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Preface

The aim of this book is to present numerical optimization methods in structural
design to students in engineering courses at final undergraduate level or in the first
year of a postgraduate study. For others in industry or elsewhere who may be new
to these highly practical techniques, the book can bridge the gap between familiar
design practice and some of the advanced texts on optimization theory. While the
specific application is to structural design, the principles involved can be applied far
more widely. A ‘how to do it’ approach is followed throughout the book, with less
emphasis at this stage on mathematical derivations. Extensive use is made of the
‘Solver’ optimization tool in Microsoft Excel1, because of its ready availability.
This provides an ideal means of illustrating the methods presented, how to set up an
optimization problem and to demonstrate the usefulness of optimization techniques
in general. With practice in the use of Solver, use of optimization modules in more
extensive computer packages should present little difficulty.

The spreadsheet programs provided with this book are, in the earlier chapters,
principally illustrations of optimization methods. In later chapters, these are of a
more practical nature, in particular for reinforced shell structures and for the design
of composite laminates. These topics are chosen to reflect the ever-increasing
demand for lightweight structures in many branches of engineering. Weight
reduction is not only to reduce operational costs, but also to offset the high cost of
many modern, high-performance metallic materials and composites. Detailed
instructions are given for use of the spreadsheets and on the use of Solver.
Exercises, with solutions where appropriate, are provided with each chapter, many
of them making some other use of Solver or further use of the spreadsheets. These
are intended to give practice in setting up an optimization problem and generally to
explore the characteristics of the optimization process. Many of the examples in the
book, throughout the text and in the spreadsheets, will be seen to have a distinct
aerospace flavour, this being simply a reflection of the author’s main field of work
over many years.



The early chapters of the book show the relationship between formal optimization
and the traditional methods of design, it not being the intention to replace existing
methods but rather to supplement them with an additional weapon in the armoury
of the designer. Strength-to-weight ratios, limits of feasibility and the concept of
structural efficiency are discussed. Classical optimization is then introduced, together
with the Lagrange multiplier, fundamental to the discussion of numerical optimiza-
tion methods in the following chapters. Numerical methods are introduced in suffi-
cient detail to enable the reader to appreciate the processes taking place in some of the
highly sophisticated ‘black box’ optimization routines in advanced computer pack-
ages. It is not the intention to describe these numerical methods in the detail necessary
to enable the reader to program them efficiently, this being a task primarily for the
programming specialist. The generalized reduced gradient method and the genetic
algorithm, two of the methods available in Solver, are given due attention, the latter in
a later chapter in the context of composite laminates. The remaining chapters of the
book are devoted to applications—reinforced shell structures, with the design of a box
beam and an aircraft fuselage section, as well as some extended discussion of the
design of composite laminates. For these topics, relevant methods of analysis are
covered in sufficient detail before proceeding to specific optimization problems and
spreadsheet programs for their solution. Composite laminates are of particular interest
because of the special problem introduced by the discrete nature of the individual plies
of the laminate and because of the freedom to optimize the lay-up to match the
application. A final chapter is given to optimization with finite element analysis, for
which some special methods are necessary.

The level of knowledge required to follow the text is no more than in a usual
engineering course. No specific demands are made, and the text should remain
largely accessible to those from other disciplines, sufficient information being given
‘to proceed from this point’. However, it is assumed that the reader already has a
working knowledge of Microsoft Excel, with some Visual Basic, and also is familiar
with matrix notation. With a less mathematical bias, he might in the first place go
rather superficially over Chaps. 4 and 5 and with no experience of finite element
methods might be tempted to miss Chap. 9. No attempt is made at completeness in
the book, but rather to provide a sound understanding of basic principles and a good
start for further study. For this, a list of further reading is included (reflecting perhaps
more the author’s personal choice). Specific reference to research papers is limited to
where this is of particular relevance. For a more comprehensive reference list, the
reader should turn to the several excellent, more advanced books on optimization
theory included amongst the references at the end of each chapter.

This book is based on lectures given at Delft University of Technology in the
Netherlands, while the author was professor of aircraft structures. He hopes that the
reader will enjoy a study of optimization methods as much as he has and will be
able to put them to good use in further study and engineering practice.

Delft, The Netherlands Alan Rothwell
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Chapter 1
The Conventional Design Process

Abstract The characteristics of the conventional design process, implying repeated
analysis of a structure and resizing of its members until a satisfactory design is
obtained, is illustrated by means of some simple truss structures. In this process, it is
implicitly assumed that by satisfying as closely as possible all requirements placed on
the design this will lead to the ‘best’ design. In terms of the maximum stress in the
members, this is the well-known principle of the fully stressed design. Effective as
this method often is, common situations are identified where this does not lead to an
optimum, minimum weight design. Furthermore, the process may be very slowly
convergent, in addition to which it offers no help when conditions other than a simple
maximum stress apply or, for example, with the optimum shape of a structure.
Minimum weight implies economy of material as well as operational savings directly
related to reduction in weight. All this provides justification for the formal opti-
mization methods in the remaining chapters of this book. While this chapter is
concerned only with truss structures, conclusions reached can, in principle, be taken
to apply more widely to the optimization of many other types of structure.
A spreadsheet program for the numerical optimization of a simple seven-bar truss
provides a first introduction to use of the Solver optimization tool in Microsoft Excel.

The principal aim of structural design is to produce a structure which can carry the
loads on it from where they are applied to where the structure is supported and to do
this in an efficient way. By ‘efficient’ is meant here with the least use of material,
implying at the same time a structure of minimum weight. Economy of material is,
of course, only one aspect of reducing cost, but in many cases reducing weight also
makes a substantial contribution to reducing manufacturing, transport and opera-
tional costs. Specific requirements imposed on a design relate in the first place to
the necessary strength of a structure under load, but in practice they are likely also
to include limits on deformation and many other requirements such as those
referring to fatigue or resistance to accidental damage. With reducing weight, a
structure inevitably becomes thinner and more slender, leading eventually to
buckling of the structure or of its individual components. Buckling is frequently one
of the prime considerations in the design of a lightweight structure.



A structure designed for minimum weight is commonly designed in one of two
ways: either as a shell structure, such as a box beam or some similar form of
structure, or as one of many different types of truss structure consisting of a lattice
of individual bars. In a shell structure, if it is relatively thin, reinforcement is
generally required to support the shell and delay buckling, or in other words to
enable a satisfactory stress level to be reached in the structure. In the box beam in
Fig. 1.1, stiffeners are placed along the length of the beam to break up its width into
smaller, more buckling-resistant panels and transverse stiffeners are placed on the
side walls. Diaphragms are placed at intervals along the length to assist in trans-
mitting load into the structure. In a truss structure, such as in Fig. 1.2, the material
is concentrated into more compact, thicker members, resulting in better buckling
resistance of the individual bars forming the truss, but with the added complexity of
the joints between them.

The wing and fuselage of an aircraft are well-known examples of a box beam
(albeit of entirely different shape but working in essentially the same way), while
more examples abound in a wide variety of applications. Examples of truss
structures can be found in many different branches of engineering, such as in
bridges, cranes, roof structures, space vehicles and countless other structures. The
optimization of a typical box beam will be considered in some detail in a later
chapter. But before proceeding to formal optimization methods and related
numerical procedures in the remaining chapters of this book, a simple truss
structure is chosen in the present chapter to explore first the characteristics of what

Fig. 1.1 Box beam structure
(main structure of an aircraft
wing)

Fig. 1.2 Section of a typical
truss structure
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we shall refer to as the conventional design process. This will enable us better to
understand the role of optimization in design and its relationship with traditional
methods.

Conventional engineering design typically involves the repeated analysis and
modification of an initial concept until what is considered to be a satisfactory design
emerges. At each stage, the properties of the design are evaluated and compared
with the specified requirements. Appropriate changes are made in an attempt to
match the requirements as closely as possible. Precisely how this is done depends
on the nature of the design, but invariably a change in some aspect of a design to
meet a particular requirement influences the extent to which other requirements are
met. The process has therefore to be repeated, perhaps many times, until further
changes are sufficiently small. It is implicitly assumed that a design that just sat-
isfies as many of the requirements as possible is in some sense the ‘best’ design.
This is what is meant above by the conventional design process.

As already stated, a simple truss structure is used to illustrate the iterative design
process described above. The assumption is made that resizing the members of a
truss to just satisfy the required stress limits will result in a minimum weight design,
at least when only strength requirements are considered. This means adjusting the
cross-sectional area of all members until the maximum allowable stress is reached
in each of them. This is the well-known principle of the fully stressed design. The
validity of this principle—or situations under which a fully stressed design may not
lead to a true optimum—is explored in the present chapter. At the same time, we
can study the manner in which the fully stressed design procedure converges to a
final design, whether or not this is a true optimum. The strength-to-weight ratios of
some different layouts of truss structure are compared. From this, we can go on to
the fundamental question of feasibility—what, for example, is the longest possible
truss structure if supported at each end and required to be just able to carry only its
own weight?

1.1 Fully Stressed Design

Consider a two-dimensional truss structure, such as the symmetric truss in Fig. 1.3,
under a single applied load at mid-span. Note that the chosen truss is statically
indeterminate and, as commonly assumed, its members are pin-jointed to their
adjacent members at the nodes. All members are of the same material. Being
statically indeterminate, the forces Fi in the members of the truss are not a simple
function of the applied load but depend on the stiffness, in this case the
cross-sectional areas Ai, of all the members. Forces Fi can be calculated by finite
element analysis, or by a strain energy calculation (see, e.g., [1, 2] or [3]). A simple,
iterative redesign procedure to minimize the weight of the truss is as follows.
Starting from some chosen set of areas Ai and the corresponding forces Fi, calculate
the stress ri in each member. Resize each member so that the stress in it, under the
previously calculated force, is made equal to the allowable stress r0 of the material.
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After all areas Ai have been increased or decreased as necessary, the forces Fi in the
statically indeterminate truss are recalculated, and the process is repeated. This can
be represented as follows:

where A0
i denotes the new value to replace the old one. For example, if the stress ri

in one of the members is precisely twice the allowable stress r0, the new area A0
i

must be made twice the previous Ai, and if ri is one-half of r0, then A0
i can be

reduced to one-half of Ai. This process is continued until sufficiently converged,
that is, until there is practically no further change in areas Ai and the stress in every
member is equal to the allowable stress r0.

The outcome of this procedure for the chosen truss is shown in Fig. 1.4. The
individual members are not identified in this figure, but it is seen that some
members increase in area and others decrease, in some cases after an initial step in
the other direction. The sequence of iterations is shown in more detail in Table 1.1.
The area of the members has been non-dimensionalized by dividing by P=2r0, and
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Fig. 1.3 Simply supported
truss loaded at mid-span (also
showing numbering of the
members)

iteration

Ai

Fig. 1.4 Progressive changes
in member areas Ai at each
iteration for the truss in
Fig. 1.3
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initially, all members are chosen to have the same area. It is assumed throughout
this text that applied loads already include the necessary factor of safety or that the
allowable stress has been appropriately reduced. To eliminate the span of the truss
and the density of the material, the weight of the truss has been normalized to a
value of 1.0 at the start. The process has largely converged after 10 iterations, with
new member areas and a reduction in weight. The extent of this reduction depends,
of course, on the initial values chosen. Figure 1.5 shows the truss that results from
this procedure (also indicated by the thicker lines in Fig. 1.3). Certain members
have fallen away, leaving the statically determinate truss shown in the figure. Since
the objective has been to reach the maximum allowable stress in each member—the
principle of the fully stressed design—this is hardly surprising because for a stat-
ically determinate truss the forces in the members are independent of their
cross-sectional areas. In other words, members can then be sized individually,
according to the load in them, to ensure that each does reach the maximum stress.
Only if minimum values are imposed on some or all of the cross-sectional areas of
the members might other than a statically determinate structure be reached. In that
case, the members that have been reduced to their specified minimum areas will not
be fully stressed, and the final weight of the structure will, of course, be increased.

Table 1.1 Iteration history for the truss in Fig. 1.3

Iteration Cross-sectional areas Weight
A1

P=2r0

A2
P=2r0

A3
P=2r0

A4
P=2r0

A5
P=2r0

A6
P=2r0

A7
P=2r0

A8
P=2r0

0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1 0.718 0.906 1.359 1.641 0.508 0.359 1.414 1.000 0.997

2 0.462 1.087 1.231 1.769 0.327 0.231 1.414 1.000 0.968

3 0.274 1.220 1.137 1.863 0.194 0.137 1.414 1.000 0.946

4 0.153 1.306 1.076 1.924 0.108 0.076 1.414 1.000 0.933

5 0.081 1.357 1.041 1.959 0.057 0.041 1.414 1.000 0.924

6 0.042 1.384 1.021 1.979 0.030 0.021 1.414 1.000 0.920

7 0.021 1.399 1.011 1.989 0.015 0.011 1.414 1.000 0.918

8 0.011 1.407 1.005 1.995 0.008 0.005 1.414 1.000 0.916

9 0.005 1.410 1.003 1.997 0.004 0.003 1.414 1.000 0.916

10 0.003 1.412 1.001 1.999 0.002 0.001 1.414 1.000 0.915

P

Fig. 1.5 Result of the iterative resizing procedure
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Further, it might be observed that if the iteration is terminated before fully con-
verged, some members of the truss will have a stress greater than the allowable
stress (i.e. those members increasing in area).

However, what is significant here is that the process has in this case managed to
converge to what is indeed the lightest statically determinate structure that can be
formed out of the original truss. Figure 1.6 shows two alternative such trusses. By
superimposing the two figures, the original truss is obtained. It is easily verified that
the left-hand structure (the one obtained by the iterative resizing process) is lighter
than the other one, if both are fully stressed, implying a more efficient load path.
The two structures in Fig. 1.6 are sometimes termed ‘partial structures’. Any
combination of the two partial structures will result in a structure with a weight
intermediate between the two (the distribution of load between the two partial
structures depending on matching their deflection at mid-span). The iterative pro-
cedure has therefore correctly selected the optimum, minimum weight structure.
That is, of course, not to say that an altogether different layout of truss would not be
more efficient. The advantage of starting with a statically indeterminate structure is,
of course, that this selection can be made, and in other words, the best load path is
chosen.

While this example demonstrates the effectiveness of the long established,
iterative design process, it should not be assumed that it will always converge to the
true optimum. Important situations exist where this may not occur, as will be seen
in the examples in the following two sections of this chapter. For the present, it
might be noted that the truss chosen here was of given layout, under a single load
case, and of the same material throughout. Furthermore, convergence can in some
cases be slow, requiring much repeated analysis (while this might, of course, be
accelerated by making larger, arbitrarily chosen, changes in areas Ai). Also, it is
clear that the process does not aim directly to minimize weight, but simply to
achieve uniform stress throughout the structure, on the assumption that this does
indeed correspond to minimum weight. Finally, it might have been inferred from
above that a fully stressed design is necessarily statically determinate—in Sect. 1.3,
we shall see a simple, statically indeterminate truss that is nevertheless fully
stressed. However, such cases must be rare in more practical structures.

Fig. 1.6 ‘Partial structures’
derived from the truss in
Fig. 1.3
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1.1.1 Structure Made of Different Materials

The truss structure studied in the previous section was made of a single material,
with the same allowable stress throughout. To explore now in how far the iterative,
fully stressed design approach does converge to the correct final result, we take the
classic problem of the three-bar truss shown in Fig. 1.7. Consider two cases:
(i) when all three bars are of the same material, and (ii) when the allowable stress of
the outer bars is less than that of the inner bar. In both cases, all three bars have the
same elastic modulus and density. By a simple strain energy calculation, formulae
for the stresses in the bars of the symmetric truss can be obtained as follows. In the
two outer bars:

r1 ¼ Pffiffiffi
2

p
A1 þ 2A2

� � ; ð1:1Þ

and in the inner bar:

r2 ¼ 2Pffiffiffi
2

p
A1 þ 2A2

� � : ð1:2Þ

The volume of the structure is

V ¼
ffiffiffi
2

p
A1 þ A2

2

� �
L:

Taking P = 100 kN and L = 1000 mm, the iterative resizing procedure of the
previous section is followed in both cases, with the result given in Table 1.2.

It is seen that when all the bars are of the same material, the procedure converges
correctly to the expected design, in which the outer bars are gradually removed and
the whole load is taken by the inner bar (the obvious solution). However, in the
second case when the outer bars have a lower allowable stress, the result is quite

P

45

LFig. 1.7 Three-bar truss
made of different materials
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different—the outer bars are now retained while the inner bar is removed. It is also
seen that the volume V of the structure is increasing, not reducing, with each
iteration, so in practice if would not be sensible to continue the iteration process
after the first few steps. But by proceeding until little or no further change occurs, it
becomes clear that an optimum truss has not been obtained, even though the
resulting structure is statically determinate and fully stressed. The explanation for
this behaviour in the second case is that the stress in the outer bars is necessarily
one-half of the stress in the inner bar, regardless of the values of A1 and A2, as is
evident in Eqs. (1.1) and (1.2). Therefore, if the allowable stress of the outer bars is
less than one-half of the allowable stress of the inner bar, extra material will be
required in the outer bars at each iteration to avoid failure, in turn attracting more
load into those bars. On the other hand, if the allowable stress of the outer bars is
more than one-half of the allowable stress of the inner bar, the procedure converges
to the expected design with only the inner bar retained.

The example shows that an iterative redesign procedure cannot be guaranteed to
converge to the correct optimum design when the structure is made of different
materials, with different allowable stresses (a similar result for a 10-bar truss is
given by Haftka and Gurdal [4]. This applies just as much when the materials are of

Table 1.2 Iterative resizing of the three-bar truss made of different materials in Fig. 1.7

r1max ¼ r2max ¼ 300N=mm2 r1max ¼ 150N=mm2

r2max ¼ 450N=mm2

A1 (mm2) A2 (mm2) V/1000 (mm3) A1 (mm2) A2 (mm2) V/1000 (mm3)

100.0 100.0 191.4 100.0 100.0 191.4

97.6 195.3 235.7 195.3 130.2 341.2

61.6 246.3 210.2 242.6 107.8 397.1

35.4 283.3 191.7 289.5 85.8 452.2

19.1 306.3 180.2 332.2 65.6 502.6

10.0 319.2 173.7 368.5 48.5 545.4

5.1 326.1 170.3 397.4 34.9 579.4

2.6 329.7 168.5 419.3 24.5 605.3

1.3 331.5 167.6 435.4 17.0 624.2

0.6 332.4 167.1 446.8 11.6 637.6

0.3 332.9 166.9 454.7 7.9 647.0

0.2 333.1 166.8 460.1 5.3 653.4

0.1 333.2 166.7 463.8 3.6 657.7

0.0 333.3 166.7 466.3 2.4 660.7

0.0 333.3 166.7 468.0 1.6 662.7

0.0 333.3 166.7 469.1 1.1 664.0

0.0 333.3 166.7 469.9 0.7 664.9

0.0 333.3 166.7 470.4 0.5 665.5

0.0 333.3 166.7 470.7 0.3 665.9

0.0 333.3 166.7 471.0 0.2 666.1

0.0 333.3 166.7 471.4 0.0 666.7

8 1 The Conventional Design Process



different elastic modulus or different density, elastic modulus directly affecting the
load distribution in the structure and density affecting the contribution of each
member to the total weight. Although a very simple example has been chosen here,
a similar conclusion has to apply to any structure made of different materials.

1.1.2 Structure Under Alternative Loads

It will be recalled that the truss structure in Sect. 1.1 carried a single applied load, at
mid-span. However, any practical structure is likely to be subject to many different
load cases, with loads applied at different locations and at different times during its
use. To test the convergence of the iterative, fully stressed design approach for a
structure under different load cases, we take the same three-bar truss as in the
previous section, with all three bars of the same material, but now with obliquely
applied loads P1 or P2, as shown in Fig. 1.8 (this problem is discussed in the classic
review paper by Schmit [5]). Note that these loads are not applied at the same time.
The resulting structure is required, therefore, to be able to carry either load on its
own. To simplify the problem, we choose the two loads to be of equal magnitude:

P1 ¼ P2 ¼ P

so that the structure will be symmetric with area A3 ¼ A1. We then have to consider
the stress in only one outer bar and the inner bar. Formulae for these stresses are
given below (these are again readily obtained by simple strain energy calculation).
In the left-hand outer bar (member 1) under load P1:

r1 ¼
ffiffiffi
2

p
A1 þA2ffiffiffi

2
p

A2
1 þ 2A1A2

 !
P; ð1:3Þ

and under load P2:

P2 P1

45

LFig. 1.8 Three-bar truss
under alternative loads
P1 or P2
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r1 ¼ � A2ffiffiffi
2

p
A2
1 þ 2A1A2

 !
P: ð1:4Þ

In the inner bar (member 2) under either load P1 or P2:

r2 ¼
ffiffiffi
2

p
A1ffiffiffi

2
p

A2
1 þ 2A1A2

 !
P: ð1:5Þ

In the above formulae, P has been substituted for P1 or P2 as appropriate. The
volume of the structure is again:

V ¼
ffiffiffi
2

p
A1 þ A2

2

� �
L:

The same iterative resizing procedure as before is followed in Table 1.3. Note
that stress r1 is compressive (i.e. negative) under load P2. However, since the loads
P1 and P2 have been chosen to be equal, and if the allowable compressive stress is
taken to be equal to the allowable tensile stress r0, by comparing Eqs. (1.3) and
(1.4) we see that the compressive stress in member 1 can never be critical.
Equation (1.3) can then be used to resize member 1, and Eq. (1.5) for member 2.
The sequence of iterations is shown in Table 1.3, starting with A1 ¼ A2 ¼ 300
mm2, and taking P ¼ 100 kN, r0 ¼ 300 N/mm2 and L ¼ 1000 mm. The stress
ratios at each iteration are given in the last two columns of the table. It is seen that
after an initial decrease in volume at the first iteration (depending on the chosen
initial values of A1 and A2) the volume continues to increase. Convergence becomes
very slow as the iteration proceeds but, if followed towards the end, the design is
seen to be reducing to a two-bar, statically determinate structure, the inner bar being
eliminated and only the two outer bars carrying one or other of the two applied
loads. The volume of the fully stressed truss (in column 3 of the table) is finally:

V ¼ 471:4� 103 mm3:

While this may intuitively be considered a satisfactory result, the procedure has
not in fact converged to the minimum volume. Since the stress ratio r2=r0\1
throughout Table 1.3, the inner bar inevitably reduces in area at each iteration until
it disappears altogether. To avoid this, we choose a series of values of R ¼ A2=A1 in
Table 1.4 and calculate the required volume of the truss at each R. This is done now
simply by scaling the structure to make the greater stress r1 equal to r0. We see a
decrease in volume from R ¼ 0 (no inner bar) to a minimum V ¼ 439:8� 103 at
R ¼ 0:5, followed by increase in volume to R ¼ 1:0. The above minimum volume
is in fact very close to the true optimum.

Significant now is that the optimum design is not in this case a statically
determinate structure, since all three bars are retained and that it is not fully stressed
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since the stress in the inner bar r2\r0 under either P1 or P2. The explanation for
this is that the tensile load in the inner bar makes a useful contribution to the load
carrying capacity of the truss in both load cases, while it accounts for only a
relatively small part of the total volume of the truss. However, a note of caution is
necessary here. While it proved possible to find the minimum volume in this simple

Table 1.3 Iterative resizing
of the three-bar truss under
alternative loads in Fig. 1.8

A1 (mm2) A2 (mm2) V/1000 (mm3) r1
r0

r2
r0

500.0 500.0 957.1 0.4714 0.2761

235.7 138.1 402.4 1.0938 0.7735

257.8 106.8 418.0 1.0541 0.8153

271.8 87.1 427.9 1.0353 0.8441

281.4 73.5 434.7 1.0249 0.8651

288.4 63.6 439.6 1.0185 0.8812

293.7 56.0 443.4 1.0143 0.8938

297.9 50.1 446.4 1.0114 0.9040

301.3 45.3 448.8 1.0093 0.9124

304.1 41.3 450.8 1.0077 0.9194

306.5 38.0 452.4 1.0065 0.9255

308.5 35.1 453.8 1.0056 0.9306

310.2 32.7 455.1 1.0048 0.9351

311.7 30.6 456.1 1.0042 0.9391

313.0 28.7 457.0 1.0037 0.9426

314.2 27.1 457.9 1.0033 0.9457

315.2 25.6 458.6 1.0030 0.9485

316.2 24.3 459.3 1.0027 0.9510

317.0 23.1 459.9 1.0024 0.9533

317.8 22.0 460.4 1.0022 0.9554

333.3 0.0 471.4 1.0 1.0

Table 1.4 Volume of the
three-bar truss in Fig. 1.8 at
different values of ratio R

R A1 (mm2) A2 (mm2) V/1000 (mm3)

0 333.3 0.0 471.4

0.1 312.7 31.3 457.8

0.2 296.6 59.3 449.1

0.3 283.7 85.1 443.7

0.4 273.1 109.2 440.9

0.5 264.3 132.1 439.8

0.6 256.8 154.1 440.3

0.7 250.4 175.3 441.8

0.8 244.9 195.9 444.2

0.9 240.0 216.0 447.4

1.0 235.7 235.7 451.2
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example with only two variables A1 and A2, the same procedure will rapidly prove
impractical for larger, more realistic structures. A formal, numerical optimization
will be found to offer a much more effective means of obtaining optimum values for
the area of the bars and the corresponding minimum volume of the truss in this
example.

We see that, in general, a minimum weight structure under more than a single
load case need not be statically determinate or fully stressed and that an iterative,
fully stressed design procedure does not necessarily converge to the correct mini-
mum weight design. Taken together with the result of the previous section, we can
conclude that the iterative resizing procedure can only be guaranteed to converge to
a true optimum for a structure made of a single material and under a single load
case. The formal proof that, under these conditions, an optimum truss structure is
fully stressed was given by Michell [6]. Furthermore, we have up to now consid-
ered nothing other than a simple stress limitation. Again, we may assume that what
applies here to a truss structure has to apply much more generally to other
structures.

As we shall see in subsequent chapters of this book, numerical optimization
offers a logical alternative to the iterative redesign process of the present chapter, by
searching explicitly for a minimum weight design rather than simply satisfying the
stress limits as in fully stressed design. Since we then no longer have to insist that
all members are fully stressed, the particular difficulties experienced in this and the
previous section are avoided. While optimization methods remain essentially iter-
ative, convergence to the final solution will be greatly improved. The Solver
optimization tool in Microsoft Excel, used throughout this book, is introduced in
Sect. 1.4 of the present chapter.

1.2 Strength-to-weight Ratio

The strength-to-weight ratio of a structure is an essential parameter in many
branches of structural design, not least in aerospace, and plays an important role in
determining the feasibility of a design. We shall make use again of the truss
structures in the previous sections and limit the discussion here to truss structures
made of one material and under a single load case. For any chosen layout of truss,
such as the one already shown in Fig. 1.3, individual member lengths li can be
represented by

li ¼ aiL;

where L is the span of the truss (distance between supports, or some other repre-
sentative dimension) and ai are numerical coefficients. The forces Fi in the members
can be represented by
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Fi ¼ biP;

where P is an applied load and bi are again numerical coefficients. If there are more
applied loads, each of these can be expressed in terms of a single chosen load P, but
for simplicity, it will be assumed here that only a single load is applied. Under the
conditions stated above, for minimum weight the truss will be statically determinate
and fully stressed. With maximum allowable stress r0, the cross-sectional areas Ai

of the members are then

Ai ¼ Fi

r0

(being statically determinate no iterative calculation is now required).
The volume of material V in the truss can then be written as follows:

V ¼
X

Aili ¼
X biP

r0
� aiL;

or:

V ¼ n � PL
r0

; ð1:6Þ

where

n ¼
X

aibi: ð1:7Þ

Expressed in non-dimensional form, we have

V
L3

¼ n � 1
r0

� P
L2

;

in which we can identify the structural index P=L2, in units of stress. We shall come
across the structural index more often in subsequent chapters. If the specific weight
(weight per unit volume) of the material is qw, the weight W of the truss is

W ¼ n
qw
r0

� �
PL: ð1:8Þ

Coefficient n in the above formula depends only on the layout of the truss, in other
words the arrangement of its members. This can be used, therefore, to compare the
efficiency of different layouts of truss—the smaller the n-value, the lower the
weight. Equation (1.8) can also be used for the weight of a statically indeterminate
truss, for example, if a minimum area of the bars is imposed, except that it will then
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no longer be fully stressed in all bars so the simple formula in Eq. (1.7) cannot be
used to calculate n.

With Eq. (1.8), the strength-to-weight ratio becomes

P
W

¼ 1
n L

r0

qw

� �
ð1:9Þ

and, for given material properties and overall span, the strength-to-weight ratio
again depends only on the layout of the truss. This can only be improved, therefore,
by use of better materials (ratio r0=qw), or by change in layout (n-value). For
materials we are, of course, limited to those available, whereas layout demands a
search in any particular problem for the optimum arrangement of the members of
the truss. Other considerations emerge later, in Chap. 2, when we take into account
buckling of those bars of a truss which are in compression.

It is perhaps interesting to note that the quantity r0
qw

� �
in Eq. (1.9) can be

interpreted as follows. Consider a uniform bar of the material hanging simply under
its own weight, as in Fig. 1.9. The stress at the upper end of the bar, regardless of its
cross-sectional area, is

r ¼ Lqw;

and r ¼ r0 in the limit. The maximum length of the bar is therefore

Lmax ¼ r0

qw
;

which is termed the ‘material breaking length’ (if r0 is regarded now as the
tensile strength of the material, rather than simply an allowable stress). Lmax is

L

Fig. 1.9 Bar hanging freely
under its own weight
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typically in the range 10 to 20 km for most metals, and in excess of 200 km for
some fibres.

It will be realized that we are taking a highly idealized approach here to
strength-to-weight ratio, and to the calculation of n-values. In reality, the weight of
the necessary joints in the structure can be significant, and practical limitations on
the design of the members of a truss (e.g. use of standard sections) will cause
further increase in weight. Again, no consideration has been given as yet to the
possibility of buckling of members in compression. The purpose here has not been
to perform a detail design of some type of truss structure for an accurate
strength-to-weight ratio, but simply to use the truss to illustrate the conventional
design process and its limitations, and in due course to understand the relationship
between this and formal optimization. Nevertheless, n-values as defined here will
be used in the next section to introduce limits of feasibility and in Sect. 1.3 to
explore the influence of the layout of the members of a truss on its minimum
weight.

1.2.1 Feasibility

The strength-to-weight ratio of a structure can be used to investigate the important
question of feasibility. Suppose a truss structure, of span L between two supports, is
loaded entirely under its own weight. If it is just able to support its own weight
without failure, this must represent the limit of feasibility, or the maximum span
Lmax, of the structure. Any additional load will cause it to fail. Likewise, if a similar
structure is designed with a span a little less than the maximum span Lmax, the
additional load it can carry will be small compared with the weight of the structure
itself, and the design will be uneconomic. From Eq. (1.8), for a truss structure with
given n-value, taking the weight W of the structure itself to be the only load P on it
at failure:

W ¼ n
qw
r0

� �
PLmax ¼ P;

or

Lmax ¼ 1
n

r0

qw

� �
: ð1:10Þ

This shows directly the influence of layout and choice of material on the feasibility
of the design. However, it will be appreciated that this can only be a first estimate,
because the load distribution assumed in the calculation of n is unlikely to match
the actual distribution of the weight of the structure over its span.
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1.3 Comparison of Layouts

While it was shown in Sect. 1.2 that the strength-to-weight ratio of a fully stressed
truss of some given material and fixed span depends only on its layout, no layout
variation has been considered up to now. Here, we shall take again the classic
problem of a truss supporting a load at mid-span between two supports to explore
the effect of variation of layout, in the first place by means of the simple truss
structures in Fig. 1.10. Truss (a) is statically indeterminate and has 11 members.
The other three statically determinate trusses are all derived from this one. Truss
(b) has only 5 members, while truss (c) has 7 members and is unsymmetrical. Truss
(d) has 6 members, but is actually a mechanism, in other words unstable. The n-
value of all three statically determinate trusses (b), (c) and (d), when fully stressed,
is plotted in Fig. 1.11 against the height-to-span ratio H=L. Perhaps surprisingly, in
view of the differences in the three trusses noted above, it is found that all three
follow exactly the same curve. The minimum n ¼ 2 occurs at H=L ¼ 0:5, with
minimum volume:

Vmin ¼ 2
PL
r0

:

(a)

(c)

(b)

(d)

P 

L / 2 L / 2

H

Fig. 1.10 Alternative layouts of truss for a load at mid-span between two supports
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Since all three statically determinate ‘partial structures’ (b), (c) and (d) have the
same coefficient n, the statically indeterminate truss (a) must also have the same
value. In other words, in this exceptional case, the three partial structures can be
superimposed in any amount to make an equally efficient statically indeterminate
truss.

From all this, it might be tempting to think that layout has little influence on
strength-to-weight ratio, but in fact this is far from the truth. The truss that emerged
in Sect. 1.1 (see Fig. 1.5) also has a coefficient n ¼ 2, but if it is optimized by
varying the angle h of the sloping bars (and at the same time the height of the truss),
the minimum volume is found to be

Vmin ¼
ffiffiffi
3

p PL
r0

¼ 1:732
PL
r0

ð1:11Þ

at h ¼ 60 °C. This result is confirmed in Sect. 1.4 using Solver. A still better truss
is available in Fig. 1.12a, with

V ¼ p
2
� PL
r0

¼ 1:571
PL
r0

: ð1:12Þ

This is the classic ‘Michell structure’ for this problem, requiring in principle an
infinite number of the radial ‘spokes’. (Further treatment of Michell structures is
beyond the scope of this book; for more information, see [6–8].) The above value of
V is a theoretical minimum if no part of the structure is allowed ‘under the bridge’.
Otherwise, the structure in Fig. 1.12b gives an even smaller volume:

V ¼ 1
2
þ p

4

� �
PL
r0

¼ 1:285
PL
r0

:

Useful as they are to illustrate some important principles, the trusses seen up to
now can hardly be considered practical engineering structures, if only because for
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Fig. 1.11 Coefficient n for
all four trusses in Fig. 1.10
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any significant span the height of the structure becomes very large and the members
are likely to be too slender. A more practical design of truss, familiar from bridges
and many other types of structure, is shown in Fig. 1.13. Treating the truss (pro-
vided it is sufficiently long) as equivalent to a continuous beam, we can first find an
optimum angle h for the bracing members, responsible for the overall shear force
Q at any point. The force F in any bracing member is

F ¼ Q
sin h

;

so that the volume of the member (of length H= sin h) when fully stressed is

V ¼ Q
r0 sin h

� H
sin h

:

Each bracing member relates to a length H= tan h along the span, so the volume of
the bracing members per unit length of the truss is

VQ ¼ QH

r0 sin2 h
=

H
tan h

¼ 2
Q
r0

� 1
sin 2h

:

This has a minimum value:

VQ ¼ 2
Q
r0

ð1:13Þ

(b)(a)

Fig. 1.12 Michell structures for a load at mid-span between two supports

H
θ

Fig. 1.13 Long truss structure with diagonal bracing
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at h ¼ 45 °C, the optimum angle of the bracing members if designed purely on the
basis of a maximum allowable stress. This is, of course, a familiar result, and such
structures are widely seen. The horizontal members of the truss are responsible for
the bending moment M at any point along the span of the truss, and the volume of
each per unit length at that point is

VM ¼ M
Hr0

: ð1:14Þ

Equations (1.13) and (1.14) can be used to estimate the minimum total volume
of a truss of the type in Fig. 1.13, assumed to be carrying a uniformly distributed
load between the two supports, with the corresponding bending moment distribu-
tion and shear force. Provided that the span-to-height ratio L=H is sufficiently large,

Vmin ¼ 1
2
þ L

6H

� �
PL
r0

; ð1:15Þ

where P is the total load on the truss (the first term within the brackets referring to
the bracing members and the second term to the horizontal members). Realistically
this load must, of course, include the weight of the truss itself. If the truss in
Fig. 1.13 has a ratio L=H ¼ 100 and taking a typical material with
r0=qw ¼ 10� 103 m, setting the load P on the truss equal to its weight qwVmin the
maximum span of such a truss would be:

Lmax ¼ 583m:

In fact, this must be an overestimate of the maximum span, because Eq. (1.15) is for
a uniformly distributed load on the beam whereas the actual weight of the beam will
be concentrated towards the middle where the bending moment is greatest. Unless
this is taken into account, an accurate bar-by-bar analysis of the truss, rather than
the approximate method adopted here, would not be justified.

1.3.1 Classification of Optimization Problems

The various truss structures studied in this chapter offer a means of distinguishing
between different classes of optimization problem. This distinction will be useful in
the further chapters of this book. The different classes are illustrated in Fig. 1.14. At
the highest level, we have optimization of topology, that is, the arrangement of the
members of a structure and the connections between them. Two different topologies
of truss structure are shown in Fig. 1.14a. With four nodes in the left-hand figure
and five nodes in the other, no amount of movement of these nodes can transform
the one into the other (even if the two inner bars of the right-hand truss are made
vertical, two members and one node would have to be removed to correctly
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reproduce the left-hand one). The various trusses in Fig. 1.10 also illustrate dif-
ferent topologies. While special methods exist for topology optimization, this no
doubt remains one of the most challenging forms of optimization because of the
discrete nature of the different structures, commonly demanding more of the
ingenuity of the designer than any mathematical process.

At the next-level down, shape optimization, illustrated in Fig. 1.14b, refers in
the case of a truss structure to the location of the nodes, for a truss of given
topology. Simply by change in the angle h, the one truss can readily be transformed
into the other. Change in the H=L ratio for the trusses in Fig. 1.10 is another
example of shape optimization. Frequently shape optimization can be handled
simply by treating all or some of the overall dimensions as variables. The term
‘layout’ is commonly taken to refer to both topology and shape, to distinguish
between these two classes of problem and the ‘sizing’ problem described below.

A1 

A2 

A3 

θ

(a)

(b)

(c)

Fig. 1.14 a Topology optimization. b Shape optimization. c Sizing or optimization of members
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At the lowest level, sizing, or optimization of the dimensions of the individual
members of a structure, is up to now by far the most common practical application
of optimization methods. For the simple truss structure in Fig. 1.14c, this would
imply optimization of the cross-sectional areas Ai of the members, for given
topology and shape. The progressive change of member areas for the truss in
Fig. 1.3 is, of course, an example of structural sizing.

While these classes of optimization are clear for truss structures, in other cases
the distinction may become more blurred. For example, the diameter of a circular
tube is treated simply a sizing variable, but change from a circular tube to a square
one is clearly a change in shape. In the case of a stiffened panel—a thin sheet
reinforced by a series of discrete stiffeners—change in stiffener spacing might be
considered change in shape, but if this also results in a different number of stiff-
eners, this would be a change in topology. Even so, stiffener spacing is likely to be
treated in practice simply as a sizing variable.

If the number of stiffeners in a panel is nevertheless treated as a variable, rather
than the stiffener spacing, this introduces a further important distinction between
different classes of optimization problem. The whole number of stiffeners has then
to be treated as a discrete variable, whereas the stiffener spacing may well (at least
in the first place) have been regarded as a continuous variable. A selection of tubes
of different shapes and sizes, if they are individually numbered, may also be rep-
resented as a set of discrete variables, just as the number of plies in a composite
laminate. Special methods exist for discrete variable optimization, as will be dis-
cussed in a later chapter.

1.4 Spreadsheet Program

The Solver tool in Microsoft Excel is a set of optimization routines that can be used
to find the maximum or minimum of some function defined in a formula in an Excel
spreadsheet. The quantities to be varied have to be defined in the spreadsheet, as
well as any necessary limits on those variables and on other functions defined in the
spreadsheet. Use of Solver is described in detail in the Appendix at the end of this
book, together with instructions for loading the Solver add-in program. The
mathematical procedures underlying different numerical optimization methods,
including those available in Solver, are described in Chaps. 4 and 5.

1.4.1 ‘Seven-Bar Truss’

As introduction to the use of Solver, a spreadsheet program is presented in this
section for the optimization of the seven-bar, pin-jointed truss structure in Fig. 1.15.
The spreadsheet is shown in Fig. 1.16. The same spreadsheet serves as example of
the use of Solver in the Appendix. The applied load P, span L, material allowable
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stress r0, density q and chosen initial values of dimensions D and H have to be
inserted in the appropriate cells of the spreadsheet (i.e. by replacing their current
values). Corresponding forces Fi in the members of the truss, the cross-sectional
areas Ai and volumes Vi of the bars, coefficient n, the volume V of the truss and its
strength–to-weight ratio P=W are automatically calculated.1 Since the truss is
statically determinate, it is assumed that all bars are fully stressed for calculation of
the cross-sectional areas Ai. Formulae used in the spreadsheet for analysis of the
truss are given in Table 1.5. They can also be seen in Excel formulae in the
spreadsheet by clicking the appropriate cell. Parameters and variables to be entered
in the spreadsheet are listed in Table 1.6.

Optimum values of variables D and H to minimize the volume V of the truss are
found with Solver. The Solver Parameters dialog box is opened by clicking Solver
on the Data tab. The cell references for the volume V and for the variables D and
H have to be inserted in the Solver Parameters dialog box (in ‘Objective’ and
‘Variable Cells’, respectively). Limits 0�D� L and H� L=100 are set on the
variables D and H (in ‘Constraints’) to restrict these to realistic values. Choose the
‘GRG Nonlinear’ optimization method, and ensure that ‘Min’ (for minimum vol-
ume of the truss) has been selected. The Solver dialog box has already been set up
for direct use of the spreadsheet. Click ‘Solve’ to optimize the truss.

Optimization gives a ¼ b ¼ 60 °C, with a coefficient n in agreement with
Eq. (1.11). Further constraints can be added (or deleted) by means of the buttons on
the right-hand side of the Solver dialog box. For example, a maximum value of
H might be specified. If a constraint D ¼ 0 is added, the two inner bars converge at
the top of the truss, to give the truss in Fig. 1.10b. If constraints D ¼ L=2, H ¼ L=4
are specified, we have the truss in Fig. 1.5.

D

H

L/2 L/2

P

α β

Fig. 1.15 Truss structure optimized in the spreadsheet ‘Seven-bar Truss’

1Depending on the magnitude of the initial data and the calculated results, the width of some
columns in the spreadsheet may have to be adjusted.

22 1 The Conventional Design Process



F
ig
.1

.1
6

Sp
re
ad
sh
ee
t
‘S
ev
en
-b
ar

T
ru
ss
’

1.4 Spreadsheet Program 23



1.5 Summary

Before proceeding to formal optimization methods in the further chapters of this
book, a simple truss structure is used to explore the characteristics of the con-
ventional, iterative design process. By this is meant the progressive modification of
an initial design to just satisfy as many as possible of the design requirements, on
the assumption that this will lead to a ‘best’ design. For a truss structure, subject
only to stress limits, this means adjusting the cross-sectional area of the bars until
the maximum allowable stress is reached in all of them—the principle of the fully
stressed design. This implies that the outcome will normally be a statically deter-
minate truss, if necessary by removal of unwanted members. It also implies that, in
principle, all members of the structure will fail at the same time! This will no doubt
be considered undesirable in practice, since adequate residual strength in a statically
indeterminate structure is usually required after failure of one of its members. While
this iterative process does frequently lead to an optimum, minimum weight design,
it is demonstrated that for a truss made of different materials, or one subject to more
than one load case, this need not always be so. These are, of course, commonly
occurring conditions.

Based on a fully stressed design, an expression is obtained for the minimum
weight of a truss in terms of a coefficient n, depending only on the layout of the

Table 1.5 Formulae used in the spreadsheet ‘Seven-bar Truss’

l1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ ðL�DÞ2

4

q
F1 ¼ � P l1

2H

l2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ D2

4

q
F2 ¼ P l2

2H

l3 ¼ D F3 ¼ � PL
4H

l4 ¼ L
2 F4 ¼ P ðL�DÞ

4H

Ai ¼ Fij j
r0

Vi ¼ Aili
V ¼PVi

n ¼ Vr0
PL

P
W ¼ P

Vqw

Table 1.6 Data entry for spreadsheet program ‘Seven-bar Truss’

Parameters

Applied load P (positive downwards) Enter the value in cell C6

Span L Enter the value in cell C7

Allowable stress r0 (both tension and
compression)

Enter a positive value in cell C8

Density q Enter the value in cell C9

Variables

Dimensions D and H (see figure on
spreadsheet)

Enter initial values in cells F6: F7 (H positive,
nonzero)
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truss. Some elementary layouts of truss are compared. The maximum possible span
of a truss is reached when the load it can carry is just equal to its own weight, and
this can be expressed in terms of this same coefficient n. The simple truss structures
seen in this chapter also offer a convenient means of identifying three different
levels of optimization: topology (layout of members), shape (location of nodes) and
sizing (dimensions of members). For other types of structure, this classification may
become somewhat less clear; nevertheless, it remains useful because different
approaches are usually necessary. The distinction can also be made between con-
tinuous variable optimization and discrete variable optimization when considering,
for example, the whole number of stiffeners in a panel, or the whole number of plies
in a composite laminate.

Failure to converge to an optimum design of truss under some common con-
ditions implies that for any other type of structure an iterative design procedure to
satisfy stress limits at critical locations cannot be guaranteed to converge to a true
optimum design, although in most cases it will lead at least to an improvement in
the design. Furthermore, convergence of an iterative procedure may be slow.
However, the purpose here is not to dismiss the conventional, iterative design
process, which in its many forms will surely remain in widespread use, but rather to
understand its limitations. At the same time, this does provide the justification for
turning to the formal optimization methods in subsequent chapters. These can
greatly enhance the traditional methods of design and are the foundation of an
automated design procedure. We shall see that optimization offers a powerful
alternative to the iterative design process, able to accommodate not only stress
limitations but stiffness, buckling and all other requirements, not restricted by the
nature of the often-conflicting design requirements, and searching directly for a true
optimum design. There is no longer the need to know beforehand which require-
ments will prove to be the critical ones in the final design. The relationship between
fully stressed design and formal optimization is explored further in a later chapter.

The ‘Solver’ optimization tool in Excel, used extensively throughout this book,
is introduced in the final section of this chapter. A spreadsheet for the optimization
of a seven-bar truss is used to demonstrate use of Solver.

Exercises

1:1 Verify the formula in Eq. (1.11) for the minimum volume of the truss structure
in Fig. 1.5, and the optimum angle h.
Derive formulae for the forces in the members, the corresponding minimum
cross-sectional areas of the members and the volume of the truss in terms of
the angle h. Try different values of h to search for the minimum volume.

1:2 A truss structure has to carry two equal loads P/2 over a span L, the loads
being placed at 1/3 and 2/3 of the span, respectively. The material of the truss
has an allowable stress r0. Try different layouts to find a suitable layout of
truss for this loading. Express the result in terms of the coefficient n in
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Eq. (1.6), where P is the total load on the truss. Compare the value of n with
that for the truss in Exercise 1.1 with a load P at mid-span.
Try a few simple layouts of statically determinate truss, with members at
suitably chosen angles. Compare the volume of each layout.

1:3 Verify the formula in Eq. (1.15) for the minimum volume of the long truss
structure shown in Fig. 1.13. If its height is limited to 1.0 m, calculate the
maximum possible span when loaded only under its own weight. The truss is
made of steel with an allowable stress of 1000 N/mm2 and density
7850 kg/m3.
In deriving Eq. (1.15), shear force and bending moment distributions are
obtained by treating the truss as a continuous beam. Equations (1.13) and
(1.14) can then be used to obtain formulae for the volume of the bracing
members and horizontal members, respectively, by integration over the span
of the truss. These together give the formula for minimum volume of the truss.
Treating the weight of the truss as uniformly distributed over its span, use
Eq. (1.15) with Eq. (1.10) to calculate the maximum possible span when the
height is limited to 1.0 m.

1:4 Derive a formula for the minimum volume of a truss similar to the Michell
truss in Fig. 1.12a, with only five radial ‘spokes’ at an angle of 45 °C to each
other. Compare the result with Eqs. (1.11) and (1.12).
The forces in the bars can be solved by equilibrium at the nodes. Replace the
circular arc by straight bars between the nodes. Note that by equilibrium the
force in all five of these ‘circumferential’ bars is the same.

1:5 A steel cable is stretched between two towers each of height 100 m above the
ground. It may be assumed that the cable forms a shallow parabolic curve,
loaded only under its own weight. The tensile strength of the cable is
1000 N/mm2 and its density is 7850 kg/m3. What is the maximum possible
distance between the towers if the cable is not permitted to touch the ground?
Derive a formula for the parabolic curve of the cable in terms of the height of the
towers and the distance L between them, and from this the angle the cable makes
at the towers. The vertical component of the force in the cable at each tower has
to be equal to half the weight of the cable. Assume L to be much greater than
100 m, so that the actual length of the cable is approximately equal to L.

1:6 A hollow steel tube of diameter 1.0 m is mounted vertically as a tower, fixed
rigidly at its lower end and free at its upper end. It is loaded only by its own
weight. Under these conditions, the tube can be treated as a column with an
effective length Leff ¼ 1:122 L in Euler’s formula:

P ¼ p2EI
L2eff

;

where L is the actual length of the tube, P is the load at its lower end and I is
the second moment of area of the cross section of the tube. The elastic
modulus E of the steel tube is 200 GN/m2 and its density is 7850 kg/m3. What
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is the maximum possible length of the tube if it is not to buckle under its own
weight?
The load P at which buckling occurs is equal to the weight of the tube. For a
thin circular tube I ¼ pR3t, where R is the radius of the tube and t its
thickness. Note that its maximum length is independent of the thickness of the
tube.

1:7 Run Solver in the spreadsheet ‘Seven-bar Truss’ with the parameters and
variables already entered in the spreadsheet to optimize the truss. Compare the
coefficient n with that given by Eq. (1.11). Try a few different initial values of
D and H to test convergence of the optimization.
Refer to Sect. 1.4 and the Appendix for information on the use of Solver.

1:8 In the spreadsheet ‘Seven-bar Truss’, add a constraint D ¼ 0 to the Solver
dialog box to create the truss in Fig. 1.10b, and run Solver to verify the result
for this truss given in Eq. (1.11). Then, delete the constraint just added (to
restore the original truss), add a new constraint to restrict the area of one (or
more) of the bars to a suitable minimum value and run Solver again to observe
the effect of this on the shape of the truss.
Refer to the Appendix for information on adding constraints in Solver. Ensure
that the minimum area of the chosen bar is larger than its optimum value
found in Exercise 1.7. Note that the spreadsheet maintains the symmetric
shape of the truss.

1:9 Use Solver to find the minimum of the function:

f ðx; yÞ ¼ xþ 2y

subject to constraints:

xþ y� 4� 0;

2xþ y� 4� 0;

�3xþ yþ 4� 0 and

x� 1� 0:

Which constraints are active at the minimum?
Use the spreadsheet ‘Seven-bar Truss’ as a guide to setting up the spreadsheet
and making the appropriate entries in the Solver dialog box. Examine the
values of the four constraints after running Solver to see which are active, i.e.
equal to zero.

1:10 Make a spreadsheet to optimize the three-bar truss under alternative loading in
Sect. 1.1.2. Take load P = 100 kN, span L = 1000 mm and allowable stress
(both in tension and compression) r0 ¼ 300 N/mm2. Compare the result with
the minimum volume given in Sect. 1.1.2.
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The stresses in the bars are given by Eqs. (1.3)–(1.5). Define constraints in the
Solver dialog box to limit each of these to not greater than the allowable
stress. Use Solver with variables A1 and A2 to minimize the volume of the
truss.
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Chapter 2
Optimality Criteria

Abstract A first optimality criterion, that of the fully stressed design, was already
introduced in the previous chapter. The buckling of a circular tube in compression
is used to illustrate a second criterion, that of simultaneous buckling modes. In fact,
when the tube forms part of a truss structure, this might be seen as a logical
extension of the principle of the fully stressed design. This second optimality
criterion leads directly to an efficiency formula, expressing the maximum stress that
can be achieved in a thin tube or other component in terms of a suitable structural
index and the elastic modulus of the material. The concept of the design space,
widely used in subsequent chapters, is introduced with the circular tube. A third
criterion is developed for the maximum stiffness of a structure, on the basis of a
simple truss but taken in principle to apply more widely. It is shown that under
certain conditions, a fully stressed design, with maximum strength-to-weight ratio,
also has maximum stiffness. A spreadsheet program is presented for the opti-
mization of circular and square tubes in compression, subject to dimensional
restrictions and specified maximum allowable stress.

Optimality criteria are conditions that are assumed to be satisfied in an optimum
design. When known to be valid, they can be used either directly to find an opti-
mum or otherwise to reduce the size of an optimization problem. The first of these
criteria, that of a fully stressed design, was introduced in the previous chapter, along
with some necessary conditions to establish its validity. In short, a fully stressed
design implies that the maximum allowable stress is reached in all parts of a
structure, or in the case of a truss structure in each member. This was discussed
without regard to the possibility of other modes of failure, such as buckling of some
parts of the structure at a lower stress. A second optimality criterion relates
specifically to the design of a structural component when buckling is the principal
design condition. This is introduced here through the optimization of a circular tube
loaded in compression, subject to both buckling and maximum stress limitations.
This might be regarded as one of the members of a truss structure in the previous
chapter. At the same time, the circular tube is used to introduce the concept of the
‘design space’, an invaluable aid in the visualization of a numerical optimization



procedure and sometimes, as now for the circular tube, as a direct means of solving
an optimization problem. With this, an efficiency formula can be derived expressing
the maximum stress that can be achieved in terms of a structural index. A third
optimality criterion concerns the design of a structure for maximum stiffness, and
again conditions under which this is valid have to be established. This is introduced
later in the present chapter, in the context of a truss structure but taken to apply
more generally to other types of structure.

2.1 Circular Tube in Compression

In the previous chapter, the design of a truss structure was explored on the basis of a
specified maximum stress for all the members. However, for those members of the
truss which are in compression, if they are relatively slender the maximum stress
may be limited by buckling instead of by an allowable material stress. The maxi-
mum stress will depend then on the actual size and shape of cross section of each
member, as well as on its length. For a tubular member, such as the circular tube
considered here, buckling may be either in flexural buckling in a long-wave mode,
as illustrated in Fig. 2.1, or by local buckling in a short-wave mode.

The critical compressive load PE for flexural buckling is given by the
well-known Euler’s formula:

PE ¼ p2EI
L2

;

where E is the elastic modulus of the material, I is the (minimum) second moment
of area of the cross section, and L is the length of the member (assumed to be
pinned at its ends). For a thin circular tube of radius R and thickness t, its
cross-sectional area is

A ¼ 2pRt

and second moment of area:

I ¼ pR3t;

P P 

L 

Fig. 2.1 Flexural buckling of a bar in compression

30 2 Optimality Criteria



giving:

PE ¼ p3E
L2

R3t ð2:1Þ

and buckling stress:

rE ¼ PE

A
¼ p2ER2

2L2
:

The above formulae are sufficiently accurate if the thickness of the tube is small
compared with its radius, and if R is taken to be the mean radius of the tube
(measured to the mid-thickness). Use of Euler’s formula above also implies that the
tube is initially perfectly straight. If the tube is clamped at its ends, instead of
pinned, an effective length L=2 should be used in the formula. Different effective
lengths exist for other end conditions (see Young and Budynas [4], and many other
texts).

It can be seen that the flexural buckling stress rE increases without limit with
increasing radius R. If the design of the tube were based just on the stress rE, and
leaving aside for the present any material strength limitation, this would imply that
the strength-to-weight ratio of the tube also increases without limit. However, the
restriction on R is through local, or short wavelength, buckling of the tube in which
the cross section is deformed out of its initially circular shape into a pattern of small
buckles, both around and along the length of the tube. The standard formula for this
local mode of buckling is given as follows:

rL ¼ KE
t
R
;

where the buckling coefficient K ¼ 0:605 for Poisson’s ratio m ¼ 0:3. (Formulae for
Euler buckling and for the buckling of a thin, circular tube can be found in any
standard textbook on buckling theory, including the classic text by Timoshenko and
Gere [3], and more recent texts such as that by Megson [1].) It should be noted,
however, that for very thin tubes the coefficient K is sensitive to imperfections in the
circular form of the tube, as well as to the end conditions, and even for the thicker
tubes assumed here may still have to be reduced. The above formula gives for the
buckling load:

PL ¼ KE
t
R
� A ¼ 2pKEt2; ð2:2Þ

independent of R.
We can now represent the design problem of the circular tube in a so-called

design space, as shown in Fig. 2.2. The axes of the diagram are the radius R and
thickness t of the tube—termed the ‘design variables’. The design conditions, or
‘constraints’, imposed on the design are the Euler and local buckling loads, in
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Eqs. (2.1) and (2.2), plotted as solid lines in the design space. Each of these lines
represents critical combinations of R and t to precisely satisfy the particular con-
straint. The shading on the constraint lines marks the side on which the constraints
are not satisfied, in other words the design is unsafe, or infeasible. The unshaded
side is therefore the safe, or feasible, side. The two constraints together define the
boundary of the feasible region. To locate the optimum, lines of constant
cross-sectional area (so-called ‘weight lines’) are added to the design space, shown
as broken lines. The cross-sectional area of the tube reduces towards the origin of
the diagram, so it is clear that the optimum is located at the intersection of the two
constraint lines, at which we have the smallest cross-sectional area and at which
Euler and local buckling occur simultaneously.

This condition—that of simultaneous modes of buckling—is the second opti-
mality criterion referred to earlier. In a sense, this might also be seen more generally
as an extension of the principle of the fully stressed design—referring again to a
truss structure, simultaneous failure of all members and now simultaneous failure in
the different modes of buckling within a member. However, as before for a fully
stressed design, the validity of this criterion cannot be guaranteed in every case, and
has therefore first to be verified when applied to a different class of problem. For the
circular tube, as well as for other shapes of cross section, use of this criterion leads
to the definition of efficiency, and a direct solution for the optimum dimensions.
However, when we include a material strength limitation we shall see that the
condition of simultaneous buckling modes may no longer apply. Neither can it be
guaranteed that all buckling modes will occur simultaneously. This is evidently so
when the number of possible buckling modes exceeds the number of design vari-
ables available for optimization. Finally, it should be pointed out that while the
discussion here has been about simultaneous buckling in the different modes, this is
unlikely to occur in reality. Imperfections of various kinds reduce the buckling
stress from its theoretical value, and in practice determine in which mode buckling
will actually occur.

R 

t 

topt 

Ropt

Euler buckling 

local buckling 

feasible 
region 

optimum 

weight 
lines 

Fig. 2.2 Design space for a
circular section tube in
compression
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2.1.1 Efficiency Formula

In a practical problem, the design space in Fig. 2.2 might have been drawn for
specific values of P, L and E. However, with the optimality criterion that we now
have, explicit formulae can be derived for the optimum radius and thickness, and
for the maximum stress that can be achieved in the tube. For simultaneous Euler
and local buckling:

P ¼ PE ¼ PL;

and substituting from Eqs. (2.1) and (2.2)

P ¼ p3E
L2

� R3t ¼ 2pKEt2:

Here, we have two equations which can be solved for t and R to give:

t � ¼ P
2pKE

� �1=2

ð2:3Þ

and

R� ¼ 2K
p5

� PL
4

E

� �1=6

; ð2:4Þ

where the asterisk conventionally denotes optimum values of the given dimensions.
The maximum stress is then as follows:

rmax ¼ P
2pR�t�

¼ pK
4

� �1=3

E2=3 P
L2

� �1=3

;

which can be written as follows:

rmax ¼ gE2=3 P
L2

� �1=3

; ð2:5Þ

where the ‘efficiency’ η of the tube is

g ¼ pK
4

� �1=3

:

If the buckling coefficient K is taken to have its maximum theoretical value
K ¼ 0:605, we obtain an efficiency g ¼ 0:780.
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The above formulae define the maximum stress that can be achieved in an
optimized circular tube in compression, together with the optimum radius and
thickness, and show how these depend on the modulus E, load P and length L. The
term P=L2 in Eq. (2.5) is referred to as the ‘structural index’ and represents the
non-material parameters of the problem. The different powers in the formula show
the sensitivity of the maximum stress rmax to the particular parameters. For
example, while the individual buckling loads are directly proportional to the
modulus E, the effect of change in E on the maximum stress in an optimized tube
depends only on E2=3. Similarly, the effect of any reduction in K, to compensate for
imperfections in the tube, is felt only as K1=3. Whereas the weight of a bar in
tension is directly proportional to both the load on it and its length (W / PL), from
the efficiency formula it is deduced that for a circular tube in compression the
relation becomes

W / P
L2

� ��1=3

PL:

An effective length L can be used in all the formulae, if it is necessary to allow
for different end conditions. Finally, it should be emphasized that the term effi-
ciency, as used here, is simply an efficiency coefficient—the larger its value the
greater the maximum stress that can be achieved. Its maximum value is not 1.0, and
it should not be expressed as a percentage.

Similar efficiency formulae can be derived for other shapes of cross section, as
shown in Table 2.1. For a solid section, there is, of course, no local buckling mode,
so the design condition is simply P ¼ PE to solve for the required radius or other
cross-sectional dimension. For a square section tube, the second moment of area to
calculate the Euler buckling load is I ¼ 2 b3t=3, where b is the mean side of the
square and t is the thickness of the tube. For local buckling, each side can be treated
individually as a thin plate, for which the local buckling stress is:

rL ¼ KE
t
b

� �2
;

Table 2.1 Efficiency formulae for circular and square sections

Circular section tube rmax ¼ p
4

� �1
3K

1
3E

2
3 P

L2
� �1

3¼ 0:780E2
3 P

L2
� �1

3 with K ¼ 0:605

Square section tube
rmax ¼ p2

24

� �2
5

K 1
5E3

5 P
L2
� �2

5¼ 0:907E3
5 P

L2
� �2

5 with K ¼ 3:62

Solid circular section rmax ¼ p
4

� �1
2E

1
2 P

L2
� �1

2¼ 0:886E1
2 P

L2
� �1

2

Solid square section
rmax ¼ p2

12

� �1
2

E
1
2 P

L2
� �1

2¼ 0:907E1
2 P

L2
� �1

2
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where buckling coefficient K ¼ 3:62 for Poisson’s ratio m ¼ 0:3 (plate buckling is
discussed further in Chap. 7). The different form of the local buckling formula
above for a square tube results in different powers in the efficiency formula. This
means that the efficiency coefficient of a circular tube cannot be compared directly
with that of the square tube, or other flat-sided sections, instead of which the
maximum stress has to be calculated from the appropriate efficiency formula in each
case, at the required structural index, and the stresses compared.

Open sections, such as angle and I-sections, have significantly lower efficiency,
as seen in Table 2.2 (with values taken from [2]. The I section in the table when
optimized buckles simultaneously in all four modes, that is, flexural buckling about
each axis and local buckling of the web and of the flanges. The angle section after
optimization buckles simultaneously in local buckling and in flexural buckling
about the axis shown. With only two variables, it is not possible for buckling to take
place simultaneously in all three modes (local buckling and flexural buckling about
both axes). The optimized X-section buckles simultaneously in flexural buckling
about any axis and in torsional—local buckling. For many other open sections, such
as a channel section, the shear centre does not coincide with the centre of gravity of
the section, and these are subject to coupled flexural—torsional buckling with
further reduction in efficiency.

In the foregoing text, by ‘efficiency’ is implied the maximum efficiency of a
particular shape of section. Of course, for a tube or bar with given limits on
dimensions (for example, if some minimum thickness is imposed), the maximum
stress that can be reached will be less. This can be expressed as reduced or
‘achieved’ efficiency. For example, with Eq. (2.5) for a circular tube, if r is the
reduced maximum stress the achieved efficiency becomes:

g ¼ r

E2=3ðP=L2Þ1=3
: ð2:6Þ

Finally, it is perhaps interesting to observe that, for a tube of any shape, if all its
cross-sectional dimensions as well as its length are increased by, say, a factor of
two, then both flexural and local buckling stresses are unchanged. An already
optimized tube, with simultaneous buckling modes, therefore remains an optimum.

Table 2.2 Maximum efficiency η for some thin-walled open sections (values for angle and
I sections taken from Rees [2])

rmax ¼ g E 3
5 P

L2
� �

2
5

g ¼ 0:705 Buckles simultaneously about both axes

g ¼ 0:439 Equal flange width and thickness, buckles about axis shown

g ¼ 0:205 Equal flange width and thickness, buckles simultaneously in flexural
buckling and torsional/local buckling
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The same applies to a solid bar, but now with only flexural buckling. Since in both
cases, the cross-sectional area is increased by a factor of four, the maximum load is
also increased by a factor of four (=2 squared), whereas the volume and therefore
the weight is increased by a factor of 8 (=2 cubed). This is a demonstration of the
‘square-cube law’ in structural design.

Example 2.1 Find the optimum diameter and thickness of a circular tube, with
simply supported length L = 1000 mm, to carry a compressive load P = 10,000 N.
Take the elastic modulus E = 72,000 N/mm2 for an aluminium alloy material, and
local buckling coefficient K = 0.605.

From Eq. (2.3), the optimum thickness is

t� ¼ P
2pKE

� �1=2

¼ 0:191mm,

and from Eq. (2.4) the optimum (mean) radius is

R� ¼ 2K
p5

� PL
4

E

� �1=6

¼ 28:6mm:

The corresponding outer diameter is 57.4 mm.
The thickness found above may in practice be considered too small for a tube of

this diameter. Suppose we choose now a minimum thickness t ¼ 1:0 mm. From
Eq. (2.1), the required Euler buckling load is

PE ¼ p3E
L2

R3t ¼ 10; 000N:

Solving for R gives R = 16.48 mm, with corresponding outer diameter
34.0 mm.

With reduced radius and increased thickness, the local buckling condition is
clearly more than satisfied.

