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Chapter 1
INTRODUCTION

This chapter introduces the ramp-metering problem. It discusses the
congestion problem on highways and how ramp metering is used to alleviate
this problem. It also gives an overview of feedback control theory as we use
it in this book. This is intended for those readers who do not have a
background in that area.

1. INTRODUCTION

Increasing dependence on car-based travel has led to the daily occurrence
of recurrent and non recurrent freeway congestions not only in the United
States but also around the world. Congestion on freeways forms when the
demand exceeds capacity.

Recurrent congestion reduces substantially the available infrastructure
capacity at rush hour, i.e., at the time this capacity is most urgently needed,
causing delays, increased environmental pollution, and reduced traffic
safety. Similar effects are observed in the frequent case of nonrecurrent
congestions caused by traffic incidents such as crashes, disabled vehicles,
adverse weather conditions, work zones, special events and other temporary
disruptions to the highway transportation system, etc. (Figure 1-1).

1
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2 Chapter 1

Figure 1-1: How Is the Congestion Pie Sliced? [2]

Congestion, both recurrent and nonrecurrent, is characterized by some
annoying features, such as slow travel speeds, erratic speeds (stop-and-go
movement), increased and inconsistent travel times, increased accident
potential, inefficient operation, and other undesirable conditions that cause
user dissatisfaction. The following illustrates the severity of congestion in
the United States [2]. Congestion results in 5.7 billion person-hours of delay
annually in the United States. Between 1980 and 1999, route miles of newiy
construcied highways increased 1.5 percent while vehicle miles cf travel
grew by 76 percent. Over 42,500 miles of highways in the 50 states and the
District of Columbia were congested in 2000 (as defined by vehicle/service
ratios of 0.8 or higher). Over 6,000 of these miles were in rural areas. Texas
Transportation Institute (TTI) estimates that within major U.S. urban areas,
over 32% of our daily travel occurs within congested conditions and the
trend continues to climb. In small urban areas alone (<500,000 population),
congested travel increased 300% between 1982 and 1997. This congestion
adds up to 4.5 billion hours of delay in 68 urban areas according to a recent
TTI report published in 1999. Annual delay per person was estimated as 36
hours per year. The delay is estimated as 41 hours per person per year in
cities over 3 million population. In one of the metropolitan areas most
seriously affected by this congestion problem, Los Angeles, the delay was
found to be 56 hours per person per year. Between 1982 and 1999 annual
delay per person in the 68 metropolitan areas increased at a compound rate
of 7 percent (from 11 to 36 hours). The individual cost of congestion
exceeded $900 per driver in 1997, resulting in over $72 billion in lost wages
and wasted fuel.
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The congestion problem can be addressed employing different measures
ranging from building new roads to a number of congestion management
strategies such as ride sharing programs. It has been recently realized that
mere infrastructure expansion cannot provide a complete solution to these
problems due to economic and environmental reasons or, in metropolitan
areas, simply due to lack of space [2].

2. INTELLIGENT APPROACH TO CONGESTION
PROBLEM: RAMP METERING

Since new construction is often not feasible or insufficient to
significantly reduce congestion, the transition from inefficient to optimal
traffic conditions can be achieved if the conventional use of the freeway
infrastructure is improved by suitable control actions such as ramp metering,
real-time speed control, and others.

Ramp metering is one of the most widely used control measures that are
historically employed in freeway networks. Ramp metering is a direct and
efficient way to control and upgrade freeway traffic by regulating the
number of vehicles entering the freeway. The rate of metering is calculated
depending on the specific strategy deployed.

Ramp metering aims to maintain uninterrupted, non congested flow on
the freeway, thereby providing increase in mainline throughput due to
avoidance or reduction of congestion duration. In many cases, ramp
metering also enables a smoother ramp merging operaiion, which helps te
maintain safe operation, by breaking up the platoons from entrance ramps to
reduce the chance of traffic breakdown by the ramp traffic [3].

It is well known, from previous theoretical investigations and field
operational tests, that ramp metering has various positive effects, if
appropriately applied, such as [10]:

e Maintain freeway operations at noncongested condition

e Maximize mainline throughput

e Increase travel speed (upstream and/or downstream, depending on the
strategy)

e  Reduce travel time

e  Reduce auto emissions and accidents due to a smoother mainline flow
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There exist various kinds of ramp metering algorithms, some of which
have been tested and implemented in the USA and Europe, while others at
the empirical stage waiting to undergo the same procedures.

Overall, there are two types of ramp metering control systems:

Local Ramp Metering: A local ramp control system considers an
isolated section of the network consisting of a freeway section with one on-
ramp, and the controller responds only to the changes in the local conditions.

Systemwide Ramp Metering: Systemwide ramp metering is the
application of metering to a series of entrance ramps.

Another ramp metering strategy that combines local and systemwide
ramp metering is known as Hierarchical Ramp Metering. A systemwide
model at the upper level defines the overall desired network states, while a
local model at the lower level performs to adjust the metering rate to achieve
system states close to the system target.

Based on traffic responsiveness, ramp metering can be divided into three
categories:

Operator Controlled Metering: The freeway section (consisting of on-
ramps) to be metered is controlled by an operator with the help of cameras
and/or other methods.

Pretimed Ramp Metering: Pretimed metering is the simplest form of
on-ramp metering. Ramp metering rates are constant and determined based
on off-line demand for particular time-of-day historical traffic observation
data, without the use of real-time measurements of sensors. It can be
effective in eliminating recurrent congestion, if severe incidents or sudden
changes in demand that cannot be captured by the historical measurements
do not occur. However, since traffic demand is not constant, it varies during
day, and on different days. Moreover, incidents may perturb traffic
conditions in a nonpredictable way. All these unexpected fluctuations in
demand can render pretimed ramp metering strategies ineffective. These
pretimed ramp metering strategies may thus lead either to overload of the
mainstream flow (congestion) or to underutilization of the freeway by
achieving the opposite of it is trying to avoid, congested traffic conditions on
the freeways.

Traffic Responsive Metering: In contrast, traffic responsive metering
rates are determined based on information about the state of the traffic flow
on the mainline and/or on the ramp traffic conditions. Based on the
prevailing traffic conditions captured by real-time traffic data, such as
occupancy, flow rate on the freeway and/or ramp, the metering rates are
varied over time to effectively respond to traffic fluctuations.
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2.1 Local Ramp Metering Control Strategies

Some local ramp metering control strategies are briefly discussed in the
following sections.

2.1.1 Demand Capacity Control

In demand capacity control [1], metering rate is determined based on the
comparison of upstream volume and downstream capacity. Mean upstream
volume is compared either with a preset value of downstream capacity, or
with a real-time value computed each time step using real-time sensor data.
The difference between the upstream volume and the downstream capacity
determines the metered ramp flow for the next control interval (e.g., 1 min).
However, if the upstream volume becomes greater than the downstream
capacity, minimum metering rate for the ramp is used.

2.1.2 Upstream Occupancy Control

This strategy uses real-time occupancy upstream of the on-ramp to
determine the ramp metering rate of the next control interval. First, the
upstream occupancy is measured during the current control time step. Then,
a metering rate is selected among the predetermined metering rates based on
the occupancy measurements taken during the current time step.
Predetermined metering rate for a particular occupancy value is chosen using
a plot of historical volume occupancy data collected at each measurement
location. One example of such plots is given in Figure 1-2. If the measured
occupancy exceeds or is equal to preset capacity occupancy, a minimum
metering rate is selected.
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Figure 1-2: Typical Volume Occupancy Plot Used in the Calculation of Entrance Ramp
Metering Rates, Chicago, IL [3]

2.1.3 Gap-Acceptance Control

Gap acceptance control uses occupancy measurements taken upstream of
the ramp in order to determine the signal time in the next time period. When
an available gap in the merging lane on the freeway, where vehicles on the
ramp have sufficient time to merge into, is detected, the ramp signal turns
green in response. This is intended to maximize the number of entrance
ramp vehicles merging safely without causing disruption of the freeway
traffic. However, this control faces some difficulties due to no lane change
assumption, such as unreliability of acceleration behavior of vehicles, and
lane changing, which closes the gaps measured by the detectors.

2.1.4 Closed-Loop Local Control Strategies

Ramp control systems can also be categorized as open loop and closed
loop. In an open-loop ramp control system (demand capacity control,
upstream occupancy control, gap acceptance control, etc.), the control input
(e.g., ramp metering rate) is independent of the system output, the existing
traffic conditions (e.g., volume, occupancy, gap, etc.). On the other hand, in
closed-loop control, the system output is fed back, and the input is modified
by an appropriate regulator to keep the output near its set value despite the
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influences of time-variant disturbances (e.g., flow on the upstream of the
ramp).

One of the most widely used algorithms in this category is ALINEA [10].
ALINEA is a linearized local-feedback control algorithm that adjusts the
metering rate to keep the occupancy downstream of the on-ramp at a
prespecified level, called the occupancy set point.

ALINEA uses feedback regulation to maintain a desired level of
occupancy, or the target occupancy, which is usually chosen to be the critical
occupancy, and apply the kinematic wave theory with locally calibrated
fundamental diagrams as the underlying traffic model.

ALINEA (Figurel-3) closed-loop ramp metering strategy, suggested by
Papageorgiouet al. (1991), to be applied at the time instants
kT,k =0,1,2,..., for any sample time interval T (e.g., T = 60sec ) is

r(k)=r(k=1)+Ky[6-0,, (k)] (D

where K> 0 is a regulator parameter and 0 is a set (desired) value for the
downstream occupancy (typically, but not necessarily, 6= o, may be set,
in which case the downstream freeway flow becomes close to g, , see
Figure 1-3.

Figure 1-3: The Fundamental Diagram (May, Adolf)

The set value 0, may be changed any time, and thus ALINEA may be
embedded into a hierarchical control system with set values of the individual
ramps being specified in real time by a superior coordination level or by an
operator.
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A preliminary version of ALINEA and some popular previous control
strategies have been implemented and tested on an on-ramp of the Boulevard
Peripherique in Paris during an experimentation period of 6 months. Results
of this study and other field results from current operational sites, such as
Brancion, Chatillion, and Italie of the Boulevard Peripherique in Paris,
showed a clear success of ALINEA in preventing congestion and increasing
traffic throughput.

Artificial intelligence based closed-loop local control strategies have also
received increasing attention recently. Fuzzy logic based ramp control
proposed by Meldrum and Taylor [6] uses linguistic variables similar to
human reasoning, and rules, which incorporate operator expertise. It is a
nonlinear algorithm, which allows it to successfully handle a wide variety of
situations, including incidents without modifying control parameters, and a
robust control. The parallel nature of the FLC’s rule base simultaneously
balances multiple objectives. It is observed to produce systemwide benefits
when implemented as the default metering algorithm on all 126 on-ramps in
the greater Seattle area. It turned out that 80% of the 126 ramp meters
performed best using the systemwide defaults. However, in order to handle
special cases, such as inadequate ramp storage, secondary queues, etc. tuning
was necessary.

Artificial neural networks were used to design nonlinear traffic-
responsive ramp controls (Zhang et al. 1996, and Zhang et al. 1997). Neural
network-based ramp control is shown to be able to directly handle nonlinear
systems without resorting to linearization. It also can be tuned on-line,
which makes them adaptive to a changing environment. Neural control
algorithm uses feedback regulation concept similar to ALINEA to maintain a
desired level of occupancy, or the target occupancy.

New Control is a new nonlinear control design proposed by Kachroo and
Ozbay and discussed in later chapters of this book for an isolated ramp
metering problem. This control law guarantees that
lim,__(0—- pt,)2 — 0, which is the objective of the controller. In fact, it
guarantees that the rate of convergence of 0 —0,, is geometric at a rate
dictated by the control gain K.

4

2.2 Systemwide Ramp Control Strategies

In many cases, in order to produce desired performance improvements,
such as reduction of the volume to bring mainline volume below capacity,
metering of a single on-ramp might not be sufficient. This is because of a
number of possible factors, such as minimum metering volume constraints,
lack of vehicle storage space, or too large a capacity deficiency. Therefore,
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systemwide ramp metering strategies provide increased levels of control by
distributing the metering task over a number of upstream ramps.

Some systemwide ramp metering controls are briefly introduced in this
section.

Systemwide Pretimed Metering: This is the application of pretimed
metering to a series of on-ramps. The metering rate for each ramp is
determined in accordance with its local demand capacity constraint, and
demand capacity constraints at the other ramps.

One example [9] of systemwide pretimed metering is optimal ramp
metering algorithm that uses a fixed time of day input volumes. The
objective is to maximize the number of vehicles served when the demand is
very high. This problem can be represented as a linear programming
problem that produces optimal input volumes in steady state. Computation
time and storage needed to solve this linear programming problem increase
with the number of unknowns and constraints and for larger networks with
complex situations on-line solution generation might not be feasible.

Systemwide Traffic Actuated Metering: Dynamic optimal ramp
control [8] is one example of systemwide traffic actuated metering. This type
of control strategy overcomes the shortcomings of the pretimed version, in
which mainline flow is assumed to be in the steady-state condition. A
dynamic ramp control problem optimizes the performance index or control
objective subject to the constraints of dynamic traffic flow model, and ramp
queue and capacity constraints.

Systemwide versions of some of the feedback controllers are also
available, such as METALINE, fuzzy logic algorithm for systemwide
control, and so on. METALINE [10] is an extension of the control algorithm
ALINEA. It was implemented on certain freeways in France, the United
States, and the Netherlands. Similarly, there is also a systemwide version of
fuzzy logic algorithm. Often only a few rules are needed for local control
strategies, whereas for systemwide control, the rule base can be quite
complex, which might require a great amount of effort to calibrate the
parameters (tuning the rules and membership functions) [10].
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3. RAMP METERING IMPLEMENTATIONS IN THE

USA

Figure 1-4: The Number of Ramps Coritrolled by Ramp Meter in the USA 151981, 8% of the

Whole Nation [4].

According to the ITS Deployment Tracking 2000 Survey Results, 24
agencies report having ramp metering technology.

Table 1-1: Ramp Metering Use in USA [4]

Metropolitan Area Agency Number

Minneapolis, St. Paul, MN Minnesota Department of 427
Transportation

San Diego, CA Caltrans District 11 252

San Francisco, Oakland, San Jose, Caltrans District 4 190

CA

Los Angeles, Anaheim, Riverside, Caltrans District 8 152

CA

Phoenix, AZ Arizona Department of 122
Transportation

Chicago, IL; Gary, IN; Lake County, | Illinois Department of Transportation | 113

IL

Milwaukee, Racine, W1

Wisconsin Department of

113
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Transportation

Portland, OR; Vancouver, WA Oregon Department of Transportation | 100

Seattle, Tacoma, WA Washington State Department of 99
Transportation Northwest Region

Houston, Galveston, Brazoria, TX Texas Department of Transportation | 97
Houston District

New York, NY; Northern New New York State DOT Long Island 81

Jersey, NJ; Southwestern Region 10

Connecticut, CT

Sacramento, CA Caltrans District 3 75

Detroit, Ann Arbor, MI Michigan Department of 60
Transportation

Fresno, CA Caltrans District 6 29

Los Angeles, Anaheim, Riverside, Caltrans District 7 20

CA

Allentown, Bethlehem, Easton, PA Pennsylvania Department of 14
Transportation Allentown

Salt Lake City, Ogden, UT Utah Department of Transportation 9
Region 2

Columbus, OH Columbus City 8

Philadelphia, PA; Wilmington, DE; Pennsylvania Department of 6

Trenton, NJ Transportation District 6-0

Dallas, Fort Worth, TX Texas Department of Transportation | 5
Fort Worth District

Atlanta, GA Georgia Department of 5
Transportation

El Paso, TX Texas Department of 2
TransportationEl Paso District

Salt Lake City, Ogden, UT Utah Department of 1
TransportationRegion 1

New York, NY; Northern New Port Authority of New York and New | 1

Jersey, NJ; Southwestern Jersey

Connecticut, CT

Total 1,981

Nine agencies report having traffic responsive ramp meters:

Table 1-2: Traffic Responsive Ramp Metering Use in USA [4]

Metropolitan Area Agency Number

Minneapolis, St. Paul, MN Minnesota Department of 416
Transportation

Los Angeles, Anaheim, Riverside, Caltrans District 12 370

CA

Los Angeles, Anaheim, Riverside, Caltrans District 8 139

CA

Milwaukee, Racine, WI Wisconsin Department of 113
Transportation

San Francisco, Oakland, San Jose, Caltrans District 4 109

CA
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Sacramento, CA Caltrans District 3 75

Fresno, CA Caltrans District 6 29

Washington, DC Virginia Department of 26
Transportation

El Paso, TX Texas Department of 2
TransportationEl Paso District

Total 1,279

Eleven agencies report having pretimed ramp metering:

Table 1-3: Pretimed Ramp Metering Use in USA [4]

Metropolitan Area Agency Number

Portland, OR; Vancouver, WA Oregon Department of Transportation | 95

San Francisco, Oakland, San Jose, Caltrans District 4 81

CA

New York, NY; Northern New New York State DOT Long Island 81

Jersey, NJ; Southwestern Region 10

Connecticut, CT

Los Angeles, Anaheim, Riverside, Caltrans District 8 14

CA

Minneapolis, St. Paul, MN Minnesota Department of 11
Transportation

Salt Lake City, Ogden, UT Utah Department of Transportation 9
Region 2

Philadelphia, PA; Wilmington, DE; Pennsylvania Department of 6

Trenton, NJ Transportation District 6-0

Atlanta, GA Georgia Department of 5
Transportation

El Paso, TX Texas Department of Transportation | 2
El Paso District

New York, NY; Northern New Port Authority of New York and New | 1

Jersey, NJ; Southwestern Jersey

Connecticut, CT

Salt Lake City, Ogden, UT Utah Department of Transportation 1
Region 1

Total 306

Moreover, there are 962 centrally controlled ramp meters, and 370
corridor coordinated ramp meters in Los Angeles, Anaheim and Riverside,
CA, which is the only location for such technology [4].

4. BENEFITS OF RAMP METERING

Ramp metering is implemented across the United States and Europe.
There are no uniform or standard evaluation criteria and the measures of
effectiveness (MOE) vary with the system objectives. In the following
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section, some potential benefits of ramp metering are given with a couple of
implementation examples.

Ramp metering provides efficient use of capacity. If there is excess
capacity on surface streets, it may be worthwhile to divert traffic from
congested freeways to surface streets, and discourage trip paths with high
societal costs. In Detroit, Michigan, metering was initiated in 1982 with six
ramps on eastbound 1-94, with many more ramps added later. In Detroit [5],
ramp metering increased speeds by about 8%, even though volumes on the
mainline increased from 5600 vph to 6400 vph. Ramp metering can also
result in temporal diversion, where drivers shift ramp arrival time. Empirical
results show these shifts can result in up to 15% reductions compared with
premetering volumes. This is mainly due to spreading out flow peaks over a
longer period thus resulting in better freeway capacity utilization.

It is clear that if properly implemented, ramp metering can significantly
increase peak speeds and reduce travel times on the freeway. However, in
spite of the increase of ramp delays as a result of metering, systemwide
delay reductions can still be significant, thereby providing overall
improvements in the system. In Houston, Texas [5], ramp meters along the I-
10 Katy Freeway were installed in late 1996, and evaluated in early 1997.
The total daily estimated travel time savings were estimated as 2,875
vehicle-hours for an average value of time of $12.88 per vehicle-hour. These
time savings were calculated to result in benefits of $37,030 per day.
Similarly, in Long Island, New York, 60 ramp meters were installed on the
eastbound Long Island Expressway as part of the Information for Motorists
project (INFORMS). The evaluation was performed between 1987 and 1990.
After the installation of the ramp metering system mainline travel times
decreased from 26 to 22 minutes, and the average motorist using a metered
ramp saved 13% in travel time. Average speeds increased from 29 to 35
mph. For the AM peak the number of detectors showing a speed less than 30
mph decreased by 50%. The average queue lengths at ramp meters ranged
from 1.2 to 3.4 vehicles, representing 0.1% of vehicle-hours traveled.

Ramp metering can also improve safety by breaking up the platoons of
entering vehicles from on-ramps, by leading to the reduction of sideswipe
and rear-end type accidents at the merge areas. Likewise, since metering
prevents bottlenecks, safer traffic conditions are expected due to the reduced
variance in speed distributions. In Seattle, Washington, beginning in 1981,
as part of the FLOW program, WDOT implemented metering on I-5 north of
the Seattle CBD [5]. A six-year evaluation consisted of seventeen
southbound ramps during the AM peak and five northbound during the PM
peak along a 6.9-mile test corridor. Among other observed benefits, the
accident rate dropped about 39%. In Minneapolis, meters were installed in
the 1970s as part of the Twin Cities Metropolitan Area Freeway
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Management System [5]. The first installation, along a section of I-35 E,
included several meters initially operated on a fixed time metering scheme,
but later upgraded to isolated traffic responsive operation. After 14 years of
operation, in addition to other benefits, the average number of peak period
accidents decreased by 24% and the peak period accident rate decreased by
38%.

Smoother traffic flow resulting in less speed variation on a metered
freeway can lead to substantial reduction in emissions and fuel savings. In
Portland, Oregon, meters were installed along I-5, a major north south link
and important commuter route, in 1981. Sixteen meters in fixed cycle
operation were evaluated. It was estimated that fuel consumption, including
that caused by ramp delay, was reduced by 540 gallons per weekday.

5. PROBLEM DESCRIPTION

Ramp metering can help in providing a smooth flow of traffic on urban
freeways. It can also help in alleviating congestion on the freeways. The
design of ramp metering entails measuring some traffic variables on the
freeway and adjusting the ramp metering rate to provide smooth flow. This
structure of performing measurements using sensors and in real time
adjusting the ramp metering rates renders the problem that of a closed-loop
feedback control problem. The overall structure of a feedback control
problem is shown in Figure 1-5.

actuation commands link flows
@  |——*{Traffic System |——»

Figure 1-5: Block Diagram for DTR Feedback Control

Ramp metering attempts to keep mainline volumes below capacity by
controlling the number of vehicles entering the freeway. Under ideal
conditions, the wait on the entrance ramp would be compensated for by
increased speeds once on the freeway. Ramp meters can increase freeway
speeds while providing increased safety in merging and reducing rear-end
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collisions on the ramps themselves. The topology of a ramp metering
system is shown in Figure 1-6.

Figure 1-6: Ramp Metering Topology

Figure 1-6 shows the topology for an isolated ramp-metering problem. In
general, ramp metering can be in multiple locations on a freeway connected
to an arterial and a general freeway network. A network system ix showr in
Figure 1-7, where a freeway sections with multiple ramps is connected with
an arterial street. Hence, this is a multiple input control problem, which will
have travel time considerations on alternate routes, which vehicles not taking
one upstream ramp might encounter in choosing the downstream ramp. The
network problems are not studied explicitly in this paper but the modeling,
analysis, and design in this paper can provide a starting point for developing
feedback control strategy for network-level systems. At present, only off-
line techniques are used for network-level problems. For instance, for a
problem such as the one shown in Figure 1-7, the ramp flows are distributed
in upstream ramps based on the knowledge of traffic demand and capacity in
the various sections. This is done off-line, and then the calculated ramp rates
are implemented. A very powerful method would be for the system to
calculate these based on real-time information in a feedback setting. Isolated
ramp control in general can also be used as a part of a system-level network
control in which the isolated ramp plays a role in part of an overall scheme
for control and coordination in a hierarchical methodology. Hierarchical
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technique coordinates between various local controllers to achieve some
overall global performance.

Figure 1-7: Coordinated Ramp Metering

6. PRELIMINARY CONSIDERATIONS FOR USING
FEEDBACK CONTROL FOR RAMP METERING

Feedback control for ramp metering can be an effective solution for
alleviating traffic congestion. However, the success of such'a systeir
depends on the effective modeling of the system as well as the design of the
appropriate control law. The designer of the controller needs to address
issues such as controllability and observability of the traffic system,
actuation and sensing, robustness, and stability of the closed-loop system
shown in Figure 1-5.

"Actuation and sensing: The actuation of this system is achieved by the
light signal which indicates whether the vehicles can go into the freeway or
not. State variables such as the traffic density, average traffic speed, etc. can
be sensed using various types as traffic sensors such as inductive loops,
traffic cameras, transponders, etc.

Controllability and Observability: The designer should analyze the
system before designing the controller to determine if the system is
controllable and observable. Controllability implies that a suitable control
law can be devised in order obtain a desired response from the system.
Observability implies that the system state variables can be observed from
the sensed output.
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Robustness and stability: The effectiveness of the control design can be
measured in terms of its robustness, stability, and transient characteristics. A
robust controller will perform well even in the presence of uncertainties in
the nominal model of the system. Models representing traffic systems
cannot represent the system fully, and therefore there are uncertainties in the
system, which have to be dealt with. A control law should provide stability
to the system and desirable transient response.

Figure 1-8: Ramp Signal

Figure 1-9: Inductive Loops [36], [37]

7. EFFECT OF RAMP METERING

To understand the need for ramp metering, we will present here some
simulation runs. Let us consider a highway section connected to an input
actuated ramp. In this section we present a macroscopic simulation for the
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system. In macroscopic simulation we use a fluid flow model for the traffic
that is characterized by traffic density on the mainline and queue length for
the input ramp. We will not go into the details of mathematical modeling or
numerical simulation technique in this chapter. Those will be covered in
detail in subsequent chapters. The present section will use the results of the
simulation to show the importance of ramp metering. The simulation is run
using Matlab. Files oramp.m, orampdynamics.m, u.m, fcoord.m, and
rcoord.m are used in the simulations in this section. File oramp.m is the file
that is executed in Matlab. It uses the other files for the simulation. The
files are listed below.

% Ramp Metering Code
clear;

clf;

clce;

global rhom rhoc vf gain 1

% Input Parameters
1=1; The length of the freeway section

rhom = 60; % Jam density

rhoc = rhom/2; % Critical density

vE = 15; % Freeflow velocity

t0 = 0.0; % Initial time

tf = 15; % Final time

h = 0.01; % Time step

m = (tf-t0)/h; % No. of steps

x0=[35 5]; % Initial state values (traffic
density and queue length)

T=zeros(m,1); % m rows (mxl)

X=zeros (m,length(x0)); % m rows, length state columns
T(1)=t0;
f(1)=£fcoord(t0);
r(1l)=rcoord(t0);
uvar (1)=u(t0,x0);
X(1,:)=x0;
%$There are m-1 steps and m points maximum
for I=1:m-1;
tI=T(I);
clc;
tI
xI=X(I,:);
kl=h*feval ('orampdynamics', tI,xI)"'; % Runga Kutta Algo.
k2=h*feval ('orampdynamics', tI+h/2,xI+k1l/2)";
k3=h*feval ('orampdynamics', tI+h/2,xI+k2/2)"';
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k4=h*feval ('orampdynamics', tI+h,xI+k3)"';

X(I+1,:)=xI+(k1+2*k2+2*k3+k4)/6;
T(I+1)=t0 + h*I;
f(I+1)=fcoord(T(I+1));
fa(I)=£(1);
r(I+l)=rcoord(T(I+1));

uvar (I+1)=u(T(I+1),X(I+1,:));
ua(I)=uvar(I);

if (X(I+1,2)<0), % Projection Dynamic Constraints
X(I+1,2)=0;
end
if (X(I+1,1)<0),
X(I+1,1)=0;
end
if (X(I+1,1)>=rhom),
X(I+1,1)=rhom;

end

if (X(I,1)/rhom}>0.9, % Actual Variables Calculation
qout = vE*X(I,1,*0.%;

else
gout = viE*X(I,1)*(1-X(I,1)/rhom);

end

Res = gout + (X(I+1,1)-X(I,1))/h;

if (X(I+1,2)<0)&(X(I+1,1)>=rhom),

ua(I) = rcoord(T(I));
fa(I) = Res - ua(I);
end

if (X(I+1,2)>0)&(X(I+1,1)>=rhom),
ua(I) = uvar(I);
fa(I) = Res - ua(Il);

end

if (X(I+1,2)<0)&(X(I+1,1)<rhom)&(X(I+1,1)>0),
ua(I) = rcoord(T(I));
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end

end

ua (m) =uvar (m) ;
fa(m)=£f(m);

subplot (221) ;
plot(T,X(:,1));
title('Traffic Density');
xlabel('Time');

subplot (222) ;
plot(T,X(:,2));
title('Queue Length');
xlabel ('Time') ;

subplot (223);
plot(T,£,'-',T,x,"'-."');
title('Mainiine Inflow & Ramp Inflow');
xlabel ('Time') ;

subplot (224) ;

plot (T,uvar) ;
title('Control Variable');
xlabel ('Time') ;

pause;
subplot (221) ;

plot(T,ua,'-"',T,uvar, '-."');

title('Actual and Demanded Applied Control');
xlabel('Time') ;

subplot (222) ;

plot(T, fa,'-',T,£,'-.");

title('Actual and Demanded Inflow');

xlabel ('Time') ;

subplot (223);

plot(T,uvar-ua);

title('Control Difference');

xlabel('Time') ;
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subplot (224) ;

plot (T, f-fa);

title('Inflow Difference');
xlabel ('Time');

Code Listing 1: oramp.m Matlab file

function dy = orampdynamics(t,y)

global rhom vf 1
%$closed loop dynamics
if (y(1)/rhom)>0.9,
gout = vE*y(1)*0.1;
else
qgqout = vi*y (1) *(1l-y(1)/rhom);
end

dy (1) = (-qout+fcoord(t)+ul(t,y))/1;
dy (2) rcoord(t)-u(t,y);

dy = zeros(2,1); % a column vector

Code Listing 2: orampdynamics.m Matlab file

function u = u(t,x)

global rhom vf rhoc gain 1
vl=vE*(1l-(x(1)/rhom));
qoutl=v1l*x(1);

%$u = rcoord(t);

u=0;

Code Listing 3: u.m Matlab file

function fcoord = fcoord(t)
fcoord = 73*(1.5+sin(1.0*t));

% mainline inflow

Code Listing 4: fcoord.m Matlab file

function rcoord = rcoord(t)
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rcoord = 25*(1.5+sin(0.5*t)); % ramp inflow

Code Listing 5: rcoord.m Matlab file

The simulations presented here are based on the scenario of an isolated
ramp metering problem shown in Figure 1-5.

Figure 1-10: Isolated Ramp Metering Simulation

The main highway section has an inflow and a flow rate given by f. The
inflow controlled from the ramp is given by u. The ramp has a queue of
length £, and has an inflow to it given by r. The traffic density on the main
highway section is shown as the variable 0. If the traffic density reaches
the “jam density” (taken to be 60 in these simulations) then there is a traffic
jam. In the simulation presented below, we let the ramp controller not allow
any vehicles to enter the highway. The results are shown.
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Figure 1-11: Simulation Results for No Ramp Input
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This simulation shows that when the ramp controller does not allow any
vehicles to enter the highway from the ramp, the highway density value
remains much below the jam density. However, the. queue length on the
ramp keeps increasing. The simulation results when the ramg controller
allows all the cars at the ramp to enter the highway are shown below. In
simulating this scenario, we replace the line u = O in the file u.m with u =
rcoord(t).

60

40

20

0

200

150

100

50}

Traffic Density

0 5 Time 49 15

Mainline Inflow & Ramp Inflow

0 5 10 15

Queue Length

55

45

80

5 Time 49 15

Control Variable

60

40

20

Time



24 Chapter 1

Figure 1-12: Simulation Results for Open Always Ramp
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Figure 1-13: Actual versus Demanded Values of Variables for the Open Always Ramp

We see in Figurel-13 that although the queue length here remains fixed,
the mainline traffic density reaches the jam density and that causes
congestion on the highway. There are some constrains on the variables in
the simulation. For instance, the traffic density has to be positive and cannot
exceed the jam density. Similarly, the queue length also has to be positive.
Therefore, sometimes the demanded flows into the ramp and the mainline
are not always satisfied. For instance, when in a section the traffic density
has reached the jam density and very little flow is coming out of the section,
if we allow a large amount of input flow to enter the section, the traffic
density value would rise to above the jam density. This would not be
possible physically, since jam density implies that there is no more space for
vehicles in the section. Therefore, the section only can accommodate that
much inflow that does not make the density value go above the jam density.
This effect essentially causes shock waves. This can be seen in real traffic
conditions where downstream incidents affect the behavior at upstream.
These results are shown in Figure 1-14. We cover these constraint
requirements using “projection dynamics.” The details of dynamics,
numerical simulations, and projections will be covered in detail in later
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chapters. In this section, we have just seen that in one extreme when the
ramp is off, we get very large queues, and when it is on all the way, it can
create congestion. Therefore, our aim should be to design a ramp flow rate
that is a function of the current state of the system, so that we obtain optimal
performance. This book will systematically present the models, control
designs, and results of the applications of feedback control to the ramp
control problem.

8. FEEDBACK CONTROL

To understand feedback control, let us discuss the signal timing control
problem. A pretimed signal-timing plan has no feedback since there is no use
of the real-time traffic variables. Time of day signal timing plans also do not
fall into the category of real-time feedback control even if the decisions for
which traffic plans to use might be dependent on the average traffic
conditions. Although in this case there is a feedback loop, the loop is not
closed at each sample interval when data are available. A real-time signal
timing control would be the case when traffic data from sensors such as
cameras or loop detectors at every sample time (or some time interval
comparable to that) are input to a processor, which then makes immediate
decisions about affecting the traffic intersection control signals. This is very
similar to the case when a police officer directs traffic at an intersection with
his hands after looking at the queues at each time and deciding which stream
of traffic to block and which stream to let go. The police officer’s eyes do
the work of traffic sensors, his or her brain does the job of the processor, and
his or her hands do the job of signal lights.

The topic of control systems deals with dynamic systems that can be
controlled by some variables to produce a desired system behavior. There
are two types of control systems: open loop and closed loop. Open-loop
systems are generally used for planning kinds of problems, where one needs
to determine the control values for some time interval. On the other hand,
closed-loop systems (also called feedback control systems) are control
systems where the control variable is a function of the output of the system.
For instance, we might be driving a car with the aim of maintaining a
constant speed and staying in the middle of a lane. These are the two
objectives of the controller. The control actuators are the steering angle and
the throttle pedal. The driver (controller) of the case reads the speed of the
car and if it is different than the desired speed, the driver presses or releases
the pedal. Similarly, his steering angle also changes depending on how close
he is to the center of the lane. Hence, this is a closed-loop system where at
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each time, the control variables are the pedal angle and lateral deviation.
This book is concerned with the design of feedback control laws for ramp
metering systems.

Figure 1-14: Feedback Control Block Structure

Figure 1-14 shows a generic control block diagram. The model of the
system to be controlled (the traffic system in this case) is represented by the
“Plant” block. The plant can be modeled as linear time invariant (LTI)
differential equations, linear time varying (LTV) differential equations, or
nonlinear differential equations. More generally, the plant could also be
represented by partial differential equations. If we remove the “feedback”
connection shown, then the system will become open-loop control. The
controller acts on the error signal, which is generally the difference between
the desired state and what is obtained from the sensor data. There are also
some controllers that are adaptive. The adaptation mechanism allows for
real-time tuning of some controller parameters based on the input and the
output of the system. In essence, the controller calculates how the input is
affecting the output of the system in the feedback control loop, and then
changes the control parameters in realtime to further improve the
performance of the system.
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8.1 Control Design Steps

The first step in control design is to come up with a mathematical model
of the system to be controlled. These models are usually represented in terms
of differential equations where the state variables represent various physical
entities of the system. For instance, in vehicle control, the speed of the car is
a state variable. The model thus obtained can be analyzed and a control law
designed. The model of a system is obtained either from basic principles or
by data fitting. Conducting experiments on the system, collecting the data,
and then performing some data fitting obtain the parameters of the model.
Detailed knowledge of the system to be controlled is the most important
aspect to a successful control. Design should be given the most importance.
Once the control law is designed, it can be tested in simulations with the
mathematical models and then on the actual system. With the advent of
microprocessors and sensor technology, most of the control implementation
is based on their usage. Microprocessors are used to read the sensor values
and control the actuators. The control algorithms are written in assembly
language or a higher-level language like C.

Control systems are generally designed using either ordinary differential
equations or difference equations. The following section gives a brief
introduction to both.

8.2 Ordinary Differential Equations

The relation between a variable and its derivatives with respect to ar.
independent variable is called an ordinary differential equation (ODE). In
control theory problems, the independent variable is time ¢. An example of
an ODE is

y+2ty-35" =0 2)

The highest degree of the dependent variable x defines the degree of the
system. Equation (2) has the degree 3. It is a nonlinear ODE because of the
presence of the term ¥, and it is time varying (inhomogeneous) due to the
presence of the time variable ¢ in the second term. This ODE can be
represented in a vector differential equation form

x = f(t,x(1) 3

where x is the state variable vector, x =[x,,...,x, 1=y, y,..., y"_l 1", and n
is the system order, which is 3 for this case. We can rewrite (2) now as
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X, =X,
X, =X, 4

X, =3x} - 2x,

which is of the form (3) with f(z,x(?)) =[x,,x, ,3x§ - 2tx2]T. In general,
if f(¢,x(#))is linear in x, it is called a linear system; otherwise, it is
nonlinear. Moreover, if it is independent of ¢, it is called time invariant;
otherwise, it is called time varying. The initial values problem for an ODE is
the problem of finding the value of x(t) for all future time, when system (3)
is given with the value of x at initial time.

8.3 Difference Equations

The general form of a vector difference equation is similar to (3) and is
given by

x(k +1) = f(k, x(k)) )

where k is the sample time instant. Instead of derivatives in continuous
times, we have time incremented terms such as x(k +1),x(k +2), etc.
Difference equations are classified the same way, as are ODE. For difference
equations, we are also interested in initial value problems.

8.4 Feedback Control Example

Figure 1-15: Feedback Control Example

Mathematically, feedback control laws are designed so that the control
variable is a function of the sensed variables, and the error variable goes to
zero in time. Let us consider a simple model for the longitudinal cruise
control for a car as shown in Figure 1-15.
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The tractive force driving the car is given by F, which is the control
variable (and can be controlled by the throttle angle in the engine intake
manifold). R represents all the resistance to the car longitudinal motion and
includes the air drag and other resistances like rolling and grade resistances.
R in general is dependent on the car speed. M is the mass of the vehicle and
g is the acceleration due to gravity. If we denote x as the velocity of the car
(state variable for the system) and x, the desired speeds, then we can write
the differential equation for the system as

R(x,t) N F@)

R VIR

(6)

Our aim is to design a control law that will take the error variable defined
as e(t) = x(t) — x,(t) to zero. Since the desired cruise speed is constant, we
have

x, ) =0 M

Subtracting (6) from (7) yields

R(x,t) N F@)

e(t)y=- 8
) v; Y, ®)
Now, if we take the control law as
R(x,t
Fo) = M= 22 ke(r) ©

then by substituting this equation in (8) we obtain the closed-loop dynamics
of the system as

é(t) = —ke(t) (10)

The solution of this differential equation is easily obtained by integration
and is given by

e(t) = e(0)e™ (11)

This shows that e(f) will go exponentially to zero if we choose k to be a
positive constant in the control law (9). This plot of e(z) is shown in Figure
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1-16, where ¢ is the x-axis, and e(?) is on the y-axis starting from an initial
value of 0, and with a value of 1 for £.

This example was easy, but in general, there are many complications in
designing control systems. For example, usually the problem will have a
higher order than this system. The number of control variables can also be
more than one. There can be uncertainties in the system, implying that the
controller does not have exact knowledge of the parameters such as M and R.

Figure 1-16: Plot of e(t)

9. SUMMARY

In this chapter, we studied:
e what ramp metering is

e how ramp metering is useful for traffic congestion control

¢ what researchers have done in this area

¢ various types of ramp metering problems

¢ what feedback control is and how it can be useful in ramp metering,
e some supporting simulation results

o brief introduction of ordinary differential equations and difference
equation
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10. QUESTIONS

[a—

. What is ramp metering and why is it important?

Give two objectives that a ramp metering control law should satisfy

3. What is the difference between open-loop and closed-loop traffic
control?

4. What is feedback control, and how can it be applied to ramp metering?

5. What kinds of sensors are used for traffic surveillance, and what traffic

variables do they sense?

