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Preface

Flow and Heat Transfer in Geothermal Systems is intended as a systematic
and analytical exploration of the most important geothermal principles.
Understanding the physical principles of fluid flow and heat transfer, in
both natural and artificial systems, is essential to understanding how
every stage of the geothermal cycle affects geothermal production
wells, injection wells, drilling operations, surface equipment, energy-
conversion systems, and the geothermal reservoir itself.

Although we assume a basic knowledge of mathematics and some
familiarity with the geothermal industry, our book should be accessible
to beginning engineering students and even well-educated laymen who
wish to understand a bit more about this promising alternative to fossil
energy. We expect that Flow and Heat Transfer in Geothermal Systems will
be especially valuable as a handbook for geologists, hydrogeologists,
reservoir engineers, geophysicists, geochemists, drilling engineers, and
production engineers, all of whose collaborative work is vital in creating
and maintaining successful geothermal operations.

Chapter 1 is an introduction to the basic idea of a geothermal reservoir
along with a brief history of early geothermal development. In Chapter 2
we explore the basic laws of fluid mechanics and thermodynamics.
Chapter 3 deals with transport processes in geothermal reservoirs, based
on the complex continuum model, and introduces the geothermally
useful Darcy’s Law.

Chapter 4 studies the different boundary and initial conditions within
rock masses, and the various means of measuring how heat is conducted.

Chapter 5 looks at those important natural processes which obtain in
undisturbed geothermal reservoirs: consolidation, natural convection,
and the development of overpressured reservoirs.

Chapter 6 uses analytic complex functions to explain two-dimensional
underground flows, including the Hele—Shaw flow. More specifically, we
look at geothermal reservoirs and their producing wells, which form a
serially connected synergetic flow system: a radially inward Darcy flow
toward the well in the reservoir, and a turbulent upflow through the
tubing.

The flow within wells is the subject of Chapter 7, which also examines
homogeneous water upflow and two-phase flows induced by dissolving
gas and flashing. In this chapter, our examination of the energy transfer
process assumes an unsteady flow of inviscid fluid.

ix
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Chapter 8 deals with the use of submersible pumps to induce artificial
lifting, describing the most important types of centrifugal pumps along
with their construction, their operation, their performance curves and
how they affect cavitation. This chapter describes the phenomenon by
which, as production continues, heat transfer causes a gradual rise of
temperature in the surrounding rock, decreasing the temperature
difference and the heat flux.

Chapter 9 investigates borehole heat transfer, and how to determine the
temperature distribution of the flowing fluid both in production and
injection wells. In this chapter the flow patterns of two-phase water—
steam mixture flows are analyzed. Temperature distribution along the
pipe axis is also determined. The chapter ends with an examination of
the heat transfer process around a buried horizontal hot-water transport-
ing pipeline.

Chapter 10 looks at how gathering pipelines work in geothermal en-
ergy production systems, introducing the basic equations used to analyze
one-dimensional pipe flow for both laminar and turbulent flows. We
demonstrate how to assess the loss of superheated steam, assuming an
isothermal case.

Chapter 11 describes the process of geothermal power generation,
briefly outlining the power generation cycle, analyzing the basic thermo-
dynamic process of wet steam generation and showing how energy is
converted from thermal to mechanical energy in the steam turbines.
This chapter introduces several of the most important types of geothermal
power plants: single flash, dry steam, and binary plan.

In Chapters 12, 13, and 14 we investigate the following topics: propa-
gation of the cooled region between injection and production wells in
fractured reservoirs; flow and heat transfer in a borehole heat exchanger
(both in shallow and in deeper regions); flow and heat transfer during
drilling operations; laminar and turbulent flows of non-Newtonian
fluids through annuli; and temperature distribution in the circulating
drilling mud.

Chapter 15 is a case study of how much environmental damage can be
caused by high-enthalpy geothermal reservoirs. This chapter relates the
history of a serious industrial accident which occurred in Hungary
when workers, while tapping an overpressured 200°C reservoir,
provoked a steam blowout from a depth of 4000 m. As part of the result-
ing hydrodynamic/thermodynamic reconstruction, certain inconsistent
phenomena observed during the blowout are explained with the help
of thermodynamical calculations.

The book’s final chapter, Chapter 16, describes two nontrivial forms of
geothermal energy production: the first highlights the substantial
geothermal potential of an abandoned copper ore mine, where the road-
ways and the shafts were flooded by mine water; the second explores
another unusual application, a deicing system located at the entrance of
a mine tunnel.
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1.1 INTRODUCTION

Geothermal energy is energy contained within the high temperature
mass of the Earth’s crust, mantle, and core. Since the Earth’s interior is
much hotter than its surface, energy flows continuously from the deep,
hot interior up to the surface. This is the so-called terrestrial heat-flow. The
temperature of the Earth’s crust increases with depth in accordance with
Fourier’s law of heat conduction. Thus the energy content of a unit of
mass also increases with depth.

All of the Earth’s crust contains geothermal energy, but geothermal
energy can only be recovered by means of a suitable energy-bearing
medium. To be practical, the energy-bearing media must be: hot
enough (high-specific energy content), abundant enough, easily recover-
able, inexpensive, manageable, and safe. Water satisfies these
requirements perfectly. The specific heat of water is 4.187 k] /kg°C. In the
steam phase, latent heat is added to it. Hot water and steam can be
recovered easily through deep, rotary-drilled wells. Through the use of a
suitable designed heat exchanger, heat can be efficiently transferred from
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the water or steam. Steam is an especially suitable working fluid for en-
ergy conversion cycles.

Nowadays, geothermal energy production is mainly achieved from hot
water and steam production via deep boreholes. Another rapidly-
growing production technology involves exploiting the energy content
of near-surface regions by using shallow borehole heat exchangers and
heat pumps.

It is likely that the natural heat of volcanoes and other geothermal
sources were already being used in the remote Paleolithic era, but concrete
evidence only dates from 8000 to 10,000 years ago. We are therefore forced
to use indirect methods when speculating on mankind’s earliest rela-
tionship with geothermal phenomena and products of the Earth’s heat.

The uses of natural hot water for balneology and the exploitation of
hydrothermal products for a wide range of practical applications
increased remarkably during the millennium preceding the Christian era.
This use eventually extended to the boundaries of ancient Rome,
achieving maximum use during the 3rd century A.D. the Roman
Empire’s apex. After Rome’s decline in the 6th century, geothermal
exploitation also declined throughout Southern Europe, a period of
disuse which lasted until the beginning of the second millennium. There
is evidence that geothermal resources were still being exploited in the
centuries that followed, in China and many other countries, but on a very
limited scale and only in rudimentary forms.

Deep in the Remontalou River valley, at the south edge of Auvergne in
the Central French massif, the town of Chaudes—Aigues has an 82°C hot
spring, one of the hottest natural thermo-mineral springs in Europe. The
region has been inhabited since prehistoric times. The main spring, called
le par, is one of about 30 gushing springs concentrated in a small area.
From mid-October to the end of April, a 5-km network of pipes brings the
hot water from five of these springs to heat 150 homes. Houses built above
the springs use the hot water directly below for heating, and have done so
since the 14th century (Cataldi et al., 1999).

Geothermal water was first used for boric acid production in Larderello,
Italy, in 1827. Boric acid production was an Italian monopoly in Europe,
and became a large-scale industry in the middle of the 19th century.

Other countries also began to develop their geothermal resources on an
industrial scale. V. Zsigmondy, for example, became a legend in Hun-
garian geothermal history after he drilled Europe’s deepest well (971 m)
in Budapest in 1877. Since that date, the resulting geothermal water has
been used for balneology in the famous Szechenyi Spa. In 1892, the first
geothermal district-heating system began operations in Boise, Idaho,
USA. In 1928, Iceland, another pioneer in the utilization of geothermal
energy, also began exploiting its geothermal fluids (mainly hot waters) for
domestic heating purposes.
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In 1904, Larderello again became famous as the first place where
electricity was generated from geothermal steam. The scientific and
commercial success of this experiment demonstrated the industrial value
of geothermal energy, the exploitation of which would then develop more
significantly. By 1942, Larderello’s installed geothermoelectric capacity
had reached 127,650 kWe,. Several countries soon followed Italy’s example.
In 1919, the first geothermal wells in Japan were drilled at Beppu. In 1921,
geothermal wells were drilled at the Geysers, California, USA.

Between the two World Wars, oil prospectors found huge geothermal
water reservoirs all over the world, usually by accident. In 1958, based on
similar exploration data, and after extensively mapping variations in the
Pannonian Basin’s terrestrial heat-flow 15 years earlier, the Hungarian
mining engineer T. Boldizsar composed the world’s first regional heat-
flow map of Hungary (Boldizsar, 1964). That same year, a small
geothermal power plant began operating in New Zealand. Another
started in 1959 in Mexico, and another in the United States in 1960. Many
other countries would then follow suit in the years to come.

As of 2015, 28 nations currently use geothermal energy to generate
electricity (geothermal power). There has been a significant increase since
1995. By that year, the world’s installed capacity was 6833 MWe (Bertrani,
2015). By 2005, it was 8934 MWe. By 2015, it was 12,635 MWe (or
73,549 GWh/year).

As of 2015, 78 countries have direct utilization of geothermal energy, a
significant increase from the 28 reported in 1995, 58 in 2000, and 72 in
2005. For 2015 the reported amount of geothermal energy used is
438,071 T] /year (121,696 GWh/year). Approximate geothermal energy
use by category is 49.0% for ground-source heat pumps, 24.9% for bathing
and swimming (including balneology), 14.4% for space heating (of which
85% is for district-heating), 5.3% for greenhouses and uncovered surface
heating, 2.7% for industrial process heating, 2.6% for aquaculture pond
and raceway heating, 0.4% for agricultural drying, 0.5% for snow melting
and cooling, and 0.2% for other uses.

1.2 THE NATURE AND ORIGIN OF GEOTHERMAL
ENERGY

There was a time, not so long ago, when the high temperature of the
Earth’s interior was not known. Kelvin solved first the differential
equation of the heat conduction in a spherical coordinate system. The
spherical symmetry of Earth’s shape suggested the idea of the spherically
symmetrical temperature distribution around the world. The temperature
distribution along the depth is monotonically increasing. In accordance
the Fourier’s law of heat conduction, a radial outward heat flux occurs.
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This is the so-called terrestrial heat-flow. The terrestrial heat-flow is
mainly conduction but can be convection also. Kelvin collected surface
heat-flow data from Russia, Australia, South Africa, Deccan Plateau, and
Labrador. Unfortunately, these places are geothermally similar with a
relatively low heat-flow. Kelvin’s measurements confirmed the idea of
spherically symmetrical temperature distribution obtaining an average
heat-flow value of 0.0556 W /m?. This thermostatic model of the Earth was
proven false on the basis of Boldizsar’s (1943) terrestrial heat-flow
measurements, especially after the discovery of the regional geothermal
anomaly in the Carpathian Basin. Boldizsar’s heat-flow map of Hungary
was the first in the world in 1944. It was proven by the convincing
evidence of the regionally varying heat-flow distribution. He got the
name “Father of geothermal.” Boldizsar’s early results were confirmed by
extended investigations of Bullard (1954), exploring the extremely high
heat-flow distribution along the mid-oceanic ridges (Fig. 1.1).

As a result of international scientific cooperation, large-scale conti-
nental heat-flow maps demonstrate the varying heat-flow intensity
belonging to certain tectonic structures. Along the displacing mid-ocean
ridges the terrestrial heat-flow attains the value of 0.2 W/m? The
average heat-flow in the Carpathian Basin is 0.1 W/m? (Toth, 2010). On
the continental shields or the oceanic crust, heat-flow density hardly at-
tains the value of 0.02 W/m?. All these are connected as the result of the
plate tectonics, the movement of the lithosphere plates.

The generally accepted model of the Earth’s structure posits an outer,
spherical shell, known as the crust. Its two parts can be distinguished as
the continental crust, with an average thickness of 35 km, and the oceanic
crust, with a thickness of about 8 km. Beneath the crust lies a boundary

FIGURE 1.1 Terrestrial heat-flow map in Hungary.



1.2 THE NATURE AND ORIGIN OF GEOTHERMAL ENERGY 5

known as the Mohorovicic discontinuity, where the speed of propagation
of seismic waves suddenly increases from 7 km/s to 8.1 km/s. The
Mohorovicic discontinuity can be found beneath the crust and above the
mantle. The mantle extends to a depth of 2900 km, where there it changes
into the much denser liquid core. The core is composed largely of molten
iron. Within this liquid core is a solidified iron inner core with a radius of
about 1350 km. On a large scale, these are the main components of the
Earth’s structure, as shown in Fig. 1.2.

From the geothermal point of view, only the crust and the upper mantle
are of importance. Direct information about the mantle is available from
deep boreholes only. The three deepest are in Sakhalin, Qatar, and the
Kola Peninsula. They have a bottomhole depth of about 12 km. All other
data derive from indirect gravimetric, seismic, dipole-resistivity, and
other geophysical information.

The crust is not a homogeneous spherical shell. The continental crust
beneath the continents and the enclosed seas is mainly granite composite,
rich in silica with a density of 2670 kg/m?>. The oceanic crust is mainly
basaltic. It is poor in silica with a density 2950 kg/m?>. The thickness of the
continental crust is variable. Beneath the high ranges it can be 70—75 km
thick, but beneath the sinking sedimentary basins its thickness is only
20—25 km.

Beneath the crust, the upper mantle is rigid. This is the so-called lith-
osphere. Its thickness is approximately 80—100 km. Under the litho-
sphere, the propagation speed of the seismic waves decreases in a

FIGURE 1.2 Structure of Earth’s interior.



6 1. WHAT IS GEOTHERMAL ENERGY?

spherical shell, which has a thickness of 150 km. This is the so-called
asthenosphere. Its temperature is possibly higher than the lithosphere
or the mantle beneath it. The temperature of the asthenosphere is about
800—850°C. At this temperature, the mantle is in a plastic state; it can be
flowing. Since the density of the asthenosphere is 3350 kg/m? on average,
the lighter lithosphere is floating upon it. In accordance to Archimedes’
law, beneath the high mountains the lithosphere becomes immersed
deeper into the asthenosphere, while the oceanic crust is thinned. The
lithosphere is not a unique rigid shell, but it consists of six large and some
smaller plate pieces, which are in continuously moving relative to each
other and the rotation axis of the earth as can be seen in Fig. 1.3.

Today the magmatic and tectonic activity of the Earth happens along
the plate boundaries. It can be seen in Fig. 1.4, where the seismic belts
coincide with the plate boundaries.

The heat can be transferred across the plastic mantle not only by
conduction, but convective currents can also develop. At the lower
boundary of the lithosphere, the temperature is lower than in the deepest
region. At the deeper, less dense mantle, material occurs. The denser
material under the influence of the gravity will sink, displacing the hotter
and lighter mass, which upflows to the boundary of the lithosphere
conveying its heat content. This motion caused by the temperature dif-
ference is the so-called thermal convection. Its streamline-pattern shows

. ' Antarctic Plate . -

FIGURE 1.3 Lithosphere plates. Source: Dickson, M.H., Fanelli, M., 2004. What is
geothermal energy?. In: Website of the International Geothermal Association. https://wuww.
geothermal-energy.org/what_is_geothermal_energy.html.
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FIGURE 1.4 Large earthquakes at the plate boundaries. Source: https://www.e-education.
psu.edu/files/earth501/image/lesson2/neic_2007janjun.jpg

characteristic convection cells. The plastic viscosity is about 10* times of
the water viscosity, thus the velocities of the developing thermal con-
vection are extremely small.

Thus the lithosphere is in mechanical and thermal interaction. The
convection currents cause the lithosphere plates to drift apart, while on
the other hand the upflowing mantle heats the crust with great intensity.
Around the stagnation point, the heat transfer is the most intense;
the crust is heated here the most considerably. The tensile stresses of the
flowing plastic mantle rift the weakened lithosphere plate, while the
magma continuously fills the split accreting to it. This process is the so-
called sea floor spreading at the mid-oceanic ridges. The opening of the
lithosphere plate can also occur in the continental crust, in this way
forming the East-African rift valley.

As the lithosphere plates move off each other, they can collide with other
plates. In this case, the oceanic plate of greater density is creased under the
lighter but thicker continental plate, submerging along the so-called Benioff
plane, which has an inclination angle of about 45 degrees. This oceanic
lithosphere plate submerging to the plastic mantle is warming up gradu-
ally, its strength decreases, then it attains its melting temperature, liquefies,
and flows up. The submerging rigid lithosphere plate can be followed by
seismic tools to the depth of 600—700 km.
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The density difference between the mantle material and the melted
lithosphere plate is substantially greater (600 kg/m?) than the density
difference caused by the thermal expansion which is 50 kg/m?>. Thus the
Archimedean lifting force can induce a more intensive uplifting flow in
the region of the dissolved lithosphere plate. The re-melted intermediary
and acidic magma is accreted from below to the continental crust. Thus it
will be raised. At the same time, the extremely strong convective heat-
flow propagates further in the solid crust as a very intensive conductive
heat flux. Thus the orogenic areas are more active geothermally, and their
terrestrial heat-flow is substantial. The solid crust may even be melted
here, and volcanic areas can develop. This occurs typically along the plate
boundaries of the Pacific coast.