The cross-sectional area of the tube is now

A ¼ 2pRt ¼ 103:6mm2;

and the compressive stress

r ¼ P
A
¼ 96:6N/mm2:
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With the formula for ‘achieved efficiency’ in Eq. (2.6), we find:

g ¼ r

E2=3ðP=L2Þ1=3
¼ 0:259:

We see that the effect of the chosen minimum thickness is to reduce substantially
the efficiency of the tube, from its maximum value g ¼ 0:780 to its present value
g ¼ 0:259. Note also that, while the compressive stress is comparatively low in this
example, no account has yet been taken of a material stress limitation. ■

Example 2.2 Find the optimum angle h of the truss in Fig. 2.3, with members
composed of circular tubes, taking into account the maximum compressive stress
due to buckling of members in compression. Take load P ¼ 1000 N, span
L = 1000 mm, modulus E ¼ 72; 000 N/mm2 and the allowable tensile stress
rt ¼ 400 N/mm2.

An efficiency formula enables the maximum stress that can be achieved in a
compression member to be calculated directly, without actually performing the
design. The two sloping members (both numbered 2 in the figure) are in com-
pression. The compressive force in each of these is

F2 ¼ P
2 sin h

and their length is

l2 ¼ L
2 cos h

;

giving a structural index

F2

l22
¼ 2P

L2
� cos

2 h
sin h

:

Since both members are circular tubes, with efficiency g ¼ 0:780, the maximum
stress in these members is found by substituting the above formula for the structural
index into the efficiency formula, Eq. (2.5), to give:

L / 2 L / 2 

1 
2 

3 

P 

2 

Fig. 2.3 Five-bar truss
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rmax ¼ 0:780E2=3 2P
L2

� cos
2 h

sin h

� �1=3

:

The forces in the remaining tension members are

F1 ¼ P; F3 ¼ P
2 tan h

:

With maximum stress rmax in the compression members and stress rt in the
tension members, the volume of the truss becomes:

V ¼ 1
rt

� tan hþ 1
rmax

� 1
sin h cos h

þ 1
rt

� 1
tan h

� �

PL
2
:

Varying h to minimize the volume V gives an optimum angle of the truss in this
example

h� ¼ 35:9�

and maximum compressive stress

rmax ¼ 176N/mm2:

The optimum angle h� is less than the 45� found earlier (H=L ¼ 0:5 in Fig. 1.11)
when all bars were assumed to have the same allowable stress. The explanation for
this is that reducing the angle h reduces the length of the compression members but
increases the load in them. The optimum angle h� is therefore a compromise
between the two, with reduction in length having the greater effect. Note that both
optimality criteria have now been used in this example. All members are fully
stressed in the sense that their area is based either on the maximum tensile stress rt

of the material in the tension members or on the maximum compressive stress rmax

in the compression members, the latter based on simultaneous flexural and local
buckling of the tubular members. Even in this small problem, this illustrates how
optimality criteria can be used to reduce the size of an optimization problem. All
constraints—tensile strength and both buckling modes—have been eliminated, or
better said directly satisfied, and only one design variable, angle h, remains. ■

2.1.2 Material Limitation

Up to now, no reference has been made to the allowable compressive stress of the
material of a compression member, which may limit the stress predicted by the
efficiency formula in Eq. (2.5). This is illustrated in Fig. 2.4, where the maximum
compressive stress for four different shapes of cross section is plotted against
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structural index, together with an allowable compressive stress rc ¼ 300 N/mm2

for the material. Note the logarithmic scale which, by the nature of the efficiency
formula, gives straight lines in this plot but also tends to obscure the difference in
performance of the different cross sections (lines for the solid circular and square
sections are indistinguishable in the figure). The superiority of tubular sections over
solid ones is nevertheless clear in this figure. In reality, there is a loss of modulus as
the maximum allowable stress of the material is approached, due to progressive
yielding, resulting in blending of the lines as suggested by the dotted lines in the
figure.

A material limitation

PM ¼ rcA ¼ rc � 2pRt

has been added in Fig. 2.5 to the previous design space in Fig. 2.2. This new
constraint clearly coincides with a line of constant cross-sectional area A ¼ P=rc,
meaning that all combinations of R and t between points 1 and 2 represent an
optimum design. There is therefore no unique optimum, and unless point 1 or point
2 is chosen, neither buckling mode is critical. However, if a material with a larger
allowable stress had been chosen, the curve representing the material limitation on
the design space would be lowered and the problem would revert to the original one
of simultaneous buckling modes. If, say, a minimum thickness limitation tmin or a
maximum radius Rmax is imposed (for manufacturing or other practical reasons),
then these can also be added to the design space. It is clear that many different
versions of the same diagram can exist, producing different design conditions in the
now more highly constrained optimum.

The situation in Fig. 2.5 is representative of the majority of optimization
problems, albeit here a very simple one. With only two design variables R and t, it
is clearly not possible to satisfy all constraints simultaneously, whether they arise
from buckling or material stress limitations, dimensional restrictions or perhaps
other conditions that might be imposed. The principal task in optimization is
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generally constraint selection, in other words to determine which constraints will
prove to be active at the optimum and which will be more than satisfied. Of course,
there can be no single answer to this—in the case of the circular tube considered
here, this depends entirely on the actual values of the parameters P, L and rc, and
on other limitations such as tmin and Rmax.

2.2 Criterion for Maximum Stiffness

The two optimality criteria already discussed are concerned only with the strength
of a structure, whether this be determined by material stress limits or by buckling.
Other than up to now, the design of a structure for maximum stiffness cannot be
achieved in a member-by-member, iterative resizing process as in a fully stressed
design, since its stiffness depends on the properties of all parts of the structure. To
establish a criterion for maximum stiffness, we again consider a simple truss
structure, such as in Fig. 2.6, loaded by a single force P. If the deflection at the
point of loading and in the same direction as the applied load is d, then the stiffness
of the structure is P=d. It is this stiffness that we wish to maximize. By simply

R 
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buckling 

material limitation 

Euler buckling 
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t 

R max

min
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Fig. 2.5 Design space for a
circular section tube with
compressive stress limitation

stiffness =  

P
deflection 

P
Fig. 2.6 Deflection under a
single applied load
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increasing the amount of material in the structure, its stiffness can be increased
without limit, therefore we have to maximize the stiffness for some given total
volume V of the structure.

The deflection d can conveniently be found by the principle of conservation of
energy—the work done by the applied load P is equal to the total elastic strain
energy stored in the members of the truss:

1
2
Pd ¼

X r2
i

2E
Vi; ð2:7Þ

where ri is the stress in each member, Vi is the corresponding volume of each
member and E is the elastic modulus of the material, for the present assumed to be
the same for all members. Substituting for the stress

ri ¼ Fi

Ai
¼ Fi li

Vi
ð2:8Þ

we obtain

d ¼ 1
PE

X Filið Þ2
Vi

; ð2:9Þ

where Fi is the force in a member and Ai, li are its cross-sectional area and length,
respectively. Note that forces Fi are constant if, as assumed here, the truss is
statically determinate.

Putting V ¼ P

Vi for a given volume of material, we can substitute

V1 ¼ V � V2 � V3 � � � �

into Eq. (2.9) to give

d ¼ 1
PE

F1l1ð Þ2
V � V2 � V3 � � � �ð Þ þ

F2l2ð Þ2
V2

þ F3l3ð Þ
V3

2

þ � � �
" #

: ð2:10Þ

(Choice of V1 for elimination in the formula above is entirely arbitrary.)
Differentiating with respect to the remaining variables Vi for minimum d:

@ dð Þ
@V2

¼ 1
PE

F1l1ð Þ2
V � V2 � V3 � � � �ð Þ2 �

F2l2ð Þ2
V2
2

" #

¼ 0;

@ dð Þ
@V3

¼ 1
PE

F1l1ð Þ2
V � V2 � V3 � � � �ð Þ2 �

F3l3ð Þ2
V2
3

" #

¼ 0;
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and so on, from which

F1l1ð Þ2
V2
1

¼ F2l2ð Þ2
V2
2

¼ F3l3ð Þ2
V2
3

¼ � � � :

Note that elimination of V1 above, then substituting back, is simply a device to
ensure that differentiation takes account of a required total volume V. A more
elegant way would be by use of Lagrange multipliers, to be introduced in the next
chapter. Referring back to Eq. (2.8), the above condition becomes simply

r2
1 ¼ r2

2 ¼ r2
3 ¼ � � � ¼ r2

0;

where r0 denotes here an arbitrarily chosen stress level. Uniform stress in all
members is now the criterion for maximum stiffness, implying in principle a stat-
ically determinate structure, as was assumed at the start.

With the same stress in all members, Eq. (2.9) can be simplified to

d ¼ V
PE

� r2
0: ð2:11Þ

For any fully stressed design of truss, with a maximum stress r0, its total volume
V is given by Eq. (1.6):

V ¼ n � PL
r0

;

where as before, coefficient n depends only on the layout of the truss. For given P,
V and span L, we can rewrite this as:

r0 ¼ nPL=V ;

and substituting for r0 into Eq. (2.11) gives

d ¼ n2L2

VE
� P:

For minimum deflection or, in other words, maximum stiffness P=d for given
volume V of material, it is clear that we require the smallest n value. We can
conclude, therefore, that the optimum layout of truss (maximum strength-to-weight
ratio) also has maximum stiffness, with regard to deflection at the point of loading,
provided of course that the members are indeed uniformly stressed.

It should be noted that the criterion for maximum stiffness developed above
applies strictly to a truss under a single applied load and to deflection at the point of
loading in the direction of the applied load. If there is more than one load, such as
an additional load applied at the top of the truss as in Fig. 2.7, the left-hand side of
Eq. (2.7) has to be replaced by 1

2 P1d1 þP2d2ð Þ, or in general by 1
2

P

Pidi. The rest
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of the analysis is then unchanged, which implies that the condition of uniform stress
in all members leads to a minimum of

P

Pi di. This is the minimum of the sum of
the individual deflections weighted in proportion to the magnitude of the applied
loads, but does not in practice provide any useful definition of maximum stiffness.

If the members of the truss are of different materials, each with elastic modulus
Ei, Eq. (2.7) for a single load P becomes

1
2
Pd ¼

X r2
i

2Ei
Vi: ð2:12Þ

Following the same procedure as before, but by keeping the individual elastic
moduli within each term of Eq. (2.10), we replace the condition of uniform stress
by one of the uniform strain energy densities (strain energy per unit volume)

r2
1

E1
¼ r2

2

E2
¼ r2

3

E3
¼ � � � :

If the members also have different densities qi, and it is required to maximize the
stiffness of the structure for a given mass rather than for a given volume, then
Eq. (2.12) becomes

1
2
Pd ¼

X r2
i

2Eiqi
Mi;

where Mi is the mass of an individual member. Following again the same proce-
dure, but differentiating now with respect to mass rather than volume, the criterion
for maximum stiffness becomes

r2
1

q1E1
¼ r2

2

q2E2
¼ r2

3

q3E3
¼ � � � :

P1

1

P2

2

Fig. 2.7 Deflection under
two applied loads
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This is the condition of uniform specific strain energy (strain energy per unit
mass). This means that, when made of different materials (different modulus or
density), a uniformly stressed design is now no longer the optimum design for
stiffness. Our third optimality criterion, for maximum stiffness for a given total mass
of the structure, has finally become one of the uniform strain energies per unit mass
throughout the structure. The above criterion, while developed here for truss
structures, can be expected to apply more generally to other types of structure.
However, it should be borne in mind that, even for a structure made of a single
material, in a two- or three-dimensional state of stress, the condition must be that of
uniform strain energy, not simply uniform stress. Furthermore, it has to be
remembered that the condition applies strictly to stiffness measured at the point of
loading under a single applied load. In practice, of course, material strength,
buckling and other constraints on the design may override this criterion for max-
imum stiffness to a greater or lesser extent.

2.3 Spreadsheet Programs

The spreadsheets illustrate the inclusion of behavioural constraints such as buckling
and material stress limits into the optimization process. In Sect. 2.3.1, we take the
now familiar problem of a thin tube loaded in compression, for which we already
have a theoretical efficiency formula based on simultaneous buckling modes. By
including maximum stress and dimensional limits as well as buckling constraints,
the spreadsheets offer a more general solution. In Sect. 2.3.2, the spreadsheet for a
seven-bar truss in the previous chapter is extended by taking into account the
buckling of the compression members.

2.3.1 ‘Circular and Square Tubes’

The spreadsheets use Solver to optimize the cross-sectional dimensions of a circular
or square tube loaded in axial compression, with buckling and allowable stress
constraints, also allowing practical limits to be set on the dimensions (outer
diameter or side of the square and thickness). The two tubes are on separate sheets
of the workbook, as shown in Figs. 2.8 and 2.9.

The applied compressive load P, effective simply supported length L (depending
on the required end conditions), elastic modulus E and maximum allowable com-
pressive stress rc of the material have to be inserted in the appropriate cells.
Maximum and minimum values of the outer diameter d or side b and thickness
t have to be specified (these cells may not be left blank). Constraints to be satisfied
are Euler buckling and local buckling, using the formulae in Sect. 2.1, and the
maximum allowable stress of the material. The local buckling coefficient for a
circular tube is set to K ¼ 0:605 (maximum theoretical value) on the spreadsheet,
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but may be reduced to allow for imperfections if required. For a square tube, the
local buckling coefficient is K ¼ 3:62. The material is assumed to be perfectly
elastic up to the maximum allowable stress. These constraints, together with limits
on cross-sectional dimensions, are already set up in the Solver dialog box on the
relevant sheet. Suitable initial values of the outer dimensions d or b and thickness
t have to be entered in the appropriate cells. With these as variables, and subject to
the above constraints, the cross-sectional area of the section is minimized by the
GRG nonlinear method. To represent a solid circular or square bar, an extra con-
straint t ¼ d=2 or t ¼ b=2, respectively, may be added to the list of constraints in
the Solver dialog box (in which case the local buckling stress has to be ignored).
Parameters and design variables to be entered in the spreadsheets are listed in
Table 2.3.

After optimization, the optimum cross-sectional dimensions replace the initial
values of d or b and t, and corresponding values of stress r, Euler buckling stress
rE, local buckling stress rL and the achieved efficiency g (see Sect. 2.1.1) are
calculated. Note that the efficiency is not calculated if either buckling stress exceeds
the allowable compressive stress of the material, or if t=d or t=b exceeds 0.1.
Comparison of the achieved efficiency with the known maximum efficiency for the
circular or square tube shows the loss of efficiency due to the practical limits set on
dimensions. The spreadsheets can be used to plot figures similar to Fig. 2.4 for any
range of materials and structural index. If limits on dimensions do not intervene,
and at a compressive load below that at which the material stress limit is reached,
values of efficiency are obtained in agreement with those in Table 2.1.

An extended version of the present spreadsheet for a circular tube, with
eccentrically applied compressive load and the effect of yielding of the material
before the critical buckling load is reached, is presented in the next chapter.

Table 2.3 Data entry for spreadsheet programs ‘Circular and Square Tubes in Compression’

Parameters

Compressive load P Enter the value in cell C6
as a positive number

Effective simply supported length L Enter the value in cell C7

Elastic modulus E, allowable compressive
stress rc

Enter values in cells C8:C9 as positive
numbers

Min. and max. outer diameter d (or min. and
max. outer width b )

Enter values in cells C10:C11 (cells may not
be left blank)

Min. and max. thickness t Enter values in cells C12:C13 (cells may not
be left blank)

Local buckling coefficient K Enter a reduced value in cell C15 for a
circular tube if required

Variables

Diameter d (or side b) and thickness t Enter initial values in cells F7:F8

2.3 Spreadsheet Programs 47



2.3.2 ‘Truss with Tubular Members’

The spreadsheet illustrates the use of Solver to optimize the seven-bar truss in
Sect. 1.4, now with compression members made of circular tubes subject to both
buckling and material stress limitations. Whereas in Example 2.2 an efficiency
formula is used to predict the maximum stress in the compression members of a
truss, in the spreadsheet Euler and local buckling and the maximum allowable stress
are treated as separate constraints in each member. This allows upper and lower
limits to be specified for the dimensions of any of the members, if so required. The
spreadsheet is shown in Fig. 2.10.

The applied load P, span L, material allowable stresses rt and rc in tension and
compression, elastic modulus E, specific weight qw and local buckling coefficient
K have to be entered in the spreadsheet. Constraints are the allowable stresses of the
material, and Euler and local buckling of the compression members using the
formulae in Sect. 2.1. These constraints are already set up in the Solver dialog box.
Design variables are the dimensions D and H of the truss, the diameter d and
thickness t of the compression members (1 and 3 in the diagram) and the
cross-sectional area of the tension members (2 and 4). Ratios D=L and H=L are
limited to not less than 0.01. With suitable initial values of the design variables,
the volume of the truss is minimized by the GRG nonlinear method, subject to the
above constraints. Parameters and design variables to be entered in the spreadsheet
are listed in Table 2.4.

After optimization, initial values of the design variables are replaced by their
optimized ones, together with the volume of the truss, its strength-to-weight ratio
P=W , the stress r in each member, the maximum forces in the bars in the different
failure modes and the deflection d of the truss at the point of loading. The
spreadsheet shows the influence of buckling of the compression members on the
optimum layout and strength-to-weight ratio of the truss. Since the truss is statically
determinate, unless dimensional constraints imposed the tension members will
reach the allowable tensile stress. Depending on the magnitude of the applied load,
and again if no dimensional constraints are imposed, the compression members will
reach either the allowable compressive stress or a reduced stress due to buckling. In
the latter case, for maximum efficiency, buckling will occur simultaneously in Euler
and local buckling. As in the spreadsheets in Sect. 2.3.1, no account is taken of
reduction in modulus with yielding, the allowable compressive stress being treated
as a simple cut-off for the buckling stress. It will be observed that the thickness of
the tubes in compression frequently comes out impractically small. Only limits on
the minimum thickness of the compression members are specified in the spread-
sheet. Additional constraints for maximum or minimum dimensions can readily be
added in the Solver dialog box, if required. The tubular members can be replaced by
solid circular bars by adding constraints to specify the thickness equal to one-half of
the diameter of the tubes.

Finally, a comment on the initial values of the design variables is worthwhile at
this stage. As in all optimization problems, these should be chosen as far as possible

48 2 Optimality Criteria



F
ig
.
2.
10

Sp
re
ad
sh
ee
t
‘T
ru
ss

w
ith

T
ub

ul
ar

M
em

be
rs
’

2.3 Spreadsheet Programs 49



within the range of the expected outcome of the optimization. Large differences can
lead to Solver finding some other local minimum away from the true optimum, or it
may fail to reach any solution at all. In the latter case, this is may be due to the
starting point being far enough removed that the solution moves away from the
optimum until it is no longer in the valid range of the original problem. Good
practice is to repeat the optimization from different starting points, to gain confi-
dence that the true optimum has been found.

2.4 Summary

Of the three optimality criteria we have now seen, the first—that of the fully
stressed design—needs little further attention here, as it was treated extensively in
the previous chapter. It will only be reiterated that a fully stressed design cannot in
general be guaranteed to be a true optimum, although in the great majority of cases
the progressive resizing of a structure to reach the maximum allowable stress in all
its parts will lead to at least an improved design. The need for numerical opti-
mization arises when constraints other than simple strength limitations are imposed,
and when it is no longer possible to associate particular constraints with specific
design variables in order to perform the necessary resizing. This last aspect is taken
up in detail in the following chapter.

The second criterion—that of simultaneous modes of buckling—applies to a
structure, or some part of it, liable to buckling in two or more different modes.
A thin circular tube loaded in compression, which can buckle either in Euler
buckling or in local buckling, is used to demonstrate that the optimum corresponds

Table 2.4 Data entry for spreadsheet ‘Truss with Tubular Members’

Parameters

Applied load P (vertical downwards only) Enter a positive value in cell C6

Span of truss L Enter the value in cell C7

Allowable tensile stress rt , allowable
compressive stress rc

Enter values in cells C8:C9 as positive
numbers

Elastic modulus E, specific weight qw Enter values in cells C10:C11

Minimum thickness t1, t3 of bars 1 and 3 Enter values in cells C12:C13 (may not be left
blank)

Local buckling coefficient K Enter a reduced value in cell C14 for a circular
tube if required

Design variables

Dimensions D and H of truss (see figure on
spreadsheet)

Enter initial values in cells F6:F7 (both
positive, nonzero)

Cross-sectional area A2, A4 of bars 2 and 4 Enter initial values in cells F8:F9

Outer diameter d1, d3 of bars 1 and 3 Enter initial values in cells F10:F11

Thickness t 1, t3 of 1 and 3 Enter initial values in cells F12:F13
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to buckling simultaneously in both of these modes. With this condition, efficiency
formulae are derived by means of which the maximum stress that can be achieved is
readily predicted. Again, it cannot be guaranteed that the condition of simultaneous
buckling modes will be valid in all cases. Numerical optimization becomes nec-
essary when a structure is subject to buckling constraints as well as material
strength limitations, and to dimensional and other constraints.

The third criterion—that of uniform (specific) strain energy density for maxi-
mum stiffness—was demonstrated for a truss structure, but under highly restricted
conditions. These are that the stiffness relates to deflection under a single load,
measured at the point of application of that load. For a truss structure made of a
single material, uniform strain energy density amounts to uniform stress throughout
the structure, in other words a fully stressed design. When the conditions above are
not met, for example if the stiffness is measured at some point other than the point
of loading, or if buckling and other constraints intervene, numerical optimization is
again necessary.

The three optimality criteria introduced in this and the previous chapter, deduced
for simple truss structures, might be assumed to apply in principle to any type of
structure. In fact, they are most likely what we would intuitively have assumed in
the first place. However, while the use of optimality criteria may be quite appealing,
it is seen that they are limited in application and their validity cannot be guaranteed.
Numerical optimization methods avoid the limitations of optimality criteria and,
above all, provide a consistent, general approach to the design of a structure. One of
the main reasons for studying optimality criteria in some detail here is that, not
surprisingly, many of the same characteristics reappear in designs obtained by
numerical optimization. A good understanding of optimality criteria is therefore of
great assistance in assessing the results of a numerical optimization and in under-
standing what has led to the solution obtained. The application of numerical
optimization methods, together with the underlying numerical procedures, will be
the principal task of the further chapters of this book.

Exercises

2:1 Verify the efficiency formula for a square section tube in Table 2.1. For a
typical aluminium alloy, with an allowable compressive stress of 300 N/mm2

and elastic modulus 72,000 N/mm2, at what value of structural index is the
maximum stress limited by the allowable stress of the material?
To derive the efficiency formula, assume that the thickness of the tube is
small compared with its width, i.e. use simplified formulae for A and I
similar to those for the circular tube in Sect. 2.1.

2:2 Derive the efficiency of a thin tube of hexagonal cross section (6 equal sides)
and simply supported length L under a compressive load P. To compare the
hexagonal tube with circular and square tubes, plot the maximum stress of

2.4 Summary 51



the three sections for a chosen material over a realistic range of structural
index.
Verify that the second moment of area of a thin hexagonal section about any
axis through its middle point is 5b3t=2, where t is the thickness of the tube
and b is the mean width of each side. For the local buckling stress, use the
formula: rL ¼ 3:62E t=bð Þ2.

2:3 Verify the relation W / P=L2ð Þ�1=3PL in Sect. 2.1.1 for the minimum
weight of a circular tube in compression. Derive a similar relation for a
square tube.
Use the efficiency formulae in Table 2.1.

2:4 Draw the design space for the three-bar truss made of different materials in
Sect. 1.1.1.
Draw the design space with variables A1 and A2. Use the formulae in
Eqs. (1.1) and (1.2) for the stress in the bars, with allowable stresses as in
Table 1.2 and other data in Fig. 1.7. Plot the maximum stress constraints for
both the single material and for the two different materials, Notice that in the
second case, the stress in the outer bars will be the critical design condition
unless these two bars are removed altogether.

2:5 Draw the design space for the three-bar truss under alternative loads in
Sect. 1.1.2. Verify the minimum volume of the truss given in that section.
Draw the design space with variables A1 and A2. Use the formulae in
Eqs. (1.3)–(1.5) for the stress in the bars. ‘Goal Seek’ can be used in Excel
to solve for A2 for a series of values of A1 in Eq. (1.3). Take P ¼ 100 kN,
r0 ¼ 300 N/mm2 and L ¼ 1000 mm, as in Sect. 1.1.2.

2:6 Use the spreadsheet ‘Circular Tube in Compression’ with different values of
minimum thickness to explore the effect of this on the achieved efficiency of
the tube.
Use the values of P, L and E already on the spreadsheet (or any other
convenient values). Set dmin ¼ 0, and dmax and rc large enough to ensure
they have no effect. Make a plot of η and d over a range of minimum
thickness.

2:7 Use the spreadsheet ‘Circular Tube in Compression’ to make a plot of
maximum stress against structural index for circular tubes made of various
different materials.
The allowable compressive stress and elastic modulus of different grades of
aluminium alloy, steel, titanium and other materials are widely available.
Choose P and L for values of structural index that give realistic stress levels
for the materials.

2:8 Modify the spreadsheet ‘Square Tube in Compression’ for the optimization
of a hexagonal tube in compression.
Use the formulae in Exercise 2.2. Compare the efficiency with the previously
calculated value.

2:9 Use the spreadsheet ‘Truss with Tubular Members’ to find the optimum
layout of the seven-bar truss under buckling constraints.
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Use the material and other data already on the spreadsheet. Try different
starting points for the optimization to verify that the same result is obtained.
Note the deflection of the truss and the stress in each member of the opti-
mized truss.

2:10 Verify the deflection d given in the spreadsheet for the optimized truss in the
previous exercise.
Deflection d can be calculated from Eqs. (2.7) to (2.9).

2:11 Use the spreadsheet ‘Truss with Tubular Members’ to verify that the opti-
mum design for stiffness, in the absence of constraints, has equal stress in all
members and has the same shape as the optimum design for minimum
weight.
Use the material and other data already on the spreadsheet (or any other
convenient values). First remove all constraints currently in the Solver
dialog box. Add a new constraint to set the volume V of the truss to any
reasonable value. Deflection d at the point of loading is given on the
spreadsheet. Change the objective to deflection d in the dialog box, and use
Solver to optimize the truss for minimum d.

2:12 Modify the spreadsheet ‘Truss with Tubular Members’ for a load applied
vertically upwards at mid-span.
Members 2 and 4 are now in compression, members 1 and 3 in tension.
Compare the strength-to-weight ratio P=W with that for a downwards
applied load.
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Chapter 3
The General Optimization Problem

Abstract The problems studied in the previous two chapters have all been special
cases of a more general optimization problem. In most practical problems, there is
no close relationship between individual design variables and constraints, as was
the case in the fully stressed design of a simple truss structure. A box beam is used
to illustrate the complex relations between design variables and constraints in a
more representative optimization problem. Since we generally cannot know in
advance which constraints will prove to be active at the optimum, the task of
numerical optimization is both to select the active constraints and to locate the
optimum on those constraints. The general form of the optimization problem is
defined, and a distinction drawn between an intersection optimum and a mathe-
matical optimum. The classical method of Lagrange multipliers might be consid-
ered the mathematical basis of optimization, while applying only to equality
constrained problems. For inequality constrained problems, Lagrange multipliers
are used to identify those constraints that have been correctly selected as active at
the optimum. The Kuhn–Tucker conditions are the necessary conditions for an
inequality constrained optimum. A spreadsheet program is presented for the opti-
mization of an eccentrically loaded column, taking into account the effect of
yielding of the material at higher stresses and extending the scope of the spread-
sheet in the previous chapter.

In previous chapters, we studied some particular examples of truss structures, both
to explore the conventional, iterative resizing procedure and to test the validity of
optimality criteria that can be applied to such structures. These examples are all
special cases of a more general optimization problem. In practice, the relations
between design variables and constraints are likely to be much more complex than
in the simple structures up to now, and because it is mostly not known beforehand
which constraints are going to be active in an optimized design, a different approach
becomes necessary. A box beam (representative of the torsion box of an aircraft
wing, bridge deck, or similar structure) is used to illustrate the general optimization
problem. The standard notation of optimization is introduced in terms of the design
variables and constraints of the box beam. This is treated for now in a purely



qualitative way. In a later chapter, a numerical solution for a box beam subject to
stress, buckling and stiffness constraints will be developed.

In the great majority of cases, we have to employ numerical rather than analytical
methods for the solution of practical optimization problems. However, a detailed
discussion of different numerical methods will be deferred until the next two chapters.
In mathematical terms, for a problem with only equality constraints (conditions that
have to be identically satisfied, rather than those which may be satisfied in a ‘not
greater than’ or ‘not less than’ sense), the classical method of Lagrange multipliers
enables a maximum or minimum to be found simply by differentiation. This might be
regarded as the fundamental theory of optimization. While it will be clear that few
practical problems are actually amenable to analytical differentiation, we shall see
later that Lagrange multipliers play an essential role in identifying the critical con-
straints in the numerical optimization of inequality constrained problems. The
Lagrange multiplier method is introduced later in this chapter.

3.1 Box Beam Structure

The rectangular box beam shown in Fig. 3.1 is assumed to carry a vertical load
causing a bending moment about the horizontal axis. The upper and lower panels
are thin plates with discrete stiffeners to resist buckling. Transverse bulkheads, or
ribs, are placed at intervals along the length of the beam to provide support for these
panels, which carry a major part of the bending moment on the beam. The side
panels, or shear webs, carry the shear force and together with the upper and lower
panels provide torsional stiffness. Typical design variables are the plate thickness at
different locations around the cross-sectional, stiffener areas, and the spacing of
stiffeners and ribs. In greater detail, additional variables would be associated with,
for example, the individual dimensions of the stiffeners (although stiffeners may
well be treated separately in a more detailed design of the stiffened panels). Typical
constraints refer to the stress in each part of the structure, buckling of the panels,
torsional stiffness and constraints such as minimum thickness.

Looking first at the constraints, we know that the bending stress at any point in
the plate and stiffeners depends on the plate thickness and stiffener areas around the
entire cross section. The buckling stress of the upper and lower panels depends
critically on the local stiffener spacing and the rib spacing, as well as on the plate
thickness and stiffener area. The torsional stiffness of the box beam depends on the

Fig. 3.1 Rectangular box
beam
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plate thickness not only in the given cross section but along its whole length.
Looking now at the design variables, we see that plate thickness enters into all the
constraints referred to above. Change in plate thickness to satisfy a material stress
constraint results in changes in buckling stress and torsional stiffness as well.
Change in stiffener area changes both the stress in the plate and stiffeners and the
buckling stress. Change in stiffener spacing changes not only the buckling stress but
also the number of stiffeners and therefore the stress in the plate and stiffeners.
Figure 3.2 illustrates the complex relations between the design variables and con-
straints described above.

In general, there is no specific relationship between constraints and design
variables to enable each constraint to be satisfied individually, as in an iterative
resizing procedure, and as already pointed out, we generally do not know in
advance which constraints will prove to be active in an optimized design. This is
quite different to the design of a truss structure in Chap. 1, where the stress in each
member depends simply on the cross-sectional area of that member or is treated in
that way in an iterative resizing procedure for a statically indeterminate truss. In
general, this lack of any special relationship between individual design variables
and constraints, and in particular uncertainty over the critical constraints, means that
an analytical approach to optimization is rarely possible. We have then to turn to
numerical methods of optimization to search for an optimum design amongst a
complex set of design variables and constraints. For this, we should define the
optimization problem in its most general form:

Minimize (or maximize) an objective function:

f xð Þ

in terms of n design variables:

x ¼ x1; x2; . . .xn;

allowable 
stress 

buckling 
stress 

torsional 
stiffness 

stiffener 
area 

plate 
thickness 

stiffener 
spacing 

Fig. 3.2 Typical relations between design variables and constraints (buckling stress depends on
all variables on LHS, and plate thickness enters into all constraints on RHS)
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subject to m inequality constraints:

gjðxÞ� 0; j ¼ 1; 2; . . .m

and p equality constraints:

hkðxÞ ¼ 0; k ¼ 1; 2; . . .p;

with side constraints:

ximax � xi � ximin :

For the box beam, the objective function f ðxÞ is the weight W of the structure,
expressed in terms of design variables x. These are the plate thicknesses, stiffener
areas and so on. Inequality constraints gjðxÞ; again each a function of design
variables x, are those for which it is sufficient if they are satisfied, but not neces-
sarily identically satisfied. These are, for example:

gjðxÞ ¼ rt � r� 0;

or

gjðxÞ ¼ rb � r� 0;

where rt is the allowable tensile stress of the material, rb is the buckling stress of a
particular panel, and r is the stress under the applied load at the appropriate point in
the cross section. Note that inequality constraints are defined here as positive when
feasible and zero when identically satisfied. Equality constraints hkðxÞ are less
common in structural design but might, for example, refer to some required stiffness
of a structure, rather than that it merely has sufficient stiffness. The so-called side
constraints are simply limits imposed directly on the design variables, such as
minimum plate thickness or maximum stiffener area.

3.1.1 General Form of Design Space

Realistic optimization problems are likely to have many design variables, requiring
a multidimensional design space. While this presents no particular difficulty to the
computer in a numerical optimization, clearly the design space cannot actually be
drawn on paper. However, some of the main characteristics of a general, multidi-
mensional design space can still be illustrated in a two-dimensional design space, as
in Fig. 3.3. Some typical inequality constraints gj � 0 are represented in the figure,
lines gj ¼ 0 being the limits imposed by these constraints, with the shading indi-
cating the infeasible side of a constraint and the feasible region above and to the
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right of the constraint lines. Line g1 ¼ 0 represents a side constraint (the minimum
value of variable x2), as the name implies directly limiting the extent of the design
space. The other constraints are so-called behavioural constraints (such as stress or
stiffness constraints). ‘Weight lines’ (lines of constant value of the objective
function) are drawn as broken lines in this and the following figures. These are
shown as linear, but of course this need not be so. It is implied in these figures that
we are looking for the minimum of some function, such as minimum weight W. The
line W ¼ W0 shows the optimum at the intersection of constraints g2 and g3. These
are the active constraints at the optimum. Other constraints, such as g1, are active in
other parts of the design space, defining the full extent of the feasible region. Some
constraints, such as g4, may be inactive in the whole design space, that is fully
overruled by other constraints. If any of the constraints is an equality constraint,
then the optimum must, of course, lie on that constraint. All other constraints must
still be satisfied, otherwise there would be no feasible solution to the optimization
problem. The location of constraints relative to one another in the design space in
any real problem, with more design variables, can scarcely be visualized in
advance. This means that, as stated earlier, it is generally not known beforehand
which constraints will be active at the optimum. The prime task of a numerical
optimization procedure is then both to select the correct set of active constraints and
to locate the optimum on those constraints.

The type of optimum illustrated in Fig. 3.3 is an ‘intersection optimum’ (at the
intersection of constraints) with in principle the number of active constraints m0

equal to the number of design variables n. We have a ‘mathematical’ optimum if
m0\n; as illustrated in Fig. 3.4. More difficult to visualize is that in a multidi-
mensional design space, the optimum may be a mathematical optimum along the
intersection of a number of constraints. All constraints in Fig. 3.3 are ‘convex’
constraints, such that only a single, unique optimum exists. Figure 3.5 illustrates a
non-convex constraint, with two (or more) local minima. It can also occur that there
is no unique optimum, either if there are more local minima of equal value or if the
optimum lies at an indeterminate point along a constraint. In contrast to the design

Fig. 3.3 Inequality
constraints in a
two-dimensional design space
(shading marks the infeasible
region)
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space shown in Fig. 3.3, the design space in Fig. 3.6a illustrates the special case of
a fully stressed, statically determinate truss from Chap. 1. Since each constraint
depends on only one variable, the constraints are simply the vertical or horizontal
lines shown in the figure, with again m0 ¼ n: For a statically indeterminate truss, in
which the stress in each member is usually only weakly dependent on the dimen-
sions of the other members, the constraints are generally near-vertical or
near-horizontal, as shown in Fig. 3.6b. It is this weak dependence that in many
cases enables an iterative calculation for a truss and other structures to converge
rapidly enough to the optimum.

It might be concluded from the discussion up to now that the optimality criteria
developed earlier have become irrelevant to the more general design problem.
However, as implied earlier, many of the same characteristics will be found back in
the optimization of more complex structures, such as the box beam used as illus-
tration here. Inevitably, the maximum stress limit will be reached in many parts of a

Fig. 3.4 Design space
showing a mathematical
optimum

local minima 

Fig. 3.5 Design space
showing a non-convex
constraint
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structure, as in a fully stressed design. Where there are buckling constraints, it can
be anticipated that the buckling stress will be reached in different parts of the
structure, often in simultaneous buckling modes. For maximum stiffness, the
solution is likely to at least tend towards a uniform strain energy distribution
throughout the structure. In fact, optimality criteria can still be employed in many
optimization problems when it is known with certainty that particular conditions do
apply, as a means of eliminating some of the design variables. We have already
seen a simple example of this is in the spreadsheet ‘Seven-bar Truss’ in Chap. 1.
Being statically determinate, the cross-sectional areas of the members are expressed
directly in terms of the known forces in those members, thereby eliminating the
member areas from the set of design variables. This leaves only those variables that
define the shape of the truss in the optimization. In Chap. 2, for a truss structure
with some members subject to buckling in compression, an efficiency formula
based on simultaneous modes of buckling is used to eliminate the individual
dimensions of members of the truss. For a box beam, we might, for example, select
stiffener spacing and stiffener area to satisfy panel buckling constraints at each step
of an optimization procedure. In this way, these variables are eliminated or, better
stated, become dependent on the remaining variables.

3.2 The Lagrange Multiplier Method

While in practice we shall be mainly concerned with numerical optimization
methods, it is worthwhile to understand the mathematical basis of optimization, if
only because of its role in many numerical methods. The classical method of
Lagrange multipliers finds the maximum or minimum of a function subject only to
equality constraints, that is constraints all of which have to be identically satisfied.
This implies that there are at least as many variables as there are independent

(b) (a) 

x2
x2

x1

m0

x1

g2

g1

optimum 
= n

Fig. 3.6 Design spaces showing typical constraints for a a fully stressed, statically determinate
truss and b a statically indeterminate truss
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constraints (with the same number of variables, the problem is in principle
immediately solved). The method cannot be applied to inequality constrained
problems unless it is known beforehand which constraints will be active at the
optimum, in which case these constraints can of course be treated as equalities. The
description of the Lagrange multiplier method here follows that of Walsh [1].

In the conventional procedure for the maximum or minimum of a function f ðxÞ;
in the absence of constraints, we differentiate the function with respect to each of
the n variables in turn and set the derivatives to zero to obtain a sufficient number of
equations to solve for all the variables. However, when constraints are imposed, this
can no longer be done, simply because some of the variables are in principle already
needed to satisfy the same number of constraints. The solution to this is to define
p additional variables, the Lagrange multipliers kk , one for each equality constraint
hk ¼ 0: These are combined with the original function f ðxÞ to form the Lagrangian
function:

F x; kð Þ ¼ f ðxÞ �
Xp
k¼1

kk hkðxÞ: ð3:1Þ

The minus sign in the above function is introduced for convenience later (in
many texts, this is a plus sign). Since all the hk are zero when the constraints are
satisfied, it is seen that Fðx; kÞ ¼ f ðxÞ at the constrained maximum or minimum,
regardless of the values of kk. The properties of the Lagrangian function will now
be explored to see how the originally constrained problem is transformed into an
unconstrained one. This is assuming now that f ðxÞ and all the hkðxÞ are differen-
tiable functions. To simplify the text, in what follows, it is assumed that we are
seeking the minimum of the function f ðxÞ:

Since only ðn� pÞ variables xi can be independent, these are separated into two
sets as follows: variables x1 to xp to satisfy the p equality constraints and the
remaining variables xpþ 1 to xn to minimize the function f ðxÞ: The first set x1 to xp is
treated as dependent variables, that is dependent on the second set xpþ 1 to xn. The
second set of variables is then independent variables. Any change in the second set
of variables must be accompanied by corresponding changes in the first set, to
continue to satisfy the constraints. In principle, the allocation of variables to the first
and second set is entirely arbitrary. For the present purpose, it does not matter what
these variables actually represent. Definition of the two sets of variables is given
again in Table 3.1.

Table 3.1 Dependent and independent variables

x1. . .xp Variables used to satisfy hkðxÞ ¼ 0, k ¼ 1. . .p (dependent on xpþ 1. . .xn)

xpþ 1. . .xn Independent variables used to minimize f ðxÞ
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The Lagrangian function in Eq. (3.1) can now be differentiated as follows:

@F
@xi

¼ @f
@xi

�
Xp
k¼1

kk
@hk
@xi

: ð3:2Þ

In the range 1� i� p, we choose the p Lagrange multipliers kk (so far arbitrary)
so that:

@F
@xi

¼ 0

at the constrained minimum (as indeed for an unconstrained minimum). Examining
now Eq. (3.2) in the range pþ 1� i� n;, we conclude that:

@F
@xi

¼ 0

in this second range as well, since @f =@xi ¼ 0 for a minimum of the original
function f ðxÞ with respect to the (second) set of independent variables and
@hk=@xi ¼ 0 in this same range because the constraints hk ¼ 0 are deemed to be
satisfied by the (first) set of dependent variables. Constraints hk are, therefore,
independent of the second set of variables. Equation (3.2) then reduces to:

@F
@xi

¼ 0

at a constrained minimum for both sets of xi. Differentiating Eq. (3.1) now with
respect to the Lagrange multipliers kk , we obtain:

@F
@kk

¼ hk ¼ 0;

since hk ¼ 0 when the constraints are satisfied. The conditions for an equality
constrained minimum are finally:

@F
@xi

¼ 0;
@F
@kk

¼ 0 ð3:3Þ

for all values of i and k. We now have the required ðnþ pÞ equations to solve for all
the xi and kk . Differentiation of function F with respect to both the xi and the kk is
perhaps an elegant way to write the conditions for a constrained minimum, but it
will already be clear that the second of these is no more than stating simply hk ¼ 0;
as required. While we refer above to minimization of the function, it is readily seen
that conditions (3.3) apply equally to the maximum of a function.
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Notice that Eq. (3.3) reduce to ordinary minimization of function f ðxÞ in the
absence of constraints, since the second of Eq. (3.3) disappears. Just as for an
unconstrained problem, Eq. (3.3) are necessary but not sufficient conditions for an
equality constrained minimum. An extensive account of these conditions is given
by Reklaitis et al. [2], Walsh [1] and many other texts. In fact, the Lagrangian
function is not a minimum with respect to both xi and kk but is actually a saddle
point, that is a minimum with respect to xi and a maximum with respect to kk (or
vice versa if we have a maximum rather than a minimum of the original function).
This means that we cannot simply minimize function Fðx; kÞ with respect to both
x and k to find the minimum of the original constrained function. Equation (3.3)
represents only a stationary value of the Lagrangian function. In principle, we
require the ‘Hessian’ matrix of second derivatives of FðxÞ to determine whether the
result is a minimum, maximum or other stationary point. If the Hessian matrix is
positive definite, we have at least a local minimum, and if it is negative definite, we
have a local maximum. In any but very small problems, to obtain the Hessian
matrix demands a substantial amount of calculation. In practice, whether the out-
come is a minimum or a maximum is mostly clear from the nature of the problem.

Example 3.1 Minimize the function:

f ðxÞ ¼ x21 þ x22 þ x23

subject to equality constraints:

h1ðxÞ ¼ x1 þ x2 � a ¼ 0;

h2ðxÞ ¼ x3 � b ¼ 0:

The problem is illustrated in Fig. 3.7, from which it is clear that the point sought
is the nearest point to the origin on the line of intersection of the two constraints
(shown with heavy lines). The Lagrangian function is:

a

b
a

minimum is the nearest 
point to the origin on 
this line 

x2

x3

x1

Fig. 3.7 Three-dimensional
design space for the problem
in Example 3.1 (constraints
are shown with heavy lines)
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Fðx; kÞ ¼ x21 þ x22 þ x23 � k1 x1 þ x2 � að Þ � k2 x3 � bð Þ:

Differentiating this function with respect to xi and kk, we obtain:

@F
@x1

¼ 2x1 � k1 ¼ 0; @F
@k1

¼ � x1 þ x2 � að Þ ¼ 0;

@F
@x2

¼ 2x2 � k1 ¼ 0; @F
@k2

¼ � x3 � bð Þ ¼ 0;

@F
@x3

¼ 2x3 � k2 ¼ 0:

Solving these five equations gives:

x1 ¼ a
2 ; x2 ¼ a

2 ; x3 ¼ b;
k1 ¼ a; k2 ¼ 2b;
fmin ¼ a2

2 þ b2:

at the minimum. The above values of x1; x2; x3 are easily verified from Fig. 3.7. The
meaning of the Lagrange multipliers that are obtained is investigated in the fol-
lowing section.

Of course, in this simple example, a solution could also be obtained by sub-
stituting x2 ¼ a� x1 and x3 ¼ b in the original function and differentiating with
respect to x1 for the minimum of the now unconstrained function. In fact, this
amounts to selecting two dependent variables x2 and x3 to satisfy the two con-
straints, with the single remaining independent variable x1 used to minimize the
function, as in Table 3.1. ■

Example 3.2 Find the optimum thickness distribution ðt1; t2; t3; t4Þ for maximum
torsional stiffness of the rectangular torsion box in Fig. 3.8.

The rate of twist of a thin-walled, rectangular box (angle of twist per unit length)
is given by:

h ¼ T
4B2H2G

B
t1

þ B
t2

þ H
t3

þ H
t4

� �
:

where T is the applied twisting moment, and G is the shear modulus of the material
(this formula can be deduced from formulae in Chap. 7, or see [3] and many other

B

t3
t1

t2 t4 H
T

Fig. 3.8 Rectangular torsion
box in Example 3.2
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texts). For maximum torsional stiffness, we have to minimize the rate of twist. The
volume of material (per unit length) is:

V ¼ B t1 þ t2ð ÞþH t3 þ t4ð Þ:

For some given total volume of material V0, we have an equality constraint:

V � V0 ¼ 0 :

We write the Lagrangian function as:

F ¼ C
B
t1

þ B
t2

þ H
t3

þ H
t4

� �
� k B t1 þ t2ð ÞþH t3 þ t4ð Þ � V0½ �;

where, for simplicity, we define:

C ¼ T
4B2H2G

:

Differentiating the Lagrangian function:

@F
@t1

¼ �CB
t21

� kB ¼ 0;
@F
@t2

¼ �CB
t22

� kB ¼ 0;

@F
@t3

¼ �CH
t23

� kH ¼ 0;
@F
@t4

¼ �CH
t24

� kH ¼ 0;

@F
@k

¼ B t1 þ t2ð ÞþH t3 þ t4ð Þ � V0 ¼ 0 :

From the first four equations, we obtain directly:

C
t21
¼ C

t22
¼ C

t23
¼ C

t24
;

or

t1 ¼ t2 ¼ t3 ¼ t4 ¼ t; say

and

k ¼ �C
t2
:

Note that the value of the Lagrange multiplier is in this case negative. The
thickness t is found by substituting in the above equation for h, for some required
torsional stiffness T=h. Since under pure torsion the shear flow is uniform around
the whole torsion box, constant thickness amounts to equal shear stress in all panels
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or, in other words, a uniform strain energy density. This is the same result as found
for a truss structure in Chap. 2. ■

In a similar way to the above example, the problem in Sect. 2.2 could otherwise
be solved with the aid of the Lagrange multiplier. The deflection of the truss in
Sect. 2.2 is:

d ¼ 1
PE

X Filið Þ2
Vi

;

and its volume is:

V ¼
X

Vi:

To minimize d for given volume V0 of material, we write the Lagrangian
function:

F ¼ 1
PE

X ðFiliÞ2
Vi

� k
X

Vi � V0

� �

and differentiate with respect to each Vi in turn. The result is, of course, exactly the
same except that now a value is also obtained for the Lagrange multiplier.

3.2.1 Interpretation of Lagrange Multipliers

In the examples of the previous section, we found not only the constrained mini-
mum of the function and corresponding values of the variables, but also values of
the Lagrange multipliers. We need now to understand the meaning of the Lagrange
multipliers, and to do this, we consider the effect of a small increment �r in the
required value of one of the constraints hr. Since the Lagrangian function in
Eq. (3.1) is a function of both the variables xi and the Lagrange multipliers kk, by
the usual rule of differentiation (treating �r as variable), we can write:

@F
@�r

¼
Xn
i¼1

@F
@xi

� @xi
@�r

þ
Xm
k¼1

@F
@kk

� @kk
@�r

: ð3:4Þ

However, we know that in the above equation both:

@F
@xi

¼ 0 and
@F
@kk

¼ 0

for all values of i and k at a constrained maximum or minimum, in which case we
conclude that Eq. (3.4) reduces to:
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@F
@�r

¼ 0:

Alternatively, we can differentiate the Lagrangian function in Eq. (3.1) explicitly
with respect to �r:

@F
@�r

¼ @f
@�r

�
Xm
k¼1

kk
@hk
@�r

þ hk
@kk
@�r

� �
: ð3:5Þ

All constraints have to remain zero at a constrained maximum or minimum
except the chosen constraint hr ¼ �r, so in the above equation:

@hk
@�r

¼ 1 if k ¼ r; otherwise
@hk
@�r

¼ 0:

The summation in Eq. (3.5) now disappears, and since hr ! 0 as �r ! 0 in the
limit, Eq. (3.5) reduces to:

@F
@�r

¼ @f
@�r

� kr:

It was established above that @F
@�r

¼ 0; so we obtain finally:

kr ¼ @f
@�r

ð3:6Þ

at a constrained maximum or minimum of the function f. In more general terms, the
value of the Lagrange multiplier kk defines the sensitivity of the optimum value of a
function to the value of the corresponding constraint. Here, this is the rate of change
of the maximum or minimum of function f with change �r in each of the constraint
values. Positive kk indicates that the maximum or minimum value of f increases
with increase in each constraint value hk , and negative kk indicates that it decreases.

Example 3.3 Use the values of the Lagrange multipliers obtained in Examples 3.1
and 3.2 to confirm the meaning of the Lagrange multiplier given by Eq. (3.6).

Because of the simple algebraic solution:

fmin ¼ a2

2
þ b2

obtained in Example 3.1, the meaning of the Lagrange multiplier is readily con-
firmed as follows. Making small increments �1 and �2 in each of the constraints,
these can be rewritten:
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x1 þ x2 ¼ aþ �1;
x3 ¼ bþ �2;

and fmin is correspondingly increased to:

fmin ¼ aþ �1ð Þ2
2

þ bþ �2ð Þ2:

The rate of change of fmin with �1 and �2 can now be obtained directly by
differentiation:

@fmin

@�1
¼ aþ �1;

@fmin

@�2
¼ 2 bþ �2ð Þ:

In the limit, as �1 ! 0; �2 ! 0:

@fmin

@�1
¼ a;

@fmin

@�2
¼ 2b:

With the meaning of the Lagrange multiplier defined as in Eq. (3.6), we have
from above:

k1 ¼ @fmin

@�1
¼ a; k2 ¼ @fmin

@�2
¼ 2b:

This agrees with the values of the Lagrange multipliers already found in
Example 3.1.

Similarly, in Example 3.2, we found uniform thickness t to be the optimum for
torsional stiffness. Substituting in the previous formulae for V and h, we obtain:

V ¼ 2 BþHð Þt ¼ V0

at the constrained minimum, or:

t ¼ V0

2ðBþHÞ

and:

hmin ¼ 2CðBþHÞ
t

¼ 4CðBþHÞ2
V0

:

Again, with the meaning of k as in Eq. (3.6), and treating V0 as variable:
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k ¼ dhmin

dV0
¼ � 4CðBþHÞ2

V2
0

¼ �C
t2
:

This agrees with the value of k found previously in Example 3.2. Note that
increase in volume results in reduction in the angle of twist, accounting for the
negative k. ■

As already stated, the values of the Lagrange multipliers obtained in
Examples 3.1 and 3.2 are readily verified here simply by differentiation of the
minimum of the function, because in both cases we have an analytical solution for
the optimum. Generally, we do not have this, and values of the Lagrange multi-
pliers, if required, have to be obtained in the course of numerical optimization.

3.3 Inequality Constrained Problems

If, in an inequality constrained optimization, it can be known with certainty which
constraints will be active at the optimum, then of course these can be treated simply
as equality constraints, and the inactive constraints ignored. The method of
Lagrange multipliers in the previous section then still applies. However, it will not
in general be known which are the active constraints, and the optimization task is
then to select the correct set of active constraints and to seek the optimum on those
constraints. In this process, we can still use the Lagrange multipliers to distinguish
between those constraints that are correctly selected as active and those that are not.

Suppose first that we are seeking a minimum of function f ðxÞ; subject to
inequality constraints gjðxÞ� 0: If a constraint is correctly selected as active, then
gjðxÞ ¼ 0 on the constraint boundary, and any increase in the constraint value
gjðxÞ[ 0 to move away from the constraint and into the feasible region must lead
to an increase in the objective function f ðxÞ: Noting that the Lagrange multiplier
kj ¼ @f =@gj, the above condition corresponds to a positive value of the Lagrange
multiplier. However, if the Lagrange multiplier is negative, this means that moving
away from the constraint boundary and into the feasible region leads to a decrease
in f ðxÞ; and in other words, the constraint has been incorrectly selected. The
constraint is now preventing further reduction in f ðxÞ towards the true optimum and
should be discarded as an active constraint. An inactive constraint gjðxÞ[ 0 has no
influence on the objective function f ðxÞ; so we deduce that kj ¼ 0 for inactive
constraints.

The situation described above is illustrated in the design space in Fig. 3.9.
Suppose we first select constraints g1 � 0 and g2 � 0 as active constraints to find a
minimum of function f ðxÞ: Moving away from constraint g1 ¼ 0 at point A and
along constraint g2 ¼ 0 is seen to lead to a reduction in f ðxÞ: Constraint g1 is not,
therefore, correctly selected as an active constraint. This will be indicated by the
values of the Lagrange multipliers for the two constraints at point A: k1 will be
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negative for constraint g1 and k2 positive for constraint g2. Rejecting constraint g1
and selecting instead constraints g2 and g3 as active constraints, we see that any
movement from point B along either of the constraints leads to an increase in f ðxÞ:
The Lagrange multipliers for both these constraints will be positive, indicating that
constraints g2 and g3 are correctly selected as active and that point B is the optimum
point in the design space. Otherwise, an optimum might have been found between
points A and B, in which case only constraint g2 will have a positive Lagrange
multiplier.

The reverse of this rule applies to finding a maximum of f ðxÞ; in which case a
constraint is correctly selected as active if the Lagrange multiplier for that constraint
is negative. These rules are summarized in Table 3.2, also for the case of constraints
defined in the alternative form gjðxÞ� 0:

Example 3.4 Minimize the function:

f ðxÞ ¼ x21 þ x22 þ x23

decreasing   

A 

B 

f (x)
x2

x1

g2 = 0

g1 = 0

g3 = 0

Fig. 3.9 Search for the minimum of a function subject to inequality constraints

Table 3.2 Sign of the
Lagrange multiplier for active
constraints in inequality
constrained problems (kj ¼ 0
for inactive constraints)

Minimum of function Maximum of function

Form of constraint Form of constraint

gj � 0 gj � 0 gj � 0 gj � 0

kj positive kj negative kj negative kj positive
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subject to inequality constraints:

g1ðxÞ ¼ x1x2 � 1� 0;

g2ðxÞ ¼ 2x2 � 1� 0;

g3ðxÞ ¼ x3 � 1� 0:

To make use of the Lagrange multiplier method, we have first to establish which
constraints are active at the optimum. Assume first that all three constraints are
active. The Lagrangian function is:

F ¼ x21 þ x22 þ x23 � k1 x1x2 � 1ð Þ � k2 2x1 � 1ð Þ � k3 x3 � 1ð Þ:

Differentiating the function with respect to xi and kk, we obtain:

@F
@x1

¼ 2x1 � k1x2 ¼ 0; @F
@k1

¼ � x1x2 � 1ð Þ ¼ 0;

@F
@x2

¼ 2x2 � k1x1 � 2k2 ¼ 0; @F
@k2

¼ � 2x2 � 1ð Þ ¼ 0;

@F
@x3

¼ 2x3 � k3 ¼ 0; @F
@k3

¼ � x3 � 1ð Þ ¼ 0:

Solving these six equations gives:

x1 ¼ 2; k1 ¼ 8;
x2 ¼ 1

2 ; k2 ¼ � 15
2 ;

x3 ¼ 1; k3 ¼ 2:

It can be immediately verified that the three variables do satisfy the three con-
straints, when treated as equalities and that the problem is therefore fully con-
strained. However, since k2 is negative, we can conclude that the second constraint
has in fact been incorrectly selected as an active constraint. Removing this con-
straint from the Lagrangian function, the previous equations reduce to:

@F
@x1

¼ 2x1 � k1x2 ¼ 0; @F
@k1

¼ � x1x2 � 1ð Þ ¼ 0;

@F
@x2

¼ 2x2 � k1x1 ¼ 0;

@F
@x3

¼ 2x3 � k3 ¼ 0; @F
@k3

¼ � x3 � 1ð Þ ¼ 0:

Solving these five equations gives:

x1 ¼ �1; k1 ¼ 2;
x2 ¼ �1;
x3 ¼ 1; k3 ¼ 2:

where x1 and x2 must have the same sign to satisfy the first constraint. Note that
both k1 and k3 are now positive, as required. The second constraint g2ðxÞ� 0 is

72 3 The General Optimization Problem



more than satisfied provided that x2 ¼ þ 1; implying x1 ¼ þ 1 as well. We can
conclude that we now have a correct solution, with k2 ¼ 0 for the inactive second
constraint and fmin ¼ 3: Nevertheless, it will immediately be realized that a method
such as this rapidly becomes impractical if there are a large number of constraints.
The example is given here simply to illustrate the role of Lagrange multipliers in
identifying active and inactive constraints. ■

3.3.1 The Kuhn–Tucker Conditions

The Kuhn–Tucker conditions [4] are the necessary conditions for an optimum x� of
a function f ðxÞ subject to inequality constraints gjðxÞ� 0 and equality constraints
hkðxÞ ¼ 0: (In fact, the same conditions were later found to have been developed
earlier by Karush [5].) The Kuhn–Tucker conditions express in concise form
conditions for an equality and inequality constrained optimum introduced in the
previous sections. The three conditions for a constrained minimum at a point x� are
as follows:

(1) x� is feasible,
(2) kjgjðx�Þ ¼ 0 for all j, and

(3) @f ðx�Þ
@xi

�Pm
j¼1

kj
@gjðx�Þ
@xi

�Pp
k¼1

kkþm
@hkðx�Þ
@xi

¼ 0 for all xi,

with kj � 0 and kkþm unrestricted in sign.

The first condition states simply that the optimum must satisfy all constraints.
The second condition states that if inequality constraints are not precisely satisfied
(i.e. nonzero), then the corresponding Lagrange multipliers must be zero. The third
condition is the same as Eq. (3.2) except for the additional term to include
inequality constraints. Inactive constraints are automatically removed by the con-
dition kj ¼ 0 for those constraints.

The Kuhn–Tucker conditions are a formal statement of the necessary but not
sufficient conditions for a local optimum, provided that the objective function f ðxÞ
is continuously differentiable at the optimum and subject to some further ‘regularity
conditions’ on the nature of the constraints. It will be realized that the Kuhn–Tucker
conditions do not as such lead to a solution of the optimization problem, since the
task remains to determine which inequality constraints are active at the optimum
and, in a numerical solution, to search for the optimum on those constraints.
However, they can if required be used to verify an optimum once it has been found.

3.4 Spreadsheet Program

The spreadsheet extends the scope of the spreadsheet for a circular tube in axial
compression in the previous chapter by allowing eccentricity of the applied load
and by taking into account loss of stiffness due to yielding of the material at higher
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stresses. An eccentrically applied load causes progressive bending deformation of
the column with increase of load. Failure then occurs either by local buckling of the
tube during this bending deformation, or by excessive deformation coupled with
yielding of the material under a combination of bending and compressive stress,
before the classical Euler buckling load is reached.

3.4.1 Eccentrically Loaded Column

The spreadsheet uses Solver to optimize the eccentrically loaded column in
Fig. 3.10, taking into account the effect of yielding of the material at higher
stresses. The column is a circular tube with given (effective) simply supported
length and compressive load. The diameter and thickness of the tube are optimized
for minimum weight. The spreadsheet is shown in Fig. 3.11.

Under an eccentrically applied compressive load (i.e. along an axis offset from
the neutral axis of the column), bending of the column causes bending stresses in
addition to the compressive stress due directly to the applied load. The maximum
stress is given by the well-known secant formula (see Timoshenko and Gere [6]):

rmax ¼ P
A

1þ ec
r2

sec
L
2r

ffiffiffiffiffiffi
P
AE

r !
;

where P is the compressive applied load, A is the cross-sectional area of the column,
e is the eccentricity of the applied load, c is the distance from the neutral axis to the
outer edge of the column (in this case, the outer radius of the tube), L is its effective
simply supported length, r is the radius of gyration of the cross section, and E is the
modulus of elasticity of the material. Substituting r2 ¼ I=A, the last part of this
formula may be rewritten as:

L
2r

ffiffiffiffiffiffi
P
AE

r
¼ L

2

ffiffiffiffiffi
P
EI

r
;

where I is the second moment of area of the cross section. As this term approaches
p=2, the stress rmax increases without limit. This corresponds to the theoretical
Euler buckling load of the column in Sect. 2.1. The maximum stress rmax in the

P P

L

e

Fig. 3.10 Eccentrically
loaded column
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cross section is limited to a specified allowable stress rc of the material, which in
effect limits the deformation of the column. Eccentricity e can also be used to
estimate the effect of some initial bow, or lack of straightness, of a column if the
maximum deviation from the axis of the column is added to any eccentricity of the
applied load. The Euler buckling stress rE is given in the spreadsheet for reference
only since, unless eccentricity e ¼ 0, the maximum stress rmax must always be less
than rE.

The tubular section of the column is also subject to local, or short wavelength,
buckling. The local buckling stress given in Sect. 2.1:

rL ¼ KE
t
R

;

with thickness t and mean radius R is used for this, but is taken now to refer to the
maximum stress rmax at some point around the circumference. Buckling of a
cylindrical shell (here a circular tube) is known to be highly sensitive to small local
imperfections. A reduction factor K=K0 is introduced to represent this, where K0 ¼
0:605 is the theoretical buckling coefficient. The extent of this reduction depends, of
course, on the degree of imperfection. Figure 3.12 plots values of K=K0 against d=t,
based on accumulated test results for a large number of practical cylindrical shells
in ESDU Data Item 83034 [7], where d is the maximum deviation from a cylinder
with no imperfection. While Fig. 3.12 is principally for large, thin shells, rather
than for the relatively thick tubes intended here, reduction factors K=K0 may be
used as a guide in the absence of other data.

At higher stresses, yielding of the material may occur. This is taken into account
in the formula for rmax by replacing E by the tangent modulus Et. For a wide range
of materials with a gradual yielding behaviour, the stress–strain relation can be
expressed by the Ramberg–Osgood formula (Ramberg and Osgood [8]):

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

K 
/ K

0

/ t

Fig. 3.12 Reduction in the
local buckling coefficient of a
circular tube due to initial
imperfections (based on data
in ESDU Data Item 83034,
with permission from IHS
ESDU)
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� ¼ r
E
þ 0:002

r
r2

� �m

;

where r2 is the 0.2% proof stress of the material and index m defines the sharpness
of the yield curve. The tangent modulus, widely used for Euler buckling, is then:

Et ¼ dr
d�

¼ E

1þ 0:002Em
r2

r
r2

� �m�1 :

The tangent modulus is evaluated here at the average stress P=A in the column.
The Ramberg–Osgood formula and use of a reduced modulus are discussed further
in Chap. 7. Generalized stress–strain curves, based on the Ramberg–Osgood for-
mula, are given in ESDU Data Item 76016 [9].

The tangent modulus is also conservatively substituted for E in the local
buckling formula, but this is based now on the maximum stress rmax in the column
(an alternative formula for the effective modulus Eeff for local buckling is readily
substituted in the spreadsheet if so required). In many practical problems, the
thickness of the tube will be limited by some specified minimum thickness, and
both the reduction factor for imperfections and the choice of effective modulus for
local buckling become less significant.

The compressive load P, effective length L, material data referred to above,
maximum and minimum values of outer diameter d and thickness t, and K=K0 have
to be entered in the spreadsheet, as well as suitable initial values of design variables
d and t. Solver can then be run with the GRG Nonlinear method to optimize the
diameter and thickness of the column. Note that dmin, dmax, tmin and tmax may not be
left blank. Parameters and design variables to be entered are listed in Table 3.3.

With no limits on diameter or thickness, optimization will lead to a maximum
stress rmax equal to the local buckling stress rL, neither of which may exceed the
allowable stress of the material. The achieved efficiency g, given in Sect. 2.1.1, is:

g ¼ r

E2=3ðP=L2Þ1=3
;

where r is the average stress in the column. Note that efficiency η is based on the
initial elastic modulus E. It is reduced in value by the stress r which takes account
of reduction in modulus with yielding as well as the effect of eccentric applied load
and any dimensional restrictions. If the stresses r2 and rc are set sufficiently high,
K=K0 ¼ 1, e ¼ 0, and again if limits on dimensions do not intervene, the spread-
sheet produces identical results to the earlier spreadsheet ‘Circular Tube in
Compression’ in Sect. 2.3.1, with a maximum efficiency g ¼ 0:780:

The spreadsheet can be used to produce plots of r against P=L2 for different
materials, as in Fig. 2.4, but now with the effect of yielding at higher stresses, and
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to investigate the effect of eccentricity of load on the minimum weight of a column
to carry a given load. Attention is again drawn to the warning about the choice of
initial values of design variables in the final paragraph of Sect. 2.3.2. Initial values
that differ widely from the final optimum values can lead to Solver being unable to
reach a solution.