What are some mechanisms to control traffic behavior?

Explain why one of the objectives of ramp metering control is to keep the

freeway density below critical level. (Hint: Use fundamental diagram)

8. What are the types of ramp metering problems and the ways to provide
ramp control?

9. Choose one ramp metering strategy. Define the performance measures
that are used to evaluate the ramp control.

10. Name possible drawbacks of ramp metering. How can those drawbacks
be dealt with? Give (at least) one suggestion.

11.For a closed-loop ramp metering control, define state variables, input and

output variables. Show the system in simple block diagram form.

N

N

11. PROBLEMS

1. Take the file named u2.m and change the name to u.m and run the
program. Compare the results (plots) with Figure 1-11 and explain the
differences. And give the advantages of ramp metering control from the
results.

2. Using the parameters given in the diagram write down the projection
dynamic constraints for a ramp metering problem. (Hint: 1) Use 1 min
time steps, and take the length of the freeway section as 1 unit) 2) Study
the simulation code in section 6.
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Chapter 2
DISTRIBUTED RAMP MODEL

This chapter introduces the conservation-based Partial Differential
Equation (PDE) model for the highway ramp system. Various static and
dynamic equations are used to describe the relationship between traffic
velocity and traffic density. A numerical model for simulation is presented
for the PDE and some basic simulation results are shown.

1. CONSERVATION EQUATION

Figure 2-1: Highway Section to Illustrate Conservation Equation

The conservation equation lays the foundation for any mathematical
model used for traffic systems. Essentially, it implies that vehicles cannot be
created or destroyed in any section of the system. This is true everywhere
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except at the source nodes where the traffic is generated and the sink nodes
where the traffic ends. Let us study the highway section as shown in Figure
2-1. In this figure, we see a highway section of length Ax. There is some
traffic inflow into the section from the left that brings in vehicles into the
section, and traffic flow out of the section that takes out vehicles from the
right. Let us consider an amount of infinitesimal time At and consider the
conservation law during that time. Let the total number of vehicles in the
section at time ¢ be given by N(z). At time, t+Ar the number of vehicles is
given by N(t+At). Therefore, the change in the number of vehicles in time
At is given by

Change in the number of vehicles in the section = N (¢ +At) — N(t) (1)

Let the flow of traffic be given as a function g(z,x). This function
indicates the number of vehicles flowing in the direction of traffic flow in a
given unit time. The number of vehicles that enter the section in a given
infinitesimal time At is g(z,x) At. Similarly, the number of vehicles leaving
the same section at the right-hand side (in Figure 2-1) is given by
q(t,x+Ax) At. Therefore, we have the following relationship.

Change in the number of vehicles in the section =
[q(t,x) —q(t, x + Ax)]At )

We see that we can equate the right-hand sides of equations (1) and (2) to
obtain

N(@t+At) - N@) =[q(t, x) - q(t, x + Ax)]At 3)

Now we will consider a fluid model representation of the same highway.
This is called a hydrodynamic model where we consider the traffic to be a
continuum rather than discrete vehicles. This model is shown in Figure 2-2.
In this model we use O(t,x) to indicate the traffic density as a function of
time ¢ and position x on the highway. If the section length Ax is
infinitesimal, then we will have:

N(@) = p(t,x)Ax )
Using (4) in (3) gives us the following equation:

[o(t +At,x) — p(t, x))Ax = [q(t, x) — (1, x + Ax) At )
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Figure 2-2: Traffic Continuum Model
Rearranging equation (5) yields
[p(r +At,x) = p(t,x)]/ At = [q(t, x) = q(t, x + Ax)]/ Ax Q)

Taking the appropriate limits on both sides, and moving the right-hand
side expression to the left gives

[p(I+At’x)_p(t’x)] + [Q(I’x‘*'Ax)_Q(t,x)]
At Ax

LtAl,Ax—->0|: ] =0 ()

Equation (7) can be written in the following conservation equation form:

dp(t,x) + dq(t, x) _
ot ox

0 (®)

Another way of deriving the conservation equation is as follows. The
change in number of vehicles in the section of length Ax is given by

x+Ax

d
— £,0)dl 9
7 [p( td )

The change in the number of cars in this section is also equal to the
number of cars going out of this section subtracted from the number of
vehicles coming in, as shown below:

x+Ax

d
— [ et = gx0) - qx+ &) (10)
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Now, we can use the fundamental theorem of calculus to rewrite equation
(10) as

x+Ax x+Ax
J* aﬂ(l’ D1 .[ 34(3 D 10 an

Note that instead of the interval x and x + Ax we could have used any
interval from a to b, and the same analysis would work. Consequently, we
obtain (8) from (11).

Conservation equations have been studied extensively and we refer to
Refs. 1,2 and 3 as they relate to traffic flow.

2. DENSITY-FLOW RELATIONSHIP

Many models have been proposed to represent the relationship between
traffic density and traffic flow. The following is a brief description of some
of these models.

2.1 Greenshield’s Model

In Greenshield’s model, the speed density relationship is a linear
relationship given by [4]

v=vf(l— P ) (12)

max

Traffic flow, traffic speed, and traffic density have a fundamental
relationship that is true in any model. These variables are related as

q=vp (13)

Therefore, for Greenshield’s model

q=pvf(1—pp ) (14)

max

The relationships between the three variables are shown in Figure 2-3. In
the first plot in the figure, we see that the slope of the flow density
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relationship is equal to the free flow speed. This can be shown by
differentiating (14) to obtain

(15)

The value of this slope at 0 =0 is v,. We can obtain the maximum
flow o, by equating (15) to 0. That gives us the value of the density 0, at
maximum flow as

P
= Mmax 16
Pe="7 (16)

We also obtain

_ vfpmz\x

= 17
G max ) 7

Figure 2-3: Traffic Flow vs. Density
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o,
Figure 2-4: Traffic Speed vs. density
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Figure 2-5: Traffic Flow vs. Speed

2.2  Greenberg’s Model

In the Greenberg model [5], the speed density relationship is given by

v=vy,ln

( p

)

max

2.3 Underwood’s Model

In the Underwood model [6], the speed density relationship is given by

T
Po

V=Vf€

Vs

41

(18)

(19)



42 Chapter 2

24 Northwestern University Model

In the Northwestern University model [7], the speed density relationship
is given by

-y~
v=vfe%/"’ (20)

2.5 Drew’s Model

In the Drew model [8], the speed density relationship is given by

ntl
v=v, 1-(/)” ) @1

Drew’s model is a generalization of earlier models, where taking the
value of n = 1 gives a linear model, n = 0 gives a parabolic model, and n = -1
gives an exponential model.

2.6 Pipes Munjal Model

In the Pipes Munjal model [9], the speed density relationship is given by

V:vflil—(pp J (22)

The Pipes Munjal model, like Drew’s model, also is a generalization
where by taking different values of n, we obtain different models.

2.7 Multi-regime Models

In multiregime models [10], different regions of traffic are modeled by
different equations. For example, congested regions and uncongested regions
might use different models.
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2.8 Diffusion Models

In order to account for the fact that drivers look ahead and modify their
speeds accordingly [11], (12) can be replaced by

v, =v,[1- ]D[ ]/ 23)

max

Using (23) and (13) we can write

t, dp(t,
q(t, x)= Vf,O(t, x)(l _ p( X)] _ D( p( x)j 24)
o ox
Here D is a diffusion coefficient given by
D=n? (25)

In (25), v, is a random velocity, and 7 is a parameter. Diffusion is a
useful concept mentioned by many researchers as an extension to the
existing traffic flow models to improve their realism [11, 12, 13]. Diffusion
term represents “the diffusion effect” due to the fact that each driver’s gaze
is concentrated on the road in front of him, so that he adjusts his speed
according to the concentration ahead. This adjustment creates a dependence
of flow on concentration gradient that leads to an effective diffusion. This
models the gradual rather than instantaneous reduction of speed by the
drivers in response to the shock waves. Combining (8) and (24) gives

2

[a Pl +v, — (xt)] P ap(xt) Da2p(xt) 0
ot o) ox

7 ox

max

(26)
If we introduce a moving reference frame

E(xt)=-x+v,t 1))

and non dimensionalize p(x,t)by p_,. /2, and t by t,, equation (26) is
transformed to
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3. MICROSCOPIC TRAFFIC CHARACTERISTICS

Macroscopic traffic dynamics represent traffic in terms of traffic density,
flow, and speed. We can also view traffic in terms of its microscopic
characteristics, i.e., studying individual vehicle behavior, fortunately there is
a link between the two as presented below.

Microscopic traffic characteristics are described in terms of the car-
following models [20-22]. The car-following model is developed based on
Figure 2-4. The vertical double line is a reference from where the x-axis
distance for cars is calculated. We show the situation where car n+l is
following car n. L is the distance between the two cars at rest and is a
constant. The variable 4 is the headway distance between the cars. The car-
following model is based on assumptions of how human drivers vary 4 as a
function of other variables.

Figure 2-6: Car-Following Model

For example, if we make  a linear function of the speed of the follower,
we obtain

X, =X, =kx,  +1L (32)

n n+l
Here k and L also are constants. By differentiating (32) we get

. |
xn+1 :;[xn _xn+1] (33)
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Figure 2-6: Car-Following Model

For example, if we make h a linear function of the speed of the follower,
we obtain

X, —x,, =ki, +L | (32)

n n+l1

Here k and L also are constants. By differentiating (32) we get

. Ir, .
‘xn+l = ;[xn - xn+l] (33)

This model is enhanced by introducing a driver delay 7 to the stimulus
provided by the leader car. We also replace (1/k) by another variable A
called the sensitivity. Using this, (33) takes the form

%, @t+7)=Ax, (0)-%,,, @) (34)
where
)» — j- [xnﬂ (t + T)] (35)

* [x, ) - %, 0OF

Here, m, and L are integer values and A, is a constant. It is very remarkable
that we can obtain the macroscopic models by choosing different values for
m and L and then integrate Equation (34). For Greenshield’s model m=0, and
L=2 and for Greenberg model, m=0 and L=1. For example, let us take m=0
and L=2 in (35). We get

[, @)~ %,.,®]
[x,®) - x,., )

X, +7)=4,

(36)

Integrating the above, we obtain

A

: S N—,
e (37)
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where C is a constant of integration. We use the relationship between
average space headway and traffic density as
1
X, -x, =— (38)
o
and also consider steady-state conditions so that

X, t+0)=x,0)=Vv 39)
Using (38) and (39), we obtain

v=-4,p+C (40)

By using the boundary conditions such that v=v at p=0and v=0at
P = Py » WE Obtain

v=vf(1—pp ) 40

which is the same as the Greenshield formula. Similarly, there is a
correspondence between various microscopic and macroscopic formulas.

TRAFFIC MODEL

We will use the following notation from [23]:

ou du 0%u
u,=3t—,ux=€r-,and uu=—ax—2 (42)

The traffic problem in the PDE (partial differential equations) setting is
given by

)

—P(x,t)=——a—q(x,t), —co<x<o, <t <00 43)
ot ox

with the initial condition
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P(x0)=9(x), 0<t <o (44)

We can write

9 g dp
A" 45
ox dp ox ()
or
dg dap
L =c(p)= 46
o c(p) P (46)
where
%)
c(p) === @7)
dp

Substituting this in (43) and using the notation (42) we get the representation
of the traffic dynamics as

PDE: p, +c(p)p, =0, —c0o<x<0, 0<t <00 (48)
IC: p(x,0)=@(x), —o<x<0= (49)

Here, IC stands for initial condition. In this model [(48) and (49)] we are
using an infinite length highway. If we want to model a finite length model
with length L, we would use the following model:

PDE: p, +c(p)p, =0,0<x<L,0<t<oo (50)
IC: p(x,0)=¢(x), 0<x<L &)
BC: p(0,t)=w(t), 0<t<oo (52)

Here, BC stands for boundary condition, which dictates how the traffic is
entering the highway section.
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4. CLASSIFICATION OF PDE

In this section we will classify the traffic problem. In order to do that, we
first present the basic information on PDEs [23 - 25].
Variables: In (48 and 49), o is the dependent variable, which depends

on the two independent variables x and t. We can have systems of PDEs
which contain more than one dependent variable. We will encounter
problems like this in traffic routing.

Order of PDE: Order of a PDE is the order of the highest partial
derivative. In (48), the order of the PDE is 1.

Linearity: PDEs are linear if the dependent variable with all its
derivatives appears linearly in the equation. For example, a second-order
linear PDE in two independent variables x and y is

Au, +Bu,+Cu, +Du, +Eu, =G (53)

Where A, B, C, D, E, F, and G are either constants or functions of the
independent variables x and y (but not  or any or its derivatives). If G(x,y) is
identically zero, then (53) is called homogeneous, otherwise it is
nonhomogeneous. If a PDE is not linear, then it is nonlinear. If any of A ,B,
C, D, E, F, and G is a function of u or any of its derivatives, then this
equation is called quasilinear. If only G is a function of u, and if A, B, C, D,
E, F are independent of u, then this will be called an almost-linear PDE. If
only linear second-order PDEs like (53) are of the following three kinds.

Parabolic: If a PDE like (53) satisfies B> — 4 AC = 0, then it is
parabolic. Heat flow and diffusion equations are of this type, e.g., u; = uy,.

Hyperbolic:If a PDE like (53) satisfies B* - 4 AC > 0, then it is
hyperbolic. Vibrating systems and wave motion equations are of this type,
€.g., Uy = Uy

Elliptic: If a PDE like (53) satisfies B> — 4 AC < 0, then it is elliptic.
Laplace’s equations is an example of this kind, e.g., uy, + u,, = 0.

The traffic problem (50) is a nonlinear first-order PDE with two
independent variables and one dependent variable. It is also classified as a
quasilinear PDE since the nonlinear element c(0) enters linearly in the
equation.

Boundary Conditions: These are three types of boundary conditions. In
one condition (Dirichlet boundary condition or the boundary condition of
the first kind), the value of the dependent variable is specified, in the second
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kind (Neumann boundary condition or the boundary condition of the second
kind), the gradient of the dependent variable is specified, and in the third
kind (Robin boundary condition or the boundary condition of the third kind),
a sum of the first two is specified. For example

u(,t)=g,(t); u(L,t)=g,() G4
is a Dirichlet boundary condition.

u,(0,0)=g,(®); u,(L1)=g,() (55)
is a Neumann boundary condition.

u(0,t) +u (0,1) = g(z) (56)

is a Robin boundary condition.

5. EXISTENCE OF SOLUTION

After the physical system like the traffic problem is modeled, the well-
posedness of the model is to be addressed. A problem is well posed if

1. A solution of the problem exists

2. The solution is unique

3. The solution depends continuously on the data of the problem
The existence of a solution for the traffic problem can be studied by
analyzing the following PDE:

P(t,x,p)p, + 0@, x,p)p, = R(t,x,p) 57

where P, Q, and R are functions defined and C' in some domain belonging to
R®. C' functions are those functions that are continuous with continuous
partial derivatives up to order 1. The solution of this problem is a function
exists O(t,x)is defined and C' in some domain belonging to R?, so that
when it is substituted in (57), it gives identity for all (¢,x) in the domain.

Let us consider the characteristic equation for

ut,x,p0)=0 (58)

We parametrize the curve generated by the solutions as
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=1(z), x=x(7), p=p(7) (59)
Since u is a constant, we obtain

du ot au ox o ou du dp

60
o az' ox 97 dp ot (60)

—u(t(T) x(7), p(7)) =

ou
“p %o+ R=0
o +axQ+8,0

where

P:———,Qz—, R=-—"— (61)

We can solve the problem by using (61) as

dr_dx_dp 62)

P Q R

Applying the implicit function theorem' on (60) gives

! ImPllClt Function Theorem: Let F be a variable of three variables of class
in an open set O given by
F(xyz)=C

Then z can be solved in terms of x and y for (x,y,z) near the point
(x0.Y020) if F,(xy,¥4,2,) # 0. Moreover,



2.Distributed Ramp Model 51

u

p=-—t, p=-—* (63)
u, u,
Therefore,
Pu, +Qu Ru
Pp, +0p, =1t R g (64)
u, u,

which shows that the characteristic equation method does solve (57).

5.1 Traffic Problem

Let us analyze the following traffic problem for the existence of a
solution from (48-49).

p,+e(p)p, =0 (65)
IC: p(x,0)=¢(x), 0<x<L (66)
To find the solution, we use (62) to obtain

a_a _dp
1 cp) O

(67)

Solving these ODE’s (ordinary differential equations), we get two
independent solutions as

u =p, u,=x-c(px, (68)

If u; and u; are two independent solutions of the PDE, then F(u;,u,), which
is an arbitrary C' function of u; and u, and provides the following general
integral of the PDE.

F(ul(t7x7p)7u2(t7x7p)):0 (69)

We can take a specific form of (69) as
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u2(t’x’p)=G(u2(t’xap)) (70)

So, using (69) and (70) with (68) we get the following as the general integral
of (65).

p=G(x—-c(p)) (71)
For this solution to satisfy the initial condition (66), we obtain

p=px—c(p)) (72)
Equation (72) can be rewritten as

p—¢(x—c(p))=0 (73)

From the implicit function theorem, the solution for 0 in terms of ¢, x is
implied by (73) if the following condition is satisfied:

1+c'(p)d'(x—c(p)t) #0 (74)

Here the prime implies that the differentiation is to be performed with
respect to the variable in the parentheses. Now at initial condition, t=o.
hence, at t=0, the left hand side of (74) > 0. This implies that the solution
will exist as long as left hand side of (74) > 0, and as soon as it becomes
equal to zero, the solution ceases to exist. When this condition is not
satisfied the derivatives of the traffic density becomes infinite creating a
discontinuity in the solution, which is called a traffic shock. This condition is
restated as

1+c'(p)g'(x—c(p)t) >0 (75)

If we use Greenshield’s formula (14), and using (47), we get

v
C(p)=§i=V,—2 L p (76)
dp P

Differentiating (76) yields
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_9c(p) _
dp

Y (17)

max

c'(p)

Substituting (77) in (75) gives

Vy

1-2 t¢'(x—c(p)t)>0

P max (78)

Notice that if ¢'(x) <0 for all x, then (78) is always satisfied, and no
shocks or discontinuities will be created for any ¢ > 0. However, if
@'(x) > 0 for any distance, a shock will be developed after some time. The

next section illustrates how to analyze the traffic PDEs for solutions and
shock waves.
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6. METHOD OF CHARACTERISITICS TO SOLVE
FIRST ORDER PDES

We can use the method of characteristics to solve a first-order PDE of
the form

a(x,t)ux + b(x,t)ut + c(x,t)u +0 (79)
Notice that if we make a function of a variable s, then

d
ds d d

If we compare (79) and (80) we can choose

% =a(x,t1), —3—{ =b(x,t) @81

s

Thus the PDE (79) is transformed into the ODE (82).

ﬂ +c(x,Hu=0 (82)
ds

This can be solved with the initial condition given in terms of another
variable m. the variable m changes along the initial curve, such as the curve ¢
= 0, and the variable s will change along the characteristics curve. We will
notice below that for the traffic problem s will be the same as ¢, and the
variable m is the initial density on the highway, which is propagated over the
characteristic curves.

Comparing (79) to (65), we notice that u in (79) is the same as © and
b(x,t) = 1. Since b(x,t) = 1, we get from (81) that s = ¢, and therefore, we get
again from (81)

dx
= _ 83
. c(p) (83)
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Along the characteristic, 0 remains constant and is equal to p,. This

method lets us follow a traffic density given at initial time. We follow the
density in time and space. We can rewrite (83) as

dx
o c(0,) (84)

Integrating this equation, we get
x(t) = c(0,)t + x(0) (85)

which is a straight line with the slope c(0,). We can also derive these

characterisitics in the following way. We want to track a constant traffic
density, which is given by

Px(),1) = p (%y,0) = p, (86)

Here the x(t) and ¢ are the variables which show how the constant
density is moving in the x ¢ plane. Therefore 0 is constant along a curve in

the x ¢ plane and this curve is called the characteristic curve. We can
differentiate (86) to obtain

dp(x(0),1) _ 9p(x(t),1)  Ip(x(1),1) Ix(t) _
dt dt dx dt

0 &7

Substituting (65) in (87) we again get (84).

: d
The slope of the curve (75), given by c(p) = 5‘1, is called the local
/4

wave velocity for p,. It shows how disturbances travel in the traffic. Notice

that the disturbances can travel forward or backward in x. Obviously the
local wave velocity is not the same as the average traffic velocity v which
only moves forward.
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Example 1: Let us consider the traffic system given by

p,+e(p)p, =0

where, using Greenshield’s model, we have

d v
c(p)=st=v,-2—Lp

op

max

Let the initial condition given by (Figure 2-7)

1 x<0
p(x0)=91-x 0<x<]l —oo<x<oo
0 1<x
A
p

0 1

Figure 2-7: Initial Traffic Density
The slope of the characteristic curve is given by

Vs
c(py) = Vs _2p_po

m

Chapter 2

(88)

(89)

(90)

€2Y)

Therefore, for p, =0, the slope is given by v. Note that for p, < p, /2,

the slope is positive and for p, > p,, /2, it is negative (showing back
propagation of the wave). The propagation of the traffic densities for this

problem is shown in Figure 2-8.
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time

A}

0 1 X

Figure 2-8: Traffic Density vs. Time

The characteristics of the same problem in the ¢ x plane are shown in Figure

g

Po(0) Po(1)

Figure 2-9: Traffic Density Characteristics

Example 2 (shock formation): Let us consider the traffic system given by
p, te(p)p, =0 (92)

where, using Greenshield’s model, we have
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0 %
a(py=st=v, -2—Lp ©3)
op P max

Let the initial condition be given by (Figure 2-10)

1 x<0
p(x0)=<1-x 0<x<]l -o0<x<o (94)
0 1<x
A
p
0 1 X

Figure 2-10: Initial Traffic Density
The slope of the characteristic curve is given by

Vs
C(po)‘:vf _2;_'/)0 (95)

m

The propagation of the traffic densities for this problem is shown in Figure
2-11.
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tim

v

-

-

=

v

o
x

Figure 2-11: Traffic Density vs. Time

The characteristics of the same problem in the ¢ x plane are shown in Figure

R
1/ /\k\\\\\ >

1

0
£,(0) Po(D

Figure 2-12: Traffic Density Characteristics

This example shows that a discontinuity (shock) is created sometime after
we started with a continuous density profile with positive gradient. We can
see that after the shock is formed we have multiple values of density at each
x and ¢ (above the horizontal line in Figure 2-12). The question which needs
to be answered is how does the shock propagate after it is formed. This is
addressed in the next section.
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7. TRAFFIC SHOCK WAVE PROPAGATION

We will develop the shock propagation equation in two ways. The first
way presents the development in an intuitive way and the second uses the
conservation equation in the integral form to derive the equation.

Shock waves show how discontinuities in the traffic are propagated. To
understand this, let us consider the highway section shown in Figure 2-13. In
this figure, the highway is divided into two separate homogenous sections,
one with density 0, and the other with density p,. The line separating the
two regions is traveling with the velocity v. To derive the expression for v,
we use the fact that the flow going into the line should be equal to the flow
coming out from the line.

Figure 2-13: Traffic Shock Wave

The speed of vehicles on the left of the line relative to the line is v; — u and
for the vehicles on the right is given by v, — u. Hence, we obtain

o, —u)=p,(v, - u) (96)

Using the fact that p,v, = g, and p,v, = ¢q,, we obtain

q, 4,

u=———

Py = P 97)

Notice that if we consider a continuous change in flow and density, then we
can use

49,=9.9,=q +tAq, py=p, p,=p +Ap,whereA—0 (98)

Using (98) in (97) gives
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u=
dp (99)

Hence, the slope of the flow density curve gives the shock wave speed.
For the uncongested region, the slope is positive (the shock wave travels
forward), and in the congested region, the slope is negative giving a
backward traveling shock wave. This is shown in Figure 2-14.

Figure 2-14: Shock Wave Analysis on Flow Density Curves

This figure shows two curves: the curve with the higher value of
maximum flow is for section 1 of Figure 2-13 and the other curve is for
section 2, indicating a sudden drop in the capacity. Since at the bottleneck,
q, is greater than the maximum flow possible in section 2, we achieve ¢, the
maximum value in the section. The slope from point B to point A shows a
negative value, giving a backward traveling shockwave. Note that we can
use various models for speed density relationships to determine the shock
wave speeds.

Now we will present the alternate method to derive (97). We study the
traffic propagation along a characteristic defined by a curve x = s(t) in the ¢ x
plane. Figure 2-15 shows that the shock is created at time ¢ and then
propagates along the dark arrow. To find out at what speed the shock wave
travels after it is created, we will consider the shock path curve (which in
Figure 2-13 is a straight line but in general can be a curve) as shown in
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Figure 2-16. We can apply the conservation equation in the integral form
knowing that there is a discontinuity at x = s(z) at time .

ds(t) d b
— ,)dx +— ,dx =g(a,t)—q(b,t 100
= {p(x ) dtsif’(" )dx = g(a,t) - q(b,t) (100)

=

> X
Figure 2-15: Shock Wave Propagation
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Figure 2-16: Shock Path

We apply Leibniz’ rule to (100) since the limits of integration involve
variable t, to obtain
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s(r) b

j 0, (x,t)dx + j 0, (x,)dx + p(s+,t)£—— p(s_,t)-d—s (101)
st st

a s(t)

=q(a,1)~q(b.1)
Here s(t) is called the shock path, ds/dt is called the shock speed, and the

magnitude of the jump in the traffic density is called the shock strength.
Notice that p, is continuous from a to s(¢) to b. Hence, if we take the limits

a—s(t)” and b— st)*,

i{ — ‘I(S+J)—‘I(S_,t)
st P(s+,t)"P(s_at)

we get (102)

which is the same result as (97).

8. TRAFFIC MEASUREMENTS

Traffic variables such as traffic flow, traffic density, and traffic speed
are needed to use traffic control measures. There are many traffic sensors,
loop detectors being traditionally the most commonly used. Loop detectors
provide measurements on the spot for a fixed point or section of the road.
Some new detectors like the video cameras provide more distributed
information. The understanding of the following terms is necessary to be
able to design and implement effective controllers.

8.1 Time Mean Speed

Time mean speed is the arithmetic mean of the speed of vehicles passing
over a point (which could be measured by a loop detector, or some other
traffic sensor). The time mean speed is defined as

— 1 n
U time z—zu,
i (103)
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where
n = number of vehicles passing the detector or a point on the road

ui = speed of the i vehicle

8.2 Space Mean Speed

Space mean speed is calculated by dividing the total distance traveled by
some number of vehicles divided by the total time required by all those
vehicles to travel the same distance. This measurement can be done by
having two loop detectors kept at a fixed distance apart and making
measurements on those. The space mean speed is given by

W space = :’L == (104)
Dt Y Mu)
i=1 i=l
Where

L = length of the section of the road

t; = time taken by the i™ vehicle to traverse the distance L
Space mean speed is used more in traffic engineering and can be derived
from time mean speeds (requiring only one detector) using a statistical
relationship between the two as [23]

— — 62 -
time
U space = Utime — —= (105)
U time

where Oy is the variance about the time mean speed.

83 Time Headway
Time headway is given by the difference between the times two

consecutive vehicles (leading and following vehicle) pass the same point
(e.g., loop detector) on the road.

8.4 Space Headway

Space headway is the distance between the front of one vehicle and the
front of the following vehicle.
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8.5 Flow measurements:

Traffic flow is measured by counting the number of vehicles N passing a
detector in some fixed amount of time T. The flow is given by g = N/T. we
can also calculate flow for each vehicle by measuring time headway between
the vehicle and its follower and taking its reciprocal. If A; denotes the time
headway for the i vehicle and g; the instantaneous flow for i vehicle, then

q; =1/h|'

(106)
For average flow we have
SO A S |
= =1 (107)

This equation shows that the average flow is the harmonic mean of the
individual flows.

8.6 Traffic Density Measurements

Traditionally, traffic density is not measured directly but calculated from

p==2 (108)

U space

Traffic density can also be calculated using occupancy, which is
described next.

8.7 Occupancy

With ITS distributed sensors such as cameras, many traffic variables
such as traffic density, traffic mean speed, or traffic flow in theory can be
obtained. However, it is difficult for loop detectors or spot detectors to do
the same. They use an indirect method of calculating traffic density by
measuring occupancy. Occupancy is defined as the percent of time a detector
is sensing a vehicle presence to the total time in some chosen time interval.
There is a relationship between occupancy and density. Traffic density is
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linearly proportional to occupancy. For instance, if we use number of
vehicles per mile as the unit for traffic density then, we have

5280

Ly (109)

Where ¥ is the occupancy, L4 is the effective vehicle length in feet.

8.8 Distributed Measurements

Camera sensors give us distributed information which can be used to
measure the traffic variables. The density is simply the number of vehicles
divided by the length of some section in which the vehicles are counted. We
can also calculate density for each vehicle as the reciprocal of the distance of
the vehicle from the vehicle ahead. Speed can be calculated by capturing
positions of vehicles in different time frames. Flow can be calculated by just
multiplying traffic speed and density.

8.9 Moving Observer Method

This method utilizes a moving vehicle taking measurements of variables
such as the number of vehicles passing it, and the number of vehicles it
passes. This method is not amenable for real-time traffic control in an
automated fashion.

9. SUMMARY

This chapter presented the traffic theory in a concise fashion, which
should build the foundation of the reader for designing and analyzing traffic
controllers for traffic assignment and routing.

10. EXERCISES

Questions

1: What is the conservation law for highways? Describe in words.
2: Explain the diffusion term (in equation 5) in a few sentences describing
how a human driver’s behavior relates to it?
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3. What is the difference between time mean speed and space mean speed?
What kind of errors can you expect if you use one instead of the other?

4. What is the difference between time headway and space headway. Derive
relationship between the two.

5. How can a computer be used to automatically calculate the traffic
variables from distributed measurements?

6. Prove the implicit function theorem.

7. State Leibniz’s rule.

8. Why is the moving observer method not useful for real-time traffic
control?

9. What is the advantage of diffusion models over the other density flow
models?

10. Why do we use PDE to represent the traffic problem? (or why do we use
PDE to model the traffic?)

11. For a finite model with length L (equations 50- 52), prove that p (the

density of the highway section of length L) is a dependent variable, which
depends on the independent variables x and ¢.

12. Why is the density not measured directly? And how can the density be
calculated indirectly?

Problems

1. Write down traffic flow q in terms of traffic density by utilizing equation
(2) and (3). Find out the value of the traffic density at which the traffic flow
is maximum.

2. If we write the Greenshield’s model as

i

v, =v,(1-17,), where 7, =P

mzx

then using (13) in (97), show that u =v [1—(7, +7,)]; note that this

formula can be used to study the following three cases:



68 Chapter 2

a. Density Nearly Equal:
When 7, =m, ,then u=v [1-27]

b.Stopping Waves:
When a traffic light at an intersection turns red, then 1,= 1, which

gives u =—Vv,1],.
c.Starting Waves
When a traffic light at an intersection turns green from red, thenm;, =

1
1, which gives u=-v,7,. Since 77, =1-(-%), we get u=-v, +v,.
v
f
Note that velocity v, is usually small and can be neglected.

3. On one section of the I-81 corridor in Virginia, there is only one lane
available to the traffic which is flowing at a rate of 1200 vehicles/hour at a
density of 30 vehicles/mile. A truck enters the highway and travels at a
slower speed creating a local traffic density behind the truck of 60
vehicles/mile and a flow of 900 vehicles/hour. Calculate the rate of increase
of the queue length behind the truck?

L

qi n rhorritical q out

e
//u

Given: gi,(n) = 10 veh/min, g,,{n) = 8 veh/min, u(n) = 2 veh/min, g;,(n+1)
=9 veh/min, rhogic.l= 32 veh/mile, Vi= 1 veh/min

Find: The maximum number of vehicles that can be released from the ramp
at time step (n+1), (u(n+1)).
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Answer:
a) For the n-th time step,

Number of veh in the section= g;,(n) + u(n) - g,u(n) =10 +2 -8 =4
veh/min

b) Use Greenshields model to find the section’s capacity(qmas)
ThOgritical = ThOmax/2 +vvvvveveeiiieiiiieieeeiiee e, (eqn (16))
rhOomax = 2 * thogiical = 2¥32 = 64veh/mile
Gmax= (Vf*thom,)/4 =1*64/4 = 16 veh/min

¢) At time step n+1
gin(n+1) + u(n+1) + the number of vehicles in the section remained
from the nth time step <= g

gives

9+u(n+l)+4<=16 => u(n+1)<=3 . Therefore, max u(n+1) =73
veh/min
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Chapter 3

DISTRIBUTED MODELING AND PROBLEM
FORMULATION

This chapter presents the modeling for the ramp metering problem in the
distributed setting. It gives a detailed description of the dynamics and
presents its limitations. The chapter also presents the control problem
formulations in the distributed setting. The concept of projection dynamics
is used to tackle the problems associated with the model.

1. SYSTEM

The first step in the design of feedback controllers for ramp metering is
to model the system dynamics appropriately. A macroscopic model of the
traffic can effectively be used in this context. From the macroscopic
perspective, the traffic flow is considered analogous to a fluid flow, which is
a distributed parameter system represented by partial differential equations.
Mass conservation model of a highway, characterized by x € [0, L], which
is the position on the highway, is given by.

dp(t,x) N dq(t,x) _
ot ox

0 0Y)

where po(t,x) is the density of the traffic as a function of x and time ¢, and
q(t,x) is the flow at given x and 7. The flow ¢q(,x) is a function of
O(t,x) and the velocity v(x,f):.
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q(t,x) = p(t, x)v(t,x) ()

This model of a highway section is shown in Figure 3-1.

Figure 3-1: Segment of Highway Model

There are various static and dynamic models which have been used to
represent the underlying relationship between v(x,f) and p(t,x) as shown in
Chapter 2. One of the most simple models is that proposed by Greenshield
[1], which hypothesizes a linear relationship between the two variables.

v=v,(1--L-) ©

max

where v is the free flow speed and 0, is the jam density.

Now, we can also add the dynamics of the ramp itself. This will allow us
to design control laws that also take into account the ramp queues. Let us
consider the mainline highway section as well as a connected ramp as shown
in Figure 3-2.

Figure 3-2: Isolated Ramp Model

Now, we can use the conservation equation on the ramp also. Since ramp
lengths are small compared to the mainline, we choose a discretized dynamic
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model for the ramp. Let £{t) be the queue length in the ramp, u(f) be the
flow rate entering the highway mainline from the ramp, and H(r) be the
inflow entering the ramp. In time Az, the “amount” of vehicles that have
entered the ramp is given by £(¢ +At) —£(¢) . Due to the conservation law,
this should be equal to this change caused by the inflow and outflow during
the same time given by[r(¢) —u(z)]JAz. Equating the two, we get the
following equation:

Lt +At)— L) =[r(t)—u(®)]At (Y}
After taking limits, we obtain (5) and that leads to (6):

Lty ., “’L;z_“’l = Lty ,[r() - u(®)] )

L=r(t)-u(t) (6)

Here /¢ indicates differentiation with respect to time. The control
variable enters the PDE via the boundary condition. Hence, this problem is
called boundary injection control. The overall dynamics of the system now
can be written as

. (t,x)
Ao, xyw, (-5
Dynamics: Jp(t.x) + Prax 0 7N
ot _ ox
L=r(t)-u(t)
Boundary Condition: p(z,0)v, (1- P (t,O)) = f(t)+u() (8)
Initial Condition: 0(0,x) = (x) )

The initial condition is given in terms of a function that signifies a known
function. That means that the initial condition on the mainline is given. In
the modeling shown here, we have chosen Greenshield’s model for the speed
flow relationship. In general, we could have chosen any of the models that
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are shown in Chapter 2 for that. For instance, if we use Greenberg’s
formula [2], then (7) and (8) becomes

L Aty )
Dynamics: ot %) + Prn _ (10)
ot . ox
L=r()—u()
Boundary Condition: o(2,0)v, In( p(t,O)) = f(@)+u) an
Initial Condition: p(0, x) = W (x) (12)

If we use a diffusion model [3-5], we obtain

Dynamics:
2

d d p d
[-gp(x,t)+vf —a—xp(x,t):|—2p—mvf 5x—p(x,t)—Dé—x—2p(x,t) =0
L=r(t)-u(®)

(13)

Boundary Condition: 0(#,0)v,(1- P (t,O)) -D 9P = f(@)+u®)
P, ox (t.0)

max

(14)

Initial Condition: 0(0,x) = W (x) (15)
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2. CONTROL CBJECTIVE
We can design control objectives for any of the models we can create (as

shown above). We will work on the following one using equations (7), (8),
and (9). These are repeated here for convenience.

P, x)

ot x)v, (- )i
Dynamics: 9p(t, x) + Prn _ (16)
ot _ ox
L=r(t)—u(?)
p(,0)

Boundary Condition: 0(z,0)v, (1-

)= f(®)+u) a7

max

Initial Condition: ©(0,x) =¥ (x) (18)

This model uses the Greenshield’s formula (3) for speed flow
relationship. We see in Figure 3-3 below that if we can maintain the traffic
density at the critical value, we can obtain the highest traffic flow.
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Figure 3-3: Greenshield Traffic Flow Density Relationship

Based on this figure, we would like to design the control law so that the
inflow to the mainline from the ramp is such that the traffic density at the
mainline is maintained at the critical density. Therefore, our aim would be
to satisfy the following condition:

Vxe[0,L],Lt,_, p(t,x) = p. (19)

It is easier to check a scalar measure of this behavior than the condition
(19). One appropriate scalar measure is used in (16) below to show a control
design objective

Lt . [(p(s, %)~ p,)ds =0 (20)
0
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There can be many control laws that satisfy (19) and (20). We might
want to design possible control laws that minimize the control objective.
The control law then can be designed as

u(p(t,)) = argmin([ [ (p(s,x) ~ p.)* duds) @D

u(.,.) 00

This shows that the control law u(.,.) at time ¢ is a function of the traffic
density at the entire highway mainline. This makes the control law a
feedback mechanism, so that it can respond to changing traffic conditions.

In the control objectives presented in 19-21 we have only considered the
mainline. We also need to control the effect on the ramp queue length. We
do not want the ramp queue lengths to get large. Therefore, a good control
objective would give weights to the mainline effect as well as ramp queues.
Based on this, criteria (19), (20), and (21) become the following three
criteria:

{Vx €[0,L),Lt,_,_p(t,x) = p, o)
Lt__()=0
Lt,_,.[wl+ [w,(0(s,%) - p,) ds] =0 (23)
0
oo L
u(p(t,.)) = argmin([[w,€ +w, [ (0(s,x) - p,)? dx]ds) (24)
u(.,.) 0 0

It is very important to keep in mind that we are interested essentially in
feedback control laws. Therefore, our control variable, the inflow rate into
the highway from the ramp, u(t), should be a function of the state of the
system (i.e., the traffic density and/or queue length on the ramp). Of course,
we need sensors so that those variables are measured and then used by the
processor in order to calculate the control rate, which then can be used to
actuate the ramp lights.
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3. LIMITATIONS OF THE MODELS

In any of the models we have chosen, it is imperative that they retain the
essential dynamics of the system behavior. We have modeled two main
elements of the physical system. One is the “conservation principle” and the
other is the “traffic flow density” relationship. There are a few more
intricacies we have to make sure are followed. These are discussed next.

3.1 Jam Density

We have seen from Greensheild’s formula that when the traffic reaches
the jam density, the traffic velocity becomes equal to zero. The jam density
is a condition that corresponds to traffic when the vehicles are in the closest
spacing possible. Thus, the density should not exceed the jam density at all
times for all roads. Consider the following figure

f— PR o

4+—>
Ax

Figure 3-4: Jam Density Condition

In this figure we see a section that has reached jam density. Now in time
At , the inflow into the section of length Ax will be fAr. The outflow
during the same time will be g,,Ar. The outflow using (2) and (3) is given
by

o = v,p(l—pi) 25)

max

Now, since p = p,., we get q,,, = 0. This implies that if the inflow is
positive, then the traffic density of this infinitesimal section will reach a
value greater than o .
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3.2 Maximum Queue Length

Analogous to the above condition of the mainline, we can have a similar
condition at the ramp. As we have seen in (6), the ramp dynamics are given
by

?=r(t)-u®) (26)

Now, if at a certain time ¢, the length has reached the maximum value
that is possible in a ramp, and then if r(¢) is greater than u(f), then the ramp
length will reach a value greater than the maximum allowed.

