �� are shown in Fig. 2.1.
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The analysis that we have conducted so far identifies only the local stability of

the equilibrium states ��, i.e., stability with respect to small perturbations. However,

the locally stable states may differ by the amount of free energy: the one with the

least amount of energy is called globally stable. To determine which state, ��0 or ���,
is globally stable we need to calculate

G� � GðA;B; ���Þ ¼ G0 � 1

4
A� 2

3
B���

� �
ðA� 2B���Þ

¼ G0 þ AB2 � 1

4
A2 � 2

3
B4 	 2

3
BðB2 � AÞ3 2=

(2.18)

and compare it with G0. Depending on the magnitude of B, three different cases are
possible.

Case 1: B � 0, the Landau condition. This condition may be required by the

symmetry constraints of the transition. In this case, there is only one (real) solution

��0 ¼ 0 for A > 0 and three real solutions ��0 ¼ 0; ��� ¼ � ffiffiffiffiffiffiffi�A
p

for A < 0

[see (2.13)]. From (2.15), we can see that the state ��0 is stable for A > 0 and unstable

for A < 0; the states ��� are stable in the domain of their existence, i.e. A < 0. From

(2.18), we can see thatG� < G0, that is, the global stability of the equilibrium states

is identical to the local one.

Case 2: B > 0. The bifurcation structure of the equilibrium diagram of the system is

different from that of Case 1. The most important change is in the appearance of the

A

BC

LCP

1

3

2

4

0

+
--
0

+
0
--

0

--
+
0

--
0
+

0
--
+

0
+
--

Fig. 2.1 Phase diagram of

the system described by the

Landau potential (2.11).

The triple symbols identify

levels of stability of the states

in the respective regions

of the phase diagram: lower

symbol—globally stable;

middle symbol—locally

(meta-) stable; upper

symbol—unstable. Curves:

red—spinodals: 1—low

symmetry, (2.14); 2—high

symmetry, (2.16); blue—
phase boundaries: 3—(2.19);

4—(2.21); purple—constraint

of the tangential potential,

(2.30). LCP—the Landau

critical point
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domain of coexistence of the equilibrium states, ��0 and ���, (2.17). Outside this

domain, Case 2 is similar to Case 1 with only one state, ��0, existing for A > B2 and

three states (��� and ��0) for A < 0. Inside the domain of coexistence, (2.17), exchange
of the global stabilities between the states is taking place. To analyze this “process,”
we need to equate G+ to G0 in (2.18). Representing the solution in the form:

A ¼ kB2: (2.19a)

we transform (2.18) into

1

4
k2 þ 2

3
ð1� kÞ3=2 � k þ 2

3
¼ 0 (2.19b)

which has the only solution (Verify!)

k ¼ 23

32
: (2.19c)

Thus, on the boundary A ¼ (8/9)B2, (2.19a,c), the states ��0 and ��þ exchange

their global stabilities so that ��0 is globally stable for A > (8/9)B2 and ��þ —for

A < (8/9)B2, although both states are locally stable on both sides of the boundary.

Notice that on the boundary (2.19a,c) we have:

��þ ¼ 2��� (2.19d)

Let us analyze this case further. Using (2.18), we can also find the condition for

the states ��þ and ��� to exchange the global stabilities:

G� � Gþ ¼ 4

3
BðB2 � AÞ3=2 ¼ 0: (2.20)

This equation has a true solution:

B ¼ 0; A� 0: (2.21)

and a spurious root (2.14) because both states are unstable for A < B2. Hence,

(2.21) represents the true boundary of stability. The Landau potential G(A, B, �)
(2.11), as a function of the OP, is shown in Fig. 2.2 for different values of the

parameters A and B.

Case 3: B < 0. Case 3 is analogous to Case 2 if the state ��� replaces the state ��þ.
The substitution (2.19a) and solution (2.19c) apply to Case 3 also. (Why? Hint:ffiffiffiffiffiffiffiffiðx2Þp ¼ xj j). Equation (2.21) represents the boundary between Cases 2 and 3.

In the process of analyzing stabilities of the equilibrium states, we found two

types of bifurcational loci: Type I—the states exchange their stabilities, global

versus local; Type II—at least one of the states loses (or gains) the local stability.
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The first type is called the equilibrium phase boundary, the second type is known

as the spinodal (to be exact, the mean-field spinodal). In the case of two parameters

(B, A), these loci are curves; in the case of multidimensional parameters, the loci

are surfaces, or multidimensional hypersurfaces. The equilibrium phase boundaries

are obtained by equating expressions (2.18) of the respective phases; the spinodals
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order parameter
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0.0

0.1

0.2
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b
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A<0_
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_
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_
η+

η

G-G0
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G-G0

Fig. 2.2 Landau potential,

(2.11), as a function of the

order parameter � for

different values of the

parameter A. (a) B ¼ 0;

(b) B ¼ 1
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are found by equating ∂2G/∂�2 in (2.15) to zero and solving for the state of interest.
Thus, for the Landau potential (2.11), the curve (2.19) is the ��0=��� phase equilib-

rium boundary and (2.21) is the boundary of ��þ=��� phase equilibrium; (2.14) and

(2.16) are the spinodals of the low-symmetry ��� and high-symmetry ��0 phases,

respectively (see Figs. 2.1 and 2.2). Furthermore, compare ∂2G/∂�2 for the stable
and metastable phases:

@2G

@�2

� �
A;B

¼
A for � ¼ ��0

2ðB2 � Aþ B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � A

p
Þ for � ¼ ��þ

(
(2.22)

and notice that ∂2G/∂�2 of the stable phase is always greater than that of the

metastable phase.

When compared with Cases 2–3, Case 1 has additional symmetry, which is

revealed in the degeneracy of the equilibrium. For the system described by the

Landau potential (2.11), at A > 0 the stable state may have only one value ��0, while
at A < 0 the stable state (phase) is represented by two different values: ��þ and ���.
These conditions A > 0 and A < 0 are separated by the “Landau critical point” (see

Figs. 2.1 and 2.2)

B � 0; A ¼ 0: (2.23)

Relevance of this point to real physical transitions has not been confirmed yet.

An auxiliary function

Fð�Þ � Gð�Þ � 1

2
�
@G

@�
(2.24)

associated with the Legendre transform of the free energy G (see Appendix F) is

useful in the study of the transitions. Notice that F and G take on equal values at the

equilibrium states.

In many situations, it may be useful to express the conditions of equilibrium and

boundaries of stability in the plane of theOP and one of themodel parameters,A orB.
Equation (2.12) expresses the first one and (2.15) (equated to zero) the second one.

These conditions are depicted in Fig. 2.3.

2.4 Ehrenfest Classification

As B(P, T) and A(P, T) are smooth functions of P and T, the order of the transition
may be determined by the jumps of the derivatives with respect to A and B, that is,
the differences between the derivatives of the Landau–Gibbs free energies, G� and

G0, at the equilibrium lines. There are two ways to calculate these derivatives: one

way is—directly by substituting the appropriate expression of ��ðA; BÞ into (2.11)

2.4 Ehrenfest Classification 19



before taking the derivative; another way—by using the expressions (2.4) and(2.7)

considering �� as a function of A and B in it. The second approach is instructive and

will be demonstrated here. First, using the rule of chain differentiation we have:

@GðA;B; �Þ
@A

� �
B

¼ @G

@A

� �
B;�

þ @G

@�

� �
A;B

@�

@A

� �
B

: (2.25a)

Then, applying condition of equilibrium (2.12), we obtain:

@Gð��Þ
@A

� �
B

¼ @G

@A

� �
B;��

: (2.25b)

Second, applying the same chain differentiation rule to (2.12), we have:

@2G

@A2

� �
B

¼ @

@A

@G

@A

� �
B;�

þ @G

@�

� �
A;B

@�

@A

� �
B

 !
B

¼ @2G

@A2

� �
B;�

þ 2
@2G

@A@�

� �
B

@�

@A

� �
B

þ @G

@�

� �
A;B

@2�

@A2

� �
B

þ @2G

@�2

� �
A;B

@�

@A

� �2

B

:

(2.26)
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Fig. 2.3 Equilibrium state diagrams of the system described by the Landau potential, (2.11), with

B ¼ 0 (a) and B ¼ 1 (b). Solid lines—the equilibrium states, double solid lines—the locally stable

states, triple solid lines—the globally stable states, dashed lines—the local stability boundaries

(spinodals)
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Taking the full differential of the left-hand side of the equilibrium condition (2.12)

and equating it to zero, we obtain the following condition that applies to � ¼ ��ðA;BÞ:

@2G

@A@�

� �
B

þ @2G

@�2

� �
A;B

@��

@A

� �
B

¼ 0: (2.27a)

Applying (2.12) and (2.27a) to (2.26), we obtain:

@2Gð��Þ
@A2

� �
B

¼ @2G

@A2

� �
B;��

� @2G

@�2

� �
A;B

@��

@A

� �2

B

: (2.27b)

In (2.27b), the left-hand side is the second-order A-partial along the equilibrium

line � ¼ ��ðA;BÞ, while the first term in the right-hand side is (2.27) is the second-

order A-partial along the � ¼ const(A, B) line at the equilibrium point � ¼ ��ðA;BÞ.
Importantly that these partials may not be equal. Finally, applying (2.25b) and (2.27b)

to equation (2.11) we obtain expressions for the derivatives at the equilibrium line:

@Gð��Þ
@A

� �
B

¼ @G0

@A

� �
B

þ 1

2
��2; (2.28a)

@2Gð��Þ
@A2

� �
B

¼ @2G0

@A2

� �
B

þ ��
@��

@A

� �
B

: (2.28b)

Similar expressions can be derived for the B- and mixed AB-partials.

Table 2.1 Jumps of the

derivatives at the phase

transitions for different

special values of the

parameters A and B of the

Landau potential, (2.11).

Initial state is �� 0, the state

after transition is

��f ¼ ��þ or ��f ¼ ���

Order of transition B A

[∂G/∂B] [∂G/∂A]

�f [∂2G/∂B2] [∂2G/∂A2]

[G] [∂2G/∂A∂B] [∂3G/∂A3]

Zeroth order >0 B2

–2B3/3 B2/2

��þ ¼ B –1 –1
B4/(3 
 22) +1
First order >0 23B2/32

�27B3/34 23B2/32

��þ¼22B/3 �27B2/32 �2

0 24B/3

Second order 0 0

0 0

���¼0 0 �1/2

0 0

Third order >0 0

0 0

���¼0 0 0

0 0 1/(22B2)
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In Table 2.1, the jumps of the derivatives at the transition points from the state ��0
into another state ��þ or ��� are calculated using (2.28). Classification of the

transitions given in Table 2.1 can be compared to the curves and points that express

the special conditions on the diagram in Fig. 2.1. Namely, the Landau critical point,

(2.23) is the locus of the second-order transition; (2.19) (blue line 3) is the locus of

the first-order transitions. Transitions that take place on the line 3 close to the

Landau critical point are called weak first order. In the spirit of the Erenfest

classification, the low-symmetry spinodal (red line 1) may be called the line of

the zeroth order and the high-symmetry spinodal (red line 2)—the line of the third-

order transition. These transitions are not of the same level of significance as the

first two because they are not experienced by the globally stable phases—��0 on line
1 and ��þ on line 3. They occur “under the radar” of the Gibbs free energy. Yet they

may appear in physical experiments or numerical simulations, and that is why they

are also analyzed in this book.

2.5 The Tangential Potential

The physical nature of many phase transitions is such that the OP values of the

globally stable states on both sides of the phase boundary are nearly constant, that

is, do not change much as the parameters A and B vary. Crystal/melt transition is

one of the examples. In this case, it is convenient to associate ��0 with the liquid state
and ��þ with the solid one and require that the branch ��þ does not change its value in

the domain of its stability (see discussion after (2.16) and Fig. 2.3b):

��þ ¼ constðA; BÞ � C 6¼ 0 for A<B2: (2.29)

Requirement (2.29) destroys independence of the parameters A and B and yields

the constraint:

A ¼ 2CB� C2: (2.30)

Then, for the free energy jump between the equilibrium states ��þ and ��0 we

obtain:

½G� ¼ Gþ � G0 ¼ 1

6
C2 A� 1

2
C2

� �
for A<C2: (2.31)

Great advantage of the constraint (2.30) is the simplicity of relation [G](A, C),
(2.31), as compared to (2.18).

Rescaling the OP

� ¼ C~�; C4 ¼ 2W (2.32)
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we can write down the Landau–Gibbs free energy, (2.11), in the following form:

GðW; ½G�; ~�Þ ¼ G0 þ 1

2
Wo2ð~�Þ þ ½G�nð~�Þ (2.33a)

where

oðxÞ � xð1� xÞ; nðxÞ � x2ð3� 2xÞ: (2.33b)

Notice a useful property of the functions that make up this potential:

dn
dx

¼ 6oðxÞ: (2.33c)

As we established, (2.31) is more convenient for the phase transition analysis than

(2.18). But convenience comes at a price. First, the constraint (2.30) does not allow for

the Landau critical point, (2.23). This means that the potential (2.30) cannot describe

the second-order or weak first-order transitions. Second, as we can see on the diagram

in Fig. 2.1, the purple straight line, (2.30), never crosses the red line 1, (2.14);

the former is tangent to the latter at (B ¼ C, A ¼ C2). Hence, both branches, ���,
exist as stable or unstable states (i.e., are real) for all values of the parameter A. In the
domain of the stability of the branch ��þ (B > 0, A < B2), the branch ��� ¼ A=C is

unstable. At the point of tangency, the branches ��þ and ��� exchange their values so

that for (B > C, A > C2), the branch ��� ¼ C is unstable and the branch ��þ ¼ A=C is

locally stable. The branch ��0 ¼ 0, however, remains globally stable.

For the purposes of phase transition modeling, it is more convenient to reconnect

the branches ��þ and ��� at the point of tangency and relabel as follows:

C�~�1 � C ¼ ��þ; for A � C2

���; for A � C2

�
; C�~�t �

A

C
¼ ���; for A � C2

��þ; for A � C2

�
: (2.34a)

Also we redefine the free-energy jump for the reconnected branches:

D � ½G� ¼ G1 � G0; G1 � G W;D; �~�1ð Þ: (2.34b)

Equation (2.34b) applies in the entire domain of variation of the parameters

of the potential (2.33). Equations (2.18), (2.30)–(2.32), and (2.34) establish the

relations between the coefficients (W, D) and (A, B).
For the potential (2.33), (2.34), the condition of equilibrium of the phases

�~�1 and ��0 takes the form

DE ¼ 0; (2.35a)
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It identifies the parameter D as the “driving force” for the transition. In the

vicinity of the equilibrium, the two phases (stable and metastable) are separated by

the unstable—transition—state:

�~�t ¼
1

2
þ 3

D

W
: (2.35b)

At the equilibrium

GE
t � GðW;DE; �~�tÞ ¼ G0 þ W

32
: (2.35c)

which shows that W is related to the free-energy barrier height between the

equilibrium phases. For ∂2G/∂�2 of the stable and metastable phases we obtain:

@2G

@�2

� �
W;D

¼ W þ 6D for � ¼ ��0
W � 6D for � ¼ �~�1

�
: (2.36)

Similar to the Landau potential (2.11), ∂2G/∂�2 of the stable phase is always

greater than that of the metastable one. The mean-field spinodal conditions for the

low-symmetry �~�1 ¼ 1 and high-symmetry ��0 ¼ 0 phases are (Verify!):

DS
0 ¼ �W

6
and DS

1 ¼ þW

6
: (2.37)

Due to the constraint (2.30), the potential (2.33)–(2.37) can be called tangential.
In Fig. 2.4 is depicted the potential (2.33) as a function of the rescaled OP and

driving force D. In Fig. 2.5a, b are depicted, respectively, projections of the surface
from Fig. 2.4 on the (�, G) and (�, D) planes; the latter represents the equilibrium
state diagram for this potential. Notice that inside the spinodal region and the region

of equilibrium OP values (�W/6 < D < W/6, 0 < � < 1) the two terms of the

tangential potential (2.33) that depend on OP are of the same order of magnitude.

This means that the remainder in the expansion (2.10) may be made arbitrarily

small, which validates the truncation at nm ¼ 4.

Sometimes it is advantageous to expand the free energy G(�) about the unstable
equilibrium state ��t:

Gð�Þ ¼ Gt þ 1

2
G00

tD�2 þ 1

6
G000

t D�3 þ 1

24
G0000

t D�4;

D� � � � ��t; G
ðnÞ
t � @nGðA;B; ��tÞ @�n= ;

G0
t ¼ 0; G00

t<0; G0000
t>0:

(2.38a)
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The equation of equilibrium ∂G(�)/∂� ¼ 0 has an obvious root D� ¼ 0 that

corresponds to the unstable state. The other two roots, D�a < 0 and D�b > 0:

G00
t þ

1

2
G000

t D�aðbÞ þ
1

6
G0000

t D�2aðbÞ ¼ 0: (2.38b)

correspond to the local and global minima. If G000
t ¼ 0 then:

Ga ¼ Gb ¼ Gt � 3ðG00
tÞ2

2G0000
t
: (2.38c)
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Fig. 2.4 Landau–Gibbs free-energy of the system with tangential potential, (2.33), as a function

of the order parameter ~� and driving force D
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Resolving (2.38b) for D�a(b) and relating them to ��þ and ��0 of the Landau

potential (2.11) we can establish a relationship between the coefficients (A, B)
and G

ðnÞ
t :

G00
t ¼ 2 B2 � A� B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � A

p	 

; (2.39a)

G000
t ¼ 2 B� 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � A

p	 

; (2.39b)

G0000
t ¼ 6: (2.39c)

If the last relation does not hold, the OP D� can always be rescaled for this to

be true.

Potentials of the order higher than the forth can also be used for the phase

transition modeling. For instance, the fifth-order “10-15-6” potential has the same

property as the tangential potential of preserving the values of the stable phases

around the equilibrium point. However, this potential cannot be used in cases of

large values of OP variations because the state with infinitely large OP value

becomes globally stable. The free energy potentials of the sixth-order have more

complicated phase diagrams and many new, interesting properties [4]. For instance,

such a system may have a tricritical point where the lines of the first- and second-

order transitions cross. Also notice that the free energy expansion [e.g., (2.10)] does

not necessarily need to be polynomial; for instance, it can be an expansion in

harmonic functions.
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Fig. 2.5 (a) Projection of Fig. 2.4 on the plane (~�, G) for different values of D. (b) Equilibrium
state diagram of the system described by the potential from, (2.33)—projection of the lines of

equilibrium from Fig. 2.4 on the plane ð~�; 3D=WÞ. Solid lines—the equilibrium states, double
solid lines—the locally stable states, triple solid lines—the globally stable states
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2.6 Phase Diagrams and Measurable Quantities

2.6.1 First-Order Transitions

To verify a theory of phase transitions, we need to identify in the theory the

quantities which can be compared with the experimentally measurable ones. The

real world experiments are not controlled by the model parameters A, B, W, D,
but by the temperature and pressure. That is why we have to establish relations

between (A, B) or (W,D), and (P, T). Let us concentrate, first, on the description of a
first-order transition by the Landau potential (2.11). The phase equilibrium condi-

tion in the (P, T)-plane describes a line (2.2), which is isomorphous to the line

(2.19a), (2.19c) in the (B, A)-plane. To resolve for A(P, T) and B(P, T), we need

the relations for these quantities near the equilibrium line, (2.2) and (2.19).

Such relation is provided by (2.18) where G� and G0 are functions of P and T.
Unfortunately, parameters A and B are convoluted in this equation, making it

difficult to resolve for either one even if you assume the other one a constant.

Of course, one can work backwards by assuming the functional dependence A(P, T)
and B(P, T). But in this case, it is difficult to obtain a function equal to G+ � G0 ¼
func(P, T) of the real substance in question (see Sect. 10.1).

For the purposes of quantitative analysis of transitions, it is more convenient to

use the tangential potential of (2.33), for which the resolution problem for the

parameters W and D decouples and the equilibrium line in the (P, T)-plane, (2.2),
is isomorphous to the straight line, (2.35a), in the (W, D)-plane. Furthermore,

thermodynamic functions, such as free energy, enthalpy, and entropy, are not

measurable in phase transition experiments, but their jumps across the phase

transition boundary are. The functional dependence D ¼ D(P, T) may be resolved

as follows. Substituting (2.34b) into (2.4c) we obtain a differential equation

T
@D

@T
� D ¼ LðP; TÞ (2.40a)

which, using D(P, TE) ¼ 0 from (2.35a) as the boundary condition, can be resolved

as follows:

DðP; TÞ ¼ T

ðT
TE

LðP; T0Þ
ðT0Þ2 dT0: (2.40b)

For a system with

L ¼ constðTÞ (2.40c)

we obtain:

DðP; TÞ ¼ LðPÞ T � TEðPÞ
TEðPÞ : (2.40d)
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A comment needs to be made with regard to the specific heat. For a system with

variable OP, the definition of the specific heat (2.6a) takes the form:

CP;� � @H

@T

� �
P;�

¼ �T
@2G

@T2

� �
P;�

; (2.41a)

Applying it to (2.27) we obtain a formula

CPðT; ��Þ ¼ CP;��ðTÞ þ T
@2G

@�2

� �
P;T

ð��Þ d��

dT

� �2

P

; (2.41b)

where in the left-hand side we have the specific heat of a phase along the line of

equilibrium with another phase, while in the right-hand side we have the specific heat

of the same phase at the same equilibrium point ��, but along the line of constant

OP value, Z ¼ const(P, T). As (2.41b) indicates, in general, these quantities are

not equal (cf. Figs. 2.3b and 2.5b, see also (J.5) and Appendix J). However, for a

system described by the tangential potential, these quantities are equal because

ðd��=@TÞP ¼ 0 for the phases ‘0’ and ‘1’. Also, for the system where (2.40c) is true,

the specific heat jump, (2.7a), (at the equilibrium line and beyond) is zero.

On the (P, T)-phase diagram, there are twomore special lines, the high-symmetry

T ¼ TS
0(P) and low-symmetry T ¼ TS

1(P) spinodals. Using (2.35b, 2.40b) we

obtain the equations for them:

WðP; T0=1
S Þ ¼ 	6T

0=1
S

ðT0=1
S

TE

LðP; TÞ
T2

dT: (2.42a)

For the system where (2.40c) is true (2.42a) turns into

W ¼ �6L
TE � T

0=1
S

TE
; (2.42b)

where all quantities are functions of pressure. Equations (2.42) may be used to find

W(P, T). Unfortunately, in most of the cases the mean-field spinodals are not

attainable, which renders (2.42) impractical. In this case W(P, T) can be found

from the measurements of either the interfacial quantities (Chap. 3) or thermal

fluctuations (Chap. 7), see also Sect. 10.1. As we can see from (2.40), (2.42), the

tangential potential has an advantage over the Landau potential for the purposes of

the phase-transition modeling because it provides simple relations between its

internal parameters and measurable quantities.

2.6.2 Second-Order Transitions

As we saw in the previous section, the constraint (2.30) does not allow for the

Landau critical point; hence, the tangential potential is not adequate to represent a

second-order transition. Table 2.1 indicates that the latter can be reproduced by the
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Landau potential (2.11) with B � 0. The Landau critical point may be interpreted

as the temperature TC at which A(P, TC) changes sign. Taking into account that

the critical temperature may depend on pressure, TC ¼ func(P), we obtain that

A(P, T) > 0 for T > TC(P) and A(P, T) < 0 for T < TC(P). Since A is a continuous

function of (P, T) and we are interested in the properties of the system in the vicinity

of TC(P), it is adequate to treat A(P, T) as a linear function of temperature with a

zero at TC(P):

AðP; TÞ ¼ at; t ¼ T � TCðPÞ
TCðPÞ ; aðPÞ>0: (2.43)

Then, using (2.13 and 2.18), the OP value and the free energy of the equilibrium

states are:

��� ¼ � ffiffiffiffiffiffiffiffiffi�at
p

; (2.44a)

G�ðP; TÞ ¼ G0ðP; TÞ � 1

4
a2t2: (2.44b)

Equations (2.44) show that the states ��þ and ��� are completely equivalent.

Using (2.28), (2.44) for (2.4a), (2.7a), we find that, at the second-order transition

point A ¼ 0, the latent heat is zero and the jump of the specific heat is

½CP� ¼ �TC
@A

@T

� �2

P

@2G

@A2

� �
¼ a2

2TC
: (2.45)

However, another interesting transition may be considered in the system

described by the potential (2.11), (2.21), (2.43)—transition between the states

with ��þ and ���. Although, from the thermodynamics point of view, these states

are completely equivalent, they will be recognized as different if they occupy

contiguous regions. Such regions are called anti-phase domains or phase variants.
There are many different situations when the OP transition between the variants is

possible. One of them— introduction of a conjugate field—is considered in the next

section. Another one— existence of a curved boundary between them—is consid-

ered in Sects. 3.6 and 5.5.

It is possible to show that the linear-in-temperature assumption of (2.43) is

equivalent to the assumptions of the mean-field theory, which states that every

atom of the system “operates” in the average local field produced by all the

neighbors. This approach excludes effects of the fluctuations and, as a result,

makes predictions which are not confirmed precisely by experimental

measurements [e.g., the finite jump [CP] (2.45) or the temperature dependence of

the OP at the transition point (2.44a)]. Although it is important to know the

shortcomings of the Landau theory, it is imperative to say here that this theory

not only presents a correct general picture of the second-order transition, but it also

provides a reasonable approach to complicated dynamical problems, which, in

many cases, has not been surpassed by other approaches.
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2.7 Effect of External Field on Phase Transition

If an external field conjugate to the OP is applied to the system, the phase transition

will be affected by the field. The contribution of the external field into the free energy

is equal to the work done by the field on the system. Conjugation of the field and the

OP means that they have the same symmetry (e.g., scalar, vector, or tensor—the

Curie principle). For instance, we may talk about influence of the magnetic field on

ferromagnetic transition, electric field on cegnetoelectric transition, or stress on the

martensitic transition. For a scalar OP and field, the field contribution is equal

to � H�, where H is the field strength scaled with the volume of the system (the

contribution of the field in vacuum ~ H2/2 is not included because it does not have

an effect on the OP). A particularly interesting example is the application of the field

to a system that, without the field, can undergo a second-order transition. Then, the

free energy of the system is expressed as follows:

G ¼ G0 þ 1

2
A�2 þ 1

4
Q�4 � H�: (2.46)

When compared to (2.11), three changes have been made. First, we took into

account that B ¼ 0 in the system that can undergo the second-order transition.

Second, we added the field contribution. Third, we rescaled the OP back to allow

more flexibility, which resulted in appearance of the coefficient Q in front of the

fourth-order term. For H 6¼ 0, although the free energy into (2.46) contains three

parameters (A, Q, H), the OP can be scaled such that there will be only one free

parameter left. To find the right scaling, first, we introduce the scaling factor a:

� ¼ a~�: (2.47a)

Then we plug this expression into (2.46) and transform as follows:

G ¼ G0 þ aH
aA
2H

~�2 þ a3Q
4H

~�4 � ~�

� �
: (2.47b)

Now we can see that by selecting the proper scaling:

a ¼ H

Q

� �1=3

; g ¼ Q1=3

H4=3
ðG� G0Þ; a ¼ A

Q1=3H2=3
(2.48)

the scaled free energy of the system will be expressed by the potential with only one

dimensionless parameter a, which incorporates effects of pressure, temperature,

and external field:

g ¼ 1

2
a~�2 þ 1

4
~�4 � ~�: (2.49)
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This free energy is shown in Fig. 2.6; it is instructive to compare it with

Fig. 2.2, 2.3.

Simplification of the free energy, which will be helpful below in the equilibrium

and stability analyses, is not the only benefit of scaling. There is a large “amount” of

physics to be learned from scaling even without the use of any more mathematics.

As the scaled free energy contains only one parameter, effects of different physical
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factors, such as temperature, pressure, and external field, may be easily assessed

against one another. For instance, influence of temperature upon the transition

enters the Landau expression for the free energy (2.46) through the coefficient A,
which increases with the temperature, see (2.43). Then, you can see from the

expression for a in (2.48) that the external field has an effect on the transition

opposite to that of temperature. Hence, the field plays the role of an ordering agent,

opposite to temperature—a disordering agent. Moreover, this expression allows us

to quantitatively compare the effects of temperature and field: the influence

of temperature is stronger than that of the field because a ~ T but a ~ H–2/3.

Also notice from (2.47)–(2.49) that sign change of the field does not effect the

scaled free energy but changes the sign of the OP.

The equilibrium states of the system are described by the solutions of the

following equation:

dg

d~�
¼ a~� þ ~�3 � 1 ¼ 0: (2.50)

This equation can be analyzed easily if we consider a as a function of ~�:

a ¼ 1� ��3

��
: (2.51)

The maximum of this function is:

am � max
��

að��Þ ¼ � 3

22=3
� �1:89 (2.52)

with only one solution of (2.50) existing for a > am, two solutions for a ¼ am, and
three solutions for a < am. Resolving (2.48) and (2.52) for H allows us to find the

critical value of the field

Hm ¼ A=amð Þ3=2
Q1=2

(2.53)

such that there are three solutions (similar to the case of no field at all) in the region

of the weak field (0 < H < Hm, a < am < 0) and only one solution in the region of

the strong field (H > Hm, 0 > a > am). In the former case, the three solutions are:

��3<�m<��2<0<��1

�m ¼ � 1

21=3
� �0:8:

(2.54)

In Fig. 2.6b, the solutions of (2.50) are depicted in the plane ð~�; aÞ. Notice that, due
to the ordering effect of the field, in its presence, the transition takes place at A ¼
Am < 0 (a ¼ am < 0) that is, at a lower value than that without the field, A ¼ 0.
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The local stability of the equilibrium state is determined by the sign of the

second derivative:

d2g

d�2
¼ aþ 3��2 ¼ 2

��3 � �3m
��

: (2.55)

The last expression shows that the equilibrium states ��1 and ��3 are always

locally stable, while the state ��2 is always unstable. That is, there is no exchange

of stability between the states as is in the case of the first-order transition.

The global stability of the states ��1 and ��3 can be assessed by comparing the free

energies of the locally stable states. This can be done by using the following

expression for the free energy:

gð��Þ ¼ 1

4
a��2 � 3��
� �

; (2.56)

which is obtained by substituting (2.51) into (2.49). In the weak field (a < am):

gð��1Þ � gð��3Þ ¼
1

4
ð��1 � ��3Þ að��1 þ ��3Þ � 3½ �<0: (2.57)

The sign of the inequality in (2.57) follows from �� 1 � �� 3>0, a < 0, and

��1 þ ��3 ¼ ���2>0. The latter follows from the fact that the sum of the roots of a

cubic equation is equal to the coefficient in front of the quadratic term, which is

equal to zero as we can see from (2.50). Thus, the state �� 1 is always globally stable,

meaning that the applied field effectively destroys the phase transition in the

system. From the physics point of view, it is not difficult to understand why this

happens. Indeed, the applied field breaks the symmetry between the two locally

stable equilibrium states ��1 and ��3 in favor of ��1, which has orientation in the

direction of the field, see (2.47)–(2.50). As a result, this state has less free energy.

Dependence of the OP of the globally stable state on the parameters of the

system can be found from (2.51):

��1 ¼

1

a
� 1

a4
; for a ! þ1

1� a

3
; for jaj ! 0

ffiffiffiffiffiffi
jaj

p
þ 1

2jaj ; for a ! �1:

8>>>>><
>>>>>:

(2.58)

The scaled equilibrium values of the OP can help solve many different real-

world problems. For instance, we may need to determine the strength of reaction of

the system on the applied external field. This property is characterized by the

isothermal susceptibility:

w � lim
H!0

@�

@H

� �
A

: (2.59)
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Here, the fixed temperature is replaced with fixed A because, as we discussed

above, the temperature dependence of the free energy enters through the coefficient

A. As you can see from the scaling in (2.48), if H ! 0 + 0 for A ¼ const, then

|a| ! 1 and sign(a) ¼ sign(A). Then from (2.48, 2.58) follows that:

�1 � a��1 ¼
H

A
� QH3

A4
; for H ! 0 and A>0

jAj
Q

� �1=2
þ H

2jAj ; for H ! 0 and A<0:

8>>><
>>>:

(2.60)

Then for the susceptibility of the globally stable state we obtain:

w1 ¼
1

A
; for A>0

1

2jAj ; for A<0:

8>><
>>: (2.61)

The jump of the susceptibility at A ¼ 0 reaffirms our previous conclusion in

Sect. 2.4 that, in the absence of the applied field, A ¼ 0 is the locus of the second-

order phase transition.

As we found in the previous section, there is another type of a transition possible

in the system described by the free energy (2.46) namely between the variants

��1 and ��3 at A < 0. To analyze the properties of this transition and identify its

Ehrenfest class, let us calculate the free energy difference between the variants.

Using (2.46), (2.48), (2.57) we obtain:

G½ � � Gð��1Þ � Gð��3Þ ¼
H4=3

4Q1=3
ð��1 � ��3Þ að��1 þ ��3Þ � 3½ �<0: (2.62a)

For weak fields (large |a|): ��3 � ���1. Then, using the scaling (2.48), we obtain:

G½ � ¼ � 3

2
H�1 ¼ � 3

2
H

ffiffiffiffiffiffiffi
�A

Q

s
: (2.62b)

Differentiating this expression with respect to the applied field, we find that

@G

@H

� �
¼ � 3

2

ffiffiffiffiffiffiffi
�A

Q

s
<0 (2.63)

which means that, according to the Ehrenfest classification, this is a first-order

transition.
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Chapter 3

Heterogeneous Equilibrium Systems

In this chapter, we are looking at the heterogeneous equilibrium states using the

classical Gibbsian approach—Theory of Capillarity and the field-theoretic one,

which considers an interface as a transition region between the phases. To do that

we generalize the free energy to a functional of the spatial distributions of the order

parameters and introduce a gradient energy contribution into the free energy density.

We analyze various forms of the gradient energy and find the square-gradient one to

be preferable. Equilibrium conditions in the heterogeneous systems yield the

Euler–Lagrange equation, solutions of which are called extremals. We study pro-

perties of the extremals in the systems of various physical origins and different sizes

and find a bifurcation at the critical size. The results are presented in the form of the

free energy landscapes. Analysis of the one-dimensional systems is particularly

illuminating; it shows that, using qualitative methods of differential equations,

many features of the extremals can be revealed without actually calculating them,

based only on the general properties of the free energy. We find the field-theoretic

expression for the interfacial energy and study its properties using different Landau

potentials as examples. We introduce a concept of an instanton as a critical nucleus

and study its properties in systems of different dimensionality. Multidimensional

states are analyzed using the drumhead approximation and Fourier method. To

analyze stability of the heterogeneous states, we introduce the Hamiltonian operator

and find its eigenvalues for the extremals. Importance of the Goldstone modes and

capillary waves for the stability analysis of the extremals is revealed.

3.1 Theory of Capillarity

So far we have looked at the homogeneous (one-phase) systems, which can be

described by uniform spatial distributions of the OP. Let us now look at a hetero-
geneous equilibrium system composed of two or more phases. As we learned in

A. Umantsev, Field Theoretic Method in Phase Transformations,
Lecture Notes in Physics 840, DOI 10.1007/978-1-4614-1487-2_3,
# Springer Science+Business Media, LLC 2012
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Chap. 2, if the conditions in the system change (e.g., temperature drops) then a

previously stable homogeneous state may become metastable (or even unstable)

and we may want to know how this phase transforms into a stable one. In his

seminal treatise, Gibbs [1] identified two different scenarios of how a metastable

(or unstable) phase may transform into a stable one. Both scenarios involve reaction

of the system on infinitesimal changes inspired by thermal fluctuations. In the first

scenario, the critical role is played by the fluctuations—large in degree but small in

extent; this scenario is called nucleation. In the second scenario, the critical

fluctuations are infinitesimal in degree but large in extent; this is called spinodal
decomposition. Let us take a closer look at the nucleation scenario first and consider
the spinodal decomposition later (see Chap. 8).

In Chap. 2, we established that if large pieces of phases are at equilibrium with

each other, then the chemical potential takes on the same value in all phases. In the

case of an open system with a monatomic (one-component) substance, where the

two phases a and b are separated by a plane interface, the role of the chemical

potential is played by the Gibbs free energy, see (2.1). For the heterogeneous

systems, this criterion must be expressed for the specific (per unit mass) free energy:

gaðP; TÞ ¼ gbðP; TÞ: (3.1)

If we need to calculate the total Gibbs free energy G of the entire two-phase

system, a naı̈ve resolution of the problem may be presented by the following

formula:

G ¼ gama þ gbmb ¼ gaðbÞM; (3.2)

where ma(b) is mass of the phase a(b) and M is the total mass,

M ¼ ma þ mb: (3.3)

However, there are two problems with this formula. First, we assume that the

specific Gibbs free energies of the phases a and b at equilibrium are the same as those

of the noninteracting homogeneous phases a and b. When transformations affect

finite amounts of matter the thermodynamic calculations become more complicated

becausewe have to take into account variations of pressure in the transformed region.

Second, the two contiguous phases are separated by an interface, which makes a

contribution into the total free energy of the system. In the classical thermodynamics

of macroscopic objects, the interface between the phases represents a sheath of finite

area S and zero thickness (Mint ¼ 0, Vint ¼ 0), which “wraps up” a phase and

separates it from the contiguous ones [1, 2]. The interface’s free energy contribution

is equal to the product of its area and the interfacial energy s, which is the excess of
the Gibbs free energy of the system compared to that of the homogeneous one, per

unit area of the interface. To find conditions of equilibrium of the minority phase in
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the majority phase, let us say b in a, we present the total Gibbs free energy of the

system as follows:

GðP; TÞ ¼ FðV; TÞ þ PV þ sS; (3.4)

where P and T are the external pressure and temperature, respectively and F is the

Helmholtz free energy of the system:

FðV; TÞ ¼ mafaðva; TÞ þ mbfbðvb; TÞ: (3.5)

Here va(b) is the specific volume (v ¼ V/m) and fa(b) is specific Helmholtz free

energy of the a(b) phase, respectively. Because the interface is “massless,” the

a ! b transformation does not increase or decrease the mass of the system; hence,

M in (3.3) remains unchanged. However, the total volume of the system

V ¼ Va þ Vb ¼ mava þ mbvb (3.6)

may change because va 6¼vb.
For the system to be at equilibrium, its total Gibbs free energy must reach

minimum with respect to all independent internal variables. In addition to the

external variables (P, T), the system has internal variables (va, vb, ma, mb), see

(3.4)–(3.6); however, due to the condition (3.3), not all of them are independent.

We can choose (va, vb, mb) as independent variables. Then, the following partial

derivatives of G are equal to zero:

@G

@va
¼ ma

@fa
@va

þ P

� �
¼ 0; (3.7a)

@G

@vb
¼ mb

@fb
@vb

þ P

� �
þ s

@S

@vb
¼ 0: (3.7b)

@G

@mb
¼ fbðvb; TÞ þ Pvb þ s

@S

@mb
� faðva; TÞ � Pva ¼ 0: (3.7c)

Notice that out of three variations of G with respect to the independent variables

only the one with respect to mb is entirely due to the phase transition; the other two

are due to the pressure changes in the respective phases.

Minimization of the total free energy also includes minimization of the interfa-

cial energy contribution. In an isotropic system, this leads to the minimization of

the surface area for constant volume of the nucleus (we may think of the shape of

the nucleus as an independent variable). As known, the solution of this problem is

a sphere. Hence, the nucleus of the minority phase takes on the shape of a sphere of

radius R:

S ¼ 4pR2; Vb ¼ 4p
3
R3: (3.8)
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Using (3.4) and (3.5) and the Legendre transform, (F.16)–(F.18):

gðPÞ ¼ f ðvÞ þ Pv;
df

dv
¼ �P;

dg

dP
¼ v: (3.9)

we obtain from (3.7a) that the pressure in the majority phase is equal to the external

pressure:

P ¼ Pa: (3.10)

Then, taking into account that Vb¼mbvb, from (3.7b), (3.8), (3.10) we obtain the

celebrated Laplace’s pressure equation for a spherical bubble:

Pb ¼ Pþ 2s
R

: (3.11)

Furthermore, (3.7c) together with the Laplace’s equation (3.11), tell us that the

specific Gibbs free energies of the majority and minority phases are equal at

equilibrium

gbðPb; TÞ ¼ gaðPa;TÞ; (3.12)

which makes this quantity the chemical potential of the system. However, there is a

difference between (3.12) and (3.1): in (3.12), the pressure in the two phases is not

the same. Differentiating gb with respect to the pressure and taking into account

(3.9)–(3.11), (3.12) yields an equation:

2s
R

vb ¼ gaðP; TÞ � gbðP; TÞ: (3.13)

Equation (3.13) allows us to find the radius of the critical nucleus, that is, the
nucleus of the b phase which is at equilibrium with the “sea” of the a phase:

R� ¼ 2s
D~gðP; TÞ ; (3.14a)

where

D~gðP;TÞ � gaðP; TÞ � gbðP; TÞ
vb

: (3.14b)

Notice that R*> 0 only if ga(P, T) > gb(P, T), that is, the minority phase is

stable. In this case, the majority phase is said to be supersaturated (or supercooled)

and D~g is called the supersaturation.
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Nowwe can ask a question: Howmuchwork needs to be done on the homogeneous

a phase to create in it a critical nucleus of the b phase? The answer provided by

thermodynamics is that, although the specific amount of work depends on the

process, the smallest amount equals the difference in the Gibbs free energies

between the final and initial states:

DGn ¼ GðP; T; va; vb;ma;mbÞ �MgaðP; TÞ
¼ magaðP; TÞ þ mbgbðP; TÞ þ sS� ðma þ mbÞgaðP; TÞ
¼ sSðRÞ � D~gVbðRÞ: (3.15)

The last expression in (3.15) is plotted in Fig. 3.1 as a function of R for different

values of the supersaturation D~g. In the unsaturated a phase ðD~g<0Þ, DGn is a

monotonic function of R meaning that the b phase nuclei are not favorable. In the

supersaturated a phase ðD~g>0Þ,DGn!0 forR!0 andDGn < 0 forR!1, meaning

that thermodynamically the system favors large nuclei of the b phase. However,

as s > 0 the function DGn(R) has a maximum at the critical radius R ¼ R*:

dDGn

dR
ðR�Þ ¼ 0: (3.16)

Using (3.8), (3.14a), and (3.15), we obtain:

DG� � DGnðR�Þ ¼ 1

3
sSðR�Þ ¼ 1

2
D~gVbðR�Þ ¼ 16ps3

3D~g2
: (3.17)

0 R*
R

Δ

Δ
*

Unsaturated

∼Δg<0

Δg>0

Supersaturated
         

∼       

Fig. 3.1 DGn of a spherical

nucleus of the minority phase

in the “sea” of the unsaturated

ðD~g<0Þ or supersaturated
ðD~g>0Þ majority phase as

a function of its radius R
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This means that the favorable (R!1, b phase) and unfavorable (R ¼ 0,

a phase) states of the system are separated by a “barrier” of the height DG*,

which needs to be overcome for the transformation to happen.

At this junction, it is important to recognize the main assumptions made in the

Theory of Capillarity, which may or may not be true in a concrete problem. First, it

was assumed that the minority phase is homogeneous all the way to the interface

and has the specific free energy of the bulk phase b, although, at a pressure different
from the external one. Second, we assume that the interface, which separates the

phases, is infinitely thin. Third, we assume that the interfacial energy is isotropic

and independent of the radius of the nucleus R. It is also implied in the Theory of

Capillarity that the critical nucleus of the radius R* can be formed by the thermal

fluctuations in the system. This assumption will be tested in Chap. 7.

Unlike the macroscopic one, the field-theoretic approach to the problem of phase

equilibrium considers an interface between the coexisting phases as a transition zone

of certain thickness with spatial distribution of OPs and possibly other parameters.

Hence, for the continuous description of such systems one has to know not only

the average values of P, T, and OPs, but the spatial distributions of these parameters

also. In this chapter, we are discussing only the equilibrium properties of the system;

nonequilibrium systems will be considered in Chaps. 4 and 5.

3.2 The Free Energy

In a heterogeneous equilibrium system, some of the thermodynamic parameters

turn into functions of space and the states of the system should be mathematically

described by a class of functions instead of numbers. The free energy of the whole

system becomes a functional of the state variables and their spatial derivatives:

G ¼
ð
V

ĝfPðxÞ; TðxÞ;HðxÞ; �iðxÞg d3x (3.18)

and the equilibrium states can be found as the functions that minimize this func-

tional. In (3.18), V is the total volume occupied by the system (V ¼ Va+Vb+Vint) and

the integrand ĝfP; T;H; �gmay be called the Gibbs free energy density. Although in

the previous sectionwe used the specific free energy (per unit mass), most of the time

in this book (unless it is specifically pointed out) for the sake of simplicity we will be

using the free energy density (per unit volume). As a consequence of the inclusion

of heterogeneities, we have to change the mathematical tool used to find the

equilibrium states of the system: instead of the Calculus of Functions of Several

Variables, we have to use the Calculus of Variations (Appendix B).

The crux of the problem of description of heterogeneous equilibrium systems by

the functional (3.18) is the following question: Spatial derivatives of which ther-

modynamic variables must be included into the free energy density of the system?
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Below we will discuss the problems associated with the inclusion of the gradients of

the thermodynamic variables, such as P, T, and H into the free energy density

(3.18). For now, we will be considering only the gradients of the OP.

Let us first assume that the OP of the system has only one scalar component,

which is a function of x. In principle, the density ĝ may be a function of the spatial

derivatives of the OP of all orders:

ĝ ¼ ĝ P; T;H; �ðxÞ; @�
@xi

;
@2�

@xi@xj
:::

� �
; (3.19a)

where i, j are the Cartesian indexes. The density ĝ may be expanded into a Taylor

series:

ĝ ¼ gðP; T; �Þ � H� þ ai
@�

@xi

þ 1

2
bij

@�

@xi

@�

@xj
þ 1

2
cij

@2�

@xi@xj

þ 1

6
dijk

@�

@xi

@�

@xj

@�

@xk
þ � � �

(3.19b)

Functional dependence of the expansion coefficients ai; bij; cij; dijk; etc. is sub-
ject to the following constraints: first, the free energy density must be invariant with

respect to the transformation of the coordinates, that is a scalar; second, the contin-

uum description is valid only if the spatial derivatives of the OP are not very large.

Otherwise, the inhomogeneous part of the free energy density is much greater than

the homogeneous one, and the details of the OP variations, discussed in Chap. 2, do

not matter. These constraints show that the expansion coefficients may depend on

the scalar quantities (P, T, H, �) and on the Euler angles yij defined as follows:

tan yij ¼ @�=@xi
@�=@xj

: (3.20a)

The latter dependence causes anisotropy—dependence on orientation in space—

of the free energy of the system. In this book we will not be considering anisotropy

in greater depth and will assume that the expansion coefficients are independent of

the Euler angles.

The linear term in the expansion (3.19b) is a scalar if ais are components of a

vector, so that

ai
@�

@xi
¼ ~ar�:

We have to ask ourselves a question: How can the free energy density of our

system depend on a vector ~a? If the system is isotropic then by definition its free
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energy cannot depend on an external vector~a. If the system’s isotropy is broken by

an applied external vector field, the Curie principle says that a scalar function

cannot be affected by a vector field, rendering the term ~ar� unphysical again.

However, there may be a case when this term makes physical sense, namely,

when ~a is proportional to the gradient of a nonuniform, scalar, external field

conjugate to the OP: ~a ¼ nrH. Then, the free energy density expansion may

contain an invariant linear term in the form:

ai
@�

@xi
¼ nrHr�: (3.21)

But, in Sect. 3.8 on the basis of the LeChatelier–Braun principle, we analyze the

consequences of inclusion of this term into the free energy density (3.19a) and

conclude that

n ¼ 0: (3.22)

Furthermore, the two second-order-in-spatial-derivative terms in expansion

(3.19b) can be reduced to each other. Indeed, let us calculate the contribution of

the second second-order term into the total free energy (3.18):

ð
V

cij
@2�

@xi@xj
d3x ¼

ð
V

@

@xi
cij

@�

@xj

� �
d3x�

ð
V

@cij
@�

@�

@xi

@�

@xj
d3x

¼
þ
O
cij

@�

@xj
dsi �

ð
V

@cij
@�

@�

@xi

@�

@xj
d3x: (3.23)

The Gauss theorem was used here to transform from the second expression to the

third and
H
O dsi means integration over the surface O enveloping the volume of the

system V. The surface term in (3.23) is of the order of the surface free energy of

the system and may be disregarded compared to the volumetric term for sufficiently

large systems. For small systems, which are of great interest for nanoscience,

the surface and volume terms may be of the same order. In this book, we will be

considering only systems that are large enough for the surface contribution to be

disregarded.

If cij ¼ const(�), the last term in (3.23) vanishes and the entire contribution of the

second second-order term in (3.19b) is zero. If cij ¼ functð�Þ, the last term in (3.23)

is of the same form as the first second-order term in (3.19b). Thus, the contribution of

the second-order spatial derivatives into the free energy density may be expressed by

the term 1=2 bijð@�=@xiÞð@�=@xjÞ with the properly defined second-rank tensor bij.
The free energy density, (3.19b), will be a scalar if each of the remaining

irreducible terms is a scalar. For the second-order term to be a scalar, the second-

rank tensor bij must be proportional to the Kronecker tensor:

bij ¼ kðP; TÞdij; dij ¼
0; for i 6¼ j

1; for i ¼ j

(
: (3.24)
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Then the total contribution of the second-order-in-spatial-derivative terms will

be represented by

1

2
kjr�j2; (3.25)

where the coefficient k is called the gradient energy coefficient. The physical

meaning of the gradient energy coefficient depends on the physical interpretation

of the OP. For instance, if the OP represents the magnetic moment of the system, the

gradient term is the exchange energy and the gradient energy coefficient is its

strength.

The following must be said regarding the sign of this coefficient: if k > 0, then

the global equilibrium in the system described by the free energy, (3.18)–(3.25),

will be achieved at a homogeneous state, � ¼ const(x), because any OP inhomoge-

neity increases the free energy of the system. If k < 0, then the OP inhomogeneities

decrease the free energy, which leads to an unphysical state of “infinite mixing”

where the coexisting phases create infinite amount of infinitely sharp interfaces.

To prevent our system from “going unphysical,” we have to include the higher-

order-in-spatial-derivative terms [e.g., the third-order ones, see (3.19b)]. In this

case, you can estimate a typical scale of the OP inhomogeneity l. Indeed, the order
of magnitude of the derivative is @n�=@xi:::@xk � D�=ln. Then, as the second- and
third-order derivatives must balance each other, we obtain l � D�dijk=k

�� ��.
Mostly, in this book, we will be concentrating on the systems where the gradient

energy coefficient is positive:

kðP; TÞ> 0 (3.26)

and the terms of the order higher than the second may be neglect, that is, dijk ¼ 0.

In such systems, the global equilibrium is achieved at the uniform distribution of the

OP. However, except for the global equilibrium, such systems allow locally

stable—metastable—heterogeneous equilibrium states.

Now we have to ask the following question: Do we need to include the gradients

of the thermodynamic variables, such as P and T, into the expansion of the free

energy density, (3.19a)? Let us look at the temperature gradient (∇T), first. A linear

term, (a∇T), may not be included because, as we concluded above, an isotropic

system cannot support a vector a. A quadratic term, b(∇T)2, withstands the tests of
isotropy and homogeneity if b > 0. However, it contradicts the zeroth law of

thermodynamics. Indeed, according to this law any thermally isolated system

must eventually come to the state of equilibrium characterized by uniform temper-

ature distribution. But if the quadratic term is included into the free energy

functional, (3.18) and (3.19a), then the state of equilibrium will allow for a

heterogeneous-in-temperature equilibrium state in a thermally isolated system.

This contradiction proves that the free energy density ĝ is independent of the

temperature gradient. A similar argument may be laid out with respect to the

gradients of pressure.
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Thus, the total free energy of a heterogeneous system with a one-component

scalar OP may be expressed as follows:

G ¼
ð
V

ĝ d3x (3.27a)

ĝ � gðP; T;H; �Þ þ 1

2
kðr�Þ2: (3.27b)

A profound analogy may be established between our system and the Lagrangian

system considered by the field theory (see Appendix D). In the framework of this

analogy, the total Gibbs free energy of (3.27a) is analogous to the total energy E of

the Lagrangian system, (D.18), and the Gibbs free energy density (3.27b)—to the

T00 component of the stress-energy tensor, (D.16). This analogy hints at another

quantity which may be significant for our system:

g
^ � gðP; T;H; �Þ � 1

2
kðr�Þ2: (3.28)

Significance of this quantity comes from its analogy to the T11 component of the

stress-energy tensor, which has the first integral [conservation property, see (D.19)].

Existence of the first integral is one of the consequences of the Euclidean invariance

of the free-energy density (3.27b)—independence of the spatial coordinates.

Another (however, not unrelated) consequence of the Euclidean invariance is

existence of the Goldstone modes (Sect. 3.7).

3.3 Equilibrium States

As we discussed in Chap. 2, a thermodynamically stable equilibrium state of an

open system with specified temperature and pressure must deliver minimum to the

Gibbs free energy of the system. Because the free energy of the heterogeneous

system is a functional, [see (3.27a)], the equation for the state �E, either differential
or integral, should be obtained by minimization of the functional, that is the

variational procedure. As explained in Appendix B, the states �E can be found

among the solutions of the Euler–Lagrange equation (ELE):

dG
d�

� @g

@�

� �
P;T;H

� kr2� ¼ 0: (3.29)

Solutions of ELE (3.29) are called extremals of the functional G (3.27a): �E ¼
func(x;P,T,H). There is one more parameter that is important for the extremals, this

is dimensionality of the geometrical space d—the number of space variables that

essentially influence it.
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A physical state is not uniquely specified if we simply give the differential

equations which the state must satisfy. For the extremals to describe a physical state

of a system uniquely, it is necessary to set the boundary conditions (BC) on the surface
O of the volume V of the system even in the thermodynamic limit: V ! 1. BCs (and

initial conditions in the case of time-dependent problems) are sets of elements of the

physical behavior of the system, which are not regulated by the physical laws that

entailed the equations for the system. The kind of BC that shall be used depends on

the physical problem; changing BC may have dramatic effect on the properties of the

state, that is, solutions of ELE (3.29). Notice in Appendix B that the variational

procedure itself yields different kinds of BCs depending on the physical properties

of the boundary: Dirichlet’s BC on the boundary where OP is fixed (B.3):

� ¼ FðsÞ on O (3.30a)

or the Newmann type BC on the boundary O where the OP may vary (B.11):

jOr� ¼ 0 on O: (3.30b)

Here jO is a unit outer vector of the boundary O. Solutions of ELE (3.29) that

satisfy BC (3.30a) or (3.30b) represent the equilibrium states of the system:

�E 2 f f ðxÞ;P; T;H;V; d;BCg: (3.31)

A more complicated case of a completely free boundary (Eq.(B. 17)) is also

possible. In this book we will be using the Newmann type BC more often than other

types. In Chap. 2, we analyzed the homogeneous (0d) equilibrium states ��; the 1d
heterogeneous states will be considered in Sect. 3.4; 3d states will be considered in

Sect. 3.5; the 2d states have intermediate properties between 1d and 3d.
A set of functions {�(x)}, which can generate a functional, is called a functional

space. For our purposes, the most convenient functional space is the Hilbert space

where each element is defined and continuous together with its gradients in the

domain V and is characterized by its “size”—called norm. How can we “measure”

an infinite-dimensional element of the functional space? Here is one way to do that.

For each element �(x) of the functional space we define four numbers: average

�h i � 1

V

ð
V

�ðxÞ d3x; (3.32a)

range (the largest difference between the values of the element)

P � max
x;x02V

j�ðxÞ � �ðx0Þj; (3.32b)

amplitude

N � max
V

�ðxÞ � �h ij j; (3.32c)
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and slope

L � max
V

r�ðxÞj j: (3.32d)

Then each element of the Hilbert space {�(x)} will be characterized by its skew
(asymmetry):

S ¼ 2N �P (3.32e)

length scale:

L ¼ P
L

(3.32f)

and the norm:

�ðxÞk k ¼ �h i þPþ L: (3.32g)

For the dimensions of the terms in (3.32 g), see (B.8) and the comment after that.

To elucidate the properties of the equilibrium states �E(x), we will derive a few

other forms of the equilibrium equation useful for the analysis below. First, by

partially differentiating the left-hand side of ELE (3.29) and using the fact that it

does not depend explicitly on the coordinates, we find an equation for the gradient of

the extremal �E(x). In the most convenient form, this equation can be written down as

Ĥð�EðxÞÞr�EðxÞ ¼ 0 (3.33)

using a linear operator

Ĥð�EðxÞÞ �
@2g

@�2

� �
P;T

ð�EÞ � kr2 (3.34)

called Hamiltonian, which plays an important role in the analysis of the properties

of the system. An advantage of the form (3.33), (3.34) is that the properties of the

Hamiltonian operator are well known from quantum mechanics (see Appendix E),

where it plays a role of an operator of total energy of a particle with the term ∂2g
(�E)/∂�

2 being analogous to the potential energy of a particle and (�k∇2)—kinetic

one. Another advantage of (3.33), (3.34) is that in the case of radially symmetric

extremals it is convenient to consider the Hamiltonian in the spherical polar

coordinate system (see Appendix C). A disadvantage of the form (3.33), (3.34) is

that the operator depends on the extremal �E(x) itself.
Second, integrating ELE (3.29) and applying the Gauss divergence theorem with

theNewmann-typeBC (3.30b),weobtain an integral property of the equilibrium states:

ð
V

@g

@�
d3x ¼ 0: (3.35)
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This formula tells us that although ∂g/∂�{�E(x)} does not vanish everywhere, as
it is the case in a homogeneous system (see Chap. 2), on average it still does.

Third, let us derive another integral form of the equilibrium equation. For this,

we apply the vector-calculus formula

rðurvÞ ¼ rurvþ ur2v

to the functions u ¼ v¼�(x) and obtain

rð�r�Þ ¼ ðr�Þ2 þ �r2�: (3.36)

Then, multiplying all the terms of ELE (3.29) by �, using the formula (3.36),

integrating over the entire volume V occupied by the system, and applying the

Gauss divergence theorem, we obtain the integral form of the equilibrium equation:

ð
V

kðr�Þ2 þ �
@g

@�

� �
dx ¼ k

þ
O
�r� ds: (3.37a)

For the Newmann-type BC (3.30b), the integral equilibrium equation (3.37a)

takes on a very appealing mathematical form:

ð
V

kðr�Þ2 þ �
@g

@�

� �
d3x ¼ 0: (3.37b)

This relation allows us to represent the total free energy of the equilibrium

system in another form which involves the auxiliary function from (2.24) and

does not involve the OP gradient:

Gð�EðxÞÞ ¼
ð
V

g� 1

2
�
@g

@�

� �
d3x: (3.38a)

Subtracting gð��ÞV from this expression and using the integral equilibrium

equation (3.35) we can define the free energy excess

DGE ¼
ð
V

gð�EÞ � gð��Þ½ � � 1

2
ð�E � ��Þ @g

@�
ð�EÞ

� �
d3x (3.38b)

which is a measure of the free energy of the state �E relative to that of the

homogeneous state ��.
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3.4 One-Dimensional Equilibrium States

Let us first consider equilibrium states in a one-dimensional (1d) open system,

which is a box with a base S, thickness X and volume V ¼ XS, and where the OP

depends only on one space coordinate, �¼�E(x). Then, ELE (3.29) takes the form:

k
d2�

dx2
� @g

@�
¼ 0; 0 � x � X: (3.39a)

This is an ODE of the second order, which needs two boundary conditions to

identify its solution �E(x) uniquely. Although in some physical situations

Dirichlet’s conditions may be justified, here, we will be using the Newmann’s one:

d�

dx
¼ 0 at x ¼ 0; x ¼ X: (3.40)

Instead of (3.39a), one can use the 1d version of (3.33), (3.34), which takes the

form

� Ĥð�ðxÞÞ d�
dx

� k
d3�

dx3
� @2g

@�2
ð�ðxÞÞ d�

dx
¼ 0: (3.41)

As we pointed out in Sect. 3.2 (see also Appendix D), the 1d-ELE (3.39a) has the

first integral in the form of the conserved quantity (3.28). Because this is such

an important property of the 1d-equilibrium states, we will demonstrate it again.

We multiply both terms of (3.39a) by (d�/dx), transform them as follows:

k
2

d

dx

d�

dx

� �2

� dg

dx
¼ 0 (3.39b)

and integrate (3.39b) using that k(P, T) ¼ const(x). The first integral takes the form:

� g
^ ¼ k

2

d�

dx

� �2

� gðP; T; �Þ ¼ constðxÞ � �m; (3.42a)

where

m � gðP; T; �lÞ ¼ gðP; T; �rÞ; (3.42b)

�l � �Eð0Þ; �r � �EðXÞ: (3.42c)

Because of the condition (3.26), (3.42a) yields

m � gðP; T; �EðxÞÞ: (3.42d)
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According to Gibbs, the constant m is the chemical potential of the system; its

relation to the pressure, temperature, and size of the system will be discussed below.

Existence of the first integral of ELE (3.29) in the form (3.42a) may be interpreted

as the conservation law for the quantity g
^
. As any conservation law, it is connected

to certain symmetry of the system, which will be analyzed in Chap. 6.

The conservation law (3.42a) is very helpful as it allows us to analyze the equilib-

rium states for a general form of the potential g(P, T, �). Unfortunately, the first

integral and the conservation law exist for 1d extremals only.

Equations (3.39), (3.41), or (3.42a) plus BC (3.40) represent the boundary-value

problem for the 1d equilibrium states (3.31). Let us resolve (3.42a) as follows:

d�

dx
¼ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

k
½gðP; T; �Þ � m�

r
: (3.43)

This equation shows that there are two categories of 1d states: monotonic and
non-monotonic, that is, with alternating sign of d�/dx. Equation (3.43) can be

integrated in the domain of monotonicity of the OP. Selecting the positive branch

of (3.43) and separating variables, we obtain a general solution in quadratures:

x ¼
ffiffiffi
k
2

r ð
d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gðP; T; �Þ � m
p : (3.44a)

Notice that, because of the conservative property (3.42a), the particular solution

(3.44a) of the boundary-value problem, (3.39a) and (3.40), requires only one

arbitrary constant, which is specified by (3.42c). Taking into account that �l<�r
for the positive monotonic branch of (3.44a), we arrive at the relationship

X ¼
ffiffiffi
k
2

r ð�r
�l

d�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðP; T; �Þ � m

p (3.44b)

between the size of the 1d system X, its thermodynamic parameters, P and T, and
parameters of the equilibrium state �E(x), the chemical potential m and range

P¼|�r��l|, (3.32b).
The non-monotonic states are periodic with a monotonic half-period D1d and

the BC, (3.40) and (3.42c), which apply on the boundaries of the domain of

monotonicity xl < x < xr. In a finite-size system, the non-monotonic states are

characterized by index—the number of half periods:

n1d � X

D1d

; D1d � xr � xl (3.45)

For the monotonic states, obviously, n1d ¼ 1.
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To find the free energy of the 1d state, we substitute (3.42a) into (3.27a) and

obtain:

G1d ¼ Vmþ Sn1d

ðxr
xl

k
d�1d
dx

� �2

dx: (3.46a)

Changing the variables of integration and using the monotonic branch of (3.43),

we obtain

G1d ¼ Vmþ Sn1d

ð�r
�l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k½gðP; T; �1dÞ � m�

p
d�: (3.46b)

There is a lot that we can learn about the extremals �E(x) without calculating the
integrals in (3.44b) and (3.46b). The monotonic heterogeneous state must have an

inflection point (xi) and (3.39a), (3.41) with BC (3.40) help us find it. Indeed, the

necessary and sufficient conditions of the inflection point of a smooth function is

d2�

dx2
ðxiÞ ¼ 0 and

d3�

dx3
ðxiÞ 6¼ 0: (3.47a)

Then we conclude from (3.39a) and (3.41) that

@g

@�
ð�iÞ ¼ 0 and

@2g

@�2
ð�iÞ 6¼ 0: (3.47b)

Moreover, expanding the derivative near the inflection point

d�

dx
ðxÞ ¼ d�

dx
ðxiÞ þ 1

2

d3�

dx3
ðxiÞðx� xiÞ2 þ � � � (3.47c)

and applying the BC (3.40) to the expansion we obtain that

d3�ðxiÞ=dx3
d�ðxiÞ=dx <0: (3.47d)

Using (3.41), this yields

@2g

@�2
ð�iÞ<0: (3.47e)

Equation (3.47b) means that the inflection points can be found among the critical

points of the potential g(�); (3.47e) means that the inflection point �i corresponds to
the maximum of the potential g(�), that is, unstable, transition states �t of (2.38).
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The fact that �i is a maximum of g(�) can also be observed from (3.42b–d) (Why?).

This fact can also be used to find the length scale L1d from (3.32f). Indeed,

according to (3.43) and (3.47), the greatest value of the OP gradient is reached at

the inflection point �E(xi)¼�t. Then [cf. (D.26)]:

L1d ¼
ffiffiffi
k

p �r � �lj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðgt � mÞp : (3.48)

3.4.1 Classification of the States

The 1d equilibrium states are the cornerstones of the FTM, that is why we need to

study their properties in detail. To elucidate the properties of the heterogeneous

states, we can use the phase-plane method (no relevance to the thermodynamic

phase) [3, 4], which is based on the qualitative analysis of the solutions of ELE

(3.39) in the plane (�, �x) (see Fig. 3.2ii). The homogeneous equilibrium states of

Chap. 2 are the rest points and the heterogeneous states are trajectories on the plane.

Let us now classify the 1d heterogeneous extremals. First, let us find all possible

values of the chemical potential m that allow for solutions of the boundary-value

problem (3.39a) and (3.40), using the general potential g(P,T,�) that satisfies

condition (2.10). The equation

gðP; T; �Þ ¼ m (3.49)

may have up to four solutions (see Fig. 3.2i). However, only the two, which are the

closest to the transition-state OP �t, are of interest for us here: �l < �t and �r > �t.
Therefore, it is advantageous to expand the function g(P, T, �) that satisfies condition
(2.10) about the homogeneous transition state and truncate after the fourth-power

term, see (2.38). Then, from (2.38c) we find that gb < m < gt. Also notice that if

gb < ga then no equilibrium state is possible for gb < m < ga. Then, all possible
solutions of the boundary-value problem (3.39), (3.40) can be classified depending

on the values of (P, T) into

type� e : ga ¼ gb

type� n : ga>gb
(3.50a)

and depending on the value of the chemical potential m into

type�1 : m ! gt � 0

type�2 : ga<m<gt

type�3 : m ! ga þ 0

type�4 : m ¼ ga:

(3.50b)
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Fig. 3.2 Different types of the chemical potential m and corresponding heterogeneous solutions of

the 1d-ELE (3.39a). (a) -general case of (P, T)—type-n (b) -the symmetric case of (P, T)—type-e.

(i) Potential g ¼ g(P, T, �); (ii) phase plane (�, �x); (iii) heterogeneous states �E(x)
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In this classification, the numbers 1–4 combine with letters e–n to form specific

types of heterogeneous states. To complete the classification, we have to distinguish

between the monotonic and non-monotonic states. Different types of states, see

(3.45) are depicted in Fig. 3.2.

Let us consider, first, the monotonic type-e states with different values of the

chemical potential. They are generated by the symmetric potential (2.38) with

g000t ¼ 0: (3.51a)

This condition appears either due to the symmetry of the system (second-order

transition, Sect. 2.4) or as a result of the specific external conditions (equilibrium

temperature for a first-order transition). Using the phase-plane method, we can see

that for the type-e states:

�eh i ¼ �t; Se ¼ 0; Ne ¼ 1

2
Pe: (3.51b)

Then, using the fact that in the phase plane the trajectory �e(x) is symmetric with

respect to the transition point �t (see Fig. 3.2bii), we can find the solutions of the

boundary-value problem (3.39a), (3.40) by substituting (2.38) into (3.44a):

x ¼ ffiffiffi
k

p ð
dD�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g00tðD�2 � N2
e Þ þ 1

12
g0000t ðD�4 � N4

e Þ
q ; (3.52)

where D� � �e � �t. The end points of the solution (3.52) are D�r ¼ �D�l ¼ Ne;

they are the turning points of the phase plane (Why?). The solution (3.52) yields the

expressions for the amplitude (3.32c) and length (3.32f) (Verify!):

N2
e ¼ 2mY2; Y �

ffiffiffiffiffiffiffiffiffiffiffiffi
6
g00tj j
g0000t

s
; (3.53a)

Le ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffi
1� m

p l; l �
ffiffiffiffiffiffiffiffiffi
k
g00tj j

r
; (3.53b)

m ¼ 1

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

gt � m
X

r� �
; X � jg00t jY2 ¼ 6

ðg00tÞ2
g0000t

; (3.53c)

where m is a normalized chemical potential and Y, l, and X are the fundamental

OP amplitude, length, and energy density scales, respectively. Notice that if

the system approaches its spinodal point, that is g00t ! 0, then Y ! 0, X ! 0,

and l ! 1.

Equations (3.53) allow us to establish explicit relations between the

characteristics of the state �e(x), see (3.32). For instance, by excluding the

3.4 One-Dimensional Equilibrium States 55



parameter m from (3.35a) and (3.53b) we can obtain the slope as a function of the

amplitude:

Le ¼ Ne

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N2

e

2Y2

s
: (3.53d)

A length scale, similar to the fundamental length l, can also be defined at a stable
equilibrium state ��. It is called correlation radius rC, see (7.17), because, as we will
learn in Chap. 7, the OP fluctuations of the state �� are correlated on the scale of rC.