3.5 Summary

A rectangular box beam is used to illustrate the general optimization problem and
the complex relationship that is likely to exist between design variables and con-
straints in a realistic design. Constraints may depend on many design variables,
while the same variables may enter into many different constraints. This implies that
constraints cannot be satisfied individually in an iterative resizing procedure, as
done previously for a truss structure. While it is in principle possible to find a
solution that satisfies all constraints, in this more general situation, there is little
reason to suppose that the resulting design will be an optimum. Furthermore, in a
practical optimization problem, it is seldom known beforehand which of the
inequality constraints are going to be active at the optimum and which are not.
Active constraints are those that are identically satisfied; inactive constraints are
those that are satisfied in a ‘greater than’ or ‘less than’ sense. Active and inactive
constraints, as well as the distinction between an intersection optimum and a
mathematical one, are illustrated in different design spaces. Equality constraints

Table 3.3 Data entry for spreadsheet program ‘Eccentrically Loaded Column’

Parameters

Compressive load P Enter value in cell C6 as a positive number

(Effective) simply—supported
length L

Enter value in cell C7

Elastic modulus E,
Ramberg-Osgood index m

Enter values in cell C8: C9

0.2% proof stress r2, allowable
compressive stress rc

Enter values in cells C10: C11 as positive numbers

Eccentricity e Enter value in cell C12 (enter zero if no eccentricity)

Min. and max. diameter and
thickness dmin; dmax; tmin; tmax

Enter values in cells C13: C16 (cells may not be left
blank)

Reduction factor for local
imperfection K=K0

Enter value in cell C17, K=K0 � 1 (may not be left
blank)

Theoretical local buckling
coefficient K0

Enter value in cell C18 (K0 ¼ 0:605, or other value
depending on the end conditions)

Variables

Outer diameter d, thickness t Enter initial values in cells F7: F8 within the specified
range
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must, of course, always be identically satisfied. A numerical optimization procedure
has both to select the correct set of active constraints and to search for the optimum
on those constraints. Numerical optimization methods are discussed in detail in
Chaps. 4 and 5, and a numerical optimization for the box beam described earlier is
developed in Chap. 7.

The Lagrange multiplier method provides a mathematical basis for optimization
in equality constrained problems, provided that both the constraints and the
objective function are differentiable. Values of the Lagrange multipliers indicate the
sensitivity of the optimum to individual constraint values, that is the change in the
optimum value of the objective function for small changes in that constraint. In
inequality constrained problems, Lagrange multipliers for inactive constraints take
zero values which, in effect, remove the inactive constraints from an inequality
constrained problem for as long as they remain inactive. In mathematical terms, the
Kuhn–Tucker conditions are the formal statement of the necessary conditions for an
optimum subject to both equality and inequality constraints.

Exercises

3:1 Use the Lagrange multiplier method to find the minimum of the function:

f xð Þ ¼ x21 þ x22 þ x23

subject to the constraint:

hðxÞ ¼ x1 þ 2x2 þ 3x3 � 7 ¼ 0:

Follow the method of Example 3.1.
3:2 Find the minimum of the function:

f ðxÞ ¼ 2x2 þ x1

subject to inequality constraints:

g1ðxÞ ¼ 2x2 � x1 � 0;

g2ðxÞ ¼ x2 � 2x1 þ 4� 0;

g3ðxÞ ¼ x2 þ x1 � 3� 0;

g4ðxÞ ¼ x1 � 1� 0:

Only two of the above constraints are active at the minimum. Draw the design
space to find the active constraints. With the active constraints known, treat
these as equalities and solve the problem analytically by the Lagrange
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multiplier method. Notice that the Lagrange multipliers are positive, con-
firming correctly chosen active constraints.

3:3 A thin circular tube of radius R and length L has flat, closed ends. Use the
Lagrange multiplier method to find an expression for the minimum total
surface area A of the material of the tube and the two ends, if it has a required
internal volume V0.
Derive expressions for the total surface area and for the internal volume to set
up the Lagrangian function.

3:4 A rectangular container is to be made of materials that cost €20/m2 for the
bottom, €30/m2 for the sides and €10/m2 for the top. The volume of the
container has to be 4 m3. Use the Lagrange multiplier method to calculate the
minimum cost of the container and its corresponding dimensions.
Use the value of the Lagrange multiplier found above to estimate the minimum
cost if the volume of the container is increased to 5 m3.
The Lagrange multiplier gives the rate of change of the objective function
(cost) with the value of the constraint (volume).

3:5 Verify the principle of simultaneous buckling modes for a circular tube loaded
in compression by deriving expressions for the Lagrange multipliers for this
problem.
Use the Lagrange multiplier method to optimize the circular tube, with only
flexural and local buckling constraints (use the formulae in Sect. 2.1). Derive
expressions for the optimum radius and thickness and for the Lagrange
multipliers. Observe that the Lagrange multipliers are positive for all values
of P, L and E.

3:6 Set up a spreadsheet for the problem in Exercise 3.2, and use Solver to find the
minimum of the function.
Compare the values of the Lagrange multipliers with those found in the
exercise. These are found by selecting the Sensitivity Report in the Solver
result box after optimization (see the Appendix). Notice that the Lagrange
multipliers are zero for the inactive constraints.

3:7 Repeat Exercise 3.4, using Solver to find the minimum cost of the 4 m3

container and again after increase in volume to 5 m3.
Use the formulae derived in Exercise 3.4 to set up a spreadsheet for this
problem. The cost has to be minimized, with variables the dimensions of the
container and its volume as the single constraint. Compare the value of the
Lagrange multiplier in the Sensitivity Report with the value found in
Exercise 3.4. By repeating the optimization for a volume of 5 m3, the increase
in cost can be compared with the estimated increase based on the Lagrange
multiplier in Exercise 3.4.

3:8 Use the spreadsheet ‘Eccentrically Loaded Column’ to show the effect of
eccentric load on the minimum cross-sectional area of a column of effective
length 1000 mm, under a compressive load of 10,000 N.
Take a range of eccentricity from 0 to 50 mm, with K=K0 ¼ 1:0 for no local
imperfection. Use the material data already present in the spreadsheet. Plot a
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graph of cross-sectional area, diameter and thickness after optimization
against eccentricity. Observe the different values of stress at each eccentricity.

3:9 Use the spreadsheet ‘Eccentrically Loaded Column’ to show the effect of
yielding on the minimum cross-sectional area of a column of effective length
1000 mm, over a range of compressive load from 5000 to 50,000 N.
Take e ¼ 0 for a perfectly straight column and K=K0 ¼ 1:0 for no local
imperfection. Use the material data already present in the spreadsheet. Note
the cross-sectional area and the average stress at each load, and observe the
reduction in modulus with increasing load. Plot a graph of stress after opti-
mization against structural index P=L2 on a log-log basis. Add a line to this
graph for the same column with no yielding (efficiency g ¼ 0:780).

3:10 Modify the spreadsheet ‘Eccentrically Loaded Column’ to optimize a
square-section tube under eccentric load.
Use the formulae in Sect. 2.1.1 for the Euler and local buckling stresses of a
square-section tube.
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Chapter 4
Numerical Methods for Unconstrained
Optimization

Abstract Unconstrained optimization is the search for the maximum or minimum
of a function with no restriction on the values of the variables. At the same time, it
forms the basis for methods of constrained optimization in the next chapter.
Zero-order methods use only function values, progress made in the previous step
pointing the way to the next step. The Hooke and Jeeves method is one such
method, suitable for small problems with little programming effort. First-order
methods employ the gradient of the function, usually obtained by finite difference,
to derive a search direction. This is followed by a line search along this direction for
the current maximum or minimum, performed either by progressive reduction of the
region in which the maximum or minimum is to be found or by polynomial
interpolation. In its simplest form, this is the steepest descent method. However, by
the use of gradient data from the previous iteration, an improved search direction
can be found, with faster convergence. This is the Fletcher–Reeves method. A more
general formulation is based on a quadratic approximation to the objective function,
referred to as a second-order method or quasi-Newton method. This involves
progressively building up an approximation to the inverse of the Hessian matrix of
second derivatives to deduce a search direction. A spreadsheet program for the
Hooke and Jeeves method is also used in the next chapter for the penalty function
method for constrained optimization.

In previous chapters, we made use of the Solver tool in various examples of
unconstrained and constrained optimization. This was without further consideration
of the methods underlying numerical optimization routines such as those in Solver.
Numerical optimization provides the means of solving an optimization problem
when it is too complex for analytical solution and in particular for large problems
when the analysis itself is numerical or derived from some other form of numerical
data. Numerical methods are, therefore, at the heart of most practical optimization
problems. Methods for unconstrained optimization, that is minimization of a
function in the absence of constraints, are introduced in the present chapter and in
the following chapter methods for constrained optimization. While few practical
problems are likely to be fully unconstrained, unconstrained optimization forms the



basis of the constrained optimization methods in the next chapter. In both chapters,
the aim is to present a broad outline of numerical optimization methods, in sufficient
detail to enable the reader to make good use of existing optimization codes and to
set up an optimization problem in an efficient way. It is not the intention to present
these in the detail necessary to implement such methods in the computer, since this
is generally a substantial programming task reserved for the expert in the field.

Numerical optimization is essentially an iterative process, the most common
methods consisting of the following two steps. The first is to identify a ‘search
direction’, that is a direction in which to move in the design space to approach as
closely as possible the required minimum. The second is to perform a ‘line search’
along this direction to locate the minimum point on the line. Following a successful
line search, a new search direction is calculated, and the process is repeated until a
sufficiently accurate minimum has been found. Various methods for determining a
search direction will be introduced in Sect. 4.1 and in Sect. 4.2 methods for the line
search. However, before this, we shall consider a simple ‘direct search’ routine,
requiring no more than repeated evaluations of the function to be minimized.
Finally, it might be pointed out that while we refer above only to the minimum of a
function, not the maximum, optimization methods can of course be applied equally
to either problem with no change in the methods used, if only by changing the sign
of the objective function. For simplicity, we shall assume throughout this and the
following chapter that it is the minimum of a function that we require.

4.1 Unconstrained Optimization

In principle, it would be possible to search for the minimum of an unconstrained
function in a trial-and-error fashion, simply by evaluating enough points in the
design space until a result judged to be sufficiently close to the minimum emerges.
In a more structured approach, we might proceed as follows. Starting from some
chosen initial point, we take a step in each design variable in turn to explore
neighbouring points. At any point at which the function value is reduced, we take
the next step from that point. This is continued until no further reduction is found.
To refine the search, we then reduce the step size and resume the exploration of
neighbouring points, now closer to the required minimum. Further reductions in
step size are made until a sufficiently accurate minimum has been found. While this
whole process is likely to involve a large number of individual steps, it can be
accelerated in the following way. Provided that, after any complete round of the
design variables in the ‘exploratory’ moves above, there has been some reduction in
the function we can make a further ‘pattern’ move in the direction in which we have
moved from the point at the beginning of that round to the current point. This is on
the basis that progress has already been made in this direction, and it is reasonable
to suppose that a further move in the same direction, by an amount equal to the
progress made in that round, will speed up the search. This is the well-known
method proposed by Hooke and Jeeves [1], at one time used extensively for many
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practical optimization problems (a useful description of the method is also given by
Walsh [2]). The spreadsheet program in Sect. 4.3.1 demonstrates the use of the
Hooke and Jeeves method for a problem to be defined by the user.

However, the purpose of any numerical optimization routine must be to locate
the minimum of a function in the least number of steps, that is to follow a path
through the design space leading as directly as possible to the desired optimum.
Clearly to proceed by the step-by-step procedure described above, even with the
pattern moves, requires the evaluation of the objective function many times. This
can rapidly become very inefficient for larger problems, or when the function itself
is expensive to compute. It will be observed that only function values are calculated
in the above method (no derivatives of the function), and for this reason, it is
referred to as a ‘zero-order’ method. More efficient zero-order methods are avail-
able, notably that of Powell [3], based on so-called conjugate directions, but the
number of function evaluations remains high for large problems. For this reason, no
further attention is given to zero-order methods in this chapter, other than for the
previously mentioned program for the Hooke and Jeeves method in Sect. 4.3.1.
However, the main reason for the brief discussion of the Hooke and Jeeves method
here is to point out that exploration around the current point coupled with a pattern
move is actually an attempt to determine a search direction with which to approach
the minimum as quickly as possible. To find the most effective search direction is
the prime goal of most conventional optimization methods. By first establishing a
search direction, we proceed towards to the required minimum by allowing all
variables to change by appropriate amounts at the same time, rather than one at a
time, and this is essentially where the advantage lies. For the best search direction,
we have to evaluate derivatives of the function, generally by finite difference. Since
we use first derivatives, such methods are referred to as ‘first-order’ or gradient
methods. The steepest descent method is the simplest form of gradient-based
method, and its application to unconstrained optimization is discussed in the fol-
lowing section, before going on to discuss more elaborate methods in subsequent
sections.

4.1.1 Steepest Descent Method

In the steepest descent method, also referred to as Cauchy’s method, derivatives of
the objective function are evaluated at some point in the design space and used to
determine the best search direction from that point. By this is meant the direction in
which the function decreases the most rapidly—in other words, the direction of
steepest descent. A line search is then conducted along the search direction to locate
the minimum point along this line. This point is not, of course, the actual minimum
of the function, because the derivatives which have been used apply only at the
point from which the line search is begun and generally change as we proceed along
the search direction. Therefore, at the minimum point just found, we evaluate the
derivatives again, find a new search direction, and conduct another line search. This
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rather intuitive procedure is continued until a sufficiently small change in the value
of the function is found. This is then the required minimum. It has to be assumed
that the function is ‘smooth’, that is continuous with continuous derivatives in the
region of interest. The procedure is illustrated in Fig. 4.1, with contour lines of an
unconstrained function shown as broken lines. In the figure, starting at some point
1, we perform a line search along the steepest descent direction to locate a minimum
at point 2. At this point, a new search direction is calculated, followed by another
line search to locate the next minimum at point 3 and so on.

The best search direction implies the greatest reduction df in a function f ðxÞ,
x ¼ x1; x2; . . .; xn, at a nominal ‘unit distance’ from a given point. For this, we
require the derivatives @f

@x1
; @f
@x2

; . . .; @f
@xn

, as already stated generally evaluated by
finite difference. For df , we can write:

d f ¼ @ f
@ x1

dx1 þ @ f
@x2

dx2 þ � � � þ @f
@ xn

dxn:

If we define the search direction by its components:

s1 ¼ dx1; s2 ¼ dx2; . . .; sn ¼ dxn;

we have:

d f ¼ f1s1 þ f2s2 þ � � � þ fnsn ¼
X

n

i¼1

fisi; ð4:1Þ

where f1; f2; . . .; fn are the derivatives of f xð Þ with respect to x1; x2; . . .; xn. To
minimize d f , that is for the greatest reduction in f ðxÞ subject to:

X

n

i¼1

s2i ¼ s21 þ s22 þ � � � þ s2n ¼ 1 ð4:2Þ

1 

2 

3 

x2

x1

Fig. 4.1 Steepest descent
method (contours of the
function shown as broken
lines)
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to limit movement in any direction to unit distance from the given point, we can
write the Lagrangian function:

F ¼
X

n

i¼1

fisi � k
X

n

i¼1

s2i � 1

" #

: ð4:3Þ

Differentiating with respect to each si and setting the result equal to zero, we
obtain:

@F
@ si

¼ fi � 2ksi ¼ 0;

giving:

si ¼ fi
2k

¼ 1
2k

� @ f
@ xi

:

Recalling Eq. (3.6) in Chap. 3, the Lagrange multiplier k represents the rate of
increase in function f with increase in value of the constraint, in this case the
distance from the given point. For movement in the direction of decreasing f, the
Lagrange multiplier k must be negative, therefore, but its actual numerical value is
irrelevant because we are only interested in the relative values of s1; s2; . . .; sn. The
components si of the required search direction are then directly related to the
negative of the derivatives of f:

si ¼ � @f
@xi

:

A line search is conducted along the search direction until the minimum along
this line is found, as already indicated in Fig. 4.1. At that point, a new search
direction is calculated, and another line search is performed. Numerical methods for
the line search are given in Sect. 4.2.

The set of derivatives @f
@x1

; @f
@x2

; . . .; @f
@xn

n o

is termed the gradient rf of function

f ðxÞ. In terms of rf and the search direction s ¼ s1; s2; . . .; snf g, Eqs. (4.1) and
(4.2) can be written more compactly in matrix form as:

minimise : df ¼ strf ;
subject to : sts ¼ 1:

The Lagrangian function in Eq. (4.3) becomes:

F ¼ sTrf � kðsTs� 1Þ;
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(where superscript T denotes the transpose of s, i.e. a row vector). The resulting
search direction:

s ¼ �rf

is, of course, no different, but the notation introduced here is necessary in the
following sections.

Example 4.1 Use the steepest descent method to find the minimum of the function:

f ðxÞ ¼ x21 þ 2x22 þ 1:

While the purpose of this chapter is, of course, to study numerical optimization
methods, a simple function has been chosen for this example so that the first few
steps of the steepest descent method can be demonstrated analytically. The mini-
mum of the above function is readily seen to be f ¼ 1 at x1 ¼ x2 ¼ 0. However, to
locate the minimum by the steepest descent method, we arbitrarily choose an initial
point x1 ¼ �2; x2 ¼ �1. The derivatives of the function are as follows:

@ f
@x1

¼ 2x1;
@f
@ x2

¼ 4x2:

At the initial point, the components of the search direction are therefore:

s1 ¼ � @f
@x1

¼ 4; s2 ¼ � @f
@x2

¼ 4:

The line search can also be performed analytically in this example. This is along
the line:

x2 ¼ x1 þ 1

passing through the initial point x1 ¼ �2; x2 ¼ �1 and having a slope:

dx2
dx1

¼ s2
s1

¼ 1;

as required. On this line, substituting for x2 from above:

f ¼ x21 þ 2ðx1 þ 1Þ2 þ 1;

with a minimum at:

x1 ¼ � 2
3
; x2 ¼ 1

3
:
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At this point, we now evaluate the components of a new search direction:

s1 ¼ � @f
@x1

¼ 4
3
; s2 ¼ � @f

@x2
¼ � 4

3
:

As above, we define a line for the search direction:

x2 ¼ �x1 � 1
3
;

which, on substitution for x2, gives:

f ¼ x21 þ 2 �x1 � 1
3

� �2

þ 1

with a minimum at:

x1 ¼ � 2
9
; x2 ¼ � 1

9
:

The next search direction now has to be evaluated at this point, and the pro-
cedure continued.

It is seen that we have already made substantial progress towards the minimum
of the function. The procedure is continued further in Table 4.1 (the results of the
present example were also used to draw Fig. 4.1). After seven iterations, we have
approached the minimum to within 0.1 per cent of the initially chosen values. It will
be appreciated that the analytical solution in this example is only for the purpose of
illustrating the method. As already said, when implemented in the computer
derivatives of the function to establish a search direction would normally be
obtained by finite difference, and the line search would also be performed
numerically, as described later in this chapter. ■

Table 4.1 Sequence of
moves in the steepest descent
method in Example 4.1

Iteration x1 x2 f ðxÞ s1 s2
0 −2.0000 −1.0000 7.0000 −4.0000 −4.0000

1 −0.6667 0.3333 1.6667 −1.3333 1.3333

2 −0.2222 −0.1111 1.0741 −0.4444 −0.4444

3 −0.0741 0.0370 1.0082 −0.1481 0.1481

4 −0.0247 −0.0123 1.0009 −0.0494 −0.0494

5 −0.0082 0.0041 1.0001 −0.0165 0.0165

6 −0.0027 −0.0014 1.0000 −0.0055 −0.0055

7 −0.0009 0.0005 1.0000 −0.0018 0.0018
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4.1.2 Fletcher–Reeves Method

While steepest descent is the simplest form of gradient-based method, it is by no
means the most effective. It is shown in Table 4.1 that successive steps in the steepest
descent method become increasingly small. In an extreme situation, this effect is
referred to as ‘zigzagging’ to the minimum. Although in the previous example there
was no noticeable difficulty, in a larger problemorwith a less favourable function to be
minimized convergence can become very poor. The method of Fletcher and Reeves
[4] seeks to improve this by basing each successive search direction on both the
current point and the previous one, in effect making use of the whole sequence of
iterations as the process approaches the requiredminimum. The formula for the search
direction at the next iteration, in the form in which it is usually presented, is:

sðkþ 1Þ ¼ �rf ðxÞðkþ 1Þ þ
rf ðxÞðkþ 1Þ

�

�

�

�

�

�

2

rf ðxÞðkÞ
�

�

�

�

�

�

2 sðkÞ;

where superscripts ðkþ 1Þ and (k) refer to the next iteration and the last one,
respectively, and rf ðxÞk k is the norm of rf ðxÞ:

rf ðxÞk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 21 þ f 22 þ � � � þ f 2n

q

;

in which f1; f2; . . .; fn are again the derivatives of f ðxÞ with respect to x1; x2; . . .; xn.
The first iteration, since there has been no previous one, still has to be by steepest
descent. The Fletcher–Reeves method makes a substantial improvement over the
basic steepest descent method, requiring far fewer function evaluations, as illus-
trated in Example 4.2. It is left to the reader to consult the original reference or other
text for the derivation of this formula.

Example 4.2 Repeat Example 4.1 using the Fletcher–Reeves method for the search
direction.

As in the previous example, because a suitably simple function has been chosen,
we can again illustrate the Fletcher–Reeves method analytically. The first iteration,
by steepest descent, is identical to Example 4.1. The two terms of the gradient
rf ðxÞ at the initial point x1 ¼ �2; x2 ¼ �1 have already been calculated:

f ð1Þ1 ¼ @f
@x1

¼ �4; f ð1Þ2 ¼ @f
@x2

¼ �4;

and at the first new point x1 ¼ � 2
3 ; x2 ¼ 1

3, we have:

f ð2Þ1 ¼ � 4
3
; f ð2Þ2 ¼ 4

3
;
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Therefore, for the second iteration:

rf ðxÞð2Þ
�

�

�

�

�

�

2

rf ðxÞð1Þ
�

�

�

�

�

�

2 ¼
ðf ð2Þ1 Þ2 þðf ð2Þ2 Þ2
ðf ð1Þ1 Þ2 þðf ð1Þ2 Þ2

¼ ð�4=3Þ2 þ 4=3ð Þ2
ð�4Þ2 þð�4Þ2 ¼ 1

9
:

With the search direction sð1Þ1 ¼ sð1Þ2 ¼ 4 from the initial steepest descent step

and the gradient terms f ð2Þ1 and f ð2Þ2 from above, the next search direction according
to the Fletcher–Reeves method is:

sð2Þ1 ¼ � � 4
3

� �

þ 1
9
� 4 ¼ 16

9
;

sð2Þ2 ¼ � 4
3
þ 1

9
� 4 ¼ � 8

9
:

As before, we define a line for the new search direction:

x2 ¼ � x 1

2
:

This line passes through the required point x1 ¼ � 2
3 ; x2 ¼ 1

3 and has slope:

dx2
dx1

¼ sð2Þ2

s ð2Þ1

¼ � 1
2
:

Substituting for x2 in the function:

f ðxÞ ¼ x21 þ 2x22 þ 1

gives:

f ¼ 3
2
x21 þ 1

with a minimum at:

x1 ¼ 0; x2 ¼ 0:

At first sight, we have the rather remarkable result that the exact minimum has
been reached in only two iterations. However, this should not be surprising because
the Fletcher–Reeves method is based on the assumption that the function to be
minimized is quadratic, which of course is the case in this example. Such favourable
convergence should not be expected with a more general function. Nevertheless,
even in a simple example such as this, we see the considerable advantage of the
Fletcher–Reeves method over the basic steepest descent method. ■
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4.1.3 Quasi–Newton Methods

The Fletcher–Reeves method (one of a class of methods referred to as ‘conjugate
gradient methods’) is based on a quadratic approximation to the objective function.
A more general formulation, again based on a quadratic approximation, is usually
referred to as a ‘quasi-Newton method’. To explain this term, in the classical
Newton method, the ‘Hessian’ matrix H of second derivatives of the objective
function is evaluated at each iteration. The change in gradient due to a move from a
point x to point x0 is HðxÞðx0 � xÞ. Therefore, to reduce the gradient rf ðxÞ at point
x to zero at a minimum point x0, we set:

HðxÞðx0 � xÞ ¼ �rf ðxÞ;

or premultiplying by HðxÞ�1:

x0 ¼ x�HðxÞ�1rf ðxÞ:

Unless the original function is in fact quadratic, this has to be repeated until
converged. However, if this procedure is adopted in any but a small problem,
calculation of all second derivatives rapidly becomes impractical, in particular in a
numerical optimization where these are calculated by finite difference. Furthermore,
in some situations, the process may diverge rather than converge. In a
quasi-Newton method, estimates of the Hessian matrix are progressively improved
with the results of each previous iteration as the process continues. These are then
used, not for a direct calculation of the optimum as in Newton’s method, but for a
new search direction expressed as:

s ¼ �Brf ðxÞ;

where matrix B is an approximation to the inverse of the Hessian matrix, updated at
each iteration.

Widely used formulae for updating B are the Davidon–Fletcher–Powell
(DFP) formula [5, 6] and the Broyden–Fletcher–Goldfarb–Shanno (BFGS) formula
[7–10]. These are stated without derivation below. In the usual notation, the DFP
formula is:

Bðkþ 1Þ ¼ BðkÞ � BðkÞy yTBðkÞ

yTBðkÞy
þ ppT

pTy
; ð4:4Þ

where

y ¼ rf ðxÞðkþ 1Þ � rf ðxÞðkÞ
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are the differences in gradient from which improved estimates of matrix B of second
derivatives are progressively built up, and:

p ¼ xðkþ 1Þ � xðkÞ:

Superscripts ðkþ 1Þ and (k) refer again to the next iteration and the last one,
respectively. The BFGS formula is:

Bðkþ 1Þ ¼ BðkÞ þ 1þ yTBðkÞy
pTy

� �

ppT

pTy
� p yTBðkÞ

pTy
� BðkÞy pT

pTy
: ð4:5Þ

The initial matrix B is the identity matrix I, so the first step in both cases is again
steepest descent. In both methods, a new search direction is determined by means of
one or other of the above formulae, followed directly by a line search in this
direction. Both methods give a further significant improvement in convergence, at
the expense of extra complexity, while a disadvantage of both compared with the
Fletcher–Reeves method is the need to store matrix B in a large problem.

Example 4.3 Calculate a new search direction after the first iteration in Example 4.1
using the DFP update formula in Eq. (4.4).

The first iteration in Example 4.1 was by steepest descent. In the notation of
Eq. (4.4):

xð1Þ ¼ �2
�1

� �

; xð2Þ ¼ �2=3
1=3

� �

giving:

p ¼ xð2Þ � xð1Þ ¼ 4=3
4=3

� �

:

Also:

rf ðxÞð1Þ ¼ �4
�4

� �

; rf ðxÞð2Þ ¼ �4=3
4=3

� �

giving:

y ¼ rf ðxÞð2Þ � rf ðxÞð1Þ ¼ 8=3
16=3

� �

:

The initial B matrix is the unit matrix B ¼ I. With p and y from above, we
calculate the following terms in the DFP update formula (expressed now in
decimals):
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Bð1Þy yTBð1Þ ¼ 1 0

0 1

� 	

2:667

5:333

� �

2:667

5:333

� �T 1 0

0 1

� 	

¼ 7:111 14:22

14:22 28:44

� 	

;

yTBð1Þy ¼ 2:667

5:333

� �T 1 0

0 1

� 	

2:667

5:333

� �

¼ 35:56;

p pT ¼ 1:333

1:333

� �

1:333

1:333

� �T

¼ 1:778 1:778

1:778 1:778

� 	

;

pTy ¼ 1:333

1:333

� �T 2:667

5:333

� �

¼ 10:67:

After dividing each term in the matrices Bð1Þy yTBð1Þ and ppT above by 35.56
and 10.67, respectively, we have according to Eq. (4.4) for the second iteration:

Bð2Þ ¼ 1 0
0 1

� 	

� 0:2000 0:4000
0:4000 0:8000

� 	

þ 0:1667 0:1667
0:1667 0:1667

� 	

¼ 0:9667 �0:2333
�0:2333 0:3667

� 	

:

The new search direction is therefore:

s ¼ �Bð2Þrf ðxÞð2Þ ¼ 0:9667 �0:2333
�0:2333 0:3667

� 	 �1:333
1:333

� �

¼ 1:600
�0:800

� �

;

or

s1 ¼ 1:600; s2 ¼ �0:800:

It will be observed that this search direction is the same (aside from the actual
numerical values of s1 and s2) as at the second iteration in the Fletcher–Reeves
method in Example 4.2. This is because the function to be minimized was chosen to
be a simple quadratic function, but in general, the DFP update will, of course, give a
different result to the Fletcher–Reeves method. ■

4.2 Line Search Methods

As will already have become clear, the line search is an essential component of the
optimization methods described in Sect. 4.1 and, as we shall see, in methods for
constrained optimization in Chap. 5. In a line search, we are looking for the min-
imum of the objective function along the line of the current search direction. Being
repeated many times during the optimization, the line search is generally one of the
most time-consuming parts of the whole procedure. For this reason, it is essential
that it is done as efficiently as possible. In principle, we might proceed step-by-step
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along the search direction, but this could lead to an excessive number of function
evaluations and would soon be inefficient with a step size small enough to locate the
minimum accurately. The most common methods of performing the line search are
by ‘region elimination’ or by ‘polynomial interpolation’. Generally, region elimi-
nation followed by polynomial interpolation is found to be an effective approach.

4.2.1 Region Elimination and the Golden Section Method

We define a point on the line of the current search direction by coordinate x (note
that x is conventionally used for this and does not refer to any of the design
variables of the original optimization problem). By region elimination, we aim to
narrow down the search for the minimum as quickly as possible. For this, we
require upper and lower limits xU and xL on the interval in which the search is to be
conducted. One of these will normally be the current point in the design space and
the other a limit set to cover the range within which it is expected to find the
minimum. We then require two intermediate points x1 and x2, as shown in the upper
part of Fig. 4.2. Name the values of the objective function at these two points f1 and
f2. It has to be assumed that the function has only a single minimum within the
search interval. From the figure, we see immediately that if f1\f2 the minimum lies
between xL and x2. We can then eliminate the region between x2 and xU , by moving
the upper limit xU to x2. A similar argument applies if f1 [ f2, the region between xL
and x1 then being eliminated. By selecting two new points between the current xL
and xU (that is after moving xU or xL as appropriate), the process can be repeated
and the search interval further reduced. This is continued until the search interval
has been sufficiently reduced and either a satisfactory value of the minimum has
already been obtained or the result is to be further refined by polynomial interpo-
lation, as described later.

It is seen that each region elimination as described above requires the objective
function to be evaluated at two new points x1 and x2 in the search interval.
However, no mention has been made up to now of the preferred location of these
two points. The need to evaluate the function at two new points, rather than just
one, is ingeniously avoided in the ‘golden section’ method (see [11, 12, 13]). In this
method, the aim is, if f1\f2 as in Fig. 4.2, to reuse the previously calculated point
x1 in the next step (or reuse point x2 if f1 [ f2). We define x1 and x2 in terms of a
constant s by:

x2 ¼ s b;

and for a symmetrical arrangement of the two points:

x1 ¼ ð1� sÞb;
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where b is the initial search interval, as shown in the upper part of Fig. 4.2. To reuse
point x1 in the next step (x1 becomes the new x02 in the reduced search interval s b),
we require:

x1 ¼ x02 ¼ s� s b;

as in the lower part of the figure. Equating the two forms of x1:

s2b ¼ ð1� sÞb;

from which s ¼ 0:618034. This number, or at least its reciprocal 1=s ¼ 1:618034,
is a well-known number in history, with some special properties from which the
name ‘golden section’ derives. This value of s is used now for the location of the
one new point at:

x01 ¼ ð1� sÞs b:

Otherwise, if f1 [ f2; x2 becomes the new x01 and we require a new point x02.
However, we should note that the particular formulae for x1; x2; x01; x

0
2 given above

Fig. 4.2 Golden section
method
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all refer to the current lower limit at each elimination. To refer all values to the
same initial datum, general formulae are as follows:

if f1\f2 : x0U ¼ x2; x0L ¼ xL; x02 ¼ x1;

x01 ¼ x0U � s ðx0U � x0LÞ;
if f1 [ f2 : x0U ¼ xU ; x0L ¼ x1; x01 ¼ x2;

x02 ¼ x0L þ sðx0U � x0LÞ;

ð4:6Þ

where f1 and f2 refer to their values in the current elimination and x01; x
0
2; x

0
U ; x

0
L are

the new values for the next elimination. These formulae apply, of course, after an
initial choice of xU and xL has been made, with corresponding x1 and x2. Using
Eq. (4.6), the relative spacing of the two intermediate points is preserved, and the
number of new function evaluations is halved. With a fraction ð1� sÞ of the region
eliminated each time, after five interval reductions, the search interval is reduced to
about nine per cent of its original size and after ten interval reductions to less than
one per cent.

4.2.2 Polynomial Interpolation

Alternatively, if a number of points along the search direction have already been
evaluated, the minimum can be located by polynomial interpolation. This means
simply fitting a polynomial function of appropriate degree to values of the original
function at those points. Once the coefficients of the polynomial have been
obtained, it is readily differentiated analytically to find the minimum along the
curve. This does, of course, rely on the original function being smooth and con-
tinuous, at least in the vicinity of the minimum. Also, if it is highly nonlinear, the
polynomial approximation may still be a poor match. For this reason, polynomial
interpolation is commonly used to refine the result after a suitable number of steps
of region elimination have been completed. Usually, either a second degree
(quadratic) or third degree (cubic) approximation is satisfactory, at least if the
available points are sensibly placed in the neighbourhood of the required minimum.

If we have three values of the objective function f1; f2; f3 at points x1; x2; x3 along
the search direction, as shown in Fig. 4.3, the true curve between these points can
be approximated by a parabola:

f ðxÞ ¼ a0 þ a1xþ a2x
2: ð4:7Þ

By substituting the three pairs of values ðf1; x1Þ; ðf2; x2Þ; ðf3; x3Þ in turn into
Eq. (4.7), general formulae for the coefficients a0; a1; a2 can be obtained as
follows:
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a2 ¼ ðf3 � f1Þ=ðx3 � x1Þ � ðf2 � f1Þ=ðx2 � x1Þ
ðx3 � x2Þ ;

a1 ¼ ðf2 � f1Þ
ðx2 � x1Þ � a2ðx1 þ x2Þ;

a0 ¼ f1 � a1x1 � a2x
2
1:

Differentiating Eq. (4.7):

d f
dx

¼ a1 þ 2a2x

and putting this equal to zero for the minimum of f ðxÞ give:

x ¼ � a1

2a2
:

By substituting for a1 and a2 from above, we obtain an explicit formula for x:

x ¼ x1 þ ðf3 � f1Þðx2 � x1Þ2 � ðf2 � f1Þðx3 � x1Þ2
2 ðf3 � f1Þðx2 � x1Þ � ðf2 � f1Þðx3 � x1Þ½ � ð4:8Þ

at the minimum point of the parabolic approximation to the original function. The
minimum value of the function can then be calculated by this formula, or if pre-
ferred by means of the coefficients ai above.

Extensive formulae for both quadratic interpolation and cubic interpolation (also
when a derivative d f =d x of the function is available) are given by Vanderplaats
[13] and many other authors. By use of quadratic interpolation to complete the line
search after region elimination, it is of course possible to reduce the number of
region eliminations necessary and still obtain a satisfactory estimate of the mini-
mum point. With cubic interpolation, requiring four points and not surprisingly
more complicated formulae, the number of region eliminations can be further
reduced or accuracy improved.

Fig. 4.3 Quadratic
interpolation
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Example 4.4 Use the golden section method to find the minimum of the function:

f ðxÞ ¼ ðx� 1Þ2 þ 2x4 :

Refine the result by quadratic interpolation.
Again, we have a simple analytical function, the exact minimum of which is

readily found by differentiation:

fmin ¼ 0:375 at x ¼ 0:5:

Note that the presence of the second term in the function ensures that a parabolic
curve cannot be a true fit to the function. Table 4.2 shows the sequence of steps in
region elimination by the golden section method. By inspection of the function, it is
found that the minimum must be between x ¼ 0 and x ¼ 1, so these values are used
as initial lower and upper limits xL and xU . Intermediate values x1 and x2 are
calculated as in Eq. (4.6). At each step, the larger of f1 or f2 is used to determine
whether to replace xL or xU in the next row, as indicated in the last column of the
table. After five region eliminations, the process is completed by quadratic inter-
polation. The three points selected, together with their corresponding function
values extracted from the table, are:

x1 ¼ 0:4721; f1 ¼ 0:3780;

x2 ¼ 0:4934; f2 ¼ 0:3752;

x3 ¼ 0:5279; f3 ¼ 0:3782:

These are shown in bold in Table 4.2. Substitution in Eq. (4.8) and then in the
original function gives finally:

fmin ¼ 0:3750 at x ¼ 0:4995;

which is very close to the exact result. ■

Table 4.2 Series of region eliminations by the golden section method in Example 4.4

xL xU x1 x2 f1 f2 xU � xL Action

0.0000 1.0000 0.3820 0.6180 0.4245 0.4377 1.0000 Replace xU by x2
0.0000 0.6180 0.2361 0.3820 0.5898 0.4245 0.6180 Replace xL by x1
0.2361 0.6180 0.3820 0.4721 0.4245 0.3780 0.3820 Replace xL by x1
0.3820 0.6180 0.4721 0.5279 0.3780 0.3782 0.2361 Replace xU by x2
0.3820 0.5279 0.4377 0.4721 0.3896 0.3780 0.1459 Replace xL by x1
0.4377 0.5279 0.4721 0.4934 0.3780 0.3752 0.0902
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4.3 Spreadsheet Program

While Solver is used for the most part throughout this book, a program for the
Hooke and Jeeves method is included here to demonstrate that numerical opti-
mization does not necessarily require very complex programming; indeed, it will be
seen that it can be programmed in rather few lines of code. The method is used
again in the next chapter to illustrate the use of the penalty function method, since
this is not included in the methods available in Solver. The Hooke and Jeeves
method, referred to earlier in Sect. 4.1, was widely used as a general-purpose
optimization method for many years after its first introduction, mostly in combi-
nation with a penalty function to accommodate constraints. Like most zero-order
methods, the Hooke and Jeeves method has the advantage of being simple and
robust, this of course at the cost of increased computational time. With modern
computers, for a problem with no excessive number of variables and if the function
to be minimized is itself not too time-consuming, the Hooke and Jeeves method can
still prove effective.

4.3.1 ‘Hooke and Jeeves Method’

The spreadsheet uses the Hooke and Jeeves method to find the minimum of an
unconstrained function f ðxÞ to be defined by the user. The spreadsheet is shown in
Fig. 4.4.1

The Hooke and Jeeves procedure is as follows:

1. Choose suitable step sizes di for each variable xi.
2. Exploratory move: from an initial base point, increase x1 by d1. If f ðxÞ is

reduced, the move is a success, and the move is retained. Otherwise, retract the
move and decrease x1 by d1. If this move is a success, it is retained; otherwise, it
is retracted. Repeat this procedure for each variable xi in turn from the point
reached in the last move. If any of these moves has been a success, a new base
point has been found. Otherwise, the sequence of exploratory moves has been a
failure.

3. Reduction in step size: if the sequence of exploratory moves has been a failure,
halve the step size for all variables (or reduce it by some other factor) and
perform a new sequence of exploratory moves.

4. Pattern move: if a new base point has been found after any sequence of
exploratory moves, move along the line from the previous to the new base point
by an amount equal to the difference between the new and previous base points.

1This spreadsheet, and those in the following chapters, contains macros. Depending on the chosen
security settings, a Security Warning: ‘Macros have been disabled’ may appear on the Message
Bar. Click Enable Content to continue with the spreadsheet.
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Perform a new sequence of exploratory moves from this point. If any of these
moves is a success, a new base point has again been found. Perform a new pattern
move from this point. Otherwise, reject the pattern move, return to the last base
point and perform a new sequence of exploratory moves from that point.

5. Continue this procedure until the solution is sufficiently converged.

The Hooke and Jeeves procedure is programmed in Visual Basic in the function
HJ in a module in the same workbook as the spreadsheet. The function to be
minimized has to be created by the user in Visual Basic in the function FN, in the
same module, in terms of the variables in the spreadsheet. Access to both functions
is by clicking Visual Basic in the Code group on the Developer tab. Function HJ is
referred to directly in the spreadsheet, while FN is called from HJ. The spreadsheet
itself is used only for input of data and display of results, and for certain control
parameters. Any specific data required for function FN can most easily be included
in that function or otherwise accessed from the spreadsheet by including the extra
data in the arguments of HJ and FN. If the maximum of a function is required,
rather than the minimum, this is of course just a matter of reversing its sign. The
simple quadratic function in Table 4.3 is currently entered in function FN to
demonstrate use of the method.

The spreadsheet is currently set up for up to 20 variables. Chosen initial values
of the variables should be entered, with their corresponding initial step sizes, in
order in the appropriate columns. For less than 20 variables, the remaining entries
in the columns can be left blank. The actual number of variables has to be entered in
the spreadsheet. For best performance, it is recommended that the initial step sizes
should be related to the magnitude of the variables. A sequence of exploratory and
pattern moves is repeated until no further reduction in the function value is found.
At that stage, the step size is halved, and the sequence of exploratory and pattern
moves repeated. The number of step size reductions to be made has to be entered in
the spreadsheet. This depends, of course, on the accuracy required. The maximum

Table 4.3 Minimum of f ðxÞ
by the Hooke and Jeeves
method

f ðxÞ ¼ x21 þ x1x2 þ 2x22 � x1 � x2 þ 1

Step size (both variables) x1 x2 f ðxÞ
2 1 6

1 1 0 1

0.5 0.5000 0 0.7500

0.25 0.5000 0 0.7500

0.125 0.3750 0.1250 0.7188

0.0625 0.4375 0.1250 0.7148

0.03125 0.4375 0.1250 0.7148

0.01563 0.4219 0.1406 0.7144

0.00781 0.4297 0.1406 0.7143

0.00391 0.4297 0.1406 0.7143

0.00195 0.4277 0.1426 0.7143

0.00098 0.4287 0.1426 0.7143
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number of times to perform the sequence of exploratory moves (whether or not
followed by a pattern move) at any step size also has to be entered (this is currently
set at 100). This is to avoid the possibility of an endless loop while running the
program if no minimum of the function actually exists, or to avoid an excessive
number of exploratory and pattern moves if the starting point is too far from the
optimum. In this case, the spreadsheet shows the values of the variables and the
function when the procedure was terminated. Parameters and variables to be entered
are listed in Table 4.4. After entering the required data, optimization is performed
by pressing function key f 9 on the keyboard (note that ‘Manual Workbook
Calculation’ has been selected in Options on the spreadsheet).

After optimization, the optimum values of the variables are returned to the
spreadsheet, together with the minimum value of the function and the number of
function evaluations necessary to reach the optimum. For the quadratic function
already entered to demonstrate the program, with initial values x1 ¼ 2; x2 ¼ 1 and
initial step sizes s1 ¼ s2 ¼ 1, it requires 101 function evaluations to reach the
optimum to within an accuracy of �0:001. Values of x1; x2 and corresponding
values of the function on completion of each step size are given in Table 4.3 to
illustrate convergence.

Note that cells I5:I26 in the column headed ‘optimum values’ contain an array
formula (enclosed in braces) for return of the results of the optimization to the
spreadsheet. No changes may be made to cells in this array unless the array
formula is first deleted.

4.4 Summary

Problems of unconstrained optimization—to find the minimum (or maximum) of a
function in the absence of constraints—can in principle be solved by a direct search
method, in which a sequence of values of the objective function is calculated until a

Table 4.4 Data entry for spreadsheet program ‘Hooke and Jeeves Method’

Parameters

Number of variables Enter the value in cell D11 (maximum 20)

Required number of reductions in step
size

Enter the value in cell D14 (determines accuracy of
the result)

Maximum number of sequences of
exploratory moves at any step size

Enter the value in cell D18 (see Sect. 4.3.1)

Initial step size for variables xi Enter values in order in column G, starting at cell
G5 (remaining cells may be left blank)

Variables

Initial values of variables xi Enter values in order in column H, starting at cell
H5 (remaining cells may be left blank)

Create the function to be minimized in function FN (to access the function click visual basic on
the Developer tab to open the visual basic editor)
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solution sufficiently close to the minimum is found. Such methods are termed
zero-order methods. The Hooke and Jeeves method is an example of this. However,
zero-order methods, while simple and robust, become impractical with a large
number of variables, or when the objective function itself is expensive to calculate.
More powerful methods first find a best search direction in the design space and
then perform a line search for the minimum along this line. The simplest method for
finding the search direction is by steepest descent—the fastest ‘downhill’ direction
—requiring calculation of first derivatives, or the gradient, of the objective function.
Such methods are termed therefore first-order methods. In numerical optimization,
first derivatives are normally calculated by finite difference. However, this inevi-
tably leads to an iterative process because the ‘best’ search direction can only be
based on derivatives at the current point in the design space and cannot ‘see’ the
true minimum of the objective function. When the minimum along the current
search direction has been found, the gradient has to be recalculated and the line
search repeated. This is continued until a sufficiently accurate optimum has been
found. More sophisticated first-order methods, such as the Fletcher–Reeves method,
make use of both the current and previous iterations to deduce a search direction
which is more nearly directed towards the optimum. Other methods, referred to as
quasi-Newton or second-order methods, aim to progressively build up an approx-
imation to the inverse of the Hessian matrix of second derivatives of the objective
function, improving the search direction at each iteration, with faster convergence at
the cost of extra complexity.

The line search is an essential part of all methods based on first finding a search
direction. While the line search could be performed simply by proceeding
step-by-step along the search direction, this is unlikely to be efficient. Usual
methods for the line search are by region elimination or by polynomial interpola-
tion. In region elimination, such as by the golden section method, the range within
which the minimum is to be found is progressively reduced until it has been located
to within specified limits. By polynomial interpolation, a second- or higher-order
function is fitted to points along the search direction in the vicinity of the optimum,
and this function is differentiated for the minimum. Standard formulae are available
for this. For example, in parabolic interpolation, three points along the search
direction are required to estimate the minimum. If necessary, the process can then
be repeated with new points closer to the previously found minimum. Golden
section elimination followed by parabolic interpolation is generally found to be a
satisfactory method.

Finally, it is important to point out that the methods described here can only find
a local minimum, generally the one closest to the starting point, should more local
minima exist. The way around this would be to repeat the optimization from more
starting points until satisfied that the true optimum had been found, or otherwise to
resort to a method such as the genetic algorithm in Chap. 8, which retains more
possible solutions during its search for the optimum. Again, the discussion
throughout this chapter refers only to finding the minimum of a function, whether
constrained or unconstrained, but with little change, the methods are equally
applicable to finding a maximum.

104 4 Numerical Methods for Unconstrained Optimization



Exercises

4:1 Repeat the first few steps of the problem in Example 4.1 for the same
function f ðxÞ, from a different starting point.
Follow the same analytical procedure as in the example. Plot values of
the variables at each step in a figure similar to Fig. 4.1.

4:2 Perform the first few steps of the Fletcher–Reeves method to minimize
the function:

f ðxÞ ¼ x21 þ x42 þ 1:

Follow the same analytical procedure as in Example 4.2. Choose a
suitable initial point to start the procedure.

4:3 Repeat Exercise 4.2 using the DFP update formula in Eq. (4.4).
Make an Excel spreadsheet to calculate the update formula. Use the
MMULT function in Excel to perform the matrix multiplication.

4:4 Repeat Exercise 4.3 using the BFGS update formula in Eq. (4.5).
Extend the spreadsheet in Exercise 4.3 to calculate the BFGS update
formula.

4:5 Use the golden section method to find the minimum of the function:

f ðxÞ ¼ 2x3 � 3xþ 2:

Use initial lower and upper bounds xL ¼ 0; xU ¼ 1 to start region
elimination. Continue until the search interval has been reduced to
about 10 per cent of its initial value.

4:6 Complete the minimization of the function in Exercise 4.5 by parabolic
interpolation.
Use the standard formulae for parabolic interpolation in Sect. 4.2.2.
Compare the result with the exact minimum found by differentiation of
the original function.

4:7 Perform the first few steps of the procedure in the spreadsheet ‘Hooke
and Jeeves Method’ by hand and compare the results with those in
Table 4.3.
Take the same quadratic function with the same initial values and step
size. Observe the working of the series of ‘If’ and ‘ElseIf’ statements
enabling a pattern move towards the end of function HJ.

4:8 Use the spreadsheet ‘Hooke and Jeeves Method’ to repeat the opti-
mization of the quadratic function in Table 4.3 with different initial
values and step sizes.
Values of the variables and minimum of the function on completion of
each step size can be seen by progressively increasing the number of
reductions in step size entered on the spreadsheet. Observe the number
of function evaluations necessary for the same accuracy with different
initial values and step size.
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4:9 Use the spreadsheet ‘Hooke and Jeeves Method’ to optimize the angles a
and b of the seven-bar truss in Fig. 1.15 of Chap. 1.
Formulae for analysis of the truss are given in Table 1.5 of Chap. 1.
Replace the Visual Basic code in function FN with some lines of code to
calculate the volume of the truss in terms of design variables x1 ¼ D and
x2 ¼ H. Variable FN in the function FN must be the volume of the truss
for any x1 and x2. Choose convenient values for the load on the truss, its
span and the allowable stress. Express the result in terms of angles a
and b.

References

1. Hooke R, Jeeves TA (1961) ‘Direct search’ solution of numerical and statistical problems.
J Assn Comput Mach 8:212–229

2. Walsh GR (1975) Methods of optimization. John Wiley & Sons, London
3. Powell MJD (1964) An efficient method for finding the minimum of a function of several

variables without calculating derivatives. Comput J 7:303–307
4. Fletcher R, Reeves CM (1964) Function minimisation by conjugate gradients. Comput J

7(2):149–154
5. Davidon WC (1959) Variable metric method for minimization. Argone National Laboratory,

ANL-5990 Rev., University of Chicago
6. Fletcher R, Powell MJD (1963) A rapidly convergent method for minimization.

Comput J. 6(2):163–168
7. Broydon CG (1970) The convergence of a class of double rank minimization algorithms, parts

I and II. J Inst Math Appl 6:76–90, 222–231
8. Fletcher R (1970) A new approach to variable metric algorithms. Comput J 13:317–322
9. Goldfarb D (1970) A family of variable metric methods derived by variational means. Math

Comput 24:23–36
10. Shanno DF (1970) Conditioning of quasi-newton methods for function minimization. Math

Comput 24:647–656
11. Kiefer J (1953) Sequential minimax search for a maximum. Proc Am Math Soc 4:502–506
12. Reklaitis GV, Ravindran A, Ragsdell KM (1983) Engineering optimization. John Wiley and

Sons, New York
13. Vanderplaats GN (1984) Numerical optimization techniques for engineering design.

McGraw-Hill, New York

106 4 Numerical Methods for Unconstrained Optimization



Chapter 5
Numerical Methods for Constrained
Optimization

Abstract Methods for constrained optimization described in this chapter can be
broadly classified as constraint-following methods or penalty function methods.
The gradient projection method and the generalized reduced gradient method are
both constraint-following methods, on the basis that the optimum will lie on some
or many constraints, and the aim is therefore to follow the constraints as closely as
possible around the design space. In the gradient projection method, only those
constraints currently active are included at any stage. The best search direction is
found on the intersection of those constraints. Due to constraint nonlinearity,
constraint gradients have to be re-evaluated at each step, and the process continued.
In the generalized reduced gradient method, one of the methods in Solver, instead
of an active constraint strategy surplus variables are added to convert inequality
constraints into equalities. A search direction is then obtained from the reduced
gradient in a set of independent variables. Again, constraint gradients have to be
re-evaluated at each step. In a penalty function method, terms containing the
constraint functions are added to the objective function to convert it in effect into an
unconstrained problem, the aim being to avoid constraints or to penalize constraint
violation. By the increase or decrease of a penalty parameter, the solution converges
to the optimum of the constrained problem. A spreadsheet program for the penalty
function method is based on the Hooke and Jeeves method in the previous chapter.

The numerical methods we studied in the previous chapter referred only to
unconstrained optimization, in other words the search for the minimum of some
function in the absence of constraints and with no other limits on the values of the
variables. Unconstrained optimization forms the basis of the methods for con-
strained optimization in the present chapter, even though some substantial further
development is required. The objective function and the constraints might be
analytical functions but in practice are more likely to be the result of a more
complex numerical analysis, while in structural design we are largely concerned
with inequality rather than equality constraints and constraints that are in most cases
nonlinear. The methods described in this chapter are aimed particularly at this class
of problem, for which a numerical optimization procedure becomes almost



inevitable. The concept of a search direction and the subsequent line search were
introduced in the previous chapter. The principal difference in constrained opti-
mization is that the search direction now has to conform to the presence of con-
straints, that is, it depends not only on the objective function but also on the
different constraint functions if violation of constraints is to be avoided. This is with
the considerable added difficulty that it mostly is not known in advance which of
the often many inequality constraints will prove to be active at the optimum.

Methods for constrained optimization currently available in Solver are as
follows:

– the generalized reduced gradient method (GRG nonlinear),
– linear programming (simplex LP),
– the genetic algorithm (evolutionary).

The first is the one most generally applicable to structural design problems and
the one we have been using up to now. It is one of a class of so-called
constraint-following methods described in Sect. 5.1. Linear programming applies,
as its name suggests, to problems in which both the objective function and all
constraints are linear functions of the design variables. While linear programming is
a very efficient method, such problems are less common in structural design, and we
leave it to the many texts in which linear programming is explained in detail (see
[3, 4, 7, 8] and many general texts on optimization methods). The genetic algorithm
has been developed in particular for optimization problems with discontinuities or
other irregularities, problems with discrete variables and those where local minima
exist in a search for the true optimum. This is the case in the design of composite
laminates, and further discussion of the genetic algorithm is deferred therefore until
Chap. 8.

The penalty function method is an alternative approach to constrained
optimization. By the addition of a penalty term to the objective function to account
for constraints, the original constrained problem is converted into an unconstrained
one. Although not available in Solver (and in view of the other methods provided
might well be considered unnecessary), it is an intuitive and widely used method
with the advantage that it can readily be implemented in an existing unconstrained
optimization routine. The penalty function method is discussed in Sect. 5.2.

Finally, it might again be pointed out that while we refer in this chapter only to
the minimum of a function, not the maximum, all optimization methods can, of
course, be applied equally to either problem with no significant change.

5.1 Constraint-Following Methods

Suppose that with a conventional method for the minimization of an unconstrained
function, we were to proceed from a feasible point in the design space until a
constraint is first encountered. The process would simply stop at that point, because
no mechanism has been provided by which the search direction can be modified to
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take account of the constraint. We shall consider first methods which ‘follow the
constraints’ around the design space. On the basis that in a constrained optimiza-
tion, the optimum will lie on at least one constraint, the search can then be confined
to remain on that constraint while exploring further the design space. Additional
constraints may be encountered as the process continues, while earlier constraints
may be rejected as no longer active. This is the basis of the gradient projection
method in Sect. 5.1.1. While equality constraints can be accommodated in this
method, it is generally more suited to inequality constraints. The generalized
reduced gradient method in Sect. 5.1.2 adopts a different strategy. Instead of
identifying the currently active constraints, additional variables are introduced so
that all constraints remain satisfied during the line search. In this way, the original
problem is reduced to an unconstrained one, subject only to side constraints on the
additional variables. This method is equally suited to both equality and inequality
constraints. Other methods are referred to more briefly in Sect. 5.1.3.

Both methods above employ linearization of constraints, that is, they have in
common that constraints are represented by a linear approximation at the current
point in the optimization. In fact, the theoretical derivation in the following two
sections is essentially for linearly constrained problems. A correction procedure
becomes necessary to return to the true constraint boundary when the constraints
are nonlinear. Although it is the generalized reduced gradient method that is used in
Solver, we discuss first the gradient projection method in the next section because
this is a more intuitive and visually appealing method and shares much in common
with the generalized reduced gradient method.

5.1.1 Gradient Projection Method

The gradient projection method [10, 11] is a direct constraint-following method,
based on an ‘active constraint strategy’ for an inequality constrained problem in
which only those constraints currently active are included at any stage. It might be
seen as the forerunner of the generalized reduced gradient method to be discussed in
the following section. We consider first a problem with only linear constraints.
Figure 5.1 shows a three-dimensional design space with a single constraint
represented by the larger triangle in the figure. Starting from a feasible point in the
design space, once this constraint has been encountered, the further search is in
the steepest descent direction on this plane. In a multidimensional design space, the
search direction is confined to the intersection of the currently active constraints
(a hyperplane impossible to visualize!).

To determine the steepest descent direction on the condition that we remain on
the active constraints, we consider first a small increment dgj in a constraint gjðxÞ:

dgj ¼ @gj
@x1

dx1 þ @gj
@x2

dx2 þ � � � þ @gj
@xn

dxn;
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where dx1 ¼ s1; dx2 ¼ s2; . . .; dxn ¼ sn are the increments in variables x corre-
sponding to some movement in a search direction s. In terms of the gradient rgj of
the constraint, we can express the above formula in the usual way as:

dgj ¼ sTrgj:

We require dgj ¼ 0 to remain on the constraint gjðxÞ. Therefore, for a feasible
search direction s remaining on the intersection of all currently active constraints,
we require

sTrgj ¼ 0

for each active constraint (a set of linear equations equal to the number of active
constraints). Any equality constraints must, of course, be included in the active
constraints, but then, our initial feasible point should be one that satisfies all such
equality constraints. If we define a matrix N as one whose columns are the gradients
of the r active constraints, numbered for convenience g1; . . .; gr:

N ¼
@g1
@x1

. . . @gr
@x1

..

. . .
. ..

.

@g1
@xn

� � � @gr
@xn

2

6

6

4

3

7

7

5

; ð5:1Þ

Fig. 5.1 Projection of the gradient of the objective function on the plane of a constraint
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we can write the above conditions for a feasible search direction more compactly as:

sTN ¼ 0: ð5:2Þ

Similarly, a small increment in the objective function f ðxÞ can be written as:

df ¼ @f
@x1

dx1 þ @f
@x2

dx2 þ � � � þ @f
@xn

dxn;

or : df ¼ sTrf :

For a usable search direction, we require simply that df\0, but for the steepest
descent direction, we have to minimize df (i.e. for the largest decrease in f ðxÞ),
subject to the constraint conditions in Eq. (5.2), at a nominal unit distance sTs ¼ 1
from the current point in the design space. The optimization problem can now be
expressed as:

minimize: df ¼ sTrf
subject to: sTN ¼ 0
and: sTs ¼ 1:

This is a classical, equality constrained optimization problem. We write the
Lagrangian function:

F ¼ sTrf � sTN k� lðsTs� 1Þ;

where k is the set of Lagrange multipliers corresponding to each active constraint in
matrix N and l is the single Lagrange multiplier referring to the condition sTs ¼ 1.
The condition for a minimum of f ðxÞ is:

@F
@s

¼ rf � Nk� 2l s ¼ 0: ð5:3Þ

Premultiplying by NT and observing that Eq. (5.2) can be rewritten NTs ¼ 0, we
obtain

NTrf � NTN k ¼ 0

or : k ¼ ðNTNÞ�1NTrf :
ð5:4Þ

Substituting in Eq. (5.3) and solving for s, we obtain finally

s ¼ 1
2l

I� NðNTNÞ�1NT
h i

rf ;
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where I is the identity matrix. Since s is simply the set of directions along which to
perform a line search, the factor 1

2l can be ignored. The search direction s above is
commonly written as:

s ¼ �Prf ;

where

P ¼ I� NðNTNÞ�1NT
h i

ð5:5Þ

is the so-called projection matrix. This recognizes that s is actually the projection of
the normal to the objective function on the intersection of the currently active
constraints, as already illustrated in three variables in Fig. 5.1.

We now have a means of calculating a search direction which is both usable and
feasible, in the direction of steepest descent on the currently active constraints. We
perform a line search on this search direction until either a minimum is found or a
constraint previously inactive is encountered, as follows:

1. If a minimum is found, the Lagrange multipliers are evaluated from Eq. (5.4) to
validate the set of active constraints. If all the Lagrange multipliers are positive,
the correct set of active constraints has been identified, and we have found the
optimum. (The role of Lagrange multipliers in identifying the currently active
constraints was discussed earlier in Sect. 3.3.)

2. If a previously inactive constraint is encountered, this is added to the current set
of active constraints, and a new search direction s is calculated. Provided
sk k 6¼ 0, we proceed with the line search. However, if sk k ¼ 0 (to within a

small margin to allow for numerical error), this means that there is no search
direction in which further improvement can be made. We then have a potential
solution to the problem, and as above, the Lagrange multipliers are evaluated.
Again, if all the Lagrange multipliers are positive, then the correct set of active
constraints has been identified, and we have found the optimum.

3. Otherwise, any constraints with negative Lagrange multipliers in (1) or (2) above
are removed one by one (starting with the one with the most negative Lagrange
multiplier), a new search direction is calculated, and the procedure is repeated.

The method is illustrated in the simple, two-dimensional design space in
Fig. 5.2. Starting from a feasible point A, the first step is an unconstrained, steepest
descent until constraint g1 ¼ 0 is encountered at point B. Here, we calculate a new
search direction and proceed in the downhill direction along constraint g1 ¼ 0 until
a second constraint g2 ¼ 0 is met at point C. Recalculating the search direction at
this point, we now find sk k ¼ 0 (This is, of course, inevitable since in two
dimensions the problem is now fully constrained.). The Lagrange multipliers are
evaluated at point C, where we find k1 negative and k2 positive. Constraint g1 is
therefore removed from the active set, a new search direction is calculated, and we
continue down constraint g2 to point D, where again we find sk k ¼ 0 and the
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Lagrange multipliers are evaluated. Depending on the signs of these, point D may
or may not be the optimum. It can already be seen in the figure that point D is
indeed the optimum, but in terms of the Lagrange multipliers, this is detected by
both k2 and k3 being positive. In the figure, the objective function f ðxÞ is shown as
linear, but had it been some other nonlinear function, a minimum might alterna-
tively have been found along either constraint g1 or g2 during the line search.

The basic assumption of the gradient projection method is that the constraints are
linear. As already stated, in structural design we are mostly dealing with nonlinear
constraints. This can be handled by the so-called linearization of constraints, that is,
by treating them as linear constraints at the current point, calculating the constraint
gradients and proceeding as before. Of course, as we proceed along the search
direction, we move away from nonlinear constraints. A ‘restoration move’ is then
necessary to return to the constraint boundary. For this, we move in a direction
normal to the constraint surface, according to the formula:

x0 � x ¼ �NðNTNÞ�1gðxÞ;

where x0 � x is an estimate of the correction necessary to restore the solution to the
constraint boundary and vector gðxÞ contains the values of the currently active
constraints. Because of the nonlinearity, the above formula may have to be used
iteratively until sufficiently small constraint values are obtained. At this point, the
gradients have to be recalculated, and the procedure is continued. Usually, ‘move
limits’ are imposed to limit the extent of movement in the search direction, avoiding
excessive departures from the constraints so that the restoration process converges
satisfactorily. The need for relatively tight move limits with highly nonlinear

Fig. 5.2 Constraint selection
in the gradient projection
method
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constraints, and the increased number of iterations necessary to return to the con-
straint boundary can contribute substantially to the time taken to reach an optimum.

Example 5.1 Use the gradient projection method to minimize the function:

f ðxÞ ¼ x21 þ x22 þ x23;

subject to constraints:

g1ðxÞ ¼ 3x1 þ 2x2 þ x3 � 6� 0;

g2ðxÞ ¼ x3 � x2 � 0:

The matrix operations in the gradient projection method rule out any but a
simple example if extensive arithmetic is to be avoided. The present example serves
to illustrate the principal steps in the procedure, in a problem in which the two
constraints are both linear.

If we could be sure that constraint g2 will be active at the optimum, it would be
sensible to use this to eliminate variable x3 from the problem and to continue with
only two variables. For the purpose of this example, we do not do this. However, to
simplify the example, we choose an initial feasible point:

x1 ¼ x2 ¼ x3 ¼ 2

at which constraint g2 is already active. In this way, we avoid the first unconstrained
steepest descent otherwise necessary to locate one or other constraint. At this point,

f ðxÞ ¼ 12; g1 ¼ 6; g2 ¼ 0:

To find the search direction on this single active constraint, we proceed as
follows. Inserting derivatives of constraint g2 into matrix N in Eq. (5.1), we have

N ¼
0
�1
1

2

4

3

5;

with transpose:

NT ¼ 0 �1 1½ �:

Multiplying the two matrices:

NTN ¼ 2;
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(a single numerical value) with inverse:

ðNTNÞ�1 ¼ 0:5:

Post-multiplying by NT:

ðNTNÞ�1NT ¼ 0 �0:5 0:5½ �

and premultiplying by N:

NðNTNÞ�1NT ¼
0 0 0
0 0:5 �0:5
0 �0:5 0:5

2

4

3

5:

The projection matrix in Eq. (5.5) is then:

P ¼ I� NðNTNÞ�1NT ¼
1 0 0
0 0:5 0:5
0 0:5 0:5

2

4

3

5:

With the gradient of the objective function at the initial point:

rf ¼
4
4
4

2

4

3

5

we have a search direction on the constraint g2:

s ¼ �Prf ¼
�4
�4
�4

2

4

3

5:

By a line search along the line:

x1 ¼ 2� 4a;

x2 ¼ 2� 4a;

x3 ¼ 2� 4a

(i.e. from the point x1 ¼ x2 ¼ x3 ¼ 2, with the above components of the search
direction and line search parameter a), we meet constraint g1 at the point:

5.1 Constraint-Following Methods 115



a ¼ 1
4
;

x1 ¼ x2 ¼ x3 ¼ 1;

f ðxÞ ¼ 3:

It is easily verified that a minimum of the objective function does not exist
between the initial point and this new point.