There are other regions outside the plate boundaries where the
terrestrial heat-flow is anomalously high. Such regions are the Carpathian
Basin, the Paris Basin, or the Kuban region at the northern side of the
Caucasus Mountains. The reason for the high heat-flow originates in the
thinning continental crust due to the tension stresses and subcrustal
erosion. The crust in the Carpathian Basin may be as thin as only 20 km.
This window leads necessarily to the higher terrestrial heat-flow. It is
obvious that the thin crust enables a higher heat flux since:

k

q:g(Tm - To) (1.1)

where 3 is the thickness of the crust, k is the average heat conductivity, Ty,

is the temperature at the top of the mantle, and Ty is the surface tem-
perature. The geothermal gradient is also higher:

dT Tm—To

= =m— 0 12

Y=, 5 (1.2)

The geothermal gradient y in the Carpathian Basin is higher than the

continental mean value which is 0.045—0.065°C/m. Thus relatively hot

rock masses can be found in relatively shallow depth. This means

favorable natural conditions to access geothermal reservoirs, to recover

the geothermal energy.

1.3 GEOTHERMAL RESERVOIRS

The geothermal field is a geographical notion designating any region
on the Earth’s surface where such surface manifestations as geysers, fu-
maroles, or boiling mud-ponds indicate an active geothermal domain
underground. These phenomena are characteristic of active volcanic re-
gions. Where geothermal fields exist but have no spectacular surface
manifestations, high terrestrial heat-flow and above-average geothermal
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gradient show that geothermal energy production would still be possible.
Boldizsar (1943) was the first to recognize that terrestrial heat-flow is the
most important indicator of geothermal activity.

The geothermal system is any arbitrarily but suitably demarcated re-
gion of the Earth’s crust where geothermal phenomena are being inves-
tigated. The interaction of the system with its surroundings causes
various characteristically geothermal processes.

The geothermal reservoir is part of a geothermal field from which the
field’s internal energy content can be recovered through the use of some
reservoir fluid: steam, hot water, or a mixture of both. The geothermal
reservoir is a natural or man-made sub-system demarcated to fit the de-
mands of energy production. A natural hydrothermal geothermal reser-
voir is an extended, porous, and permeable formation saturated with hot
water or steam, and possessing both a sufficiently large heat supply and a
reliable recharge mechanism. The best geothermal reservoirs have a
fractured rock matrix with high permeability, leaving a relatively unim-
peded vertical path for thermal convection.

The geothermal system can be divided into two interacting sub-systems.
One is a natural system; an existing reservoir with its own heat supply and
recharge system. The other is an artificial system, characterized by such
components as wells, pumps, gathering pipes, and heat exchangers. The
two sub-systems operate together, exerting a mutual influence.

It is also possible to create artificial reservoirs in hot dry rocks (HDR),
which have neither water nor pore/fracture type permeability. In this
case, the fracture system can be formed by hydraulic fracturing, with
water then being circulated through an injection and production well. The
injected surface water warms as it flows through the fracture system, and
is then delivered via the production well.

Whether the geothermal system is natural or man-made, heat transfer
is the most important phenomenon. Heat transfer occurs partly through
heat conduction and partly through conductive transport, as the
heat-bearing fluid flows up to the surface. For the most part, geothermal
reservoirs are classified according to how heat transfer occurs between the
geothermal fluid and the reservoir rock through which it moves.

Geothermal reservoirs are continuously heated by terrestrial heat-flow.
Many geothermal reservoirs are only heated by conductive heat-flow,
which has a relatively moderate conductive heat flux; 0.0556 W/ mz, on
average (the average geothermal gradient is 30°C/km). Although such an
environment is unsuitable for recoverable hydrothermal systems, the
reservoir’s internal energy can still be extracted by means of geothermal
heat pumps.

Regional thinning and sinking of the crust causes more intense heat-
flow and a higher geothermal gradient. Recoverable hydrothermal sys-
tems become suitable as soon as the terrestrial heat flux reaches 0.1 W/ mz,
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with a geothermal gradient of at least 40—50°C/km. It should be obvious
that along with satisfactory recharge of the reservoir, a sufficiently porous
(20%) and permeable (500—1000 mD) formation is also necessary. In
Europe, such conditions exist mainly in sunken sedimentary basins like
the Carpathian or Paris basins.

In a geothermal system, temperature increases linearly with depth.
Porosity, however, decreases exponentially with depth as sediment un-
derneath is compacted by the lithostatic pressure of sediment above it:

b = doe (1.3)

The expression Eq. (1.3) approximates this distribution quite well, in
which ¢ is the porosity at the surface, z is the depth, and A depends on
the type of the sediment. The tendency is shown in Fig. 1.5. The porosity
and the temperature distributions determine the region where recover-
able hot water reservoirs can be found.

These medium-temperature hot water fields are quite common world-
wide, and may be confined, artesian aquifers or open, hydrostatic systems.
Their temperature is typically lower than 150°C. They may be worth direct
use as district-heating, agricultural, and industrial process heat sources.

The conceptual model of such a medium-temperature hot water
reservoir is shown in Fig. 1.6. Porous and permeable sedimentary layers
are settled mainly horizontally on the impermeable bedrock. There are
hardly permeable mainly clayey layers between the permeable

To ®, [0} T

L )

FIGURE 1.5 Porosity and temperature distribution along depth.
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FIGURE 1.6 Conceptual model of medium temperature aquifer.

formations. These hardly permeable formations are also saturated by
geothermal fluid, which is immobile-bounded pore water. Any cross-
flow cannot be developed thorough these weak-permeability layers,
but the continuous mass of the pore water can transmit the pressure
across them. Thus the vertical pressure distribution is a continuous
function along the depth, independent of the permeability of the
different layers. Therefore the law of hydrostatics is valid for the whole
saturated sedimentary mass.

One of the greatest conductive heated sedimentary aquifers is the
Upper Pannonian formation in Hungary. This sandy and sandstone for-
mation extends horizontally more than 40,000 km?, while then average
thickness is about 300 m, in which the sandy and clayey layers successive
follow each other. The proportion of the permeable layers in the whole
aquifer is about 35%.

Beneath the sedimentary layers, fractured or karstic regions of the
bedrock can be found containing geothermal reservoirs connecting to the
Pannonian aquifer. These carboniferous reservoirs are deeper and hotter
than the Upper Pannonian formations, and their pressures are hydrostatic
but somewhere weak thermal convection currents can occur. Such sys-
tems are developed in Zalakaros, Iklodbordoce, and Mélykt.
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It's generally accepted that the best source of geothermal heat is a
magmatic intrusion into the Earth’s crust. In an active volcano, molten
magma flows to the surface through a large fault system. Faults in a hard
rock may provide an open channel for the upward flow of molten magma,
which can overcome gravity to penetrate the rigid-rock fault system, but
plastic rocks such as clay can fill the fault space and block the flow
upward. In these cases the magmatic intrusion arrives at the boundary
between hard and plastic rocks, but does not reach the surface. This
so-called crypto-volcanism, without eruption, is common in acidic vol-
canoes but can also occur in basic volcanoes. In these cases the intrusion
remains below the surface at a depth of 5—15 km. Above the intrusion,
through the crystalline bedrock of good thermal conductivity, a very
intensive terrestrial heat-flow develops.

Above the bedrock is a porous or fissured aquifer. The aquifer’s rock
matrix is discontinuous relative to the solid bedrock, and has weaker heat
conductivity. This weak conductivity cannot transfer the intense subsurface
heat, but the existence of reservoir fluid allows for thermal convection, a
more efficient heat transfer mechanism than conduction. A low-
permeability rock layer, the so-called cap rock, may overlay the aquifer.
All steam-producing reservoirs have a cap rock. This almost impermeable
cap rock s created by the deposition of dissolved minerals, or through kaolin
formation brought about by the rock’s hydrothermal alteration (Facca and
Tonani, 1964). Cap rock may also develop through the cumulative
compaction of sedimentary rocks, causing substantial overpressure. In the
latter case, the compacted under-layer forms a hydraulic seal. The con-
ceptual model of a convective heated reservoir is shown in Fig. 1.7.

In order to develop thermal convection, certain conditions must be ful-
filled. The motion of a fluid, which is caused solely by the density differ-
ences brought about by temperature gradients, is called thermal or natural
convection. A fluid body may be in mechanical equilibrium without being
in thermal equilibrium. The hydrostatic equation may be satisfied even
though the temperature distribution is not uniform. There are certain
temperature gradients which allow the mechanical equilibrium to be
maintained. Other temperature distributions may induce movements in the
fluid. It is known that convective heat flux is a much more intensive heat
transfer mechanism than conduction. The increasing temperature along the
depth decreases the fluid density with the depth. The Archimedean lifting
force acts to the fluid mass of higher temperature and lower density. It is
superimposed to the gravity force inducing the flow of the fluid. From the
point of view of heat transfer, thermal convection is equivalent with a
formation of extreme high-heat conductivity. The heat-flow is high even
very low temperature gradient across the zone of convection.

A high geothermal gradient is necessary to develop thermal convection.
Its necessary valueis typically higher than 0.2°C/m. The reason for this high
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FIGURE 1.7 Conceptual model of a convective heated reservoir.

gradient is a near-surface (<5km) fresh magmatic intrusion, with a
temperature of 650—1000°C. This intensive heating produces a high
(>1 W/m? heat-flow. There are additional necessary conditions. The
permeability should be greater than 1 darcy. This may possible in a fractured
carboniferous reservoir or in coarse deltaic sediments. A sufficiently large
vertical thickness of the aquifer is also necessary. Thus convection transfers
the heat along a longer path, more efficiently. The cold-water recharge to the
deeper formations can also increase the heat transfer intensity.

The temperature distribution of the conductive heated reservoir is not
linear. Inside the aquifer, the temperature change is very small; the tem-
perature gradient is large between the top of the reservoir and the surface
only. Thus high temperature reservoir fluid can be found at shallow
depths, which can be attained by shallow, large diameter boreholes more
economically.

Both convective and conductive heated reservoirs contain hot water in
liquid phase. The pressure of the water increases along the depth in
accordance of the law of hydrostatics:

dp
a4z P8 (1.4)
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FIGURE 1.8 Boiling curve of water along depth.

where z in the depth, p is the density, and g is the gravity acceleration.
Since p decreases with temperature, the expression Eq. (1.4) is nonlinear.
The boiling curve is the locus of saturation temperatures that correspond
to the local fluid hydrostatic pressure, which can be seen in Fig. 1.8. The
actual formation temperatures are substantially lower than the saturation
temperatures determined by the boiling curve. Thus the water remains in
liquid state in the reservoirs and can be flashed in the near-surface section
of the well as its pressure decreases more rapidly than its temperature.

The most valuable geothermal resources are dry-steam reservoirs.
Large dry-steam reservoirs are found only in two places: the Geysers in
California and Larderello in Italy. In dry-steam reservoirs, the reservoir’s
fractured rock matrix is filled with superheated steam. The steam also
contains non-condensable gases, but no hot water. The steam is of mete-
oric origins, and its relative amounts of various water isotopes of water
are 0'°/0'®. The steam’s H/D ratio is almost the same as for the isotopic
composition of meteoric waters.0

The conceptual model of a dry-steam reservoir is shown in Fig. 1.9. The
lateral boundaries of this type of reservoir must be impermeable, or liquid
would flood sideways into the steam-filled region and collapse the
superheated-steam reservoir. In a steam-filled area, the only liquid should
be the condensate which forms in the reservoir’s cooler lateral and upper
boundaries.

As production wells tap the reservoir to provide a steam outflow, a
cone-shaped depression forms around the lower-pressure production
zone. This lower pressure causes the condensate to evaporate, which in
turn causes further steam generation. This may lead to the reservoir
eventually drying out completely. The liquid content of the deeper zone
beneath the reservoir remains the only possible source for additional
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FIGURE 1.9 Conceptual model of a dry-steam reservoir (D’Amore and Truesdell, 1979).

steam. Natural recharge is possible primarily through the lateral bound-
aries, which are demarcated by major faults with significant offsets.
Surface water then can percolate the deepest liquid-filled region.

If the production rate exceeds the rate of recharge, the deep liquid
region will sink even deeper as decreasing pressure causes more and
more evaporation. A steam zone must have the initial pressure needed to
develop this unbalanced state. This is possible as the natural steam loss
through the upper layer before their occlusion larger than the natural
recharge. In their natural pre-production states both Larderello and the
Geysers were characterized by such surface thermal manifestations as
geysers, fumaroles, hot mud-pools, and acid-altered rocks. Over time,
permeability in the shallow formations decreases, as mineral deposits seal
the fractures and block the upflowing steam.

There is a very close correlation between the temperature of dry-steam
reservoirs and the saturated steam’s temperature at maximum enthalpy.
This thermodynamic state can be seen in Fig. 1.10, in the enthalpy—
entropy diagram. At the point M, where the temperature is 235°C and the
pressure 30.6 bar, the enthalpy is 2904 kJ/kg. According to the first law of
thermodynamics, if there is no heat transfer and no work being performed
during the expansion process, the enthalpy must be constant. As the
saturated steam expands and its pressure decreases, above 235°C it turns
to wet steam, as a two-phase water-steam mixture (1-2). Below 235°C, the
expanding saturated steam becomes superheated (3-4).
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The geothermal fluid is obviously at its hottest in the deepest part of the
reservoir. As its lower density causes it to rise up, and as it passes through
the fractures or pore channels, its pressure decreases. Meanwhile, a
fraction of the steam will separate out of the water and flow upward, with
the liquid flowing back down. This brings the steam to a lower pressure
region, where its expansion is increased and the process is intensified.
McNitt (1977) explained this phenomenon. His basic idea was to compare
the amount of heat needed to evaporate a unit mass of water with the
amount of heat released as the steam bubble condenses.

It is evident that the steam phase begins as soon as the reservoir
temperature approximates the temperature for the enthalpy maximum on
the saturation curve. The pressure should change with depth hydrostat-
ically, where the temperature is less than 235°C level. Above that level,
temperature and pressure remain almost constant throughout the
dry-steam reservoir. Fig. 1.11 shows pressure distribution with increasing
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FIGURE 1.11 Pressure distribution along the depth of a dry-steam and a hot water
reservoir.

depth, comparing a dry-steam reservoir in the Geysers (USA) with a hot
water aquifer in Wairakei (New Zealand).

Huge regions of the Earth’s crust have high temperatures, but lack
permeable rock matrix and geofluid. In those cases, artificial geothermal
reservoirs can be created. The necessary interconnecting fracture system
can be produced by hydraulic fracturing, a routinely used technology in
the petroleum industry.

The first step is to drill a sufficiently deep, mainly inclined well into the
HDR. Then the so-called fracturing fluid is injected under very high
pressure, at a pre-determined depth. The high pressure opens up a large
crack, in a circular plane with a diameter of a few hundred meters. The
aperture created is only a few millimeters wide. The plane of the crack tilts
in the direction of the greatest principal stress o1, the overburden stress,
and runs perpendicular to the direction of the least principal stress.
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FIGURE 1.12 Position of boreholes in Soultz.

The fracturing fluid is a two-phase fluid-solid mixture, containing solid
particles known as proppants. As fracturing fluid is pumped into the
opening crack, proppants spread along the rock surface. The crack re-
mains open as long as the pump produces the necessary high pressure.
Once the pump stops, the fracturing fluid’s pressure decreases to hy-
drostatic pressure level and the fracture begins to close. The fluid’s
proppants, typically nut-shell fragments of glass beads, then “prop” the
crack open.

When the fracture is big enough, another well is drilled to intercept it.
This creates a closed loop whereby cold water is pumped down through
the injection well, then flows through the fracture, is warmed up, and
finally returns via the production well to the surface. In this way, the
energy of the deep hot formations is recovered.

The first experiment was carried out in Fenton Hill, New Mexico,
where a single fracture of 40,000 m* was made. Although the heat-transfer
area proved insufficient, a small portable unit was able to generate electric
power. Successful international research efforts have since gone on to
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develop the HDR concept. In HDR projects, multi-fractured, inter-
connecting flow systems are produced. Where very low-permeability
formations are enhanced by hydraulic fracturing to create artificial
reservoirs, the resulting systems are known as EGS (enhanced geothermal
system). The most successful HDR/EGS project to date was implemented
in Soultz sous Forets, France, where a 1.5 MW power plant currently
operates (see Fig. 1.12).
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2.1 ELEMENTS OF TRANSPORT THEORY

Like any other material, a fluid is discrete at the microscopic level. The
dimensions typically involved in engineering problems are, however,
much greater than molecular distance. A mathematical description of
fluid flow consequently requires that the actual molecular structure be
replaced by a hypothetical continuous medium, called the continuum.
This continuum continuously occupies a three-dimensional space, and
can be infinitely subdivided while still preserving its original properties.

Flow and Heat Transfer in Geothermal Systems
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In the continuum model, the actual material is replaced by continuous
functions of physical quantities. The actual physical processes are
represented by the evolution of these continuous functions in space and
time. This spatial- and time-evolution can be expressed by means of
partial differential equations. The value of such a function at a certain
point is obtained as an average value in the infinitesimal volume dV
surrounding the point. The essential mathematical simplification of the
continuum model is that this average value is, in the limiting case,
assigned to the point itself.