Now, using the substitution u¼D�/Νe for (3.52), we can clarify the relationship

(3.44b) for the type-e states:

X ¼ 2
ffiffiffi
k

p ÐNe

0

dD�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00t ðD�2 � N2

e Þ þ
1

12
g0000t ðD�4 � N4

e Þ
r

¼ 2lffiffiffiffiffiffiffiffiffiffiffiffi
1� m

p K

ffiffiffiffiffiffiffiffiffiffiffiffi
m

1� m

r� �
¼ LeK

ffiffiffiffiffiffiffiffiffiffiffiffi
m

1� m

r� �
;

(3.54a)

where K(k) is the elliptical integral of the first kind [5]

KðkÞ �
ð1
0

duffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2u2

p !
p
2

1þ k2

4

� �
; for k ! 0þ 0

ln
4ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
p ; for k ! 1� 0:

8>><
>>: (3.54b)

Notice from (3.53) and (3.54a) that for the type-e states Le is always smaller than

X and the difference between the two grows as |gt–m| grows.
To find the free energy of a type-e state, we again use the substitution u ¼ D�/Ne

and (3.53) for (3.46b) with the potential (2.38). Then we obtain an expression for

the free energy of the type-e (not necessarily monotonic) state:

Ge ¼ Vmþ S

ffiffiffiffiffiffiffiffiffiffiffiffi
kg0000t
3

r
N3
ene

ðþ1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� u2Þ 1� m

m
� u2

� �s
du

¼ mV þ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kjg00tj3

q
g0000t

FðmÞneS

¼ ½gt � Xmð1� mÞ�V þ 4

3
XFðmÞneSl

¼ gaðbÞ þ X
1

2
� m

� �2
" #

V þ 4

3
XFðmÞneSl;

(3.55a)

where we defined the function
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FðmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� m

p
E

ffiffiffiffiffiffiffiffiffiffiffiffi
m

1� m

r� �
� ð1� 2mÞK

ffiffiffiffiffiffiffiffiffiffiffiffi
m

1� m

r� �� �
; (3.55b)

and E(k) is the elliptical integral of the second kind [5]:

EðkÞ �
ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2u2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2

p du !
p
2

1� k2

4

� �
; for k ! 0þ 0

1þ 1� k2

2
ln

4ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

p � 1

2

� �
; for k ! 1� 0:

8>><
>>: (3.55c)

There are two limiting cases of the function in (3.55b) which are of interest:

FðmÞ !
3p
4
m; for m ! 0þ 0

1ffiffiffi
2

p 1� 1

2
� m

� �� �
; for m ! 1

2
� 0:

8>><
>>: (3.55d)

The slope, amplitude, and free energy as implicit functions of the system’s size

are best represented in the scaled form as follows:

l ¼ lLe

Y
; a ¼ Ne

Y
; j ¼ Ge � gaðbÞV

XV
; s ¼ X

l
: (3.56b)

Notice that j represents the dimensionless free energy excess quantity. The

functions a(s) and j(s) for the monotonic states (ne ¼ 1) are depicted in Fig. 3.3.

For the non-monotonic states (ne>1) the size X is replaced in (3.56) by the length of

monotonicity De, see (3.45).

3.4.2 Type-e1 Solutions: Bifurcation Off the Transition State

Although the implicit functions j(s) and a(s) solve the problem of the 1d extremals,

it is instructive to analyze them further. For type-e1 states (3.50b), (3.53) yields:

me1 
 gt � m
X

! 0; Ne1 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
gt � m
jg00tj

r
! 0; Le1 ! 2l: (3.57)

Notice that, while the amplitude Ne1 of the type-e1 heterogeneous state depends

strongly on the chemical potential value through (gt – m), the characteristic length
Le1 is practically independent of it. Excluding the parameter m from (3.53a) and

(3.54a) for type-e1 solutions we obtain:

Ne1 
 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Y

X � ~X
~X

s
: (3.58a)
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Equation (3.58a) shows that the heterogeneous solutions �e1(x) branch away or

bifurcate from the homogeneous transition state �� ¼ �t at the point X ¼ ~X where

~X � p l (3.58b)

Notice that the bifurcation length ~X is of the same order of magnitude as the

fundamental length l. The bifurcation (3.58) may be called “size-amplitude”

(SABi). Equation (3.58a), depicted in Fig. 3.3, is the SABi diagram and ð�t; ~XÞ is
the SABi point, near which ðX ! ~XÞ the solution �1e(x) is a harmonic function with

the period 2 ~X [Verify! Hint: take the integral in (3.52) or see Fig. 3.2biii].

Now, let us look at the SABi diagram from the stand point of the free energy.

To do this, we exclude parameter m from (3.54a) and (3.55a) and analyze the

(m ! gt, m ! 0, X ! ~X)-limiting cases of the relationship between the free energy

and the system’s size V ¼ XS for the type-e1 monotonic state:

Ge1 ¼ Vgt þ XmSð ~X � XÞ ¼ V gt � 4X
ðX � ~XÞ2

X ~X

" #
: (3.59)

This expression is also depicted on the SABi diagram, Fig. 3.3, in the scaled

form [see (3.56)].
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Fig. 3.3 Size-amplitude bifurcation diagram for type-e heterogeneous monotonic states. Red
lines—scaled amplitude, blue lines—scaled energy; solid lines—1d systems, dashed lines—3d

systems. ð ~X=l; 0Þ—the 1d bifurcation point; numbers—the classification types
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3.4.3 Type-e3 Solutions: Approach to Thermodynamic Limit

For the type-e3 state, m!ga(b) and (3.50b) and (3.53) yield:

me3 ! me4 ¼ 1

2
; Ne3 ! Ne4 ¼ Y; Le3 ! Le4 ¼ 2

ffiffiffi
2

p
l: (3.60)

Then, using properties of the elliptical integral (3.54b), we obtain the following

expression for the amplitude:

N2
e3 ¼ Y2 1� 8e� 2X=Le4ð Þ


 �
: (3.61)

Equations (3.60) and (3.61) yield that the type-e3 states appear X ! 1. For the

free energy of the monotonic state, (3.65) yields:

Ge3 
 VgaðbÞ þ SlX
2

3

ffiffiffi
2

p
1þ 4e�ð2X=Le4Þ

 �

¼ V gaðbÞ þ l

X
X
2

3

ffiffiffi
2

p
1þ 4eð�2X=Le4Þ

 �� �

:
(3.62)

The normalized free energy densities and amplitudes of the type-e1–e3 states are

depicted in Fig. 3.3 as functions for the system size.

3.4.4 Type-e4 Solution: Plane Interface

As m ! ga the elliptical integral in (3.54b) grows without bound. This means

that the boundary-value problem (3.39a) and (3.40) has no type-e4 solutions in

the finite domain (X < 1), but may have solutions in the infinite domain

(X ! 1), that is, the thermodynamic limit. To find the type-e4 solutions,

the phase-plane method must be supplemented with the exact calculations of

the solutions �E(x) using quadratures of (3.52). Substituting (3.60) into (3.52) we

obtain:

x ¼ xi þ 1

4
Le4 ln

Yþ D�e4
Y� D�e4

����
����; (3.63a)

where the constant of integration, xi, may be interpreted as the x-coordinate of the
inflection point of the solution:

D�e4ðxiÞ � 0: (3.63b)
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For a bounded solution, |D�4n|<Y, (3.63a) can be resolved as follows:

�e4 ¼ �t þY tanh 2
x� xi
Le4

� �
: (3.64)

In materials physics, this type of solution is called an interface, in the theory of

micromagnetism—domain-boundary wall, in the mathematical theory of waves—

kink. Although the elementary-function solution (3.64) resolves the boundary-value

problem (3.39a) and (3.40) completely (see Fig. 3.2biii), it is useful for the following

to analyze the properties of the solution even further:

1. Equations (3.60) and (3.52) show that for the type-e4 state xl ! �1 and

xr ! +1.

2. Solution (3.64) is odd with respect to the point (xi,�t) so that D�(�x) ¼ �D�(x).
3. Because X ! 1, BC (3.40) yields d2�/dx2 ¼ 0, which, due to ELE (3.39a),

results in

@g

@�
ð�lÞ ¼

@g

@�
ð�rÞ ¼ 0: (3.65)

This relation shows that the type-e4 solution connects two equilibrium phases

with �l ¼ �a and �r ¼ �b.
4. The heterogeneities of the solution (3.64) are localized in an interval of x-axis of

the characteristic length practically the same as that of type-e1 state:

Le4 ¼
ffiffiffi
2

p
Le1, see (3.57) and (3.60). But, solution (3.64) has infinitely long

“tails” in both directions, x ! 	1.

5. Selecting the positive branch of (3.43), we may express the slope as a function

of �:

d�e4
dx

¼ 2
Y2 � D�2

e4

Le4Y
>0: (3.66)

The slope is a pulse-type function, which is essentially non-zero only on the

interval of localization of heterogeneities.

6. Because the slope (d�e4/dx) does not depend on x explicitly (only through �) the
solution must be translationally (with respect to the Euclidean group of spatial

transformations) invariant: �e4 ¼ func(x–x0) for arbitrary x0. The translational

invariance of the solution (3.64) was removed by setting x0 ¼ xi.
7. We can show (Verify!) that

d2�e4
dx2

¼ �4
D�e4
Le4Y

d�e4
dx

: (3.67)
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8. Using the mathematical formulae

tanhðxÞ � tanhðyÞ ¼ sinhðx� yÞ
coshðxÞ coshðyÞ ;

d tanhðxÞ
dx

¼ 1

cosh2ðxÞ ;

for solution (3.64) it is easy to show (Verify!) that

�e4ðx� dxÞ � �e4ðxÞ 
 �dx
d�e4
dx

: (3.68)

This relation shows that the difference between two slightly displaced solutions

is equal to the shift times the slope of the unperturbed solution.

Furthermore, let us compute the free energy of the type-e4 state. Equation

(3.46a) and Property 1 yield:

Ge4 ¼ VgaðbÞ þ S

ðþ1

�1
k

d�e4
dx

� �2

dx: (3.69)

Compare this expression with (3.55a) and notice that Ge4 separates into a

term proportional to the volume V and the term proportional to the area S of the

box, with the coefficients of proportionality independent of m and, hence, of X. This
fact allows us to compare (3.69) with the free energy of the two-phase equilibrium

system in the Theory of Capillarity [see Sect. 3.1, (3.1)–(3.6)] and identify the

quantity:

s �
ðþ1

�1
k

d�e4
dx

� �2

dx (3.70a)

as the interfacial energy of the system in the FTM. This expression shows that

s > 0, provided condition (3.26) is true. Notice that (3.70a) allows to interpret the

Newmann-type BC, which we adopted in this book, as corresponding to the case of

absence of the additional energy on the surface of the system.

The interfacial energy is an important quantity because it is measurable.

This justifies more thorough analysis of expression (3.70a). Compare (3.27a) and

(3.42a) with (3.70a) and see that other expressions for the interfacial energy are

possible:

s ¼
ðþ1

�1
ðĝ� mÞ dx; (3.70b)

s ¼ 2

ðþ1

�1
ðgðP; TE; �e4Þ � mÞ dx: (3.70c)
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Taking (3.37b) into account, we also find that

s ¼ �
ðþ1

�1
�e4

@g

@�
ðP; TE; �e4Þ dx: (3.70d)

Using the positive branch of (3.43) we obtain another expression:

s ¼
ffiffiffiffiffiffi
2k

p ð�b
�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðP; TE; �e4Þ � m

p
d�: (3.70e)

Compare (3.70e) to (D.27) and see that the interfacial energy is analogous to the

abbreviated action from the Lagrangian field theory. This analogy will be addressed

again in Chap. 6.

Example 3.1 Find relationships between the interfacial energy and the thermo-

dynamic parameters for the systems with the general, Landau, and tangential

potentials.

The best way to find this relationship for the general potential (2.38) is to use

formula (3.70e). Then, we obtain the following relation:

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
kg0000t
12

r ðþY

�Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðY2 � D�2Þ2

q
dD� ¼ 2

3

ffiffiffi
2

p
Xl: (3E.1)

Using the Landau potential (2.11) for (3.70e), we obtain the following relation:

s ¼
ffiffiffiffiffiffi
2k

p ð4B=3
0

�
2

3
B� 1

2
�

� �
d� ¼ 2

3

� �4 ffiffiffiffiffiffi
2k

p
B3: (3E.2)

For the tangential potential (2.33) first notice that, because the OP is rescaled

compared to the OP of the Landau potential, the gradient-energy coefficient of the

tangential potential must be rescaled too. From (3.27b), (2.32) we find that

~k ¼ kC2: (3E.3)

Then using (2.33) we find that for the tangential potential at equilibrium

g00tj j ¼ W=2. Substituting this into (3.53b) and using (3.60) leads to

l ¼
ffiffiffiffiffiffi
2~k
W

r
; Le4 ¼ 4

ffiffiffiffiffi
~k
W

r
: (3E.4)

Although the expression for the interfacial energy can be obtained from (3E.1), it

is advantageous to derive it directly from (3.70e) using (2.33). Notice that the

expression in (3.70e) is invariant to the rescaling (Why?). Then, taking into account

that �a ¼ ��0; �b ¼ ��1, we obtain:

s ¼
ffiffiffiffiffiffiffi
~kW

p ð1
0

ffiffiffiffiffiffiffiffiffiffiffiffi
o2ð�Þ

p
d� ¼ 1

6

ffiffiffiffiffiffiffi
~kW

p
: (3E.5)
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3.4.5 Interfacial Properties: Gibbs Adsorption Equation

The interfacial energy is an important property of a system, which deserves a

closer look. At this juncture, we may ask a question: how many variables does

the interfacial energy depend on? First, notice that s can be defined properly only in

the thermodynamic limit of V ! 1 or at least X ! 1 (dependence of the inter-

facial energy on the system’s size is an important subject in its own rights, but we

will not be looking at that in this book). At first glance, it seems that s is a function

of three variables: s¼func(P, T, m). However, considering equilibrium conditions

(3.42b), (3.65), (2.2), we find that not all of them are independent. If �a and �b
represent different phases then five variables ð�a; �b; P; T; mÞ are constrained by

four conditions, which leave only one independent; if �a and �b represent the same

phase then four variables are constrained by two conditions, which leave two

variables independent. Thus, using (3.42b) and (3.70b) we obtain:

ds ¼ DTs � dT þ DPs � dP; (3.71a)

where the partials of s are

DTs¼ � Ðþ1
�1 ŝ� sað Þ dx;

ŝðP; T; �Þ ¼ � @ĝ

@T
; sa ¼ � @m

@T
¼ � @g

@T
ðP; T; �aÞ:

(3.71b)

DPs ¼ �r
Ðþ1
�1 v̂� vað Þ dx

v̂ðP; T; �Þ ¼ 1

�r
@ĝ

@P
; va ¼ 1

�r
@m
@P

¼ 1

�r
@g

@P
ðP; T; �aÞ;

(3.71c)

where ŝ is the entropy density, v̂ is the specific volume, and �r ¼ M=V is the average

density. If �a and �b represent the same phase then the partials represent the proper

(that is non-diverging) quantities, the interfacial entropy and volume:

w � �DTs; n � DPs
�r

; (3.72)

If �a and �b represent different phases, then according to the Clapeyron–

Clausius equation (2.5)

s½ �ba dT ¼ �r v½ �ba dP; (3.73)

and:

ds ¼ �GðvÞ
s dT; (3.74a)
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where the proper, non-diverging, quantity is the relative interfacial entropy:

GðvÞ
s �

ðþ1

�1
ŝ� sa � ðv̂� vaÞ ½s�

b
a

½v�ba

 !
dx: (3.74b)

If density of the system does not change from one phase to another or is not

essential for the problem, the relative interfacial entropy may be defined with

respect to the OP:

Gð�Þ
s �

ðþ1

�1
ŝ� s� � ð� � ��Þ

½s�þ�
½��þ�

 !
dx: (3.74c)

Example 3.2 Find the fundamental length scale, interfacial energy, and entropy of

the anti-phase domain boundary.

Anti-phase domain boundary (APB) is the type-e4 state that appears in the

system after the second-order transition. Hence, the problem can be solved by

using the Landau potential, (2.11), with B ¼ 0 and A < 0, see Sect. 2.6.2, (2.43).

Then, �t ¼ 0; g0000t ¼ 6; and g00t ¼ A ¼ at; where t<0; which yields:

l ¼
ffiffiffiffiffiffi
k
Aj j

r
; Y ¼

ffiffiffiffiffiffi
Aj j

p
; X ¼ Aj j2: (3E.6)

For the interfacial energy, using (3E.1), we obtain:

s ¼ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2k Aj j3

q
(3E.7)

and for the interfacial entropy

w ¼ 1

Tc

ffiffiffiffiffiffiffiffiffiffiffi
2k Aj j

p
: (3E.8)

Notice that w � sTC for |t| ! 0, that is, close to the LCP, (2.23). The type-e4

state is

�e4ðxÞ ¼
ffiffiffiffiffiffi
Aj j

p
tanh x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aj j=2k

p
 �
: (3E.9)

It is depicted in Fig. 3.4.
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3.4.6 Type-n4 Solution: Critical Plate—Instanton

Type-n states are more complicated; they appear when the condition (3.51a) does

not hold and g000t becomes a measure of deviation from the phase equilibrium.

The phase-plane method, however, may elucidate some of the properties of the

type-n states in sufficient detail. Let us consider type-n4 state. Two comments are in

order here. First, to preserve consistency with the analysis above, we will be

analyzing the monotonic branch of the state. Second, it is more convenient here

to use the Landau potential (2.11) instead of the general one (2.38). The relation

between the two is established by (2.39), e.g.,

g000t ¼ 2B� 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � A

p
< 0: (2.39b)
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Fig. 3.4 Anti-phase domain boundary of the system with A¼�1 and k¼½. The equilibrium state

�e4, (3E.9)—red line, “potential energy” ∂2g(�e4)/∂�
2 for this state—black line, and two bound

eigenfunctions—blue and green lines. The two bound-eigenfunction energy levels are identified

by the respective colors
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The phase-plane method (see Fig. 3.2aii) suggests that �n4(x) varies between

�a ¼ 0 and �c
1 where:

�1c ¼
4

3
B 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 9A

8B2

r !
: (3.75)

Taking the integral in (3.44a), we obtain the full solution (see Fig. 3.2aiii):

x ¼
ffiffiffi
k
A

r
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 9A

8B2

r
� ln 1� 3A

2B�n4
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3�2n4 � 8B�n4

6A

r !�����
�����

" #
: (3.76)

It has an inflection point at

�t ¼ ��� ¼ B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � A

p
: (3.77a)

The characteristic length (3.48) of the solution �n4(x) is represented as follows:

Ln4 ¼ 2�1c
ffiffiffi
k

p

���
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A� 4=3B���

p : (3.77b)

The “tail” of the solution in (3.76), that is, the part 0<�n4<<���, may be

represented as �n4 
 const� expðx=L4nÞ: Notice that the characteristic length of

the tail of �n4(x) is different from that of �e4(x) in (3.64). Another important length

scale of this solution is the distance between the center (�c
1) and inflection point ð���Þ:

Dn4 ¼
ffiffiffi
k

p ð�1c
���

d�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� ð4=3ÞB� þ ð1=2Þ�2p : (3.78)

To calculate the free energy of the type-n4 state we use the Landau potential

(2.11) for (3.46b) with nn4 ¼ 1 (Why?):

Gn4¼ Vmþ S
ffiffiffiffiffiffi
2k

p ð�1c
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð�Þ � m

p
d�

¼ Vmþ S
ffiffiffi
k

p ð�1c
0

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� 4

3
B� þ 1

2
�2

r
d�

¼ Vmþ Ss 3R� 2R3 þ 3

2
1� R2
� 


ln
1� R

1þ R

� �
; (3.79a)

where

R ¼ 3
ffiffiffi
A

p

2
ffiffiffi
2

p
B

(3.79b)

Notice that as g000t!0: R ! 1 and Gn4!Vm + Ss.
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Type-n4 represents a 1d pulse of ordering of one kind in the “sea” of ordering of

another kind (e.g., b-solid in a-liquid). Notice from (3.42a) and Fig. 3.2 ai that the

ordering of the “sea” is that of the metastable phase (e.g., liquid), while the ordering

of the pulse comes close (although not quite there yet) to that of the stable phase

(e.g., solid). For type-n4, the chemical potential, m¼ga, corresponds to the critical

value between the cases of general periodic distribution of ordering in the system

and absence of the equilibrium states at all; that is why this case is called the

instanton—a localized, critical, equilibrium excitation of the old phase with finite

amount of the free-energy excess. Instanton is described by a homoclinic orbit

while the kink—by the heteroclinic orbit (cf. Fig. 3.2aii and bii). In that regard,

actually, (3.76) describes half-the-instanton; the whole instanton has nn4 ¼ 2.

Hence, as R ! 1 the total energy of the whole instanton approaches Vm + 2Ss.

3.5 Free Energy Landscape

Various types of solutions of the 1d equilibrium boundary-value problem (3.39a) and

(3.40) obtained above are in need of physical interpretation. The finite-domain

solutions can be interpreted as the equilibrium states of a slab of the thickness X,
while the infinite-domain solutions (�1 < x < + 1) are the equilibrium states

in the thermodynamic limit, X ! 1. In the infinite domain, there are periodic type-

1,2,3, pulse type-n4, and kink type-e4 solutions. The periodic and pulse solutions are

non-monotonic. For the periodic solution �e2(x), the right-hand side in (3.54a)

describes the half-period De2 and (3.45)—the index ne2 of the state. Type-e states

correspond to the conditions of phase equilibrium, T ¼ TE(P), when the free energies
of the phases a and b are equal (see Fig. 3.2bi). For type-n states, the free energies of

the homogeneous phases are different; hence, T6¼TE(P). Then, the type-e4 state can be
interpreted as a two phase equilibrium state where the phases are separated by an

interface and type-n4—as a 1d pulse of critical ordering (instanton).

At this stage, we have learned enough about our system to be able to understand

the relationships between the physical parameters that control it. First, let us ask the

question: What are the factors that may influence a state of the system �E(x), (3.31)?
Obviously pressure P, temperature T, and the external field H do. In the previous

section, we saw that the linear size X of the system’s domain O makes a difference:

the states may be finite, infinite, or semi-infinite. A less obvious factor that may

change the equilibrium state is the type of the boundary conditions on the surface of

the system. The latter becomes less important in the thermodynamic limit, X ! 1.

In a laboratory experiment, all of the above mentioned parameters can be altered

more or less independently including the dimensionality and boundary conditions.

The former can be changed by preparing the samples of different shapes; the latter

by changing the interaction of the system with the environment (e.g., lubricating the

surface). However, the pressure P, temperature T, and system’s size X are the most

flexible control parameters of the system; they constitute the thermodynamic

degrees of freedom of the system.
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As we saw in the previous sections, there is one more parameter that influences

the equilibrium states of the system: the chemical potential m. At first glance, the
chemical potential is independent of the other parameters and, hence, constitutes a

thermodynamic degree of freedom. However, this perception is false. The crux of

the matter is that an important factor, stability of the solutions, has not been taken

into account yet. In the oncoming sections, we see that the stability considerations

present a selection criterion for the equilibrium states. That is, when all the

thermodynamic degrees of freedom are specified a unique value of the chemical

potential mwill be selected based on the principle of the minimum of the free energy.

A geometrical concept of the free energy landscape may help us visualize

distribution of the equilibrium states �E(x) in the Hilbert space {�(x)}. The free

energy landscape is the “elevation” of the functional G{P, T, H, V, d, BC; �(x)},
(3.27a), with respect to an arbitrary “sea” level. The extremals are the stationary

points of the landscape: minima, maxima, and saddle points. How can we visualize

the “real estate” of the infinite-dimensional functional space {�(x)} over which the

landscape will be constructed? This space consists of functions, which are continu-

ous enough (usually continuous are first two partial derivatives) and satisfy the BC,

e.g., (3.30b). Then the free energy functional G{�(x)}, (3.27a), may be viewed as a

hypersurface in the functional space {�(x)}. Each element {�(x)} is characterized

by five numbers, see (3.32), (3.45). Then, each element of {�(x)} may be

represented by a point in the 4-space (<�>+P, L, S, n) and the landscape will

be the hypersurface over that space:

G ¼ G �h i þP; L; S; nf g: (3.80a)

Notice that in (3.80a) there is no explicit dependence on the system’s size; it

enters (3.80a) implicitly through the relationship between the range, slope, and

index. Using this geometrical image, one can formulate a better idea about the

equilibrium states and their stability. The equilibrium states are represented by

the extremals �E(x), (3.31); they correspond to minima, maxima, or saddle points of

the hypersurface (3.80a). The former means that some small deviations from the

extremal �E(x) make the functional to increase while others to decrease.

We may start constructing the landscape (3.80a) with the 1d type-e monotonic

states with different values of the chemical potential m. For the landscape-dependent
coordinate, we use j, see (3.56b). AsSe ¼ 0 and n1d ¼ 1 [see (3.45, 3.51b)], we may

reduce the number of the real-estate independent coordinates to two: the dimension-

less slope l and size (<�> + Ν), which, for convenience, is shifted by �t and scaled
with Y:

y ¼ 1

Y
�h i þ N � �tð Þ (3.80b)

To visualize the landscape, we are depicting it in Fig. 3.5 and projections

of its characteristic lines on the planes (y, j) and (y, l) in Fig. 3.5a. For the

homogeneous elements {�(x)} Ν ¼ 0 ¼ L; they are represented by the red line.
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Fig. 3.5 Free energy landscape of the 1d system, j ¼ func(y, l). (a) Projections of the free energy
landscape on the planes (y, j) and (y, l)

3.5 Free Energy Landscape 69



For the homogeneous equilibrium states <�>¼�a or �t or �b, hence, y ¼ �0.5 or

0 or +0.5. For the heterogeneous equilibrium states Ν 6¼0 6¼L and <�>¼�t,
see (3.51b), and y equals a of (3.56). Then, (3.56a) expresses the projection of

the line of the extremals on the plane (y, l) and (3.53)–(3.55) on the plane (y, j).
The dimensionless forms of these relations are

l ¼ y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

2
y2

r
; (3.81a)

j ¼ 1

4
ð1� y2Þ þ 1

3
ð2� y2Þ y2 � 1þ

E y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� y2

p.
 �
K y

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� y2

p.
 �
2
4

3
5: (3.81b)

3.6 Multidimensional Equilibrium States

In the previous sections, we analyzed properties of the 1d equilibrium states.

We may wonder now if the free-energy landscape of a thermodynamic system

G{�(x)}, (3.80a), contains multidimensional equilibrium states, that is those where

essential variations take place in more than one spatial direction. In fact it does and,

actually, “many” (infinitely many); it is more difficult to find the multidimensional

equilibrium states than the 1d ones. However, some of the multidimensional states

have structures similar to those of the plane ones studied in Sect. 3.4—quasi-1d

states (Sect. 3.6.1), others have spherical symmetry, which helps treating them

rigorously (Sect. 3.6.2). In Sect. 3.6.3, we demonstrate how one can find multidi-

mensional equilibrium states which can be thought of as small deviations from one

of the homogeneous states, ��, studied in Chap. 2.

3.6.1 Quasi One-Dimensional States: Drumhead
(Sharp Interface) Approximation

As we saw in Sect. 3.4.4, a heterogeneous equilibrium state is possible where the

OP changes quickly from one bulk-phase value to another one in a plain transition

zone, called interface, while remaining practically constant or changing very slowly

outside this zone. This result should prompt us to search for geometrically more

complicated equilibrium states that are represented by a thin transition layer where

most of the OP change occurs, which, on the “outside”, may have rather compli-

cated geometrical shape, see Fig. 3.6. To find such multidimensional states, we shall

introduce, instead of the Cartesian coordinates x ¼ (x1, x2, x3), new curvilinear

coordinates {u ¼ U(x), v ¼ V(x), w ¼ W(x)} (see Appendix C). The main

requirements to the new coordinates are that they are orthogonal and that the OP is

a function of one coordinate only: �¼�(u). To eliminate the remaining arbitrariness
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of the new curvilinear coordinates, we assume that the coordinate u ¼ U(x) obeys the
eikonal equation everywhere:

ðrUÞ2 ¼ 1; (C.16)

and we specify the level surface U ¼ 0 as follows:

d2�

du2
ð0Þ ¼ 0: (3.82)

Then, according to (3.39a), the level surface U ¼ 0 corresponds to one of the

equilibrium values of the OP, �� .
The level surfaces U ¼ const may be characterized by a unit normal vector:

u � r�

r�j j ¼
1

r�j j
@�

@x1
j1;

@�

@x2
j2;

@�

@x3
j3

� �
: (C.11)

The unit normal u is invariant with respect to the rotation of the reference frame

(see Appendix C). Then the curved interface may be represented by the direction

cosines of u or by the Euler angles of inclination yij with respect to the coordinate

axis, see (C.12):

tan yij ¼ @� @xi=

@� @xj
� ¼ @u @xi=

@u @xj
� : (3.20b)
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Fig. 3.6 Curvilinear

coordinate system (u, v, w)
associated with a curved

interface. Vn—velocity of the

interface motion

3.6 Multidimensional Equilibrium States 71



The unit normal u has many practical applications; for instance, it may be used to

express the anisotropic properties of the interface, e.g., anisotropy of the interfacial

energy.

Another way to characterize the curved surfaces is by describing their curvature

K or radius of curvature R as a function of the curvilinear coordinates. Using the

formula

ru ¼ 2Kðu; v;wÞ ¼ k1 þ k2; (C.21)

where K is the mean curvature and k1, k2 are the principal curvatures of the level

surface U ¼ const and expressing the Laplacian operator in the new coordinates:

r2 ¼ @2

@u2
þ 2Kðu; v;wÞ @

@u
: (C.23)

ELE (3.29) transforms as follows:

k
d2�

du2
þ 2kKðu; v;wÞ d�

du
� @gðT; �Þ

@�
¼ 0: (3.83)

The level surfaces U ¼ const are equidistant; hence the radius of curvature of

these surfaces is R ¼ R0(v, w) + u. Then for the mean curvature we obtain:

1

Rðu; v;wÞ � K ¼ K0 1þ uK0 þ u2K2
0 þ Oðu3K3

0Þ
� �

; (3.84)

where R0(v, w) and K0(v, w) are the radius and the curvature of the level surface

U ¼ 0. In Sect. 3.4, we saw, (3.64), that Le4 is the characteristic length of variation
of the OP field of the equilibrium state. Then, if:

Ge � 2jK0jLe4<<1; (3.85)

then (3.83) can be rewritten in the form:

k
d2�

du2
þ 2kK0

d�

du
� @gðT; �Þ

@�
¼ 0; (3.86)

where the coordinates u and (v, w) separate. This equation is the drumhead (or

sharp interface) approximation of the ELE (3.29) and the smallness of the number

Ge, called geometric, is the criterion of its validity. Geometrically, this means that

the level surfaceU ¼ 0 does not have very sharp folds with the radii of curvature on

the scale of the interfacial thickness.

As we can see from (3.86), if the 3d equilibrium state �E has the same internal

structure as the 1d one, that is, the first and third terms add up to zero, then the mean

curvature K0 is zero everywhere. In two dimensions, this is possible only for a plain
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interface. In three dimensions, the mean curvature of a curved surface can be zero

if the two principal curvatures at a point of the surface are equal in magnitude but of

opposite sign:

k1ð0; v;wÞ ¼ �k2ð0; v;wÞ: (3.87)

It is possible to construct a surface that has zero mean curvature everywhere

by translating a specially designed unit cell. Such surfaces are termed “periodic

minimal surfaces.”

3.6.2 Critical Droplet: 3d Spherically Symmetric Instanton

The mathematical complexity of the 3d states comes from the fact that ELE

(3.29) cannot be integrated, that is, there are no first integrals that describe equilib-

rium for d > 1. However, for an isotropic system, some of the extremals may

have very simple symmetry: cylindrical for d ¼ 2 and spherical for d ¼ 3. In a

cylindrically/spherically symmetric system, the divergence operator takes the form

(Appendix C):

r2 ¼ d2

dr2
þ d � 1

r

d

dr
; (C.26)

where r is the spatial coordinate. The singular point r ¼ 0 is called a center and

�dc � �Eðr ¼ 0Þ: (3.88)

Then ELE (3.29) takes the form:

k
d2�

dr2
þ d � 1

r

d�

dr

� �
� @g

@�
¼ 0: (3.89)

Notice that this form also applies to a d ¼ 1 system with translation invariance.

Formally, it can also be applied to a d 
 4 system and even to systems with

fractional dimensionalities.

A physically acceptable solution has to be continuous everywhere. Thus, to

avoid discontinuity at the center, the cylindrically/spherically symmetric solutions

have to satisfy the following boundary condition:

d�

dr
¼ 0 at r ¼ 0: (3.90)
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If the boundary O of the system is also cylindrically/spherically symmetric then

(see Appendix C):

jO ¼ jr ¼
r

jrj ; jrr ¼ d

dr
on O:

In the thermodynamic limit, the boundary condition, (3.30b), takes the form:

d�

dr
! 0 at r ! 1: (3.91)

One of the goals of this section is to look at the process of a ! b transformation

from the metastable into the stable phase of the system and compare the solutions

of (3.89)–(3.91) with those of the Theory of Capillarity. The solution that we are

looking for, �E(r; d), represents a critical nucleus (instanton), that is, a localized

heterogeneity in the “sea” of a homogeneous metastable phase. Thus, the third

boundary condition appears:

�E ! �a at r ! 1 (3.92)

where �a corresponds to the metastable phase. For d ¼ 1, the nucleus has a shape of

a plate, d ¼ 2—a cylinder, and for d ¼ 3 the nucleus is a sphere with r representing
the distance from the center.

Equation (3.89) is known in the literature as a generalized Emden equation [6].

If g(�) is a single-well parabolic function, its solution is a Bessel equation of the

zeroth order. If g(�) is a double-well function, like in (2.11) or (2.33), (3.89) is not

known to have a general solution which can be expressed through elementary or

special functions in a closed form. Solutions of the special cases that possess the

Painlevé property (not to have movable singularities other than poles) can be

expressed in quadratures.

The boundary-value problem (3.89)–(3.92) can be qualitatively analyzed using

the phase-plane ð�; d�=drÞ. The critical nucleus solution is not a regular trajectory in
the plane but a separatrix because there are three boundary conditions for a second-

order ODE. Some of the properties of the critical nucleus can be deduced from the

general properties of the ELE (3.89) and function g(�) [7]. Indeed, if we multiply all

terms in (3.89) by (d�/dr) and integrate from r to1 we obtain:

k
ð1
r

d2�

dr2
d�

dr
dr þ kðd � 1Þ

ð1
r

1

r

d�

dr

� �2

dr �
ð1
r

@g

@�

d�

dr
dr ¼ 0: (3.93)

Taking the BC, (3.91) and (3.92), into account we obtain [cf. with (3.42a)]:

� gðP; T; �aÞ ¼ �gðP; T; �Þ þ 1

2
k

d�

dr

� �2

� kðd � 1Þ
ð1
r

dr0

r0
d�

dr0

� �2

: (3.94)
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This relation shows that g(P,T;�a) plays the role of the chemical potential for this

type of states. Applying this relation at the center of the critical nucleus and using

the BC, (3.90), we obtain:

gðP; T; �dcÞ � gðP; T; �aÞ¼ �kðd � 1Þ
ð1
0

1

r

d�

dr

� �2

dr

¼ kðd � 1Þ
ð�dc
�a

1

r

d�

dr
d�: (3.95)

1. From (3.95), we can see that gð�1cÞ ¼ gð�aÞ and gð�d>1
c Þ<gð�aÞ, which means

(see Fig. 3.2ai) that

�a<�t<�1c<�d>1
c <�b: (3.96)

From this inequality follows that the critical nuclei of the anti-phase domains

are not possible because for this transition gð�aÞ ¼ gð�bÞ (see Sect. 2.6.2).
2. Equation (3.95) also indicates that for d ! 1: �c

d ! �b because g(�c
d)�g(�a)

becomes more negative as d ! 1. Indeed, the integral in (3.95) decreases with

d ! 1 but not as “fast” as (d�1) ! 1.

3. If T ! TE(P) then g(�b)!g(�a) and �c
d!�b. This follows from the inequality

(3.96) and the fact that �c
1!�b as g(�b)!g(�a) (see Fig. 3.2bi).

4. If T ! TE(P), the spatial distribution of OP becomes similar to that described

by the 1d equation (3.39a) instead of (3.89). Indeed, as the critical nucleus

represents the separatrix in the plane ð�; d�=drÞ, the derivative (d�/dr) does
not change sign in the entire domain 0 < r < 1 [d�/dr < 0 in the above

considered case of a ! b transformation; cf. to the monotonic branch of

(3.43)]. Then, the “multi-dimensional” term in (3.89) can be neglected, com-

pared to the two other terms which alternate, because the former cannot balance

the latter. Basically, as T ! TE(P), the critical nucleus of the field theory tends

to look more like that in the Theory of Capillarity, that is, a sphere (cylinder) of

the phase b in the “sea” of phase a separated by the sheath of interface; the only

difference of that from the plane one is its curvature.

Now let us use the fact that (d�/dr)2 is a bell-like, sharply peaked function of r
that reaches maximum in 0 < r < 1 (cf. Fig. 3.4) and define Rd:

d2�

dr2
ðRdÞ ¼ 0: (3.97)

Applying the Laplace method of asymptotic expansion [8] to slowly varying

functions of r, F(r), and H(r), we obtain:

ð1
0

drFðrÞ d�

dr

� �2


 FðRdÞ
ð1
0

dr
d�

dr

� �2

; (3.98a)
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ð1
0

drHðrÞ
ð1
r

dr0Fðr0Þ d�

dr0

� �2



ð1
r

drFðrÞ d�

dr

� �2 ðRd

0

drHðrÞ: (3.98b)

Then, replacing the lower limit of integration in (3.98a) with (�1) and using the

definition of the surface energy, (3.70a), we obtain from (3.95):

Rd ¼ ðd � 1Þs
gð�aÞ � gð�dcÞ

: (3.99)

The distance Rd defined by (3.97) may be called a d-dimensional radius of the

critical nucleus. In the limit T ! TE(P) and d ¼ 3 this expression corresponds

to (3.14) for the critical nucleus R* in the Theory of Capillarity because

gð�dcÞ ! gð�bÞ, but R3 > R* if the difference (TE�T) grows. Resolving (2.4c) for

L ¼ const(T) [see (2.40b), (2.40c)] and using it for (3.99) we obtain

Rd ¼ d � 1

TE � T

sTE
L

; (3.100)

which shows that Rd ! 1 not only if T ! TE(P) but also if d ! 1 for T ¼ const.

Let us now introduce the total free energy excess due to the presence of the

critical nucleus in a previously homogeneous phase a:

DGcn � GfT;P; �EðrÞg � gðT;P; �aÞV; (3.101a)

¼
ð
V

½gðT;P; �Þ þ 1

2
kðr�Þ2 � gðT;P; �aÞ� ddx: (3.101b)

Substituting (3.94) into (3.101a) and taking into account that

ddx ¼ dVd ¼ SdðrÞ dr;
SdðrÞ ¼ 2pðd � 1Þrd�1; VdðrÞ ¼ 2p

d � 1

d
rd;

(3.102)

where Sd and Vd are surface and volume of the d-dimensional sphere, we obtain an

expression for the free energy excess of the d-dimensional, spherically symmetric

critical nucleus:

DGcn ¼
ð1
0

drSdðrÞ k
d�

dr

� �2

� ðd � 1Þ
ð1
0

dr0

r0
k

d�

dr0

� �2
" #

: (3.103a)
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Again, using (3.98a), (3.98b) with the lower limit of integration replaced by

(�1) and the definition of the surface energy, (3.70a), we obtain:

DGcn ¼ s SdðRdÞ � ðd � 1ÞVdðRdÞ
Rd

� �
¼ 1

d
sSdðRdÞ: (3.103b)

This expression corresponds to the free energy excess DG*, (3.17), due to the 3d

critical nucleus in the Theory of Capillarity. It also shows that the solution ZE(r; d)
indeed represents a d-dimensional instanton because it corresponds to the final

amount of the free energy excess.

When the approximation of sharply peaked function (d�/dr)2 is not valid, the

free-energy excess of the critical nucleus, (3.101a), may be efficiently calculated

using expression (3.38a) for the free energy:

DGcn ¼ 2ðd � 1Þp
ð1
0

gðT;P; �Þ � gðT;P; �aÞ �
1

2
�
@g

@�

� �
rðd�1Þ dr: (3.104a)

Notice that the Newmann-type BC (3.91) is already accounted for in the

expression (3.38a). For the Landau potential, (2.11), we obtain the following

expression

DGcn ¼ pðd � 1Þ 2

3
BId3 �

1

2
Id3

� �
; (3.104b)

where we introduce the d-dimensional nth order moments of the OP distribution

Idn ¼
ð1
0

�nrd�1 dr: (3.105)

These moments may help us calculate many different quantities related to the

critical nucleus. For instance, as the radius of the nucleus is not well defined now

and (d�/dr)2 is not sharply peaked, the volume of the nucleus may be defined as

follows

Vcn ¼ 1

�b � �a

ð
V

ð� � �aÞddx

¼ 1

�b � �a

ð1
0

SdðrÞ� dr ¼ 2pðd � 1Þ
�b � �a

Id1 :

(3.106)

The moments In
d may be estimated analytically or calculated numerically using

numeric solution of the boundary-value problem (3.89)–(3.92).
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Example 3.3 Find the instantons of the tangential potential.

For the tangential potential, (2.33), the space coordinate r can be scaled as

follows:

~r ¼ r

ffiffiffiffiffi
W

k

r
(3E.10)

and the boundary-value problem, (3.89)–(3.92), takes the form:

d2�

d~r2
þ d � 1

~r

d�

d~r
þ 2�ð� � �tÞð1� �Þ ¼ 0; (3E.11)

d�

d~r
¼ 0 at ~r ¼ 0; (3E.12)

d�

d~r
! 0; � ! 0 at ~r ! 1; (3E.13)

Notice that in the scaled form the problem has only one external parameter—the

transition state OP:

�t ¼
1

2
þ 3

D

W
: (2.37)

The 1d instanton solution can be obtained analytically similar to (3.76):

~r
ffiffiffiffiffiffiffi
2�t

p ¼ ln
6�t

1þ �t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=2� �tÞð2� �tÞ

p � 4

3
ð1þ �tÞ

�����
�����

� ln 4
�t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�t �t � 2=3ð1þ �tÞ� þ ð1=2Þ�2½ �p

�
� 4

3
ð1þ �tÞ

�����
�����: (3E.14)

For d > 1 and �t � 0.5, the OP in (3E.11)–(3E.13) can be scaled as ~� ¼ �=�t
and the problem can be reduced to the universal (parameterless) form (Verify!).

For �t not small (~0.5), the instanton solution can be obtained numerically using

the shooting method. According to this method, we pick a test value of �dc , present
the solution as

� ¼ �dc � �dcð�dc � �tÞð1� �dcÞ
~r2

d
; 0<~r � d<<1; (3E.15)

(Why?) and solve (3E.11) numerically for ~r>>1. If the solution satisfied the BC

(3E.13) to the desired accuracy, it is declared a success; if not, the test value is

adjusted and the numerical run is repeated until the BC (3E.13) is satisfied.

In Fig. 3.7, the solutions for d ¼ 1, 2, 3 are presented as functions of ~r.
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3.6.3 Small Deviations from Homogeneous Equilibrium
States: Fourier Method

Let us look for an equilibrium state �E(x), which on average is equal to ��, that is:

�Eh i ¼ ��; D�ðxÞ � �EðxÞ � ��: (3.107)

Applying the equilibrium integral equations (3.37b) and (3.35), we obtain:

ð
V

½kðrD�Þ2 þ @g

@�
ð�EÞD�� dx ¼ 0: (3.108a)

Expanding ∂g/∂� about �� and taking into account (2.12), we obtain:

ð
V

½kðrD�Þ2 þ @2g

@�2
ð��ÞðD�Þ2

þ 1

2

@3g

@�3
ð��ÞðD�Þ3 þ 1

6

@4g

@�4
ð��ÞðD�Þ4 þ � � �� dx ¼ 0:

(3.108b)

Equation (3.108b) may be analyzed using the method of Fourier transform

(Appendix F). For this let us present D�(x) in the form of a Fourier series:

D�ðxÞ ¼ 1ffiffiffiffi
V

p
X
fkg

D�̂ke
ikx; (3.109a)
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Fig. 3.7 Instantons of the

tangential potential with

�t ¼ 0.353 and different

dimensionalities of the space d.
For d ¼ 1, the solution

is (3E.14); for d ¼ 2, 3,

the solutions are numerical
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where k ¼ (kx, ky, kz) is a separation parameter calledwave vector. In a parallelepiped
with the sides (X, Y, Z) and volume V ¼ XYZ, k has the following components

k ¼ pnx
X

;
pny
Y

;
pnz
Z


 �
; nj integers; j ¼ x; y; z: (3.109b)

The summation in (3.109a) is over all integral-number combinations (nx, ny, nz).
D�̂k are called the Fourier coefficients of D�(x) and can be found as:

D�̂k ¼
1ffiffiffiffi
V

p
ð
V

D�ðxÞe�ikx dx: (3.110)

Due to the condition (3.107), the k ¼ 0 Fourier mode of D�(x) vanishes:

D�̂0 ¼ 0 (3.111)

If the OP field �(x) is represented by real numbers (fields of different mathe-

matical origin will be considered in Sect. 8.2) then, as you can see from (3.110),

the Fourier coefficients of the opposite wave vectors k are complex conjugate:

D�̂�k ¼ D�̂�k: (3.112)

Using the Fourier representation, we can express the gradient of D�(x) as

rD�ðxÞ ¼ iffiffiffiffi
V

p
X
fkg

kD�̂ke
ikx: (3.113)

Substituting (3.109a) and (3.113) into (3.108b) we obtain:

0 ¼
X
fkg

kjkj2 þ @2g

@�2
ð��Þ

� �
jD�̂kj2

þ 1

2
ffiffiffiffi
V

p @3g

@�3
ð��Þ

X
k1þk2þk3¼0f g

D�̂k1D�̂k2D�̂k3

þ 1

6V

@4g

@�4
ð��Þ

X
k1þk2þk3þk4¼0f g

D�̂k1D�̂k2D�̂k3D�̂k4 þ � � �

(3.114)

In the summations of the third and fourth order of the Fourier coefficients, the

sums of the wave vectors add up to zero because

ð
V

eikx dx ! ð2pÞ3dðkÞ; as V ! 1: (F.10)
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On the boundaries of the system, x ¼ (0 or X, y, z), jO¼(	1, 0, 0) or x ¼ (x, 0
or Y, z), jO¼(0, 	1, 0) or x ¼ (x, y, 0 or Z), jO¼(0, 0, 	1). Then, to satisfy the

boundary conditions (3.30b), the Fourier coefficients must obey the following

relationships (Verify!):

Xþ1

nj¼�1
ð�1ÞnjnjD�̂fnx; ny; nzg ¼ 0: (3.115a)

If the OP field can be represented as D�(x) ¼ f(x)g(y)h(z), the Fourier

coefficients break down into products of the separate components:

D�̂k ¼ D�̂nxD�̂nyD�̂nz . In this case, condition (3.115a) may be simplified as

Xþ1

nj¼1

ð�1Þnjnj Im D�nj


 �
¼ 0: (3.115b)

This condition shows that the BC (3.30b) will be satisfied if all the Fourier

coefficients are real. Advantage of (3.114) and (3.115a) over (3.29) or (3.37b) is

that these are algebraic equations; the disadvantage is that we have to deal now with

many components D�̂k instead of one function D�(x).
For the state �E(x) to be close to ��, the Fourier coefficients D�̂k must be small.

Then, (3.114) yields that the necessary condition for this is that the coefficient in

front of the quadratic term vanishes

kjkj2 þ @2g

@�2
ð��Þ ¼ 0: (3.116a)

This is possible only at the point of unstable equilibrium, @gð��Þ=@�<0; that is, at
the transition state �� ¼ �t. In a cube with the side X, this condition may be

expressed as follows

X2 ¼ ðn2x þ n2y þ n2z Þ ~X2ðP; TÞ: (3.116b)

As njs are integers, this equation defines the SABi point Xd, which is a 3d analog

of the 1d SABi point in (3.58b). Notice that for the 2d and 3d states the bifurcation

is deferred until greater lengths, than for the 1d states,
ffiffiffi
2

p
~X and

ffiffiffi
3

p
~X, respectively,

see Fig. 3.3. Equation (3.114) can be used to find the coefficients D�̂k beyond the

SABi point.

Let us resolve (3.114) for a D�(x) that has

k1 ¼ k2 ¼ �k3 ¼ �k4

in a system where T ¼ TE(P), that is, (3.51a) applies. Then the third-order summa-

tion term vanishes and the fourth-order one turns into

g0000t
2
ffiffiffiffi
V

p
X
fkg

jD�̂kj2

 �2

:

3.6 Multidimensional Equilibrium States 81



Then (3.114) can be resolve as follows

jD�̂kj2 ¼ 6V
g00tj j
g0000t

1� X2
d

X2

� �

 12V

g00tj j
g0000t

X � Xd

Xd
: (3.117)

Expanding g(�E) in (3.27a) and substituting (3.117) into the expansion, we

obtain (Verify!):

Gd ¼ Vgt þ
X
fkg

1

2
ðkjkj2 þ g00tÞ jD�̂kj2 þ

1

24V
g0000t jD�̂kj2


 �2� �

¼ V gt � 6
g00tj j2
g0000t

X � Xd

Xd

� �2
" #

:
(3.118)

Compare this expression with (3.59) and notice that for the extremals with

(d > 1)

Gd>1ðVÞ>G1ðVÞ (3.119)

because of two reasons: (1) the deviation from Vgt starts at the linear size Xd greater

than that for d ¼ 1, that is ~X; (2) the curvature of the deviation is d times smaller

than for d ¼ 1. In Fig. 3.3, the Fourier coefficients (3.117) and free energy (3.118)

are expressed through a and j of (3.56) and presented in comparison with the 1d

type-e extremals.

3.7 Thermodynamic Stability of States: Local Versus Global

According to the thermodynamic stability principle discussed above, only the states

that correspond to the free energy minima are thermodynamically stable. A theorem

from the calculus of variations (see Appendix B) says that the necessary condition

for an extremal �E(x) to deliver minimum to the functional G{�(x)} is for the

second variation to be positive:

d2G 
 0; T;P ¼ constðxÞ: (3.120)

For the functional (3.27a), the second variation takes the form of a quadratic

functional:

d2G ¼ 1

2

ð
V

d� Ĥð�EÞ d� dv; (3.121)
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where Ĥ is the Hamilton’s operator from (3.33) and (3.34) and the variation d�
obeys the Newmann-type BC (3.30b). The linear operator Ĥ has a complete set of

eigenfunctions {Cn(x)}

Ĥð�EÞCnðxÞ � @2g

@�2

� �
P;T

ð�EÞ � kr2

" #
CnðxÞ ¼ LnCnðxÞ; (3.122)

and the variation d� can be expanded in {Cn(x)}

d� ¼
X
n

anCnðxÞ: (3.123)

Substituting (3.123) into (3.121), we obtain

d2G ¼ 1

2

X
n

a2nLn: (3.124)

Thus, the problem of the thermodynamic stability of a state described by the

extremal (3.31) is reduced to the problem of the spectrum of the eigenvalues of Ĥ.

Indeed, if all the eigenvalues Ln are positive, the second variation, (3.124), is

positive definite, that is, �E(x) is a minimum. If all the eigenvalues Ln are negative,

the second variation is negative definite, that is, �E(x) is a maximum. Finally, if

some of the eigenvalues Ln of Ĥ are positive and some are negative, the second

variation takes on a positive or negative value depending on the variation of the

state d�. That is, the extremal �E(x) is a saddle point. If �E ¼ const(x) is uniform in

space, then (3.122) yields that for the stability of this state we need L¼∂2g(�E)/
∂�2 > 0, which is precisely the criterion we used in Chap. 2.

For the nonuniform equilibrium states, �E(x) (3.122) is analogous to the

Schr€odinger equation from quantum mechanics, which describes stationary motion

of a particle of mass (�h2/2k) in the potential field @2gð�EÞ=@�2. Then, Ĥ is

analogous to the energy operator,Cn(x) is the wave function, and (Ln) is the energy

of the particle. Review (3.33) and (3.34) and notice that we already know d
eigenfunctions of Ĥ that correspond to the zero eigenvalue Ln* ¼ 0—the

d-components of the gradient of the extremal �E(x):

Ci;n� ðxÞ ¼
@�E
@xi

ðxÞ; Ln� ¼ 0; i ¼ 1; :::; d: (3.125a)

These eigenfunctions are called the Goldstone modes. Although very important

for the stability of the state �E(x), they do not solve the problem completely because

the zero eigenvalue may not be the smallest one.

To resolve the problem of stability of the 1d equilibrium states �E(x), motivated

by the fact that they vary only in one, x-direction, we will be seeking the

eigenfunctions in the form of the capillary waves—the Fourier modes:

CnðxÞ ¼ cnðxÞeik2x2 ; (3.126a)
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where k2 ¼ (ky, kz), x2 ¼ (y, z), and the amplitudes satisfy the following eigenvalue

problem

@2g

@�2
ð�EðxÞÞcnðxÞ � k

d2cnðxÞ
dx2

¼ lncnðxÞ;
dcnðxÞ
dx

¼ 0 at x ¼ 0 and x ¼ X:

(3.126b)

where lns are the 1d-eigenvalues of Ĥ(�E(x)). Substituting (3.126a) into (3.122) we
obtain the relation

Ln ¼ ln þ kjk2j2 
 ln; (3.127)

which basically shows that, for the stability of 1d-states, the capillary-wave-amplitude

eigenvalue problem is the most important part because the 3d-eigenvaluesLns are not

less than the 1d-eigenvalues lns.

3.7.1 Type-e4 State: Plane Interface

Let us start with the plane interface state �e4(x), Sect. 3.4.4. As the Goldstone mode

does not solve the stability problem of this state, we need to find other

eigenfunctions and eigenvalues of the Hamilton’s operator (3.122) where the

state �e4(x) is used for the “quantum mechanical potential energy” ∂2g(�e4)/∂�
2.

Here we have to be more specific in the choice of the function g(�). Let us look at

the Case 1 of the Landau potential, that is, (2.11) with B ¼ 0 and A < 0, which has

the type-e4 APB equilibrium state:

�e4ðxÞ ¼
ffiffiffiffiffiffiffi
�A

p
tanh x

ffiffiffiffiffiffiffi
�A

2k

r !
: (3E.9)

The spectrum of Ĥ(�E(x)) is discrete for ln��2A. The 1d Goldstone mode

c0 /
d�e4
dx

/ 1

cosh2 x
ffiffiffiffiffi
�A
2k

q
 � ; l0 ¼ 0 (3.125b)

has the smallest eigenvalue zero. There is one more bound, real eigenfunction (see

(3.67) or Appendix E):

c1 / �e4ðxÞ
ffiffiffiffiffiffiffiffiffi
d�e4
dx

r
/

tanh x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�A=2k

p
 �
cosh x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�A=2k
p
 � ; l1 ¼ � 3

2
A: (3.125c)
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Normalization of the eigenfunction does not matter because they obey a linear

equation. The rest of the eigenfunctions (n ¼ 2, 3, . . .) are “scattering states”

(unbound, complex valued) with ln > �2A. Thus, the APB is neutrally stable

inhomogeneous state in the sense that it can be relocated in the x-direction to any

part of the system without any additional free energy cost. Same is true about any

type-e4 state (3.64), which represents the equilibrium interface. (Verify!) The

equilibrium state �e4, “potential energy” ∂2g(�e4)/∂�
2 for this state, and bound

eigenfunctions are shown in Fig. 3.4.

3.7.2 General Type-e and Type-n States

For other type-e and type-n states, exact solutions of the respective Schr€odinger
equations are not known and we have to look for other means to determine type of

stability of these states. That is when the Sturm’s comparison theorem (Appendix

E) is of great help. According to that theorem, the discrete band of the spectrum of

the eigenvalues {ln} can be ordered such that the greater eigenvalue corresponds to
the eigenfunction Cn with greater number of zeros:

n ¼ 0; 1; . . . ; n� � 1; n�; . . .
l0 < l1 < � � � < ln��1 < ln� ¼ 0< � � �
c0; c1; . . . ; cn��1; cn� ; . . .

(3.128)

Then, (3.128) shows that cn*(x) ¼ d�1d/dx is the eigenfunction with the eigen-

value ln* ¼ 0 and all we need to know is how many zeros this function has. Indeed,

if cn*(x) has at least one zero in the domain (0, X) then there exists another

eigenfunction cn*�1(x) with fewer zeros that corresponds to a smaller eigenvalue:

ln*�1<ln* ¼ 0, and the solution �1d(x) is unstable. Otherwise it is stable. (3.43) and
(3.50) show that d�e1/dx, d�e2/dx, d�e3/dx, and d�n/dx have zeros in the domain

0 < x < X. Hence, on the hypersurface G{�(x)} the functions �e1–3 and �n
represent saddle points. Notice that because d�e4/dx does not have zeros in the

domain �1<x < +1, the Sturm’s comparison theorem proves our previous point

that �e4 is a state of neutral stability.

Example 3.4 Find the 1d instanton (critical plate) and determine its stability in the

system described by the following free-energy density:

g ¼ g0 þ a

2
�2 � 1

4
�4; a>0: (3E.16)
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This potential may be used to model a metastable state ð��m ¼ 0Þ in a system

where stable states ð��s ! 	1Þ have much lower level of the free energy. ELE

(3.29) for this system is resolved in the following form [see (3.43)]:

d�

dx
¼ 	�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

k
1� �2

2a

� �s
: (3E.17)

Its instanton solution centered at x0 ¼ 0 is

�n4ðxÞ ¼ 	
ffiffiffiffiffi
2a

p
sec h

ffiffiffi
a

k

r
x

� �
: (3E.18)

The eigenvalue equation is

ĤcnðxÞ �
@2gð�n4Þ

@�2
� k

d2

dx2

� �
cnðxÞ ¼ lncnðxÞ: (3E.19)

The Goldstone mode of this equation is

c0 / tanh

ffiffiffi
a

k

r
x

� �
sec h

ffiffiffi
a

k

r
x

� �
; l0 ¼ 0: (3E.20)

The eigenvalue equation has one more bound eigenfunction:

c�1 / sec h2
ffiffiffi
a

k

r
x

� �
; l�1 ¼ �3a: (3E.21)

The 1d instanton is unstable because the eigenvalue l�1 < 0. Compare this

example to the domain wall and notice that the Goldstone and second bound state

switch their places. The potential, (3E.16), ELE (3E.17), solution, (3E.18), and the

bound eigenfunctions (3E.20) and (3E.21) are shown in Fig. 3.8.

3.7.3 3d Spherically Symmetric Instanton

Now let us consider thermodynamic stability of the critical droplet—3d radially

symmetric instanton (see Sect. 3.6.2). Based on the success with using the Gold-

stone mode and Sturm’s comparison theorem for the analysis of stability of the 1d

states, it is tempting to try to use the same combination for the 3d case. We will do

that by presenting here the stability analysis on the “physical level of rigor,” which
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described by the free energy

(3E.16). The potential (i),

the phase plane (ii), and the
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modes (iii): 1—instanton

(3E.18), 2—the Goldstone

mode (3E.20), and 3—the

bound eigenfunction (3E.21)
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is very illuminating and sufficiently rigorous for our purposes. First, let us present

the 3d Goldstone modes in the vector form:

Cn� ðxÞ ¼ r�3dðrÞ ¼
d�3dðrÞ

dr
jr ¼

d�3dðrÞ
dr

fi #;fð Þji; i ¼ 1; 2; 3; (3.129)

where ji and fi are the Cartesian unit vectors and projection coefficients,

respectively (see Appendix C). Then, substituting (3.129) into (3.122) and using

(C.27), we obtain an equation (Verify!):

0 ¼ Ĥð�3dðrÞÞCn� ðxÞ

¼ @2g

@�2
ð�3dÞ � k

1

r2
@

@r
r2

@

@r

� �
� 2

r2

� �� �
d�3dðrÞ

dr
fi #;fð Þji;

(3.130)

which shows that the eigenfunction

cn� ðrÞ �
d�3dðrÞ

dr
(3.131)

is the zero-eigenvalue solution of the following Sturm–Liouville problem

d

dr
r2
dcn

dr

� �
� 2þ r2

k
@2g

@�2
ð�3dðrÞÞ

� �
cn ¼ lncn (3.132)

in the domain 0 � r < 1. Taking into account that cn� ð0Þ ¼ 0 [see (3.90)] and

applying the Sturm’s comparison theorem (see Appendix E) we deduce that there

exists an eigenfunction c0(r) such that it does not have zeros in 0 � r < 1 and

l0 < ln� ¼ 0: (3.133)

This proves that the 3d-instanton has at least one eigenfunction with negative

eigenvalue, that is, this is a state of the saddle-type stability. Notice that we also

proved that the “most dangerous” mode c0(r) has the spherical symmetry similar to

that of the instanton �3d(r) itself.

3.8 Gradients of Conjugate Fields

In this section, we come back to the question of inclusion of the linear term in (3.21)

into the free energy density, (3.19a), and analyze its consequences. This term has

proper symmetry and, comparing its contribution with the other terms in (2.45), we

can see that the coefficient n has the units of length squared. This term may allow us

to account for the heterogeneous variations of the applied conjugate field H(x).
Hence, in addition to the OP-field coupling terms, we have to include the “vacuum”

88 3 Heterogeneous Equilibrium Systems



contribution of the field—the term ½mH2, where m is, for the time being, an

undetermined field-scaling coefficient. Then

G ¼
ð
V

gðP; T; �Þ þ 1

2
kðr�Þ2 � H� þ nrHr� þ 1

2
mH2

� �
d3x: (3.134)

Now let us apply the LeChatelier–Braun principle to a stable homogeneous equi-

librium state ��, which sets in a field-free system. The principle says that the reaction of

the system on small disturbances must be such as to minimize the effect of the

disturbances.Variation of the functional (3.134) yields that the equilibriumdistribution

of the OP, which appears as a result of the applied field, is described by the ELE:

@g

@�
� kr2� ¼ H þ nr2H: (3.135)

Reaction of the system on the applied field can be analyzed with the help of the

superposition of the plane waves with different wave vectors k (see Appendix F):

HðxÞ ¼
X
k

hke
ikx; �ðxÞ ¼ �� þ

X
k

D�ke
ikx; (3.136)

where the amplitudes obey the following relations h�k ¼ h�k and D��k ¼ D��k
because the waves represent the real fields. Substituting (3.136) into (3.135) and

linearizing it (the disturbances are small) we obtain the expression for the

generalized susceptibility:

wðkÞ � D�k
hk

¼ 1� nk2

@2gð��Þ @�2= þ k2
; k ¼ jkj: (3.137)

Now we can find the reaction of the system on the disturbance by calculating the

free energy change as the result of the applied field. Substituting (3.136) and (3.137)

into (3.134) we obtain (Verify!):

GfP; T;H; �� þ D�g ffi V gðP; T; ��Þ þ
X
k

jhkj2RðkÞ
" #

; (3.138a)

where

2RðkÞ ¼ m� ð1� nk2Þ2
1þ l2k2

@2gð��Þ
@�2

� ��1

(3.138b)

is the field amplification factor and the fundamental length l is defined in (3.53b).

A homogeneous field H will be balanced by the OP changes only if R(0) ¼ 0;

hence, the field-scaling coefficient is

m�1 ¼ @2gð��Þ
@�2

: (3.139)
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Then

RðkÞ ¼ @2gð��Þ
@�2

� ��1
l2 þ 2n� n2k2

2ð1þ l2k2Þ k2; (3.140)

The state �� will remain stable and the influence of the applied field will be

minimized only if R(k) > 0 for all values of k > 0. Indeed, if R(k) is negative, at
least for some values of k, then another state, possibly heterogeneous �H(x), is more

stable than ��, which means that a transition into that state is probable. Analysis of

(3.140), see Fig. 3.9, shows that R(k) > 0 for all values of k > 0 only if n ¼ 0.

Hence (3.22) is true.
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Chapter 4

Dynamics of Homogeneous Systems

In this chapter, we conjecture the “linear ansatz” equation of evolution of the order

parameter, which is consistent with the laws of thermodynamics. We analyze

solutions of this equation in different situations: close to the equilibrium state, far

away from it, or when the evolution is taking place close to the spinodal point.

Analyzing stability of homogeneous equilibrium states we find that the criteria of

their dynamic and thermodynamic stability coincide. We also take a step beyond

the linear ansatz and look at the order parameter evolution in systems with memory.

One of the conclusions that we arrive at is that all of the above considered cases do

not describe a phase transition completely because they cannot describe

overcoming of a potential barrier by the system. Hence, other forces ought to be

included into the complete theory.

4.1 Evolution Equation: The Linear Ansatz

So far we have been dealing with the states of thermodynamic equilibrium. We now

turn our attention to the situations when the system is initially not in one of these

states. Experiments show (the Zeroth Law of Thermodynamics) that in all systems

there is a tendency to evolve toward equilibrium states, which are determined by

intrinsic properties of the system and not by the initial influences. Here we want to

answer the following question: What is the equation that describes evolution of the

OP in a nonequilibrium system? We will start with a homogeneous system.

The OP evolution equation can be conjectured based on the following arguments

(see Appendix J).

First: We know that

dG ¼ �S dT þ V dPþ @G

@�

� �
P;T

d�: (4.1)

A. Umantsev, Field Theoretic Method in Phase Transformations,
Lecture Notes in Physics 840, DOI 10.1007/978-1-4614-1487-2_4,
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Then at P ¼ const, T ¼ const the condition of equilibrium is expressed as

following

@G

@�

� �
P;T

¼ 0: (4.2)

Hence, deviations of the system from the equilibrium state �� will result in the

deviations of the left-hand side of (4.2) from zero. This term may be called “the

driving force” of the evolution.

Second: The evolution equation should be able to describe relaxation of the system
to the equilibrium state. Hence, it should contain the first-order temporal derivative

of the OP. Presence of the higher-order temporal derivative of the OP is possible but

not necessary.

Third: The evolution equation should be able to describe small deviations from the

equilibrium state. Hence, it should contain the linear in the driving force term. The

equation may contain the nonlinear in the driving force terms but not necessarily.

Fourth: The evolution equation should be consistent with the coarse-graining

procedure (see Appendix A).

The four arguments discussed above suggest the following equation that

describes the nonequilibrium homogeneous OP evolution [see (J.1)]

d�

dt
¼ �g

@G

@�

� �
P;T

: (4.3)

Here g is a constant that characterizes the rate of evolution. This equation

sometimes is called “the linear ansatz.” Notice that the linear ansatz equation is

linear only with respect to the driving force but, in general, is nonlinear with respect

to the OP change.

To determine possible values of the rate constant g, we will use the second law of

thermodynamics. According to this law in the system with P ¼ const, T ¼ const,

the equilibrium state �� has less Gibbs free energy than any other allowed state:

Gð��Þ<Gð�Þ if � 6¼ ��: (4.4)

Hence, on every evolutionary path � ðtÞ ! �� that leads to �� it must be

dG

dt
<0: (4.5)

Now let us calculate the rate of change of the Gibbs free energy G that

accompanies evolution of the OP �(t) which is a solution of (4.3). First, we have

dG

dt
¼ @G

@t

� �
P;T;�

þ @G

@�

� �
P;T

d�

dt
: (4.6)
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The first term will be present in a system exposed to a time-dependent external

field. In this chapter, if not indicated otherwise, we will be assuming that such fields

are absent. Hence, the first term vanishes. Then, using (4.3) for (4.6) we obtain

dG

dt
¼ �g

@G

@�

� �2

P;T

: (4.7)

Comparing (4.5) and (4.7) we can see that

g>0: (4.8)

A few comments are in order here.

1. In the function space {�} the left-hand side of (4.3) represents a flow, while the

right-hand side a gradient of G(�). Because of that, evolution of a system

according to (4.3) is called gradient flow.
2. From (4.3) to (4.8), we can see that the free energy of the system G (strictly

speaking the difference Gð�Þ � Gð��Þ) is a Lyapunov function at the equilibrium

state ��. Remember that a continuous function L(x) with continuous partial

derivatives is called a Lyapunov function for the system of differential equations

dx/dt ¼ D(x), where D(x ¼ 0) ¼ 0, if it is positive definite, i.e. such that

L(x ¼ 0) ¼ 0 and L(x 6¼0) > 0, and if its total derivative due to the system D
(x) is non-positive: (dL/dt)D ¼ ∂L/∂x �D(x) � 0. Existence of a Lyapunov

function allows us to analyze stability of the equilibrium states of a dynamical

system and distinguish between the locally stable and unstable equilibrium

states. It also proves that the states of the evolutionary trajectory are time ordered

and the reverse evolution is impossible, that is, the evolution is irreversible [1].