We continue by determining a search direction from the new point. Inserting
now derivatives of the two constraints into the N matrix, we have

N ¼
3 0
2 �1
1 1

2

4

3

5;

with transpose:

NT ¼ 3 2 1
0 �1 1

� �

:

Multiplying the two matrices:

NTN ¼ 14 �1
�1 2

� �

and taking the inverse:

ðNTNÞ�1 ¼ 0:07407 0:03704
0:03704 0:51852

� �

:

(Matrix inversion and other matrix operations can all be done by hand in this
example, but are no doubt more easily performed by means of the matrix functions
in Excel.)

Post-multiplying now by NT:

ðNTNÞ�1NT ¼ 0:2222 0:1111 0:1111
0:1111 �0:4444 0:5556

� �

and premultiplying by N:

NðNTNÞ�1NT ¼
0:6667 0:3333 0:3333
0:3333 0:6667 �0:3333
0:3333 �0:3333 0:6667

2

4

3

5:

The projection matrix in Eq. (5.5) is then:

116 5 Numerical Methods for Constrained Optimization



P ¼ I� NðNTNÞ�1NT ¼
0:3333 �0:3333 �0:3333
�0:3333 0:3333 0:3333
�0:3333 0:3333 0:3333

2

4

3

5 :

With the gradient of the objective function at the new point:

rf ¼
2
2
2

2

4

3

5

we have a new search direction:

s ¼ �Prf ¼
0:6667
�0:6667
�0:6667

2

4

3

5:

For convenience, we scale the above components of the search direction to give

s1 ¼ 1; s2 ¼ �1; s3 ¼ �1:

With both constraints active, there can be no more constraints to be encountered
along the new search direction.

We search now for a minimum along the line:

x1 ¼ 1þ a;

x2 ¼ 1� a;

x3 ¼ 1� a;

(from the point x1 ¼ x2 ¼ x3 ¼ 1). In general, this would have to be done
numerically, but in the present example, we can do this by simple differentiation.
Substituting the above expressions for x1; x2 and x3 into the formula for the
objective function, we have

f ðxÞ ¼ ð1þ aÞ2 þ 2ð1� aÞ2;

with a minimum:

a ¼ 1
3
;

x1 ¼ 4
3
; x2 ¼ x3 ¼ 2

3
;

fminðxÞ ¼ 8
3
;
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which is the required solution. By substituting the above values of x1; x2 and x3 in
the constraint formulae, it is seen that the above point does indeed lie on both
constraints and that the last move has, as expected, followed the intersection of the
two constraints to the minimum. The Lagrange multipliers can be evaluated by
Eq. (5.4) to verify that both constraints are active at this minimum point.

The constraints in this example were expressly chosen to be linear to avoid the
additional arithmetic of the repeated restoration moves that would be necessary to
return to the constraint boundary with nonlinear constraints. If the constraints are
significantly nonlinear, this can greatly increase the burden of numerical work.

At the start of this example, it was pointed out that the second constraint might
have been used to eliminate one variable and simplify the problem. This is in fact
the principle behind the reduced gradient method in the following section, although
this is then done implicitly rather than explicitly, since elimination of variables is
generally not possible by simple algebra. ■

Example 5.2 Use the gradient projection method to minimize the function:

f ðxÞ ¼ x21 þ x22 þ x23;

subject to constraints:

g1ðxÞ ¼ 3x1 þ 2x2 þ x3 � 6� 0;

g2ðxÞ ¼ x3 � x2 � 0;

g3ðxÞ ¼ 5� 4x1 � 0:

A third constraint has been added to the problem in Example 5.1, to change the
solution from one in which a minimum is found along the final search direction to a
fully constrained minimum at which all three constraints become active. We follow
Example 5.1 up to the point where constraints g1 and g2 are both active. Then,
proceeding along the same search direction from that point, we encounter the third
constraint g3 before finding a minimum of the function. This is the point:

x1 ¼ 1:25; x2 ¼ x3 ¼ 0:75;

f ðxÞ ¼ 2:688; g1 ¼ g2 ¼ g3 ¼ 0:

This is where we take up the example.
Inserting derivatives of the three constraints into matrix N in Eq. (5.1), we have

N ¼
3 0 �4
2 �1 0
1 1 0

2

4

3

5;
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with transpose:

NT ¼
3 2 1
0 �1 0
�4 0 0

2

4

3

5:

Multiplying the two matrices:

NTN ¼
14 �1 �12
�1 2 0
�12 0 16

2

4

3

5

and taking the inverse:

ðNTNÞ�1 ¼
0:2222 0:1111 0:1667
0:1111 0:5556 0:0833
0:1667 0:0833 0:1875

2

4

3

5:

Post-multiplying now by NT:

ðNTNÞ�1NT ¼
0 0:3333 0:3333
0 �0:3333 0:6667

�0:2500 0:2500 0:2500

2

4

3

5

and premultiplying by N:

NðNTNÞ�1NT ¼
1 0 0
0 1 0
0 0 1

2

4

3

5:

The projection matrix in Eq. (5.5) is therefore:

P ¼ I� NðNTNÞ�1NT ¼
0 0 0
0 0 0
0 0 0

2

4

3

5;

or sk k ¼ 0 at the given point. We now have to evaluate the Lagrange multipliers to
verify that this point (fully constrained with three active constraints and three
variables) is a valid optimum. The gradient of the objective function at the current
point ðx1 ¼ 1:25; x2 ¼ x3 ¼ 0:75Þ is

rf ¼
2:5
1:5
1:5

2

4

3

5:
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By Eq. (5.4), the Lagrange multipliers are

k ¼ ðNTNÞ�1NTrf ¼
1
0:5

0:125

2

4

3

5:

Since all three Lagrange multipliers are positive, we confirm that the point at
which all three constraints are active is indeed the optimum. Had any of the
Lagrange multipliers been negative, we would have to remove a constraint (from
Example 5.1, this would obviously be the constraint that we added) and continue
with the line search for the optimum. As a result of the added constraint, the
minimum function value has increased from fmin ¼ 2:667 (in Example 5.1) to
fmin ¼ 2:688. ■

5.1.2 Generalized Reduced Gradient Method

The essential difference between the generalized reduced gradient method (see [1,
6]) and the gradient projection method in the previous section is that a number of
variables equal to the number of constraints are selected to satisfy the constraints
before calculating a ‘reduced gradient’ in the remaining variables. In this way, the
problem is reduced to an unconstrained one. The method is in principle for linear
constraints. A correction process is introduced later to accommodate nonlinear
constraints. The word ‘generalized’ in the name of the method refers to the
development of an earlier reduced gradient method to include now inequality and
equality constraints. In the sense that constraints remain satisfied during the line
search, this can again be seen as a constraint-following method.

To begin, let us consider a problem with only equality constraints and assume
further that these are linear. If there are p such constraints:

hkðxÞ ¼ 0; k ¼ 1; . . .; p;

we select any p variables, for convenience numbering these x1; . . .; xp. These
become dependent variables to satisfy the constraints, the remaining variables
xpþ 1; . . .; xn being independent variables for optimization. We may recall that in a
similar way, design variables were identified as dependent and independent in the
Lagrange multiplier method in Sect. 3.2, while elimination of variables to reduce
the size of the problem was already referred to in Sect. 3.1.1, in the context of
optimality criteria. Taking the transpose of matrix N defined in Eq. (5.1), now with
inequality constraints gjðxÞ replaced by equality constraints hkðxÞ, the condition
that the solution remains feasible in Eq. (5.2), that is, remains on the constraints,
can be rewritten as:
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dhðxÞ ¼ NTdx ¼ 0: ð5:6Þ

Expanding the matrix in the above equation:
1

1 1 1 1

11

1

11

.
p p n

pT

p
p p p p

p p n
n

d x
h h h h
x x x x

d x
d

d x
h h h h
x x x x

d x

+

+

+

⎡ ⎤
⎤⎡ ∂ ∂ ∂ ∂ ⎢ ⎥
⎥⎢ ⎢ ⎥∂ ∂ ∂ ∂ ⎥⎢ ⎢ ⎥
⎥⎢= ⎢ ⎥
⎥⎢ ⎢ ⎥∂ ∂ ∂ ∂ ⎥⎢ ⎢ ⎥
⎥⎢ ⎢ ⎥∂ ∂ ∂ ∂ ⎦⎣ ⎢ ⎥⎣ ⎦

N x ð5:7Þ

Note how the matrix has been partitioned into a sub-matrix with derivatives with
respect to the p dependent variables and a second sub-matrix in the remaining
independent variables. If we name the two sets of variables:

u ¼ x1; . . .; xp;

v ¼ xpþ 1; . . .; xn;

we can express Eq. (5.6) as:

N1duþN2dv ¼ 0;

where N1 refers to the first partition of NT and N2 to the second. Premultiplying by
N�1

1 , we obtain

du ¼ �N�1
1 N2dv: ð5:8Þ

This formula enables us to update the dependent variables u ¼ x1; . . .; xp with
changes in the independent variables, to ensure that constraints remain satisfied. In
terms of both the dependent and independent variables, an increment df in the
objective function f ðxÞ can be written as:

df ¼ rT
v f dvþrT

u f du;

where subscript v refers to the gradient of f ðxÞ with respect to variables v and
subscript u with respect to variables u. Substituting now for du from above, we
obtain

df ¼ rT
v f dv�rT

u f N�1
1 N2

� �

dv;

or finally:
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Gr ¼ @f
@v

¼ rvf � N�1
1 N2

� �Truf : ð5:9Þ

Gr is termed the ‘reduced gradient’ of f ðxÞ and is the gradient in a reduced set of
independent variables. This is used now for the search direction:

s ¼ �Gr:

Note that the line search for a minimum along this search direction requires
recalculation of the dependent variables from Eq. (5.8) at each step to evaluate the
objective function, which remains, of course, a function of both the dependent and
independent variables. When a minimum has been found in the line search, the
reduced gradient is re-evaluated at the new current point and the line search
repeated.

If all constraints are in fact equality constraints, then with elimination of con-
straints and use of the reduced gradient, the optimization problem has been reduced
to an unconstrained one which can be solved by the usual methods. For inequality
constraints, an active constraint strategy could still be used, as in the gradient
projection method previously. However, in the generalized reduced gradient
method, this is usually not done, principally because as the set of active constraints
changes, so does the partitioning of the matrix NT into sub-matrices N1 and N2, for
which we again have to select a suitable set of dependent variables. Instead of an
active constraint strategy, inequality constraints are converted into equality con-
straints by the use of additional, so-called surplus variables xnþ 1; . . .; xnþm, where
m is the number of inequality constraints (although not discussed in this book, use
of slack and surplus variables is a feature of linear programming methods).
Inequality constraints gjðxÞ� 0 become

gjðxÞ � xjþ n ¼ 0; j ¼ 1; . . .;m

subject to:

xjþ n � 0:

This last condition is in effect the selection of active constraints, since for any
xjþ n ¼ 0 the corresponding constraint is active. This procedure has the computa-
tional advantage that all constraints are treated consistently—no explicit constraint
selection has to be made and no change in partitioning of sub-matrices N1 and N2.
Any actual equality constraints are simply included in the list of constraints but do
not, of course, require more surplus variables. The reduced gradient Gr in Eq. (5.9)
is now calculated for the complete set of independent variables, that is, including
surplus variables, and used for the search direction in these variables. Lower bounds
on surplus variables are taken care of in the following way. When, during the line
search, a surplus variable is reduced to zero, the line search is stopped at that point
and the reduced gradient recalculated. Any components of the new search direction
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that would cause a surplus variable to become negative are omitted. Changes in
dependent variables, corresponding to changes in the independent variables during
the line search, are obtained by Eq. (5.8). A zero entry is made in dv in Eq. (5.8) for
those independent variables for which the corresponding components of the search
direction have been omitted.

As already said, the basis of the generalized reduced gradient method is that all
constraints are linear. In general, this is unlikely to be so, and an approach similar to
that in the gradient projection method can be employed, in which constraints are
represented by equivalent linear constraints at the current point. The inclusion of
nonlinear constraints means that during the subsequent line search, we shall
gradually move away from the true constraint surface. As this occurs, a correction is
necessary to restore constraints to their proper zero values (note that by inclusion of
surplus variables, all constraints are now equalities). In the generalized reduced
gradient method, this is done by correcting the dependent variables, keeping the
independent variables unchanged. Making use of Eq. (5.8), new values du are

du ¼ N�1
1 �hðxÞ � N2dvf g;

where hðxÞ are the values of the constraints to be corrected. These are added to the
current values of the dependent variables. This is repeated until values of hðxÞ
sufficiently close to zero are obtained, after which the next line search is performed.

While we have discussed the principle of the generalized reduced gradient
method in sufficient detail, it is hoped, to follow its working, some important
technical details remain for an efficient computer implementation. These include the
choice of dependent variables to avoid a singular matrix, means of accelerating
convergence both in the line search and in a restoration move, and how to proceed
if the initial point is infeasible. However, it goes beyond the scope of this book to
discuss these here ([12] gives much useful information on these aspects.). It will be
clear that the methods in this and in the previous section, while generally very
efficient, require a substantial programming effort and can scarcely be illustrated
adequately in simple examples. Further, it should be realized that the generalized
reduced gradient method, as described here, has been the result of some continuous
development, different flavours exist, and extra features are commonly added with
each new implementation. This no doubt also applies to the current version of
Solver in Excel. As implemented, Solver also includes a useful option to restrict
variables to integer values.

Example 5.3 Calculate the reduced gradient at an initial point:

x1 ¼ 1:5; x2 ¼ 0:75; x3 ¼ 1

in the generalized reduced gradient method for the problem in Example 5.1.
We first subtract surplus variables x4 and x5 from the two inequality constraints

in Example 5.1 to convert these to equalities:
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h1ðxÞ ¼ 3x1 þ 2x2 þ x3 � x4 � 6 ¼ 0;

h2ðxÞ ¼ x3 � x2 � x5 ¼ 0;

with lower limits:

x4 � 0; x5 � 0:

Values of x4 and x5 to satisfy the equality constraints at the initial point are

x4 ¼ 1; x5 ¼ 0:25:

Next, we select dependent and independent variables. Since there are no spec-
ified limits on the original variables x1; x2; x3, we choose u ¼ x1; x2 as dependent
variables. We may anticipate that both x4 and x5 will reach their lower limits, that is,
if both of the original inequality constraints are active at the optimum, and limits on
these variables are more easily dealt with during optimization of the objective
function in the independent variables v ¼ x3; x4; x5.

Differentiating constraints h1ðxÞ and h2ðxÞ, appropriate derivatives are inserted
in the matrices N1 and N2 in Eq. (5.7):

N1 ¼
3 2

0 �1

� �

;

N2 ¼
1 �1 0

1 0 �1

� �

:

The inverse of N1 is

N�1
1 ¼ 0:3333 0:6667

0 �1

� �

and post-multiplying by N2:

N�1
1 N2 ¼ 1 �0:3333 �0:6667

�1 0 1

� �

:

The objective function in Example 5.1 is

f ðxÞ ¼ x21 þ x22 þ x23;

which has a gradient with respect to the dependent variables:

ruf ¼ 3
1:5

� �

;
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and with respect to the independent variables:

rvf ¼
2
0
0

2

4

3

5;

at the initial point. Therefore,

N�1
1 N2

� �Truf ¼
1:5
�1
�0:5

2

4

3

5;

and from Eq. (5.9), the reduced gradient is

Gr ¼
0:5
1:0
0:5

2

4

3

5:

Having calculated the reduced gradient, we can continue now with the first-line
search. The negative of the reduced gradient is the initial search direction in the
independent variables:

s ¼
dx3
dx4
dx5

2

4

3

5 ¼
�0:5
�1
�0:5

2

4

3

5:

The line search is therefore along the line:

x3 ¼ 1� 0:5a;

x4 ¼ 1� a;

x5 ¼ 0:25� 0:5a;

from the chosen initial point, with a line search parameter a. For the dependent
variables, we have from Eq. (5.8):

du ¼ dx1
dx2

� �

¼ � 1 �0:3333 �0:6667
�1 0 1

� � �0:5
�1
�0:5

2

4

3

5 ¼ �0:1667
0

� �

(where the column matrix contains the components of the search direction in the
independent variables). We can also express x1 in terms of a (x2 does not change
because of the zero above):
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x1 ¼ 1:5� 0:1667 a;

x2 ¼ 0:75:

By setting surplus variables x4 and x5 to zero in the line search formulae, we can
calculate directly values of a at which these reduce to their lower limit. With both
surplus variables reducing, variable x5 is the first to reach its lower limit, at a ¼ 0:5,
where

x1 ¼ 1:417; x2 ¼ 0:75; x3 ¼ 0:75;

x4 ¼ 05; x5 ¼ 0:

No minimum of the objective function along the search direction is found up to
this point. By substituting the above values of the variables in the two equality
constraints, we can confirm that they do indeed remain satisfied at the new point.

The objective function has been reduced from 3.8125 at the initial point to 3.132
at the current point, while we know from Example 5.1 that it is 2.667 at the
optimum. For the following step, we have to recalculate the reduced gradient at the
new current point and proceed with a second-line search towards the optimum, in a
similar manner to above. Note that with the linear constraints in the present
example, the matrices N1 and N2 are unchanged, reducing the subsequent calcu-
lation. ■

5.1.3 Other Methods for Constrained Optimization

While the methods in the previous two sections have been and remain widely used,
as well as the penalty function methods in Sect. 5.2, not surprisingly a variety of
other methods that might broadly be termed constraint-following methods have
been developed. In particular, we should refer to the method of feasible directions
and to sequential quadratic programming. Also, with the increasing power of
computers, some zero-order methods, including the genetic algorithm described
later in Chap. 8, have become increasingly useful in certain types of problem.

The method of feasible directions [13] is specifically aimed at optimization
problems with nonlinear, inequality constraints. If a search direction is chosen
tangent to the active constraints (as in the gradient projection method) and the
constraints are nonlinear, this immediately leads to a departure from the true con-
straints, for which move limits and a correction procedure are necessary. In the
method of feasible directions, the search direction is allowed to point into the
feasible domain at some angle to the constraint boundary. This is illustrated in
Fig. 5.3, showing the current point located on a nonlinear constraint gðxÞ ¼ 0 and a
weight line, or line of constant value of the objective function f ðxÞ, through that
point (the weight line is shown linear in the figure, but this need not be so).
A feasible search direction s must point to the space above the constraint line
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(gðxÞ� 0), while for a usable search direction it must point to the space below the
weight line (f ðxÞ reducing). This leaves the sector shown in the figure available for
a feasible–usable search direction. A search direction chosen within this sector
enables more progress to be made before again encountering a constraint.

For a suitable search direction s, we set up the following optimization problem:

maximize b ðb� 0Þ
subject to : sTrgðxÞ� b;

sTrf ðxÞ� � b;
and sij j � 1:

This makes a compromise between the extent to which the search direction is
allowed to depart from the constraint boundary and the reduction in function f ðxÞ.
The result is a search direction which roughly bisects the feasible–usable sector in
Fig. 5.3 (provided of course that both the constraint and the objective function have
been normalized).

A so-called push-off factor hðh� 0Þ is introduced into the first constraint to
control the extent to which the search direction is angled away from the constraint
boundary:

sTrgðxÞ� h b:

A value h ¼ 0 allows a search direction along the tangent to the constraint, while
larger values of h apply to increasingly nonlinear constraints. Furthermore, we have
up to now considered only a single constraint. We should include both active and
near-active constraints gj for better convergence. The optimization problem, written
in its usual form, then becomes

Fig. 5.3 Feasible directions
method
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maximize bðb� 0Þ
subject to : �sTrgjðxÞþ hjb� 0;

sTrf ðxÞþ b� 0;
and sij j � 1:

This is in fact a linear optimization problem, usually solved by linear pro-
gramming. Note the form of the third constraint, to impose bounds on the search
direction. It is expressed in this way (rather than the usual sTs ¼ 1) to preserve the
linear optimization problem. Values of the push-off factor hj can be defined for each
constraint. Commonly, hj ¼ 1 is used in the first place, but it can also be related to
the values of near-active constraints to avoid these becoming repeatedly active and
inactive (see [12]). For a linear constraint, hj ¼ 0.

If we assume that we have already located a point on a constraint boundary, we
perform the optimization problem above for the components si of the search
direction. We proceed along this direction until either a minimum is found or the
same or a new constraint is encountered. In the first case, we perform an uncon-
strained optimization to return to the constraint boundary, and in the second case, a
new search direction is computed directly. This is continued until we have
approached closely enough to the required optimum.

In a development of the method above, known as a ‘robust feasible direction
method’ [12], the same partitioning in dependent and independent variables is used
as in the generalized reduced gradient method, but without the addition of surplus
variables. Instead of surplus variables, the active constraint strategy of the feasible
directions method is retained. The search direction is based on formulae for the
feasible directions method, but with push-off factors set to zero so that the search
direction is now tangent to the active constraints. The line search is in the inde-
pendent variables, with updating of the dependent variables as in the generalized
reduced gradient method. Other than in that method, only the gradients of the
currently active constraints have to be computed, and with no surplus variables, the
number of variables is not increased.

Sequential quadratic programming [9] employs a more complex procedure for
determining a search direction than in the methods described up to now. It is based
on a quadratic approximation to the Lagrangian function and linearized constraints.
Special methods exist for solving the resulting quadratic programming problem
from which the search direction is deduced. Lagrange multipliers are updated in
successive iterations. Different formulations of the method exist, and the theoretical
background is quite complex; therefore, we shall not go into this further here. Arora
[2] provides an extensive further discussion of sequential quadratic programming
methods. The improved efficiency of sequential quadratic programming can more
than compensate for the extra effort required in programming the method for the
computer.
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5.1.4 Substitution of Variables

The methods for constrained optimization discussed in this chapter up to now all
depend on linearization of nonlinear constraints, as approximation to the true con-
straints at the current point. Move limits are usually necessary to limit how far the
solution is allowed to depart from the true constraint boundary. Clearly, the chosen
extent of such move limits depends on the degree of nonlinearity of the constraints.
Linearity can often be improved by appropriate substitution of variables.
Commonly, this is done by use of so-called inverse variables, that is, by replacing
simple variables such as cross-sectional area A or thickness t by 1

A or
1
t . The reasoning

behind this is as follows. Stress is load over area, and if we examine any formula for
the stress in a structure, or for its deflection, we see that quantities such as A and
t appear in the denominator of the formula or in any case to a higher power in the
denominator than in the numerator. Therefore, use of inverse variables leaves stress
and deflection constraints more directly related to these variables. However, the
same is not necessarily true for other constraints, such as buckling constraints. An
effect of using inverse variables is that the feasible region is moved below to the
constraints in the design space, rather than above as in all the figures up to now.

Throughout this chapter, it is assumed that we do not know in advance which of
the inequality constraints will be active at the optimum, these being identified
during the optimization process. However, if we can be sure that certain constraints
will be active at the optimum, these can be treated as equalities and we may be able
to solve for the same number of variables or, better said, express these in terms of
the remaining variables. Provided that this is algebraically possible, or not other-
wise impractical, this reduces the number of variables participating as such in the
optimization. This is also, of course, the basis of a fully stressed design. For the
statically determinate truss structures in Chap. 1, stress constraints in individual
members are used to solve for the required areas of those members, eliminating
those variables from the optimization and leaving, for example, only those variables
relating to the shape of the truss, or other variables referring to the shape of cross
section of the members. For a statically indeterminate truss, under certain condi-
tions, this results in the familiar iterative process leading to an optimum layout of
truss.

Reduction in the number of variables for large problems, by selection of ‘master’
and ‘slave’ variables, with only the master variables entering into the actual opti-
mization, is discussed in Chap. 9.

5.2 Penalty Function Methods

The constraint-following methods in Sects. 5.1.1 and 5.1.2 reduce the problem, by
selection of active constraints or by use of surplus variables, to what is in effect an
equality constrained problem. Penalty function methods, on the other hand, convert
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the constrained problem into a fully unconstrained one. This is achieved by adding
a suitable penalty term to the objective function, either to avoid or to penalize
constraint violations. The unconstrained problem is then solved by any of the
previous methods. As the magnitude of the penalty term is decreased (or increased,
depending on the type of penalty function) and the unconstrained optimization
repeated, the solution approaches the optimum of the original constrained problem.
For this reason, these methods are also referred to as ‘sequential unconstrained
optimization techniques’ [5]. An extensive review of these methods is provided by
Vanderplaats [12]. They provide a simple, intuitive way of including constraints in
an optimization problem and are easy to implement. Penalty function methods can
be applied to both equality and inequality constrained problems and do not require
linearization of nonlinear constraints. However, it remains an iterative process
requiring repeated unconstrained optimization, and penalty function methods are
generally less efficient than the more sophisticated constraint-following methods.
Many different forms of penalty function have been proposed over the years. Three
of the most commonly used penalty functions are discussed in the following
sections.

5.2.1 Interior Penalty Function

The simplest form of penalty function, first for an inequality constrained problem, is
the so-called interior penalty function. This takes the form:

FðxÞ ¼ f ðxÞþ ruðxÞ; ð5:10Þ

where f ðxÞ is the function for which we seek a constrained minimum, r is a penalty
parameter and

uðxÞ ¼
X

m

j¼1

1
gjðxÞ

is the penalty term containing the m inequality constraints gjðxÞu ! 1. Since if
any of the constraints are precisely satisfied (gj ¼ 0), this function in effect puts up
a barrier along the constraint boundary, with FðxÞ increasing rapidly as the
boundary is approached. None of the constraints may be negative, as this would
lead to negative values of u and cause the solution not to converge, so this form of
penalty function is necessarily restricted to the feasible region. Away from the
constraint boundary, the penalty term gradually decays, and function FðxÞ
approaches the original function f ðxÞ.

Provided that parameter r[ 0, we have applied a penalty to the original function
f ðxÞ for approaching the constraint boundary. The minimum of FðxÞ is not, of
course, the constrained minimum of f ðxÞ, but approaches the required optimum as
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r is reduced. We take therefore a sequence of reducing values of r and repeat the
unconstrained optimization for each r, continuing each time from the previous
solution. The effect of reducing r on the interior penalty function is illustrated in
Fig. 5.4 for an elementary, one-dimensional problem. By reducing r, the minimum
of FðxÞ is gradually drawn into the constrained minimum of function f ðxÞ at x ¼ 1,
with smaller changes in variable x at each step. We also see in the figure how the
penalty function FðxÞ approaches the original function f ðxÞ with increasing x away
from the constraint and that FðxÞ increases rapidly close to the constraint.

While Fig. 5.4 illustrates a one-dimensional problem, a similar plot would be
obtained if plotted on the line along which the solution approaches the optimum in a
multidimensional problem. Since for small values of r the solution is close to the
optimum, the need for a sequence of decreasing r values may not be obvious at this
point. In simple terms, the effect of this is to enable the process to steer clear of all
constraints in the beginning and in the end to approach the optimum from a more
favourable direction in which it is then possible to locate the optimum with the
required accuracy. If we start with too small a value of r, we may approach too
closely to one or more constraints before we are in the neighbourhood of the
optimum, and the rapid rise in FðxÞ can lead to a poorly conditioned numerical
minimization of the penalty function or even failure to converge. On the other hand,

Fig. 5.4 Effect of reducing
values of penalty parameter
r on the form of the interior
penalty function

5.2 Penalty Function Methods 131



if we start with too large a value of r, we find an initial point far distant from the
required optimum, and the process is slowed down.

Choice of the best sequence of r values is problem dependent and has been the
subject of much research, the aim of course being to find the optimum in the least
number of function evaluations. It should be emphasized that the interior penalty
function applies only to the feasible region. If any constraint becomes negative, then
the ‘penalty’ turns into an advantage, that is, it becomes negative, at least with
respect to that constraint. It is necessary, therefore, to apply some safeguard in the
procedure to ensure that no constraint can become negative at any stage.

Equality constraints can be taken into account in the interior penalty function
method by means of an additional penalty term u0ðxÞ in the penalty function:

FðxÞ ¼ f ðxÞþ ruðxÞþ r0u0ðxÞ;

where

u0ðxÞ ¼
X

p

k¼1

½hkðxÞ�2

(a term borrowed from the exterior penalty function method in the next section)
contains the p equality constraints hkðxÞ. Unlike r, the penalty parameter r0 requires
a suitable sequence of increasing values.

Example 5.4 Use the interior penalty function method to optimize the radius and
thickness of the circular tube in compression in Example 2.1.

To illustrate the interior penalty function method and to compare the result with
the theoretical optimum in Example 2.1, we take only Euler and local buckling
constraints into account. The minimum thickness limitation in that example is
therefore ignored. Table 5.1 shows the sequence of values of radius R, thickness

Table 5.1 Sequence of
iterations by the interior
penalty function method for
the circular tube in
Example 2.1, with initial
penalty parameter r ¼ 250
reduced by a factor of 10 at
each iteration (P ¼ 10;000 N,
L ¼ 1000 mm,
E ¼ 72;000 N=mm2)

Iteration Radius
R (mm)

Thickness
t (mm)

Area
A (mm2)

0 20 1 125.66

1 40.07 0.5249 132.17

2 33.87 0.3169 67.43

3 30.62 0.2341 45.03

4 29.30 0.2051 37.75

5 28.84 0.1956 35.44

6 28.69 0.1926 34.71

7 28.64 0.1916 34.48

8 28.62 0.1913 34.40

9 28.62 0.1912 34.38

10 28.62 0.1912 34.38

20 28.62 0.1911 34.37
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t and cross-sectional area A generated in each iteration. These were calculated by the
spreadsheet ‘penalty function method’ in Sect. 5.3.1. Initial values of R and t were
chosen to be close to the constraint boundary. An initial value of the penalty
parameter r ¼ 250 was chosen, reducing by a factor of 10 at each iteration. Within
five iterations, the optimum is approached quite closely, while a sufficiently accurate
result for most purposes is obtained after only ten iterations. The result agrees with
the theoretical optimum in Example 2.1. It will be observed in Table 5.1 that
the procedure first approaches the optimum quite quickly, but is much slower in later
iterations in reaching an accurate result. This is an inevitable characteristic of an
interior penalty function and of the exterior penalty function in the next section. ■

5.2.2 Exterior Penalty Function

The need to ensure that constraints do not become negative in the interior penalty
function method can be avoided by use of an exterior penalty function. This again
takes the form:

FðxÞ ¼ f ðxÞþ ruðxÞ;

where the penalty term uðxÞ is now:

uðxÞ ¼
X

m

j¼1

max 0;�gjðxÞ
� �� �2

:

The effect of the above formula is that only violated constraints (gj\0) are
included in the penalty term. As a consequence, this new function penalizes con-
straint violations, leaving it unaffected by constraints that are satisfied. The square
in the penalty term is to avoid a discontinuity at the constraint boundary and to
make constraint violation progressively more severe. The exterior penalty function
applies to both the feasible and infeasible regions, but now the solution approaches
the optimum from the infeasible region. By progressively increasing the value of
r in the penalty function and repeating the unconstrained optimization, the solution
is pushed towards the constrained optimum until a sufficiently accurate solution can
be obtained. This is illustrated in Fig. 5.5 for the same one-dimensional problem as
previously for the interior penalty function in Fig. 5.4.

Clearly, a disadvantage of the exterior penalty function method is that unlike the
interior penalty function, if the optimization is stopped before it is finally con-
verged, the solution will be to some degree on the infeasible side of the constraints.
However, because the method is valid in both the feasible and infeasible regions, no
special measures are necessary to prevent the solution from crossing the constraint
boundary (as in the interior penalty function method). Similar remarks as before
apply with regard to the need for a suitable sequence of r values.
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The exterior penalty function method is readily modified to accommodate
equality constraints by means of an additional penalty term u0ðxÞ:

FðxÞ ¼ f ðxÞþ ruðxÞþ r0u0ðxÞ;

where

u0ðxÞ ¼
X

p

k¼1

½hkðxÞ�2

contains the p equality constraints hkðxÞ ¼ 0. For these constraints, this term has the
effect of pushing the solution towards the constraints from either side. A suitable
increasing sequence of both r and r0 is now necessary. As we have seen, the same
additional term u0ðxÞ is used in the interior penalty function method to include
equality constraints.

For the proper working of both types of penalty function, it is advisable first to
normalize the constraints. By ensuring that all constraints have an initial value
somewhere in the region of unity, all constraints can contribute to the penalty term
on the same basis. For example, a stress constraint:

Fig. 5.5 Effect of increasing
values of penalty parameter
r on the form of the exterior
penalty function
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gj ¼ r 0 � r� 0

can better be written as:

1� r
r0

� 0

by dividing by the allowable stress r0 (or some other appropriate constant). The
same applies, of course, to equality constraints.

Example 5.5 Repeat Example 5.4 using the exterior penalty function.
The spreadsheet ‘penalty function method’ was modified for an exterior penalty

function, as described later in Sect. 5.3.1. Table 5.2 shows the sequence of values
of radius R, thickness t and cross-sectional area A generated in each iteration (again
no minimum thickness requirement is applied). An initial value of the penalty
parameter r ¼ 25 was chosen, increasing by a factor of 10 at each iteration.
A sufficiently accurate solution, again agreeing with the theoretical optimum, is
obtained after only three iterations.

The factor of 10 for the penalty parameter in both this and the previous example is
quite large and may well have to be reduced in other problems when a conventional
gradient-based method is used for the unconstrained optimization. The Hooke and
Jeeves routine used for convenience in the spreadsheet, being a zero-order method
not requiring gradient data, is less sensitive to the steepness of the contours of the
penalty function, allowing therefore the larger reduction factor. ■

5.2.3 Augmented Lagrangian Penalty Function

As has been pointed out, a characteristic of both the interior and exterior penalty
functions is the rapidly increasing steepness of the function as the optimum is
approached. This inevitably makes the task of locating a minimum in the uncon-
strained optimization more difficult. The augmented Lagrangian penalty function

Table 5.2 Sequence of
iterations by the exterior
penalty function method for
the circular tube in
Example 2.1, with initial
penalty parameter r ¼ 25
increased by a factor of 10 at
each iteration (P ¼ 10;000 N,
L ¼ 1000 mm,
E ¼ 72;000N/mm2)

Iteration Radius R (mm) Thickness
t (mm)

Area A (mm2)

0 15 0.1 9.42

1 27.26 0.1653 28.31

2 28.51 0.1889 33.84

3 28.61 0.1909 34.32

4 28.62 0.1911 34.36

5 28.62 0.1911 34.37

10 28.62 0.1911 34.37
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avoids this problem by including Lagrange multipliers in the previous exterior
penalty term. The aim is to define a function which moves progressively towards
satisfaction of the Kuhn–Tucker conditions, rather than one which simply enables
us to locate the minimum, as has been the objective up to now. As added advantage,
values of the Lagrange multipliers are obtained at the same time as the required
optimum values of the variables. For a problem with only inequality constraints, the
augmented Lagrangian penalty function is

FðxÞ ¼ f ðxÞþ r
X

m

j¼1

max
kj
2r

� gjðxÞ; 0
� �� 	2

; ð5:11Þ

where kj are the Lagrange multipliers. These are mostly taken to be zero in the first
iteration. It is seen that the above function then reduces simply to the conventional
exterior penalty function in this first step. However, we now minimize the function
in Eq. (5.11) by updating the values of kj at each iteration, rather than by increasing
the value of the penalty parameter r, as we did before. The updating formula for kj
now has to be deduced.

If we differentiate function FðxÞ analytically with respect to each xi for a min-
imum, we obtain

@F
dxi

¼ @f
@xi

�
X

m

j¼1

max kj � 2rgj; 0
� � @gj

@xi
¼ 0:

For an inequality constrained problem, the third of the Kuhn–Tucker conditions
in Sect. 3.3.1 for a variable xi reduces to:

@f
@xi

�
X

m

j¼1

k �
j
@gj
@xi

¼ 0;

where the asterisk denotes the optimum value of the Lagrange multiplier. Compare
now the two formulae above. We see that the two expressions agree if:

max k j � 2rgj; 0
� � ¼ k�j :

It is reasonable to assume then that:

k0j ¼ max kj � 2rgj; 0
� �

; ð5:12Þ

where kj and gj are their current values and will provide an improved estimate k0j of
the Lagrange multipliers. In an iterative process, the numerical procedure is then to
minimize the unconstrained function FðxÞ in Eq. (5.11), substituting at each iter-
ation updated values of k0j from Eq. (5.12). This will then converge to the required
optimum of k and x. Note that as implied earlier, it may no longer be necessary to
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increase the value of r at each iteration, as in the conventional exterior penalty
function method or in any case not to the same extent. This is why we do not get an
increasingly steep increase in the penalty function as we approach the optimum.
Convergence is generally significantly better than with either of the previous two
penalty functions. Note also that Eq. (5.12) ensures that all the kj remain positive or
zero, as required. To include equality constraints hkðxÞ in the augmented
Lagrangian penalty function, we simply add a term:

X

p

k¼1

�kkhk þ rh2k

 �

to the penalty function in Eq. (5.11). The updating formula for kk becomes

k0k ¼ kk � 2rhk:

Example 5.6 Repeat Example 5.5 using the augmented Lagrangian penalty
function.

We choose the same initial values of radius R ¼ 15 mm and thickness t ¼ 0:1
mm as in the exterior penalty function method in the previous example, with a
penalty parameter r ¼ 25 equal to the initial value of r in that example. This is kept
constant in each iteration. With the same data as in Example 2.1, and using the
formulae for the Euler buckling load PE and the local buckling load PL from
Sect. 2.1, the following initial constraint values can be calculated:

g1 ¼ ðPE=PÞ � 1 ¼ �0:9247; g2 ¼ ðPL=PÞ � 1 ¼ �0:7263:

Both being well below zero, it is seen that the initial values of R and t are quite
far into the infeasible region. For this example, Eq. (5.11) can be written as:

F ¼ Aþ r max
k1
2r

� g1; 0
� �� 	2

þ r max
k2
2r

� g2; 0
� �� 	2

:

Starting with initial values of the Lagrange multipliers k1 ¼ k2 ¼ 0, we insert
the appropriate formulae for the cross-sectional area A and for constraints g1 and g2
into the above equation. With variables R and t, function F is now minimized (using
Solver or by the Hooke and Jeeves method in Sect. 4.3.1). This gives

R ¼ 27:26 mm; t ¼ 0:1653 mm;

g1 ¼ �0:2525; g2 ¼ �0:2525:

It is seen that a substantial reduction in constraint violation has already taken
place in this first iteration.
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The update formula for the Lagrange multipliers in Eq. (5.12) is

k0j ¼ max kj � 2rgj; 0
� �

;

where kj and gj refer to their current values for each constraint. In both cases, the
first term in the brackets above becomes

0� 2� 25� ð�0:2525Þ ¼ 12:62:

This is greater than zero, so k01 and k02 for the next iteration are both 12.62 (it
turns out in this example that k1 and k2 remain equal throughout). The updated
Lagrange multipliers are now used for the next iteration. The complete sequence of
iterations is shown in Table 5.3. This was made with the spreadsheet ‘penalty
function method’ suitably modified for the augmented Lagrangian penalty function
method. We see that a solution accurate to within 0.1% is reached in three itera-
tions. However, we should understand that this simple example does not show the
full advantage of the Lagrange multiplier method over other penalty function
methods in larger problems. ■

5.3 Spreadsheet Program

The spreadsheet illustrates use of a penalty function for constrained optimization.
Since Solver does not itself include such an option, it is convenient to make further
use of the program for the Hooke and Jeeves method in Sect. 4.3.1, with the aim of
making the minimum of changes to that program. As initially set up, the spread-
sheet uses an interior penalty function, but it is readily modified for another form of
penalty function. A single new function is introduced into the program, responsible
for progressive reduction of the penalty parameter and for checking any constraint
violation that may occur. This function calls the Hooke and Jeeves routine to
perform the optimization at each value of the penalty parameter.

Table 5.3 Sequence of iterations by the augmented Lagrangian penalty function method for the
circular tube in Example 2.1, with fixed penalty parameter r ¼ 25 (P ¼ 10;000 N, L ¼ 1000 mm,
E ¼ 72;000 N/mm2)

Iteration Radius
R (mm)

Thickness
t (mm)

Area
A (mm2)

Lagrange
multiplier k1

Lagrange
multiplier k2

0 15 0.1 9.42 0 0

1 27.26 0.1653 28.31 12.62 12.62

2 28.74 0.1935 34.94 11.36 11.36

3 28.61 0.1910 34.32 11.46 11.46

4 28.62 0.1912 34.37 11.46 11.46

5 28.62 0.1911 34.37 11.46 11.46
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5.3.1 ‘Penalty Function Method’

The interior penalty function method is applied to the well-used problem of the
circular tube in compression in Example 2.1 and again in Example 5.4. To show
agreement with the earlier analytical optimum, only Euler and local buckling
constraints, PE and PL in Eqs. (2.1) and (2.2), are included, with no minimum
thickness limitation. As in the spreadsheet for the Hooke and Jeeves method, the
intention is that only function FN need be modified (or replaced) to define a
different problem. This has to be programmed by the user in Visual Basic. The
spreadsheet is shown in Fig. 5.6.

An additional function PF for the penalty function method reads the initial
variables, initial penalty parameter, reduction factor and certain other parameters
from the spreadsheet. It also returns the results of optimization to the spreadsheet.
Again, the spreadsheet itself is reserved for input of data and display of results. In
addition, function PF takes care of the progressive reduction (for an interior penalty
function) of the penalty parameter, each time dividing by the specified reduction
factor. It also checks for possible constraint violation. Function PF repeatedly calls
function HJ (the Hooke and Jeeves routine) to locate the minimum of the penalty
function for successive values of the penalty parameter.

Function FN is modified to calculate values of both the objective function and
constraints and, for the interior penalty function method, to assemble the penalty
function as in Eq. (5.10) with the current value of the penalty parameter. As set up
for the circular tube, constraints are expressed in the form: PE=P� 1� 0 and
PL=P� 1� 0. Here, these are simple analytic formulae, but in general, they can be
expected to be more complex functions. The objective function is the
cross-sectional area A of the tube. Variables are its radius R and thickness t. The
necessary geometric, material and other data are included in function FN. With an
interior penalty function, it will be recalled that this applies only to the feasible
region. The function checks, therefore, for negative (or near zero) values of all
constraints with each move in the Hooke and Jeeves routine. If a constraint vio-
lation occurs ðICV ¼ �1Þ, the move is treated simply as a failure, the move is
retracted, and the procedure continues. It also checks for infeasible initial values,
violating one or more constraints, in which case a message is displayed. Both
checks should be removed for an exterior penalty function, since this is valid in the
entire design space and works essentially in the infeasible region. In this case, the
function FN need do no more than calculate the objective function and constraints
and assemble the penalty function.

As previously, function HJ repeatedly calls function FN, now to perform the
minimization of the penalty function for the current value of the penalty parameter.
The only change to the Hooke and Jeeves routine in function HJ is that ICV for
constraint violation is included in certain ‘If’ statements, so that a move is only
regarded as a success if there is both a reduction in the value of the penalty function
and ICV ¼ 0 to indicate no constraint violation.
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The initial penalty parameter, reduction factor and the chosen number of penalty
function iterations (i.e. reductions in the penalty parameter) all have to be entered
where indicated on the spreadsheet, as well as the required number of step size
reductions in the Hooke and Jeeves procedure and certain other data. Initial values
of the variables, with corresponding initial step sizes, have to be entered in the
appropriate columns. The number of variables is limited to 20, unless further
changes are made. There are no specific limits on the number of constraints. For the
circular tube, we have only two variables: Xð1Þ ¼ R and Xð2Þ ¼ t. The remaining
variables should be left blank. A sufficient number of penalty function iterations
should be chosen to ensure that the solution has converged to the optimum. The
number of reductions in step size determines the precision to which the optimum
can be located. Values currently in the spreadsheet might be regarded as typical. If
the constraints have been normalized, the initial penalty parameter can be chosen
based on an estimated value of the objective function after optimization. Note that
for an interior penalty function, the reduction factor must be greater than unity, so
that the penalty parameter is progressively reduced. If function FN is modified for
an exterior penalty function, the penalty parameter must be less than unity, so that
the penalty parameter is increased. Parameters and variables to be entered are listed
in Table 5.4.

After entry of the required data in the spreadsheet, optimization is started by
pressing function key f 9 (again ‘Manual Workbook Calculation’ has been selected
in Options). Optimum values of the variables are returned in the column ‘optimum
values’ on the spreadsheet, together with the resulting constrained minimum of the
function and the number of function evaluations performed. Results for the circular

Table 5.4 Data entry for spreadsheet program ‘penalty function method’

Parameters

Number of variables Enter the value in cell D8 (maximum 20)

Required number of reductions in step size in
Hooke and Jeeves method

Enter the value in cell D11

Maximum number of sequences of exploratory
moves at any step size in the Hooke and Jeeves
method

Enter the value in cell D15 (see Sect. 4.3.1)

Initial value of the penalty parameter Enter a positive value in cell D18

Reduction factor for the penalty parameter Enter a positive value in cell D21

Required number of penalty function iterations Enter the value in cell D24

Initial step size for variables xi in the Hooke
and Jeeves method

Enter values in order in column G, starting
at cell G5 (remaining cells may be left
blank)

Variables

Initial values of variables xi Enter values in order in column H, starting
at cell H5 (remaining cells may be left
blank)

Create the penalty function in function FN (to access function FN, click Visual Basic on the
Developer tab to open the Visual Basic Editor)
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tube are given in Table 5.1. Again, it should be noted that cells I5:I26 in the column
headed ‘optimum values’ contain an array formula for return of the results of
optimization to the spreadsheet. No change may be made to cells in this array unless
the array formula is first deleted.

5.4 Summary

In practice, most optimization problems, certainly in structural design, will involve
some or many constraints. The choice of method depends on the nature of the
problem and in particular that of the constraints. For sufficiently smooth,
well-behaved problems, methods for constrained optimization generally fall into
one of the two categories. We refer to the first as constraint-following methods, in
which the active constraints are followed as closely as possible around the design
space, or in another way, constraints remain satisfied during the search for an
optimum. The generalized reduced gradient method in Solver falls under this cat-
egory. The second category is by means of a penalty function, in which a penalty
term is added to the objective function either to avoid the constraints until close
enough to the optimum or to penalize violation of them. These are the methods
discussed in this chapter. Methods in either category apply in general to both linear
and nonlinear problems. However, if both the constraints and the objective function
are linear functions of the design variables, linear programming offers a powerful
and effective alternative, although such problems are uncommon in structural
design. For discontinuous problems such as those with discrete variables or prob-
lems where more local minima exist, the genetic algorithm (discussed in Chap. 8),
in which more potential solutions are retained, offers a satisfactory if substantially
more time-consuming outcome. Both linear programming and the genetic algorithm
are available in Solver. For some discrete variable problems, Solver also offers the
useful option to restrict variables to integer values in all three of its methods.

In the gradient projection method, a constraint-following method, a search
direction is found on the intersection of the currently active constraints, so that they
remain satisfied during the line search. The search direction has to be updated when
a previously inactive constraint is encountered or when one is no longer active.
Lagrange multipliers can be evaluated to distinguish between constraints that must
be retained and those that have to be rejected. The line search is then repeated, and
the process continued. The method is more readily applied to inequality constrained
problems, but can also be applied to problems with equality constraints. The gra-
dient projection method is based on a linear approximation to the constraints at a
current point, so for nonlinear constraints, a correction is necessary when the
solution deviates too far from the true constraints. Move limits are usually set to
limit this. Use of inverse variables frequently improves the linearity of nonlinear
constraints.

In the generalized reduced gradient method, again a constraint-following method
and the method in Solver more generally applicable in structural design, a different

142 5 Numerical Methods for Constrained Optimization



procedure is followed. Here, surplus variables are added to convert all inequality
constraints to equalities, while this does increase the total number of variables. All
constraints are then treated in the same way. Variables are selected as dependent
variables to satisfy the same number of constraints, and optimization is performed
on the remaining independent variables. By suitable partitioning of a matrix con-
taining the derivatives of each constraint, a reduced gradient in the independent
variables is found from which a search direction is deduced. Surplus variables have
to remain positive or zero throughout the optimization (in effect, this is selection of
active constraints). The reduced gradient is re-evaluated when a surplus variable
reduces to zero during the line search. Again, the generalized reduced gradient
method is based on linearization of nonlinear constraints, with a restoration move to
return to the true constraints and move limits to avoid too great a deviation.

The penalty function method, an alternative to the constraint-following methods
for constrained optimization, reduces the problem to one of unconstrained opti-
mization, since all constraints are now contained in the penalty term. The uncon-
strained problem can then be solved by any of the previous methods. By taking a
series of values of a penalty parameter, the solution is drawn progressively closer to
the required optimum with each unconstrained optimization. Penalty function
methods are classed as interior or exterior, depending on whether they approach the
optimum from the feasible or the infeasible side. The augmented Lagrangian
penalty function is a more advanced form, with the Lagrange multipliers included in
the penalty term, and is more rapidly convergent. Penalty function methods can be
applied to both equality and inequality constraints, whether linear or nonlinear, and
are readily incorporated into an existing unconstrained optimization program. The
spreadsheet in this chapter to demonstrate the penalty function method makes use of
the Hooke and Jeeves routine in the previous chapter for the unconstrained opti-
mization. This is simply for convenience in the small problem chosen as example.
For large problems, more efficient methods would inevitably be used.

Exercises

5:1 Locate the intersection line of the two constraints in Example 5.1 in a
three-dimensional design space and mark the minimum point found in
the example. Evaluate the Lagrange multipliers to confirm that both
constraints are active at this point. Verify the optimum found in the
example analytically.
Find two convenient points that satisfy both constraints to draw the line
in a design space. Calculate the Lagrange multipliers by Eq. (5.4),
making use of the matrix calculation in the example. For an analytical
solution use the two constraints to eliminate two variables from the
objective function, then differentiate for a minimum.
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5:2 Use the gradient projection method to minimize the function:

f ðxÞ ¼ x21 þ x22;

subject to the constraint:

gðxÞ ¼ x1 þ 2x2 � 1:

Follow the method in Example 5.1. With only one constraint and two
variables the matrix calculations can readily be done by hand. Verify the
solution analytically.

5:3 Calculate the reduced gradient at the point reached after the initial line
search in Example 5.3. Determine a new search direction, and perform
the next line search.
Follow the method in Example 5.3 to calculate the reduced gradient,
with the same dependent variables, making use of the matrix calcula-
tions in the example where possible. Surplus variable x5 became zero in
the initial line search, therefore set the component of the new search
direction relating to x5 to zero if it would cause it to become negative.
Compare the result after the new line search with the solution in
Example 5.1.

5:4 Repeat Example 5.4 for the circular tube from different initial points and
with different series of r values.
Use the spreadsheet ‘Penalty Function Method’. Note the results at each
step, and plot the path of the optimization in a design space.

5:5 Modify the spreadsheet ‘Penalty Function Method’ for an exterior
penalty function, and repeat Example 5.4.
Use the IF function in Excel to select the maximum of the two terms in
the penalty function. Note that a series of increasing r values is now
required.

5:6 Modify the spreadsheet again for the augmented Lagrangian penalty
function, and repeat Example 5.4.
Note that the r-value is now constant. Iteration is performed with the
values of the Lagrange multipliers.

5:7 Change the formulae for the objective function and constraints in the
spreadsheet ‘Penalty Function Method’ to minimize the cost of the
container in Exercise 3.4.
Choose a suitable sequence of r values.

5:8 Change the formulae in the spreadsheet to minimize the function in
Example 3.4, subject to the same linear constraints.
Plot the optimization path in a design space in any two of the three
variables.

5:9 Change the formulae in the spreadsheet ‘Penalty Function Method’ to
optimize the cross section of a hollow steel beam of thin, square section
and uniform thickness, under a symmetrically applied shear force of
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50� 103 N and bending moment 10� 106 N mm. Take into account
the maximum equivalent stress at the corners of the section in combined
bending and shear, and buckling of the different sides in compression or
shear. The maximum allowable stress is 500 N/mm2, at which any effect
of yielding of the material on the buckling stresses can be neglected, and
elastic modulus E ¼ 200� 103 N/mm2.
Variables are the width b of the square and its thickness t. Use the
formula in Sect. 3.4.2 for the equivalent stress. For buckling of the side
in compression use the formula rb ¼ 3:62Eðt=beÞ2, and for buckling of
the sides in shear sb ¼ 4:83Eðt=beÞ2, where be is the effective width (i.e.
measured to the mid-thickness of the section). Use the average shear
stress in the sides for buckling in shear.
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Chapter 6
Optimization of Beams

Abstract Beam optimization involves both the design of the cross section and the
distribution of material along its length. For a relatively solid beam, the necessary
cross-sectional area under a given bending moment at any section is determined
largely by its permitted height and width. At lower load, when the cross section is
relatively thin, a beam becomes liable to buckling under compressive and shear
stress. A spreadsheet program is made for an I-section beam loaded in bending and
shear under stress, buckling and stiffness constraints. For a geometrically similar
family of beams, the cross-sectional area can be related to the bending moment by a
non-dimensional coefficient depending only on the chosen shape ratios of the cross
section. Geometric similarity is adopted in a spreadsheet program for the optimum
distribution of material along the length of a beam, with a finite element analysis for
the bending moment distribution. Provided some degree of yielding is permitted,
the capacity of a beam is not exhausted when the elastic limit is reached at some
point. With increasing load, yield hinges are formed at points along the span,
leading to the ultimate collapse of the beam. This is the classic problem of limit
design.

Beams and trusses in their many different forms must be amongst the most widely
encountered of all engineering structures. Truss structures were discussed in earlier
chapters, in particular to illustrate some basic principles of structural optimization,
also as a convenient model to demonstrate use of Solver. In the present chapter, we
shall explore beam optimization in some detail. We can distinguish two different
but closely related aspects of beam optimization: first, optimization of the cross
section of a beam and second the optimum distribution of material along its length.
Since the load-carrying capacity of a beam is not exhausted when some part of it
reaches the elastic limit of the material, we have also to consider the redistribution
of stress within the cross section due to yielding, and the increase in load that can be
carried. These last aspects are introduced later in this chapter.



6.1 Beam Cross Section

We consider first the simple rectangular section beam in Fig. 6.1, under a bending
moment M about the horizontal axis. By the conventional theory of bending, the
maximum stress in the beam is as follows:

rmax ¼ Mh
2I

¼ 6M
bh2

;

where I ¼ bh3=12 is the second moment of area of the beam, or with
cross-sectional area A ¼ bh:

rmax ¼ 6M
Ah

:

If the maximum stress is an allowable stress r0 (assumed for the present to be
within the elastic limit of the material) we have the following:

A ¼ 6M
r0 h

:

For given M and r0, the required cross-sectional area A of the beam depends
only on its height h, and it is clear that to minimize A, we require the largest
possible h. We must, therefore, impose a limit hmax on the height of the beam for
any sensible result, as would invariably also be imposed for purely practical rea-
sons. Therefore, we can write as follows:

A ¼ 6M
r0 hmax

: ð6:1Þ

The above formula demonstrates the well-known importance of the height of a
beam.

To improve the design of the beam, we have to change its shape from the current
simple rectangle. It might be tempting to do this in the manner of a fully stressed
design, by attempting to make the stress equal to the maximum allowable stress

Fig. 6.1 Rectangular section
beam
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over the whole cross section. However, this is fundamentally impossible because,
as long as the behaviour remains elastic, the bending stress retains its linear dis-
tribution whatever changes in shape are made. Instead, we can remove material
from the lesser stressed parts of the section around the neutral axis, where it is also
less effective in carrying the bending moment. This is done step by step in Fig. 6.2,
purely for illustration and not according to any particular rule. Note that, as for the
simple rectangular section, a maximum height is still imposed. It is seen how the
familiar shape of an I-section beam begins to emerge.

Since we have up to now considered a beam under only a bending moment, we
could in principle continue with removal of material until the web of the beam has
entirely disappeared. However, there will usually be a shear force on the beam, and
the web is required to carry the largest part of this as well as serving to stabilize the
cross section as a whole. The shear stress in the section, combined with the bending
stress, limits the minimum thickness of both the web and the flanges. Further, it
should be pointed out that in Fig. 6.2, material has been removed from the two
sides of the cross section, but this could of course equally well have been done from
the middle of the section, ending up with a rectangular, tubular section beam.

At some stage, with continued removal of material, the excess capacity of the
beam will have been exhausted. To permit further removal of material from the
lesser stressed parts of the beam, this has to be compensated by increase in width of
the flanges (referring still to an I-section beam). If no maximum width is specified,
with progressively wider and thinner flanges, these may eventually become so thin
that buckling becomes the dominant design condition. For a minimum weight
beam, we are concerned then with both stress limits and buckling of the cross
section. In practice, we are likely to have to specify both a maximum height and a
maximum width for the beam, and the design of the cross section will be confined
to within these limits.

It will be clear then that for the most efficient shape of cross section the material
should be concentrated as closely as possible to the edges of the ‘box’ defined by
these limits, such as in the I-beam or rectangular tube already referred to. For the
rest, the cross-sectional shape will be determined by practical considerations of the
use of the beam, its connections to other parts of the structure and the manner in
which the load is applied. For a chosen shape of beam, its individual dimensions
may then be optimized, subject to dimensional and other constraints, to refine the
design. Formulae for the minimum volume of a variety of beam sections are given
by Rees [3].

Fig. 6.2 Progressive removal of material from the cross section
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Equation (6.1) with coefficient 6 applies strictly to a rectangular section, in pure
bending. However, the formula can be generalized by replacing this by a
non-dimensional coefficient nh (where subscript h indicates a height limitation
hmax):

A ¼ nh � M
r0hmax

; ð6:2Þ

or, if preferred, in non-dimensional form:

A
h2max

¼ nh � 1
r0

� M
h3max

: ð6:3Þ

Cross-sectional area A is again the area required to limit the maximum stress to
the allowable stress r0. The quantity M=h3max is a useful parameter to represent the
severity of the bending moment in a beam, relating this directly to the allowable
stress. The value of nh (given by substituting appropriate values of A and M in the
above formulae) depends only on the shape of the cross section and can be used
therefore to compare different cross sections. The theoretical minimum value is
nh ¼ 2. For the symmetric I-section beam in Fig. 6.3, with b ¼ h=2 and t ¼ b=10,
we obtain nh ¼ 3:32. As already stated, for a solid rectangular section nh ¼ 6.

6.1.1 Thin-Walled Beams

The possibility of buckling in the cross section of a beam was already referred to
briefly. At smaller values of M=h3max in Eq. (6.3), the section becomes relatively
thin, and buckling is likely to be a critical design condition. For the I-section beam
discussed earlier this will be buckling of the upper or lower flange, principally in
compression. Buckling of the web will be principally in shear. In a flat-sided
section, buckling typically becomes a critical design condition at a width/thickness
ratio of around 10 or more for a ‘side’ free on one edge and supported on the other

Fig. 6.3 Symmetric I-section
beam
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(the flange of an I-beam), or at a ratio of around 25 or more for a ‘side’ supported on
both edges. These values are given only as a guide and should not be taken as
design values. The effect of buckling constraints is that, to reduce the
width/thickness ratio of the individual parts of the cross section, a specified max-
imum height and width of the cross section of the beam may not be reached at
smaller values of M=h3max.

The mode of buckling referred to above is local buckling of the cross section. As
well this, the possibility of lateral buckling should be referred to. This is buckling
out of the plane in which the beam is loaded, coupled with rotation of the cross
section, due to insufficient lateral or torsional stiffness. This is a long-wave mode,
depending on the length of the beam, its support conditions and the manner of
loading. It cannot, therefore be treated simply at the level of the beam cross section.
Minimum lateral and torsional stiffness may be imposed, or more simply a mini-
mum width of the cross section. A minimum width is in any case likely to be
imposed for practical reasons. A minimum bending stiffness in the plane of loading
may also be specified to limit deflection of the beam under load. In general, con-
straints for optimization of the cross section of a beam include now: stress limi-
tations under combined bending and shear, buckling constraints, dimensional
limitations and minimum stiffness.

Figure 6.4 shows in the upper figure how the minimum cross-sectional area A of
the I-section beam in Fig. 6.3 varies over a wide range of applied bending moment
M when subject to both buckling and stress constraints (note that this is a log–log
plot). Corresponding optimum values of height h and width b are plotted in the
lower figure. For the purpose of this figure, the beam is in pure bending with no
applied shear force. The thickness of the web is arbitrarily chosen, therefore, to be
equal to that of the flanges. The bending moment is assumed to be applied in either
direction, resulting in a doubly symmetric section. Both a maximum and a mini-
mum width of the cross section are specified, as well as a maximum height. At
higher values of bending moment (right hand side of the figure), the optimized
beam is relatively thick, and only the stress constraint is active. As expected, here
both the height and the width of the beam reach their maximum values hmax and
bmax, and only the thickness varies. At reduced bending moment, buckling of the
flanges becomes a critical constraint, together with the previous stress constraint.
This leads directly to a reduction in width, b\bmax, in the optimized design until it
reaches the minimum width bmin. At that same point, the height of the beam begins
to reduce, and these two effects together produce a marked change in slope of the
logA= logM graph. At still lower bending moment, only the buckling constraint
remains active. There is then practically no further change in the height of the beam,
and again only the thickness varies. Due to the change in shape of the cross section
with bending moment, the value of nh in Eq. (6.3) varies withM. AtM ¼ 108 Nmm
(M=h3max ¼ 29:6) at which h ¼ hmax and only the stress constraint is active, we have
a cross-sectional area A ¼ 6273 mm2 giving a value of nh in Eq. (6.3) of nh ¼ 4:70.
Figure 6.4 was plotted using the spreadsheet program ‘I-section Beam’ described in
Sect. 6.4.1.
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Fig. 6.4 Cross-sectional area A (upper figure), height h and width b (lower figure) plotted against
bending moment M for an optimized I-section beam with equal flange and web thickness
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6.1.2 Geometrically Similar Sections

A practical approach to many beam optimization problems is to adopt a geomet-
rically similar family of designs. Geometric similarity means that, for any chosen
shape of beam, its cross-sectional dimensions are all directly related to a single,
arbitrarily selected dimension of the cross section, for example the height h of the
beam. Then, for any change in that dimension, all other dimensions are changed in
the same proportion. In other words, in any family of designs, every cross section is
a scaled-up or scaled-down replica of the original design. This implies that the
cross-sectional area A is proportional to h2, and the second moment of area I is
proportional to h4. In that case, we can write as follows:

I ¼ CA2; ð6:4Þ

where coefficient C can be regarded as the ‘shape efficiency’ of that family of
designs, depending only on the shape ratios of the cross section. These are the
fixed ratios between the various dimensions of the cross section, the shape of the
beam being defined by these shape ratios. With given shape ratios, the buckling
stress remains the same for all members of a geometrically similar family of
beams. In fact, many standard ranges of commercially available beam sections
roughly correspond to a geometrically similar series of sections. Note that the
range of beams plotted in Fig. 6.4, while all I-sections, are not geometrically
similar.

For geometrically similar beams, the maximum distance y from the neutral axis
to the outer edge of the beam can also be expressed in terms of its cross-sectional
area A and a second non-dimensional coefficient C1 by:

y ¼ C1A
1=2:

With the above formula and the previous relation I ¼ CA2, the maximum stress
in the beam is:

r ¼ M � C1A1=2

CA2 ;

which we set equal to an allowable stress r0. Therefore:

A ¼ ng
M
r0

� �2=3

; ð6:5Þ

where coefficient ng ¼ C1=Cð Þ2=3 depends only on the shape ratios of the cross
section. Equation (6.5), for a geometrically similar family of beams, replaces the
previous Eq. (6.2). Note that no maximum height is now included in the above
formula. Also, the height of an optimum cross section no longer increases without
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limit (as in Sect. 6.1). This is because the width of the beam increases along with its
height, restricting its growth.

Values of C and ng for a number of shapes of beam, together with their shape
ratios, are given in Table 6.1. For all sections in the table, h is the height (outside
dimension), b is the width and t is the uniform thickness of the cross section. Not
surprisingly, there are substantial differences between the more solid and the thinner
sections. For doubly symmetric sections, the lower of the allowable stresses in
tension and compression should be used for r0, if these differ. For sections not
symmetric about their neutral axis, such as the T-section in Table 6.1, two different
values of coefficient ng refer to the upper and lower edges of the beam, with the
appropriate allowable stresses (the greater value of ng is given in the table).
Equation (6.5) remains applicable to unsymmetrical cross sections, but then with
due consideration to the location and orientation of the neutral axis.

Geometric similarity provides a useful relationship between the second moment
of area and cross-sectional area of a given shape of beam. Any required change in
the shape of the cross section is reflected in a new value of C. The relationship in
Eq. (6.4) will be used in Sect. 6.4.2 for the optimum distribution of material over
the span of a beam and can, for example, be used to define the properties of the
individual stiffeners in a stiffened panel.

6.2 Optimum Spanwise Distribution

Unless practical considerations demand otherwise, for minimum weight, we can
expect the cross section of a beam to vary along its length in response to the
bending moment in it. This might be by discrete changes in cross section at various
points along the beam, or by a more continuous variation. In the previous sections,
we explored the design of the cross section of a beam, and in particular relations
between the minimum cross-sectional area and bending moment. These relations
will be used now for the optimum variation of cross section along the span. For this,
we have to make a distinction between a statically determinate beam such as one on

Table 6.1 Values of C and ng for different geometrically similar beam sections (height h, width b,
thickness t)

b
h
¼ 1

b
h
¼ 1

t
h
¼ 0:25

b
h
¼ 0:5

t
h
¼ 0:2

b
h
¼ 0:5

t
h
¼ 0:1

b
h
¼ 0:5

t
h
¼ 0:2

b
h
¼ 0:5

t
h
¼ 0:1

C ¼ 0:0833

ng ¼ 3:302

C ¼ 0:1389

ng ¼ 2:585

C ¼ 0:3542

ng ¼ 1:840

C ¼ 0:7593

ng ¼ 1:341

C ¼ 0:3587

ng ¼ 2:189

C ¼ 0:7221

ng ¼ 1:756
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two simple-supports or a cantilever beam, and a statically indeterminate beam such
as a beam clamped at both ends or one supported at more than two points. In the
former case, the bending moment and shear force in the beam are determined
entirely by the applied loading, and the optimum spanwise distribution follows
directly. In the latter case, the bending moment and shear force depend on the
stiffness variation along the span and are therefore directly affected by changes in
cross section. For a statically indeterminate beam, this becomes a classic problem in
the mathematical calculus of variations, but we shall approach it differently here by
a purely numerical method.