33 Negative Density

The mathematical model we choose for control design should also not
allow negative traffic density. If the mainline does not have any exit ramps
and if we do not allow negative in-flows, then this condition should not
occur. We argue a proof of this as follows. The only way a negative density
can be achieved on the mainline is when there is more outflow than inflow
and the mainline density is already zero. Now, when the density is zero,
then according to (2) and (3) combined, the outflow is also zero. If the
outflow is zero, then since the inflow cannot be negative, the outflow cannot
be greater than the inflow.

34 Negative Queue Length

Looking at dynamics (26), we see that we can also have negative queue
lengths if length has reached the zero value in a ramp, and then if r(¢) is less
than u(¢). This condition also does not have any physical significance, since
length cannot be negative.

3.5 Traffic Jam Time

When the traffic density reaches the jam density, according to
Greenshield’s formula, there will be no outflow from the section. That
means that once there is a traffic jam, the section will remain in a jam
forever.
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3.6 Projection Dynamics

The solution to the above-mentioned problems is in treating the dynamics
problem in the framework of projection dynamics. Projection dynamics
essentially refers to a mechanism to force the trajectories (or integral curves)
of the system in a prespecified region. Let us say that we are given a region
K as shown in Figure 3-5 . The system trajectories should remain inside this
region at all times in order for the system to have a physical meaning for the
problem. This is similar to our case, where, for instance, the traffic density
needs to remain nonnegative at all times. Since the righthand side of the
differential equations governing our system is smooth, the dynamics only on
the boundary will dictate if the system trajectories will remain in the region
K or go outside.

Figure 3-5: Physically Viable Region K

If the dynamics of the system are not the projection dynamics, then a
trajectory starting inside the region K may go outside the region as shown by
the solid line trajectory in Figure 3-6. These dynamics need to be modified
at the boundary of the region so that the trajectory always stays inside. This
can be accomplished by modifying the vector field at the boundary so that
the trajectory, instead of moving outward, starts moving either transversally
to the boundary or it moves inside (as shown by the dashed line in the
figure).
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Figure 3-6: Physically Viable Region K and Some Trajectories

Now, we will apply this principle to our problem. Our region is shown in
Figure 3-7.

Figure 3-7: Physically Viable Region X for the Ramp Problem
A trajectory can go outside from the interior of K at eight different
places. These are the four sides and the four corners of the rectangular

viable region. These various ways are studied below.

3.6.1 Right Face
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Figure 3-8: Right Face Dynamics

Right face dynamics are the ones described in Section 3.1. In this
situation p = p__ , and therefore, we get q,,, =0. Therefore, if the inflow
f is positive, then the traffic density immediately after will exceed the jam
density value. The only way the physically viable dynamics can be satisfied
is by forcing the inflow to be zero. This essentially cancels the component
of the vector field normal to the surface K (as shown in Figure 3-8).
Therefore, the resultant vector field (or the projection dynamics) is now
given by the projection of the applied vector field onto the surface K.

Once the right face is reached, we would like the system to get out of the
jam density region. The current model does not allow that. To understand
this, let us look at the model. Let us take an infinitesimal section of the
highway as shown in Figure 3-9.

Figure 3-9: Infinitesimal Section

Now the dynamics for this section can be derived from equation (1) as
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p0) =$[q(t,x)—q,,,,, 0] @

Using (21) for the outflow, we can rewrite (23) as

20y,

) 1
p(t) = E[q(t ,X) = v, p(t)(1- P (28)

max

We know that the inflow cannot be negative. This is true because the
outflow of one section is an inflow to the next section. Outflow because of
its equation can only vary from zero to its maximum value (equations (2)
and (3)), and hence cannot be negative. The inflow can also come from the
term f that we always specify as nonnegative. In addition, at jam density, the
outflow term is zero. Thus when the system reaches jam density, there is no
way for the system to get out of it. Let us illustrate this more clearly through
(28). We can rewrite (28) by expanding the lefthand side as

pl+an-p@) 1 _ _p0)
» _Ax[q(t,x) v, ()1 P )] (29)

max

Now we can collect terms to one side to get the traffic density as

p_(tl)]

max

P+ A1) = pl0) + 2olg(t.0)=v, PO - G0y

Let us say that at time T, the density of this section reaches the jam
density. This means that the system is now operating on the right face.
Then the density at an infinitesimal time after 7" will be given by

T +80) = Py, +2g(T, ) G1)
Ax
Since
g(T,%)>0 32)

we get the following constraint:

PT+A)2 P, (33)
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Since we are at the right face, we add the projection dynamics to force
(32) to become the following equality:

q(T,x)=0 (34)
Using this projection constraint, we see that we will get
P(T +48) = P, (35)

The analysis from (27) to (35) has shown why when the section reaches
the jam density, the system is stuck at that density. This shows that the
Greenshield model is not appropriate for the behavior after a traffic jam. We
can add a diffusion term to the velocity equation so that the vehicles can
diffuse out of the section after a traffic jam. As shown in the previous
chapter the diffusion term addition will give us the following formula for the
velocity:

WT)=v, (1 _P (T)j - D(i‘l)/ o(T) (36)

dx

max

Using this in (2) gives us the following formula for traffic flow:

Qo =V fp(T)(l— P (T)) - D(a’o (”’x)) G7)

ox

max

By addition of the diffusion term, we see that at time 7 when the traffic
jam has happened, we will have

.= —D( 900, x)) (38)

ox

When the gradient of the traffic density is negative, i.e. when the traffic
density at the downstream is less than that at the section, then the outflow
will be positive. Thus in that case the traffic density in the section would be
reduced if the outflow were greater than the inflow. On the other hand, if
the inflow were greater than the outflow, then the inflow would be forced to
be equal to the outflow, so that the traffic would stay at the jam density.
Hence, when the system trajectory reaches the right face, after some time
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spent on the boundary, the trajectory might come back to the interior of the
region as shown in Figure 3-10 .

Notice that based on (37), it is possible for the outflow to be negative.
Therefore, we have to choose the parameter D in such a way that that
condition never happens. We have to choose D based on the experimental
data, and of course, in order for the outflow to be nonnegative, it should at
the least satisfy the following constraint:

D<v, p(T)(l -L (T)J/(ap ;”x)) (39)
X

Using this in (37) gives us the desired condition:

Qou 20 (40)

Figure 3-10: Right Face Viable Dynamics

Notice that there is a very important constraint on the outflow. That
comes from the section right at the downstream of the section under
consideration. The section at the downstream can put constraints on the
outflow of the upstream section. If the downstream section has already
reached its jam density, then the outflow from the section will be zero. This
effect is valid for behavior everywhere.

3.6.2 Left Face
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Figure 3-11: Left Face Dynamics
Left face dynamics are the ones described in Section 3.3 on negative
density. When the system has reached the left face, then the traffic density is

zero. The dynamics of the infinitesimal section whose density is zero is
again given by

LLON)

. 1
p@) = E[q(t,x) —v,p0)1- o (41)

max

This equation is valid when there is no diffusion considered. Now, since
the density is zero at time instant T, we will get

1
t)=—q(T,x 42)
PO = q(T,x)
Discretizing in time, we get
At
p(T +Ar) = p(T)+ Eq(T, x) (43)
which for the condition of zero density is the same as

o(T +Ar) = %q(T, x) (44)
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The ¢ term can be the inflow into a section from the ramp or from
another section. In any case, only when this term is negative does the traffic
density of the section become negative. Therefore, putting a nonnegative
constraint on the outflow is enough to guarantee the satisfaction of the
viability at the left face.

If we use the diffusion term, then as shown before

Gou = vfp(T)[l— £ (T)J—D(ap ;;’x) j 45)

max
The infinitesimal section dynamics become

0p(t,x)
ox

p(t)=i[q(t,x>—vfp(t)a— Z ®), . p 2P0 (46)

max

After discretizing this equation we get

dp(t,x)

At T
T +40) = p(T) + 2 [T, x) v, p0)1 - 2L ¢ p22LD
Ax P o ox
47
Noting that the traffic density is zero at the left face, we get
P(T +Ar) = —[q(T x)+D ap;’ %) (48)
x

Equation (48) puts the following constraint on the relationship between
the inflow and the diffusion term for the traffic density to not violate the
viability at the left face:

dp(t, x)

T,x)>-D-222
q(T,x) >

(49)

3.6.3 Top Face
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Figure 3-12: Top Face Dynamics

Top face dynamics are the ones described in Section 3.2. To understand
these dynamics let us rewrite the queue dynamics below:

?=r@t)-u() (50)

At the top face boundary, the queue length has reached the maximum.
For the system to be viable, there should be no increase of the queue length
from the top face. Looking at (50) this is possible only if the following is
satisfied at time T (the time the system is at the top face):

r(T)—u(T)<0 (51)
The actual traffic only allows nonnegative values for both r(f) and u(?),
since the traffic is unidirectional on any road. Therefore, at the top face, we

can constrain the control law design to satisfy

r(T)=u(T) (52)

3.64 Bottom Face
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Figure 3-13: Bottom Face Dynamics

Bottom face dynamics are the ones described in Section 3.4. To
understand these dynamics let us rewrite the queue dynamics:

?=r(t)-u(t) (53)

At the bottom face boundary, the queue length has reached the lowest
value of zero. For the system to be viable, there should be no decrease of the
queue length from the bottom face. Looking at (26) this is possible only if
the following is satisfied at time T (the time the system is at the bottom
face):

r(T)~u(T) =0 (54

We can also study the four corner conditions and find out exactly what
constraints should be satisfied for the system to be viable. For instance, at
the right-top comer we have the jam density and the maximum queue length
reached as shown in Figure 3-14.
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Figure 3-14: Top Right Dynamics

4.

4. SUMMARY

In this chapter, we studied:

[a—

The distributed dynamics of the ramp metering system
Various control objectives the control laws should be designed for
Various limitations of the model presented

Projection dynamics and how to apply the principles so that the
system model behaves meaningfully.

QUESTIONS

What is boundary injection control?

2. What are the outcomes of choosing one speed flow relationship over

others in the development of control? What are the criteria to be
considered when selecting a speed flow model to be used in the
control problem?

Explain why “maintaining the highway density at critical value” is
chosen as a control objective.

Explain three criteria (22), (23), (24) in detail. Give a clear
description of the use of the variables w; and w,.

What are the projection dynamics for a ramp metering problem?
What is the use of projection dynamics?

Why isn’t Greenshield’s model appropriate for the behavior after a
traffic jam?

PROBLEM

1. In Section 3.6, face (top, bottom, right, left) conditions were studied.

Now, for the corner conditions of the boundary surface, given in
Section 3.6, find out what constraints should be satisfied for the
system to be stable.
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Chapter 4

SIMULATION SOFTWARE FOR DISTRIBUTED
MODEL

This chapter presents the numerical software we have developed to
perform simulations using the distributed model of the ramp system. The
software is developed in Matlab. We present a simple algorithm first. Then
we show the limitations of that algorithm. Those limitations are removed by
adding the projection dynamics elements discussed in the last chapter.

1. BASIC MODEL

We present a basic distributed model developed in the last chapter for
which we will develop a numerical method for solution. Then we will
develop Matlab software for simulation. We will perform some simulations
to assess the performance and make enhancements to remove the limitations
of the model.

Using the same variables as used in the last chapter, we present the
model developed in the last chapter as

0p(t,x)  0q(t,x) _

ot ¥ ox =0 W

q(t,x) = p(t, x)v(t, x) ()
93
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v=v, -+ 3
0=r(t)—u(r) (4)

This model is for Figure 4-1

Figure 4-1: Isolated Ramp Model

Combining (1) to (4) and the initial condition, we get the combined
model as

P, x)

ap(t,xy, -0
Dynamics: apg;, %) + P Prs &)
0=r(t)-u()
Boundary Condition: o(#,0)v (1 - P (t,O)) = f@t)+u@®) (6)

Initial Condition: ©(0,x) = (x) @)
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2. NUMERICAL ALGORITHM

To develop a numerical algorithm to solve the system given by one
partial differential equation and one ordinary differential equation (5) with
the boundary condition (6), we will divide the highway mainline into
multiple sections. This will effectively produce a space discretization of the
mainline. This discretization is shown in Figure 4-2

Figure 4-2: Space Discretization

The dynamics of the first section is given by
.1
14 :Z[f_‘h +u] ®)

We have used L to indicate the fixed section length. Since

q, =pr1(l_ P ) (&)
we can write the dynamics of the first section as
.1
Py =1 =y, 0= 4] (10)
L Pinax

The dynamics of the i* section is given by

. 1
P; zz[qi—l -q,] (11
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Since

q; =vfp,~(l-%) (12)

max

we can write the dynamics of the i* section as

, 1 pi— pi
P; ZZ[pri—l(l_ 1 )_vfpi(l_p—)] (13)

max max

We have essentially converted the PDE problem stated in (5), (6), and (7)
into the following system of ODEs:

r

.1 Py
P =Z[f _pr1(l—p_"')+u]

max

Dynamics: § 0, = ’llj["fpi—l (- Per )—pri {1 —L)], I<i<n
max prmx
?=r(t)—u(t)
\ (14)
Initial Condition: p,(0)=¥,(x), 1<i<n (15)

We can numerically solve (14) and (15) using any of the numerical
techniques available for solving ODEs (for example, Runga-Kutta
algorithm). We will, however, discretize (14) in time using the Euler
method, and obtain difference equations that can be easily solved on the
computer.

Using the Euler approximation on (8) for the first section, we get

,01(t+T)—p1(T)__l_ _
T —L[f q, +u] (16)

We use T as the sampling time, which we assume as a constant.
Rearranging (16) gives

pl(t+T)=p1(T>+%[f—ql +ul (17
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or

p1(t+T)=p1(t)+%[f—vfpl(1-—pl(t)
P

max

)+ u] (18)

The dynamics of the i” section can be time discretized as

p+T)-p@) _ 1
T L

9.5 — 4] (19)

We can write the time discretized dynamics of the i* section as

,0,.(t+T) = pi(t)+%[vjp,-_](l— p;](t))—vfp,-(l— pi(t)

max max

N Qo)

The ramp queue length dynamics can also be discretized. Therefore, (4)
would turn out to be

L+T)=L@)+Tr(t)—u()] 2D

Now the finite difference equation model for the system is the following:

Dynamics:
p+D) =0+ 21 v, 00-2D) 41
L Porax
T ] )
7p.(r+T)=p,-(t)+2[vfa_l(1—‘/’;'(’))—vfp,-a—ﬁ@)] I<i<n (@2)
€¢+T) =60+ TTre) ~u()]
§
Initial Condition: p,(0)=y,(x), 1<i<n (23)

Now, we can easily write software code for the system (15) and (16) and
perform simulations. This is done in the next section.
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3. MATLAB SOFTWARE

The software is written in four files:
1. opdemixedramp.m

2. opdef.m
3. opder.m
4. opdeu.m

How these files use each other is shown in Figure 4-3. A directed arrow
from filel to file2 means that filel is used in file2.

‘ — Opdemixedramp.m

&5

Opdeu.m Opder.m

Figure 4-3: File Dependencies

The file odemixedramp.m is the main file and uses functions defined in
the files opdeu.m, opder.m, and opdef.m. The function opdeu.m calculates
the ramp outflow that goes into the main highway. The function opder.m is
a function for providing the inflow to the ramp, and the function opdef.m
provides the inflow to the main highway.

% Ramp Metering Code
clear;

clf;

clc;

% Input Parameters

Dx=1; Length of the freeway section
rhom = 60; % Jam density
rhoc = rhom/2; % Critical density
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i

vE 15; % freeflow velocity
t0
tf
h
m

0.0;

2;
0.01;

(t£-t0) /h;

n = 10; % number of sections
rho=ones(m,n) .*15; $ X array m rows, length state
columns

T=zeros(m,1); % T array m rows (mxl)
L=[1:1:10]"';
T(1)=t0;

3}

1(1)=0;

uvar (1l)=opdeu(l,rho(1,:),1(1));
rvar (1l)=opder (1) ;
fvar(l)=opdef (1) ;

%There are m-1 steps and m points maximum
for i=1:m-1;

clc

T(i)

T(i+1)=t0 + h*i;

rho(i+1l,1)=rho(i,1)+h* (opdef (i) +uvar (i) -vE* (1-
rho(i,1)/rhom) *rho(i, 1)) /Dx;

1(i+1)=1(i)+h* (opder(i)-uvar(i));

uvar (i+l1)=opdeu(i+1,rho(i+1,:),1(i+1));

rvar (i+l)=opder (i+l) ;

fvar(i+l)=opdef (i+l);

for j=2:n
rho(i+1,j)=rho(i,j)+h*vi*(rho(i,j-1)*(1l-rho(i,j-1)/rhom) -
rho(i,j)*(1-rho(i,j)/rhom))/Dx;
end
end

subplot (221);
mesh (rho) ;
title('Traffic Density');

subplot (222);
plot(T,1);
title('Ramp Queues');
xlabel ('Time"') ;

subplot (223) ;
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plot (T,uvar) ;
title('Control Rampflow');
xlabel ('Time');

subplot(224);
plot (T, rvar);
title('Ramp Inflow');
xlabel('Time’) ;

pause;

clf;

subplot (221);

plot (T, fvar) ;
title('Highway Inflow');
xlabel (‘' Time’);

subplot (222);

plot(L,rho(l,:));

title('Initial Traffic Density');
xlabel ('Section’);

subplot (223);

plot(L,rho(m, :));

title('Final Traffic Density');
xlabel(‘'Section');

subplot(224);

plot(T,rho(:,n/2));

title('Traffic Density for Mid Section');
xlabel ('Time');

Figure 4-4: File opdemixedramp.m

function opdeu = opdeu(t,x,1)
opdeu=opder (t) ; % ramp outflow

Figure 4-5: File opdeu.m

function opder = opder(t)
opder = 10*(1.5+sin(0.025*t)); % ramp inflow
Figure 4-6: File opder.m

function opdef = opdef(t)
opdef = 30*(1.25+sin(0.025*t)); % mainline inflow

Figure 4-7: File opdef.m
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4. SIMULATIONS

If we run the simulation as shown in the files of the previous section, the
results we will get are plotted in Figure 4-8 and Figure 4-9.
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Figure 4-8: Matlab Plot 1
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Highway Inflow
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Figure 4-9: Matlab Plot 2

S. LIMITATIONS

Chapter 4
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In the last chapter, we studied the following limitations in the model that

is shown in Section 4 of this chapter:

1. Attainment of queue lengths larger than the ramp capacity

2. Attainment of negative queue lengths

3. Attainment of negative traffic density on the mainline

4. Attainment of traffic density on the mainline higher than the

maximum traffic density

5. Getting stuck at jam density on the mainline

Conditions 1 to 4 can be simply stated mathematically as

0</</¢

max

0<p< P,
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We now study all these cases here using the software and then we will
make enhancements to the software so that it is able to give correct behavior
of the system for these cases also.

5.1 Large Queue Length

To see this behavior we simulate the system making the ramp outflow
into the mainline equal to zero. This way the ramp queue length keeps
increasing. The only change we make is in the file opdeu.m. The new file is
shown below.

function opdeu = opdeu(t,x,1)
opdeu = 0; Framp ocutflow
Figure 4-10: Modified Control File

The output of the system with this input is shown in the plot below.
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Figure 4-11: Plot for Large Queues

We see in this plot that the queue lengths, as expected, are increasing.
Let us say that the capacity of the ramp is 30. Then not only the plot should
saturate at 30, but we also should be able to plot the part of the ramp demand
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that is being satisfied because some of it will be rejected corresponding to
the saturated part.
The file opder.m is modified and the new version is shown below.

function opder = opder(t,1l, lmax)
if l<lmax

opder = 10*(1.5+sin(0.025*t)); % ramp inflow
else

opder = 0;
end;

Figure 4-12: Modified Ramp Inflow File

Notice that the input arguments to the function opder have changed.
Now we have three instead of one. The calling functions will also change
accordingly. The modified part of the calling function opdemixedramp.m is
shown below.

% Input Parameters

Dx=1;

rhom = 60; % Jam density

rhoc = rhom/2; % Critical density
vE = 15; % freeflow velocity
lmax = 30;

t0 = 0.0;
tf
h = 0.01;

(t£-t0) /h;

n = 10; % number of sections

1
[\S]

1l

m

rho=ones (m,n) . *15; % X array m rows, length state
columns

T=zeros(m,1); $ T array m rows (mx1)
L=[1:1:10]"';

T(1)=t0;

1(1)=0;
uvar (1)=opdeu(l,rho(1,:),1(1),1lmax);

rvar (1)=opder(1,1(1), lmax);
fvar (1l)=opdef (1) ;

$There are m-1 steps and m points maximum
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for i=1:m-1;
clc
T(1i)
T(i+1)=t0 + h*i;
rho(i+l,1)=rho(i, 1) +h* (opdef (i) +uvar(i)-vE*(1-
rho(i, 1) /rhom)*rho(i, 1)) /Dx;
1(i+1)=1(i)+h*(opder(i,1(1i), lmax)-uvar(i));
uvar (i+1)=opdeu(i+l,rho(i+1,:),1(i+1l),1lmax);
rvar(i+l)=opder (i+1,1(i+1), lmax);
fvar(i+l)=opdef(i+l);

Figure 4-13: Modified Ramp opdemixedramp.m File

The new plot based on these changes is shown below.
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Figure 4-14: New Plot

52 Negative Queue Length

This situation can arise when the queue length is already zero, and then
the inflow to the ramp is less than the outflow. Therefore, following
projection dynamics argument, we have to modify the control law, such that
the control variable does not exceed the ramp inflow when the queue length
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is zero. To illustrate the effect of this change let us use the following control
file.

function opdeu = opdeu(t,x,1l,lmax,r)
opdeu = 10*(2.5+sin(0.025*t+3)); $ramp cutflow
end

Figure 4-15: Control File for Negative Queue Length

The output of this control flow is given below.
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Figure 4-16: Output Showing Negative Queue Length

This output shows physically unrealizable negative queue lengths. In
order to get rid of this spurious effect, we use the projection dynamics and
modify the control file to get the file shown below.

function opdeu = opdeu(t,x,1l,1lmax,r)
opdeu = 10*(2.5+sin(0.025*t+3)); Framp outflow
if 1<=0
if r<opdeu
opdeu = r;
end
end
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Figure 4-17: Control File for Negative Queue Length

The result based on this file is correct and is shown below.
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Figure 4-18: Outpui Using Projected Dynamics for Negative Queue Length

Notice that we have changed the input arguments for the control function
in the opdeu.m file. This is because it needs the value of the ramp inflow
variable for the projection dynamics. Correspondingly the modified part of
the opdemixedramp.m file is shown below.

rvar(l)=opder(1l,1(1), lmax);
uvar (1)=opdeu(1l,rho(1,:),1(1),1lmax,rvar(1l));
tvar (1)=opdef (1) ;

3There are m-1 steps and m points maximum
for i=1:m-1;
clc
T(1)
T(i+1)=t0 + h*i;
rho(i+l,1)=rho(i,1)+h* (opdef(i)+uvar(i)-vE*(1-
rho(i, 1) /rhom) *rho(i, 1)) /Dx;
1(i+1)=1(1i)+h*(opder(i,1l(i),1lmax)-uvar(i));
rvar (i+l)=opder(i+1,1(i+1),1lmax);
uvar (i+l)=opdeu(i+l,rho(i+l,:),1(i+1),lmax,rvar(i+l1));
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fvar (i+l1l)=opdef (i+1);

for j=2:n
rho(i+l,j)= rho(i,j)+h*vE*(rho(i,j-1)*(1-rho(i,]j-
1) /rhom) -rho(i,j)*(1-rho(i,j)/rhom)) /Dx;
end
end
Figure 4-19: Modified Portion of opdemixedramp.m for Negative Queue Length

53 Negative Traffic Density on Mainline

As the model currently stands, since the ouflow from any section is zero
when the traffic density is zero, therefore this condition cannot occur.
However, when we add the diffusion term as explained in the previous
chapter, we will have to be careful about not obtaining negative traffic
densities.

54 Higher than Jam Density

Jam density (or maximum density) of a highway section corresponds to a
situation when vehicles are in the closest packed configuration on the
highway. Hence, the situation indicates traffic jam with the capacity of the
section reached. Therefore, the traffic density on any section should never
attain values that are higher than the jam density. Any software simulation
package that gives higher than jam density values is giving spurious results.
Let us study the condition under which density could reach higher than jam
density values. Let us consider a section of the highway as shown in Figure
4-20.

i_‘pi [ iy,

Figure 4-20: Highway Section

The section dynamics are given by

. 1
p;= z[qi—l -q;] (24)
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Since
g, =v,p,1-L0) 5)
we see that when
P; = P, (traffic jam condition) (26)
then
q,=0 27

The dynamics then give
p; = Lig) (28)
s qi,

This shows that if the inflow to the section (the same as the outflow from
the previous section) is positive, the section will attain traffic density that is
higher than jam density. Therefore, this puts the restriction on the previous
section that its outflow will be zero if the traffic density of the section
following it is equal to the traffic jam density. This implies that when the
software simulation is carried out, the section densities have to be resoived
starting from the last section to the first section in that order, i.e., by going in
the reverse order.

Now, we will study the case of the first section, since its dynamics are
different from those of the others due to the inclusion of the ramp flow term.
The section dynamics are given by

) 1
) =Z[f+u—q,] (29)
Since
P
q, =v,p,(1-—— (30)
1 [ pmax

we see that when

Py = Py (traffic jam condition) (€29)
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then
q,=0 (32)

The dynamics then give

.1
pr=71f +u] (33)

This shows that if the inflow to the section (the same as the sum of
highway inflow and ramp inflow) is positive, the section will attain traffic
density that is higher than jam density. Since the highway inflow and the
ramp inflow are both nonnegative functions of time, any positive value of
these two terms causes the traffic density of the first section to exceed jam
density. Therefore, this puts the restriction on the two terms that when the
traffic density of the first section is at the jam density value, the highway
inflow and ramp inflow will be zero.

Figure 4-21: First Section

Notice that the phenomenon of performing simulations backward in
space (x-axis) and the effect of downstream sections on upstream sections is
typical of highway dynamics and is shown as the shock phenomenon.

Since the modifications caused by these developments to the simulation
software files are extensive, we will present all four files completely here.
These four files have the same names as the ones we have been using.

% Ramp Metering Code
clear;

clf;

clc;
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% Input Parameters

Dx=1;

rhom = 60; % Jam density

rhoc = rhom/2; % Critical density
vi = 15; % freeflow velocity

lmax = 30;

t0 = 0.0;

tf = 2;

h = 0.01;

m = (tf-t0)/h;

n = 10; % number of sections
rho=ones (m,n) .*15; % X array m rows, length state
columns

T=zeros (m,1); % T array m rows (mxl)
L=[1:1:10]";

T(1)=t0;

1(1)=0;

rvar(l)=opder(1,1(1), lmax) ;
uvar (1l)=opdeu(l,rho(1l,:),1(1),1lmax,rvar(1l),rhom);
fvar(1l)=opdef (1) ;

$There are m-1 steps and m points maximun
for i=1:m-1;

clc

T(1i)

T(i+1)=t0 + h*i;

flag=0;
for j=n:-1:2
gin=vf*(rho(i,j-1)*(1-rho(i,j-1)/rhom));
if flag==0
qgout=vi* (rho(i,j)*(l-rho(i,j)/rhom));
else
qout=0;
end
rhoinc=h* (gin-qout) /Dx;
if rho(i,j)>=rhom
if (gin-gout)>=0
rhoinc=rhom-rho (i, Jj) :
end
flag=1;

else
.|
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flag=0;
end
rho(i+l,j)=rho(i,j)+rhoinc;
end

gin=opdef (i) +uvar (i) ;
if flag==0
gout=vi*(rho(i,1)*(l-rho(i,1)/rhom));
else
qgout=0;
end
rhoinc=h* (gqin-qout) /Dx;
if rho(i,1l)>=rhom
if (gin-gout)>=0
rhoinc=rhom-rho(i,1);
end
end
rho(i+1,1)=rho(i, 1) +rhoinc;
1(i+1)=1(i)+h*(opder(i,1l(i),1lmax)-uvar(i));
rvar (i+l)=opder (i+1,1(i+1l),1lmax);
uvar (i+l)=opdeu(i+l,rho(i+l,:),1(i+1), lmax,rvar(i+l),rhom);
fvar(i+l)=opdef (i+1);

end

subplot(221);
mesh (rho) ;
title('Traffic Density');

subplot (222);
plot(T,xrvar,'-',T, fvar, '-.");
title('Ramp and Highway Inflow');
xlabel (‘Time') ;

subplot (223);
plot(L,rho(1,:),'-',L,rho(m,:), '-.");
title('Initial & Final Traffic Density');
xlabel (‘Section');

subplot (224);

plot(T,rho(:,1));

title('Traffic Density for the First Section');
xlabel ('Time') ;
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pause;

clf;

subplot (221) ;

plot(T,rho(:,n/2));

title('Traffic Density for the Mid Section');
xlabel (' Time’) ;

subplot (222);

plot(T,rho(:,n));

title('Traffic Density for the Last Section');
xlabel (' Time') ;

subplot (223);
plot(T,1);
title('Ramp Queues');
xlabel('Time');

subplot (224) ;
plot(T,uvar);
title('Control Rampflow');
xlabel ('Time') ;

Figure 4-22: opdemixedramp.m File for Jam Density Corrections

function opder = opder(t,1, lmax)

if l<lmax

opder = 25*(1.5+sin(0.025*t)); % ramp inflow
else

opder = 0;
end;

Figure 4-23: opder.m File for Jam Density Corrections

function opdef = opdef(t)
opdef = 100*(1.5+sin(0.025*t)); ¢ mainline inflow

Figure 4-24: opdef.m File for Jam Density Corrections

function opdeu = opdeu(t,x,1,1lmax,r,rmax)

opdeu=r; % ramp outflow
% opdeu = 10*(2.5+sin(0.025*t+3)}; Sramp cutflow
if 1<=0
if r<opdeu
opdeu = r;
end

end

if %x(1)>=rmax
opdeu = 0;

end
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Figure 4-25: opdeu.m File for Jam Density Corrections

After reviewing these files, one can easily see the changes in the software
code for forcing the traffic densities to never exceed the jam density values.
Figure 23 shows the file for ramp inflow. The file shows that when the ramp
queue has reached its maximum value then the ramp inflow is forced to zero.
The same is true for the ramp outflow file (Figure 4-25). This file shows the
ramp outflow values become zero when the traffic density of the first section
reaches the jam density value. Figure 4-24 does not show a similar
condition because the main file (Figure 4-23) automatically takes care of that
and also takes care of reverse iteration with reverse constraints on the section
traffic densities. The simulation results are plotted next that show this
expected correct behavior.
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Figure 4-26: Plot-1 for Jam Density Corrections
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Figure 4-27: Plot-2 for Jam Density Corrections

These plots show that the first section reaches the jam density. After that
there can be no inflow onto this section. However, all the cther sections are
meanwhile able to drain out all their traffic.

5.5 Traffic Diffusion

Traffic diffusion is needed so that once any section reaches the jam
density, there is a way for the traffic to diffuse out of the section. Before we
introduce this effect in the model and the simulation, let us look at a traffic
situation in simulation, which we will compare with the model with
diffusion terms later.

We use the following highway traffic inflow and ramp inflow files.

function opdef = opdef(t)
if t>75 & t<125

opdef = 75*(1.5+sin(0.025*t));
else

opdef = 20*(1.5+sin(0.025*t));
end

Figure 4-28: Traffic Inflow for Impulse Disturbance Case
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function opder = opder(t,1l,lmax)

if l<lmax

opder = 5*(1.5+sin(0.025*t)); % ramp inflow
else

opder = 0;
end;

Figure 4-29: Ramp Inflow for Impulse Disturbance Case

The simulation results using these inputs are plotted in the following
figures. We see that the first section gets high traffic density but less than
the jam density due to the extra disturbance introduced in the simulation.
This high density of traffic flows out through the later sections.
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Ramp and Highway Inflow
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Figure 4-30: Plots for Impulse Disturbance Case
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Now, if we increase the disturbance further as shown in the following
file, then the first section reaches jam density. We will add the diffusion
terms in the model to show how this traffic jam is diffused out using the

diffusion model.
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Initial & Final Traffic Density

20

Section

Traffic Density for the Mid Section
15

10

0 1 Time 2 3

Ramp Queues

0 1 2 3
Time

Ramp and Highway Inflow

400

=]
[=]

0 1 2 3

. Time )
Traffic Density for the First Section

40

20

Traffic Density for the Last Section
15

10

0 1 Time 2 3

Control Rampflow
15

10

0 1 2 3
Time

Figure 4-31: Plots for Impulse Disturbance Case with a Traffic Jam
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The nonplotting part of the code in the file opdemixedramp.m with the
diffusion terms included is given below.

% Ramp Metering Code
clear;

clf;

clc;

$ Input Parameters
Dx=1;

rhom = 60; $ Jam density

rhoc = rhom/2; % Critical density
vi = 15; % freeflow velocity
Imax = 30;

Diff=0.5;

t0 = 0.0;

tf = 2.5;

h = 0.01;

(tf-t0) /h;

n = 10; % number of sections
rho=ones (m,n) .*15; % X array m rows, length state

m

columns

T=zeros(m,1); % T array m rows (mxl)
L=[1:1:10]"';

T(1)=t0;

1(1)=0;

rvar(l)=opder(1,1(1), lmax) ;
uvar (1)=opdeu(l,rho(1,:),1(1),1lmax,rvar(1l), rhom);
fvar(l)=opdef (1) ;

rholast=0;

$There are m-1 steps and m points maximum
for i=1:m-1;

clc

T (1)

T(i+1)=t0 + h*i;

flag=0;
gin=vf* (rho(i,n-1)*(l-rho(i,n-1)/rhom));
if flag==
qout=vf* (rho(i,n) *(1-rho(i,n)/rhom))+Diff* (rho(i,n)-
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rholast) ;
else
qgout=0;
end
rhoinc=h* (gin-qout) /Dx;
if rho(i,n)+rhoinc >=rhom
rhoinc=rhom-rho(i,n);
flag=1;
else
flag=0;
end
rho(i+1,n)=rho(i,n)+rhoinc;

for j=n-1:-1:2
gin=vf* (rho(i,j-1)*(l-rho(i,j-1)/rhom));
if flag==0
qout=vi* (rho(i,j)*(l-rho(i,j)/rhom))+Diff* (rho(i,Jj)-
rho(i,j+1));
else
qout=0;
end
rhoinc=h* (gin-qout) /Dx;
if rho(i,j)+rhoinc >=rhom
rhoinc=rhom-rho (i, 3j);
flag=1;
else
flag=0;
end
rho(i+l,j)=rho(i, j)+rhoinc;
end

gin=opdef (i) +uvar (i) ;
if flag==0
gout=vf* (rho(i, 1) *(1-rho(i,1)/rhom))+Diff*(rho(i,1)-
rho(i,2));
else
qout=0;
end
rhoinc=h* (gin-qout) /Dx;
if rho(i,1)+rhoinc>=rhom
rhoinc=rhom-rho(i, 1) ;
end
rho(i+1l,1)=rho(i,1)+rhoinc;
1(i+l)=1(i)+h*(opder(i,1l(i),lmax)-uvar(i));
rvar (i+1)=opder (i+1l,1(i+1), lmax);
uvar (i+l)=opdeu(i+l,rho(i+1l,:),1(i+1),1lmax,rvar(i+l1),rhom);
fvar(i+l)=opdef (i+1);
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[ena ]

Figure 4-32: Part of File opdemixedramp.m with Diffusion

You can easily see the diffusion terms that have been added to the
outflow terms for all sections. The output plots using this file are given
below. These show how the traffic is able to diffuse out even after a traffic

jam has taken place.
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Figure 4-33: Traffic Plots with Diffusion
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6.

Chapter 4

SUMMARY

In this chapter, we studied:

How to discretize the distributed dynamics of the ramp metering
system

Software code and simulations for the model
Various limitations of the model presented

Projection dynamics and how to apply the principles so that the
system model behaves meaningfully in the software setting.

QUESTIONS

Explain initial condition and dynamics equations of a ramp
metering problem, presented by (14) and (15).

What are the limitations in the model given in this chapter? How
were they handled? Explain briefly.

Study the code version given in section 4.1, and explain how
“large queue length” was introduced to the system. How was the
code changed in order to make the model physically realizable?
Explain how “Figure 4-13 plots” were obtained. What
measurements and code changes have to be performed to prevent
the unrealistic model results?

Explain why and when the traffic diffusion inclusion is needed in
the model developed. :

Explain the term “disturbance” (used on page 24) is, and how was
the disturbance to the system handled in the model?

PROBLEMS

Write your own simple ramp metering Matlab code and test the
limitations of the projection dynamics idea discussed in this chapter.Test the
above Matlab code using different levels of ramp demands and determine
the lower and upper bounds of demand that produce acceptable system
performance.

9.

1.

REFERENCES

Hilderbrand, F. B., Introduction to Numerical Analysis, Dover, 1987.



4. Simulation Software for Distributed Model 125

2. Hamming, R., Numerical Methods for Scientists and Engineers, Dover, 1987.
3. Isaacson, E., and Keller, H. B., Analysis of Numerical Methods, Dover, 1994.



Chapter 5

FEEDBACK CONTROL DESIGN USING THE
DISTRIBUTED MODEL

This chapter presents the feedback control design of an isolated ramp
metering problem where we use the distributed model of the ramp system
that has been developed till now. We show the stability properties of the
closed-loop system that is obtained by the application of the feedback
control law on the ramp system. We verify the effectiveness of the feedback
control law by running some simulation experiments using the designed
feedback control law on the isolated ramp system.

1. MODEL SUMMARY

The basic model used for the design of the feedback control law is
presented below.

N e p[f”"))]
Dynamics: " + > =0 (1)
0=r(t)-u(t)
Boundary Condition: p(2,0)v,(1- 'op( f, 0)) f@) +u() 2)

P. Kachroo et al., Feedback Ramp Metering in Intelligent Transportation Systems

© Kluwer Academic/Plenum Publishers, New York 2003
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Initial Condition: (0, x) = (x) ?3)

The summary of the diffusion model is

Dynamics:
0 d p 0 0°
[&—p(x,t)+vf ap(x,t)]—Zp—“m f &p(x,t)—Dg?p(x,t) =0 @
L=r(t)—u(t)
Boundary Condition: 0(¢,0)v,(1- p(t,O)) -D (3,0 = f(t)+u(r)
max x (+,0)
(5)
Initial Condition: ©(0,x) =y (x) 6)

We will first design the feedback control law based on the basic model,
and then in the next chapter, we will design a feedback control law based on
the diffusion model. In practice, a substantial amount of work is done in
collecting data in the field and then estimating which model is appropriate
for the system. Therefore, if the data collected and analyzed indicates the
basic model, we can use the feedback control law derived from the basic
model. However, if the collected and analyzed field data indicates a
diffusion model, then we use the feedback control law designed based on the
diffusion model. The same argument is true for all the discretized models
and control laws we will present in subsequent chapters.