3. One may argue that the system may have evolutionary paths, which do not lead

to the equilibrium state ��. However, they must lead to some other equilibrium

state (e.g., local equilibrium state instead of the global one) because otherwise

the zeroth law of thermodynamics is violated. Hence, (4.8) is true on this

path also. This analysis helps us recognize that the domain �1 < � < +1
may be broken into “basins of attraction” of different equilibrium states

��1; ��2; . . . (see Chap. 2).
4. A word of caution is necessary here regarding the concept of nonequilibrium

free energy of the system. Rigorously speaking, Statistical Mechanics provides a

recipe for how to calculate the free energy at an equilibrium state only. Then,

how can we define the free energy at a nonequilibrium state? The concept of

the conjugate field developed in Chap. 2 may help us clarify the concept

of nonequilibrium free energy. Indeed, using (2.46), we may define the free

energy at a nonequilibrium state of the OP � as equal to the free energy at the

same value of the OP, which has attained equilibrium in the presence of

the conjugate field H, plus H times the OP value (see Appendix J):

GðP; T; 0; �Þ ¼ GðP; T;H; ��Þ þ H��; if � ¼ ��ðP; T;HÞ:
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4.2 Solutions of the Linear-Ansatz Dynamic Equation

4.2.1 Evolution of Small Disturbances

Now we can analyze the general dynamic features of the linear ansatz. Let us start

with the situation when in the beginning the system was slightly pulled away from

the equilibrium state ��. Then we can expand the free energy near this value

@G

@�
¼ @Gð��Þ

@�
þ @2Gð��Þ

@�2
D� þ 1

2

@3Gð��Þ
@�3

D�2 þ 1

6

@4Gð��Þ
@�4

D�3 � � � ;
D� ¼ � � ��:

(4.9)

Taking into account that @Gð��Þ @�= ¼ 0, we obtain an equation for the small

disturbances D�

dD�
dt

ffi �g
@2Gð��Þ
@�2

D�: (4.10)

This is a linear differential equation of the first order which has a general

solution

D� ¼ D�ð0Þeb1t; b1 ¼ �g
@2Gð��Þ
@�2

: (4.11)

Here b1 is called the amplification factor. As you can see from (4.11), the sign of

the amplification factor determines asymptotic behavior of the small disturbances:

if b1 < 0 then |D�(t)| decreases with time (decays)—relaxes, if b1 > 0 then |D�(t)|
increases with time (grows) and soon leaves the domain of validity of the expansion

(4.10). If b1 ¼ 0 then, according to (4.11), |D�(t)| neither grows nor decays, which
means that our expansion in (4.10) is not sufficient and we have to include the

higher-order terms from (4.9). Given the condition, (4.8), the sign of the amplifica-

tion factor b1 is fully determined by the sign of @2Gð��Þ @�2
�

. Hence, @2Gð��Þ @�2
�

is

a very good indicator of stability of a homogeneous equilibrium state:

@2Gð��Þ @�2
�

>0 at the stable equilibrium, @2Gð��Þ @�2
�

<0 at the unstable equilib-

rium, and @2Gð��Þ @�2
� ¼ 0 at the neutral equilibrium (spinodal point).

The characteristic time scale of the relaxation

t ¼ 1

b1j j ¼
1

g
@2Gð��Þ
@�2

����
����
�1

(4.12)

determines the rate of the evolution. If the system has more than one stable

equilibrium, the time scales near them may be different. For instance, for the

system described by the free energy, (2.11), the time constant of the globally stable

state is smaller than that of the locally stable one. If j@2Gð��Þ @�2
� j ! 0, that is, near

the spinodal points, then t ! 1. All of these cases are depicted in Fig. 4.1.
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The type of stability associated with b1 is called dynamic because it originates

from the dynamic equation. It is very closely related to the thermodynamic stability

studied in Chap. 2. Indeed, b1 < 0 for all locally stable homogeneous states and

b1 > 0 for the unstable ones. However, b1 is not a perfect indicator of the global

stability because one can envision a potential G (not considered in the previous

chapters), where the curvature of the deeper well is less than that of the shallower

one. The situation is even more complicated for the heterogeneous states; it will be

considered in the next chapter.

4.2.2 Critical Slowing Down

As we observed from (4.10), our analysis of the dynamic stability fails at the

spinodal point, that is, if G0ð��Þ ¼ 0 and G00ð��Þ ¼ 0: A general effect that takes

place at this point is called critical slowing down. But the details depend on the

higher-order expansion terms in (4.9). If G000ð��Þ 6¼ 0; then

dD�
dt

ffi b2D�
2; b2 ¼ � 1

2
g
@3Gð��Þ
@�3

(4.13a)
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Fig. 4.1 Evolution of the system near equilibrium states according to the solutions (4.11) of the

linearized dynamic equation (4.10)
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and

D� ¼ D�ð0Þ
1� D�ð0Þb2t

: (4.13b)

Important feature of (4.13b) is that the temporal behavior of D� depends not

only on the sign of G000ð��Þ but also on the sign of the initial condition D�(0).
Indeed, if D�ð0ÞG000ð��Þ>0, then D�(t) is a monotonically decaying function with

the asymptotic behavior of t�1 instead of the exponential, exp(b1t). But if

D�ð0ÞG000ð��Þ<0, then D�(t) increases without bound (finite-time blow-up) and

quickly leaves the domain of small disturbances. The rate of this process is

characterized by the blow-up time t�2 ¼ ðD�ð0Þb2Þ�1
. Thus, if G000ð��Þ 6¼ 0 , the

system is dynamically unstable because the runaway scenario is always possible:

all you need to do is to choose the initial disturbance such that D�ð0ÞG000ð��Þ<0.

If G000ð��Þ ¼ 0 but G0000ð��Þ 6¼ 0, then

dD�
dt

ffi b3D�
3; b3 ¼ � 1

6
g
@4Gð��Þ
@�4

(4.14a)

and

D� ¼ D�ð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2D�2ð0Þb3t

p : (4.14b)

As we can see in this case the asymptotic behavior of the OP disturbance

depends on the sign of G0000ð��Þ but is independent of the sign of D�(0). If

G0000ð��Þ<0 , the system is unstable with the blow-up time t�3 ¼ ð2D�2ð0Þb3Þ�1:
If G0000ð��Þ>0 , the system is stable but its asymptotic approach to the equilibrium

is D�~t�½ instead of the exponential one, that is, much slower than near the regular

point of equilibrium.

4.2.3 Nonlinear Evolution

Although many features of the evolution in homogeneous systems may be under-

stood from the analysis of the linearized equation (4.10), some of the features can

be revealed only if we solve the full nonlinear equation (4.3). We will demonstrate

the solution using the tangential potential of Sect 2.5. Then

d�

dt
¼ 2gW�ð1� �Þð� � �tÞ; (4.15)

where �t is the OP value of the transition state (2.35b). Taking into account that

1

xð1� xÞðx� aÞ ¼
1

að1� aÞðx� aÞ þ
1

ð1� aÞð1� xÞ �
1

ax
;
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we obtain a general solution of (4.15)

2gWt ¼ ln j� � �tj
�tð1� �tÞ

� ln j1� �j
1� �t

� ln j�j
�t

� const (4.16a)

where

const ¼ ln j�ð0Þ � �tj
�tð1� �tÞ

� ln j1� �ð0Þj
1� �t

� ln j�ð0Þj
�t

(4.16b)

and �(0) is the OP value at t ¼ 0. The solution, (4.16a), is depicted in Fig. 4.2.

As we can see the equilibrium values �� ¼ 0; �t; 1; divide the OP domain into four

“watersheds”, each controlled by one manifold. Approaching the stable equilibrium

state or departing from the unstable one the OP exhibits exponential tails, which

have been revealed by the linearized analysis of (4.11). Compare solution (4.16a)

with the Sect. G.2 of Appendix G and notice the similarities.

4.2.4 More Complicated Types of OPs

If the OP of the system is a complex variable, the driving force in (4.3) should be

understood as a derivative of the analytic function G(�). In this case,

Re@2Gð��Þ @�2
�

serves as an indicator of stability and Im@2Gð��Þ @�2
�

is proportional
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Fig. 4.2 Solutions (4.16) of the nonlinear homogeneous dynamic equation (4.15). The arrow of

time is from left to right. Notice the basins of attraction of two stable states, �� ¼ 0; 1; and the

repulsive basins of the unstable state �� ¼ �t
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to the frequency of oscillations. If the OP is a multicomponent variable, the

linear-ansatz dynamic equation should be written for each component separately

(see Appendix J, }3). The dynamic equations for the components will contain the

cross-terms, which obey the Onsager symmetry relations. The cross-coefficients

affect stability of the equilibrium states.

4.3 Beyond the Linear Ansatz

Now let us analyze a “nonlinear ansatz,” that is, a possibility that the OP evolution

equation is a nonlinear function of the driving force

d�

dt
¼ �F

@G

@�

� �
P;T

( )
: (4.17)

The function F(x) is subject to the following the constraints

1: Fð0Þ ¼ 0

2: FðxÞ � analytic near x ¼ 0:
(4.18a)

Substituting (4.17) into (4.6) and comparing it with (4.5), we find another

constraint on the function F(x) in the domain of its definition:

3: xFðxÞ>0 near x ¼ 0: (4.18b)

An example of a nonlinear ansatz, the function F(x)¼gx+ax2+bx3, satisfies the
conditions of (4.18) if g > 0, a ¼ 0, and b > 0. Thus, the linear-ansatz equation

(4.3) is a valid, but not the only, choice of the OP evolution equation. The nonlinear

ansatz may be thought of as a system with the relaxation coefficient that depends on

the OP itself—g(�). Then the conditions of (4.18) limit the allowed functional

dependencies of g(�).

4.4 Relaxation with Memory

The linear and nonlinear ansatz provide instantaneous connections between the

driving force and the reaction of the system. Some systems, so to speak, may have

memory, that is, current reaction of the system is affected by the values of the

driving force from the past. This property may be expressed by the “memory

integral” over the driving force

d�

dt
¼ �

ðt
�1

M t� t0ð Þ @G
@�

� t0ð Þð Þ dt0; (4.19)
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where the integral kernel M(t�t0) is called the memory function. The memory

integral summarizes contributions of the driving force from all the moments in

time up to the current one—t. It does not spread into the future (t00 > t) in order not
to violate causality.

Different functional forms of the memory function determine different evolu-

tionary paths of the system.

1. If the system has “no memory”:

M t� t0ð Þ ¼ gd t� t0ð Þ (4.20)

then (4.19) reduces to the linear-ansatz (4.3).

2. If the system has “full memory”:

M t� t0ð Þ ¼ 1

m
¼ const t; t0ð Þ (4.21)

then (4.19) can be differentiated with respect to t once to yield:

m
d2�

dt2
¼ � @G

@�
ð�Þ: (4.22)

This equation is analogous to the Newton’s equation of motion of a particle of

mass m in the force field G(�), where �(t) is the position coordinate of the

particle. Solutions of this equation are known to have completely different

dynamics than those of the linear-ansatz (4.3). For instance, the small deviations

from a stable equilibrium D�, instead of relaxation as in (4.11), represent motion

of a frictionless harmonic oscillator

D�ðtÞ ¼ A cos otþ ’0ð Þ; o2 ¼ 1

m

@2G ��ð Þ
@�2

: (4.23)

3. If the memory function is

M t� t0ð Þ ¼ Re�ðt�t0Þ=tm (4.24)

then differentiating (4.19) with respect to t we obtain (Verify!)

d2�

dt2
þ 1

tm

d�

dt
¼ �R

@G

@�
ð�Þ: (4.25)

This equation has features of both equations—no memory and full memory;

hence, the integral kernel, (4.24) can be called the partial-memory function. Equa-

tion (4.25) describes motion of a damped oscillator. Properties of its solutions are
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well known [2]. Compare (4.3, 4.22, 4.25) and notice that for the full-memory and

no-memory functions to be the limiting cases of the partial-memory function it

must be

R ¼ 1=m; tm ¼ mg: (4.26)

4.5 Other Forces

A closer inspection of Fig. 4.2 shows that starting with any initial condition �(0) the
system stays in the same basin and never crosses the divider. This means that (4.3)

does not actually describe a phase transition in its entirety, only the relaxation-

to-equilibrium part of the process. Neither memory nor nonlinearity can fix this

problem. What changes do we need to make in (4.3) in order for it to be able to

describe the phase transition?

In Chap. 2, we reached the conclusion that a phase transition implies overcoming

the potential barrier, that is, moving “uphill” in the representative space of the

system. This cannot be accommodated by the driving force (∂G/∂�) alone because
this force drives the system “downhill.” We must include into the dynamic equation

“other forces” that can push the system uphill:

d�

dt
¼ �g

@G

@�

� �
P;T

þ F: (4.27)

One way to overcome the barrier is to include the spatial diffusive force, k∇2�,
which, as we discussed in Chap. 3, appears as a result of the gradient energy

contribution. According to (3.29), the diffusive force can balance the driving

force, hence push the system uphill. This will be discussed in Chap. 5.

Another possibility is to take into account thermal fluctuations, which arise due

to the atomic/molecular nature of the physical systems, that is, microscopic degrees

of freedom. In the framework of the dynamic equation, the effect of the fluctuations

can be expressed by adding the so-called “Langevin force.” This will be discussed

in Chap. 7.
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Chapter 5

Evolution of Heterogeneous Systems

In this chapter, we apply the ideas of the previous chapters to the dynamics of

heterogeneous systems and obtain the celebrated time-dependent Ginzburg-Landau

equation (TDGLE) of the order parameter evolution. This equation was applied to

various heterogeneous states of the system. Application of TDGLE to an equilib-

rium state shows that the criteria of the dynamic and local thermodynamic stability

coincide. In case of a plane interface, TDGLE yields a traveling wave solution with

a finite thickness and specific speed proportional to the deviation of the system from

equilibrium. The drumhead approximation of this equation reveals different driving

forces exerted on a moving interface and allows us to study evolution of droplets of

a new phase. We extend the definition of the interfacial energy into the nonequilib-

rium domain of the thermodynamic parameters (phase diagram). We analyze

growth dynamics of the anti-phase domains using results of FTM and the Allen-

Cahn self-similarity hypothesis. The analysis reveals the coarsening regime of

evolution, which was observed experimentally.

5.1 Time-Dependent Ginzburg-Landau Evolution Equation

Let us now look at the evolution of a spatially nonuniform system. In the spirit of

discussion of the nonequilibrium systems in Chap. 4, we assert that the evolution

equation should guide the system toward one of the equilibrium states, and the rate

of change of OP should be proportional to the driving force. The only difference

between the homogeneous and heterogeneous systems is that in the latter the

driving force includes spatially diffuse forces. On the basis of this argument and

comparing the equilibrium (2.12) with (3.29) a following evolution equation has

been proposed instead of (4.3):

d�

dt
¼ �g

@g

@�

� �
P;T

� kr2�

" #
: (5.1)

A. Umantsev, Field Theoretic Method in Phase Transformations,
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In the literature, this equation is known as the time-dependent Ginzburg-Landau

equation (TDGLE). Using the expression of the variational derivative of the total

free energy functional G{�}, with respect to the OP (see Appendix B), (5.1) can be

written as follows

d�

dt
¼ �g

dG
d�

� �
P;T

: (5.2)

Comparing TDGLE in this form with the linear-ansatz (4.3), we see that the

variational derivative in the former replaces the partial functional derivative in

the latter. This is important for our understanding of the general properties of the

evolution according to TDGLE. For instance, again it can be recognized as a gradient

flow. The difference, of course, is that now the Lyapunov function(al) is the total free

energy functional, (3.27), not the function G(�). Indeed, using (5.2), we find that if

(4.8) is valid then the total free energy of the system decreases (dissipates)

dG

dt
¼
ð
dG
d�

d�

dt
d3x ¼ �g

ð
dG
d�

� �2

d3x< 0: (5.3)

That is why the systems described by TDGLE are called dissipative. Notice,

however, that evolution of the total ordering in the system is not determined

d

dt

ð
� d3x ¼

ð
d�

dt
d3x ¼ �g

ð
dG
d�

d3x >
< 0: (5.4)

Also, our conclusions regarding the nonlinear rate/driving force relation (Sect.

4.3) and memory function (Sect. 4.4) are valid here, if the variational derivative

dG/d� replaces partial functional derivative ∂G/∂�.
Notwithstanding, even evolution of small disturbances in a heterogeneous

system may be very different from that in a homogeneous one due to two major

aspects. Firstly, in a heterogeneous system, there are small perturbations of

the homogeneous equilibrium state which are spatially nonuniform; this changes

the rate of their evolution. Secondly, and more significantly, in a heterogeneous

system there are essentially heterogeneous equilibrium states, near which the

evolution of small perturbations is significantly different from that near the homo-

geneous ones.

5.2 Motion of Plane Interfaces

In addition to the small perturbations of the equilibrium states, there exists another

important group of solutions of the dynamic equation (5.1)—group-invariant

(similarity) solutions. The idea behind these solutions is to reduce a partial
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differential equation (5.1) to an ordinary differential equation by using a particular

symmetry of the system. Important examples of such solutions are called traveling
waves, which use the translation invariance, expressed in the existence of the

Goldstone modes (Sect. 3.7). That is, we seek a solution in the form

�ðx; tÞ ¼ �ðuÞ; u ¼ nx� vt: (5.5)

Here n ¼ (j1, j2, j3) is a unit vector and v is a constant, the wave speed, which needs
to be determined. A traveling wave solution of (5.5) may be visualized as a plane

structure with profile given by �(u) moving through the 3d space with speed v in the
direction n. This wave has the Goldstone mode in the direction n and translational

symmetry in any direction perpendicular to n. Using the chain rule of differentia-

tion you can see that

@�

@t
¼ � d�

du
v; r� ¼ d�

du
n; (5.6)

r2� ¼ d�

du

@2u

@x2
þ @2u

@y2
þ @2u

@z2

� �
þ d2�

du2
@u

@x

� �2

þ @u

@y

� �2

þ @u

@z

� �2
" #

¼ d2�

du2
: (5.7)

In (5.7), the parenthesis with the second derivatives vanishes due to (5.5) and the

bracket is equal to one because |n| ¼ 1. Using (5.6) and (5.7) for (5.1), we arrive at

the ordinary differential equation

k
d2�

du2
þ v

g
d�

du
� @g

@�

� �
P;T

¼ 0: (5.8)

This is an autonomous equation, that is, an ordinary differential equation in which

the independent variable does not appear explicitly. An autonomous equation is

invariant under the Euclidean transformation u ! u + a. Since we know that the

solution must be translation invariant we can reduce the order of the differential

equation. First, we change the dependent variable from �(u) to

q �ð Þ ¼ d�

du
: (5.9a)

Second, by chain differentiation of (5.9a) we find that

q
dq

d�
¼ d2�

du2
: (5.9b)
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Third, we substitute (5.9) into (5.8) and obtain the first-order Abel-type ODE

qð�Þ k
dq

d�
þ v

g

� �
¼ dg

d�
: (5.10)

In Chap. 3, we analyzed the equilibrium properties of (5.10), that is with v ¼ 0,

and obtained an exact solution for a general function g(P, T, �) in the form

q �ð Þ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðgð�Þ � mÞ=kp

[see (3.43)]. In the infinite domain, the solution takes

the form of (3.66) or (3.67). Unfortunately, for a moving interface (v6¼0) such a

general, exact solution does not exist.

However, in the case of a polynomial function g(�) one may try to guess a

solution. For instance, when g(�) ¼ P4(�) one may try to find the solution in the

form q(�) ¼ P2(�). Indeed, let us try to solve (5.10) for the Landau free-energy

potential (2.11). Using the expression, (2.13), for the stationary points (the equilib-

rium set) we can write

@g

@�

� �
P;T

¼ �ð� � ���Þð� � ��þÞ: (5.11)

Then the dynamic equation (5.8) takes the form

q k
dq

d�
þ v

g

� �
¼ �ð� � ���Þð� � ��þÞ: (5.12a)

Physically, if we intend to analyze a first-order transition, we are looking for a

solution of (5.12a), which approaches the equilibrium states � ¼ 0 and � ¼ ��þ far

away from the wave. This motivates the following BC: (Why?)

qð0Þ ¼ qð��þÞ ¼ 0: (5.12b)

The problem (5.12) has a solution of the form

q ¼ Q�ð� � ��þÞ: (5.13)

Substituting (5.13) into (5.12a) and balancing the terms of the same power in �,
we find that indeed this is the case if

Q ¼ �1ffiffiffiffiffiffi
2k

p ; v ¼ �g

ffiffiffi
k
2

r
��þ � 2���
� �

: (5.14)

Now �(u) can be found by integrating (5.9a). It has the form

�vðuÞ ¼
��þ

1þ edðuþaÞ ; d ¼ ��þQ ¼ � ��þffiffiffiffiffiffi
2k

p ; (5.15)

where the constant of integration a is specified by the boundary or initial conditions.
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Equation (5.14) identifies the quantity ��þ � 2���
� �

as a “driving force” for

the interface and establishes the relationship between the speed v and parameters

of the system. It shows that in a system with B 6¼ 0 at equilibrium (T ¼ TE)
the interface is not moving [see (2.19d)] and that for T > TE and T < TE the

interface is moving in opposite directions because the quantity ��þ � 2���
� �

has

opposite signs (Verify!). However, the sign of v can be reversed not only by

changing the thermodynamic conditions but also by the reflection (Q ! �Q).
Two possible signs of Q manifest mirror symmetry of the system: for Q > 0 the

wave is traveling in the direction of increasing u, for Q < 0 the opposite is true

(see Fig. 5.1).

Comparison of (5.13) with (3.66) and Eq. (5.15) with (3.64) shows that the

moving interface has pretty much the same structure as the stationary one. The

following questions are in order here: What structural changes do occur when

the interface solution “starts moving”? Does its thickness change? The thickness

of the moving wave can be estimated by using the definition (3.32f). For the wave

(5.15) we have

d�v
du

¼ � d��þe
du

ð1þ eduÞ2
: (5.16a)

This is a bell-like function with maxu jd�v=duj ¼ d��þ
�� ��=4. Hence,

Lv ¼ 4

jdj ¼
4
ffiffiffiffiffiffi
2k

p

��þ
: (5.16b)
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Fig. 5.1 Waves traveling in

different directions
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As you can see the thickness of the traveling wave changes if k or ��þ (or both)

change, that is, if (P, T) change. On the other hand, for the tangential potential

��þ ¼ constðP; TÞ; hence, ifk ¼ const(P,T) thenLv ¼ const(P,T), thusLv ¼ const(v).
Equation (5.14) is very important for understanding mathematical features of our

system. First, it shows that a nonlinear parabolic differential equation can support

traveling wave solutions. However, unlike the linear wave equation, which is

hyperbolic and propagates any wave form with the same speed, the nonlinear

parabolic equation allows only certain wave profiles to propagate, each one with

its own velocity. In other words, our system is not Galilean invariant (Why?).

Second, (5.14) shows that the velocity is proportional to the deviation from

equilibrium, for which ��þ � 2���
� �

is a measure. Third, together with (5.15),

it helps find the characteristic scales of the system: length 1/d and time 1=ðg��2þÞ,
and a useful expression for the velocity v ¼ ðg=2dÞ��þ ��þ � 2���

� �
: Fourth, the

function d�/du from (5.16a) is a solution of the equation

k
d2

du2
þ v

g
d

du
� @g �vð Þ

@�

� 	
d�v
du

¼ 0: (5.17)

Fifth, it is possible to resolve (5.8) or (5.10) for a more complicated potential that

g ¼ P4(�).

Example 5.1 Find the traveling wave solution for the anti-phase domains.

The anti-phase domain boundaries appear in the system that underwent the

second-order transition (see Sects. 2.6.2, 5.5 and Example 3.2). Hence, we are

looking for the solution of (5.12a) for the potential (2.11) with B ¼ 0, A < 0 and

with the BC

qð���Þ ¼ qð��þÞ ¼ 0: (5E.1)

This is

q ¼ Q1ð� � ���Þð� � ��þÞ: (5E.2)

Substituting (5E.2) into (5.12a) and balancing the terms of the same power in

� we find that

Q1 ¼ �1ffiffiffiffiffiffi
2k

p ; v1 ¼ gkQ1 ��þ þ ���
� �

: (5E.3)

However, after the second-order transition, see (2.44a)

��þ þ ��� ¼ 0: (5E.4)

Hence, a plane interface separating two variants of the same phase cannot move at all.
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Example 5.2 Show that q ¼ Q2� � � ���ð Þ (5E.5)

is another solutions of (5.12a) and try to find an application for it.

Example 5.3 Find the relation between the velocity n and temperature of a system

described by the tangential potential.

Similar to Example 3.1, first, we find the rescaled value of the rate constant

~g ¼ g
C2

: (5E.6)

Then, substituting ��þ ¼ C; ��� ¼ C~�t; ~�t ¼ 1=2þ 3D=W from (2.34a),

(2.35b), (5.37) and (3E.3), (5E.6) into (5.14) and (5.16b) we obtain

v ¼ m TE � Tð Þ; m � mL

sTE
; m � ~g~k; (5E.7)

Lv ¼ 4

ffiffiffiffiffi
~k
W

r
: (5E.8)

Here m is called the kinetic coefficient (do not confuse with the chemical potential

of Sect. 3.4); it is a measurable quantity in the experiments on the kinetics of phase

transformations, e.g., crystallization. Notice that the mobility m and kinetic coeffi-

cient m in (5E.7) are OP-scale invariant. Because for the tangential potential the

thickness (5E.8) is velocity-independent, (5.13), (5.14), (5E.7) is also a 1d solution

of (5.1) for the uniform but time-dependent temperature field T(t). (Verify!)

5.3 Dynamic Stability of Equilibrium States

Dynamic stability of equilibrium states can be studied in a systematic way by

analyzing evolution of small perturbations near these states. The perturbations

are expressed as a superposition of some suitable set of normal modes, which
must be complete for such a superposition to be possible, and examine equations

of motion of each mode. In obtaining these equations from the relevant equations of

motion of the whole system, we retain only terms which are linear in the

perturbations and neglect all terms of higher order. Then, inserting

�ðx; tÞ ¼ �EðxÞ þ D�ðx; tÞ (5.18)

into TDGLE (5.1) and presenting ∂g/∂� by its Taylor series near the equilibrium
state �E we obtain:

1

g
@D�
@t

¼ kr2D� � @2g

@�2
ð�EÞD� �

1

2

@3g

@�3
ð�EÞðD�Þ2 � � � � (5.19)
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(Why is @gð�EÞ=@�missing in (5.19)?) Neglecting all terms beyond the first

order in D�, we get the linearized problem

1

g
@D�
@t

¼ �Ĥð�EÞD�; Ĥð�EÞ ¼
@2g

@�2
ð�EÞ � kr2: (5.20)

Not surprisingly the problem of dynamic stability came down to the problem

of the eigenvalues of the Hamilton’s operator of the equilibrium state in question.

We can benefit greatly from the analysis of the properties of this operator that was

done in Chap. 3. Here we will repeat briefly some of the critical steps of that

analysis.

5.3.1 Homogeneous Equilibrium States

Let us first consider evolution of the small perturbations D� near the homogeneous

equilibrium states �E ¼ ��. In this case, (5.20) turns into a linear PDE with constant

coefficients. Again, as done in Sect. 3.6.3, we use the method of Fourier trans-

form (see Appendix F). The only difference is that now we use the integral

transform instead of the discrete one. Replacing D�(x, t) in (5.18) with its Fourier

transform

D�ðx; tÞ ¼
ð
D�̂ðk; tÞ eikx dk

D�̂ðk; tÞ ¼ 1

ð2pÞ3
ð
D�ðx; tÞ e�ikx dx

(F.13)

we obtain the ODE for the Fourier transforms D�̂ðk; tÞ

dD�̂
dt

¼ bðkÞD�̂; (5.21a)

bðkÞ ¼ �g kjkj2 þ @2g

@�2
ð��Þ


 �
: (5.21b)

This equation can be solved as an initial value problem

D�̂ðk; tÞ ¼ D�̂0ðkÞ ebt;
D�̂0ðkÞ ¼

1

ð2pÞ3
ð
D�ðx; 0Þ e�ikx dx;

(5.22)

where the coefficients D�̂0ðkÞ are the Fourier transforms of the initial condition.
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Same way as for the homogeneous perturbations, (4.11), the amplification factor

of the small heterogeneous perturbations b determines the direction and rate of the

evolution—recall that the time scale of evolution is t ¼ |b|�1, (4.12). Similar to

the homogeneous case b is a real number for all parameters of the system and

perturbations, but differs from that of the homogeneous case is that now b depends

on the wave number k ¼ |k| of the wavevector k ¼ (kx, ky, kz) of the Fourier

transform D�̂ðk; tÞ. If @2gð��Þ=@�2 > 0 (the state �� is stable—a phase) then b < 0 for

all wavevectors; if @2gð��Þ=@�2 < 0 (the state �� is unstable) then b < 0 for the wa-

vevectors with the wave numbers k > kn, b > 0 for 0 < k < kn, and b ¼ 0 for the

wavevectors with the neutral wavenumber k ¼ kn

k2n ¼ � 1

k
@2gð��Þ
@�2

: (5.23)

These cases are depicted in Fig. 5.2. For instance, for the transition state ��t of the
tangential potential (2.33)

ktn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2 � ð6DÞ2

2kW

s
; (5.24)

which shows that the transition state is dynamically unstable if |D| < W/6, that is,

between the spinodal lines of the phase diagram.

It is convenient to think about individual harmonic wavemodes defined by the

components of the wavevector k ¼ (kx, ky, kz). For instance, the “most dangerous”

wavemode is the one with the greatest value of the amplification factor b.
For TDGLE (5.1), it is the one with km ¼ 0 (see Fig. 5.2). Then you can see that

wavenumber k =|k|

am
pl

ifi
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n 

fa
ct
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0

β

knkm
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3

Fig. 5.2 Amplification

factors for the homogeneous

equilibrium states �� in a

system described by TDGLE

(5.1). The state is (1) stable,

(2) neutral, and (3) unstable
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for TDGLE there is only one most dangerous mode km ¼ (0, 0, 0)—uniform

disturbance, but there are many neutral modes kn ¼ (kn,x, kn,y, kn,z) defined by the

equation

k2n;x þ k2n;y þ k2n;z ¼ k2n (5.25)

As you can see from this equation, the neutral modes belong to the sphere of

radius kn centered at the origin of the Fourier space k.

Comparing the dynamical stability analysis of this section and Sect. 4.2.1 to the

thermodynamic stability analysis of Sect. 2.3, we can see that they lead to the same

conclusion that the stability of the state �� is determined by the sign of @2gð��Þ=@�2.
The advantage of the dynamical analysis is that we can learn more about the rate of

attainment of the state in the system.

It is prudent here to make another comment regarding the normal modes; they

must be not only small in amplitude, but also they cannot have very high

wavenumbers, so that |k| � (interatomic distance)�1, see (7.27) and Sect. 10.2.

5.3.2 Heterogeneous Equilibrium States

In Sect. 3.7.1, we found the plane, stationary interface �E ¼ �e4(x), which separates
two phases at equilibrium, to be thermodynamically stable. Let us analyze now the

dynamical stability of this state. Taking into account our success with the analysis

of the thermodynamic stability of this state, we shall represent the small

perturbations D�(x, y, z, t) in the form of the capillary waves, i.e., normal modes

on the interface

D� / exp btþ iðkzzþ kyyÞ
� 


cnðxÞ; (5.26a)

where cn(x) are the eigenfunctions of the Hamilton’s operator Ĥ(�e4(x)) with the

eigenvalues ln. Substituting this expression into (5.20) we obtain the following

dispersion relation

b ¼ �g ln þ k k2z þ k2y

� �h i
: (5.26b)

The solution (5.26a) represents motion of transverse (y, z)-plane waves

superimposed on the normal x-deformations of the interfacial structure �E ¼ �e4(x).
Their evolution depends on b. As b in (5.26b) is a real number (why?), the separated

solutions will diminish if b < 0, grow if b > 0, and remain stationary if b ¼ 0.

Notice from the dispersion relation (5.26b) and condition (3.26) that the second

term is always negative due to the stabilizing influence of the gradient energy. This

effect may be compared to the effect of the surface tension on the capillary waves
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on the water surface. The first term in (5.26b) is almost always negative (review

Appendix E). The only other option for this term is to be equal to zero for the bound

state with n* ¼ 0. Hence, our dynamic stability analysis of the domainwall (interface)

shows that it is neutrally stable with the Goldstone mode (n* ¼ 0, ky ¼ 0, kz ¼ 0)

being the “most unstable.” Thismode represents a parallel shift of the interface, which

does not change the thermodynamic balance in the system because the phases on both

sides of it are at equilibrium. Notice that the conclusion from the dynamic stability

analysis is equivalent to that of the thermodynamic one. The significant advantage

of the former is that it can reveal the rate of growth or decay of different modes.

5.3.3 Morphological Stability of Moving Plane Interface

At this juncture, it is natural to ask the following question: “Is the moving plane

interface solution �v(u) stable with respect to the “capillary waves:” on it?

To answer this question, we perturb the solution (5.15) with the capillary wave of

small amplitude N(u)

� x; tð Þ ¼ �vðuÞ þ NðuÞe btþik2x2ð Þ; (5.27a)

where nk2ð Þ ¼ 0 and x2 ¼ 0; y; zð Þ, and substitute (5.27a) into (5.1). After lineariza-
tion, application of (5.8), and factorization of the exponential, it reduces to the

following equation

k
d2N

du2
þ v

g
dN

du
� @2g �vð Þ

@�2
þ k k2j j2 þ b

g

� 	
N ¼ 0: (5.27b)

Compare (5.27b) with (5.17) and notice that it has a solution

N ¼ d�v
du

(5.27c)

with the solvability condition

b ¼ �gk k2j j2: (5.27d)

The latter tells us that the moving plane interface (5.14), (5.15) is neutrally stable

(see Fig. 5.2). Notice that the dispersion relation is independent of the barrier-height

parameter. We may interpret this result as following: for the fixed kinetic coefficient

and interfacial energy the stability criterion is independent of the interfacial

thickness.
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5.4 Motion of Curved Interfaces: Drumhead

(Sharp Interface) Approximation

As we have seen in the previous section a plane interface moving with a constant

speed may have practically the same structure as that at equilibrium. This is a result

of a delicate misbalance of the “thermodynamic,” ð@g=@�Þ, and “gradient,”

ðk d2�=du2Þ, forces, which drives the interface with speed v leaving its structure

practically unchanged. We may ask a question: Is it possible that a moving curved
interface also preserves its structure? The problem is that in addition to the forces

affecting the plane interface the curved interface will experience one more force,

“geometric,” which can be identified through a transformation to a curvilinear

coordinate system. Capitalizing on our success in Sect. 3.6.1 with the application

of the curvilinear coordinates to the study of equilibrium interfaces, we introduce

curvilinear time-dependent coordinates {u ¼ U(x, t), v ¼ V(x, t), w ¼ W(x, t)}
such that during the entire process OP is a function of one coordinate only: � ¼ �(u)
(see Fig. 3.6). Velocity of motion vn(v, w, t) of the surface U ¼ const is determined

by the relation

@U

@t
þ vn rUj j ¼ 0; (5.28)

where vn defines the normal component of the velocity, that is, the component

perpendicular to the level surfaces U ¼ const. The tangential component of

the velocity is not specified by this method. The latter may be defined separately

if there is a need. In the curvilinear system of coordinates, TDGLE (5.1) takes

the form

k
d2 �

du2
þ vn

g
þ 2kK

� �
d�

du
� @gðT; �Þ

@�
¼ 0: (5.29)

To solve (5.29), a number of different techniques may be used. We will

demonstrate here how the method of averaging can be used to derive the evolution

equation for a piece of an interface. First, we introduce the averaging operator

Â � f �
ðua
ub

f ð�ðuÞ; uÞ du; (5.30)

where the integration is over the thickness of the interface, that is, the interval

(ub, ua) end points of which are located outside the interface zone in the regions

occupied by the respective phases: �(ub)¼�b and �(ua)¼�a (see Fig. 3.6). However,
straight averaging of (5.29) will eliminate the driving force term becauseÐþ1
�1 @gðTE; �e4Þ=@� du ¼ 0, see (3.35). Hence, proper averaging of the TDGLE

should include a weight factor. As the weight factor for the averaging of (5.29) we
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use d�/du (for the choice of the weight factor, see Appendix D). Then, taking into

account that d�/du vanishes at ua and ub we obtain

Â � d2�

du2
d�

du

� �
¼ 0: (5.31a)

Using the relation

dg ¼ @g

@�
d� (5.31b)

we obtain

Â � @g

@�

d�

du

� �
¼ gðuaÞ � gðubÞ ffi ½g�ab; (5.31c)

where ½g�abis the jump of the free energy density from one phase to another.

The difference between this quantity and the one defined in Sect. 2.1 is that now

we are dealing with the phases which are not at equilibrium with each other and,

hence, ½g�ab 6¼ 0. Furthermore, using (3.70a), the condition of the small geometrical

number, (3.85), and the fact that (d�/du)2 is a bell-like, even function of u
(see Sect. 3.4), we find

Â � vn
g
þ 2kK

� �
d�

du

� �2
( )

¼ k�Â � k
d�

du

� �2
( )

þ O L3vk
3
�

� �
	 k�s; (5.31d)

that, in the curvilinear system, the coordinates in TDGLE (5.1) separate (cf. (3.86)).

In (5.31d) k� may be called the dynamic wave number of a curved interface

k� ¼ vn
m

þ 2K0: (5.31e)

The mobilitym ¼ gk is defined in (5E.7), and Lv is the thickness of the interface.
Finally, applying the averaging operator (5.30) to the properly weighted (5.29) we

obtain the equation of motion of a phase separating interface, which relates

different local characteristics of the interface

vn ¼ m
½g�ab
s

� 2K0

 !
: (5.32)

The free energy density jump in this equation depends on the temperature

and/or pressure on the level surface U ¼ 0 that represents the interface. Thus, all

variables in this equation depend only on the local coordinates (v, w) and time t.
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Equation (5.32) is an important result. First, it shows that introduction of the

time-dependent curvilinear coordinates has an advantage in that the evolution of

the OP field may be described by the motion of the surfaceU ¼ 0 in space and time.

Second, and most importantly, it reveals the “driving forces” for the interfacial

motion: its curvature (�2K0) and the free energy density difference on both sides of

the interface, ½g�ab. Compare (5.32) to Example 5.1, where we found that a plane

APB cannot move, and notice that a curved APB should move toward the center of

its curvature. Compare (5.32) with (5E.7) and notice thatm/smay be considered the

kinetic coefficient for the driving force [g].

5.4.1 Nonequilibrium Interface Energy

The integral in (5.31d), although having the form of the interface energy, actually is

a more complicated quantity because it relates to a moving interface and the

interface energy of the moving interface needs to be defined. The main difficulty

here comes from the fact that, contrary to equilibrium, the free energy densities of

phases on opposite sides of the interface are not equal. For a first-order transition,

the difference between these densities constitutes the bulk driving force for the

interface motion. Even if the densities of the free energy are equal, (e.g., for an

APB), the interface is not flat and is moving under influence of its own curvature

and surface energy.

To define the nonequilibrium surface energy, we suggest the following proce-

dure. Let us allow the interface to move during dt and calculate the change of the

Gibbs free energy in the system as a result of such motion. Using (3.27), (3.29), we

obtain

dG ¼
ð
dG
d�

d� d3x ¼ dt

ð
@g

@�

� �
T;P

� kr2�

" #
d�

dt
d3x: (5.33a)

Noticing from (5.29) that in the curvilinear time-dependent system (u, v, w, t) the
coordinates separate, we transform the coordinates and use (5.28), (C.16), (C.23).

Then we find that this change is divided into two contributions

dG ¼ �½g�ab dt
ð
U¼0

vn dv dw� Â � k
d�

du

� �2
( )

dt

ð
U¼0

2K0vn dv dw: (5.33b)

The first term is proportional to the volume of the system swept over by

the interface; the coefficient of proportionality in front of this term is the bulk free-

energy jump that represents the driving force for the interface motion. The second

term is proportional to the change of the area of the interface, which came about as a
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result of the motion. Hence, the coefficient of proportionality of this term may be

defined as the nonequilibrium interface energy s:

s �
ðþ1

�1
k

d�

du

� �2

du: (5.34)

Thus, the equilibriumdefinition of the interfacial energy, (3.70a), is extended into a

nonequilibrium situation of a moving boundary. The equilibrium definition of the

length scale of the interface, (3.32f), may also be extended into a nonequilibrium

region.

5.4.2 Evolution of a Spherical Droplet

Equation (5.32) may help us understand the evolution of the droplets, which we

considered in Sect. 3.1 in connection to the classical nucleation problem. Indeed,

according to the definition of Sect. 3.1, the critical nucleus is the sphere of a new

phase which does not grow larger or becomes smaller. Hence, its interfacial

velocity is zero. Then, (5.32) yields the formula

1

K

� R
 ¼ 2s

½g�ab
: (5.35)

This expression coincides with (3.14). However, with (5.32), we can go one step

further and determine the rate of evolution of the spherical droplets. Indeed,

recalling that for a spherical droplet

R ¼ 1

K0

; vn ¼ dR

dt
(5.36a)

or

dK0

dt
¼ �vnK

2
0 (5.36b)

(for simplicity we drop the subscript “0” in the radius R) we can solve the first-

order ODE (5.32) and obtain the solution in the following form

t� ti ¼ R

2m

R� Ri þ R
 ln j R� R

Ri � R


j
� �

; (5.37)

where Ri is the initial radius of the droplet at t ¼ ti. This solution shows that the

droplets are dynamical unstable: they grow without a limit if Ri > R* or shrink to
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zero if Ri < R*. More specifically, if the initial radius of the droplet is greater than

the critical, it will be growing with a speed approaching m[g]/s. On the other hand,
if the initial radius of the droplet is smaller than the critical, it will disappear after a

finite amount time, which depends on the initial radius Ri. These cases of evolution

are depicted in Fig. 5.3.

5.5 Domain Growth Dynamics

Another interesting application of (5.32) comes about in systems that have

undergone a second-order transition. As we discussed in Example 3.2, the interface

in this case is called anti-phase domain boundary (APB) because phases that appear

on both sides of the interface are not different phases; they are just different variants
of the same phase. That is why in APB motion [g] ¼ 0. Then, applying (5.32) to the

APB motion we obtain

vn ¼ �2mK0: (5.38a)

Hence, in APB motion, all spherical domains shrink starting with the initial size

of Ri

R2 ¼ R2
i � 4mt: (5.38b)

However, due to possible interconnectedness of the domains of the same variant,

the problem of APB evolution is more complicated than just the rate equation (5.38a).
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A full (so to speak “honest”) resolution of the problem of APB motion starting with

the initial configuration of the interconnected domains is very complicated (although

not entirely impossible). That is why we will be concerned here only with the

evolution of the average size of the domains. Quite naturally, this size is related to

the size of the separating surface, which is measured by its area. Thus, at first we

have to review some of the general properties of the evolving surfaces.

Let us consider a small piece of smooth surface [without sharp corners, see

condition (3.85)]. It may be represented by a tangent plane and characterized by its

orientation in space. Any larger (but still small) piece of the surface is represented

by a tangent sphere and characterized by its radius R and solid angle dO. Then for

the area of this piece we obtain

dS ¼ R2 d O: (5.39a)

Locally, evolution of this piece of surface can be described as the change of the

radius DR. Then for the change of the area within the same solid angle dOwe obtain

D(dSÞ ¼ 2R DR d O ¼ 2

R
DR dS: (5.39b)

If the entire surface S is smooth then (5.39a), (5.39b) apply to every part of it and

we obtain an expression for the area change

S �
ð
S

ds; DS ¼
ð
S

2

R
DR ds: (5.39c)

As we discussed in Sect. 5.4, the temporal changes of the radius of curvature can

be related to the normal velocity of the interface

DR ¼ vn dt: (5.39d)

Substituting (5.39d) into (5.39c) and replacing (1/R) with the mean curvature K0

of the surface, we arrive at the equation for the total surface area change

dS

dt
¼ 2

ð
S

vnK0 ds: (5.40)

To complete the system of equations for the surface evolution, (5.32) should be

used for vn in (5.40). In the case of APB motion, substituting (5.38a) into (5.40) we

obtain

dS

dt
¼ �4m

ð
S

K2
0 ds: (5.41)

The integro-differential equation (5.41) shows that the total surface area of the

domain boundaries monotonically decreases in time, which implies that the average
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domain size increases. This regime may be called “coarsening”. Equation (5.41)

does not allow us to make more detailed predictions regarding the behavior of the

system.

Thebreakthroughmaybeachievedwith the help of the self-similarityhypothesis [2].
To understand the hypothesis, let us review the length scales that characterize our

system. Vanishing of the free-energy jump for APB eliminates only the time-indepen-

dent length scale of the system, R* ¼ 2s/[g] ! 1, see (5.35). The system of

interconnected domains has two time-dependent length scales. The product of the

mobility m and time has the units of [length2], hence, the first relevant length scale is

dðtÞ ¼ ffiffiffiffiffi
mt

p
: (5.42)

The radius of curvature of the surface, R ¼ 1/K0, is the second relevant length

scale; it characterizes locally the size of a domain occupied by one variant, e.g., a.
This opens up a possibility for a self-similar regime of evolution. However, K0

changes from place to place and to characterize the entire system we need to

introduce an average quantity. Taking into account that the average curvature

vanishes,
Ð
S K0 ds ¼ 0, we introduce the average square mean curvature of the

surface

�K2 � 1

S

ð
S

K2
0 ds: (5.43)

Then �R ¼ 1= �K characterizes the average domain size in the system.

Now let us see how these domains fill up the space. Imagine that entire volume

of the system V is densely filled by the spheres of radius r of the variant a with the

variant b filling the rest of the volume. Then we can write that

V ¼ c
1

3
srN; (5.44a)

where s ¼ 4pr2 is the surface of a sphere, N is the number of them, and c is the

packing coefficient which depends on the arrangement of the spheres. For instance,

c ¼ 6/p if the spheres are arranged in a simple cubic lattice. The product sN equals

the total surface area in the system S. Then

S ¼ 3

c
VjK0j: (5.44b)

As time passes, the total area S and domain curvature K change while the total

volume V stays constant. If we assume that the growing or decreasing spheres

always form the same type of lattice—self-similarity regime—then the packing

coefficient c ¼ const and

�KðtÞ ¼ ’SðtÞ; (5.45)
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where j¼c/(3V) in our example. Substituting (5.43), (5.45) into (5.41), we obtain

an ODE for the average square mean curvature only

d �K

dt
¼ �4m �K3: (5.46)

This equation has a solution

�K�2ðtÞ ¼ �K�2ðt0Þ þ 4mðt� t0Þ; (5.47)

where �Kðt0Þ is the average square mean curvature at the moment in time t0 when the
self-similar regime started. Equation (5.47) shows that in the self-similarity regime

the average domain size, 1= �KðtÞ, monotonically increases, which justifies the term

“coarsening.”

For the total surface area (5.45), (5.47) yields

S�2ðtÞ ¼ S�2ðt0Þ þ 4’2mðt� t0Þ: (5.48)

Initial decrease of the curvature and surface area is linear in time with the rate

dependent on the initial condition

�KðtÞ 	 �K t0ð Þ 1� 2m �K
2ðt0Þðt� t0Þ

h i
;

SðtÞ 	 Sðt0Þ 1� 2m’2S2ðt0Þðt� t0Þ
� 


:
(5.49a)

Asymptotically the system approaches the regime when all three length scales

are proportional

SðtÞ
V

	 �KðtÞ 	 1

2
ffiffiffiffiffi
mt

p ¼ 1

2dðtÞ : (5.49b)
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Chapter 6

Thermomechanical Analogy

A profound physical analogy can be established between the thermodynamic

system undergoing a phase transition and a classical-mechanical point mass moving

in a potential field. According to this analogy, the spatial coordinate, x, of a 1d

thermodynamic system is analogous ð _¼Þ to the time, t, of the mechanical system;

OP Z is analogous to the generalized coordinate of the particle; gradient free energy

coefficient is analogous to the generalized mass of the particle. In the framework

of this analogy, the negative of the homogeneous density of the Gibbs–Landau free

energy (�g) is analogous to the mechanical potential function U

U _¼� gð�Þ; (6.1)

while the gradient free-energy contribution is analogous to the kinetic energy of the

particle, K

K _¼ 1

2
k

d�

dx

� �2

: (6.2)

The density of the Gibbs–Landau free energy, ĝ; (3.27), is analogous to the

Lagrangian of the mechanical system and the quantity g
^
, (3.28), to the negative of

the Hamiltonian. The quantity g
^
can be obtained from the density ĝ with the help of

the Legendre transform (LT) using the OP gradient (d�/dx) as the variable. The OP
itself (�) is not involved into the LT; that is why the homogeneous density g(�) flips
its sign when it is put into the LT (see Appendix F and Example F.2 therein).

Then (3.29) corresponds to the Newtonian equation of motion of a particle in either

Lagrange’s or Hamilton’s formulation; the condition of thermodynamic equilib-

rium, (3.42a), corresponds to the conservation of the mechanical energy; and

negative of the chemical potential (�m) corresponds to the total mechanical energy

of the system (K + U). The energy is conserved because the Hamiltonian does not

depend explicitly on time, that is g
^
does not depend explicitly on the coordinate x.

The total Gibbs free energy of the thermodynamic system, G in (3.27), is analogous
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to the action of the mechanical system and the interface energy, s in (3.70a), to the

“abbreviated action” [1, 2]. Minimization of the interfacial energy is analogous to

the principle of least action for the mechanical system. Table 6.1 summarizes the

analogous terms in thermodynamics and classical mechanics and Fig. 6.1 shows

different kinds of motion of a particle in the potential field U.
The thermomechanical analogy helps us to identify and interpret different equilib-

rium states in the system: the bulk phases a and b correspond to unstable (saddle-type)
rest points separated by a stable (center-type) rest point g of the mechanical system

with one degree of freedom. Heterogeneous equilibrium states correspond to bound

solutions of the mechanical system, e.g., periodic thermodynamic states to periodic

mechanical solutions (Fig. 6.1a). Due to unboundness of the free energy, g, Fig. 3.2bi,
and, hence, potential,U, (6.1), only one type of periodicmotion is possible, oscillation

(no rotations). The interface between the bulk phases a and b corresponds to the

heteroclinic trajectory that connects two different rest points with equal potential

energies U as shown in Fig. 6.1b (c.f. Fig. 3.2bii, iii). A critical-nucleus (instanton)

corresponds to a homoclinic orbit that connects one rest point of lower potential

energy U to itself, which is possible only for a “tipped-off” potential U (not equal

depths of the wells, shown in Fig. 6.2, c.f. Fig. 3.2ai, ii, iii). Notice that due to the

negative sign in (6.1) the equilibrium states switch their stabilities when “going” from

the thermodynamics to mechanics. For instance, mechanical periodic solutions

(Fig. 6.1a) are stable, while their thermodynamic counterparts (c.f. Fig. 3.2biii) are

not. The unstable periodic states, however, do appear in the processes of phase

transformations and the systems may spend a great deal of time in the vicinity of

these states. Another interesting analogy can be established between the instanton

Table 6.1 Dictionary of the thermomechanical analogy

Continuum thermodynamics (1d systems) Classical mechanics of many particles

Equilibrium in an open system Dynamics in a conservative system

Clausius’ principle Hamilton’s principle

Spatial coordinate: x ∈ [x1, x2] Time: t ∈ [t1, t2]

Thermodynamic variables: {ri, �j} Generalized coordinates

Gradient free energy coefficients ka,ij Generalized masses

Negative of the homogeneous density of the free energy g Potential function U

Density of the gradient energy Kinetic energy K

Density of the free energy ĝ Lagrangian

The quantity g
^

Negative of the Hamiltonian

Equilibrium equations Lagrange equations

Negative of the chemical potential (�m) Total mechanical energy (K + U)

Total free energy G Action

The interface energy “Abbreviated action”

Relaxation dynamics Dissipative dynamics

TDGLE Lagrange equation with dissipation

Velocity over relaxation coefficient v/gi Dissipative coefficient

Dissipative function F Rayleigh’s function

Non-isothermal dynamics Dynamics in external fields

Temperature Time-dependent external field
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described in Example 3.4 and a homoclinic orbit describingmotion of a particle in one

well of a double-well even potential (Verify!).

The dynamic equation (5.8) describes translation-invariant wave of OP, � ¼
�(x – vt), which represents an interface between stable (b) and metastable (a) states
and which travels with constant speed v. The wave cannot move at a steady pace

with an arbitrary speed and have an arbitrary shape. Instead, the speed v, (5.14), and

shape �(u), (5.15), of the wave interface are selected as an eigenvalue/eigenfunction
of the boundary problem (5.12). The thermomechanical analogy will be established

if, in addition to the above described equilibrium analogy, the coefficient n/g in (5.8)
is brought into correspondence to the friction coefficient (see Table 6.1). Then the

wave is analogous to the heteroclinic trajectory between two rest points with

different potential energies U, see Fig. 6.2a. The analogy clarifies that for the

friction coefficients smaller than the critical, trajectories are unbounded while for

the coefficients that are greater—trajectories never reach the rest point (a). Hence,
the selected wave-interface also possesses the “critical property,” which is best

revealed by the thermomechanical analogy. The thermomechanical analogy clearly

shows that (5.8) has many solutions, which do not satisfy the boundary conditions,

(5.12b), and only one that does.

η

U

<
>

a

b

αβ γ

K=0

K=max

K=0

Fig. 6.1 Undamped oscillator as the mechanical analog of an equilibrium heterogeneous 1d

thermodynamic system. Even potential function U _¼� gð�Þ corresponds to the thermodynamic

equilibrium between phases a and b. a, b, and g—rest points of the point mass in the potential U.
(a) Periodic oscillator: the shaded circles indicate the turning points of the point mass.

(b) Heteroclinic orbit: the filled (b) and open (a) circles indicate initial and final positions of the

point mass (stable bulk phases)
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The thermomechanical analogy helps us better understand the phase transitions

processes by developing an intuitive approach to the dynamical problems. For

instance, it clearly shows that the phase-transition dynamics destroys the equilib-

rium types of heterogeneous solutions: periodic, critical nucleus (instanton), and

stationary interface (domain-wall), because they correspond to the conservation of

the mechanical energy, and replaces them with the traveling waves with different

speeds, v (c.f. Figs. 6.1 and 6.2). The thermomechanical analogy also helps

interpret the principle of selection of such waves, that is, the answer to the question:
“How can we determine the unique velocity of a wave that will be realized in a

physical or numerical experiment with given temperature and pressure?” One

example of that principle was considered above: moving interface that replaces a

metastable phase with the stable one. Another example is decomposition of an

unstable state g [3]. According to (5.8), such wave may propagate with many

acceptable velocities, v, which correspond to the damped oscillations of a particle

about a stable rest point g with different values of the friction coefficient, see

Fig. 6.2. (Recall that the thermomechanical analogy switches stabilities between

the equilibrium states of the thermodynamic system and the mechanical rest

points.) The asymptotically stable traveling-wave solution, however, corresponds

to the case of “marginal stability” [4, 5], that is, the waves that move slower are

η

U

a

c

K=0

αβ γ

K=0

<

b

Fig. 6.2 Damped oscillator as the mechanical analog of a traveling wave in the thermodynamic

system. Tipped-off potential function U corresponds to thermodynamic preference of a stable

phase, b, compared to a metastable phase, a. The filled circles indicate the initial positions and

the open circles indicate the final positions of the point mass. (a) Critically damped oscillator;

(b) “marginally” damped oscillator; (c) “marginally” damped oscillator from the lower hump
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unstable to perturbations while those that move faster are stable. From the

standpoint of the thermomechanical analogy, the asymptotically stable wave of

decomposition of the unstable state into the stable one (b, Fig. 6.2b) corresponds to
a particle motion with the marginal damping. The analogy also indicates that the

unstable state may be replaced by a metastable one (a, Fig. 6.2c). The speed of the

latter process is smaller than that of the former because its mechanical analog

requires smaller coefficient of friction.

The thermomechanical analogy can be expanded beyond the boundaries consid-

ered above. For instance, several OPs will be analogous to several coupled mechan-

ical point masses; however, the system must be one-dimensional for the analogy to

work (Why?). The thermodynamic system at equilibrium will be analogous to a

conservative (Hamiltonian) mechanical system while the 1d translation-invariant

motion—to the motion of particles in a dissipative mechanical system with the

frictional forces proportional to their velocities. Two- and three-dimensional equi-

librium equations, (3.89), are analogous to the equation of motion of a mechanical

system with the time-dependent friction coefficients. The thermomechanical anal-

ogy may be generalized on the case of a system, which is not kept at constant

temperature, see Chap. 9.

The thermomechanical analogy also allows us to generalize the relaxational

dynamics, TDGLE (5.1), by including the cross terms between the thermodynamic

“driving forces” and responses. Such system is described by Rayleigh’s dissipative

function F, whose partial derivatives yield the frictional forces that should be added

to the right-hand sides of the Lagrange equations [1, 2]. Then the simultaneous

generalized TDGLEs take the form

dG
d�j

þ @F

@ð@t�jÞ
¼ 0; (6.3)

where F is a positive definite dissipative function:

F � 1

2
ð@t�jÞtjkð@t�kÞ> 0;

tjk ¼ tkj; tjj ¼ g�1
j > 0:

(6.4)

Using (6.3) and Euler relation for homogeneous functions of the second order:

if Yðax1; ax2; ax3; . . . axnÞ ¼ a2Yðx1; x2; x3; . . . xnÞ
then

@Y

@xi
xi ¼ 2Y;

it is easy to see that the rate of the free-energy change in the system is

dG

dt
�

ð
dG
d�j

@t�j d
3x ¼ �

ð
2Fd3x< 0; (6.5)
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where the last inequality follows from (6.4). For a traveling wave {�j ¼ �j(x–vt)},
(6.5) can be represented as follows

d

dx
g
^ð�iÞ ¼ 2vF> 0: (6.6)

For a thermodynamic system, (6.5) and (6.6) mean that 2F is the local rate of

dissipation, which is analogous to the dissipation of the mechanical energy due to

friction in a mechanical system. Thermodynamically, (6.6) can also be interpreted

as that the wave speed v is proportional to the chemical potential gradient with

(2F)–1 as the mobility.

It is important to find the root cause of the analogy that we consider in this

chapter. In other words, we ask a question: “What is the reason for the thermome-

chanical analogy to exist?” We were able to establish the analogy between the

equilibrium thermodynamics of phase transition and conservative mechanics of a

system of particles because both problems allow variational formulation. There is a

deep connection between the Clausius’ principle of thermodynamics and

Hamilton’s principle of mechanics. After that, we were able to match the nonequi-

librium extension of the phase transition problem to the dissipative dynamics of

particles because both are linear extensions of the equilibrium problems. However,

we can make one step further and pose another question “What property of a system

entails applicability of variational principles?” Answer to this question may

be found in the connection of both theories to the Lagrangian field theory

(see Appendix D). However, a more complete discussion of this problem is beyond

the scope of this book [6].
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Chapter 7

Thermodynamic Fluctuations

As we noticed in Chap. 5, TDGLE is not able to describe a phase transition itself,

only the evolution of the system after the transition. Obviously, something very

important for the complete description of the system is missing from that scheme.

What is it?

These are fluctuations of the thermodynamic parameters of the system, including

the order parameters. Fluctuations are defined as the deviation from the average

value. Several different sources of fluctuations may be pointed out; usually they are

categorized as internal or external noise. Examples of the internal noise are thermal
fluctuations and quantum mechanical ones. The former are due to the microscopic

structure of matter and unpredictability of atomic hits. The latter are due to the

fundamental unpredictability of Nature. Examples of the external fluctuations are

noise in the electrical circuits containing ohmic resistances or electromagnets that

create the magnetic fields. Surely, depending on its type, the internal and external

fluctuations enter differently into the theoretical description with the former usually

representing an additional “driving force” in the system, while the latter appearing

as a random parameter that is coupled to the state of the system.

In this book, we are considering only the influence of the thermal (internal)

fluctuations on the phase transformations. As we pointed out, this type of

fluctuations originates from the atomistic structure of matter and comes into the

field-theoretic description through the coarse-graining procedure (see Appendix A).

From the statistical mechanics point of view, without the account of the fluctuations

the system is confined to a set of parameters that corresponds to one phase. When

liquid is cooled down below its freezing point the conditions for the emergence of

solid phase appear but the transition may not happen. The thermodynamic

fluctuations “move” the system in the phase space from one region to another

“exploring” different options and “finding” the most favorable one for it.

Although this is the most significant role of the fluctuations for us, it does not

exhaust the relevance of fluctuations to physical systems. Firstly, the fluctuations

provide a natural framework for understanding a class of physical phenomena that
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relate the dissipative properties of a system, such as diffusion of particles in a fluid

or the electrical resistance of a conductor, with the microscopic properties of the

system in a state of equilibrium. This relationship was first discovered by Einstein

and is often formulated in the form of the so-called fluctuation-dissipation theorem.
Secondly, fluctuations can assume considerable significance in the neighborhood of

the critical points on the phase diagrams of the systems where they obtain a high

degree of spatial correlation. This gives rise to phenomena such as the critical

opalescence and unlimited increase of the specific heat (the l-point transition).
Although these phenomena fall into a general category of phase transitions, they

are not considered in this book in any significant depth because they require a

different set of methods. From the point of view of Statistical Mechanics, different

states of a system have different probabilities to be observed in the system, e.g.,

experimentally.

In this chapter, we look at the equilibrium distribution of fluctuations and their

evolution under the influence of the stochastic environment. First we calculate the

average values of the fluctuations of the OP and free energy of the system. These

calculations reveal an important characteristic length scale of the fluctuations—the

correlation radius, which defines the length scale of the two-point space correlation

function. Then we derive the Levanyuk–Ginzburg criterion, which expresses valid-

ity of FTM in a system with fluctuations, and apply this criterion to the system

undergoing the second-order transformation. To describe dynamics of fluctuating

systems, we introduce irregular Langevin force, whose correlation properties obey

the fluctuation-dissipation theorem. On average, evolution of the fluctuations can be

described by the structure factor, which asymptotically approaches the equilibrium

value. Finally, we derive the drumhead approximation of the evolution equation

and apply it to analyze dynamics of the interfacial structure factor and the nucle-

ation problem. The former reveals the length scale of the fluctuations of the

interfaces. The latter allows us to find the escape time of the system and compare

it with the nucleation rate of the classical nucleation theory (CNT).

7.1 Classical Nucleation Theory

Depending on the supercooling (supersaturation) of the system emergence of a

new phase may take different routes. Theoretical methods for the analysis of this

process may also differ depending on the magnitude of supercooling. At small

supercoolings, the new phase appears in the form of small nuclei (droplets) and is

characterized by the nucleation rate, that is, the rate of production of droplets larger
than the critical size (those that will grow instead of decaying back to the old

phase). According to the CNT, heterophase fluctuations in the initial phase are

responsible for the nucleation of the final one; they produce a rise in the free energy

excess DGn [see (3.15) and Fig. 3.1]. If the initial phase is stable (unsaturated,

Dg < 0, see Sect. 3.1) the probability of occurrence of these fluctuations is
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proportional to exp(�DGn/kBT). The number of embryos (nuclei) of size R is thus

given by (see Fig. 7.1)

NR ¼ NAe
�DG�

nðRÞ=kBT (7.1)

where NR is proportional to the distribution function of the nuclei of size R and NA is

a total number of atoms in the initial phase. The simplification of (7.1) is that we

assume that the number of atoms in all nuclei is much smaller than NA. Applying

(7.1) to the situation when the initial phase is metastable (supersaturated, Dg > 0),

we find that large heterophase fluctuations (R > R*) are more probable than the

small ones to the extent that all atoms should belong to very large fluctuations; this

is merely the CNTs way of saying that the final phase is stable. We are interested,

however, in the transformation stage, which starts with almost all the atoms in the

initial phase. Thus the most probable nuclei must be excluded from the distribution.

To make (7.1) applicable to the metastable initial phase, we require in CNT that no

nuclei are allowed to grow beyond a limiting size Rf, which is considerably larger

than the critical size R* and the nuclei with R � Rf are removed from the system.

To preserve the total number of atoms in the system, the removed nuclei may be

regarded as taken apart to individual atoms and returned into the system. Such

NR

0 R* Rf R

Supersaturated
 restricted

Unsaturated

Supersaturated
actual

Fig. 7.1 Size distributions of embryos in the systems of different levels of saturation
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distribution of nuclei is called restricted (see Fig. 7.1); it has a minimum at R* while

the actual nuclei size distribution should decrease to zero for large sizes.

In CNT, the nuclei are allowed to grow or shrink by adding or losing one atom at

a time (impingement of nuclei is not allowed). The growth process is characterized

by the nucleation rate, that is, the number of the critical nuclei formed per unit time

in the entire volume V of the initial phase. The conditions of the restricted

distribution produce a quasi-steady state of growing nuclei with the stationary

nucleation rate of (e.g., see [1])

JS ¼ 3qV

4pR3�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
DG�
3pkBT

s
e
�DG�

kBT ; (7.2)

where q is the rate at which single atoms from the initial phase join the nucleus or

are lost by the nucleus to the phase.

In CNT, a nucleus of a new phase is regarded as a small piece of bulk matter

surrounded by a geometrical surface with a specified surface energy s. However,
even simple estimates show that the size of the nucleus is comparable with the

thickness of its surface. The FTM allows us to avoid this problem.

7.2 Free Energy of Equilibrium System with Fluctuations

Let us calculate the free energy of a system at one of the homogeneous equilibrium

states, ��, taking the fluctuations into account. The OP fluctuations D� are introduced
as follows

D� rð Þ ¼ � rð Þ � ��; (7.3)

�(r) may also depend on time; we will consider this in Sect. 7.4. According to

Boltzmann’s principle, the probabilities of the nonequilibrium states are propor-

tional to the factor exp(�G/kBT), where G is the free energy of the state, T is the

temperature of the system, and kB is the Boltzmann’s constant. Different states of

our system are described by different values of the OP, �. Thus, the distribution of

probabilities of the states is

P �ð Þ ¼ Ze�Gð�Þ=kBT ; (7.4)

where Z is the normalization constant, called the partition function. To evaluate the

probabilities, we expand the free energy density of a fluctuating system about the

equilibrium state
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g �ð Þ ¼ g ��ð Þ þ 1

2

@2g

@�2
��ð Þð D�Þ2 þ � � � ; (7.5)

substitute (7.5) into (3.27) and obtain an expression

G �ð Þ � G ��ð Þ þ 1

2

ð
V

@2g

@�2
��ð Þð D�Þ2 þ kðr D�Þ2

� �
d3x;

G ��ð Þ � g ��ð ÞV:
(7.6)

To represent the increment D� in this expression, we will use the 3d discrete

Fourier transform (Appendix F)

D� rð Þ ¼
X
kf g
cD�V kð Þeikr; (7.7a)

cD�VðkÞ ¼ 1

V

ð
V

D�ðrÞe�ikr dr; (7.7b)

where {k} is a discrete set of wavevectors [see (F.6)] and cD�VðkÞ is a fluctuating

variable. Notice from (7.7b) that cD�Vð0Þ is the volume average of the OP

fluctuations; it does not need to be zero. In a homogeneous equilibrium system,

however, the ensemble averages:

hD� rð Þi ¼ hcD�V kð Þi ¼ 0: (7.8)

Here the probabilities of different configurations, (7.4), are used for the statistical

averaging.

Using Properties #3 and #5 of the 3d discrete Fourier transform (see Appendix F)

for (7.6) we obtain an expression for the free energy fluctuations in the Fourier

space

DG � G �ð Þ � G ��ð Þ � V

2

X
kf g

@2g

@�2
��ð Þ þ k kj j2

� � cD�V kð Þ
��� ���2: (7.9)

Equation (7.9) shows that the “fluctuating part” of the free energy, DG, can be

diagonalized in the Fourier space that is, represented as a sum of the terms that

depend only on one wave vector k. Notice that the coefficients of the terms are

proportional to the amplification factor b(|k|), which we encountered in Sect. 5.3.1,

where we studied evolution of the small perturbations of the equilibrium states.

Applying (7.4), (7.9) to the fluctuations near the homogeneous state �� we find that

the joint probability distribution of different fluctuations
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P �ð Þ ¼ Z exp � V

2kBT

X
kf g

@2g

@�2
��ð Þ þ k kj j2

� � cD�V kð Þ
��� ���2

8<:
9=; (7.10)

can be expressed as a product of Gaussian distributions, each of which depends on

the opposite wavevectors only. Hence, the individual Fourier modes cD�VðkÞ are

statistically independent

cD�V kð ÞcD�V k0ð Þ
D E

¼ 0; if kþ k0 6¼ 0: (7.11)

Evolution of the Fourier modes with {k} and {k0 6¼�k} may be considered

independently.

Applying (7.10), Property #2 of the Fourier transform (Appendix F), and the

mathematical formula

2b
ð1
0

x2e�bx2 dx ¼
ð1
0

e�bx2 dx

to the statistically dependent modes with k + k0 ¼ 0, we obtain an expression for

the average square of the Fourier mode

cD�V kð Þ
��� ���2� �

¼
R1
0
cD�V kð Þ
��� ���2P �ð Þd cD�V kð Þ

��� ���R1
0
P �ð Þd cD�V kð Þ

��� ��� ¼ kBT

V @2g=@�2 ��ð Þþ k kj j2
h i : (7.12)

Equation (7.12) can be used for the average square of the fluctuations only if

@2g

@�2
��ð Þ>0 (7.13)

because otherwise we obtain a negative expression for the mean square fluctuations

of the long-wavelength modes (|k| ! 0). This means that (7.12) is applicable at

the stable equilibrium states only. Formal application of formula (7.12) at an

unstable state yields an imaginary value, which may be interpreted as finite lifetime

of the state. This interpretation, however, will not be used in this book.