This infinitesimal fluid element of volume dV must contain a sufficient
number of molecules to allow a statistical interpretation of the continuum.
When the molecular dimensions are very small compared with any
characteristic dimension of the flow system, the average values obtained
in this fluid element may be considered as variables at a given point. This
infinitesimal fluid element is called a fluid particle. This notion of a fluid
particle is not to be confused with any particle of the molecular theory.

If any material system is left alone for a sufficient length of time, it will
achieve a state of equilibrium. In this equilibrium state, all macroscopi-
cally measurable quantities are independent of time. Variables that
depend only on the state of the system are called variables of state. The
pressure p and the density p are obviously variables of the mechanical
state of the system. The thermal state of the system can also be
characterized by the pressure and density, but it is an experimental
observation that the density of the system is not solely a function of its
pressure; a third variable of state, the temperature T, must be considered.
The relation between the variables of state can be expressed by the
equation of state:

p=rp(p,T) (2.1)

In the equation of state, the density is often replaced by its reciprocal
called the specific volume:

§=— (2.2)
p
In general, it is not possible to express the equation of state in a simple
analytic form (Batchelor, 1967). It can only be tabulated or plotted against
the variables of state. It is obvious that an equation such as:

p=p®T) (2.3)

can be represented by a surface in the coordinate system 9, T, p. This
surface of state consists of piecewise continuous surface parts as shown
later in Chapter 11, Fig. 2.1. It is customary to plot this relation as projected
onto any one of the three planes, p—9%, p—T, or 9 —T. In such a
projection, the third variable of state is treated as a parameter. The most
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X

FIGURE 2.1 Material volume of the flowing fluid.

common diagram of state is that of water as shown in Chapter 11, Fig. 2.2.
Thus we obtain isothermal curves (isotherms) in the p, § plane, the isobars
in the 9, T plane, and the isochores in the p, T plane. The shape of the
surface of state is characteristic of a particular material.

When the energy relationships, and the exchange of work and heat
between a system and its surroundings are considered, it seems to be
necessary to define two further variables of state: the internal energy e,
and the enthalpy i. For a simple system, e and i are functions of any two.
Thus the so-called caloric equations of state express these relationships.
They are obtained experimentally; their graphical representations are the
so-called Mollier diagrams.

Variables of state can be classified as either intensive or extensive
variables.

Intensive variables are related to the points of a system, thus they are
point functions. Velocity, pressure, and temperature are typical intensive
variables. Intensive variables can relate to a finite region only if their
distributions are uniform. In this case, both the values of a variable
relating to the whole region, and that relating to a part of it must be the
same.

Extensive variables are related to a finite region of a system, thus they
are set functions. The mass of the system is such an extensive variable,
and so are the volume, momentum, energy, entropy, etc. Set functions are
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FIGURE 2.2 Multiple connected material volumes.

additive; for example the momentum of a certain body is equal to the sum
of the momentums of its parts. Specific quantities such as density or
specific enthalpy would seem to be intensive variables since their values
vary from point to point in the manner of point functions. There is,
however, an essential difference between such specific quantities and real
intensive variables. The specific quantities may be integrated over a
region thus producing an extensive variable; for a real intensive variable,
such an integration has no physical meaning.

Intensive and extensive variables play different roles in physical
processes. The state of a material system can be determined by as many
extensive variables as there are types of interactions between the sys-
tem and its surroundings. An interaction of certain type may induce
either equilibrium or a process of change. A characteristic pair of
intensive and extensive variables are associated with any interaction.
The characteristic intensive variable is that one which is uniformly
distributed at equilibrium. For instance, experimental observations
show that thermal equilibrium can exist only if the temperature has a
uniform distribution throughout the whole system. A homogeneous
velocity distribution is associated with the condition of mechanical
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equilibrium. A system with a uniformly distributed velocity U is at rest
in a coordinate system moving with the velocity U. Thus temperature
and velocity have particular significance as the characteristic variables
of thermal and mechanical interaction.

If the distribution of the characteristic intensive variable is not
homogeneous, the equilibrium condition is terminated and certain
processes are induced accompanied by changes in the extensive variables.
These changes are directed so as to neutralize the inhomogeneity. Fluxes
of extensive quantities may be convective, i.e., transferred by macroscopic
motion; or conductive, ie., transferred by molecular motion only.
Conductive fluxes can be expressed by the product of a conductivity
coefficient and the gradient of the characteristic intensive variable. These
conductivity coefficients are important material properties.

2.2 BALANCE EQUATIONS

2.2.1 The Principle of Conservation of Mass

The principle of conservation of mass states that the mass of a body is
constant during its motion. This can be stated in the rate form as the rate
of change with time of the mass of a body being zero. It is obvious that for
a material system the above statement can be expressed mathematically.

Consider the volume V(T', ) flowing with the fluid. It is constituted of
the same particles of fixed identity. The volume V(T’,t) and its bounding
surface A(T',t) vary in time representing successive configurations of the
same fluid particles. This is illustrated in Fig. 2.1.

Let an infinitesimal volume element be located at a point
P, characterized by the position vector T, within the flowing volume
under consideration. The scalar density point function p(T’, t) is the sum
of the infinitesimal mass elements, thus it is the volume integral of the
density over the volume V(T',t). The principle of conservation of mass
can be expressed as the material derivative of this volume integral:

% / pdV =0 (2.4)
14

Applying Euler’s transport theorem, this expression becomes:

%’t’dv T / pvdA =0 (2.5)
v (A)

Therefore, the sum of rate of change of mass within the fixed volume V,
which is an instantaneous configuration of V(t), and the mass flux PV
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across the bounding surface of Vis zero. The first term represents the local
rate of change of mass within the fixed volume V. The surface integral
represents the mass which crosses the bounding surface A. This convec-
tive mass flux equals the local rate of change of mass.

A conductive mass flux may also occur, primarily as the result of a
concentration gradient. This is the so-called ordinary diffusion. The
conductive mass flux j is given by Fick’s law:

T =—Dgrad p (2.6)

where D is the so-called diffusivity. This is one of the characteristic
physical properties of the fluid, with dimensions (m?*/s).

Within the volume V under consideration, there may also be mass
sources or sinks; for instance, the rate of mass produced within V by
chemical reactions. (Note that conductive mass flux, sources and sinks
relate only to some species of mass.)

If this is the case, the mass balance equation becomes:

/6p‘ dv + / (in_f—Di grad pi>dX:/EidV; i=1,2,..n (27)
\'

where £ is the strength of the sources or sinks per unit volume. Either of
these equations represents the mass balance equation for the i-th species.
When all n equations are added together, one obtains:

dp — 1A
3t —dV + pvdA =0 (2.8)

v (A)

Since the total mass of the body is always constant, it is necessary for
the conductive fluxes (the sum of the sources and the sinks), to vanish.

The conservation of mass equation may be rewritten in differential
form. The term representing the surface integral may be transformed into
a volume integral by means of Gauss’s divergence theorem:

/ Bt + div(pV )} dv =0 (2.9)
\%

Since the limit of integration is arbitrary, and p and V are continuous
functions with continuous derivatives, the integrand must be zero.
Removing the integral signs, we obtain the well-known continuity
equation; the differential equation form of the law of conservation of
mass:

ap
a-f'dlv( V)=0 (2.10)
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This equation can be expanded both for Cartesian and cylindrical
coordinates:

dp 9 9 3

E + &(QVX) +®(pVy) +£(pvz) =0 (211)
dp 10 19 3
at trar PV T g (PVe) + g, (V) =0 @12

The continuity equation may be transformed into:

dp
at
It is clear that the first and second terms represent the local and the

convective terms of the material derivative of the density field. Thus we
obtain:

+V grad p+pdiv vV =0 (2.13)

d
P pdivv =0 (2.14)
dt
For a fluid of constant density, this equation reduces to:
divv =0 (2.15)

whether the flow is steady or not, i.e., whether or not the flow is locally
time-dependent.

The principle of conservation of mass may be formulated in either
integral or differential form. Both forms express the same physical
principle. When applying the integral form, it is important to remember
that the enclosing surface A must be closed; it encloses a finite volume V of
the space through which the fluid flows. Some parts of the boundary
surface may consist of real material boundaries, such as pipe walls. Since
solid walls are impervious, the normal component of the velocity at the
wall must be zero, i.e., here Vd A = 0. Thus a solid wall is always a stream
surface. Sometimes the control volume V includes an immersed body
which interrupts the continuity of the fluid as shown in Fig. 2.2. In this
case, the control volume is a multiply-connected continuous region, and
thus the continuity equation cannot be written in the form of Eq. (2.5). The
discontinuity within the fluid mass must be excluded by introducing an
additional control surface (Aj;) around its boundary, while it is also
necessary to introduce a cut (A3z), which makes the volume V into a single
connected region bounded by a single closed surface (A + Ap + A3). In
this manner, formulas written in integral form may be
rendered applicable to flows involving discontinuities. In general, the
integral form of a balance equation describes the relationship between
certain quantities within a finite volume and across its bounding surface.
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Differential balance equations, on the other hand, express the
relationships for the derivatives of these quantities at a given point of the
fluid. Most of the problems treated in this book make use of differential
equations, but there are many cases in which application of the integral
form is the more suitable.

2.2.2 The Balance of Momentum

Newton’s second law of motion is perhaps the most
important statement in the field of dynamics. As is well-known, this
states that the rate of change of the momentum of a body equals the sum
of the external forces acting on it. To apply this law to a flowing material
fluid system, consider the volume V, bounded by the simple closed
surface (A), made up of the identical particles of fixed identity. The
momentum of an infinitesimal volume element of the fluid is pvdV.
Since the momentum is an extensive flow variable, the total momentum
of the mass of fluid under consideration is the integral of the infinites-
imal momentum over the material volume V. The rate of change of
momentum is obviously expressed by the material derivative of this
volume integral.

The external forces acting on the fluid are of two types; body forces and
surface forces. Body forces arise either from action at a distance such as
the gravitational or electromagnetic forces, or they occur by reason of the
choice of an accelerating frame of reference, e.g., the centrifugal force or
the Coriolis force. Such a body force is proportional to the mass, and may
be represented by the vector g per unit mass; summed over the volume it
is the volume integral of pgdV.

The surface forces are due to whatever medium is adjacent to the
bounding surface (A) for example the solid wall of a pipeline or the
adjacent fluid mass around a jet. The intensity of the surface forces acting
on a unit surface is represented by the stress vector t, , thus the force
acting on an infinitesimal surface area dA is equal to TdA. The total
surface force acting on the fluid inside (A) is the surface integral of t TdA.

These mathematical terms become:

;t / pvdV = / pgdV + / tTdA (2.16)
\Y (A)

There is a further essential difference between body forces and surface
forces. While g is a single-valued vector point function, the stress vector
t can adopt infinitely many vectorial values at a given point for each
orientation of the unit normal vector of the surface element dA. The field
of the stress vectors t isnota regular vector field. The stress vector is not
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a vector point function. It is a function of both the position vector T" and
the direction of the unit normal vector, thus:

T =t(7,t7n) (2.16a)

The totality of all possible corresponding values of tand Wata given
point defines the state of stress. To determine the state of stress is possible
without specifying every pair of stress and normal vectors.

In spite of this, we shall express surface forces in the form of a point
function. This is made possible by introducing the concept of the stress
tensor.

Cauchy’s theorem allows us to express the stress vector for a fixed
value of r as T varies. Cauchy’s theorem can be stated as follows: if the
stress vectors acting across three mutually perpendicular planes at a
given point are known, then all stress vectors at that point can be
determined. They are given by the equation:

T=T(7,t)-70 (2.17)

as linear functions of a Cartesian tensor of second order. This
second-order tensor is independent of the unit normal vector of the
surface. It is a tensor point function, which determines the state of stress
of the fluid. T1is called the stress tensor. Eq. (2.17) can be written in matrix
form as:

t tyx tyx  tax Ny
ty = |ty tyy tzy ny (2.18)
tz txz thyz tzz ny

Examining this matrix equation, it can be easily recognized how the
matrix of the stress tensor maps the normal vector 7 into the stress vector
"t In this sense, the stress tensor completely determines the state of stress.
Knowing the components of the matrix, the stress vector can be obtained
for any arbitrary surface if its (unit) normal vector 1 is known. The
components of the stress vector in the Cartesian reference frame are
given by:

N

— - -
t = (tox + tyxny + txnz) 1+ (tyhx + tyyny + tzyny) j (2.19)

R
+ (tyznx + tyzny + tznz) k

As it is shown in Fig. 2.3, the first letter in the index of a stress tensor
element designates the reference axes, which are perpendicular to the
plane in which the stress occurs. The second letter designates the direction
of this component. The normal components ty, tyy, and t,, are the normal
stresses the others, tyy, ty, etc, are the shear stresses. An
alternative notation is to replace tyy, tyy, and t,,, with oy, oy, o.
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FIGURE 2.3  Stress components on an infinitesimal fluid element.

Applying Euler’s transport theorem, and replacing the stress vector
by the stress tensor, the balance of momentum equation can be
written as:

/ a(gtv)dv+ / pV (VAA) = / pgdV + / TdA (2.20)
\% (A) \ (A)

The first term on the left-hand side of the equation expresses the rate
of change of momentum within the fixed volume V. The second
term represents the convective momentum flux which crosses the
bounding surface of the fluid mass. On the right-hand side, the first
term represents the resultant body force while the second
one represents the resultant of the surface forces acting on the
bounding surface.

The balance of momentum equation may be rewritten in differential
form. Its surface integrals may be transformed into volume integrals by
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means of the divergence theorem. We first apply this to the identity, which
relates to the convective momentum flux, regarding the identity:

/ oV (VAR) = / p(To7)dA (2.20a)
(A) (A)

thus we obtain:

a e d
/ [ (gtv) + Div(p7°7)] dv = /(p§ LDvT)AV  (221)
\
Since the limits of integration are arbitrary and the integrands are
continuous functions with continuous derivatives, the integral signs may
be removed, yielding the differential equation:

d(pV)
at

The total rate of change of the momentum within the unit volume equals
the external forces acting on it. The local and the convective derivatives of
the momentum can be clearly recognized on the left-hand side. Of interest
is the second term on the right-hand side of the equation, which represents
the resultant of the surface forces acting on a unit volume of the flowing
fluid. This resultant surface force is a vector point function which depends
only on the position vector and time. It is independent of either the chosen
coordinate system or the shape of the unit volume. Div T forms a vector

+Div(pVeV)=pg +DivT (2.22)

field in contrast to the stress vector ?, which is also a function of the unit
normal vector. The divergence of the stress tensor field expresses the
inhomogeneity of the state of stress of the flowing fluid.

There is another way to express completely the state of stress at an
arbitrarily given point. Three stress vectors obtained on each of three
mutually perpendicular planes at a given point are sufficient for this
purpose. Choosing three planes perpendicular to the coordinate axes the

appropriate stress vectors ty, tyand t, may be written in terms of its
orthogonal components as:

— — — —
tx =t 1 +txy ] +te k

— — —
Ty =ty i +tyj +ty, kK (2.23)
— — — —
t, =t i +tzy] +t k

It is obvious that the divergence of the stress tensor can be replaced by
the equivalent expression:

DivT=—">+—2+ (2.24)
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It should be noted that stress vectors ?X, ?y and ?Z and the scalar
components of stress vector:

— —- — —
t=ti+tyj +tk
are merely different quantities.

Let us examine a further physical property of the stress tensor. The
momentum equation may be written as:

I(pV)
ot

The terms representing the local and the convective momentum flux
are easily recognized. In this form the physical meaning of the stress
tensor is very obvious; the stress tensor T represents the conductive flux of
the momentum. This conductive momentum flux is transported by virtue
of molecular motion, i.e., the continual random interchange of molecules
between adjacent fluid elements produces a transfer of momentum. This
phenomenon can be described by the laws of probability and the methods
of statistics; from probability distributions it is possible to determine
averages or mean values for such parameters as velocity, pressure, etc.
These mean values can then be related to the macroscopically measurable
quantities. Molecular motion disperses the momentum. This tendency of
equalization occurs macroscopically as a deterministic process. This is the
reason why it is possible to give a phenomenological description of the
conductive momentum flux in a continuum.

The idea of a momentum flux without accompanying macroscopic
motion may be unfamiliar. Let us consider an example of this from the
field of petroleum engineering. Imagine a pump connected to a pipeline.
The pipeline-filling fluid is at rest. Starting the pump, the pressure
increases, and the fluid flow accelerates quickly. Even if the velocity of the
flowing fluid is about 1 m/s, the acceleration and the increase in pressure
rising propagates as a wave throughout the pipeline with the speed of
sound, some 1000 m/s. As the fluid mass starts to flow faster, the
momentum is transferred by convection, at the velocity of the flow. In this
example the propagation of the pressure increase and the acceleration is
carried out by means of conductive momentum transfer.