2. CONTROL OBJECTIVE

Our aim is to design a feedback control law for the ramp-metering
controller. That is, we need to control the inflow from the ramp into the
highway and this rate should be a function of the current traffic conditions.
Hence, we are aiming to design a real-time online traffic responsive control
law. This scenario is shown in Figure 5-1.
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Figure 5-1: Sensors and Feedback Ramp Metering

The feedback control law (or algorithm) has to be designed to satisfy
some system performance objective (as described in Chapter 3). Here we
will design a control law whose aim is to keep the traffic density at a critical
level for all the points on the highway. If we use the Greenshield formula,
we can calculate the value of the critical density. Using the Greenshield
formula, the traffic flow in terms of traffic density is given as

p@,x)

max

q(t,x) = v, p(t, )1 -2 %)

We can calculate the density at which the flow is maximum (critical
density) by solving

p.(t,x) =minargv, o(t, x)(1 - M) 8)
P max
This is obtained by solving
d t,
2 v, o, 0a-282y 2 ¢ ©)
dp ax
This is solved in the following steps:
0 2,
2y, (ot -2 LDy 0 (10)
op s
1-2282 _g (11)

Prmax
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Solving this gives the critical density as
(12)

Using the aim of keeping the traffic density on the highway equal to the
critical density at all points, we define an error function as

15 X
e®=> j (o, x)- p,) dx (13)

The function e(.) is a mapping at each time ¢ from the space of functions
on [0, L] to the space of nonnegative numbers. The values are always non-
negative because it is an integral of the square of the differences. Its lowest
value (value of zero) is obtained when the density at every point on the
highway is equal to the critical density. Therefore, it would be desirable to
design a feedback control law that attempts to satisfy the following
objective:

Lte(t)=0 (14

t—ee

3. FEEDBACK CONTROL LAW FOR THE BASIC
MODEL

In order to design a control law that attempts to achieve (14) we start by
differentiating (13) by time to obtain

L o= =22 [(pit0-p,ax as)
dt dr2y" ‘
Simplifying this expression stepwise, we get the following equations:

{0 = [(0t,0- )< (0l = P, 16)
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¢ d
é0 = [ (ple,2)= p.)— (Pt M)dx a7
0
The total derivative of the density is given by

d d d .
Ep(t,x) —Ep(t,x)+a—xp(t,x)x (18)

Since there is no variation in x and we are looking for change in the density
for a fixed x, we get

d d
Ep(t’x)—g;p(hx) (19)

Now from the conservation equation from traffic we have
d d
—p(t,x)+—¢q(t,x) =0 20
o p(t,x) o q(t,x) (20)
Using (19) and (20) in (17), we get
t d
) = [(p, - p(t, %) = (q(t, x))dx @)
5 ox
Simplifying this equation, we get
L L
. d d
&) = [ p. = (gt x)dx - [ p(t, x)=(q(t, x))dx 22)
5 Ox 5 ox
Since the critical density is constant, we get
. ¢ 0 ¢ d
ét) = p, [2—(q(t x)dx— [ p(e, %)== (q(t, x))dx (23)
o 0x 5 ox

Similar to the argument about the total derivative of density being equal
to the partial derivative, we can use one for the case of traffic flow. Using
that argument in (23), we get
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L d L a
e(t) = p. | —(q(t, x))dx - | p(t,x)—(q(t, x))dx (24)
'([ dx -([ ox

which gives

q(t,L) L a
é0)=p, [dglt,x)- [ pt,x)=-(ql,x)dx (25)
q(1,0) 0 ax

Solving the first integral in (25) yields
¢ d
ét) = p.lq(t,L) - q(,0)]- Ip(t, X)a—x (q(z,x))dx (26)
0

The flow at the left most boundary is produced by the highway and ramp
inflows. Therefore, we have

q(t,0) =u+ f () @7

Utilizing (27) in (26) introduces the control variable in the differential
equation for the error variable. This is shown below.

6= P14, 1)~ O -1~ [ P, (a0 )

Our aim, as mentioned earlier, is to make the control variable u(.) a
function of the traffic state variables in such a way that it can take the error
variable to zero. In order to do that we present the feedback control law as

u=q(,L)- f(@) +L[k€(t) - Ip(t,x)i(q(t,x))dx] (29)
P ° ox

c

In (29), the control gain & is chosen to be a positive constant. Let us study
why this control law has the property of asymptotically taking the error
variable to zero. To see this, plug in the expression for  in (29) into (28).
Most of the terms cancel and we get a linear time-invariant first-order
ordinary differential equation in the error variable. This technique is called
feedback linearization [1,5], since we have effectively removed the
nonlinearities from (28) by using the appropriate control law and have
obtained a linear ordinary differential equation. The linear ordinary
differential equation in the error variable we obtain is
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et)+ke(t)=0 (30)

We can solve (30) to confirm the asymptotic convergence. The steps in
the solution are presented below.

de _

—ke 31
7 3D

Moving terms changes (31) to
d
L =kt (32)
e
Integrating both sides within the limits

e d_x t
;[ —= —{ kdt (33)

and after taking exponentials of both sides of the resultant gives

Inx

‘ =kt (34)
€
Taking exponentials of both sides and simplifying terms gives

e(t) = e, exp(—kt) (35)

This shows the exponential decaying of the error term and the
satisfaction of (14).

3.1 Implementation of the Basic Feedback Control Law

Let us revisit the feedback control law we have designed. The control
law derived above is re-presented below:

u=q(t,L)-f()+ l[ke(t) - '[p(t,x)i(q(t,x))d.x] (36)
o, 0 ox

Implementation of this law requires sensors to get various measurements
from the highway. Using (7), this control law changes to
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1 ¢ 0 0
u=qlt, L)~ f(e)+—[kel))~ [ plt, 0=, 1 —=))d (37)
p( 0 & p max

We will expand the term inside the integral as

2 ydx =, j (06, x)—(l 2L y)dx 38)

max max

r 0
o, x)— @, pl-
'([ ox / P
Using (37) in (36) gives

u=q(L)- f(t)+p—[ke(t) v j pe, x) “a- 2p—)dx] (39)

max

We can expand (39) further using (13) to get

L L
u=gt. D10+~ [(at.9-p ey, [0 La-220aq. o
P 2 &

max

We can further expand the first term also so that the entire feedback control
law that expresses the ramp inflow into the kighway is a function of only
traffic density along the highway mainline. This gives

u=v,p(t, Ly1- 285 f(t)+——[—j(,0(t %) - p,)dx
vfjp(z 0L a-2209

max

Looking at (41) tells us that we need the value of the traffic density at
every point on the mainline as well as the value of the gradient of the traffic
density at all points. To accomplish this we would need to deploy
distributed sensors. For instance, a camera-based sensor could be used to
provide the distributed information. On the other hand, point sensors like
the loop detectors can also be used. They would give an approximate value
for (41).

Let us divide the highway mainline into n sections, with section number
n+1 being the one downstream of the last section. Then if we have one loop
detector in each section, we can approximate the control law as
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P, (1)

1 < (pj+ (t)_pj(t))
+E[_v’§[p’(t) ‘Ax (-2

u=v,p,O1-20)— £ )

Ok
d +5(0,0-p)’]

max

42)

3.2 Limitations on Achievable Performance

We see that if we apply the control law (42), we should achieve the
performance shown by (35). However, we will see in simulations that the
exact performance is not always obtained. The reason for that is as follows.
If we were able to apply (42) always, then the performance (35) would be
achieved, but when we use all the projection dynamics constraints, we are
not able to get the desired u values but only those that are physically allowed
by the system. The difference in the desired and the actual applied value
produces a variation from the ideally desired (35) behavior. The difference
is also produced by numerical discretization schemes we use and those
produce disturbances.

33 Software Simulation for the Closed-Loop System

The software system for the closed loop is presented below in four files
as before.

% Ramp Metering Code
clear;

clf;

clc;

global rhom rhoc vf lmax Dx k rholast n rmax

% Input Parameters

Dx=1;

k=5.5;

rhom = 60; % Jam density

rhoc = rhom/2; % Critical density
vE = 15; % freeflow velocity
lmax = 200;

Diff=0.0;

t0 = 0.0;

tf = 5.0;
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h 0.01;

m (tf-t0) /h;

n = 10; % number of sections
rho=ones (m,n) .*5; % X array m rows, length state
columns

T=zeros(m,1); % T array m rows (mxl)
L=[1:1:nl";

T(1)=t0;

1(1)=0;

rvar(l)=cpder(1l,1(1));
uvar (1)=cpdeu(1l,rho(1l,:),1(1),rvaxr(l));
fvar(l)=cpdef (1) ;
evar(1)=0;
for j=1:n

evar (1)=evar (1) +((rho(1,j)-rhoc)"2)/2;
end

rholast=0;

%There are m-1 steps and m points maximum
for i=1:m-1;

cle

T(i)

T(i+i)=t0 + h*i;

flag=0;
gin=vf* (rho(i,n-1) *(1-rho(i,n-1) /rhom))+Diff* (rho(i,n-1)-
rho(i,n));
if flag==0
gout=vE* (rho(i,n)*(1-rho(i,n)/rhom))+Diff* (rho(i,n)-
rholast) ;
else
qout=0;
end
rhoinc=h* (gin-qout) /Dx;
if rho(i,n)+rhoinc >=rhom
rhoinc=rhom-rho(i,n);
flag=1;
else
flag=0;
end
rho(i+l,n)=rho(i,n)+rhoinc;
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for j=n-1:-1:2
qin=vf*(rho(i,j-1)*(l-rho(i,j-1)/rhom))+Diff*(rho(i, j-
1)-rho(i,j));
if flag==0
qout=vf* (rho(i,j)*(1l-rho(i,j)/rhom))+Diff*(rho(i,j)-
rho(i,j+1));
else
qout=0;
end
rhoinc=h* (gqin-gout) /Dx;
if rho(i,j)+rhoinc >=rhom
rhoinc=rhom-rho(i, j);
flag=1;
else
flag=0;
end
rho(i+l,j)=rho(i,j)+rhoinc;

end

if flag==0
qout=vf* (rho(i, 1) *(1-rho(i,1)/rhom))+Diff*(rho(i,1)-
rho(i,2));
else
qout=0;
end
qgin=cpdef (i) +uvar(i);
rhoinc=h* (qin-qout) /Dx;
if rho(i,1l)+rhoinc>=rhom
rhoinc=rhom-rho(i,1);
fvar (i) =qout+Dx*rhoinc/h;;
end
rho(i+l,1)=rho(i, 1) +rhoinc;
1(i+1)=1(i)+h*(cpder(i,1(i))-uvar(i));
rvar(i+l)=cpder (i+1l,1(i+l));
uvar (i+l)=cpdeu(i+l,rho(i+1,:),1(i+1),rvar(i+l));
fvar (i+l)=cpdef (i+1) ;
evar (i+1)=0;

for j=1:n
evar (i+l)=evar(i+l)+((rho(i+1,j)-rhoc)"2)/2;
end

end

subplot (221) ;

mesh (rho) ;
title('Traffic Density');
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subplot (222);

plot(T,rvar, '-*,T,fvar, '-.");
title('Ramp and Highway Inflow');
xlabel ('Time') ;

subplot (223);
plot(L,rho(1,:),'-*,L,rho(m,:),'-.");
title('Initial & Final Traffic Density');
xlabel ('Section');

subplot (224) ;

plot(T,rho(:,1));

title('Traffic Density for the First Section');
xlabel ('Time') ;

pause;

clf;

subplot (221);

plot(T,rho(:,n/2));

title('Traffic Density for the Mid Section');
xlabel('Time');

subplot (222);
plot (T, evar);
title('Error Variable');
xlabel ('Time ') ;

subplot(223);
plot(T,1);
title('Ramp Queues');
xlabel('Time’);

subplot (224);

plot (T, uvar) ;

title('Control Rampflow');

xlabel (' Time');

Figure 5-2: File cpdemixedramp.m for Closed Loop Basic Isolated Ramp

function cpdef = cpdef(t)

if £>75 & t<150
cpdef=185*(1.0+40.2*sin(0.025*t));
else
cpdef = 175*(1.0+0.2*sin(0.025*t));
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Iend I
Figure 5-3: File cpdef.m for closed-Loop Basic Isolated Ramp

function cpder = cpder(t,1l)
global 1lmax
if l<lmax

cpder = 100*(1.0+0.2*sin(0.01*t)); % ramp inflow
else

cpder = 0;
end;

Figure 5-4: File cpder.m for Closed Loop Basic Isolated Ramp

function cpdeu = cpdeu(t,x,1,r)

global rhom rhoc vf lmax Dx k rholast n rmax

e=0;
rdelqdx=0;
for j=1:n-1
e=e+((x(3j)-rhoc)"2)/2;
qgqd=vE*x(j+1)*(1-(x(j+1) /rhoc));
g=vE*x(j)*(1-(x(j)/rhoc));
rdelgdx=rdelqdx+x(Jj) * (gd-q) /Dx;
end
qglast=vf*rholast*(1-(rhclast/rhoc));
q=vE*x(n) * (1-(x(n)/rhoc));
cpdeu=qg-cpdef (t) - (-k* (e+(((x(n) -
rhoc) "~2)) /2) +rdelgdx+x(n) * (glast~q) ) /rhoc; % ramp outflow
if 1<=0
if r<cpdeu
cpdeu = r;
end
end
if x(1)>=rhom
cpdeu = 0;
end
if cpdeu<0
cpdeu=0;
end

Figure 5-5: File cpdeu.m for Closed Loop Basic Isolated Ramp

Notice that in this software, as compared to the ones used in the previous
chapters, we have used global variables for the ease of programming. In this
version, we also plot the actual traffic inflows to the highway as well as to
the ramp as compared to the demanded ones.

The simulation results by running this file are shown below.
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Figure 5-6: Plot-1 for Closed Loop Basic Isolated Ramp Simulation
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Figure 5-7: Plot-2 for Closed Loop Basic Isolated Ramp Simulation
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We see in the simulations that the system reaches a steady state and
achieves overall increased values of traffic density spread over the entire
highway. We also observe a transient after which the steady state is reached.

We would like to reduce the steady state error. To achieve this, we can
add an integral term in the control law. This is shown in the next section.

34 Integral Term in Control

We can replace the proportional feedback linearizing control (P-control)
represented by (29) with a PI (Proportional-Integral) type of linearizing
control:

t L
u=q(t, L) O +—The(t) +k, [ets)ds—| 00> (g, ) @3)
f% 0 0 ax

The implementable control with this term will change (41) to the
following:

k L
u=v, 0, L)1 - 20 f(t)+p 5 [wn0-p)

t L - (44)
Ij(p(t, 5) -~ p,_)deds fp(t x) (1 ) pp(t X))dx]
00

max

kz
2

The changes produced in simulation software are as follows. The control
file is changed to:

function cpdeu = cpdeu(t,x,1,r)
global rhom rhoc vf 1lmax Dx k1l k2 rholast n rmax ie

e=0;

rdelqdx=0;

for j=1:n-1
e=e+((x(j)-rhoc)"2)/2;
qd=vE*x(j+1)* (1-(x(j+1) /rhoc) ) ;
g=vE*x(j) *(1-(x(j)/rhoc));
rdelqgdx=rdelqdx+x(j) * (qd-q) /Dx;

end

iezie+e;

qglast=vf*rholast*(1-(rholast/rhoc));

g=vi*x(n) *(1-(x(n) /rhoc));
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cpdeu=g-cpdef (t) - (-k1* (e+{{(x(n)-rhoc)"2))/2)-
k2*ie+rdelgdx+x(n) * (qlast-q) ) /rhoc; % ramp outflow
if 1<=0

if r<cpdeu

cpdeu = r;

end
end
if x(1)>=rhom

cpdeu = 0;
end
if cpdeu<0

cpdeu=0;
end
Figure 5-8: File cpdeu.m Where Integral Term is Used.

We notice that term ie is used for the integral term. It is passed as a
global variable. The main program gets modified as well. The modified
part of the main program is shown below.

global rhom rhoc vf lmax Dx kl k2 rholast n rmax ie
% Input Parameters

Dx=1;
k1=5.%5;
k2=0.03;

rhom = 60; % Jam density

rhoc = rhom/2; % Criti

vE = 15; % freeflow velocity
lmax = 200;

Diff=0.0;

ical density

tf = 15.0;

h =0.01;

m = (tf-t0)/h;

n = 10; % number of sections
rho=ones (m,n) . *5; % X array m rows, length state
columns
T=zeros (m,1);
L=[1:1:n]"';
T(1)=t0;

G

% T array m rows (mxl)

1(1)=0;
ie=0;
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Figure 5-9: Modified Part of File cpdemixedramp.m Where Integral Term is Used.
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Figure 5-10: Plot-! after Using Integral Term
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Figure 5-11: Plot-2 after Using Integral Term

35 Parametric Effect on Simulations

The feedback control gains have a profound effect on the performance of
the feedback control law. If we set the value of k; to be 0.003 instead of
0.03 as in the previous section, the performance is degraded as shown below.
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Figure 5-12: Plot-1 for Lowered Gain Basic Isolated Ramp Simulation
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Figure 5-13: Plot-2 for Lowered Gain Basic Isolated Ramp Simulation
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If we change the gain back to the original value and use only two
sections as compared to ten, we get the following plots.

Ti
Initial & Final Traffic Density Traffic Density fomﬁe First Section
25 25
2 20 f_/\//
15 15
10 10
5 5
1 15 2 0 5 10 15
Section Time

Figure 5-14: Plot-1 for Two-Section Basic Isolated Ramp Simulation
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Figure 5-15: Plot-2 for Two-Section Basic Isolated Ramp Simulation

We see here that although the total error value is lower the traffic density
values are not as high as we want them to be. The reason is that since there
are only two sections, we are adding errors of only two sections, which
makes the overall value zero. Choosing error per section would be a better
variable to use for comparison.

We have used the model without diffusion to design the feedback control
law and the model for the system in the simulation is the one without
diffusion. We can see the effect of diffusion in the model by making the
diffusion term Diff in the software equal to a nonzero term. If we change the
value from 0 to 1.0 or some lower number like that, the effects are not large.
However, if we change that value to 10.0, the results are more pronounced.
We see that the downstream sections lose their traffic more rapidly as shown
below.
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Figure 5-16: Plot-1 for Basic Isolated Ramp Simulation with Diffusion
Traffic Density for the Mid Section Error Variable
30 4000 )
el |
25 3000
20
2000
15
10 1000
5 S— 0 ,
0 5 Time 10 15 0 5 Time 10 15
Ramp Queues Control Rampflow
150 e 100
80
100
60
50
40
0 20
0 5 10 15 0 5 10 15
Time Time

Figure 5-17: Plot-2 for Basic Isolated Ramp Simulation with Diffusion
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4.

SUMMARY

In this chapter, we studied:

w

How to design feedback control laws for an isolated ramp
metering problem using the distributed mathematical model for the
ramp system.

We performed simulations to see the effectiveness of the results.

QUESTIONS

What is feedback linearization? Why is it used?

Prove that equation (14) is an exponentially decaying function.
Explain why such a function is used as an objective for the
controller given in this chapter.

For any control law application, explain the terms “desired control
values” and “physically allowed values.” Do they having similar
values? Why?

Study Figure 5-7. Explain subplot “Ramp Queue vs. Time” by
taking the objective of the control law into consideration.

Explain why the feedback control gains have a profound cffect on
the performance of the feedback control law.

Study Figure 5-13. Explain why ramp conditions are improved by
the addition of the diffusion term into the control law. If there are
any, explain other improvements in the system with the addition of
the diffusion term.

PROBLEMS

Use the MATLAB code given in the last section. Plot for diffusion
term D=0, 0.5, and 10 in the same figure. And compare the results
using the plot.

In the MATLAB code given in the last section, change the
maximum ramp queue length to its half value, and compare the
results with the previous results.
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Chapter 6

FEEDBACK CONTROL DESIGN USING THE
DISTRIBUTED MODEL WITH DIFFUSION

This chapter presents the feedback control design of an isolated ramp
metering problem where we use the distributed model of the ramp system
that also includes the diffusion term. Essentially, we are designing a
feedback control law for the system whose model is the Burgers equation.
We show the stability properties of the closed-loop system that is obtained
by the application of the feedback control law on the ramp system. We
verify the effectiveness of the feedback control law by running some
simulation experiments using the designed feedback control law on the
isolated ramp system.

1. MODEL SUMMARY OF THE DIFFUSION
MODEL

The diffusion model used for the design of the feedback control law is
presented below.

Dynamics:
d d p 0 0’
[5'0( x’t)”@p(x’t)}zpm Vi PN DR PN =0 )
U =r(t)—u(t)
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LGN

Boundary Condition: 0(2,0)v,(1- = f(t)+u(t)
max a'x (t,0)

2

Initial Condition: ©(0,x) = (x) 3)

We will use this model to design a feedback control law that provides
desirable closed-loop dynamics.

2. CONTROL OBJECTIVE
Using the aim of keeping the traffic density on the highway equal to the

critical density at all points, we use the same functional as in the previous
chapter:

1% R
0=~ j (p(t.x)- p,.) dx @)

Our aim for the control law design is to satisfy the following objective:

Lte(t)=0 )]

t—c0

3. FEEDBACK CONTROL LAW FOR THE
DIFFUSION MODEL

Following the feedback control design in the previous chapter, we get the
following equation identical to equation (28) in the previous chapter:

it = p.lp.gt, L)~ fO)-ul-| p(,,x).%(q(t,x»dx (©)
0

In order to make the error go to zero asymptotically, we design the same
feedback control law as in the previous chapter:
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L
= qt,1)~ £+ {ke(t)~ [ p(t, ) (a(t, )] )
pc 0 ax

Applying this control law into (6) gives the equation

é(t)+ke(t)=0 8)
which guarantees asymptotic convergence following

e(t) = e, exp(—kt) 9
Therefore, even for the diffusion case the control law seems to be the

same. The difference, however, comes from the expression for q. This is
discussed in the following section.

31 Implementation of the Basic Feedback Control Law

Let us revisit the feedback control law we have designed. The control
law derived above is re-presented below:

u=q(,L)- f(t)+—l—[k€(t)—jp(t,x)—a—(CI(t,x))dx] (10)
P : ox

c

Due to diffusion, the expression for the traffic flow is given by

- LX)y 0P x)
ox

q(t,x)=v, p(t,x)( (11

max

Implementation of this law requires sensors to get various measurements
from the highway. Using (11), this control law changes to

w=qt,L)~ f(1)+ —;—[ke‘(t) -

12
dp(t,x) 4

ox

| p(t,x)ai(vfpa— £ ) - yan
) o p

max
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We will expand the term inside the integral as

L
2
Ip(t,x)—(vfp(l——”—)—Da—pr
ox P ox
(13)

2

= j v, o, x) - 1-2-) Dot x) )

max

Using (13) in the expression for u gives

u=q(t.L)- £(t) +;1—[ke(t)
‘ (14)

j v, o, x) “a- 2pp )~ Dp(t, x) L))

max

We can expand (14) further using (4) to get

L
u= q(t,L)—f<t>+pi[—"2- [(ot.x)- ) dx
’ (15)

” yald

- j v, p0t, x)

max

We can further expand the first term so that the entire feedback control law
that expresses the ramp inflow into the highway is a function of only traffic
density along the highway mainline:

Ip(t,x)|

™ + f(1)

x=L

w=v,pt.L1-225) _p

max

1 k§ R
o] [0, -p) dx (16)

c

2
—j(vfp(r 02 1-2209) pp. ) Lya

max

Looking at (16) tells us that we need the value of the traffic density at
every point on the mainline as well as the value of the gradient and of the
second spatial derivative of the traffic density at all points. To accomplish
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this we would need to deploy distributed sensors as before. Using point
sensors would give an approximate value for the expression (17).

Let us divide the highway mainline into n sections, with section number
n+1 being the one downstream of the last section, and n+2 being the one
downstream to that. Then if we have one loop detector in each section, we
can approximate the control law as

w=v,p,01-220) p L@ L) 1
max Ax
k n
+i[52(p,(t)—pr>2
. (L@ =p;@®) P an
—;(vfpj(t) v (1—2pfm)
. —-0.(t
~Dp, i 2220,
A'x

What we notice in this expression is that we need the traffic density of
two sections beyond the last section (i.e., section n). This happened because
of the particular approximation we chose for the gradient and the second
derivative. If we change our choice of the discretization scheme, the
dependence of the controller on various “outside” sections will change. We
refer to “outside” sections as those sections that are either upstream of
section 1 or downstream of section n. The next section discusses the various
control implementations we can get by choosing different discretizing
schemes.

3.2 Control Discretization

We can choose various schemes for discretizing the gradient and the
second derivative term. The forward differencing scheme gives

9p(t,x) _9p,0) _ p()-p;®)
ox ox Ax

(13)
PER=p; (1)

Using this for the second derivative gives
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92 p(t, x) =L[apj+l(t) _ ap,-(t)]

ox’ Ax  Ox ox (19)
_i[pﬂz(t)—pj“(t) _ pj+1(t)_pj(t)] - pj+2(t)_pj(t)
Ax Ax Ax A’x

When we apply (18) and (19) to (16) we get (17). The backward
differencing scheme gives

9p(t,x) _9p,6x) _ p0)-p @ 0)
N P ox Ax
Using this for the second derivative gives
9’ p(t,x) _ L[ap,» ©) 9p;, (t)]
ox? Ax  Ox ox 1)
=L pj(t) —Pj_l(t) _ pj_l(t)—pj_z(t)] _ pj(t) _pj-z(t)
Ax Ax Ax Alx
When we apply (20) and (21) to (16) we get
w=v,p,00-22) p 2O,
max Ax
S G 2
+—[22.(0,0=p.)
L e0-p® a0 e
\ Pil) = Pj j
- , 1-2
;(vfp, (=—p (=227
_ Dp} (t) (,0, (t) - pj_z (t)))

A*x

Using the backward scheme requires us to measure the traffic density of
two sections that are upstream of the first section of the highway. The

central differencing scheme gives

dp(t, %) _p;(6%) P ®= P ®
ox ox Ax

p(t,x)=p;(t)

(23)
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Using this for the second derivative gives

azp(t,x)=i[apj+1(t)_a,0j_1(f)]

ox* Ax oOx ox (24)
_1 P ()= p; () B pj(t)_pj-Z(t)] _ P ()= P, (1)
Ax Ax Ax N'x
When we apply (23) and (24) to (16) we get
0,) (0, @) — P, (D)
u=v;p,nHl- o )-D ™ +f(®)
1 kg 2
+—1 2 0,0-p,)
e o ®-pa®) o) *
=3 vy, )2 P o B0y
j=1 Ax max
w2 8)— j-2
222021

Ax

Using the central scheme requires us to measure traffic density of two
sections that are upstream of the first section of the highway and two
sections that are downstream of the last section.

If we use the forward differencing scheme on all the sections except the
last section where we apply the backward differencing scheme, we will get:

PP,
dp(t,x) ___apj(t,x) _ ]—A—x]_ j=12,..,n-1

ox ox pj (t)_pj—l(t)

Pl x)=p;(t)
Ax

Using this for the second derivative gives
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p@t,x) _ 1 [8p,~ﬂ(t)_8p,~-l(t)]

ox? Ax  Ox ox
(L pj+2(t)_pj+l(t) _pj+1(t)_pj(t)] j=1,2,-~,n_2
_JAx Ax Ax 27)
1 ,Oj(t)"pj_l(t) pj(t)_pj-l(t) .
- - ] j=n-Ln
Ax Ax Ax
P00 15 noa

= A'x
0 j=n-Ln

When we apply (26) and (27) to (16) we get

£, (1)

max

+—FZ%®/U

——)-D

+f(@)

u= vf p,, (t)(l (pn (t) ;xpn—l (t))

¢ 2 (28)
< (pj+1(t)_pj(t)) pj(t)

_;(prj(t) Ax (1_2 P )
n-2

Sop Ummo ““ﬁ

Now, this control law does not require any more measurements than
available from the n sections of the highway.

33 Integral Term

With the integral term, the control law (10) becomes

2 L
u=glt,L)~ £(t)+—[ke(t) + [koe(s)ds - | P02 (g0, 0)dx]
P ] ] ox

c

(29)

From the discretized version of this law using the method that utilizes
only the measurements from the highway mainline sections, we get the
following equation corresponding to (28):
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u=v,p,0)1- ’/’;(’))— P02,

max

+f(1)

1 k& '
+—[7;(p,-(r)—pc)2+ !72 (p;(9)=p,)’ds

30
X0 0

Prmax

a-

(p,+1() p;)
_z( f J Ax )

n-2 N t j t
S, ()<p,+() p,0),

The integral term can be discretized in time so that it becomes a
summation in time. Doing that we will get

u(k)=v,p, (1)1 -2 ONINCAC) ;x p,. (k)

max

+ f(k)

+——-—[—Z(p,(k) £’ r ZZ(p,(r) p.)’

c r=1 j=1

(31
z (pj+1( )—pj(k)) p,( )
—;(v,p,(k) =

(-2

)

max

n-2 k k
-ZD ()(pm( )- p,( )

]

The next section presents the software and the simulation results using
this controller.

34 Software Simulation for the Closed_Loop System

The software developed is presented in the five files below. We have
kept the plotting code in a separate draw.m files.

% Ramp Metering Code
clear;

clf;

clc;

global rhom rhoc vf 1lmax Dx kl k2 n rmax Diff ie

% Input Parameters
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Dx=1;
k1=5.5;
k2=0.03;

rhom = 60; % Jam density

rhoc = rhom/2; % Critical density
vE = 15; % freeflow velocity
lmax = 200;

Diff=2.0;

t0 = 0.0;

tf = 40;

h 0.01;

m (t£-t0) /h;

n = 10; % number of sections
rho=ones (m,n) . *25; % X array m rows, length state

columns

T=zeros(m,1); % T array m rows (mxl)
L=[1:1:n]"';

T(1)=t0;

1(1)=0;

ie=0;

rvar(l)=opder(1,1(1));
uvar (l)=opdeu(l,rho(l,:),1(1),rvar(l));
fvar (1)=opdef (1) ;
evar(1)=0;
for j=1:n

evar (1)=evar (1) +(rho(1,j)-rhoc)*2;
end

$There are m-1 steps and m points maximum
for i=1:m-1;

clc

T(i)

T(i+1)=t0 + h*i;

flag=0;
gin=vf* (rho(i,n-1)*(l-rho(i,n-1)/rhom))+Diff*(rho(i,n-1)-
rho(i,n));
if flag==0
gout=vi*(rho(i,n)*(1-rho(i,n)/rhom))+Diff* (rho(i,n-
1) -rho(i,n));
else
qout=0;
end
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rhoinc=h* (gin-qout) /Dx;
if rho(i,n)+rhoinc >=rhom
rhoinc=rhom-rho(i,n);
flag=1;
else
flag=0;
end
rho(i+1,n)=rho(i,n)+rhoinc;

for j=n-1:-1:2
gin=vf* (rho(i,j-1)*(1-rho(i,j-1)/rhom))+Diff* (rho(i, j-
1)-rho(i,j));
if flag==0
. gout=vf*(rho(i,j)*(1l-rho(i,j)/rhom))+Diff* (rho(i,j)-
rho(i,j+1));
else
qout=0;
end
rhoinc=h* (gin-qgout) /Dx;
if rho(i,j)+rhoinc >=rhom
rhoinc=rhom-rho(i,j);
flag=1;
else
flag=0;
end
rho(i+1l,j)=rho(i,j)+rhoinc;
end

if flag==0

qout=vE* (rho(i,1)*(1l-rho(i,1)/rhom))+Diff*(rho(i,1)-
rho(i,2));
else

qout=0;
end
gin=opdef (i) +uvar(i);
rhoinc=h* (gin-qout) /Dx;
if rho(i,1)+rhoinc>=rhom

rhoinc=rhom-rho(i,1);

fvar (i)=qout+Dx*rhoinc/h; ;
end
rho(i+1,1)=rho(i,1)+rhoinc;
1(i+1)=1(i)+h*(opder(i,1(i))-uvar(i));
rvar(i+l)=opder(i+1,1(i+1));
uvar(i+l)=opdeu(i+1,rho(i+1,:),1(i+1l),rvar(i+1));
fvar (i+l)=opdef (i+1) ;
evar (i+1)=0;
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for j=1:n
evar (i+l)=evar(i+l)+(rho(i+l,j)-rhoc)*2;
end

end

Figure 6-1: File opdemixedramp.m with Diffusion

subplot (221);
mesh (rho) ;
title('Traffic Density');

subplot (222) ;

plot(T,rvar, '-',T,fvar, '-."');
title('Ramp and Highway Inflow');
xlabel('Time');

subplot (223) ;
plot(L,rho(1,:),'~-"',L,rho(m,:), '-.");
title('Initial & Final Traffic Density');
xlabel (‘Section');

subplot (224);

plot(T,rho(:,1));

title('Traffic Density for the First Secticn');
xlabel('Time') ;

pause;

clf;

subplot (221) ;

plot(T,rho(:,n/2));

title('Traffic Density for the Mid Section');
xlabel ('Time');

subplot (222) ;
plot (T, evar) ;
title('Error Vvariable');
xlabel (' Time');

subplot (223) ;
plot(T,1);
title('Ramp Queues');
xlabel ('Time') ;

subplot (224) ;
plot(T,uvar) ;
title('Control Rampflow');




6 Feedback Control Design Using The Distributed Model with
Diffusion

163

Ix1abel (' Time');

Figure 6-2: draw.m

function opdeu = opdeu(t,x,1,r)

global rhom rhoc vf lmax Dx kl k2 n rmax Diff ie

e=0;
rdelqdx=0;
e=e+((x(1)-rhoc)"2)/2;
qd=vf*x(2) *(1-(x(2) /rhoc) ) +Diff* (x (1) -x(2));
q=vE*x (1) *(1-(x (1) /rhoc) )+Diff* (x(1)-x(2));
rdelqdx=rdelqdx+x(1l) * (qd-q) /Dx;
for j=2:n-1
e=e+((x(j)-rhoc)"2)/2;

q=vE*x(j)*(1-(x(j) /rhoc) ) +Diff* (x(j-1)-x(3));
rdelqgdx=rdelqdx+x(j) * (qd-q) /Dx;
end
ie=ie+e;
qd=vi*x(n)*(1-(x(n)/rhoc))+Diff*(x(n-1)-x(n));
g=vi*x(n-1) *(1-(x(n-1) /rhoc) ) +Diff* (x(n-1)-x(n));
opdeu=g-opdef (t) - (-kl1* (e+(((x(n)-rhoc)"2))/2)-
k2*ie+rdelgdx+x(n) * (gd-q) ) /rhoc; % rarn out flow

if 1<=0

if r<opdeu
opdeu = r;

end

end

if x(1)>=rhom
opdeu = 0;

end

if opdeu<0
opdeu=0;

end

qd=vE*x(j+1) * (1-(x(j+1) /rhoc) ) +Diff* (x(j) -x(j+1));

Figure 6-3: Control File for Diffusion (opdeu.m)

function opder = opder(t,1)
global lmax

end;

if l<lmax

opder = 50*(1.0+0.2*sin(0.001*t)); % ramp inflow
else

opder = 0;
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Figure 6-4: Ramp Inflow File for Diffusion (opder.m)

Chapter 6

function opdef = opdef(t)
if £>75 & t<150

opdef = 185*(1.0+0.2*sin(0.0025*t));
else

opdef = 175*(1.0+0.2*sin(0.0025*t));
end

Figure 6-5: Highway Inflow File for Diffusion (opdef.m)

The simulation results using these files are shown below.

Initial & Final Traffic Density Traffic Density ;I(-J'mﬁe First Section
30
— f"’F—‘_’—_—F
29 T /
8 25
27 20
26
25 15
0 5 10 0 10 20 30 40
Section Time

Figure 6-6: Plot-1 for Diffusion Control
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Diffusion
Traffic Density for the Mid Section Error Variable
30 1000
800
% 600
20 400
200
15 - 0 -
0 10 Time 30 40 0 10 Time 30 40
Ramp Queues Control Rampflow
250 100
200 80
150 60
100 40
50 20
0 0
0 10 20 30 40 0 10 20 30 40
Time Time

Figure 6-7: Plot-2 for Diffusion Control

4.

SUMMARY

In this chapter, we studied:

How to design feedback control laws for an isolated ramp
metering problem using the distributed mathematical model for the
ramp system where the model used the diffusion term in traffic
velocity

We performed simulations to see the effectiveness of the results.

QUESTIONS

What is the contribution of the diffusion term inclusion? Compare
it with the case where no distribution term is included.

Which discretization techniques are used in the control law?
Explain why multiple techniques are used to discretize the system.
Explain why the integral term is introduced in the control law.
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Chapter 6
PROBLEMS

Derive the control law without the integral term.
Write a MATLAB code (or modify the program code given in
Section 3.4) that uses the control derived in Problem 1.

a. Plot the figures (density (mesh), ramp queues, etc)

b. Compare the plots with Figure 6-6 and Figure 6-7.
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Chapter 7

FEEDBACK CONTROL DESIGN FOR THE
DISTRIBUTED MODEL FOR MIXED
SENSITIVITY

This chapter presents the feedback control design of an isolated ramp
metering problem where we use the distributed model of the ramp system
with the control designed not only to keep the flow on the highway at a
critical value but also to keep the queue length on the ramp small. We show
the stability properties of the closed-loop system that is obtained by the
application of the feedback control law on the ramp system. We verify the
effectiveness of the feedback control law by running some simulation
experiments using the designed feedback control law on the isolated ramp
system.

1. SUMMARY OF THE BASIC MODEL

In this chapter, we will use the basic model to design the feedback
control law that tries to not only keep the traffic density on the highway
close to the critical value but also tries to keep the queue lengths lower. The
model, for convenience, is presented below.

t,x
Aot 2w, (1- 29y,
. ]9pt.x) Prax _ _
Dynamics: + =0 (1)
ot ox
t=r(t)-u()
167
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p(t,0)

max

Boundary Condition: o(#,0)v,(1- )= f(@)+u) ?2)

Initial Condition: (0, x) = ¥ (x) 3)

We will use this model to design a feedback control law that provides
desirable closed-loop dynamics.

2. CONTROL OBJECTIVE

Figure 7-1 shows the feedback control scenario in which the sensors used
give measurements on the mainline highway as well as on the ramp queues.

Figure 7-1: Sensors and Feedback Ramp Metering
The aim of the controller is to keep the traffic density at the critical value

and, at the same time, keep the queue length small. Therefore, the error
variable to accomplish both will be taken as

L
e(t)=vaL [(ot.x) = p.) dx+wye @
0

The error variable is a weighted average of the error used in the previous
chapter and the queue length. Since the first term in (4) is a squared term
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and the second term is the queue length, which is a nonnegative variable, the
error term itself is always nonnegative. Our aim for the control law design is

to satisfy the following objective:

Lte(t)=0 Q)

10

The methodology for the feedback control design will be the same that
has been used in previous chapters, i.e. to use feedback linearization. With
the integral term in the feedback linearization, the error dynamics in the
closed loop will become

&) +ke(t) +k, [ e(s)ds =0 (6)
0

3. FEEDBACK CONTROL DESIGN

In order to design a control law that attempts to achieve (6) we start by
differentiating (4) by time to get the following:

d .. . d w § R
—e(t) =é(t) =—[— t,x)- dx +w,l 7
—elt) =é() dt[zl(p( x) = p,) dx+wy ] @
Simplifying this expression stepwise, we get
L d .
60 =W, [ (01, 2)= ) —-(0(1,X) = p ) + w (®)
0
Using the conservation equation and dynamics (1) here gives us
¢ d
e@r) = le(/)f - p( ,X))a(q(t,x»dx +w, (r(t) —u()) )
0

Simplifying this equation, we get
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ér) =w, [! p.5-(a(t,x))dx !p(t, x)=-(q(t, 0)ds]
+w, (r(2) — u(2))

Since the critical density is constant, we get

kg L d
é(t) = wlp, j = @t [ P ) =-(a(t, )]
+w, (r(t) —u(t))

Equating the partial derivative to total derivative, we get

. ¢ d ¢ d
e@t) =wp, !E(q(t,x))dx - !p(t, x)g(q(t,x))dx]
+w, (r(t) —u(t))

which gives

q(,L) L
o) =wlp, [dq.x)- [ pt.3)(g(t, )]
q(1,0) 0 ox

+w, (r(t) —u(r))

Solving the first integral in (13) yields

L
é(t) =wlplq@,L)-q(1,0)]- I P, x)b% (g(t, x))dx]
0

+w, (r(t) —u(?))