6.2.1 Statically Determinate Beams

Just as for the truss structure we studied in the first pages of Chap. 1, we begin with
the classic problem of a beam of span L, simply supported at each end with a single
load P at mid-span, as in Fig. 6.5. The maximum bending moment, at the point of
loading, is Mmax ¼ PL=4. In the first place, we assume that the beam is uniform
along its length to obtain a basic formula to relate the volume of the beam to the
applied load. If we take the rectangular cross section in Sect. 6.1, with maximum
height hmax and minimum cross-sectional area A given in Eq. (6.1), we find the
following:

V ¼ AL ¼ 6Mmax

r0hmax
� L:

Substituting for Mmax:

V ¼ 3
2
� PL
r0

� L
hmax

:

It will be observed that this last formula has much in common with formulae for
a pin-jointed truss structure in Chap. 1. However, rather than proceeding further
with the rectangular section above, we choose now the more practical option of a
family of geometrically similar designs to represent the cross section. It is assumed
that these are thick enough, in relation to their other dimensions, to avoid any

/ 2L / 2L

P

Fig. 6.5 Statically
determinate beam
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buckling of the beam. With Eq. (6.5) for the cross-sectional area, we obtain an
alternative formula for the beam in Fig. 6.5, uniform along its length:

V ¼ AL ¼ ng
Mmax

r0

� �2=3

�L:

Substituting again for Mmax:

V ¼ ng
PL
4r0

� �2=3

�L:

In non-dimensional form the above formula becomes as follows:

V
L3

¼ 0:397� ng
1
r0

� P
L2

� �2=3

:

Here, we have identified a structural index P=L2, in units of stress, common to
all problems of this type with geometrically similar sections. The same structural
index was found in Chap. 1 for a truss structure.

To refine the design, we have to allow the cross section of the beam to vary
along its length. Since the bending moment is unaffected by the distribution of
material along the length of a statically determinate beam, we can directly match the
cross-sectional area to the bending moment, in the manner of a fully stressed
design. This means, of course, that every beam section is loaded to its maximum
capacity, and not that the allowable stress is reached over the entire cross section.
The bending moment in the beam in Fig. 6.5 varies linearly from Mmax at mid-span
to zero at each end. For the rectangular section of given height, this would imply
simply a halving of the volume of the beam. For geometrically similar beam sec-
tions, the calculation is slightly more complicated:

V ¼ 2
Zx¼L=2

x¼0

A dx ¼ 2
Zx¼L=2

x¼0

ng
M
r0

� �2=3

dx ¼ 2
Zx¼L=2

x¼0

ng
P
2r0

� �2=3

x2=3dx:

Performing the integration:

V ¼ 0:238 ng
P
r0

� �2=3

L5=3:

In non-dimensional form:

V
L3

¼ 0:238 ng
1
r0

� P
L2

� �2=3

:
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Expressed as a strength-to-weight ratio (as in Eq. (1.9) for a truss structure) we
have the following:

P
W

¼ 4:20
ng

� r
2=3
0

qw
� P

L5

� �1=3

;

where qw is the specific weight of the material. Coefficients 0.238 and 4.20 in the
above formulae refer, of course, specifically to a simply supported beam loaded at
mid-span. These can be used to compare with other loading systems and forms of
support.

Example 6.1 Derive an expression for the minimum volume of a cantilever beam of
length L under a total load P uniformly distributed along the length of the beam.

The bending moment in the beam is as follows:

M ¼ P
2L

� x2;

(x measured from the free end). With Eq. (6.5) for the cross-sectional area:

V ¼
Zx¼L

x¼0

A dx ¼
Zx¼L

x¼0

ng
M
r0

� �2=3

dx:

Substituting for M:

V ¼
Zx¼L

x¼0

ng
P

2Lr0

� �2=3

x4=3dx:

Performing the integration and evaluating the numerical constant, the minimum
volume is as follows:

V ¼ 0:270 ng
P
r0

� �2=3

L5=3:

In non-dimensional terms this becomes as follows:

V
L3

¼ 0:270 ng
1
r0

� P
L2

� �2=3

:

For comparison, the coefficient 0.270 in the above formula becomes 0.630 for
the same cantilever beam if it is uniform along its length.
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6.2.2 Statically Indeterminate Beams

As already stated, the bending moment in a statically indeterminate beam is gov-
erned by stiffness variation along the span. This is, of course, directly related to the
spanwise distribution of material, which we seek to optimize to minimize weight.
The simple approach of the previous section, in which the cross section of the beam
is matched to the known bending moment at each point along the span, cannot
therefore be used to optimize the beam. Instead, we turn to a numerical method and
illustrate the optimization of a statically indeterminate beam in a particular example.
This is a beam of solid square section, clamped at one end and simply supported at
the other, under a single load applied at three-quarter span from the clamped end, as
shown in Fig. 6.6. In Table 6.1 we find coefficients C ¼ 0:08333 and ng ¼ 3:302
for a solid square section.

Again, we consider first a beam that is uniform along its length. The maximum
bending moment is:

Mmax ¼ 0:1582PL;

which occurs at the point where the load is applied (see [4]). With the minimum
cross-sectional area A given by Eq. (6.5), we obtain for the weight Wk of the
uniform beam:

Wk ¼ ng
Mmax

r0

� �2=3

qL;

where subscript k denotes ‘weight’ expressed in kg and q is the density of the
material. For comparison with the numerical solution below for an optimized beam,
we take the following data: applied load P ¼ 4800 N, span L ¼ 1200 mm,
allowable stress r0 ¼ 500 N/mm2 and density q ¼ 7850 kg/m3. Substituting in the
above formulae gives for the weight of the beam:

Wk ¼ 4:64 kg:

If the beam need not be uniform along its length, it can be optimized by the
spreadsheet program ‘Beam under Lateral Load’ in Sect. 6.4.2, with a finite

3 / 4L / 4L

P

Fig. 6.6 Statically
indeterminate beam
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element analysis for the bending moment distribution and again Solver to perform
the optimization. Design variables are the second moment of area I of each element
of the beam. From Eqs. (6.4) and (6.5), we derive the following expression for the
maximum allowable bending moment in an element, in terms of its second moment
of area:

Mall ¼ r0

ðCn2gÞ3=4
� I3=4: ð6:6Þ

The bending moment in each element may not exceed this allowable moment.
The spreadsheet is described further in Sect. 6.4.2. Figure 6.7 shows the bending
stiffness distribution after optimization, with a resulting weight for the beam:

Wk ¼ 2:85 kg:

(While we refer here to ‘stiffness’, it is actually second moment of area that is
plotted in the figure, on the basis that the elastic modulus is the same for all
elements.) The finite element analysis employs conventional beam elements of
uniform stiffness, so that the solution is strictly for a ‘stepped’ beam with 24
uniform-stiffness segments. The optimum stiffness distribution, the solid line in
Fig. 6.7, is therefore for this stepped beam. The spreadsheet shows that after
optimization the beam has become ‘fully stressed’ (see the column Me=Mall in the
spreadsheet), in the sense that the allowable bending moment is reached at one or
other end of each element.

The solution can be further refined as follows. Clearly, the minimum weight
already found is an overestimate for a beam with a gradual taper, rather than one

Fig. 6.7 Optimum spanwise stiffness distribution for a beam clamped at one end, simply
supported at the other end, loaded at three-quarter span from the clamped end
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made in discrete steps. This is because the bending moment in each element is taken
to be the greater of the values at either end, and the minimum value of I for the
element is based on this greater value. However, we now know the bending
moment corresponding to the optimized stiffness distribution from the finite ele-
ment analysis. Rewriting Eq. (6.6), minimum values of second moment of area I at
each node can be recalculated by the following:

I ¼ Cn2g
M
r0

� �4=3

ð6:7Þ

and a new weight obtained. This is done in the spreadsheet under the heading
‘Recalculation of second moment of area and minimum weight’. The weight is then
further reduced to:

Wk ¼ 2:61 kg:

The resulting stiffness distribution is superimposed on Fig. 6.7 (the continuous
curves). It is seen that the bending stiffness reduces to zero between nodes 7 and 8
(slightly beyond quarter span from the clamped end), implying that in effect a hinge
is formed at this point. In other words, the originally statically indeterminate beam
has developed into a statically determinate one. Part of the beam acts like a simply
supported beam to carry the applied load, this being supported in turn by a can-
tilever beam at the clamped end. This is reminiscent of the statically indeterminate
truss in Sect. 1.1, which reduced to an optimum, fully stressed statically determi-
nate one. It can be anticipated that, under a single load case and unless additional
requirements apply, reduction of an initially statically indeterminate beam to an
optimum, statically determinate one will be a general outcome. It should be noted,
however, that optimization of the beam as done here is based only on the bending
moment. Shear force in the beam will prevent the full reduction of the cross section
to zero at the supposed ‘hinge’. Also, recalculation of the stiffness of the beam, as
done here, will affect the bending moment distribution in the beam. However, the
change in stiffness is relatively small therefore the change in bending moment will
be correspondingly small. No further correction is made in the spreadsheet.

6.3 Limit Design

The stress in a beam might reach the elastic limit of the material at only a single
point along the span where the bending moment is maximum, and then only at the
extreme edge of the cross section. For a ductile material, there remains a substantial
extra capacity in the beam, which is available only if some degree of plastic
deformation, or yielding, is permitted. Limit design involves the design of a beam
on the basis of its ultimate failure, or collapse, rather than simply for a given
maximum stress (see [1, 2] and other texts).
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6.3.1 Yield Moment

We consider first yielding of the material within the cross section of a beam. This is
illustrated in Fig. 6.8. Yielding begins in the outer regions of the cross section and
progresses inwards with further increase in bending moment (from left to right in
the figure). The last diagram in Fig. 6.8 is the idealized, fully yielded state, which
can never in reality be reached. Increase in stress in the inner regions allows these to
contribute more to the bending moment on the beam. While the stress distribution is
changing with increase in bending moment, the strain distribution remains essen-
tially linear, from zero at the neutral axis to a maximum at the outer edges. The
bending moment is obtained by integration over the cross section:

M ¼
Z
A

ry dA;

where the stress r corresponding to the linear strain distribution is obtained from
the stress–strain curve of the material, and y is the distance from the neutral axis.
However, with even a moderate degree of yielding, this moment is relatively
insensitive to the actual shape of the stress–strain curve. This is because regions of
lower stress are necessarily close to the neutral axis, where differences in stress have
relatively little effect. It is generally sufficient, therefore, to replace the actual stress–
strain curve by the idealized one in Fig. 6.9a, or even by that in Fig. 6.9b. We shall
continue here with the first of these. This represents only an initial elastic beha-
viour, with modulus E, followed by yielding at constant stress. Yielding is restricted
by specifying a maximum permissible strain emax, usually well below the strain at
failure for the material. The supposed yield stress ry is then the stress at emax, with
yielding commencing at a strain ee:

ee ¼ ry=E:

elastic
limit

plastic
deformation

fully-
yielded

σ increasing 
M

M

Fig. 6.8 Development of yielding with increase in bending moment
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If we take, for example, a maximum strain emax corresponding to the 0.5% proof
stress of the material, taken to be 500 N/mm2, and E ¼ 200; 000 N/mm2, we have
the following:

ee ¼ 500
200; 000

¼ 0:0025:

The plastic component of strain at the 0.5% proof stress is 0.005, giving the
following:

emax ¼ 0:0025þ 0:005 ¼ 0:0075:

For the square section of side a in Sect. 6.2.2, with emax=ee ¼ 3 yielding begins
at a distance a=6 from the neutral axis, as shown in Fig. 6.10. Within the elastic
region ð0� y� a=6Þ, the stress at distance y from the neutral axis is as follows:

r ¼ 6ry

a
� y:

(a) (b)

Fig. 6.9 Idealized stress–strain relations

Fig. 6.10 Stress distribution in a square-section beam with emax=ee ¼ 3
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The maximum bending moment, or yield moment My, is then as follows:

My ¼ 2
Za=6
0

6ry

a
y � ay dyþ 2

Za=2
a=6

ryay dy;

which gives:

My ¼ 0:241a3ry: ð6:8Þ

For comparison, if we chose the more extreme idealization in Fig. 6.9b, the
coefficient 0.241 would become 0.25.

From Eq. (6.5), the maximum elastic moment for the square section, based on
the idealized stress–strain curve in Fig. 6.9a, therefore with the stress at the elastic
limit equal to the yield stress ry, is:

Me ¼ a2

ng

� �3=2

ry ¼ 0:167a3ry;

with ng ¼ 3:302 for a solid square section from Table 6.1. The ratio My=Me ¼ 1:44
shows a substantial increase in capacity over a purely elastic analysis. This ratio is
referred to as the ‘form factor’ for the beam, the name implying that it depends
primarily on the shape of the beam and not on the particular stress–strain curve of
the material. The above calculations apply, of course, specifically to the chosen
square-section beam. For other shapes of beam, the integration above has to be
performed over the appropriate cross section. Note that for an unsymmetrical cross
section, the neutral axis is no longer the same as the elastic neutral axis. The stress
distribution in Fig. 6.10b then has to be adjusted so that, in pure bending, there is
no resulting end load on the section.

For a statically determinate beam, the yield moment My can be treated as the
maximum bending moment at the ultimate load on a beam, always assuming it is of
sufficiently ductile material. The weight saving that can be obtained by use of My in
place of the maximum elastic moment Me in a particular problem depends, amongst
other things, on the maximum strain emax chosen to avoid significant plastic
deformation at the working load.

6.3.2 Limit Load

For a statically indeterminate beam, a further step is now possible. This is to
determine the limit load of a beam, or in other words the load at which unlimited
further deformation of the beam will, in principle, occur in a so-called collapse
mode. When the load on a beam is increased to the extent that the cross section is
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close to being fully yielded at a point where the bending moment is maximum, the
capacity of a statically indeterminate beam is still not exhausted. It is supposed that
a ‘yield hinge’ is then formed at that point, permitting further increase in load by
redistribution of the load within the span of the beam. A yield hinge implies that
unlimited rotation can occur at a constant moment My. The analogy is with a rusty
hinge, which can be rotated once its resistance is overcome, while its resistance to
rotation does not disappear.

We continue now with the beam in Sect. 6.2.2, with uniform cross section along
its length (see Fig. 6.6). The maximum bending moment is at the point of loading,
and a yield hinge is first formed at this point. Further increase in load is now taken
by the ‘cantilever’ part of the beam between the clamped end and the yield hinge.
This continues until the yield moment is reached at some other point. In the
example in Sect. 6.2.2, this is inevitably at the clamped end. This new yield hinge is
sufficient to create a ‘collapse mechanism’ in the beam, as shown in Fig. 6.11a.
Note that the figure shows only deformation in the collapse mode, and not the
elastic deformation, which can be ignored. The corresponding bending moment
diagram is shown in Fig. 6.11b. The limit, or collapse, load can be calculated
directly from the collapse mode. Displacement d under load P and the corre-
sponding angles a1 and a2 are shown in Fig. 6.11c. The limit load P is then
calculated by equating the work done by the applied load to the work done on the
hinges in the collapse mode:

(a)

(b)

(c)

Fig. 6.11 Collapse mode of a clamped/simply supported beam
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Pd ¼ My
4d
3L

þ 16d
3L

� �
¼ 20

3
My

d
L
;

which gives:

P ¼ 6:67
My

L
:

Note that this calculation does not in itself provide any information about the
sequence of events leading up to collapse.

If we add a second load to the beam, as in Fig. 6.12, we now have the two
possible collapse modes shown. Each of these has to be calculated as above. This
gives for mode 1:

P1dþP2
d
2
¼ My

2d
L

þ 4d
L

� �
; ð6:9Þ

or:

P1 þ P2

2
¼ 6My

L
:

For mode 2:

P1
2d
3

þP2d ¼ My
4d
3L

þ 16d
3L

� �
; ð6:10Þ

or:

2P1

3
þP2 ¼ 20My

3L
:

Here, the work done by both loads, with their respective displacements, has been
included in the formulae for both modes. If loads P1 and P2 are increased in
proportion, or if one load remains unchanged while the other is increased, the
correct limit load is, of course, the lower of the loads calculated by Eqs. (6.9) and
(6.10).

To optimize the beam in Fig. 6.12 under given applied loads, we might, for
example, choose different beam sections in each of the three segments of the span,
as in Fig. 6.13. We can define these by their yield moments M1, M2 and M3.
Equations (6.9) and (6.10) then have to be modified to account for the different
yield moments. This is continued in Example 6.2 below.

Example 6.2 Find optimum values M1;M2;M3 for the beam in Fig. 6.12, with
loads P1 ¼ 300 N, P2 ¼ 1200 N. The beam has a span L ¼ 1000 mm, with a solid
square cross section. The yield stress of the material ry ¼ 500 N/mm2.
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With different values of yield moment immediately either side of the yield hinge
at load P1 or P2, we have to take the lesser value of M1 and M2, or M2 and M3, at
these points in Eqs. (6.9) and (6.10), respectively. Since it is not known beforehand
which will be the lesser value, for optimization this is more easily handled by
treating mode 1 and mode 2 each as two separate modes, as follows.

For mode 1, modifying Eq. (6.9), the limit loads are as follows:

P1 þ P2

2
¼ 2

M1

L
þ 4

M1

L
¼ 6

M1

L
ðM1 �M2Þ;

or

P1 þ P2

2
¼ 2

M1

L
þ 4

M2

L
ðM2 �M1Þ:

Fig. 6.12 Alternative
collapse modes

Fig. 6.13 Yield moments in
each segment of the beam
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For mode 2, modifying Eq. (6.10) the limit loads are as follows:

2P1

3
þP2 ¼ 4

3
�M1

L
þ 16

3
�M2

L
ðM2 �M3Þ;

or

2P1

3
þP2 ¼ 4

3
�M1

L
þ 16

3
�M3

L
ðM3 �M2Þ:

With Eq. (6.8) for a square section of side a:

My ¼ 0:241a3ry;

or:

A ¼ a2 ¼ 1
0:241ry

� �2=3

M2=3
y ¼ 0:0410M2=3

y ;

where My refers to each of the yield moments M1;M2;M3 of each segment, and
A refers to the corresponding cross-sectional areas A1;A2;A3. The volume of the
beam to be minimized is then:

V ¼ A1
L
2
þA2

L
4
þA3

L
4
;

or:

V ¼ 0:0410
M2=3

1

2
þ M2=3

2

4
þ M2=3

3

4

 !
L:

With loads P1 ¼ 300 N, P2 ¼ 1200 N and L ¼ 1000 mm, the above formulae
for the limit loads lead to the following constraints:

6M1 � 900� 103 Nmm;

2M1 þ 4M2 � 900� 103 Nmm;

4
3
M1 þ 16

3
M2 � 1400� 103 Nmm;

4
3
M1 þ 16

3
M3 � 1400� 103 Nmm:
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With variables M1;M2;M3, we can set up a spreadsheet to use Solver to find
optimum values of the yield moments and the minimum volume of the beam. This
gives the following:

M1 ¼ 150� 103 Nmm;

M2 ¼ M3 ¼ 225� 103 Nmm;

V ¼ 133:8� 103 mm3:

Corresponding cross-sectional areas can be calculated from the previous formula
for A. We find that constraints in both modes are active at the optimum; in other
words, the beam now collapses in modes 1 and 2 simultaneously.

If we constrain the solution in Solver so that M1 ¼ M2 ¼ M3 for a uniform
beam, we find the following:

M1 ¼ M2 ¼ M3 ¼ 210� 103 Nmm;

V ¼ 144:9� 103 mm3:

The uniform beam, under the given loading, collapses in mode 2. Comparing
with the previous result, the optimized beam shows a modest reduction in volume
of material over the uniform beam.

6.4 Spreadsheet Programs

The spreadsheets in this and the following chapters represent problems of more
practical interest than those up to now, which were intended primarily to demon-
strate optimization methods and setting up an optimization problem. In Sect. 6.4.1,
an I-section beam is optimized under stress, buckling and stiffness constraints, with
specified maximum and minimum dimensions. Margins of safety in the different
failure modes are given.1 In Sect. 6.4.2, the optimum distribution of material along
the span of a beam is found. The bending moment in the beam is obtained by finite
element analysis. Loading on the beam can be specified, as well as conditions of
support.

1Margin of safety is defined as: actual strength
required strength

� �
� 1, and is required therefore to have a value

greater than or equal to zero.
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6.4.1 ‘I-Section Beam’

The spreadsheet uses Solver to optimize the I-section beam in Fig. 6.14, under
bending moment about the horizontal axis and shear force in the plane of the web.
The cross-sectional area of the beam is minimized subject to material stress limits
and buckling of the flanges and web. A minimum bending stiffness may be spec-
ified in addition to required limits on cross-sectional dimensions. The spreadsheet is
shown in Fig. 6.15.

6.4.1.1 Modelling

The bending and shear stress at critical locations in the cross section are calculated
by conventional bending theory under a maximum positive and negative bending
moment with corresponding shear forces (positive bending moment causes tension
in the upper flange). The critical locations are at the junction of each flange and the
web, where the maximum bending stress is combined with the shear stress built up
along the flange and at the neutral axis where the shear stress is maximum and the
bending stress is zero. The shear stress at the junction of the flange and web is
estimated by calculating the shear stress in both the flange and the web at this point
(necessary because of difference in thickness). These are treated as separate con-
ditions for optimization. For combined bending and shear stress, the equivalent
(von Mises) stress is calculated by:

req ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 3s2

p
;

where r is the tensile or compressive bending stress and s the shear stress. The
equivalent stress is related to the allowable stress rt in tension or rc in

Fig. 6.14 I-section beam
with unequal flanges
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compression, as appropriate. The von Mises criterion is discussed in Chap. 7. The
maximum shear stress, on the neutral axis, is related directly to the allowable shear
stress sall.

For the buckling stress rb of the flanges in compression, the following formula
is used:

rb ¼ 0:385E
t
b

� �2
;

where t is the thickness of the upper or lower flange (t1 or t2, respectively), and b is
its half-width ðb ¼ b1=2 or b ¼ b2=2Þ. Buckling in compression is based on the
compressive stress in the middle plane of each flange. For the buckling stress sb of
the web in shear:

sb ¼ 4:83E
tw
he

� �2

;

where tw is the thickness of the web and he is an effective height of the web
measured between the middle planes of the flanges. Buckling in shear is based on
the average shear stress in the web. Both above formulae assume simple support at
the junction of the flange and web, ignoring any mutual restraint at this point, and
are likely therefore to give a conservative estimate of the buckling stresses. To
allow for reduction in modulus with the approach of yielding, the tangent modulus
Et is used for buckling of the flanges and the secant modulus Esð¼ r=eÞ for
buckling of the web in shear. These are based on the Ramberg–Osgood formula
used earlier in Sect. 3.4.1. In shear, the secant modulus is calculated at an equiv-
alent compressive stress r ¼ ffiffiffi

3
p � s. Buckling formulae, and use of reduced

moduli, are discussed further in Chap. 7.

6.4.1.2 Optimization

Design variables are the height h of the beam, the flange widths b1 and b2, the web
thickness tw, and the flange thicknesses t1 and t2. A maximum height of the beam
has to be specified, also maximum and minimum flange widths and thicknesses.
A minimum web thickness is specified to prevent this becoming vanishingly small
when the shear force is zero or very small. None of the above may be left blank.
The minimum flange width should be chosen to avoid the possibility of lateral
buckling of the beam. Other limits on dimensions may be added in the Solver
dialog box as required.

Constraints are expressed in terms of margins of safety (greater than or equal to
zero). These can be summarized as follows:

– maximum combined (von Mises) stress in tension and compression in the upper
flange at the junction of the flange and web
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– maximum combined (von Mises) stress in tension and compression in the lower
flange at the junction of the flange and web

– maximum combined (von Mises) stress in tension and compression at the top of
the web

– maximum combined (von Mises) stress in tension and compression at the
bottom of the web

– maximum shear stress in the web at the neutral axis of the beam
– buckling in compression of the upper and lower flanges of the beam
– buckling in shear of the web of the beam
– minimum bending stiffness.

With both positive and negative bending moments, this is in total 13 constraints,
in addition to dimensional constraints.

Maximum positive and negative bending moments with corresponding shear
forces, material data and minimum bending stiffness (if required, otherwise this
may be zero) have to be entered under ‘Parameters’ in the spreadsheet, as well as
maximum and minimum dimensions. Negative bending moment and shear force are
entered as positive numbers. Suitable initial dimensions of the cross section have to
be entered under ‘Variables’. Data entry is summarized in Table 6.2. Solver can
then be run with the GRG Nonlinear method to minimize the cross-sectional area of
the beam, subject to the given margins of safety and dimensional constraints.

At higher loads, when the beam is relatively thick, we find that the height of the
beam and the width of the flanges expand to their maximum values, and the
maximum allowable stress is reached at one or more points in the cross section. At
lower loads, buckling intervenes and the height of the beam and flange widths are
reduced. When a minimum bending stiffness is specified, this may override both the
stress and buckling limits in the beam.

Table 6.2 Data entry for spreadsheet program ‘I-section Beam’

Parameters

Max. bending moments M þ , M� and
corresponding shear forces Qþ , Q�

Enter values in cells C6:C9 all as positive
numbers (positive bending moment causes
tension in the upper flange)

Allowable stresses in tension, compression
and shear rt, rc, sall

Enter values in cells C10:C12 all as positive
numbers

0.2% proof stress r2, elastic modulus E,
Ramberg–Osgood index m

Enter values in cells C13:C15

Max. and min. dimensions hmax, b1max, b1min,
b2max, b2min, tw min, t1min, t2min

Enter values in cells C16:C23 (none of these
may be zero or left blank)

Min. flexural stiffness EImin Enter value in cell C24 (may be zero or left
blank if not required)

Variables

Height h, upper flange width b1, lower flange
width b2, web thickness tw, upper flange
thickness t1, lower flange thickness t2

Enter initial values in cells F6:F11
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Additional constraints may be added, for example to restrict the beam to a
symmetrical cross section, or to a family of geometrically similar sections.
Alternative formulae for reduction in modulus with yielding are readily substituted
if required. The spreadsheet might also be adapted for other shapes of beam.
Attention is again drawn to the proper choice of initial values of the design vari-
ables. Values too far removed from the expected optimum may result in Solver
being unable to find a solution (see the last paragraph of Sect. 2.3.2). If necessary,
suitable initial values can be chosen by setting the margins of safety given in the
spreadsheet to acceptable levels.

6.4.2 ‘Beam Under Lateral Load’

The spreadsheet uses Solver coupled with a finite element analysis to optimize the
bending stiffness distribution along the length of a beam under lateral applied load.
Distribution of load on the beam and its type of support can be defined as required.
Suitable relations between cross-sectional area, allowable bending moment and
second moment of area are defined. The beam may be optimized for minimum
weight under the applied loading, subject to a specified allowable bending stress, or
for maximum stiffness. With the finite element analysis, the spreadsheet illustrates
use of Solver for a problem significantly larger than in previous chapters and might
serve as a model for other problems of similar type. The spreadsheet is shown in
Fig. 6.16.

6.4.2.1 Modelling

A finite element model with 24 equal-length elements along the length of the beam
is built in the function Stiffness to analyze the bending moment distribution. The
second moment of area is defined for each element. Lateral loads may be applied at
any of the nodes. Chosen support of the beam, either simply supported or clamped,
can be applied at any node by introducing appropriate constraints on deflection and
rotation at those points. At least two conditions of support must be defined to
eliminate rigid body movement of the beam. Initial values of second moment of
area I have to entered in the spreadsheet, together with applied loads P, the length
L of the beam, elastic modulus E, allowable bending stress rall, density q, and
values of m, n, p, q to be explained shortly. With these values, the spreadsheet
calculates the deflection v, rotation h and bending moment M at each node, and the
weight W of the beam. The required data input for the spreadsheet, including the
method for defining supports, is listed in Table 6.3.

Standard, uniform-stiffness beam elements are used for the finite element anal-
ysis. Values of bending stiffness EI for each element are scaled by dividing by the
current largest value of EI, and the element length is reduced to unity before being
entered into the function Stiffness, to avoid extreme values of the determinant of the
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stiffness matrix. Standard Excel functions are used in the spreadsheet to invert the
stiffness matrix set up by the function Stiffness, and for multiplication of the
inverted stiffness matrix by the load vector. The stiffness matrix, after application of
constraints, and the inverted stiffness matrix are contained on sheet 2 of the
workbook.

Before we can proceed to optimize the beam, we have to define suitable relations
between the second moment of area I of the cross section, its cross-sectional area
A and the allowable bending moment Mall. From Eqs. (6.4) and (6.5) we see that,
for geometrically similar sections:

A / I1=2;

Mall / A3=2rall / I3=4rall;

where rall is the allowable bending stress. For the rectangular section of given
height in Sect. (6.1), also for any thin-walled section in which the overall dimen-
sions are fixed and only the thickness of all parts increases or decreases in the same
proportion, we have the simpler relations:

A / I;

Mall / Arall / Irall:

We generalize the above by writing:

A ¼ pIm;

Mall ¼ qInrall:

Table 6.3 Data entry for spreadsheet program ‘Beam under Lateral Load’

Parameters

Length of beam L, modulus E,
allowable bending stress rall, density q

Enter values in cells C7:C10

Coefficients p, q, indices m, n Enter values in cells F7:F10

Supports Enter ‘1’ in cells C16:C40 to constrain vertical
deflection v at a node, enter ‘1’ in cells D16:D40 to
constrain rotation h at a node, otherwise enter ‘0’
N.B. at least 2 constraints are required

Applied loads P (positive downwards) Enter values of applied load at a node in cells E16:
E40, otherwise enter ‘0’

Variables

Second moment of area I of elements Enter initial values in cells H16:H40 N.B. it is
recommended to choose values so that the maximum
value of Me=Mall in cells L49:L72 is typically
around 1
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Relating coefficients p and q to those in Sect. 6.1.2 for geometrically similar
sections:

p ¼ 1
C1=2

and q ¼ 1
Cn2g

 !3=4

;

with m ¼ 1=2 and n ¼ 3=4 as above. Note that, for geometrically similar sections,
p and q depend only on the shape of the cross section, and not on the actual
dimensions. For other than geometrically similar sections, the above formulae may
be adopted as approximate rule for scaling the cross section, in which case p and
q are no longer dimensionless coefficients. By performing the necessary calcula-
tions for two or more beam sections in the range of interest, coefficients p and q,
and indices m and n in the formulae can be determined on a ‘best fit’ basis.

6.4.2.2 Optimization

The finite element analysis determines the bending moment distribution in the beam
for the required loading, type of support and stiffness distribution. For given elastic
modulus, the bending stiffness of the beam can be represented simply by its second
moment of area I. Design variables are then the second moment of area of each
element. To proceed with optimization of the beam, initial values of I should be
chosen so that the largest calculated bending moment Me is of similar magnitude to
the allowable bending moment Mall (see column Me=Mall in the spreadsheet).
Unless otherwise required, initial I values may be chosen the same for all nodes. To
avoid possible numerical failure (note the fractional values of the indices m and
n above), a minimum value of I equal to 0.0001 times its maximum value is
specified for optimization. The only constraints, apart from minimum I above, are
that the bending moment Me in each element must not exceed the allowable
bending moment Mall, itself of course dependent on the second moment of area.
Bending moment Me is taken to be the greatest numerical value of the moments at
either end of the element. Other practical limits on I can be added in the Solver
dialog box if required. After optimization, the initial values of I for each element,
the deflection v, rotation h and bending moment M at each node, and the weight
W of the beam are replaced by the optimized ones.

The spreadsheet and Solver dialog box are initially set up for the beam in
Sect. 6.2.2, which is of solid square section, clamped at one end and simply sup-
ported at the other, under a single load applied at three-quarter span from the
clamped end. Appropriate values of m, n, p, q for a square-section beam have been
entered in the spreadsheet. In this example, after optimization, we obtain the
stiffness distribution shown in Fig. 6.7. This is the true optimum stiffness for a
‘stepped’ beam consisting of uniform-stiffness segments, as in the present model.
However, the solution can be further refined as follows. The minimum weight
already found is an overestimate for a beam that is actually tapered, rather than one

176 6 Optimization of Beams



made in discrete steps. This is because, as already stated, the bending moment in
each element is taken to be the greatest value at either end. With the bending
moment corresponding to the optimum stiffness distribution now known, minimum
values of I at each node can be recalculated by:

I ¼ M
qrall

� �1=n

:

With A ¼ pIm, a new, reduced weight can then be calculated. This is done in the
spreadsheet under the heading ‘Recalculation of second moment of area and
minimum weight’. Recalculation of the stiffness of the beam, as done here, will then
affect the bending moment distribution in the beam. Provided the change in stiffness
distribution (as opposed to its magnitude) is relatively small, the corresponding
change in bending moment will also be small. This is not taken into account in the
spreadsheet.

The spreadsheet can be modified if required to increase the number of elements.
The cells allocated to arrays in the spreadsheet will then have to be redefined, as
well as some detail changes in the function Stiffness. It can also be modified for
elements of different lengths. This will again require changes in the function
Stiffness. Note that any change to an array requires any array formula in the
spreadsheet referring to that array first to be deleted, then re-entered with the
necessary changes. Arrays are indicated in the spreadsheet with a red border. For
further information on the use of array formulae refer to the Appendix.

Finally, a comment on use of the finite element method in this spreadsheet is
appropriate. For small problems, such as here, optimization based on finite element
analysis using Solver presents little difficulty, although it will be noticed that the
time taken for the computer to perform the optimization is considerably longer than
in any of the previous spreadsheets. Measurement of changes in constraint values
resulting from changes in each design variable, such as for constraint linearization,
is fundamental to an efficient numerical procedure to satisfy constraints while
searching for an optimum. In a general purpose routine such as Solver, this is done
by finite difference, implying that the finite element analysis has to be repeated
many times. In a large problem, with many variables and constraints, this would
rapidly lead to unacceptable computer times and become highly impractical.
Special methods exist in finite element analysis to deduce the so-called constraint
sensitivity, by means of which changes in constraint values with change in each
design variable are obtained at the same time as the actual analysis, making eco-
nomical use of a single finite element analysis at each iteration. This is discussed
further in Chap. 9.
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6.5 Summary

Beam optimization has two distinct but closely related aspects: optimization of the
cross section and optimization of the distribution of material along the length of the
beam. When only stress limits apply, optimization of the cross section places the
material as far as possible from the neutral axis of the beam. For a realistic solution,
it is necessary then to define both a maximum height and a maximum width for the
cross section. By progressive removal of material from the cross section, a typical
I-section beam emerges, with flanges in which the combined bending and shear
stress does not exceed the maximum allowable and a thickness of web sufficient for
the shear force on the beam. However, at smaller values of a parameter M=h3max, the
cross section may become thin enough that buckling, rather than maximum
allowable stress, becomes the dominant design condition. The transition from a
stress-critical to a buckling-critical design under a combination of bending moment
and shear force can be explored with the spreadsheet ‘I-section Beam’. A different
approach to the design of the cross section is by choice of a geometrically similar
series of sections, that is, a cross section of given form in which all dimensions are
scaled up or scaled down in proportion to increase or decrease the size of the cross
section. This provides a fixed relation between second moment of area and
cross-sectional area, useful for example in optimization of the cross-sectional area
along the length of a beam. In practice, many ranges of commercially available
beams correspond quite closely to a series of geometrically similar sections.

The bending moment in a statically indeterminate beam depends on the stiffness
distribution along its length, whereas for a statically determinate beam it does not.
For this reason, for optimization of the cross section along the length of a beam, we
have to distinguish between the two cases. For a statically determinate beam, it is
possible to directly match the necessary cross-sectional area to the bending moment
point by point along its length to optimize the beam. We do this for a family of
geometrically similar sections, subject to a maximum allowable stress. In contrast,
for a statically indeterminate beam, we adopt a numerical approach in which the
bending moment in the beam is obtained by finite element analysis. With a given
relation between the allowable bending moment in each element and its second
moment of area, and a further relation between cross-sectional area and second
moment of area, Solver is used to optimize the stiffness distribution. This is done in
the spreadsheet ‘Beam under Lateral Load’. By reduction in stiffness to zero at some
point or points along the beam during optimization, it is found that the originally
statically indeterminate beam is in fact reduced to a statically determinate one.

The strength of a beam made of a ductile material is not exhausted when the
stress at the outer edge of the cross section, at one or more points along its length,
reaches the elastic limit of the material. Provided some limited degree of plastic
deformation is permitted, redistribution of stress within the cross section enables a
greater bending moment to be reached without excessive deformation. With a
suitable definition of maximum strain, this is termed as the yield moment of the
section. For a statically determinate beam, the yield moment can, in appropriate
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circumstances, be used directly for optimization of the beam. For a statically
indeterminate beam, we can go a step further. It is supposed that after the yield
moment is reached, a hinge is in effect formed at that point. This is a hinge at which
rotation is then possible, while the yield moment is maintained during rotation.
When a sufficient number of yield hinges have developed, we have a collapse mode
for the beam, from which the limit load, or the maximum load the beam can sustain,
can be directly calculated. When there are more possible collapse modes, the one
with the lowest load is the correct one. For optimization, if we allow a different
cross section in different parts of the span, then the collapse load depends on the
yield moment in each part. Each collapse mode leads to an additional constraint for
a numerical optimization using Solver, in which the variables are the yield moments
of each part. Limit load is the ultimate or maximum load on a structure, providing
some margin over the working load at which there is typically no significant per-
manent deformation due to yielding of the material.

Exercises

6:1 Calculate the coefficient nh in Eq. (6.2) for an I-section beam with a maximum
height and width of 100 mm, under a bending moment of 50� 106 Nmm.
The allowable stress of the material is 500 N/mm2. The beam has equal
thickness web and flanges.
Calculate the required thickness so that the maximum stress is equal to the
allowable stress. Calculate the cross-sectional area and substitute A, M, r0

and hmax in Eq. (6.2). Compare the value of nh with that of a solid rectangular
section.

6:2 Calculate the coefficients C and ng for a solid circular section bar, and for a
hollow circular section with inner diameter equal to one-half of the outer
diameter.
To calculate coefficients C and ng for the solid and hollow circular bars, first
choose an arbitrary diameter and calculate A, I and coefficient C. Then for
some chosen allowable stress r0, calculate the corresponding maximum
bending moment M and coefficient ng. Compare the values of ng with those
in Table 6.1.

6:3 Derive a formula for the minimum volume V of a beam, simply supported at
each end, with geometrically similar cross section under loads P=2 at one-third
span and two-thirds span.
Calculate the bending moment distribution, and use Eq. (6.5) for the minimum
cross-sectional area at any section. Compare the volume with that of a beam
loaded by a load P at mid-span in Sect. 6.2.1.

6:4 Derive a formula for the yield momentMy of a hollow, square-section beam of
side a and thickness a=4, with yield stress ry. Take emax=ee ¼ 3.
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Follow the method in Sect. 6.3.1. There are now three integrals to evaluate for
My. Compare the result with the maximum elastic moment for the same beam.

6:5 Repeat Example 6.2 for a beam clamped at both ends, under the same loading.
The two possible collapse modes now have three yield hinges. Modify the
formulae in Example 6.2 for the additional yield hinge. With these as con-
straints, and variables the yield moments M1;M2;M3, set up a spreadsheet to
use Solver to minimize the volume of the beam. Compare the volume with that
of a uniform beam, clamped at both ends.

6:6 Use the spreadsheet ‘I-section Beam’ to show the effect of a required mini-
mum bending stiffness EImin on the minimum cross-sectional area of the beam,
with minimum flange widths b1min ¼ b2min ¼ 25 mm, under the loading and
with the material properties given on the spreadsheet.
Take a range of EImin from 20� 109 to 500� 109 Nmm2. Use the values on
the spreadsheet for other maximum and minimum dimensions. Observe the
margins of safety and the optimized dimensions of the cross section at different
values of EImin.

6:7 Use the spreadsheet ‘I-section Beam’ to show the effect of a required mini-
mum flange width on the minimum cross-sectional area of the beam, under the
loading and with the material properties given on the spreadsheet.
Take a range of minimum flange widths b1min ¼ b2min from 20 to 50 mm. Set
EImin ¼ 0 (to avoid influencing the results). Use the values on the spreadsheet
for other maximum and minimum dimensions. Plot the cross-sectional
dimensions against minimum flange width, indicating on the plot the ranges
over which different constraints are critical.

6:8 Use the spreadsheet ‘Beam under Lateral Load’ to find the optimum stiffness
distribution for a beam of length 1200 mm, clamped at both ends, with:

(a) a load of 4800 N applied at mid-span,
(b) a load of 4800 N applied at quarter span,
(c) loads of 3600 and 1200 N applied at quarter span and three-quarter

span.
Compare the stiffness distribution and the minimum weight of the
beam in each case.
Use the parameters initially present in the spreadsheet. Modify the
constraints for a beam clamped at both ends. Place the load(s) at
the appropriate node(s) in each case. Choose an initial second
moment of area I = 10,000 mm4 for all elements. Use Solver to
minimize the weight W. Compare the weight of the stepped beam
with that of the tapered beam after recalculation. Plot the bending
stiffness to locate points at which it reduces to zero. Note how the
beam is reduced to a statically determinate one in each case.

6:9 Use the spreadsheet ‘Beam under Lateral Load’ to optimize a beam of length
1200 mm, simply supported at each end and at a third support at mid-span,
carrying a load of 4800 N uniformly distributed along the span.
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Apply loads of 200 N at all unsupported nodes to represent the uniformly
distributed load. Modify the constraints as necessary to represent the proper
conditions of support. Choose an initial second moment of area
I = 2000 mm4 for all elements. Use Solver to minimize the weight W.

6:10 Repeat exercise 6.9 by modelling only one-half of the symmetric beam.
Examine any difference in the two results.
Reduce the length of the beam to 600 mm for the half-beam, with loads
reduced to 100 N at each node to represent the same uniformly distributed
load. Change the support at the node on the plane of symmetry to displace-
ment v and rotation h both constrained, to represent the condition of the
symmetric beam at mid-span. Choose an initial second moment of area
I = 2000 mm4 for all elements. The weight of the whole beam is now twice
that given in the spreadsheet. Compare the results with those in exercise 6.9,
now with in effect twice as many elements for the whole beam, to indicate the
accuracy of the finite element model (note that we are using a uniform-stiffness
beam element here to model the tapered beam).
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Chapter 7
Reinforced Shell Structures

Abstract Formulae are given for the bending and shear stress in a long shell
structure such as an aircraft wing, together with formulae for the different modes of
buckling. These are used in the optimization of some reinforced shell structures.
Alternative methods for modelling the reinforcement are discussed. At higher
stresses, yielding of the material causes a redistribution of stress in the cross section
and reduction in buckling stress. The Ramberg–Osgood formula is used to define
the stress–strain curve of the material and to derive formulae for the tangent and
secant moduli. Efficiency formulae are developed for stiffened panels in compres-
sion and shear. A spreadsheet program for a panel with integral, unflanged stiffeners
under compression and shear optimizes the cross section, subject to minimum
stiffener spacing and plate thickness, with reduced moduli for buckling. The same
program is incorporated in a spreadsheet for the optimization of a rectangular box
beam under bending and shear, with variable rib spacing, subject to material stress
limits and buckling in different modes. A third spreadsheet program optimizes the
cross section of a circular fuselage section, with variable skin thickness and stringer
dimensions around the cross section.

Reinforced shell structures are typical of practically all aerospace structures and
countless other applications where low weight is at a premium. Such structures,
built up from thin sheet material, carry load essentially by membrane stress, in other
words by direct and shear stress confined to the plane of the sheet material. This is a
direct result of the low bending stiffness of the thin sheet, whereby ‘thin’ is implied
relative to the other dimensions of the structure. In the special case of a pressure
vessel, whether of circular, spherical or other shape, pressure is taken by tensile
stress in the shell, and in principle, no further reinforcement is required. However,
in a structure such as a box beam designed to carry loads applied along its length,
additional reinforcement is generally necessary to resist buckling of the thin sheet
under the compressive and shear stresses that arise, as well as for input of locally
applied loads on the structure. We shall restrict attention in this chapter to the
design of a box beam, such as forms the main load carrying structure of an aircraft
wing or fuselage and is the basis of many other forms of lightweight structure.



A typical box beam is shown in Fig. 7.1, assumed here to carry a vertical load
causing a bending moment about the horizontal axis. It consists of upper and lower
panels with stiffeners which break up the thin sheet into smaller panels to resist
buckling. These also take part with the sheet in carrying bending stress. The side
panels, or ‘shear webs’, carry the main shear force on the beam, and these com-
monly also require stiffeners to resist buckling. Intermediate shear webs may be
introduced for a better distribution of shear stress. Twisting moment on the beam,
for example due to eccentrically applied load, is taken by shear stress around the
whole cross section. For this, the closed section of a beam box is strongly preferred,
since an open section (any section containing no closed cells) has much lower
torsional stiffness. In addition, transverse members, referred to as ‘ribs, frames or
bulkheads’, are required at intervals along the length of the beam to provide support
for the stiffeners and for input of major loads. Which term is used will depend on
the context, just as the terms ‘sheet’ and ‘plate’ are used variously throughout the
text.

With regard to locally applied loads on a box beam, such as the pressure dis-
tribution on the upper and lower surfaces of an aircraft wing, it is useful to consider
how these loads are transmitted into the structure as a whole. In spite of its low
bending stiffness, such loads have to be carried by local bending of the sheet into
the adjacent stiffeners, often assisted by the tensile stress that develops in the sheet
with increasing load when deformation of the sheet is resisted by the surrounding
structure. The stiffeners then transmit the resulting load from the sheet, again in
bending, into the ribs. Other major loads may be applied directly to appropriately
placed ribs. These distribute the load on them by shear stress at their edges into the
shear webs and into the upper and lower panels. This shear stress contributes
directly to the shear force in the shear webs, while the shear stress in the upper and
lower panels develops the tensile or compressive stress in the sheet and stiffeners
resulting from the bending moment on the beam.

In the present chapter formulae for the stress analysis of a box beam under a
combination of applied shear force, bending moment and twisting moment are
reviewed, with particular attention to the treatment of discrete stiffeners.
Appropriate formulae are given for the buckling of stiffened panels in a box beam.
These are used in the first place to deduce a theoretical efficiency formula for a
stiffened panel. Later in the chapter, a spreadsheet program for the optimization of a

Fig. 7.1 Rectangular box
beam
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stiffened panel is introduced. This, in addition to buckling constraints and stress
limits, allows dimensional and other limits to be included and reduced moduli for
yielding. The same spreadsheet is incorporated into a spreadsheet program for the
optimization of a rectangular box beam, making use of the bending and shear stress
analysis in the following sections. A further spreadsheet for the optimization of a
circular fuselage section uses an alternative means of modelling the cross section
for optimization of the stiffened panels at different locations around the fuselage.

7.1 Bending Stress

Due to different sheet thicknesses, various types of reinforcement and often an
irregular shape of cross section, it cannot necessarily be assumed that the cross
section of a box structure is symmetric about any axis. Formulae given here are,
therefore, for any shape of cross section, under general biaxial loading.1 The axis
system and definition of bending moments about each axis are shown in Fig. 7.2.
Axes x, y are through the centre of gravity G of the section, with any convenient
orientation. Bending moments Mx and My are assumed positive when they produce
tensile stress in the first (positive x, y) quadrant. Shear forces Qx and Qy are defined
as positive in the positive x, y directions. The longitudinal z-axis is defined in
agreement with the right-hand rule (i.e. out of the paper in Fig. 7.2).

In accordance with the conventional theory of bending, we shall assume a
bilinear strain distribution in the cross section:

e ¼ C1yþC2x; ð7:1Þ

x

y

G

neutral

axis

yM

xM
Fig. 7.2 Definition of
bending moments

1To avoid illustrating any specific application, all figures in this chapter show a simple
rectangular-section beam, but the formulae apply generally to any shape of cross section.
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where C1;C2 are actually the curvatures about each axis, but are treated here simply
as unknown constants. With an elastic modulus E, the corresponding bending stress
is:

r ¼ E e: ð7:2Þ

By integration over the cross section A of the beam, we have bending moments:

Mx ¼
Z

A

r y dA ¼ EC1

Z

A

y2 dAþEC2

Z

A

xy dA;

My ¼
Z

A

r x dA ¼ EC1

Z

A

xy dAþEC2

Z

A

x2 dA;
ð7:3Þ

or:

Mx ¼ C1EIx þC2EIxy;

My ¼ C1EIxy þC2EIy;
ð7:4Þ

where

Ix ¼
Z

A

y2 dA; Iy ¼
Z

A

x2 dA; Ixy ¼
Z

A

x y dA

are the second moments of area of the section. The product second moment Ixy is a
measure of the lack of symmetry in the section. Taking axes x, y through the centre
of gravity ensures that the bending stress causes no resultant end load on the
section.

With known applied bending moments Mx and My, Eqs. (7.4) can be solved for
the coefficients C1 and C2, which are substituted in Eq. (7.1) for the strain e at any
point, and the bending stress r is then obtained from Eq. (7.2). This gives finally
the general formula:

r ¼ ðMxIy �MyIxyÞ y þ ðMyIx �MxIxyÞ x
IxIy � I2xy

: ð7:5Þ

The line r ¼ 0 (through the centre of gravity) defines the neutral axis of the
section. If the section is symmetric about either axis (Ixy ¼ 0) then under, say,
bending moment Mx Eq. (7.5) reduces to the familiar form:

r ¼ Mx

Ix
y:
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7.1.1 Effect of Yielding

If yielding of the material occurs at higher stresses in some parts of the cross
section, a reduced modulus has to be used in those parts. While many common
metallic materials have a clearly defined yield point below which there is little
reduction in modulus, for most high-grade alloys yielding takes place progressively
with the increase in stress, with a smooth stress–strain curve such as in Fig. 7.3.
The Ramberg–Osgood formula [15] is commonly used for a close approximation to
the actual stress–strain curve for such materials. This formula was already referred
to in Chap. 3, in the context of a reduced modulus for buckling. Note that, other
than in Sect. 6.3 of the previous chapter, to avoid a severe loss of buckling strength
in a shell structure, we are mostly concerned with reduction in modulus at a stress at
which a relatively small degree of plastic deformation has taken place. The effect of
yielding is therefore treated differently.

The Ramberg–Osgood formula for the strain e at stress r is:

e ¼ r
E
þ eR

r
rR

� �m

;

where eR is the plastic component of strain at a reference stress rR, and E is the
initial elastic modulus. For example, if rR is chosen to be the 0.2% proof stress r2

(the stress at which the total strain less the elastic, or recoverable, strain component
is 0.2%), then eR ¼ 0:002. The index m defines the ‘sharpness’ of the stress strain
curve and is regarded as a material property, generally taking values in a wide range
between 5 and 50. Figure 7.4 illustrates stress–strain curves for different values of
m. The secant modulus Es, or simply the ratio of stress to strain after yielding, is
obtained directly from the above formula:

Es ¼ r
e
¼ E

1þ eRE
r

r
rR

� �m ; ð7:6Þ

E

tangent modulus t
d

E
d

secant modulus sE
σ

ε = 0.002

(permanent strain)

strain ε

stress σ

0.2 % proof

stress σ2

E

sE

tE

=

=
ε

σ
ε

Fig. 7.3 Definition of the
secant and tangent modulus
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while the tangent modulus is obtained by differentiation:

Et ¼ dr
de

¼ E

1þ eREm
rR

r
rR

� �m�1 : ð7:7Þ

The secant and tangent moduli are indicated on the stress–strain curve in
Fig. 7.3. The secant modulus is used below for the bending stress distribution after
the onset of yielding. Both moduli are used in the buckling formulae in Sect. 7.3.

Returning to Eq. (7.2) for the bending stress in the beam, the elastic modulus
E now has to be replaced by the secant modulus Es:

r ¼ Ese:

The strain distribution is assumed to remain bilinear, as in Eq. (7.1). With secant
modulus Es, Eqs. (7.3) for the bending moments become:

Mx ¼
Z

A

ry dA ¼ C1

Z

A

Esy
2 dAþC2

Z

A

Esxy dA;

My ¼
Z

A

rx dA ¼ C1

Z

A

Esxy dAþC2

Z

A

Esx
2 dA:

ð7:8Þ

Note that, Es, being dependent on the stress at any point, has to be retained
within the integrals. It is convenient in equations to define ‘weighted’ second
moments of area �Ix, �Iy and �Ixy by:

�Ix ¼
Z

A

Es y
2 dA; �Iy ¼

Z

A

Esx
2 dA; �Ixy ¼

Z

A

Esxy dA:

0

100

200

300

400

0.000 0.005 0.010 0.015 0.020

stress σ
N/mm2

strain 

m = 10
m = 15
m = 25

E = 72 800 N/mm2

2 = 275 N/mm2

m = 5

σ

ε

Fig. 7.4 Stress–strain curves
by the Ramberg–Osgood
formula
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To ensure no end load on the section as a result of bending, axes x and y must
now be taken through an effective centre of gravity, given by:

�x ¼
R

A Esx dA
R

A Es dA
; �y ¼

R

A Esy dA
R

A Es dA
;

where x and y refer to any convenient reference axes, and the area of each part of
the cross section has again been weighted by the value of the secant modulus in that
part. Equations (7.8) can now be written more concisely:

Mx ¼ C1�Ix þC2�Ixy;

My ¼ C1�Ixy þC2�Iy:

These can be solved for coefficients C1 and C2, which are then substituted in
Eq. (7.1) for the strain e. Multiplying the strain by the secant modulus at any point
in the cross section gives finally a modified form of Eq. (7.5):

r ¼ Es
ðMx�Iy �My�IxyÞyþðMy�Ix �Mx�IxyÞx

�Ix�Iy � �I2xy
ð7:9Þ

for the stress at that point, where again x and y refer to the effective centre of
gravity.

Since the secant modulus depends on the stress at any point in the cross section,
the weighted second moments of area and effective centre of gravity in the above
formula cannot, of course, be calculated beforehand. An iterative calculation is
therefore required to ensure that the secant modulus used in the calculation of �Ix, �Iy
and �Ixy is consistent with the stress obtained by Eq. (7.9).

7.1.2 Modelling of Discrete Stiffeners

As already discussed, the low bending stiffness of the sheet in a thin shell structure
makes it necessary to reinforce the structure to resist buckling. Stiffeners placed
along the length of a box beam also contribute to its bending stiffness and take their
share of the bending stress. The cross-sectional area of individual stiffeners has,
therefore, to be included in the second moments of area of the section to calculate
the stress distribution. To simplify the calculation, stiffeners may be modelled in
one of two ways. If they are uniformly spaced across the panel, their area can be
included with the sheet to give an equivalent (or ‘smeared’) thickness:

�t ¼ tþ As

b
;
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where As is the actual stiffener cross-sectional area, b is the stiffener spacing, and
t is the sheet thickness. In this simple approach, the conventional engineering
formulae can readily be used to calculate second moments of area.

Alternatively, the cross-sectional area of the sheet on either side of a stiffener can
be included with the stiffener itself, resulting in an effective stiffener area:

�As ¼ As þ bt:

If there are a large number of stiffeners, several adjacent stiffeners and the
appropriate area of sheet may be lumped into a single substitute stiffener at the
centre of gravity of the group, as illustrated in Fig. 7.5 for a group of three stiff-
eners. In this way, the cross section is represented by a series of discrete areas,
which simplifies the numerical calculation of second moments of area for more
complicated shapes of cross section and, with stress defined at the same discrete
points, also simplifies the use of the secant modulus. This modelling is used in the
following example and in the shear stress calculation in the next section.

Example 7.1 Calculate the bending stress distribution in the rectangular box beam
shown in Fig. 7.6, with a width of 1500 mm and a height of 500 mm. The upper
panel has a thickness of 4 mm, with nine stiffeners of area 150 mm2 at a spacing of
150 mm. The lower panel has a thickness of 2 mm, with nine stiffeners of area
75 mm2, also at a spacing of 150 mm. The shear webs have a thickness of 8 mm on
the left-hand side and 4 mm on the other side. The beam carries a vertical upward
shear force causing a negative bending moment of 500 kNm at the section shown.

w

3s sA A wt

t

sA = +Fig. 7.5 Lumping of
stiffeners and adjacent sheet
into a single substitute
stiffener

y

x

1
234

5

6

7 8 9 10 11

12

Fig. 7.6 Rectangular box
beam in Example 7.1
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Note that the beam is unsymmetric as a consequence of the different thicknesses
and stiffener areas. To calculate the bending stress distribution, the upper and lower
panels are each represented by three uniformly spaced, substitute stiffeners.
Additional substitute stiffeners represent the shear webs. Stiffeners are numbered as
shown in Fig. 7.5, with axes x, y now referred to a convenient point in the cross
section. It is assumed in this example that the stresses are low enough that no
yielding occurs.

The area �As of substitute stiffeners 2, 3 and 4 is:

�As ¼ 3� 150þ 3� 150� 4 ¼ 2250 mm2:

Similarly, the area of substitute stiffeners 8, 9 and 10 is:

�As ¼ 1125 mm2:

Each shear web can be represented by substitute stiffeners of area:

�As ¼ Aw

6

at the two corners, where Aw is the cross-sectional area of the web, and a third
substitutes stiffener at mid-height of area:

�As ¼ 2
3
Aw:

This results in a second moment of area equal to that of the actual web, while the
third stiffener corrects for the loss of cross-sectional area that would otherwise
occur. Noting that the main function of the box beam in this example is to carry
vertical load, the reasoning behind this modelling is to obtain an accurate value of Ix
with minimum error in Iy and Ixy. The area of substitute stiffener 1 is then:

�As ¼ 500� 4
6

þ 75� 4 ¼ 633 mm2:

The second term in the calculation above is to account for a width 75 mm of the
upper panel at each corner which (as a result of the specific placing of the substitute
stiffeners) has not already accounted been for. The areas of substitute stiffeners 5, 7,
and 11 are calculated in a similar way, with values:

�As ¼ 967; 817; 483 mm2;

respectively. The area of substitute stiffener 6 is:

�As ¼ 2
3
� 500� 8 ¼ 2667 mm2;
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and similarly for stiffener 12:

�As ¼ 1333 mm2:

The areas found above, together with the location x, y of each substitute stiffener,
are entered in Table 7.1, from which the position of the centre of gravity of the box
beam �x; �y and second moments of area Ix, Iy and Ixy are then calculated (note that
areas �As are denoted in the table simply by A). Finally, the bending stress distri-
bution is calculated in the last column of Table 7.1 by Eq. (7.5), in this case:

r ¼ Mx

IxIy � I2xy
Iyðy� �yÞ � Ixyðx� �xÞ� �

:

Comparing the stresses at the four corners of the box, it is seen that a skewed
stress distribution is obtained, as expected for an unsymmetric cross section. The
maximum tensile stress is at the lower right corner and maximum compressive
stress at the upper left corner. The stresses calculated at the different substitute
stiffeners can, if required, be interpolated between stiffeners for the stress at some
specific point in the cross section, or the number of substitute stiffeners can be
increased for a more detailed stress distribution.

This example is continued in Example 7.2, in which the shear stress distribution
around the cross section is calculated. ■

7.2 Shear Stress

The shear stress distribution in a box beam is derived directly from the bending
stress. For this, we have first to consider equilibrium of the sheet and stiffener, as
shown in Fig. 7.7. It is assumed that the area of the sheet has been incorporated into
a substitute stiffener, as described in the previous section, so that the sheet in effect
carries only shear stress. There is a discrete increment Ds in shear stress on passing
from one side to the other side of the stiffener, related to the increment in direct
stress Dr in the stiffener over a small distance Dz. For equilibrium in the direction
of the stiffener:

Ds � tD zþDr � �As ¼ 0;

where �As is the area of the substitute stiffener. To be independent of the sheet
thickness t, it is convenient to refer instead to ‘shear flow’:

q ¼ s t

rather than shear stress in the above equation, so that the corresponding increment
in shear flow Dq is:
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Dq � DzþDr � �As ¼ 0;

or:

D q ¼ ��As � drdz : ð7:10Þ

With the use of substitute stiffeners, the shear flow can be treated as constant
between adjacent stiffeners.

By conventional bending theory, the bending moment M and shear force Q on a
beam are related by:

dM
dz

¼ Q;

so we can write:

dr
dz

¼ dr
dM

� dM
dz

¼ r
M

� Q; ð7:11Þ

provided that the beam remains linear elastic. From Eq. (7.10), the increment in
shear flow at each stiffener then becomes:

Dq ¼ ��As
Q
M

r: ð7:12Þ

As alternative to Eq. (7.10) we could write:

D q ¼ �DP
Dz

; ð7:13Þ

where P is the force in the stiffener (assumed tensile positive). This form may be
preferable when there is a change in cross section of the beam between two adjacent

Fig. 7.7 Equilibrium of direct and shear stresses at a stiffener (coordinate s is around the cross
section)
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sections, or if some yielding of the material occurs (when Eq. (7.12) is no longer
applicable).

With Eq. (7.12), the shear flow can be calculated step-by-step around the cross
section, as in Fig. 7.8. Starting with an unknown shear flow q0, the shear flow
becomes:

q1 ¼ q0 � �As
Q
M

r

� 	

1
;

q2 ¼ q1 � �As
Q
M

r

� 	

2
;

and so on, or in general:

qn ¼ q0 �
X

n

i¼1

�As
Q
M

r

� 	

i
; ð7:14Þ

where qn is understood to mean the shear flow between stiffeners n and nþ 1. Note
that the second term above may be positive or negative, depending on the location
around the cross section.

To determine the unknown q0, we have to consider the resulting twisting
moment on the section. The net twisting moment of the shear flows qn about some
arbitrary point must be equal to the applied twisting moment about that same point,
that is, the moment of the shear force about the chosen point together with any
externally applied twisting moment. As shown in Fig. 7.9, the moment of the shear
flow on a length Ds of the cross section is:

nq 2q 1q

0q

T

n 3 2 1

Fig. 7.8 Calculation of shear
flow

tp

q

tT q s p

s

Fig. 7.9 Twisting moment
due to shear flow about an
arbitrary point
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DT ¼ qD s � pt: ð7:15Þ

Note that ptD s is twice the area of the triangle formed by Ds and the chosen
point. The net twisting moment is then:

T ¼
X

qn Ds � pt; ð7:16Þ

summed around the whole cross section. The unknown q0 is found by substituting
the calculated values of qn from Eq. (7.14), each including q0, in the above formula
and equating T to the required applied twisting moment. The procedure for this is
illustrated in Example 7.2.

As we have seen, calculation of shear flow is based entirely on equilibrium
between bending stress and shear flow. The shear flow distribution is then auto-
matically in equilibrium with the applied shear force. This also implies that the
shear flow calculation still remains valid if yielding occurs, provided that Eq. (7.13)
is used instead of Eq. (7.12). With discrete modelling of stiffeners it is, of course,
necessary that the same model is used for both calculation of second moments of
area and the shear flow calculation. Calculation of q0 ensures equilibrium with the
resulting twisting moment. If the structure is subject only to a twisting moment
T (no shear force), then Eq. (7.12) shows Dq ¼ 0, that is, constant shear flow q0
around the whole section, and from Eq. (7.16):

q0 ¼ T
2A0

; ð7:17Þ

where A0 is the enclosed area of the cross section.

Example 7.2 Calculate the shear stress distribution in the unsymmetric box beam in
Example 7.1 by the method described above. A vertical upward shear force of 100
kN acts on the beam through a point 300 mm from the left-hand side, as indicated
in Fig. 7.6. The bending stress under a negative bending moment of 500 kNm has
already been calculated in Example 7.1.

The bending stress r given in the last column of Table 7.1 is copied to Table 7.2
for the present example. With the same substitute stiffeners as in the previous
example, increments in shear flow Dq at each stiffener are calculated by Eq. (7.12)
in the fourth column of Table 7.2:

Dq ¼ ��As
Q
M

� r ¼ 100� 103

500� 106
�As � r ¼ 0:2� 10�3�As � r N/mm:

(Note that M is negative in this example.)
To begin the calculation, we take the shear flow in segment 12–1 to be zero (i.e.

q0 ¼ 0). Increments Dq can then be summed around the cross section, starting from
stiffener 1, to give the shear flow qn in the sheet between each pair of stiffeners
n and nþ 1, as in Eq. (7.14). These shear flows now have to be corrected by adding
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the shear flow q0 necessary to ensure that the twisting moment of the shear flows
around the whole cross section is equal to the twisting moment of the applied shear
force about some chosen reference point.

In this example (since there is no externally applied twisting moment), it is
convenient to measure the perpendicular distance pt to the point at which the shear
force acts, about which the twisting moment is then zero. Values of pt are shown in
Table 7.2, together with the distance Ds between adjacent stiffeners, from which
increments in twisting moment DT due to the shear flow in each segment are
calculated by Eq. (7.15) in column 9.

With an enclosed area of the box beam:

A0 ¼ 1500� 500 ¼ 0:75� 106 mm2

the resulting twisting moment
P

DT is eliminated by the shear flow q0 calculated in
the table. This is then added to the previously calculated shear flow qn to give the
final shear flow q. Corresponding shear stresses are given in the last column of
Table 7.2.