Eq. (2.25) is valid for any fluid, and indeed for any continuous medium,
regardless of whether mass is conserved or not. Taking into account the
principle of conservation of mass, the equation of motion (Eq. 2.22) can be
written in a simpler form. Expanding the derivatives of the products on
the left-hand side we obtain:

+Div(pVeV —-T)=pg (2.25)

pV)+p(VV)V =pg +DivT (2.26)
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The second and the third terms on the left-hand side vanish on account
of the continuity equation. Dividing by the density, a very simple and
elegant equation is obtained:

dd: — T+ 1DwT (2.27)

This is Cauchy’s equation of motion, which expresses the balance of
momentum for a unit fluid mass. The scalar components of Cauchy’s
equation in Cartesian coordinates can be easily written as:

0vy 0vy dvy vy 1 [/0ox OTyx 0T

Bt TV ax Ty TV TET ( ax oy | oz

v v v v 1 /0t doy Ot

IVvy y y y il (e AT AT 4

gt Vax T Vvay TV, T8y ( ax Ty oz ) (228)
vy, avy, avy, v, 1(0t, 91y, Ao,

at * ox +Vy8y+vzéz_gz+p<8x dy = 0z

The alternative form of Cauchy’s equation is:

v 1 a?x+aTY+aT’Z 229)
a8 x oy | oz '
Its Cartesian components can be written as:
vy vy vy vy 1 [0t Otyx Oty
Bt T Vax Ty TV, T _<6x 3y | oz
v v v v 1 /0t at at
-y -y Y Y ol (e ) AR
g ax Yoy TVa T8 ( ax oy | oz > (2.30)
v, v, v, v, 1 [ty N ty, N Oty
at * ox Y9 ad ox dy @ 0z

This system of partial differential equations is the so-called stress
equation of motion. There are many types of fluids with many different
types of stress tensor. Thus we have equations of motion for inviscid
fluids (Euler’s equation), for linearly viscous fluids (Navier—Stokes
equation), and further types of equations for the great variety of
non-Newtonian fluids.

In a fluid at rest, all shear stresses vanish, and all normal stresses are
equal:

-p 0 O
T=]10 —-p O (2.31)
0 0 -p
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This is the so-called hydrostatic state of stress, which can be written as:
T=-pl (2.32)

It is an experimental observation that normal stresses are much greater
than shear stresses, and there is a class of fluid flow problems, which can
be solved rather precisely by completely neglecting shear stresses. The
model of a perfect fluid is obtained in this way. Substituting Eq. (2.32) into
Cauchy’s equation, Euler’s equation of motion is obtained:

oV o= = 1
— + (VV)V =g — —gradp (2.33)
ot p

Actual fluids exhibit a certain resistance to changes of shape. The
viscosity of a fluid is a measure of its resistance to angular deformation.
This phenomenon can be described only by taking into account the shear
stresses. The first equation for the shear stresses in one-dimensional
viscous flow was given by Newton:

dvy
Ty = M dy (2.34)

Thus, the shear stress is proportional to the velocity gradient. The
proportionality factor p is called the dynamic viscosity coefficient (or just
dynamic viscosity). The kinematic viscosity of a fluid is the ratio of the
viscosity to the density:

v=> (2.35)
p

A fluid for which the viscosity coefficient does not change with the rate
of deformation is said to be a Newtonian fluid. There are certain types of
fluids, especially crude oils and drilling muds, in which the viscosity
varies with the rate of deformation. In this chapter, however, only
Newtonian fluids are considered.

Newton’s viscosity law was generalized by Stokes in tensorial form.

For incompressible Newtonian fluids it can be written as:

T=—pl+20pS, (2.36)

in which:
S:%(VOV—FVOV) (2.36a)

Observations of viscous flows show that two types of flow may occur
depending on the ratio of the inertial forces to the viscous forces in the
flow. Viscous forces predominate in a body or a stream tube of small size,
combined with a relatively small velocity and a large kinematic viscosity.
In this case the fluid flows in well-ordered parallel layers, without any
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mixing. This type of flow is called laminar. Inertial forces predominate
when the sizes and the velocities involved are relatively large, while
kinematic viscosities are small. In most engineering applications, the
latter conditions are satisfied. In such cases the disordered, fluctuating
flow exhibits irregular transverse movements across the adjacent layers,
with intensive mixing. The most obvious property of this type of flow is
that mass, momentum, and energy are transferred across the flow at rates
which are much greater than those of the molecular transport processes
which occur in laminar flow. This type of flow is called turbulent. In the
present chapter only laminar flows are considered.

The Navier—Stokes equation is the differential form of the momentum
equation for Newtonian fluids. Cauchy’s general equation of motion is:

v _
i ®
The constitutive relation of a Newtonian fluid can be substituted into

Cauchy’s equation.
For incompressible flow we obtain:
dv

- 1 —

1
+-DivT (2.37)
p

This differential equation states that the time rate of the momentum of
the unit mass fluid equals the sum of the body force, the pressure force,
and the viscous force acting to it. The last term is the force which resists
the angular deformation.

The most conspicuous feature of turbulent flow is that momentum,
energy, and heat are transferred across the flow by molecular transport
processes (viscous momentum transfer, diffusion), at a rate much greater
than would be the case in a laminar flow. This phenomenon is the result
of additional transport by the random motion of fluid particles across the
flow and the concurrent mixing of the convectively transported
momentum and energy between neighboring fluid elements. In steady
flow, time-averaged mean values are determined. These mean values
can be compared with turbulent fluctuations in a similar manner as the
macroscopic quantities of laminar flow with the thermal motion
of molecules. The particles which mix in a turbulent flow are much
larger than molecules, thus turbulent transport is a much more
intensive phenomenon than the molecular transport process. Thus the
sudden increase in fluid friction or heat transfer is as suitable a method
for detecting the occurrence of turbulent flow as direct visual observa-
tion. The engineer is fortunate in being able to measure such a sudden
increase easily by using the usual equipment of petroleum engineering
practice.
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The velocity of a turbulent flow should be interpreted in terms of a
mean value with a superimposed high-frequency stochastic fluctuation
of irregular, changing amplitude. If instead of a hot wire anemometer,
one uses a Prandtl tube for measuring the velocity, fluctuations cannot be
perceived but only the time-averaged mean value. Thus the velocity of a
turbulent flow can be considered as the resultant of the mean velocity
and the fluctuations. The pressure of a turbulent flow can be similarly
split up:

’

Vi=V+V (2.39)

pe=p+p (2.39a)

where V'; and p; are the real instantaneous velocity and pressure of the
flow, V and p represent their averaged values over a sufficiently long
period of time, and V' and p’ are the fluctuations of the velocity and
pressure about the mean. Reynolds proposed the following
simple relationship for determining the mean values:

t+t
F(T,t) = F(T,t) _1 / Fi(T,t)dt (2.40)

in which F¢(T',t) is some arbitrarily chosen scalar or vector function. The
overbar represents the time-averaged value of F;. Assume the existence of
a time interval ty, which is large relative to the time interval of
a fluctuation, but relatively small compared to the time interval over
which the mean velocity was determined. Averaging over this interval
yields a result which is independent of ty, and remains unchanged during
further averaging processes. Thus:

F(T,t) =F(T,t) (2.41)

i.e., the further time average of the time average remains unchanged. This
mean value is not necessarily constant; all time-averaged functions can
undergo slow variations, but the time-dependence of the macroscopic
phenomena is of a different order of magnitude than the period of
the turbulent fluctuations. Consider for example, the velocity of a
fluid discharging from a tank. The velocity obtained from the Torricelli
equation is the mean velocity v. The turbulent fluctuations
are superimposed onto this mean. As the water level in the tank
decreases, the value of v also decreases. The duration of the discharging T
is considerably greater than the time interval over which ty is averaged,
which may be the time used to measure the outflow velocity by means of a
Pitot tube.
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It follows from Eq. (2.41) that the time average of the fluctuations is
Zero:

F(T,t) =F(7,t) = F(T,t) =0 (2.42)

A consequence of Eq. (2.40) is that the time average of a spatial de-
rivative is equal to the spatial derivative of a time-averaged function,
since the time-averaging operation is independent of the differentiation
with respect to the coordinates:

aF,  oF

ax  Ox

The same relationship is also valid for the partial derivative w.r.t. time
which relates to large scale changes in time:

dF, _ 0F,
ot ot
Reynolds, using the above method of time-averaging, stated that the
Navier—Stokes equation is also valid for turbulent flow provided that the
instantaneous value V', and p; are substituted into it. It is necessary to
carry out the averaging using Eq. (2.40) in order to replace the rather
impractical values v’y and p; are substituted into it. It is necessary to carry
out the averaging using Eq. (2.40) in order to replace the rather imprac-
tical values V'y and p; by the readily measurable values V' and p, which
already are suitable for boundary conditions.
Consider the equation of motion for a viscous fluid in integral form,
substituting v’y and py into it. Further assumptions are that the density
and viscosity of the fluid are constant. Thus the momentum equation is:

a(pv)t) — =\ aA — i
/ fn dv + / p(VieVidA :/png— / pdA
\% (A) \ (A)

(2.43)

(2.44)

(2.45)
— — NN

+/u(VtOV—|—V°Vt)dA

(A)

Replacing V'; and p; with the sum of their mean and fluctuations, and
after averaging, we have:

[50v+oviav+ [ p[(7+ 7’)o(v+7’)]dz
v (A)

:/pgdvf / (p+p’)dK

v (A)

+ / u[(7+7')ov+vo(7+7')]dX (2.46)
(&)
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We must consider the following relationship for averaging the term
representing the convective transport of momentum, since for averaging
the dyadic product we have:

(V4 7)e(V+V)= VoV = VoV + Vov 4V oV (247)

The average of the product of the mean velocities remains unchanged,
the average of the product of the mean and the fluctuation is equal to zero,
but the average of the product of the velocity fluctuations does not vanish.
Thus:

(VY ) (VAHTV)=TVoV+V oV (2.48)

The average of the fluctuations vanishes in all other terms. Finally, the
momentum equation can be written in the following form:

/Mdv+ / p(VoV)dA + / p(V o V)dA

ot
v (A) (A)
=/p§dV— /deJr / W(VoV+VeV)dA  (249)
v (A) (A)

The rate of change of the momentum relative to the mean velocity field
is not equal to the resultant of the external forces. The third integral on the
left-hand side expresses the irreversible convective transport of
momentum due to the turbulent velocity fluctuation. If this term is carried
over to the right-hand side of the momentum equation, we can interpret it
as an external force acting on the surface (A) with its work dissipating into
the internal energy of the fluid in a manner similar to the viscous force.
The dyadic product in this term can be interpreted as a second-order
tensor of the apparent turbulent shear stresses:

T =—p(VeV) (2.50)

Its product with the vectorial surface element dA yields at the
bounding surface the apparent external force caused by the momentum
flux resulting from the turbulent fluctuations. It is called the apparent
surface force since in reality this additional turbulent force acts on the
intermixing layers of the fluid rather than on a surface.

The integral form of the momentum equation can be replaced by a
differential equation. The integral equation expresses the balance of
momentum for an arbitrary finite volume of fluid, in contrast, the
differential equation refers to a unit volume of fluid. Using Gauss’
theorem, the surface integrals may be expressed as volume integrals after
which all integrals are taken over an infinitesimal control volume, i.e., the
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earlier finite volume shrinks to a point. By this method we obtain the
equation:
I(pV)

—5 T Div(pVeV)=pg —grad p + pAV + (n + k)grad div v/

’

— Div(p7/ ° V)
2.51)

If the fluid is incompressible and no diffusion occurs, we obtain the
momentum equation for a unit mass after dividing by the density. The
resulting equation has the dimensions of an acceleration:

v —

6_t+ (VV) Vv

7 - %Vp LAY — (V7)Y (2.52)

This is the so-called Reynolds equation, named after its originator
Osborne Reynolds. The equations for the scalar components,
in rectangular coordinates, are:

vy Ivy 0vy vy
Bt T Vax Ty TVea
B 1 dp Py 0Pvi P O~ 07 N\ 07
& pax ( iz oy? | 922 ax (V) = @(wa ~ o, v):
v v av v
Wy oWy %y 9V
at " ox " ay Ve
B 1dp 6vy azvy 62vy a7, 97, , —
8 ey e Ty T ax(79%) =5 (5) = (v
vy, ovy, N vy, v,
3t Yox T Yoy T %oz
1 6p aZVZ d Vz 62VZ ad T ad o ad T
g B (")72 + ( V] + ayZ 972 - ai(vzvx) - @(Vzvy) - a?(vzvz)
(2.53)

It is clear from this equation, that the apparent turbulent stress tensor
has six independent scalar components. There is no relationship
between the apparent turbulent stresses and other kinematical quanti-
ties equivalent to Stokes’s law for viscous stresses. A very good
approximation, however, is provided by Prandtl’s mixing-length theory
for one-dimensional flow. This theory, within its range of validity, is in
excellent agreement with experimental results.
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Invoking the principle of the conservation of mass does not place any
restriction on the general applicability of Cauchy’s equation to
a homogeneous one-phase flow. In multicomponent systems, mass
transfer may be important, thus the equation of motion for any phase
must be used in the form of Eq. (2.22).

2.2.3 The Balance of Angular Momentum

The principle of conservation of angular momentum belongs to the
axioms of mechanics. In spite of its general validity, it has been largely
neglected in textbooks written for petroleum engineers. The treatment of
the equation for the balance of angular momentum is usually restricted
to the verification of the theorem of symmetry of the stress tensor.
Nevertheless the balance of angular momentum equation is of great
value in solving flow problems where torques are more significant than
forces, e.g., in turbomachinery as it is shown in Csanady’s (1965)
excellent book.

The principle of conservation of angular momentum states that the rate
of change of angular momentum of a material volume of fluid V equals
the resultant torque exerted by any external forces on this volume of fluid.
In order to discuss this statement in more detail, consider an arbitrary
material volume V bounded by the closed surface (A), which is moving
with the fluid. Let T denote the position vector of an arbitrary point
within the volume. At this point the infinitesimal mass element pdV has
an angular momentum, relative to the origin of the coordinate system, of

T x pV dV; the torque due the body forces is T x pg dV, and the torque
due the surface forces is T x t dA. Taking the substantial derivative of
the volume integral of the angular momentum over the material volume
V, and integrating the torques over V and (A), we get the equation:

%/?va’dvz/?mg’dwr / T x tdA (254
\% v (A)

Its left-hand side may be transformed as follows:

i/?’xpV}dV:/ i(?xpV})—i—(?xpV’)diVV> dv
dt dt
v \%
= {EXPV + T Xp—— it —|—( X V)(a—i—pdwv)
x}dV
(2.55)
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The first term on the right-hand side represents the cross-product of
parallel vectors (since V' =dT/dt), and thus vanishes. It is easy to
recognize the continuity equation in the third and fourth terms on the
right-hand side, and thus their sum must also be zero. By this means:

R R
a/ T xpvdV_/ r podV (2.56)
\% \%

Apply the divergence theorem to the surface integral in Eq. (3.28)
considering Eq. (3.26):

[ 7 tdA:/[&(?x B 455 (7 T) 5 (7 x T av
(A) N
(2.57)

According to the derivation rule of products the following expression
is obtained:

— 0t, dty ot
— A: — X y ZV
/rxtd /rx(6x+8y+82)d
\%

@) (2.58)

r — 0r — 0r —
+/<ax><tx+ay>< ty+7>< tz>dV

It can be recognized that:

L (0 0ty 9t o
r X + + dV = | 1 x DivIdV (2.59)
ox dy 0z =

In the other hand, it is obvious that:
ir — dr — 0J0r —
—=1i; —=1j; —=k 2.
Ko ey T g : (2.60)
thus the second volume integral of Eq. (3.32) can be written:

/a?x?ﬁ?x?ﬁ?x? av
Ix gy Y oz z

:/(Tx?x+7x?y+?x?z)dv 2.61)
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The cross-products in the right-hand side can be calculated succes-
sively as:

- T
i j k
- - - -
1 X tx=11 0 :_tXZ]+thk
tXX th tXZ
i K
- - - —
ixty=[0 1 0|=-ti+txk (2.62)
tyx by tyz
- — —
i j k
- - - -
kxtz=10 0 1 |=-tyi+tx]j
tzx tZy tzz

Finally, it is obtained:

— —

- - = - -
X tx+j X ty+kxty=(ty, —ty)i +(tx —tx)
—
+ (ty — tyx) k (2.63)

Substituting (3.30), (3.33), and (3.37) into (3.38), after some rearranging
we get:

dv . - -
/? x <pd—‘t] -pg — DlVL)dV = /[(tyZ —tzy) i+ (tx — txz) j
v v

+ (ty — tyx) K]dV (2.64)

Cauchy’s equation of motion in the left-hand side volume integral can
be recognized, thus both sides of Eq. (2.61) must be zero. In consequence
of this, all scalar components of the right-hand side integral are equal to
zero, that is the shear stresses satisfy the following relations.

The sum within the bracket on the left-hand side can be recognized as
representing the momentum equation, which in this form equals zero.
Thus the integrand on the right-hand side must also equal zero. This
condition is satisfied when:

tyz =ty tx =te by =ty (2.65)

This means that the stress tensor is symmetric if the flowing fluid
satisfies the continuity equation, the momentum equation, and the
angular momentum equation. The postulate of the symmetry of the stress
tensor is equivalent to the determination of three scalar functions from
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three scalar equations. If the stress tensor is symmetric the momentum
equation and the angular momentum equation are not independent, one
of them may be chosen to solve a flow problem, while the other is replaced
by the postulate of symmetry.