Chapter 7

(10)

(11

(12)

(13)

(14)

The flow at the left most boundary is produced by the highway and ramp

inflows. Therefore, we have

q(t.0)=u+ f(t)

(15)

Utilizing (15) in (14) introduces the control variable in the differential

equation for the error variable. This is shown below:
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&) =wp g, L)~ f()-u]- Ip(t,x)g;(q(t,x))dx]
0

(16)
+w, (r(®) —u())
Combining the control terms together, we get
i d
&0 =wlp.lqtt,.L) - f 0] [ p(t,x)=(q(t, x))dx]
S a7
+w,r(t) —[p.w, +w,]Ju(t)
This differential equation can be written cleanly in the following form:
ét)=F +Gu (18)

where

F=wlplg.l)- f0)]- | p(t,x)(.f—x(q(r,x»dx] +wyr(t)  (19)
0

and
G=—pw +w,] (20)
Our aim, as mentioned earlier, is to make the control variable u() a
function of the traffic state variables in such a way that it can take the error
variable to zero. We want to design the control law to make the error

dynamics follow (6). In order to do that we present the feedback control law
as

u=G"[-F ~ke(t)~k, [ e(s)ds] Q1)
0

Using (21) in (18) gives (6), as desired.
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4. SOFTWARE

The software for the simulation written in such a way that we can easily
perform simulations using a controller without the mixed sensitivity design
and also perform simulations using the controller presented above using the
same files. The only difference is in the weights used. When the weight
given to the ramp queues is zero, then the controller becomes the same as
has been designed before this chapter. That controller does not take into
account the ramp queues. With a nonzero weight on the ramp queue, the
new controller tries to reduce the ramp queues as well. The error to compare
the two controllers is the same and that is the weighted normed error that is
used to design the controller of the previous section. The files are presented
below. The draw.m file is the same as the one used in the previous chapter.

% Ramp Metering Code
clear;

clf;

clc;

global rhom rhoc vf lmax Dx k1l k2 n rmax Diff ie wl w2

% Input Parameters
c=input (‘unmixed(1l) or mixed-contrcl(2)');

if c==1
wl=1;

end

wel=0.05;
we2=0.95;

Dx=1;
k1=5.5;
k2=0.03;

rhom = 60; % Jam density

rhoc = rhom/2; % Critical density
vE = 15; % freeflow velocity
lmax = 200;

Diff=0.0;
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t0 = 0.0;

tf = 20;

0.01;

(t£-t0) /h;

n = 10; % number of sections
rho=ones(m,n) . *25; % X array m rows, length state
columns

g8 o
"o

T=zeros(m,1); % T array m rows (mxl)
L=(1:1:n]"';

T(1)=t0;

1(1)=0;

ie=0;

rvar(l)=opder(1l,1(1));

uvar(1l)=opdeul2(1l,rho(1,:),1(1),rvar(l));

fvar(1l)=opdef (1) ;

evar(1l)=we2*1(1);

for j=1:n
evar(l)=evar(l)+wel*((rho(1l,3j)-rhoc)"2)/2;

end

$There are m-1 steps and m points maximum
for i=1:m-1;

clc

T(1i)

T(i+1)=t0 + h*i;

flag=0;
gin=vf*(rho(i,n-1)*(l-rho(i,n-1)/rhom))+Diff* (rho(i,n-1)-
rho(i,n));
if flag==0
qout=vi* (rho(i,n)*(l-rho(i,n)/rhom))+Diff* (rho(i,n-
1)-rho(i,n));
else
qout=0;
end
rhoinc=h* (gqin-qgout) /Dx;
if rho(i,n)+rhoinc >=rhom
rhoinc=rhom-rho(i,n);
flag=1;
else
flag=0;
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end
rho(i+1l,n)=rho(i,n)+rhoinc;

for j=n-1:-1:2
gin=vf*(rho(i,j-1)*(1-rho(i,j-1)/rhom))+Diff* (rho(i,Jj-
1)-rho(i,j));
if flag==0
qout=vi* (rho(i,j)*(l-rho(i,j)/rhom))+Diff*(rho(i,j)-
rho(i,j+1));
else
qout=0;
end
rhoinc=h* (gqin-qout) /Dx;
if rho(i,j)+rhoinc >=rhom
rhoinc=rhom-rho(i,j);
flag=1;
else
flag=0;
end
rho(i+1,j)=rho(i,j)+rhoinc;
end

if flag==0
qgout=vf* (rho(i,1)*(l-rho(i,1)/rhom))+Diff* (rho(i,1)-
rho(i,2));
else

gin=opdef (i) +uvar (i) ;
rhoinc=h* (gqin-gout) /Dx;
if rho(i,1)+rhoinc>=rhom
rhoinc=rhom-rho(i, 1) ;
fvar (i) =qout+Dx*rhoinc/h; ;
end
rho(i+l,1)=rho(i, 1) +rhoinc;
1(i+1)=1(i)+h* (opder(i,1(i))-uvar(i));
rvar (i+l)=opder (i+1,1(i+1));

if c==
uvar (i+l)=opdeu3 (i+1l,rho(i+l,:),1(i+1l),rvar(i+l));
else
uvar (i+l1)=opdeul2 (i+1,rho(i+l,:),1(i+l),rvar(i+l));
end

fvar (i+l)=opdef (i+1);

evar (i+1)=we2*1(i+l);
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for j=1:n
evar (i+l)=evar (i+l)+wel*((rho(i+1,j)-rhoc)"2)/2;
end

end

Figure 7-2: File opdemixedramp.m to Run Mixed and Unmixed Ramp Control Problems.

function opdef = opdef (t)
if t>75 & t<150

opdef = 185*(1.0+0.2*sin(0.0025*t)) ;
else

opdef = 175*(1.0+0.2*sin(0.0025*t)) ;
end

Figure 7-3: File opdef.m to Run Mixed and Unmixed Ramp Control Problems

function opder = opder(t,1l)
global lmax
if l<lmax

opder = 20*(1.0+40.2*sin(0.001*t)); % ramp inflow
else

opder = 0;
end;

Figure 7-4: File opder.m to Run Mixed and Unmixed Ramp Control Problems

function opdeul2 = opdeul2(t,x,1l,r)
global rhom rhoc vf 1lmax Dx kl k2 n rmax Diff ie wl w2

e=w2*1;;
rdelqdx=0;
e=e+wl* ((x(1)-rhoc)"2)/2;
qd=vE*x(2)*(1-(x(2)/rhoc) ) +Diff* (x(1)-x(2));
qg=vE*x (1) *(1-(x(1)/rhoc))+Diff*(x(1)-x(2));
rdelqdx=rdelqgdx+x (1) * (gqd-q) /Dx;
for j=2:n-1
e=e+((x(j)-rhoc)~2)/2;
qd=vE*x (j+1) * (1-(x(j+1) /rhoc) ) +Diff* (x(j)-x(+1));
q=vE*x(3)*(1-(x(j) /rhoc) ) +Diff* (x(3-1)-x(3));
rdelqdx=rdelqdx+x(j) * (qd-q) /Dx;
end
ie=ie+e;
qgd=vi*x(n)*(1-(x(n) /rhoc) )+Diff* (x(n-1)-x(n));
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g=vE*x(n-1)*(1-(x(n-1) /rhoc) ) +Diff* (x(n-1)-x(n));

G=- (rhoc*wl+w2) ;

F=wl*rhoc* (qd-opdef (t))-rdelqgdx+x(n)* (gd-q) /Dx+w2*1;
opdeul2=(-F-kl*(e+(((x(n)-rhoc)”2))/2)-k2*ie)/G; % ramp
outflow

if 1<=0

if r<opdeul2
opdeul2 = r;

end

end

if x(1)>=rhom
opdeul2 = 0;

end

if opdeul2<0
opdeul2=0;

end

Figure 7-5: File opdeul2.m to Run Mixed and Unmixed Ramp Control Problems.

When you execute the opdemixedramp.m file, the system prompt asks
you to input the value of c. When you enter 1, the controller without mixed
sensitivity is used, and when you input 2, the mixed sensitivity controller
(21) is used.

5. SIMULATION RESULTS

Simulation results using the value of 1 for ¢ are given below. These,
therefore, are the results for a feedback controller that does not consider the
ramp queues.
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Simulation results using the value of 2 for ¢ are given below. These,
therefore, are the results for a feedback controller that does consider the

ramp queues.
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Traffic Density for the Mid Section Error Variable
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Figure 7-9: Plot-2 Using Mixed Ramp Control

By comparing the two sets of plots, we see clearly that the ramp queue
lengths are reduced when we use the controller (21).

We can also perform simaulations where the weight on the first term is 0.5
and the ramp queue term is 0.5, as compared to the plots above where the
weights were 0.05 and 0.95, respectively.
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Figlire 7-11: Plot-2 Using Equal Weights Mixed Ramp Control

6. SUMMARY

In this chapter, we studied:

o How to design feedback control laws for an isolated ramp
metering problem using the distributed mathematical model for the
ramp system where the control objective tries to minimize a
weighted average of the norm of the difference of the highway
traffic density from the critical value and the ramp queue length.

L We performed simulations to see the effectiveness of the results.

7. QUESTIONS

1.  What is the objective of the mixed control? How does it achieve its
aim?
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2.

3.

RAl o S e

Explain the importance of the weight factors w; and w, in the
control law.
Explain the improvements in the system, when:
a. W[-_-l, W2=0
b. w;=0.95, 0.05
C. W1=0.5, 0.5
d. Which above case gives the optimum results in terms of
providing freeway flow at critical density and reducing the
ramp queues?

PROBLEMS

Using the mixed control given in this chapter, write your own
simple MATLAB code. Test the Matlab code for different levels
of freeway and ramp demands to determine the relationship
between total demand and weight parameters. Plot the obtained
values to show this relationship.

For total demand slightly above the maximum demand the system
can handle based on your system characteristics, set the weight for
the ramp to zero and run your Matlab simulation to observe the
ramp queue. Then, incorporate a constraint that turns off the
control when the queue is above the threshold value set for the
maximum queue length for the ramp. Compare this solution with
the solution that uses the optimal weight value in terms of total
system delays.
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Chapter 8

FEEDBACK CONTROL DESIGN FOR
COORDINATED RAMPS USING DISTRIBUTED
MODELING

This chapter presents the feedback control design of a coordinated ramp
metering problem where we use the distributed model of the ramp system.
We show the stability properties of the closed-loop system that is obtained
by the application of the feedback control laws on the ramp system. We
verify the effectiveness of the feedback control law by running some
simulation experiments using the designed feedback control law on the
coordinated ramp system.

1. COORDINATED RAMP METERING

Coordinated ramp metering problem refers to a highway system that has
ramps on it at various points. The question for design becomes how should
the ramp metering be designed taking into account the interactions of the
various ramps. The coordinated ramp problem is illustrated in Figure 8-1.

P. Kachroo et al., Feedback Ramp Metering in Intelligent Transportation Systems

© Kluwer Academic/Plenum Publishers, New York 2003
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Figure 8-1: Coordinated Ramp Problem

We can express the coordinated ramp metering problem as the problem
of controlling the traffic density on the entire mainline, or as a mixed
sensitivity problem. We can use solutions that are decoupled or coupled. As
decoupled solutions, we can totally ignore the ramp connections and treat
each ramp as an isolated problem, and use the controllers that have been
designed till now. We will study all these aspects in this chapter. We will
siart off with a new technique for isolated ramps that we have not studied
before, and we will then use tiiis technique as a motivational example to
design a similar technique for the coordinated problem.

2. MOTIVATION EXAMPLE FOR ISOLATED
RAMP PROBLEM

We present a new technique for isolated ramp control here, which will
help us in designing effective and simple coordinated feedback ramp control
laws.

2.1 Control Objective

The control objective for this new control law is to make the error term
go to zero asymptotically. However, the design of the error variable will be
different. The design is given as
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L
e(t) = [(o(t, %)~ p)dx (M
0
We will again strive to achieve the closed-loop dynamics represented by
!
&) +ke(t)+k, [e(s)ds =0 ®)
0

which will enable us to obtain

Lte(t)=0 3)

1—yo0

We will show the feedback control law for the basic design as well as the
diffusion-based model. In both models, the conservation equation is

dp(t,x) N dq(t,x) _
ot ox

0 C))

and the flow relationship is
q(t,x) = p@, x)v(z, x) &)

In the basic model we use the following for the velocity density
relationship:

£y ©)

max

v=v,(l-

For the diffusion model, we use

Yo

max

d
1- D[a—p]/ P N
X

v, =v,[l-
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2.2 Feedback Control Design

In order to design a control law that attempts to achieve (2), we start by
differentiating (1) by time to get the following:

d o4t _
e =é=— j (0, %) - p,)dx ®)

Simplifying this expression stepwise, we obtain

4

7 p(t,x)dx (&)

-~

ét) = f

Using the conservation equation here after equating total to partial
derivative, gives

&) = —I%(q(t,x))dx (10)
0

Equating the partial derivative to the total derivative, we get
L

0 =~ [ - (g D) (1

0
which gives
q(t,L)
ét)=— [dg(t,x) (12)
q(1,0)
Solving the first integral in (12) yields
e(t)=q(t,0)—q(t,L) (13)

The flow at the left most boundary is produced by the highway and ramp
inflows. Therefore, we have, as before,

qt0)=u+ f() (14)
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Utilizing (14) in (13) introduces the control variable in the differential
equation for the error variable. This is shown as

et)=u+ f(t)—q(,L) (15)

Our aim is to make the control variable u(.) a function of the traffic state
variables in such a way that it can take the error variable to zero. We want
to design the control law to make the error dynamics follow (2). In order to
do that we present the feedback control law as

u=q(t,L) - f(t)=ke(t)—k, [ e(s)ds (16)
0

Using (16) in (15) gives (2), as desired. This control law works for
models, basic and diffusion. When we use the basic model, the control law
will expand as

pt,L

m

u=v,p(t L)1~ ) F@O) -ke()—k j e(s)ds (17)

When we use the diffusion model, the control law will expand as

p@, L)

m

— f(t)~kie(t) =k, [ e(s)ds
0

%

u=v, ot L)Y1- o
x=L

)—-D

(18)

2.3 Simulation Program

The simulation program is presented below:

% Ramp Metering Code
clear;

clf;

clc;
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global rhom rhoc vf lmax Dx k1l k2 n rmax Diff ie
% Input Parameters

Dx=1;
k1=2.25;
k2=0.01;

rhom = 60; % Jam density

rhoc = rhom/2; % Critical density
vE = 15; % freeflow velocity
Imax = 200;

Diff=10.0;

t0 = 0.0;

tf = 20;

h = 0.01;

m (t£-t0) /h;

n = 10; % number of sections
rho=ones (m,n).*15; % X array m rows, length state

columns

T=zeros(m,1); $ T array m rows (mxl)
L=[{1:1:n]"';

T(1)=t0;

1(1)=0;

ie=0;

rvar (1)=opder(1,1(1));

uvar (1) =opdeu3 (1,rho(1,:),1(1),rvar(l));

fvar (1) =opdef (1) ;

evar (1) =0;

for j=1:n
evar(l)=evar(1l)+(rho(1,3j)-rhoc);

end

$There are m-1 steps and m points maximum
for i=1:m-1;

clc

T(1i)

T(i+1)=t0 + h*i;

flag=0;
qgin=vf* (rho(i,n-1)*(1-rho(i,n-1) /rhom))+Diff* (rho(i,n-1)-
rho(i,n));
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if flag==
qout=vi*(rho(i,n)*(1-rho(i,n)/rhom))+Diff*(rho(i,n-
1)-rho(i,n));
else
qgout=0;
end
rhoinc=h* (gqin-qout) /Dx;
if rho(i,n)+rhoinc >=rhom
rhoinc=rhom-rho(i,n);
flag=1;
else
flag=0;
end
rho(i+1l,n)=rho(i,n)+rhoinc;

for j=n-1:-1:2
qin=vE* (rho(i,j-1)*(l-rho(i,j-1)/rhom))+Diff* (rho(i,j-
1) -rho(i,j));
if flag==0
qgout=vi* (rho(i,j)*(1-rho(i,j)/rhom))+Diff*(rho(i,j)-
rho (i, j+1));
else
qout=0;
end
rhoinc=h* (gin-qout) /Dx;
if rho(i, j)+rhoinc >=rhom
rhoinc=rhom-rho (i, j);
flag=1;
else
flag=0;
end
rho(i+1l,j)=rho(i, j)+rhoinc;
end

if flag==0
qgout=vE*(rho(i,1)*(l-rho(i,1l)/rhom))+Diff*(rho(i, 1) -
rho(i,2));
else
qout=0;
end
gin=opdef (i) +uvar(i);
rhoinc=h* (gin-qout) /Dx;
if rho(i,1)+rhoinc>=rhom
rhoinc=rhom-rho(i,1);
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fvar (i)=qout+Dx*rhoinc/h;;
end
rho(i+l,1)=rho(i, 1) +rhoinc;
1(i+1)=1(i)+h*(opder(i,1l(i))-uvar(i));
rvar (i+l)=opder (i+1,1(i+1));
uvar (i+1)=opdeu3 (i+1l,rho(i+l,:),1(i+1) ,rvar(i+l));
fvar(i+l)=opdef (i+1) ;

evar (i+1)=0;
for j=1:n
evar (i+l)=evar(i+l)+(rho(i+l, j) -rhoc);
end
end

Figure 8-2: File opdemixedramp.m for New Isolated Control Law

function opder = opder(t,1l)
global lmax

if l<lmax

opder = 50*(1.0+0.2*sin(0.001*t)); % ramp inflow
else

opder = 0;
end;

Figure 8-3: File opder.m for New Isolated Control Law

function opdef = opdef(t)
if t>75 & t<150

opdef = 185*(1.0+40.2*sin(0.0025*t));
else

opdef = 175*(1.0+0.2*sin(0.0025*t));
end

Figure 8-4: File opdef.m for New Isolated Control Law

function opdeu = opdeu(t,x,1,r)

global rhom rhoc vf lmax Dx kl k2 n rmax Diff ie
e=0;
rdelqdx=0;
e=e+(x(1)-rhoc) ;
for j=2:n-1
e=e+(x(j)-rhoc);
end
e=e+(x(n) -rhoc) ;
ie=ie+e;
g=vi*x(n-1)*(1-(x(n-1) /rhoc));
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gd=vf*x(n) *(1-(x(n)/rhoc)) ;
2gd=vi*x(n}*(1-{(x(n)/rhoc))-Diff* (qd-q) /Dx;
F=qgd-opdef (t) ;

opdeu=F-kl*e-k2*ie; % ramp outflow

if 1<=0

if r<opdeu
opdeu3 = r;

end

end

if x(1)>=rhom
opdeu = 0;

end

if opdeu<0
opdeu=0;

end

Figure 8-5: File opdeu.m for New Isolated Control Law

2.4 Simulation Results

We will perform the following three simulations on this system.
1. Using control law (17) on the basic model with k;=1.25, and
k,=0.00.
2. Using control law (17) on the diffusion model with k,=7.25, and
k,=0.015, and Diff=10.0.
3. Using control law (18) on the diffusion model with k;=7.25, and
k,=0.015, and Diff=10.0.
The results of these three types of experiments are presented next.
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2.4.1 Basic Control Law on Basic Model
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Figure 8-6: Plot-1 for Basic Control Law on Basic Model
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2.4.2 Basic Control Law on Diffusion Model
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Figure 8-8: Plot-1 for Basic Control Law on Diffusion Model
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Figure 8-9: Plot-2 for Basic Control Law on Diffusion Model
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2.4.3 Diffusion Control Law on Diffusion Model
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Traffic Density for the Mid Section Error Variable
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Figure 8-11: Plot-2 for Diffusion Control Law on Diffusion Model

These plots show that diffusion models give better results in systems.
This is expected because they help to distribute the traffic in the mainline.

2.5 Analysis of the Control Objective and the
Performance of the Controller

One very interesting thing to note about the control objective (1) is that
the highway can give a zero value to error without having each point on the
highway be at the critical density. We see that if two points on the highway
have equal displacement of their traffic density values from the critical value
but one has a positive variation and the other negative, then the overall
integral in (1) is not affected by it. This seems to be a major limitation of
this control design.

The most interesting thing about this controller, however, is that it gives
excellent results. The reason for this is as follows. We will study the
performance looking at two types of traffic distribution on the highway.
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Figure 8-12: Decreasing Traffic Distribution

In the case of the decreasing traffic density shown in Figure 8-12, the
controller will not add too much new traffic, and if it did, that could cause

Figure 8-13: Increasing Traffic Distribution

Similarly, in the case of the increasing traffic density shown in Figure 8-
13, the controller will not add too much new traffic, and if it did, that could
cause congestion at the downstream. This analysis is good for traffic with
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diffusion. In the case of traffic with high diffusion, the system has a

tendency to even out the changing spatial densities, and therefore, with this
control law, we can get good tracking of critical density.

3. COORDINATED RAMP CONTROL

Now, we will use the technique developed above and modify it for
application to the coordinated problem. Refer to Figure 8-1 for this
coordinated ramp problem.

3.1 Control Objective

The control objective for this new control law is to make the error term

go to zero asymptotically. The limits of integral for this problem will be
from the start to the end of the mainline that includes both ramps:

L,
e(t) = [(p(t, )~ p)dx (19)

We will again strive to achieve the closed-loop dynamics represented by (2)
to enable (3).

3.2 Feedback Control Design

In order to design a control law that attempts to achieve (2), we start by
differentiating (19) by time to get

2 oy=ét)= % (o0, o, a0
dt dry ‘

Since the mainline has two parts, we can write this as (refer to Figure 8-

1):
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. dh dh
{0 == j (p(t,0) = p,)ds=— j (p(t.x) - p,)dx

2D
d L,
+=—[(pt, )~ p,)dx
dt”,
L
Simplifying this expression stepwise, we get
hd 2 d
&)= | = pt,0)dx+ [— p(t, x)dx (22)
o dt = dt

Using the conservation equation here after equating total to partial
derivative, gives

70 70
é0) == | -a(t,)dx = [ == q(t,x)dx 23)
0 L

Equating the partial derivative to total derivative, we get

. hd % d
e(t) = —;[Z.; q(t, x)dx — Jl:ix— q(t, x)dx 249
which gives
L L,
(1) =~ [ dq(t,x)~ [ dg(2, ) 25)
0 L

Solving the integrals in (25) yields

é(t) = q(t.0)—q(t, L)) +q(t, L) —q(t,L,) (26)

The flow at the left most boundary is produced by the highway and ramp
inflows. Therefore, we have, as before,

q@t.0)=u, + f(t) @7
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From the boundary condition at the second ramp, we also have
q, L) =q(t, L) +u, (28)
Substituting (27) and (28) in (26) gives the error dynamics as
e(t)y=u, +u,+f(t)—q@L,) (29)

If we design the control variables with the following constraint
t

w41, = q(t, L)~ £ (1)~ ke(t) =k, [ e(s)ds (30)
0

we will get the satisfaction of dynamics (2). This control law works for
models, basic and diffusion. When we use the basic model, the control law
will expand as

p(t,Ly)

m

u +u, =v,pt,L)1-

)= f©) = ke(®) =k, [e(s)ds (31)
0

When we use the diffusion model, the control law will expand as

u, +u, :vfp(t,Lz)(l—M)—D%q—
X

m

*h (32)

- f@®)—ke@®)- kzje(s)ds

Now the question becomes how to divide the right-hand sides of (30),
(31), or (32) between the two ramp control flows. We will show this for
(30). We can write (30) as

u, +u, =q(t,L)— f(t)—ke(t)—k,|e(s)d
q f 1€ '([ 3 (33)

+q(@t,L)-q@tL))
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We can break up the error term into two parts as
L L,
e = [ (0, x)= p)dx+ [ (p(t,x) = p,)dx (34)
0 L

we can name

L
e,(t) = [ (p(t,x) - p,)dx (35)
0
and
L,
e;(t) = [(p(t,x)= p,)dx (36)
L
so that
e(t)=¢/(t)+e,(t) 37
Using (37) in (33) gives

u +u, =q@t,L)—ft)—ke)- kz.i‘e1 (s)ds

, (38)
+q(,L,) - q(t.Ly) ~ ke, 1) — k, [ e, (s)ds
0
Now, we can divide the right-hand side of (38) as
u, =q@.L7) - f(O) -k, () =k, e, (s)ds (39)
0

and
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u, = q(t, L)~ qt.L) ~ ke, ()~ k; [ e, (s)ds (40)

Notice that (39) and (40) are the exact same control laws as (16).
Therefore, this method produces decoupled control laws. However, we can
also choose to divide the right-hand side in other ways so as to keep the
ramp control inflows responsive to other sections.

“The next section will show how to design coordinated ramp feedback
control laws that take into account the ramp queues at all ramps in the
system.

4. COORDINATED MIXED SENSITIVITY
FEEDBACK RAMP CONTROL

The following is the development of the coordinated mixed sensitivity
feedback control law. First, we present the control objective, followed by
the control design.

4.1 Control Objective

The aim of the controller is to keep the traffic density at the critical value
for the entire section that includes both ramps and at the same time keep the
queue lengths at the two ramps small. Therefore, the error variable to
accomplish both will be taken as

L,
e(t)=lv;-“(,O(I,x)—,or)zdx+wzfl +wyl, 41
0

Since the first term in (41) is a squared term, and the second and third
terms are queue lengths, which are nonnegative variables, the error term
itself is always nonnegative. Our aim for the control law design is to satisfy
the following objective:

Lt e(t)=0 42)

s

Note that if we take the weights for the two ramp queues to be zero, then
this becomes a coordinated ramp control objective without mixed sensitivity.
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This control objective does not suffer from the limitation of having non-
critical density for zero error. The methodology for the feedback control
design will be the same as that used in previous chapters, i.e., to use
feedback linearization. With the integral term in the feedback linearization,
the error dynamics in the closed loop will become

&) + k,e(t) + &, j e(s)ds =0 43)
0

4.2 Feedback Control Design

In order to design a control law that attempts to achieve (42), we start by
differentiating (41) by time to get

—e(t) =é(t) = —[— j (0t x) = o)V dx+wl, +wyl,]  (44)
Simplifying this expression stepwise, we get
L d . .
é)=w, [ (pt,x) - PO (D1, 3) = p)dxwil +wily  (45)
0 i

Using the conservation equation and the ramp queue dynamics for both
queues here gives

L,
&) =-w | (o, - p(t,x))ai(q(t,x»dx
0 X

(46)
(0 =)+ w () =)
Simplifying this equation, we get
60 = -l | 5. - qtt, 0 | 006,02 (g0, 00
o Cox : ox C9))

+w, () —u,) +wy(r,(t) —u,)
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Since the critical density is constant, we get

. %9 e d
@) =-wlp. [=-(a(t,)dx= [ p(t, )= (g(t,x)d]
0 0

(48)
+w,(r () —u) +wy(r, () —u,)
Equating the partial derivative to total derivative, we get
td s 9
é0) = -wlp, j —(q(t,x))dx - {p(t,x)gw(t,x»dx] w0
+w,(r () —u) +w;(r,(t)—u,)
which gives
. g L, L, 3
&0 =-wlpl j dq + £ dg) - j P 0= (g1, 3))d) 5t

+w, (@) —u)+wy(r, (1) —u,)

Solving the first integral ir: (49b) and using (27) and (28) here gives

L,
e)=-wlplq@ L) —u —u, — f()]- _[p(t,x)—g;(q(t,x))dx}
0

+w,(r () —u,))+wy (r,(t) —u,)
(50)

Combining the control terms together, we get

L,

o e 9

ét) = -w,[p.[q(t, L,) - ()] j P 1) (g0, 3))d] s
+w, (1) +wyn (1) + (~w, 0, —w,)u, + (w0, - wy)u,

This differential equation can be written cleanly in the following form:

e(t)=F +u (52)



208 Chapter 8

where

L,
F=-w1p.l4(.L,) - FO1- [ 6.0 (qtt, )]

(53)
+w,n (1) + w,r, (1)
and
u=w,(n)—u)+wy(r,(t)—u,) 54
To get error dynamics (43), we use
u=-F -ke(t) -k, [ e(s)ds (55)
0

Using (55) in (52) gives (43), as desired. Now we have to divide the right-
hand side of (55) into the two control ramp flows. We need to divide to
satisfy

w, (1 (t) —u,) + vy (r, () —u,) =—F —ke(t) - kzje(s)ds (56)

We can use decoupled or coupled laws just as we did in (39) and (40) and
using the arguments following that.

It can be seen easily that in the same way we designed feedback control
laws in the coordinated ramp setup in which there were two ramps, we can
also design similar feedback control laws when there are more than two
entrance ramps.

5. SUMMARY

In this chapter, we studied:

. A new isolated ramp metering control law in distributed setting for
basic and distributed models.
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7.

1.

We derived extension of this new law to design coordinated ramp
control laws.

QUESTIONS

What is the difference between coordinated and isolated ramp
metering control? What factors are considered in coordinated
control?

What are the “coupled” and “decoupled” solutions to the ramp
metering problem? Explain how these solutions approach the
coordinated ramp metering problem.

How are the parameters k; and k; selected in the simulation?

In section 2.4, three different conditions are simulated. Compare
the figures for case 2 and case 3.

What are the limitations of the controller given in Section 2.2?
What are the benefits of using the controller (Section 2.2)?

Is the coordinated ramp control given (Section 3) coupled or
decoupled? Why? How can we convert the control from one type
to the other?

PROBLEMS

Using (1), derive (12) in section 2.2.

2. Derive (38) in Section 3.2.

3.

a. Refer to question 7; derive the other version of the control law

(section 3.2).

b. Write a simple MATLAB code for the control law derived in
Section 3.2.

c. Write a simple MATLAB code for the control law derived in (a).

d. Compare the results. Which one gives better performance results?
(Consider freeway density, error term, ramp queue)

4. Make the necessary changes in the MATLAB code given in Section

2.3 to simulate the coordinated mixed sensitivity feedback ramp
control. Compare the results with the case of “diffusion control law
on diffusion model.”
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Chapter 9

FEEDBACK CONTROL DESIGN USING THE
ODE MODEL

This chapter uses the ordinary differential equation (ODE) model of the
ramp system for designing feedback control laws. We will design feedback
control laws for isolated ramp metering problems, isolated with mixed
sensitivity, and coordinated with and without mixed sensitivity. Software
and simulation results will also be presented.

1. MATHEMATICAL MODEL

The basic model used for the design of the feedback control law is
presented below. In this model, we consider only one section of the
mainline highway that is connected to the entrance ramp.

Figure 9-1: Ramp System

P. Kachroo et al., Feedback Ramp Metering in Intelligent Transportation Systems

© Kluwer Academic/Plenum Publishers, New York 2003
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In time At, the traffic density of the section of length Ax changes from
p(t) too(t+At). This change is caused by the effective inflow into the
section. The effective inflow is given by the sum of the highway and ramp
inflows after removing the outflow from the sum. This relationship in an
equation form is given as

(D

ot +At) - p(t) = At (=g(®) +Al;+ (@)

Taking the infinitesimal time on the left-hand side and taking limits gives us

p+An-p@t) _ (=q@)+u+ f(1) @

Lt
fro At Ax

This can be expressed as the following ordinary differential equation:

S_dp) _ 1
== Ax( qt)+u+ f(1) )

The ramp dynamics are given as
t=r(t)-u(t) @)

Combining (3) and (4), we can write the overall system dynamics as

. do@) 1
=t —=—(-qg®)+u+f@
Dynamics: P dt Ax( g0 +u+ 10 ®)
C=r@t)—u()
0)=
Initial Conditions: 1" ©)=p (6)
0)=1¢,
The flow relationship is
q(t) = p@)v() @)

We will take the velocity relationship as
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p)

max

vty =v, (1-22) ®)

For simulation experiments, the model of the system will use the following
diffusion relationship, for some examples:

p(1)

max

0 =v,0- 221 DLy ) ©
x .

Of course, now since we have ODEs, we do not have any dependence of
the density on the spatial coordinate. Therefore, (9) will be rewritten
appropriately as

P, @) - p)

v=v,1-29)pp =

max

1/ p@) (10)

Here p,(t) refers to the traffic density of the section downstream to the
main one.

2. CONTROL OBJECTIVE

The objective of a feedback control design is to make the error variable
go to zero. That is,

Lt e(t)=0 (11)

1o

This can be achieved by designing control laws that make the system
follow the closed-loop dynamics

&)+ ke(t) + k, [ e(s)ds =0 (12)
0

We can come up with the appropriate form of the error e (¢) for different
problems. The following are some of the ways we can design the error
variable:

Control Objective 1 e(t) = p(t) - p, (13)
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Control Objective 2 e(t) = p(t) - p, | (14)
Control Objective 3 e(t) = %( o0 -p.)? (15)
Control Objective 4 e(f) = %(p(l‘) —p.): +w,l (16)
Control Objective 5 e(t) = w, | p(t) - p. | +w,{ (17)

We can also use optimal control-based principles to design a feedback
law. We will show an example of this later. Now, we will design feedback
control laws using control objectives 1, 4, and 5. Notice that control
objectives 2 and 3 can be obtained by 4 and 5 by taking weight values to be
1 and O on the first and second terms, respectively.

3. CONTROL DESIGN

We will develop different control laws based on three control objectives
from the previous section.

3.1 Control Objective 1

We start our feedback control design by differentiating the error equation
(13):

é(t) = p@) (18)
Using the dynamics (5) here, we get

e‘(t)=zlx—(—q(t)+u+f(r» (19)

In order to obtain (12), we design the control law as
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u=q(t) - f () - k,Axe(t) - k,Ax j e(s)ds (20)
0

Substituting (20) in (19) satisfies the desired dynamics (12).
311 Comparison with Wattleworth Model

The control law that Wattleworth proposes [1] for ramp metering is given
by

u=q(t)-f@) (29)

The dynamics of the traffic density as in (3) are

p=—:—x(—q(t)+u+f(t» @)

If we substitute (21) in (22) we get
p=0 (23)

which is a steady-state condition. Therefore, the Wattleworth control law is
based on steady-state analysis of the system and is not designed for handling
transients. If the system is operating at the critical density and we apply any
of the two controllers, the result is the same. However, even a small change
from that value can have a bad effect on the system controlled by the
Wattleworth controller.
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Figure 9-2: Comparison with Wattleworth Model

3.1.2 Comparison with ALINEA Model
The control law used in the ALINEA model is

u(k) =u(k —1) + ke(k) (24)

where the error variable is given by (13). As we can see, this control law is
based on a discrete time model of the system. It is also designed after
linearization of the system dynamics, as compared to feedback linearization
that we have used. Feedback linearization is a global technique and is valid
for any region of operation, whereas linearization technique is guaranteed to
work only near the equilibrium around which it has been linearized.

We can also come up with another interpretation of the ALINEA control
law. It can be obtained as follows. We can rewrite (24) as

u(k) —u(k —=1) = ke(k) (25)
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Dividing both sides by sampling time and taking limits as shown below

b SOy, k) o0
gives
u(t) = Ke(t) 27
Here, the gain X satisfies
K=Li, , % (28)
We can obtain the control law formula by integrating (27):
‘
u=K I e(s)ds (29)
0

This shows that ALINEA actually uses only the integral term of the
control law (20) we have designed, and essentially as an integral control law.

3.2 Control Objective 4

We start our feedback control design by differentiating the error equation
(16):

ét) = w PN P = p.) + Wyl (30)
Using the dynamics (5) here, we get

ét) =w, i (=q@) +u+ fONp@)=p )+ w, (r(t)—u) €29

Collecting terms on the right-hand side gives
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6(1) = Wy = (—q(0) + FOYPO) - p.) + wyr(t)
Ax 32)

+(w,i(p(t)—pf)—w2)u

This differential equation can be written cleanly in the following form:

e(t)=F+Gu (33)
where
1
F=w, E(_q(t) + fO) @) - p.)+w,r(t) (34)
and
1
G=(W1§(p(t)_pc)_wz) (35)

In order to obtain (12), we design the control law as

u=G"[-F —kye(t)— k, [ e(s)ds] (36)
0

Substituting (36) in (33) satisfies the desired dynamics (12).

33 Control Objective 5

We start our feedback control design by differentiating the error equation
(22). The system can be in two regions. One region is where the traffic
density is greater than the critical density. The other region is where the
traffic density is equal to or less than the critical density. We present these
two regions in different sections below.
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33.1 Region 1

In this region, the traffic density is greater than the critical density. The
error in this region is equal to

e(t)=w (p@t)-p)+w,t 37
Differentiating (37) we get

é(t) = w 0(t) + w,l (38)
Using the dynamics (5) here, we get

&)= W= () + 1+ FO) () =) (9)
Collecting terms on the right-hand side gives

i) = w,i(—q(mf(t»+w2r(t)+(wlzlx——wz)u (“0)

This differential equation can be written cleanly in the following form:

ét)=F +Gu 41)
where
1
F=w E(-q(t) + f()) +w,r(t) (42)
and
G=(w L -w,) 43
=W Ax 2 43)

In order to obtain (12) in this region, we design the control law as
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u=G"[-F -ke(t)~k, [ e(s)ds] (44)
0

Substituting (44) in (41) satisfies the desired dynamics (12) in this region.
3.3.2 Region 2

In this region, the traffic density is less than or equal to the critical
density. The error in this region is equal to

e(t) =-w (p(@)—p.)+w,l (45)
Differentiating (45) we get

é(t) = —w, p(t) + w,l (46)
Using the dynamics (5) here, we get

. 1

e(t) =-w, E(—q(t) +ut f())+w,y(r(t) —u) 47)
Collecting terms on the right-hand side gives

. 1 1

er) =-w Zx—(—q(t )+ @) +wor(®) +(-w o " Ju (48)

This differential equation can be written cleanly in the following form:

et)=F+Gu (49)
where
1
F=-w E('q(’) + f(@) +w,r(®) (50)

and
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1
G:—WI—A—X——WZ (51)

In order to obtain (12) in this region, we design the control law as
t

u=G"[-F —ke(t)—k, [ e(s)ds] (52)
0

Substituting (52) in (49) satisfies the desired dynamics (12) in this region.
333 Overall Control
We can combine the previous two subsections to come up with a control

law that is applicable in both regions. The overall control law for control
objective 5 is therefore given by

u=G*pF—han—@jd@m] (53)
4
where
F = sign(p() = £, (40 + F ) +w,r() (54)
and
G = sign(p(t) - p.Jw, 2= =W, (55)

4. SOFTWARE AND SIMULATION RESULTS

We will present the software and the simulation results for control-1
here. Simulation files for this control are presented below.