With the help of (7.12), we can calculate the average fluctuation of the free

energy (7.9)

DG ¼ 1

2
kBTN kf g; (7.14)

where N{k} is the number of the k-modes in the system. Comparison of this result

with the theorems of the Canonical Ensembles in the Statistical Mechanics allows
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us to interpret the k-modes as noninteracting independent degrees of freedom,

DG cD�V kð Þ
� 	

as the effective Hamiltonian, and (7.14) as the equipartitioning of

the thermal energy among the various degrees of freedom of the system.

The statistical independence of the Fourier modes with {k0 + k6¼0} is a result of

the truncation of the expression (7.5) up to the second order, which eliminates the

mode interactions. Because of that, a system described by the free energy

expressions (7.6) and (7.9) is called the free field. The higher-order terms in (7.9)

can be calculated with the help of the methods of the Statistical Mechanics [2, 3].

Using that cD�Vð0Þ is the volume average of the fluctuations, we obtain from

(7.12) an expression for the mean square of the fluctuations averaged over the

volume of the system

D�ð Þ2V
D E

¼ cD�Vð0Þ��� ���2� �
¼ kBT

V@2g=@�2 ��ð Þ : (7.15)

This expression shows that the intensity of OP fluctuations is inversely propor-

tional to the volume occupied by the system. The microscopic scale of the

fluctuations is expressed by the factor (kBT/Vg). Although under “usual” conditions,
the fluctuations in (7.12) are small, there exist “unusual” conditions when the

fluctuations become large. The “unusual” conditions are achieved when V ! 0 or

simultaneously

@2g

@�2
��ð Þ ! 0 (7.16a)

and kj j ! 0: (7.16b)

Condition (7.16a), as discussed in Chap. 2, means that the system approaches the

critical point in the parameter space; condition (7.16b) means that the fluctuations

increase for the longest wavemodes. The latter justifies the introduction of the

characteristic length scale, called the correlation radius of fluctuations

rC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
@2g=@�2 ��ð Þ

r
; (7.17)

which plays an important role in the analysis of the fluctuations. Compare (7.17)

with (3.53b) and notice that the correlation radius and fundamental lengths have

similar expressions. The difference is that the former is defined at the stable state,

see (7.13), while the latter at the unstable one, see (3.46e) and the comment after the

equation.

Expressions (7.9) and (7.10) may be used to calculate the two-point space

correlation function
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K� r1; r2ð Þ � D� r1ð ÞD� r2ð Þh i ¼ � r1ð Þ� r2ð Þh i � � rð Þ2
D E

; (7.18)

where the averaging is over the thermodynamically equilibrium state of the system

expressed by the joint probability P{D�(r1), D�(r2)} (see Appendix G). Some of the

properties of the correlator (7.18) may be pointed out right away.

1. For large distances (|r1�r2| ! 1), the correlator (7.18) breaks down into the

product of the averages

K� r1; r2ð Þ r1�r2j j!1 ! D� r1ð Þh i D� r2ð Þh i ¼ 0: (7.19)

2. At the homogeneous equilibrium state, the correlator is a function of the distance

between the points only

K� r1; r2ð Þ ¼ K�ðrÞ; r ¼ r1 � r2j j: (7.20)

3. Using the Fourier representation of fluctuations, the correlator (7.18) takes the

form

K�ðrÞ ¼
X
kf g

X
k0f g

cD�V kð ÞcD�V k0ð Þ
D E

eiðkr1þk0r2Þ: (7.21)

4. As we established earlier, the {k} and {k0 6¼�k} Fourier modes are statistically

independent. Then, using (7.11) we obtain

K�ðrÞ ¼
X
kf g

cD�V kð Þ
��� ���2� �

eikr: (7.22)

This expression shows that the mean squares of the Fourier modes of the

fluctuations (7.3) are the Fourier modes of the correlator (7.18). In the Probability

Theory, this statement is called the Weiner–Khinchin theorem.

Substituting (7.12) into (7.22) and taking (7.17) into account we obtain

K�ðrÞ ¼
X
kf g

kBTe
ikr

Vk r�2
C þ kj j2

� 	 : (7.23)

Transforming summation in (7.23) into integration (
P

k !
Ð
V V dk= 2pð Þ3) we

obtain

K�ðrÞ ¼ kBT

ð2pÞ3k

ð
k

eikr dk

r�2
C þ kj j2: (7.24)
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The simplest way to evaluate the integral in (7.24) is to use the Fourier transform

formula (F.14). Thus,

K�ðrÞ ¼ kBT

4pk
e�r=rC

r
: (7.25)

Several comments are in order here.

1. Expression (7.25) shows that rC determines the length scale of the decrease of

the fluctuations.

2. If rC ! 1, which is the case if the critical point is approached, then K� / 1/r,
that is, the fluctuations in the system become correlated over very large

distances.

3. Expression (7.25) can be used to obtain expression (7.15). Indeed,

D�ð Þ2V
D E

¼ 1

V2

ð ð
K� r1; r2ð Þ dr1 dr2 ¼ 1

V

ð
K�ðrÞ dr: (7.26)

4. At r ! 0 we have K� ! 1. This result is a consequence of the fact that

expression (7.12) is not applicable for very large values of the wavevector |k|,

which correspond to very small distances. The upper-|k| limit is due to the

atomic nature of matter. Hence, expression (7.12) is applicable to the

wavevectors with absolute values

kj j � 1

a
; (7.27)

where a is a typical interatomic distance. Equations (7.17) and (7.27) reveal the

constraint rC » a, which presents one of the limits of applicability of the method

(see Sect. 10.2).

7.3 Levanyuk–Ginzburg Criterion

In addition to the constraint (7.27), the Filed-Theoretic Method has certain

limitations associated with the presence of fluctuations in the system. The principle

argument may be laid out as following: For the Method to be valid the scale of the

OP fluctuations must be smaller than the characteristic scale of the OP change.

The natural measure of the OP change is its jump on both sides of the transition

point: �½ 	 ¼ j��þ � ��0j; the natural measure of the level of the OP fluctuations is the

square root of its volume average in (7.15). However, such criterion has a caveat.

First, it cannot be applied to the free field because we use the OP jump as the scale.

Second, formula (7.15) shows that the scale of the OP fluctuations is inversely

proportional to the volume occupied by the system. Hence, we should identify the
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characteristic volume for the fluctuations. Based on the analysis in the previous

section, we select a cube with the correlation radius rC on the side. Thus, the criterion
formulated above can be presented as follows

kBT

r3C ��þ

 �

@2g=@�2 ��þ

 �
 �
 ð��þ � ��0Þ2: (7.28a)

This is called the Levanyuk–Ginsburg criterion. Using (7.17), it may be

rewritten as follows

ðkBTÞ2
3

@2g

@�2
��þ

 �� 



 ð��þ � ��0Þ4: (7.28b)

To analyze the role of the mode interactions let us apply criterion (7.28b) to the

second-order transition in a system described by the free-energy density

g ¼ g0 þ 1

2
A�2 þ 1

4
Q�4 � H� (2.45)

with A < 0, Q > 0, and H ¼ 0. Then

��0 ¼ 0; ��� ¼ �
ffiffiffiffiffiffi
Aj j
Q

s
;

@2g

@�2
���ð Þ ¼ 2 Aj j: (7.29)

Substitution of (7.29) into (7.28b) yields the criterion

Aj j � Gi � QkBTCð Þ2
k3

: (7.30)

This criterion shows that the method based on the Landau theory of phase

transitions is valid outside the region of size Gi (Ginzburg number) around the

transition point TC. Notice that Gi is proportional to the square of the mode-

interaction coefficient Q.

7.4 Dynamics of Fluctuating Systems: Langevin Force

At this juncture, we may pose the following questions: How do the fluctuations

enter into our scheme? In other words, where did we miss or omit the fluctuations in

the development of the Field-Theoretic Method? How can we bring the fluctuations

back into our description?
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In general, the thermal fluctuations appear because a real system consists of

discrete atoms and molecules and not of a continuum medium. As we explained

above the OP represents the most probable evolution of the system. To bring the

fluctuations back into the Field Theory, we can use the method suggested by

Langevin in solving the problem of Brownian motion. To describe the incessant

and random bombardment of the tiny grains of a plant pollen by the molecules of

the surrounding fluid Langevin suggested to use a force that consisted of two

parts: a “rapidly fluctuating” part, which averages out to zero over the interval of

time long compared to the time of molecular impact and an “averaged-out” part,

which represents the viscous drag. In our case, the latter is represented by the

thermodynamic force (�gdG/d�). Thus, the dynamic equation for the OP evolu-

tion takes the form

d�

dt
¼ �g

dG
d�

þ xðr; tÞ: (7.31)

To represent the rapidly fluctuating part, we introduced Langevin force x(r, t),
which averages out to zero over a long period of time O at every point r of the

system

�xO � 1

O

ðO
0

xðr; tÞ dt ! 0 for O ! 1 and all r: (7.32)

To find the properties of the Langevin force, we will consider evolution of the

OP near the homogeneous stable equilibrium state ��. Assuming that our system is

ergodic (see Appendix G), we obtain the first condition on the Langevin force:

xðr; tÞh i ¼ 0 for all r and t; (7.33a)

where < ··· > means averaging over the same distribution function as in (7.4),

(7.10), but now the OP deviations are functions of time. Due to irregularities of the

Langevin force, we may assume that it is completely uncorrelated with the thermo-

dynamic force, that is,

dG
d�

ðr1; t1Þxðr2; t2Þ
� �

¼ 0 for all ri and ti: (7.33b)

Notice that the Langevin force does not change the dissipative property of the

OP evolution. Indeed, using (7.33b) for (7.31), we obtain [c.f. (5.3)]

d

dt
Gh i¼ dG

dt

� �
¼ dG

d�
d�

dt
d3x

� �
¼�g

Z
dG
d�

� 
2

d3x

* +
þ

Z
dG
d�

xd3x
� �

¼�g
ð

dG
d�

� 
2
* +

d3x< 0:

(7.33c)
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Now let us find the third condition on the Langevin force. To do that we consider

evolution of the small deviations D�(r, t), (7.3), using two different approaches:

one—Statistical Mechanics (see Sect. 7.2) and another—Stochastic Dynamics, (see

Appendix G). Equating the results should yield the sought condition. Linearizing

(7.31) we obtain the equation for the small deviations

@D�
@t

¼ �g
@2g

@�2
��ð Þ D� þ kr2D� þ xðr; tÞ: (7.34)

Let us start with the analysis of the homogeneous deviations D�(t), which come

from the homogeneous force x(t). Equation (7.34) turns into an ODE, whose

solution that satisfies the initial condition D�(t ¼ 0) ¼ D�(0) takes the form:

D�ðtÞ ¼ D�ð0Þe�t=t0 þ e�t=t0

ðt
0

eu=t0xðuÞ du; (7.35)

where the characteristic time of relaxation of the homogeneous fluctuations near the

equilibrium state �� is

t0 ¼ g
@2g

@�2
ð��Þ

� ��1

: (4.12)

Deviation of the OP away from this state is a random (stochastic) process

because it is driven by the Langevin force. Since <x(u) > ¼0 for all u, the mean

increment of the OP vanishes

D�ðtÞh i ¼ D�ð0Þe�t=t0 ! 0 for t ! 1:

For the mean square increment, we obtain

D�2ðtÞ� � ¼ D�2ð0Þe�2t=t0 þ 2D�ð0Þe�2t=t0

ðt
0

eu=t0hxðuÞi du

þ e�2t=t0

ðt
0

ðt
0

eðu1þu2Þ=t0 x u1ð Þx u2ð Þh i du1 du2:
(7.36)

The first term on the right-hand side of this equation vanishes over time. The

second term is identically zero due to (7.33a). In the third term we have a quantity

KxðsÞ � xðuÞx uþ sð Þh i (7.37)

which is called the autocorrelation function of x and is a measure of the stochastic

correlation between the value of the fluctuating variable x at time u1 and its value at
time u2 ¼ u1 + s (see Appendix G). Using the expressions (G.54) and (7.33a) for

the integral in the third term, we arrive at the expression:
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D�2ðtÞ� � ¼ D�2ð0Þe�2t=t0 þ t0
2

1� e�2t=t0
� 	 ðþ1

�1
KxðsÞ ds !

t!1
t0
2

ðþ1

�1
KxðsÞ ds:

(7.38)

Notice that if D�2(0) were itself equal to the limiting expression, then <D�2(t)>
would always remain the same, which proves that statistical equilibrium, once
attained, has a natural tendency to persist.

On the other hand, from the Statistical Mechanics analysis in Sect. 7.2, (7.15),

we know that the average square of the homogeneous deviation of the OP is equal to

kBT=½V@2gð��Þ=@�2	. Equating it to the limiting expression in (7.38), we obtain an

integral condition on the autocorrelation function of the Langevin forceðþ1

�1
KxðsÞ ds ¼ 2

gkBT
V

: (7.39)

Now think about how properties of the Langevin force determine its autocorre-

lation function. If the process x(t) has some sort of regularity then the correlator

Kx(s) extends over a range of the time interval tcor, defined in (G.52). On the

contrary, if we assume that x(t) is extremely irregular, then tcor is zero and we need
to choose Kx(s) / d(s). Thus, we obtain the third condition on the spatially homo-

geneous Langevin stochastic force:

x t1ð Þx t2ð Þh i ¼ 2
gkBT
V

d t2 � t1ð Þ: (7.40)

Next, let us analyze the autocorrelation function of the inhomogeneous Langevin

force x(r, t). For a stationary process in a statistically homogeneous system, the

autocorrelation function depends only on the distance in space |r| and time

s between the points (r1,t1) and (r2,t2)

Kxðr; sÞ ¼ x r1; t1ð Þx r2; t2ð Þh i; r ¼ r2 � r1; s ¼ t2 � t1; (7.41)

where the averaging < ··· > is meant over time or the equilibrium ensemble (7.10),

see (G.5) and discussion of ergodicity in Appendix G. Also in (7.41) we took into

account condition (7.33a). Introducing the Fourier transform of the Langevin force

x r; tð Þ ¼
X
kf g

x̂V k; tð Þeikr; (7.42a)

x̂V k; tð Þ ¼ 1

V

ð
V

x r; tð Þe�ikr dr; (7.42b)

rearranging the product of the Fourier modes of the Langevin force as follows
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x̂V k; t1ð Þx̂�V k; t2ð Þ ¼ 1

V2

ð
V

ð
V

x r1; t1ð Þx r2; t2ð Þe�ikðr2�r1Þ dr1 dr2

and averaging both sides of the equation, we obtain the relation

x̂V k; t1ð Þx̂�V k; t2ð Þ
D E

¼ 1

V2

ð
V

ð
V

Kx r; sð Þe�ikr dR dr; (7.43a)

where R ¼ 1/2(r1 + r2) and dr1dr2 ¼ dRdr. Integration over R in (7.43a) can be

completed because the integrand is independent of this variable. The resulting

relation

x̂V k; t1ð Þx̂�V k; t2ð Þ
D E

¼ 1

V

ð
V

Kx r; sð Þe�ikr dr (7.43b)

may be rewritten in the form

K̂x;V k; sð Þ ¼ x̂V k; t1ð Þx̂�V k; t2ð Þ
D E

(7.43c)

which shows that the Fourier transform of the two-time correlator of the Langevin

force equals the averaged two-time product of the Fourier transforms of the same

process. This result may be considered a space analog of the Wiener–Khinchin

theorem (see Appendix G).

The properties of the Langevin-force correlator can be found from the analysis

of evolution of the OP fluctuations in (7.34). In the Fourier space, it turns into the

following ODE

ddD�Vðk; tÞ
dt

¼ �g
@2g

@�2
��ð Þ þ k kj j2

� �dD�Vðk; tÞ þ x̂Vðk; tÞ: (7.44)

This equation is similar to the ODE for the homogeneous deviation, if the

homogeneous Langevin force x(t) is replaced with the Fourier component of

the inhomogeneous one and the relaxation time constant t0, (4.12), is replaced

with [cf. (5.21a)]

tjkj ¼ g
@2g

@�2
ð��Þ þ k kj j2

� �� ��1

¼ � 1

b kj jð Þ : (7.45)

Hence, we may write down the solution of (7.44) in the form similar to that of

(7.35). Following the logic of the previous derivation, we may write down the

integral condition on the Fourier modes of the Langevin force similar to that of

(7.39) because the Fourier modesdD�Vðk; tÞ are statistically independent
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ðþ1

�1
x̂V k; t1ð Þx̂�V k; t2ð Þ
D E

ds ¼ 2
gkBT
V

: (7.46a)

Hence,

x̂V k; t1ð Þx̂�V k; t2ð Þ
D E

¼ 2
gkBT
V

d t2 � t1ð Þ: (7.46b)

Notice that due to the equipartitioning of energy (see Sect. 7.2), the right-hand

side of this equation is independent of the wavevector k. Let us sum up both sides

of (7.46a) overall wavevectors {k} with the weight factor exp(ikr). Then, using
(7.43) we obtain ðþ1

�1

X
kf g

K̂x;Vðk; sÞeikr ds ¼ 2
gkBT
V

X
kf g

eikr:

Using the inverse Fourier transform formula, (F.5a), and the formulaX
kf g

eikr � VdðrÞ

we obtain ðþ1

�1
Kx r; sð Þ ds ¼ 2gkBTdðrÞ: (7.47)

Above we assumed total irregularity of the homogeneous process x(t), which led
to the condition, (7.40). If we assume the same irregularity for the process x(r, t) at
each point r, then we obtain the third condition on the inhomogeneous Langevin

stochastic force

Kx r; sð Þ ¼ x r1; t1ð Þx r2; t2ð Þh i ¼ 2gkBTd r2 � r1ð Þd t2 � t1ð Þ: (7.48)

Notice that d(r) appears in (7.48) because the k-modes are statistically indepen-

dent, d(t)—because they are irregular (no memory).

7.5 Evolution of the Structure Factor

In Sect. 7.2, we came close to introducing a very important quantity—structure
factor. Physical significance of this quantity is in that it is experimentally measurable

in the experiments on diffuse X-ray and neutron radiation scattering during the phase
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transformations. The structure factor K̂�;V k; tð Þ is the Fourier transform of the two-

point one-time correlation function K�ðr1; r2; tÞ

K̂�;V k; tð Þ ¼ 1

V

ð
V

K�ðr1; r2; tÞe�ikr dr; (7.49a)

K�ðr1; r2; tÞ ¼
X
kf g

K̂�;V k; tð Þeikr: (7.49b)

We already know something about this quantity. Indeed, compare (7.49b) to

(7.12), (7.21) and notice that the equilibrium value of the structure factor at the

stable homogeneous state �� is

K̂��;V k; tð Þ�!t!1hjcD�VðkÞj2i ¼ kBT

V @2g=@�2 ��ð Þ þ k kj j2
h i : (7.50)

Let us find the expression for the structure factor away from the equilibrium.

To do that we substitute (7.21) into (7.49a) and obtain

K̂��;V k; tð Þ ¼ 1

V

ð
V

X
k
0f g

X
k
00f g
cD�V k0; tð ÞcD�V k00; tð Þ
D E

eiðk
0r1þk00r2�krÞ dr: (7.51a)

As the averaging in this expression is over the distribution function of (7.10), the

modes with k0 þ k00 6¼ 0 are independent, hence

K̂��;V k; tð Þ ¼ 1

V

X
k0f g

cD�V k0; tð Þ
��� ���2� �ð

V

eiðk
0�kÞr dr: (7.51b)

Taking into account the mathematical formulaeð
V

eikr dr�!V!1 ð2pÞ3 dðkÞ;
X
kf g

�!
V!1

V

ð2pÞ3
ð
dk

we obtain that in the thermodynamic limit of V ! 1

K̂��;V ¼ cD�Vðk; tÞ��� ���2� �
(7.51c)

the structure factor is the averaged square of the Fourier modes of the OP

fluctuations.

To derive an evolution equation for the structure factor, we differentiate (7.51c)

with respect to time and use (7.44)
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dK̂��;V

dt
ðk; tÞ ¼ 2bðkÞK̂��;Vðk; tÞ

þ cD��Vðk; tÞx̂Vðk; tÞ þ x̂�Vðk; tÞcD�Vðk; tÞD E
: (7.52)

To estimate the second term in the right-hand side, we use the solution of (7.44)

with the initial condition cD�Vðk; 0Þ:
cD�Vðk; tÞ ¼ cD�Vðk; 0Þe�t=tk þ e�t=tk

ðt
0

eu=tk x̂Vðk; uÞ du: (7.53)

Substitution of (7.53) into (7.52) yields two types of averages. For the first one

we obtain

cD��V k; 0ð Þx̂V k; tð Þ
D E

¼ x̂�V k; tð ÞcD�V k; 0ð Þ
D E

¼ 0 (7.54)

because the initial conditions and the Langevin force are completely uncorrelated.

The second type of averages was calculated in (7.46b). Then we substitute (7.46b),

(7.54) into (7.52) and obtain an evolution equation for the structure factor that we

sought

dK̂��;V

dt
ðk; tÞ ¼ 2bðkÞK̂�;Vðk; tÞ þ 4

gkBT
V

: (7.55)

A general solution of this equation takes the form

K̂��;Vðk; tÞ ¼ K̂��;Vðk; 0Þe2bðkÞt � 2
gkBT
VbðkÞ�!t!1

2kBT

V @2g=@�2 ��ð Þ þ k kj j2
h i : (7.56)

Strictly speaking, the initial value cD�V k; 0ð Þ
��� ���2 is not a stochastic quantity because

it is completely independent of the Langevin force (although this quantity may be

random but for completely different reasons); it is presented in (7.56) as K̂��;V k; 0ð Þ for
the sake of similarity. Many features of (7.56), for instance, dependence of the

structure factor on the initial value and wavenumber, can be verified experimentally.

Although (7.55) was derived for a stable homogeneous state ��, it can be used for
an unstable one, but for a limited time of evolution only. The limitation comes from

the magnitude of the Fourier modes cD�V k; tð Þ
��� ���. Indeed, (7.44) can be used for as

long as the modes are small. Imagine a system, which was initially equilibrated at a

state where (7.13) was true. The structure factor of the system is described by the

asymptotic value of (7.56). After that, suddenly, we change the conditions, e.g.,

lower the temperature, such that condition (7.13) is no longer true. Then solution

(7.56), where b(k) is positive or negative depending on |k|, can be used to describe

initial stages of growth of the modes. When the modes are not small anymore,

the linearized (7.44) should be replaced by the full evolution equation (7.31) in the
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Fourier space. In this case, the evolution equation for the structure factor will

depend on the Fourier transforms of the higher-order two-point correlation

functions [4, 5].

7.6 Drumhead Approximation of the Evolution Equation

In Chap. 5, we found that theoretical analysis of the OP evolution may be signifi-

cantly advanced in the situations when a thin transition layer develops in the system.

In Sect. 5.5, we derived the drumhead approximation of TDGLE, see (5.32), which

allowed us to identify the “driving forces” of the interfacial motion. In this section,

we will apply the drumhead approximation to the fluctuating system. The starting

point is the Langevin TDGLE (7.31) for the OP filed with the correlation condition

(7.33a), (7.48) on the stochastic force. Let us repeat here some of the key steps of the

derivation of Sect. 5.5, including the Langevin force now. Assuming that a thin layer

develops in the system where the OP field changes quickly, while in the rest of the

system it changes slowly, we obtain an equation (cf. (5.29) and Fig. 3.6)

gk
d2�

du2
þ vn þ 2gkKð Þ d�

du
� g

@g

@�
þ x ¼ 0; (7.57)

where � ¼ �(u), vn, and K depend on (v, w, t), and x depends on (u, v, w, t). Then,
multiplying the left-hand side by d�/du and averaging it over the thickness of the

layer (cf. 5.31) we obtain

g
vn
m

þ 2K
� 	

Â � k
d�

du

� 
2
( )

� g g½ 	abþz ¼ 0; (7.58)

where we introduced a new stochastic force

zðv; w; tÞ � Â � x
d�

du

� 

¼
ðua
ub

x u; v;w; tð Þ d�
du

du: (7.59)

The correlation properties of the force z need to be analyzed. Obviously [cf.

(7.33a)]

zðv; w; tÞh i ¼ 0: (7.60)

For the autocorrelation function of z, we may write

zðv; w; tÞzðv0; w0; t0Þh i ¼
ðua
ub

du
d�

du

ðua
ub

du0
d�

du0
xðu; v; w; tÞxðu0; v0; w0; t0Þh i:
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Then, using (7.48) we obtain

zðv; w; tÞzðv0; w0; t0Þh i
¼ 2gkBTdðv� v0Þdðw� w0Þdðt� t0Þ

ðua
ub

ðua
ub

du du0
d�

du

d�

du0
dðu� u0Þ

¼ 2gkBTÂ � d�

du

� 
2

dðv� v0Þdðw� w0Þdðt� t0Þ: (7.61)

In the second line of (7.61), one integration was removed by the d-function.
Using the definitions of the interfacial energy s (3.70a) and mobility m (5E.7) we

obtain from (7.57) to (7.61) the drumhead approximation of the Langevin-TDGLE

vn ¼ m
g½ 	ab
s

� 2K

 !
� k
s
z (7.62a)

z v; w; tð Þh i ¼ 0; (7.62b)

zðv; w; tÞzðv0; w0; t0Þh i ¼ 2gkBT
s
k
dðv� v0Þdðw� w0Þdðt� t0Þ: (7.62c)

In the following sections, we will use this equation for the purposes of the

interfacial stability analysis and nucleation problem.

7.6.1 Evolution of the Interfacial Structure Factor

For the analysis of evolution of the capillary waves on the plane interface (see the

definition in Sect. 3.7), let us use the drumhead approximation, (7.62a), instead

of the method used in Sect. 5.3.2. To do that we resolve the u-coordinate equation
U(x, t) ¼ 0 as follows

z ¼ zðx2; tÞ ¼
X
k2f g

ẑðk2; tÞeik2x2 ; (7.63a)

ẑðk2; tÞ ¼ 1

S

ð
S

zðx2; tÞe�ik2x2 dx2; (7.63b)

where z is the deflection of the drumhead interface from the plane, ẑðk2; tÞ are the
Fourier transform components of the deflection, x2 ¼ (x, y), k2 ¼ (kx, ky) are

the two-dimensional vectors in the geometric and Fourier spaces, and S is the

area of the interface. In general (see Appendix C)

vn ¼ @z

@t
u � jz; (7.64a)
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K ¼ � 1

2
r2

r2zðx2; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2zðx2; tÞj j2

q
0B@

1CA; r2 ¼ @

@x
jx;

@

@y
jy

� 

: (7.64b)

For the capillary waves (v, w) � (x, y) and

vn � @z

@t
¼
X
k2f g

@ẑ

@t
ðk2; tÞeik2x2 (7.65a)

K � � 1

2

@2z

@x2
þ @2z

@y2

� 

¼ 1

2

X
k2f g

ẑðk2; tÞ k2j j2eik2x2 : (7.65b)

Then, substituting (7.65) into (7.62a) we obtain an equation

X
k2f g

@ẑ

@t
þ ẑm k2j j2 þ k

s
ẑ

� 

¼ 0; (7.66a)

where the Fourier components of the Langevin force z have the following

properties

ẑ k2; tð Þ
D E

¼ 0 (7.66b)

ðþ1

�1
ẑ k2; tð Þẑ� k2; tþ sð Þ
D E

ds ¼ 2
g skBT
kS

: (7.66c)

Because each term in the sum in (7.66a) depends on the value of only one

wavenumber they must vanish separately. Then, using our experience with (7.34),

we obtain the solution

ẑ k2; tð Þ ¼ ẑ k2; 0ð Þe�t=tz � k
s
e�t=tz

ðt
0

es=tz ẑ k2; sð Þ ds (7.67a)

tz ¼ 1

m k2j j2 ¼ � 1

bz kj jð Þ ; (7.67b)

where ẑ k2; 0ð Þ is the initial condition for the capillary wave and tz is the time scale

of the evolution of the waves. Notice that the latter depends strongly on the

wavenumber of the wave, diverging for the very long ones. Taking (7.62a) into

account, we obtain expressions for the averaged Fourier components of the

deflections

ẑ k2; tð Þh i ¼ ẑ k2; 0ð Þe�t=tz �!
t!1 0 for all k2j j (7.68a)
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and the two-time autocorrelation function

ẑ k2; tð Þẑ� k2; 0ð Þh i ¼ ẑ k2; 0ð Þj j2e�t=tz �!
t!1 0 for all k2j j: (7.68b)

Then, introducing the interfacial structure factor

K̂z;S k2; tð Þ � ẑ k2; tð Þj j2
D E

(7.69)

we obtain an equation of its evolution

K̂z;S k2; tð Þ ¼ K̂z;S k2;0ð Þe�2t=tz þ tz
2

k
s

� 	2
1� e�2t=tz
� 	ðþ1

�1
ẑ k2; tð Þẑ� k2; tþ sð Þ
D E

ds

¼ K̂z;S k2;0ð Þe�2t=tz þ kBT

s k2j j2S 1� e�2t=tz
� 	

½�!t!1	 kBT

s k2j j2S :

(7.70)

Equation (7.70) shows that the destabilizing effect of fluctuations and stabilizing

effect of the surface tension bring up one more length scale, the fluctuation length

lF �
ffiffiffiffiffiffiffiffi
kBT

s

r
; (7.71)

which sets up the scale for the structure factor. Compare (7.70) with the expression

for the bulk structure factor, (7.56), and notice that K̂z;S k2; tð Þdiverges for |k2|!0.

Using the inverse Fourier transform, (7.63b), we can interpret this result to mean

that the surface-average square of the long waves of the interfacial deflection grows

without bound because the stabilizing influence of the surface tension for these

waves vanishes.

7.6.2 Nucleation in the Drumhead Approximation

In this subsection, we will apply the stochastic drumhead equation (7.62a) to the

problem of nucleation of a new phase and compare the results to those of CNT (see

Sect. 7.1). One of the challenges that we have to face is to define the main quantity of

CNT—rate of nucleation, using the proper fields. The approach that we are using here

is to apply the field-theoretic quantity—escape time, which is inversely proportional

to the nucleation rate. For a bistable potential, the escape time is defined as time

needed for a system, which was initially in the vicinity of a minimum with higher

value of the potential, to reach for the first time a vicinity of the minimum with lower

value of the potential. In Appendix G, we calculated the escape time for a “particle in

a bistable potential” if the Langevin equation for the particle is known. In what
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follows we will derive the Langevin equation for the nucleus in the drumhead

approximation, calculate the escape time using the “particle in a bistable potential”

formula and compare the escape time to the stationary nucleation rate of (7.2).

We assume that the transition layer has a shape of a sphere OR, which surrounds

a particle of the new phase. In this case

vn ¼ dRðtÞ
dt

; K ¼ 1

RðtÞ on OR; (5.36a)

where R(t) is now a random variable that represents the radius of the particle.

The stochastic force depends not only on time but also on the coordinates of the

surface of the sphere (v, w). To eliminate this superfluous dependence, we average

(7.62a) over the surface of the sphere taking into account (5.33) and thatð
OR

dv dw ¼ 4pR2:

Then

dR

dt
¼ 2m

1

R�
� 1

R

� 

� k
4pR2s

cðtÞ; (7.72a)

where R* is the radius of the critical nucleus [cf. (5.35)] and the new force is

cðtÞ �
ð
OR

z v; w; tð Þ dv dw (7.72b)

cðtÞh i ¼ 0; cðtÞcðt0Þh i ¼ 8pgkBT
s
k
R2d t� t0ð Þ: (7.72c)

Notice from (7.72) that the effect of the stochastic force is greater on smaller

particles.

In principle, the particle equation (7.72) can be used for (G.40c) or (G.41c) to

derive an expression for the escape time. The problem is that those formulae apply

to the stochastic force that does not depend on the random variable itself, the radius

R(t) in this case (additive noise). To eliminate the R-dependence from the intensity

and autocorrelation function of the random force, we multiply all terms of (7.72a)

by 8pR and introduce a new random variable—the area of the particle’s surface OR

S ¼ 4pR2 (7.73)

and the new force

’ðtÞ � � 2k
Rs

cðtÞ; (7.74a)

’ðtÞh i ¼ 0; ’ðtÞ’ðt0Þh i ¼ Gd t� t0ð Þ; (7.74b)
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G ¼ 32p
m

s
kBT: (7.74c)

Contrary to the previous subsection, S is a variable quantity now. The Langevin

equation for S takes the form:

dS

dt
¼ 16pm

ffiffiffi
S

pffiffiffiffiffi
S�

p
� 


þ ’ðtÞ; (7.75)

where S* is the surface area of the critical nucleus. This equation describes “random
walk of a particle” in the potential field

UðSÞ ¼ 16pm S� 2

3
ffiffiffiffiffi
S�

p S3=2
� 


; (7.76)

which is normalized such that U(0) ¼ 0.

In the spirit of CNT, particles cannot grow to infinite sizes. To terminate the

particle growth past certain size, we erect an infinitely high “wall” at S ¼ Sf,
although precise value of Sf does not matter for as long as Sf > S*. Also, an infinite
wall is erected at S ¼ 0. The potential (7.76) with the two walls, designated as ÛðSÞ,
has two minima at 0 and Sf and a maximum at S*; hence, this is a bistable potential,
see Fig. 7.2. If the potential barrier is high [the fluctuations are weak, cf. (G.39)]

area s

po
te

nt
ia

l Û

0 s* sf

Û*
Γ/2

Fig. 7.2 Bistable potential

Û(S), (7.76), with the two

walls at S ¼ 0 and S ¼ Sf
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ÛðS�Þ � G: (7.77)

then, for the escape time, we can use the expression (G.41c). Establishing the

relations

U obð Þ ! bU S�ð Þ ¼ 16

3
pmS�; U0ðoaÞ ! bU0ð0Þ ¼ 16pm;

U00 obð Þ ! bU00 S�ð Þ ¼ � 8pm

S3=2�
; a2 ! G:

(7.78)

and substituting them into (G.41c) we obtain

tof ¼ 1

8m

ffiffiffiffiffiffiffiffiffiffiffiffi
kBTS�
ps

r
esS�=3kBT ¼

ffiffiffiffiffiffiffiffiffiffiffi
kBTs

p
2m g½ 	ab

e16ps
3=3ð½g	abÞ2kBT : (7.79)

The last expression in (7.79) was obtained by expressing S* through the interfacial
energy and driving force, (7.73), (5.35). Notice that this expression is independent of

the cut-off radius Rf.

Comparison of (7.79) for the escape time with (7.2) for the stationary nucleation

rate JS shows that the FTM result has the correct exponential and the Zeldovich

factor (the square root) but fails to reproduce the dependence on the volume of the

system. The reason for that is that the presented method takes into account only

spherically symmetric fluctuations of the shape, that is growth or shrinkage, and

omits the shifts and distortions of the nucleus.
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Chapter 8

More Complicated Systems

Although the description presented in Chaps. 2–7 lays out a rich picture of a phase

transformation, it is not rich enough to describe most of the transformations that we

find around us. The problem is that so far we have been looking at the systems that

can be described by a scalar, one-component order parameter while order para-

meters of real transformations may have many components or essential internal

symmetry, not captured by a simple scalar. A few examples of more complicated

systems are considered in this chapter. Specifically, we are looking at the systems

where the order parameter is subject to a conservation law and go over all major

steps of the method deriving the equilibrium equations in homogeneous and

heterogeneous systems, dynamic equation, and analyzing the role of fluctuations.

We lay out the phenomenological theory of superconductivity where the OP is a

complex number and demonstrate how the method can help in calculating different

properties of a superconductor. A section is devoted to a system that undergoes

crystallographic transformation described by the OP that has more than one com-

ponent, which interact with each other. We also look at the systems which have long

time-correlation property—memory or are described by two fields of completely

different symmetries.

8.1 Conservative Order Parameter: Theory

of Spinodal Decomposition

8.1.1 Thermodynamic Equilibrium in a Binary System

Spinodal decomposition is a process of unmixing, i.e., spatial separation of species,

which takes place in thermodynamically unstable solutions, solid or liquid.

Spinodal decomposition provides an example of a phase transformation which

can be described by an OP that obeys a law of conservation. In case of a system

A. Umantsev, Field Theoretic Method in Phase Transformations,
Lecture Notes in Physics 840, DOI 10.1007/978-1-4614-1487-2_8,
# Springer Science+Business Media, LLC 2012
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that consists of different species, it is advantageous to deal with the partial molar

thermodynamic quantities instead of the densities (see Appendix H). Consider a

binary solution that contains nA moles of species A and nB moles of species

B isolated from the environment so that the total number of moles, n ¼ nA + nB,
and the molar fraction (concentration) of the species A (B), XA ¼ nA/n (XB ¼
nB/n) does not change. By definition, the variables XA and XB are not independent as

XA þ XB ¼ 1: (8.1)

A regular solution is a popular model of a binary system:

GS ¼ XAGA þ XBGB þ RT XA lnXA þ XB lnXBð Þ þ OXAXB: (8.2)

Here R is the gas constant, GS is the molar Gibbs free energy of the solution, GA

and GB are the partial molar Gibbs free energies of the species A and B, and the total

Gibbs free energy of the system is, of course, nGS. The first two terms in (8.2)

represent the free energy of a mechanical mixture of the components A and B. Since

after mixing the atoms are in a much more random arrangement, there will be a

negative entropy contribution into the free energy, called the entropy of mixing,

which is the third term short of the temperature T. The fourth term represents the free

energy excess (positive or negative) due to interactions of pairs of atoms of the same

or different kinds. This contribution is proportional to the number of A–B pairs

expressed by the product of the molar fractions with the coefficient of proportionality

O ¼ ZNAvo; o ¼ oAB � 1

2
oAA þ oBBð Þ; (8.3)

where Z is the coordination number of A and B, that is, the number of nearest

neighbors to A or B, NAv is the Avogadro number, and oij designates the interaction

energy of the i–j pair. Positive o corresponds to the mixture where the like atoms

attract more strongly than unlike atoms (attractive forces are negative, so that

stronger attraction between like atoms means the oAB is a smaller negative number

than the average ofoAA and oBB). It is a good approximation when the atoms A and

B have nearly the same radius. This model can be used for solids and liquids,

although in liquids instead of Z and o one has to use the average values.

Using condition (8.1), the free energy (8.2) may be expressed as a function of

one variable, e.g., X � XB (see Fig. 8.1a, b)

GSðXÞ ¼GAþðGB�GAÞXþRT½X lnXþð1�XÞ lnð1�XÞ�þ OXð1�XÞ: (8.4)

To estimate the roles of different contributions, first, notice that if O ¼ 0 (ideal

solution) then for all compositions and all finite temperatures the free energy of the

solution is less than that of the mechanical mixture of the pure components because

� ln2 � X lnX þ ð1� XÞ lnð1� XÞ< 0 for 0<X< 1: (8.5)
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model of a binary system.
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This means that the first minute additions of any solute to any pure substance

will always dissolve to form a solution (not necessarily an ideal one). Due to

downward convexity of the ideal-solution free energy function, a single ideal

solution is more stable than any mixture of the ideal solutions (Verify!).

Second, if O < 0 (ordering solution) the situation is pretty much the same

because the type of convexity of the free energy does not change. However, if

O>OC>0 (phase-separating solution) the situation is more complicated because the

free energy is not convex definite anymore (Fig. 8.1b). The critical value of the

interaction parameter O is defined as such that changes the state of convexity of the

function GS(X), (8.4), that is, the value of O which allows the function

d2GS

dX2
¼ RT

Xð1� XÞ � 2 O (8.6)

to vanish exactly at one point. The latter point is called a critical point

XC ¼ 1

2
(8.7)

and the critical interaction parameter value is OC ¼ 2RT. It is accustomed to

express the critical condition through the critical temperature of the system with

the given strength of interactions O

TC ¼ O
2R
¼ Zo

2kB
: (8.8)

Notice that TC can be expressed through microscopic characteristics only.

Although for T<TC, G
S(X) looks similar to G(�) (cf. Figs. 8.1b and 2.2a), the

coordinates of the stable states in these systems have very different properties.

For instance, because the overall composition of the solution X0 must be set as the

initial conditions, the molar fraction of a stable state may not correspond to a local

minimum of GS(X). This does not mean that the principle of minimum of the total

free energy does not apply to this system, but only that this principle must be

supplemented with another condition or conditions because the physical nature of

the variable X is different from that of the OP �. Most importantly, the OP value can

change freely while “searching” for the free energy minimum, but the value of the

variable X is influenced by the mass conservation condition. The latter means that in

a closed system the total number of moles of a species does not change. In a binary

system of A, B species, the mass conservation can be expressed as follows

nA; nB ¼ constðtÞ: (8.9)

It applies equally to a system which was initially set as a heterogeneous or

completely homogeneous one.
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To examine the nature of the spinodal instability, let us consider an initially

homogeneous system at constant temperature T<TC and concentration X0. Because

of the movement of the atoms in the solution, there are local composition

fluctuations of very small values. Through these fluctuations the system or any

part of it may decompose into a mixture of solutions characterized, at least initially,

by compositions very close to that of the first homogeneous solution. If the Gibbs

free energy of the mixture is lower than that of the homogeneous solution, then the

latter is unstable and further decomposition may occur to produce states which have

still lower free energy. Otherwise the decomposition will not occur. Suppose that the

molar numbers and fractions of the neighboring solutions are na, nb and Xa,Xb. Then

X0 ¼ naB þ nbB
n

¼ naB
na

na

n
þ nbB

nb
nb

n
¼ Xaxþ Xbð1� xÞ; (8.10)

where x is the relative proportion (fraction) of a in the solution. Graphical repre-

sentation of this result is called the lever rule.
The molar Gibbs free energy of the two-solution mixture is

GmðX0Þ ¼ GS
axþ GS

b 1� xð Þ ¼ GS
a
X0 � Xb

Xa � Xb
þ GS

b
Xa � X0

Xa � Xb
: (8.11)

Equation (8.11) is the equation of a straight line passing through the two points

with coordinates (Xa, Ga
S) and (Xb, Gb

S); a point on this line represents the free

energy of the mixture Gm of the overall composition X0 (Fig. 8.1b). It may be seen

that if a free energy vs. concentration GS(X0) is convex downward, the free energy

of a two-solution mixture of neighboring compositions Gm(X0) is always higher

than the free energy of the homogeneous solution GS(X0). Similarly, if GS(X0) is

convex upward, Gm(X0) is lower than G
S(X0). Consequently, the solution is stable if

d2GS/dX2 > 0 and unstable if d2GS/dX2 < 0. The inflection point,

d2GS

dX2
¼ 0; (8.12)

separates the regions of stability and instability of the homogeneous concentration

X0 with respect to small fluctuations. According to our definition in Sect. 2.3, it is

the spinodal point. The decomposition of a homogeneous solution resulting from

infinitesimal fluctuations is called the spinodal decomposition.

Equations (8.4) and (8.12) yield an expression for the spinodal curve, that is, the

locus of the spinodal concentrations at different temperatures

XS
aðbÞ 1� XS

aðbÞ
� �

¼ T

4TC
: (8.13a)

Obviously, the same equation may be interpreted as an equation for the spinodal

temperature TS as a function of the concentration X0 (Fig. 8.1c)
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TS ¼ 4TCX0ð1� X0Þ: (8.13b)

Notice that for each T<TC there are two spinodal concentrations,

XS
a <XC and XS

b >XC, but TS(X0) is a single-valued function.

The analysis of stability presented above may be expanded beyond the

boundaries of small fluctuations of the neighboring regions (local stability) into

the domain of global stability, that is, stability with respect to any compositional

changes in the entire system. Indeed, applying results of the analysis of a two-phase

equilibrium (Appendix H) to our system, we find that the condition of the global

stability of the system is the common tangency between the molar fractions of

the solutions XE
a and XE

b . Then, inspecting the calculations of (8.10)–(8.11) and

Fig. 8.1b you may see that if the overall composition of the solution X0 is between

the points of common tangency, XE
a and XE

b , then a mixture of two solutions

with these molar fractions and the relative proportion of a solution xEa ¼
X0 � XE

b

� �
XE
a � XE

b

� �.
is more stable (has less total free energy) than the homo-

geneous one. For a regular solution with GA � GB, the condition of common

tangency, (H.12), is

dGS

dX
XE
aðbÞ

� �
¼ R T ln

XE
a bð Þ

1� XE
a bð Þ
þ 2TC 1� 2XE

a bð Þ
� �" #

¼ 0: (8.14)

The temperature vs. concentration graph of this condition, called the solubility

curve or miscibility gap, is depicted in Fig. 8.1c. From the stand point of the

definition in Sect. 2.3, this curve represents the equilibrium phase boundary because

at the points of this curve the equilibrium states, one-phase and two-phase,

exchange their stabilities.

Example 8.1 Show that near the critical point:

XC � XE
aðbÞ

��� ��� � ffiffiffi
3
p

XC � XS
aðbÞ:

��� ��� (8E.1)

Let us represent the solubility and spinodal curves as follows

XE
aðbÞ ¼ XC 1þ eEðTÞð Þ; XS

aðbÞ ¼ XC 1þ eSðTÞð Þ: (8E.2)

Then, taking (8.7) into account, in the vicinity of the critical point (8.13a) and

(8.14) turn into

T

TC
¼ 1� e2S;

T

TC
¼ 2eE

ln 1þ eEð Þ � ln 1� eEð Þ � 1� 1

3
e2E: (8E.3)

Comparing these equations we obtain the desired result. Notice that (8E.3) apply

to both a and b sides of the curves.
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8.1.2 Equilibrium in Inhomogeneous Systems

To describe inhomogeneities in a system that may appear as a result of the spinodal

instability, Cahn and Hilliard [1] introduced a continuously varying molar fraction

X(r) and suggested to use the Ginzburg–Landau functional for the total Gibbs free

energy of the system

G �
ð

gSðXÞ þ 1

2
kCðrXÞ2

� �
d3r; gS � GS

vm
: (8.15a)

In (8.15a) gS(X) is the Gibbs free energy density, vm is the molar volume, kC is

the concentration gradient energy coefficient, and the integration is over the entire

volume of the system V. In the following vm and kC will be considered constant, that
is, independent of the composition of the solution.

As we know, in the state of thermodynamic equilibrium, �XðrÞ, the total free

energy of a system that exchanges energy with environment approaches minimum:

G �Xf g<G Xf g if �X 6¼ X. However, in a closed system, where mass exchange with

the environment is not allowed, this condition is subject to the species conservation

constraint (8.9), which is expressed as followsð
XðrÞ d3r ¼ X0V ¼ const: (8.16)

Notice fromAppendix H that the properminimization of the free energy in a closed

binary system requires two species conservation constraints. In the case of a system

where the molar volume is independent of the composition, the role of the second

condition is played by the condition of conservation of the volume of the system

V �
ð
vm dn ¼

ð
d3r ¼ const: (8.17)

If the molar volume depends on the composition, a whole host of other effects,

including coherency strain effect, come about, none of which are of particular

importance to the subject of this chapter.

Minimization of the functional G, (8.15a), under the constraints (8.16), (8.17) is

called the isoperimetric problem in the calculus of variations (see Appendix B). From

the physics stand point, the most appealing method to solve the problem is the method

of Lagrange multipliers. It says that there exists a constant l such that the functional

Gþ l
ð
X d3r (8.15b)

approaches an unconditional minimum at X ¼ �X. The volume conservation condi-

tion for a system with constant molar volume, (8.17), is trivial and does not affect

the minimization procedure. Hence,

dG
dX
� @gS

@X
� kCr2X ¼ �l: (8.18)
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Value of the molar fraction X on the boundaries of the system may change freely.

In this case, the variational procedure yields the following boundary condition

nrX ¼ 0 on S: (8.19)

To find the Lagrange multiplier l, one needs to substitute the solution �XðrÞ of
(8.18), (8.19) into the conservation condition (8.16).

Let us consider now a 1d inhomogeneous binary solution of infinite size, that is,

the thermodynamic limit. As we saw in Chap. 3, in this case (8.18) has the first

integral, cf. (3.42a):

gS �Xð Þ þ l �X � 1

2
kC

d �X

dx

� 	2

¼ m ¼ constðxÞ: (8.20)

Because in the thermodynamic limit the boundary conditions (8.19) are placed at

x ! �1, all higher derivatives of �XðrÞ will also vanish on the boundaries. Then

(8.18) yields another boundary condition

@gS

@X
þ l ¼ 0 for x! �1: (8.21)

Hence, from (8.20), (8.21) we obtain

gS X�ð Þ � X�
@gS

@X
X�ð Þ ¼ m ¼ gSðXþÞ � Xþ

@gS

@XðXþÞ; (8.22a)

@gS

@X
X�ð Þ ¼ �l ¼ @gS

@XðXþÞ; (8.22b)

where X� ¼ �Xðx! �1Þ are the terminal (bulk) values of the molar fraction of the

solutions. Comparison of (8.22) and (H.12) shows that we recovered the condition of

common tangency between the terminal solutions of the system X�. Consequently,
they should be identified asXE

aðbÞ. Then (8.22) can be used to find the constants l and m
and constraint (8.16) can be used to find the XE—the equilibrium fraction of a.

Furthermore, the solution of (8.20) with the boundary conditions X� ¼ XE
aðbÞ

represents the transition layer between the bulk regions. It is analogous to the one

studied in Chap. 3 if the OP � is replaced by the molar fraction X and functional

(3.27) by (8.15b). The � $ X analogy can be used for the analysis of the multidi-

mensional solutions of (8.18).

Examples 8.2 Estimate the thickness and free energy of the transition layer

between the bulk solutions of the molar fractions XE
a and XE

b in the regular solution

with GA � GB.

First notice that in this case in (8.22)

l ¼ 0; m ¼ gS XE
aðbÞ

� �
: (8E.4)
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Then, adjusting the definitions of the interfacial thickness, (3.45), and energy,

(3.71), to the binary system we obtain

lE �
max
x;x0

X � X0j j
max

x
dX=dxj j ¼

XE
b � XE

a

��� ���
dX=dxðXCÞj j ¼

XE
b � XE

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 gS XCð Þ � gS XS

aðbÞ
� �h i

=kC

r ; (8E.5)

sE �
ðþ1
�1

kC
dX

dx

� 	2
dx ¼

ðXE
b

XE
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kC gSðXÞ � gS XS

aðbÞ
� �h ir

dX: (8E.6)

Notice in (8E.5) that the layer has the greatest slope at the critical concentration.

Substitution of the expressions from (8.4), (8.8), (8.15) reveals two important

scales: length and surface energy

l �
ffiffiffiffiffiffiffiffiffiffiffi
vmkC
RTC

r
; s �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kCRTC
vm

:

r
(8E.7)

Let us analyze two limiting cases of these expressions: T!0 and T!TC.
Applying representation (8E.2) of the equilibrium molar fractions, expanding

(8.4) up to the fourth order in small eE, and then using the solution in (8E.3) we

obtain

lE
l
!

1 for T ! 0
TC�T
TC

� ��1=2
for T ! TC

(
(8E.8)

and

sE
s
!

2
Ð 1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xð1� XÞp

dX ¼ p
2

for T ! 0

XC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TC � T

TC

r ðþeE
�eE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2E � e2

q
de ¼ 3p

4

TC � T

TC

� 	3=2
for T ! TC:

8>><
>>:

(8E.9)

Notice the typical mean-field exponents (�1/2) and (3/2) of the thickness and

interfacial energy in the limit of T!TC.

8.1.3 Dynamics of Decomposition in Binary Systems

Description of the dynamics of decomposition in mixtures should take into account

the conservative nature of the variable molar fraction X(r, t). One way to write down
an evolution equation for the system is to generalize the continuity equation [2, 3]
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@X

@t
¼ �rJ; (8.23)

whereJ is a fluxof speciesB.Notice that the conservativenature ofX is “automatically”

taken into account by the general form of (8.23). Indeed, integrating this equation over

the entire system and using the divergence theorem we obtain

@

@t

ð
X d3r ¼ �

I
nJ ds; (8.24)

where integration in the second integral is over the boundary of the system S. In a

closed system, that is, no mass exchange with environment, the equilibrium BC

(8.19) is replaced by

nJ ¼ 0 on S: (8.25)

Hence, the surface integral in (8.24) vanishes and the total amount of the species

B does not change in time. This is consistent with the conditions (8.9) and (8.16).

In the naı̈ve theory of diffusion the flux J in the continuity equation (8.23) obeys

the Fick’s law: the flux is proportional to the gradient of concentration. To general-

ize this equation on the case of spinodal decomposition, notice that, in fact, the

driving force for diffusion is the difference of the chemical potentials for the species

at two nearby points, that is, the gradient of this quantity. Compare (8.18), (H.12)

and notice that in our system the role of the chemical potential is played by the

functional derivative dG/dX which, according to (8.18), is equal to a constant when

the system is in equilibrium. Hence, a phenomenological flux equation can be

written in the form

J ¼ �Mr dG
dX

; (8.26)

whereM is called a mobility or linear response coefficient. Then, substituting (8.26)

into (8.23) we obtain an equation that describes evolution of concentration in a

binary system [3]

@X

@t
¼ rMr dG

dX
: (8.27a)

Functional dependence of the linear response coefficient is a subject for discussion.

Some authors suggested to use the molar-fraction dependence of the type:M/X(1–X)
to offset the infinite values of the chemical potential gradient at the concentrations

approaching those of the pureA (X ! 1) or pureB (X ! 0) solutions.However, these

situations are not typical for spinodal decomposition which takes place mostly inside

the miscibility gap. That is why we will be considering
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M ¼ const X; xð Þ: (8.27b)

Then:

@X

@t
¼ Mr2 dG

dX
;

dG
dX
� @gS

@X
� kCr2X: (8.27c)

To get a sense of the value of the linear response coefficient M, let us calculate

the rate of the total free energy change that goes along with the evolution X(r, t)
near the equilibrium state �XðrÞ

dG

dt
¼
ð
dG
dX

@X

@t
d3r ¼ M

ð
dG
dX
r2 dG

dX
d3r:

Here, to obtain the final formula, we used the formula for differentiation of a

functional with respect to a parameter (see Appendix B) and equation (8.27b).

Then, applying a formula from the vector calculus

r2 uvð Þ ¼ ur2vþ 2ru � rvþ vr2u

to u ¼ v¼dG/dX and the divergence theorem we obtain

dG

dt
¼ M �

ð
r dG

dX

� 	2
d3r þ

I
d	

dX
nr d	

dX
ds

" #
:

Applying (8.26) and BC (8.25), we obtain

dG

dt
¼ �M

ð
r dG

dX

� 	2

d3r: (8.28a)

Using the fact that the integral in (8.28a) is nonnegative and that there exists an

equilibrium state �XðrÞ, which minimizes the functional G{X}, we arrive at the

condition

M 
 0 (8.28b)

because otherwise the state �XðrÞ is not attainable. Also we find from (8.28a) that the

functional (8.15a) is a Liapunov functional for the system described by (8.27a).

There is another way to derive (8.27c) which is of interest for us. Notice that this

equation can be obtained from (5.2) by the formal substitution

� g) Mr2ðrÞ: (8.28c)

Equations (8.27c) and (5.2) have a common origin: these equations can be

derived from the same master equation for the probability of the state characterized
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by X(ri, t) or �(ri, t) by either imposing the condition that the sum of all the changes

of the variables is zero or not [4]. The common origin of the equations can be

understood by considering a general relationship between the rate of the OP change

∂�/∂t and the driving force dG/d�

@�

@t
¼
ð

Gðr� r0Þ dG
dX

r0ð Þ d3r

and imposing different properties, conservative or nonconservative on the kernelG(r).

8.1.4 Evolution of Small Disturbances

To analyze dynamics of the system controlled by (8.27c), we consider first what

happens to small deviations of the uniform state of concentration X0. We write

X r; tð Þ ¼ X0 þ uðr; tÞ

and then linearize (8.27c) about X0:

@u

@t
¼ Mr2 @gS

@X
X0ð Þ þ @2gS

@X2
X0ð Þu� kCr2u

� �
: (8.29a)

Notice that, contrary to the expansion of ∂g/∂� about �� in (5.19), the term ∂gS/
∂X(X0) does not vanish now because X0 may not correspond to the “bottom of the

well” of gS(X). Yet, this term does not affect behavior of u(r, t) because it is a

constant. Hence,

@u

@t
¼ M

@2gSðX0Þ
@X2

r2u� kCr4u

� �
: (8.29b)

Because of the conservation conditions (8.16) and (8.17), the average of the

deviation u(r, t) is zero

ð
u r; tð Þ d3r ¼ 0: (8.29c)

Hence, for the solutions of equation (8.29), we may try the normal modes (sine

waves) of u

u r; tð Þ ¼ Aeikrþbt: (8.30)

Substituting (8.30) into (8.29) we find the dispersion relation
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bSðkÞ ¼ �Mk2
@2gS

@X2
X0ð Þ þ kCk2

� �
; k ¼ kj j: (8.31)

If ∂2gS/∂X2(X0) > 0 then bS(k) < 0 for all k > 0, which means that the normal

modes of all wavelengths decrease in amplitude: Ae+bt!0 as t!1. Hence, the

system is stable. In this case for the normal modes with

k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

kC

@2gS

@X2
X0ð Þ

s

we can drop the gradient-energy term in (8.29b) and obtain a conventional diffusion

equation

@u

@t
¼ D0r2u; D0 � M

@2gS

@X2
X0ð Þ (8.32)

with positive diffusion coefficient D0, see (8.28b).

On the other hand, if ∂2gS/∂X2(X0) < 0, that is, X0 is in the spinodal region, then

there are normal modes with bS(k) > 0, that is, increase in amplitude: Ae+bt ! 1
as t ! 1. Hence, the system is unstable. In this case, the dispersion relation (8.31)

takes the form (Fig. 8.2):

bSðkÞ ¼ MkCk2 k2m � k2

 �

; km ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

kC

@2gS

@X2
X0ð Þ

s
; (8.33)

wavenumber k
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Fig. 8.2 Amplification rate
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∂2gS/∂X0

2>0, the system

is stable; solid line—
∂2gS/∂X0

2<0, the system

is unstable
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where km is the wavenumber of the marginally unstable mode for which the

destabilizing (spinodal) and stabilizing (gradient-energy) contributions into the

free energy cancel out.

In the case of ∂2gS/∂X0
2 < 0, formally, the diffusion coefficient in (8.32)

becomes negative—“uphill diffusion.” The species acquire tendency to cluster

instead of diffuse and the dynamic problem takes on an entirely different complex-

ion. Obviously, the gradient-energy term in (8.29b) cannot be dropped because it

plays the central role in opposing the clustering forces. The amplification rate bS in
(8.33) shows that the clustering prevails at small ks and spreading—at large ks. As a

result, the most rapidly growing mode—“most dangerous mode”—is that for which

the wavenumber is equal to

kd ¼ kmffiffiffi
2
p : (8.34)

Compare (8.33) and Fig. 8.2 with (5.21a), (5.23) and Fig. 5.2 and notice that:

(1) in the case of spinodal decomposition the long-wavelength disturbances grow

very slowly, while in the case of a first-order transition the growth is fast—explosive;

(2) in the case of spinodal decomposition, the amplification rate of the unstable

modes reaches maximum at the finite wavenumber (pattern formation, see Sect.

9.6), while in the case of the first-order transition this wavenumber is zero (homoge-

neous structure formation). Presence of the finite-wavenumber maximum is a direct

consequence of the conservation condition (8.16).

Using the regular-solution expression for GS(X), (8.6), (8.8), (8E.7), the

marginal wavenumber km can be expressed as

k2m ¼
1

l2
4� T

TCX0ð1� X0Þ
� �

: (8.35a)

Comparison of this expression with (8.13b) shows that for a given composition

of the solution X0, the marginal wavenumber km decreases with temperature from

the maximum value of 2/l at T ¼ 0 to 0 at T ¼ TS (Fig. 8.3). Expression (8.35a) can
be resolved for the temperature

T ¼ TC 4� ðlkmÞ2
h i

X0 1� X0ð Þ (8.35b)

and presented in the (X0, T) plane (see Fig. 8.1c), which allows interpretation of the
spinodal curve as the locus of points where km ¼ 0.

The linear stability analysis presented above suggests the following scenarios of

evolution of the concentration in the solutions starting from any almost homoge-

neous initial distribution X(r, t). If the average concentration X0 is outside the

miscibility gap, the solution is stable and will remain as an almost homogeneous

state. If X0 is between the miscibility curve XE
aðbÞðTÞ

� �
and spinodal
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XS
a bð ÞðTÞ

� �
the solution is still stable with respect to small variations, that is locally

stable, but unstable globally that is with respect to full separation into two solutions

of concentrations XE
a and XE

b . In this case, the process of separation will start with

the formation of a small nucleus of the concentration close to, e.g., XE
b surrounded

by large region where the concentration had depleted from X0 to XE
a . If X0 is inside

the spinodal XS
a <X0 <XS

b

� �
then the solution is unstable even with respect to

small variations of concentration and the initial solution will be decomposing from

the beginning. The initial deviations from the average concentration may be divided

into the sine waves. Those with the wavenumbers k greater than the marginal—

shrink, while those with the wavenumbers smaller—grow with the amplification

factor bS(k). Because bS(k) has a steep maximum and because the growth rate is

proportional to the exponential of bS(k), it is possible to concentrate on the growth

of the most dangerous mode kd and those which are near that one. Such picture may

be valid only for as long as the deviations u are small and the nonlinear terms in the

expansion of (8.29b) can be ignored, that is, early stages of spinodal decomposition.

8.1.5 Role of Fluctuations

The experimental results, however, did not follow the latter scenario closely even

when experimenters were pretty sure that they were dealing with the early stages.

Among the most notable discrepancies they named the following: (1) the

amplitudes of the sine waves rise much more slowly than exponentially (Aebt);

temperature T/TC

0

0.5

1

1.5

2

lk

km

kd

1TS/TC0

Fig. 8.3 Scaled

wavenumbers of the

marginally unstable km
(solid line) and “most

dangerous” kd (dashed line)
normal modes
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(2) the dispersion relation does not follow (8.33); (3) the observed values of kd
decrease with time. The conclusion was that the linearized thermodynamic analysis

of the spinodal instability, containing many of the crucial features of the pheno-

menon, was missing at least one more ingredient. The key to the problem are the

thermal fluctuations that may drive the system away from the linear, thermody-

namic regime even on the early stages.

As we discussed in Chap. 7, a consistent way to include the thermal fluctuations

into the field-theoretic method is to add the Langevin-type force to the evolution

equation

@X

@t
¼ Mr2 dG

dX
þ z r; tð Þ: (8.36)

As z(r, t) represents the random force exerted by the rapid, thermally

equilibrated modes of the system, the average value of z(r, t) is zero [cf. (7.33a)].

To find the autocorrelation function of z(r, t) we may use the substitution (8.28c) for

(7.48). Then

z r; tð Þz r0; t0ð Þh i ¼ �2MkBTr2ðrÞd r� r0ð Þd t� t0ð Þ: (8.37)

Equation (8.36) with G from (8.15a) and z calibrated by (8.37) describes

evolution of the conserved quantity X, the molar fraction, in a process like the

spinodal decomposition. Solutions of this equation may be obtained by direct

numerical simulations.

Some key features of the solutions, however, may be revealed through the

analysis of the two-point correlation function (cf. Sect. 7.5)

Sð r� r0j j; tÞ � u r; tð Þu r0; tð Þh i: (8.38)

(In this section, instead of K, we use designation S for the correlation function

and its Fourier transform, the structure factor, because this is a customary designa-

tion in the literature on the spinodal decomposition.) The averaging in (8.37) and

(8.38) is performed with respect to P{u}—the probability distribution function for

u(r, t). Notice that the correlation function in (8.38) is assumed to be translation

invariant. The Fourier transform of S(r, t), called the structure factor Ŝðk; tÞ, is

Ŝ k; tð Þ ¼
ð
S r; tð Þe�ikr dr (8.39a)

S r; tð Þ ¼ 1

ð2pÞ3
ð
Ŝ k; tð Þeikr dk: (8.39b)
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Expanding (8.36) about X0, multiplying the product u(r, t)u(r0, t) by the

probability distribution function, taking the Fourier transform of the averaged

quantity, and using (8.37) we obtain the evolution equation for Ŝðk; tÞ [cf. (7.55)]:

@Ŝ

@t
¼ 2bSðkÞŜþ 2MkBTk

2 �Mk2
@3gS

@X3
X0ð ÞŜ3 þ 1

3

@4gS

@X4
X0ð ÞŜ4 þ � � �

� �
: (8.40)

Here bS(k) is the amplification factor given in (8.31) and the quantities denoted

by Ŝnðk; tÞ are the Fourier transforms of the higher-order two-point correlation

functions

Snð r� r0j j; tÞ � un�1 r; tð Þu r0; tð Þ� 

;

where the subscript is dropped for n ¼ 2. Neglecting the correlation functions of

orders higher than two and the fluctuation term (2MkBTk
2), we obtain the linear

evolution equation for the structure factor, which follows from the linear evolution

equation for the normal modes (8.29). Retaining the fluctuation term gives us the so-

called Cook’s equation [5], which is an improvement over (8.29)–(8.31) in that the

stable modes with k>km are predicted to equilibrate at Ŝ ¼ kBT=ðk2 � k2mÞ, rather
than relax to zero. But the unstable modes in the Cook’s approximation still exhibit

unlimited exponential growth. Equation (8.40) indicates that the latter can be

stopped only by the nonlinear terms of the free energy expansion that couple to

the higher-order correlation functions. The problem in (8.40) is to find a physically

reasonable andmathematically tractable way of relating Ŝn to Ŝ. Langer [6] obtained
an approximation, which is reasonable for the critical quench, that is, lowering the

temperature from T>TC to T<TC at X¼XC. In these conditions, we may assume that

the probability distribution P{u} is always a symmetric, Gaussian function of u,
centered at u¼0. Then, all Ŝns with odd numbers vanish and

Ŝ4 k; tð Þ ¼ 3S 0; tð Þ Ŝ k; tð Þ: (8.41)

where S(0, t)¼<u2(t)>, see (8 .38). If in (8.40) we drop the terms with n>4, we find

that the resulting equation of motion for Ŝ has the same form as in the linear theory,

but the previously constant free energy curvature ∂2gS/∂X0
2 is now replaced by the

time-dependent expression

@2gS

@X2
XCð Þ þ 1

2

@4gS

@X4
XCð Þ u2ðtÞ� 


: (8.42)

Because ∂4gS/∂XC
4 is a positive constant and <u2(t)> is a positive, increasing

function of time, the marginal wavenumber km in (8.33) must decrease. This implies

coarsening of the emerging structure, which is observed in experiments and

numerical simulations.
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8.2 Complex Order Parameter: Ginzburg–Landau’s

Theory of Superconductivity

8.2.1 Order Parameter and Free Energy

There are systems where the OP should be represented by a complex function

� ¼ �j jeiF: (8.43)

Here F is the complex argument or phase of �. Most interesting examples of

such systems are those where the quantum nature of matter is essential for its

macroscopic behavior, for instance a superconducting metal. Full theory of super-

conductivity is very complicated and is not finished yet. In this section, we will

discuss only the situations where the phenomenological Ginzburg–Landau theory is

applicable [7, 8], leaving the question of the physical conditions of applicability to

the end. For a superconducting phase of the material, the OP may be associated with

the wave function of the superconducting electrons. Then, according to the quantum
mechanics, the OP is a complex quantity defined with accuracy of an arbitrary

additive phase and all observable quantities must depend on � and �* (complex

conjugate, CC) in such a way that they do not change if � is multiplied by a constant

of the type eiy:

�! �eiy; �	 ! �	e�iy: (8.44)

The OP should be normalized such that in the superconducting phase |�|2 ¼ ns
where ns is the density of the “superconducting electrons.”

Let us, first, consider a homogeneous superconductor outside of a magnetic field.

Then � is independent of the spatial coordinates and the free energy density of a

superconductor can be expanded in powers of the OP as follows

g �; �	;P;Tð Þ ¼ g0 P; Tð Þ þ a P; Tð Þ��	 þ 1

2
b P; Tð Þð��	Þ2 þ � � � (8.45)

where g0 is the free energy density of a normal phase (�n) and a, b>0 are constants.

The requirement of invariance to the addition of the arbitrary phase y, (8.44), yields
that the free energy expansion (8.45) cannot contain terms of the third order in � (or
�*). Hence, in the absence of the magnetic field, the superconductivity is a phase

transition of the second kind.

In inhomogeneous systems, we have to account for the contributions of the

components of ∇� into the free energy density. Taking into account that the

complex OP is invariant with respect to the transformation (8.44), this contribution

may be presented as const �|∇�|2. Recall that the OP � is introduced here as an

effective wave function of the superconducting electrons. Then the operator (��h∇)

represents the quantum mechanical operator of momentum of the particle and the
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contribution of the inhomogeneities into the free energy density of the system is

analogous to the density of the kinetic energy in quantum mechanics. It can be

presented as

const r�j j2 ¼ 1

2m
�i�hr�j j2;

where �h ¼ 1.05�10�34 J s is the Plank’s constant and m is an effective mass of a

particle. Thus, the free energy density of an inhomogeneous system takes the form

ĝ �; �	;r�;P; Tð Þ ¼ g0 þ �h2

2m
r�j j2 þ a �j j2 þ b

2
�j j4: (8.46)

In quantum mechanics, the vectors

i � i�h

2m
�r�	 � �	r�ð Þ ¼ �h

m
�j j2r F (8.47a)

j � qi (8.47b)

are identified, respectively, as the probability flux density and electrical current

density due to a particle with the electrical charge q and the wave function �(r, t).
These expressions can also be used in our case assuming that �(r, t), m, and q¼�|e|
are the effective wave function, mass, and charge of the superconducting charge

carries (e is the electron’s charge). A few years after the introduction of the GL

theory, it was discovered that the electrical current in a superconducting metal is

transferred by paired electrons. This means that e and m in the GL theory should be

replaced by 2e and 2m. However, because we do not intend to present here a

quantitative theory of superconductivity we will leave e and m in their original

form. In a superconducting state, the conducting electrons break up into two parts,

normal and superconducting, with the respective current density jn and js. Contrary

to the normal current, the superconducting one does not carry heat or dissipate

energy, hence, can be sustained without external sources.