It is readily verified that the calculated shear flow is in fact in equilibrium with
the applied shear force. Multiplying the shear flow in the vertical segments 5–6,
6–7, 11–12 and 12–1 by the width 250 mm of each of the four segments gives a
resulting vertical shear force:

ð140þ 125þ 61þ 73Þ � 250
1000

¼ 99:75 kN:

(The signs of the first two terms within brackets have been changed so that all
shear flows are directed upwards.) The small difference between this and the
actually applied shear force (100 kN) is due to rounding of the bending stresses
taken from Table 7.1. It can similarly be verified that the horizontal resultant of the
shear flows is zero, as required. ■

7.2.1 Torsional Stiffness

The shear strain around the cross section of a box beam (or other closed,
thin-walled section) loaded in torsion, or under shear force not through the flexural
centre of the section, causes it to twist along its axis. Shear strain can be expressed
in terms of the rate of twist h of the beam (angle of twist per unit length) and the
so-called warping displacement w in the axial z direction, as shown in Fig. 7.10.
Twisting of the beam causes a displacement pt ch dz in the circumferential s direc-
tion, where pt c is the perpendicular distance from the tangent at a point in the cross
section to the centre of rotation C (inset in Fig. 7.10). Warping causes a dis-

placement dwds � ds in the axial direction. The net shear strain is then:
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c ¼ ptc hþ
dw
ds

¼ q
Gt

:

The last term above simply relates the shear strain to the shear flow, where G is
the shear modulus of the material and t the local sheet thickness.

Integrating the shear strain c around the entire cross section:

h
I

pt c ds þ
I

dw
ds

ds ¼ 1
G

I

q
t
ds:

The second integral on the left-hand side must be zero for no discontinuity in
axial displacement w on completing the integration around the closed section,
leaving:

h
I

ptcds ¼
1
G

I

q
t
ds:

Since:

I

pt c ds ¼ 2A0

(where A 0 is again the enclosed area) we have for the rate of twist h caused by the
shear flow in the beam:

h ¼ 1
2A0G

I

q
t
ds: ð7:18Þ

Fig. 7.10 Shear strain in the sheet in terms of rate of twist h and warping displacement
w (coordinate s is around the circumference of the cross section)
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It will be observed that it is not necessary to know the actual location of the
centre of rotation C to calculate the rate of twist by the above formula. Also, it
should be noted that Eqs. (7.18) and (7.19) that follows apply only to a
closed-section beam (for an open section, such as a channel section, warping dis-
placement plays a much more prominent role in determining the twist of a beam).

Equation (7.18) can be used for the rate of twist of a closed-section beam under
any combination of shear force and torsion, once the shear flow distribution has
been obtained. Under pure torsion T, from Eq. (7.17), we have a uniform shear
flow:

q ¼ T
2A0

around the entire section which, on substitution in Eq. (7.18), gives the well-known
formula for torsional stiffness:

k ¼ T
h

¼ 4A2
0G

I

1
t
ds: ð7:19Þ

Minimum torsional stiffness is one of the constraints applied in the spreadsheet
programs later in this chapter.

7.2.2 von Mises Criterion

Unless it is loaded purely in bending, a box beam is subject to a combination of
axial stress and shear stress around the whole cross section. The von Mises criterion
is generally used to define an equivalent stress to predict failure under combined
stress. In fact, the von Mises criterion is the condition for yielding of a ductile
material under any combination of stress. It is fundamentally for a
three-dimensional state of stress and in its usual form is expressed by:

r1 � r2ð Þ2 þ r2 � r3ð Þ2 þ r3 � r1ð Þ2¼ 2r2
y ;

where r1, r2 and r3 are the three principal stress components, and ry is the yield
stress in simple tension. This formula represents a combination of stresses to cause
distortion of the material, after removal of the uniform, or ‘hydrostatic’, stress
components that cause only change in volume. Under two-dimensional plane stress,
the criterion reduces to:

r2
1 � r1 r2 þr2

2 ¼ r2
y :

As stated above, the von Mises criterion is in principle for yielding, but the same
criterion is widely used to predict failure when ry is replaced an equivalent stress:
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req ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
1 � r1 r2 þr2

2

q

:

The equivalent stress req is taken to be equal to the ultimate tensile stress of the
material at failure under combined stress. It is convenient to substitute the usual
formula for principal stress for r1 and r2 above, when we obtain:

req ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
x � rxry þr2

y þ 3s2xy
q

;

where rx, ry and sxy are the conventional stress components. If any of the stresses
in the above formulae is compressive, it must take a negative sign, thereby
increasing the value of the equivalent stress and predicting earlier failure. For a
combination of only axial stress r and shear stress s, the formula reduces further to:

req ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ 3s2
p

:

Only this last equation above is in fact of interest to us here. Later in this chapter,
we shall refer to equivalent stress when defining constraints for optimization. The
same formula was used for the optimization of an I-section beam in the previous
chapter. The theoretical derivation of the von Mises criterion can be found in many
texts on strength of materials and theory of plasticity.

7.3 Buckling Formulae

Much of the cross section of the box beam structure in the previous sections is
subject to a combination of compressive stress and shear stress, and if it is made of
relatively thin sheet material requires reinforcement to resist buckling. As shown in
Fig. 7.1, this reinforcement consists of stiffeners in the lengthwise direction on the
upper and lower panels, supported by ribs at intervals along the length of the box,
and commonly transverse stiffeners on the shear webs. Stiffeners are sufficiently
closely spaced to break up the sheet into smaller panels, with the necessary increase
in buckling stress. The purpose here is to review methods and formulae appropriate
to the buckling of this type of structure. These are used, together with the material
allowable stresses, to determine stress limits for the optimization of a typical
stiffened panel and reinforced shell structures later in this chapter.

7.3.1 Buckling in Compression

A stiffened panel in compression buckles into a series of waves along its length
involving simultaneous deformation of both the sheet and the stiffeners. The
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buckling mode can best be characterized by its wavelength. Figure 7.11 shows a
typical plot of buckling stress against wavelength (in the figure, k is actually the
half-wavelength). Other plots may show more local minima, mainly at shorter
half-wavelengths, depending on the type of stiffener. With unsymmetric stiffeners,
the sharp discontinuity at longer half-wavelength generally disappears. However,
we can broadly identify two principal buckling modes: short wave and long wave.
In short-wave buckling, referred to as local buckling, the half-wavelength is related
to the stiffener spacing. In long-wave buckling, referred to as flexural buckling, the
half-wavelength is typically equal to the length of the panel, that is, the distance
over which the panel is supported.

A stiffened panel can be treated as an assembly of long, thin plates, relatively
stiff in their own plane but flexible out-of-plane. The lines of intersection of these
plates can be regarded, at least in the first place, as nodal lines. These are, points in
the cross section where there is no displacement in the buckling mode, while
rotation takes place about those points. Figure 7.12 illustrates the corresponding
buckling deformation for three different stiffener types. For a wide panel, the
buckling mode is usually repetitive across the width of the panel and in a long panel
is in principle sinusoidal along its length. The modes shown in Fig. 7.12 are the
classical short-wave or local buckling. Other modes of buckling can be regarded as
due to breakdown of one or more of these nodal lines. In the case of the flanged
stiffener in Fig. 7.13a, if the flange is not sufficiently wide it may not possess
enough in-plane stiffness to support the node at the top. This gives rise to a more
general form of local buckling, with twisting of the stiffener as shown in the figure,
and reduction in buckling stress. If the stiffener has insufficient height, as in
Fig. 7.13b, both nodes may be unsupported, and buckling is then with lateral
displacement of the whole cross section. Note that in this case, the cross section is
not distorted. Support is then provided only at the ends of the panel, with buckling
taking place in a long-wave, flexural buckling mode, commonly accompanied by
some twisting of the stiffener.

buckling

stress b

panel
length

half-wavelength (log scale)

Fig. 7.11 Buckling of a
stiffened panel in compression
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A detailed numerical analysis is required to produce the buckling stress curve in
Fig. 7.11. The program in ESDU Data Item 98016 [10]2 can conveniently be used
for this. However, for an initial design of stiffened panel, serving as starting point
for further optimization, other methods may be employed with appropriate formulae
to predict the buckling stress. These are discussed below.

7.3.1.1 Local Buckling

Due to the relatively close stiffener spacing, the sheet between stiffeners as well as the
plates making up the stiffeners themselves can be regarded as long plates, that is, long
enough that the buckling mode is unaffected by conditions at their ends. Standard
formulae are available for the buckling of long, flat plates with some specific edge

Fig. 7.12 Local buckling
modes

(a) 

(b) 

Fig. 7.13 Breakdown of
nodes

2ESDU Data Items are listed by number, with the title, relevant section number in the Structures
series and date of issue in References at the end of this chapter.

7.3 Buckling Formulae 203



conditions. For a plate simply-supported (free to rotate) on both long edges, the
buckling mode is sinusoidal along its length, with a half-wavelength equal to the
width of the plate, and a single half-wave across its width. The buckling stress is:

rb ¼ p2

3 ð1� m2ÞE
t
b

� �2
;

where b is the width of the plate, t is its thickness, E is the modulus of the material,
and m is Poisson’s ratio. If Poisson’s ratio is taken to be 0.3, the formula reduces to
the more familiar form:

rb ¼ 3:62E
t
b

� �2
:

If the long edges are clamped (no rotation), buckling is at a smaller wavelength
with increased buckling stress:

rb ¼ 6:31E
t
b

� �2
:

For a plate with one long edge simply-supported and the other edge free,
buckling is by exception at a long wavelength with buckling stress:

rb ¼ 0:385E
t
b

� �2
;

and for a plate clamped on one edge and the other edge free, the buckling stress is:

rb ¼ 1:13E
t
b

� �2
:

Poisson’s ratio m is again taken to be 0.3 in all the above formulae. For a plate
under combined compressive stress r and shear stress s, a widely used criterion for
buckling is:

r
rb

þ s
sb

� �2

¼ 1; ð7:20Þ

where in this formula, r takes a positive sign for compression, and rb, sb are the
buckling stresses in pure compression and shear, respectively. Under combined
tensile and shear stress, the corresponding formula is:

1
2
� r
rb

þ s
sb

¼ 1; ð7:21Þ
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where r now takes a negative sign for tension (thereby delaying buckling).
Buckling in shear is discussed in the next section. The derivation of the above
formulae can be found in Timoshenko and Gere [18], Brush and Almroth [1],
Vinson [19] and in many other texts.

For an approximate solution to the local buckling stress of a stiffened panel, the
individual plates making up the cross section could all be treated as
simply-supported at their edges, taking as buckling stress the lowest value found
from the above formulae. However, significant interaction takes place between the
different parts of the cross section, due to their different buckling stresses and
preferred wavelengths. Nevertheless, being simply an assembly of flat plates, the
general formula for local buckling taking account of the interaction between
adjacent plates has the same form as for the single plates above:

rL ¼ KE
t
b

� �2
; ð7:22Þ

where we use rL to denote local buckling, and b is now the stiffener spacing and t is
the sheet thickness. A numerical analysis is necessary for an accurate determination
of the buckling coefficient K, which depends only on the shape of the panel.
Extensive graphical data for the local buckling coefficient of various types of panel
is provided in a number of Data Items in the ESDU ‘Structures’ series, together
with computer programs to calculate values for other types. Local buckling coef-
ficients for the panel with integral, unflanged stiffeners in Fig. 7.14 are plotted in
Fig. 7.15. At smaller h=b ratios, buckling of the sheet is resisted by the stiffeners,
increasing the local buckling stress above that of a simply-supported plate, even-
tually approaching the buckling stress of a clamped plate with thicker stiffeners. At
larger h=b ratios, buckling of the stiffeners is resisted by the sheet, reducing then the
local buckling stress. The discontinuity in some of the curves in Fig. 7.15 is due to
change in wavelength at that point. As for a simply-supported plate, the
half-wavelength of the local buckling mode is mostly in the neighbourhood of the
stiffener spacing, showing the strong influence of the sheet. To correct for yielding
at higher stresses in local buckling, the elastic modulus E can be replaced by the
secant modulus Es, or by a function of Es and the tangent modulus Et giving a
somewhat greater reduction in buckling stress than by use of the secant modulus
alone. Unlike for a simple column, the reduced modulus is governed by the biaxial
stress distribution in the sheet in the buckling mode, giving rise to different reduced
moduli depending on the nature of the buckling mode [see 13]. The spreadsheet

h
ts

b

tFig. 7.14 Panel with
integral, unflanged stiffeners
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program for a panel with integral, unflanged stiffeners in Sect. 7.4.1 uses the more
accurate reduced modulus for local buckling in ESDU Data Item 70003 [4].

7.3.1.2 Flexural Buckling

The mode of buckling in Fig. 7.13b shows lateral displacement but no deformation
of the cross section of the panel, and is therefore not substantially different to that of
a simple column. Long-wave, or flexural, buckling deformation takes place in
bending, typically in a single half-wave between the two ends, or adjacent supports.
Euler’s formula can be used to predict the buckling stress. Principal difference is
that the relatively high in-plane stiffness of the sheet prevents in-plane displace-
ment, so that displacement in the buckling mode is necessarily confined to a
direction perpendicular to the sheet. The formula for the flexural buckling stress rF

is then:

rF ¼ p2EI
AL2

; ð7:23Þ

where I is the second moment of area of the panel about a neutral axis parallel to the
sheet, A is its cross-sectional area, and L is the length of the panel (i.e. distance
between supports). With even a relatively small number of stiffeners, the buckling

Fig. 7.15 Local buckling coefficient K for a panel with integral, unflanged stiffeners (based on
data in ESDU Data Item 70003, with permission from IHS ESDU)
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behaviour in the middle of the panel is little affected by support at the edges, so for
a repetitive pattern of stiffeners I and A are conveniently taken to refer to a single
stiffener and its corresponding width of sheet. For a continuous panel, supported at
intervals along its length, adjacent panels are likely to deform in opposite directions
in each bay, and it is commonly assumed that the panel is effectively
simply-supported at each support. Otherwise, an additional factor should be
included in the above formula to account for the degree of restraint at each support.
For flexural buckling, the elastic modulus E is normally replaced by the tangent
modulus Et to correct for yielding at higher stresses. Justification for use of the
tangent modulus lies in the presence of some initial deviation from perfectly straight
over the length of the panel. Significant deformation, progressively matching the
buckling mode with increasing load, takes place before the theoretical buckling load
has been reached. With the stress still increasing over the whole cross section, the
tangent modulus governs the continued deformation of the panel until failure.

Example 7.3 Calculate the flexural and local buckling stresses of the panel with
integral, unflanged stiffeners in Fig. 7.14. The stiffener spacing b = 150 mm, the
stiffener height h = 30 mm, the plate thickness t = 4 mm, and the stiffener thick-
ness ts ¼ 4mm. The panel is taken to be simply-supported over a length
L = 375 mm. It is made of aluminium alloy with an elastic modulus
E = 72,800 N/mm2, 0.2% proof stress r2 ¼ 275 N/mm2, and index m ¼ 15.

It is assumed that the panel is relatively wide, so that for flexural buckling it is
sufficient to consider a single stiffener together with a width 150 mm of plate. Note
that the height of the stiffener in Fig. 7.14 is measured to the mid-plane of the plate.
The cross-sectional area A of the combined stiffener and plate is calculated to be
712 mm2, its neutral axis is located at a distance 2.52 mm from the middle-plane of
the plate, and its second moment of area I about the neutral axis is 32,280 mm4.

Calculate first the buckling stresses neglecting any reduction in modulus due to
yielding. From Eq. (7.23), the flexural buckling stress is then:

rF ¼ p2EI
AL2

¼ p2 � 72 800� 32 280
712� 3752

¼ 231:6 N/mm2:

For local buckling, we use Fig. 7.15 for the buckling coefficient K. The ratio of
stiffener height to stiffener spacing h=b ¼ 0:2, and the ratio of stiffener thickness to
plate thickness ts=t ¼ 1:0, giving K ¼ 3:95. From Eq. (7.22), the local buckling
stress is:

rL ¼ KE
t
b

� �2
¼ 3:95� 72;800� 4

150

� �2

¼ 204:5 N/mm2:

If instead of this more accurate value of K we use the elementary values K ¼
3:62 (for the plate) and K ¼ 0:385 (for the stiffener), we obtain buckling stresses of
187.4 N/mm2 and 498.3 N/mm2 for the plate and stiffener, respectively. Taking the
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lower of these, the local buckling stress rL ¼ 187:4 N/mm2, a difference (in this
example) of 8%.

The buckling stresses found above will now be corrected for the effect of
yielding of the material. For flexural buckling, we replace E in Eq. (7.23) by the
tangent modulus Et. Equation (7.23) can be rewritten as:

rF

Et
¼ p2I

AL2
¼ p2 � 32 280

712� 3752
¼ 3:182� 10�3:

We require a value of rF which, when substituted in the formula for Et in
Eq. (7.7), gives a ratio rF=Et that satisfies the above condition. This can be done by
some trial and error, or by use of Goal Seek in Excel. The reduced flexural buckling
stress is 205.0 N/mm2, a reduction of 11% on the original value of 231.6 N/ mm2.
While this stress is well below the proof stress of 275 N/mm2, it is seen that there is
a significant reduction in buckling stress.

For local buckling, we replace E in Eq. (7.22) by the secant modulus Es in this
example. Equation (7.22) can be rewritten as:

rL

Es
¼ K

t
b

� �2
¼ 3:95� 4

150

� �2

¼ 2:809� 10�3:

Proceeding as above, with the formula for Es in Eq. (7.6), we find a ratio rL=Es

to satisfy the above condition. This gives a reduced local buckling stress of
202.7 N/mm2, which scarcely differs from the original value of 204.5 N/mm2. ■

7.3.2 Buckling in Shear

A flat plate loaded in shear buckles into a series of skew waves along its length,
with a half-wavelength related to the width of the plate. For a long plate of width b,
thickness t and elastic modulus E, with simply-supported edges, the shear buckling
stress is:

sb ¼ 4:83E
t
b

� �2
; ð7:24Þ

and if the edges are clamped:

sb ¼ 8:11E
t
b

� �2
:

The thickness of a shear web of a typical box beam may be such that no
stiffeners are required, and the web can be treated simply as a long plate. In that

208 7 Reinforced Shell Structures



case, either of the two above formulae for the shear buckling stress may be used,
depending on the nature of the attachment at the upper and lower edges.

For thinner webs requiring stiffeners to improve the buckling stress, these are
normally placed across the width of the web, as in Fig. 7.1. These stiffeners are
unable to take any part of the shear force on the web, but break up the web into
smaller panels with the required increase in shear buckling stress. Due to the small
half-wavelength of the buckling mode, stiffeners should be closely spaced to be
effective, in any case at a spacing not greater than the width of the web. With
increasing bending stiffness of the stiffeners, there is a progressive increase in
buckling coefficient, until a critical stiffness is reached at which they become fully
effective. Buckling is then essentially confined to the space between stiffeners. The
bending stiffness of the stiffeners Est I is expressed in a parameter:

l ¼ Est I d
Eh2t3

� �1=2

; ð7:25Þ

where Est is the elastic modulus of the stiffeners, and E and t refer to the web itself.
For a stiffened web, we use d for the stiffener spacing and h for the height of the web.
Critical values lc of the above parameter for some values of ratio h=d are given in
Table 7.3. This is based on data in ESDU Data Item 02.03.02 [11], which also gives
shear buckling coefficients for stiffeners having less than the critical bending stiffness
and for stiffeners with torsional stiffness. In practice, calculation of the bending
stiffness of the stiffener should be for the stiffener itself together with an appropriate
width of web, about the neutral axis of the combination. If it is assumed that stiffeners
with greater than this critical stiffness provide simple-support for the web (e.g. if they
are open sections of low torsional stiffness, such as angle-section stiffeners) and the
web is also simply-supported on its upper and lower edges, the shear buckling stress
for the square or rectangular panels between stiffeners is given by:

sb ¼ KE
t
d

� �2
;

where

K ¼ 4:83þ 3:61
d
h

� �2

; 0� d
h
� 1:

Table 7.3 Critical values lc in Eq. (7.25) for stiffeners with no torsional stiffness (based on
graphical data in ESDU Data Item 02.03.02)

h/d Web simply-supported Web clamped

lc K lc K

1.0 0.68 8.50 0.43 11.40

1.5 1.13 6.50 0.54 7.30

2.0 1.78 5.90 1.05 6.30
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This is a conventional formula for buckling in shear of a simply-supported,
rectangular plate. In fact, the parabolic formula above is based on K ¼ 4:83 for a
long plate and K ¼ 8:44 for a square plate, and slightly underestimates K for
intermediate values of d=h due to change in the number of half-waves along the
plate. The corresponding formula for a web clamped on its upper and lower edges is:

K ¼ 8:11þ 3:22
d
h

� �2

; 0� d
h
� 1:

Accurate values of K for rectangular plates, also for other edge conditions, are
widely available in the literature and in ESDU Data Item 71005 [5]. The secant
modulus may be used to correct for yielding of the web, or alternatively the
function of secant modulus and tangent modulus given in Sect. 7.4.1, at an
equivalent stress r ¼ s=

ffiffiffi

3
p

.

7.3.3 Efficiency Formula for a Compression Panel

In Sect. 7.3.1, we identified the two principalmodes of buckling of a stiffened panel in
compression as a short-wave mode, or local buckling, and a long-wave mode, or
flexural buckling. Based on these two modes, we can develop an efficiency formula
for a stiffened panel in compression, in a similar way to the efficiency formula for a
circular tube in Chap. 2. However, unlike the circular tube with simply a diameter and
thickness, we need more dimensions to define the geometry of a stiffened panel.
Therefore, we identify two principal dimensions of the cross section, of different order
of magnitude, choosing for these the thickness t of the sheet and the stiffener spacing
b. All other dimensions are expressed as shape ratios, in terms of the appropriate
principal dimension. For the panel with integral, unflanged stiffeners in Fig. 7.14, we
have shape ratios ts=t and h=b, and similar shape ratios for other types of panel.

The general formula for the local buckling stress of a stiffened panel in
Eq. (7.22) is:

rL ¼ KE
t
b

� �2
;

which is already expressed in terms of the principal dimensions t and b. The
buckling coefficient K depends only on the shape ratios of the particular panel. The
local buckling coefficient for a panel with integral, unflanged stiffeners is plotted as
function of h=b for various ts=t in Fig. 7.15.

For flexural buckling, we can express the buckling stress in Eq. (7.23) as:

rF ¼ KFE
b
L

� �2

;
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where the flexural buckling coefficientKF also depends only on the shape ratios of the
panel. Again for a panel with integral, unflanged stiffeners, with cross-sectional area:

A ¼ hts þ bt

the second moment of area about the neutral axis is:

I ¼ h3ts
3

� h4t2s
4 btþ htsð Þ

(both per stiffener with its associated sheet). With the above formulae we obtain,
in more compact form:

KF ¼ p2H3T 4þHTð Þ
12 1þHTð Þ2 ;

where H ¼ h=b and T ¼ ts=t. It is assumed here that the thickness of the panel is
small compared with its other dimensions. As stated earlier, a factor may be applied
to coefficient KF to allow for restraint at the ends of the panel, or an effective length
L may be used.

The compressive load on the panel can be defined as a loading intensity p (load
per unit width) rather than as a load on the panel as a whole, so that for a relatively
wide panel its actual width need not enter into the problem. For the same reason, it
is also convenient to refer to the equivalent thickness �t of the panel:

�t ¼ tþ As

b
¼ Ct;

rather than to its actual cross-sectional area. Again, coefficient C depends only on
the shape ratios of the panel.

Fig. 7.16 Design space for a
stiffened panel of given shape
subject to local and flexural
buckling
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The optimization problem is now:

minimise �t

subject to constraints :

pL � p;

pF � p;

where pL ¼ rL ��t and pF ¼ rF ��t. This is illustrated in the design space in
Fig. 7.16. This is representative of any shape of panel, but the actual constraint lines
and equivalent thickness depend, of course, on the particular panel and chosen
shape ratios. It is seen that, as for the circular tube, the optimum is at the point of
simultaneous buckling in the flexural and local modes. With this as optimality
criterion, we can write for the stress at this point:

r ¼ p
Ct

¼ KFE
b
L

� �2

¼ KE
t
b

� �2
: ð7:26Þ

By eliminating b and t from the three simultaneous equations above, we find:

r ¼ KFK
C2

� �1=4 pE
L

� �1=2

;

or

r ¼ g E1=2 p
L

� �1=2
; ð7:27Þ

where

g ¼ KFK=C
2� �1=4

is the efficiency of the panel. Here, we have identified a new structural index p=L.
Since KF , K and C all depend on shape ratios h=b and ts=t for the panel in Fig. 7.14,
and other shape ratios for other types of panel, we can perform a numerical search
for the optimum values of these ratios for maximum efficiency. With the maximum
stress in an optimized panel now known from Eq. (7.27), together with the opti-
mum shape ratios, the corresponding dimensions b and t are readily calculated from
Eq. (7.26). For a panel with integral, unflanged stiffeners, the maximum efficiency
g ¼ 0:81 [2], and for a panel with individual, plain Z-section stiffeners g ¼ 0:95
[12]. More values are found for other shapes of panel [16].

It is found that the optimum ratio h=b for most types of panel is not far removed
from unity, meaning that we have a relatively small stiffener spacing. Practical
considerations will commonly demand a greater stiffener spacing. While the
unconstrained optimum is not difficult to find, to apply constraints on individual
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dimensions is a more extensive numerical task. The spreadsheet program in
Sect. 7.4.1 optimizes a panel with integral, unflanged stiffeners, subject also to
dimensional, material and other constraints, and calculates the efficiency. It will be
observed that no reduced modulus has been included in the efficiency formula. This
is because we define here the ‘geometric’ efficiency of a panel. However, when
reduced moduli are included in the buckling stress calculation, as in the spreadsheet
in Sect. 7.4.1, reduction in buckling stress due to yielding causes a corresponding
reduction in the apparent or ‘achieved’ efficiency calculated in the spreadsheet.

Up to now, it has been assumed that the panel is free of imperfections. In
particular, we are concerned here with some local waviness of the sheet, which can
have a significant effect on the performance of an optimized panel based on
simultaneous buckling modes. Any initial waviness grows in amplitude with the
approach of local buckling. This results in loss of stiffness of the panel as a whole
and therefore reduction in flexural buckling load, depending of course on the
magnitude of the initial imperfection. Common practice is to design a panel so that
flexural buckling occurs before local buckling, to reduce the significance of
imperfections. In other words, we introduce an additional constraint in the opti-
mization that rF=rL is less than some required value, typically in the range of
0.85–0.95. By optimization with this additional constraint, the shape of the panel is
adjusted to minimize the resulting loss of efficiency. A suitable value of this con-
straint may be chosen in the spreadsheet in Sect. 7.4.1.

Example 7.4 Calculate the efficiency of the panel in Example 7.3.
For the efficiency of the cross-sectional shape without reduction in buckling

stress by yielding, we take the elastic buckling calculation in Example 7.3. Since
the local buckling stress ðrL ¼ 204:5 N/mm2Þ is less than the flexural buckling
stress ðrF ¼ 231:6 N/mm2Þ, we base the loading intensity for the efficiency cal-
culation on the lower of these two. With cross-sectional area A ¼ 712 mm2 (for a
single stiffener with plate) and stiffener spacing b ¼ 150 mm, the equivalent
thickness is:

�t ¼ A
b
¼ 712

150
¼ 4:75 mm,

and the loading intensity is:

p ¼ r �t ¼ 204:5� 4:75 ¼ 971 N/mm:

Substituting in the efficiency formula in Eq. (7.27), with E ¼ 72;800 N/mm2

and L ¼ 375 mm, we have:

204:5 ¼ g
971� 72;800

375

� �1=2

;
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giving an efficiency:

g ¼ 0:471:

As might be expected, the efficiency of this panel, which does not have
simultaneous buckling modes and has a ratio h=b ¼ 0:2 far removed from the
optimum (at around h=b ¼ 0:7), is much lower than the theoretical maximum
efficiency g ¼ 0:81 for this type of panel. ■

7.3.4 Shear Web Efficiency

We consider now a shear web with transverse stiffeners, such as forms one of the
side panels of the typical box beam in Fig. 7.1. Formulae for the buckling of both
stiffened and unstiffened shear webs are given in Sect. 7.3.2. To derive an efficiency
formula for a stiffened shear web, a different approach has to be taken to that for a
compression panel in Sect. 7.3.3. This is due to the stiffness requirements for the
stiffeners, which do not themselves take any part of the shear force on the web but
break it up into smaller panels, thereby improving its buckling stress. We shall
assume that the stiffeners belong to a geometrically similar family of stiffeners, such
that all dimensions (including the thickness) remain strictly in proportion. This is the
assumption also made for a beam in Sect. 6.1.2, where geometric similarity is dis-
cussed in more detail. The stiffeners can then be represented by the simple formula:

I ¼ CA2;

where I is the second moment of area and A is the cross-sectional area of each
stiffener. Coefficient C depends only on the chosen type and shape of stiffener and
is readily calculated for a particular stiffener. The value of I (but not A) should
include some allowance for an effective area of the web to which the stiffener is
attached, if it is placed on one side of the web only.

The buckling stress of a stiffened web depends on the parameter l in Eq. (7.25):

l ¼ I d
h2t3

� �1=2

; ð7:28Þ

where d is again the stiffener spacing, h is the height of the web, and t is the web
thickness (assuming now that the web and stiffeners are of the same material). As
described in Sect. 7.3.2, with increasing bending stiffness of the stiffeners, there is a
progressive increase in buckling coefficient until a critical value l ¼ lc is reached
at which the stiffeners become fully effective. Commonly, the optimum occurs at or
close to this critical value of stiffness, and in the first place, this will be assumed
here. Values of lc for a limited number of ratios of h=d, with corresponding
buckling coefficient K, are given in Table 7.3. With I ¼ CA2, the cross-sectional
area of the stiffeners can be expressed as an equivalent stiffener thickness:
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t0 ¼ A
d
¼ 1

d

ffiffiffiffi

I
C

r

: ð7:29Þ

From Eq. (7.28), we have:

I ¼ l2
h2t3

d
;

and substituting for I in Eq. (7.29), we obtain finally for the equivalent thickness of
the stiffeners:

t0 ¼ A
d
¼ l

C1=2
� h t

d

� �3=2
: ð7:30Þ

The corresponding plate thickness t of the web is obtained from its buckling
stress. Under a shear force Q the shear flow in the web is q ¼ Q=h, and with
buckling stress:

sb ¼ q
t
¼ KE

t
d

� �2

we can solve for t in the above equation to give:

t ¼ q d2

KE

� �1=3

¼ r2=3

K1=3
� qh2

E

� �1=3

; ð7:31Þ

where r ¼ d=h. We define now a total equivalent thickness of the stiffened web:

�t ¼ tþ t0;

with t from Eq. (7.31) above and t0 from Eq. (7.30). If, as already suggested, we
assume that the optimum occurs at the critical value lc, we can directly substitute
l ¼ lc and the corresponding value of K in the formula for �t to find a minimum.

The expressions for t and t0 are of different form and do not lead to a definition of
efficiency in a manner similar to that of a compression panel. Therefore, we choose
to base the formula for efficiency on that of a long, unstiffened web of height h with
buckling stress:

sb ¼ KE
t
h

� �2
¼ q

t
;
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from which we find:

t ¼ 1
K1=3

qh2

E

� �1=3

and

s ¼ K1=3E1=3 q
h

� �2=3
:

This is the efficiency formula for an unstiffened web, with structural index in
shear q=h. The value of K depends on the type of support on the long edges of the
web. We preserve a similar form of efficiency formula for a stiffened web:

s0 ¼ g sE
1=3 q

h

� �2=3
; ð7:32Þ

where g s is an efficiency coefficient in shear and s0 is an equivalent shear stress:

s0 ¼ q
�t
:

By maximizing the equivalent shear stress, we are in fact maximizing the
strength-to-weight ratio of the stiffened web. For a particular design, we may cal-
culate t and t0 from Eqs. (7.31) and (7.30) to obtain the equivalent shear stress s0,
and substitute in Eq. (7.32) for the efficiency of the web. When we do this, we find
that the efficiency does retain some weak degree of dependence on the structural
index q=h, such that the index of 2/3 in the efficiency formula will be slightly
reduced. However, there is no single value of the index that will cover all cases. For
a given value of q=h, efficiency g s can be used to compare webs with different d=h
ratios and different types of stiffener.

More extensive data for the relation between buckling coefficient K and stiffener
parameter l are given in ESDU 02.03.02. This data is used in the author’s paper
[17] to explore the whole range of l values in an appropriate design space. It is
confirmed that, except at unusually small stiffener spacing, the optimum does in fact
occur at or close to the critical value lc. The index on q=h in the efficiency formula
is found to be quite close to the value 2/3 adopted above. There is seen to be a
continuous improvement in efficiency with reducing stiffener spacing, and this is
the most significant factor affecting efficiency. It is found that the stiffener coeffi-
cient C has in fact a relatively small effect on the efficiency of the web. Empirical
formulae are produced for efficiency in terms of a parameter:

u ¼ 1
C1=2E1=6

q
h

� �1=6
;

also for stiffeners with some torsional stiffness. The index 1/6 on q=h confirms the
weak dependence of efficiency, as defined above, on the structural index.
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Example 7.5 A stiffened shear web of height 250 mm is loaded under a shear force
of 50 kN. The equal-angle stiffeners (on one side only) have a coefficient C ¼ 1:0.
The elastic modulus is 72,800 N/mm2. Calculate the efficiency of the shear web at
ratios of web height to stiffener spacing h=d ¼ 1; 1:5 and 2.

We shall assume that the optimum occurs when the stiffeners satisfy the criterion
l ¼ lc, at which they become fully effective. Calculate first the efficiency for ratio
h=d ¼ 1. From Table 7.3, for a web simply-supported along its length:

lc ¼ 0:68; K ¼ 8:50:

The shear flow at shear force Q ¼ 50 kN is:

q ¼ Q
h
¼ 50;000

250
¼ 200 N/mm:

From Eq. (7.31), the optimum plate thickness is:

t ¼ r2=3

K1=3
� qh2

E

� �1=3

¼ 1
8:501=3

� 200� 2502

72;800

� �1=3

¼ 2:723 mm:

Shear stress in the web is:

s ¼ Q
h t

¼ 50;000
250� 2:723

¼ 73:45 N/mm2:

At this level of stress, it is assumed that any effect of yielding can be neglected.
From Eq. (7.30), the equivalent thickness of the stiffeners is:

t0 ¼ l

C1=2
� h t

d

� �3=2
¼ 0:68� 250� 2:723

250

� �3=2

¼ 0:193 mm:

Optimum cross-sectional area of each stiffener is:

A ¼ d t0 ¼ 250� 0:193 ¼ 48:3 mm2:

Total equivalent thickness is:

�t ¼ tþ t0 ¼ 2:723þ 0:193 ¼ 2:916 mm:

Equivalent shear stress is:

s0 ¼ q
�t
¼ 200

2:916
¼ 68:59 N/mm2:
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To calculate the efficiency:

s0 ¼ g s E
1=3 q

h

� �2=3
:

Substituting in the above formula:

68:59 ¼ g s � 72;8001=3 � 200
250

� �2=3

;

giving g s ¼ 1:906.
The calculation is repeated for h=d ¼ 1:5 and 2, taking appropriate values of l c

and K from Table 7.3. The following results are obtained:

h/d t, mm A, mm2 g s

1 2.72 48.3 1.91

1.5 2.27 61.3 2.21

2 1.94 76.0 2.48

The example illustrates the strong influence of stiffener spacing on the efficiency
of a stiffened shear web. ■

7.3.5 Post-buckled Shear Webs

We considered shear web efficiency in the previous section only from the point of
view of initial buckling. However, for a conventional stiffened web, this rarely
causes failure of the web as a whole. In many cases, buckling may even be difficult
to detect experimentally, at least until it has become sufficiently well developed.
After initial buckling, a shear web may still possess considerable remaining
strength. Shear webs were one of the earliest applications of post-buckled design,
notably in aircraft structures.

The post-buckling behaviour of a stiffened shear web, with transverse stiffeners
as in Fig. 7.1, is the result of an alternative load carrying mechanism in which the
buckled web behaves like a stretched membrane, in the so-called diagonal tension,
while the stiffeners and upper and lower edge members acquire compensating
compressive stresses. This diagonal tension roughly follows the lines of folds in the
initial shear buckling mode. Failure may occur by failure of the web itself under
combined shear and tensile stress, or by buckling of the stiffeners, generally in
‘forced crippling’, which is a form of buckling of the stiffeners induced by buckling
of the web. The practical design of diagonal tension webs is comprehensively
discussed by Kuhn [14]. Based largely on this, ESDU Data Item 77014 [8] provides
much graphical data, with a computer program for the analysis of diagonal tension
webs in Data Item 02005 [3].
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The optimum design of a diagonal tension web is invariably a balanced design,
that is, one with simultaneous failure of the web and stiffeners. A comparison
between an unstiffened web, conventional stiffened webs and a diagonal tension
web over a range of structural index q=h is shown in Fig. 7.17. The equivalent
shear stress s0 ¼ q=�t as in the previous section. For the diagonal tension web, the
ratio of web height to stiffener spacing h=d ¼ 1:0. The shape of stiffener for both
the stiffened webs and the diagonal tension web is shown in Fig. 7.18. The material
has E ¼ 72; 000 N/mm2 and 0.5% proof stress ¼ 400 N/mm2. A cut-off for the
equivalent stress is shown at s0 ¼ 215 N/mm2. The lines for the unstiffened and
stiffened webs in Fig. 7.17 are based on Eq. (7.32), with appropriate values of g s
(note the log-log plot in the figure). Data from Kuhn are used for the diagonal
tension web. Unlike conventional stiffened webs, the efficiency of a diagonal ten-
sion web (as measured by the equivalent shear stress that can be reached) is largely
independent of stiffener spacing, at least for the single-sided stiffeners adopted here.
As shown in the figure, diagonal tension webs are also characterized by their
relative insensitivity to the structural index. The substantial improvement in

215 N/mm2
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efficiency of a diagonal tension web over conventional stiffened webs at low
structural index is apparent in Fig. 7.17.

Except at higher values of structural index, for which material limitations curtail
the improvement in efficiency, a balanced design of diagonal tension web leads to a
very thin web, substantial stiffeners and a high post-buckling ratio b (ratio of
maximum load to initial buckling load). While a high post-buckling ratio may not
be acceptable in practice, due to the repeated buckling that this implies, much of the
improvement in efficiency—as compared with an unbuckled design—can be
achieved at much lower post-buckling ratios. Webs designed to fail at a low
post-buckling ratios fail in a mode quite unlike the usual diagonal tension web. This
is in a diagonal buckling mode involving both the web and the stiffeners over the
web as a whole, for which experimental results support the use of orthotropic
buckling theory to predict failure of the web. This is on the assumption of a
uniformly stiffened web, that is, one in which the stiffeners are supposed to be
‘smeared’ over the width of the web. This may be justified, even with more widely
spaced stiffeners, by the fact that at lower post-buckling ratios the level of diagonal
tension in the web is still relatively low. On the other hand, at higher post-buckling
ratios and increased diagonal tension, failure of individual stiffeners becomes
predominant.

For orthotropic buckling, the stiffness of the web is expressed in terms of av-
erage flexural rigidities D1 and D2 for bending in the longitudinal and transverse
directions, respectively. A third term D3, which represents the torsional rigidity
together with some Poisson’s ratio terms, is neglected for webs with simple,
open-section stiffeners. With this simplification, the shear force per unit width Nxy at
buckling is:

post-buckling ratio β
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Nxy ¼ K
ðD1D3

2Þ1=4
h2

;

where the orthotropic buckling coefficient K ¼ 32:4 for a long web with
simply-supported edges.

The maximum equivalent shear stress for a shear web over a lower range of the
post-buckling ratio b is plotted in Fig. 7.19. This is based on the orthotropic
buckling formula above, with the web thickness and the cross-sectional area of the
stiffeners optimized at each value of b. The ratio of web height to stiffener spacing
h=d ¼ 1:0. The shape of stiffener is again as shown in Fig. 7.18. The material is the
same as in Fig. 7.17. Accurate values of K for initial buckling of the web, according
to the actual l value for the stiffener, are obtained from ESDU Data Item 02.03.02.
Beyond b ¼ 3, the use of the orthotropic buckling formula may be unreliable
because of the likelihood of stiffener failure under compressive load due to
increasing diagonal tension. Figure 7.19 also indicates the maximum equivalent
shear stress that can be achieved for a diagonal tension web with the same h=d ratio
and type of stiffener, using data from Kuhn. It is seen that a large part of the
improvement in efficiency of a post-buckled shear web can be achieved at a rela-
tively low post-buckling ratio.

7.4 Spreadsheet Programs

The three spreadsheets in this chapter all relate to the optimization of thin shell
structures subject to buckling as well as stress and other constraints. The spread-
sheet in Sect. 7.4.1 performs the optimization of a panel with discrete longitudinal
stiffeners, loaded in compression and shear. Existing graphical data for the buckling
of a stiffened panel is first tabulated and then interpolated to make it available for
optimization. Stiffened panels form the basic building block of the structures in the
following two sections. The spreadsheet in Sect. 7.4.1 is incorporated directly into
the spreadsheet in Sect. 7.4.2 for optimization of a rectangular box beam in bending
and shear, also with buckling of the shear webs forming the side walls of the box
and variable rib spacing. The spreadsheet in Sect. 7.4.3 optimizes a circular section
aircraft fuselage under vertical bending moment and shear force, with stiffened
panels that can vary around the circumference according to local stress levels. An
alternative method is used to represent graphical buckling data for optimization.

7.4.1 ‘Stiffened Panel’

The spreadsheet uses Solver to optimize the panel with integral, unflanged stiffeners
in Fig. 7.14, loaded in axial compression and shear. The mass of the panel is
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minimized subject to local and flexural buckling, and material stress limits.
Reduced moduli are used to correct for yielding of the material. A minimum
stiffener spacing and minimum plate thickness may be specified. Other constraints
may be added if required. The efficiency of the optimized panel is calculated. The
spreadsheet is shown in Fig. 7.20.

7.4.1.1 Modelling

For local buckling of the panel, use is made of graphical data in ESDU Data Item
70003, in which the buckling coefficient K is plotted against ratio h=b for different
values of ts=t (see Fig. 7.15). ESDU 70003 also provides an appropriate correction
for yielding. To make this graphical data available for optimization, a polynomial
function in h=b and ts=t might be fitted to the data to represent the buckling coef-
ficient. This can be done using Solver to minimize the mean square of the error
between the polynomial function and the available data at an appropriate number of
points. This has the advantage of providing a smooth, continuous function for
optimization. However, a simple polynomial cannot properly reproduce the dis-
continuity in the curves beyond h=b ¼ 0:5 at larger values of ts=t. Unless otherwise
constrained, this is the region in which the optimum is generally found.
Alternatively, values of K from the graphical data in ESDU 70003 can be tabulated,
and the buckling coefficient for required values of h=b and ts=t obtained by inter-
polation. This method can generally approach the actual data more closely, espe-
cially at the discontinuity referred to above, but does of course provide a
discontinuous representation of the original curves as a whole. In particular, this is so
for interpolation between the limited number of ts=t values in the original data. The
second approach is the one adopted in the present spreadsheet.

A bilinear interpolation is performed, with as base point the row and column in the
table with the largest values of h=b and ts=t below the required values. These are
found in the Visual Basic functions RW and CM. Values of K are read at this point,
and at the adjacent row and column below and to the right of the base point, as in
Fig. 7.21. Interpolation in the table for K at the required values of h=b and ts=t is then
performed in the Visual Basic function K with the formulae:

11K

21K

12K

22K

y
x

base point

Fig. 7.21 Bilinear
interpolation for the local
buckling coefficient K
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K ¼ K11ð1� xÞð1� yÞþK21xð1� yÞþK12ð1� xÞyþK22xy;

x ¼ H � H11

H21 � H11
; y ¼ T � T11

T12 � T11
;

H ¼ h
b
; T ¼ ts

t
:

With this value of buckling coefficient K, the local buckling stress rL is cal-
culated by Eq. (7.22). When the compressive stress in the panel is accompanied by
a shear stress, Eq. (7.24) is first used for the buckling stress sb in pure shear,
treating the plate as effectively simply-supported at the stiffeners. For the combi-
nation of compression and shear, an approximate solution is then obtained by
means of the criterion in Eq. (7.20), with rb replaced by the local buckling stress
rL of the panel. The spreadsheet is not intended for a panel in pure shear, as
different conditions would then apply to the design of the stiffeners.

The flexural buckling stress rF is calculated by Eq. (7.23). It is assumed that the
panel is uniform and sufficiently wide that it is unaffected by conditions at the sides
of the panel. A continuous panel, supported at regular intervals along its length, is
generally treated as though it is simply-supported at each support. The length L of
the panel is then the distance between supports. For other conditions at the supports,
or at the ends of the panel, a suitable effective length may be used.

Reduced moduli are used to correct for yielding of the material at higher stresses.
For local buckling, the same reduced modulus is used as in ESDU 70003. This is:

Ered ¼ Es � 1� m2e
1� m2

� �

� 0:5þ 0:25 1þ 3
Et

Es

� �1=2
" #1=2

:

This formula is specifically for the present type of panel and takes account of the
relatively greater role played by the stiffeners in the local buckling of a panel with
plain, unflanged stiffeners. In the above formula, me is the elastic value of Poisson’s
ratio, taken to be me ¼ 0:3, and m is the value of Poisson’s ratio after yielding, given by:

m ¼ mp � Es

E

� �

� mp � me
� �

;

where mp is the fully plastic Poisson’s ratio mp ¼ 0:5 (see ESDU Data Items 76016
[7] and 83044 [9]). For buckling of the plate in shear, the following reduced
modulus is used:

Ered ¼ Es :
1� m2e
1� m2

� �

� 0:83þ 0:17
Et

Es

� 	

:

In the above formulae, Es and Et are evaluated at an equivalent stress:
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req ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ 3s2
p

:

The tangent modulus is used for flexural buckling. Formulae for the secant
modulus Es and the tangent modulus Et are given in Eqs. (7.6) and (7.7).

7.4.1.2 Optimization

Design variables are the stiffener spacing b, stiffener height h, plate thickness t, and
stiffener thickness ts. Note that h is measured to the mid-plane of the plate, as in
ESDU 70003. A minimum stiffener spacing and minimum plate thickness may be
specified. To remain within the valid range of data for local buckling in ESDU
70003, the following limits are imposed on ratios h=b and ts=t:

0 � h=b � 1; 0:75� ts
t
� 3:0:

Constraints are defined as follows:

(1) local buckling of the panel is expressed in terms of the criterion:

r
rL

þ s
sb

� �2

� 1:

(2) for flexural buckling:

r � rF :

(3) a maximum ratio of flexural to local buckling stress rF=rL may be specified to
reduce the effect of local imperfections (rF=rL \ 1), otherwise rF=rL ¼ 1.

(4) for material failure the combined compressive and shear stress is expressed as
an equivalent stress:

req ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ 3s2
p

� rc;

where rc is the specified allowable stress in compression.
(5) limits on ratios h=b and ts=t, as referred to above.

In the above formulae, the compressive stress r ¼ p=�t, where �t is the equivalent
thickness of the panel, and the shear stress s ¼ q=t. Other constraints refer to the
maximum or minimum of cross-sectional dimensions. Further constraints may be
added in Solver if required. Appropriate reduced moduli are used for local buckling,
flexural buckling and buckling in shear, as previously described. It should be noted
that these reduced moduli are evaluated at the stress r and s actually present in the
panel, and do not therefore give the proper values for the buckling stress if the
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corresponding constraint is not active. This is taking advantage of the optimization
procedure, which implicitly performs the iteration necessary to calculate the tangent
and secant modulus while optimizing the panel.

Parameters and design variables to be entered in the spreadsheet are listed in
Table 7.4. After optimization initial values of the design variables are replaced by
their optimum values, the compressive and shear stress in the optimized panel and
its mass are given. The efficiency of the panel is calculated only if at least one of the
buckling constraints [1, 2] above are active at the optimum. To maintain the def-
inition of efficiency, the initial elastic modulus E is used in Eq. (7.27). However,
any reduction in stress due to yielding is included in the calculation of efficiency,
reducing therefore its value. It will be noticed that there is a tendency for opti-
mization to stop at the particular values of h=b and ts=t in the table of local buckling
coefficients. This is, of course, due to the discontinuous representation of the local
buckling coefficient and the shallow vertices formed at these values by bilinear
interpolation. At a sufficiently low compressive loading intensity, both to avoid
yielding and to obtain a panel with a small thickness compared with its other
cross-sectional dimensions, with shear flow q ¼ 0, rF=rL ¼ 1 and no active
dimensional constraints we obtain a theoretical maximum efficiency g ¼ 0:812 at
h=b ¼ 0:70 and ts=t ¼ 2:50.

Note that incorrect results will be displayed in the spreadsheet if initial values of
the design variables are entered outside the valid range of data: 0 � h=b � 1,
0:75� ts=t� 3:0. Current values of h=b and ts=t can be seen in the spreadsheet.

Table 7.4 Data entry for spreadsheet program ‘Stiffened Panel’

Parameters

Compressive loading intensity p Enter the value in cell D6 as a positive number
(may not be zero)

Shear flow q Enter the value in cell D7 as a positive number
or zero

Effective length of panel L Enter the value in cell D8 (actual length if
simply-supported at the ends)

Elastic modulus E, allowable compressive
stress rc, 0.2% proof stress r2, Ramberg–
Osgood index m

Enter values in cells D9:D12 all as positive
numbers

Min. stiffener spacing bmin, min. plate
thickness tmin

Enter values in cells D13:D14

Max. ratio flexural/local buckling stress
rF=rL

Enter a value in cell D15 (must be 1.0 or less)

Density q Enter the value in cell D16

Design variables

Stiffener spacing b, stiffener height h, plate
thickness t, stiffener thickness ts

Enter initial values in cells I6:I9 (stiffener
height h measured to the mid-plane of the
plate). Ensure that 0 � h=b � 1:0,
0:75 � t s=t � 3:0
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7.4.2 ‘Rectangular Box Beam’

The spreadsheet uses Solver to optimize the rectangular box beam in Fig. 7.22,
loaded under a bending moment about the horizontal axis and a vertical shear force
through the mid-point of the box, at a given cross section. The spreadsheet is shown
in Fig. 7.23. The bending moment is defined as causing compression in the upper
panel, tension in the lower panel (otherwise reverse the loading and regard ‘upper
panel’ as ‘lower panel’ in the spreadsheet). The mass per metre of the box,
including ribs at variable spacing, is minimized subject to buckling of the upper
panel, buckling of the side walls or shear webs, and material stress limits under
combined stress in the upper and lower panels and shear webs. The spreadsheet in
Sect. 7.4.1, for optimization of a panel with integral, unflanged stiffeners, is
incorporated as sheet 2 of the present spreadsheet.

7.4.2.1 Modelling

We take advantage of the rectangular shape of the box structure to represent the
upper panel, in compression, simply by its equivalent or smeared thickness, since
under the given loading the bending stress is uniform over the whole width and is
readily calculated. Calculation of the buckling stresses of the upper panel is per-
formed in sheet 2. The lower panel is in practice likely also to be a stiffened panel
but, being in tension, we need here to refer only to its equivalent thickness. The
shear webs are taken to be unstiffened, otherwise we could again refer to an
equivalent thickness. Ribs, at intervals along the box to stabilize the cross section,
are defined simply by a substitute thickness. This is the thickness of a plain, flat
plate filling the whole cross section, of the same weight as the actual rib. The mass
of the ribs is included in the total mass per metre of the box structure. The vertical
shear force acts through the mid-point of the box which, with a structure symmetric
about the vertical axis, results in a symmetric stress distribution.

The stress distribution at the given cross section is calculated by conventional
beam theory. It is assumed that there is no abrupt change in the box structure at the
given cross section. The maximum combined (von Mises) bending and shear stress
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Fig. 7.22 Rectangular box
beam
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occurs in the corners of the box, either in the web or in the upper or lower panel,
depending on the relative thicknesses. The maximum shear stress is at the neutral
axis of the box. von Mises stresses and margins of safety for material failure in the
web and panels are calculated at these points (for the web only the minimum margin
of safety is shown in the table in the spreadsheet).

As already said, the spreadsheet in Sect. 7.4.1 for a stiffened panel is incorpo-
rated as sheet 2 of the present spreadsheet to calculate the flexural and local
buckling stresses of the upper panel in compression. The necessary data for this is
read from sheet 1, with the buckling stresses returned to sheet 1. For flexural
buckling, it is assumed that the panel is simply-supported at the ribs. The margin of
safety for flexural buckling is included in the table in sheet 1. Local buckling of the
upper panel is conservatively based on the compressive and shear stress at the
corner of the box and is shown in the spreadsheet as a value of the buckling
criterion for combined stress. Buckling of the webs in shear, taken to be
simply-supported at their upper and lower edges as in Eq. (7.24), is based on the
average shear stress in the webs. Appropriate reduced moduli are used to correct the
buckling stresses for the effect of yielding of the material. Again, it should be noted
that reduced moduli are based on actual stresses and do not therefore give the
proper value of buckling stresses when the corresponding margin of safety is
greater than zero.

7.4.2.2 Optimization

Please note that no data may be entered in sheet 2, as this will overwrite the
reading of data from sheet 1. Initial values of design variables and parameters have
to be entered in sheet 1. For the same reason, optimization must be performed in
sheet 1, not in sheet 2.

Design variables are those referring to the stiffened panel that forms the upper
panel of the box: stiffener spacing b, stiffener height h, plate thickness t1, stiffener
thickness t s and additional variables: the (equivalent) thickness t2 of the lower
panel, the thickness tw of each web and the rib spacing L. Note that the substitute rib
thickness trib has to be specified and is not variable. Design variables and param-
eters, including the applied bending moment and shear force, to be entered are listed
in Table 7.5.

Constraints referring to the upper panel are as described in Sect. 7.4.1. The same
limitations on ratios h=b and t s=t 1 apply. As before, a maximum ratio of flexural to
local buckling stress ðrF=rL � 1Þ may be chosen, to reduce the effect of initial
imperfections. Additional constraints refer to buckling of the shear webs, and
maximum combined (von Mises) stresses at critical points in the section. Other
constraints are for a minimum stiffener spacing, minimum plate thickness of the
upper panel and a minimum web thickness.

After optimization, the initial design variables are replaced by their optimized
values, and the resulting mass of the box beam and margins of safety are given.
With variable rib spacing, an optimum can be reached with regard to flexural
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buckling of the panel and the mass per metre of the ribs. If large changes in rib
spacing occur, it may be considered appropriate to change the specified (substitute)
rib thickness to a more representative value for the problem in hand, and to repeat
the optimization.

The spreadsheet can be extended to more loading cases, with bending moment
and shear force applied in both directions. In that case, both the upper and the lower
panels have to be designed as compression panels. The spreadsheet may also be
extended to include a twisting moment (in effect changing the point through which
the shear force is applied), and bending moments applied about both axes. More
extensive changes to the spreadsheet are then required, as the stress distribution will
no longer be symmetric.

Attention is drawn to the final paragraph of Sect. 7.4.1 with regard to opti-
mization of the upper panel.

7.4.3 ‘Circular Fuselage Section’

The spreadsheet uses Solver to optimize the cross section of an aircraft fuselage of
circular form, loaded in bending and shear. The shell structure of the fuselage
consists of a thin skin reinforced by Z-section stringers, supported by ring frames at

Table 7.5 Data entry for spreadsheet program ‘Rectangular Box Beam’

Parameters

Bending moment M and shear force Q Enter values in cells C5:C6 as positive
numbers (M 6¼ 0)

Width B and height H of box beam Enter values in cells C7:C8

Rib thickness trib Enter the value in cell C9

Minimum stiffener spacing bmin, minimum
plate thickness t 1min, minimum thickness t2,
minimum web thickness tw

Enter values in cells C10:C13

Elastic modulus E, 0.2% proof stress r2,
Ramberg–Osgood index m, max. allow.
compressive stress rc

Enter values in cells C14:C17 all as positive
numbers

Maximum allowable tensile stress rt Enter the value in cell C18

Maximum ratio flexural/local buckling stress
rF=rL

Enter a value in cell C19 (must be 1.0 or less)

Density q Enter the value in cell C20

Design variables

Stiffener spacing b (upper panel), stiffener
height h (upper panel), thickness of upper
panel t 1 stiffener thickness t s, thickness of
lower panel t2, web thickness tw, rib spacing L

Enter initial values in cells G5:G11 (stiffener
height h is measured to the mid-plane of the
plate, thickness t 1 is the plate thickness of the
stiffened panel, and both shear webs are of the
same thickness tw). Ensure that 0� h=b� 1:0,
0:75� t s=t� 3:0
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intervals along its length. The cross section is shown in Fig. 7.24, with detail of the
stringer-skin panels in Fig. 7.25. The skin thickness and the stringer dimensions
vary around the cross section. The cross-sectional area of the frames and the frame
spacing have to be specified. Two loading cases are defined. These are a positive
bending moment and a negative bending moment about the horizontal axis at a
given section, with corresponding vertical shear forces acting through the centre of
the fuselage. The mass per unit length of the structure is minimized, subject to
buckling of the stringer-skin panels and material stress limits under combined
compressive and shear stress. The spreadsheet is shown in Fig. 7.26.

7.4.3.1 Modelling

The stress distribution in the cross section is calculated by conventional beam
theory. Under the given loading, the structure will be symmetric about the vertical
axis. Only one-half of the section need be considered, therefore. The cross section is
represented by the area of skin and stringers concentrated into substitute members at
nine uniformly spaced points around the half-section, as indicated on the
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7.4 Spreadsheet Programs 231



F
ig
.
7.
26

Sp
re
ad
sh
ee
t
‘C
ir
cu
la
r
Fu

se
la
ge

Se
ct
io
n’

232 7 Reinforced Shell Structures



spreadsheet. The calculation of second moment of area is based on this simplified
model (values in the table ‘Fuselage cross section’ refer to the half-section). The
stringer-skin panels are taken to be uniform within each segment associated with a
particular substitute member. It is not necessary at this stage to consider a discrete
stringer spacing, since this will change during optimization and can be adjusted at a
later stage. The bending stress r is calculated at each of the nine points. The shear
stress s is calculated as discussed in Sect. 7.2 and represents an ‘average’ shear
stress at each point. These stresses are given in the tables ‘load case 1’ and ‘load
case 2’ on the spreadsheet. Equivalent von Mises stresses req are calculated for
combined tension or compression and shear stresses in the same tables.

The flexural buckling stress rF of the stringer-skin panels is calculated by
Eq. (7.23), with effective length equal to the frame spacing. The required properties
of the individual stringers are calculated in the table ‘stringer cross section’. Note
that the stringers have a fixed ratio d=h ¼ 0:4. For local buckling of the panels,
buckling coefficients from ESDU Data Item 71014 [6] are used. This data (other-
wise than in the spreadsheet for a stiffened panel and a rectangular box beam in the
previous sections) is represented in a fourth degree polynomial in the ratios
H ¼ h=b and T ¼ ts=t (refer to the Visual Basic function KLZ in the spreadsheet
for the coefficients of the polynomial). This gives an error of less than one per cent
over practically the whole data. The range of data taken from ESDU 71014 is
limited to 0:1� h=b� 1 (the lower limit being to avoid unrealistic values of
buckling coefficient) and 0:8� ts=t� 2. The latter is to avoid impractically thin
stringers, but also has the effect of removing curves for small values of ts=t with
discontinuities that cannot properly be represented by the polynomial function. The
local buckling stress rL by Eq. (7.22) at the different points around the cross
section is given in the tables for the two load cases. For the shear buckling stress sb
of the skin panels, a shear buckling coefficient K ¼ 4:83 is used in Eq. (7.24), since
the individual skin panels can be assumed to be relatively long. Equations (7.20) or
(7.21) are then used to calculate the value of the buckling criterion under combined
compression or tension and shear. No correction for yielding is made in any of the
buckling formulae. This is on the assumption that, for the anticipated loading on
this type of structure, stresses will be well below the elastic limit of the material.
A single maximum allowable stress is specified to ensure that the material remains
within or close to the elastic limit.

7.4.3.2 Optimization

Design variables are the skin thickness t, stringer spacing b, stringer thickness ts and
stringer height h at each of the nine points in the half-section. Suitable initial values
have to be entered in the table. Parameters to be entered, including the two load
cases, are listed in Table 7.6. Positive bending moment causes tension in the upper
part of the cross section. Constraints refer to the flexural and local buckling stresses,
and the equivalent von Mises stresses at each point. Normalized constraint values
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for flexural buckling and allowable stress are calculated in tables ‘loading case 1’
and ‘loading case 2’. For local buckling, the constraint values refer to the buckling
criterion for combined compression and shear. All values in these three columns
have to be positive or zero. Additional constraints are the above limits on h=b and
ts=t. A minimum stringer spacing and a minimum skin thickness also have to be
specified (the latter may in any case be required to meet minimum requirements for
a pressure cabin). A constraint on the maximum ratio of flexural to local buckling
stress (rF=rL), to reduce imperfection sensitivity, cannot immediately be applied in
this spreadsheet, due to the limit on the number of constraints in Solver. To include
such constraints would require removal of other, inactive constraints. Depending on
the magnitude of the applied loading, constraints on allowable stress may be found
far from critical, and safe therefore to remove.

After optimization, the initial design variables are replaced by their optimized
values, and the minimum mass per unit length of the fuselage shell structure is
given. Margins of safety in the two loading cases are given in a separate table. If
necessary, a different stringer spacing might then be chosen to account for actual
panel sizes and other practical requirements, and the optimization repeated with
chosen stringer spacing as additional constraints. If the frame spacing may be
varied, this can be added to the list of variables in Solver to find an optimum. The
spreadsheet can be extended to include bending moments about the vertical axis
and corresponding shear forces, and a twisting moment. Corrections for yielding
can, if required, be made in a similar manner to those in the spreadsheet in
Sect. 7.4.2.

Table 7.6 Data entry for spreadsheet program ‘Circular Fuselage Section’

Parameters

Positive and negative bending momentsM and
corresponding shear forces Q in loading cases
1 and 2

Enter values in cells D8:E9 (positive bending
moment causes tension in the upper fuselage)

Fuselage radius R, frame spacing L, frame area
Af

Enter values in cells E12:E14

Minimum stringer spacing bmin, minimum
skin thickness t min

Enter values in cells E15:E16

Elastic modulus E, allowable stress rall,
density q

Enter values in cells E17:E19 all as positive
numbers

Design variables

Stringer spacing b, skin thickness t, stringer
height h, stringer thickness ts

Enter initial values in cells D26:G34 at each
location in the half-section (fuselage is
assumed symmetric about the vertical axis,
and stringer height h is measured to the
mid-thickness of the flanges)
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7.5 Summary

Formulae are reviewed for the stress distribution in a long, reinforced shell struc-
ture, in particular for the box beam that has been the main concern of this chapter.
Except near major discontinuities in the structure or in the loading on it, the bending
stress at any section can be calculated accurately enough by conventional bending
theory. The structure may be unsymmetric either due to its cross-sectional shape or
due to the distribution of material in the cross section. In either case, second
moments of area about both axes and the product second moment of area have to be
calculated, all with reference to the centre of gravity of the section. The product
second moment is a measure of the lack of symmetry in the section. A general
formula is developed for the bending stress in terms of the second moments.

Above the elastic limit, reduction in stiffness due to yielding is taken into
account by means of the secant modulus. The strain distribution in the cross section
is assumed to remain linear, but after yielding the stress distribution is no longer
linear. The secant modulus is included in the calculation of effective second
moments of area and centre of gravity position, as well as in the formula for
bending stress. Since the secant modulus depends on the stress at any point in the
cross section, this results in an iterative calculation, in fact dealt with in successive
iterations of the optimization process itself. For materials with a smooth stress–
strain curve, the Ramberg–Osgood formula can be used for calculation of the secant
modulus.

A typical box structure will be reinforced by longitudinal stiffeners supported by
transverse members spaced along its length. To simplify the model, stiffeners can be
represented together with the sheet as an equivalent or ‘smeared’ thickness; alter-
natively, the sheet and stiffeners can be represented by substitute stiffeners around
the cross section. In the latter case, the second moments of area are based on the
substitute stiffeners, and the bending stress is also calculated at those locations.
With the use of substitute stiffeners, the shear stress calculation is simplified on the
basis that the shear flow is constant between the stiffeners. In a single-cell structure,
the shear flow is calculated step by step around the cross section from the bending
stress in each substitute stiffener. A constant value of shear flow then has to be
added to the result to ensure that the resulting moment is in equilibrium with the
twisting moment on the section. This may include an applied twisting moment, but
is also the moment of the applied shear force about some reference point. In a
multi-cell section, the shear flow cannot be obtained purely by statics, but must
ensure the same rate of twist in all cells.

A box beam or similar shell structure, if it is relatively thin, is liable to buckling
in combined compression and shear in the individual panels between stiffeners, as
well as buckling of the panels as a whole between the transverse reinforcing
members (termed ribs, frames or bulkheads). The former is referred to as local
buckling, the latter as flexural buckling. An exact analysis of buckling stresses can
be highly complex because of various interactions that occur, and is further hin-
dered by unavoidable even if very small imperfections in the structure. Some basic
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formulae are given for the buckling stress of thin plates in compression and shear,
and under combined stress. These formulae can be applied to the individual ele-
ments of a stiffened panel, but interactions between adjacent parts can cause a
significant change in buckling stress. A large amount of data is available in the
literature for a more accurate calculation of the buckling stress of stiffened panels,
also with appropriate effective moduli after yielding, depending on the character-
istics of the buckling mode. This is used in the spreadsheet programs in this chapter
for a stiffened panel in compression, a rectangular box beam and a circular fuselage
section.

An efficiency formula for a compression panel with integral, unflanged stiffeners
is derived from the formulae for local and flexural buckling. Similar formulae can
be derived for other shapes of stiffener. For more complicated problems involving
material limitations and limits on stiffener spacing, sheet thickness or other
dimensions, a numerical optimization such as in the spreadsheet programs men-
tioned above becomes necessary. A correction can also be applied to reduce
imperfection sensitivity, that is, growth of initial imperfections reducing the
buckling load. A different approach has to be followed for the efficiency of a
stiffened shear web. This is due to the stiffness requirements for the stiffeners,
which before buckling do not themselves take any part of the shear force on the web
but increase its buckling resistance. An efficiency formula for the equivalent shear
stress is based on that of an unstiffened web, although some weak dependence on
the structural index then remains. It is found that, except at small stiffener spacing,
the optimum occurs at or close to a critical value lc at which the stiffeners become
fully effective. After initial buckling, a state of diagonal tension develops in a
stiffened shear web. At lower values of structural index, this can result in a sub-
stantial improvement in efficiency, but at the same time leads to a high
post-buckling ratio. However, it is shown that much of this gain in efficiency can
also be achieved at much lower post-buckling ratios.