The simulation files for control-1 (20) are given below.
% Ramp Metering Code
clear;
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clf;
clc;

global rhom rhoc vif lmax Dx k1l k2 n rmax Diff ie
% Input Parameters

Dx=1;
k1=15.25;
k2=0.15;

rhom = 60; % Jam density

rhoc = rhom/2; % Critical density

vi = 15; % freeflow velocity
lmax = 200;

Diff=0.0;

t0 = 0.0;

tf = 20;

h = 0.01;

m (tf£-t0) /h;

n = 3; % number of sections
rho=ones(m,n) .*15; % X array m rows, length
state columns

T=zeros(m,1): % T array m rows (mxl)
L=[1:1:nl"';

T(1)=t0;

1(1)=0;

ie=0;

1

rvar(l)=oder(1l,1(1));
uvar(l)=odeu(l,rho(1,:),1(1),rvar(l));
fvar(l)=odef (1) ;
evar(l)=rho(1,1)-rhoc;

%There are m-1 steps and m points maximum
for i=1:m-1;

clc

T(1i)

T(i+1l)=t0 + h*i;

flag=0;

gin=vf*(rho(i,n-1)*(l-rho(i,n-
1) /rhom) ) +Diff*(rho(i,n-1)-rho(i,n));

if flag==0
gout=vf* (rho(i,n)*(1-
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rho(i,n)/rhom))+Diff*(rho(i,n-1)-rho(i,n));
else
gout=0;
end
rhoinc=h* (gin-qout) /Dx;
if rho(i,n)+rhoinc >=rhom
rhoinc=rhom-rho(i,n);
flag=1;
else
flag=0;
end
rho(i+1l,n)=rho(i,n)+rhoinc;

for j=n-1:-1:2
gin=vf*(rho(i,j-1)*(1l-rho(i, j-
1) /rhom))+Diff* (rho(i,j-1)-rho(i,3j));
if flag==0
qout=vi* (rho(i,j)*(1-
rho(i,Jj)/rhom))+Diff*(rho(i,j)-rho(i,j+1));
else
gout=0;
end
rhoinc=h* (gin-qout) /Dx;
if rho(i,j)+rhoinc >=rhom
rhoinc=rhom-rho (i, Jj);
flag=1;
else
flag=0;
end
rho(i+1,j)=rho(i, j)+rhoinc;
end

if flag==0
gout=vf* (rho(i, 1) *(1-
rho(i,1l)/rhom))+Diff*(rho(i,1)-rho(i,2));
else
gout=0;
end
gin=odef (i) +uvar(i) ;
rhoinc=h* (gin-qgout) /Dx;
if rho(i,1)+rhoinc>=rhom
rhoinc=rhom-rho(i, 1) ;
fvar (i)=qout+Dx*rhoinc/h;;
end
rho(i+1l,1)=rho(i,1)+rhoinc;
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1(i+1)=1(i)+h*(oder(i,1(i))-uvar(i));
rvar (i+l)=oder (i+1,1(i+1));
uvar (i+l1)=odeu(i+1l,rho(i+1,:),1(i+1),rvar(i+l));
fvar(i+l)=odef (i+l);
evar (i+1l)=rho(i+1,1) -rhoc;
end

Figure 9-3: File odemixedramp.m

Notice that this file performs the simulation for three sections and
includes the code for all the projection scenarios. We track only one section
for the model we have chosen in this chapter.

function odeu = odeu(t,x,1,r)
global rhom rhoc vf lmax Dx k1 k2 n rmax Diff ie

e=x(1) -rhoc;

ie=ie+e;

q=vE*x (1) *(1-(x(1)/rhoc));
F=qg-odef (t);

odeu=F-kl*e-k2*ie; % ramp cutflow

if 1<=0

if r<odeu
odeu = r;

end

end

if x(1)>=rhom
odeu = 0;

end

if odeu<O0
odeu=0;

end

Figure 9-4: File odeu.m

subplot (221) ;

plot(T,rho(:,1));

title('Mainline Traffic Density’');
xlabel (‘Time’) ;

subplot (222) ;

plot(T,rvar, '-*,T,fvar,'-.");
title('Ramp and Highway Inflow');
xlabel ('Time');
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subplot (223);
plot (T, evar);
title('Error Variable');
xlabel ('Time') ;

subplot (224) ;
plot(T,uvar);
title(‘'Control Rampflow');
xlabel (‘Time');

Figure 9-5: File draw.m

function oder = oder(t,1)
global lmax

if l<lmax

oder = 40*(1.0+0.2*sin(0.001*t)); % ramp inflow
else

oder = 0;
end;

Figure 9-6: File oder.m

function odef = odef(t)
if t>75 & t<150

odef = 185*(1.040.2*sin(0.0025*t));
else

odef = 175*(1.0+0.2*sin(0.92025*t));
end

Figure 9-7: File odef.m

Simulation results using this control and the ODE model are excellent
and are presented below.
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COORDINATED RAMP CONTROL IN ODE

SETTING

Consider the coordinated ramp metering problem as shown in Figure 9-9

Figure 9-9: Coordinated Ramp Metering in ODE Setting
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51 Dynamics

The dynamics of this system are given by

-

o) =é(—%(t)+u1 + (@)
Dynamics: <€1 =n()=u@)

o, = i(_%(t)"'uz +4,(t)

£, =) —u,(t)

pl(o) = plo’p2(0) = p2()

Initial Conditions:
£,0)=/¢ (2(0)=€20

10°
The flow relationships are

q,0) = p,@W, (), i=12
We will take velocity relationships as

v =v,0-29
0

max

5.2 Control Design

227

(56)

(57)

(58)

(59)

Let us take the control objective as (11), where the error variable is

defined as

e(t)=w, | p,)= p. | +wyl, +wy | p, () p. | +w, L,

We design for integral closed-loop dynamics (12) or the following:

é(t)+ke()=0

(60)

(61)
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Equation (61) guarantees (11). We start our feedback control design by
differentiating the error equation (60). The system can be in four regions.
We present these four regions in different sections below.

5.2.1 Region 1

In this region, the traffic density of both sections is greater than the
critical density. The error in this region is equal to

e(t) =W, (,01 (t) - pc) + Wzﬂl + W, (pz (t) - p() + W4£2 (62)
Differentiating (62) we get
é(t) = w0, (1) + wl | +wyp,(t) + w1, (63)

Using the dynamics (56) here, we get

{)=w, i(—q,m a4 ) Fwy (0 —u,)

1 (64)
W, Kx—(_‘h(t) +uy +q,)+w,(r, (1) —u,)
Collecting terms on the right-hand side gives
. 1 1
et)=w,—(=q,(®)+ f) +wr, (1) + (W, — —w,)u,
Ax Ax
1 1 ©63)
+w, E(—q2 ®) +q,() +w,r, () + (w, v -w,)u,
This differential equation can be written cleanly in the following form:
et)=F+u (66)

where
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F =W (g @)+ FO) + w5 )

: (67)
+w,—(—q, () +q,())+w,r,(t)
Ax
and
1 1

u Z(WIKX—_WZ)ul +(W3E—w4)u2 (68)
In order to obtain (61) in this region, we design the control law as

u=-F—ke(t) (69)

Substituting (69) in (66) satisfies the desired dynamics (61) in this region.
5.2.2 Region 2

In this region, the traffic density in both sections is less than or equal to
the critical density. The error in this region is equal to

e(t)=-w, (0,@O)-p)+twl —w,(p,(t)-p.)+ AR (70)
Differentiating (70) we get
é(t)=-w 0,(t) + Wyl —wy0,(t) +w, L, (71)

Using the dynamics (56) here, we get

é0) = —w, {;—(—ql O+, + F©) +wy (r () —u,)
(72)

-w, i(—q2 @) tu, +q,@)+w, (r,(t)~u,)

Collecting terms on the right-hand side gives
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. 1 1
e(t) =-w, E(_q‘ O+ f®)+w,n () +(-w, E -W,)u, -

1
—w3E(—qz(mql(t»+w4r2(t)+(—w3é—wnuz

This differential equation can be written cleanly in the following form.
e®)=F+u (74)

where

1
F=-w E(*Q, @)+ f(@®) +w,n (1)

{ (75)
-w, E(—q2 O +q,@®)+w,r, ()
and
u= (—w,-L—w2)ul +(—W3L—w4)u2 (76)
Ax Ax
In order to obtain (61) in this region, we design the control law as
u=-F—ke(t) an

Substituting (77) in (74) satisfies the desired dynamics (12)in this region.
523 Region 3

In this region, the traffic density of the first section is greater than the
critical density and it is less in the second section. The error in this region is
equal to

e(t) =w (pl (t) - p() + W2Z1 - W3(p2 (t) - p() + W4€2 (78)

Differentiating (78) we get

é(t) = w0, () + Wl —w, 0,(t) + w2, (79)
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Using the dynamics (56) here, we get

et)=w, le—(—q1 O +u + f@)+wy(r,(t)—u,)

1 (80)
- W, Z—);(—q2 O +u, +q,®)+w,(r,(t)-u,)
Collecting terms on the right-hand side gives
. 1 1
e)=w —(q,(O)+ f@®) +w,r, (1) + (W, — —w,)y,
Ax Ax @1)
1 1
i E(—Q2 O +q,@)+w,r,t)+ (_W3 E —-w,)u,
This differential equation can be written cleanly in the following form:
ety=F+u (82)
where
1
F= w, —(_ql (t) + f(t)) + w,r (t)
Ax
1 (83)
— W, E(_qz (t) + q, (t)) + w,r, (t)
and
1 1
u=(w Zx— —w,)u, +(—w, E -w,)u, (84)
In order to obtain (61) in this region, we design the control law as
u=-F—ke() (85)

Substituting (85) in (82) satisfies the desired dynamics (61) in this region.
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524 Region 4

In this region, the traffic density in the first section is less than or equal to
the critical density and greater in the second section. The error in this region
is equal to

e(t)=-w ()= p.)+twl, +w(p,(t)-p)+w,L, (86)
Differentiating (86) we get
é(t) = ~w,p,() + Wl + w,0,(t) + w2, (87)

Using the dynamics (56) here, we get

&) =-w, i(—ql(t) Fuy+ FO)+wy(r ()~ )

1 (88)
+w, E(—(h ®O+u, +q,@)+w,(r,(t)—u,)
Collecting terms on the right-hand side gives
. 1 1
et)=-w,—(q,(®)+ fO) +w,n () + (-w, ——w,)y,
Ax Ax (89)

+w, é(—q2 ®)+q,@)+w,r,(2) + (w, i -w,)u,

This differential equation can be written cleanly in the following form:
et)=F+u (90)

where

F = —w = (cq (1) + F©O) + wor, ()
Ax 1)

+W3Xlx'(“q2 )+ q,0) + wyry ()

and
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u=(-w ! —-w,)u, +(w —I——W Ju 92)
VT Sap e

In order to obtain (61) in this region, we design the control law as
u=-F—ke() (93)
Substituting (93) in (90) satisfies the desired dynamics (61) in this region.
525 Overall Control
We can combine the previous four subsections to come up with a control

law that is applicable in all four regions. The overall control law for the
coordinated ramp problem is therefore given by

u=-F~ke(t) 94)
where

F = sign(p,(t) - p. )W, —— (=g, () + F) + wyr. (1)
Ax 95)

+ sign(p, () - p.)w, ‘Alx—(“b )+, (0) +w,r, (1)

and

. 1
u = (sign(p,(®) - p.Iw, Xx' - Wy)u,
(96)

. 1
+ (SIgn(pl (t) — P, )W3 Xx' —w, )uz

Actually (96) does not give the control laws but it gives the condition the
control variables should satisfy. We can design the control laws in a
decoupled way or coupled way.

5.2.5.1  Decoupled Control

Let us rewrite (95) as
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F=F, +F,

where
F, = sign(p,() - p, )W, —Al—x(—ql @)+ () +w,n (1)
and

F, = sign(p,(t) - p.)w, i(—q2 O +q,@)+w,n, (1)

Now, using (96), we can derive the decoupled control laws as
u, =G '(-F, — ke (1))
and
u2=G4Gf}—hQU»
where
e(t)=e, () +e,(t)
The error terms are defined as
e)=w | p,(t) - o, [+w,L,
and

e,(t)=wy | p, (1) - p, | +w,l,

Chapter 9

N

(98)

99)

(100)

(101)

(102)

(103)

(104)

We get the following two decoupled closed loop dynamics by the

application of (100) and (101):
é,()+ke@)=0

and

(105)
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é,(t)+ke,(t)=0 (106)

5.2.52  Coupled Control Laws
Using (94) and (96) we can distribute the control effort between the two
variables as

. 1
—F —k,e(t) = (sign(p,(t) - p.)w, E - w,)u,

) (107)

+ (sign(p, (0) = poJws == wy u,
The distribution we will use in our simulation will be

0.65(=F —k,e(t)) = (sign(p,(t) — p.Iw, i - wy)u, (108)
and

0.35(=F —k,e(?)) = (sign(p,(t) = p,)w, é -w,)u, (109)
Therefore, the coupled control laws are

u, = (sign(po,(t) - p.Iw, le— -w, )10.65(-F — k.e(t)) (110)
and

u, = (sign(p,(t) — p.)w, le— -w,)"0.35(-F - kye(t)) (111)
53 Simulation Files

In the simulations we will use software that allows us to simulate
unmixed decoupled ramp feedback control systems, mixed decoupled ramp
feedback control systems, and mixed coupled ramp feedback control
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systems. The software also uses a different way to provide projections. The
software is presented below.

% Ramp Metering Code

clear;

clf;

clc;

global rhom rhoc vf gainl gain2 c wl w2 w3 wd 1 cgainl cgain2
ccgain

% Input Parameters
c=input (‘'unmixed(1l) or mixed(2) or coupled(3)= ');

gainl=0.4;
gain2=0.4;
cgainl=0.1;
cgain2=0.1;
ccgain=0.25;

wl=0.75;
w2=0.25;
w3=0.75;
wi=0.25;
1=1;

rhom = 60; $ Jam density
rhoc = rhom/2; % Critical density
v = 15; % freeflow velocity
t0 = 0.0;
tf = 15;
h 0.01;
m (tf-t0) /h;
x0=[35 5 32 4];
T=zeros(m,1); % T array m rows (mx1l)
X=zeros(m, length(x0)); % X array m rows, length state columns
T(1)=t0;
f1(1)=flcoord(tO0) ;
rl(l)=rlcoord(t0);
r2(1)=r2coord(t0) ;
uvarl(l)=ul(t0,x0);
uvar2(1l)=u2(t0,x0);
X(1,:)=x0;
%$There are m-1 steps and m points maximum
for I=1:m-1;
tI=T(I);
clc;
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tI
xI=X(I,:);
kl=h*feval (' rampcoorddynamics’',tI,xI)"';
k2=h*feval ( ' rampcoorddynamics ', tI+h/2,xI+k1l/2)"';
k3=h*feval (' rampcoorddynamics',tI+h/2,xI+k2/2)"';
k4=h*feval ( ‘rampcoorddvnamics', tI+h,xI+k3)"';
X(I+1,:)=xI+(k1+2*k2+2*k3+k4)/6;
T(I+1)=t0 + h*I;

f1(I+1)=£flcoord(T(I+1));
r1(I+1)=rlcoord(T(I+1));
r2(I+1)=r2coord(T(I+1));
uvarl (I+1)=ul (I+1,X(I+1,:));
uvar2 (I+1)=u2 (I+1,X(I+1,:));

if (X(I+1,2)<0),
X(I+1,2)=0;
end
if (X(I+1,1)<0),
X(I+1,1)=0;
end
if (X(I+1,1)>rhom),
X(I+1,1)=rhom;
end
if (X(I+1,4)<0),
X(I+1,4)=0;
end
if (X(I+1,3)<0).
X(I+1,3)=0;
end
if (X(I+1,3)>rhom),
X(I+1,3)=rhom;

end
end
subplot (221) ;
plot(T,X(:,1), " '-*,T,X(:,3),'-.');

title('Traffic Densityl & Traffic Density2');
xlabel (' Time') ;

subplot (222) ;
plot(T,X(:,2),'-",T,X(:,4),'-.");
title('Queue Lengthl & Queue Length2');
xlabel ('Time') ;

subplot (223) ;
plot(T,f1,'-*,T,rl,'-."',T,x2,':");
title('Mainline Inflow & Ramp Inflows');
xlabel ('Time') ;
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subplot (224) ;

plot(T,uvarl, ‘-',T,uvar2, '-."');
title('Controll & Control2 Variables');
xlabel (‘Time');

Figure 9-10: File runcoordramp.m

function ul = ul(t,x)

global rhom vf rhoc gainl wl w2 w3 w4 ¢ 1 cgainl ccgain
vli=vE* (1-(x(1) /rhom));
goutl=v1*x(1);
if ¢ ==
e=x (1) -rhoc;
ul=max(0,gqoutl-flcoord(t)-gainl*e);
elseif ¢ ==
ffl=-wl*qgoutl/1;
dl=wl*flcoord(t)/l+w2*rlcoord(t) ;
gl=wl/1-w2;
ff2=wl*qoutl/1;
d2=-flcoord(t)*wl/1l+w2*rlcoord(t) ;
g2=-wl/1-w2;
e=wl*abs (x(1)-rhoc)+w2*abs(x(2));

if x(1)>=rhoc
ul=max (0, (-Ef1-dl-(1l-cgainl) *e) /gl);
else
ul=max(0, (-££2-d2-(1-cgainl) *e) /g2);
end
else
e=wl*abs(x(1)-rhoc)+w2*abs(x(2))+w3*abs(x(3) -
rhoc) +w2*abs (x(4) ) ;
ffl=flcoord(t)-goutl;
ff2=qoutl-x(3)*vE* (1-(x(3)/rhom));
ff=wl*ffl*sign(x(1l)-rhoc)+w2*rlcoord(t)+w3*f£f2*sign(x(3)-
rhoc) +wd*r2coord(t) ;
gl=wl*sign(x(1l)-rhoc)-w2;
ul=max(0,-0.35*(ff+ccgain*e) /gl);
end

Figure 9-11: File ul.m

function u2 = u2(t,x)

global rhom vf rhoc gain2 wl w2 w3 w4 c 1 cgain2 ccgain
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vl=vE*(1-(x(1)/rhom));
goutl=vl*x(1);
v2=vi*(1-(x(3) /rhom)) ;
qout2=v2*x(3);
fl=x(1)*vE*(1-(x(1) /rhom)) ;

if ¢ ==
e=x(3)-rhoc;
u2=max(0,gout2-fl-gain2*e);
elseif ¢ ==
ffl=-wl*qout2/1;
dl=wl*fl/1+w2*r2coord(t) ;
gl=wl/1l-w2;
ff2=wl*qout2/1;
d2=-f1*wl/1l+w2*r2coord(t);
g2=-wl/1l-w2;
e=wl*abs (x(3)-rhoc)+w2*abs(x(4));
if x(3)>=rhoc
u2=max (0, (-££f1-dl1-(1l-cgain2) *e) /gl);
else
u2=max (0, (-ff2-d2-(1-cgain2) *e) /g2) ;
end
else

rhoc)+w2*abs(x(4));
ffl=flcoord(t)-qoutl;
ffZ2=qoutl-x(3)*vE* (1-(x(3)/rhom)) ;

rhoc) +wd*r2coord(t) ;
g2=wl*sign(x(3)-rhoc)-w2;
u2=max(0,-0.65* (ff+ccgain*e)/g2);
end

e=wl*abs (x(1)-rhoc)+w2*abs (x(2))+w3*abs (x(3)-

ff=wl*ffl*sign(x(1l)-rhoc)+w2*rlcooxrd(t)+w3*ff2*sign(x(3)-

Figure 9-12: File u2.m

function rlcoord = rlcoord(t)
rlcoord = 10*(1.5+sin(0.5*t)); % rampl inflow

Figure 9-13: File rlcoord.m

function r2coord = r2coord(t)
r2coord = 10*(1.5+sin(0.5*t)); % rampZ inflow

Figure 9-14: File r2coord.m

[Eunction flcoord = flcoord(t)
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lflcoord = 30*(1.25+sin(1.0*t));% mainline inflow I
Figure 9-15: File flcoord.m

function dy = rampdynamics(t,y)

dy = zeros(4,1); % a column
vector

global rhom vf 1

%closed loop dynamics

dy (1) = (-vE*y(1)*(1-(y(1)/rhom))+flcoord(t)+ul(t,y))/1;
dy(2) = rlcoord(t)-ul(t,y):
dy(3) = (-vE*y(3)*(1-(y(3)/rhom))+vE*y(1)*(1-

(y(1)/rhom))+u2(t,y))/1;
dy(4) = r2coord(t)-u2(t,y):

Figure 9-16: File rampdynamics.m

We are using the Runga Kutta algorithm to solve the ODE numerically.
Details of this algorithm can be obtained from any book on numerical
methods [3-5].

54 Simulation Results

Simulation results for the three cases- unmixed decoupled ramp feedback
control systems, mixed de-coupled ramp feedback control systems, and
mixed coupled ramp feedback control systems are presented below.
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Figure 9-17: Simulation Results for Unmixed Decoupled Case
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Figure 9-18: Simulation Results for Mixed Decoupled Case
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Figure 9-19: Simulation Results for Mixed Coupled Case

6. SUMMARY

In this chapter, we studied:

. The mathematical model for the ramp system in the ODE setting
for various types of ramp metering control problems, such as
isolated and coordinated problems, and with and without mixed
sensitivity.

. Feedback control laws were designed for each type of problem.

. Simulations were performed to check the effectiveness of the
feedback control laws.

7. QUESTIONS

1. State Wattleworth’s control law for ramps. What are the
limitations of the model? Compare it with the control derived in
Section 3.1.
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State the ALINEA model and its features.

PROBLEMS

Write your own simple MATLAB code for the Wattleworth
model.

Write your own simple MATLAB code for the ALINEA model.
Write the MATLAB code for unmixed coupled ramp feedback
control by making necessary changes in the code given in the
chapter.
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Chapter 10

FEEDBACK CONTROL DESIGN USING THE
FINITE DIFFERENCE MODEL

This chapter uses the finite difference equation model of the ramp system
for designing feedback control laws. This model is obtained by time
discretization of the ODE model. We will design feedback control laws for
isolated ramp metering problems, isolated with mixed sensitivity, and
coordinated with and without mixed sensitivity. Software and simulation
results will also be presented.

1. FINITE DIFFERENCE MODEL

The finite difference model is obtained by time-discretizing the ODE
model. The summary of the ODE model developed in the previous chapter
is presented below:

p= le—(—q(t) fut )

Dynamics: 1
L=r(t)-u(?)
0)=
Initial Conditions: PO)=py @
00)=1,

The flow relationship is
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q(t) = p@)v() (€)
We will take the velocity relationship as

We)=v,(1- Z ®, @

max

By discretizing (1) in time we get the following difference equation
dynamics with equations (2) to (4) still valid by replacing the time variable ¢
by time instant k variable:

&Z‘p("—) - {-x—(—q(m ut (1))

Dynamics: (5)
LD =6E) oy uio)
h

In these equations, h is the sampling time. Now we can present the
dynamics as

pk+1) = p(k) + é(—qo) )
Lk +1)=L(k)+h(r@)—u(®))

(6)

Dynamics:

2. CONTROL OBJECTIVE

The objective of a feedback control design is to make the error variable
go to zero. That is,

kLt e(k)=0 @)

This can be achieved by designing control laws that make the system
follow the closed-loop dynamics

e(k+1)+ Ke(k)=0 (®)

where
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0<K<l )
We can see that (8) and (9) combined satisfy condition (7). We can come

up with the appropriate form of the error e(k) for different problems. The
following are some of the ways we can design the error variable:

Control Objective 1 e(k) = p(k) — p, (10)
Control Objective 2 e(k) =| p(k) - p, | )
Control Objective 3 e(k) =w, | p(k) — p. | +w,{ (12)

Now, we will design feedback control laws using control objectives 1
and 3. Control objective 2 can be obtained from 3 by using weights 1 and 0.

3. CONTROL DESIGN

We will develop different control laws based on two control objectives
from the previous section.

3.1 Control Objective 1

We start our feedback control design by incrementing the error equation
(10):

e(k+1)=pk+1)-p. (13)
Using the dynamics (6) here, we get
h
e(k+1) =,0(k)+z;(—q(k)+u + f(k) - p. (14)
In order to obtain (8), we design the control law as

u= )= £(6)+ <1, - P~ Ke(k)] (15)
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Substituting (15) in (14) satisfies the desired dynamics (8).

3.2 Control Objective 3

We start our feedback control design by incrementing the error equation
(12). The system can be in two regions. One region is where the traffic
density is greater than the critical density. The other region is where the
traffic density is equal to or less than the critical density. We present these
two regions in different sections below.

3.2.1 Region 1

In this region, the traffic density is greater than the critical density. The
error in this region is equal to

e(k) = w,(p(k) - p.) + w,L(k) (16)
Incrementing (16) we get
e(k+)=w (pk+1)—p)+wl(k+1) an

Using the dynamics (6) here, we get

ek +1) = w [p(k) - p, +£(—q(k> fut f)]

(18)
+w,[£(k) + h(r(k) —u(t))]
Collecting terms on the right-hand side gives
h
e(k +1) =w[p(k) = p. +—(=q(k) + f (k)]
Ax (19)

+M@M&)+hdkﬂ+hﬂ£¥—WﬂM¢

This difference equation can be written cleanly in the following form:

e(k+1) = F +Gu (20)
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where

F=wlp(k)-p, + %(—Q(k) + fUN]+w,[£(k) +hr(k)]  (2D)

and

G =[w, le-— -w,]h 22)

In order to obtain (8) in this region, we design the control law as

u=G"'[-F - Ke(k)] (23)
Substituting (23) in (20) satisfies the desired dynamics (8) in this region.
3.2.2 Region 2

In this region, the traffic density is less than or equal to the critical
density. The error in this region is equal to

e(k) =-w, (p(k) = p.) +w (k) (24)
Incrementing (24) we get

e(k +1) = —w, (p(k +1) = p,) + w,l(k +1) (25)
Using the dynamics (6) here, we get

e(k +1) = -w,[p(k) - p, +Khx‘(“’(")+“ + F ()]
+w, [£(k)+ h(r(k)—u(k))]

(26)

Collecting terms on the right-hand side gives
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ek +1) = -w[p(k) - p, + i“"(") + £

) 27
+w,[£(k) + hr(k)]+[-w, v w, Jhu
This difference equation can be written cleanly in the following form:
e(lk+1)=F +Gu (28)

where
F =-wp(k)-p, + %(—q(k) + FO+wle(k) +hr®)] (29)
and
G = [-w,—— —w, Jh (30)
- 1 Ax 2

In order to obtain (8) in this region, we design the control law as

u =G '[-F — Ke(k)] 31)
Substituting (31) in (28) satisfies the desired dynamics (8) in this region.
3.23 Overall Control

We can combine the previous two subsections to come up with a control

law that is applicable in both regions. The overall control law therefore is
given by

u=G"'[-F - Ke(k)] (32)

where

F = sign(p(k) — p)w,[p(k) - p, + —A”—;(—q(k) +FUN]
+w, [£(k) + hr(k)]

(33)
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and

. 1
G =sign(o(6) = p W, = w,Jh (34)

4. COORDINATED RAMP CONTROL IN ODE
SETTING

The coordinated ramp metering control problem in the difference
equation setting is obtained by discretizing the ODE dynamics of the same
problem.

4.1 Dynamics

The ODE dynamics of this system are given by

-

. 1

b =E(—ql O +u, + @)

Dynamics: 1 b= r,it) ~h(@) (35)
Py =3O Fu, +4,()

4, =@ —u,y @)

Discretizing (35) will give

.

p,(k+1) = p, (k) +Zh§(“" O +uy + £()

Dynamics: J L, (k+1)=2£,(k)+h(r,(t)—u,()) 36)

py(k+1)= pz(k)+z"x—(—q2(t>+uz +q,)
£, (k+1) = £, (k) + h(r, (6) — 1, ()
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0)=p,,,p0,0)=
Initial Conditions: A O) Pro p:0) Pzo 37
2,(0)= (10,62(0) = EZO

The flow relationships are
q;(k) = p;(k)v;(k), i=12 (38)
We will take velocity relationships as

p; (k)

max

v,(k)=v,(1- ) (39)
4.2 Control Design

Let us take the control objective as (7), where the error variable is
defined as

e(k)=w, | p,(k)—p. | +w,l, +w; | p,(k)— p, | +w, 2, (40)
We will design the control law to satisfy the closed-loop dynamics (8).
We start our feedback control design by differencing the error equation (40).
The system can be in four regions. We present these four regions in
different sections below.

42.1  Region1

In this region, the traffic density of both sections is greater than the
critical density. The error in this region is equal to

e(k)=w, (0, (k)= p.)+wl, +wi(p,(k)—p.)+w,l, (41)
Incrementing (41) we get

e(k+D)=w (0, k+D)—p)+w, 0l (k+])

42)
+w, (0, (k+D)—-p)+tw,l,(k+])

Using the dynamics (6) here, we get
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ek +1) = wp, (k) - p, +Zh;(—q. (k) +u, + f(0))]
+w2[€1(k)+h(r1 (k)h— u, t9)) “3)
(020~ 0, 4= (s R ity + 4, ()]

+w,[£,(k)+ h(r,(k) —u,(k))]

Collecting terms on the right-hand side gives

e(k+1)=w[p (k)-p. + %(—q1 k) + f (k)]

w8, (k) + hr, ()] + [, —— — w, Jhu,
~ Ax (44)
+wyl0, (k) - p, +£(—q2(k>+ql )]

1
+w,[£, (k) +hr, (k)] +[w, o w, Jhu,

This difference equation can be written cleanly in the following form.
e(k+1)=F+u 45)

where

F=wip, (k)= p, +%<—ql(k)+f(k))1

+w,[€, (k) + hr (k)] 46)

w0, (k)= p, +£(—q2<k) +q, ()]
+ W4[€ 5 k) + hr2 (k)]

and

1 1
u =[W|E"Wz]h"1 +[W3E—w4]hu2 @7)
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In order to obtain (8) in this region, we design the control law as

u =—F — Ke(k) (48)
Substituting (48) in (45) satisfies the desired dynamics (8) in this region.

4.2.2 Region 2

In this region, the traffic density in both sections is less than or equal to
the critical density. The error in this region is equal to

e(k) = -w (0, (k) = p.) + w b, —=wy (0, (k) = p. )+ w,l, (49)
Incrementing (49) we get

e(k +1)=—w, (0, (k +1)— p.) +w, €, (k +1)

(50)
-wy(p,(k+1)=p)+wl,(k+1)

Using the dynamics (6) here, we get

e(k +1) = -w, [, (k) - p, +zh;'(“” k) +u, + £
+w2[e.(k>+h(r1(k>h ) 0
W L0s(0) = P, + (-, ()t + 4, ()

+w,[€,(k)+ h(r,(k) —u,(k))]
Collecting terms on the right-hand side gives
h
e(k +1) =-w [0, (k) - p, +E(—ql (k) + f (k)]
- 1
+w,[£, (k) + hr, (k)] +[-w, o " Jhu,
(52)

— w0, (k)= p, +£(—q2 k) +q, ()]

+w,[€,(k)+hr,(k)]+[-w, é -w,lhu,
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This difference equation can be written cleanly in the following form:
ekk+1)=F+u (53)

where

F = —w[p,(6)p. +%(—ql(k) + £())]

+w2[£1(k)+hr1(k)]h (54)
-wilp, (k) - p, + Zx—(_qz (k) + g, (k)]
+w,[¢,(k)+ hr, (k)]

and

1 1

u=[-w o w, Jhu, +[-w, v w,Jhu, (55)
In order to obtain (8) in this region, we design the control law as
u=-F - Ke(k) (56)

Substituting (56) in (53) satisfies the desired dynamics (8) in this region.

423 Region 3

In this region, the traffic density of the first section is greater than the
critical density and it is less in the second section. The error in this region is
equal to

e(k) =w (o, (k)= p,)+w,t, —wy(p,(k)—p.)+ w,l, 57)
Incrementing (57) we get

e(k+1)=w, (p,(k+1) = p.)+w,t,(k+1)

(58)
—-wy (0, (k+D)-p)+w L, (k+])

Using the dynamics (6) here, we get
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ek +1) = w[0,(k) - p, +é(—q, (k) +u, + F)]
+w2[€1(k)+h(rl (k)h— ul(k))] (59)
-wilp,(k)-p. + Zx'(_qz (k) +u, +4q,(k)]

+w,[£, (k) + h(r,(k) —u,(k))]

Collecting terms on the right-hand side gives

ek +1) = w [, (k) - p, + K”;(—ql ®)+ F ()]

1
AW, (R)+ b (0] + vy —— = w,
(60)

—wl0y(0) = P, + -, 0+ 4, ()
+w,[£,(k) + hr, (k)] + [-w, é -w,]hu,
This difference equation can be written cleanly in the following form:
ek+D)=F+u (61)
where

F=w][p,(k)-p. +£(—q1 (k) + f (k)]

+w,[£, (k) +hr, (k)]h @
-wy[p,(k)-p, + Zx‘(—42 (k) +q,(k)]

+w,[£,(k)+ hr,(k)]

and

u=[w -Al—x- —w, Jhu, +[-w, Xlx- —w, Jhu, (63)
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In order to obtain (8) in this region, we design the control law as
u=-F—Ke(k) (64)
Substituting (64) in (61) satisfies the desired dynamics (8) in this region.
4.24 Region 4
In this region, the traffic density in the first section is less than or equal to

the critical density and greater in the second section. The error in this region
is equal to

e(k) =-w, (0, (k) = p )+ wyl, +wy (0, (k)= p ) +w,l, (65)
Incrementing (65) we get

ek +1)=—w, (p,(k+1)— p,)+w, 0, (k +1)

(66)
+w (0, (k+)—p)+wl,(k+])
Using the dynamics (6) here, we get
h
ek +1)=-w [, (k)= p. +-— (¢, k) +u, + f(k))]
+w,[£, (k) + h(r; (k) ~u, (k))] 67

Fwy0,(0) - p, +z”;(—qz (k) +u, +q, ()]
+ W4[£2(k) + h(l’2 (k) - uz(k))]

Collecting terms on the right-hand side gives
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etk +D) =-wp(k)-p + %(ﬂh (k) + f(k))]

1
AWl + R ()] + -y —— = w, Yo
(68)

(0,0~ P, 4= (-4 )+, ()
+w,[£, (k) + hr,(k)]+[w, i -w,]hu,
This difference equation can be written cleanly in the following form:
ek+)=F+u (69)
where

F=-Wlp (0=, 2= (a8 + )

+w,[£, (k) +hr, (k)] (70)

h
W3[0, (k) = e + = (=, (k) + ¢, (k)]
+w, [0, (k) + hr, (k)]

and

1
u =[—wlé—w2]hu1 +[w, E—w‘,]hu2 7D

In order to obtain (8) in this region, we design the control law as
u=-F —Ke(k) (72)

Substituting (72) in (69) satisfies the desired dynamics (8) in this region.
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4.2.5 Overall Control

We can combine the previous four sub-sections to come up with a control
law that is applicable in all four regions. The overall control law for the
coordinated ramp problem is therefore given by

u=-F -Ke(k) (73)

where

F = sign(p, (k) — pyw\ Lo, (k) - p + %(—q1 (k) + f (k)]
+w,[€, (k) + hr, (k)]

(74)
h
+sign(py(()= PIW[03 ()= P, +1-(=0,()+ 4, ()]
+ WA[fz(k) + hr2 (k)]
and
u = [sign(p, (6) = P, )W, ~— - w, Vi,
Ax (15)

. 1
+ [szgn(p2 (k) - p( )W3 &; —W, ]huz

Actually (75) does not give the control laws but it gives the condition the
control variables should satisfy. We can design the control laws in a
decoupled way or coupled way.

4.2.51  Decoupled Control

Let us rewrite (75) as
F=F+F, (76)
where

h
F, = sign(p, (k) - p.yw,[p,(k) - p. +E("q'(k) + f (k)]
+w,[£, (k) + hr, (k)]

)
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and

F, = sign(p2(8) = W13 (1)~ P, + = (~q,(0) + 4, (k)

(78)
+w,[£,(k)+ hr,(k)]
Now, using (75), we can derive the decoupled control laws as

u, =G (-F, - Ke,(k)) (79)
and

u, =G (-F, — Ke, (k)) (80)
where

e(k)=e (k) +e,(k) (81)
The error terms are defined as

e, (k)=w | p,(k)= p, |+w,¢, (82)
and

e, (k) =w, | p, (k) - p. | +w,L, (83)

We get the following two decoupled closed loop dynamics by the
application of (79) and (80).

e,(k+1)+Ke, (k) =0 (84)

and

e,(k+1)+Ke,(k)=0 (85)

4.25.2 Coupled Control Laws
Using (75) and (73) we can distribute the control effort between the two

variables as
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1
— F — Ke(k) = [sign(p, (k) — p,)w, —A—x— -w, Jhu,

1 (75)
+[sign(p,(k) - pIw; ——w,Jhu,
Ax
The distribution we will use in our simulation will be
. 1
0.65(—F — Ke(k)) =[sign(p,(k)— p.)w, E -w, Jhu, (76)
and
. 1
0.35(-F = Ke(k)) = [sign(p, () = P ), = w. o, 77

Therefore, the coupled control laws are
g . 1 _
u, = h'[sign(p, (k) — p,)w, o w,]70.65(-F — Ke(k)) (78)
and

1 - _ .
u, = h[sign(p, (k) = p)ws === w, ) 035(-F ~ Ke(k))  (79)

4.3 Simulation Files

In the simulations we will use software that allows us to simulate
unmixed decoupled ramp feedback control systems, mixed de-coupled ramp
feedback control systems, and mixed coupled ramp feedback control
systems. The software also uses a different way to provide projections. The
software is presented below.

$ Ramp Metering Code

clear;

clf;

clc;

global rhom rhoc vf gainl gain2 c wl w2 w3 w4 1 cgainl cgain2
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ccgain

$ Input Parameters

c=input ('unmixed(1l) or mixed(2) or coupled(3)= ');

gainl=0.4;
gain2=0.4;
cgainl=0.1;
cgain2=0.1;
ccgain=0.25;

wl=0.75;
w2=0.25;
w3=0.75;
wi=0.25;
1=1;

rhom = 60;
rhoc = rhom/2;
15;

0.0;

15;

vE =
t0 =
tf =
h = 0.01;

m = (tf-t0)/h;

x0=[35 5 32 4];
T=zeros(m,1);
X=zeros (m, length(x0));
T(1)=t0;
£1(1)=flcoord(t0);
rl(l)=rlcoord(t0);
r2(1l)=r2coord(t0) ;
uvarl(1l)=ul(t0,x0);
uvar2(1)=u2(t0,x0);
X(1,:)=x0;

% Jam density

% Critical
% freeflow

$ T array m Xows
$ X array m rows.

$There are m-1 steps and m points maximum

for I=1:m-1;
tI=T(I);
clc;
tIl
xI=X(I,:);

k=h*feval ( ‘rampcoorddynamics', tI,xI)’;

X(I+1,:)=xI+k;
T(I+1l)=t0 + h*I;

f1(I+1l)=flcoord(T(I+1));

Chapter 10

density
velocity

(mx1)
length state -:oiumns
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rl(I+l)=rlcoord(T(I+1));
r2(I+1)=r2coord(T(I+1));
uvarl (I+1)=ul(I+1,X(I+1,:));
uvar2 (I+1)=u2(I+1,X(I+1,:));

if (X(I+1,2)<0),
X(1+1,2)=0;
end
if (X(I+1,1)<0),
X(I+1,1)=0;
end
if (X(I+1,1)>rhom),
X(I+1,1)=rhom;
end
if (X(I+1,4)<0),
X(I+1,4)=0;
end
if (X(I+1,3)<0),
X(1+1,3)=0;
end
if (X(I+1,3)>rhom),
X(I+1,3)=rhom;

end
end
subplot (221) ;
plot(T,X(:,1),'-',T,X(:,3),"'-.");

title('Traffic Densityl & Traffic Density2');
xlabel (' Time') ;

subplot (222) ;
plot(T,X(:,2),'-*,T,X(:,4),'-."');
title('Queue Lengthl & Queue Length2');
xlabel ('Time"');

subplot(223);
plot(T,f1,-',T,rl1,'-.*,T,x2,':");
title('Mainline Inflow & Ramp Inflows');
xlabel ('Time"');

subplot (224) ;
plot(T,uvarl,'-',T,uvar2,'-.");
title('Controll & Control2 Variables');
xlabel ('Time ') ;

Figure 10-1: File druncoordramp.m
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function ul = ul(t,x)

global rhom vf rhoc gainl wl w2 w3 wd ¢ 1 cgainl ccgain
vl=vi*(1-(x(1)/rhom));
qoutl=vl*x(1);
if c == 1
e=x(1) -rhoc;
ul=max(0,qoutl-flcoord(t)-gainl*e);
elseif c ==
ffl=-wl*qoutl/1;
dl=wl*flcoord(t)/l+w2*rlcoord(t);
gl=wl/1-w2;
ff2=wl*qoutl/1l;
d2=-flcoord(t) *wl/l+w2*rlcoord(t);
g2=-wl/1-w2;
e=wl*abs (x(1l)-rhoc)+w2*abs (x(2));

if x(1)>=rhoc
ul=max(0, (-££f1-d1-(1l-cgainl) *e)/gl);
else
ul=max (0, (-f£2-d2-(1-cgainl) *e) /g2) ;
end
else
e=wl*abs(x(1l)-rhoc)+w2*abs (x(2))+w3*abs(x(3)-
rhoc) +w2*abs (x(4)) ;
ffl=flcoord(t)-qoutl;
Lf2=qcutl-x(3)*vE*(1-(x(3)/rhom)) ;
ff=wl*ffl*sign(x(1l)-rhoc)+w2*rlcoord(t)+w3*£f2*sign(x(3) -
rhoc) +wd*r2coord(t) ;
gl=wl*sign(x(1l)-rhoc)-w2;
ul=max(0,-0.35* (ff+ccgain*e) /gl);
end

Figure 10-2: File dul.m

function u2 = u2(t,x)
global rhom vf rhoc gain2 wl w2 w3 wd ¢ 1 cgain2 ccgain

vl=vf*(1l-(x(1l)/rhom));
qoutl=vl*x(1l);
v2=vE*(1-(x(3)/rhom)) ;
qout2=v2*x(3);
fl=x(1)*vE*(1-(x(1)/rhom));

if c==1
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e=x(3) -rhoc;
u2=max(0,qout2-fl-gain2*e);
elseif ¢ ==
ffl=-wl*qout2/1;
dl=wl*f1/1+w2*r2coord(t);
gl=wl/1-w2;
ff2=wl*qout2/1;
d2=-f1*wl/l+w2*r2coord(t) ;
g2=-wl/1-w2;
e=wl*abs (x(3)-rhoc) +w2*abs(x(4));
if x(3)>=rhoc
u2=max (0, (-ff1-d1-(1-cgain2) *e) /gl);
else
u2=max (0, (-£ff2-d2-(1-cgain2) *e) /g2) ;
end
else
e=wl*abs (x(1l)-rhoc)+w2*abs (x(2))+w3*abs(x(3) ~
rhoc) +w2*abs (x(4)) ;
ffl=flcoord(t)-qoutl;
ff2=qoutl-x(3)*vE* (1-(x(3)/rhom)) ;

rhoc) +wd*r2coord(t) ;
g2=wl*sign(x(3)-rhoc)-w2;
u2=max(0,-0.65* (ff+ccgain*e) /g2);
end

ff=wl*ff1*sign(x(1)—rhoc)4w2*r1coord(t)+w3*ff2*sign(x(3)—

Figure 10-3: File u2.m

function rlcoord = rlcoord(t)
rlcoord = 10*(1.5+sin(0.5*t)); % rampl inflow

Figure 10-4: File drlcoord.m

function r2coord = r2coord(t)
r2coord = 10*(1.5+sin(0.5*t)); % ramp2 inflow

Figure 10-5: File dr2coord.m

function flcoord = flcoord(t)
flcoord = 30*(1.25+sin(1.0*t)); % mainline inflow

Figure 10-6: File df1coord.m
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4.4 Simulation Results

Simulation results for the three cases unmixed decoupled ramp feedback
control systems, mixed decoupled ramp feedback control systems, and

mixed coupled ramp feedback control systems are presented below.