So far we have been ignoring presence of the magnetic field in the material,

which may appear as a result of an external source and/or the current. Now we have

to ask the following questions: What will happen if the superconductor is placed

into a magnetic field H created by the external sources? How do we introduce the

magnetic field into the description of the system? What are the additional

contributions into the free energy due to the presence of this field?

First, recall that in Chap. 2 discussing the influence on the transition of the

external real-valued field H (which might be magnetic) we described it by the

contribution (�H�) into the free energy density. However, such approach does not

work for a complex OP because this contribution does not have the right symmetry.

Second, as known [9], if a material is introduced into the external magnetic field of

strength H, it will develop the magnetic moment M which will change the field in
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the material. The latter may be characterized by the magnetic induction (in CGS

unit system)

B ¼ Hþ 4pM: (8.48)

B satisfies Maxwell’s equations (we consider only the case of the stationary

field)

r� B ¼ 4p
c
j; (8.49a)

r � B ¼ 0: (8.49b)

Third, to satisfy the condition of gauge invariance in the magnetic field, the

operator ∇ must be transformed as follows [9]:

r ! r� ie

�hc
A; (8.50)

where A is the magnetic vector potential related to the induction as

B ¼ r� A: (8.51)

Fourth, the work done on the material to increase the field from B to B + dB is

H dB/4p. As the magnetic moment M of the normal phase (non-ferromagnetic) is

practically zero, introduction of the magnetic field will change the free energy

density of this phase as follows

gn P; T;Hð Þ ¼ g0 þ B2

8p
: (8.52)

The “self-contribution” of the magnetic energy density should be included into

the free energy density because the magnetic field itself may be influenced by the

state of ordering.

Thus the free energy density of an inhomogeneous superconductor in a station-

ary magnetic field is

ĝ �; �	;r�;P; T;Bð Þ ¼ g0 þ B2

8p
þ �h2

2m
r� ie

�hc
A

� 	
�

����
����
2

þ a �j j2 þ b

2
�j j4 (8.52)

and the total free energy of the whole system is

G ¼
ð
ĝ d3x

¼ G0 P; Tð Þ þ
ð

B2

8p
þ �h2

2m
r� ie

�hc
A

� 	
�

����
����
2

þ a �j j2 þ b

2
�j j4

( )
d3x: (8.54)
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8.2.2 Equilibrium Equations

At equilibrium, the total free energy G must take on the smallest possible value.

Hence, equations that describe the fields at equilibrium should be obtained by

minimizing G with respect to the three independent functions (�, �*, A). Indeed,
� and �* are independent because a complex quantity is characterized by two real

ones and A is independent because the OP field affects the magnetic field through

the currents in the system. Varying G, (8.54), with respect to �* and applying the

Gauss theorem we obtain

dG ¼
ð
d�	 � �h2

2m
r� ie

�hc
A

� 	2

� þ a� þ b �j j2�
( )

d3x þ

�h2

2m

I
d�	 r � ie

�hc
A

� 	
�

� �
� n ds;

(8.55)

where n is the unit vector normal to its surface and the second integral is taken over

the surface of the superconductor. Setting dG ¼ 0 and assuming that the variation

d�* is arbitrary inside the superconductor and on its surface we obtain the following
equation and the BC

� 1

2m
�i�hr� e

c
A

� �2
� þ a� þ b �j j2� ¼ 0 (8.56)

�i�hr� e

c
A

� �
� � n ¼ 0 on S: (8.57)

Variation ofGwith respect to � yields the equations which are CC to (8.56), (8.57).

Varying G, (8.54), with respect to A, using the following formula from the

vector calculus

U � r � Vð Þ � V � r � Uð Þ ¼ r � V� Uð Þ

and applying the Gauss theorem we obtain

dG ¼
ð
dA� 1

4p
ðr � BÞ þ i�he

2mc
�	r� � �r�	ð Þ þ 1

m

e

c

� �2
A �j j2

� �
d3x

þ 1

4p

I
dA � ðB� nÞ ds: (8.58)

Setting dG ¼ 0 and assuming that the variation dA is arbitrary inside the

superconductor and on its surface we obtain Maxwell’s equation (8.49a) with the

current density j [cf. (8.47), (8.50)]
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j ¼ � e

m

i�h

2
�	r� � �r�	ð Þ þ e

c
�j j2A

� �
(8.59)

and the BC

B� n ¼ 0 on S: (8.60a)

This is not surprising because the stationary Maxwell’s equations can be derived

from the variational principle of thermodynamics [9]. Notice that in (8.59)

j represents the superconducting current only, because the normal current dies out

at equilibrium.

The BC (8.60a) yields that on the boundary of the superconductor

Bn ¼ 0; Bt ¼ B: (8.60b)

Applying Maxwell’s equation (8.49a) to BC (8.60a) we obtain a BC on the

current

4p
c
j � n ¼ r� Bð Þ � n ¼ r � B� nð Þ þ B � r � nð Þ ¼ 0: (8.60c)

Notice that this BC can also be derived if BC (8.57) and its CC are applied to the

current defined by (8.47), (8.50). Equations (8.49a), (8.56), (8.59) with BC (8.57),

(8.60a) define the distributions of the OP and magnetic fields in the superconducting

material at equilibrium.

Let us analyze now the homogeneous solutions of the equilibrium equations.

First, notice that if B ¼ 0 then we may choose the gaugeA ¼ 0 which will allow us

to define the OP in (8.56), (8.59) as a real number (e.g., the absolute value of the

wave function), that is, to reduce our equations to those that have been analyzed in

Chap. 2. Second, for weak but nonvanishing magnetic field, the equations take the

form

a� þ b �j j2� ¼ 0; (8.61a)

j ¼ � e2

mc
�j j2A: (8.61b)

The �n ¼ 0 solution of (8.61a) corresponds to the normal phase; then (8.61b)

tells us that jn ¼ 0. For the superconducting phase

ns ¼ �sj j2 ¼ �
a

b
: (8.62a)

This phase becomes stable when a<0 (see Chap. 2). Then

js ¼ �ns
e2

mc
A ¼ � aj je2

bmc
A: (8.62b)
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Applying operator ∇� to both sides of (8.62b), using Maxwell’s equations

(8.49), (8.51) and the formula from vector calculus

r� r� Uð Þ ¼ r r � Uð Þ � r2U

we obtain the Londons’ equation [10]

r2B ¼ 1

d2
B; d ¼ c

2 ej j

ffiffiffiffiffiffiffiffiffiffi
bm

p aj j

s
¼ c

2 ej j
ffiffiffiffiffiffiffiffiffi
m

pns

r
: (8.63)

Notice that the Londons’ equation is gauge invariant.

Let us use this equation to find the magnetic field distribution close to a plane

boundary of a superconductor with vacuum, which will be considered to be a

yz-plane with the x-axis directed into the superconductor (see Fig. 8.4a). Then

B¼B(x) and, as it follows from (8.60b), Bx ¼ 0, that is, only the component of

the magnetic field parallel to the surface is not zero: Bt 6¼ 0. Then (8.63) and BC

(8.60b) take the form d2Bt/dx
2 ¼ Bt/d

2 and Bt(0) ¼ B0, where B0 is the external

field applied parallel to the surface. Hence

Bt ¼ B0e
�x=d: (8.64)

As you can see, the magnetic field penetrates only a thin surface layer of

thickness d of the superconducting sample and decays quickly below this layer.

In the theory of superconductivity, this is called the Meissner effect.

Now let us calculate the free energy of a superconductor, e.g., a long cylinder,

which is placed into a constant magnetic field parallel to its axis. In this case, the

ns

a b

Hc

s
B0

x

y
z

Fig. 8.4 (a) A boundary of a superconductor with vacuum. (b) Superconductor/normal phase

transition layer
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equilibrium equations should be obtained by minimizing not the free energy G but

the following potential

F �f g;P; T;Hð Þ ¼ G �f g;P; T;Bð Þ � 1

4 p

ð
H � B d3x: (8.65)

The integral in this potential, as we discussed above, accounts for the work done

by the external forces to maintain H ¼ const(t). Let us call it the Gibbs magnetic

potential. Equation (8.65) is an example of Legendre transformation (B,G) ! (H,F),
analogous to (V, F) ! (P, G) (see Appendix F). As the OP is not involved into this

transformation, minimization of F yields the same equation (8.56) and BC (8.57).

Variation of the additional term in the Gibbs magnetic potential gives

d
ð
H � B d3x ¼

ð
H � ðr � dAÞ d3x

¼
ð
dA � ðr �HÞ d3xþ

I
ðn�HÞ � dA ds: (8.65a)

Because there are no external currents jext, the volumetric term in this expression

vanishes

r�H ¼ 4p
c
jext ¼ 0: (8.65b)

Hence, the equilibrium equation (8.59) remains the same but all parameters now

should be expressed as functions of H instead of B. The surface term will change

the BC (8.60a) to

B�Hð Þ � n ¼ 0 on S: (8.60d)

For the normal phase: �n ¼ 0, jn ¼ 0, Mn ¼ 0, and B ¼ H. Hence,

Fn ¼ G0 � H2

8p
V: (8.66)

In the bulk of the superconducting phase: �sj j ¼
ffiffiffiffiffiffiffiffiffiffi
aj j=bp

and Bs ¼ 0. As the

magnetic field penetrates only a thin surface layer of the superconducting material,

the contribution of the first two terms in the integral in (8.54) is proportional to the

thickness of this layer times the cross-sectional area and can be neglected compared

to the contribution of the last two terms, which is proportional to the total volume of

the sample V. Hence,

Fs ¼ G0 � a2

2b
V: (8.67)

Comparing expressions (8.66) and (8.67) we can see that application of the

strong enough magnetic field makes the normal phase thermodynamically more
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favorable than the superconducting one. As the condition of the phase equilibrium

is Fs ¼ Fn, we obtain an expression for the critical field, that is, the external

magnetic field strength Hc that renders the superconducting phase thermodynami-

cally (globally) unstable:

Hc ¼ 2 aj j
ffiffiffi
p
b

r
: (8.68)

Assuming the linear temperature dependence of the coefficient a

a ¼ aðT � TcÞ; (8.69)

where a>0 is a constant and Tc is the critical temperature of the transition (cf. Sect.
2.6.2), we obtain

Hc ¼ 2a

ffiffiffi
p
b

r
Tc � Tð Þ: (8.70)

This relation is applicable only to T ! Tc�0 because in the derivation of (8.61)
we used the condition of not strong magnetic field. Notice that our analysis of the

superconducting transition yields that this is a second-order transition for H ¼ 0

and the first-order one for H 6¼ 0.

8.2.3 Surface Tension of the Superconducting/Normal
Phase Interface

As we concluded in Chap. 3, the first-order transitions allow for a state of phase

coexistence, that is the state where two phases, which are at equilibrium with each

other, are separated by a transition zone of particular thickness. Hence, coexistence

of the superconducting and normal phases is possible at T<Tc and H¼Hc. In the

theory of superconductivity, such state is called intermediate. We define the

interfacial energy (surface tension) as the excess of the total Gibbs magnetic

potential of the system with the interface, per unit area of the interface, compared

to that of one of the equilibrium phases. Let us calculate the surface tension sns and
thickness of the plane n/s transition layer, which we choose to be parallel to

yz-plane with the x-axis directed into the superconducting phase (see Fig. 8.4b).

Then

sns ¼
ð1
�1

’̂� ’nð Þ dx; (8.71a)

where all quantities depend on x only and

’̂ ¼ ĝ�H � B
4p

and ’n ¼ g0 � a2

2b
: (8.71b)
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For the vector potential, which has not been “calibrated” yet, we choose the

transverse (or Coulomb or London) gauge

rA ¼ 0: (8.72)

Then we obtain that dAx/dx ¼ 0 and we can choose Ax ¼ 0. Remaining two

components of the vector potential may be chosen as Az ¼ 0 and Ay ¼ A(x). Then
Bz ¼ dA/dx. As the term iA∇� in the equilibrium equation (8.56) and the free

energy density (8.53) vanishes we arrive at the following boundary value problem

� 1

2m
��h2 d

2�

dx2
þ e2

c2
A2

y�

� 	
þ a� þ b �j j2� ¼ 0 (8.73a)

dBz

dx
¼ � 4p

c

e

m

i�h

2
�	

d�

dx
� �

d�	

dx

� 	
þ e

c
�j j2Ay

� �
(8.73b)

x! �1: n - phase; � ¼ 0; Bz ¼ Hc (8.74a)

x! þ1: s - phase; �j j2 ¼ � a

b
; Bz ¼ 0: (8.74b)

The surface tension is

sns ¼
ð

1

8p
B2
z � 2HcBz


 �þ �h2

2m

d�

dx

����
����
2

þ e

�hc

� �2
A2
y �j j2

" #
þ a �j j2 þ b

2
�j j4 þ a2

2b

( )
d3x:

(8.75)

Given the BC (8.74) and formula (8.68) it is not surprising that the integrand

vanishes in the bulk of both phases. Notice that the OP in (8.73), (8.74) may be

selected as a real function. Then the variables may be scaled as follows

~x ¼ x

d
; ~� ¼ �

ffiffiffiffiffiffi
b

aj j

s
; ~A ¼ Ay

Hcd
; ~B ¼ d ~A

d~x
¼ Bz

Hc

(8.76)

and (8.73), (8.74) may be represented in the scaled form

d2�

dx2
¼ k2

A2

2
� 1

� 	
� þ �3

� �
; (8.77a)

d2A

dx2
¼ A�2; (8.77b)

x! �1; � ¼ 0; B ¼ dA

dx
¼ 1;

x! þ1; � ¼ 1; B ¼ dA

dx
¼ 0; (8.78)
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where

k ¼ mc

ej j�h

ffiffiffiffiffiffi
b

2p

r
(8.79)

and the tildes have been dropped. “These equations, unfortunately, cannot be

integrated in quadratures, but we can provide its first integral” [7]

2

k2
d�

dx

� 	2

þ 2� A2

 �

�2 � �4 þ dA

dx

� 	2
¼ const ¼ 1; (8.80)

where the value of the constant comes from the BC (8.78). Then expression (8.75)

takes the form

sns ¼ dH2
c

8p

ð1
�1

2

k2
d�

dx

� 	2

þ A2 � 2

 �

�2 þ �4 þ dA

dx
� 1

� 	2
" #

dx (8.81)

¼ dH2
c

4p

ð1
�1

2

k2
d�

dx

� 	2
þ dA

dx

dA

dx
� 1

� 	
� dx

"
(8.81a)

¼ dH2
c

8p

ð1
�1

dA

dx
� 1

� 	2

� �4

" #
dx: (8.81b)

(Verify (8.81a) and (8.81b)!). Notice from (8.81b) that the surface tension may

vanish. One can prove (see [7]) that this takes place for the critical value of

k	 ¼ 1ffiffiffi
2
p : (8.82)

Vanishing of the surface tension is an important phenomenon which comes

about as a result of interaction of the OP field and the magnetic field. It causes

many interesting effects in superconductors, including appearance of the electro-

magnetic vortices.

As for the thickness of the transition zone, (8.77a) shows that the length scale of

the OP variation is

x ¼ kd: (8.83)

This length is equivalent to the correlation radius because it determines the

range of statistical correlations of the OP fluctuations.
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8.3 Multicomponent Order Parameter: Crystallographic

Phase Transitions

Many cases of phase transitions cannot be described adequately by a scalar order

parameter. They require an OP of more complicated structure, e.g. a “vector.”

An example in the previous section, to some extent, is a case in point. Another

example is a crystallographic transition, i.e. symmetry change in a crystalline solid.

In this section, we will consider only equilibrium characteristics of such

transformations, which is well described by the Landau Theory of Phase

Transitions.

8.3.1 Invariance to Symmetry Group

Consider a transition from a “high-symmetry” crystalline phase to a “low-symmetry”

one, which may be characterized by the densities of atoms r0(r) and r(r) so that

rðrÞ ¼ r0ðrÞ þ drðrÞ: (8.84)

The functions r0(r) and r(r) have different symmetries, that is, sets (groups) of
the transformations of the coordinates G with respect to which the functions are

invariant. In this case, G(r) ¼ G(dr) is a subgroup of G(r0) because otherwise no
symmetry change occurs at the transformation point. As known from the group

theory [11], an arbitrary function may be represented as a linear combination of the

base functions {’1, ’2, . . .} which transform through each other under any trans-

formation from the group G. Moreover, the base functions may be broken into a

number of the linearly independent sets where the functions from each set transform

through the base functions of the same set only and the number of the base functions

in the set cannot be reduced any further. Such sets are called irreducible

representations and play a special role in the Landau theory because the symmetry

change associated with a particular transition may be described by one of the

irreducible representations only. Then we represent

drðrÞ ¼
Xf
i¼1

�i’iðrÞ; (8.85)

where {’i} is the set of normalized base functions of the group G(r0) and f is the
order of the representation. Because any transformation from the group G(r0)
transforms the base functions {’i} through each other leaving the coefficients

{�i} unchanged, we may think of it as transforming {�i}s leaving {’i}s unchanged.

If the set {’i} is specified, the coarse-grained free energy G of a homogeneous

crystal with the density of atoms r(r) becomes a function of T, P, and {�i} and may
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be expanded about r0(r) if dr(r) is small compared to r0(r). However, this is an
expansion in powers of �i as opposed to dr(r) because the coarse-grained free

energy of a homogeneous system cannot depend on the space coordinate r. As the

free energy of the crystal is independent of the choice of the coordinate system,

it must be invariant with respect to the transformations of the group G(r0). Hence,
the free energy expansion in powers of �i should contain only invariant

combinations of certain powers I(n)(�i) and {�i} may be called a multicomponent
order parameter (MOP).

First, notice that the expansion of G in {�i} contains no linear invariants. Indeed,

existence of such, e.g.,
Pf
i¼1

ai�i ¼ const, would mean that the set of base functions

{’i, i ¼ 1,2,. . ., f} is not linearly independent, which contradicts our assumption.

Second, the only invariant of the second order—a positive definite quadratic

form—can always be normalized to the sum of the squares, Ið2Þ �ið Þ ¼
Pf
i¼1

�2i .

Third, the invariants of different orders I(n)(�i) are independent of each other.

Hence, the free energy expansion should take the form

G T;P; �if gð Þ ¼ G0 T;Pð Þ þ A T;Pð Þ
Xf
i¼1

�2i þ
X
p

Bp T;Pð ÞIð3Þp �ið Þ

þ
X
q

Cq T;Pð ÞIð4Þq �ið Þ þ � � �;

where Ip
(3)(�i) and Iq

(4)(�i) are invariants of the third and fourth order, respectively.

Crystallographic symmetries of the system determine what invariants should be

included into the expansion, which in turn determines what kinds of transitions may

take place in the system. The coefficients of expansion determine the characteristics

of the transition, like phase diagrams and thermodynamic quantities. Thus, the

proper irreducible representation converts description of the system through the

atomic density into the one through the MOP.

8.3.2 Inhomogeneous Variations

As in the case of a one-component OP, the total free energy of an inhomogeneous

system is an integral over the entire volume of the system

G ¼
ð
V

ĝ d3x (3.27a)

of the free energy density ĝ, which depends on the variables that characterize the

state of the system and their spatial derivatives. Hence, the spatial derivatives of

MOP must be included into the free energy density function

ĝ T; P; �if g;
@p�i
@xpk

� �� 	
:
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A physically consistent functional dependence of ĝ on @ p�i=@x
p
k g

�
is the subject

of this subsection.

Because the equilibrium free energy comes from minimization of the integral

(3.27a), two points regarding the functional dependence of ĝ on @p�i=@x
p
k

� �
should

be kept in mind. First, only spatial derivatives of the first order should be included

into the first approximation of ĝ because through the integration by parts the higher
derivatives can be reduced to lower derivatives plus the surface term. Second, the

inhomogeneous contributions may be broken into invariant combinations and

considered separately. Hence, ĝ should not contain linear combinations of

@�i=@xkð Þ because they may be integrated into the surface term (recall the Gauss

theorem). The bilinear in MOP and linear in spatial derivative terms may be divided

into two contributions: symmetric

�i
@�j
@xk
þ �j

@�i
@xk
¼ @�i�j

@xk
(8.86a)

and antisymmetric

�i
@�j
@xk
� �j

@�i
@xk

: (8.86b)

The former are not essential because they are perfect differentials and can also

be integrated into the surface terms. The latter, called Lifshitz invariants, cannot be
integrated out and deserve special attention. Notice that the group G(r0) transforms

components {∂�k/∂xi} as the components of the position vector times the compo-

nents of the MOP. Hence, the Lifshitz invariants transform as the components of the

vector times the “antisymmetric square”

�kðrÞ�lðr0Þ � �lðrÞ�kðr0Þ: (8.87)

This means that the Lifshitz invariants are not true scalar invariants of the group

G(r0), but they can be linearly combined into such. If the system of interest supports

only homogeneous equilibrium phases then the Lifshitz invariants must be absent

because their presence does not allow a homogeneous in MOP state to minimize the

total free energy. (Why?) The condition of absence of the Lifshitz invariants in the

free energy expansion is equivalent to the condition that the antisymmetric square

(8.87) does not transform as a vector. Crystallographic conditions for this are beyond

the scope of this book, they can be found in [11]. If, on the other hand, the system of

interest may sustain heterogeneous equilibrium phases (e.g., the so-called incom-

mensurate phases), then presence of the Lifshitz invariants is warranted.

In this section, we consider systems that support the homogeneous phases only.

Hence, the inhomogeneous part of the free energy density should include only the

bilinear in MOP and spatial derivatives terms

ĝ ¼ g T;P; �if gð Þ þ kklij
@�k
@xi

@�l
@xj

; (8.88)
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where kklij is the fourth rank tensor of the gradient-energy coefficients and the

summation over the repeated indices is assumed. For the homogeneous state of

the crystal to be stable, the inhomogeneous term should allow partitioning

into positive definite invariants of the second order in the components of the

gradient {∂�k/∂xi}. Hence, the transformation properties of the components of

the gradient {∂Zk/∂xi} determine the symmetry of the tensor kklij . Also, symmetry

of the tensor kklij is determined by the symmetry of the system, e.g., crystalline

anisotropy [cf. (3.20a) and the discussion afterwards].

8.3.3 Equilibrium States

Equilibrium states of the system described by the free energy (8.88), (3.27a) obey

the following simultaneous equations (see Appendix B)

dG
d�k
� @ĝ

@�k
� @

@xi

@ĝ

@ @�k=@xið Þ ¼ 0: (8.89)

Let us consider a system where kklij ¼ dkldijkki =2, that is

ĝ ¼ g T;P; �if gð Þ þ 1

2
kki

@�k
@xi

� 	2
: (8.90)

Then the simultaneous equations (8.89) take the form

@g

@�k
� kki

@2�k
@x2i
¼ 0; k ¼ 1; . . . ; f : (8.91)

Notice that in the second term there is no summation over k but there is

summation over i (Why?).

Thermodynamic stability of a heterogeneous equilibrium state {�k
E(x)} is deter-

mined by the sign of the second variation of the functional

d2G ¼ 1

2

ð
V

d�lĤd�k d
3x; (3.121)

where now dh ¼ (d�k). The sign of the second variation is determined by the

spectrum of its Hamilton’s operator

Ĥ Ck;n ¼ Ln Ck;n;

Ĥ � @2ĝ

@�k@�l
�Ek ðxÞ

 �� @2ĝ

@ @�k=@xið Þ@ @�l=@xj

 � @

@xi

@

@xj
: (8.92)
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Same as in the case of the one-component OP, the gradient

Ci;k;n	 ¼
@�Ek
@xi

(8.93)

is the Goldstone mode of the equilibrium state, that is, the eigenfunction with zeroth

eigenvalue: Ln ¼ 0.

A particular interesting situation arises in a one-dimensional system where all

variables depend on one coordinate only, e.g., x1 ¼ x. Then (8.91) take the form

kk
d2�k
dx2
¼ @g

@�k
; k ¼ 1; . . . ; f : (8.94)

Using the thermo-mechanical analogy of Chap. 6, these equations may be

interpreted as describing a conservative mechanical system of f interacting particles
with x as the time, �k—coordinate of the kth particle, kk—its mass, and (�g) as the
potential energy of the whole system. Such system has the first integral—the total

mechanical energy, kinetic plus potential [12]. To see this in our case, we multiply

both sides of (8.94) by (d�k/dx) and sum them up over k. Then

d

dx

1

2
kk

d�k
dx

� 	2" #
¼ @g

@�k

d�k
dx
¼ dg

dx
: (8.95)

Hence, the “conservation of mechanical energy” expression takes the form

1

2
kk

d�k
dx

� 	2
�g T;P; �if gð Þ ¼ �m; (8.96)

where m (negative of the “total energy”) is the value of g inside the homogeneous

phases [cf. (3.42a)].

An interesting application of this relation appears if one wants to calculate the

interfacial energy s between two coexisting phases. As we discussed in Sect. 3.4.4

s �
ð1
�1

ĝ� mð Þ dx ¼ 2

ð1
�1

g� mð Þ dx: (3.70b, c)

Then, using (8.90) and (8.96) we obtain an expression

s ¼
ð1
�1

kk
d�k
dx

� 	2
dx; (8.97)

which may be interpreted that the interfacial energy is, so to speak, a weighted sum

of the squares of all the gradients of the OPs.
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As an example of a system with MOP let us consider the following free energy

density

g ¼ g0 T;Pð Þ þ 1

2
A �21 þ �22

 �þ 1

2
C1�

2
1�

2
2 þ

1

4
C2 �41 þ �42

 �

: (8.98)

This potential describes transitions in a crystalline structure that belongs to the

crystallographic point group D4h. It may be visualized by a body-centered tetrago-

nal Bravais lattice in which the transitions constitute displacements of the central

atom away from its most symmetric position [13]. The surfaces (g–g0) as functions
of (�1, �2) for A ¼ �1, C2 ¼ 1 and different values of C1 are depicted in Fig. 8.5.

At C1 ¼ C2 the surface (g–g0) is called the “Mexican hat potential” because it is a

function of (�1
2+ �2

2) only.

Fig. 8.5 The surfaces (g–g0) from (8.98) as functions of (�1, �2) for A ¼ �1, C2 ¼ 1 and different

values of C1: 1.25 (a) and �0.25 (b)
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The homogeneous equilibrium states of this system are obtained from the

following system of simultaneous equations

@g

@�1
¼ �1 Aþ C1�

2
2 þ C2�

2
1


 � ¼ 0; (8.99a)

@g

@�2
¼ �2 Aþ C1�

2
1 þ C2�

2
2


 � ¼ 0: (8.99b)

The system has nine solutions, which may be divided into three groups

E0 ¼ ��1 ¼ ��2 ¼ 0ð Þ; (8.100a)

E1 ¼ ��1 ¼ 0; ��22 ¼ �
A

C2

� 	
or ��21 ¼ �

A

C2

; ��2 ¼ 0

� 	
; and (8.100b)

E2 ¼ ��21 ¼ ��22 ¼ �
A

C1 þ C2

� 	
: (8.100c)

In Fig. 8.6, the equilibrium states E0, E1, E2 are depicted in the plane (�1, �2).
Conditions of local stability of the equilibrium states are the following

DðEÞ � @2g

@�21

@2g

@�22
� @2g

@�1@�2

� 	2
>0 and g11ðEÞ � @2g

@�21
>0: (8.101)

Applying this criterion to the states (8.100) we obtain their respective regions of

local stability

E0 : A> 0; (8.102a)

E1 : A< 0;
C1

C2

>1; (8.102b)

E2 : A< 0;�1< C1

C2

< 1: (8.102c)

For the states E1 to be real valued in the domain of their stability it must be

C2 > 0 (8.102d)

which will be also assumed for all other cases. According to our definition of a

phase as a locally stable homogeneous-in-OP state of a system (see Sect. 2.2), the

states E0, E1, E2 are phases in the domains (8.102a), (8.102b), (8.102c), respec-

tively. Each phase, E1 and E2, has four variants of different “orientation” in the

184 8 More Complicated Systems



domain of its stability. The phase diagram of the system (8.98) is presented in

Fig. 8.7 for C2 ¼ const > 0. As you can see, this system has three phase transition

lines: (A¼0, �C2<C1<C2), (A¼0, C1>C2), and (A<0, C1¼C2). All transitions are

of the second kind because at the transition lines the stable states exchange their

stabilities with the unstable ones and there are no regions of coexistence of the

stable states (phases).

Analysis of inhomogeneous equilibrium states of the system presents another

interesting problem for us. As we saw in Sect. 3.4, the stable 1d inhomogeneous

state represents a transition zone between two phases separated by an unstable

barrier state. Using the free energy (8.98) for (8.94) we obtain

k1
d2�1
dx2
¼ A�1 þ C1�1�

2
2 þ C2�

3
1; (8.103a)
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Fig. 8.6 Equilibrium states E0, E1, E2 of the system with the free energy density, (8.98), for

�A/C2 ¼ 1 and C1/C2 ¼ �0.25 in the order-parameter plane (�1, �2). Colored trajectories are the
domain-wall transition paths for different values of the gradient energy coefficients:k ¼ 0 (purple),
k ¼ 0.2 (pink), k ¼ 0.5 (red), k ¼ 1 (black), k ¼ 1.5 (blue), k ¼ 1 (brown). For C1 ¼ 0 states,

E2 will be in the corners of the square described around the circle “a”; for C1/C2 ¼ 1—on the arch

of the circle of radius equal to “a”; for C1/C2>1—on the circle of radius smaller than that of “a.”
Dashed lines are the trajectories of the domain-wall transition paths for C1/C2>1
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k2
d2�2
dx2
¼ A�2 þ C1�

2
1�2 þ C2�

3
2: (8.103b)

Physically, there are two main types of the interfaces: inter-phase boundaries

between two phases of different symmetries, e.g., solid/liquid or fcc/bcc, and anti-

phase boundaries (APB, domain walls) between two different variants of the same

phase, e.g., magnetic or order/disorder. For the system described by the free energy,

(8.98) only the second type, APB, is possible. (Why?) The APBs exist only for

A < 0 because the phase E0 has only one variant. Six different types of APBs may

be found in each phase, E1 and E2. Their symmetries depend on the kinds of the

variants that are connected by the APB and the barrier state that separates them. The

base symmetries, (E1 E0!E1 or E1 E2!E1) and (E2 E0!E2 or E2 E1!E2)

are broken by the gradient-energy anisotropy. As a result, there appear six main

types of the APBs, which may be found in the phase E1 or E2 in different

modifications (see Fig. 8.6). Their interfacial energies depend on the values of

C1, C2, and k1, k2. Effect of these parameters on the interfacial energy of the

domain wall depends on its symmetry. If C1 ¼ 0, the simultaneous equations

(8.103) break down into two independent equations for two different OPs.

This means that the domain wall consists of two parts which coexist without

interactions. In the scaled units

xffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=C2

p ! x;
sffiffiffiffiffiffiffiffiffiffi
k1C2

p ! s; a ¼ � A

C2

; c ¼ C1

C2

; k ¼ k2
k1

(8.104)

the dimensionless parameter k is a measure of the gradient-energy anisotropy in the

OP space (�1, �2).
In the isotropic E2 phase (k ¼ 1), the OP symmetry is not broken and the

transition path is represented by the straight-line diagonals connecting the
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Fig. 8.7 Projection of the

parameter space (A, C1, k2) of
the system with the free

energy density (8.90), (8.98)

on the plane. The phase

(stability) diagram (A, C1) for

C2¼const >0
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equilibrium states in the OP plane (Fig. 8.6). The energy of the special cases of

(E2  E0 ! E2) interfaces are

sE2 E0!E2
a;�1< c< 1; kð Þ ¼ 2

ffiffiffi
2
p

1þ ffiffiffi
k
p
 �

a3=2=3; if c ¼ 0

4
ffiffiffi
2
p

a3=2=3ð1þ cÞ; if k ¼ 1
:

(
(8.105a)

For the nonspecial cases of c and k, the solutions may be obtained numerically

using the ideas of the thermo-mechanical analogy from Chap. 6. In Fig. 8.6, the

results of the computations are presented in the OP plane. Notice two features of

the trajectories. First, in both cases, they pass through the state E0 as the barrier,

which is the local maximum of the free energy (see Fig. 8.5b). Second, they press to

the “hard” OP axis more than to the “soft” one. (Why? Hint: think about the

interfacial thicknesses of the soft and hard OPs separately). The interfacial energies

of the respective domain walls are

sE2 E0!E2
a ¼ 1; c ¼ �0:25; kð Þ ¼ 2:16; if k ¼ 0:5

2:80; if k ¼ 1:5:

�
(8.105b)

For the (E2  E1 ! E2) interfaces, the symmetry between the OPs is broken

even if k ¼ 1 and the transition-path trajectories are represented by the respective

hyperbolae in the OP plane (Fig. 8.6). The interfacial energies of these layers are

sE2 E1!E2
a;�1<c<1; kð Þ! 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cÞ

p
a3=2=3ð1þ cÞ; k! 0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kð1� cÞ

p
a3=2=3ð1þ cÞ; k!1 :

(
(8.106)

The type of the interface, (E2 E0!E2) (8.105) or (E2 E1!E2) (8.106),

depends on the symmetries of the terminal phases that the interface connects.

Both types of interfaces are thermodynamically stable, that is, their Hamilton’s

operators, (8.92), do not have negative eigenvalues. In Fig. 8.8, the interfacial

energies of the two types of interfaces are plotted as functions of k. As you can

see the interfaces of different types may coexist in the same phase although they

have different amounts of energy.

In the E1 phase (c>1), there are two types of the APBs: (E1 0!E1) where only

one OP varies while the other one is zero and (E1 2!E1) where both OPs vary

simultaneously. The symmetry of the (E1 0!E1) interfaces is broken by the

gradient-energy coefficients and the trajectories of these interfaces in the OP

plane represent, respectively, the horizontal and vertical straight lines (see

Fig. 8.6). Trajectories of the (E1 2!E1) interfaces in the OP plane are arches.

The interfacial energies of the (E1 0!E1) interfaces are

sE1 �E0!E1
a; c>1; kð Þ ¼ ð2

ffiffiffi
2
p

=3Þa3=2 (8.107a)

sE1 E0!E1
a; c>1; kð Þ ¼ ð2

ffiffiffi
2
p

=3Þ ffiffiffikp a3=2 (8.107b)

8.3 Multicomponent Order Parameter: Crystallographic Phase Transitions 187



Example 8.3 Find the equilibrium states of the free energy density that describes

transitions from fcc to L10 crystalline structure

ĝ ¼ g0 þ 1

2
A �21 þ �22 þ �23

 �þ 1

3
B�1�2�3 þ

1

2
C1 �21 þ �22 þ �23

 �2

þ 1

4
C2 �41 þ �42 þ �43

 �þ 1

2
k r�1j j2 þ r�2j j2 þ r�3j j2
� �

: (8E.10)

8.4 Memory Effects: Non-Markovian Systems

In Chap. 7, we proposed the dynamic equation for the OP evolution (7.31) that takes

into account effects of the driving force (first term in rhs) and fluctuations (second

term in rhs). Let us look closer at the following property of this equation: the

response of a system to the driving force is simultaneous with the application of the
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Fig. 8.8 Scaled interfacial energy s of the domain walls in the phase E2 at c ¼ �0.25 as a

function of the scaled gradient energy coefficient k. Blue curve—(E2  E0 ! E2) type, (8.105);

green curve—(E2  E1 ! E2) type, (8.106)
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force. As a general rule, such simultaneity in a macroscopic theory turns out to be

an approximation to causal behavior, where the response to a force comes after the

application of the force. Usually simultaneity is associated with ignoring certain

molecular variables. Indeed, although the time dependence of a system is governed

by equations (Hamilton’s or Schr€odinger’s) that show an instantaneous response,

complete specification of the microstate of the macroscopic system requires know-

ledge of a very large number of molecular variables. In our mesoscopic description,

the microscopic variables are coarse-grained and we deduce evolution of the system

from the equations for the OPs, pretending that other variables do not chgange

(see Appendix A). This is where the causality is violated. The reason why we want

to reexamine the dynamic Langevin equation (7.31) instead of TDGLE (5.1) is that

we would like to assess and compare the effect of causality and fluctuations at the

same time. To do that, we need to derive (or at least substantiate) a causal evolution

equation, which we will call the generalized Langevin equation, and then investi-

gate the validity of simultaneity as a limiting case.

First, let us ask ourselves a question: how did simultaneity “enter” our theory?

In Appendix G, we showed that the Langevin equation is equivalent to the Fokker-

Plank equation (G.10), which can be derived from the master equation (G.6). In the

master equation, evolution of the system depends on the transition probabilities

W(o|o0), which depend only on the states between which the transition occurred

and does not depend on the previous states of the system. This Markovian property

is the source of simultaneity in the system.

If the Markovian condition is relaxed, evolution of the system will depend on its

“history.” In the Fokker-Plank equation, this will result in the jump moments a1, a2
being dependent on the memory effects. The Langevin equation with the memory

effects takes the form

d�

dt
¼ �

ðt
0

Gðt� t0Þ dG
d�
ðt0Þ dt0 þ xðr; tÞ; (8.108)

where G(s) is the memory function, which depends on the time difference between

the present t and past t0 moments and assigns certain weights to the driving force

applied in the different moments of the past. The instantaneous Langevin equation

(7.31) can be recovered from (8.108) if the memory function has “very short

memory”

G t� t0ð Þ ¼ gdðt� t0Þ: (8.109)

On the other hand, if the system is characterized by a finite “memory time” tm,
its memory function can be written as follows

G t� t0ð Þ ¼ G0e
�ðt�t0Þ=tm : (8.110)
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Notice that the instantaneous case, (8.109), can be recovered from the memory

case if

tm ! 0; G0 !1; and tm G0 ¼ g: (8.111)

(Verify! Hint: Integrate (8.109), (8.110) from t to1!)

Differentiating (8.108) with respect to the time (recall the rules of differentiation

of integrals with respect to a parameter) we obtain

d2�

dt2
¼ � G0

dG
d�
ðtÞ þ 1

tm

ðt
0

Gðt� t0Þ dG
d�
ðt0Þ dt0 þ dx

dt
ðr; tÞ (8.112)

(see Appendix G regarding dx/dt). Excluding integrals from (8.108), (8.112) we

obtain differential equation for the OP evolution in a system with memory

described by the memory function (8.110)

d2�

dt2
þ 1

tm

d�

dt
¼ � G0

dG
d�
ðtÞ þ 1

tm
xðr; tÞ þ dx

dt
ðr; tÞ: (8.113)

Notice that in the limit (8.111) we recover from this equation the instantaneous

case, (7.31).

As you can see from (8.113), the memory gives rise to two different effects in the

system’s evolution. First, the driving force (�dG/d�) “excites” not only the first

derivative of the OP (speed) but also the second one (acceleration), which causes

more long-term effect than in a system without memory. Second, the memory

enhances the effect of fluctuations on the system by “engaging” the first derivative

of the Langevin force x(r, t). Let us study these effects separately.

First, let us look at the effects of memory on small deviations from equilibrium

states. For the present purposes, it will suffice to study homogeneous deviations only

D� ¼ �ðtÞ � �� (see Sect. 4.4) because heterogeneities do not incur any new features

on the system. Expanding the driving force about the stable equilibrium state ��, the
evolution equation without the effect of the fluctuations will take the form

€D� þ 1

tm
_D� þ 1

t2r
D� ¼ 0; tr ¼ G0

@2g

@�2
ð��Þ

� ��1=2
: (8.114)

Using the thermo-mechanical analogy of Chap. 6, this equation describes motion

of a damped linear oscillator [14]: adding the memory term is equivalent to adding

mass to a dissipative system.

Equation (8.114) is a linear homogeneous ODE with constant coefficients,

properties of which are very well known [15]. The nature of its solution depends

on whether the characteristic equation

q2 þ 1

tm
qþ 1

t2r
¼ 0 (8.115)
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has the roots

q� ¼ � 1

2tm
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2r � 4t2m

p
2tmtr

(8.116)

that are real and different or coincident, or complex.

Short memory: tm<tr/2. Both roots are real and negative: q�<q+<0, and the

solutions of (8.114) are given by

D�ðtÞ ¼ Aeqþt þ Beq�t; (8.117)

where A, B are constants. The most important difference of these solutions from

those in the instantaneous case (see Sect. 4.2.1) is the dependence of the relaxation

rate on the memory constant tm. Even in the case of very small memory time:

tm�tr, the largest relaxation time in the system, which determines its long-time

properties, is tr
2/tm. Mathematically, as one can see from (8.114), this happens

because the memory constant multiplies the highest derivative of the evolution

equation. Physically this means that the memory effects are always significant in

the long run.

Long memory: tm>tr/2. The roots (8.116) are complex with negative real parts and

the solutions are

D�ðtÞ ¼ Ae�t=2tm cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2m � t2r

p
2tmtr

tþ a

 !
; (8.118)

where A, a are constants. A typical solution of this type represents an oscillation

about the equilibrium state D� ¼ 0 with the exponentially decreasing amplitude,

decaying slower for large memory constant tm. Notice that the rate of approach to

equilibrium is determined by the memory property instead of the relaxation one. In

the case of very long memory: tm
tr, the system approaches equilibrium at a very

slow pace, tm
�1, during which many oscillations about it will be made with high

frequency of tr
�1.

Critical memory: tm¼tr/2. In this case q�¼q+¼�1/2tm. The solution

D�ðtÞ ¼ ðAþ BtÞe�t=2tm (8.119)

represents aperiodic approach to the equilibrium with the rate determined by the

memory constant tm.
Now let us pose another question: What changes in the properties of the

Langevin force x(r, t) will be caused by the memory effects in the system? To

answer this question let us try to do what we have done in the case of the

instantaneous response, that is, to calculate the long-time limit of the equilibrium-

averaged square of the deviation of the OP from the equilibrium value. The linear

generalized Langevin equation (8.113) takes the form
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€D� þ 1

tm
_D� þ 1

t2r
D� ¼ 1

tm
xðtÞ þ _xðtÞ: (8.120)

The solution that satisfies the initial conditions

D�ð0Þ ¼ _D�ð0Þ ¼ 0 (8.120a)

may be written in the Cauchy’s form

D�ðtÞ ¼
ðt
0

M t; sð Þ 1

tm
xðsÞ þ _xðsÞ

� �
ds; (8.121)

where the kernel

M t; sð Þ ¼ M t� sð Þ ¼ eqþ t�sð Þ � eq� t�sð Þ

qþ � q�
(8.121a)

is a one-parameter solution of the homogeneous equation (8.114), which satisfies

the following initial conditions:

M s; sð Þ ¼ 0; _Mðs; sÞ ¼ 1: (8.121b)

(Verify (8.121)!) The kernelM actually depends on the difference (t�s) because
the coefficients of its differential equation are const(t).

Integrating (8.121) by parts and taking (8.121b) into account we obtain

D�ðtÞ ¼ �MðtÞxð0Þ þ
ðt
0

L t� sð ÞxðsÞ ds; (8.122)

where

LðtÞ ¼ _MðtÞ þ 1

tm
MðtÞ ¼ qþeq�t � q�eqþt

qþ � q�
: (8.122a)

To satisfy the BC (8.120a), we must choose x(0) ¼ 0. Then the equilibrium-

averaged square of the OP deviation (8.122) takes the form

D�2ðtÞ� 
 ¼ ðt
0

ðt
0

Lðt� s1ÞLðt� s2Þ x s1ð Þx s2ð Þh i ds1 ds2: (8.123)

In the long-time limit, the autocorrelation function Kx(s2�s1)¼<x(s1)x(s2)>
depends only on the difference (s2�s1), and the kernel of the double integral depends
only on the sum (s2 + s1). To verify the last statement you may consider the function
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R t1; t2ð Þ � ðqþ � q�Þ2Lðt1ÞLðt2Þ � qþeðq�=2Þ t1þt2ð Þ � q�eðqþ=2Þ t1þt2ð Þ
h i2

¼ qþq� 2eðq�þqþ=2Þ t1þt2ð Þ � eqþt1þq�t2 � eq�t1þqþt2
h i

and notice that

dR

dt
t; tð Þ ¼ R t; tð Þ ¼ 0:

Then, changing the variables in (8.123) to u ¼ (s2 � s1), U ¼ t�1/2(s2 + s1)
and using the same method as in the integration of (7.36), we obtain

D�2 1ð Þ� 
 ¼ ð1
0

qþeq�U � q�eqþU

qþ � q�

� �2
dU

ðþ1
�1

KxðuÞ du; (8.123a)

¼ 1

2
tr

tr
tm
þ tm

tr

� 	ðþ1
�1

KxðuÞ du (8.123b)

(Verify (8.123b)!).

Regardless of the memory, in the long-time limit, the system approaches the

equilibrium state where D�2
� 
 ¼ kBT=½V@2gð��Þ=@�2�, see (7.15). Hence,

ðþ1
�1

KxðuÞ du ¼ 2kBT

Vtr ðtr=tmÞ þ ðtm=trÞð Þ@2g=@�2ð��Þ : (8.124)

This relationship sometimes is called the second fluctuation-dissipation theorem.

It provides the foundation for a discussion of the properties of the Langevin force in

the system with memory. Notice that in the asymptotic limit (8.111) we recover

(7.39). However, if the characteristic memory time is very long, tm
tr, then the

correlation function of fluctuations depends on the memory and is independent of

the relaxation properties of the system.

If the Langevin force is irregular, the correlator Kx is proportional to the delta

function. However, it is reasonable to assume that in a system with memory the

fluctuation process is correlated over the time period equal to the time constant tm.
Then, taking into account, the property of symmetry of the correlator [see (G.45)]

and the second fluctuation-dissipation theorem, (8.124), we obtain

xðt1Þxðt2Þh i ¼ kBT

V 1þ ðt2m=t2r Þ

 � G0e

� t2�t1j j=tm : (8.125)
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8.5 “Mechanical” Order Parameter

Consider a system, which is described by two scalar OP fields, c(r, t) and �(r, t), of
different nature. The OP c represents generalized coordinate characterized by the

mass density r, while the OP �(r, t) is “massless,” that is, its mass density is zero.

Then, in addition to the potential energy and gradient energy, the system is

characterized by the kinetic energy. In the spirit of our previous discussion, we

will assume that the field �(r, t) is responsible for dissipation of the mechanical

energy of the system. The field c(r, t) may be called mechanical (Lagrangian) and

the field �(r, t)—thermodynamic. In the field theory (see Appendix D), such system

is described by the Lorentz-invariant Lagrangian density

l c; �f g ¼ 1

2
r

@c
@t

� 	2
� 1

2
kc rcð Þ2 � 1

2
k� r�ð Þ2 � uðc; �Þ; (8.126)

where kc, k� are the gradient-energy coefficients of the fields c(r, t), �(r, t), and u is
the potential energy density of the system, assumed to be nongravitational. For the

Lagrangian density (8.126), the mechanical energy of the system is [see (D.18)]

E �
ð
O
d3x

@l

@ @c=@tð Þ
@c
@t
� l

� �
¼
ð
O
d3x

1

2
r

@c
@t

� 	2
þ 1

2
kc rcð Þ2 þ 1

2
k� r�ð Þ2 þ uðc; �Þ

" #
:

(8.127)

Many physical systems can be described by the fields c(r, t) and �(r, t).
The following two examples are of interest for us. Martensitic transformation is a

distortion of a crystalline lattice that does not need long-ranged diffusion of atoms.

It is often characterized as a polymorphic (e.g., fcc-to-hcp) diffusionless transfor-

mation controlled by shear stress and strain. The field c may describe distribution

of shear strain in the material of mass density r with the gradient energy coefficient

kc related to the nonlocal elastic behavior of the lattice. However, the purely

mechanical description does not account for the dissipative interatomic

interactions, which lead to the losses of the mechanical energy. These interactions

may be described by the field �(r, t). Another example comes from the area of

cracks propagation in brittle materials. In this case, the Lagrangian field c may

characterize displacement of the material perpendicular to the plane of the crack;

then, displacement gradients correspond to components of strain. The dissipative

field � represents defective material and distinguishes between broken (�¼0) and
unbroken (�¼1) states.

For the equation of motion of the field c(r, t) we may try to use the Lagrange

equations (D.14); their right-hand sides may be expressed as the partial functional

derivatives of E, that is, with respect to the spatial variations of the respective fields.
So, for the field c(r, t) we have
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r
@2c
@t2
¼ � dE

dc
: (8.128)

For the massless field �(r, t), the Lagrange equation of motion (D.14) turns into

an equation of equilibrium, which means that the dynamical evolution of this field

is not governed by the Hamilton’s principle. Hence, the Lagrange equation for this

field must be replaced with the dissipative one. For the massless field �(r, t)
deviation of the partial functional derivative of E from zero is a measure of

the deviation of the system from equilibrium, that is, the thermodynamic force.

Hence, we may assume that the rate of change of the field �(r, t) is proportional to
this force

@�

@t
¼ �e dE

d�
: (8.129)

This equation is analogous to TDGLE (5.2) with the mechanical energy E
replacing the free energy G.

Let us calculate the rate of dissipation of the mechanical energy E.
Differentiating (8.127) with respect to time as a parameter, integrating by parts

and dropping the boundary term we obtain the time derivative of the mechanical

energy E

dE

dt
¼
ð
O
d3x r

@2c
@t2

@c
@t
þ dE
dc

@c
@t
þ dE

d�
@�

@t

� �
: (8.130)

Due to the equations of motion (8.128), (8.129) this is

dE

dt
¼ �e

ð
O
d3x

dE
d�

� 	2
: (8.131)

Equation (8.131) shows that, indeed, changes of the field energy E occur due to

evolution of the field �(r, t) only with no effect of the field c(r, t). As the energy of
a mechanical system cannot be produced but may be dissipated, we conclude

that e
0.
According to the Lagrangian field theory (Appendix D), the states of mechanical

equilibrium are described by the following simultaneous equations

dE
dc
� @u

@c
� kcr2c ¼ 0; (8.132a)

dE
d�
� @u

@�
� k�r2� ¼ 0: (8.132b)
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Notice that in the nongravitational system the mass density r has no bearing on

the equilibrium states. For a homogeneous equilibrium state, (8.132) yield that

@u

@c
c; �ð Þ ¼ @u

@�
c; �ð Þ ¼ 0: (8.133)

For a heterogeneous equilibrium state let us consider an interface, that is, a 1D

transition region between large regions of two different homogeneous equilibrium

states (ca, �a) and (cb, �b). Such state has the first integral (D.19)

1

2
kc

dc
dx

� 	2
þ 1

2
k�

d�

dx

� 	2
�u c; �ð Þ ¼ constðxÞ � �n: (8.134)

The first integral (8.134) yields that in the terminal phases

u ci; �ið Þ ¼ n; i ¼ a; b (8.135)

because

dc
dx
¼ d�

dx
¼ 0; at x! �1 (8.135a)

and

du

dx
ci; �ið Þ ¼ 0; at x! �1 (8.136)

because

du

dx
¼ @u

@�

d�

dx
þ @u

@c
dc
dx

: (8.137)

The interface can be characterized by the surface tension

s ¼
ðþ1
�1

k�
d�

dx

� 	2
þ kc

dc
dx

� 	2" #
dx ¼ s� þ sc; (8.138)

where s� and sc are the partial tensions

s� �
ðþ1
�1

k�
d�

dx

� 	2" #
dx; sc �

ðþ1
�1

kc
dc
dx

� 	2" #
dx: (8.138a)
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To analyze the dynamical properties of the system described by (8.128), (8.129)

we look first at the evolution of the small deviations of the fields from the

homogeneous equilibrium {ci, �i} described by (8.135)

’ ¼ c r; tð Þ � ci; y ¼ � r; tð Þ � �i: (8.139)

Expanding the potential energy function about the equilibrium state {ci, �i} we
obtain

u c; �ð Þ ¼ nþ 1

2
ucc’

2 þ uc�’yþ 1

2
u��y

2 þ h.o.t, (8.140)

where

upq ¼ @2u

@p@q
ci; �ið Þ; p; q ¼ c; �: (8.140a)

Then dropping the higher-order terms (h.o.t.), (8.128), (8.129) transform to

r
@2’

@t2
¼ kcr2’� ðucc’þ uc�yÞ; (8.141a)

1

e
@y
@t
¼ k�r2y� ðu�c’þ u��yÞ: (8.141b)

Here uc� plays the role of the interaction coefficient in the sense that if uc� ¼ 0

the two fields have no linear interactions and evolve independently (to be exact—

almost independently because still there may be nonlinear interactions between

these fields). In this case, the independent fields c and � have significantly different
dynamical properties: evolution of the field c is described by the wave equation

with the phase velocity

cph 
 cc �
ffiffiffiffiffiffi
kc
r

r
(8.142)

and linear dispersion proportional to ucc, while evolution of the field � is described
by the heat equation with Newton’s cooling (or heating) proportional to u��, which
determines growth or decrease of the field.

If the interaction coefficient is not zero, uc� 6¼ 0, properties of the fields

described by (8.141) change significantly. To reveal an important property that

appears as a result of the interaction, we could represent the waves ’(r, t) and y(r, t)
as Fourier modes and study their spectrum, as we have done that in Sect. 5.2.

However, we find it here more instructive to demonstrate different method.
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It will suffice to consider evolution of the homogeneous modes ’(t) and y(t) only.
Then (8.141b) can be resolved as follows

y ¼
ðt
�1

eeu��ðt
0�tÞ �eu�c’ t0ð Þ� �

dt0 ¼ � u�c
u��

X1
n¼0

dðnÞ’=dtðnÞ

�eu��

 �n : (8.143)

The second equality in this expression is obtained by applying the Taylor’s

formula to ’(t0). Restricting the series in (8.143) by the first three terms and

substituting them into (8.141a) we obtain

r� u2c�
e2u3��

 !
d2’

dt2
þ u2c�
eu2��

d’

dt
þ ucc �

u2c�
u��

 !
’ ¼ 0: (8.144)

This equation is analogous to an equation of 1d motion of a particle with the

generalized coordinate ’ in a potential field ~’2 and medium with a dissipative

force which depends on the speed of the particle. The generalized mass of the

particle and the potential function are affected by the interaction coefficient uc� and
the dissipation coefficient

a ¼ u2c�
eu2��

(8.145)

is proportional to the interaction coefficient squared. Similarly, taking into account

the gradient energies of the field c and �, we can derive from (8.141) the telegraphic

equation [16], which describes propagation of the damped waves in a medium with

damping proportional to the interaction coefficient squared.

The series in (8.143) can be approximated by the first three terms only if the

characteristic time of oscillations of the fieldc ismuch greater than that of the field �.
If the c–� interactions are not strong

u2c�
uccu��

� 1 (8.146)

then the former is
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ucc

p
and the latter is eu��


 ��1
, see (8.141). Hence, the

condition of applicability of (8.144) is

eu��

ffiffiffiffiffiffiffiffi
r
ucc

r

 1: (8.147)

This mean that the dissipation coefficient (8.145) is small

a� ffiffiffiffiffiffiffiffiffiffi
rucc
p

: (8.148)
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Equations (8.144)–(8.148) shed light on the physical nature of dissipative forces

in mechanical systems: they come from the interactions with other degrees of

freedom, dynamics of which is dissipative.

The dynamic equations (8.128), (8.129), (8.132) support the 1d train waves

traveling with speed v. The waves are described by the nonlinear equations

kc 1� v2

c2c

 !
d2c
dx2
¼ @u

@c
; (8.149a)

k�
d2�

dx2
þ v

e
d�

dx
¼ @u

@�
: (8.149b)

Compared to the system of two Lagrangian fields (see Appendix D) (8.149) do

not have the first integral. Exact solutions of (8.149) with interacting fields c and �
are possible but not known to the author. However, there is a lot that we can learn

about the system (8.149) without solving it exactly. Let us multiply (8.149a)

by d�/dx and (8.149b) by dc/dx, add them together, and integrate the sum from

�1 to +1. Then, using (8.137) we obtain the relation for the wave speed

v ¼ ek�
s�

u �a;cað Þ � u �b;cb


 �� �
: (8.150)

Notice that, contrary to the Lagrangian system of Appendix D, the selection

problem—finding the unique value of the velocity of the train wave—is resolved

for the system (8.149). This is a consequence of the dissipative nature of the field �.
The velocity v is proportional to the potential energy difference between the

equilibrium states a and b with the coefficient of proportionality that may depend

on the speed v through the partial tension s�. However, to estimate the kinetic

coefficient in (8.150), we can use an equilibrium estimate of the surface tension or

abbreviated action as s�l � k� �a � �b
� �2

, where l is the thickness of the transition
region [see (D.26), (D.28) and Example 3.1]. Then

v � el
u �a;cað Þ � u �b;cb


 �
�a � �b
� �2 : (8.151)
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Chapter 9

Thermal Effects of Phase Transformations

A very simple set of arguments will convince you that, for the theory of phase

transformations to be realistic, we have to consider the OP evolution together with

other processes that take place simultaneously with the phase transformations.

For instance, as we noted in Chap. 2, a phase transition of the first kind is

accompanied by the release of the latent heat, which amounts to the difference of

the internal energies (or enthalpies) of the phases on both sides of the transition.

The heat does not remain localized at the sites where it was released, usually

positions of the interfaces. Due to the mechanism of heat conduction, it will diffuse

to the places with lower temperatures causing the temperature field to vary.

The redistribution of heat and equilibration of temperature causes the feedback

effect on the phase transition in the form of changing rate and in some cases even

the direction of the transformation. Another example comes from transformations

in systems of varying density, e.g., mixtures or substances in gravitational fields.

Such transformations cause flow of matter, which also has a feedback effect on the

transformation. Many of these processes have characteristic length and time scales

longer than those of the OP variations; that’s why sometimes they are called

“hydrodynamics” modes. The questions that we have to answer are: How do we

couple the OP evolution to these processes? What physical principles are important

here? How do we maintain the thermodynamic (physical) consistency between the

descriptions of all processes in the system? The main question, which is discussed

in this chapter, is: How can we incorporate the mechanisms of heat release and

redistribution into our method in a physically rigorous and consistent way? Another

question that we will look at is: What are the new effects or features that we may

expect from the transformations that are accompanied by the latent heat release?

In this chapter, we review practically all aspects of the book with the energy

conservation constraint included. One interesting and counterintuitive conclusion

of our analysis is that the thermal effects appear even in transformations that

proceed without any latent heat release.

A. Umantsev, Field Theoretic Method in Phase Transformations,
Lecture Notes in Physics 840, DOI 10.1007/978-1-4614-1487-2_9,
# Springer Science+Business Media, LLC 2012
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9.1 Equilibrium States of a Closed (Adiabatic) System

Let us consider first equilibrium states in a closed (adiabatic) system that is, a

system that does not have heat exchange with the environment. As we know from

thermodynamics, for such a system the variational principle must be changed:

instead of minimizing the total free energy for the constant temperature

(see Chap. 2) we must maximize the total entropy of the system keeping the total

energy (enthalpy) of the system constant. Then,

Sf�g �
ð
V

ŝ �;r�ð Þd3x ! max, (9.1)

for

E �f g �
ð
V

ê �;r�ð Þd3x ¼ const: (9.2)

Here ŝ and ê are the entropy and energy (enthalpy) densities of the system. Thus,

from the viewpoint of the calculus of variations (see Appendix B), the equilibrium

states in the closed system obey conditions of the isoperimetric problem. There
exist two types of the solution of this problem (see Appendix B): type-E1: the

equilibrium state is not an extremal of the energy functional (9.2) and type-E2:

the equilibrium state is an extremal of the energy functional (9.2). Although in each

case one has to consider both homogeneous and inhomogeneous equilibrium states,

we will find that type-E2 applies to the inhomogeneous states only. Let us consider

these cases separately.

9.1.1 Type-E1 States

If the sought state {�E1} is not an extremal of the energy functional (9.2), then there

exists a constant l such that the state is an unconditional extremal of the functionalÐ ðŝþ lêÞ d3x that is, the following relation is satisfied:

dSþ l dE ¼ 0: (9.3)

Since (9.3) is true for an arbitrary variation of d�, l ¼ �1/T where T is the

absolute temperature and the state {�E1} is an extremal of the free energy functional

G{�, T} ¼ E � TS that is, satisfies the same necessary conditions as in the

isothermal system (see Chap. 3). This hints that the Legendre transformation

(see Appendix F):

E; Sf g ! T ¼ dE

dS
;G ¼ E� dE

dS
S

� �
(9.4)
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may be useful here because it allows us to express the equilibrium conditions using

a more convenient function of G(T) instead of S(E). The entropy and energy

(enthalpy) densities of the system also must be Legendre transformed:

ŝ ¼ � @ĝ

@T

� �
�

; ê ¼ ĝ� T
@ĝ

@T

� �
�

: (9.5)

Rigorously speaking in (9.4) and (9.5) we have to consider also the Legendre

transformation from the volume V to pressure P, but the compression effects are not

of interest here. For that matter, you may think of G as the Helmholtz function

instead of the Gibbs one. It is important to note that the OP is a part of the description

in both sets {�, E, S} and {�, T, G}, but remains unaffected by the Legendre

transformation.

The above obtained result that the set of the equilibrium states of the open and

closed systems are the same is not surprising because it is a consequence of a more

general fact that in the thermodynamic limit of V!1 the canonical and

microcanonical ensembles have the same equilibrium states [1]. However, the

thermodynamic stability of the equilibrium states in the microcanonical ensembles

may be different from that in the canonical one. Let us consider stability of

homogeneous f��E1g and inhomogeneous {�E1(x)} states separately.

For a homogeneous system

ds ¼ 1

T
deþ @s

@�

� �
e

d� (9.6)

and the equilibrium state in a closed system is characterized by the condition

@s

@�

� �
e

¼ 0: (9.7)

Differentiating the Legendre transformation (9.4) with respect to the OP we

obtain:

@g

@�

� �
T

¼ @e

@�

� �
T

� T
@s

@�

� �
T

: (9.8)

Then, applying a mathematical formula for a partial directional derivative of a

function f(x, y) in the direction h(x, y) ¼ const:

@f

@x

� �
h

� @f

@x

����
h¼const

¼ @f

@x
þ @f

@y

dy

dx

����
h¼const

(9.9)
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to the energy and entropy functions in (9.8) we obtain the condition of equilibrium:

@g

@�

� �
T

¼ �T
@s

@�

� �
e

¼ 0; (9.10)

which shows that, indeed, the closed and open systems of the same substance have

the same homogeneous equilibrium states.

The condition of local thermodynamic stability in the closed system, that is, the

condition that the equilibrium state corresponds to a maximum of the entropy for

constant energy is

@2s

@�2

� �
e

< 0: (9.11)

Applying formula (9.9) to (9.10) we obtain

T
@2s

@�2

� �
e

¼ � @2g

@�2

� �
T

þ 1

T

@g

@�

� �
T

� @2g

@�@T

� �
dT

d�

����
e

: (9.12)

Taking into account that the slope of the constant-energy line is

dT

d�

����
e

¼ � @e=@�ð ÞT
@e=@Tð Þ�

¼
@g=@�ð ÞT � T

@2g

@�@T

T @2g=@T2ð Þ�
(9.13)

and that we are analyzing an equilibrium state with (9.7) and (9.10) we obtain that

T
@2s

@�2

� �
e

¼ � @2g

@�2

� �
T

þ @2g=@�@Tð Þ2
@2g=@T2ð Þ�

: (9.14)

Hence, the condition of the local thermodynamic stability of a homogeneous

equilibrium state f��E1g in the closed system is

@2g

@�2

� �
T

� @2g=@�@Tð Þ2
@2g=@T2ð Þ�

>0: (9.15)

Since the specific heat of a stable state is positive

C� � @e

@T

� �
�

¼ �T
@2g

@T2

� �
�

>0; (2.41a)

204 9 Thermal Effects of Phase Transformations



the condition of the local thermodynamic stability in a closed system (9.15) is less

restrictive than that in the open one:

@2g

@�2

� �
T

>0: (2.15)

In other words, a homogeneous equilibrium state may be adiabatically stable,
that is, unstable in an open system but stable in a closed system, that is, (2.15) is not

fulfilled but (9.15) is fulfilled. A necessary condition for that is ∂2g/∂T∂� 6¼ 0; a

sufficient condition is

M��ðTÞ � @2g=@�@Tð Þ2
@2g=@T2ð Þ� @2g=@�2ð ÞT

�����
�¼��ðTÞ

>1; (9.16)

whereM�� is a parameter, called the interaction module. It determines the strength of

interactions between the thermal and ordering modes of the transition. The partials

that make up M�� in (9.16) should be taken at the equilibrium state in question.

An interesting interpretation of the condition of the adiabatical stability may be

revealed if we find the temperature/OP slope of the line of equilibrium for this state:

d
@g

@�

� �
T

¼ @2g

@�2

� �
T

d� þ @2g

@�@T
dT ¼ 0

and compare it with that of the constant-energy line (9.13). Then, criterion (9.16)means

M��ðTÞ ¼ dT=d�ð Þje
dT=d�ð Þj��

> 1 (9.17)

that the slope of the constant-energy line is greater than that of the equilibrium-state

line. Another application of the criterion (9.16) may be found in calculating the

specific heat of the adiabatically stable state:

C��ðTÞ �
de ��ð Þ
dT

¼ @e

@T

� �
�

þ @e

@�

� �
T

d��

dT
¼ C� 1�Mð Þ: (9.18)

Applying (9.16) to (9.18) and (2.41a) we find that when an isothermally unstable

state gains adiabatic stability its specific heat becomes negative, which means that

such state is unstable in the bulk.

Two comments are in order here.

1. Equation (9.16) is only a condition of homogeneous (local) stability of the state

while it may be unstable globally, that is, with respect to an inhomogeneous

state, e.g., heterogeneous mixture of coexisting phases at the same temperature.

This possibility is alluded to by (9.18) and the analysis that follows from it.
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The global-stability analysis is more complicated. Its general conclusion is that

the homogeneous state may be stable against the inhomogeneous states in a

certain range of energies but only if the size of the system is below the bifurca-

tion length ~X, see (3.58b) [2]. In the systems of the size less than the bifurcational

creation of a phase-separating interface is not favorable and the homogeneous

state turns into the global optimizer.

2. In Chap. 2 we represented the free energy of the system as a sum of the regular g0
and singular (transition) (g–g0) parts; in an open system, they do not “interact”

with each other in the sense that g0 does not affect the transition equations

(see Sect. 2.3). This is not the case in the closed system where, as we can see

from (9.15) and (9.16), the regular and singular parts are convoluted in the same

equations that determine stability of the outcome of the transition. Physically,

this is a result of the absence of the thermal bath in the closed system. In the open

system the regular and singular parts of the free energy, so to speak, thermally

interact with the bath to achieve equilibrium. In the closed system the interaction

with the bath is prohibited and the regular and singular parts are “forced” to

interact with each other. Because of that, we have to look at the thermal

properties of the terminal phases in greater detail. Theoretically there is an

advantage in dealing with a thermodynamic system with equal and tempera-

ture-independent specific heats in both high-symmetry (a) and low-symmetry

(b) phases Ca ¼ Cb ¼ C ¼ const(T). Technically, it is convenient to reckon the
energy and entropy from the a phase at the temperature TE of its coexistence

with the b phase. Then the entropy, energy, and free energy densities of the a and

b phases are

ea Tð Þ ¼ C T � TEð Þ; sa Tð Þ ¼ Cln
T

TE
; (9.19a)

eb Tð Þ ¼ C T � TEð Þ � L; sb Tð Þ ¼ Cln
T

TE
� L

TE
; (9.19b)

gaðTÞ ¼ C T � TEð Þ � CTln
T

TE
; g½ � ¼ L

T � TE
TE

: (9.19c)

The approximation of the temperature-independent specific heat simplifies our

calculations in the vicinity of TE but, apparently, cannot be extended to very low

temperatures (Why?).

Example 9.1 Find conditions of the thermodynamic stability for the transition

state of the tangential potential in the system with C ¼ const(T).

The free energy density of the system is [see (9.19c), (2.33)]:

g ¼ C T � TEð Þ � TCln
T

TE
þ 1

2
Wo2 �ð Þ þ L

T � TE
TE

n �ð Þ: (9E.1)

206 9 Thermal Effects of Phase Transformations



Its partials are:

@2g

@T2
¼ �C

T
;
@2g

@T@�
¼ 6

L

TE
o;

@2g

@�2
¼ W o02 � 2o

	 

þ 6L

T � TE
TE

o0: (9E.2)

Notice that the interaction modules of a and b phases are zero, which excludes

any thermal effects around these states. Application of the transition-state equilib-

rium condition (2.35b) to (9E.2) yields (do not confuse P with pressure):

@2g

@�2
�tð Þ ¼ �2Wo �tð Þ; �t ¼

1

2
1þ P

TE � T

TE

� �
;P ¼ 6L

W
: (9E.3)

To calculate the interaction module of the state we substitute (9E.2) and (9E.3)

into (9.16), which yields:

Mt ¼ 3Q 1þ P� 2�tð Þo �tð Þ;Q ¼ L

CTE
: (9E.4)

According to (9.16) for the adiabatic stability of the state its interaction module

must be greater than one. As you can see from (9E.3) and (9E.4), Mt varies

depending on the temperature and material parameters (P, Q). Let us find the

maximum value of Mt among all possible values of the temperature in the system.