Exercises

Unless otherwise indicated, in exercises 7.3–7.10 use the loading and other data
already entered in the original spreadsheet.

7:1 Make a hand calculation of the flexural and local buckling stresses of the panel
with integral, unflanged stiffeners in Fig. 7.14, loaded in axial compression.
The stiffener spacing is 120 mm, the stiffener height is 30 mm, and the
thickness of both plate and stiffeners is 3.0 mm. The effective length of the
panel is 800 mm, and the elastic modulus of the material is 72,800 N/mm2.
Calculate the efficiency of the panel, based on the lesser of the two buckling
stresses.
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Note that the stiffener height is measured to the mid-plane of the plate. Take
the local buckling coefficient K ¼ 3:95 in Fig. 7.15. Assume no reduction in
modulus due to yielding. Calculate the efficiency from Eq. (7.27).

7:2 A stiffened shear web of height h ¼ 500 mm and stiffener spacing d ¼ 250
mm has stiffeners designed to satisfy the criterion l ¼ lc (taken to be the
optimum). The stiffeners have a coefficient C ¼ 1:0. The elastic modulus
E ¼ 72;800 N/mm2 (neglect any effect of yielding). Calculate the equivalent
shear stress s0 in the web under a shear force Q ¼ 60; 120; 240 kN. Use the
three results to deduce an efficiency formula for a stiffened shear web of this
type in the form:

s0 ¼ aE1�n q=hð Þn

Take lc and K from Table 7.3, with the long edges of the web simply-sup-
ported. Use Eqs. (7.31) and (7.30) to calculate t and t0, and calculate the
equivalent shear stress at each load. Make a log s0ð Þ-log q=hð Þ plot to verify the
above relation. Deduce values of a and n from the log-log plot, or
numerically.

7:3 Use the spreadsheet ‘Stiffened Panel’ to optimize a panel with minimum
stiffener spacing bmin ¼ 100 mm and minimum plate thickness tmin ¼ 1:0
mm, and with these dimensional constraints removed. Determine also the
maximum efficiency of the panel.
Set bmin and tmin to the required values and optimize the panel. Compare the
dimensions of the panel and its efficiency with those of a panel with these
limits removed. For maximum efficiency, we should avoid any reduction in
modulus. Set bmin and tmin to zero, and reduce the loading intensity p until
Et ¼ Es ¼ E after optimization. Try different initial design variables to ensure
that a true optimum has been found, and not a local minimum.

7:4 Use the spreadsheet ‘Stiffened Panel’ to verify the hand calculation in Exercise
7.1.
Enter the dimensions and effective length from Exercise 7.1 (no optimization
required). Compare the second moment of area and buckling stresses with the
calculated values. For the correct efficiency, the compressive stress in the
panel has to match the lesser of the flexural and local buckling stresses. Try
different values of loading intensity p until it is close enough (alternatively use
Goal Seek in Excel). Verify that there is negligible reduction in modulus due to
yielding.

7:5 Use the spreadsheet ‘Stiffened Panel’ to show the sensitivity of the flexural
and local buckling stresses to stiffener spacing, stiffener height, plate thickness
and stiffener thickness for the panel in Exercise 7.1.
Enter the dimensions and effective length from Exercise 7.1. Make a one per
cent increase in each dimension in turn, and note the increase or decrease in
flexural and local buckling stress. The data can be used to select the best
dimension to change to improve one buckling stress with the least effect on the
other, or to obtain constraint gradient data.
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7:6 Use the spreadsheet ‘Rectangular Box Beam’ to optimize the beam for a range
of rib spacing from 100 to 1000 mm, under the bending moment, shear force
and other data given in the spreadsheet.
Remove rib spacing from the list of variables in Solver before optimizing the
beam for different rib spacing. Try different initial design variables to verify
convergence. Make a plot of minimum mass per metre against rib spacing.

7:7 Optimize the beam in the spreadsheet ‘Rectangular Box Beam’ under a range
of bending moment M from 100 to 1000 kNm with corresponding shear force
Q ¼ M

5 (in kN), to show the relation between mass per metre of the beam and
applied loading.
Set the minimum cross-sectional dimensions to zero to have no effect on the
optimized beam. Ensure that rib spacing is included in the list of variables
before optimizing the beam under different loading. Make a plot of mass per
metre against bending moment. Note the relatively small increase in mass per
metre with increase in loading.

7:8 Use the spreadsheet ‘Circular Fuselage Section’ to show the effect of different
frame spacing on the minimum mass per metre of the fuselage structure, both
with minimum skin thickness tmin ¼ 1:6 mm and minimum stringer spacing
bmin ¼ 120 mm and with no minimum skin thickness and stringer spacing.
Repeat the optimization for different frame spacing over a range from 200 to
1000 mm. Note the change in the mass of the frames and the mass of the
fuselage shell with different frame spacing. Add frame spacing to the list of
variables in Solver for the optimum frame spacing.

7:9 Calculate the efficiency of the stringer-skin panel in the spreadsheet ‘Circular
Fuselage Section’, at the point of maximum compressive stress, after optimiza-
tion with minimum skin thickness tmin ¼ 1:6 mm, minimum stringer spacing
bmin ¼ 120 mm and frame spacing L ¼ 500 mm. Compare the efficiency with
that of the same panel with no constraint on skin thickness and stringer spacing.
Deduce the loading intensity p from the compressive stress and optimized
dimensions of the panel, and substitute in Eq. (7.27) for the efficiency. For the
maximum efficiency, set the constraints on minimum skin thickness and
stringer spacing to zero. Repeat the optimization and recalculate the effi-
ciency. This is the maximum efficiency for this type of panel with d=h ¼ 0:4.
Observe the difference in dimensions of the panel with and without dimen-
sional constraints.

7:10 Add a constraint on the ratio of flexural to local buckling stress:
rF=rL � 0:85 to the spreadsheet ‘Circular Fuselage Section’, to reduce the
imperfection sensitivity of the panels. Take bmin ¼ 120 mm and tmin ¼ 1:6
mm. Compare the optimized mass per metre with rF=rL � 0:85 with the
optimized mass per metre with no added constraint.
There are substantial margins of safety on allowable stress in both load cases.
To avoid the limit on the number of constraints in Solver, these constraints
may be removed and replaced by constraints on rF=rL at each location. Note
the small increase in mass as a result of the constraint on rF=rL.
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Chapter 8
Composite Laminates

Abstract Lamination theory for the stress in the individual layers of a composite
laminate is reviewed, and appropriate failure criteria are introduced. Optimization of
lay-up, based on lamination theory, involves the orientation of the different layers
and the number of plies per layer to best tailor the material to the specific application.
Different methods of optimization are introduced, including use of a simplified
netting analysis for an initial estimate of the required lay-up. Starting from this, an
iterative procedure using full lamination theory is described, making step-by-step
adjustments to the number of plies to reach a minimum. The discrete ply thickness is
a significant complication in formal optimization methods. With integer variables for
the number of plies, the ‘branch-and-bound’ method progressively eliminates
combinations of variables that cannot lead to a solution in the search for an optimum.
Alternatively, a genetic algorithm—a semi-random process—retains a family of
designs and repeatedly combines the best of them to arrive at an optimum.
A spreadsheet program is presented for the analysis and optimization of a composite
laminate under in-plane load, with discrete ply thickness and internal stresses due to
change in temperature, based on either the Tsai–Hill or the Tsai–Wu failure criterion.

Composite materials, consisting of thin fibres embedded in a softer matrix material,
play an ever-increasing role inmany branches of engineering design. In fact, we could
hardly think of aerospace and many other advanced structures these days without
some use of composites. Originally used for their ability to be formed into complex
curved shapes, now they are employedmuchmore for their high strength and stiffness
and their low density. In more demanding applications, composites are almost
invariably used as laminates, made up of individual layers of unidirectional or woven
material at different angles. These may be manufactured by laying up a sequence of
plies to form the laminate or by processes such as towplacement,filamentwinding or a
wide variety of othermeans.Compositematerials offer the designer greater freedom to
satisfy conflicting requirements by allowing the material itself as well as the structure
to be designed to suit its purpose. By appropriate choice of lay-up, the laminate can be
‘tailored’ to match as closely as possible the specific loading and other requirements
on it.



Numerical optimization methods play an essential role in the design of com-
posite structures. Even in quite simple situations, it can soon go beyond the natural
intuition of the designer to decide what changes should be made to a design to
achieve the desired result. Changes in the size and shape of a structure, together
with the many different lay-ups possible in a composite laminate, make design on a
‘trial-and-error’ basis difficult as well as time consuming. Practical restrictions on
lay-up may be imposed to avoid both delamination and unwanted deformation and,
of course, for reasons of manufacture. The designer is offered the opportunity to
tailor both the material and the structure to best suit the application, but at the same
time is faced with the challenge of developing a design procedure to make this
possible.

Here, we restrict the problem to that of the design and optimization of a single
laminate. Lamination theory, reviewed in the following section, enables the stiffness
properties of a laminate and the stress in each layer to be calculated, taking account
of the interaction between layers such that a consistent strain distribution through
the thickness is obtained. For a more comprehensive account of lamination theory
than is possible here, the reader is referred to the classic text of Jones [1], Daniel
and Ishai [2] and many others. Based on the layer stresses calculated by lamination
theory, various failure criteria are available to predict the strength of a laminate
layer by layer. The design of a laminate involves the orientation of each layer, the
number of plies within each layer, the stacking sequence of the different layers, as
well as material selection for the laminate or for each layer contained within it.
However, for a laminate made of a single material under only in-plane load, we can
define the lay-up more simply by the different angles at which plies are laid up and
the number of plies in each of these directions. The stacking sequence then becomes
irrelevant, except that the lay-up should remain symmetric about the middle plane if
bending deformation of the laminate is to be avoided. For a balanced laminate, that
is to say one with no coupling between direct and shear strains, we require equal
numbers of plies at the same positive and negative ply angles. A balanced, sym-
metric laminate is a common requirement in laminate design, helping to avoid
unwanted deformations both in manufacture and under load.

The steps in the analysis of a composite laminate are illustrated in Fig. 8.1.
Starting with material data and the elastic properties of the individual layers, these
are assembled at appropriate orientations to form an initially chosen laminate. The
stiffness coefficients of the assembled laminate are then derived, with which the
strain components in the laminate under specified applied load can be calculated.
The stresses in each layer are obtained from these strain components. With ply
strength data obtained by test, a failure criterion is used to detect failure in any layer
under the combination of stresses in that layer. At this stage, the initial analysis of
the laminate is complete. To proceed with optimization, the value of the failure
criterion in each layer serves as constraint, together with any strain limitation and
practical constraints on lay-up, also taking into account the discrete ply thickness.
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8.1 Lamination Theory

The elastic properties of a single layer of a composite laminate are defined by:

e1 ¼ r1

E1
� m21

r2

E2
;

e2 ¼ r2

E2
� m12

r1

E1
;

c12 ¼
s12
G12

:

ð8:1Þ

As shown in Fig. 8.2, axes 1, 2 refer to the principal axes of the layer, that is along
and perpendicular to the fibre direction in a unidirectional material or in the
directions of the weave for a conventional woven material.1 With respect to these
axes, the layer is termed ‘orthotropic’, that is, there is no coupling between the shear
strain c12 and direct stresses r1 and r2 or between the direct strains e1 and e2 and
the shear stress s12. The elastic constants E1, E2 and G12 in the formulae above are
usually referred to as ‘engineering constants’. Note in particular the subscripts on
the two Poisson’s ratio terms m12 and m21. By the reciprocal theorem, these are
related to the elastic moduli E1 and E2 by:

m12E2 ¼ m21E1;

lay-up and

orientation 

strain
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individual 
layer 

stresses 

failure 
criteria 

laminate
stiffness 

coefficients 

assembly
of the 

laminate 

layer
stiffness 

coefficients 

material

data 

ply

strength

applied 

loads

optimization

Fig. 8.1 Steps in the analysis
of a composite laminate

1While Figs. 8.2 and 8.3 show a layer composed of unidirectional plies, unless otherwise stated the
formulae in this chapter apply to both unidirectional and conventional woven materials.
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and there are, therefore, only four independent elastic constants for an orthotropic
material. For unidirectional plies, E1 is generally much greater than E2 and the shear
modulus G12, and m12 is much greater than m21. For this reason, m12 is usually
referred to as the major Poisson’s ratio.

When assembled into a laminate and subject to in-plane load, the stresses differ
from layer to layer due to their different stiffness properties, but the strain is
assumed constant through the thickness, that is, if there is perfect bonding between
the individual layers and of course if there is no bending of the laminate. For this
reason, it is more convenient to express stress in terms of strain and by solution of
Eq. (8.1):

r1 ¼ E1

l
e1 þ m21E1

l
e2;

r2 ¼ E2

l
e2 þ m12E2

l
e1;

s12 ¼ G12c12;

ð8:2Þ

where

l ¼ 1� m12m21

is introduced simply as a convenient constant. Equation (8.2) can readily be
expressed in matrix notation:

r1

r2

s12

8

<

:

9

=

;

¼
E1=l m21E1=l 0

m12E2=l E2=l 0
0 0 G12

2

4

3

5

e1
e2
c12

8

<

:

9

=

;

; ð8:3Þ

Fig. 8.2 Stress components
referred to the fibre direction
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or more briefly in terms of a stiffness matrix Q:

r12 ¼ Q e12: ð8:4Þ

Matrix notation is introduced not only because computers can readily work in it, but
also because we shall shortly be faced with multiplying matrices by each other and
other matrix manipulations, as will be seen in the following section.

8.1.1 Transformed Stiffness Matrix

The different layers making up the laminate will be laid up at different orientations
to achieve the desired properties. This means that the layer stiffness properties in
Sect. 8.1 have to be transformed into a common axis system, the reference axes x,
y of the laminate, as shown in Fig. 8.3. Stresses and strains with no subscript will be
taken to refer to laminate axes and those with subscripts 1, 2 to layer axes. The
standard transformation formulae are

e12 ¼ T e;

r ¼ TTr12;
ð8:5Þ

where the transformation matrix T is

T ¼
cos2 h sin2 h sin h cos h
sin2 h cos2 h � sin h cos h

�2 sin h cos h 2 sin h cos h ðcos2 h� sin2 hÞ

2

4

3

5 ð8:6Þ

and TT is its transpose (interchange of rows and columns). Expanding the second of
Eq. (8.5), we obtain for the stress components in laminate axes:

rx ¼ r1 cos2 hþr2 sin2 h� 2s12 sin h cos h;

ry ¼ r1 sin2 hþr2 cos2 hþ 2s12 sin h cos h;

sxy ¼ r1 sin h cos h� r2 sin h cos hþ s12ðcos2 h� sin2 hÞ:
ð8:7Þ

The above formulae are the standard ones from the theory of elasticity (see
Timoshenko and Goodier [3]) and are unrelated to the material properties, whether
isotropic, orthotropic, or more generally anisotropic. It is left to the reader to verify
these relations by resolving stress resultants or displacements due to strain com-
ponents into the new directions. It is important to note that the angle h in Fig. 8.3 is
the angle from the laminate x-axis to the fibre direction 1 measured positive in the
anticlockwise direction. Transformation of stress or strain back from laminate axes
to layer axes is achieved simply by replacing h by �h in the T matrix.
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With the above transformation formulae and matrix Q in Eq. (8.4), we can
express stress in terms of strain, both in laminate axes, by:

r ¼ TTr12 ¼ TTQ e12 ¼ TTQT e;

or

r ¼ �Q e; ð8:8Þ

where

�Q ¼ TTQT

is the ‘transformed stiffness matrix’ for the layer. Note that both Q and �Q are
symmetric matrices. While in the computer the above matrix form for �Q is the most
appropriate, it is also useful to write down the explicit form of the terms of the �Q
matrix, as follows:

�Q11 ¼ 1
l

E1 cos4 hþE2 sin4 hþ 2m12E2 þ 4lG12ð Þ sin2 h cos2 h� �

;

�Q12 ¼ �Q21 ¼ 1
l

E1 þE2 � 4lG12ð Þ sin2 h cos2 hþ m12E2 cos4 hþ sin4 h
� �� �

;

�Q13 ¼ �Q31 ¼ 1
l

E1 � m12E2 � 2lG12ð Þ sin h cos3 h� E2 � m12E2 � 2lG12ð Þ sin3 h cos h� �

;

�Q22 ¼ 1
l

E1 sin4 hþE2 cos4 hþ 2m12E2 þ 4lG12ð Þ sin2 h cos2 h� �

;

�Q23 ¼ �Q32 ¼ 1
l

� E2 � m12E2 � 2lG12ð Þ sin h cos3 hþ E1 � m12E2 � 2lG12ð Þ sin3 h cos h� �

;

�Q33 ¼ 1
l

E1 þE2 � 2m12E2ð Þ sin2 h cos2 hþ lG12 cos2 h� sin2 h
� �2

h i

;

Fig. 8.3 Rotation of axes
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where �Qi j is the term in row i, column j of matrix �Q. Note that as a consequence of
the rotation of axes, all nine terms of matrix �Q are now present.

8.1.2 Laminate Stiffness Coefficients

With the stiffness �Q of the individual layers now transformed into a common
laminate axis system, the stress in the layers can be summed to give a resultant load
per unit width N on the laminate:

N ¼
Nx

Ny

Nxy

8

<

:

9

=

;

¼
X

k¼L

k¼1

tk r;

where the summation is over the L layers making up the laminate and tk is the
thickness of each layer. With the layer stress:

r ¼ �Q e

from Eq. (8.8) and the strain e common to all layers if there is no bending of the
laminate, we have

N ¼
X

k¼L

k¼1

tk r ¼
X

k¼L

k¼1

tk �Q e: ð8:9Þ

This can be written more briefly:

N ¼ A e, ð8:10Þ

where A is the symmetric, in-plane stiffness matrix of the laminate, with

Aij ¼
X

k¼L

k¼1

tk �Qijk : ð8:11Þ

In expanded form, Eq. (8.10) gives us the load–strain relations:

Nx

Ny

Nxy

8

<

:

9

=

;

¼
A11 A12 A13

A21 A22 A23

A31 A32 A33

2

4

3

5

ex
ey
cxy

8

<

:

9

=

;

ð8:12Þ

The A-matrix is sufficient to calculate the resulting strain in the laminate under
given applied load and from this the stresses in the individual layers, again provided
that no bending takes place. Under in-plane load, this is so if the laminate is
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symmetric about its middle plane (for every layer in the upper half, there is an
identical layer in the lower half, at the corresponding position in the stacking
sequence). Further, if the laminate is balanced (an equal number of identical þ h
and �h layers in the laminate), the terms A12, A 21, A 13, and A 31 are all zero, and the
laminate (not only the individual layers) also has orthotropic properties. This
implies that for a balanced laminate, forces Nx and Ny produce no shear strain, and
shear force Nx y produces no direct strains. The A-matrix is actually a sub-matrix of
a larger, the so-called ABD matrix, where the D matrix defines the bending stiffness
of the laminate and the B matrix the coupling between in-plane and bending
deformation for an unsymmetric laminate. Both are derived from the �Q matrix for
each layer.

Strains in the laminate, under in-plane load, are obtained by inverting Eq. (8.10):

e ¼ A�1N; ð8:13Þ

where A�1 is the inverse of the stiffness matrix A. Strains can also be calculated by
means of the elastic constants of the laminate. For a balanced laminate, Eq. (8.12)
can be reduced to:

Nx ¼ A11ex þA12ey ¼ �rxt;

Ny ¼ A21ex þA22ey ¼ �ryt;

Nxy ¼ A33cxy ¼ �sxyt;

where �rx; �ry, �sxy are average stresses through the thickness of the laminate (not the
stress in any particular layer) and t is its thickness. Solving the above equations for
ex; ey and cxy in terms of the average stresses:

ex ¼
A22�rx � A12�ry
� �

t

A11A22 � A12A21
¼ �rx

Ex
� myx

�ry

Ey
;

ey ¼
A11�ry � A21�rx
� �

t

A11A22 � A12A21
¼ �ry

Ey
� mxy

�rx

Ex
;

cxy ¼
t

A33
�sxy ¼ �sxy

Gxy
;

from which the following formulae for the ‘engineering’ elastic constants of the
laminate are deduced:

Ex ¼ 1
t
� A0

A22
; Ey ¼ 1

t
� A0

A11
; Gxy ¼ A33

t
;

mxy ¼ A12

A22
; myx ¼ A12

A11
:

ð8:14Þ
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For convenience, we write

A0 ¼ A11A22 � A2
12:

The above elastic constants apply only to a balanced laminate.
The stress in the individual layers, for a symmetric laminate under in-plane load,

is obtained from the strain in the laminate given by Eq. (8.13):

e ¼ A�1N:

Alternatively, for a balanced laminate, the strains may more easily be calculated
by means of the elastic constants in Eq. (8.14). Either way, the strains in laminate
axes have first to be changed back into the different layer axes by the first of
Eq. (8.5):

e12 ¼ Te

(since we are now rotating from laminate axes to layer axes, h has to be replaced by
�h in the T matrix). The corresponding layer stresses are then calculated with the
layer properties by Eq. (8.2).

Example 8.1 A balanced, symmetric laminate composed of unidirectional plies of
carbon fibre composite with the properties given in Table 8.12 has 12 plies at 0°, 2
pairs of plies at ±45° and 4 plies at 90°, all of thickness 0.125 mm. Calculate the
terms of the A-matrix and the elastic constants of the laminate.

With 20 plies, the thickness of the laminate is

t ¼ 20� 0:125 ¼ 2:5mm:

Calculate first the minor Poisson’s ratio:

m21 ¼ m12 � E2

E1
¼ 0:3� 10; 000

150; 000
¼ 0:02

and the constant l in Eq. (8.2):

l ¼ 1� m12m21 ¼ 0:994:

Next, we evaluate each term of the Q-matrix in Eq. (8.3) by substituting the
appropriate elastic constants from Table 8.1:

2The properties of composite materials vary widely. The data in Table 8.1 is intended only for use
in the examples and exercises in this chapter, and should not be taken as design data.
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Q ¼
150; 905 3018 0
3018 10; 060 0
0 0 6000

2

4

3

5N/mm2:

Since all plies have the same material properties, the above matrix applies to all
plies in the laminate, regardless of their orientation. Note that Q21 ¼ Q12, as
required.

We define the x-axis of the laminate as the 0° direction, in which case no
transformation of axes is necessary for the 0° plies. Therefore:

�Q0 ¼ Q0:

For the +45° plies, we require the transformation matrix T in Eq. (8.6) to transform
the ply stiffness into laminate axes. Substituting h = 45° in the matrix:

Tþ 45 ¼
0:5 0:5 0:5
0:5 0:5 �0:5
�1:0 1:0 0

2

4

3

5:

The formula for the transformed stiffness matrix �Q in Eq. (8.8) is

�Q ¼ TTQ T:

The matrix multiplications in the above formula may be performed by hand or more
easily by the matrix multiplication function in Excel. We obtain

�Qþ 45 ¼
47; 750 35; 750 35; 211
35; 750 47; 750 35; 211
35; 211 35; 211 38; 732

2

4

3

5N/mm2:

Table 8.1 Material data for a unidirectional carbon fibre composite (for use in examples and
exercises in this chapter)

Elastic modulus in fibre direction E1 = 150,000 N/mm2

Elastic modulus in transverse direction E2 = 10,000 N/mm2

Shear modulus G12 = 6000 N/mm2

Major Poisson’s ratio m12 = 0.30

Tensile strength in fibre direction Xt = 2000 N/mm2

Compressive strength in fibre direction Xc = 1200 N/mm2

Tensile strength in transverse direction Yt = 80 N/mm2

Compressive strength in transverse direction Yc = 200 N/mm2

Shear strength S = 160 N/mm2

Ply thickness tply = 0.125 mm
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Note that the �Q-matrix no longer has the zero terms in the last row and column.
Alternatively, the explicit formulae for �Q can be used. For example, for the �Q11

term:

�Q11 ¼ 1
l

E1 cos4 hþE2 sin4 hþð2m12E2 þ 4lG12Þ sin2 h cos2 h
� �

¼ 1
0:994

150; 000
4

þ 10; 000
4

þ 2� 0:3� 10; 000þ 4� 0:994� 6000
4

� �

¼ 47; 750N/mm2

Similarly, for the −45° plies, we obtain

�Q�45 ¼
47; 750 35; 750 �35; 211
35; 750 47; 750 �35; 211
�35; 211 �35; 211 38; 732

2

4

3

5N/mm2:

This is identical to the matrix for the þ 45� plies except for the sign of the
off-diagonal terms in the last row and column.

For the 90° plies, the transformed stiffness matrix is readily obtained by inter-
changing E1 and E2 in the Q-matrix to give:

�Q90 ¼
10; 060 3018 0
3018 150; 905 0
0 0 6000

2

4

3

5N/mm2:

The terms of the A-matrix in Eq. (8.10) are now obtained by summing the corre-
sponding terms of the �Q-matrices above for each of the four ply directions, with the
appropriate number of plies and ply thickness, as in Eq. (8.11). For example:

A11 ¼ 12� 0:125� 150; 905þ 4� 0:125� 47; 750þ 4� 0:125� 10; 060
¼ 255; 263N/mm:

For the complete A-matrix, we find

A ¼
255; 263 23; 911 0
23; 911 114; 418 0

0 0 31; 366

2

4

3

5N/mm:

Note the zero terms in the last row and column, confirming a balanced laminate.
Finally, the elastic constants can be calculated by Eq. (8.14). With:

A0 ¼ A11A22 � A2
12 ¼ 255; 263� 114; 418� ð23; 911Þ2 ¼ 28; 635� 106
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and t = 2.5 mm:

Ex ¼ 1
t
� A0

A22
¼ 1

2:5
� 28; 635� 106

114; 418
¼ 100; 106N/mm2:

Similarly:

Ey ¼ 44; 871N/mm2; mxy ¼ 0:209;

G ¼ 12; 546N/mm2; myx ¼ 0:094:

We see that there is a significant modulus Ey in spite of the relatively few plies at
90°. This is due to interaction between plies in the different directions.

The example is continued in Example 8.2, where the tensile strength of the
laminate is calculated. ∎

8.1.3 Failure Criteria

Failure modes in a composite laminate are highly complex, since they involve the
fibres, the matrix, and the interface between the two. In addition, the stacking
sequence can also influence the failure mode by interaction between the different
layers. The actual failure mode depends critically on the type of loading. Within an
individual layer, if it is of unidirectional material with a conventional, relatively soft
matrix, it is the fibres that provide the main tensile strength in the fibre direction and
are mainly responsible for the compressive strength in that direction. The strength
in other directions—in the transverse direction or in shear—is largely dominated by
the properties of the matrix, resulting in much lower strength values. For a woven
material, the strength in the transverse direction is, of course, also provided by the
fibres. Due to the different stress components in each layer, arising from their
different stiffness properties, each layer has to be checked for failure. However,
failure of a particular layer, referred to as ‘first ply failure’, does not necessarily
result in failure of the laminate as a whole, but only in loss of stiffness, the extent of
which depends on the mode of failure in that layer. Even so, it may be preferred to
avoid initial failure in this way, and here, we shall be concerned principally with
first ply failure.

It is well known that ply properties are generally much more variable than those
of metallic materials, due to fibre misalignment, broken fibres, voids and other
defects. Furthermore, properties are greatly affected by environmental conditions—
temperature and water absorption. In particular, this applies to the matrix material.
To allow for such uncertainties, reduced strain limits on the laminate as a whole are
commonly imposed, as alternative to or as well as a more detailed layer stress
analysis. Further, it should be pointed out that lamination theory is concerned only
with stresses in the plane of the laminate. Various measures have to be taken to
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reduce the risk of failure due to stresses through the thickness and the possibility of
delamination, as will be discussed later in Sect. 8.1.5.

Just as for metallic materials, reliable ply data has to be obtained from tests on
suitable specimens of the material. The specific strength data usually required are
the tensile and compressive strengths Xt and Xc in the fibre direction (or in the
direction of the weave for a woven material), the tensile and compressive strengths
Yt and Yc in the transverse direction, and the shear strength S. These values cannot,
of course, relate directly to combinations of stress in a given layer. A simple
maximum stress criterion—stating that failure occurs when any of the individual
stress components in a layer reach its maximum value—generally giving unduly
optimistic results. Further, a maximum stress criterion leads to discontinuities in the
failure envelope, as one stress component takes over from another, and this is not
reflected in actual measurements. To improve on this, various interactive failure
criteria have been developed. Here, we shall be concerned with the two most
generally accepted—the Tsai–Hill criterion and the Tsai–Wu criterion.

The Tsai–Hill criterion originates from the von Mises criterion for metallic
materials, discussed in Chap. 7, modified by Hill [4] for anisotropic materials and
applied by Azzi and Tsai [5] to an orthotropic composite. A quadratic function of
stress is assumed:

F r2 � r3ð Þ2 þG r1 � r3ð Þ2 þH r1 � r2ð Þ2 þ 2Ls223 þ 2Ms213 þ 2Ns212 ¼ 1;

to predict failure of a layer. This formula includes those stresses and combinations
of stresses that cause distortion of the material. The similarity to the von Mises
criterion is apparent. The stresses r1, r2 and r3 are in layer axes (with r1 in the
fibre direction), so are not in general principal stresses. Therefore, the three shear
stresses are added. As in the von Mises criterion, this is initially for a
three-dimensional state of stress. By substituting:

r1 ¼ X; r2 ¼ r3 ¼ Y ; s23 ¼ s13 ¼ s12 ¼ S

for each stress component applied individually, we obtain six equations for the six
unknown constants F, G, H, L, M and N, and after some algebra, the following
formula for failure of a layer is obtained:

r2
1

X2 �
r1 r2

X2 þ r2
2

Y2 þ s212
S2

¼ 1: ð8:15Þ

Note that it is assumed above that the properties of the layer in the transverse
direction and through the thickness are the same, that is, r2 ¼ r3 and
s23 ¼ s13 ¼ s12. For this reason, the Tsai–Hill criterion applies in principle to
unidirectional plies and not to woven materials. Clearly, the above formula satisfies
the basic condition:
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r1 ¼ X; r2 ¼ Y ; s12 ¼ S

under the individual stress components, while if applied to an isotropic material
(X ¼ Y and S ¼ X=

ffiffiffi

3
p

), the Tsai–Hill criterion in Eq. (8.15) reduces to the von
Mises criterion.

However, the quadratic form of the Tsai–Hill criterion means that it is unable to
distinguish between tension and compression. Usual practice to allow for differ-
ences in tensile and compressive strength is to use Xt for X when r1 is positive
(tensile) and Xc when r1 is negative (compressive) and to use Yt for Y when r2 is
positive and Yc when r2 is negative. The signs of r1 and r2 in the numerator of the
second term must, of course, be respected. Due again to the quadratic form of the
Tsai–Hill criterion, to calculate the failure load, each applied load should be divided
by the square root of the value of the Tsai–Hill criterion.

The Tsai–Wu criterion [6], on the other hand, can account for differences in
tensile and compressive properties. For an orthotropic layer of composite material, a
general second degree expression is adopted:

a11r
2
1 þ 2a12r1r2 þ a22r

2
2 þ b12s

2
12 þ b1r1 þ b2r2 ¼ 1

Note that terms in r1s12; r2s12 and s12 have been removed from the above formula,
because the sign of s12 does not affect the strength of the layer. The linear terms in
r1 and r2 enable the distinction between tension and compression to be made.
Substitution of

r1 ¼ Xt or � Xc;

r2 ¼ Yt or � Yc;

s12 ¼ S

in turn under the individual stress components in the above expression gives five of
the coefficients:

a11 ¼ 1
XtXc

; b1 ¼ 1
Xt

� 1
Xc

;

a22 ¼ 1
Yt Yc

; b2 ¼ 1
Yt

� 1
Yc

;

b12 ¼ 1
S2

:

The remaining term a12 has to be found from biaxial test data. However, it is
commonly assumed:

a12 ¼ � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffi

a11a22
p

;
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in which case the Tsai–Wu criterion again reduces to the von Mises criterion when
applied to an isotropic material.

As might be expected, neither the Tsai–Hill nor the Tsai–Wu criteria match the
experimental data perfectly. Both give generally acceptable predictions when the
loading is predominantly tensile, especially in view of uncertainties in the basic
material data and the likely presence of defects. When the loading is predominantly
compressive, there are larger differences. Use of one or other criterion remains
largely a matter of experience.

Example 8.2 Calculate the maximum value of the Tsai–Hill criterion for the
laminate in Example 8.1 under a tensile load of 2000 N/mm applied in the 0°
direction.

With thickness t = 2.5 mm, the average stress in the laminate is

rx ¼ 2000
2:5

¼ 800N/mm2:

For a balanced, symmetric laminate, we make use of the elastic constants Ex;Ey; mxy
calculated in Example 8.1 for the corresponding strains:

ex ¼ 800
100106

¼ 0:007992;

ey ¼ �0:209� 0:007992 ¼ �0:001670;

cxy ¼ 0:

Alternatively, we could have used Eq. (8.13), requiring inversion of the A-matrix,
for the same result.

The above strains are also the strains in the 0° plies. For the 90° plies, we have
only to interchange ex and ey. The stresses in these plies are then readily calculated
by Eq. (8.2) with the ply data in Table 8.1. We obtain for the stresses in the 0°
plies:

r1 ¼ 1201:0N/mm2;

r2 ¼ 7:3N/mm2;

s12 ¼ 0;

and for the 90° plies:

r1 ¼ �227:9N/mm2;

r2 ¼ 75:4N/mm2;

s12 ¼ 0:

Note that stress r1 in the 90° plies is in compression.
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For the ±45° plies, we require the transformation matrix already calculated in
Example 8.1. The strains in ply axes are given by the first of Eq. (8.5):

e12 ¼ Te:

Performing the matrix multiplication with the laminate strains above, we obtain

r1 ¼ 486:5N/mm2;

r2 ¼ 41:3N/mm2;

s12 ¼ �58:0N/mm2:

Note that the shear stress in the±45° plies is not zero. The above stresses are for the
±45° plies, and for the −45° plies, the sign of s12 is changed.

With the material data in Table 8.1, we calculate now the value of the Tsai–Hill
criterion in the different ply directions.

0� plies:
1201:0
2000

	 
2

� 1201:0� 7:3

ð2000Þ2 þ 7:3
80

	 
2

¼ 0:367;

90� plies:
�227:9
1200

	 
2

�ð�227:9� 75:4Þ
ð1200Þ2 þ 75:4

80

	 
2

¼ 0:936;

�45� plies:
486:5
2000

	 
2

� 486:5� 41:3

ð2000Þ2 þ 41:3
80

	 
2

þ �58:0
160

	 
2

¼ 0:452:

It is seen that the greatest value of the Tsai–Hill criterion occurs in the 90° plies,
even though no load is applied in this direction. This is again due to the complicated
interaction between plies in the different directions. If we increase the applied load

by a factor of
ffiffiffiffiffiffiffiffi

1
0:936

q

¼ 1:034, the Tsai–Hill criterion is increased to unity, since all

stresses are increased in proportion. The maximum load on the laminate is therefore
2068 N. However, the 12 plies in the 0° direction are alone more than sufficient to
carry the applied load. It is unlikely, therefore, that first ply failure in the 90° plies
will lead to failure of the laminate as a whole. ∎

8.1.4 Change in Temperature

Change in temperature causes internal stresses in a laminate due to differences in
the thermal expansion or contraction of layers with different orientations and per-
haps different properties. Commonly, this is due to curing of the laminate at an
elevated temperature during manufacture, leaving residual stresses in the laminate.
Stresses due to change in temperature can conveniently be calculated in a two-step
process. First, it is supposed that thermal expansion (or contraction) is fully
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restrained. The stress induced in each layer in this way, and the resulting forces on
the laminate, is calculated. Equal and opposite forces are then applied to the lam-
inate to counteract those forces, causing stresses in the layers in addition to the
previously calculated restraint stresses. The sum of these stresses is the internal
stress in a laminate free of external load. Finally, the internal stresses can be added
to stresses caused by external loading on the laminate.

The strains e1 and e2 in an individual layer, if free to expand, due to a tem-
perature increase DT are

e1 ¼ a1DT ;

e2 ¼ a2DT ;
ð8:16Þ

where a1 and a2 are the coefficients of expansion of the layer in the longitudinal and
transverse directions. If now the layer is fully restrained, from Eq. (8.2) the stresses
needed to counteract the strains e1 and e2 above are

r1 ¼ � E1

l
e1 þ m21E1

l
e2

	 


;

r2 ¼ � E2

l
e2 þ m12E2

l
e1

	 


:

ð8:17Þ

Transforming these stresses into laminate axes by the second of Eq. (8.5), we find

rx ¼ r1 cos2 hþr2 sin2 h;

ry ¼ r1 sin2 hþr2 cos2 h;

and the resulting forces on the laminate to restrain expansion, from Eq. (8.9), are

Rx ¼
X

k¼L

k¼1

rxtk;

Ry ¼
X

k¼L

k¼1

rytk:

Note that if it is a balanced laminate, there is no resulting shear force on the
laminate due to change in temperature. Further, it is assumed that the laminate is
symmetric, so that change in temperature does not cause bending of the laminate.
To eliminate the restraining forces Rx and Ry, equal and opposite forces:

Nxt ¼ �Rx;

Nyt ¼ �Ry
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have to be applied to the laminate. The forces Nxt and Nyt can be added to any
externally applied loads, and the resulting stress in each layer is calculated as in
Sect. 8.1.2. Finally, the restraint stresses in Eq. (8.17) have to be added to the
stresses obtained above for the total stress in each layer.

As already stated, internal stresses are created in a laminate if it is cured at
elevated temperature during manufacture, in which case it is usually taken to be in a
stress-free condition at or near the curing temperature. Cooling to normal temper-
atures induces residual stresses, depending amongst other things on the curing
cycle. These residual stresses can be calculated in the same way as other changes in
temperature and have to be taken into account in any subsequent strength analysis.
In the long term, residual stresses may be reduced by gradual deformation of the
matrix material. Moisture absorption by the laminate can cause internal stresses in a
similar way to change in temperature. The thermal strains in Eq. (8.16) have then to
be replaced by a ‘hygrothermal strain’, calculated for each layer according to both
moisture content and temperature.

8.1.5 Practical Restrictions on Lay-up

This section cannot attempt to summarize all the good design practice built up over
many years, but summarizes some aspects of particular relevance to optimization of
the lay-up of a composite laminate. Lamination theory is essentially concerned with
in-plane stress and strain. However, failure is commonly caused by
through-the-thickness stresses, both interlaminar shear stress and peel stress,
resulting in delamination. While much research has been devoted to the analysis of
these stresses, some well-accepted, practical design ‘rules’ have emerged to reduce
the likelihood of such failures. These are reviewed here and for convenience also
summarized in Table 8.2. For more detailed information, the reader is referred to
Niu [7] and Kassapoglou [8].

Interlaminar shear stress is the result of transfer of load from one layer to an
adjacent one, for example with change in load direction around a hole in the laminate,
or some other discontinuity. The magnitude of the load to be transferred is directly
related to the number of plies in the layer, which in practice is generally limited to a
maximum of four plies per layer. To ensure that transfer of load is to an adjacent layer
with adequate properties in the new direction as the local load direction changes,
usual practice is that there should not be more than 45° difference in fibre direction
between adjacent layers. Further, to avoid undue weakness in any direction in the
laminate, the ‘10% rule’ requires that there should be at least 10% of the plies in each
of four main directions (e.g. 0°, +45°, −45° and 90°). Delamination can also be
caused by unwanted deformations in the laminate, that is, incompatible deformation
of two adjacent layers caused, for example, by out-of-plane bending of the laminate,
even if subject only to in-plane loads. For this (and other) reasons, it is usually
preferred that the lay-up of the laminate should be both symmetric and balanced.
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While we have been concerned here in principle with those ‘rules’ that directly
affect the lay-up of a laminate, there are many other sources of through-the-thickness
stresses that can cause delamination. Ply drop-off—local reduction in the number of
plies—also causes interlaminar shear stress, as well as tensile ‘peel’ stresses. To
reduce the effects of both, ply drop-off should best be one ply at a time and should
take place gradually. Ply drop-off can better be internally within the laminate rather
than at the surface, to help restrain peeling. A free edge also leads to transfer of load
between layers, from a þ h to a �h layer, or due to differences in Poisson’s ratio,
and is best avoided where possible. Voids and other defects can be a source of local
delamination. Delamination can also be the direct result of impact on the surface of
a laminate. ‘Barely visible impact damage’, even at relatively low impact levels, can
propagate through the laminate, eventually causing failure. Strain limits are com-
monly imposed to reduce the likelihood of this kind of failure.

8.2 Laminate Optimization

Different methods of optimization of a composite laminate are described, ranging
from a simple but practical iterative procedure to more formal optimization methods.
The steps necessary to analyse the layer stresses by lamination theory in the earlier
parts of this chapter then have to be repeated many times during optimization. The
failure criteria described in Sect. 8.1.3 serve as constraints for optimization, while
other more general requirements may refer to a maximum strain limitation and other
restrictions on lay-up discussed in Sect. 8.1.5. A particular problem in the opti-
mization of composite laminates is the discrete ply thickness. This demands some
substantial adaptation of conventional optimization methods, or alternatively, we
can turn to what might well be considered unconventional methods like the
‘Evolutionary’ optimization algorithm now implemented in Solver. However, before
going on to study numerical optimization of a composite laminate in more detail, we

Table 8.2 Design ‘rules’ for composite laminates

10% rule
Ensure at least 10% of each of 4 different
ply orientations in the laminate

To avoid undue weakness in any direction

Maximum number of plies
Ensure not more than 4 plies
of the same orientation in
each layer

To limit the magnitude of the load to be
transferred to an adjacent layer

Angle between layers
Ensure not more than 45° difference in
ply orientation between adjacent layers

To ensure load transfer is to an adjacent layer with
adequate properties in the necessary directions
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shall consider first a simplified method of laminate design which, although based on
an approximate analysis, can lead to a useful first estimate of the required lay-up.
This is by ‘netting analysis’, in which the ply properties are simplified to the extent
that direct hand calculations are readily made, at the same time giving some insight
into the lay-up to be obtained by a formal optimization.

8.2.1 Netting Analysis

Netting analysis was introduced by Cox [9] for the analysis of fibrous materials
such as paper and can equally be applied to composite laminates. The strength of
conventional, unidirectional plies is much greater in the fibre direction than in other
directions, due to the relatively weak matrix. In netting analysis, the basic
assumption is made that individual plies provide strength only in the direction of the
fibres. We refer here specifically to unidirectional plies, as netting analysis has
limited application for woven materials. Consider first a single layer of unidirec-
tional material, at angle h to the principal loading directions, as in Fig. 8.4. The
stress s ¼ r1 in the fibre direction (using symbol s for stress to indicate netting
analysis) can be transformed into stress components in the loading directions
simply by neglecting the stresses r2 and s12 in Eq. (8.7). If the layer has a thickness
t, the corresponding components of load (per unit width) are

Nx ¼ s t cos2 h;

Ny ¼ s t sin2 h;

Nxy ¼ s t sin h cos h:

If we now have three such layers of unidirectional plies at angles h1, h2, h3 with
thicknesses t1, t2, t3 and stresses s1, s2, s3, respectively, the resulting load com-
ponents become

Nx ¼ s1 t1 cos2 h1 þ s2 t2 cos2 h2 þ s3 t3 cos2 h3;

Ny ¼ s1 t1 sin2 h1 þ s2 t2 sin2 h2 þ s3t3 sin2 h3;

Nxy ¼ s1 t1 cos h1 sin h1 þ s2 t2 cos h2 sin h2 þ s3 t3 cos h3 sin h3:

ð8:18Þ

The three ply stresses s1, s2, s3 can be solved for any combination of loads Nx, Ny,
and Nxy if the layer thicknesses and ply angles are already given. This means that a
three-fibre system (three distinct fibre directions) is sufficient provided, of course,
that the individual plies are strong enough for the resulting stress in their respective
fibre directions. In fact, we now have a solution based entirely on equilibrium (not
surprisingly with much in common with some of the simple truss structures earlier
in this book). In this way, we have bypassed virtually the whole of lamination
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theory, with no recourse to strains in the laminate to calculate the stresses in the
plies. At the same time, we have ignored transverse and shear stresses in the plies
which, as we have seen, can play a significant role in the failure criterion.

For a laminate to carry a given set of in-plane loads, with chosen fibre angles
h1; h2; h3 and ply strengths Xt and Xc (in tension and compression) in the fibre
direction, we can substitute s1, s2, s3 ¼ Xt or Xc as appropriate in Eq. (8.18) to
calculate the required layer thicknesses t1, t2, t3. By analogy with a statically
determinate truss, this might be regarded as a ‘fully stressed design’.

Example 8.3 A 0°, ±45° laminate has to carry loads Nx ¼ 2400 N/mm,
Ny ¼ 400 N/mm, Nxy ¼ 800 N/mm. The strength of the unidirectional ply material
in the fibre direction is Xt ¼ 2000 N/mm2 in tension and Xc ¼ �1200 N/mm2 in
compression. Use netting analysis to calculate the required layer thicknesses.

By substituting h1 ¼ 0�, h2 ¼ þ 45�, h3 ¼ �45� in Eq. (8.18), these reduce to:

s1 t1 ¼ Nx � Ny;

s2 t2 ¼ Ny þNxy;

s3 t3 ¼ Ny � Nxy:

Putting now s1 ¼ Xt, s2 ¼ Xt and s3 ¼ Xc (the choice of Xt or Xc in each case is
made to avoid negative thicknesses), we obtain

t1 ¼ Nx � Ny

Xt
¼ 2400� 400

2000
¼ 1:0mm,

t2 ¼ Ny þNxy

Xt
¼ 400þ 800

2000
¼ 0:6mm,

t3 ¼ Ny � Nxy

Xc
¼ 400� 800

�1200
¼ 0:33mm,

with a total thickness of 1.93 mm.
Clearly, the results obtained by netting analysis are entirely dependent on the

choice of fibre directions, which have to be chosen appropriately. Optimum fibre
angles, at least within the assumption of netting analysis, can be deduced by
transforming the loading into components N1 and N2 in their principal directions.
(Note that loads per unit length Nx;Ny;Nxy on a supposed unit thickness can be
treated simply as stress components.) Using the standard formula for principal
stresses, we obtain

N1;2 ¼ 2400þ 400
2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2400� 400
2

	 
2

þð800Þ2
s

;

N1 ¼ 2681N/mm, N2 ¼ 119N/mm
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at angles:

h ¼ 1
2
tan�1 2� 800

2400� 400

	 


;

h ¼ 19:3� and � 70:7�:

Both N1 and N2 are in tension. The required thicknesses if the plies are placed with
their fibres along the principal directions are then:

t1 ¼ N1

Xt
¼ 2681

2000
¼ 1:34mm,

t2 ¼ N2

Xt
¼ 119

2000
¼ 0:06mm:

This is now the optimum laminate for the given applied loading, with a thickness of
1.40 mm. This is a reduction of 0.53 mm compared with the previous netting
analysis design. However, since there are now only two fibre directions in the
laminate, it is unable (within the assumption of netting analysis) to carry any loads
other than those applied along the same principal directions. It has to be concluded,
therefore, that such a laminate would be highly impractical. ∎

As we have seen, netting analysis is limited to at most three fibre directions, but
in practice, we are unlikely to be satisfied with such a laminate. The ‘10% rule’
from Sect. 8.1.5 requires a laminate to have at least four different fibre directions.
However, with four fibre directions, we can no longer make use of the simple
equilibrium conditions in Eq. (8.18), and a true netting analysis solution is then not
possible. Even so, we can still take advantage of the concept of netting analysis for
a more practical solution in the following way. If we confine our attention to a 0°,
±45°, 90° lay-up, we make the assumption that fibres in the 0° direction are entirely
responsible for the load Nx and fibres in the 90° direction for load Ny. The shear

Fig. 8.4 Netting analysis—
stress s in the fibre direction
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load Nxy can be resolved into principal components of the same magnitude in the
±45° directions, and it is the fibres in those directions that take the shear load. The
method is best illustrated in the following example.

Example 8.4 Calculate the required layer thicknesses for a 0°, ±45°, 90° laminate
to carry the same loads as in the previous example, again by netting analysis, using
the same material data but taking into account now a ply thickness tply ¼ 0:125
mm. The chosen laminate should be balanced and symmetric.

The required thickness of 0° plies is

t0 ¼ Nx

Xt
¼ 2400

2000
¼ 1:20mm ! 10 plies at 0�

after rounding up to a whole number of plies. Similarly, the thickness of 90° plies is

t90 ¼ Ny

Xt
¼ 400

2000
¼ 0:20mm ! 2 plies at 90�:

The applied shear load is resolved into tensile and compressive loads of 800 N/mm
in the directions of the ±45° plies. For a balanced laminate, we require an equal
number of plies in the ±45° directions, and the required ply thickness has therefore
to be based on the lower compressive ply strength:

tþ 45 ¼ t�45 ¼ Nxy

Xc
¼ 800

1200
¼ 0:67mm ! 6 plies

in each of the ±45° directions. With an even number of plies in each direction, no
change is necessary for a symmetric laminate. The final laminate has a total of 24
plies, with a thickness of 3.00 mm. This can be interpreted as the following lay-up3:

�45=03=�45=90=�45=02½ �s;

conforming to the practical restrictions on lay-up in Sect. 8.1.5. The thickness of
the laminate is significantly greater than in the previous example as a consequence
of the preferred four fibre directions and the discrete ply thickness. ∎

It has to be emphasized that netting analysis neglects the interaction between the
different ply directions, in particular the transverse and shear stresses induced in
each layer. It was already seen in Sect. 8.1.3 that these play an important role in the
failure criterion (whether this is Tsai–Hill, Tsai–Wu or some other). The laminate
thickness calculated by netting analysis can, therefore, prove in some cases to be a
substantial underestimate of the actually required thickness. As will be found in
Example 8.5 in the following section, this is also the case in the present example.
The most common use of netting analysis is then as an initial estimate for further

3See ‘Principal Notation’ at the beginning of this book.
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design and optimization using full lamination theory, such as by the iterative
redesign procedure in the following section or by the formal numerical optimization
in Sects. 8.2.3 and 8.2.4. However, we shall see that an optimized laminate com-
monly has no more than three fibre directions, justifying to some degree the concept
of netting analysis.

8.2.2 Iterative Redesign

The procedure described in the previous section, based on netting analysis, can give
a useful initial design of laminate, but the analysis is of course a severe simplifi-
cation of standard lamination theory. An initial netting analysis design can be
refined by an iterative redesign procedure, employing full lamination theory for an
accurate analysis. The method described here follows closely that proposed by
Morton and Webber [10] which, as well as being for in-plane loading as here, deals
extensively with laminate selection under bending. This method may be reminiscent
of the simple truss design in Chap. 1, but with some essential differences. As in the
last example, we will consider only a 0°, ±45°, 90° balanced, symmetric laminate
under in-plane load. Again, it is assumed that the laminate is composed entirely of
unidirectional plies, although a similar procedure can be adopted for woven
materials.

In this iterative redesign procedure, the laminate is analysed, and the value of a
chosen failure criterion is calculated for each layer. In the example that follows, the
Tsai–Wu criterion is used. The layer with the largest value of the failure criterion
under any loading case is the most critical layer (assuming that at least one layer has
a value greater than unity). The Tsai–Wu criterion has a single value for each layer,
but in an attempt to identify a so-called principal cause of failure, the stress ratios
r1=X; r2=Y and s12=S are calculated for this most critical layer (using tensile or
compressive values X ¼ Xt or Xc and Y ¼ Yt or Yc as appropriate). Failure indicated
by each of these stress ratios is referred to as longitudinal, transverse and shear
failure, respectively. The first of these might be regarded as fibre failure, the other
two as matrix failure. The largest of the three stress ratios is identified, and this is
treated as the dominant failure mode. Either the layer which is found to be the most
critical or another layer is thickened according to a certain set of rules based on the
dominant failure mode, as will be discussed shortly. The amount of thickening can
be based on the appropriate stress ratio above, but it may be more convenient
simply to increase the thickness by one or more whole plies. The new laminate is
then analysed again, and the process repeated.

It will be observed that the procedure as described here is essentially one of
progressively increasing the strength of a laminate until it reaches the required
strength. For this reason, it is desirable that the initial design of laminate should be
understrength, not overstrength. In the latter case (if the failure criterion is less than
unity in all layers), the laminate could be reduced in thickness by removing plies
from the layer with the smallest value of the failure criterion. However, for
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sufficient freedom to converge to a satisfactory laminate, it is recommended to
choose an initial design in which most or all layers have a failure criterion greater
than unity. In this way, a better selection of the number of plies in each layer is
likely to be made.

The redesign rules for which layer to thicken are an essential part of this pro-
cedure. Unlike a truss structure, for which each member is increased or reduced in
area according to the stress in that same member, for a laminate a different approach
is necessary. Although the analysis is now based on full lamination theory, the
redesign rules borrow from netting analysis the concept that individual plies pro-
vide strength only in their own fibre direction. If, therefore, we have longitudinal
failure in the 0° plies (r1=X is largest), then it is the thickness of those layers that
should be increased. If, however, we have transverse failure in the 0° plies (r2=Y is
largest), then it is the thickness of the 90° layers that should be increased, since this
relieves the transverse stress in the 0° layers. Shear failure in the 0° plies (s12=S is
largest) means that it is the ±45° layers that should be increased. Failure in the 90°
plies is treated similarly. The ±45° plies provide the shear strength. If we have
failure in the ±45° plies, then either the ±45° or the 0°/90° layers should be
increased, according to the failure mode in the ±45° plies. These rules are sum-
marized in Table 8.3.

Example 8.5 Repeat Example 8.4 by the iterative redesign procedure, with the
same material and ply thickness, and under the same loading.

An initial lay-up is chosen in Table 8.4 with the same number of plies as the
netting analysis solution in Example 8.4 in each of the 0°, ±45°, 90° directions.
This lay-up has a maximum Tsai–Wu value of 1.68 (but less than unity in the 0°
layer). The number of plies is progressively increased in the appropriate layer,
according to the rules in Table 8.3. The spreadsheet program ‘Composite Laminate’
described later in Sect. 8.3.1 is used to analyse the laminate, giving Tsai–Wu values
for each layer. Values of the stress ratios r1=X;r2=Y and s12=S are calculated from

Table 8.3 Redesign rules

Layer type (°) Dominant failure mode Layer type to be increased (°)

0 Longitudinal 0

Transverse 90

Shear ±45

±45 Longitudinal ±45

Transverse ±45

Shear 0/90a

90 Longitudinal 90

Transverse 0

Shear ±45
aLayer type with the smaller number of plies
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the stresses found by the spreadsheet for the layer with the largest Tsai–Wu value,
to identify the dominant failure mode. The action to be taken at each following step
is noted in Table 8.4. The number of plies is increased at each step by the minimum
number to preserve a balanced, symmetric laminate (a single 0° or 90° ply or two
+45° plies together with two −45° plies). It will be seen that in this example, the
dominant failure mode is transverse at every step, as is commonly the case, illus-
trating the fact that while failure has occurred in a particular layer, it is frequently a
different layer that has to be increased. The procedure converges to a laminate
thickness of 4.375 mm after five iterations, with a Tsai–Wu value of 0.98.

At the end of this procedure, it will be seen that there has been no increase in the
number of 90° plies (even though these have several times shown the largest Tsai–
Wu value). It might be, therefore, that the number of 90° plies could be reduced. If
doing so leads to a Tsai–Wu value again greater than unity in any layer, then the
procedure already followed has to be continued. In the present example, reducing
the number of 90° plies from two plies to one would require an increase in the
number of 0° plies from 13 to 14 to maintain a symmetric laminate, with no
reduction in thickness (an odd number of both 0° and 90° plies are not allowed).

Table 8.4 Iterative redesign procedure in Example 8.5

h° Number of
plies

Largest Tsai–Wu
value

Dominant failure
mode

Action

0 10 1.68 in ±45° plies Transverse
r2=Yt ¼ 1:20

Increase ±45° plies
to 8b±45a 6

90 2

0 10 1.41 in 90° plies Transverse
r2=Yt ¼ 1:05

Increase 0° plies to
11c±45 8

90 2

0 11 1.26 in 90° plies Transverse
r2=Yt ¼ 0:98

Increase 0° plies to
12±45 8

90 2

0 12 1.15 in ±45° plies Transverse
r2=Yt ¼ 0:92

Increase ±45° plies
to 10±45 8

90 2

0 12 1.08 in 90° plies Transverse
r2=Yt ¼ 0:86

Increase 0° plies to
13±45 10

90 2

0 13 0.98 in 90° plies Transverse
r2=Yt ¼ 0:81

No further action

±45 10

90 2
aThe number of ±45° plies is the number in each of the ±45° and −45° directions
bAn even number of ±45° plies are required for a symmetric laminate
cAn odd number of 0° plies are permissible for a symmetric laminate, if located on the middle
plane and provided that the number of 90� plies is even
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The final laminate, at the end of Table 8.4, can be interpreted as the following
lay-up:

½�452=03=�45=90=�45=02=�45=0=�0�s:

The thickness of the laminate is considerably greater than that found in
Example 8.4, which has a thickness of 3.00 mm. However, the laminate in
Example 8.4 has a Tsai–Wu value of 1.68, meaning that it is around 30% under
strength. This arises from neglect of transverse and shear stresses in the netting
analysis solution and accounts for greater thickness in the present example. ∎

8.2.3 Numerical Optimization

The iterative redesign procedure of the previous section will in most cases provide a
satisfactory laminate, in other words one satisfying the specified failure criterion in
all layers without undue use of material. However, it does not necessarily yield an
optimum laminate, that is, one with the true minimum number of plies.
Furthermore, it does not optimize ply angles. Turning now to formal numerical
optimization, a particular problem that arises is the discrete ply thickness, requiring
special methods of optimization which can deal with discrete variables. With dis-
crete ply thickness, there may be a number of alternative laminates, all of the same
thickness but with different ply angles and numbers of plies in each layer, so that
there is no single, unique optimum. This can occur when none of those laminates
has a thickness close to what would be the optimum if the discrete ply thickness
were ignored, leaving sufficient margin for alternatives to exist. It is also worth
noting that alternative laminates having the same thickness and satisfying or more
than satisfying the failure criterion are nevertheless unlikely to have the same
margin of safety. Furthermore, due to the complex interactions between different
ply directions in lamination theory and the many possible combinations of ply
angles and numbers of plies, local minima may exist with altogether different lay-up
and not necessarily the same number of plies. If this is suspected, optimization
should be repeated from different starting points until it is clear that the true opti-
mum has been found. The ‘Multistart’ option in the GRG method in Solver,
described further in the Appendix, may offer an outcome here, although the time
taken to reach an optimum is greatly increased. Some of these aspects will be
explored further in the examples that follow later in this section.

Solver provides an option for optimization with integer variables (in this case a
whole numbers of plies) by the ‘branch-and-bound’ method. The original algorithm
was developed by Land and Doig [11]. Useful descriptions of the method can be
found in Gürdal et al. [12], Reklaitis et al. [13] and various other texts. This is a
logical adaptation of a conventional optimization routine, by which it is possible to
extract from it an integer solution. In effect, it searches all combinations of integer
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variables, eliminating as quickly as possible those which cannot lead to the required
optimum. For simplicity, it will be assumed that all variables are integer variables,
although the method works in the same way with mixed continuous and integer
variables. Assuming that we are searching for a minimum value (here, it is the
minimum number of plies) rather than a maximum, the method works as follows.
First, an optimization is performed with all-continuous variables. Since integer
constraints on the variables can only worsen the result, the minimum found in this
optimization must be a lower bound to the solution of the integer variable problem.
One of the variables is then selected, and with this variable, two new sub-problems
are defined. In one of these, the selected variable is constrained to be less than or
equal to the first integer value below its current value, and in the other, the same
variable is constrained to be greater than or equal to the first integer value above its
current value. This is what is meant by ‘branching’. Each of these sub-problems is
then optimized with the added constraint. Branching is continued by selecting
further variables until a feasible, all-integer solution is obtained. This then becomes
an upper bound to the true integer optimum. However, it does not rule out other
all-integer solutions with a minimum between the newly found upper bound and the
earlier lower bound. Branching is continued by branching from the so-called nodes
at the ends of existing branches. From this point onwards, any branch that leads to a
minimum value greater than the upper bound can be terminated. This is what is
meant by ‘bounding’. A branch is also terminated if no feasible solution to the
sub-problem can be found. If a better all-integer solution is found, the previous
upper bound can be updated. Branching is continued until all branches have been
terminated—or ‘fathomed’, as it is called. The required optimum is the best integer
solution at one of the fathomed nodes. Solver applies the branch-and-bound method
to both the GRG nonlinear and the simplex LP methods, but it will be clear that
optimization of the sub-problems has to be performed many times and computing
times will be much longer than for a similar continuous variable problem.

An alternative method implemented in Solver is the ‘evolutionary’ or ‘genetic’
algorithm. This is a semi-random procedure intended in particular for problems
with non-smooth or discontinuous functions. Since a genetic algorithm can work
directly with integer variables, it is of course suited to problems such as that of a
composite laminate. Furthermore, since the method explores the whole extent of the
design space, it is more likely to detect local optima. The genetic algorithm is
described in the following section, but first we shall examine use of the GRG
method in Solver with the option for integer variables for laminate optimization in
the examples that follow.

Example 8.6 Use the spreadsheet program ‘Laminate Optimization’ to optimize the
0°, ±45°, 90° laminate in Example 8.5, with the same ply material and under the
same loading.

The Tsai–Wu criterion is chosen on the spreadsheet, and constraints are entered
in the Solver dialogue box to limit the Tsai–Wu values in all plies to less than or
equal to unity, to limit numbers of plies ni to positive or zero values and for discrete
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ply thickness by setting ni to integer. Further constraints are added to set ply angles
h1 ¼ 0�, h2 ¼ 45� and h3 ¼ 90�; alternatively, the ply angles could simply be
removed from the set of design variables. All options in Solver are left at their
default values. The initial number of plies is chosen to be the same as found in
Example 8.5. Results of the optimization are shown in the first row of Table 8.5,
with an optimum laminate thickness of 4.00 mm (note that ni refers to the number
of ply pairs, so that the laminate in the first row of Table 8.5 consists of 32 plies;
the seven 0° plies implies seven at +0°, seven at −0°, making fourteen 0° plies in
total, and the nine plies at ±45° being nine plies in each of these directions). The
lay-up is reduced to only three fibre directions, as normally occurs when only a
single loading case is specified, bringing to mind the earlier netting analysis with
three distinct fibre directions being sufficient for equilibrium. However, this lay-up
with an odd number of ±45° plies cannot be symmetric (note that the program
ensures a balanced laminate, but not necessarily a symmetric one). Therefore, an
additional constraint is added to set the number of ±45° to an even number above
or below its current value, and the optimization is repeated. The result of this
second optimization, with ten ±45° plies, is shown in the second row of Table 8.5.
The thickness is increased to 4.25 mm, with no further change in lay-up. However,
by examining the Tsai–Wu values in each of the ply directions, it will be noticed
that the maximum Tsai–Wu value occurs in the 90° ply direction, in which the
number of plies has been reduced to zero! For this reason, the optimization is
repeated again, as in the third row of Table 8.5, by changing the constraint h3 ¼
90� to h3 ¼ 45� (or 0°) as a means of removing the 90° ply direction. The thickness
is reduced again to 4.00 mm, but with a significantly different lay-up to that found
in the previous optimizations (first two rows of Table 8.5) and with a reduced
maximum value of the Tsai–Wu criterion. It is also worth noting that the Tsai–Wu
value of the 0° plies remains relatively low.

There is a specific explanation for this behaviour. The 90° ply direction is
retained in the solution, even though there are no actual plies in this direction.
Values of strain are calculated for the 90° direction, giving rise to ‘apparent’

Table 8.5 Results using the GRG nonlinear method in Example 8.6

Ply angle hi (°) Number of ply pairs ni Laminate thickness (mm) Tsai–Wu value

0 7 4.00 0.204

±45 9 0.972

90 0 0.978

0 7 4.25 0.171

±45 10 0.874

90 0 0.960

0 4 4.00 0.171

±45 12 0.874
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stresses in this ply direction. The Tsai–Wu criterion for the ‘missing’ 90° plies is
still calculated and is incorrectly included in the optimization, leading to what may
be a ‘false’ optimum. At the same time, this may serve as a warning that excessive
strains can occur in directions in which there are no fibres, justifying the ‘rule’ in
Sect. 8.1.5 that in practice there should be a minimum of 10% of plies in each of the
four directions.

The laminate in the third row of Table 8.5 can be interpreted as the following
lay-up:

�453=03=�453=0½ �s;

needing in this case no further modification for a symmetric laminate. The present
laminate has three plies less than the final laminate in Example 8.5. However, in
both cases, it is likely that a number of 90° plies would have to be added for a more
practical laminate, which may well reduce the difference between the two. Finally,
if the laminate is now optimized with the ‘integer’ constraint for discrete ply
thickness removed (as before retaining only the 0° and ±45° ply directions), a
minimum laminate thickness of 3.813 mm is obtained—showing in this case a
relatively small penalty for discrete ply thickness. ∎

Example 8.7 Use the spreadsheet program ‘Laminate Optimization’ with the GRG
Nonlinear method in Solver to optimize a laminate under the following alternative
loading:

case 1 : Nx ¼ 2400; Ny ¼ 800 Nxy ¼ 0N/mm;
case 2 : Nx ¼ 0; Ny ¼ 1600; Nxy ¼ 400N/mm:

with no restriction on ply angles. The properties of the ply material and the ply
thickness are the same as in the previous examples.