Traffic Density1 & Traffic Density2
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Figure 10-7: Simulation Results for Unmixed Decoupled Case
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Figure 10-8: Simulation Results for Mixed Decoupled Case
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Traffic Density1 & Traffic Density2 Queue Length1 & Queue Length2
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Mainline Inflow & Ramp Inflows
80

Figure 10-9: Simulation Results for Mixed Coupled Case

S.

SUMMARY

In this chapter, we studied:

The mathematical model for the ramp system in the difference
equation setting for various types of ramp metering control
problems, such as isolated and coordinated problems, and with and
without mixed sensitivity.

Feedback control laws were designed for each type of problem.

Simulations were performed to check the effectiveness of the
feedback control laws.

QUESTIONS

Explain the finite difference model. What is the use of the finite
difference model in ramp metering control?
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2. Why does the parameter k in (8) have values between zero and
one?

3. What is the difference between using control objective 1 and
control objective 2?7 Which one would provide better results?

1. PROBLEMS

1. Consider a one-mile freeway section with two lanes in each
direction with a maximum capacity of 2000 vehicles per hour per
lane and free flow speed of 65 miles per hour. Assume that the
traffic is consistent with Greenshield’s traffic flow model. For a
freeway demand of 1200 vehicles per hour per lane, a ramp
demand of 900 vehicles per hour, write a MATLAB code to test
the control laws derived in the chapter. Assess the impact of
different weight factors or k values. Determine optimal values for
the given conditions.
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1. Wattleworth, J. A., “System Demand Capacity Analysis on the Inbound Gulf
Freeway,” Texas Transportation Institute Report. 24-8, 1964.

2. Papageorgiou, M., Habib, H. S., and Blosseville, J. M., “ALINEA: A Local
Feedback Control Law for On-ramp Metering,” Transportation Research Record,
1320, 1991, 58-64.



Chapter 11

NONLINEAR H.. FEEDBACK CONTROL
DESIGN USING THE ODE MODEL

This chapter will solve the mixed sensitivity isolated ramp metering
problem using nonlinear H.. control theory. We will design the control law
so that we achieve some optimization of an appropriately chosen criterion
that is based on the traffic density on the highway and the queue lengths.
We will also present simulation software and results.

1. INTRODUCTION

In this chapter, we will use the theory of nonlinear H.. control to design a
ramp control law, which minimizes a weighted function of the ramp queues
and the difference of the mainline density to the desired mainline density. In
order to design the controller, we need the system dynamics equations. We
present the system dynamics next followed by the theory of nonlinear H..
control, which is then applied to the ramp control problem.

2. SYSTEM MODELING [1]

The first step in the design of feedback controllers for ramp metering is
to model the system dynamics appropriately. A macroscopic model of the
traffic can effectively be used in this context. From the macroscopic
perspective, the traffic flow is considered analogous to a fluid flow, which is
a distributed parameter system represented by partial differential equations.
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Mass conservation model of a highway, characterized by x € [0, L], which is
the position on the highway, is given by
M
i/D(x 1= -iq(x 1) xe[0,L]
o’ ox ’

where 0(x,t) is the density of the traffic as a function of x and time ¢, and
q(x,t) is the flow at given x and ¢. The flow g(x,t) is a function of
p(x,t), and the velocity v(x,t), as shown below:

q(x,1) = p(x,)v(x,1) ()
This model of a highway section is shown in Figure 11-1.

— o—s>(%)

q(0) o(x) q(L)
0 L

Figure 11-1: Segment of Highway Model

There are various static and dynamic models which have been used to
represent the relationship between v(x,t) and g(x,t). Onc of the simplest
models has been proposed by Greenshield [2], which hypothesizes a linear
relationship between the two variables.

A3
Py )

v=v,(l-

max

where v, is the free flow speed and O, is the jam density.
2.1 Discretized System Dynamics

Many researchers have studied and designed optimal open-loop
controllers utilizing space and time discretized models of traffic flow. Some
researchers have also designed feedback control laws using similar models.
The reason for the popularity of these models is that there are many
techniques available to deal with discretized systems. The same is also true
for feedback control, and hence, in order to utilize the various linear and
nonlinear control techniques available for lumped parameter systems, the
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distributed parameter model is space discretized. For this the highway is
subdivided into several sections as shown in Figure 11-2.

Figure 11-2: Highway Divided into Sections

Space discretization is performed by dividing the considered highway
links into segments. In general the length of each segment is taken to be
between 0.5 and 1 mile. This approximation is quite realistic since the
traditional sensors like loop detectors along a freeway are generally installed
at least 1 mile apart. Although a smaller step size for space discretization
will undoubtedly improve the accuracy of the simulation, in reality it is not
possible to measure speed and flow variables at smaller intervals due to
limited availability of sensors along freeways. Thus, 1-mile segment length
for space discretization appears to be a realistic assumption. On the other
hand, the time discretization can be done using very small time steps since
traffic data can be downloaded from sensors practically every second. The
space discretized form of (1) produces the following n continuous ODEs for
the n sections of the highway:

d

1 . 4
— P =E—[qi (t)_qiﬂ ®+ T (t)_si (t)]’ i=12,.n

dt

Here, r,(t)and s,(f) indicate the on-ramp and off-ramp flows. The
mathematical model for the highway can be represented in a standard
nonlinear state space form for control design purposes:

Y;=8, (01, PrrsP)s J=1L20sp 3

The standard state space form is

d
ZX(t) = flx(®),u@®],



274 Chapter 11
y(t) = glx(),u(®)], (6)

x(0) =x,,

where x =[0,,0,,...,0,1" and u(t) =r().

There are various other proposed models, which are more detailed in the
description of the system dynamics. The phenomenon of shock waves,
which is very well represented in the PDE representation of the system, is
modeled by expressing the traffic flow between two contiguous sections of
the highway, as the weighted sum of the traffic flows in those two sections,
which correspond to the densities in those two sections [3, 4]. A dynamic
relationship instead of a static one like (3) has also been proposed [5] and
used successfully.

The model thus obtained can also be time discretized to transform the
continuous time model into a discrete time mode. A comprehensive model,
which incorporates shock waves, as well as represents the dynamic nature of
mean speed propagation, is shown in [6] and is reproduced here for
completion. The difference equations

.+ =, (ky+=1a, (0=, () + 1, =5, )

J

b, k)=, (00,0, 000, (0, (s 0=, 6

vl p,(k+1)_pj(k)
0, p,k)+8 %

J

with the relationships

q,(k)=ap(ky,;(k)y+1-a)p,, (kw,,(k)0<a<l,

®

( p

max

v, (p)=v,[1- )'1",
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output measurements of traffic flows g and time mean speeds y, shown as
y;(Ky=yv;(k)+(A-y), k), 0sy<l 9)

and the boundary conditions

Vo (k)=y, (k)

10
P (K) = g, (k)] y, (k) (10)

give the discrete system dynamics, which can be represented in the standard
nonlinear discrete time form

x(k +1) = f(x(k),u(k))
y(k) = g(x(k),u(k)) (11)
x(0) = x,,

where control u(k) is the vector of ramp input flows.

If the control actuation is discrete, such as the ones implemented by
microprocessors and computers, feedback control laws can be designed
based on the discrete model (11), or can be designed using (6) after which
the controller can be discretized.

The dynamics of the ramp queue are represented by the conservation
equation where the rate of change of the number of vehicles in the queue is

equal to the input flow to the queue subtracted from the outflow as seen in
(12).

3. BACKGROUND (NONLINEAR H.. CONTROL)

Consider the system

x=a(x)+b(x)u+g(x)d,, a0)=0 (12)

y=c(x)+d,, c(0)=0
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7= [h(x)], h(0)=0
u

where x=(x,,...,x,) are local coordinates for a C~ state space
manifold M, u€ R™ the control inputs, d,€ R” and d,€ R’ the
exogenous inputs consisting of reference and/or disturbance signals, ye R”
the measured outputs, and z€ R’ the outputs to be controlled. The system
(12) is identified by G. For a full-state measurement case y=x. The
controller is identified by K . The closed-loop system in Figure 11-3 will be
denoted by Q(G/K).

K ¢

Figure 11-3: Block Diagram for Nonlinear H,, Formulation

Definition 1: The closed loop system (G/K) is said to have L, gain
less than or equal to ¥ for some ¥ >0 if

T , T , 13)
[le@ de < y* [|wio|” de +bex,)
0 0

V T >0 and w(t)e L,[0,T], where b(x,) is a positive constant
depending on initial condition x, .

State Feedback Hoo_Control Problem: Find a state feedback controller
K :u=u(x) if any, such that the closed-loop system Q(G/K) is
asymptotically stable and has L, — gain< ¥ .

Solution [7-11]: If there exists a smooth function V(x)>0 which
satisfies the Hamilton-Jacobi (HJ) inequalities

1 1 T T T (14)
vx(x)a(x)gvx(x)[—y—zg(x)g (0) = b(x)b (x)]vx )

+ —;—hr ()h(x)<0V(0)=0

and we set
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u, ==b" (x)V, (x) (15)

then the closed loop system £2(G/u. ) has gain at most y. Moreover if
V(x ) has a strict local minimum at x =0 and the system

x = a(x) (16)

1
T V! ()

is zero-state detectable (ie. x=a(x) and z(x(t))=0 for
t20 = Limx(t)=0), then x=0is a locally asymptotically stable
equilibrium of

x=a(x)-b(x)b" (x)V] (x) a7

If additionally, V has a global strict minimum at x=0and V is proper
(so the inverse image of a compact set under V is again compact), then
x =0is a globally asymptotically stable equilibrium of (17).

For the finite-time horizon problem, where final time T is finite, the
solution is given by u = —bT(x)VX (t,x), where V(t,x) 20 satisfies the
following HJ equation:

I I TR S 1,
V., x)+V, (X)a(X)+5Vx (x Fg(X)g (x) =b(x)b" (x) |V, (x)

%m (Oh() =0V(T, )=V, (x)

The solution for the finite-time case can be derived from a min-max
differential game perspective [12].

Measurement Feedback Hoo Control Problem: Find a dynamic feedback
controller

X {,-, = k(1) + L)y (19)
u=m(7)
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so that the closed-loop system Q(G/K) is asymptotically stable and has
L,-gain<y.

Solution [28,29,30, 32,34]: A necessary condition for the existence of
solutions for which the closed-loop system has a smooth storage function is
that there exists a solution V(X)=0 of (14) as well as a solution
R(X)200of

20
R, (x)a(x)+#Rx We(®g" (DR (x) 0

+ %hT (x)h(x) - % yc" (x)c(x) <0,R(0)=0

such that V(X) < R(X) forall x.

Conversely, conditions (14) and (20) are sufficient to solve, at least
locally, the measurement feedback-problem. A more complicated version of
(20), involving an “information state” in combination with (14), leads to
compensators that solve the problem. However, these compensators are in
general infinite-dimensional. This is an ongoing area of research, which is
beyond the scope of this book.

4. RAMP CONTROL DESIGN
We present two control laws for isolated ramp metering control: one

using space discretized dynamics and the other one using space and time
discretized dynamics.

4.1 Continuous-Time Case

In order to illustrate the ideas discussed above, we have designed a
feedback control law for a space discretized system. The isolated ramp
metering problem area is shown in Figure 11-4
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Figure 11-4: Traffic Flow for an Isolated Ramp Metering

The dynamic equation for this problem is given by

d 1 Q1)
Zp—z[% (" —-q,, @) +r@)]

d
EZ_Q2(I) =r()

d
—r = t
o u(t)

where,
p = Traffic density on the mainline (veh/mile)
I = Number of vehicles (queue length) on the ramp
L = Length of the mainline section (mile)
r = Rate of flow of traffic into the mainline from the ramp (veh/hour)

q, = Traffic flow entering the mainline section from the highway (veh/hour)

q, = Traffic flow entering the ramp (veh/hour)
q,, = Traffic flow leaving the mainline section (veh/hour)
According to Greenshield formula we have

Gou () =V, p(1 —-/-)'0_) (22)

where,
v, = Freeflow speed on mainline (miles/hour)

P,, =Jamdensity on the mainline (veh/mile)

Therefore, we can replace (21) by
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d P
:l;sz[‘h _vfp(l_'_m)+r]
d
le q,-r (23)
d
—r=u
dt

Then defining the error e as p-— p., making the substitution of

p=e+p. into (23a), and assuming L =1 the following equations are
obtained:

%pth —Vy (e+pc{l_fi&]+ r

P
d
Zl=qg.-r (23b)
dr q,
d
—r=u
dt

We can now define the state vector x as x=[e,l,r]". We can now
present the ramp metering system in the form given by (12):

e+ p,
; e —vf(e+p({l————bm—-)+r a 0

=Z|ll= -r + +{0u
f dr q,

(24)
r 0 0 1

The objective of the control can be taken as

=|° 25
z—l (25)

Using this formulation, we can obtain the controller by solving the
Hamilton-Jacobi equation like (18) associated with this system.
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4.1.1 Nonlinear H.. Solution for Two Cost Functions

The two cost functions to be extremized are (26) and (27). These
equations are posed such that the disturbance g will be maximized and the
arguments of z and the control # will be minimized.

J, =T%(ZTz+u2 —y*q" q)dt (26)
0

J, =]:%(zrz+u2 —}/zqrq—kzrz)dt 27)
0

The pre-Hamiltonian of (26) and (27) are (28) and (29), respectively

H, =%(zrz+u2 ~y2q7q)+/1rf (28)
H, =%(zrz+u2—yzqrq—k2r2)+,1’f 29
where
ﬂ'l
A=A,
A

and are the Lagrange multipliers that provide the constraints along with (24).
The stationarity conditions for the problem are

oH, =0 (30)
ou
and
oH
=0 G1)
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These conditions ensure that the control is minimized and the disturbance
is maximized.
4.1.1.1  Derivation of the Optimal Control for J,

For the cost function defined in (26) the following demonstrates the
method used to find the optimal control:

0H,
=0=u+4, 2>u=-4, (32)
ou
oH A A A
—r =0= 2 :—1—, =2
% }’q+[/12]:>‘11 " 9, " (33)

Substituting (32) and (33) into (28) the following results

2 2
H,=1*+I"+ A4 —11‘7—/1—2
vy v

+A —vf(e+p({l-fm}+—ﬂ—‘2—+r
P /4

(34)

Another necessary condition that needs to be satisfied is the costate
equations

e+vf(2p‘ e —1)/11
. pm
t=—A|= ! (35)

’13 ’11 - ’12

-

From the above costate equations it can be seen that

A, =~ |[1ds (36)
0
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This result can then be substituted into the A, equation that results in
. t
— Ay = A+ [lds 37
0

Now recognizing the relationship between u and A, the following can
be stated.

u=—-A, Du=-A, = (38)

And A, can be solved for and /i, can be found.
‘ .
A =i~ [lds = 4 =ii-1 (39)
0

Then substituting these results into the /11 equation, we obtain the
following equation, independent of A, :

, (40)
ﬁ=l—e—v{p:0+e —(1—%)](11—]1@]
m m 0

From this a state equation for the feedback system can be written; the
states for the system are as follows:

1=j1:>i=1

h=H 41)
u, =u,

i, =i

Adding these states to the states already defined creates the following
state equations
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R —vf(e+pc{l—(e+p‘))+q,+r
. q9,-r
r u,
i|” ! @
i U,
i l—e—vf[Z(p:Ol)—lj(uz _1)

41.1.2  Derivation of the Optimal Control for J,
Following is the analysis used to find the optimal control for (27):
The stationarity conditions for the problem are the same as before:

oH , oH ,
=0 and =0
ou Jaq

For (27) this turns out to be the same also

oH

aup =0=u+d, => u=-4,

o, A A A
—:0: 2 =—, =—2
g 4 q+[ﬂz] ThTe BT,

Substituting (32) and (33) into (29) yields

A P 43)
pc+e 2 2
+A4|-v, (0. +e 1——J+—+r +/1(—— )—/1
A[ i { P ) 7 ] \r :

Another necessary condition that needs to be satisfied is the resulting
costate equations:
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N 7
i e+vf(2'0j0+e— ]ﬂl
oH, , m
o=y |= ! (44)
A A=A, —k*r
L _

From the above costate equations it can be seen that
1
A, = —I lds
0

This result is the same as above also, and is substituted into the A,
equation yields a different result than above

— Ay =2+ [lds -k (45)
0

Then, as above we use the relationship of (38) to solve for ﬂ, which in
this case 1s

Ay =i [lds+kr (46)
0

Using the same argument as in (39)

A =ii—l+k*F=ii-1+ku (47)

Now substituting (46) and (47) into the /1, equation of (44) the following
results

a=l—k2u—e(2—(‘i£f—)—1](a~1+k2r) (48)

P

Using the definitions in (41) the state equations utilizing the control can
be written as follows:
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R —vf(e+pc{1—(e+—p‘)J+ql+r
i 4 -r
u,
= ] (49)
u, u,
|4, l—k2u1—e—(Ze—;ﬁ‘-—l)(uz—I+k2r)

where ¢, =(u—1+k2r)/}/2 andg, =—I/y2.

4.1.2  Discretization of the Resulting System

In discretizing the above equations it is important to realize there are
certain limits physically placed on the system. The limits on this system are
as follows:

0<p=<p,=-p <esp,-p,
0<gq,<p,
0<gq,
0<!
0<r

ul,min < ul S ul,max

(50)

Since there are constraints on the controls and the states, the method
chosen for discretization of the system is the Euler method which is
demonstrated by the following:

dx _ _x{t+h)-x(r) _ x(t+h)-x(r)
E—f(x)~ (t+h)-t h

di) o xi+1)-x(i) (51)
= fw)=m——

x(i+1)=x(i)+h- f(x,i)
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For (42) the discrete time system is as follows:

e(i+l)=e(i)+h-(vf i)+ pc{l—-e—(MJ+ql(i)+r(i)]

)=tk @l)—)
r(z+1) r(l)+h ul()

1 +1)=1()+h-1() (52)
w, (i +1)=u, (i) +h-u, (i)

u2(i+1)=u2(i)+h.[z(i)-e(i)-vf [2 ). _ J(uz(i)-—l(i))]

P

where h is the size of the time step.

The discrete time system for (49) is very similar to (52) and will not be
shown here.

4.2 Discrete-Time Case

The dynamic equation for the space and time discretized form is

p(k +D=p() +—Lf, ~v,p0~L) +u]
L P (53)

qk +D)=q(k)+T(f, —u)

We can transform these equations also into a state space form like (24)
and use a similar technique for the discrete time case as we used in the
continuous time case. However, this will not be shown in this chapter mainly
due to space limitations.

S. SOFTWARE AND SIMULATION RESULTS

We will present the software and the simulation results for the optimal
control here. The simulation file for this control is presented below.

% Ramp Metering Code

clear;




288 Chapter 11

clf;

clc;

global rhom k

$ Input Parameters
k=input('k= ');

rhom = 60;
t0 = 0.0;
tf = 15;
h = 0.01;

m = (tf-t0)/h;
x0=[35 5 4 0.0 0.0 0.0];
T=zeros(m,1); $ T array m rows (mxl1)
X=zeros (m,length(x0)); % X array m rows, length state columns
T(1)=t0;
£1(1)=ql(t0);
£2(1)=q2(t0);
X(1,:)=x0;
%There are m-1 steps and m points maximum
for I=1:m-1;
tI=T(I);
clc;
tI
XI=X(I,:);
kl=h*feval ('rampdynamics', tI,xI)';
k2=h*feval ('rampdynamics', tI+h/2,xI+k1/2)"';
k3=h*feval ('rampdynamics', tI+h/2,xI+k2/2)"';
k4=h*feval ('rampdynamics', tI+h,xI+k3)"';
X(I+1,:)=xI+(k1+2*k2+2*k3+k4)/6;
T(I+1)=t0 + h*I;
£1(I+1)=ql(T(I+1));
£2(I+1)=qg2(T(I+1));
if (X(I+1,2)<0),
X(I+1,2)=0;
X(I+1,3)=qg2(T(I+1));
X(I+1,4)=0;
X(1+1,5)=0;
X(I+1,6)=0;
end
if (X(I+1,3)<0),
X(I+1,3)=0;
X(I+1,4)=0;
X(I+1,5)=0;
X(I+1,6)=0;
end
if (X(1+1,1)<0),
X(I+1,1)=0;
end
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if (X(I+1,1)>rhom),
X(I+1,1)=rhom;

end
end
subplot (221) ;
plot(T,X(:,1),"'-'",T,X(:,2),'-.");

title('Traffic Density & Queue Lengths');
xlabel ('Time') ;

subplot (222) ;
plot(T,X(:,3),'-",T,X(:,4),'-.");
title('Ramp Rate & Integral Queue Length');
xlabel ('Time') ;

subplot (223) ;
plot(T,X(:,5),"'-',T,X(:,6),'-.");
title('Ramp Rate Velocity & Ramp rate Acceleration');
xlabel ('Time') ;

subplot (224);

plot(T,f1,'-',T,£2,'-.");

title('Mainline Inflow & Ramp Inflow');
xlabel ('Time') ;

Figure 11-5: File runramp.m

Simulation results using this control are presented below.
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Traffic Density & Queue Lengths Ramp Rate & Integral Queue Length
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Figure 11-6: Simulation Results Using Control-1

6. SUMMARY

In this chapter, we did the following

. A nonlinear H.. control formulation for an isolated mixed
sensitivity ramp control problem was presented.

. A feedback control law was designed for this problem.

. Simulations were performed to check the effectiveness of the
feedback control law.

7. QUESTIONS

1.  For space discretization, what is the realistic approximate of the
highway segments? Why?

2. Express the ramp metering problem in the state space form.

3. Explain why (26) and (27) are chosen as the cost functions to be
maximized and minimized, respectively.
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8.

11.

12.

13.

PROBLEMS

Write down the state space form of the (53).
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Chapter 12
PARAMICS

This chapter introduces PARAMICS (PARAIllel MICroscopic Simulation)
software, a microscopic traffic simulation program, and discusses its use for
testing and validating ramp metering algorithms discussed in the previous
chapters of this book Chapters 9 (ALINEA), 10 (Mixed Control), 11 (New
Control). The Quadstone website at www.paramics-online.com provides an
overview of each module.

1. INTRODUCTION TO PARAMICS

PARAMICS is a software tool for the simulation of traffic, and allows
the modeling of the movement and behavior of individual vehicles on
roadways. The software is comprised of five modules:

Modeller — The simulation and visualization tool.
Processor — The simulation configuration tool.
Analyzer ~ Postsimulation statistics viewing tool.
Programmer — API interface of Paramics.

Monitor ~ The interface to pollution emissions model.

ARl S

‘Paramics Modeller’ allows three different operations, which include
building the traffic model, running the simulation for the model and finally
obtaining results of the simulation through a graphical user interface.
Paramics has a very neat graphic-based simulation environment and
therefore allows the user to view their model in real time as the simulation is
running. This makes for a good presentation when meeting with a
nontechnical audience and thus is a lot more convincing then simple
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numbers. Advanced Signal Control, High-Occupancy Vehicle lanes and
Incident Management are among some of the features of transportation
networks that can be modeled using Paramics.

‘Paramics Processor’ is used for running the simulation in batch mode
i.e., running the simulation without any visualization. This feature speeds up
the simulation process and thus leads to the collection of data in a shorter
amount of time.

‘Paramics Analyzer’ is primarily used to display and report the statistical
results obtained ftom the simulation runs obtained from Processor and
Modeller.

‘Programmer’ is a tool that comes in handy for researchers who need to
work with customized models of traffic, whereby they can specify their
parameters for driver behavior and vehicle models etc.

‘Monitor’ is a tool that helps to calculate the pollution due to traffic
emissions and this is computed for the entire system by breaking the system
down into the various links that the system is comprised of.

2. ADVANTAGES OF PARAMICS SIMULATION

Paramics provides a very comprehensive 3D visualization system. The
high-fidelity graphic representation and an extensive set of controls provides
a very user-friendly system, making modification of the network model, and
its associated parameters, a very simple task. Important characteristics of
traffic flow such as lane usage, shockwaves (front, back and stationary) are
easily dealt with by simulating the movement of individual vehicles.

The Origin-Destination matrix is treated as an input for Paramics. This
allows trips to be generated from zone to zone, in the form of unique
vehicles being created for each trip. During their flow from the origin to the
destination, the vehicles follow Paramics’ sophisticated car following and
lane changing algorithms.

Data about vehicles can be collected from the simulation by placing a
number of detectors, called ‘LOOPS’, one for each link. The detectors
collect data for each lane of a particular link and therefore can also be looked
at as effectively being individual lane monitors. The detector can be placed
anywhere on the link between the entry and exit points of the link in
question. The following types of data can be collected using these detectors:

- Gap — Time between vehicles

- Occupancy — Total time lane is occupied

- Instantaneous Flow — Inverse of Gap and Occupancy
—  Count - Count of vehicles
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- Type-Count — Count of different types of vehicles

Information collected from these detectors is stored in the form of
database. Real-time access may be needed as in the case of feedback systems
such as ‘Actuated Signal’ control or ‘Ramp-Metering’ systems. In Paramics,
actuated signal control is implemented by giving the user the option of
making temporary and permanent changes to signal timing. This is done in a
language, which is similar to the ‘C programming language’. The program
normally consists of two parts:

1.  The definition of Plans (Plan File)
2. The assignment of the plans to different phases in the network
(Phases File)

The Plans file contains a plan of the signal plans that would be
implemented in a network. Each plan is associated with a set of loops and a
set of parameters associated with one phase of a node. The file also defines
the modifications that need to be made to the signal plan when anyone of a
set of events is triggered.

The inputs to the signal plan file are comparison of various parameters
such as variable parameters or predefined threshold values. These inputs
include values such as critical density in a particular time step, and
depending on the outcome of the comparison can lead to any one of a
number of actions being taken.

3. PARAMICS APPLICATIONS AND VALIDATION
STUDIES

Paramics has become on of the most widely used traffic modeling and
simulation software all around the world, including Argentina, Hong Kong,
Spain, France, UK, Malaysia, Singapore and the US. PARAMICS is also
being used at various universities around the such as Rutgers-NJ, University
of Utah, University of California, University of Toronto-Canada and
University of Aachen-Germany, among others. Some of the modeling
applications of Paramics being used in research include:

- New Intersection Design

- High Occupancy Vehicle Lanes

- Ramp Metering

- Toll Plazas

- Vehicle Loop Detection
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- Incidents
- Automated Highway Systems
- Pollution Emissions

PARAMICS has been validated against software such as ARCADY,
PICADY and TRANSYT, which are used for roundabouts, priority junctions
and signalized junctions respectively. Usually major adjustments are made to
the model so that it represents the real world environment as accurately as
possible. Additionally various parameters can be modified, such as ‘mean
headway’, ‘mean reaction time’ and ‘driver aggression’, to control the
overall behavior of the model.

Calibration and Validation is done by comparing the results of the
simulations with actual data obtained from obtained from roadways.
Visualization comparisons are also made between videos of roadways and
the simulation while it is running. This provides a quantitative and
qualitative analysis in order to better calibrate as well as validate the model.

One of the recent PARAMICS validation studies performed by California
PATH is the “Bay Area Simulation and Ramp Metering Study” [2]. In this
study, several simple networks were created and the PARAMICS models
were tested in very simple situations in which the predicted model results
could be compared with known accepted results. Three freeway test
networks were simulated, a straight-pipe freeway section, a lane-drop
freeway section, and a single on-ramp freeway section, under a range of
traffic demand situations, and the model results were compared based on the
Highway Capacity Manual. With few exceptions, it was found that predicted
hourly flow rates fell outside the expected range both in terms of the central
tendency and the temporal and spatial variations for all three simple
networks. The variations of flows were generally higher than expected. This
was explained by the nature of the microscopic simulation: by modeling
individual vehicles instead of using an aggregated macroscopic approach,
the range of predicted values over the time-space domain is likely to be
wider when the vehicles are re-aggregated into flows. In terms of speeds,
they found that the average speeds predicted by the model generally matched
the expected values in the lane-drop and ramp-merge examples. However,
the speeds were slightly lower than expected at the vicinity of lane-drops and
ramp-merges.

A fourth experiment, a traffic responsive ramp metering modeling with
PARAMICS, was performed as well. The main purpose of the ramp
metering experiment was to investigate the capability of PARAMICS to
simulate a specific local traffic-responsive control strategy. The PARAMICS
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plan language proved an efficient and powerful tool in developing and
testing ramp metering strategies.

4. PARAMICS RAMP METERING APPLICATIONS

A number of PARAMICS Project Examples of ramp metering are
available, some of which are viewable online, www.paramics-online.com.

In USA, the Institute of Transportation Studies at the University of
California in Irvine is using the system for research and development in
collaboration with Caltrans [9]. The aims include constructing an
instrumented test-bed network for the city of Irvine and assessing new
strategies for adaptive ramp metering, intersection control, and real-time OD
estimation techniques. Oak Ridge National Laboratory (ORNL) is also
conducting research using Paramics (www.ornl.gov), together with the US
Federal Highway Agency, are assessing the benefits of using PARAMICS in
comparison to their existing software.

Some examples of ramp metering projects carried out by PARAMICS
are given in the following. Project details and more examples can be found
on the web.

Evaluating Adaptive Ramp Metering Control project [11] proposes to
evaluate a number of off-the-shelf as well as new ramp metering algorithms
using PARAMICS, identify the most promising ramp metering algorithm
and implement it in District 12 and possibly in District 4.

Development and Evaluation of Adaptive Ramp Metering project [10]
proposes to evaluate a number of off-the-shelf as well as new ramp metering
algorithms using PARAMICS, identify the most promising ramp metering
algorithm and implement it in District 12 and possibly in District 4.

In Bay Area Simulation and Ramp Metering Study [2], PARAMICS’
simulation capacity was used in (1) analyzing the effects of new traffic
management strategies, (2) analyzing the effects of applying existing
strategies in specific situations, and (3) developing and testing traffic theory.

In Evaluation of On-ramp Control Algorithms [6], it was aimed to (1)
review existing ramp metering algorithms and choose a few attractive ones
for further evaluation, (2) develop a ramp metering evaluation framework
using microscopic simulation, and (3) compare the performances of the
selected algorithms and make recommendations about future developments
and field tests of ramp metering systems. About 17 ramp metering
algorithms, ranging from simple local algorithms to complex integrated
algorithms, are first categorized and assessed qualitatively. Based on the
qualitative assessment, ALINEA, Bottleneck, SWARM, and Zone
algorithms were selected for further evaluation. PARAMICS was adopted as
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the simulation platform for further evaluation of the selected metering
algorithms. Several API (Application Programming Interface) modules,
including Loop Aggregation API (on-line data collection), Ramp API
(mimics ramp signal operations), and Ramp Algorithm APIs (metering logic
implementations), are developed to build a simulation-based ramp metering
evaluation framework. The four selected algorithms were coded into this
framework for a stretch of southbound Interstate 405 located in Orange
County, California. To compare the performance of these algorithms,
multiple simulation runs were made under different demand patterns.

S. SIMULATION OF THE STUDY NETWORK

In this section, “feedback”-based ramp metering strategies are tested
using PARAMICS on a test network located in Hayward, California. “Mixed
ramp control strategy,” ALINEA (Papageorgiou, 1991), and New Control
(Kachroo and Ozbay, 2003) are implemented using the same test network.
The results of all three ramp metering strategies are then compared using
various measures of effectiveness, to evaluate the effectiveness of each
control strategy with respect to the others as well as with respect to “no
control” case where ramp metering is not used.

Thirty-eight nodes, four of which provide the connection of ramp links to
the freeway, were used to form the study network using the sketch network
shown in Figure 12-1. Only northbound section of the network was used for
the simulation.

As the next step, these nodes were connected by links, and the link
attributes (e.g., number of lanes, link free flow speed) were edited using
network editor window. The number of lanes on the 9.2-mile long study
section varies between 3 and 5 lanes. Free flow speed of the links was taken
as 60 mph. Figure 12-2 shows a screen capture of the PARAMICS model of
the freeway and ramps created using the available geometric and traffic
demand data. In this section, “isolated ramp metering” strategies are to be
tested; therefore, ramp metering was applied only to the ramp shown in zone
5 of Figure 12-2. The freeway section upstream and downstream of the ramp
consists of 5 lanes, with 1-lane on-ramp. Then, six zones were created for
traffic generation, two of which was located on both ends of the mainline,
and the remaining were located on the ends of the on-ramp links. Seventeen
detectors, named using the node numbers that are given in the sketch (Figure
12-1), were located on the network to collect statistical information about the
vehicles on the link.
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Figure 12-1: The FSP Study Section [10]
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Figure 12-2: PARAMICS Model of the Study Network

Then, an API was written to assign demand in PARAMICS every minute
in such a way that the number of vehicles generated in PARAMICS every
minute closely matches the observed vehicle counts obtained from the loop
detectors. The calibration and validation of the demand assignment and other
attributes of the network, such as mean target headway and mean reaction
time, were performed based on real-world data from the Freeway Patrol
Evaluation Project Database, conducted as part of the PATH program at the
University of California, Berkeley (Petty et al., 1995). However, the
observed demand data for specific zones were increased so that the ramp
metering strategies could be tested under fairly congested traffic conditions.
The hourly demand from zone 2 to zone 1 was taken to be 35% more than
the observed hourly demand from zone 2 to zone 1, which was given as
5050 veh/hr, and the hourly demand from zone 5 (ramp demand) to zone 1
was taken to be by 3% less than the observed hourly demand of 580 veh/hr.

A vehicles file, which was generated automatically, was edited to
represent the traffic on the study network. Thus, characteristics of each
vehicle, and assignment information for each vehicle type were specified in
this file. The percentages and attributes of the vehicles selected to represent
the typical combination of vehicle types in the network are given in Table
12-1.
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Table 12-1: Types and Percentages of the Vehicles Used in the Simulation

Type % Length | Height | Width | Weight | Top Acceleration | Deceleration
(m) (m) (m) (Tone) | Speed | (m/s2) (m/s2)
(km/h)
Car 85 4.0 1.5 1.6 0.8 158.4 2.5 4.5
Lgv 7.8 6.0 2.6 2.3 2.5 126.0 1.8 39
Ogvl 32 8.0 3.6 24 15.0 104.4 1.1 32
Ogv2 2.8 11.0 4.0 2.5 38.0 118.8 14 3.7
Coach | 1.2 10.0 3.0 2.5 12.0 126.0 1.2 3.7

Two files, namely, the configuration file and the measurements file to
extract PARAMICS model statistics were edited. The configuration file is
generated automatically, whereas the measurements file has to be created in
order to specify the data requirements to be gathered. In the measurements
file, “gather link data” was written to be able to collect link flow, link speed,
and link density, while “gather trip info” was coded to obtain the travel times
for the links of the specified trips from zone to zone. Trip info requires a
separate file, called trips file, which is used to specify the trips (from zones 2
and 5 to 1) for travel time data collection.

The simulation was run for 3 hours and 15 minutes, allowing the initial 1
hour 15 minutes for loading the facility and 1 hour at the end to eliminate
any effects from the simulation ending. Using configuration and
measurements files, statistics were collected for the one hour portion of the
simulation from the detectors located 721.6 ft downstream and 468.3 ft
upstream of the ramp and two additional detectors, one at the exit and one at
the entrance of the ramp.

start time 07:45:00

simulation time 03:15:00

demand weight 100.0

seed 120

demand matrix tuning level 0
turning penalties visible to all
generator 0

loop length 6.56 ft

speed memory 3

closest origin carpark disabled
closest destination carpark enabled
file time "-"

curve speed factor 1.00

amber time 3.0
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right hand drive

units us

timestep detail 2

mean headway 1.60

mean reaction time 0.40

cost coefficients 1.000, 0.000 mins per mile, 0.000
queue speed 4.5 mph

queue distance 32.8 ft

weight heavy 2.9 ton

feedback 00:00:00

feedback smoothing factor 0.500
feedback decay factor 0.995
perturbation disabled

read parameters file "API_Example4"

Figure 12-3: PARAMICS Configuration File for all the Control Strategy Implementations

There is a large amount of options in the configuration file that can be
used to calibrate the model to represent the real network conditions.
However, for this study network, except the simulation start and run time,
seed, mean headway, and mean reaction time, all configuration input values
are kept as default values (Figure 12-3). For example, time step was taken as
2, the default time step, which provides that calculations are done every 0.5
second of simulation.

The overall behavior of the model was calibrated by adjusting the “mean
headway” and the “mean reaction time” to obtain results close to real-world
data. The values of the mean target headway and the mean reaction time are
calibrated as 1.6 seconds and 0.4 second, respectively. The aggression and
awareness factors for each vehicle are determined when the vehicle is
released onto the network with the levels of these falling within a normal
distribution (default value). After this model calibration, the output is
observed to represent field data within an acceptable level of accuracy.
Therefore, the calibrated and validated model was used to simulate the
traffic operations of the study site.

A plan file or an API can be used to simulate actuated signals. In this
study, however, we used a plan file, which consists of a description of any
signal plan that should be used within the network.

A plan file has an associated number of loops (detectors), and a set of
parameters. Loops are defined and the parameters are initialized in the
phases file. The format of the language for the plans file has syntax similar
to C programming language. The definition of the language consists of
actions and clauses. In the following, descriptions of the plans and phases
files for each control strategie are illustrated.
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plan count 1

plan 1 definition
loops 12
parameters 48

if (init) { fixed; }
if (parameter [1] < 40)
{

parameter [l] = parameter [1] + 1;

##foccupancy calculation for the first lane (downstream)

if (occupancy [5] running <= 0.5)

{

parameter [2] = occupancy [5] running;

}

if (occupancy [5] running > 0.5)

{

parameter [2] = 0.5;

}

##iparameter [2] is downstream occupancy on the first lane
##Then, the same procedure is applied to the remaining 4 lanes
##on the downstream and to the 5 lanes on the upstream of
##the ramp on the freeway section, which is given in Appendix
##A.