The maximum is attained at

�mt ¼ 1

2
þ P� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ P2
p

6
(9E.5a)

or

Tm ¼ 2

3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ P2

p

3P

 !
TE ! TEfor P ! 1: (9E.5b)

Then (9E.4) and (9E.5a) yield an expression for the largest interaction module of

the transition state for given parameters (P, Q):

Mm
t ¼ 1

18
Q 3þ P2
� 
3

2 þ P 9� P2
� 
h i

!
1

2
ffiffiffi
3

p Q 1þ
ffiffiffi
3

p
P

	 

; P ! 0

3

4
QP; P ! 1

8>><
>>: :

(9E.6)

Thus, the transition state of the tangential potential may be adiabatically stable

[see (9.16)] if the material properties of the system obey the following condition:

Q >
2
ffiffiffi
3

p
for P ! 0

4

3P
for P ! 1

(
: (9E.7)

(Verify criterion (9.17), (9E.7) in Fig. 9.1!)
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The type-E1 inhomogeneous state {�E1(x)} of a closed system obeys the

same ELE:

dG
d�

� @ĝ

@�
�r @ĝ

@ r�ð Þ ¼ 0: (3.20)

To analyze the thermodynamic stability of this state we need to find the sign of

the second variation of the entropy functional:

d2S ¼ 1

2

ð
V

@2ŝ

@�2
d�ð Þ2 þ 2

@2ŝ

@T@�
d�dT þ @2ŝ

@T2
dTð Þ2 þ @2ŝ

@ r�ð Þ2 r d�ð Þ2
" #

d3x

(9.20)

10.50

order parameter η

te
m

pe
ra

tu
re

 T

βα

TE

TS
β

TS
α

t

Fig. 9.1 OP–temperature plane of the equilibrium state diagram of a system described by the

tangential potential with Q ¼ 1 and P ¼ 2. a, b, t—equilibrium states; red lines—constant energy

trajectories (dashed line—for Q ¼ 1.1); circles—equilibrium transition states of the closed

(adiabatic) system (full—stable, open—unstable); crosses—1d nonequilibrium inhomogeneous

states from the numerical simulations of (9.86) (blue—t ¼ 1,100, green—t ¼ 4,200)
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for the variations of the OP and temperature that leave the energy functional (9.2)

unchanged:

DE � E � þ d�; T þ dTf g � E �; Tf g ¼ dEþ d2Eþ � � � ¼ 0: (9.21)

To find the sign of d2S we may choose the variations of the OP and temperature

such that the first variation of the energy functional vanishes:

dE ¼
ð
V

dE
@�

d� þ @ê

@T
dT

� �
d3x ¼ 0: (9.22a)

For such variations, using (9.4) and (9.5) we obtain:

dT ¼ � dG=@�ð Þ � T @=@Tð Þ dG=@�ð Þ
@ê=@Tð Þ d�

¼ r @2ĝ=@T@ r�ð Þð Þ � @2ĝ=@T@�ð Þ
@2ĝ=@T2ð Þ d�: (9.22b)

Notice that although the variational derivative of the free energy at the equilib-

rium state is zero, its partial derivative with respect to temperature is not.

Then (9.21) and (9.22a) yield that the second variation of the energy functional

also vanishes and d2S has the sign opposite to that of the second variation of the free
energy functional:

d2G ¼ d2E� T d2S

¼ 1

2

ð
V

@2ĝ

@�2
ð d�Þ2 þ 2

@2ĝ

@T@�
d�dT þ @2ĝ

@T2
dTð Þ2 þ @2ĝ

@ r�ð Þ2 r d�ð Þ2
" #

d3x:

(9.23)

Although the sign of d2G can be estimated for a general expression of the free

energy we will proceed with the density in the form adopted in Chap. 3:

ĝ ¼ g �; Tð Þ þ 1

2
k r�ð Þ2 (3.27b)

with

k ¼ constðTÞ: (9.24)

Then, integrating the last term in (9.23) by parts and substituting (9.22b) we

obtain:

d2G ¼ 1

2

ð
V

d�ĤE1d�d3x; (9.25a)
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ĤE1 ¼ @2g

@�2
� ð@2g=@�@TÞ2

ð@2g=@T2Þ � kr2: (9.25b)

Notice that the non-differential term of the Hamilton’s operator in (9.25a) is

greater than that in (3.34). This means that, similar to the homogeneous case, the

closed system is, so to speak, more stable than the open one. To see this let us

assume that ∂2g/∂T∂� ¼ const(�) and consider as an eigenfunction of the operator

ĤE1ðxÞ the gradient of an interface-type state [cf. (3.125b)]:

C�ðxÞ ¼ d�e4
dx

ðxÞ:

Differentiating ELE (3.29) we obtain

ĤE1 C�ðxÞ ¼ d

dx

dG
d�

�e4ð Þ þ LE1�C�ðxÞ ¼ LE1�C�ðxÞ;

where

LE1� ¼ 1

C�

@2g

@T@�

� �2

¼ const>0:

Because LE1* is the smallest eigenvalue of C* (see Appendix E) the interface-

type solution �e4 becomes absolutely stable in the closed system, as opposed to

being neutrally stable (the Goldstone mode) in the open one. Physically, destruction

of the Goldstone mode in a closed system is a result of elimination of the translation

invariance, which in turn comes as a result of the energy conservation constraint

(9.2). Indeed, any shift of the interface changes the energy balance in the system

because the energy densities of the phases on the opposite sides of the interface are

not equal, although their free energy densities are. Additional stabilization caused

by the energy conservation constraint (9.2) may cause an unstable inhomogeneous

equilibrium state of the open system to gain stability in the closed one.

9.1.2 Type-E2 States

If the sought state not only imparts a maximum on the entropy functional (9.1) but

also is an extremal of the energy functional (9.2), then, instead of (9.3), this state

satisfies the following simultaneous relations:

dS �E2; TE2; d�; dTf g ¼ 0; (9.26a)

dE �E2; TE2; d�; dTf g ¼ 0: (9.26b)
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Importantly that because of the two variational conditions (9.26), it may not be

possible to properly characterize the state with just one variable field of OP:

{�E2(x)}. Then, another variable field, e.g., temperature {TE2(x)}, may be needed

to complete the characterization of the state, so that the equilibrium state {�E2(x),
TE2(x)} becomes inhomogeneous in the OP and temperature [3].

However, the fields {�E2(x)} and {TE2(x)} are not independent because the

conditions (9.26a) and (9.26b) result in a system of simultaneous equations:

dS
d�

þ @ŝ

@T

dT

d�
¼ 0; (9.27a)

dE
d�

þ @ê

@T

dT

d�
¼ 0: (9.27b)

where (d/d�) is understood now as a partial functional derivative with respect to the

OP for non-varying temperature field.

To better understand the properties of the state {�E2(x), TE2(x)} let us calculate

the partial variational derivative of its free energy with respect to the OP:

dG
d�

�; Tf g � @ĝ

@�
�r @ĝ

@r�
¼ dE

d�
� T

dS
d�

þ @ŝ

@r�
rT: (9.28a)

Here we used the Legendre transform (9.5) and rearranged the terms. Applying

the equilibrium equations (27) we obtain:

dG
d�

�; Tf g � � @ĝ

@T
þ ŝ

� �
dT

d�
þ @ŝ

@r�
rT ¼ � dk

dT
r�rT: (9.28b)

Here we used the Legendre transform (9.5) again and (3.27b). As you can see, in

general, this partial functional derivative is not zero. If the gradient energy coeffi-

cient k is temperature independent [see (9.24)] then dG/d� in (9.28) vanishes.

However, even in this case the equilibrium state {�E2(x), TE2(x)} is different

from that of type-E1 because the temperature distribution is inhomogeneous.

In order to analyze the thermodynamic stability of the state {�E2(x), TE2(x)} we
need to substitute dT expressed from (9.27a) into the expression for d2S in (9.20)

and perform the integration by parts in the latter. This brings the second variation to

the form (9.25a) and again reduces the problem of stability to the analysis of the

spectrum of the respective operator ĤE2ðxÞ. In a system where condition (9.24)

applies this criterion takes on a particularly simple form:

ĤE2 ¼ @2s

@�2
� 2

@2s

@T@�

@s=@�

@s=@T
þ @2s

@T2

@s=@�

@s=@T

� �2

< 0: (9.29)
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Example 9.2 Find a 1d type-E2 state of a system described by the tangential

potential with C ¼ const(T) and k ¼ const(T).

In the 1d case the system (9.27) reduces to

ds

d�
¼ 0; (9E.8a)

de

d�
� k

d2�

dx2
¼ 0: (9E.8b)

Multiplying (9E.8) by d�/dx and integrating them separately we find that the

equilibrium states obey the following simultaneous equations:

sð�; TÞ ¼ const, (9E.9a)

e �; Tð Þ � k
2

d�

dx

� �2

¼ const: (9E.9b)

The first equation shows that the state {�E2(x), TE2(x)} is isoentropic, which

confirms our earlier conclusion that the temperature distribution in this state must

be inhomogeneous if the OP is not uniform. The second equation shows that the

regions of the system far away from the transition zone have the same energies, but

not the free energies because the temperatures may be different.

For the tangential potential with (9.19), (9E.1) the entropy and energy densities are

s ¼ Cln
T

TE
� L

TE
nð�Þ; (9E.10a)

e ¼ C T � TEð Þ þ 1

2
Wo2 �ð Þ � Lnð�Þ: (9E.10b)

From (9E.9 and 9E.10) we find the distributions of the temperature and OP fields

in the type-E2 state:

T ¼ Ta exp Qn �ð Þf g; Ta ¼ TE
Q

expQ� 1
; (9E.11a)

k
d�

dx

� �2

¼ Wo2 �ð Þ þ 2L
exp Qnð�Þ½ � � 1

expQ� 1
� nð�Þ

� �
: (9E.11b)

where Ta is the temperature of the a-phase. In Fig. 9.2 are depicted the scaled

distributions:

C T � Tað Þ
L

¼ ~T; x

ffiffiffiffiffi
k
W

r
¼ ~x: (9E.12)
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To analyze the thermodynamic stability of the type-E2 state (9E.11) we need to

calculate the left-hand side of (9.29):

ĤE2 ¼ �6CQ 6Qo2 �ð Þ þ o0 �ð Þ� �
: (9E.13)

This expression is not sign definite in the domain 0 � � � 1, which means that

this state is not absolutely stable but of the saddle-type stability. Nevertheless the

type-E2 states are important because the system may spend a great deal of its time

in the vicinity of the state during a transformation process. The type-E2 states can

be achieved in thermodynamic systems with the vanishing thermal conductivity

(l ! 0) that is, ideal thermal insulators.

Example 9.3 Find a type-E2 APB in a systemwith C ¼ const(T) and k ¼ const(T).

An APB is a 1d equilibrium state, which comes about after the second-order

transition, see Example 3.2. The system is described by the free energy density:

ĝ ¼ g0ðTÞ þ 1

2
a�2

T � Tc
Tc

þ 1

2
�2

� �
þ 1

2
k r�ð Þ2 (9E.14)

It undergoes a second-order transition at T ¼ TC, see (2.43) and (2.44). If the

temperature is lowered to TE < TC two stable variants

��� ¼ � ffiffiffiffiffiffi�t
p

; t ¼ TE � Tc
Tc

(9E.15)
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appear after the transition with equal likelihood. They will be separated by the

transition region of the thickness of the order of magnitude

LAPB ¼ 2
ffiffiffiffi
2l

p
; l ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
k

að�tÞ
r

: (9E.16)

If after the cooling to TE < TC the system is isolated from the environment, a 1d

type-E2 state may establish in the system. For such state (9.27) yield:

dT

d�
¼ pT�; p ¼ a

CTc
; (9E.17a)

k
d2�

dx2
¼ a� �2 � 1þ T

Tc

� �
: (9E.17b)

The BC are

d�

dx
���ð Þ ¼ 0; TE ¼ T ���ð Þ: (9E.18)

These equations can be integrated one after another. Integrating (9E.17a) we

obtain

T ¼ T0e
p
2
�2 ; (9E.19a)

where T0 ¼ T(� ¼ 0). Using the BC (9E.18) we obtain that

T ¼ TC 1þ tð Þep
2
tþ�2ð Þ: (9E.19b)

Substituting (9E.19b) into (9E.17b), multiplying by d�/dx, integrating once, and

applying the BC (9E.18) we obtain

l
d�

dx
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4 � 2�2 � t2 þ 2tð Þ � 1

p
1þ tð Þ 1� e

p
2
tþ�2ð Þ� �s

: (9E.20)

Equation (9E.20) can be integrated numerically (see Fig. 9.3).

To analyze the thermodynamic stability of the type-E2 state (9E.18) and (9E.20)

we calculate the left-hand side of (9.29):

ĤE2 ¼ � a

Tc
1þ a�2
� 


< 0: (9E.21)

This expression is sign definite, which means that this state is stable, at least

locally.
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9.2 Generalized Heat Equation

As we concluded in the introduction, evolution of our system is accompanied by

energy redistribution and heat propagation. Hence, in addition to TDGLE

d�

dt
¼ �g

dG
d�

; g>0; (5.2)

our system must be described by a coupling heat equation, which takes into account

heat production due to the ongoing phase transition and distribution due to the

conduction. To derive such equation, we will call it generalized heat equation
(GHE), we apply the First and Second Laws of Thermodynamics to a small volume

dV of a heterogeneous nonequilibrium medium:

dê ¼ dqþ dw; (9.30a)

dq ¼ �divJTdt; (9.30b)

dŝ 	 1

T
dq: (9.30c)

Here dw is the work done on and dq is the amount of heat given to the volume dV.
Let’s assume that our medium is incompressible. Then the work term vanishes and

to find the GHE we have to derive the expressions for the internal energy density

variation dê and the heat flux JT that account for nonlocal interactions in the medium,

which we considered in Chap. 3. The derivation of the former is based on
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the calculation of a small variation of the internal energy functional E of the

whole system, (9.2), which comes as a result of a small inhomogeneous variation of
the OP d�:

dE ¼
ð
dV

dê d3 x: (9.31)

Let’s assume that the variation d� occurred at constant temperature and in the

volume dV independently from neighboring volumes of the system. Such variation

d� vanishes everywhere outside of the considered volume. Then, using the defini-

tion of the variational derivative, we obtain:

dE ¼
ð
dV

dE
d�

d� d3 x: (9.32)

Here, as before, the variational derivative is understood as for the invariable

temperature field. Finally, comparing (9.31) with (9.32) and using continuity of the

variations dê(x) and d�(x) as functions of the position, we arrive at the expression
for the energy density variation:

dê ¼ dE
d�

d�: (9.33)

When the temperature varies simultaneously with OP the nonlocal energy

density variation takes the form:

dê ¼ Ĉ�dT þ dE
d�

d�: (9.34a)

The specific heat for constant V and � per unit volume may include the gradient

energy contribution:

Ĉ� � @ê

@T

� �
�

: (9.34b)

Substitution of (9.34a) into the First Law (9.30a) yields the GHE for the

incompressible medium (d/dt ! ∂/∂t):

Ĉ�
@T

@t
¼ �divJT þ Qðx; tÞ; (9.35)

where Q(x, t) is the density of instantaneous heat sources in the energy

representation:

Qðx; tÞ ¼ � dE
d�

@�

@t
¼ � @e

@�
� kE r2 �

� �
@�

@t
; (9.36a)
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kE ¼ k� T
dk
dT

: (9.36b)

Using the Legendre transformation [see (9.4), (9.5) and Appendix F] the heat

source Q(x, t) may also be represented in the entropy form:

Qðx; tÞ ¼ � T
dS
d�

þ dG
d�

� �
@�

@t
: (9.37)

Same variational procedure as was used in (9.31–9.34a) may be used to find the

entropy variation in the volume dV:

dŝ ¼ 1

T
Ĉ�dT þ dS

d�
d�: (9.38)

Comparing (9.38) with (9.34a) and using the Legendre transformation (9.4) we

arrive at the expression of the First Law in the form:

dŝ ¼ 1

T
dq� 1

T

dG
d�

d�: (9.39)

Application of the Second Law (9.30c) to (9.39) yields a constraint on the rate of

OP change:

dG
d�

d�

dt
� 0: (9.40)

Constraint (9.40) manifests the Le Chatelier–Braun principle in the nonlocal

nonequilibrium medium and proves that the linear TDGLE (5.2) is acceptable, but

not a unique, choice of the evolution equation for the OP. It also hints at the

nonlinear extension of the TDGLE (see Sect. 4.3).

The energy (9.36a) and entropy (9.37) representations reveal many important

properties of the heat source Q(x, t). They show that the source does not need to be

sign definite that is, there may be local sinks of heat inside an overall heat source.

The energy representation shows that, in addition to the homogeneous part (∂e/∂�)
responsible for the latent heat L (see below), the source contains the inhomoge-

neous part (kE∇2�), which may affect the overall heat production in the system.

The entropy representation shows that the heat source consists of the entropy

contribution, which may be either positive or negative depending on the direction

of the transition, and the dissipation which, due to the constraint (9.40), is propor-

tional to the rate of the transition squared and, hence, always positive.

To complete the First Law (9.30a) we need an expression for the heat flux in the

heterogeneous nonequilibrium medium. Notice from (9.30) that the expressions of

the heat flux JT and heat sourceQ(x, t) are independent. The heat flux JT depends on
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local values of temperature, its gradients, properties of the medium, and is known to

vanish with ∇T (Fourier’s law). In [4] the following expression was used for the

flux:

JT ¼ Lr dS
dê

:

Another possibility would be to consider an integral expression for the heat flux

in a medium with the “spatial memory”; these effects are not considered in this

book. Expanding the flux JT in∇T and disregarding terms of the order higher than

the first one, we obtain the regular expression for the heat flux:

JT ¼ �lrT; (9.41)

where the thermal conductivity lmay be a function of T and �. Then the GHE takes

the form:

Ĉ�
@T

@t
¼ rðlrTÞ þ Qðx; tÞ: (9.42)

A phase transition is accompanied by the transfer of the internal energy, which is

described by the energy density flux vector JE, defined as follows:

@ê

@t
¼ �divJE: (9.43)

In order to obtain an expression for the energy density flux, we should find the

partial derivative of ê with respect to time:

@ê

@t
¼ Ĉ�

@T

@t
þ dE

d�
@�

@t
þ div kEr�

@�

@t

� �
: (9.44)

Substituting the GHE in the energetic representation, (9.36a) and (9.42), into

(9.44) we obtain the expression for JE in the incompressible motionless medium:

JE¼JT � kEr�
@�

@t
: (9.45)

This result shows that except for the heat flux, the expression for JE contains the

work flux associated with the interactions that appear in the system due to

inhomogeneities in a nonlocal nonequilibrium medium. The work flux entails the

inhomogeneous term in the heat source, (9.36a), and is responsible for the surface

creation and dissipation effect, analyzed in the next section. The work flux is

analogous to the intensity of a sound wave in a fluid with � replacing the displace-

ment of an element of fluid and kE replacing the adiabatic bulk modulus.
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GHE(9.42)with the heat source expressedby (9.36a) or (9.37) is thermodynamically

rigorous and absolutely invariant with respect to the derivation from the First

or Second Laws of thermodynamics. This equation couples to TDGLE (5.2) and

makes up a system of simultaneous equations that describe all stages of evolution

of a phase transformation in a medium with the specified thermodynamic and

kinetic properties of the system: C, k, l, g, TE (or TC), L, W (or a). Both equations

are of the diffusion type; (9.42) is characterized by the thermal diffusivity a and

(5.1)—the ordering diffusivity m. The ratio of the diffusivities R:

R � a
m
¼ l

Cgk
; a ¼ l

C
; m ¼ gk (9.46)

is called the kinetic number; it determines different regimes of the evolution. As we

concluded in Chap. 5, a transformation process may be loosely divided into the

following stages: nucleation, growth, and coarsening. All the stages will be affected

by the processes of heat release and redistribution. Let us consider the stages

separately.

Example 9.4 Find the spatial distribution of the heat source in the plane interface

moving through the isothermal system described by the tangential potential with

k ¼ const(T).

Using the transformations (5.5–5.7) for (9.36a) we obtain an expression:

QðuÞ ¼ v
d�

du

@e

@�
� k

d2�

du2

� �
: (9E.22)

In order to use for our system the solution (5.15), which was obtained for the

Landau potential, we need to scale the variable � and parameter k in (9E.22). Using

the scaling (2.32) and (3E.3), the internal energy density expression (9E.10b), and

the solution (5.9b), (5.14), and (5.15) we obtain the expression for the source in the

scaled variables:

Qð�Þ ¼ 6vL

ffiffiffiffiffi
W

k

r
o2ð�Þ; �ðuÞ ¼ 1þ eu

ffiffiffiffiffiffiffi
W k=

p	 
�1

; (9E.23)

where v is the velocity of the interface

v ¼ m TE � T0ð Þ (5E.2)

and T0 is the temperature of the system. Notice that both branches (+ and �) of the

solution (5.9b), (5.14), and (5.15) have the same expression for Q. The latter is

depicted in Fig. 9.4.
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9.3 Emergence of a New Phase

Heat release and redistribution may affect emergence of a new phase in many

different ways. A full theory of thermal effects in nucleation is not completed yet.

In this section, we will consider only one particular thermal effect of this type—the

so-called nonclassical nucleation. It manifests when a stable phase is cooled down

into a vicinity (above or below) of the spinodal point of the first-order (discontinu-

ous) transition or undercooled below the critical temperature in the second-order

(continuous) transition. Whether the small fluctuations will grow or decay depends

on the stability properties of the adjacent homogeneous equilibrium states. Given

our experiences in Sects. 5.3.1 and 8.1.4, let us study evolution of the small

disturbances in the form of harmonic waves superimposed on an equilibrium state

in question ð��; �TÞ:

� x; tð Þ ¼ �� þ N ebtþikx; (9.47a)

T x; tð Þ ¼ �TþYebtþikx: (9.47b)

Here k is the wave vector of the permitted perturbations and b(k) is the amplifi-

cation factor, which determines the “fate” of the small disturbances. When these

waves are substituted into (5.1), (9.42), they yield two simultaneous equations for

the small amplitudes {Ν, Y}:

b
g
þ @2g

@�2
þ k kj j2

 !
N ¼ � @2g

@�@T
Y; (9.48a)
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l kj j2 � �T
@2g

@T2
b

 !
Y ¼ �T

@2g

@�@T
bN, (9.48b)

where the functions with a bar should be taken at the equilibrium point ð��; �TÞ. Not
surprisingly the OP/temperature interactions depend on the mixed partial

@2g=@T@�. If this quantity is zero the simultaneous equations (9.48) break up into

two independent equations for the amplitudes {Ν,Y}, which means that the OP and

temperature waves evolve independently. In the limit of l ! 1 we recover from

(9.48) (5.21a), that is, the isothermal expression for the amplification factor. If l is

finite and the quantity @2g=@T@� is not zero the OP and temperature waves interact.

In this case, the system (9.48) has nontrivial solutions only if its determinant

vanishes. Then,

b2 þ g
@2g

@�2
�

@2g=@�@T
	 

@2g=@T2

2
0
B@

1
CAþ aþ mð Þ kj j2

2
64

3
75b

þ a g
@2g

@�2
þ m kj j2

 !
kj j2 ¼ 0: (9.49)

This solvability condition relates the amplification rate b to the wave number k

of the perturbations, that is, is the dispersion relation. For the equilibrium state

ð��; �TÞ to be linearly dynamically stable, the real parts of all the roots of (9.49) must

be positive. According to the Routh–Hurwitz theorem [5], the free term and the

coefficient of the linear term of (9.49) must not be negative:

g
@2g

@�2
�

@2g=@�@T
	 
2

@2g=@T2

0
B@

1
CAþ aþ mð Þ kj j2 	 0; (9.50a)

a g
@2g

@�2
þ m kj j2

 !
kj j2 	 0: (9.50b)

Because a > 0 and m > 0 condition (9.50a) is less restrictive than condition

(9.50b). Then we obtain that for the linear dynamic stability of the state ð��; �TÞ there
must be

@2g

@�2
	 0: (9.51)

Hence, the criterion of the dynamical stability of the system described by (9.42),

(5.1) coincides with the criterion of thermodynamic stability of the open
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(isothermal) system, but not the closed (adiabatic) one. This is a result of the fact

that the normal modes (9.47) do not, so to speak, conserve the energy of the

functional (9.2).

Now let us study the dynamical behavior of different modes of an unstable

equilibrium state that is, a state where (9.10) is true but (9.51) is not. Many of the

features of this behavior depend on whether (9.15) is true or not. It is more

convenient to study the dispersion relation in the form where the amplification

factor b and the wave number k are scaled as following:

b ¼ �g
@2g

@�2
o; kj j2 ¼ � 1

k
@2g

@�2
q; (9.52a)

Then the dispersion relation takes the form:

o2 þ ðM � 1Þoþ ðRþ 1Þo q� Rqþ R q2 ¼ 0: (9.52b)

Thus, different regimes of nonclassical nucleation in discontinuous

transformations are determined by the kinetic number R and module M.

The left-hand side of the dispersion relation (9.52b) is a second-degree polyno-

mial in two variables; its solutions, as known, are conics with two branches. Because

the discriminant of the dispersion relation (9.52b) or (9.49) is not negative, both of its

branches are real (at least for the real waves numbers q). Hence, the modesmay grow

(b > 0) or decay (b < 0) but cannot oscillate (Imb 6¼ 0). The lower branch is never

positive, that is, does not have unstable modes and, hence, does not present any

interest for us. The upper branch, that is the one with the greater amplification factor,

may have unstable modes and will be analyzed further. The wave number of the

neutral mode (o ¼ 0) is q0 ¼ 0 or 1. However, the two values may belong to two

different branches. Let us find the wave number qm of the most dangerous mode, that

is, the one with the greatest amplification factor o. For this we differentiate (9.52b)
with respect to q, equate do/dq to zero, and present the result in the form:

M Rþ 1ð Þ ¼ 1þ qm R� 1ð Þ½ �2
1� 2qm

: (9.53)

Depending on the values of the interaction module M and kinetic number R,
several cases of instability of the equilibrium state may be found. These cases are

presented in Fig. 9.5 in the plane (R,M) with the Inserts representing the dispersion

relations in the dimensional form b(k).

Case a. 0 < M < (R + l)�1 < 1, weak interactions. Equation (9.53) does not have
solutions. Hence, the uniform mode (q ¼ 0) is the most dangerous one: o0 ¼ 1 �
M. This is similar to the evolution in isothermal systems, cf. (5.21a). The difference

is that the amplification factor of the most dangerous mode is determined by the

thermal interactions and amplification factors of other unstable modes depend on

the coefficient of thermal conductivity—semi-isothermal case.

222 9 Thermal Effects of Phase Transformations



Case b. (R + l)�1 < M < 1, medium interactions. Equation (9.53) has solutions:

the uniform wavemode is unstable but the most dangerous mode has a finite wave

number—intermediate case.

Case c.M > 1, strong interactions. Theuniformmode is neutral:o0 ¼ 0, and thewave

number of the most dangerous mode is finite: 0 < qm < ½—semi-adiabatic case.

Case d. M 
 1, very strong interactions. An example of this case is a system near

the spinodal point ð@g=@� ¼ 0; @2g=@�2 ¼ 0Þ, that is, the absolute stability limit of

a homogeneous equilibrium state. From the stand point of thermal effects, Case d is
the most interesting and deserves a rigorous study beyond the limit of small

amplitudes. To examine the nonlinear regime of evolution of the unstable waves,

we should introduce a small parameter e, scale the modes with respect to this

parameter, and balance the linear and nonlinear terms of the same order of
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magnitude of e in TDGLE (5.1) and GHE (9.42). The parameter e that we introduce
here defines the departure from the spinodal point:

@2g

@�2
¼ �n1e2: (9.54a)

As the most dangerous mode is long (k ! 1) and slow (b ! 0), see (9.52a) and

(9.54), we scale the spatiotemporal coordinates of (9.42), (5.1):

X ¼ ex; t ¼ e3t (9.54b)

and the disturbances of {�, T} as follows:

� ¼ �� þ enx X; tð Þ; T ¼ �T þ enþ1n2y X; tð Þ; n>0; (9.54c)

where the positive quantities ni and amplitudes x, y are of the order of one and the

exponent n needs to be determined.

For n > 2, we can balance only linear terms. For n ¼ 2, we can balance the non-

linear terms at the leading order of e if we the temperature is high and the mixed

partial is small:

�T ¼ n3
e
;

@2g

@�@T
¼ n2e: (9.54d)

Then (9.42) and (5.1) become

n22y ¼ n1x� 1

2

@3g

@�3
x2 þ kr2x; n3

@x
@t

¼ �lr2y: (9.55)

This system governs stability of the state ð��; �TÞ and shows that in the early stages
of its decomposition the temperature deviations are determined by the departure

from equilibrium and that the heat sources are balanced by the heat conductivity in

the system. Excluding y from (9.55) and returning to the dimensional variables we

obtain for the OP field the nonlinear evolution equation:

d�

dt
¼ l

�T @2g=@�@T
	 
2 r2 @g

@�
� kr2�

� �
: (9.56)

This means that in this case the growing waves of the new phase obey the

nonlinear Cahn–Hilliard equation from spinodal decomposition, cf. (8.27c), so that

the order parameter manifests temporary conservation law. Using the scaling (9.54)
we can see that the mobility of this regime
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l

�T @2g=@�@T
	 
2 � 1

e
(9.56a)

is large and independent of the relaxation constant g of (5.1), which means that

such decomposition is totally controlled by heat transfer. The scaling (9.54) also

shows that

M ¼
�T @2g=@�@T
	 
2
C�@2g=@�2

� 1

e
; (9.56b)

which means that, indeed, the interactions between the OP and temperature modes

are strong. The scaling (9.54d) also manifests large entropy contribution to the free

energy. The scaling (9.54c) shows that in this regime the fastest modes to develop

are “quasi-isothermal” because the temperature deflection is of higher order than

that of the OP. This regime is characterized by modulations of the OP field; it is

analogous to the spinodal decomposition in a system with a conserved OP.

The difference is, first, that in the latter case modulations accompany the process

from the beginning to end while in the present case the modulations are temporary

and, second, that for a system with the nonconserved OP modulations are

governed by the energy conservation instead of mass conservation in the spinodal

decomposition.

9.4 Motion of Interfaces: Non-isothermal Drumhead

(Sharp Interface) Approximation

Solution of the full problem described by TDGLE (5.1) and GHE (9.42) is

complicated; it may be obtained with the help of different methods including the

numerical one. However, there is plenty of information about the system’s evolution

that can be gleaned from the drumhead equations. To obtain these equations we will

use the averaging method similar to that used in Sect. 5.4 where, in order to derive

the drumhead equation for a moving diffuse interface, we introduced the time-

dependent curvilinear coordinates (u, v,w) such that in the new coordinates � ¼ �(u)
(see Fig. 9.6). That allowed us to characterize the interface by the thermodynamic

and kinetic properties (s, Lv, m) and drumhead variables (vn, K). In this section,

we will extend our analysis on the systems of varying temperature. We will derive

the drumhead equations that reflect the fact that the non-isothermal interface has

finite thickness and curvature. We expect these equations to reveal the physical

effects due to release and redistribution of the latent heat L (2.4a), deviations from

equilibrium, and multidimensionality, see Fig. 9.7.
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In order to derive the drumhead approximation of the dynamic equations for a

piece of interface that moves through a variable temperature field we need to

transform to the time-dependent curvilinear coordinates (u, v, w) not only

TDGLE (5.1) but GHE (9.42) also. In the new coordinates T ¼ T(u, v, w, t) as
opposed to � ¼ �(u). However, if the characteristic length of the thermal field lT is
much greater than that of the OP field Lv then the temperature field is “enslaved” by

the OP field and we may expect that T ¼ T(u) also. For an interface moving at the

speed vn (see Appendix I):

lT ¼ a
vn

: (9.57)

Then the criterion for the non-isothermal drumhead approximation can be

expressed with the help of the generalized Peclet number as follows:

Pe � Lv
lT

¼ vnLv
a

<< 1: (9.58)

The heat redistribution (Appendix I) expanded our characterization of the

interface on the properties (L, a) and variable [dT/du]. The temperature gradient

across the diffuse interface introduces one more interfacial (drumhead) variable:

T½ � � Tb � Ta � Lv
dT

du

����
����: (9.59)

9.4.1 Generalized Stefan Heat-Balance Equation

Any heat released at the interface should be removed from it by means of thermal

conduction mechanism. To obtain the heat-balance equation for a curved interface

in the drumhead approximation we present GHE (9.42) for the “enslaved” temper-

ature field in the form:

l
d2 T

du2
þ kT

dT

du

� �
þ Q T; �;

d�

du

� �
¼ 0; (9.60)

where the source in the energy representation is

Q T; �;
d�

du

� �
¼ vn

@e

@�

� �
T

� kE
d2�

du2
þ 2K0

d�

du

� �� �
d�

du
(9.60a)

and kT may be called the thermal wave number of a curved interface:

kT ¼ vnC

l
þ 2K0: (9.60b)
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If we integrate the quasi-stationary GHE (9.60) from ub ¼ �1 till ua ¼ +1 for

the case of a plane interface (K0 ¼ 0) we obtain the condition of conservation of

energy in the form:

CðTb � TaÞ ¼ L: (9.61)

In the case of curved interfaces (K0 6¼ 0) there is no conservation of energy

along the coordinate lines (u, v ¼ const, w ¼ const). Absence of the conservation

law does not allow us to resolve the large-scale thermal problem for a curved

interface like it is done for the planar one, e.g., (9.61). Instead, we average GHE

(9.60) in the interval (ub, ua), the end points of which are in the regions of the

respective phases: �(ub) ¼ �b and �(ua) ¼ �a (see Fig. 9.6). The difference from

the isothermal case of Sect. 5.4 is that the temperature field at these points may not

have reached yet its asymptotic values of T(�1) ¼ Tb or T(+1) ¼ Ta. Using
the separation-of-scales condition (9.58) we can introduce the quasi-isothermal

averaging operator as follows:

ÂT � f �
ðua
ub

f ðT ¼ const; �ðuÞ; uÞdu: (9.62)

Contrary to the averaging of TDGLE (5.29), to average GHE (9.60) we do not

need any weight factors because ÂT�Q(TE, �e4)du 6¼ 0. In addition to (5.31a) and

(5.31d) we obtain:

ÂT � d2T

du2

� �
¼ dT

du

� �
; ÂT � dT

du

� �
¼ T½ �; ÂT � @e

@�

d�

du

� �
¼ LðTÞ: (9.63)

Then, application of (9.62) to (9.60) yields an equation for the jumps of

temperature and temperature gradient across the interface:

l
dT

du

� �
þ kT½T�

� �
þ ðL� 2eK0Þvn ¼ 0; (9.64a)

where

e ¼ s� T
ds
dT

(9.64b)

is the interfacial internal energy. If at equilibrium an interface exists at a specific

temperature only, as is the case for a first-order transition, differentiation in (9.64b)

is understood in the sense of disequilibrium because expressions for the surface

energy at equilibrium, (3.70a), and away from it, (5.34), coincide.
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The drumhead (9.64a) is a heat-balance interface condition; however, it differs

from the traditional (Stefan) condition (I.2) in the terms kT[T] and (�2eK0vn).
The latter is due to the gradient internal energy contribution (~kE) to the heat

source (9.36a); it vanishes for a flat or immobile piece of interface, i.e., when the

interfacial area does not vary. To reveal this effect we may analyze the heat balance

before and after a curved interface sweeps material during a first-order transition

(see Fig. 9.8). The amount of heat released is called the heat of transformation.
Traditionally, it is attributed to the product of the latent heat and the transformed

volume:
R
Lvndvdwdt. However, one must realize that if the moving interface is

curved, the area of the interface before and after the move is different by the amount

of the surface area created or destroyed:
R
2K0vn dvdwdt. As the interface carries

energy, the change of the surface area will result in the positive or negative

additional quantity of heat liberated at the interface. A simple way to see this

difference is to consider motion of a piece of interface dXn ¼ vndt bound by a

fixed solid angle dO (Fig. 9.8): the area of the interface is smaller after the move if

the velocity is directed toward the center of curvature of the interface and is greater

if otherwise. As the latent heat is the internal energy difference of the liquid and

solid phases, the additional amount of heat due to surface area difference should be

proportional to the interfacial internal (not free) energy. Hence, the heat of trans-

formation will differ from the above described amount by the amount of the surface

area created or destroyed times the surface internal energy; in the boundary

condition (I.2) the latent heat L must be replaced by (L � eK). This effect, which
may be called the surface creation and dissipation effect, vanishes for a flat or

immobile interface when the interfacial area does not vary.

X

Y K-1

ε

dΩ

VnL

Fig. 9.8 Motion of a piece

of interface bound by a fixed

solid angle dO. K—curvature

of the piece before the move,

vn—the normal component

of the velocity of the

interface, e—the interfacial

internal energy, L—the latent

heat of transformation
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9.4.2 Generalized Kinetic Equation

Let us summarize briefly on Fig. 9.9 what we already know about the motion of a

plane phase-separating interface. If the entire system is maintained at constant

temperature T0 then the velocity of the interface is expressed by (5E.7) and the

FTM allows us to relate the kinetic coefficient m to other material properties. On the

other hand, if T0 is only the initial temperature of the parent (a) phase then motion

of the interface is more complicated. In the sharp-interface approximation (see

Appendix I) the velocity is

v ¼

b
ffiffiffi
a
t

r
;
ffiffiffi
p

p
beb2erfc b ¼ D Y; if TE � L

C < T0 < TE ðI:9� I:11Þ

av0
3t

	 
1
3; if T0 ¼ TE � L

C
ðI:15Þ

v0 D Y� 1ð Þ; if T0 < TE � L

C
ðI:14Þ

8>>>>>>>><
>>>>>>>>:

0.9 1 1.1 1.2

supercooling ΔΘ

0

4

Pe

supercooling ΔΘ

Heat-
trapping
regime

Diffusion
 regime

Kinetic
regime

TS

TM b

a

Δtr

Fig. 9.9 Different regimes of motion of a plane interface separating phases a and b after a

first-order phase transition. (a) Peclet number Pe and (b) final temperature of the b-phase Tb versus
the initial supercooling DY of the a-phase. Blue lines—solution of the Stefan problem (I.9–I.11),

(I.14), (I.15); red lines—FTM solution for a plane interface (K0 ¼ 0), (9.72)

230 9 Thermal Effects of Phase Transformations



where the dimensionless supercooling and characteristic velocity are defined as

follows:

DY � CðTE � T0Þ
L

; v0 � mL
C

: (I.10, I.14)

This solution is shown in Fig. 9.9a as a blue line.

The regimes of interface motion (I.9–I.11, I.14, I.15), can be obtained without

any consideration of the internal structure (diffuseness) of the interface, e.g., for

a very thin interface. However, there is a group of thermal effects of motion of

phase-separating interfaces, which appear as a result of the interface having the

internal structure and thickness. To generalize the kinetic interface equation

we average (5.29) over the thickness of the interface taking into account that the

temperature is a variable. In many ways this procedure is similar to the one that led

us in Sect. 5.4 to (5.32). However, an important difference exists. Because

the temperature is not constant anymore (5.31b) has to be replaced by

dg ¼ @g

@�
d� þ @g

@T
dT: (9.65)

Averaging TDGLE (5.29) we multiply all the terms of this equation by the

weight factor d�/du and integrate them over the interval (ub, ua) (see Fig. 9.6).

Taking into account that dZ/du vanishes at ub and ua, we obtain the equation of

motion for a non-isothermal phase-separating interface:

ÂT � vn
g
þ 2kK

� �
d�

du

� �2
 !

¼ ½g� þ ÂT � s
^ @T

@u

� �
; (9.66a)

where

s
^ ¼ s� 1

2
ks

d�

du

� �2

; ks ¼ � dk
dT

: (9.66b)

[Verify (9.66)! Hint: k=func(T)]. Using (3.84) and the fact that (d�/du)2 is a bell-
like, even function of u (see Sect. 3.4), the left-hand side of (9.66a) may be

represented as follows:

sk� þ O L3vk
3
�

	 

; (9.67)

where s is the nonequilibrium surface energy, see (5.36), and kZ was called the

dynamic wave number of a curved interface:

k� ¼ vn
m

þ 2K0: (5.31e)
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The first term in the right-hand side of (9.66a) is the free energy jump across the

interface whose temperature changes together with theOP. The free energy jump in a

system where the latent heat is temperature independent [see (2.40c)] can be

expressed as follows:

½g� ¼ L
TE � TI

TE
� sa½T� þ C ½T� � TI lnð1þ ½T�

TI
Þ

� �
: (9.68)

where TI is the average temperature of the interface, more specifically—temperature

of the U¼0 level surface. Substituting (9.67) and 9.68) into (9.66a) we obtain an

evolution equation, which relates different local characteristics of an interface:

sk� ¼ L
TE � TI

TE
þ FGD þ 1

2
C
½T�2
TI

þ O ½T�3;L3vk3�
	 


: (9.69a)

FGD � ÂT � s
^ � sa

	 
 @T
@u

� �
: (9.69b)

The interface condition (9.69a) reveals the “driving forces” for the interfacial

motion: the free energy difference on both sides of the interface, L(TE � TI)/TE, the
Laplacian pressure due to the curvature (2K0) (I.21), and the force, FGD, (9.69b),

which appears due to the temperature gradient inside the transition zone. The force

FGD may be called Gibbs–Duhem force because it may be derived from the

Gibbs–Duhem relation. Notice that the driving forces in (9.69a) have units of

pressure because they act on a unit area of the interface. Equations (9.64a) and

(9.69a) identify the local interfacial variables vn, K0, TI, [T], [dT/du], and relate

them to the thermodynamic interfacial quantities, L, s, e, Lv and kinetic properties

of the medium, a, m. These equations are independent of the history and may

be used as the interface conditions in long-time, long-range problems of phase

transformation where heat diffusion is essential (see Sect. 9.6).

9.4.3 Gibbs–Duhem Force

To elucidate the physical meaning of this force, condition (9.61) is not enough;

we need to have detailed knowledge of the temperature gradient field inside the

interface, see (9.69b). Let us solve the quasi-stationary GHE (9.60) for dT/du inside

the interface, using a method of asymptotic expansion, in the case where the tempera-

ture gradient in the final phase (u ¼ ub) is zero. In this case, obviously, TI ¼ Tb. First,
we obtain integral representations of the temperature gradient:

l
@T

@u
¼ �e�kTu

ðu
ub

d~uQð~uÞekT~u: (9.70a)
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Then we integrate expression (9.70a) by parts:

l
@T

@u
¼ �

ðu
ub

d~uQð~uÞ þ kT

ðu
ub

d~u

ð~u
ub

d~~uQð~~uÞ þ O L3vk
3
T

� 

: (9.70b)

Expansion in (9.70b) in increasing powers of kT may be considered an expansion

into “powers of disequilibrium.” If LvkT 
 1 that is, if the conditions (9.58)

and (3.85) are true, expansion (9.70b) can be truncated after the second term and,

for the heat-source density, we can use the energy representation (9.60a) with the

equilibrium solution �e4(u) (3.66). Finally, substituting (9.70b) into (9.69b) gives us
the expression for the Gibbs–Duhem force (Verify!):

FGD ¼ � vn
l

I1 � C

l
vnI2 � 2K0I3

� �
; (9.71a)

where the entropy density moments Ii’s are defined as follows:

I1 ¼ ÂT � ðs^ � saÞ pðuÞ
	 


; I2 ¼ ÂT � ðs^ � saÞ
ðu
ub

d~upð~uÞ
 !

;

I3 ¼ ÂT � ðs^ � saÞ
ðu
ub

d~u kEðd�
d~u

Þ
2

þ pð~uÞ
� � !

: (9.71b)

pðuÞ ¼ e
^ � eb ¼ TEðs^ � sbÞ: (9.71c)

Substitution of (9.71a) into (9.69a) yields the evolution equation for the interface

motion:

L
TE � Tb

TE
þ 1

2
C
½T�2
Tb

¼ s
m
þ I1

l

� �
vn þ 2sK0 � C

l2
I2v

2
n �

2

l
I3vnK0: (9.72)

Exact expressions for the moments Ii’s depend on the type of the potential used.

However, one can see from (9.71b) that I3 � I2 � I1Lv. This means [see (9.71a)]

that the Gibbs–Duhem force is either parallel or antiparallel to the interfacial

velocity depending on the value of the moment I1. It is instructive to express this

moment and FGD using only measurable quantities that characterize an interface

such as the interface energy s, entropy w, and latent heat L. In the medium with

k ¼ const(T), the entropic representation of p(u) in (9.71c) yields:

I1 ¼ TEÂT � fsðuÞ � sag � fsðuÞ � sbg
� 


¼ TEÂT � ds2 þ 2
½s�
½�� ð�e4 � ��Þ dsþ ½s�2 ð�e4 � �bÞð�e4 � �aÞ

½��2
 !

;
(9.73)
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where �� ¼ ð�b þ �aÞ=2. Using (3.74c) and the bell-like shape of ds we obtain:

ÂT � ds2
� 
 � 1

Lv
ðGð�Þ

s Þ2; ÂT � ð�e4 � ��Þ dsð Þ � 0;

ÂT �
ð�e4 � �bÞð�e4 � �aÞ

½��2
 !

� � 1

6
Lv:

(9.74)

Taking into account that [s(TE)] ¼ L/TE, see (2.4a), and substituting (9.74) into

(9.73), we obtain:

I1 � TE
Lv

ðGð�Þ
s Þ2 � Lv

6TE
L2: (9.75)

Finally, substituting (9.75) into (9.71a) we arrive at the linear approximation for

the Gibbs–Duhem force:

FGD � vn
l

Lv
6TE

L2 � TE
Lv

ðGð�Þ
s Þ2

� �
: (9.76)

Significance of this relation is in that it is expressed throughmeasurable quantities

and thermodynamic properties of a system only, yet it is applicable tomany different

situations. The type of transition affects the relative magnitudes of Gs
(�) and L (e.g.,

L ¼ 0 for APB), which in turn dramatically affects the magnitude of I1, being
negative for a typical first-order transition and positive for a second-order transition.

Hence, FGD propels the motion of an interface that appears after the first-order

transition serving as a driving force and opposes motion of an interface after the

second-order transitionmanifesting a drag force [see (9.69a) and (9.76) and Fig. 9.6].

9.4.4 Interphase Boundary Motion: Heat Trapping

Now let us analyze various regimes of interface motion in the process of a phase

transformationof thefirst order.Tobe specific, let us consider growthof theb-phase (e.
g., crystal) replacing the a-phase (e.g., liquid). This case corresponds to the u-axis in
Fig. 9.6 directed fromb-phase to a-phase and the growth of the b-phase corresponds to
vn being positive. Then an interesting observation can be made from inspecting (9.72)

and (9.75) (see Fig. 9.9). For a stationary motion of a plane interface (vn=const(t),
K0 ¼ 0) it is possible to have b-phase growing (vn > 0) even when its temperature

after transformation is above the equilibrium value (Tb > TE).Mathematically, if I1 in

(9.75) is negative and large enough it is possible to balance the first term in the right-

hand side of (9.72). Physically it means that if the Gibbs-Duhem force in (9.76)

becomes large enough, it propels the interface against the negative bulk driving

force. However, in this case looking only at the linear terms in (9.72), we obtain a

wrong result that vn < 0 for Tb < TE that is, the b-phase is shrinking although it is
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favored by the phase diagram (its temperature is below the equilibrium value). This

means that, although condition (9.58) applies, in order to balance (9.72) we must take

into account the nonlinear terms. This effect is called heat trapping.
To elucidate this effect let us analyze it in the system described by the tangential

potential. First, as we can see from (9.72), for the heat trapping to be possible, the

coefficient in front of the term linear in vn must be negative. Hence, using (9.75)

as an estimate, taking into account that for the tangential potential Gð�Þ
s ¼ 0

(Verify!) and finally using (5E.7) we obtain the heat-trapping criterion:

Ht � lsTE
mL2Lv

¼ l
mLLv

<
1

6
; (9.77a)

It may be interpreted as the upper limit on the rate of thermal conduction or the

lower limit on the interfacial thickness in the system. In this equation, Ht is called

the heat-trapping number and (5E.3) was used. Furthermore, using (9.46) and

Lv ¼ 4

ffiffiffiffiffi
k
W

r
; s ¼ 1

6

ffiffiffiffiffiffiffi
kW

p
; (9.3E.4, 3E.5)

the heat-trapping criterion can be presented as follows:

R< 4
L2

WCTE
; (9.77b)

Second, for the tangential potential the coefficients Ii of the Gibbs–Duhem force

are (Verify!):

I1 ¼ �0:1583 Lv
L2

TE
; I2 ¼ �0:0403 L2v

L2

TE
;

I3 ¼ �0:0403 L2v
L2

TE
þ 0:0066 L2v

WL

TE
:

(9.78)

Now, substituting (9.78) into (9.72) with K0 ¼ 0 and taking into account (9.58),

(I.10) and (9.61), which relates the final temperature of the b-phase Tb to the initial
temperature of the a-phase Ta ¼ T0, we can obtain an equation for the stationary

velocity, vn=const(t), of a plane interface:

D Y ¼ 1þ Ht� 0:1583ð ÞPeþ 0:0403Pe2 � O Pe3
� 


: (9.79a)

If the criterion (9.77a) is not fulfilled then the stationary regime (Pe > 0) exists for

DY > 1 only and the difference from the sharp-interface case (I.14) is insignificant. If

the criterion (9.77a) is fulfilled then the stationary regime (Pe > 0) exists also for

1� Ht� 0:1583ð Þ2
4� 0:0403

� Dtr � D Y< 1: (9.79b)
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The function Pe(DY) of (9.79a) is depicted in red on Fig. 9.9a. Compare this curve

with the blue line, which expresses solution of the same problemwithout the effects of

the interfacial diffuseness taken into account. Important difference is that the diffuse-

interface stationary solution does not vanish for T0 > TE � L/C and remains positive

for TE � L/C < T0 < Ttr. One may say that in this case the kinetic regime of growth

“penetrates” the temperature domain of the diffusion regime. However, the most

interesting part of the story is revealed if, using (9.61) and (9.79a), we calculate the

final temperature of the b-phase after the transformation. We can see (red line in

Fig. 9.9b) that this temperature is above the equilibrium point Tb > TE. During this

process the low-symmetry b-phase grows (vn > 0) at the expense of the high symme-

try a-phase at a temperature above the equilibrium point (Tb > TE). In case of

crystallization of water, for instance, this would have meant growth of superheated

ice from supercooled water. For the crystallization of ice, however, criterion (9.77a) is

not fulfilled but is quite feasible for crystallization of other substances.

Another possibility of growing b-phase (vn > 0) with the temperature after trans-

formation above the equilibrium value (Tb > TE) is due to the Gibbs–Thompson

effect that is, the change of the equilibrium temperature due to the curvature of the

phase-separating interface if the center of the curvature is in the a-phase (K0 < 0), see

(9.72) and (I.21).

9.4.5 APB Motion: Thermal Drag

In Sect. 5.5 we considered motion of the isothermal APB, driven by its own

curvature. Conventional logic dictates that APB’s do not cause temperature

gradients and/or thermal effects because the latent heat that generates the effects

vanishes in continuous transitions: L ¼ 0 [see (2.4a), (2.44b)]. What is overlooked

by such logic is a contribution of the surface internal energy associated with the

interface. To properly describe this effect we need to apply TDGLE (5.1) and GHE

(9.42) to the APB motion (see Fig. 9.10). However, we will show here that the non-

isothermal drumhead equations (9.64a) and (9.72), applied to the APB motion,

describe the temperature waves of the amplitude [T] and average temperature

gradient dT=dU
��� ��� ¼ ½T�=Ln, see (9.59). Indeed, due to the symmetry of the contin-

uous transition we may assume that [dT/du]=0 (still [T]≠0; why?). Hence, the wave
represents a temperature double layer, see Fig. 9.10. Then a system of two simulta-

neous equations, (9.64a) and (9.72) with (9.75), for the three drumhead variables of

the layer: vn, K0, [T], can be resolved as follows (Verify!):

½T� ¼ 2eK0

C 1R
3

4
ð1þ tÞq

� � ; q ¼ a

CTC
(9.80a)

vn ¼ 2aK0

Rþ 3
4
ð1þ tÞq : (9.80b)
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Notice that the temperature wave amplitude [T] is proportional to the curvature

of the interface; for a spherical particle (9.80b) can be resolved using the bubble

differential condition:

_k0 ¼ VnK
2
0 : (5.36)

Also notice that the wave amplitude [T] is critically dependent on the temperature

τ. To see that we need to take into account that e ¼ sþ Tw / ffiffiffi
t

p
and recall that

LAPB ¼ 2

ffiffiffiffiffiffiffiffiffi
2 k
aðtÞ

s
; (3E.6)

s ¼ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a kðtÞ3

q
; (3E.7)

w ¼ 1

Tc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a kðtÞ

p
: (3E.8)

Comparison of (9.80b) with (5.38a) reveals thethermal drag effect: a piece of the
APB with the temperature gradients inside the transition region moves slower than

the isothermal one. The interfacial dynamics is limited not only by the mobility of

the interfacembut also by the thermal conductivity λ of the system with the kinetic
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Fig. 9.10 Temperature distribution inside a curved APB moving towards its center of curvature at

u=0 [calculated using TDGLE (5.1) and GHE (9.42)]
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number R measuring the relative roles of these processes. The thermal drag creates

a temperature wave around the moving APB even when far away from the interface

isothermal conditions are maintained. The drag effect is explained by the Gibbs-

Duhem force being antiparallel to the boundary’s velocity, hence, playing a role of

a drag force (see Fig. 9.6). “Dissolution” of a small particle of a minority-variant is

caused by the Laplacian pressure from the curved interface. At the same time, the

Gibbs-Duhem force generates the thermal pressure in the particle that opposes the

Laplacian pressure. In the ideal insulator, that is, a material with λ=0, these
pressures may neutralize each other.

The FTM provides an “energetic” an explanation of the drag effect based on a

borrow–return mechanism (see Fig. 9.11). Both variants (a, b) on either side of the
interface are characterized by the same amount of internal energy density: eb ¼ ea.
Transformation inside the interface from one variant to the other, however, requires

crossing the internal energy barrier (maximum), which corresponds to the disor-

dered phase with �g ¼ 0. So, a small volume of substance must “borrow” a certain

amount of energy proportional to De ¼ eg � ea from the neighboring volumes

while moving uphill on the internal energy diagram (Fig. 9.11) and “return” it later

on the downhill stage of the transformation. The borrow–return mechanism entails

the internal energy flux vector (9.45) through the interface. In the non-isothermal

drumhead approximation it is

JE ¼ �l
dT

du
þ kEvn

d�e4
du

� �2

¼ vnðê� ebÞ þ OðPe2 þ PeGeÞ

� a

4
ð�4 � �2 � t2 � tÞvn; (9.81)
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where we used the equilibrium solution �e4(u) of Example 3.2 and (2.11) and (9.42)

to calculate the last expression. (Verify!) Notice that the energy flux inside the

interface does not vanish even when the energy densities outside the interface are

equal, eb ¼ ea. One can see that JE is a bell-like function of space, peaked at the

point where �g ¼ 0. Such internal energy exchange requires a transport mecha-

nism, which is served here by the heat conduction. Thus, the drag effect is due to the

finite rate of heat transfer measured by the conductivity l. Thermal drag occurs

because the conversion of one variant into another is accompanied by the transmis-

sion of energy between neighboring pieces of a material, which cannot occur

infinitely fast. It is important to note again that the thermal drag exists despite of

the vanishing latent heat of the transition, which causes thermal effects in discon-

tinuous transformations.

9.5 Length and Energy Scales

To better understand various features and effects of the phase transformations with

varying temperature field we need to analyze different length and energy scales

relevant to the process. Let us concentrate on the first-kind transformation with the

tangential potential. To this end we have encountered three relevant energy scales:

the thermal energy density CTE, the latent heat L, and the free energy density barrier
W. Two parameters describe their ratios: P ¼ 6L/W and Q ¼ L/CTE (9E.3 and

9E.4). However, a unified parameter, called the thermodynamic number, may be

defined such

U � 1

PQ
¼ WCTE

6L2
(9.82)

that, together with the kinetic number R, it determines practically all different

regimes of the transformations. For instance, according to (9E.6) for P ! 1 the

maximum value of Mt is 3/4U, which means that all different cases of the nonclas-

sical nucleation can be classified in terms of the numbers R and U (see Fig. 9.5).

Moreover, the heat-trapping criterion (9.77a) can be expressed as RU < 2/3. This

means that all thermodynamic systems may be divided into a few universality

classes with similar thermal behavior depending on the magnitudes of U and R.
For the continuous transformation there are only two relevant energy scales and

their ratio q ¼ a/CTC (9.80a) plays the role of the thermodynamic number for the

continuous transformations.

On the other hand, the thermal properties of the system give rise to the capillary

lc and kinetic lm length scales:

lc ¼ sCTE
L2

; lm ¼ l
mL

; m ¼ gkL
TEs

; (9.83)
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which, together with the fundamental length scale Lv ¼ 4
ffiffiffiffiffiffiffiffiffiffi
k=W

p
, determine

system’s behavior. It is important to note that the thermodynamic and kinetic

numbers may be represented as the ratios of the length scales of the system:

U ¼ lc
Lv

; R ¼ lm
lc
: (9.84)

Equation (9.84) makes it possible to interpret the thermal effects as an interplay

of different length scales in the system.

9.6 Pattern Formation

In this section, FTM will be applied to a few of the real-life problems which result

in the formation of complex structures—patterns. In some sense, this section is

central in this book because it demonstrates many of the advantages of the Method.

Up to this point all the problems that we encountered were tackled with the help of

different theoretical methods. Although these methods can also be applied to the

problems of pattern formation in phase transformations, we will take advantage of a

very effective method of numerical simulations. The purpose of this section is not

to present results useful for practical applications but to provide a useful framework

for the theoretical and numerical analyses of the system. One of the advantages of

the numerical simulations is that this approach allows intuitive, graphical analysis

of the results. We will show that a combination of only two processes, phase

transition described by TDGLE (5.1) and heat redistribution described by GHE

(9.42), is capable of generating very complicated patterns, which are similar to

those observed in experiments, specifically crystallization. These equations should

be supplemented with a free energy potential that specifies the system and the

boundary and initial conditions that specify the physical situation. To describe the

system we use the tangential potential (9E.1). For the boundary conditions we

choose thermal isolation of the system. Any realistic phase transformation starts

with a nucleation stage when the first traces of the product phase emerge from the

bulk of the parent phase. In this section, we do not intend to reproduce this stage

adequately and the simulations start—the initial conditions—with a very small

fraction of the product phase b already present in the almost uniform parent

phase a at the same temperature T0 < TE as the phase b.
Although one can descretize these equations as they are, a more physically sound

approach calls for the scaling of these equations. The latter has the following

advantages. First, the scaling helps find the number of independent variables and

reveal important physical quantities that determine behavior of the system. Second,

computationally, it is easier to deal with dimensionless quantities than the dimen-

sional ones. We scale the space, time and temperature as follows:

~x ¼
ffiffiffiffiffi
W

k

r
x; ~t ¼ gWt; ~T ¼ C

T � T0
L

; (9.85)
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where the tilded variables are dimensionless and ~X is the dimensionless size of the

system. From now on we will be using only the dimensionless variables; hence, we

may drop the tildes without any confusion. Then the dimensionless evolution

equations for our system take the form:

@�

@t
¼ r2� � o �ð Þ 1� 2� þ T � D Y

4U

� �
; (9.86a)

@T

@t
¼ Rr2T þ 6

P
r2� � o �ð Þ 1� 2� � Pð Þ� � @�

@t
; (9.86b)

where U, P, R, and DY are defined above. Notice that the original, dimensional

system of equations (9.42), (5.2), and (9E.1) has seven independent material

properties that describe the system: (C, L, TE, W, l, k, g) while the scaled system

(9.86) has irreducible set of only three material parameters: (U, P, R). Together
with the initial temperature T0 or supercooling DY and the system’s size X, they
determine different regimes of evolution of the system.

9.6.1 One-Dimensional Transformation

In Fig. 9.12 results of the numerical calculations of the discontinuous phase

transformation in a simple one-component, 1d system under conditions of thermal

isolation are presented. The simulations started at the state just below the a spinodal

point with a small-amplitude noise added to the initial distribution of the OP.

Significant advantage may be gained by looking at the simulation results against

the backdrop of the equilibrium state diagram (see Fig. 9.1). The following features

of the inhomogeneous transformation may be observed. On the early stage

(t < 1,100, Fig. 9.12a) we observe formation of the (drumhead) interface and

structural period (the OP spacing). The oscillatory mechanism emerged from the

finite wavelength instability of the adiabatically stable transition state (see Fig. 9.1)

and in the early stages of decomposition (t < 1,500, Fig. 9.12a) created an almost

perfect periodic domain structure with the wave number described by (9.53). On the

later stage (t ~ 2,000) we observe development of the coarsening process, which

starts practically immediately after the emergence of the almost perfect periodic

domain structure. The coarsening takes one of two routes: dissolution of a layer

accompanied by a local temperature dip or coalescence of two neighboring

layers accompanied by a temperature spike. Both types eventually lead to a new

equilibrium state with the new period. On the later stage (t > 4,000, Fig. 9.12c) we

observe the end of the first stage of coarsening with the formation of an almost

perfect periodic structure of the b- and a-phase plates with the doubled period.
It is customary to view coarsening as a curvature-driven motion. In this case,

there would be no coarsening in a 1d system where all boundaries are flat. In fact,

coarsening is driven by the reduction of surface energy, which makes coarsening

subjected to the thermal effects. Analysis of the coarsening scenario in the 1d closed

system reveals the mechanism of the sequential doubling of the structural period,
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which is completely different from the traditional Lifshitz–Slezov–Wagner mecha-

nism of coarsening.

9.6.2 Two-Dimensional Transformation

Even more interesting results come about in the numerical simulations of the two-

and three-dimensional systems. In Fig. 9.13a, b the 2d color maps of the OP and

temperature fields after long-time (t ~ 1,000) simulation of the transformations

described by (9.86) in a large system of X ¼ 1,000 for the values of (U ¼ 0.5,

P ¼ 20,R ¼ 2,DY ¼ 0.5) are depicted. The simulations startedwith a small circular

seed of the b-phase (initial radius equals ~20l) in the sea of the a-phase, all at the
temperature T0 < TE. Very quickly (td ~ 10) the system develops the drumhead

interface, visible in Fig. 9.13a. However, growth of a circular disk is not a stable

liquid phase

--------solid phase

--------transition state

-----melting temp-----

temperature

order parameter

0 100 200 300 400
distance into the sample

a b

c

temperature

0 100 200 300 400
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temperature

0 100 200 300 400
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order parameter
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Fig. 9.12 Numerical simulation results of the 1d closed system (86) with U ¼ 0.5, P ¼ 2, R ¼ 1,

DY ¼ 0.505: (a) t ¼ 1,100, (b) t ¼ 1,500, (c) t ¼ 4,500
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process and after the time tVMS ~ 100 small protrusions develop, which later on turn

into long needles. The process of breaking the spherical (circular) symmetry of the

growing b-phase is called the Voronkov–Mullins–Sekerka instability.

In Fig. 9.14 the distribution of temperature and OP along the axis of symmetry of

the needle are presented. Notice two important features of the temperature field.

Fig. 9.13 Simulations of the growth of a spherical (circular) particle of b-phase in a sea of

a-phase in the system with U ¼ 0.5, P ¼ 20, R ¼ 2.0, DY ¼ 0.5. (a) Order parameter field;

(b) temperature field
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Fig. 9.14 Distribution of the temperature and OP along the axis of symmetry of the needle in
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First, there is the jump of the temperature gradient across the drumhead interface at

the tip of the needle due to the latent heat release. Second, there is visible

overheating (T > TE) at the root of the needle due to the “negative” curvature of

the needle’s interface close to the center (why?).

In Fig. 9.15 the 2d color maps of the OP and temperature fields of the simulations

of the “dendritic forest” when the initial perturbations were placed on the plane

crystal are depicted. To obtain the side branches one has to “turn on” the noise

generator, which we considered in Chap. 8.
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Chapter 10

Transformations in Real Materials

We have explored many interesting properties of the Field-Theoretic Method and

saw how it can help us better understand phase transformations at equilibrium

and in dynamics. As the Materials Physics is moving into a new era of quantitative

modeling and design of real materials, it is important to assess the challenges of

the Method. One of those is obtaining reliable material parameters for it. FTM

depends on a number of new parameters, which, although can be classified as

material’s properties, cannot be found in a table of physical and chemical constants.

For example, the Method uses the Landau–Gibbs free energy of the system

expanded in powers of the order parameter (Chap. 2) with the coefficients of

expansion (A, B) or (W, D). A partial list of other parameters used by the method

is: the gradient energy coefficient k (Chap. 3) and the rate constant g (Chap. 4).

The problem is that these parameters cannot be easily identified in experiments and

obtained through direct measurements because they are not measurable quantities,

that is, do not have direct experimental meaning. In this chapter, we discuss the

strategies and challenges in obtaining these parameters for realistic materials and

the boundaries of applicability of the Method.

10.1 Parameters of FTM

The first attempts to find the coefficients of expansion of the Landau–Gibbs free

energy consists in guessing their (T,P)-dependence, deriving the (T,P)-phase diagram
of the system or its specific heat and compressibility, and comparing the theoretical

results with the experimental values. This strategy seldom works for the Landau

potential because of a complicated relation between the free energy and the expansion

coefficients, (2.18). Identification of the material parameters was our primary motiva-

tion behind deriving the tangential potential of Sect. 2.4: for this potential, one

parameter, D in (2.33), is equal to the difference of the free energies of the phases
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(not necessarily equilibrium) and can be found through the thermodynamic integration

of the experimental data. ParameterW of (2.33) cannot be found from the thermody-

namic measurements because the transition barrier height is not a thermodynamic

(macroscopic) quantity.

One way to obtain the interfacial parameters is to derive them from the micro-

scopic models through the coarse-graining procedure (Appendix A). This is a

treacherous road, not well traveled yet. Another option is to obtain them from the

experiments or atomistic (e.g., molecular dynamics) simulations. To realize this

strategy, we need to identify the experimentally measurable or atomistically

simulated counterparts and compare them with these parameters. For instance,

the barrier-height parameter W can be found from the measurements of the interfa-

cial energy and thickness

s ¼ 1

6

ffiffiffiffiffiffiffi

kW
p

; Le4 ¼ 4

ffiffiffiffiffi

k
W

r

: (3E.4, 3E.5)

These equations can be easily resolved for the parameters W and k

k ¼ 3

2
sLe4; W ¼ 24

s
Le4

: (10.1)

This approach has a drawback: it is difficult to extract the interfacial thickness

from the experimental (or atomistic simulations) measurements.

Another strategy to identify the parameters of FTM is to use the data on the

structure factor (see Sect. 7.5). This quantity is directly proportional to the intensity

of the scattered radiation in any experiment on scattering of neutron, light, or X-rays.

The wave vector k is the difference between the wave vectors of the incident and

scattered radiations. The small-k (long wavelength) limit of K̂��;V k; tð Þ can be

measured by the light scattering and the large-k (short distance) part of

K̂��;V k; tð Þ—by the neutron scattering. Theoretically, equilibrium value of the struc-

ture factor can be found as the long-time asymptotic limit of the following

expression

K̂��;V k; tð Þ ¼ K̂��;V k; 0ð Þe2bðkÞt � 2
gkBT
Vb kð Þ t ! 1����! 2kBT

V @2g=@�2 ��ð Þ þ k kj j2
h i ; (7.56)

b kj jð Þ ¼ �g
@2g

@�2
ð��Þ þ k kj j2

� �

: (7.45)

On the other hand, for the Landau potential

@2g

@�2
ð��Þ ¼ A

2ðB2 � Aþ B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 � A
p

Þ
�

(2.22)
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and for the tangential potential

@2g

@�2
��ð Þ ¼ WðP; TÞ � 6DðP; TÞ; (2.36)

where the options in the right-hand side depend on the phase of the system. These

relations can be resolved for the parameters of the potentials if the structure factor is

measured for k ¼ 0 in the domains of stability of both phases separately and then

extrapolated into the metastable region of at least one of them. The gradient energy

coefficient can be identified as follows

k ¼ kBT

V

dK̂�1
��;V k;1ð Þ
d kj j2 : (10.2)

The surface tension can be extracted from the measurements of the interfacial

structure factor [see (7.70)].

The rate constant g can be extracted from the experimental (atomistic

simulations) measurements of the speed of motion of the inter-phase interface in

a transformation at a specified temperature below the equilibrium one TE, and
compared to the theoretical expression for the speed (5E.7). Then

g ¼ sTE
kL

v

TE � T
: (10.3)

An alternative approach is to extract the rate constant g from the expression for

the dynamic structure factor, (7.56), (7.45). (Verify!).

A similar strategy can be used to extract the FTM parameters of the system

with the OP conservation constraint (see Sect. 8.1). For instance, to find the concen-

tration gradient-energy coefficient kC, one may identify the most pronounced

wavelength of the structure, evolved in experiments or simulations, and compare

it to the formula for the maximum marginal wavenumber kd, (8.33), (8.34).