2.2.4 The Balance of Kinetic Energy

Let Ey denote the kinetic energy of a material volume:

V2
Ey = / pdv (2.66)
A\

Although the kinetic energy is an extensive variable, it is not a quantity
which is conserved. Thus the balance equation of kinetic energy does not
express a conservation law (Batchelor, 1967). It is not an axiom of me-
chanics, and can be derived from the continuity and the momentum
equations.

Using the transport theorem, the rate of change of Ey can be written as:

d v2 d/ v? v,
dt/Pde—/dt<p2)dV+/p2dlv v dv (2.67)
A% A% %

The integrands of the right-hand side of the equation are readily
obtained. Multiplying Cauchy’s equation of motion by V:

pv%’ —pgV +VDivT (2.68)
2
By similarly multiplying the continuity equation by V?:
vidp v ..
73—‘!‘7[) divv =0 (269)

Adding the two equations we get:

_dv v%dp v2

pv¥+?a+p?div7:p§7+7DivT (2.70)
From the chain rule it follows that:
.dv d [v?
Ve (E) 2.71)

It is similarly obvious that:

d [v? vidp d [/ v?
P&t (7) 7 a T ("7> @72)
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Thus Eq. (2.70) can be written as:

d v2 v2 .= —— =
a(p?>+p?dwv =pg Vv +VDivT (2.73)
Applying the identity:
div(TV) = VDivT +T: VoV (2.74)
the following expression is obtained:
2 2
jt(pvz> FpLd T = pET +d(IT) T VoY (275)

This equation can be integrated over an arbitrary volume V to give:

2 2
/%(p%)dV—f—/p%dideV:/p§7dV

v v v (2.76)
+ / div(TV)dV — / T: ¥ ovdV
\ \%

Applying the transport theorem to the left-hand side and the diver-
gence theorem to the second integral on the right-hand side of the
equation, we get:

2
%/p%dvz/pgv’d\ur / V’TdK—/T:v’onv (2.77)
\ v (A) \Y

This equation states that the rate of change in kinetic energy of a
moving material volume is equal to the rate at which work is being done
on the volume by the body forces and the surface forces, diminished by a
“dissipation” term involving the interaction of stress and deformation.
This latter term must represent the rate at which work is being done
in changing the volume and shape of the fluid body. A certain proportion
of this power may be recoverable, but the rest must be accounted for
as heat.

The local and the convective rate of change of the kinetic energy may
also be separated applying the transport theorem:

2 2
/i<pz>dv+ / p%VdX+/T:7°VdV
v (A) v

_ / pT VAV + / TTdA (2.78)
\ (A)



2.2 BALANCE EQUATIONS 45

In this equation the first term on the left-hand side represents the rate of
change of kinetic energy within the fixed volume V. The next term
represents the convective kinetic energy flux which crosses the bounding
surface of this volume. The third term represents the loss of kinetic energy.
This rate of work is transformed into internal energy; this transformation
of work into heat is irreversible.

The balance of kinetic energy equation can be also written
in differential form. The material derivative of the specific kinetic energy
may be separated into the local and the convective parts:

d v2 d v2 _ v2
at (p 7) =5 (p ?) + Vv grad (p 7) (2.79)
It should also be remembered that:
2 2 2
Vv grad (p %) + VTdiv vV =div (p%?) (2.80)

Substituting these into Eq. (2.75), we obtain:

ad v2 v? —— —
( >+d1V<p—V—VT> pgVv —T: VeV (2.81)

at 2

It is clear that the first term represents the local rate of change of the
specific kinetic energy within a fixed unit volume. The divergence term
includes the convective and the conductive kinetic energy fluxes. The
terms on the right-hand side represent the sources and sinks of the kinetic
energy. The power of the external forces gv refers to a source, the kinetic
energy loss T : VoV reflects a sink.

Note that the balance of kinetic energy equation is a scalar equation in
spite of the vector and tensor variables in it. In Cartesian coordinates we
can write:

9 [ v? d v2

It p? + Ix p7VX — OxVx — TxyVy — TxzVz
V2

+ @ pjv}; — TyXVX — GyVy — TyZVZ

0z

GVX Oy vy dvy vy
— 6+xyay+xza+yxa+y6y

0 v2
+ — (p 7VZ — ToxVx — TzyVy — GZVZ> = p(ngx +8yVy + gzvz) (2.82)

+1 9vy Y41 Ov L1 GVZJrcr%
yZa ZXa Zyay ZaZ
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An important special case is that where the body forces form a
conservative field, in which:

g =-grad U (2.83)
The conservative field is steady, i.e.:

U

i 0 (2.84)
Thus the material derivative of the potential is simply:
i—[j =7V gradU (2.85)

The scalar function U(T’) is the potential energy of a unit fluid mass. It
is an extensive variable, thus the total of the potential energy of a fluid
mass within a volume V is:

J = / pUdV (2.86)
\%
It is easy to see that:
d dUu dp .
a/pUdV—/pEdV—i—/(Ua%-Updw V)dV (2.87)
\% \% \%

Thus the rate of work done by external body forces may be expressed
as the potential energy flux per unit time:

/ pgvdV = % / pUdV (2.88)
\' \%

Substituting into Eq. (2.59), we obtain the balance of kinetic energy
equation in a conservative field:

2 —
%/(%-ﬁ-U)pdV—k/T:vonV: / VTdA (2.89)
\Y% \Y (A)

It can be seen that the rate of change of the sum of the kinetic and po-
tential energy and the rate of conversion into internal energy equals the rate
of work done by surface forces when the fluid flows in a potential field.

This is the general form of the balance of kinetic energy equation. Its
special forms can be derived in accordance with how the stress tensor
differs for certain type of fluids. These will be treated in detail in the
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sections dealing with the dynamics of perfect fluids, Newtonian fluids,
and different types of non-Newtonian fluids.

2.2.5 The Principle of Conservation of Energy

Any material system is characterized by its energy content. Energy
occupies a position of distinction amongst the other extensive variables.
Whatever interaction occurs between a material system and its
surroundings, the transfer of energy invariably accompanies the transport
of other extensive variables. Certain interactions are accompanied the
transport of a certain type of energy. Kinetic energy increases or decreases
due to mechanical interactions; a change in internal energy accompanies
thermal interactions (Truesdell and Toupin, 1960).

But the fundamental axiom is the principle of conservation of energy,
which applies to closed systems only. The energy content of an open
system may change depending on the action of its surroundings.
Consider a system in mechanical and thermal interaction with its
surroundings. In this case, the change in the total energy is the change in
the sum of the kinetic and the internal energy:

dE d v2

\%

where ¢ is the specific internal energy.

The action of the surroundings may take the form of mechanical work
and/or heat.

The application of the principle of conservation of energy to this open
system leads to the equation:

2
% / (VZJre)pdV / pE VAV + / VTdA — / qdA (291
\% v (A) (A)

The rate of change of the kinetic and internal energy within the material
volume equals the sum of the rate of work done by external body forces, the
rate of work done by surface forces, and the rate at which heat is conducted
into the volume of fluid. The heat flux vector q has the dimensions (W / m?).

Applying the transport theorem, the material derivative can be
replaced by a local and a convective part:

2 2 -
/(%(%-I—e)pdv—i— / <V7+e)p?dA—/p§’?dv
A\

\Y (A

) (2.92)
+ / VTdA — / qdA
(A) (A)
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In this equation, V and (A) do not represent a moving volume and
surface; rather they are instantaneous configurations fixed in space. Thus,
the first term gives the local rate of change of the kinetic and internal
energy in the fixed volume V. The second term expresses the convective
fluxes of the kinetic and internal energy due to the bulk flow across the
fixed boundary surface (A).

By using the divergence theorem, the surface integrals can be replaced
by volume integrals. Since the volume V is arbitrarily chosen, the equations
are also valid for the integrands. In this way we obtain the energy equation
in differential form. The material form of the equation can be written:

d

2
P (V? + e) =pgV +div(VT) —div q (2.93)

The local (spatial) form is obtained as:

d v2 . v2 - — — ——
rlCREIL + div S +e)pV -VT+q| =pgV (2.94)

It can be recognized that the first term is the local rate of change of the
sum of the kinetic and the internal energy content of the unit fluid
volume. The second term represents the convective and the conductive
fluxes of these energies. On the right hand side the power of the body
forces acts as the source of the energy change.

The balance equation of the kinetic and internal energies in this form is
valid for open system. It is the more general form of the first principal law
of the thermodynamics.

2.2.6 The Balance of Internal Energy

Subtracting the kinetic energy equation from the total energy equation,
we get the equation for the balance of the internal energy:

a%(ps)—kdiv(ps?—kq)) =T: VeV (2.95)
In integral form this can also be written as:
d — =N —
/&(ps)dVJr / (peV + q)dA = /T: Vv oVdV (2.96)
N4 (A) \%

It is easy to recognize the terms representing local and convective flux of
the internal energy. There is also a term representing a flux of a
non-mechanical power; the heat flux. The term on the right-hand side of
the equation represents a source of internal energy. This is the mechanical
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contribution of its increase. While —T : V oV represents a loss of mechan-
ical energy, it produces internal energy within the volume V. If the flow is at
rest V = 0, thus the balance of internal energy equation becomes:

%(ps) +divq =0 (2.97)
Substituting:
e=cT (2.98)
and:
q=-kgrad T (2.99)

The well-known differential equation for the conduction of heat is
obtained:

%(ch) = div(k grad T) (2.100)
Assuming that the density, the heat capacity, and the coefficient of

thermal conductivity are constant, we get:

0T  k [0®T 0°T o°T
il i B 2.101
at pc <6x2 * dy? + dz2 (2.101)
For the steady state, this can be written in the simple form:
2 2 2
T T T
('9_ g 6_ = (2.102)

0x2+W+6Z2 a

2.2.7 The Balance of Entropy

The entropy is a thermodynamic variable of states; the characteristic
extensive quantity of the thermal interaction. It cannot be experienced
directly; as a derived variable, entropy represents a measure of the
irreversibility of a change of state.

Irreversible changes of state necessarily involve currents in the system.
The increase in entropy during an irreversible process must be related to
these currents.

Entropy is not a quantity which is conserved. There is no axiom to
determine the rate of change of entropy during an irreversible process.
Thus we can only derive the balance of entropy equation by starting from
the internal energy equation:

de

dt+diva=T:7ov (2.103)

p
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Separating the dissipative part of the stress tensor we get:

T=-—pl+T, (2.104)

where p is the pressure, I is the unit tensor, Ty is the viscous stress tensor.
Since Ty is symmetrical, the product of Ty and the asymmetrical part of
V' oV must vanish. Thus:

de

Pt

where S is the rate of deformation tensor. The first principal law of
thermodynamics can be written as:

+divq = —pdiv v +Ty:S (2.105)

1
de = Tds — pd (E) (2.106)
where s is the specific entropy. Dividing by dt, we get:
de ds d /1
A N 2.107
dt - dt pdt(p) (2107)
Substituting this into the internal energy equation, and since:
d /1
divVv =pp— (-~ 2.1
pdiv v =pp <p) (2.108)
we obtain:
ds .=
pTa =T,:5—div q (2.109)

Dividing by the temperature we have:

ds Ty:S divg

@ T T (2.110)
Using the identity:
(q\ 1, — qgradT
div <?) = lev q - — (2.111)
The local form of the balance of entropy equation can be written as:
aps) . — qQ\ _Tv:S qgradT
e + div (ps v + T)" T T (2.112)

It is easy to recognize on the left-hand side, the terms representing the
local rate of change of the entropy, its convective flux psV, and its
conductive flux q/T. On the right-hand side of the equation, terms
representing the entropy sources are found. The inclusion of the
conductive flux term in the entropy equation shows that entropy is
always exchanged simultaneously with the internal energy.
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Considering the source terms, it is obvious that the absolute
temperature is always positive, while the dissipating mechanical power is
also positive, i.e.:

T>0, Ty:S>0
Since:
q=-kgrad T (2.113)

the right-hand side of the equation, i.e., the source of entropy, can only be
positive, thus:

Ty:S grad T\?
> .
T +k( = ) >0 (2.114)

The internal energy flux always produces an increase in entropy,
therefore a certain fraction of the total energy content is lost. This is in
accordance with the second law of thermodynamics.

2.3 MECHANICAL EQUILIBRIUM OF FLUIDS

If the velocity field is equal to zero throughout the entire field, i.e.:
V=0

the fluid body is in mechanical equilibrium.
Substituting this into the balance of momentum equation, a simple
expression is obtained:

0= / pgdV + / TdA (2.115)
v (A)
The concept of fluidity entails that tangential stresses cannot exist at
rest. Thus, the stress tensor can be obtained as:
T=—pl (2.116)

It may then be shown from equilibrium considerations that the normal
stress at any point has the same value in all directions. This state of stress
is called hydrostatic, and can be written in matrix form as:

-p 0 O
T=]10 —-p O (2.117)
0 0 -p

where p is the hydrostatic pressure, which at a given point is uniform in
all directions.
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As is well known, the stress tensor has one set of orthogonal axes — the
three principal axes — for which the shear stresses vanish, and along
which only the principal normal stresses 61, 62, and o3 exist. Note that
these three principal stresses are generally not identical; only the
hydrostatic normal stresses are the same in all directions.

For a compressible fluid, the pressure is a well-defined thermodynamic
variable of state which satisfies the relation:

Tds = de + pd <%) (2.118)

It should be noticed that this equation defines fluid pressure as a
thermodynamic variable. Therefore, in general:

p=p(p,S) (2.119)
For an incompressible fluid a simpler relation is introduced:
Tds =de; p = const. (2.120)

Consequently pressure does not enter into the thermodynamic
treatment of an incompressible fluid; it is an entirely different type of
variable.

For an incompressible fluid the pressure is not a thermodynamic
variable. It is merely a scalar variable, satisfying the momentum equation:

0= / pgdV — / pdA (2.121)
v (A)

Applying the divergence theorem, the surface integral is changed into
a volume integral, from which we get:

pg —gradp =0 (2.122)

This is the law of hydrostatics; its scalar component in rectangular
coordinates is written as:

d
pg, = 6—5 (2.123)
d
pgy = % (2.124)
Ip
== 2.12
PE. =5 (2.125)
After substituting v’ =0, the continuity equation becomes:
d
P _9 (2.126)

it
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This equality expresses the condition that the density field must remain
steady for the equilibrium state to be maintained.
The internal energy balance at rest can be written as:

p% — _divg 2.127)

This determines the temperature distribution at rest.
To determine the shape of a free fluid surface, the curl of Eq. (2.126) is
first taken. Since:

curl grad p=0 we obtain
pcurl g+ grad pxg =0 (2.128)

Multiplying this equation by g, the second term vanishes. The only
term which remains is:

gcurl g =0 (2.129)

Expressing this in rectangular coordinates we get:

agz agy agx agz agy agx
22— == — =] = 21
gX<ay 52 ) T8z “ax ) T8\ Gk Tay) 70 @130
This equation places a restriction on the body forces. Mechanical
equilibrium can exist only if the body force field satisfies the above
equation. It is clear that this condition can be satisfied by all conservative

body forces, i.e., those which can be derived from a scalar potential
such as:

g = —gradU (2.131)

Since curl grad U = 0, Eq. (2.130) is satisfied.
In this case, the first term of Eq. (2.131) vanishes. The second term can
thus be written:

grad pxgrad U =0 (2.132)

Therefore, the potential surfaces of the body force coincide with the
surfaces of constant density. It can be seen that these surfaces are
perpendicular to the resultant of the body forces. This is why the free
surface of a liquid in a gravity field is horizontal.

For a conservative body force, the hydrostatic equation can be written
as:

p grad U = grad p (2.133)
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Therefore, the equipotential surfaces coincide with the isobaric
surfaces.

The pressure distribution for a gas at rest is easily determined, since
pressure and density are directly related variables:

p=p(p), p=p(p) (2.134)

A fluid in which density and pressure are directly related is called
barotropic. In this case, the pressure force acting on a unit mass of gas has
a potential g, thus:

dp

%grad p = grad ' grad p (2.135)

< S~

p
For a barotropic fluid in a conservative body force field, the hydrostatic
equation is given by:
grad(U+ ) =0 (2.136)
or, in another form:

U + o = const. (2.137)

For the atmosphere in the gravity force field, assuming a uniform
temperature distribution, the gravity potential is given by:

U =g(z—2zp) (2.138)

where z is the vertical coordinate, and z; is its value on the ground
surface.
The barotropic potential for the isothermic case can be expressed as:

p p

@:/d_P:&/d_P:&lnﬁ (2.139)
P PoJ P Po Po

Po Po
The equilibrium equation is obtained as:

g(z —z9) + Poin P — const. (2.140)

Po Po
The boundary condition z = zy; p = pp shows the constant to be zero.
Thus the pressure distribution along z is:
p
P(2) = poexp 22 (2 — z0) (2141)
Po
where zj is any reference height and py and pg are the corresponding
pressure and the density.
The pressure distribution for an isentropic or a polytropic fluid can be
similarly derived.
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For an incompressible fluid, the hydrostatic equation is obtained in
terms of the gravity field as:
—pgrad U =grad p (2.142)
or:
p + pU = const. (2.143)
The pressure distribution is given by:
p — pgz = const. (2.144)

Since at the free surface z=0 and p=pp, and introducing a
depth-coordinate h = —z, we get:

p =Py + pgh (2.145)

This is the most frequently used equation in hydrostatics.
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3.1 PROPERTIES OF POROUS MEDIA

The porous media of principal interest in our study are the rocks from
underground formations that contain geothermal fluids. These rocks may
be classified by their chemical composition: sandstone, limestone, dolo-
mite, clay, etc.