##parameter [2] is downstream occupancy on the first lane
##parameter [3] is downstream occupancy on the second lane
##parameter [31] is downstream occupancy on the third lane
##parameter [37] is downstream occupancy on the fourth lane
##iparameter [38] is downstream occupancy on the fifth lane
##iparameter [4] is upstream occupancy on the first lane
##parameter [5] is upstream occupancy on the second lane
##iparameter [32] is upstream occupancy on the third lane
##parameter [39] is upstream occupancy on the fourth lane
##iparameter [40] is upstream occupancy on the fifth lane

##lane usage calculation:

parameter [6] = count [5] / (count [5] + count [6] + count
[10] + count [11] + count [12]); ## %nv on lane 1 downstream
##Similarly, the rest of the lane usage calculations are
##illustrated in Appendix A.

##parameter [7] is %nv on lane 2 downstream

##iparameter [33] is %nv on lane 3 downstream

##parameter [41] is %nv on lane 4 downstream

##parameter [42] is %nv on lane 5 downstream
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##parameter [8] is %nv on lane 1 upstream
##parameter [9] is %nv on lane 2 upstream
##parameter [34] is %nv on lane 3 upstream
##iparameter [43] is %nv on lane 4 upstream
##iparameter [44] is %nv on lane 5 upstream

##downstream occupancy calculation using lane usage:
parameter [10] = parameter [10] + (parameter [2] * parameter
[6] + parameter [3] * parameter [7] + parameter [31]
*parameter [33] + parameter [37] * parameter [41] + parameter
[38] * parameter [42]);

##upstream occupancy calculation using lane usage:

parameter [11] = parameter [11] + (parameter [4] * parameter
[8] + parameter [5] * parameter [9] + parameter [32] *
parameter [34] + parameter [39] * parameter [43] + parameter
[40] * parameter [44] );

green2 = parameter [14];

green3 = parameter [14];

}

else

{

parameter [27]=flow [5]; ##downstream lane 1
parameter [28]=flow [6]; ##downstream lane 2
parameter [29]=flow [3]; ##upstream lane 1
parameter [30]=flow [4]; ##upstream lane 2
parameter [35]=flow [7]; ##upstream lane 3
parameter [36]=flow [10];##downstream lane 3
parameter [45])=flow [11];##downstream lane 4
parameter [46])=flow [12];##downstream lane 5
parameter [47]=flow [8]; ##upstream lane 4
parameter [48])=flow [9]; ##upstream lane 5
parameter [12] = parameter [10] / 20; ## % downstream

occupancy= sum/ (40*0.5) =sum/20, to find the occ percentage
it is divided by 0.5
parameter [13] = parameter [11] / 20; ## % upstream occupancy

##ALINEA Implementation:
parameter [14]= parameter([14] + (0 - 20 * (180 / 730 ) ) *
parameter {20] * ( parameter [12] - parameter [15] );

if ( parameter [14] < parameter [25] )
##parameter[25]is minimum green time
{
parameter [14] = parameter [25];
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}
if ( parameter [14] > parameter [26] )
##iparameter[26]is maximum green time
{
parameter [14] = parameter [26] ;

}

if (count [1] - count [2] > 45)
{

parameter [14] = parameter [26] ;
}

green2=parameter [14];
green3=parameter [14];

parameter [1] = 1;
parameter [10]
parameter [11]

}

i

0;
0

’

Figure12-4: ALINEA Plans File

Single plans file is used for the actuated signal implementation in
PARAMICS. PARAMICS’ internal output is collected from twelve loops
that are named and numbered in the phases file. In the plans file, by using
these internal output values, parameters are defined in order to calculate
desired variables. The number of parameters that are used in this plans file is
equal to forty-eight. The cycle length is defined as a fixed quantity.

In this study, it was decided that the percent lane occupancy be used in
the local traffic responsive ramp metering control investigations. As the
downstream traffic conditions get heavier, the percent lane occupancy
increases, and the need for restricting the entering flow from the on-ramp
increases.

The ramp signal has two phases, namely red and green. The total cycle
time of the signal is fixed to 20 seconds, this means the sum of the red time
and green time is fixed to 20 seconds. The ramp metering control calculates
the green time for every cycle using the traffic conditions information
collected by the detectors and the control law. The red time is automatically
determined by subtracting the green time from the 20 seconds cycle time.

Since the ramp metering rate is to be updated every 20 seconds, a counter
was placed in the first part of the plan file, where upstream and downstream
occupancies are summed for that interval. The upper limit for the counter is
equal to the number 40 due to the fact that the time step is 2, which means
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that calculations are done every 0.5 second of the simulation. The occupancy
values, which are summed in the counter section of the code, are initialized
as zero, after each complete cycle of 20 seconds. Similarly, the counter is
also initialized as one after the calculations are completed for the 20-second
time interval.

Once the upstream and downstream accumulated occupancy values are
obtained, then for all the lanes (5 lanes), downstream of the ramp on the
freeway section, the averages are calculated for a 20-second time interval.
However, the occupancy, which is used in the control law equation, was
defined as the weighted average occupancy of lanes 1 through 5. Therefore,
the lane occupancies are multiplied by the corresponding lane usage and
then they are summed together. An “if loop” is used to make sure that the
calculated occupancy values are less than the maximum occupancy values.
That is, each time step is 0.5 seconds, and the maximum occupancy value for
each time step is, therefore, 0.5 seconds. As a part of the calibration of the
PARAMICS model of the network, critical occupancy of the freeway section
used for control strategies implementations is found as 26%. Thus, set
occupancy for all control strategies was chosen as 25%.

The ALINEA control law, proposed by Papageorgiou et al. (1991), is a
local feedback ramp metering strategy that attempts to maximize the
mainline throughput through maintaining a desired (or optimal) occupancy
on the downstream mainline freeway.

ALINEA uses the previous time step’s metering rate, regulator constant,
critical (or set) occupancy, and the present downstream occupancy values to
determine the next time step’s ramp metering rate: However, in order to
implement this metering rate, it needs to be converted to the corresponding
green phase time in the plans file. Therefore, the following equation is used
to convert the metering rate to the green phase:

g=Wluy,)c M

where C is the cycle length (sec), uis the ramp metering rate (veh/cycle),
u,, (veh/cycle) is the saturated ramp flow. The ALINEA control law is
given as:

u(k) =u(k —1) + ke(k) )

where u(k) is the next time step’s metering rate, u(k —1)is the previous
time step’s metering rate, k is the regulator constant, e(k) is the error term,
which is defined as e(k) = (o(k)—o0,).

The implementation of the control law in the plans file code is given as:
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parameter [14] = parameter [14] - 20 * (180 / 730 ) *
parameter [20] * ( parameter [12] - parameter [15] )

where;

parameter [14] is the calculated green phase time for the next time step in
seconds

20 * (180 / 730) is the conversion constant that converts metering rate to
green phase time in seconds,

parameter [20] is the regulator constant

parameter [12] is the downstream occupancy at current time interval

parameter [15] is the set occupancy, which is equal to 25%.

The minimum and maximum green phase times are chosen as 2 and 15
seconds, respectively. In ALINEA implementation, a queue override
strategy that sets the green time to its maximum allowed value when the
occupancy of the ramp detector exceeds a certain threshold (>45 vehicles on
the ramp) is integrated into the ALINEA control to avoid interference with
surface street traffic. The time interval to update the metering for controls is
equal to 20 seconds.

This plans file depicts the implementation of ALINEA and it also
contains the command lines needed for PARAMICS to produce the output,
used for evaluation and comparison of the performance of this control
strategy.

use plan 1

on node 43 phase 1

with loops
10RUP lane 1 ##1
10RON lane 1 ##2
10U lane 1 ##3
10U lane 2 ##4
20D lane 1 ##5
20D lane 2 ##6

10U lane 3 ##7
10U lane 4 ##8
10U lane 5 ##9
20D lane 3 ##10
20D lane 4 ##11
20D lane 5 ##12

with parameters
1 ##1
0 ##2
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##3

##4

##5

##6

##7

##8

##9

##10

##11

##12 downstream occupancy
##13 upstream occupancy

##14 green time

##15 critical occupancy, critical =0.26
##19 the no of vehicles on the ramp per 20 seconds
08.57 ##20 is the k value

##25 minimum green phase time
##26 maximum green phase time
##27

##28

##29

##30

##31

##32

##33

##34

##35

##36

##37

##38

##39

##40

##41

##42

##43

##44

##45

##46

##47

##48

OOOOOOOO{;‘]MMOOOOOOOOOOOOOO
N
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Figure 12-5: ALINEA Phases File

In the phases file, the loops and the parameters used in the plans file are
defined. Furthermore, a description of these parameters is given in the plans
and phases files.
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New Control implementation in PARAMICS is performed in the same
manner as ALINEA (Appendix A).

The simulation output is collected from twelve loop detectors that are
defined in the phases file, just as before. The number of parameters, which
help to obtain the customized results from PARAMICS’ internal output, is
equal to fifty.

With the help of a counter, which has an upper limit of 20-second
simulation period, the summation of upstream and downstream occupancies
on the mainline for all 5 lanes are determined. Then, the weighted average of
the collected upstream and downstream occupancies are calculated. These
calculated values are then compared with the maximum occupancy values to
check if they are greater than the maximum values, and if they are, the
calculated values are taken as maximum occupancy.

After determining occupancy, next step is to implement the New Control
(Kachroo, Ozbay, 2003). New Control is given as:

u(k) = -K[o(k) - o, |+ [q,. (k) — q,, ()] 3)

Where,

u( k ) is the calculated metering rate at time step k

K is the regulator constant

of k ) is the downstream occupancy at time step k

o,, is the set occupancy value

q,,( k) is the mainline inflow at time step k

q,. (k) is the mainline outflow at time step k

The ramp control strategy is implemented in the plans file as follows:
parameter [14] = 20 * (180 / 730) * ((0 -~ parameter
[20])* (parameter [1l2] -~ parameter [15]) + (parameter
[27] +parameter [28] + parameter [36] +parameter [45] +
parameter [46] - parameter [29] - parameter [30] -
parameter [35] - parameter [47] - parameter [48]))/180;

Where,

parameter [14] is the calculated green phase time for the next time step
in seconds,

20*(180/730) is the conversion constant (2) that converts metering rate
to green phase time,

parameter [20] is the regulator constant,

parameter [12] is the downstream occupancy at current time interval,

parameter [15] is the set occupancy, which is equal to 25%.

parameters [27],[28],(361,[45],[46] are the mainline outflow at
time step k for each 5- lanes,
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parameters [29],[301,(35],[47],[48] are the mainline inflow at
time step k for each Slanes

The numbers in the control implementation code come from the
conversion of the metering rate to green phase time and some constants,
which are a part of the derived control law.

The minimum value of green time is 2 second, and the maximum value
of green time is 15 seconds. If the initial calculated value of green time is
less then 2 or greater than 15, the algorithm forces the value to be within this
range. Time step was taken as 2, the default time step, which provides that
calculation are done every 0.5 seconds of simulation.

Since the queue on the ramp is not taken into consideration in the control
law, it is made sure that the number of total vehicles on the ramp never
exceeds storage capacity by hard coding it into the plans file. A queue
detector is located at the entrance of the ramp, and the number of vehicles in
the ramp is counted by finding the difference between the number of
vehicles crossing the upstream and downstream detectors. Whenever the
number of vehicles in the ramp exceeds a threshold value, indicating a queue
is forming at the ramp, the metering rate is increased to the maximum
metering rate to release the vehicles in the queue. A similar threshold, as in
ALINEA, strategy (>35 vehicles) was used for the on-ramp queue. The
control gain, K, for the study network, was found as 15996.

After calculation of the parameters for one 20-second time interval, the
plans file is completed with the initialization of the couater fo+ the next time
interval.

use plan 1

on node 43 phase 1

with loops
10RUP lane 1 ##1
10RON lane 1 ##2
10U lane 1 #4#3
10U lane 2 ##4
20D lane 1 ##5
20D lane 2 ##6

10U lane 3 ##7
10U lane 4 ##8
10U lane 5 ##9
20D lane 3 ##10
20D lane 4 ##11
20D lane 5 ##12
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with parameters

##1
#4#2
##3
##4
##5
##6
##7
#4#8
##9
##10
##11
##12
##13
##14
.25 ##15
##19

O 0O OO0 0000000 o oo o -

seconds

15996 ##20
2 ##25
##26
##27
##28
##29
##30
##31
##32
##33
##34
##35
##36
##37
##38
##39
##40
##41
##42
##43
##44
##45
##46
##47
##48
##49
##50

[ury
w

O 0O 0O 0O 0O 0O O O OO0 0000 00O OL O OoOOoOOoOOo

downstream occupancy

upstream occupancy

green time

critical occupancy, critical =0.26

the number of vehicles on the ramp per 20

is the k value
minimum green phase time
maximum green phase time
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Figure 12-6: New Control Phases File

The loop detectors that are used in the plans file are named and numbered
in the phases file. The locations of the loops can be found in the detectors
file, where the name, the location of the loops in the specific link, and the
length of the loop are specified in detail. Additionally, initialization of all
parameters used in the plans file is done in this file. A description of some of
the parameters is also given, a few of which were explained in the plans file
with the help of comments.

Mixed control plans file starts with the specification of the number of
loops and parameters used in the file, which are 12 and 48, respectively
(Appendix A). '

The cycle length of the signal for the ramp was taken as a fixed quantity,
as in the implementation of other control strategies. As the time step
duration is 20 seconds, the occupancies, which are used in the control law
equation, are summed over that interval by means of a counter. Then, the
weighted averages of the five lanes’ (on the mainline) occupancies are
obtained for that interval. It is also ensured that the calculated occupancies
do not exceed the maximum value of the occupancy.

The next step is to implement Mixed Control on the study network by
coding the plans file using the control law equations. Mixed Control law
(Kachroo, Ozbay, 2003) is given as:

u =G '[-F - Ke(k)] C))
where,
h
F = sign(p(k)—p )w, [pk)-p, +E (—=q(k)+ f (k)]
+w, [£(k)+hr(k)]

and
. 1
G =[sign(p(k) — pIw, E -w,]h

where
pP(k) is the density of the freeway segment at time step &
P, is the set density of the freeway segment
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w, is the weight factor for the freeway segment

w, is the weight factor for the on-ramp queue length
q(k) is the downstream flow (outflow) on the mainline
f (k) is the upstream flow (inflow) on the mainline
£(k) is the length of the queue at time step k

r(k) is the ramp inflow at time step k

h is the time step duration

Ax is the length of the freeway segment

K is the gain parameter

e(k) =w, | p(k) - p, | +w,¢

As is seen from the equations above, Mixed Control is composed of two
regions. The first region is where the traffic density is greater than or equal
to the critical density, and the second region is where the traffic density is
less than the critical density. These two regions are represented in the plans
file with an “if loop” in which the current step’s density is located in either
of these regions and then, the next time step’s green phase time is calculated.
if (parameter([l6] >= parameter [18])

{

parameter [14]

20 * (180 / 730 )* ( (0 -
parameter[21]) * parameter([l7] + (parameter [21] *
parameter [24] / parameter [23] ) * (parameter
[27]+parameter [28]+parameter [36]+parameter

[45] +parameter [46]) - (parameter [21] * parameter [24]
/ parameter [23] ) * (parameter [29] + parameter [30] +
parameter [35]+parameter [47]+parameter [48]) -
(parameter [22] * parameter [24]) * (flow [1]/180) -

parameter [22] * parameter [19] - parameter [20] *
parameter [21] * parameter (17] - parameter [20] *
parameter [22] * parameter [19]) / (( parameter [21] *

parameter [24] )/ parameter (23] - parameter [22] *
parameter [24] );

}

else

{

parameter [14] = 20 * (180 / 730 ) * ( parameter([21] *

parameter[l7] - (parameter [21] * parameter [24] /
parameter (23] ) * (parameter [27]+parameter

[28] +parameter [36]+parameter [45]+parameter [46]) +
(parameter [21] * parameter [24] / parameter [23] ) *
(parameter [29] + parameter [30] + parameter
[35]+parameter ([47]+parameter [(48]) - (parameter [22] *

parameter [24]) * (flow [1]/180) - parameter[22] *
parameter [19] + parameter [20] * parameter [21] *
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parameter [17] - parameter [20] * parameter [22] *
parameter [19] ) / ((0 - parameter [21] * parameter [24]
)/ parameter [23] - parameter [22] * parameter [24] ) ;
}

In order to compute the green phase time, a number of parameters are
defined and used in the control equation implementation in the plans file,
(given in the part of the plans code above) where:

parameter [14] is the green phase time calculated through control law
equation and converted from the ramp metering rate (sec),

parameter [21] is the weight factor for the mainline segment,

parameter [17] is the difference between density and the set density

(veh/mile),

parameter [24] is the duration of each time step (20 seconds)

parameter [23] is the length of the freeway segment, L= 0.089 mile,

parameters [27], (28], (361, [45],[46] are the mainline outflow at
time step k for each 5- lanes,

parameters [29],(30],[35),[47],[48] are the mainline inflow at

time step k for each Slanes,

parameter [22] is the weight factor for the ramp,

parameter [19] is the number of vehicles on the ramp per time step

(=20 seconds),

parameter [20] is the regulator constant,

flow [1] is the ramp demand (veh/hr).

In Mixed Control implementation, control gain, K, w; and w, were
calibrated as 0.95, 0.15 and 0.85, respectively. Unlike ALINEA and New
Control, Mixed Control performs satisfactorily without a queue override
strategy that shuts off the ramp metering and creates unwanted fluctuations.
This way of regulating smoothly the freeway and queue build-ups gives it
superiority over other controls that do not explicitly consider the queues
specifically created as a result of ramp metering.

One distinct feature of this control law is that it makes use of density of
the freeway segment, instead of using the downstream occupancy, as in the
case of ALINEA and New control. Therefore, a constant quantity is used to
convert the occupancy into density so that it can be used in the Mixed
Control law equation.

(Occupancy *5280) (%)
(Avg.Vehicle Length + Avg. Detector Length)

Density =
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After making sure that the calculated green phase time is within the
specified limits, the counter and the parameters summed in the counter are
initialized as one and zero, respectively.

The most significant feature, which distinguishes this control strategy
from ALINEA and New Control, is the queue length consideration. As the
queue on the ramp is taken into consideration in this control strategy, no
limit has been set on the number of vehicles that are allowed on the ramp.

use plan 1

on node 43 phase 1

with loops
10RUP lane 1 ##1
10RON lane 1 ##2
10U lane 1 ##3
10U lane 2 ##4
20D lane 1 ##5
20D lane 2 ##6

10U lane 3 ##7

10U lane 4 ##8
10U lane 5 ##9
20D lane 3 ##10
20D lane 4 ##11
20D lane 5 ##12

with parameters
##1
##2
##3
##4
##5
##6
##7
##8
##9
##10
##11
##12 downstream occupancy
##13 upstream occupancy
##14 green time
.25 ##15 critical occupancy, critical =0.26
##16 density
##17 (occupancy - critical occupancy) *
##(5280/13.6596)
97 ##18 critical density
0 ##19 the number of vehicles on the ramp per 20

O O O O OO OO O OO O O O O O K




316 Chapter 12

seconds

0.95 ##20 is the k value

0.15 ##21 weight factor for the mainline, wl
0.85 ##22 weight factor for the ramp, w2
0.261591 ##23 length of the freeway segment (mile)
20 ##24 time step duration in seconds

2 ##25 minimum green phase time

[ury
w

##26 maximum green phase time
##27
##28
##29
##30
##31
##32
##33
##34
##35
##36
##37
##38
##39
##40
##41
##42
##43
##44
##45
##46
##47
##48

O O O O O O OO0 O O 0O OO OO OO OO o OoOo

Figure 12-7: Mixed Control Phases File

The phases file defines and initializes a number of parameters. First, the
node at which the ramp-metering signal is placed is specified in the phases
file. Second, the loop detectors and the parameters used in the plans file are
defined. Finally, initialization of all the parameters used in this control
strategy takes place in this file.

In PARAMICS plans file, the control law equation for each ramp
metering control was converted into green phase time (Equation 1), so the
unit of each gain parameter is different from the unit definition in the
original control laws of ALINEA, New Control and Mixed Control shown in
equations. After implementing ALINEA, New Control and Mixed Control
using plans and phases files within PARAMICS Modeller, a series of
simulation runs were carried out to determine the gain parameter, K, as it is
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complicated to analytically determine K value that produces desirable
performance for each ramp metering control law. This approach is similar to
the one adopted by Zhang et al. (2001).

6. SIMULATION RESULTS

All the simulations were run for three seed values (117, 120, 125) for
each scenario and the average of the results are presented in this section.

For this isolated ramp metering evaluation study, we defined the system
as the “upstream and downstream and ramp” links around the ramp where
ramp metering is implemented, therefore, the average values of measures of
effectiveness are obtained over the simulation time for one link for each
section of the system (downstream (one link), upstream (one link) and ramp
(one link).

One of the measures of effectiveness is the mean congestion duration
(sec) on the downstream freeway link. Mean congestion duration is the
accumulated period of time during the simulation where the measured
occupancy per time interval (20 sec) is larger than the critical occupancy,

0, =26%.

Mean CongestionDuration (sec) = nT (6)

Where n is the number of times the measured occupancy on the
downstream link is larger than critical occupancy. T is the time step interval
(20 sec).

Simulation results (Table 12-2) show that both Mixed Control strategy
and ALINEA reduce mean congestion duration significantly on the mainline
by 47 %, 36%, respectively, compared to No Control scenario.

New Control (-50%) performed slightly better in reducing the mean
congestion duration compared to Mixed Control (-47%) in the expense of
large waiting times for the vehicles on the ramp.

Table 12-2: Mean Congestion Duration on the Downstream Freeway
Link

Mean
congestion duration
No of time step (min) %Change
No Control 125 41.67 -
ALINEA 80 26.67 -36.00%
New Control 62 20.67 -50.40%
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| Mixed Control 66 | 2200 | -47.20% |

Occupancy of the freeway section (both upstream and downstream of the
ramp) is gathered by means of plans file report for each time step (20 sec).
The following formula gives one-link’s (upstream or downstream) mean
occupancy based on the occupancy measurements in n time steps:

m
S0

i=l

M

Mean Occupancy(%) =

Where o0, is the occupancy on the downstream freeway link at time step
i, m is the number of time step during the simulation

All the ramp control strategies were able to reduce the average
downstream occupancy compared to No Control scenario. The downstream
occupancy was reduced below critical occupancy, 26%, by all three control
strategies. ALINEA reduced the downstream occupancy by 9%, whereas
New Control and Mixed Control reduced the same measure by 14% and
10%, respectively (Table 12-3).

Table 12-3: Mean and Maximum Downstream Occupancy on the
Freeway

Mean % of Max % of
Occupancy (%) change | Occupancy (%) change
No Control 28.0 - 40.0 -
ALINEA 25.5 -8.93% 44.3 10.75%
New Control 241 -13.93% 41.7 4.25%
Mixed Control 25.1 -10.36% 43.1 7.75%

Another measures of effectiveness for the evaluation of the ramp controls
is average speed, density and flow on the freeway and ramp links. Speed
(mph), flow (veh/hour) and density (veh/mile) measurements for each time
step on each link in the study section were gathered from the PARAMICS
output statistics every minute during the simulation. Then, using following
formula, the averages for each measures are obtained for each link in the
system (one upstream link, one downstream link and one ramp link).
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m m (8
2.5 2 )

Mean Speed (mph) = =—, Mean Density (veh/ mile) = =~
m

2F,

Mean Flow (veh/ hour) = =—
m

™

Where S, is the speed on one link at time step i, D, is the density on the
link at time step i, F, is the instantaneous flow at time step i, m is the
number of time step during the simulation.

The improvement in mainline upstream link flow as a result of the
implementation of the control strategies was insignificant as it can be seen in
Table 12-4. Similarly, the effect of the controls on the speed of the upstream
mainline link was quite small. Except ALINEA, all the controls achieved
producing lesser density values on the upstream link of the freeway (Table
5.4), which might be due to the fact that ALINEA does not consider the
upstream in its control law.

Table 12-4: Average Upstream Speed, Density, and Flow Values on the
Freeway

Speed| % Density | % f | Total Flow % of
(mph) | change |(veh/mile)ichange| (veh/hr) change
No Control | 55.13 - 23.90 - 6390.65 -
ALINEA | 56.53 | 2.55% | 23.94 |0.19%| 6369.88 -0.33%
New Control | 58.55 | 6.22% | 22.33 |-6.54%| 6410.84 0.32%
Mixed Control| 56.22 | 1.99% | 23.56 |-1.42%| 6318.67 -1.13%

Table 12-5 demonstrates the average value of the speeds, densities and
flows collected from downstream detectors on the freeway. It is clear that
all the controls performed well on the downstream link. The average
downstream freeway speed, measured for the simulation period, has
increased with the implementation of all the controls (Table 5.5). Mixed
Control and ALINEA increased the average downstream link speed by 16%

and 15%, respectively. New Control, however, increase the same measure by
21%.

Table 12-5: Average Downstream Speed, Density, and Flow Values on
the Freeway
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Speed % Density % Total Flow | %
(mph) |change | (veh/mile) change (veh/hr) | change
No Control | 32.22 - 48.58 - 7280.07 -
ALINEA | 37.23 [15.57%| 42.23 -13.07% | 7235.46 |-0.61%
New Control 39.01 [21.08%| 41.44 -14.69% | 7199.33 |-1.11%
Mixed
Control | 37.49 |16.36%| 42.97 -11.56% | 7194.03 | -1.18%

All controls performed similarly on the downstream link. New Control,
however, performed slightly better than Mixed Control in reducing the
average density and increasing the average speed on the freeway.

Figures 12-8 and 12-9 show the time-dependent speed and density values
on the downstream of the freeway. These figures demonstrate that all the
controls can make improvements to the freeway conditions. It can be seen
that all the controls kept the speed higher than No Control case, and they

also kept density at lower level.

Figure 12-8: Average Time-dependent Speed for all 5 Lanes on
Downstream Section
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Figure 12-9: Average Time-dependent Density for all 5 Lanes on
Downstream Section

Another performance measure used to analyze the impact of ramp
metering is to compare the travel times for the upstream, downstream
sections and ramp links, which are calculated using the following equation:

Average Link Delay (veh.hour) = (ATT X p)/3600 )

Where ATT (sec) is the average travel time spent on the link (downstream,
upstream, or ramp link) per vehicle , which is obtained in the specific
PARAMICS output file named “trips link delay”, p (veh) is the total
number of vehicles on the link during the simulation period.

Table 12-6: Average Upstream and Downstream Link Delays on the
Freeway (vehicle-hour)

Mainline Delay

Upstream [% Downstream %
Link change link change
No Control 110.40 - 343.21 -
ALINEA 110.56 0.15% 325.69 -5.11%
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|New Control 100.90 -8.60% 308.36 -10.15%
|Mixed Control]  105.23 -4.68% 310.96 -9.40%

For upstream (8.60 %) and downstream (10.15 %) freeway links, New
Control provided the best results in terms of achieving largest reduction in
the travel time. Mixed Control was also able to reduce travel times by 4.69
% and 9.39 % in the upstream and downstream links, respectively. ALINEA,
however, was unable to improve the upstream link conditions; it resulted in
slight (0.15%) increase in upstream freeway link. On the other hand, it was
able to reduce the downstream link travel time by 5.11%.

It is clear that due to control application on the ramp, increase in ramp
travel times can be expected. However, for the ramp link, Mixed Control
produced the" best results among all the control strategies. Mixed Control
kept the travel times almost close to the No Control case, whereas ALINEA
and New Control resulted in increased ramp travel times by 478% and
202%, respectively (Table 12-7). Even though freeway travel time
reductions were the best for New Control, Mixed Control proved to perform
better by preventing larger waiting times on the ramp; and therefore
resulting in better system performance (upstream+downstream+ramp links)
level. Thus, total system travel time, consisting of one upstream link, one
downstream link and one ramp link, travel time was reduced with Mixed
Control by 7.89 %; on the other hand, the corresponding travel time
amelioration of New Control was only 4.56% compared to No Control
scenario. ALINEA, on the other hand, resulted in increase in the link based
system level by 8% due to large trave! delays cn the ramn. Therefore, the
downstream amelioration of ALINEA couldn’t compensate the delays
experienced on the ramp links.

Table 12-7: Average freeway, ramp and total system link delays
(veh.hour)

Freeway Delay Ramp Delay Total Delay
Freeway % Ramp % Mainline %
change change | &ramp change |
No Control | 452.36 - 11.43 - 463.79 -

ALINEA 434.89 | -3.86% | 66.37 [480.39%| 501.25 8.08%

New Control | 408.16 | -9.77% | 34.49 |201.60%| 442.65 -4.56%

Mixed Control| 415.14 | -8.23% | 12.06 | 551% | 427.21 -7.89%

However, it is also important to carefully analyze the system-wide impact
of these improvements on the freeway. Table 5.8 shows system-wide
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performance of each ramp control strategy and compares them to the “no
control” scenario.

ALINEA results obtained from our simulation study for the overall
system showed resemblance to another study by Gardes et al. (2003). In this
recent study, ALINEA was tested on a section of I-680 freeway. They also
found that the improvements of traffic conditions on the mainline freeway
due to ramp control did not overweigh the deterioration of the traffic
performances on the on-ramps with the implementation of ALINEA control
strategy. Therefore, it was concluded that the system did not perform better
after the implementation of ALINEA ramp control for the particular
conditions that were simulated.

Looking at the system-wide statistics, in terms of travel time spent in the
system, it was found that the system did perform better after the
implementation of Mixed Control compared to other controls. As expected,
the mainline freeway did experience better traffic conditions when the
metering system was implemented; in addition, the level of benefits obtained
on the freeway exceeded the additional delay experienced on the ramps.

In order to analyze the on-ramp traffic more elaborately, on-ramp mean

speed, density and flow values were also compared for all the scenarios
(Table 12-8).

Table 12-8: Average downstream speed-density-flow values on the ramp
Speed | % Density % | Total Flow
(mph) [change |(veh/mile) | change| (veh/hr) |% change|
No Control | 15.66 - 21.87 - 661.05 -
ALINEA 13.19 |-16.77%| 33.43 |52.82%| 752.85 13.89%
New Control | 12.63 [-119.33%| 28.77 |31.54%| 644.49 -2.51%
Mixed Control| 16.70 | 6.67% | 28.08 |28.37%| 770.63 16.58%

Mixed Control maintained optimal flow on the mainline while
moderating on-ramp queues with the help of weight factors for each.
Therefore, mean density on the ramp was increased by certain amount
compared to No Control scenario. On the other hand, this increase was high
for ALINEA and New Control due to the lack of on-ramp queue
consideration. Except Mixed Control, all the control strategies have led to
reduction in the on-ramp speed.

On-ramp queue length is the number of vehicles on the ramp per time
step (20 sec). This measure is gathered through PARAMICS plans report
data for each time step. Then, the average length of the on-ramp queue (on
one-ramp-link) per time interval (20 sec) was found using following
equation:



324 Chapter 12

- (10
Z queue,,,,

i=1

On — ramp queue (mph) = ————,
m

Where queue,,,, is the on-ramp queue at time step i, m is the number
of time step during the simulation.

The average length and maximum length of ramp queues are given in
Table 12-9. The queue thresholds are used in ALINEA and New Control
strategy to try to prevent the ramps from being overloaded. When queue
thresholds are activated, the metering rate switches to the maximum
metering rate so that more vehicles can enter the freeway. Queue control is
critical to ensure that the ramp delays do not reach unacceptable levels.
However, it reduces the potential of the freeway control strategy to adjust
the metering rates so as to obtain optimized traffic conditions on the
freeway. As it is seen from the Table 12-9 and the Figure 12-10, unlike other
controls, Mixed Control provided better management of the on-ramp queues,
by acting smoothly before the number of vehicles reaches large values,
which might block the arterial network traffic. Due to controls that only
considers freeway traffic, some amount of increase in the ramp traffic and
therefore, increase in the ramp delays is expected. On the other hand, Mixed
Control achieved optimal flow on the ramp, while keeping the on-ramp
queues almost the same size as no control scenario.

The vesults indicated that the Mixed Control could shorten the queue
length on the ramp yet without significant reduction of the freeway
throughout. ALINEA and New Control, however, do not consider queue
spill-back directly, which was handled through overriding restrictive
metering rates, and therefore, those controls had difficulty to balance
freeway congestion and ramp queues when traffic becomes heavily
congested.

Table 12-9: Average and maximum length of ramp queue
Mean ramp queue Max ramp queue

No Control 3.72 10
ALINEA 33.00 41
New Control 14.02 40

Mixed Control 3.34 9
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Figure 12-10: Time-dependent ramp queue plot

7. CONCLUSIONS

Since the focus of this chapter is on the evaluation of the isolated ramp
control strategies, change in demand due to ramp metering is not considered
and the microscopic simulation study was conducted with the assumption
that both freeway and ramp demands will remain the same after the
implementation of ramp control strategies. For this isolated ramp metering
evaluation study, we define the system as the “upstream and downstream
and ramp” links around the ramp where ramp metering is implemented. As
a result of multiple simulation runs using calibrated PARAMICS model, it
was found that the system did perform better after the implementation of
Mixed Control compared to other ramp control strategies. As expected, the
mainline freeway did experience better traffic conditions when any of the
three tested ramp metering strategies was implemented. However, when the
queue thresholds are used in ALINEA and New Control trying to prevent the
ramps from being overloaded, the system benefits of these strategies were
reduced. Mixed Control that significantly improved system performance
compared to other two control strategies under these congested conditions
was proven to be quite effective.
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In fact, New Control has provided slightly better amount of reduction
than Mixed Control in terms of mean congestion duration on the freeway but
the major strength of Mixed Control comes from the fact that it maintains
the occupancy below the set value (Table 12-3) while preventing the number
of vehicles in the queue from exceeding the ramp storage capacity (Figure
12-10). This feature makes Mixed Control a better option for real-world
implementation.

More research is needed for the real-world implementation of this kind
of ramp control strategies that can explicitly model ramp queues.

8. - SUMMARY

In this chapter, we studied:

e  PARAMICS, microscopic simulation software and some examples
of ramp metering applications of this software.

e  Using PARAMICS, ALINEA (Chapter 9), Mixed Control (Chapter
10), and New Control (Chapter 11) are implemented on a real-world
network.

9. QUESTIONS

Discuss the differences between New Control and Mixed Contrc;i.
Suggest a methodology for estimating gain values for different
types of ramp control strategies tested in this chapter.

o=

10. PROBLEMS

1.  (For students who have access to PARAMICS). Download
PARAMICS files for the test network from the following web site
and run the plans files discussed in this chapter.

2. Increase the demand by another 15% and compare the benefits
obtained from ramp metering.
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controller performance, 199-201
control objective, 186-187
simulation results, 193-199
simulation software, 189-193

Jam: see Traffic jam

Linear time varying (LTV) differential
equations, feedback control, 25
Local ramp metering
closed-loop control strategies, 6-8
defined, 4
demand capacity control, 5
gap-acceptance control, 6
upstream occupancy control, 5-6
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Mathematical model
feedback control, 27
ODE, feedback control design, 211-213
Matlab software, simulation software
(distributed modeling), 98-100, 102
Maximum queue length
distributed modeling limitations, 79
simulation software (distributed modeling)
limitations, 103-105
METALINE algorithm, systemwide ramp
metering, 9
Microscopic traffic characteristics, distributed
ramp model, 44-47
Mixed sensitivity: see Feedback control design
(distributed model for mixed
sensitivity); Nonlinear H4 control
theory (ODE model)
Moving observer method, distributed ramp
model, traffic measurements, 66
Multi-regime models, density-flow relationship, 42

Negative density
distributed modeling limitations, 79
simulation software (distributed modeling)
limitations, 108
Negative queue length
distributed modeling limitations, 79
simulation software (distributed modeling)
limitations, 105-108
New Control, closed-loop control strategies, 8
Nonlinear H4 control theory (ODE model),
271-291
background (nonlinear control), 275-278
ramp control design, 278287
simulation software, 287-290
system modeling, 271-275
discretized dynamics, 272-275
generally, 271-272
Non-recurrent congestion, ramp metering, 1-2
Northwestern University model, density-flow
relationship, 42
Numerical algorithm, simulation software
(distributed modeling), 95-97

Occupancy, distributed ramp model, traffic
measurements, 65—-66
ODE model: see Ordinary differential equation
(ODE) model
Open-loop control strategies
feedback control, 25-26

Index

Open-loop control strategies (cont.)
local ramp metering, 6
Operator controlled ramp metering, defined, 4
Ordinary differential equation (ODE) model,
211-244; see also Finite difference
model; Nonlinear H4 control theory
(ODE model)
control design, 214-221
control objective, 213-214
coordinated ramp control, 226-243
control design, 227-235
dynamics, 227
simulation results, 240-243
simulation software, 235-240
feedback control, 27-28
finite difference model and, 245-246
mathematical model, 211-213
simulation software, 221-226

Parametric effect, feedback control design
(distributed model), basic model,
144-148
PARAMICS software, 293-327; see also
Simulation software
advantages of, 294-295
applications and validation studies of, 295—
297
network study simulation, 298-317
overview, 293-294
ramp metering applications, 297-298
simulation results, 317-325
Partial differential equation (PDE): see also
Conservation equation; Distributed
ramp model
classification of, 48—49
first order solutions, 54—-59
Pipes Munjal model, density-flow relationship,
42
Pretimed metering, systemwide ramp metering,
9
Pretimed ramp metering, defined, 4
Projection dynamics, distributed modeling
limitations, 80-89

Ramp metering, 1-33; see also Distributed
modeling; specific metering
techniques

algorithms of, 4
benefits of, 12—-14
distributed modeling, 71-91
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Ramp metering (cont.)
effect of, 17-25
feedback control, 25-30
difference equations, 28
example of, 28-30
generally, 25-26
mathematical model, 27
ordinary differential equations, 27-28
preliminary considerations in, 16-17
goals of, 3
implementations, in USA, 10-12
local, 5-8
closed-loop control strategies, 6—8
demand capacity control, 5
gap-acceptance control, 6
upstream occupancy control, 5-6
overview, 1-3
PARAMICS software, 297-298
problem description, 14-16
systemwide, control strategies, 8—9
Recurrent congestion, ramp metering, 1-2

Simulation software, 93—125; see also

PARAMICS software

basic model, 93-94

for closed-loop system, feedback control
design, 135-141
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Simulation software (cont.)
nonlinear H4 control theory (ODE model),
287-290
numerical algorithm, 95-97
results, 101-102
Software: see Simulation software
Solution existence, distributed ramp model,
49-53
Space headway, distributed ramp model, traffic
measurements, 64
Space mean speed, distributed ramp model,
traffic measurements, 64
Systemwide ramp metering
control strategies, 8-9
defined, 4

Time headway, distributed ramp model, traffic
measurements, 64

Time mean speed, distributed ramp model,
traffic measurements, 63-64

Traffic actuated metering, systemwide ramp
metering, 9

Traffic density measurements, distributed ramp
model, traffic measurements, 65

Traffic diffusion, simulation software
(distributed modeling) limitations,
115-123

feedback control design (distributed model
for coordinated ramps), isolated ramp
problem, 189-193
feedback control design (distributed model
for mixed sensitivity), 172-176 traffic diffusion, simulation software
feedback control design (distributed model (distributed modeling) limitations,
with diffusion), closed-loop control, 115-123
159-165 Traffic jam time, distributed modeling
feedback control design (finite difference limitations, 79
model), 261-265 Traffic responsive ramp metering, defined, 4
feedback control design (ODE model), 221-  Traffic shock wave propagation, distributed
226, 235-240 ramp model, 60-63
limitations, 102-123
maximum queue length, 103-105
negative density, 108
negative queue length, 105-108
traffic diffusion, 115-123
traffic jam density, 108115
Matlab software, 98—-100

Traffic jam density
distributed modeling limitations, 78
simulation software (distributed modeling)
limitations, 108—115

Underwood’s model, density-flow relationship, 41
Upstream occupancy control, local ramp
metering, 5-6

Wattleworth model, ODE model compared,
215216