10.2 Boundaries of Applicability of the Method

One of the greatest advantages of FTM is that the method allows finding its own

boundaries of applicability. They come from the thermodynamic constraints and

limitations on the speed and dimensions of the evolving structures. Throughout the

book we have identified several conditions of applicability. Here we will succinctly

summarize these criteria.
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1. Equation (2.9b) expresses limitations on the order of the polynomial expansion

of the free energy in powers of the OP. It says that all essential contributions into

the free energy must be accounted for.

2. The method is not applicable when the evolving structure has very fine scale.

For instance, one of the limitations of the method is that the thickness of the

inter-phase interface or APB is greater than the interatomic distance a

l � a (10.4)

3. Mean-field methods do not take into account thermal fluctuations in the system.

Hence, fluctuations can be added into the theory by hand. In FTM, they appear in

the form of the Langevin force (see Chap. 7). Levanyuk–Ginzburg criterion,

(7.28), (7.30), identifies constraints on the parameters of the theory. For instance,

it says that the method is not applicable in the vicinities of the critical points,

which are the high-fluctuations regions.
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Chapter 11

Extensions of the Method

In the previous chapters, we demonstrated advantages of the FTM in describing

phase transformations in material systems. However, the world of phase

transformations is so diverse that the tools of one method may not be enough to

describe all its wonders. There are many dimensions in which the method may and

should be extended. First of all, we need to discuss the problem of computational

efficiency of the method. Indeed, a rough estimate shows that in its full implemen-

tation the FTM is not very efficient in describing structural features of a macro-

scopic object because the method must naturally resolve the mesoscopic features,

such as interfacial structure, which may not be critical for the overall structure and

properties of the material. This problem may be resolved by using an adaptive

mesh, that is, the computational grid of variable size [1]. Another strategy is to

use a cellular automata method, which we discuss in this chapter. Second of all, the

real-world materials manifest many features which are not directly related to phase

transitions, e.g., grains and grain boundaries. These features and the problems

associated with their modeling are also discussed in this chapter. We conclude

this chapter and the book with an epilogue where we try to outline the challenges

and future prospects of the Method.

11.1 Cellular Automata Method: “Poor Man’s Phase Field”

As we saw in Sect. 5.4 not all details of the OP field are important for the global

structure and rate of transformation in a material system. For instance, the fine

details of the OP distribution inside the solid–liquid interface are not essential for

the dendritic structure that grows from the supercooled liquid. However, being an

integral part of the Field-Theoretic Method, the fine details need to be resolved in

any simulation strategy, and this requires significant amount of the computational

resources. To alleviate this problem many different methods were suggested; one of
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them, a cellular automata method (CAM), is essentially the Field-Theoretic

Method coarse-grained one more time on the larger length scale [2, 3]. In essence,

the CAM consists in dividing the whole system into cells of linear size lCA and

volume OCA and averaging the field quantities in each cell (see Fig. 11.1). For the

method to work, the cell size should be much larger than the interfacial thickness

lCA � Lv (11.1)

but much smaller than the essential length scales of the problem in question.

To derive the CAM dynamic equations for the problem considered in Sect. 9.6.2,

we will compute the thermal balance in each cell. For this, we integrate GHE (9.35)

over the volume of the cell. Then

C
@

@t

ð
OCA

T d3x ¼ �
þ
ÔCA

JT dsþ
þ
ÔCA

Qðr; tÞ d3x: (11.2)

The first integral we can present as �T OCA, where �T is the temperature averaged

out over the volume of the cell. The second integral is the sum of the fluxes on all

boundaries of the cell SÔCAJT. The third integral can be computed using the

expression (9.36) for the heat source Q and the assumption that the OP field in the

cell represents a train wave (interface), that is, it moves as a whole with

the unchanging internal structure. Then, introducing the unit normal n directed

toward the parent (liquid) phase and using (2.4a), (5.31a), we obtain

l r
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_   _
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Fig. 11.1 Cellular automata

method. A simulation cell

with the drumhead interface

that separates the phases
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ð
OCA

Qðr; tÞ d3x ¼ Vn

ð
S0

ds

ð1
�1

dn
@e

@�
� kE

@2�

@n2

� �
@�

@n
¼ VnS0L; (11.3)

where S0 is the area of the piece of interface in the cell, L is the latent heat of the

transformation, and Vn is the velocity of this piece in the direction of n. Introducing
a new variable, portion of solid in the cell

�o � OS

OCA

; (11.4)

where OS is the volume of the solid phase in the cellOCA, the heat-balance equation

(11.1) can be rewritten as follows

C
@T

@t
¼ � S

ÔCA

OCA

JT þ L
@ �o
@t

; (11.5a)

@ �o
@t

¼ Sn
OCA

Vn: (11.5b)

To obtain an equation that relates Vn to the average temperature in the cell and

local curvature of the piece of interface we need to average TDGLE (5.1) over the

volume of the cell. Due to (11.1), this is pretty much the same procedure that led us

to (5.32). Then (disregarding the effects of heat-trapping) we obtain

Vn ¼ m TE � T � 2
sTE
L

K0

� �
: (11.6)

Equations (11.4)–(11.6) are a system of simultaneous equations for the new cell

variables �T and �o. However, the system is not complete—the missing information

has been lost “during” the coarse graining. First, we need to compute the quantities

S0 and K0; they can be found using values of the function �o in the cell of interest (0)

and the surrounding cells (front tracking). Second, we need a transition rule, which
indicates when (on what time step) the interface appears in 0-cell if before the cell

was void of the interface. This rule can also be established based on the knowledge

of the function �o in the surrounding cells. Hence, we can see that CAM depends

heavily on the neighborhood of the 0-cell—{oi}. The extent (nearest neighbors,

next-to-nearest, etc.) and symmetry (e.g., square or triangular lattice) of the neigh-

borhood enriches the method at the expense of the computational resources (there is

no free lunch!). The rules themselves depend on the physics of the transition

process (nucleation, etc.) and properties of the system (e.g. anisotropy).

They may be restored from the underlying FTM.

Let us consider a 2d system (you can think of it as being uniform in the third

dimension) with crystallographic symmetry that corresponds to the square cell

grid (<10> is the fastest growth direction), for which we will be using the
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nearest-neighbor (left, right, up, down) neighborhood (see Fig. 11.1). One may

consider more complicated anisotropy of the system than its crystallography, but

for the sake of simplicity we will not be doing that. Furthermore, we will rule

out nucleation in front of the interface, which leaves only one mechanism of

transformation—advancement of the phase interface. Then the transition rules

may be realized in the CAM by introducing one more, subsidiary variable—the

cell type W, which multiplies the right-hand side of (11.5b). By definition, W0 ¼ 1

if 0<�o0<1 (two-phase cell, that is with the interface inside) or if �o0 ¼ 0 (liquid

cell) but �oi ¼ 1 for at least one of (i ¼ l, r, u, d); all other cells, that is with

�o0 ¼ 1 or 0, have W0 ¼ 0 (see Fig. 11.1).

There is a number of ways how the functions S0 and K0 can be calculated given

the state of the neighborhood �oif g. For instance, one can assume that the interface

describes an arch of a circle in the neighborhood and use �oif g to deduce its length,
radius, and angle of inclination in the central cell. Below, we will be using the

following formulae for the curvature and slope

K0 ¼ d

dz

dx=dzð Þ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dx=dzð Þ20

q
2
64

3
75; dx

dz

� �
0

¼ W0

2

X
i¼l;0;r

�oiu � �oidð Þ: (11.7)

Now the system (11.4)–(11.7) can be dimensionalized using the following

length, time, velocity, and temperature scales, respectively:

lm ¼ l
mL

; tm ¼ l2m
a
; v0 ¼ lm

tm
¼ mL

C
;

L

C
; (11.8)

and completely “cellularized,” that is, discretized in space and time

�Tþ1
0 ¼ �T0 þ a

Xu;d
i¼l;r

�Ti � 4 �T0

 !
þ Do0; (11.9a)

�oþ1
0 ¼ �o0 þ Do0; (11.9b)

Do0 ¼ bW0x0 DY� �T0 � 1

R
K0

� �
; (11.9c)

where a ¼ lDt/CDX2, b ¼ v0Dt/DX, x0 ¼ S0/lCA, the supercooling DY ¼ C(TE �
Tinitial)/L is defined in (I.10), and kinetic number R ¼ msTE/aL—in (9.46), (9.83),

(9.84). The system of equations (11.9) should be supplemented with BC and initial

conditions. We will assume that initially the system consisted of a crystal with

plane surface and a small bump with the size of a single cell on it immersed into a

large volume of supercooled liquid phase at DY> 0. For the sake of simplicity for

x0, we will be using its isotropic average value of one. The method may be

expanded to include the effects of anisotropy and presence of other components.
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In Fig. 11.2 are presented numerical calculations using the system (11.9) for

different parameters DY. The simulated patterns have many features of the real

dendritic structures; namely, a little bump on a smooth interface turns into a long

stem covered by side branches. A few interesting observations regarding the side-

branch structure can be made. First, it is highly periodic with the period depending

strongly on the supercooling. Second, the side-branch structure has a well-defined

envelope. Third, at large supercoolings (DY� 1), the side branches disappear

altogether; this effect is called the absolute (or second) stability. Fourth, moving

away from the tip, the side-branch structure coarsens by doubling of its period.

All of these features were observed experimentally.

Comparison of these results with those of the FTM presented in Sect. 9.6.1 and

9.6.2 is illuminating. First, both methods efficiently capture instability of a smooth

interface to capillary-wave perturbations and “translate” this instability into long

needles with rather smooth tip. However, to produce the side branches the Field

Method needs an additional source of fluctuations, while CAM has, so to speak, the

built-in fluctuations of sufficient amplitude to inspire the side branches. These

fluctuations are related to the coarseness of the CAM grid, which also brings

about grid-related anisotropy of the method. These features of the CAM do not

allow it to resolve the subtle small-scale issues of the dendritic tip stability but make

it an effective tool in large-scale microstructure modeling. Second, compare the

process of side-branch coarsening with that of the 1d plates, which we observed

in Sect. 9.6.1 and notice that in both cases the coarsening is a result of strong

long-range interaction through the temperature field between the structural units of
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high-volume fraction; that is why both processes take similar paths of period

doubling. Thus themechanism of sequential period doubling is robust for coarsening

in 1d or quasi-1d (dendritic branches) systems with a conserved quantity (energy).

11.2 Continuum Models of Grain Growth

Many solid materials consist of small crystallites called grains, which are domains

of the same phase with different spatial orientations of their crystalline lattices.

The grains are separated from each other by the grain boundaries (GB), which are

2d-extended defects with positive excess free energy and, therefore, thermodynam-

ically unstable. Due to their global instability, curved GBs are known to move

toward the centers of their curvatures. However, overall the GBs move such as to

increase the average size of the grain �R, reduce the total GB area and thus the total

free energy of the system. Simple dimensional analysis provides an approximate

time dependence for �RðtÞ. Indeed, if we assume that GB energy is the only driving

force for its motion then [4]

d �R

dt
¼ þ a

�R
; (11.10)

where the coefficient a is a product of the GB energy and mobility. Notice that the

right-hand side of (11.10) is positive because we apply this formula to the average

size �R not the individual grain radii [cf. (5.36b) and (5.46)]. Solution of (11.10) is

�R2 � �R2
0 ¼ 2at; (11.11)

where �R0 is the average grain size at t ¼ 0 [cf. (5.38b) and (5.47)].

However, �R is not the only characteristic that determines global evolution of the

grain structure because grains of the same �R can have different topological

properties. The latter are characterized (in 2d case) by the topological class of a

grain, k—the number of neighbors (or sides or triple junctions). Then the area of the

2d grain A obeys the following relation [5]:

dA

dt
¼ ap

3ðk � 6Þ; (11.12)

which shows that grains with more than six sides grow while those with fewer than

six sides shrink.

A variety of models of grain growth have been proposed with a common feature

that the GBs have zero thickness—the sharp interface models. However, recently

several authors proposed rather different models of grain growth in which the GBs

are assumed to be diffused, that is have finite thickness. To describe evolution of the
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grain structure, these models use the gradient-flow paradigm, which includes

TDGLE with random forces but without the cross terms

@�i
@t

¼ �gi
dG
d�i

þ xiðr; tÞ (7.31)

and the free energy functional

G ¼
ð
O
ĝ d3x (3.27a)

with different free-energy density functions ĝ, which are the subject of discussion in
this section. It is not our intention here to pass judgment on which model is better—

this is a complicated question, which is still very much under consideration in the

literature. Our goal here will be only to introduce the models and present their

advantages and disadvantages.

11.2.1 Multiphase Field Models

Based on some similarities between the properties of the grains and antiphase domains

(see Sect. 8.3). Chen et al. [6] proposed a model, in which a polycrystalline micro-

structure is described by a number ofOP fields, {�i(r, t); i ¼ 1. . .,N},which designate
different orientations of the grains. The free-energy density of the system is

ĝ ¼ g �iðr; tÞf g þ 1

2

XN
i¼1

ki r�ij j2; (11.13)

where ki are the gradient energy coefficients. The main requirement for the homo-

geneous part of the free-energy density is that it has degenerate minima of equal

depth. A simple function which satisfies this requirement is

g ¼ g0 P; Tð Þ þ A
XN
i¼1

� 1

2
�2i þ

1

4
�4i þ �2i

XN
j ¼ 1

j 6¼ i

�2j

0
BBBB@

1
CCCCA: (11.14)

It has 2N minima located at {�i ¼ �1; �j ¼ 0, j ¼ 1. . ., i�1, i + 1. . ., N} in the
N-dimensional space, each one representing a specific crystallographic orientation

of a grain. The free energy of a plane GB is

sGB ¼
ð1
�1

XN
i¼1

d�i
dx

� �2

dx: (11.15)
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The main contributions into the GB energy between two grains of orientations �i
and �j come from the gradients of �i and �j because other OPs practically do not

vary in the transition zone.

This model provides correct temporal variation of the average grain size as being

asymptotically proportional to the square root of time and reasonably well

reproduces evolution of the grain-size distribution function and local topological

classes (number of sides) of the individual grains. However, deficiencies of the

model are prominent. First, the model allows for a finite number of orientations

only, while in a real material any grain orientation is possible. Second, in the model,

the set of 2N allowed orientations is doubly degenerate and the orientations

{�i ¼ +1; �j6¼i ¼ 0} and {�i ¼ �1; �j6¼i ¼ 0} form, so to speak, an anti-orientation

GB with a finite GB energy (see Sect. 8.3), while in a real material they are totally

equivalent and do not form a GB.

To describe evolution of multiphase systems, Steinbach et al. [7] developed a

method where, instead of the OPs, the main field variables are partial phase contents

pi(r, t), i ¼ 1,. . ., N. These phase-field variables are not independent; they are

defined on the Gibbsian simplex

XN
i¼1

piðr; tÞ ¼ 1 (11.16a)

and allowed to vary only between 0 and 1

0 � pi � 1: (11.16b)

The free-energy density of the system is

ĝ ¼
XN
i¼1

gi P; Tð Þpi þ 1

2

Xi
j¼1

aijp2i p
2
j þ kij pirpj � pjrpi

� �2h i( )
; (11.17)

where gi(P, T) is the free-energy density of the individual phase i. Notice that the

gradient energy contribution in (11.17) is a weighted sum of the squares of the

Lifshitz invariants [see (8.86b)]. For the dynamics of the system, the authors used

the relaxation ansatz (7.31).

The method has a number of inconsistencies. First and foremost, application of the

relaxation ansatz (7.31) is not justified here because vanishing of the variational

derivative is not the condition of equilibrium. Indeed, because the system is defined

on the geometrically bounded simplex (11.16), the total free energy minimum can

be achieved on its boundary where the functional (3.27a) is not differentiable.

The method also has a computational disadvantage in modeling a multiphase system

as it needs N field variables pis to describe a system with N phases, while the method

described in the book requires ~ log2N OP fields. However, the multiphase method

had some success in simulations of evolution of the grain structure in monatomic

systems as the average grain size was found to be proportional to time in power ~0.38.
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11.2.2 Orientational Order Parameter Field Models

Morin et al. [8] introduced a model of evolution of a polycrystalline material in the

d-dimensional space where the grains are characterized by a d-component vector

field h(r, t) whose magnitude represents the local crystalline order and direction

represents orientation of the grain. The latter is characterized by the angle y(r, t)�
arcos(i�h/|h|) that the vector field h(r, t) makes with the fixed direction in space i.
The free-energy density of the system is

ĝ ¼ f hðr; tÞj j2; c r; tð Þ; rh; rc; cos Nyðr; tÞ½ 	
n o

; (11.18a)

where c(r, t) represents the local atomic concentration and N is the order of

breaking the rotational symmetry of the system, that is, the number of distinguished

orientations of grains. Evolution of the system is governed by d TDGLEs (7.31) for

the nonconservative field h(r, t) and a Cahn–Hilliard equation (plus the thermal

fluctuations) for the conservative field c(r, t) [cf. (8.27)]

@c

@t
¼ Dr2 dG

dc
þ zðr; tÞ:

The long-time behavior of the studied 2d system was dominated by the scaling

regime when the structure factors of the concentration and ordering exhibited the

so-called Porod’s law, that is S(q, t)!q�(d+1) for q ! 1, where q is the magnitude of

the Fourier wave vector. This result was attributed to the coupling between

the nonconservative field h(r, t) and the conservative field c(r, t). However, validity
of the results may be called into question by the contribution to the free-energy density

cos Nyðr; tÞ½ 	 hðr; tÞj j2
h i2

; (11.18b)

which violates isotropy of the system. Indeed, just a mere rotation of the reference

frame (i, j, k) causes irreducible changes in the free energy differences between

the grains of different orientations, which in turn should change the dynamics of the

system.

Lusk [9] suggested a model where the lattices of differing orientations are

distinguished by a set of lattice parameters {s1, s2, . . ., sN}, where N is the number

of allowed grain orientations. However, in contrast to the previous model, these

parameters do not enter into the free energy function. Instead, the free energy of the

system depends on the gradients of these parameters only

ĝ ¼ gð�; P; TÞ þ lð�Þ
XN
i¼1

rsið Þ2: (11.19)
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The lattice parameters obey the relaxation dynamics of the type (7.31). Using the

matched asymptotic analysis, the author was able to recover the GB motion by

mean curvature. He also obtained 1d analytical and numerical solutions for a

stationary GB. However, this solution presents a GB as a layer of melt sandwiched

between two solid crystallites—a wetted GB model, which is not the case in the

polycrystalline materials far from melting point.

Kobayashi et al. [10] introduced a model of grain structure, which allows for an

arbitrary orientation of grains and is invariant with respect to the reference frame. In

the 2d realization of the model, the grains are characterized by two nonconservative

fields, the OP field �(r, t) which is interpreted as the level of local crystalline order

and the field y(r, t) which is interpreted as the local orientation of the grain lattice

with respect to the fixed axis in space, say x. This is similar to the model [8].

However, what is different from the latter is that the free-energy density in this

model depends only on the powers of the gradient of the field y(r, t)

ĝ ¼ gð�;P; TÞ þ að�Þ ryj j þ bð�Þ ryj j2: (11.20)

The presence of the linear term |∇y| is required in the model for the localization

of the GB at equilibrium. The equilibrium structure of the GB is accompanied by

lowering of the value of the OP �, that is, disordering of the GB. Evolution of the

ordering field is governed by the relaxation dynamics of the TDGLE type (7.31)

with the relaxation coefficient that has singular dependence on �. The authors were
able to reproduce some of the features of the grain structure in materials like

dependence of the GB energy on GB misorientation (change in angle across the

boundary), GB wetting and motion, and grain rotation (time change of orientation

in the grain interior). However, due to significant singularity in the free-energy

density (11.20), for its computational implementation, the method requires a num-

ber of physically unappealing fixes like the singular mobility or smoothing

functions to emulate the singular term |∇y|. These measures also make the model

computationally taxing.

11.2.3 Phase-Field Crystal

Elder et al. [11] introduced a method for modeling of transformations in materials

including effects related to multiple crystal orientations. They called it the Phase-

Field Crystal method because it describes phase changes as evolution of the atomic

density field according to dissipative dynamics driven by minimization of the free

energy of the system. The free-energy density is approximated as

ĝ ¼ 1

2
’ aþ l q20 þr2

� �2h i
’þ 1

4
b’4; (11.21)
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where a, b, l, q0 are material parameters and ’(r, t) is the deviation of the atomic

density from the density of the liquid state, which is at equilibrium with the solid

state at the temperature of the transformation. In the framework of this method,

formation of a crystalline solid is signaled not by the value of an OP being greater

than zero, but by the field ’(r, t) being unstable to the formation of a periodic

structure. A full nonlinear solution of the minimization problem is very compli-

cated even in 1d. The authors studied a one-harmonic-mode approximation of the

linearized problem (the free-field problem). In the 2d small-a limit, the functional

(3.27a) with the free-energy density (11.21) is minimized by the deviation

’m ¼ �’þ 4

5
�’þ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�15

a
b
� 36�’2

r� �
cos

ffiffiffi
3

p
x

2q0
cos

y

2q0
� 1

2
cos

y

q0

� �
; (11.22)

which represents a triangular distribution of “particles” with the reciprocal lattice

vectors

b̂1 ¼ 1

q0

ffiffiffi
3

p

2
îþ 1

2
ĵ

� �
; b̂2 ¼ 1

q0
ĵ: (11.23)

For this solution, the parameter q0 represents the distance between the nearest-

neighbor “particles,” which correspond to the atomic positions.

To obtain the “phase diagram” between the average density �’ and parameter a
the authors used the Maxwell equal-area construct. Given that the field ’(r, t) is
conservative and assuming that its dynamics is dissipative and driven by the

minimization of the free energy, the authors used the Cahn–Hilliard equation

(8.27) for the evolution of the field. Using the phase-field-crystal method, the

authors obtained reasonable scenarios of evolution of the grain structure in

materials, including grain growth and rotation.

11.3 Epilogue: Challenges and Future Prospects

We came to the end of our journey of studying the Field-Theoretic Method that

helped us analyze various properties of phase transformations. It is the right time

now to assess its pros and cons and speculate about its future. The greatest

advantage of the Method is that it is on the solid theoretical footing, which allowed

us on one hand to expand it on a broad variety of transformations found in materials

and on the other hand to find its own limitations and boundaries of applicability.

Another advantage of the Method is its transparent mathematical structure. This

feature allowed us for both, to use the method as a theoretical tool and develop

efficient computational schemes for practical purposes.

One of the greatest challenges of the Method is the need for parameters that

correspond to the real materials or systems that undergo the transformations. These
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parameters cannot be measured in experiments. They can be calculated from the

first principles, but this option is laborious and encounters significant difficulties.

The author’s hope is that these parameters will emerge from the computations, e.g.,

Monte Carlo or Molecular Dynamics with realistic interatomic potentials. Another

challenge, particularly in computational applications, is to develop efficient

algorithms that help offset the drawbacks of the method and bring the “computa-

tional cost” down. Both of these challenges need to be overcome for the successful

application of FTM for quantitative modeling of material transformations in the

three dimensional space.

The Method’s advantages secure its great prospects. It may be expanded in many

different directions. For instance, it naturally allows inclusion of the external

physical fields (other than temperature and pressure), such as electric, magnetic,

gravitational, into the analysis of transformations, which makes the Method more

practical. Mainly in this book, we discuss the macroscopic systems of large

(virtually infinite) sizes. However, the Method can be applied to systems of limited

sizes, with small systems being the most interesting in this category. This is very

useful because the Statistical Mechanics of Small Systems has not been developed

yet. The Method is already expanding in the directions, which are not traditional for

the science of phase transformations. For instance, it finds applications in biology,

psychology, sociology, and even cosmology.

However, the Method experiences healthy competition from other methods,

such as the Molecular Dynamics and Phase-Field Crystal. Both methods allow for

microscopic resolution of the process, which on one hand is an advantage, but on

the other hand, computationally slows them down considerably. We may be sure

that all these challenges will make the Method stronger and more relevant to the

theoretical and practical needs of the science of phase transformations.
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Appendix A: Coarse-Graining Procedure

Intention of this appendix is to show how a set of many microscopic variables can

be converted into a smaller set of mesoscopic variables or even one continuous

function through the procedure called coarse-graining (CG). There is no denial that
after CG certain features of the system are lost; the hope is, however, that the

essential ones are retained. We will demonstrate the CG using a simple model of

ferromagnetism. Each atom in a crystal is supposed to have a magnetic moment m0,
which may point in any direction. The concept may be clearly demonstrated on a

particularly simple example of a unidirectional ferromagnetic “crystal,” that is, a

lattice of atoms with the magnetic moments pointing in only one of the two

directions: upward or downward. Such model is called Ising model of a ferromagnet

and the atomic magnetic moments—Ising spins. The state of each atom is

represented by a variable si (i ¼ 1, 2,. . ., N; N being the total number of atoms in

the “crystal”), which takes on the values +1 or �1. Neighboring atoms in the lattice

experience exchange interaction of the strength J > 0 and sign that depends

on whether the moments are parallel or antiparallel, so that J(si ¼ sj)¼�J and

J(si ¼ �sj) ¼ +J. Therefore, the magnetic interaction energy of the atoms can be

expressed by the following Hamiltonian

Ĥ sif g ¼ �J
X

nn<ij>

sisj; (A.1)

where the summation is over the nearest-neighbor pairs of atoms. We will look at

the one- and two-dimensional Ising models.

If the system is interacting with a heat reservoir of temperature T then each of

the N Ising spins si is a random variable. According to the Boltzmann’s principle,

the probability distribution of the microstate {si} is

P sif g ¼ 1

Ẑ
e�bĤ sif g; (A.2)

A. Umantsev, Field Theoretic Method in Phase Transformations,
Lecture Notes in Physics 840, DOI 10.1007/978-1-4614-1487-2,
# Springer Science+Business Media, LLC 2012
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where b ¼ 1/kBT (kB is the Boltzmann’s constant) and Ẑ is the normalization

constant called the partition function

Ẑ ¼
X
sif g

e�bĤ sif g;
X
sif g

�
X
sif g

X
sif g

� � �
X

sN¼�1

: (A.3)

In (A.3), the summation is overall N Ising spins. The expectation value (average)

of the spins is

sj ¼
X
sif g

sjP sif g: (A.4)

To describe the spin dynamics, let us consider the one-dimensional array of

N spins with the probability distribution P{si, t}, which is a function of time that

obeys the master equation [1]

d

dt
P si; tf g ¼ �

XN
j¼1

wj sj
� �" #

P si; tf g þ
XN
j¼1

wj �sj
� �

P

� s1; . . .� sj; . . . sN; t
� �

: (A.5)

The first term in the right-hand side describes destruction of the microstate {si}
by a flip of any of the spins, while the second term describes creation of the

microstate by the spin flip from any of the microstates {s1,. . .�sj,. . .sN}. If we
want to describe a tendency for each spin to align itself parallel to its nearest

neighbors we may chose the transition probabilities wj(sj) to be of the form

wj sj
� � ¼ 1

2
g 1� 1

2
asj sj�1 þ sjþ1

� �� �
: (A.6)

Here g/2 is the rate per unite time at which the spin flips from either state to the

opposite if it were disconnected from the other spins and a describes the tendency of
spins toward alignment. Positive values of a favor parallel configurations (ferro-

magnetism), negative values favor antiparallel configurations (antiferro-

magnetism), and in all cases |a|�1. Comparing the equilibrium state (A.1), (A.2)

with the asymptotic state of the master equation (A.5), (A.6) we may identify

a ¼ tanh
2J

kBT

� 	
: (A.7)

If we multiply both sides of the master equation (A.5) by sj, substitute (A.6), and
sum overall values of spin variables we obtain an equation

1

g
d sjðtÞ

 �
dt

¼ � sjðtÞ

 �þ 1

2
a sj�1ðtÞ

 �þ sjþ1ðtÞ


 �� �
¼ � 1� að Þ sjðtÞ


 �þ 1

2
a sj�1ðtÞ

 �� 2 sjðtÞ


 �þ sjþ1ðtÞ

 �� �

; (A.8)
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which shows that the rates of change of the average spins depend on the states of the

neighbors. Extension to the 2d case is straightforward.

Unfortunately (A.1)–(A.8) are not very helpful analytically because Hamiltonian

(A.1) depends on very many (N) independent variables. The number of variables of

the Hamiltonian (A.1) can be significantly reduced if we are not interested in all the

details of the system’s behavior on the scale of the interatomic distances a. The 2d
“crystal,” for instance, can be divided into square blocks, each one consisting of

b � b elementary cells, (see Fig. A.1). For each block, we define the block spin as a

sum of b2 Ising spins divided by b2, that is, as the block-mean Ising spin.

Designating blocks by the position vectors of their centers we obtain

s xð Þ ¼ sh ib2 ¼
1

b2

Xb2
j¼1

sj ¼
X
sjjb2f g

sjP sj
� �

: (A.9)

Notice the change of the structure of the independent variables. First, there are

N/b2 block spins instead of N Ising ones. Second, although the block spins are

discrete variables as the Ising ones, their “degree of discreteness” changes. Indeed,

while the Ising spin is just a simple binary variable, the block spin can take on

(b2 + 1) different values, that is, practically becomes a continuous variable for large

b. Hence, the coarse-graining smoothes out the variables at the expense of their

“information content”: the Ising spins describe interactions on the interatomic scale

a while the block spins—on the block scale ba.
How can we find a block-spin Hamiltonian from the Hamiltonian (A.1) for the

Ising spins? Let us find the probability distribution of the block spins P{s(x)}.
This can be done using simple rules of the probability theory. Consider joint

probability distribution function p(q1, q2) of two random (continuous) variables

ba

a

Fig. A.1 Partitioning of the

lattice of the cell size a by the
blocks of b � b cells. Each

block is associated with a spin

(black arrows) between �1

and 1
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q1 and q2. If we are interested only in one variable, say q1, we can obtain its

probability distribution p0(q1) by integrating p(q1, q2) over q2

p0 q1ð Þ ¼
Z

dq2p q1; q2ð Þ:

If we are interested in the mean value of q1 and q2, that is q ¼ (q1 + q2)/2, then

p0ðqÞ ¼
Z

dq1 dq2p q1; q2ð Þ d q� q1 þ q2
2

� 

¼ d q� q1 þ q2

2

� 
D E
:

For as long as we consider only functions of q, their average values can be

calculated using p0(q) or p(q1, q2) yielding the same result because the d-function
replaces integration over q with the integration over (q1, q2). For instance,

q2

 �0 ¼ Z dqq2p0ðqÞ ¼ q1 þ q2

2

� 
2� �
:

Using these rules, we write the block-spin probability distribution function as

follows

P sðxÞf g ¼ P0 sif g

¼
X
sif g

e�bĤ sif gY
x

d s xð Þ � 1

b2

Xb2
j¼1

sj

 !
¼

Y
x

d s xð Þ � 1

b2

Xb2
j¼1

sj

 !* +
:

(A.10)

Now, using the Boltzmann’s principle, we can define the block-spin Hamiltonian

H{s(x)}

P sðxÞf g � 1

Z
e�bH sðxÞf g; (A.11)

where Z is the partition function of the CG system

Z ¼
X

sijN=b2f g
e�bH s xð Þf g � 1

b2

Z 1

�1

YN=b2
i¼1

dsie�bH s xð Þf g; (A.12a)

X
sijN=b2f g

�
X
s x1ð Þ

X
s x2ð Þ

� � �
Xþ1

s xN=b2ð Þ¼�1

: (A.12b)
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The procedure (A.9)–(A.12) of reducing the Ising Hamiltonian to the block

Hamiltonian is called the Kadanoff transformation

H sðxÞf g ¼ KbĤ sif g; (A.13)

where we define K1 ¼ 1. The transformation Kb can be applied multiple times with

the property that KbKb0 ¼ Kbb0. Each application of the Kadanoff transformation

smoothes out the spin variables at the expense of the reduction of the spatial

resolution of the Hamiltonian. The block HamiltonianH{s(x)} contains parameters

that average out interactions of the b2 Ising spins on the scales of the block (�ba).
In this respect, the exchange interaction constant J of the Ising Hamiltonian (A.1) is

the averaged out interatomic interactions on the scale �a.
There are several advantages in dealing with the smoothed, averaged variables

instead of the discrete ones. First, one can use the tools of the calculus. Second, one

can apply the Fourier transformation to the spin variables and represent the Hamil-

tonian H as a function of the Fourier components s(k). In this case, the function

H{s(k)} contains only the components with the wave vectors |k|�2p/ba because

the wave vectors outside this sphere describe details of the functional behavior on

the scales smaller than ba, which were eliminated from the Hamiltonian H{s(x)}.
Third, dynamics of the smoothed variables is more tractable.

As known [2], the macroscopic properties of a system can be computed from the

partition function. For instance, the Helmholtz free energy is

F ¼ � ln Z

b
: (A.14)

For the stability of the system, this free energy must be a convex (concave)

function of its extensive (intensive) variables, e.g., ∂2F/∂T2 � 0. Equations (A.11)

and (A.14) motivate us to expect that the block Hamiltonian H{s(x)} possesses

some properties of the free energy. Because H{s(x)} depends not only on the

thermodynamic variables such as temperature and volume but also on the internal

variables such as block spins {s(x)}, it may not be convex (concave) function of its

extensive (intensive) variables in the entire domain of definition. However, great

advantage of the block HamiltonianH{s(x)} over the actual free energy F(T) is that
it is much easier to calculate the former than the latter. In particular, this is true if

the block-spin variable s(x) is transformed into a continuum, field variable defined

everywhere in the space of the system.

How can we transform the block-spin variables into field variables? First, notice

that

�
X

nn<ij>

sisj ¼ 1

2

X
nn<ij>

si � sj
� �2 þX

i

f ðsiÞ; (A.15)

where the function f(si) depends on the number and orientation of the nearest

neighbors, that is, the symmetry of the “crystal.” Also notice that the discrete
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quantity (si�sj)/a is the first approximation to the continuum quantity |∇s|, where
the gradient is taken in the direction j!i. Then, replacing the summation overall the

nearest-neighbor pairs by the integration over the space of the system we obtain the

so-called Ginzburg–Landau (GL) Hamiltonian

HGL sðxÞf g ¼
Z

d2x f ðsÞ þ k
2
rsj j2

h i
; (A.16)

which is a continuum equivalent of the discrete Ising Hamiltonian (A.1). Parameter

k in (A.16) is proportional to the number of the nearest neighbors

k � JNnn<ij>; (A.17)

hence, determines the radius of correlations in the system. Because the GL Hamil-

tonian was obtained through the Kadanoff transformation (A.13) it possesses at

least some of the properties of the actual free energy F. That is why it is often called
the CG free energy.

Moreover, noticing that the discrete quantity (sj�1 � 2sj + sj+1)/a is the first

approximation to the continuum quantity ∇2s, the dynamic spin-variable equation

(A.8) hints at the following continuum equivalent

1

g
@sðx; tÞ

@t
¼ �bs x; tð Þ þ a

2
r2s x; tð Þ; b>0: (A.18)

Further development of the continuum model may be achieved by noticing the

connection between the parameters a and k through the relations (A.7) and (A.17).

However, CG may break consistency between other parts of the model, which must

be restored independently.

The GL Hamiltonian (A.16) can be extended on the systems more complicated

than the 2d free Ising spins. First, the system may be subjected to the external field

B, which adds the contribution �m0B
P

i si
� �

to the Ising Hamiltonian and

�m0Bsð Þ to the integrand of the GL Hamiltonian (A.16). Second, magnetization

of an atom may not be directed parallel to the same axis, which makes the “spin” a

vector with n components. Third, the system may vary in all three spatial directions,

which changes the integration in the GL Hamiltonian. A more complicated issue of

appearance of the singularities in the system associated with a phase transition is

considered in the main text.
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Appendix B: Calculus of Variations

and Functional Derivative

Many physical problems may be reduced to a problem of finding a function y of x
(space and/or time), which delivers a maximum (or minimum) to the integral

I ¼ I yðxÞ½ 	 ¼
Z b

a

F x; y;
dy

dx

� 	
dx: (B.1)

Such an integral is often called a functional. It is a generalization of a function in
that it is a number which depends on a function rather than on another number [1, 2].

To find a maximum (or minimum) of the functional means to find a y(x) such that
if it is replace by y(x) + dy(x), I is unchanged to order dy(x), provided dy(x) is
sufficiently small. More generally, the function y(x) makes the functional I station-
ary. To reduce this problem to the familiar one of making an ordinary function

stationary, consider the replacement

dyðxÞ ¼ euðxÞ; (B.2)

where e is small and u(x) is arbitrary but such that (Fig. B.1)

uðaÞ ¼ uðbÞ ¼ 0: (B.3)

Considering x; y; and y0 as independent variables of F, we obtain

I eð Þ ¼
Z b

a

F x; yþ eu; y0 þ eu0ð Þ dx ¼ Ið0Þ þ e
Z b

a

@F

@y
uþ @F

@y0
u0

� 	
dxþ O e2

� �
:

(B.4)

If I[y(x)] is to be stationary, then we must have

dI

de
je¼0 ¼ 0 for all uðxÞ:
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Thus we require that for all u

Z b

a

@F

@y
uþ @F

@y0
u0

� 	
dx ¼ 0: (B.5)

Integrating the second term in (B.5) by parts, the equation becomes

Z b

a

@F

@y
� d

dx

@F

@y0

� 	
u dxþ u

@F

@y0
jx¼b
x¼a ¼ 0: (B.6)

The integrated part vanishes because of (B.3).

The fundamental lemma of the calculus of variations says that if the integral is to

vanish for arbitrary u(x), then the term in the parenthesis must vanish [1]. There-

fore, we must require

@F

@y
� d

dx

@F

@y0
¼ 0: (B.7)

This differential equation is called the Euler–Lagrange equation; solutions of

this equation are called extremals. As expected, this equation is Euclidean

y

a b x

Δyδy

a b b+δx

y

y(x)

g(x,y)=0

y(x)+δy1

y(x)+δy2

Fig. B.1 Function y(x) and its variations of different smoothness, dy1 and dy2. Inset: transversality
condition (B.12)
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invariant, i.e., invariant under the combination of translations and rotations in the

space. When combined with the appropriate boundary conditions, (B.7) is equiva-

lent to the original variational problem. The left-hand side of this equation is often

written as dI/dy, and called the variational, or functional, derivative of I with

respect to y.
There is one caveat in the derivation of the Euler–Lagrange equation (B.7).

For the expansion in (B.4) to be valid, we assumed that y(x) and y(x) + dy(x) are
close not only “point-by-point” but with respect to their derivatives also. This may

be verified by a measure of function’s magnitude, called the norm ||y(x)||. If the
norm is defined, then ||y1(x)�y2(x)|| is a measure of the proximity of the functions.

The full set of functions y(x) with a norm is called a Hilbert functional space.

Although a few different definitions of the norm are possible, we find the following

one to be the most useful for our purposes

yðxÞk k � max
a<x<b

yðxÞj j þ max
a<x<b

y0ðxÞj j: (B.8)

In Fig. B.1, for instance, the function y(x) + dy1(x) is close to y(x) in the sense of
the norm (B.8) but the function y(x) + dy2(x) is not. Notice that physically defini-

tion (B.8) may not be correct because it may be a sum of two quantities with

different physical dimensions. Notwithstanding, it makes perfect mathematical

sense as a measure of the proximity of functions.

If the integrand F does not depend on x, we can integrate the Euler–Lagrange

equation once. Indeed, when multiplied by y0, added and subtracted y00ð@F=@y0Þ, the
Euler–Lagrange equation is

d

dx
F� y0

@F

@y0

� 	
¼ 0;

(Why? Hint: @F=@x ¼ 0) which gives a first integral in the form of the first-order

equation

F� y0
@F

@y0
¼ const: (B.9)

The following generalizations of the basic problem are possible.

Variable end points. Suppose we want to maximize the functional (B.1) but we

allow y(b) to be arbitrary. As before, if y is given an increment (B.2) the variation of

I (change of the order not higher than the first in the small parameter e) is

dI ¼
Z b

a

@F

@y
� d

dx

@F

@y0

� 	
dy dxþ @F

@y0
dyjba: (B.10)
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Clearly, the Euler–Lagrange equation must still hold; otherwise, we could find a

function dy with dy(b) ¼ 0 which changed I. But in addition, if dI is to vanish for

arbitrary dy(b), we must have

@F

@y0
jx¼b ¼ 0: (B.11)

If both end points are free, clearly @F=@y0 must vanish at both ends.

Transversality condition. As another possibility, suppose y is fixed at x ¼ a, but
the other end point is free to lie anywhere on the curve (Inset of Fig. B.1)

g x; yð Þ ¼ 0: (B.12)

Now from (B.4) we obtain that

dI ¼
Z b

a

@F

@y
� d

dx

@F

@y0

� 	
dy dxþ @F

@y0
dyjb þ FðbÞ dx: (B.13)

Then the condition dI ¼ 0, besides the Euler–Lagrange equation, gives the end-

point condition

FðbÞ dxþ @F

@y0
ðbÞ dyðbÞ ¼ 0: (B.14)

The coordinates of the displacement (dx, dy) of the upper end point are constraint
by (B.12)

@g

@x
dxþ @g

@y
Dy ¼ 0: (B.15)

Here Dy is not equal to dy of (B.14) since Dy is the increment of y when the

boundary point is displaced to the position (b + dx, y + Dy) and dy is the increment

of the ordinate y at the point b when going from the extremal passing through the

(b, y) to the extremal passing through the (b + dx, y + Dy) (see Inset of Fig. B.1).
Naturally

Dy ¼ dyðbÞ þ y0ðbÞ dx: (B.16)

Eliminating dx and dy from (B.14)–(B.16) leads to the condition

F� y0
@F

@y0

� 	
@g

@y
� @F

@y0
@g

@x
¼ 0 at x ¼ b; (B.17)

which is called the transversality condition.
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Isoperimetric problem. Suppose we need to maximize one functional, (B.1)

subject to the constraint that another functional be held constant

J yðxÞ½ 	 ¼
Z b

a

G x; y; y0ð Þ dx ¼ const: (B.18)

The conventional technique for handling this problem involves the use of

Lagrange multipliers.
The theorem [1] says that if y(x) is an extremal of the functional (B.1), satisfies

the constraint (B.18), but is not an extremal of the functional J[y(x)], then there

exists a constant l such that y(x) is an extremal of the functional

Z b

a

F� lGð Þ dx: (B.19)

Inclusion of higher derivatives. Suppose we want to maximize the functional

I yðxÞ½ 	 ¼
Z b

a

F x; y; y0; y00ð Þ dx (B.20)

with y and y0 held fixed at a and b. The condition is easily shown to be

dI
dy

� @F

@y
� d

dx

@F

@y0
þ d2

dx2
@F

@y00
¼ 0: (B.21)

Note that we have generalized our definition of the variational derivative.

Multiple dependent variables. Suppose we want to maximize the functional

I yðxÞ; zðxÞ½ 	 ¼
Z b

a

F x; y; y0; z; z0ð Þ dx (B.22)

subject to fixed end-point conditions

yðaÞ ¼ y1 yðbÞ ¼ y2; (B.23a)

zðaÞ ¼ z1 zðbÞ ¼ z2: (B.23b)

We just write down an Euler–Lagrange equation for each dependent variable

separately

dI
dy

� @F

@y
� d

dx

@F

@y0
¼ 0; (B.24a)
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dI
dz

� @F

@z
� d

dx

@F

@z0
¼ 0: (B.24b)

Multiple independent variables. Consider the functional

I z x; yð Þ½ 	 ¼
ZZ

O
F x; y; z; zx; zy
� �

dx dy; (B.25)

where O is some region of the xy-plane, zx¼∂z/∂x and zy¼∂z/∂y. The function z is
to be varied in such a way that its values on the boundary of O remain constant.

Then the condition for I[z] to be stationary is

dI
dz

� @F

@z
� @

@x

@F

@zx
� @

@y

@F

@zy
¼ 0: (B.26)

Again we have extended the definition of the variational derivative.
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Appendix C: Orthogonal Curvilinear

Coordinates

Depending on the symmetry of the problem, advantage may be gained by using

a curvilinear coordinate system instead of the Cartesian one. Suppose that the

rectangular coordinates are expressed in terms of new coordinates: u1, u2, u3, by
the equations

xi ¼ xi uið Þ; i ¼ 1; 2; 3 (C.1)

and that, conversely, these relations can be inverted to express ui in terms of xi.
Then, at least in a certain region, any point with coordinates (xi) has corresponding
coordinates (ui). If a particle moves from point P in such a way that u2 and u3 are
held constant and only u1 varies, a curve in space is generated. If only one

coordinate is held constant, we generate successively three surfaces passing through

the point P; these surfaces intersect in the coordinate curves. It is often convenient

to choose the new coordinates in such a way that the coordinate curves are mutually

perpendicular at each point in space. Such coordinates are called orthogonal

curvilinear coordinates.

Let r represent the position vector of a point P in space,

r ¼ x1j1 þ x2j2 þ x3j3: (C.2)

Then a tangent vector to the ui curve at P is given by

Ui ¼ @r

@ui
¼ @r

@si

dsi
dui

; (C.3)

where si is the arc length along the ui curve. Since ∂r/∂si is a unit vector, we can

write

Ui ¼ hiui; (C.4)

273



where ui is the unit vector tangent to the ui curve in the direction of increasing arc

length and

hi ¼ dsi
dui

¼ @r

@ui

����
���� (C.5)

is the length of Ui. These equations can be written in the differential form

dsi ¼ hi dui: (C.6)

We thus see that hi are the scale factors that give the ratios of the differential

distances to the differentials of the coordinate parameters. If the coordinate curves

are orthogonal, so that

Ui � Uj 6¼i ¼ 0 (C.7)

there follows that the length of the infinitesimal line element ds is given as

ds2 ¼
X3
i¼1

dx2i ¼
X3
j¼1

h2j ds
2
j ; (C.8)

the vector element of surface area on the surface ui ¼ const

dsi ¼ uihjhk duj duk; j; k 6¼ i; (C.9)

the element of volume

dt ¼ h1h2h3 du1 du2 du3; (C.10)

Direction cosines of the unit vectors ui with respect to the old axes xj may be

expressed in terms of the derivatives and the scale factors in either of the two ways

gij ¼
1

hi

@xj
@ui

¼ hi
@ui
@xj

(C.11)

depending on whether xi are given in terms of ui or other way around. In two

dimensions, the unit vectors are characterized by one angle ’, e.g., with axis x, such
that

tan f ¼ @ui=@y

@ui=@x
: (C.12)
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In the Cartesian coordinates, the gradient ∇ and Laplacian ∇2 operators are

expressed as follows

r � j1
@

@x1
þ j2

@

@x2
þ j3

@

@x3
; (C.13)

r2 � @2

@x21
þ @2

@x22
þ @2

@x23
: (C.14)

In the curvilinear coordinates, the gradient of a scalar function f is

rf ¼ u1

h1

@f

@u1
þ u2

h2

@f

@u2
þ u3

h3

@f

@u3
: (C.15)

Applying (C.15) to u1, we find the eikonal equation

ru1ð Þ2 ¼ 1

h21
: (C.16)

The divergence of a vector function F is

r � F ¼ 1

h1h2h3

@

@u1
h2h3F1ð Þ þ @

@u2
h3h1F2ð Þ þ @

@u3
h1h2F3ð Þ

� �
: (C.17)

By applying the vector operator in (C.17) to the vector operator ∇ of (C.15)

instead of the vector function F, we find the expression for the Laplacian operator,

r2 � r � r

¼ 1

h1h2h3

@

@u1

h2h3
h1

@

@u1

� 	
þ @

@u2

h3h1
h2

@

@u2

� 	
þ @

@u3

h1h2
h3

@

@u3

� 	� �
: (C.18)

The change in direction of the unit vectors ui can be expressed in terms of the hs.
For instance

@u1
@u1

¼ � u2

h2

@h1
@u2

� u3

h3

@h1
@u3

;
@u1
@u2

¼ u2

h1

@h2
@u1

: (C.19)

Then one can define curvature of the u2 coordinate line in the direction u1 as

k2 ¼ u2

h2

@u1
@u2

(C.20)
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and for the mean curvature K of the surface u1 ¼ const we obtain the formula

2K � k2 þ k3 ¼ u2

h2

@u1
@u2

þ u3

h3

@u1
@u3

¼ 1

h1h2h3

@

@u1
h2h3ð Þ ¼ r � u1: (C.21)

Notice that with this choice of sign in (C.20), (C.21) the curvature of a sphere is

positive.

If h1 ¼ const(u1, u2, u3) ¼ 1 then the Laplacian can be represented as follows

r2 ¼ @2

@u21
þ 2K

@

@u1
þ 1

h2h3

@

@u2

h3
h2

@

@u2

� 	
þ @

@u3

h2
h3

@

@u3

� 	� �
: (C.22)

For the functions which do not depend on coordinates u2 and u3, expression
(C.22) takes the form

r2 ¼ @2

@u21
þ 2K

@

@u1
: (C.23)

In the spherical polar one (r, ϑ, ’) where r (0 � r <1) is of the absolute value

of the radius vector r or the distance from the center of the coordinate system, ϑ
(0 � ϑ � p) is the colatitude, and ’ (0 � ’ � 2p) is the azimuth. Then the

projection of the radius vector r on the Cartesian coordinates xi can be expressed

as follows

xi ¼ rfið#; fÞ;
f1 ¼ sin# cosf; f2 ¼ sin# sinf; f3 ¼ cos#:

(C.24)

The gradient and Laplacian in the spherical coordinates take the form

r ¼ jr
@

@r
þ j#

r

@

@#
þ jf

r sin#

@

@f
; (C.25)

r2 ¼ r2
r þ

1

r2
L̂
2ð#; fÞ; (C.26a)

r2
r ¼

1

r2
@

@r
r2

@

@r

� 	
¼ @2

@r2
þ 2

r

@

@r
; (C.26b)

L̂
2 ¼ 1

sin#

@

@#
sin#

@

@#

� 	
þ 1

sin2#

@2

@f2
: (C.26c)

Here ∇r
2 is the radial component and L̂

2
, called the Legendrian, is the angular

component of the Laplacian. Compare (C.23), (C.26b) and notice that K ¼1/ r.
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Also notice that the projection coefficients fi, (C.24), are the eigenfunctions of the
Legendrian with l ¼ 1 and eigenvalue �l(l + 1)¼�2 (Verify!)

L̂
2
fið#; fÞ ¼ �2fið#; fÞ: (C.27)

In quantum mechanics, important role is played by a linear operator called

Hamiltonian of a particle

Ĥ ðxÞ � P ðxÞ � mr2; (C.28)

where P(x) is the potential energy of the particle of mass m. The radial component

of the Laplacian represents the square of the radial component of the momentum

and the Legendrian is the operator of the square of the angular momentum of a

particle. The eigenfunctions of the Hamiltonian with the radially symmetric poten-

tial energy can be represented as the products of the radial and angular parts, with

the latter being the eigenfunction of the Legendrian. The eigenvalues of the

Hamiltonian depend on three quantum numbers, which are called the radial nr,
angular l, and magnetic ml.
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Appendix D: Lagrangian Field Theory

Fields are objects with an infinite number of degrees of freedom: the fields cas and

field time/space derivatives ∂mcas at every point in space and time. A physical

system at a point in space O at a given time t1 < t < t2 may be described by a

Lagrangian density

l ca; @tca; @ica; . . .ð Þ; (D.1)

which gives rise to the Lagrangian:

L �
Z
O
d3xl ca; @tca; @icað Þ (D.2)

and the action

S �
Z t2

t1

dt L ¼
Z
O�½t1;t2	

d4xl ca; @tca; @icað Þ: (D.3)

In this section, we write the generalized time/space coordinates and field

derivatives in the Lorentz-invariant form where the covariant components of the

four-position-vector are

x0 ¼ t; x1 ¼ x; x2 ¼ y; x3 ¼ z;

the contravariant time/space derivatives are

@0 ¼ @t ¼ @

@t
; @i ¼ @

@xi
; i ¼ 1; 2; 3

and the four-dimensional volume element of O � [t1, t2] is d
4x ¼ dt d3x.
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A general formulation of the laws of motion of a Lagrangian system is expressed

by the Hamilton’s principle: The action must be stationary for arbitrary variations
of the fields dca that vanish on the boundary of O�[t1, t2]. Making in (D.3) an

infinitesimal transformation ca ! ca + dca, we obtain

dS ¼
X
a

Z
O�½t1;t2	

d4x
@l

@ca
dca þ

@l

@ @mca

� � d @mca

� �" #
: (D.4)

Here and below m ¼ 0, i and we use the Einstein summation convention. Notice

that the variations dca in (D.4) differ from the ones we use in the text and Appendix

B in that now they are functions of space and time (four variations) because the

action S is a functional in the four-dimensional space–time. Integrating the last term

in (D.4) by parts we obtain

dS ¼
X
a

Z
O� t1;t2½ 	

d4x
@l

@ca
� @m

@l

@ @mca

� �
" #

dca þ
Z ~Oðt2Þ

~Oðt1Þ
dsm

@l

@ @mca

� � dca

( )
;

(D.5)

where dsm is the elemental four vector of the boundary hypersurface ~O(tÞ.
The boundary term in (D.5) vanishes because dca

~O(tÞ½ 	 ¼ 0. Using that dcas are

arbitrary in the interior of O�[t1, t2] we obtain the Lagrange equations for the fields

dS
dca

� @l

@ca
� @t

@l

@ @tcað Þ þ @i
@l

@ @icað Þ ¼ 0: (D.6)

Solutions of the Lagrange equations are called extremals.

In some systems, vanishing of the variations of the fields on the boundary is not

justified. Instead, the variations on the boundary may also be considered arbitrary,

that is, free boundary. Then for dS in (D.5) to vanish another boundary condition

must be met (see details in Appendix B)

nm
@l

@ @mca

� � j~OðtÞ ¼ 0; (D.7)

where nm is a unit four vector of dsm. If the fields are specified on the boundary of the
time interval [t1, t2] but not the space, e.g., spatially infinite systems, then the

condition (D.7) for m ¼ i applies at t ¼ t1 and t ¼ t2. These boundary conditions

replace the condition dca
~O(tÞ½ 	 ¼ 0 for the extremals (D.6).

The Lagrange equations (D.6) permit the construction of a canonical stress-

energy tensor

Tmv �
X
a

@l

@ @mca

� � @vca � 2mvl; (D.8)
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where the metric tensor,

2mn ¼
1; if m and n ¼ 0

0; if m ¼ 0 or n ¼ 0

�dij; if m ¼ i; n ¼ j

8<
: ;

is used to lower or raise the Lorentz indices. The stress-energy tensor is locally

conserved

@mT
mn ¼ 0 (D.9)

if the Lagrangian density (D.1) does not explicitly depend on space and time.

The issue of symmetry of the tensor Tmn is not important here because we will be

considering scalar fields cas only.

The local conservation of Tmn makes possible the definition of an energy–

momentum four vector

Pm �
Z
O
d3xT0m; (D.10)

which is globally conserved, that is,

dPm

dt
¼
Z
O
d3x@tT

0m ¼ �
Z
O
d3x@iT

im ¼ �
I
~O
dsiT

im ¼ 0 (D.11)

provided that no energy or momentum escapes the volume O (the last equality),

e.g., at the boundary ~OðtÞ the Lagrangian vanishes together with its derivatives,

see (D.7). The total energy of the system is defined as

E � P0 ¼
Z
O
d3xT00: (D.12)

Consider a system which is described by the scalar fields ca(t, r) and a Lorentz-
invariant Lagrangian density

l ca; @tca; @icað Þ ¼ 1

2

X
a

ra @tcað Þ2 � ka @ica@
ica

� �h i
� uðcaÞ; (D.13)

where ras are the mass densities and kas are the gradient energy coefficients

associated with the fields ca(t, r), and u(ca) is the potential energy density.

For the Lagrangian density (D.13), equations of motion (D.6) take the form of the

wave equations

ra@t@tca ¼ ka @i@
ica

� �� @u

@ca
; (D.14)
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which are field analogs of the Newton’s laws for particle motion. Each field ca has

its own characteristic wave speed

ca �
ffiffiffiffiffi
ka
ra

r
: (D.15)

The components of the stress-energy tensor (D.8) are

T00 ¼ 1

2

X
a

ra @tcað Þ2 þ ka @ica@
ica

� �h i
þ uðcaÞ; (D.16)

Tii ¼ 1

2

X
a

ra @tcað Þ2 þ ka @icað Þ2 � @jca

� �2 � @kcað Þ2
h in o

� u cað Þ;

i 6¼ j 6¼ k 6¼ i

(D.17)
and the total energy of the system (D.12) is

E ¼
Z
O
d3x

1

2

X
a

ra @tcað Þ2 þ ka @ica@
ica

� �h i
þ uðcaÞ

( )
: (D.18)

This expression shows that the gradient energy coefficients ka cannot be nega-

tive because otherwise E would be unbounded below, which makes the system

mechanically unstable.

In a stationary one-dimensional (1d) system where the fields ca depend only on

one space coordinate, e.g. i ¼ 1, the local conservation condition (D.9) has the first

integral

T11 ¼ 1

2

X
a

ka @1cað Þ2 � u cað Þ ¼ const � �u�; (D.19)

and the total energy is

E ¼ u� Oþ sA; (D.20)

where A is the cross-sectional area of the volume O

A ¼
ZZ

O2�O3

ds1 ¼
ZZ

O2�O3

dx2 dx3

and s is called the abbreviated action

s �
Z
O1

dx
1

2

X
a

ka @1cað Þ2 þ u cað Þ � u�

" #

¼
Z
O1

dx
X
a

ka @1cað Þ2 ¼
X
a

sa;

sa �
Z
O1

dxka @1cað Þ2:

(D.21)
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If the system is described by a single field c, we can further our analysis and

resolve the first integral (D.19) for the space derivative as a function of the field

@1c ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

k
u cð Þ � u�½ 	

r
: (D.22)

By choosing one of the branches, e.g. positive, this relation can be integrated to

obtain the field as a function of the coordinate

x ¼
ffiffiffi
k
2

r Z
dcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u cð Þ � u�
p : (D.23)

In the infinite system, the boundary condition (D.7) yields

@1c �1ð Þ ¼ @1c þ1ð Þ ¼ 0, which, together with (D.22), allows one to find c� �
c �1ð Þ and cþ � c þ1ð Þ as

u c�ð Þ ¼ u cþ
� � ¼ u�: (D.24)

If u(c) is a continuous function on [c�, c+] then, according to Rolle’s theorem,

∂u/∂c ¼ 0 for some value cm in [c�, c+]. Then, the 1d stationary form of the

Lagrange equation (D.14)

k
@ @1cð Þ
@x

ðxÞ ¼ @u

@c
ðcÞ (D.25)

shows that the functions ∂1c(x) and u(c) attain maxima (or minima) at the same

point in space xm where c xmð Þ ¼ cm and that @u cmð Þ=@c ¼ 0. This allows us to

characterize transition of the field between the values of c� and c+ with the

characteristic length of

w � cþ � c�
@1c xmð Þ
����

���� ¼
ffiffiffi
k

p
cþ � c�
�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 u cmð Þ � u�½ 	p : (D.26)

The abbreviated action (D.21) of this transition can be represented in the form of

quadratures

s ¼ k
Z
O1

dx @1cð Þ2 ¼ k
Z
O1

dc @1cð Þ ¼
ffiffiffiffiffiffi
2k

p Z cþ

c�
dc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u cð Þ � u�

p
(D.27)

and estimated as follows

s � ffiffiffi
k

p
cþ � c�
�� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 u cmð Þ � u�½ 	
p

: (D.28)
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The abbreviated action (D.28) is a product of the same terms of which the length

(D.26) is a quotient.

If time evolution of the fields ca(t, x), described by the 1d dynamic Lagrange

equations (D.14), can be presented as the motion of train waves with constant speed

V, ca(x�Vt), then the local conservation condition (D.9) takes the form

@tT
01 þ @1T

11 ¼ @1 T11 � VT01
� � ¼ 0; (D.29)

which yields the first integral

T11 � VT01 ¼ 1

2

X
a

ka 1� V2

c2a

� 	
@1cað Þ2 � u cað Þ ¼ �u�; (D.30)

In the case of a single field, comparison of this equation with (D.22) shows that

the train wave has the same spatial distribution as the stationary field but

experiences the Lorentz contraction of the characteristic length

wV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� V2

c2c

s
w: (D.31)

The speed V cannot exceed the characteristic speed cc—the relativistic effect,

but its actual value cannot be found from the Lagrangian and needs to be deter-

mined based on other conditions of the problem—the selection problem.
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Appendix E: Eigenfunctions and Eigenvalues

of the Schr€odinger Equation and Sturm’s

Comparison Theorem

Many physical situations may be formulated in terms of the Sturm–Liouville

problem where the unknown function C(x) obeys the Liouville equation

d

dx
kðxÞ dC

dx

� �
þ ½l� uðxÞ	CðxÞ ¼ 0 (E.1)

with the homogeneous boundary conditions

ax
dC
dx

� bxC ¼ 0; x ¼ a or x ¼ b: (E.2)

In (E.1), l is an arbitrary constant, k(x) > 0 and u(x) does not have singularities
in the range of x—(a, b). A solution of the Sturm–Liouville problem is called an

eigenfunction, the constant l—eigenvalue, and the set of its values that allows the

solutions—spectrum.
According to the Sturm’s comparison theorem, the spectrum of the

Sturm–Liouville problem has the following properties:

1. If (a–b) is finite, the spectrum is discrete

2. There exists the lowest eigenvalue l0 of the spectrum
3. The sequence l0 < l1 < l2 < . . . can have no limit point nor any upper bound

but must continue on to +1
4. The larger the eigenvalue l, the closer together lie the zeros of the eigenfunction
5. If (a–b) is infinite, the spectrum is discrete in the half space l< lim

x!�1
kðxÞand

##2, 3, 4 are also valid

6. For l> lim
x!�1

kðxÞ, the spectrum is continuous.

If k ¼ const(x) the Liouville equation is similar to the Schr€odinger equation
from quantum mechanics, which describes stationary motion of a particle of mass

(�h2/2k) in the one-dimensional potential energy field u(x), the eigenfunction

Cp
(1)(x) is the wave function and l ¼ Ep

(1) is the total energy of the moving particle
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(the superscript refers to the dimensionality of the motion). In the case of infinite

range, the eigenfunctions of the discrete spectrum are called bound states and those
of the continuous spectrum—scattering states.

If there exists a potential function g(�) such that the potential energy

uðxÞ ¼ @2gð~�Þ=@�2,where ~�ðxÞis a heterogeneous solution of the equation

k
d2�

dx2
� @g

@�
¼ 0; (E.3)

then the Sturm–Liouville problem (E.1), (E.2) can be reformulated as an

eigenfunction/eigenvalue problem for the one-dimensional Hamiltonian operator

Ĥ:

Ĥð~�; xÞCð1Þ
p ðxÞ ¼ Eð1Þ

p Cð1Þ
p ðxÞ; Ĥð~�; xÞ � @2 g

@ �2
ð~�Þ � k

d2

dx2
(E.4)

with at least one eigenfunction already known. Indeed, differentiating (E.3) with

respect to x and noticing that neither term depends on x explicitly, we obtain

k
d2

dx2
d~�

dx

� 	
� @2gð~�Þ

@�2
d~�

dx
¼ 0: (E.5)

Comparing (E.4) and (E.5) we can find the non-normalized eigenfunction of

Ĥð~�; xÞwhich corresponds to the zero eigenvalue

p ¼ 1; E
ð1Þ
1 ¼ 0; Cð1Þ

1 ðxÞ / d~�

dx
: (E.6)

This eigenfunction is the so-called Goldstone mode of the Hamiltonian.

A particular interesting situation appears in the case when

gð�Þ ¼ g0 þ 1

2
�2 aþ 1

2
c�2

� 	
; a<0; c>0: (E.7)

In this case,

~� ¼
ffiffiffiffiffiffiffi�a

c

r
tanh

ffiffiffiffiffiffiffi�a

2k

r
x (E.8)

and, by scaling the eigenvalues and independent variable as follows

Qp ¼ 2

a
Eð1Þ
p ; z ¼

ffiffiffiffiffiffiffi�a

2k

r
x; fpðzÞ ¼ Cð1Þ

p ðxÞ; (E.9)
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the problem (E.4) can be reduced to the following

d2

dz2
þ 2� 6 tanh2 z

� 	
fpðzÞ ¼ QpfpðzÞ: (E.10)

Using representation (E.10) and the formula

d tanhðxÞ
dx

¼ 1

cosh2ðxÞ ¼ 1� tanh2ðxÞ; (E.11)

we can find two bound states with p ¼ 1, 2 and a continuum of the scattering states

with p 
 3 for the Hamiltonian Ĥ. The eigenvalues and non-normalized

eigenfunctions of the bound states are (Fig. E.1)

p ¼ 1; Q1 ¼ 0; f1 ¼ 1� tanh2z

p ¼ 2; Q2 ¼ �3; f2 ¼ tanh z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tanh2z

p
:

(E.12)

-4 -2 0 2 4
spatial coordinate z

-1

0

1

2

Fig. E.1 The “quantum mechanical potential energy” uðzÞ ¼ @2gð~�Þ=@�2 for the potential func-
tion (E.7)—black line and two bound states with p ¼ 1—blue line (Goldstone mode) and p ¼ 2—

green line. The two bound-state energy levels Ep
(1) are shown in respective colors.
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The eigenvalues and non-normalized eigenfunctions of the scattering states are

p 
 3; Qp<� 4;

fp ¼ ei
ffiffiffiffiffiffiffiffiffiffiffi
�Qp�4

p
z �Qp � 3� 3 tanh2zþ 3i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Qp � 4
p

tanh z
� �

:
(E.13)

Rescaling (E.12), (E.13) back to the Hamiltonian’s representation we can see

that the bound state f1 represents the Goldstone mode of ~�ðxÞ. Using the formula

tanh ðyÞ � tanh ðxÞ ¼ sinhðy� xÞ
coshðyÞ coshðxÞ ; (E.14)

we can see that the Goldstone mode represent a small shift of ~�ðxÞin the normal

direction. The second bound state is

p ¼ 2; E
ð1Þ
2 ¼ � 3

2
a>0; Cð1Þ

2 ðxÞ / ~�

ffiffiffiffiffi
d~�

dx

r
: (E.15)

The eigenvalues of the scattering states are

p 
 3; Eð1Þ
p >� 2a>E

ð1Þ
2 >E

ð1Þ
1 ¼ 0: (E.16)

Sometimes there is a need to solve an eigenfunction/eigenvalue problem for the

three-dimensional Hamiltonian operator Ĥ. In this case, we may attempt to find

particular solutions by separating the variables. If this works, a general solution

can be expressed in terms of a linear combination of the separated solutions,

which satisfy the boundary conditions with |C(|x|!1)| < 1. The sum of the

separation constants is called the dispersion relation. For instance, for

Ĥð~�; xÞ � @2g

@�2
ð~�Þ � kr2; Ĥð~�; xÞCð3Þ

p ðxÞ ¼ Eð3Þ
p Cð3Þ

p ðxÞ; (E.17)

we find that

Cð3Þ
q;pðxÞ / eiqx2Cð1Þ

p ðxÞ; Eð3Þ
q;p ¼ Eð1Þ

p þ kq2; (E.18)

where x2 ¼ (y, z), q ¼ (ky, kz), and q ¼ |q|. Equation (E.18) means that slight

corrugations of ~�ðxÞare the eigenfunctions of the three-dimensional Hamiltonian

operator Ĥ. Indeed, using the formula (E.14), the corrugationD� can be represented as

D� � ~�½x� Xðx2Þ	 � ~�ðxÞ � �Xðx2ÞCð1Þ
1 ðxÞ;

X x2ð Þ ¼
X
q

Aqe
iqx2 : (E.19)
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The eigenvalue of this eigenfunction is

E
ð3Þ
q; 1 ¼ k

X
q

q2 : (E.20)

An in-depth discussion of the solutions of the Schr€odinger equation can be found
in L.D. Landau, E.M. Lifshitz, “Quantum Mechanics Non-Relativistic Theory”

(Elsevier, Oxford, 1958), }24 and J. Zittartz, Phys. Rev. 154 (2), 529–534 (1967).
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Appendix F: Fourier and Legendre Transforms

The goal of any functional transformation is to express the information contained in

the function in a more convenient way. Let f(x) be a smooth (continuous, together

with its derivatives) function in the interval (�X/2, +X/2). Then f(x) may be

expanded in the Fourier series

f ðxÞ ¼
Xþ1

n¼�1
f̂XðnÞei2pnx=X; (F.1a)

f̂XðnÞ ¼ 1

X

Z þX=2

�X=2

f ðxÞe�i2pnx=X dx; (F.1b)

which represents a discrete Fourier Transform (FT) in one variable. Actually, the

Fourier series is defined also beyond the range (�X/2, +X/2), where the function f(x)
is periodically continued on (�1, +1) with fX(x + X) ¼ fX(x).

If X ! 1, it is possible to replace

Z þX=2

�X=2

dx !
Z þ1

�1
dx;

1

X

Xþ1

n¼�1
! 1

2p

Z þ1

�1
dk; k � 2pn

X
(F.2)

and we arrive at the Fourier integral transform in one variable

f ðxÞ ¼ 1

2p

Z þ1

�1
f̂ ðkÞeikx dk; (F.3a)

f̂ ðkÞ ¼
Z þ1

�1
f ðxÞe�ikx dx: (F.3b)

The number k is called the wavenumber, the function exp(ikx)—the Fourier

mode, and the function f̂ ðkÞ—the Fourier amplitude. Notice that the Fourier mode
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with k ¼ 0 is just a const ¼ 1, while the Fourier modes with large k are periodic

functions with small periods.