Large parts of geothermal reserves of the world are contained in
sandstone formations. Geothermal brine reserves of Hungary are found
mainly in sandy and sandstone aquifers. Sandstone consists of grains of
quartz, usually cemented together with argillaceous materials. Often
hydratable materials such as montmorillonite, kaolinite, or illite clays are
contained between the quartz grains in sandstone.

Flow and Heat Transfer in Geothermal Systems
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The most valuable geothermal reserves of the world are contained in
limestone reservoirs. By common terminology, limestone reservoirs
include those formations made of limestone, calcium carbonate, and those
made of dolomite, the double carbonate of calcium magnesium.

Clay and shale layers are mostly the impervious boundaries of
permeable reservoir rocks. The porosity of a porous medium is defined as
the void volume, divided by the total (bulk) volume of the medium:

Vpore
* Viuk GD
where ¢, is the absolute porosity, Vpore is the pore volume (m?), and Vpyix
is the bulk volume (m?). This fraction is called absolute porosity.

The so-called effective porosity has more practical importance. It is
defined by as the fraction of the interconnected pore volume to the bulk
volume of the porous body:

Vet
Viulk

Dot = (3.2)
where ¢ is the effective porosity, Ve is the interconnecting pore volume
(m?), and Vi is the bulk volume (m®). In the following equations, ¢ will
denote the effective porosity.

Void or pore volumes are usually determined by measuring either
gravimetrically or volumetrically the amount of liquid needed to saturate
the dry medium. Pore volumes are also determined by gas expansion
methods. Bulk volumes can be determined from measurements of the
external dimensions of the medium, or from the volume of liquid dis-
placed by immersion of the saturated medium. Porosity may be expressed
as either fractions or percentages.

The average porosity of a very large porous medium, such as the Upper
Pannonian aquifer, may be determined from the porosity of a number of
small core samples of the reservoir rock. A simple arithmetic average will
suffice when sufficient samples are available to obtain a statistical dis-
tribution of porosity in the pore samples.

Different types of porosity may be distinguished. Reservoir rocks are
often classified by the types of pore space that exists in the rocks. The
porosity of sandstone is usually that between sand grains, hence the type
of porosity is referred to as intergranular.

Some sandstone is also fractured.

In limestone, parts of the crystals have often been dissolved into the
groundwater to form a solution type of porosity. Some small isolated
holes have been formed to produce a vugular type of porosity. In still
others, large channels, sometimes a few meters in diameter, have been
formed to produce a cavernous type of porosity. Also, limestone often
contains fracture systems which make up a substantial part of the pore
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TABLE 3.1 Typical Porosities

Porous Material Porosity

Sandstone 0.08 ... 0.40
Limestone 0.01...0.20
Sand 0.25 ... 0.50
Clay 0.30 ... 0.60
Shale 0.06 ... 0.35

volume. This type is referred to as fracture porosity. A typical range of
values for porosity commonly measured on various types of rocks are
shown in Table 3.1.

Porous media have been treated so far as rigid; an assumption which
cannot always be expected to be true. The geometric quantities describing
porous media, as introduced, may themselves be functions of certain
dynamic quantities notable of the prevailing stresses. The simplest rela-
tionship between geometrical quantities referring to the porous medium
and the stresses is obtained by assuming the porous medium is perfectly
elastic according to Hooke’s law. The effect of this will be that all the
geometrical quantities relating to the pores are linear functions of the
effective stress. Thus porosity of sedimentary rocks mostly decreases
along the depth.

Considering this porosity distribution it seems to be convenient to
define a local value of porosity by the equation:

_ dVeg

O(T, 1) =— (3.3)

This ¢(T',t) is a continuous scalar function depending on the co-
ordinates and time. It is obvious that these “infinitesimal” volumes must
be a certain order of magnitude smaller than the observed domain, but
great enough to contain a sufficient number of pores or grains to obtain a
statistical limit of porosity.

Another useful method of characterizing a porous medium is that of
determining the size of its pores and the pore-size distribution. While no
one single dimension can describe the size or geometric shape of the holes
between sand grains or crystals if limestone, it is convenient conceptually
to visualize the holes as short, circular capillary tubes.

Then the pressure required forcing a non-wetting liquid such as mer-
cury into the pore spaces can be related to the radius of the pores by:

_ 203 cosa (3.4)

¢ r
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where p is the capillary pressure (N/m?), r is the radius of the pore (m),
d is the interfacial tension (N/m), and « is the contact angle (°).

The pore size distribution can be calculated from an equation of Ritter

and Drake:
f(r) = pc d(V-Vi) (3.5)
r dp,
where f(r) is the pore-size distribution function (m?), V is the total pore
volume (m®), Vj is the volume of the injected non-wetting fluid (m?), and «
is the contact angle (°).

From an experimental curve of capillary pressure versus. the volume of
mercury injected into an evacuated rock sample, the derivative
d(V — V;j)/dp. can be determined at various values of p., by taking the
slope of the curve. Then calculating r at each value of p., the pore size
distribution function f(r) can be calculated for each value of r.

Note that in natural sand, the sizes of the individual particles, thus the
pore size, may vary over a wide range. In meshed sand, the majority of the
particles have about the same diameter, thus the pores have about a
uniform radius. Pore size data can be used for estimating the permeability
of rock samples.

Many porous materials contain enormous surface areas per unit vol-
ume. For instance, the surface area of the grains in sandstone may be of
the order of 500—5000 m*/kg. This value may be 50,000—100,000 m?/kg
for shales. In such processes which involve absorption of materials from
the fluid flowing from the medium, knowledge of the magnitude of the
surface area is essential. The usual experimental method to determine
specific surfaces is from nitrogen-adsorption experiments at constant
temperatures. The gas-adsorption techniques involve determination of
the quantity of gas necessary to form a monomolecular layer on the
surface. Knowing the volume of gas in the monomolecular film, the
number of gas molecules can be determined.

The permeability of a porous medium is a measure of the ease with
which a fluid will flow through the medium; the higher the perme-
ability, the higher the flow rate for a given hydraulic gradient. The
permeability is a statistical average of the fluid conductivities of all
the flow channels in the solid body. This average conductivity takes
into account the variations in size, shape, direction, and in-
terconnections of all the flow channels. While obviously a number of
pores or flow channels must be considered in obtaining a statistically
average permeability, it is often convenient for mathematical purposes
to consider the permeability as the property of a point in the medium. In
a homogeneous medium, the permeability at any point coincides with
the average permeability. In a heterogeneous medium, the permeability
varies from point to point.
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3.2 DARCY’S LAW

Permeability is an experimentally defined quantity. Its theory is based
on the classical experiment originally made by Darcy (1856).

A schematic drawing of Darcy’s experiment is shown in Fig. 3.1. A
vertical cylindrical container of diameter D is filled by uniform grain size
sand. The sand column is percolated by water. If open manometer tubes
are attached to the upper and lower boundaries of the sand bed of height
H, the water rises to the height hy and h; in the tubes. By varying the flow
rate through the bed, the corresponding Q and h; —hy values are
measured. The result is a linear relationship:

DzTChl—hz
Q=K 4 H

where Q is the flow rate (m>/s), K is the hydraulic conductivity (m/s),
hy is the piezometric level at point 1 (m), h; is the piezometric level at
point 2 (m), H is the height of the sand bed (m), and D is the diameter of
the vessel (m).

This relationship is the so-called Darcy’s law; analogous to the
Hagen—Poiseuille law. Here Q is the flow rate of the percolated water, the
hydraulic conductivity of dimension (m/s) depending on the properties

(3.6)

Ah

FIGURE 3.1 Darcy’s experiment.
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of the fluid and the porous medium. A constant of the type K is not very
satisfactory because we would like to separate the influence of the porous
medium from that of the fluid.

Nutting (1930) has already generalized the original form of Darcy’s law
for sand-filled vessels in an arbitrary position:

_ Q _kp;—pp+pglhi —hy)
qA_%_H H

(3.7)

where gy is the seepage velocity (m/s), k is the permeability (m?), p; is
pressure at point 1 (N/m?), p, is pressure at point 2 (N/m?), u is the
dynamic viscosity (kg/(s-m)), p is the density (kg/m?), h; is the piezo-
metric level at point 1 (m), hy is the piezometric level at point 2 (m), H is
the length of the sand bed (m), and D is the diameter (m).

The hydraulic conductivity K is separated into permeability k and
viscosity p. The ratio of the flow rate and total cross-section of the gran-
ular bed is called seepage velocity. This generalized form is valid for any
bed in arbitrary position as it is sketched in Fig. 3.2.

FIGURE 3.2 Generalized Darcy’s experiment.
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The hydraulic gradient J can be easily recognized in Eq. (3.7):
P1—Py  hu—hy

] = ogH + q (3.8)
thus we obtain:
k
da = %J (3.9)

In this scalar form, Darcy’s law is still restricted in its application, as it
is appropriate to a finite bed of very particular geometrical shape. For
greater generalization, it should be expressed as a differential equation
by letting H become infinitesimal. Naturally, in this process qa is replaced
by a vector g which might be called the local seepage velocity vector.
Ferrandon (1948) generalized Darcy’s law in the form:

q= —p—:( grad(U + II) (3.10)

where U is the potential of the body forces, and II is the well-known
barotropic potential:

p
dp
I = e 3.11
/p (3.11)
Po

The body force is mostly the gravity force, thus the potential U is:
U=gh (3.12)
The barotropic potential 7 for an incompressible fluid can be written in

the simple form:

-P (3.13)
p

Therefore, the differential form of Darcy’s law in a gravity field for
incompressible fluid is obtained as:

q= _pk grad <gh + E) (3.14)
p p
or
q= _8k grad (h + 2) (3.15)
v Pg

Hydraulic conductivity K, or permeability k can be determined
experimentally based on Darcy’s law. In laboratory, K or k is measured by
means of an instrument called a permeameter. In a permeameter, the flow
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pattern is one of steady or unsteady one-dimensional flow through a
small, cylindrical porous medium sample. The so-called constant head
permeameter is used most commonly to determine permeability.

The porous rock sample is placed between two porous plates that
provide almost no resistance between them. A constant head difference
Ah is applied across the tested sample, producing a flow rate Q. When
incompressible liquid is used, hydraulic conductivity and permeability
can be determined from Darcy’s law:

QL

=7 Ah

(3.16)

where K is the hydraulic conductivity (m/s), Q is the flow rate (kg/s), L is
the length of the specimen (m), D is the diameter (m), and Ah is the dif-
ference of the piezometric height (m), and:
k= D“& (3.17)
=1 pghh
where k is the permeability (m?).

To obtain more reliable results, several tests are performed under
different heads and flow rates. Various units are used in practice for hy-
draulic conductivity and permeability. The SI unit for K is m/s. Hydrol-
ogists prefer the unit m/day. Permeability k is measured in SI system m?.
Reservoir engineers widely use the unit darcy, defined by:

1 % 1 cm 1 centipoise
1 cm? 1 bar

Thus a porous medium is said to have a permeability of one darcy if a
single phase fluid of 1 cp viscosity that completely fills the void space of
the sample will flow through it at a rate of 1 cm>/s, per 1 cm? area, and
1 cm length under a pressure 1 bar. In many cases, the darcy is a rather
large unit, so that the millidarcy (mD) is frequently used. Approximately:

1 Darcy =

1m? = 10" darcy = 10 millidarcy

Some typical values for permeability of porous media can be found in
Table 3.2.

3.3 THE COMPLEX CONTINUUM MODEL

In the following, the fundamental equations describing the flow of a
fluid through a porous medium are developed. These are the familiar
differential equations, which express the balance laws of mass, momentum,
energy, etc. Accordingly, in the derived equations, both the fluid and the
porous solid are considered as continua, each filling the entire space.
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TABLE 3.2 Permeability of Different Materials

Permeability Pervious Semi-Pervious Impervious
Unconsolidated | Well Sorted |Well Sorted Sand | Very Fine Sand, Silt,
Sand & Gravel Gravel or Sand & Gravel Loess, Loam
Unconsolidated
i 2 Ot Peat Layered Clay Unweathered Clay

. . . Fresh
Comliteizs Highly Fractured Rocks Oil Reservoir Fresh Limestone, Fresh Granite
Rocks Rocks Sandstone .

Dolomite

i (cm?) 10° (10" 107 10°¢ 107 107 107 107 107" 1072 11077 107 107

« (millidarcy) 10" 107 10" 10" 10,000 (1,000 (100 10 |1 0.1 0.01 0.001 0.0001

Modified from Bear, J., 1972. Dynamics of Fluids of porous Meida. Elsevier, New York.

In the continuum model, the actual material is replaced by continuous
functions of physical quantities. The actual physical processes are repre-
sented by the evolution of these continuous functions in space and time.
The value of such a function at a certain point is obtained as an average
value in the infinitesimal volume dV surrounding the point. The essential
mathematical simplification of the continuum model is that this average
quantity is assigned in the limit to the point itself.

This “infinitesimal” element of the saturated porous medium must
contain a sufficient number of pore channels to statistically allow the
continuum interpretation. The solid-fluid phase boundaries within the
volume element are neglected. The saturated porous medium is replaced
by a complex continuum, in which continuous distribution functions of
physical quantities are doubled referring to the fluid and the solid. Thus,
at any point of the complex continuum two densities (pg, ps), two veloc-
ities (Vg, Vi), and two stress tensors Tg,Ts are present simultaneously,

in accordance to the principle of equipresence.
The infinitesimal volume element of the saturated porous medium
may be separated to a fluid volume, determined by:

dVg = ¢pdV (3.18)
and a solid volume, determined by:
dVg = (1 - ¢)dV (3.19)

Because the velocity fields are doubled, the material derivatives of any
physical quantities must be doubled:

d o
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and

d a
d_ts —aﬂ- (V'sV) (3.21)

These notations are used in the following section.

3.4 THE PRINCIPLE OF CONSERVATION OF MASS

The principle of conservation of mass states that the mass of a body is
constant during its motion. This can be stated in the rate form, as the time
rate of change of the mass of a body is zero. It is obvious that this state-
ment must be expressed mathematically for a material system.

Consider the volume V(?, t) filled by the complex continuum, boun-
ded by the closed surface (A). The mass of an infinitesimal volume
element:

The total mass of the volume V can be expressed as:
M= /d)deV—f— / (1—¢) psgdV (3.23)
% %

Note, we must take two material derivatives for the two volume in-
tegrals, expressing the conservation of mass:

d d

—_— dv+— 1 (1- dv = 24

G [ orodv g [ (1= o) psav =0 629
\4 v

Applying the transport theorem, the material derivative can be

replaced by a local and convective term:

A) (A)

A% A% (
=0
(3.25)

The mass balance equation may be written for the fluid and solid phase
separately:

/ 6(q;fF)dV+ / bpp VpdA = / EpdV (3.26)
() v

v
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/ 91— 9)ps] th))pS] av + / (1-¢) psVsdA = / EsdV (3.27)

v (A)
where & and &g is the rate at which mass of the fluid is produced within
the unit volume of the system by chemical reactions. Similarly &g is the
same, referring to the solid phase. It is obvious that:

/EFdVJr / EsdV =0 (3.28)

that is, the whole mass of the system is constant. The integral form of the
mass balance equation may be written in differential form applying the
divergence theorem:

((ng) +div(¢pp VE) = Er (3.29)
w +div[(1 — ¢)psV's] = &s (3.30)

If the interphase mass transfer may be neglected, the equation are
obtained as:

d
(d;t Pr) + div(dpp VE) =0 (3.31)
(1 — _
% +div[(1 — ¢)ps Vs =0 (3.32)
For a homogeneous, isotropic, and non-deformable solid matrix:
a
®_o v.=0,
Thus we get:
¢—+d1v(pF¢VF) =0 (3.33)
In this equation the product:
q =0V (3.34)

is the so-called local seepage velocity, which is a vector point function:

q=9q(T,1 (3.35)

The continuity equation for this case is obtained as:

d>—+d1V(pF P)=0 (3.36)
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For an incompressible fluid, if pr = const, we get:

divq =0 (3.37)
It can be written by its orthogonal components as:
oq, %y  dq,
ax oy T 0 (339

At any instant, there is at every point in the flow domain a local
seepage velocity vector with a definite direction. The instantaneous
curves (which at any point tangent to the direction of the local seepage
velocity at that point) are called seepage streamlines of the flow. The
mathematical expression defining a seepage streamline is therefore:

qxdT =0 (3.39)
or written by orthogonal coordinates:
dx _dy _dz 640
I 9y 9

In steady flow, i.e. one in which flow variables remain invariant with
time, streamlines are constant. In unsteady flow, we can speak only of an
instantaneous picture of the streamlines, as the picture varies continuously.