Note the conflicting nature of the two load cases—each on its own would require
a very different type of laminate. When more one than loading case is defined, the
program finds the minimum thickness of laminate that will satisfy all loading cases
when applied individually. From different starting points, three alternative local
optima are found, as shown in Table 8.6, all with a laminate thickness of 3.50 mm
but with different Tsai–Wu values. The first two of these have reduced to three sets
of plies, while the third has retained four distinct ply directions, with a different
distribution of plies in each case. Due to the discrete thickness, there will be a range
of ply angles in the vicinity of those in Table 8.6 for the same number of plies. ∎

8.2.4 Genetic Algorithm

A genetic—or evolutionary—algorithm is a semi-random procedure developed to
deal with discontinuous or otherwise irregular problems for which gradient-based
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methods are inappropriate. Commonly, these are problems with multiple local
minima requiring a wider search over the whole design space. The name derives
directly from the fact that the method imitates the natural evolutionary process.
Unlike a conventional optimization routine, a genetic algorithm retains a sufficiently
large ‘population’ of designs covering more effectively the complete design space
and increasing the likelihood of detecting different local optima. Furthermore, a
genetic algorithm can work in discrete variables from the outset and is therefore
appropriate for the optimization of composite laminates with whole numbers of
plies. Starting from a randomly chosen set of designs, by exchanging properties—or
‘genes’—between different members of the population, new designs are created,
some better and some worse. For this, the selection of pairs of designs between
which genes are to be exchanged is biased towards the already ‘good’ designs, thus
emulating Darwin’s principle of ‘survival of the fittest’. Genetic algorithms were
originally developed by Holland [14]. The description of their application to
composite laminates below follows that of Gürdal et al. [12].

The number of different designs to be retained in a genetic algorithm varies with
the number of design variables. Design variables representing each of those designs
are commonly converted first into binary form. Since we are using discrete vari-
ables, this is possible with only a limited number of digits, depending on the range
of values specified for the design variables. For a composite laminate under in-plane
load, the design variables are simply the number of plies at each ply angle. If the ply
angles are also to be treated as variables, they can be represented in discrete form as
well, in other words by a chosen set of discrete ply angles. As before, under
in-plane load, the stacking sequence is irrelevant provided that the lay-up remains
symmetric, and the number of variables is then significantly reduced. Design
variables representing a single design are assembled sequentially into a single string
regarded as a ‘genetic chain’, as indicated in Fig. 8.5.

Initial designs are produced by a random number generator, within the appro-
priate range of each design variable. These are then assessed for their ‘fitness’,
meaning in fact how ‘good’ the design is. Conventionally, we speak of maximizing
fitness rather minimizing some other objective function. For a composite laminate,
fitness relates to the total number of plies nlam; in the laminate—the smaller the
number of plies, the greater the fitness. Fitness f is then defined as:

Table 8.6 Results using the GRG Nonlinear method in Example 8.7

Ply angle hi (°) Number of ply
pairs ni

Laminate
thickness (mm)

Maximum Tsai–Wu
value

0 6 3.50 0.984

±66.1 8

0 7 3.50 0.946

±75.6 7

0 7 3.50 0.947

±74.7 6

90.0 1
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f ¼ c� nlam

where the constant c is chosen to ensure that f remains positive. However, not all
randomly generated designs will be feasible, so a penalty function is introduced to
penalize infeasible designs. A simple form of penalty function can be represented as
shown in Fig. 8.6. The augmented fitness F is the sum of the original fitness f and
the penalty function. On the infeasible side of the diagram, a penalty is applied for a
negative margin of safety, in other words a negative constraint value. This refers to
the most critical constraint for that design. In addition, the small step in the penalty
function is to ensure that all infeasible designs carry some small penalty. The
‘bonus’ on the feasible side of the diagram is to reward designs of equal fitness but
with a higher margin of safety. As with all penalty functions, some degree of tuning
of the parameters involved is usually necessary to achieve the best results.
Parameters should be chosen so that an infeasible design can never have an aug-
mented fitness value greater than the optimum design, but should not be so severe
that a design cannot return from the infeasible region, since some of these may well
be close to the optimum.

0 0 0 0 0 1 0 1 0 0  0 0 0 0 0 1 1 0 0 0  0 0 0 0 0 1 1 0 1 0

0 0 0 0 0 1 1 0 1 0  0 0 0 0 0 0 1 0 0 1  0 0 0 0 0 1 0 1 1 1

0 0 0 0 0 0 1 1 1 0  0 0 0 0 0 1 1 0 1 0  0 0 0 0 0 0 1 0 0 0

Fig. 8.5 Genetic chains—
alternative designs

fitness f

augmented fitness function F

penalty for
negative margin
of safety

bonus for
positive margin
of safety

feasibleinfeasible

value of the most critical constraint
(margin of safety)

0

Fig. 8.6 Augmented fitness
function
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Selection of pairs of designs between which genes are to be exchanged is on the
basis of their augmented fitness. The most fit ‘parent’ designs are selected the most
often, to increase the chance of producing even fitter ‘child’ designs. This process
can be visualized in terms of the ‘roulette wheel’ in Fig. 8.7. The size of the
different sectors of the wheel is in proportion to the augmented fitness F of each
design, thus favouring the most fit. Some parent designs may not be selected at all
and others selected more times. Interchange of genes within the selected pair is
illustrated in Fig. 8.8. A random cut-off point is located, and ‘crossover’ between
the two is performed. One or both of the parent designs is replaced by one or both
of the child designs, and the process continued until a complete new generation has
been obtained. The usual procedure also includes occasional ‘mutation’ of designs,
that is to say, randomly changing one digit in the string. Less fit designs may well
have characteristics that would otherwise be lost in the selection process, and
mutation increases the chance of recovering these. Throughout the procedure, the
number of designs in the original population is retained, but each generation of new
designs will include some improved ones. The process is continued until no
improvement can be found in the best of the designs.

It will be apparent that the procedure typically requires a very large number of
constraint evaluations to find optimum or near-optimum designs, but by choosing a
sufficiently large population, it is able to locate all or some of the local optima, from
which the true optimum can be selected. When several designs of equal fitness

areas iF

design
1

2

3

4

Fig. 8.7 ‘Roulette wheel’

0 0 0 0 0 1 1 0 1 0  0 0 0 0 0 0 1 0 0 1  0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 1 1 0  0 0 0 0 0 1 1 0 1 0  0 0 0 0 0 1 0 1 1 1

random cut-off

crossover

Fig. 8.8 Interchange of
genes
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emerge, the design with the best margin of safety, or alternatively one that might be
considered the most practical, can be chosen. A version of the genetic algorithm,
with various enhancements, is now implemented in Solver. Use of this method for
laminate optimization in the ‘Laminate Optimization’ program will be described
further in the example that follows.

Example 8.8 Use the Evolutionary method in Solver to repeat the optimization in
Example 8.7.

Design variables are the ply angles h1; h2; h3, which can take any values, and the
numbers of ply pairs n1; n2; n3, constrained to integer values. In the evolutionary
method, upper and lower bounds have to be set on the variables, to limit the extent
of the design space. Ply angles are constrained to 0� hi � 90� and further con-
straints added to define bounds 0� ni � 10 for this problem. All options in Solver
are left at their default values. The evolutionary method in Solver is chosen simply
by selecting ‘Evolutionary’ in the Solver dialogue box.

When the procedure is completed, Solver selects the best from its population of
designs. By setting the Random Seed in Options to zero, a different initial popu-
lation of designs is generated each time an optimization is performed. A selection of
results of repeated optimizations is shown in Table 8.7. In one solution, a laminate
thickness of 3.75 mm is obtained and in all others a thickness of 3.50 mm, in
agreement with Example 8.7. The number of 0° (or near 0°) ply pairs varies from
five to seven (10–14 plies), with a wide range of other ply angles. The results in
Table 8.7 illustrate the large number of alternative lay-ups that can exist for an
optimum laminate, due to the discrete ply thickness and in many cases due to the
presence of local minima in the problem itself. ∎

Table 8.7 Results using the evolutionary method in solver in Example 8.8

Ply angle hi (°) Number of ply pairs ni Laminate
thickness (mm)

Maximum Tsai–Wu
value

0.0 6 3.50 0.990

65.4 4

71.2 4

0.0 7 3.50 0.948

72.4 5

87.2 2

0.0 2 3.50 0.998

1.7 4

70.4 8

0.1 3 3.50 0.997

0.7 4

71.5 7

0.0 5 3.75 0.980

38.2 4

78.5 6
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8.3 Spreadsheet Program

Lamination theory and different methods of applying this to laminate optimization
have been discussed in the previous sections. Here, a spreadsheet is presented to
perform the numerical optimization of a composite laminate under any in-plane
loading, by either the GRG Nonlinear method or the Evolutionary method in Solver.

8.3.1 ‘Composite Laminate’

The spreadsheet uses Solver to optimize the composite laminate in Fig. 8.9, con-
sisting of individual layers of unidirectional plies. The laminate is defined as bal-
anced and symmetric, with three pairs of fibre directions. These may be distributed
between the layers in any required manner, only provided that the laminate remains
symmetric to avoid unwanted bending deformation. Fibre directions may be fixed
or variable. A discrete ply thickness may be specified. The spreadsheet is shown in
Fig. 8.10.

8.3.1.1 Modelling

Analysis of the laminate is by standard lamination theory, as in Sect. 8.1, based on
the elastic properties of the ply material and ply strength data entered by the user.
For a given number of plies in each of the three fibre directions, the spreadsheet

Fig. 8.9 Fibre angles in a
composite laminate
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calculates the terms of the A-matrix in Visual Basic function Stiffness and the
elastic constants. Up to four loading cases may be defined, for each of which the
spreadsheet calculates the strain and the stress in the fibre direction, in transverse
direction and in shear for each set of plies. A temperature difference DT from the
internal stress-free state, curing temperature or otherwise, may also be specified
(positive DT indicates increase in temperature above the stress-free state). Restraint
forces due to difference in temperature are calculated in Visual Basic function
Restraint, and the resulting stresses are included in the stresses calculated under the
externally applied loads. With given allowable stresses, the spreadsheet calculates
either the Tsai–Hill or the Tsai–Wu failure criterion for each set of plies, in each
loading case. The maximum value of the failure criterion in any layer and under any
loading case is displayed.

8.3.1.2 Optimization

Design variables are the fibre angles �h1;�h2;�h3 and corresponding numbers of
plies n1; n2; n3 at each angle. Note that these refer to the number of pairs of plies,
so that the total number of plies is 2� ðn1 þ n2 þ n3Þ. For example, if h1 ¼ 0� and
n1 ¼ 1, there are two 0° plies. Constraints are the values of the Tsai–Hill or Tsai–
Wu criterion for each set of plies, in each loading case. Additional constraints are to
restrict n1; n2; n3 to integer values for a discrete ply thickness, to limit fibre angles
to between 0° and 90° (−90° for the �h plies) and to set a maximum number of
plies at any ply angle. For angle plies, with a discrete ply thickness, an even number
of pairs of plies are necessary to maintain a symmetric laminate. The total thickness
of the laminate is minimized.

Optimization may be performed either by the GRG Nonlinear method or by the
Evolutionary method. More local minima commonly exist in this problem, both due
to the nature of the problem itself and as a result of a discrete ply thickness. For the
same reasons, more laminates may be found with the same minimum thickness but
different lay-ups. Even though the computing time is much longer, it may be
preferred therefore to use first the Evolutionary method and then to refine the result
by the GRG Nonlinear method. It is known that local minima with thickness greater
than the optimum commonly occur at or near h ¼ 0� and h ¼ �90�. It is advisable,
therefore, to select mid-range values of h for initial design variables (e.g.
h ¼ 25�; 45�; 65�), in which case ply angles h ¼ 0� or h ¼ 90� will normally be
found when these angles do in fact correspond to the true optimum.

As stated above, the numbers of plies are limited to integer values for a discrete
ply thickness. If this is not required, then these three constraints should be deleted
from the list of constraints in the Solver dialog box. Similarly, if fixed fibre angles
are required, these may be added to the list of constraints, or fibre angles may be
removed from the set of design variables. If allowable strains are to be specified as
constraints, rather than stresses expressed in the failure criteria, the laminate strain
components already calculated in the spreadsheet can readily be substituted for
failure criteria in the list of constraints.
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Parameters and design variables to be entered are listed in Table 8.8. These
include the elastic properties of the ply material, allowable stresses and other data.
After optimization, initial values of the design variables are replaced by their
optimum values and the total thickness of the laminate is given. The minimum
margin of safety for first ply failure with the Tsai–Hill criterion is also given. With
the Tsai–Wu criterion, the margin of safety, if required, has to be found by suitable
factoring of the set of applied loads (with no further optimization) until the max-
imum value of the Tsai–Wu criterion is 1.00.

8.4 Summary

Lamination theory for analysis of the stress in the different layers of a composite
laminate is reviewed. The stiffness properties of each layer, defined in layer axes in
terms of its elastic constants, have to be transformed into global, laminate axes
before the individual layers can be assembled into the complete laminate.

Table 8.8 Data entry for spreadsheet program ‘Composite Laminate’

Parameters

Applied loads per unit length
Nx; Ny; Nxy in load cases 1 up to 4

Enter values in cells C28:F30 (tension positive, cells
may be zero or left blank as necessary)

Ply properties:
Longitudinal modulus E1

Transverse modulus E2

Shear modulus G12

Major Poisson’s ratio m12

Enter values in cells C5:C8

Ply thickness tply Enter the value in cell C9

Temperature difference DT Enter the value in cell E32 (positive above the
stress-free state)

Longitudinal coeff. of expansion a1
Transverse coeff. of expansion a2

Enter values in cells C10:C11 (may be positive or
negative)

Allowable stresses:
Longitudinal tension Xt

Longitudinal compression Xc

Transverse tension Yt
Transverse compression Yc
Shear S

Enter values in cells C19:C23 all as positive numbers

Failure criterion Enter TW for Tsai–Wu criterion or TH for Tsai–Hill
criterion (default) in cell C20

Maximum number of pairs of plies
nmax in each fibre direction

Enter the value in cell C22

Design variables

Ply angles h1; h2; h3 Enter initial values in cells C16:C18 (0� h� 90�)
Number of pairs of plies n1; n2; n3 at
each ply angle

Enter initial values in cells J16: J18
(0� n� nmax)
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A standard transformation matrix is used for this, transforming either stress or strain
into one or other axis system. The resulting laminate stiffness matrix is inverted to
give the strains in the laminate under specified in-plane loads. These strains are then
transformed back into layer axes for the strains in each layer. Using again the layer
stiffness properties, the stress components in each layer are then calculated.
Different failure criteria predict the combination of stresses to initiate failure of a
layer, in terms of measured data for the strength of the ply material under the
individual stress components. Internal stresses are developed in a laminate with
change in temperature, due to the different coefficients of expansion of the layers in
the longitudinal and transverse directions. In particular, residual stresses occur with
cooling of a laminate after curing and should be taken into account. Some design
‘rules’ for lay-up are presented, intended to reduce the likelihood of failure due to
interlaminar stresses. Such stresses arise due to transfer of load between layers and
are not accounted for by standard lamination theory.

Ply properties are generally much more variable than those for metallic mate-
rials, and substantial reductions in properties are usually made to allow for this. In
addition, the strength and other properties of conventional composite materials are
highly sensitive to both temperature and humidity, and further reductions in
properties have to be made for this. Alternatively, a maximum allowable strain is
often introduced, substantially less than the maximum strain of the material. Strain
limits are also imposed to limit delamination growth for composite laminates
subject to impact conditions.

Different methods for the design of a composite laminate are presented, ranging
from a simple method for an initial design to optimization with Solver in the
spreadsheet ‘Composite Laminate’. Netting analysis assumes that only the fibres
provide the strength of a laminate, and if there are no more than three fibre directions,
this leads directly to a set of equilibrium equations from which the required number
of plies can be calculated. However, since netting analysis neglects transverse and
shear stresses in the plies, in many cases a principal cause of failure, this commonly
leads to an underestimate of the required number of plies. A simple, iterative redesign
scheme using full lamination theory can be employed to progressively improve an
initial design of laminate, by identifying the most critical plies and adding the plies
that are the most effective in reducing the stress in those plies. In other words, plies
are not necessarily added in the ply direction found to be critical, but in another
direction. Plies may also have to be removed. This process does not, however,
guarantee an optimum laminate, even if it generally produces a usable one.

While the above methods can readily deal with whole numbers of plies, discrete
ply thickness presents a significant obstacle in a formal optimization procedure. The
various examples illustrate the often substantial increase in thickness resulting from
discrete ply thickness, especially when a balanced, symmetric laminate is required.
In the GRG Nonlinear method in Solver, this problem is resolved by the
branch-and-bound method. This progressively sets the variables to integer values,
performing a new optimization at each step. Upper and lower bounds are estab-
lished, to eliminate as quickly as possible solutions that cannot lead to the required
result. The method can accurately locate a local optimum, but this may not be the
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true global optimum if more local optima exist. From different starting points,
different solutions may be obtained. An alternative way of dealing with discrete ply
thickness is by use of a genetic algorithm (the Evolutionary method in Solver),
which can work with integer variables from the outset. This method retains a
population of designs, to make a more complete search of the whole design space,
and can therefore better detect local minima and alternative designs that may arise
with discrete ply thickness. However, being a semi-random process, computing
time can rise dramatically with the number of design variables. While the method
inevitably produces an improved design, generally one close to the global optimum,
it may not succeed in finding an exact solution to the problem.

Exercises

Use the material data in Table 8.1 in the exercises below.

8:1 Calculate the A11 and A33 terms of the A-matrix for a symmetric laminate
consisting of 4 plies at +60°, 4 plies at −60° and 8 plies at 0°, with a ply
thickness of 0.125 mm. Use the spreadsheet ‘Composite Laminate’ to verify
the values obtained. With the full A-matrix in the spreadsheet, calculate the
elastic constants of the laminate.

Follow the procedure in Example 8.1.

8:2 If the laminate in Exercise 8.1 carries a tensile load of 1000 N/mm in the 0°
direction, calculate the stresses in the 0° and ±60° layers. Use the spreadsheet
to verify the values obtained.

Follow the procedure in Example 8.2.

8:3 Calculate the values of the Tsai–Hill criterion for each layer of the laminate in
Exercise 8.2, under the given tensile load. If the load is increased, at what load
does first ply failure occur according to the Tsai–Hill criterion?

Identify the stress component making the largest contribution to the Tsai–Hill
criterion in the most critical layer.

8:4 Compare the failure envelopes of the Tsai–Hill and Tsai–Wu criteria for
different combinations of stress r1 and r2 in a single layer of a composite
laminate.

Use the appropriate tensile or compressive strength data in Table 8.1. For a series
of values of r1, calculate the corresponding pair of values of r2 to just satisfy each
criterion. (This may more easily be done by Goal Seek in Excel.) To compare the
two criteria, make a plot of the different combinations of r1 and r2 at failure on the
same polar plot with axes r1 and r2. Notice the discontinuity in the Tsai–Hill curve
as r1 or r2 becomes negative.
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8:5 Derive the first row of the TT (transpose) matrix in the second of Eq. (8.5) to
transform stresses in layer axes into stresses in laminate axes.

Sketch a right-angled triangle with sides normal to stresses r1 and r2 (at angle h
to the laminate axes) and a third side normal to stress rx. Calculate the resulting
forces on all three sides of the triangle under stresses r1, r2 and shear stress s12.
Assume some arbitrary size and thickness of the triangle. Calculate the horizontal
components of the resulting forces on all three sides of the triangle. By equilibrium
of the three horizontal force components, deduce the three required terms of the TT

matrix.

8:6 Use the method in Example 8.4 for the initial design of a 0°, ±45°, 90°
laminate under the following alternative loading cases:

Nx ¼ 2000N/mm ; Nxy ¼ 1000N/mm,
Ny ¼ 500N/mm ; Ny ¼ 1500N/mm,
Nxy ¼ 1000N/mm ; Nxy ¼ 500N/mm:

The laminate should be balanced and symmetric, with a ply thickness of 0.125 mm.
Select the larger number of plies in each fibre direction from the two loading cases.
From the solution choose an actual lay-up, observing the practical restrictions in
Table 8.2.

8:7 Use the iterative redesign procedure in Sect. 8.2.2 to improve the design in
Exercise 8.6 above.

Use the program ‘Composite Laminate’ to calculate Tsai–Hill values at each step.

8:8 Use the program ‘Composite Laminate’ with the Tsai–Hill criterion to opti-
mize the 0°, ±45°, 90° balanced, symmetric laminate in Exercise 8.6, under
the same loading and with the same ply thickness.

Use the GRG Nonlinear method in Solver. Add constraints for the fixed ply angles.
Repeat the optimization from a few different starting points.

8:9 Repeat Exercise 8.8 using the Evolutionary method in Solver.

Repeat the optimization a few times with ‘Population Size’ (in Options/
Evolutionary) set to 10 and ‘Seed’ set to zero to generate different starting points.

8:10 Calculate the minimum thickness of the laminate in Exercises 8.8 and 8.9
above if there is no restriction on ply angles and the discrete ply thickness is
ignored.

Use the GRG Nonlinear method in Solver. Delete the integer constraints on
numbers of plies in Solver and constraints on fixed ply angles (if previously added).
Select ‘Multistart’ (in Options/GRG Nonlinear) to assist in locating a true opti-
mum. Set ‘Population Size’ to 10 and ‘Random Seed’ to zero.
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Chapter 9
Optimization With Finite Element
Analysis

Abstract Particular methods are called for when structural optimization is coupled
with finite element analysis. A sensitivity analysis can be employed to evaluate the
constraint gradient data needed in a conventional, gradient-based optimization. This
is to avoid the repeated finite element analysis required if constraint gradients were
to be obtained by finite difference. By setting up a matrix of derivatives of con-
straints with respect to the displacements of the finite element model, the inverted
stiffness matrix obtained in the normal course of finite element analysis is reused in
a sensitivity analysis. In one method, the individual columns of this matrix of
derivatives are treated as a set of ‘dummy loads’ with which the constraint gradients
can be calculated. The other method is the so-called direct method. The compu-
tation can be further reduced by an active constraint strategy, in which constraint
gradients are evaluated only for those constraints that are active or near-active at
any stage. The number of variables involved in the optimization may be reduced by
design variable linking. This is by defining some variables as slave variables that
are then related to the remaining master variables for optimization, while for
accuracy all variables are retained in the finite element analysis.

The analysis of complex structures, any other than the relatively simple ones chosen
in this book as examples to illustrate different optimization methods, is these days
almost inevitably by finite element analysis. This involves a detailed model and a
substantial amount of computer processing time. An efficient optimization of a
structure when the analysis is by the finite element method requires therefore some
particular methods. We have been considering structures where the aim is to
minimize weight subject to constraints on strength, stiffness, dimensional limita-
tions, and perhaps other conditions. The weight of a finite element model, whether
or not it fully represents the real structure, is generally straightforward to calculate.
This presents no problem. The problem lies in the calculation of constraints, or
more specifically in the calculation of constraint gradients.

In a gradient-based optimization, from an initial point in the design space, we
determine a suitable search direction and conduct a line search along that direction
to locate the next point. To find the search direction requires calculation of the



constraint gradients. With n design variables, recalculation of constraint gradients
for the next search direction, if done by finite difference, would require at least
n additional finite element analyses for each constraint. This would be too expen-
sive for any but the smallest finite element models (such as the beam under lateral
load in Chap. 6, which does necessarily use finite difference). To get around this,
we perform a ‘sensitivity analysis’ for the gradient data, from which the new search
direction is then calculated. A sensitivity analysis provides the rate of change of
each constraint with each design variable in an efficient way. By efficient is meant
here without repeated finite element analysis of the structure.

Methods have been developed whereby use is made of a single finite element
solution for a sensitivity analysis, by which constraint gradients at each new point
in the design space are recalculated. Two variations of the method exist: the ‘direct
method’ and a method which makes use of so-called dummy loads. These are
described in the following section and illustrated in a simple example. It will be
appreciated that this example does not have the complexity of a typical finite
element problem but is simple enough to enable the calculation to be performed by
hand, without undue matrix manipulation. It is not the intention in this short chapter
to review the finite element method itself. It is assumed that those reading this
chapter will already have some familiarity with it. Nevertheless, only a quite
rudimentary knowledge of the finite element method will be sufficient to follow
what is presented here.

9.1 Sensitivity Analysis

A ‘design sensitivity analysis’ can be performed to evaluate the gradients of con-
straint functions with respect to the design variables. When the constraints are
implicit functions of the design variables, as in a finite element analysis, special
methods have been developed (see [1, 2]). A constraint gj is considered to be a
function of both the design variables x and the displacements u (including rotations
where appropriate) of the finite element analysis. Design variables may appear
explicitly in a constraint, for example if a maximum value of the diameter to
thickness ratio of a tube is specified. Other quantities appearing in constraints, such
as the stress in a bar or the bending moment in a beam, are derived from the nodal
displacements u obtained from the finite element analysis. Therefore, we may write:

gj ¼ gjðx; uÞ:

The constraint gradient is defined by dgj=dx i. Differentiating the above formula:

dgj
dxi

¼ @gj
@xi

þ @gj
du1

� @u1
@xi

þ @gj
du2

� @u2
@xi

þ � � �
� �

; ð9:1Þ
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following the usual rules for partial differentiation. Notice that the left-hand side is
the total differential of gj with respect to xi. The first term on the right-hand side
represents the explicit dependence of the constraint on the design variables and is in
general readily evaluated. In many cases, this first term will be zero. For example, a
stress constraint rmax �rall does not refer directly to any design variable, so
@gj=@xi ¼ 0 for that constraint. On the other hand, the stress in an element is
obtained from the displacements in a finite element analysis, so at least some of the
terms in brackets on the right-hand side remain present.

We have therefore to evaluate @gj=@u1 and @u1=@x i in the above equation and
all following terms within the brackets. We express the first part of each pair of
terms in Eq. (9.1) in a column matrix:

hj ¼ @gj
@u1

;
@gj
@u2

; � � �
� �

:

The individual terms of hj are obtained either directly or from the element
stiffness matrices, as will be seen in the following example. When @gj=@xi ¼ 0, by
Eq. (9.1) we can write:

dgj
dxi

¼ hTj :
@u
dxi

; ð9:2Þ

where superscript T denotes the transpose of hj. The term @u=@xi in the above
equation represents the second part of each pair of terms within brackets in
Eq. (9.1):

@u
@xi

¼ @u1
@xi

;
@u2
@xi

; � � �
� �

:

For this, we refer to the general finite element formulation:

Ku ¼ f; ð9:3Þ

where f is the set of applied forces (and moments) at the nodal points. To solve for
the displacements u, we have as usual to invert the stiffness matrix K:

u ¼ K�1 f:

If we now differentiate Eq. (9.3) by the product rule, we obtain:

K
@u
@xi

þ @K
@xi

u ¼ @f
@xi

:
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The right-hand side of the above equation is zero provided the applied forces are
constant, in which case the above equation reduces to:

K
@u
@xi

¼ � @K
@xi

u:

Premultiplying by the inverted stiffness matrix we have:

@u
@xi

¼ �K�1 @K
@xi

u:

Substituting for @u=@xi in Eq. (9.2), we obtain:

dgj
dxi

¼ hTj
@u
@xi

¼ � hTj K
�1 @K

@xi
u: ð9:4Þ

This is now the required sensitivity of constraint gj to the variable xi. The explicit
term @gj=@xi in Eq. (9.1) may be added if necessary. As already stated, Eq. (9.4)
may be computed either by a ‘direct’ method or by the ‘dummy load method’, as
shown below. In both methods, we require both the inverted stiffness matrix K�1

and the displacements u under the applied load, calculated during the normal finite
element analysis. These have to be recalculated at each step in the optimization
process. The matrix @K=@xi is generated directly from the stiffness matrix of each
element. While each full matrix @K=@xi is the same size as the assembled stiffness
matrix, it contains only terms relevant to that element, all other terms being zero.

In the direct method, we perform the series of matrix multiplications in Eq. (9.4)
to evaluate the required dgj=dxi for each pair ði; jÞ. If performed in order, each
multiplication produces no more than a column matrix. Alternatively, in the dummy
load method, we rewrite Eq. (9.4) as:

dgj
dxi

¼ � K�1 hj
� �T@K

@xi
u: ð9:5Þ

Again the first term in Eq. (9.1) should be added if necessary. This alternative
form of the equation is only possible because K is a symmetric matrix. We now
treat hj as a set of dummy loads so that the term within braces above can be
computed at the same time as the actual loads, using the same already inverted
stiffness matrix. It then remains to complete the matrix multiplications in Eq. (9.5)
for dgj=dxi. The dummy load method is generally more efficient when the number
of constraints is smaller than the number of design variables.

Example 9.1 The two-bar truss in Fig. 9.1 has a constraint on the vertical deflection
d� d0 under a load P at the tip. Calculate the sensitivity of this constraint to the
cross-sectional area A1 of the lower bar.
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The stiffness matrix for the truss, after elimination of degrees of freedom at the
supports, is:

K ¼ E
L

A 1

2
ffiffi

2
p þA2

A 1

2
ffiffi

2
p

A 1

2
ffiffi

2
p A 1

2
ffiffi

2
p

" #

;

using the standard finite element stiffness matrix for a bar pinned at each end.
Differentiating the above matrix with respect to the chosen variable A1 and

simplifying, we have:

@K
@A1

¼ E
L

0:3536 0:3536
0:3536 0:3536

	 


:

The vertical displacement d ¼ u2, so the constraint becomes:

g ¼ d0 � u2 � 0

(suffix j is omitted on the assumption; there are no more constraints) giving for this
simple constraint:

@g
@u1

¼ 0 ;
@g
@u2

¼ �1:

The column matrix h is then:

h ¼ 0; �1f g:

45

2A
1

2

3

4

5

6

P ( δ )

L

1A

elastic modulus E

°

Fig. 9.1 Two-bar truss
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To compute Eq. (9.4), we now require the inverse of the stiffness matrix K of the
truss and the displacements u under load P. These are, of course, part of the normal
finite element solution of the truss. We shall assume that the two bars have the same
cross-sectional area:

A1 ¼ A2 ¼ A:

The inverse of K is then:

K�1 ¼ L
EA

1 �1
�1 3:828

	 


:

(In this example, matrix inversion is readily performed by hand, or by means of
the matrix inverse function in Excel if preferred.) Displacements u are:

u ¼ K�1 f;

where the force vector f (under a single vertical load P) is:

f ¼ P
0
1

	 


:

This gives for u:

u ¼ PL
EA

1 �1
�1 3:828

	 


� 0
1

	 


¼ PL
EA

�1
3:828

	 


:

We are now ready to evaluate Eq. (9.4).
By the so-called ‘direct method’, writing the equation out in full we have:

dg
dA1

¼ � 0 �1½ � � L
EA

1 �1

�1 3:828

	 


� E
L

0:3536 0:3536

0:3536 0:3536

	 


� PL
EA

�1

3:828

	 


¼ 2:828
PL

EA2 :

This is the required sensitivity of the given constraint on deflection d to the
cross-sectional area A1 of the lower bar. Note that there is no explicit dependence of
the constraint on A1 in this example and that load P remains constant. The positive
value of dg=dA1 implies that with increase in area the deflection is reduced, and the
value of the constraint is therefore increased.
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In the dummy load method, h is the set of dummy loads (in this example a single
column matrix). We calculate K�1 h at the same time as the solution of the structure
under the actual loads. In the present example, this amounts to calculating:

1 �1
�1 3:828

	 


� 0
�1

	 


:

Taking the transpose of the result and completing the calculation of Eq. (9.5)
gives, of course, the same result as before. However, the difference in the two
methods is largely lost in this simple example.

The analytical formula for the vertical deflection at the tip of the truss is:

d ¼ PL
E

2
ffiffiffi

2
p

A1
þ 1

A2

� �

:

Differentiating with respect to A1:

dd
dA1

¼ �2
ffiffiffi

2
p PL

EA2
1

:

With dg=dA1 ¼ �dd=dA1 (constraint reduces with increase in deflection) and
A1 ¼ A, this agrees with the result above. ■

It is generally not necessary to perform a sensitivity analysis for all constraints.
In many problems, we may know that some constraints cannot be active at or near
the optimum, while other constraints may be inactive in the whole design space. For
a more economical computation, it is common to follow an ‘active constraint’
strategy, as already introduced in Chap. 5. This means that we include in the
optimization, and therefore in a sensitivity analysis as well, only those constraints
actually active at any stage, and those considered to be ‘near-active’. By appropriate
selection of constraints, the size of the optimization problem and the computation
time may be significantly reduced. However, this also implies that at each step in
the optimization constraints have to be checked to determine which constraints
must remain in the active set, which can leave it, and which have to be added to it.

A sensitivity analysis implies that a linear approximation to the actual constraints
is made at each step in the optimization, that is if they are in fact non-linear. The
degree of linearity of constraints can often be improved by the use of inverse
variables, again as previously discussed in Chap. 5. This means replacing simple
variables such as cross-sectional area A or thickness t by 1

A or
1
t . The effect of this is

that move limits chosen for the optimization can be increased and that the calcu-
lated constraint gradients remain longer valid. This can again lead to a smaller
number of finite element analyses being required to reach an optimum.
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9.2 Reduction in Design Variables

As well as the reduction in the number of constraints in the previous section, it is
also possible to reduce the number of design variables to be included in an opti-
mization. For an accurate finite element analysis, a fine mesh is required, with a
sufficiently large number of elements, and in principle design variables have to be
assigned to each of them. To reduce the number of variables for optimization, we
define some variables as ‘slave’ variables, and the remainder as ‘masters’. The slave
variables are related to the masters by interpolation between adjacent elements.
Only the master variables are included as variables in the actual optimization.

To illustrate this, we consider part of a tapered beam, as shown in Fig. 9.2. If the
individual elements are uniform, with bending stiffness EI, the finite element model
might appear as in the upper part of the figure. Suppose for optimization, we select
the bending stiffness EI2 and EI3 as slave variables. By linear interpolation, these
are expressed in terms of the master variables EI1 and EI4 by:

EI2 ¼ 2
3
EI1 þ 1

3
EI4;

EI3 ¼ 1
3
EI1 þ 2

3
EI4

(assuming all elements to be of equal length). The optimization model then
appears as in the lower part of Fig. 9.2. Of course, the true optimum may not be an
exact linear taper, but for a large problem, this enables us to reduce the optimization
problem to an acceptable level without impairing the accuracy of the finite element
analysis.

The relation between the full set of variables and the master variables can
conveniently be expressed in the form of a ‘linking matrix’. For the beam in
Fig. 9.3, with seven elements, we define the bending stiffness of three of these,
every alternate element, as slave variables. These are shown shaded in the figure. In

F.E. model

optimization
model

2EI 3EI 4EI

1EI 4EI

1EIFig. 9.2 Tapered beam
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this case, again for a linear taper, the slave variables are simply the average of the
two adjacent variables:

EI2 ¼ EI1 þEI3
2

;

and similarly for variables EI4 and EI6. In matrix form, this becomes:

EI1
EI2
EI3
EI4
EI5
EI6
EI7

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

¼

1 0 0 0
1=2 1=2 0 0
0 1 0 0
0 1=2 1=2 0
0 0 1 0
0 0 1=2 1=2
0 0 0 1

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

�
EI1
EI3
EI5
EI7

2

6

6

4

3

7

7

5

:

A similar linking matrix is used in the spreadsheet program in the next section.

9.3 Spreadsheet Program

The spreadsheet modifies the earlier spreadsheet ‘Beam under Lateral load’ in
Chap. 6 to illustrate reduction in the number of design variables by selection of
master and slave variables, with the aim of making the minimum of change to the
original spreadsheet.

9.3.1 ‘Design Variable Linking’

The linking matrix is placed on a new page 5 of the spreadsheet. This is a rect-
angular matrix of dimension ðn� mÞ, where n is the total number of design vari-
ables and m is the number of master variables. For the present example, an
appropriate linking matrix has already been entered in the spreadsheet, as shown in
Fig. 9.4, but of course this normally has to be set up by the user for the particular
problem. The n ¼ 24 design variables are the second moments of area of each of
the 24 elements in the original spreadsheet. The m ¼ 14 master variables selected in
the example are listed in cells P16:P29 and again in cells V14:AI14 (these are given
for reference only). Suitable initial values of the master variables are entered in cells

1EI 2EI 3EI 4EI 5EI 6EI 7EI

Fig. 9.3 Design variable linking
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Q16:Q29. Since all elements are of the same length, the 10 slave variables (all
remaining variables) take values equal to a simple average of the second moments
of area of their adjacent elements, as given in the linking matrix. Use of slave
variables is avoided at the point of loading and close to the supported ends of the
beam. The full set of variables is calculated with the linking matrix in cells H16:
H39. Note that these are no longer the cells in which initial values of design
variables are entered. In the present example, initial values of master variables are
entered in cells Q16:Q29, as stated above. This is also the cell range for variables to
be entered in the Solver dialogue box, to replace those present in the original
spreadsheet. When master variables have been selected and the linking matrix set
up, analysis and optimization proceeds in precisely the same manner as before.
Note that only one change has been necessary in the original spreadsheet, that is
instead of design variables being entered directly in cells H16:H39, they are now
generated by the linking matrix. The required data input for the spreadsheet is listed
in Table 9.1.

Performing the optimization with the same load, constraints and other data as in
the original spreadsheet, we obtain the results for the optimum second moments of
area given in Table 9.2. These are compared in the table with the previous results
with no design variable reduction. While there are some differences in stiffness
distribution, we find only a small difference in the mass of the beam, at 2.88 kg with
design variable reduction compared with 2.85 kg with no reduction (these masses
are before the recalculation performed in the original spreadsheet). With 10 of the
24 variables now being slaves, it is seen that we still have a reasonable approach to
the previous optimum. Also we might be reminded that the number of elements in
the example is small compared with that of a more representative finite element
problem. With more elements, the use of slave variables will give a better repre-
sentation of the optimum stiffness distribution.

Table 9.1 Data entry for spreadsheet program ‘Design Variable Linking’

Parameters

Parameters are unchanged from spreadsheet program
‘Beam under Lateral load’ (see Table 6.3 in Chap. 6)

Variables

Master variables: second moments of area I Enter initial values in cells Q16:Q29
See note in Table 6.3
Make no entries in cells H16:H39

Construct the linking matrix in cells V16:AI39
Note:
If a different number of master variables are chosen, new cell ranges for the linking matrix
and master variables have to be selected
The matrix multiplication in cells H16:H39 must then be deleted and re-entered with the
new cell references
New cell references to the master variables have to be entered in Solver
The total number of design variables must remain 24
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9.4 Summary

Due to the extensive computation involved in a typical finite element analysis, some
special methods are necessary to optimize a structure when the analysis is by the
finite element method. This is to avoid the repeated re-analysis of the structure if
constraint gradients were to be obtained by finite difference. By a sensitivity anal-
ysis, a complete set of gradient data, or derivatives of each constraint with respect to
each of the design variables, can be computed in a single finite element analysis at
each step in the optimization. Coupled with an efficient gradient-based optimization
routine, an adequate optimization of the structure can usually take place within
relatively few iterations, that is to say, relatively few finite element analyses.

In addition to this, economies in computing can be made by following an ‘active
constraint’ strategy, in which only those constraints active at any stage and those

Table 9.2 Second moments of area after optimization with and without reduction in the number
of design variables

Element Second moment of area I (mm4)

No reduction in design variables With reduction in design variables

1 10,383 11,386

2 8357 9269

3 6447 7332

4 4671 5395

5 3050 3766

6 1625 2137

7 473 1497

8 1230 858

9 2582 2276

10 4147 3693

11 5877 5492

12 7747 7290

13 9738 9351

14 11,837 11,412

15 14,034 13,681

16 16,320 15,951

17 18,689 18,396

18 21,136 20,841

19 21,136 20,841

20 16,575 16,489

21 12,310 12,137

22 8388 8477

23 4885 4817

24 1939 1912

W = 2.853 kg W = 2.881 kg
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which are considered near-active are included in the optimization and associated
sensitivity analysis. At each step, constraints have then to be re-evaluated to
determine which constraints must remain in the active set, those that can leave it,
and those that have to be added to it. Further economies can be made by defining
some design variables as slave variables and the remainder as master variables. The
slave variables are linked to the master variables by linear or other form of inter-
polation. This can be expressed in a linking matrix. Only the master variables are
included in the actual optimization, while constraints and other quantities are
computed by finite element analysis with the full set of variables at each stage.

Since Solver generates gradient data by finite difference and does not permit
gradient data to be input directly, it is not possible to incorporate a sensitivity
analysis into an optimization by Solver. Similarly, we cannot implement an active
constraint strategy within Solver. However, use of design variable linking has been
demonstrated by modification of a previous spreadsheet program for a beam by
finite element analysis, using Solver for the optimization. The methods described in
this chapter, with many refinements, are widely used in large, commercial finite
element packages for structural analysis and optimization.

Exercises

9:1 Derive the stiffness matrix for the truss in Example 9.1.
The stiffness matrix for a bar with pinned ends is given in any textbook
on finite element methods. Assemble first the complete stiffness matrix,
then delete rows and columns corresponding to displacements at the two
supports.

9:2 Calculate the sensitivity of the constraint in Example 9.1 to the
cross-sectional area A2 of the upper bar. Verify the result by the ana-
lytical formula in Example 9.1.
Follow the method in Example 9.1.

9:3 Consider why, in a large problem, it would be more economical to use
the dummy load method when the number of constraints is less than the
number of design variables.
Examine the number of individual calculations in successive matrix
multiplications when the number of constraints is less than the number
of design variables, and when the number of constraints is greater than
the number of design variables.

9:4 Repeat the optimization of the beam in the spreadsheet ‘Design Variable
Linking’, selecting a different set of master and slave variables.
Modify the linking matrix in the spreadsheet. If the number of master
variables remains the same, use the same cell ranges in the spreadsheet
for the linking matrix and master variables. If a different number of
master variables are chosen see Table 9.1. The total number of vari-
ables should remain 24 if further changes to the original spreadsheet are
to be avoided.
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Appendix

Abstract The use of Solver and the different optimization methods is described,
together with setting up the objective function, variables and constraints in the
Solver Parameters box. Various options can be chosen, including the maximum
time and number of iterations to reach a solution, proceeding step-by-step through
an optimization, automatic scaling of constraints and use of the Multistart option
when more local maxima or minima are suspected. The spreadsheet program
‘seven-bar truss’ in Chap. 1 is used as an example of setting up the Solver
Parameters box. Some further notes are included on matrix calculation in Excel, and
on custom functions.

A.1 Use of Solver in Microsoft Excel

The Solver tool in Microsoft Excel provides three general purpose optimization
methods linked to formulae entered by the user in an Excel spreadsheet. In Excel
2016, the Solver command is found in the Analysis group on the ‘Data’ tab. Solver
is an ‘Add-in’ and if not already available has to be loaded before use. To do this:

– on ‘File’ tab, click ‘Options’
– click ‘Add-ins’
– in the ‘Manage’ box, select ‘Excel Add-ins’ and click ‘Go’
– under ‘Add-ins available’, check ‘Solver Add-in’ and click ‘OK’.

(Note that these instructions can differ between different versions of Excel.)
The three options for optimization offered by Solver are as follows:

– GRG Nonlinear (generalized reduced gradient) method,
– Simplex LP (linear programming) method,
– Evolutionary (genetic algorithm) method.

For general use, the ‘GRG Nonlinear’ option is often the preferred choice, and
the one mainly used in this book. This is a constraint-following algorithm in which
the objective function and constraints may be linear or nonlinear functions of the
optimization variables. The problem may also be unconstrained. The use of the

http://dx.doi.org/10.1007/978-3-319-55197-5_1


GRG Nonlinear method requires the objective function and all constraints to be
smooth functions of the optimization variables. There is an option to restrict chosen
variables to integer values. The generalized reduced gradient method is described in
Sect. 5.1.2. The ‘Simplex LP’ method requires the objective function and all
constraints to be linear functions of the design variables. When these conditions are
met, this is an efficient method for large problems. The ‘Evolutionary’ method is a
random-based method suitable for problems where the objective function or con-
straints are not smooth functions of the design variables and is a useful alternative
to the GRG Nonlinear method when more local maxima or minima exist or when
the variables take discrete values. However, being random based, the Evolutionary
method can be expected to take considerably more computing time than the GRG
Nonlinear method. The Evolutionary method or genetic algorithm is described in
Sect. 8.2.4.

Before running Solver, a spreadsheet must be prepared in which the objective
function and constraints are calculated for any values of the optimization variables.
The spreadsheet for a ‘seven-bar truss’ in Chap. 1 (shown again in Fig. A.1) is used
as an example in all figures in this Appendix. Click ‘Solver’ on the Data tab to start
Solver (see Fig. A.2). The objective function, constraints and variables are referred
to by their cell references in the ‘Solver Parameters’ dialog box that appears (see
Fig. A.3). If named variables are used, these may replace cell references.

The formula for the objective function refers either directly or indirectly through
other formulae to the chosen design variables and any other parameters. The
objective function is entered by its cell reference in the box ‘Set Objective’.
A maximum or a minimum of the objective function is chosen by clicking the
appropriate button under this box. In the example, we require the minimum of the
objective function, the total volume of the members of the truss, which is calculated
in cell I20.

Variables are defined by their cell references, which in the example are the
dimensions D and H in cells F6 and F7. Variables may be entered in any order, with
cell references separated by commas, in the box labelled ‘By Changing Variable
Cells’. Variables may also be entered by a range of adjacent cells. In the standard
version of Solver, the number of variables is limited to 200. Cells containing the
optimization variables must contain only numerical values, i.e. may not contain
formulae referring to other cells.

Constraints are added, changed or deleted with the buttons in the Solver dialog
box, again using the appropriate cell references. The number of constraints in the
standard version of Solver is limited to 100, not including numerical upper and
lower bounds on variables. To add a constraint, click ‘Add’ to the side of the
‘Constraints’ box. In the example, constraints are D� L ðF6�C7), D� 0 ðF6� 0Þ
and H� L=100 ðF7�C7/100). The cell reference to each constraint is entered in
the ‘Add Constraint’ box that appears (see Fig. A.4). Note that this may contain
nothing other than a cell reference to the quantity that has to be constrained. In the
drop-down menu to the right, we select ‘less than’, ‘equals to’ or ‘greater than’,
according to the type of constraint. The required value of the constraint is entered
under ‘Constraint’. This may be a numerical value, another variable, or a formula in
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terms of the variables and other parameters. By clicking ‘OK’, the constraint is
added to the list of constraints in the Solver Parameters box. Alternatively, by
clicking ‘Add’, another constraint may be added. By selecting ‘int’ in the
drop-down menu, specified variables are restricted to integer values. By checking
‘Make Unconstrained Variables Non-Negative’, below the Constraints box, a zero
lower bound is applied to those variables not otherwise constrained, useful when
negative values are not allowed or would lead to an invalid calculation. Use
‘Change’ or ‘Delete’ to modify or remove a constraint already entered. ‘Reset All’
can be used to remove all entries. Finally, we have to select an optimization method
in the drop-down menu at the bottom of the dialogue box. The choices are as
already described above.

With ‘Load/Save’, the Solver Parameters box may be saved and reloaded. To
save the current Solver Parameters, select an empty range on the sheet with the
requested number of cells and click Save. To reload the Solver Parameters, select a
previously selected range of cells, click Load and then click Replace or Merge.

The ‘Options’ button allows certain control parameters to be entered, for
example the maximum time and number of iterations to reach a solution (see
Fig. A.5). The default values (where given) are generally satisfactory for most
problems. Check ‘Show Iteration Results’ to proceed step-by-step through the
solution. Click ‘Continue’ to proceed to the next iteration or ‘Stop’ to end the
process. Use ‘Automatic Scaling’ to reduce all constraints to a similar magnitude
prior to optimization. This is for a more efficient optimization when there are
excessive differences in the values of constraints. On the GRG Nonlinear tab in
Options, ‘Convergence’ specifies the relative change to be allowed in the last five
iterations before Solver reaches a solution. Under ‘Derivatives’, either forward or

Fig. A.2 Solver optimization tool
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Fig. A.3 ‘Solver parameters’ box

Fig. A.4 ‘Add constraint’ box

Appendix 301



central finite differences may be chosen for gradient evaluation. Central differences
improve accuracy, but lead to longer calculation time. Select ‘Multistart’ for a more
reliable result when more local maxima or minima are suspected. The GRG
Nonlinear method is then run repeatedly from different, arbitrarily chosen starting
points. The number of times is defined by ‘Population Size’, with a minimum of 10.
With Multistart, it is recommended to define upper and lower bounds on all vari-
ables for a better result. Similar options can be set on the Evolutionary tab in
Options. Again with the Evolutionary method, it is recommended that upper and
lower bounds on variables should be defined to limit the extent of the search space.

Fig. A.5 ‘Options’ box
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Click ‘Solve’ to start the optimization. When complete, initial values of the
variables and the objective function are replaced by their optimized values in the
spreadsheet, and all other values in the spreadsheet are adjusted accordingly.
A valid solution is confirmed by the message ‘Solver found a solution’ in the
‘Solver Results’ box (see Fig. A.6). The message ‘Solver could not find a feasible
solution’ implies that no valid solution exists. Commonly, this is due to constraints
that exclude any feasible region in the design space, but may also be due to an
unsuitable starting point. The message ‘Solver has converged to the current solu-
tion’ may sometimes appear. This means that the maximum time or number of
iterations has been reached. A simple method to continue optimization is to click
‘Keep Solver Solution’ and then click Solve again to restart from that point.
Alternatively, the maximum time or number of iterations may be increased in
Options. Press ‘Esc’ if it is necessary to stop Solver while it is still running.

When a solution has been found, any of the three reports may be selected in the
Solver Results box. In the ‘Answer Report’ (Fig. A.7), initial and final values of
variables and constraints are tabulated, together the value of each constraint and
whether or not the constraint is active at the optimum. In the ‘Sensitivity Report’
(Fig. A.8), values of the Lagrange multiplier are given for each constraint. In the
‘Limits Report’ (Fig. A.9), upper and lower limits on the values of the variables and
objective function in the solution are given. After selecting any required reports, the

Fig. A.6 ‘Solver results’ box
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solution may be kept or the original values restored by clicking the appropriate
button in Solver Results.

With the GRG Nonlinear method in particular, the optimum found by Solver
may be dependent on the starting point chosen. This is the case when more local
maxima or minima exist, when Solver typically finds the one closest to the starting
point, also with the use of discrete variables when more solutions of equal value
may exist. Unless the Multistart option is chosen, it is generally advisable to repeat
an optimization from different starting points to ensure that a consistent result is
obtained.

Many of the spreadsheets supplied with this book contain macros. Depending on
the chosen security settings, a message may appear in the Message Bar: ‘Macros

Fig. A.7 Answer report

Fig. A.8 Sensitivity report
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have been disabled’. Click ‘Enable Content’ to continue. Note that earlier versions
of Solver may differ from the version in Excel 2016 referred to in this Appendix.
Further help with Solver can be found on internet at: http://www.solver.com/excel-
solver-help.

A.2 Matrix Calculation and Custom Functions

Excel offers a number of standard functions for matrix calculation. These are
MMULT(…), MINVERSE(…), MDETERM(…) and TRANSPOSE(…) for matrix
multiplication, matrix inversion, for the determinant of a matrix and to interchange
rows and columns, respectively. These are used in certain spreadsheets in this book.
Some brief notes are included here for those unfamiliar with matrix calculations in
Excel.

A matrix is defined in Excel as an array, by selecting an appropriate range of
cells. Suppose, for example, that to multiply a matrix A by matrix B, the range (A1:
C4) is selected for a (4�3) matrix A and range (E1:J3) for a (3�6) matrix B. The
required numerical data is entered in the two ranges. Note that the number of
columns in A is equal to the number of rows in B, as required by the rules for
matrix multiplication. The result of the multiplication will be a (4�6) matrix, so to
perform the multiplication, we first select an appropriate range of cells, say this is
the range (A6:F9), in which the result will appear. With cells (A6:F9) still selected,
we create the formula:

¼ MMULT A1:C4;E1:J3ð Þf g;

entering it by ctrl+shift+enter. Note the braces that appear to indicate an array
formula. Note also the sequence of the cell references in the above function to
evaluate the matrix product [A][B]. The other matrix functions above are used in a
similar manner. For matrix inversion and for the determinant of a matrix, we must
have a square matrix (the same number of rows and columns).

Fig. A.9 Limits report
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It is important to note that, while the numerical data in an array may be changed
as required, no change may be made to an array formula once it has been entered.
If necessary, the array formula should be deleted and a new array formula entered.
Failure to do this will result in an error message.

Finally, it will be seen that many of the spreadsheets in this book make use of
custom functions created in VBA to perform specific calculations. To view the code
in these functions or to make changes:

– click ‘Visual Basic’ on the ‘Developer’ tab to open the Visual Basic Editor
– open the named VBAProject, then go to ‘Modules’ and the relevant module.

To return to the spreadsheet, close the Visual Basic Editor. If the Developer tab
is not available on the spreadsheet:

– on the ‘File’ tab, click ‘Options’
– click ‘Customize Ribbon’
– under ‘Main Tabs’, check ‘Developer’ and click ‘OK’.
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Solutions to Selected Exercises

Chapter 1

1:2 n � 1:38
1:3 Lmax ¼ 277:7m
1:4 Vmin ¼ 1:657 PL

r0

1:5 Lmax ¼ 3224m
1:6 Lmax ¼ 136:5m
1:9 x ¼ 2; y ¼ 2; fmin ¼ 6

Chapter 2

2:1 P
L2 ¼ 0:103N=mm2

2:2 g ¼ 1:112

Chapter 3

3:1 x1 ¼ 1
2 ; x2 ¼ 1; x3 ¼ 3

2 ; f ðxÞmin ¼ 7
2 ; k ¼ 1

3:2 f ðx; yÞmin ¼ 4; x ¼ 2; y ¼ 1; k1 ¼ 0:333; k3 ¼ 1:333

3:3 Amin ¼ 5:536V2=3
0 ; R ¼ V0=2pð Þ1=3; L ¼ 4V0=pð Þ1=3; k ¼ 16p=V0ð Þ1=3

3:4 € 360; x ¼ z ¼ 2m, y ¼ 1m; k ¼ 60; €=m3; € 420

3:5 R ¼ ðPL2=p3EtÞ1=3; t ¼ ðP=2pKEÞ1=2; k1 ¼ 2L2=3p2ER2; k2 ¼ R=3KEt
3:7 € 360, € 417.7

Chapter 4

4:6 x ¼ 1ffiffi
2

p ¼ 0:7071, fmin ¼ 0:5858

Chapter 5

5:1 k1 ¼ 8
9 ; k2 ¼ 4

9

5:2 x1 ¼ 1
5 ; x2 ¼ 2

5 ; fmin ¼ 1
5

5:3 Gr ¼ 0:1666; 0:9445; 0:3889ð Þ

x1 ¼ 1:338; x2 ¼ x3 ¼ 0:662; x4 ¼ x5 ¼ 0; f ðxÞ ¼ 2:6667



5:9 b ¼ 88:76 mm (outside dimension), t ¼ 2:20mm, A ¼ 761:0mm2

Chapter 6

6:1 nh ¼ 3:214
6:2 C ¼ 0:07958; ng ¼ 3:691 (solid section)

C ¼ 0:1326; ng ¼ 2:890 (hollow section)

6:3 Vmin ¼ 0:2221 ng PL
r0

� �2=3
L

6:4 My ¼ 0:2141 a3ry

6:5 M1 ¼ M2 ¼ 75� 103 Nmm, M3 ¼ 225� 103 Nmm, V ¼ 92:66� 103mm3

M1 ¼ M2 ¼ M3 ¼ 131:3� 103, V ¼ 106:0� 103mm3 (uniform beam)
6:8 (a) W ¼ 2:683 kg, W ¼ 2:353 kg (recalculated for taper)

(b) W ¼ 1:112 kg, W ¼ 0:941 kg
(c) W ¼ 1:327 kg, W ¼ 1:148 kg

6:9 W ¼ 0:936 kg, W ¼ 0:802 kg (recalculated for taper)
6:10 W ¼ 0:872 kg, W ¼ 0:800 kg (recalculated for taper)

Chapter 7

7:1 rF ¼ 58:47N/mm2, rL ¼ 179:7N/mm2, g ¼ 0:416
7:2 s0 ¼ 40:64N/mm2, 63.54 N/mm2, 99.24 N/mm2

n ¼ 0:644; a ¼ 1:90
7:3 g ¼ 0:546 ðconstrainedÞ

g ¼ 0:774 ðunconstrainedÞ
gmax ¼ 0:810

7:9 g ¼ 0:541, gmax ¼ 0:932
7:10 M ¼ 68:20 kg/m, M ¼ 67:28 kg/m (unconstrained)

Chapter 8

8:1 A11 ¼ 171; 627N/mm; A33 ¼ 36; 547N/mm
Ex ¼ 81; 192N/mm2, Ey ¼ 47 877N/mm2, Gxy ¼ 18; 275N/mm2

mxy ¼ 0:302; myx ¼ 0:178
8:2 0� layers: r1 ¼ 923:7N/mm2, r2 ¼ 0, s12 ¼ 0

� 60� layers: r1 ¼ 34:2N/mm2, r2 ¼ 42:2N/mm2, s12 ¼ 41:7N/mm2

8:3 Tsai–Hill criterion: 0� layers: 0.2133, � 60� layers: 0.3469
First-ply failure at 1698 N

8:6 8 plies at 0�, 8 plies at �45�, 6 plies at 90�, t ¼ 3:75mm
8:7 7 plies at 0�, 12 plies at �45�, 6 plies at 90�, t ¼ 4:625mm
8:8 12 plies at 0�, 10 plies at �45�, 4 plies at 90�, t ¼ 4:5mm
8:9 12 plies at 0�, 10 plies at �45�, 4 plies at 90�, t ¼ 4:5mm

8:10 3.16 plies at 0�, 9.56 plies at �30:7�, 7.88 plies at 90�, t ¼ 3:77mm

Chapter 9

9:2 dg
dA2

¼ 1� PL
EA2
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Index

A
Achieved efficiency, 35, 77, 213
Active constraint, 59, 70
Active constraint strategy, 109, 289
Angle of twist, 65
Angle-section column, 35
Augmented Lagrangian penalty function, 135

B
Beams

buckling, 150
collapse mode, 164
cross-sectional shape, 148
finite element model, 173
form factor, 163
geometrically similar sections, 153
limit load, 163
minimum weight, 149
shape efficiency, 153
spanwise stiffness distribution, 154
statically determinate, 155
statically indeterminate, 158
strength to weight ratio, 157
thin-walled, 150
yield moment, 161

Box beam, 2, 56, 183, 201
Branch-and-bound method, 267
Broyden, Fletcher, Goldfarb, Shanno (BFGS)

formula, 92
Buckling in compression, 201
Buckling in shear, 208
Buckling under combined stress, 204

C
Circular tube, 30, 132, 140
Coefficient n, 13, 42
Collapse mode, 164
Comparison of layouts, 16
Composite laminates

A-matrix, 247
balanced laminate, 248
delamination, 258
discrete ply thickness, 267
engineering constants, 243
failure criteria, 252
interlaminar shear stress, 258
internal stresses, 256
iterative redesign, 264
laminate stiffness coefficients, 247
layer stiffness matrix, 245
netting analysis, 260
optimization, 259
orthotropic laminate, 243
practical restrictions on lay-up, 258
temperature change, 256
transformation matrix, 245
transformed stiffness matrix, 246

Composite materials, 241
Conjugate gradient methods, 92
Conservation of energy, 41
Constrained optimization, 107
Constraint, 31
Constraint-following methods, 108, 120
Constraint gradient, 283
Constraint linearization, 109, 113, 129
Constraint normalization, 134
Constraint selection, 40
Continuous variable, 21
Conventional design process, 3
Convex constraint, 59
Criterion for maximum stiffness, 40
Crossover, 273

D
Davidon, Fletcher, Powell (DFP) formula, 92
Dependent and independent variables, 120
Design space, 31, 58, 212
Design variables, 31, 57



Diagonal tension, 218
Discrete stiffeners, 189
Discrete variable, 21, 142
Dummy load method, 286

E
Eccentrically loaded column, 74
Effective modulus, 205
Efficiency, 33, 210, 214, 222
Elimination of design variables, 61
Equality constraint, 58
Equivalent shear stress, 216
Equivalent stress, 169
Equivalent thickness, 189, 211, 215
Euler’s formula, 30
Evolutionary algorithm, 268, 270
Evolutionary method, 297
Excel add-ins, 297
Exploratory move, 84, 102
Exterior penalty function, 133

F
Factor of safety, 5
Feasibility, 15
Feasible directions method, 126
Feasible region, 32, 58
Feasible search direction, 110
Finite difference, 85, 89
Finite element analysis, 283
Finite element model of a beam, 173
First-order methods, 85
Fitness, 271
Fletcher-Reeves method, 90
Flexural buckling, 30, 202, 206, 222
Form factor, 163
Fully stressed design, 3, 5, 29
Fuselage section, 230

G
Generalized reduced gradient method, 108, 120
General optimization problem, 57
Genetic algorithm, 108, 268, 270
Geometrically–similar sections, 175
Geometric similarity, 153, 214
Golden section method, 95
Gradient, 87
Gradient-based methods, 85
Gradient projection method, 109
GRG Nonlinear method, 297

H
Hessian matrix, 64, 92
Hooke and Jeeves method, 84

I
Imperfection sensitivity, 76, 213
Inactive constraint, 59
Index m, 77, 187
Inequality constraint, 58
Interior penalty function, 130
Interpolation formula, 223
Intersection optimum, 59
Inverse variable, 129, 289
I-section beam, 149
I-section column, 35
Iterative design process, 3

K
Kuhn–Tucker conditions, 73, 136

L
Lagrange multiplier, 61, 67, 68, 87, 111
Lagrangian function, 62, 87, 111
Lamination theory, 242
Lateral buckling, 151
Layout, 13, 20
Limit load, 163
Linearization of constraints, 109, 113, 129
Linear programming, 108
Line search, 84, 94
Linking matrix, 290
Loading intensity, 211
Local buckling, 31, 150, 202, 222

M
Master variable, 290
Material breaking length, 14
Material limitation, 38
Mathematical optimum, 59
Matrix calculation, 305
Maximum stiffness, 40
Michell structure, 17
Move limits, 113, 129

N
Nonlinear constraint, 118
Normalization of constraints, 134

O
Objective function, 57
Optimality criteria, 29, 32, 44, 60

P
Partial structures, 6, 17
Pattern move, 84, 102
Penalty function (genetic algorithm), 272
Penalty function methods, 108, 129, 140
Polynomial interpolation, 95, 97
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Post-buckled design, 218
Projection matrix, 112, 116

Q
Quadratic interpolation, 98
Quasi-Newton method, 92

R
Ramberg–Osgood formula, 76, 170, 187
Rate of twist, 198
Rectangular box beam, 227
Rectangular section beam, 148
Rectangular torsion box, 65
Reduced gradient, 120
Reduced modulus, 187, 222
Reduction in design variables, 290
Region elimination, 95
Restoration move, 113
Robust feasible directions method, 128

S
Saddle-point, 64
Search direction, 85, 112
Secant formula, 74
Secant modulus, 170, 187
Sensitivity analysis, 284
Sensitivity of the optimum, 68
Sequential quadratic programming, 126
Sequential unconstrained optimization, 130
Seven-bar truss, 21, 48, 298
Shape optimization, 20
Shear flow, 192
Shear stress distribution, 192
Shear web, 208
Shell structures

bending stress, 185
discrete stiffeners, 189
product second moment, 186
rate of twist, 198
second moment of area, 186, 206
shear stress distribution, 192
warping displacement, 198

Side-constraint, 58
Simplex LP method, 297
Simultaneous modes, 32
Sizing, 21
Slave variable, 290
Solver, 21, 108, 297
Solver options button, 300
Solver parameters dialog box, 298
Solver results box, 303
Spanwise stiffness distribution, 154
Specific strain energy, 44
Specific weight, 13

Spreadsheet programs
beam under lateral load, 158, 173
circular and square tubes, 44
circular fuselage section, 230
composite laminate, 275
design variable linking, 291
eccentrically loaded column, 74
Hooke and Jeeves method, 100
I-section beam, 169
penalty function method, 140
rectangular box beam, 227
seven-bar truss, 21
stiffened panel, 221
truss with tubular members, 48

Square–cube law, 36
Square section tube, 34
Statically indeterminate truss, 3
Steepest descent direction, 109
Steepest descent method, 85
Stiffened panel, 201, 210
Stiffener criterion (shear web), 214
Strain energy, 44
Strength to weight ratio, 12, 157, 216
Structural index, 13, 34, 156, 212, 216
Structure made of different materials, 7
Structure under alternative loads, 9
Substitute stiffener, 190
Substitution of variables, 129
Surplus variables, 122

T
Tangent modulus, 76, 188, 207
Tapered beam, 290
Thin-walled beam, 150
Three-bar truss, 7
Topology, 19
Torsional stiffness, 56, 66, 198
Torsion box, 65
Truss structures

iterative design process, 3
long truss structure, 18
made of different materials, 7
maximum span, 15, 19
optimum layout, 42
seven-bar truss, 21
statically indeterminate, 3
three-bar truss, 7
under alternative loads, 9
with tubular members, 48

Tsai-Hill criterion, 253
Tsai-Wu criterion, 254
Twisting moment, 195
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U
Unconstrained optimization, 84
Update formulae, 92
Usable search direction, 111

V
Visual Basic, 306
von Mises criterion, 169

W
Weighted second moment, 188
Weight lines, 32, 59

X
X–section column, 35

Y
Yielding, 76, 187
Yield moment, 161

Z
Zero-order methods, 85
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