Substituting the second equation into the first, one can derive a useful

relationship

d x� x0ð Þ ¼ 1

2p

Z þ1

�1
eikðx�x0Þ dk; (F.4)

where d(x) is a Dirac function. However, most of the time we will be using the

discrete Fourier transform (F.1). Physically, the maximum value of k in the Fourier
series is restricted by the interatomic distances.

If a smooth function f(r) depends on several variables, e.g. r ¼ (x, y, z), then it

can be conveniently represented by its discrete FT as follows

f ðrÞ ¼
X
kf g

f̂VðkÞeikr; (F.5a)

f̂VðkÞ ¼ 1

V

Z
V

f ðrÞe�ikr dr; (F.5b)

where k turns into a wavevector (reciprocal vector)

kf g � kx; ky; kz
� � ¼ 2pnx

X
;
2pny
Y

;
2pnz
Z

� �
(F.6)

and summation over {k} means triple summation over {�1<nx < +1, �1<ny
< +1, �1<nz < +1}.

Properties of the 3d discrete FT are

1. The uniform (k ¼ 0) Fourier mode of a function f(r) represents the volume

average of this function—homogeneous part of the function

f̂Vð0Þ ¼ 1

V

Z
V

f ðrÞ dr: (F.7)

2. For a real-valued function f(r), the amplitudes of the opposite reciprocal vectors

are complex conjugates

f̂Vð�kÞ ¼ f̂V
�ðkÞ: (F.8)

3. The gradient of f(r) is

rf ðrÞ ¼ i
X
kf g

kf̂VðkÞeikr: (F.9)
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4. Using (F.4) three times, one can see that as V ! 1
Z
V

eikr dr ! 2pð Þ3 d(kÞ ¼ 2pð Þ3d kxð Þd ky
� �

d kzð Þ; (F.10a)

which means that

V̂

ð2pÞ3 ! dðkÞ: (F.10b)

5. Using properties #2 and #4 one can see that

Z
V

f 2ðrÞ dr ¼
Z
V

X
kf g

X
kf g

f̂ V kð Þf̂ V k0ð Þei kþk0ð Þrdr

¼
X
kf g

X
kf g

f̂ VðkÞf̂ V k0ð Þ
Z
V

ei kþk0ð Þr dr! V!1ð Þ:

X
kf g

V

ð2pÞ3
Z
V

f̂ VðkÞf̂ Vðk0Þð2pÞ3 d kþ k0ð Þ dk0

¼ V
X
kf g

f̂ V kð Þf̂ V �kð Þ ¼ V
X
kf g

f̂ V kð Þ�� ��2: (F.11)

Similarly, if X, Y, Z ! 1, it is possible to replace

Z
V

dr !
Z

dr;
1

V

X
kf g

! 1

2pð Þ3
Z

dk; (F.12)

and arrive at the integral FT in three variables

f ðrÞ ¼ 1

2pð Þ3
Z

f̂ kð Þeikrdk; (F.13)

f̂ ðkÞ ¼
Z

f ðrÞe�ikrdr:
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Example F.1

Find the FT of the function e�ar=r, which depends on |r| only.

Z
e�ar

r
e�ikr dr ¼ 4p

a2 þ kj j2;
Z

eikr

a2 þ kj j2
dk

ð2pÞ3 ¼
e�ar

4pr
: (F.14)

These relations can be obtained by noticing that the function ’ ¼ e�ar=r satisfies
the differential equation

D’� a2’ ¼ �4pdðrÞ: (F.15)

Multiplying both sides of this equation by e�ikr and integrating over the entire

space we recover the previous formula.

Another way to reveal information encoded in a function f(x) is through

the Legendre transform (LT). If the function f(x) is strictly convex (second

derivative never changes sign or is zero) then the function’s derivative with respect

to x

s ¼ df

dx
; (F.16)

can replace x as an independent variable of the function. To reveal the symmetry

associated with the LT, it is accustomed to redefine the function as follows

gðsÞ ¼ s � xðsÞ � f ðxðsÞÞ: (F.17a)

The redefined function g(s) has the property that its derivative with respect to s is x

dg

ds
¼ xðsÞ þ s

dx

ds
� df

dx

dx

ds
¼ xðsÞ: (F.18)

Properties of the LT are

1. The LT of an LT is the original function. To see this, it is instructive to rewrite

(F.17a) in a symmetric way

gðsÞ þ f ðxÞ ¼ sxðsÞ: (F.17b)

2. The extremes of the original function and the transformed one are related as

follows

f xminð Þ ¼ �gð0Þ and g sminð Þ ¼ �f ð0Þ: (F.19)
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3. The higher derivatives of the original and transformed functions also show

symmetric relationships

d2g

ds2
� d

2f

dx2
¼ 1: (F.20)

Example F.2

Find the LT of a quadratic function f ðxÞ ¼ ax2=2.
For this function, we can easily find that

sðxÞ ¼ ax; xðsÞ ¼ s

a
; gðsÞ ¼ 1

2a
s2: (F.21)

If we substitute the first relation in (F.21) into the last one we obtain

gðsÞ ¼ 1

2
ax2ðsÞ; (F.22)

which shows that the LT of a quadratic function is equal to the original function

expressed through the original independent variable. Of course, this is the case of a

single classical particle of mass a moving with a velocity x, where f(x) and g(s) are
the particle’s kinetic energy expressed as a function of the velocity x or momentum s.

LT can be applied to a function that depends on many variables—multivariable

LT. An in-depth discussion of the Legendre transform can be found in R.K. P. Zia,

E.F. Redish, S.R. McKay, “Making sense of the Legendre transform”, Am. J. Phys.

77, 614 (2009).
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Appendix G: Stochastic Processes

Suppose a physical system of interest can be found in different states of an ensemble
O¼{o} and suppose that we need to measure a quantity f that varies not only from

state to state but also with time t. If the quantity f depends on other parameters, not

included into the characterization of the states O (which is usually the case

in physical systems), its values appear to be random. In this case, the quantity is

said to fluctuate; the function f(O, t) is called a stochastic process and may be

characterized by various average quantities. There are different ways to define these

quantities. For instance, one may define a “time average” of f over a certain period

of time T

�fT � 1

T

Z T

0

f ð O; tÞ dt: (G.1)

Instead of averaging over the period of time T, we may identify different states of

the ensemble O ¼ {o}, introduce a probability density P(o) of the state such that

the probability for the system to be in the states with (o < O < o + do) is

PðoÞ do; (G.2)

and define the average as

f ðo; tÞh i �
Z þ1

�1
f ðo; tÞPðoÞ do: (G.3)

Of course, the probability density P(o) is normalized such that

Z þ1

�1
P oð Þ do ¼ 1: (G.4)
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The quantity (G.3) is called “ensemble average.” The probability density may

itself depend on time, P(o, t), making the process time-dependent. A process

is called stationary (do not confuse with equilibrium) if all the functions that

characterize it are invariant in time, that is, do not change if every time variable

t is replaced by t + s, where s is an arbitrary time interval. For very many systems,

which are called ergodic, the time average over a long period of time is equal to the

ensemble average

�f1 ¼ fh i: (G.5)

The Master and Fokker–Plank Equations

To describe a time-dependent stochastic process, one can write an evolution

equation for the probability density of the state o, P(o, t). In a short period of

time dt, this quantity will decrease if the system makes a transition from the state o
to one of the states between o0 and o0 + do0; let us denote the probability of this

event as W(o0|o)do0 dt. However, during the same period of time P(o, t) will
increase if one of the states between o0 and o0 + do0 makes a transition to o.
The probability of the latter event is W(o|o0)do0 dt. Here we assumed a “Markov-

ian” property of the system expressed by the fact that “jump probability”W depends

on o and o0 but not the previous states of the system. Integrating over all states o0

we find the desired equation which is called the master equation

@Pðo; tÞ
@t

¼
Z 1

�1
do0 W ojo0ð ÞP o0; tð Þ �W o0joð ÞP o; tð Þ½ 	: (G.6)

The transition probabilityW may be expressed as a function of the starting point

and the size of the jump

W ojo0ð Þ ¼ W o0; lð Þ; l � o� o0: (G.7)

To derive the Fokker–Plank equation from (G.6), we use the basic assumption

about the system that only small jumps between the neighboring states occur, that

is, W(o0; l) is a sharply peaked function of l but varies slowly with o0. Then we

may expect the solution P(o, t) to vary slowly with o also. It is then possible to

expand the first term in the integrand of (G.6) into a Taylor series near o and retain

only the terms up to the second order in l

@Pðo; tÞ
@t

¼
Z 1

�1
dl Wðo;lÞP o; tð Þ�l

@

@o
W o;lð ÞP o; tð Þf þ1

2
l2

@2

@o2
W o;lð ÞP o; tð Þf g�Wðo;�lÞP o; tð Þ

� �
:

(G.8)
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Note that the dependence ofW(o; l) on l is fully maintained because we do not

expand it with respect to this argument. Integrals of the first and fourth terms cancel.

Integrals of the other terms can be written with the aid of the jump moments

anðoÞ �
Z 1

�1
lnW o; lð Þ dl: (G.9)

The result is the Fokker–Plank equation

@Pðo; tÞ
@t

¼ � @

@o
a1 oð ÞP o; tð Þf g þ 1

2

@2

@o2
a2 oð ÞP o; tð Þf g: (G.10)

This equation can be presented as a continuity equation for the probability

density

@Pðo; tÞ
@t

¼ � @J o; tð Þ
@o

(G.11)

and a “constitutive equation” for the probability flux J(o, t)

J o; tð Þ ¼ a1 oð ÞP o; tð Þ � 1

2

@

@o
a2 oð ÞP o; tð Þf g: (G.12)

Such representation helps interpret the first term of the flux as the drift term and

the second one as the diffusion term. The Fokker–Plank equation has a stationary

solution, that is, the one with J o; tð Þ ¼ 0

Ps oð Þ ¼ const

a2 oð Þ exp 2

Z o

0

a1ðoÞ
a2ðoÞ do

0
� �

: (G.13)

Many features of the process can be illuminated by using a potential U(o)

UðoÞ � �
Z

a1ðoÞ do: (G.14)

Using the Fokker–Plank equation, one can derive the following equations for the

evolution of the average quantities

d oh i
dt

¼ a1 oð Þh i; (G.15a)

d o2

 �
dt

¼ a2 oð Þh i þ 2 oa1 oð Þh i: (G.15b)
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Indeed, differentiating (G.3) with respect to time, using the Fokker–Plank

equation, and integrating by parts two times we have

d oh i
dt

¼
Z 1

�1
o
@P

@t
do ¼ �

Z 1

�1
o

@J

@o
do ¼ � oJ þ 1

2
a2P

� �1
�1

þ
Z 1

�1
a1P do:

As the flux J and density P vanish at�1we obtain (G.15a). A similar procedure

leads to (G.15b).

Defining the average and variance of the random variable o as

v � oh i; s2 � ðo� vÞ2
D E

; (G.16)

expanding an(o) near the value of ϖ, and retaining only the leading terms one can

derive a system of coupled evolution equations

dv
dt

¼ a1 vð Þ þ 1

2
s2

@2a1
@o2

vð Þ; (G.17a)

d2

dt
¼ a2 vð Þ þ 2s2

@a1
@o

vð Þ: (G.17b)

Although the retained terms in (G.17a) were obtained as expansion terms of the

first and second order, they can be of the same order of magnitude. This is a

consequence of the fact that averaging of an alternating quantity yields greater

cancelation than averaging of its square. It is important to notice here that the system

(G.17) can be derived directly from the master equation (G.6), which means that

these equations are accurate up to the second order at least. Equation (G.17a) shows

that the evolution of the average value is not determined only by its own value, but is

influenced by the fluctuations around it. Themacroscopic approximation consists in
ignoring these fluctuations, hence keeping only the first term in the expansion

(G.17a). The zeroes of the first jump moment (G.9) may be called the nodal points.
Hence, (G.17a) shows that in the macroscopic approximation of a stationary process

the average value tends to one of the nodal points, if such points exist.

Equation (G.17b) shows that the tendency of the variance s2 to increase at a rate
a2 > 0 [see Eq.(G.9)] will be kept in check by the second term if a1

0(ϖ) < 0. Then

s2 ! a2
2 @a1=@oj j

and the criterion of the validity of the macroscopic approximation becomes

a2 � 4
a1@a1=@o
@2a1=@o2

����
����: (G.18)
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This criterion shows that the fluctuations are always important for the evolution

of the physical system near a nodal point. However, the level of importance of the

fluctuations is different in different systems. In the following sections, we will

elucidated the cases of systems where the second jump moment does not vary

significantly

a2ðoÞ ¼ const(oÞ>0: (G.19)

This condition corresponds to the additive fluctuations as opposed to the multi-

plicative ones when the fluctuation strength depends on the stochastic variable

itself. The latter case creates the so-called Ito–Stratonovich dilemma, which is

beyond the scope of this book.

Decomposition of Unstable States

Consider a process of decomposition of an unstable state in a physical system.

Mathematically, it can be described as switching of ∂a1/∂o in (G.17) from negative

to positive value so that the system finds itself in a state, which suddenly becomes

unstable although it was stable before. Suppose that the first jump moment of the

process vanishes at o ¼ o0 and has an essential nonlinearity

a1 oð Þ ¼ a11 o� o0ð Þ þ 1

2
a12 o� o0ð Þ2; a11 6¼ 0; a12 6¼ 0: (G.20a)

This process has two nodal points

o0 and o1 ¼ o0 � 2
a11
a12

; (G.20b)

which are the critical points of the potential U(o), (G.14)

U oð Þ ¼ const� a11
2

o� o0ð Þ2 � a12
6

o� o0ð Þ3: (G.21)

Let us first analyze the process with

a11>0: (G.22)

Then, introducing the scaled variables

t ¼ a2t; vðtÞ ¼ a12
a11

v� o0ð Þ; wðtÞ ¼ a212
a211

s2; (G.23a)
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scaled potential

uðvÞ ¼ a212
a311

U oð Þ ¼ � 1

2
v2 � 1

6
v3; (G.23b)

and scaled parameters:

a ¼ a11
a2

>0; b ¼ a12
a11

: (G.23c)

we obtain the scaled form of the evolution equations (G.17)

_v ¼ a
2
v 2þ vð Þ þ a

2
w; (G.24a)

_w ¼ b2 þ 2awð1þ vÞ; (G.24b)

where the dot means differentiation with respect to t. In Fig. G.1 is depicted the

(v,w)-phase plane of the system of equations (G.24) and the potential (G.23b).

Evolutionary system (G.24) has the stationary points ð _vs ¼ _ws ¼ 0Þ that satisfy
the following conditions

ws ¼ �vs 2þ vsð Þ; (G.25a)

b2 ¼ �2awsð1þ vsÞ: (G.25b)

Substituting ws in (G.25b) with (G.25a) we transform the simultaneous (G.25)

into a single nonlinear equation for vs, which is also depicted in Fig. G.1

z vsð Þ � vs 1þ vsð Þ 2þ vsð Þ ¼ b2

2a
: (G.26)

Analysis of this equation shows that there are three branches of the stationary

points: s ¼ 0, 1, 2. If b ¼ 0, which is the case if a12 ¼ 0 but a11 6¼0, then the

stationary points are

v1 ¼ �2; w1 ¼ 0ð Þ; v2 ¼ �1; w2 ¼ 1ð Þ; v0 ¼ 0; w0 ¼ 0ð Þ; (G.27)

that is, the nodal points of (G.20a) with zero variance and the intermediate point

with the finite variance (see Fig. G.1). If b 6¼ 0, then

�2<v1<v�;w1>0ð Þ; v�<v2<� 1;w2 
 1ð Þ; v0>0;w0<0ð Þ; (G.28)
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where

v� ¼ �1�
ffiffiffi
3

p

3
: (G.29)

As s2 > 0, the third relation in (G.23a) yields the constraint

w>0; (G.30)

which makes the “0”-branch superfluous. On the “1”-branch the average of the

stationary process ϖ1 deviates from the node o1. To evaluate the deviation, we

need to compare it with the square root of the variance s1 at the stationary point.

Using (G.23a) and (G.25) we obtain

0-1-2

-1

0

1

2

3

4

u

v

s

w
w

z

"2""1"

"0"

v− v+

Fig. G.1 Phase plane (v, w) of the dynamical system, (G.24), with a > 0. Purple line—potential u
(v) (G.23b); black line—stationary points ws(v) (G.23b); red line— function z (v) (G.26); blue
lines—stable stationary branches; open circle—the nodal points, horizontal dash—graphical

solution of (G.26).
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v1 � o1 ¼ 1

�v1ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� 1þ v1ð Þp
ffiffiffiffiffiffiffiffiffiffiffi
b2

2a
s21

s
; (G.31a)

which means that

v1 � o1 �
ffiffiffiffiffi
s2s

q
if

b2

2a
� 1: (G.31b)

There is a limit to the nonlinearity beyond which the evolutionary system (G.24)

has no stationary points. Indeed, differentiating z(v) and equating it to zero we

obtain

z0 vsð Þ ¼ 2þ 6vs þ 3v2s ¼ 3 vs � vþð Þ vs � v�ð Þ ¼ 0: (G.32)

Substituting the extreme values vs into (G.26) we obtain that for �2 < vs < 0

b2 � 2 max
�2<vs<0

zðvsÞj j
� 	

a ¼ 4

3
ffiffiffi
3

p a: (G.33)

Although s2 (or w) explicitly represent the fluctuations of the physical system,

the stationary points of the evolutionary system (G.24) need to be analyzed on their

stability because this system is an expansion of the master equation. Representing

the variable as v ¼ vs + dv, w ¼ ws + dw, substituting this into (G.24), linearizing
the system, and taking into account (G.26) we obtain

_dv ¼ a 1þ vsð Þ dvþ a
2

dw; (G.34a)

_dw ¼ 2aws dvþ 2a 1þ vsð Þ dw: (G.34b)

The characteristic equation of this system is

k2 � 3a 1þ vsð Þk þ a2 2þ 6vs þ 3v2s
� � ¼ 0: (G.35)

Notice that the free term of the characteristic equation is proportional to z0(vs)
(Why?).

As known, for the stability of a system of linear differential equations the real

parts of all the roots of the characteristic equation must be negative. For (G.35) with

the condition (G.22) this is the case if

vs<� 1; (G.36a)

ðvs � v�Þðvs � vþÞ>0: (G.36b)
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Condition (G.36a) is a simple consequence of the condition (G.30) and brings no

additional restrictions on the stationary branches. Condition (G.36b) shows that the

“1”-branch is stable, while the “2”-branch is unstable (see Fig. G.1). Hence

v1 � stable; v2 � unstable; v0 � superfluous: (G.37)

If the condition (G.22) is not true, the branches “1” and “0” switch the roles,

while the branch “2” remains stationary unstable. Summarizing results for the

decomposition process, the evolutionary system (G.24) shows that the average

value of the process will be moving from (v � v0) where it was stable before the

switch toward that of the stable stationary state (v1, w1). For a weakly nonlinear

process (b ! 0), this value (v1) stays well inside the root-mean square range (w1) of

the nodal point o1 (v1 ¼ �2) while for a strongly nonlinear process this is not true.

During this transition, the variance w goes through the maximum when the system

is about half-way to the final state. The dimensionless time scale of the process is

1/a and the dimensional one is 1/|a11|.

Diffusion in Bistable Potential

Consider a stochastic process that can be described by the Fokker–Plank equation

(G.10) with a2 ¼ const(o) as in (G.19) and the potential function U(o) (G.14),
which has three nodal points oa, ob, oc, of which oa and oc are locally stable and

ob is unstable, cf. (G.21). The potential function U(o) and stationary probability

density, (G.13), are depicted in Fig. G.2. A system in ob would be caused to move

into either oa or oc by the smallest external perturbation via a process of decom-

position similar to the one described in the previous section. Potentials having such

characteristics are called bistable. Analysis of the evolution equations (G.17) for

such system shows that there is a domain of attraction Da such that if ϖ(0) ∈ Da

then ϖ(t) ! oa for t ! 1. Of course, same applies to oc. Yet this description is

not entirely correct, because even when the system is inside Da there is still a

probability, however small, for a giant fluctuation to occur, which takes it across ob

into Dc. Thus fluctuations give rise to a macroscopic effect.

The problem of evolution of the system may be reduced to a first-passage

problem: suppose at t ¼ 0 a system starts out at oa; how long will it take it to

reach the state oc for the first time? If at oc we set the absorbing boundary

condition, the average or mean first passage time is called the escape time tac.
For the Fokker–Plank equation (G.10) one finds

tac ¼ 2

a2

Z oc

oa

do
PsðoÞ

Z o

�1
Ps o0ð Þ do0; (G.38a)
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where Ps(o) should be taken from (G.13). In case of weak fluctuations

a2 � U obð Þ � U oað Þ: (G.39)

(Ps)�1 of (G.13) is sharply peaked ato ¼ ob, that is, the statistical probability of

the unstable state o ¼ ob is much smaller than that of the stable ones

(see Fig. G.2). In this case, the escape time tac is much longer than the time needed

to establish local equilibrium in each separate valley and integration in (G.38a) can

be performed using the Laplace method of asymptotic expansion [2]

tac ¼ 2psa
a2

Ze2U obð Þ=a2
Z oc

oa

eð�1=a2Þ U00 obð Þj j o�obð Þ2do

¼ 2Zpsae
2U obð Þ=a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

a2 U00 obð Þj j
r ; (G.38b)

where

psa ¼
1

Z

Z ob

�1
Ps oð Þ do (G.38c)

0.50.0 1.0

U

ω

ωa ωb ωc

P

Fig. G.2 PotentialU (black line) and probability distribution P (blue line) as functions of the state
variable o
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is the splitting probability, that is, probability for the particle to be found left of the

potential barrier at ob, and

Z ¼
Z þ1

�1
PsðoÞ do (G.38d)

is the normalization constant (partition function) of the distribution (G.13).

In (G.38b), the exponential (Arrhenius factor) is inversely proportional to the

probability of the barrier state, U00 is the second derivative of the potential and

the square root (Zeldovich factor) expresses the probability for the variable o to

return back from the region beyond the barrier. In the parabolic approximation

UðoÞ ¼ U oað Þ þ 1

2
U00 oað Þ o� oað Þ2 þ O o� oað Þ3

� 

(G.40a)

and

Zpsa ¼
Z ob

�1
e�2UðoÞ=a2 do

� e�2UðoaÞ=a2
Z þ1

�1
e�U00ðoaÞ o�oað Þ2=a2 do ¼ e�2UðoaÞ=a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pa2

U00ðoaÞ
r

:

(G.40b)

Substitution of (G.40b) into (G.38b) yields

tac ¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U00ðoaÞ U00ðobÞj jp exp

U obð Þ � UðoaÞ
a2=2

: (G.40c)

Notice that the escape time is very sensitive to the height of the potential barrier,

U(ob)�U(oa).

In fact, the concept of escape time can be extended on nonsmooth potentials

which obey the condition (G.39). Depending on the analytical properties of the

potentialU(o) at the point of minimumoa, the splitting probability and escape time

take on different values. For the potential

U oð Þ ¼ U oað Þ þ U0 oað Þ o� oað Þ þ O o� oað Þ2
� 


; for o 
 oa

1; for o < oa

(
;

(G.41a)

we have

Zpsa ¼
Z ob

�1
e�2UðoÞ=a2 do

� e�2UðoaÞ=a2
Z þ1

oa

e�2U0ðoaÞ o�oað Þ=a2 do ¼ a2
2U0ðoaÞ e

�2UðoaÞ=a2
(G.41b)
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and

tac ¼ 1

U0ðoaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pa2
U00 obð Þj j

r
exp

U obð Þ � UðoaÞ
a2=2

: (G.41c)

Compare the expressions of the escape time, (G.40c) and (G.41c), and notice

that the difference in “smoothness” of the potential U(o) at the point of minimum

oa, (G.40a) or (G.41a), does not change the exponential but leads to different

dependences of the prefactor on the fluctuation strength a2.

Autocorrelation Function

The average values do not characterize the stochastic processes completely. For

instance, they say nothing about the internal mechanism that makes the quantity to

fluctuate. We need a measure of the influence of the value of the fluctuating variable

at the moment t1 on its value at the moment t2 > t1. Such measure is expressed by

the time average autocorrelation function

f ðo1; t1Þf ðo2; t2Þ � lim
T!1

1

T

Z T

0

f ðo1; t1Þf ðo2; t2Þ dt1: (G.42)

One can also introduce a correlation function between two different processes

f ðo1; t1Þgðo2; t2Þ but we will not need that.

The ensemble average autocorrelation function can be introduced with the help

of the joint distribution function P(o1,t1; o2,t2) such that

P o1; t1; o2; t2ð Þ do1 do2

is the probability for the system to be in the states with (o1 < O < o1 + do1) at

time t1 and in the states with (o2 < O < o2 + do2) at time t2. Then

f o1; t1ð Þf o2; t2ð Þh i �
Z þ1

�1

Z þ1

�1
f ðo1; t1Þf ðo2; t2ÞP o1; t1;o2; t2ð Þ do1 do2:

(G.43)

In the spirit of the ergodic hypothesis, the time average and ensemble average

autocorrelation functions are equal

f ðo1; t1Þf ðo2; t2Þ ¼ f o1; t1ð Þf o2; t2ð Þh i: (G.44)

Below are some of the properties of the autocorrelation function of a stationary

process.
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1. For a stationary process, the average f ðo; tÞh i is time independent and autocor-

relation function f o1; t1ð Þf o2; t2ð Þh i depends only on the time interval

s ¼ t2 � t1.
2. For s ¼ 0, the autocorrelation function is the mean square value of f, f 2ðo; tÞ
 �

and, hence, must be positive definite. In a stationary system, it is independent of

t that is, a constant.
3. The function f o1; tð Þf o2; tþ sð Þh i is symmetric about the value s ¼ 0, that is a

function of |s| only. Indeed,

f ðtÞf tþ sð Þh i ¼ f t� sð Þf ðtÞh i ¼ f ðtÞf t� sð Þh i: (G.45)

The first equality in (G.45) is true because the system is stationary.

4. For any value of s, the autocorrelation function is

f ðtÞf tþ sð Þh ij j � f 2ðtÞ
 �
: (G.46)

Indeed, since

f ðtÞ � f ðtþ sÞ½ 	2
D E

¼ f 2ðtÞ
 �þ f 2ðtþ sÞ
 �� 2 f ðtÞf ðtþ sÞh i
¼ 2 f 2ðtÞ
 �� f ðtÞf ðtþ sÞh i� � 
 0;

the function f ðtÞf ðtþ sÞh i cannot go outside the limits of � f 2ðtÞ
 �
.

5. As known, the joint probability distribution function of statistically independent

stochastic process factors into the product of the probability distribution

functions of the individual processes. For our system, this means that if (o1,

t1), for some reason, is statistically independent of (o2, t2) then

P o1; t1;o2; t2ð Þ ¼ P o1; t1ÞPðo2; t2ð Þ (G.47)

and, hence,

f o1; t1ð Þf o2; t2ð Þh i ¼ f o1; t1ð Þh i f o2; t2ð Þh i: (G.48)

One may introduce a function, which is called a two-time irreducible autocorre-

lation function of f

Kf t1; t2ð Þ � f o1; t1ð Þf o2; t2ð Þh i � f o1; t1ð Þh i f o2; t2ð Þh i: (G.49)

This function characterizes statistical dependence of the values of the stochastic

process f(o, t) at different moments in time. For a stationary process, it depends

on |s| ¼ |t2 � t1| only
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Kf t1; t2ð Þ ¼ Kf sj jð Þ: (G.50)

6. It statistical correlations diminish with |s|, that is

Kf sj jð Þ ! 0 for sj j ! 1; (G.51)

then the stochastic process f(o, t) may be characterized by the correlation time tcor

tcor � 1

Kf ð0Þ
Z 1

0

Kf ðsÞ
�� �� ds: (G.52)

The magnitude of the function Kf(s) is significant only when the variable s is of
the same order of magnitude as tcor. In other words, as s becomes larger in

comparison with tcor, the values f(t) and f(t + s) become uncorrelated, that is the

“memory” of the physical activity during a given interval of time around t is
completely lost after a laps of time large in comparison with tcor.

A useful exercise in the correlation functions is the evaluation of the double

integral

I ¼
Z t

0

Z t

0

eðt1þt2Þ=tKf ðt2 � t1Þ dt1 dt2: (G.53)

Changing to the variables T ¼ ½(t1 + t2) and s ¼ (t2 � t1) the integrand takes

the form exp(2T/t)Kf(s), integration over (dt1 dt2) gets replaced by (dT ds), while
the limits of integration, in terms of the variables T and s, can be read from Fig. G.3;

we find that, for 0 � T � t/2, s goes from �2T to +2T, while for t/2 � T � t, it
goes from �2(t � T) to +2(t � T). Accordingly, we have

I ¼
Z t=2

0

e2T=t dT

Z þ2T

�2T

Kf ðsÞ dsþ
Z t

t=2

e2T=t dT

Z þ2ðt�TÞ

�2ðt�TÞ
Kf ðsÞ ds:

In view of the properties #5, 6 of the function Kf(s) the integrals over s draw
significant contributions only from a very narrow region, of the order of tcor, around
the central value s ¼ 0; contributions from regions with larger values of |s| are
negligible. Therefore, if t � tcor, the limits of integration for s may be replaced by

�1 and +1, with the result

I �
Z t

0

e2T=t dT

Z þ1

�1
Kf ðsÞ ds ¼ t

2
ðe2t=t � 1Þ

Z þ1

�1
Kf ðsÞ ds: (G.54)
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The Langevin Approach

If the properties of the jump moments (G.9) are not known, an alternative way of

writing an evolution equation for the time-dependent stochastic process is by

including the fluctuations explicitly into the phenomenological equation for the

state variable o(t)

do
dt

¼ AðoÞ þ xðtÞ: (G.55)

Here A(o) is a phenomenological force that depends on the state of the system o
and x(t) is a fluctuating force statistically independent of A. Such equation is called
the Langevin equation. We are not looking for an exact solution of the Langevin

equation, only for a stochastic one. Another way to include the fluctuations into the

evolutionary problem is to consider stochastic initial conditions; this alternative,

however, will not be pursued in this book.

Properties of the fluctuating force can be deduced from the following

calculations. An obvious short-time solution of the Langevin equation is

o tþ Dtð Þ ¼ oðtÞ þ
Z tþDt

t

A oðt0Þð Þ dt0 þ
Z tþDt

t

xðt0Þ dt0:

t2

t1

t

t

s=
+t

s=2(t−T) T (s
=0

)

s (
T=0

)

0 T=0

s=
2T

s=−2T

s=
−t

T=t

s=
−2

(t
−T

)
Fig. G.3 Limits of integration of the double integral in (G.53) in terms of (T, s)

Appendix G: Stochastic Processes 311



Hence the average of the increment Do is

Doh i ¼ A oðt0Þð Þdt0 Dtþ xðtÞh i Dtþ Oð DtÞ2: (G.56)

This relation shows that for the phenomenological force to be representative of

the dynamics of the system the ensemble average of the fluctuating force must be

zero

xðtÞh i ¼ 0: (G.57)

Next

Doð Þ2
D E

¼
Z tþDt

t

A oðt0Þð Þ dt0
� �2* +

þ 2

Z tþDt

t

dt0
Z tþDt

t

dt00 Aðo t0ð ÞÞx t00ð Þh i

þ
Z tþDt

t

dt0
Z tþDt

t

dt00 x t0ð Þx t00ð Þh i:

The first term in the right-hand side is of order (Dt)2; the second term vanishes

due to (G.57) and the statistical independence of A and x; in the third term we have

the autocorrelation function of x, KxðsÞ ¼ xðtÞx tþ sð Þh i, which is a measure of the

stochastic correlation between the value of the fluctuating variable x at time t and its
value at time t + s. If the process x(t) has some sort of regularity then the correlator

Kx(s) would extend over a range of the time interval tcor (G.52). On the contrary, if
we assume that x(t) is extremely irregular, then tcor is zero and we may choose

x t1ð Þx t2ð Þh i ¼ K d t2 � t1ð Þ: (G.58)

Then

Doð Þ2
D E

¼ K Dtþ Oð DtÞ2: (G.59)

Comparison of (G.56) with (G.15a) and (G.59) with (G.17b) shows that the

Fokker–Plank and Langevin descriptions are equivalent if

A oð Þ ¼ a1 oð Þ; K ¼ a2 oð Þ ¼ const oð Þ: (G.60a)

Of course, if the potential function of the system U(o) is known, the phenome-

nological force may be written in the form

A oð Þ ¼ � @U oð Þ
@o

: (G.60b)
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A comment regarding the derivative of the Langevin force is in order here.

In principle, it is so irregular that its derivative is not defined. However, the rate of

change of the stochastic process can be defined by its moments. This approach to

the time derivative of x(t) is used in the text.
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Appendix H: Two-phase Equilibrium

in a Closed Binary System

Consider a closed system, which consists of two species A and B and is capable of

existing as a phase a or b or a combination of both. The number of moles of

different species in different phases will be designated as nki , where i, j ¼ A or B is

the species index and k, l ¼ a or b is the phase index. The fact that species do not

transform into each other (no nuclear transformations) and remain in the same

quantities (closed system) is expressed in the form of the species conservation

conditions

nai þ nbi ¼ const: (H.1)

However, because the a $ b phase transformations may go, there is no conser-

vation of the phase amounts nkA þ nkB 6¼ const.

Compositions of the phases may be described by the molar fractions of the

species B in each phase

Xk � nkB
nkA þ nkB

: (H.2)

Considering the mole numbers of different species in different phases indepen-

dent of each other, we obtain

@nki
@nlj

¼ dij dkl; (H.3)

where dij is the Kronecker’s symbol. Then

@Xk

@nlj
¼ pðiÞ � Xk

nkA þ nkB
dkl; pðiÞ ¼ 0; if i ¼ A

1; if i ¼ B

�
: (H.4)
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Each phase can be characterized by its molar Gibbs free energy Gk, which is a

function of this phase’s molar fraction only

Gk � GkðXkÞ: (H.5)

The total Gibbs free energy of the whole system is

GS ¼ naA þ naB
� �

Ga þ nbA þ nbB

� 

Gb: (H.6)

Then the condition of thermodynamic equilibrium of the system may be

formulated in the form of a constraint extremum

GS ! min for nai þ nbi ¼ const; i ¼ A; B: (H.7)

To find the mole numbers nki that deliver the constraint minimum to GS we will

be using the method of Lagrange multipliers, according to which there exist

constants a and b such that the function

GS þ a naA þ nbA

� 

þ b naB þ nbB

� 

(H.8)

has unconstrained minimum with respect to the variables nki . Then, differentiating
function (H.8) with respect to nkiwe obtain

@GS

@nki
þ a

@naA
@nki

þ @nbA
@nki

 !
þ b

@naB
@nki

þ @nbB
@nki

 !
¼ 0: (H.9)

Using (H.3)–(H.6) for (H.9) and the relations

dAi þ dBi ¼ 1; dak þ dbk ¼ 1; (H.10)

we obtain four simultaneous equations for four unknowns, Xa, Xb, a, and b

dak Ga þ pðiÞ � Xað Þ dG
a

dXa

� �
þ dbk Gb þ pðiÞ � Xb� � dGb

dXb

� �
þ a dAi þ b dBi ¼ 0: (H.11)

To exclude the constants a and b we first compare the equation for (k ¼ a,
i ¼ A) with that for (k ¼ b, i ¼ A). Then we subtract the equation for (k¼a,
i ¼ A) of the equation for (k¼a, i ¼ B) and compare the difference with that of

the subtraction of the equation for (k¼b, i ¼ A) of the equation for (k¼b, i ¼ B).

The result is the system of two simultaneous equations for Xa and Xb
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Ga � Xa dG
a

dXa ¼ Gb � Xb dG
b

dXb ; (H.12a)

dGa

dXa ¼ dGb

dXb : (H.12b)

Mathematically, (H.12) express the condition of common tangency for the

functions Ga(Xa) and Gb(Xb). Physically they mean that the chemical potentials

of the species A (�a) and B (�b) in both phases, a and b, are equal. Notice that the
derivative of the molar Gibbs free energy with respect to the fraction, see (H.12b),

is the difference of the chemical potentials of the species.
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Appendix I: The Stefan Problem

The Stefan problem occupies a special place in the science of phase transformations

because it was the first mathematically rigorous and physically realistic, significant

problem, which was solved exactly. The Stefan problem belongs to a class of

so-called free-boundary problems, the essential new feature of which is the existence

of a moving interface of separation between the two phases. The way in which this

interface moves has to be determined. The original Stefan problem may be

generalized in many different ways, some of which will be considered here.

According to the Stefan problem, a substance has a transformation point at

which it changes from one phase to another with emission of absorption of heat.

To clarify the ideas, we will be discussing specifically the problem of crystallization

of supercooled liquid. Suppose that the melting point of the solid is Tm and that L
(J/m3) is the latent heat of fusion of the substance. Then if the interface of separation

between the solid and liquid phases is at X(t), one boundary condition to be satisfied
at this interface is

Tl ¼ Ts ¼ Tm; at x ¼ XðtÞ: (I.1)

A second boundary condition concerns liberation of the latent heat at the

interface. Suppose that the region x > X(t) contains liquid at temperature Tl(x, t)
and that the region x < X(t) contains solid at temperature Ts(x, t). Then when the

interface of separation moves a distance dX, a quantity of heat L dX per unit area is

liberated and must be removed by conduction. This requires

ls
@Ts
@x

� ll
@Tl
@x

¼ L
dX

dt
; at x ¼ XðtÞ; (I.2a)
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where ls and ll are the thermal conductivities of the solid and liquid, respectively.

Temperatures in the solid and liquid regions must satisfy the equations of linear

flow of heat

Cs

@Ts
@t

¼ ls
@2Ts
@x2

; when x<XðtÞ: (I.3a)

Cl

@Tl
@t

¼ ll
@2Tl
@x2

; when x>XðtÞ: (I.3b)

where Cs and Cl are the specific heats of the solid and liquid, respectively.

In addition to (I.1)–(I.3), there will be initial conditions and conditions at the

fixed boundaries of the regions under consideration. Suppose that the crystallization

starts at the plane x ¼ 0 and moves to the right and initially the regions x > 0

contained liquid at temperature T0 < Tm (supercooled liquid) and x < 0 contained

solid at the temperature Ts ¼ Tm. Then the temperature of the crystallized material

has to have the constant value Tm throughout and no heat will be removed through it.

Temperature of the liquid will vary, but the following boundary condition will be

satisfied

Tlðx; tÞ ! T0; as x ! 1: (I.4)

First, notice that (I.2a)may be put into an alternative formby considering the curves

of constant temperature Tl(x, t) ¼ Tm ¼ Ts(x, t) in the (x, t)-plane. On these curves

@Ts
@x

dxþ @Ts
@t

dt ¼ 0 ¼ @Tl
@x

dxþ @Tl
@t

dt;

so that (I.2a) may be written as follows

ls
@Ts
@x

� ll
@Tl
@x

¼ �L
@Ts=@t

@Ts=@x
¼ �L

@Tl=@t

@Tl=@x
: (I.2b)

In this form, the nonlinearity of the Stefan problem becomes apparent. Second,

analysis of the (I.3) and boundary condition (I.2b) should convince you that the

Stefan problem admits similarity solution, that is, a solution in the form where the

spatial and time variables enter in the dimensionless combination x=
ffiffiffiffi
at

p� �
and

a ¼ l/C is called the thermal diffusivity of the respective phase. Then, substituting

the similarity solution

T ¼ f
xffiffiffiffiffi
alt

p
� 	

; (I.5)

X ¼ 2b
ffiffiffiffiffi
alt

p
(I.6)
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where b is a constant, into (I.3), (I.4) we obtain that

Tsðx; tÞ ¼ Tm; when x<X; (I.7a)

Tlðx; tÞ ¼ T0 þ Aerfc
x

2
ffiffiffiffiffi
alt

p
� 	

; when x>X; (I.7b)

The error function is defined as follows

erfcðxÞ ¼ 1� erfðxÞ ¼ 2ffiffiffi
p

p
Z 1

x

e�x2 dx:

The boundary conditions (I.1), (I.2a) then give an expression for the coefficient

A as

A ¼ Tm � T0
erfc b

(I.8)

and a transcendental equation for b

ffiffiffi
p

p
b exp b

2

erfc b ¼ ClðTm � T0Þ
L

: (I.9)

The root of (I.9) can be read from Fig. I.1 as a function of the parameter

D Y � ClðTm � T0Þ
L

; (I.10)

which is called the dimensionless supercooling of the liquid. Differentiating (I.6)

with respect to time we obtain an expression for the velocity of the interface

V � dX

dt
¼ b

ffiffiffiffi
al
t

r
: (I.11)

This expression has a singularity at t ! 0, which is due to improper initial

condition. However, a greater problem of the solution (I.7)–(I.11) is that it does

not work at DY 
 1, see Fig I.1.

As we mentioned above, the original Stefan problem may be generalized in

many different ways. Some of these generalizations are caused by the practical need

of applications.There are also deep physical reasons for the generalization of the

Stefan problem; the latter are of greater interest for us here. Notice that the roots of

(I.9) exits only for DY < 1. We may ask a question: What happens if the initial

supercooling of the liquid is greater than one? To answer this question, we need to

look at the rate of motion of the interface.
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The condition (I.1), which requires that the state of thermodynamic equilibrium

is established at the interface. Clearly, an interface does not have an “incentive” to

move if it is at equilibrium. Hence, to eliminate this singularity, we have to correct

the boundary condition (I.1) such that it will allow for disequilibrium at the

interface.

To fix this problem, a “kinetic” boundary condition was suggested [1]:

Tl ¼ Ts ¼ Tm � V

m
; at x ¼ XðtÞ: (I.12)

where m was called the kinetic coefficient. The solution of the Stefan problem

(I.2)–(I.4) with the generalized boundary condition (I.12) (and Cl ¼ Cs, ll ¼ ls)
has the form

Ts x; tð Þ ¼ Tm þ L

C
; when xbX; (I.13a)

Tl x; tð Þ ¼ T0 þ L

C
exp �V

a
x� Vtð Þ

� �
; when x>X; (I.13b)

V ¼ v0 D Y� 1ð Þ; v0 � mL
C

: (I.14)

Notice that this is not a similarity solution. This type of a solution is called a

traveling wave.
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The traveling wave solution (I.13), (I.14) supplements the solution (I.7)–(I.11)

when DY > 1, but leaves the value DY ¼ 1 open for consideration. One may say

that the solution at DY ¼ 1 was overcorrected. Another problem with the solution

(I.13), (I.14) is that it was obtained by a method which is completely different from

the one that led to the solution (I.7)–(I.11) and the connection of one to the other is

not clear. A full solution of the Stefan problem with the “kinetic” boundary

condition (I.12) may be obtained with the help of the source function of the heat

equation [2]. At DY ¼ 1, the solution for the velocity takes the form

V ¼ av0
3t

� 
1=3
: (I.15)

Another shortage of the original Stefan problem is that it allows for a plane-

boundary solution only while, in reality, the plane interfaces are morphologically

(shape-wise) unstable and the real interfaces have a complicated three dimensional

shape. To account for this discrepancy, all equations and boundary conditions must

be reformulated. In three dimensions, the heat equation is

Cs;l
@Ts;l
@t

¼ ls;lD
2Ts;l; (I.16)

and the boundary condition (I.2a) becomes

ls
@Ts
@n

� ll
@Tl
@n

¼ LVn; (I.17)

where ∂/∂n is a derivative in the direction normal to the interface and outward of

the respective region of the solid or liquid phase and Vn is the velocity of the

interface measured in the direction normal to itself. Ivantsov [3] found a mathemat-

ically beautiful and practically important solution of the three dimensional problem

with the boundary conditions (I.1), (I.17). According to his solution, the

solid–liquid interface may take on different shapes and move with different speeds,

some of which are similar to the square-root-law of equation (I.11). However, one

kind of the shape is particularly interesting because of its relevance to the dendritic

growth of crystals. In this case, temperature of the solid is constant and equal to Tm.
Temperature of the liquid varies and the isotherms are cofocal paraboloids of

revolution (parabolic cylinders in the 2d case)

Tl x; y; z; tð Þ ¼ T0 þ Tm � T0
E1 Peð Þ E1ðPe uÞ; when u>1; (I.18)
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where E1(x) is the exponential integral function

E1ðxÞ ¼
Z 1

x

e�x

x
dx;

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

R2
þ z� Vt

R

� 	2
s

� z� Vt

R
; Pe ¼ VR

2a
; (I.19)

The phase separating interface (u ¼ 1) is the paraboloid with the radius of

curvature of its vertex R and speed of motion V = const(t) in the direction of its

axis (z-axis). Pe is the so-called Peclet number; it can be found from the following

equation

D Y ¼ Pe ePeE1 Peð Þ: (I.20)

As we can see, the Ivantsov’s solution allows one to find the product of V and R
but does not allow to resolve them separately, that is, for the same supercooling it

allows for a sharp needle (small R) to grow fast (large V) or a dull one to grow

slowly. This problem became known as a problem of the operational point of a

dendrite; many authors tried to solve it with the help of different selection

principles. However, the theories of the dendritic growth and morphological stabil-

ity of a plane interface are beyond the scope of this book.

As closing notes of this appendix, we discuss another modification of the Stefan

problem. Notice that the temperature of phase equilibrium was always assumed to

be constant, Tm. As known, however, this temperature varies if the phase separating

interface is not a plane, the so-called Gibbs–Thompson effect. According to this

effect, the equilibrium temperature is

Te ¼ Tm 1� 2
s
L
K

� 

; (I.21)

where s is the interfacial free energy and K is the curvature of the interface.

This expression should replace Tm in the boundary condition (I.12).
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Appendix J: On the Theory of Adsorption

of Sound in Liquids*

L.I. Mandelshtam{ and M.A. Leontovich{

Abstract: In this paper, an attempt is made to expand the ideas that explain

adsorption of sound in multiatomic gasses on the case of liquids.

Previously,1 it has been shown that a large number of phenomena, dealing with

adsorption of sound can be qualitatively explained by assuming that this process is

very similar to the adsorption of sound in multiatomic gasses.

In the present Letter, an attempt is made to develop this point of view for

propagation of sound in liquids, formulating the problem in a most general form.

Several general remarks are in order here. We can reformulate the question as

follows: How can we account for “viscosity” in hydrodynamic equations when

density varies with time? As is known, the theory of viscous fluids assumes

existence of two coefficients of viscosity.2 The first one is the standard coefficient

� which takes into account tangent stresses under shear, and the second coefficient

�0 accounts for the “viscous” stresses of uniform dilatation. Very often one assumes

�0 ¼ 0 even if the density changes, e.g., in acoustics. However, in his famous work

Stokes writes3:

Of course, we may at once put �0 ¼ 0 if we assume that in the case of a uniform motion of

dilatation the pressure at any instant depends only on the actual density and temperature at

that instant, and not on the rate at which the former changes with the time. In most cases to

which it would be interesting to apply the theory of viscous fluids, the density of the fluid is

either constant, or may, without sensible error, be regarded as constant, or else changes

slowly with the time. In the first two cases the results would be the same, and in the third

* Zh. Eksp. Teor. Fiz. 7(3), 438–449 (1937) (in Russian).
{ Institute of Physics of the Academy of Sciences, Moscow.
1M.A. Leontovich, Dokl. Akad. Nauk SSSR III, 111, (1936); Zh. Eksp. Teor. Fiz. 6, 561 (1936).
2 See, for example, Rayleigh, Theory of Sound, II, }345.
3 G.G. Stokes, “On the theories of the internal friction of fluids in motion, and of the equilibrium

and motion of elastic solids”, Philos. Trans. Cambridge Soc. 8, 287 (1849). For the quote above see

page 294.
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case nearly the same, whether �0 were equal to zero or not. Consequently, even if the theory
and experiment agree in such cases, this should not be regarded as confirmation of the

assumption that �0 is equal to zero.

Thus, Stokes himself did not deem it possible to put �0 ¼ 0 in applications of the

theory to the problems like sound propagation, and we doubt that the authors, who

justify by referencing Stokes taking �0 ¼ 0 in the processes associated with the

density changes, are correct.

The points of view expressed below to some extent can be considered as a

development of the Stokes idea laid out in the first sentence of the quote above.

We assume that, in addition to pressure p, density r, and temperature T, the
equation of state contains a parameter x (or several parameters), which, at equilib-

rium, is a function of r and T. In a general case of absence of equilibrium, the

parameter x obeys some kind of a “reaction” equation. Under these assumptions, as

expected, the viscous stresses arise during uniform dilatation.

For sufficiently slow processes, the stresses, as it appears, can be accounted for

by the second coefficient of viscosity, i.e., the processes satisfy the Stokes equation

with �0 6¼ 0. From this follows, by the way, that the second coefficient cannot be

neglected, no matter how slow the process is because we are interested in the effects

of viscosity, in general. The point is that with the gradual slowing down of

the process, of course, the influence of the “second viscosity” approaches zero;

however, at the same time, influence of the standard viscosity tends to zero too. For

instance, for the elastic waves of low frequency, the adsorption coefficient is

proportional to ð4�=3þ �0Þo2, where o is the frequency of the acoustic wave

and, therefore, in the domain of low frequencies, the relative contribution of the

“second viscosity” does not depend on frequency at all.

For the fast processes, as we will show below, the influence of viscosity cannot

be accounted for just by introducing the second coefficient. For instance, for the

attenuation of short acoustic waves one obtains that the adsorption coefficient is not

proportional to the square of the frequency. In the simplest case, it appears that the

frequency dependence of the adsorption coincides with that of the multiatomic

gasses derived by Kneser et al.

}1

We assume that at a given point the state of liquid is defined not only by its

temperature T and density r but also by a quantity x (or several quantities x1, x2,
. . .) which defines internal state of the liquid. The quantities x can be, for instance,

concentrations of components that make up the liquid, concentrations of excited or

associated molecules. One can suppose that x somehow defines the internal struc-

ture of the liquid. For the time being, it is not necessary to attribute any special

meaning to these variables. At first, we will assume that the internal state of liquid

can be described just by one variable x, similar to the case of multiatomic gasses

with only one excitational degree of freedom.

We consider states away from equilibrium. That is why the state of the system is

not defined just by its temperature (and density). For instance, in the Kneser case,
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when the gas contains the excited molecules, the state of the system depends not

only on its temperature, which defines the average energy 3kT=2 of the translational
motion of molecules, but also on the concentration of excited molecules x,which
may differ from its equilibrium value of

x0 ¼
e�e=kT

1þ e�e=kT
:

This situation could be described by characterizing the nonequilibrium state of

the system by two temperatures T and T1, the latter one defining the internal energy
of the system. In general as in the aforementioned example, the temperature T is

related (at constant density) to the energy of the system so that its change

determines change of energy of the system at the given value of x,

DE ¼ CDT;

where C is the heat capacity at constant x (and constant density). Notice that in

what follows one does not need to introduce the temperature of nonequilibrium

states; instead, one can characterize the state by its energy (per unit of mass),

density, and parameter x. For this choice of variables, the treatment and results

remain the same: instead of the free energy CðT; r; xÞ, one just has to use the

thermodynamic function, which is appropriate for the new choice of variables, that

is, entropy SðE; r; xÞ.
At equilibrium, the variable x has some specified value which depends on

density and temperature; this value can be found from the condition of thermody-

namic equilibrium

@C
@x

¼ 0;

whereCðT; r; xÞis the free energy per unit mass. For the propagation of sound with

vanishingly low frequency one can assume that at every moment the state of the

system is consistent with the equilibrium and, therefore, the speed of the sound is

defined by the static value of adiabatic compressibility. In the opposite case of very

high frequencies, the internal state of liquid, that is, the quantity x, does not change
during one period of oscillations and the speed of the sound is defined by the

adiabatic compressibility at the constant value of x. In the crossover region of

frequencies, the dispersion of sound is taking place.

To solve this problem, one has to have an equation, according to which the

quantity x changes in the processes that take place in the fluid. This equation should
correspond to the “excitation reaction equation” of the Kneser theory. It can be

written based on the following ideas.

First, because we are interested in small deviations from equilibrium (small

amplitudes of sound) the equation must be linear.
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Second, this equation should be of the first order in the derivatives of T, r, and x
with respect to time. This assumption is natural when xis concentration of a

component and, hence, when the equation of interest represents the reaction rate

equation. In general, this assumption means that the variation of x proceeds without
effects of inertia.

Third, the equilibrium condition at the constant r and T, that is, the condition of
x ¼ const is the equality of @C=@x to zero.

It follows from these tree requirements that the sought “reaction equation” for
the appropriate choice of the variablex must have the following form

x
�
¼ �K

@C
@x

; (J.1)

where J is a constant. Here, in the expression for @C=@x we should retain only

linear terms (in C itself—quadratic) with respect to DT, Dr, and Dx, which are

deviations of temperature, density, and x, respectively, from their equilibrium

values.

We can arrive at (J.1) using the following ideas.

At constant, time independent, density and temperature, regardless of the choice

of x the reaction equation must have the form (J.1) because, due to the assumptions

made, the equation has to be linear in x
�
and approach zero together with @C=@x.

In this case

@C
@x

¼ CxxDx;

where Dx ¼ x� x0 and x0 is the equilibrium value of x.
We are interested in the reaction equation when DT and Dr are changing with

time. In this case, in addition to the terms that are present when T and r are constant,

there may be terms which depend on T
�
and r

�
; in the framework of our assumption

the most general form of the equation is the following

x
�
þa r

� þb T
� ¼ �K

@C
@x

;

where a and b are constants.

Using the substitution Dxþ aDrþ bDTinstead of Dxwe arrive again at (J.1)

where @C=@x takes the following form

@C
@x

¼ CxxDxþCxTDT þCxrDr: ðJ:10Þ
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In the case when the auxiliary variable somehow determines concentration of a

certain component of the liquid, the parameter xsatisfies the latter condition if x is

chosen as a relative concentration of this component.

Indeed, let the volumetric concentration h to be selected initially as the auxiliary
variable. At constant T and r, the reaction equation has the form

h
�
¼ �K0 @C

@h
:

When density varies, in addition to the change of the amount of the component

due to this equation there will be variation due to the flux of matter, and the equation

takes the form

h
�
þdivðh~uÞ ¼ �K0 @C

@h
;

(~uis the velocity of liquid). Because at small velocities and small variations of h

divðh~uÞ ¼ h div~u ¼ � h

r
r
�
;

the equation can be rewritten as

h
�
� h

r
r
� ¼ �K0 @C

@h

�

but

h
�
� h

r
r
� ¼ r x

�
;

where x is the relative concentration x ¼ h=r.
Moreover,

@C
@h

¼ @C
@x

@x
@h

¼ 1

r
@C
@x

;

so that the reaction equation takes the form of (J.1)

x
�
¼ �K

@C
@x

;

where

Appendix J: On the Theory of Adsorption of Sound in Liquids 329



K ¼ 1

r2
K0:

In addition to the “reaction equation” (J.1), one has to write an energy equation.

If we disregard the effects of regular viscosity and heat conductivity, whose

contribution into the sound adsorption in most of the fluids, in our opinion, is

several times smaller than that of the processes considered here, then the energy

equation takes the following form

rE
� �p

r
�

r
¼ 0; (J.2)

where E is the energy per unit mass and p is the pressure.

Differentiating (J.2) we obtain

rET T
� þ rEr � p

r

� 	
r
� þrEx x

�
¼ 0:

The second derivatives of C (taken at the equilibrium state), which enter the

expression for @C=@x, and the derivatives of energy in the last equation can be

expressed through other quantities, if we take advantage of the fact that we know

the free energy as a function of T, r, and x. Then we have

EðT; r; xÞ ¼ C� TCT ;

p ¼ PðT; r; xÞ ¼ r2Cr;

(here PðT; r; xÞ means the pressure as a function of T, r, and x) and, hence, at
equilibrium, when @C=@x ¼ Cx ¼ 0

Ex ¼ �TCxT ;

Px ¼ r2Cxr;

r2Er � p ¼ �TPT :

Using these relations, one can bring (J.1) to the following form

x
�
¼ � 1

t
Dx� Ex

TCxx
DT þ Px

r2Cxx
Dr

� 	
; (J.3)

where 1=t ¼ KCxx and t is a constant which determines the time of establishing

equilibrium. Equation (J.2) can be rewritten in the form
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Ex x
�
þET T

� � TPT

r2
r
� ¼ 0: (J.4)

One has to keep in mind that the derivative ET and PT in this equation are taken

at constant x. Hence, for instance, C ¼ ET is the heat capacity at constant x (and at
constant r, that is, at constant volume). This quantity is not equal to the heat

capacity obtained from static measurements. Regular heat capacity c corresponds

to the equilibrium state; therefore, it is equal to the derivative ð@E=@TÞm taken at a

constant (and equal to zero) value of m ¼ Cx

c ¼ @E

@T

� 	
m
:

Likewise the derivative

PT ¼ @PðT; r; xÞ
@T

is not equal to the derivative

pT ¼ @p

@T

� 	
m
;

taken at the equilibrium state.

It is easy to find the relationship between the derivatives taken at x ¼ const and

at m ¼ const, equal to zero. We have

C ¼ ET ¼ @E

@T

� 	
x
¼ @E

@T

� 	
m
þ @E

@m
@m
@T

� 	
x
¼ cþ @E

@m
@m
@T

� 	
x
:

Taking into account, the aforementioned expression for CxT

@m
@T

� 	
x
¼ CxT ¼ �Ex

T
;

and

Ex ¼ @E

@m
@m
@x

¼ @E

@m
Cxx;

we obtain
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@E

@m
¼ Ex

Cxx
;

and hence

C ¼ c� E2
x

TCxx
: (J.5)

Similarly, we obtain the following relations

PT ¼ @p

@T

� 	
x
¼ @p

@T

� 	
m
� PxEx

TCxx
¼ pT � PxEx

TCxx
; (J.6)

Pr ¼ pr þ
P2
x

TCxx
; (J.7)

where pðT; rÞ means dependence of p on T and r at the equilibrium, so that, e.g.,

pT ¼ @p

@T

� 	
m
; pr ¼ @p

@r

� 	
m
:

Also notice that in the considered problem the deviations of the state of fluid

from equilibrium can be accounted for in a different way, namely, as it has been

done by some authors for gasses, by introducing the second temperature T1.
This can be reduced to simple change of variables. We may introduce the tempera-

ture T1 as the temperature at which the internal state of liquid at equilibrium is

determined by the specific value of x. Then, the deviation DT1 of this temperature is

defined by the condition

@CðT1; r; xÞ
@x

¼ 0;

or

CxxDx þCxTDT1 þCxrDr ¼ 0:

Using this equation and introducing DT1 instead of Dx in (J.1) and (J.4), we

obtain the following equation that determines variations of both temperatures

T
�
1
� Px

Tr2Ex
r
� ¼ 1

t
DT � DT1ð Þ;

CT
� þðc� CÞT�

1
þ TPT

r2
r
� ¼ 0:
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}2

Considering propagation of sound wave with the frequency o, the quantities DT,
Dr, and Dx are proportional to expðiotÞ and (J.3) and (J.4) turn into

ð1þ iotÞx ¼ Ex

TCxx
DT � Px

r2Cxx
Dr; (J.8)

Exx ¼ �CDT þ TPT

r2
Dr: (J.9)

Square of the complex velocity of propagation of sound is determined by the

ratio of the pressure change Dp to the density change Dr and is equal to

W2 ¼ Dp
Dr

¼ Pr þ rT
DT
Dr

þ Px
Dx
Dr

: (J.10)

Determining the ratios DT=Dr and Dx=Dr from (J.8) and (J.9) and substituting

them into (J.10) after algebraic transformations, which use expressions (J.5), (J.6),

and (J.7) and also the thermodynamic relationship

cp
c
¼ 1þ Tp2T

cr2pr
;

we obtain

W2 ¼ V2
0 1þ

iot0 V1 V0=ð Þ2 � 1
h i
1þ iot0

8<
:

9=
;: (J.11)

Here,

V2
0 ¼ cp

c
pr ¼ pr þ Tp2T

cr2
;

so that V0 is the standard Laplace’s speed of the sound;

V2
1 ¼ Cp

C
Pr ¼ Pr þ TP2

T

Cr2
;

that is,V1as V0is a function of the derivatives of pressure and heat capacities, but

taken at constantx; moreover, t0 ¼ tC=c.
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At very low frequencyo, as one can see from (J.11),W becomes real and equal to

the Laplace’s value V0. With o ! 1, W also approaches the real value, but

now V1.

The real speed of propagation V and the attenuation coefficient per unit lengtha
are obtained from the relations

1

V
¼ Re

1

W
; a ¼ oIm

1

W
:

Separating the real and imagine parts of 1/W and taking into account that W is

always close to V0 (V1=V0 is close to one), with sufficient accuracy we obtain

V0

V
¼ 1� 1

2

o2t02 V1=V0ð Þ2 � 1
h i
1þ o2t02

; (J.12)

a ¼ 1

2V0

o2t0 V1=V0ð Þ2 � 1
h i
1þ o2t02

: (J.13)

Expressions (J.10), (J.11), and (J.12) have the same form as the corresponding

expressions in the Kneser theory for gasses; they differ only in the value of the

constant V1.

In the case of gasses,

V1
V0

� 	2

¼ c

C
; (J.14)

where C is the heat capacity that corresponds to the translational motion of

molecules in gasses. In our, more general case

V1
V0

� 	2

� 1 ¼ 1

r2V2
0

P2
x

Cxx
þ T pT � PxEx TCxx=ð Þ2

c� E2
x TCxx=

� Tp2T
c

( )
: ðJ:140Þ

Thus, this quantity depends, first, on the values of c and pT related to the

equilibrium state—their values for liquids may be considered known—and, second,

on the values of Ex and Px, which define, respectively, variations of energy and

pressure with the variation of x during the reaction. These quantities can be

obtained only if certain hypotheses about the characteristic features of the processes

in liquids are made. Moreover, (J.140) includes the quantityCxx, which could be

found if the magnitude of thermal fluctuations of the parameterxwere known from

some experimental observations. Indeed, the mean square of fluctuations Dx2 is

equal to kT=Cxx. The constant t, which defines the magnitude of adsorption and

location of the maximum of the curve adsorption-per-one-wavelength as a function
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of the frequency, is inversely proportional to the rate of reaction proceeding in the

liquid. As known, the rate of reaction in liquids can often be estimated qualitatively
following Smoluchowski’s ideas developed in the coagulation theory of colloids.

For instance, as known, the processes in fluorescent liquids can be understood from

this point of view. The value of tmust be proportional to the standard viscosity of the
liquid �. Therefore, according to (J.13), the attenuation coefficient a (at low frequency

when the terms o2t02 in the denominator can be omitted) must be approximately

proportional to the standard viscosity �. Hence, in the cases when the viscosity is

strongly dependent on temperature so that its variation covers over the variations of all

other quantities that determine the attenuation coefficient a, the latter should be

approximately proportional to the viscosity � and, with changing viscosity �, should
vary proportionally to the Stokes’ attenuation coefficient. Perhaps, the temperature

dependence of the attenuation coefficient observed by Baumgardt4 for water at the

frequency 8 � 106 Hz can be understood from this point of view.

In a particular case of gas, where the considered reaction is excitation of particles

and x ¼ n2=n, i.e., x is the relative concentration of excited molecules, we obtain

Ex ¼ e;

where e is the energy of excitation and, due to the fact that the reaction is not

accompanied by the change of the number of particles and, hence, pressure

Px ¼ 0:

Moreover, in this case

C ¼ RT x ln xþ ð1� xÞ lnð1� xÞ þ xC1ðTÞ þ ð1� xÞC2ðTÞ þ lnrf g;

and due to (J.5),

Cxx ¼ RT

xð1� xÞ ffi
RT

x
; c ¼ Cþ e2

RT2
x:

Substituting these values into (J.140) we find the Kneser expression (J.14).

}3

The above considered case of the nonequilibrium state of liquid that comes about

with propagation of sound, which can be characterized by one additional parameter

xrepresents, of course, just the simplest case. Generally speaking, we have to

introduce several additional parameters x1,x2,. . .
In the gas, this corresponds to the situation when one has to take into account

excitations of different normal modes of a molecule, with the parameters x1,x2,. . .

4 E. Baumgardt, C.R. 202, 203 (1936).
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representing concentrations of molecules in various excited states. In these cases,

the functional dependencies of adsorption and dispersion on the frequency as well

as the dependence of adsorption on temperature can be essentially different from

the case of one parameter. That is why we will outline briefly the way to solve this,

more general problem.

Using the same ideas as above, one can come to the conclusion that for small

deviations from the equilibrium state the “reactions equations,” that is, equations

for x1,x2,. . ., have to have the following form

xi
�
¼ �

X
j

Kij
@C
@xj

: (J.15)

On the basis of the well-known general considerations,5 coefficients Kij must be

symmetric: Kij ¼ Kji. Due to this condition and with the proper choice of variables

x1,x2,. . . the system of equations (J.15) can be reduced to a very simple form, such

that every equation has only one variables xi. To prove this we note, first, that if we
introduce

2K ¼
X
ij

KijCiCj;

where

Ci ¼ @C
@xi

;

then (J.15) may be written in the following form

x
�

i
¼ � @K

@Ci
: (J.16)

The quadratic in DT, Dr, and Dxipart of C, which is of interest for us, can be

written as follows

2C ¼
X
ij

CijDxiDxj þ 2
X
i

@2C
@xi@T

DxiDT þ @2C
@xi@r

DxiDr
� 	

; (J.17)

where

Cij ¼ @2C
@xi@xj

:

5 See, e.g., L. Onsager, Phys. Rev. 37, 405 (1931); 38, 2265 (1931).
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The expression for C in (J.17) can always be linearly transformed to the sum of

the squares so that in the new variables Cij ¼ dij and C has the form

2C ¼
X
i

x2i þ 2
X
i

CiTDTxi þCirDrxi
� �

; ðJ:170Þ

where

CiT ¼ @2C
@xi@T

; Cir ¼ @2C
@xi@r

; xi ¼ Dxi:

Now, applying the second transformation, which should be orthogonal and,

therefore, keep the form of (J.170) unchanged, and which transforms the quantities

Cisame way as xi, we bring the quadratic form J to the following expression

2K ¼
X
i

C2
i

ti
; (J.18)

where ti are some constants.

Due to (J.17) and (J.18), the reaction equation (J.16) in the latter variables takes

the following form

xi
�
¼ � 1

ti
xi þCiTDT þCirDr
� �

: (J.19)

Energy equation takes the form quite similar to that of (J.3)

ET T
� � TPT

r2
r
� þ
X
i

Eix
�
i ¼ 0; (J.20)

where

Ei ¼ @E

@xi
:

For the case of propagation of sound with the frequency o, these equations turn
into

xið1þ iotiÞ ¼ � CiTDT þCirDr
� �

; (J.21)

ETDT � TPT

r2
Drþ

X
i

Eixi ¼ 0: (J.22)
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Square of the complex velocity of sound propagation is equal to

W2 ¼ Dp
Dr

¼ Pr þ PT
DT
Dr

þ
X
i

Pi
xi
Dr

; (J.23)

where

Pi ¼ @P

@xi
:

Defining DT=Dr and xi=Dr from (J.21) and (J.22) and substituting into (J.23)

we obtain

W2 ¼ Pr þ io
r2
X
k

P2
ktk

1þ iotk
þ T

r2

PT þ 1=T
P
k

PkEk 1þ iotk=

� �2
Cþ 1=T

P
k

E2
k 1þ iotk=

: (J.24)

For the Kneser case (excited molecules of gas) Pk ¼ 0 and we obtain

W2 ¼ V2
0 þ V2

1 � V2
0

� � C

c� C

io=TC
P

k E
2
ktk 1þ iotk=

1� io=TC
P

k E
2
ktk 1þ iotk=

; (J.25)

where

V2
0 ¼ pr þ TpT

cr
¼ cp

c
pr;

V2
1 ¼ Cp

C
pr; c ¼ Cþ

X
k

E2
k

T
:

Discussion of these expressions will be presented elsewhere.

As mentioned above, for slow processes, the phenomena discussed here manifest

in the emergence of the “volumetric viscosity.” Let us show briefly how this follows

from our equations, restricting ourselves to the case of one parameter x.
Differentiating (J.3) with respect to time and then excluding the first derivative

x
�
from the obtained equation and (J.3), we obtain

Dx� t2 x
��
¼ Ex

TCxx
DT � t T

�� 

� PT

r2Cxx
Dr� t r

�� 

: (J.26)

For slow processes, we drop the term t2 x
��
. Using (J.26), (J.4), and the

relationship
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ExDxþ ETDT � TPT

r2
Dr ¼ 0

[obtained by integrating equation (J.4)], DT and x can be expressed through Dr
and r

�
. Substituting these expressions into Dp in (J.10) and, after some rearrange-

ment, we obtain

Dp ¼ V2
0Drþ t0ðV2

1 � V2
0Þ r

�
:

Taking into account that

r
� ¼ �r div ~u;

where ~u is the velocity of the liquid, expression for Dp can be written in the form

Dp ¼ V2
0Dr� �0div ~u;

where �0 is the “second coefficient of viscosity,” given by

�0 ¼ t0 V2
1 � V2

0

� �
r:
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