3.5 THE BALANCE EQUATION OF MOMENTUM

Newton’s second law states: the rate of change of the momentum of a
body equals the sum of the external forces acting on it. To apply this law to
a porous medium saturated by fluid, consider the volume V of this me-
dium, bounded by the simple closed surface (A) constituted of the same
particles of fixed identity. The momentum of an infinitesimal volume
element of the fluid-saturated porous medium is:

[PEOVE + ps(1 — &) V] AV (3.41)

Since the momentum is an extensive flow variable, the total mo-
mentum of the considered fluid-filled porous body is:

[ 1pr0 e+ ps(1 - 4)7s]av (3.42)

The rate of change is obviously expressed by the material derivative of
this volume integral, considering that different material derivatives are
obtained for the fluid and solid phase:

d _ d _
- / bPr VRV + / (1— ¢) psVsdV (3.43)
v v
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The external forces acting on the body are body forces and surface
forces. The body force due to gravity can be expressed as:

/ [oprgr+ (1 - d)psgs] dV (3.44)

v

There are many physical phenomena involving interaction among
different processes; i.e. mass transfer caused by temperature gradient, or
electro-osmotic motion. Thus the resultant body forces g and g's may be
different, but usually the gravity acceleration g = g’ = g is the only
dominant body force.

The surface forces are due to whatever medium is adjacent to the
bounding surface (A). In the complex continuum, the state of stress is
determined by two stress tensors Tr and TS referring to the fluid and
solid phases.

The result of the surface forces acting on the bounding surface (A) can
be expressed as:

// |:¢T:F +(1-¢)Ts | dA (3.45)
(&)

where Tg and Ts are the stress tensors referring to the fluid and solid

phase. ﬁlally, the balance equation of momentum is obtained as:

d d _
d_tl:/d)dev+d_ts/(1_¢)pSVde

_ (3.46)
= [[oprgr+ (1 — d)psgs]dV + / [¢T_F+ 1-¢)Ts | dA
(A)

The left hand side of this equation expresses the rate of change of
momentum for the fluid and solid phases respectively, while on the right
hand side the first integral is the resultant body force, the second one is
the result of the surface forces acting on the bounding surface.

The balance equation of momentum may be rewritten in differential
form. Its surface integral can be transformed into volume integral by
means of the divergence theorem. Applying the transport theorem to the
left hand side terms, considering the arbitrary nature of the limits of in-
tegrations we get:

—> —

dv d R
Oor gy + (1= Ops g ® = oprEr+(1-0)
x {psgs+ Div[opTe + (1 — ¢)]Ts} (3.47)
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This equation is valid for any porous body saturated by fluid. The
acting forces, the rheological properties of the fluid and the solid material,
are arbitrary. Therefore, it is convenient to replace this complicated
physical system by some fictitious simpler one, because otherwise the
mathematical treatment (i.e. the formulation of the boundary conditions,
the method of solution) is practically impossible. Certain restrictions and
simplifying assumptions will obtain an equation system which is
convenient to solve engineering problems.

Expressing the rate of change of the momentum of the fluid phase, we
obtain:

d?p — .
PPE g = PPEEE Div( ¢Tg

(3.48)

—

+ 4 (1—d)ps <§’S ?’;) + Div {(1 — ¢)T:5}

The analogy with the momentum equation of a single phase of a
multicomponent system can be easily recognized. The last term of the
right hand side of the equation in the curly bracket can be considered to be
the interphase momentum transfer as the fluid and solid phase interacts
on the interphase boundary surfaces, i.e. on the pore channel walls. This
term clearly shows that any mechanical process of the solid matrix gives
size to flow of the pore fluid. A well-known example the flow induced by
the consolidation of sedimentary rocks.

At this point in the development of the equation of motion, we introduce
an assumption that the terms in the square bracket expressed by the vari-
ables of the solid phase are replaced by semi-empirical constitutive relations.

In saturated porous media, a force is exerted by the flowing fluid on the
solid matrix, acting on the solid-fluid interphase surface. It is obvious that
a reaction force of the same magnitude and an opposite direction exists,
according to Newton’s third law. The force acting on the unit volume of
the porous medium:

fo=fu+ fp (3.49)

therefore, it is the sum of an uplifting force and a drag. The uplifting force
can be expressed easily:

fu=—(1-d)prg (3.50)

The drag force acting on a particle is composed of a skin friction drag
and a form drag. Assuming laminar flow the drag is equal to:

Tpp = o2 -3V (3.51)
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where a is the particle shape factor, p is the dynamic viscosity (N s/m?),
and J is the mean diameter of the particle (m). The number of the particles
inside the unit volume can be expressed as:

Bl —¢)
83
where B is a coefficient of proportionality of dimension (m®). Thus the

drag acting on the unit volume of the porous media is obtained as:

N = (3.52)

—
— — Vv
fp=N- fD1:<1_¢)'B“ZH§ (3.53)
Substituting the local seepage velocity we get:
— _ . B2
fp= w a (3.54)
Gd
The reaction forces of these can be written as:
— — N 1— )2 _
fF:—fs=(1—¢)'ng—7( <1>)2 B“q (3.55)
oty
Thus the momentum equation of the fluid phase is:
dv - ) (1= ¢)e2puq
OPr et = 09 E + DIVAT,) + (1~ d)prE — oL (356)

Let’s consider a homogeneous isotropic porous medium in which a
steady laminar seepage flow is developed. The porosity distribution is
naturally uniform:

¢ = const. (3.57)
For steady flow:

0

e 0 (3.58)

while the convective momentum flux may also be neglected, because of
the very small values of the velocity.

The normal stresses in the fluid are much greater (10*-10° times) than
the shear components, thus we may assume that:

Div-Tg = —gradp (3.59)

Considering the above assumptions the momentum equation is
obtained as:

0=ppg — gradp — ! (3.60)
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Assuming barotropic flow it is obvious that:
1
——grad,, = gradIl (3.61)
PF P

where IT is the barotropic potential (m?/s?).
For incompressible fluids:

m=F (3.62)
PF

The field of the body forces may be also assumed having a potential:

g = —gradU (3.63)
Thus:
—grad(U +1I) = % q (3.64)
Then the local seepage velocity can be expressed as:
q = 0 o) —¢d8>2)a2[3 Egrad(U +11) (3.65)

The comparison of this equation with the empirical Darcy’s law:

q = -k grad (gh + p) (3.66)
i p
leads to the recognition that:

d)z 82
k A= ¢)a2p (3.67)
Therefore Darcy’s law can be obtained as a consequence of the mo-
mentum equation. Thus Darcy’s law is used as an equivalent expression,
naturally for steady laminar flow of a barotropic Newtonian fluid flowing
through porous media only. Notwithstanding, it must be kept in mind
that Darcy’s law is not an equation of motion; it cannot describe the flow
within an individual pore channel. Strictly speaking, Darcy’s law repre-
sents the statistical macroscopic equivalent of the Hagen—Poiseuille
equation.
Note that the experiment of Darcy does not show what happens if the
permeability and viscosity are not constant. It is quite familiar the
permeability density and viscosity to be taken into the gradient:

_ k
q = —grad {E (pgh + p)] (3.68)
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This is allowed only for constant permeability, density, and viscosity as
the preceding show.

On the other hand, there is an indirect experimental indication of the
correctness of Eq. (3.66). If Darcy’s law is extended to immiscible multiple
phase flow, it leads to the relative permeability concept. Relative perme-
ability is actually variable through the porous medium during a flow
experiment and therefore a distinction between Eq. (3.63) and Eq. (3.68) is
important. The fact is that the empirically verified relative permeability
equations are originated in Eq. (3.66) and not in Eq. (3.68).

Darcy’s law together with continuity equation and equation of state is
sufficient to determine the flow pattern in a porous medium for given
boundary conditions. The equation system contains five unknown func-
tions (qx, dy 9z P, p), thus the five equations can be solved. Two-
dimensional problems can be especially easily treated by applying
complex variable functions. Such specific applications are exercises in
mathematics rather than fluid mechanics. Therefore, certain specific cases
will be discussed regarding the practical importance.

3.6 THE BALANCE EQUATION OF INTERNAL ENERGY

Any material system is characterized by its energy content. Energy
occupies a position of distinction amongst the other extensive variables.
Whatever interaction occurs between a material system and its sur-
roundings, the transfer of energy invariably accompanies the transport of
other extensive variables. Certain interactions are accompanied the
transport of a certain type of energy. Kinetic energy increases or decreases
due to mechanical interactions; a change in internal energy accompanies
thermal interactions. The balance equation of internal energy can be
written for a fluid saturated porous material as:

ad —
/a_t [(1 = $)pscsTs + dppcpTr|dV + / {(Pl — $)pscsTsvs + ¢PFCFTFV—F)]dA

\% A

+ /[(1 — ¢)ksgradTg + dkpgradTg] dA
A

_ / [(1 — )T VSV + ¢;FV—F’°V] dv + / {(1 - (]))hs+(]>hp] dv  (3.69)
v v
The first integral expresses the local rate of change of the internal

energies of the rock and the fluid. The first surface integral is the
convective transferred internal energy by macroscopic motion. The
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second surface integral expresses the transferred internal energy by heat
conduction. On the right hand side, the volume integral expresses the heat
generated by friction in the solid and the fluid phase. The second volume
integral is the heat source generated by radioactive decay, chemical re-
actions, and phase change. These are the volumetric sources of the in-
ternal energy.

The Eq. (3.69) can be simplified remarkably due to some approximate
assumptions. It is reasonable to take the velocity of the rock matrix to zero,
thus there is neither convective transfer nor mechanical energy dissipa-
tion in the solid phase. The temperatures of the rock and the fluid can be
considered to equal. An experimental fact is that the dissipation of the
mechanical energy is negligible relative to the convective and conductive
fluxes of the internal energy. Thus we obtain a remarkable simple equa-
tion for the internal energy balance:

9 . .
/a [(1 — ¢)pscs + ¢pFCF} TdV + /{¢PFCF VE+[(1—d)ks + ¢kF]}TdA
v A

= /[(1 — ¢)hs + dhg]dV
v
(3.70)

It can be written in differential form applying the divergence theorem:

d — .

it (1= &)pscs + dprep] T + diV(¢pFCF VF) + div[(1 — ¢)ks + dkg|gradT
= [(1 = ¢)hs + dhg]

3.71)

It is an important particular case, when there is no remarkable
convective heat flux, there are no sources of the internal energy and the
thermal state of the system is steady:

div[(1 — ¢)ks + dkg]gradT =0 (3.72)

Characterizing the given formation by the average values of the
porosity and heat conduction we can define an overall heat conductivity:

k= (1—-d¢)ks + dkr (3.73)
Similarly we can obtain an overall density:
p=01-0d)ps+ dpr (3.74)

and heat capacity:

o - (1= ®)pscs + dprcr (3.75)

(1—d)ps + dpr
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Applying these notations, the equation of heat conduction is obtained
in the form:

9 (peT) = div(kegradT) 676)

We assume that the density, heat capacity, and heat conductivity are
constant. Thus we get:

9T  k (0°T &T  &°T
For steady state, these can be written in the simple form:
PT  6°T T
—t+t—== (3.78)

e dy? Tz

Heat conduction problems have paramount importance in the inves-
tigation of geothermal systems. This is the subject of the next chapter.
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4.1 DIFFERENTIAL EQUATION OF HEAT
CONDUCTION

The most important interaction between a geothermal reservoir and its
surroundings is heat transfer. Heat transfer may be carried out by
conduction, convection, or radiation. The internal energy supply of a
geothermal reservoir is mostly heat conduction across the impervious
homogeneous bedrock beneath it. Heat conduction is the transfer of
internal energy by microscopic diffusion and collisions of molecules,
atoms, and electrons. Internal energy propagates as rapidly vibrating
atoms and molecules interact with neighboring particles. Macroscopi-
cally, heat conduction is the propagation of internal energy without
macroscopic motion in opposite direction of the temperature gradient.
This process can be described by the differential equation of heat

Flow and Heat Transfer in Geothermal Systems
http://dx.doi.org/10.1016/B978-0-12-800277-3.00004-9 7 7 Copyright © 2017 Elsevier Inc. All rights reserved.
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conduction (Roshenov and Hartnett, 1973). The rate of change of the in-
ternal energy inside a unit volume material equals the heat fluxes crossing
its boundaries:
d(pcT)
ot
where p is the density, c is the specific heat capacity, and q is the heat flux
vector (W/m?). The heat flux vector satisfies Fourier’s law:

q =—kgradT, 4.2)

= —divq (4.1)

where k is the heat conductivity coefficient. The ability with which a certain
material conducts heat is quantified by the expression of thermal conduc-
tivity. Diamond has the highest thermal conductivity of about2.300 W/m K.
Metals are usually good conductors of heat. Metallic bonds have mobile,
free electrons, which are able to transfer internal energy with high intensity.
Steel has conductivity with an average of 50 W/m K. In weak conductors
and insulators, the heat flux is carried almost entirely by phonon vibration.

One can easily recognize that heat propagates from the hotter region to
cooler as the negative sign shows (Rybach and Muffler, 1981). Substituting
Eq. (4.2) into Eq. (4.1), we get an orthogonal coordinate system:

a(ch):k<aZT 9T 62_T>

—+— 4.3

ot el dy? oz *3)

It is an acceptable approximation to consider the material as homo-

geneous and isotropic. Thus p, ¢, and k are constant. In this case, it can be
written that:

(4.4)

el Tzt oz

aT  k (0*T 9*T 6°T
it pc

The group of coefficients k/pc is called thermal diffusivity.
Some typical rock parameters are tabulated below (Table 4.1.)

4.2 STEADY ONE-DIMENSIONAL HEAT CONDUCTION

Consider a horizontally infinite layer of constant thickness H. beneath
the surface.

The differential Eq. (4.4) can be written in the simplest form in the case
of a steady. one-dimensional heat conduction as:

d’T
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TABLE 4.1 Thermal Properties of Different Rocks

Heat
Density Specific Heat Conductivity

Type of Rock (kg/m®) KJ/kg K) (W/m K)
Basalt 2900 0.879 1.7-2.5
Dolomite 2600 0.882 5.0
Granite 2670 0.840 2.5-3.8
Limestone 2600 0.880 1.7-3.3
Marl 2100 0.885 0.8—2.1
Sandstone 2400 0.870 2.0—4.2
Tuff 2650 1.255 1.2-21
Water 1000 4.187 0.6

Since the coordinate axis z is directed downward. the terrestrial heat
flow is directed upward. Thus:

dT
q, = —ka (4.6)
The solution of Eq. (4.5), after integrating twice, is:
T=az+b (4.7)

The surface temperature is z=0; T =Ty. This boundary condition
provides the value of the integration constant b. Substituting into Eq. (4.7),
we get b = Ty. The second boundary condition based on Eq. (4.6) is heat
conduction in sinking and filling sedimentary basins:

dT  q,
-k (4.8)
Thus we get:
-
a= K (4.9)
Finally, it is obtained:
T=T,— %z (4.10)

Note that q, is negative, thus the temperature increases along the
depth. The heat flux can be expressed as:
k

9, =~ (T1 = To) (4.11)
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Consider now three parallel layers with thicknesses of Hj, Hp, and Hs,
and with heat conductivities of kj, ky, and k3. Each layer can be considered
to have serially fitted thermal resistances, through which the same heat
flows upward. Thus we get:

_k _ ks
(T1 = To) = i, T2 =T =g (T3 — T2) (4.12)
where q = |q,| the absolute value of the heat flux. Expressing the tem-
perature differences from Eq. (4.12), it is obtained:

_k
q_H1

H

T - To :qk—ll
H

Ty—T; = qk_; (4.13)
H

T3 T = qk—:

Summing the expressions Ty and T, drop out and we get for the heat
flux:
T3 —To
= 4.14)
H _ H _ H (
LB+
It is easy to generalize this result for a heat flux through layer n. Their
thicknesses and heat conductivities must be known:

CTa-To
Sk

It can be recognized that the temperature distribution is a fraction-
stroke linear function. The derivative:
dT a
V=4 Tk (4.16)
varies from layer to layer, depending primarily on the heat conductivity
of a certain formation. If the thicknesses of the different sedimentary
layers are close to each other, and the heat conductivities varies quite
periodically as the Pannonian sediments in the Carpathian Basin, the
temperature distribution can be approximated by a single straight line as
it can be seen in Fig. 4.1. These measured data are obtained in several
Hungarian deep boreholes across sedimentary formations. An exception
is the Totkomlds well, in which the boundary between the sedimentary
formations and the bedrock can be well recognized where there is a
sudden change of the slope of the temperature distribution.

(4.15)
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FIGURE 4.1 Temperatures in deep Hungarian boreholes.

4.3 STEADY AXISYMMETRIC HEAT CONDUCTION

Steady two-dimensional axisymmetric heat conduction is the most
common phenomenon of thermal interaction between a well and its
surroundings. Heat is transferred by radial heat conduction through the
walls of tubing and casing, the cement sheet, and the surrounding rock.
Consider the unit length piece of a pipe of inner and outer radii R; and R,
as it can be seen in Fig. 4.2. The temperatures at these cylindrical surfaces
are T and T». There is no temperature variation along the pipe axis, which
is the z-axis of the coordinate system. An annular area is obtained at the
xy plane. The differential equation of heat conduction in this case can be

written as:
°T  9°T
—+-—=0 4.17
G + dy? (4.17)

It is suitable to change the orthogonal coordinate system to a cylin-
drical one according to the geometry of the system. Since:

r=4/x2+y?2 (4.18)
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|

FIGURE 4.2 Axisymmetric heat conduction.

we can get that:

ﬁ_x or

X a_y
X1 and Gy r (4.19)
Applying the chain rule:
0T 0T or dT x dT x
X arox arr drr (4.20)
and:
dT 9T or oTy dTy
e A 421
dy drdy odrr drr (4.21)
The second derivative is obtained as:
T T x* dTr-% (d*T 1dT\x*  1dT @)
2 g2 r dr 2 \dr2 rdr/)r® rdr '
and:
2 21 2 Y 2 2
oT _dTy” dTr—% (dT 1dT)y" 1dT (423)
dy?  dr? r2 dr «r? dr? rdr/) r?2 rdr

Adding Eqs. (4.22) and (4.23), we get the Laplace equation in cylin-
drical form:

T 1aT_

Ztrar =" (4.24)



4.3 STEADY AXISYMMETRIC HEAT CONDUCTION 83

In order to get an easier integration, it can be written as:

d / dT
Its first integral is:
dT A
Friae (4.26)
then the second integration leads to the expression:
T=A Inr+B (4.27)

The two constants of integration can be determined satisfying the
boundary conditions:

Ifr=Rq, then T=Ts.
If r=Ry, then T =T,.

After substitution we get:

A= 4.28
nE (4.28)
and:

T -T

B=T) -+~ 2 (4.29)
Ry
lnR—2
Thus, the final result is:
T1 - Tz r

T=T; — In— 4.30
17 ENR, (4.30)

Since T; > Ty, the temperature decreases logarithmically across the
pipe wall.

The overall heat flux that outflows at the unit length section of the pipe
is:

Q =2mrq (4.31)
where q is the heat flux through a unit surface:
dT A
q= —ka = —k? (4.32)
Thus we get for the overall heat flux:
Q = 2mk h-T (4.33)

Ry
In R
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FIGURE 4.3 Axisymmetric heat conduction through two-layered pipe wall.

Consider now a complex system as it is shown in Fig. 4.3. It consists of
two coaxial annuli of different thermal conductivities ki and k. At the
internal radius Ry, the temperature is Ty, while the outermost surface has
a radius of Ry and the temperature T». If Tp > T», the heat flux is directed
outward. It is obvious that the overall heat fluxes are the same for both
annuli:

To—Th

Q =2k~ (4.34)

Ry

and:

T, -T
Q= 2nky 2 (4.35)

Ing?

Ry

Expressing the temperature differences, we get:
R

To—Typ = Q i (4.36)

27‘51(1 RO



4.4 TRANSIENT AXISYMMETRIC HEAT CONDUCTION 85

and:

&m&
27‘(71(2 R1
Adding Egs. (4.30) and (4.37), it is obtained for the overall heat flux:

T - Ty = (4.37)

To — Ta

Q=2"—F%—~——
1 Ry 1 R,

(4.38)
Generalizing this result for a more complex system containing an
annulus, we get:
To—Tn
Sk Ing
This expression can be applied for complex well completion having an
arbitrary number of casings and cemented annulus.

4.4 TRANSIENT AXISYMMETRIC HEAT
CONDUCTION

The differential equation of heat conduction for a transient two-
dimensional axisymmetric temperature field can be written as:

pcdT 149 [ dT
k dt ror r or (4.40)
Let’s introduce the auxiliary variable:
2
pcr
= — 4.41
STk & (441)
Its derivatives are:
ds pc r?
Frimim by (4.42)
and:
ds opcr
o kot (4.43)

Applying the chain rule, Eq. (4.40) can be written as:

pcdT ds 19 ds ( dT ds
k 9s 0t s or \' s or (444)
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Substituting the derivatives (4.42) and (4.43), we get:

pc pc 12 0T 1pcr 0 [ 2pc r dT
_peper o0 _2perofaper ol (4.45)
k k429ds r k 2tds\ k 2tds

After simplifying it is obtained, considering that T depends on s only:

dT d / dT

After some manipulation, first we get:

dT d / dr 4T
R REC ) “
then it follows that:
d’T dT

Rearranging Eq. (4.48), we get on expression suitable for the integration
easily:

&1 1

ds® _

e “1- (4.49)
S

The integration obtains the following result:

dT

lna = —s—Ins + InC (4.50)
where C is the constant of integration. After some manipulation we get:
lnd—T =Ine™® — Ins + InC, (4.51)
ds
Finally, the differential equation is obtained:

dT s

& _ct (4.52)
ds s

For determination the constant of the integration C, it is considered that
the overall heat flux is:
dT
Q =2mrq = —27crk~d—s (4.53)

Expressing r dT/dr from this equation we get:

dT  Q  dTds pcr’dT _ dT
Yar ok Tdsor kK atds Dds 54
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Thus:

Q

21k

We can take the boundary condition that in the symmetry axis of the
cylinder r = 0, and the value of the auxiliary variable s = 0, thus:

=2C-e™® (4.55)

Q

— =2 4.

Ik C (4.56)
from which the value of the constant is obtained:
Q
= 4.57
47k (4:57)
Thus we must integrate the differential equation:
dT Q e’ s

ds  4mk s (4.58)

Now we can take the initial condition t = 0, T = Ty, to which it belongs
s = . Separating the variables we get:

/dT—%—k / ¢ ds (4.59)

To

Thus the temperature at an arbitrary point r, and an arbitrary time t is:

<]

Q e’

T, t)=To—— | — 4.
X
where x is:
2
_per
T (4.61)
The result obtained in the form of Eq. (4.60) contains the integral:
—S
- / ers (4.62)

which is not an elementary function. It is the so-called exponential inte-
gral function.

The values of ei(x) are given in tables. For small x, they are represented
in Fig. 4.4. It can be seen that ei(x) can be approximated by a logarithmic
function in the interval x < 0.01, as:

ei(x) = —Inx — 0.5772 (4.63)
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FIGURE 4.4 Approximation of ei(x) by In function.

where the value of 0.5772 is the so-called Euler—Mascheroni constant.
This approximation is especially suitable for slow transient heat con-
duction problems as the development of the heated region around the
production well.

4.5 HEAT CONDUCTION WITH HEAT GENERATION

Heat generation in rock originates in the natural radioactivity of rocks.
All rocks contain small amounts of radioactive elements of which only
four isotopes contribute to heat generation: two uranium isotopes, U>*®
and U?; thorium, Th**?; and the relatively rare potassium isotope, K*.
Their half lives have an order of magnitude of 10 years. Thus the volume
heat source distribution of the crust can be considered to steady. The
strength of volume heat source of rocks can be approximated by the
formula of Rybach (1976):

h =10"p(9.52-cy + 3.48-crp + 2.56- k) (4.64)

The concentrations cy and ctp are given in ppm (parts per million). cx
is given as a percentage. In this case, h is obtained in pW /m”. These values
depends primarily on the type of rock, and certain regularity can be
observed. Some typical values are summarized in Table 4.2.

The heat source strength h changes along the depth. As experience
shows, this dependence is exponential:

h =hye i (4.65)
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TABLE 4.2 Heat Source Strength Values

Heat Source
Type of Rock Strength (WW/m®)
Basalt 0.31
Dolomite 0.36
Limestone 0.78
Sandstone 0.85
Diorite 1.08
Dacite 1.49
Marl 1.80
Granite 245

in which h, is the source strength at the surface, while at the depth z = H
and h = % This characteristic depth depends on certain geologic and
tectonic parameters. Its typical range is 7.5—15 km.

In this case, the differential equation is a steady, one-dimensional and

can be written as:

d’T z
Integrating twice we get:
H’h, .
T=-—"efi4+Az+B=0 (4.67)

Boundary conditions are taken into account to determine the constants
of integration A and B. One condition is that at the surface z =0, the
temperature T = T,. The other boundary condition is that the heat flux

obtained at the surface:
dT
= k(== 4.
o <d2)20 (169

after substitution the temperature distribution along the depth is obtained

as:

o —H'h, N H?h,
k k

This solution is valid for hot dry rocks without porosity in deep, thick

formations. In this case, the heat conductivity depends on the tempera-
ture as:

T=T,+2

(1—e) (4.69)

(4.70)
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The parameter k(1/°C) depends on the type of the rock. Its order of
magnitude is 107>. k,, is the heat conductivity at the surface.
The differential equation of heat conduction in this case is:

et kee =0 4.71)
z
Its solution is obtained as:
T= % {(1 4 «To)exp[H?ho (1 — ™) — Hhoz + q,z] — 1} 4.72)

This type of temperature distribution is proven in very deep boreholes;
for example, one of the deepest (5672 m) is Hungarian borehole HOD-1.

4.6 HEAT CONDUCTION IN AND FILLING SINKING
SEDIMENTARY BASINS

It is a well-known observation that the geothermal gradient is lower
than the average in rapidly sinking and filling sedimentary basins. Such a
region is the Gulf Coast in the United States of America, or Mako—
Hédmezdévéasarhely trench in the Pannonian Basin, Hungary. As the
crystalline bedrock sinks, the thickness of the sedimentary layers grows
permanently. The upper surface of the sediment layer is filled with fresh
sediments having a temperature of the annual mean value. During the
development of the basin, a given sediment layer warms up as it sinks
from the surface toward the depth. This phenomenon can be described by
a transient heat conduction equation:

9T 0T  k &°T
ot +U 0z  pc 0z2 *73)

The conduction is obtained by a steady process in a coordinate system,
which originates at the surface while the subsequent sediment layers sink
with a constant velocity U. The coordinate axis z is directed downward.
At the point z = 0, the temperature is obviously constant T = Ty, and at a
given depth z, each sediment layer passing through this depth must have
the same temperature. In this steady temperature, only the fixed
convective derivative component can change. We can get a second-order
linear differential equation:

oT  k 6°T

== 4.74

dz  pc 0z2 (4.74)
Rearranging the equation we get:

T

iz _ pcU

0z
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The first integration leads to the expression:

dT pcU

After some manipulation, the following equation is obtained:

dT _ ¢, e 4.77)
dz
The second integration gives the expression:
C1 kv
T= ek’ 4.7
ocU ex “+C (4.78)

To get the constants of integration, the following boundary conditions are
taken:

Ifz:O,k%:q0
Ifz=0T=T,

where qp is the terrestrial heat flux value at the surface. Substituting into
Egs. (4.77) and (4.78), for the constants we obtain:

C1 :% and CZZTO_p?:—OU

Thus the temperature distribution along the depth is:

P IO
T=Tot (e% - 1) (4.79)
The annual mean temperature on the surface Ty, and the surface heat
flux qo, can be determined easily. The velocity U can be calculated by the
thickness and age of the given sediment layer.
It can be recognized that the geothermal gradient is not constant; it
changes with the depth exponentially as follows:
dT 9o Uy
-_— = 4.80
z k< (480)
The terrestrial heat flow changes exponentially; it grows along the
depth as follows:
q=q e (4.81)
This simple model has many approximations. It is obvious that the
sinking velocity U is not constant. The material parameters; the density p,
the heat conductivity k, and the specific heat capacity c, can change sto-
chastically. The Egs. (4.79—4.81) provide a qualitative description of this
process.
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5.1 GEOTHERMAL RESERVOIRS IN
HYDROSTATIC STATE

The natural state of an undisturbed geothermal reservoir is hydrostatic
equilibrium. Hydrostatics in porous media is governed by the same
principal laws as those in homogeneous fluids. However, there are certain
differences between them. The rock matrix is not a homogeneous for-
mation. There are thick under-consolidated clayey layers in it, where the
pore fluid must sustain the overburden load. Thus over-pressured res-
ervoirs are developed as in Fabiansebestyén—Nagyszéndas or the Gulf
Coast.

In this section, pure hydrostatic reservoirs, such as the Upper Pan-
nonian sedimentary aquifer, are considered. The most important
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differences between a vessel and the saturated porous media are in their
size, temperature, and density distribution. Even in a large vessel with a
vertical size of only a few meters, the thickness of a sedimentary basin can
be 2000—3000 m. Thus, the fluid temperature in the vessel as well as its
density is uniform; the porous rock has an increasing temperature dis-
tribution along the depth and the density decreases accordingly. A further
difference is that the proximity of the walls to the interior of pore fluid
introduces certain modifications.

Equilibrium exists in the gravitational field, thus the hydrostatic
equation is valid as:

dp _
dz pg (6.1)

where the vertical coordinate z is directed downward.
It is well known that the natural temperature distribution along the
depth is linear:

T =Ty + vz, (5.2)

where Ty is the temperature at the surface, and vy is the geothermal
gradient. The density of the water depends on its temperature. It is an
acceptable approximation to describe this relationship by a quadratic
equation:

p=po|1—A(T—To) = B(T — To)’| (53)

where py is the density of the water at the reference temperature Ty, and A
and B are experimentally obtained constant coefficients. Substituting
T — Tp from Eq. (5.2), we get the density distribution along the depth:

P =po (1 —Ayz — BYZZ2) (5.4)
The hydrostatic equation after substitution of Eq. (5.4) leads to the

expression of the pressure gradient:

d
d—lz = pog(l — Ayz — By2z2) (5.5)

After integration, satisfying the boundary condition at z = h; p = p the
pressure distribution along the depth is obtained as:

(z—h)?
2

_ h)3

_B 2(z
Y3

P=po+prg|z—h+Ay (5.6)

Here py is the atmospheric pressure; h is the depth of the groundwater
surface.
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It is a slight approximation to consider h = 0, because the depth of the
reservoir is far deeper than the depth of the groundwater surface, h < z.
In this case, the pressure distribution is simply:

73

3 (5.7)

2
z
P=Py+Peg|z— Ay —By’
The constants A and B are evaluated by means of a 3D phase diagram,
where the three thermodynamic quantities being measured are pressure
(p), volume (v) and temperature (T). It is obtained that:

A =1.712-10"%°C!
B =3.232-10"%°C2

The reservoir pressure can be slightly different because of the amount
of total dissolved solids in the water, or the natural fluid motion in the
reservoir. Substantial differences can arise by the restricted compaction
leading to high overpressure in the reservoir.

Natural recharge or thermal convection can disturb the pure hydro-
static state of geothermal reservoirs.

As an example, we can determine the pressure in a reservoir at the depth
of 2000 m. Further data in this example is: pg = 999 kg/ m?, v =0.05°C/m,
po = 101,325 N/m? g = 9.81 m/s”. Applying Eq. (5.7) we get:

10-4.5.10-2
1712:10 +:5:10°2

p = 101325 +999-9.81 (2000 —

.10-6-25.10—%
3232 10325 10 ~8-109>

= 19322790E2 = 193.22 bar
m

5.2 CONSOLIDATION OF A SEDIMENTARY AQUIFER

Consolidation is the process by which the volume of granular materials
decreases due to the overburden loading. In a sedimentary basin, the
upper layer of the depositing sediment has a framework of particles with
high porosity while the pore space is filled with water.

The initial porosity of the top sediment layer depends on its lithology.
For sands, it is about 40%, for clays it can be more than 60%. As more
sediment is deposited above this layer, the effect of the increased loading
leads to the increase of the particle-to-particle stress. The increasing stress
in the solid matrix results in the reduction of the initial porosity. The
porosity decrease is carried out due the more dense packing of the grains.
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As the reduction of the pore space takes place, the pore water is forced to
leave the consolidating sediment layer. The flow resistance counteracts the
displacement of pore water, even permeable rock matrix, but it cannot
hamper the drainage of the layer. In this case, so-called normal compaction
takes place, and the porosity decreases exponentially. If impermeable layers
block the drainage of the pore water, the pore pressure increases, attaining
the lithostatic pressure while the porosity decreases scarcely. Thus, so-called
under-compacted zones are formed with high overpressure. A measured
porosity—depth profile along a borehole shows the exponential porosity
decrease in the normal compaction domain. The local porosity maximum
can be recognized in the under-compacted, over-pressured region.

Before the mathematical model of consolidation can be interpreted, it is
necessary to briefly explain the concept of stresses in saturated porous
media.

As overburden loading acts on a saturated porous media, it is carried
by both the solid grains and the pore water. Terzaghi (1925) proposed the
distinction of three different kinds of stresses in saturated porous mate-
rials. These stresses can be obtained from the static equations. The surface
is horizontal; the coordinate axis z is directed to downward. At a certain
depth z, the weight of the column above a horizontal surface of unit area
obtains the so-called total stress:

oz = [(1 - ¢)ps + dprlgz (5.8)

The effective stress is the average of the grain-to-grain forces carried by
the solid matrix. The Archimedean lifting force must be regarded as the
fluid and the solid phases are interacting. This force is directed in opposite
to the weight as:

o, = [(1 - )ps — (1 — d)prlgz (5.9)

The effective stress is the force that keeps the ensemble of the solid
particles rigid. It determines the strength of a saturated porous material.

The pore pressure of the fluid is considered to the neutral stress. Applying
the hydrostatic equation, the reaction force of the Archimedean lifting force,
which acts on the fluid at the surfaces of the grains, must be regarded:

d
op5+ (11— @)pg — - =0 (5.10)
Thus it is obtained the well-known simple expression:

P =Py + Pigz (5.11)

Note that z is not necessarily the same for the solid and the fluid phase.
The top of the sediment layer can be covered by the water under the
free-fluid surface.
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Comparing the equations obtained for the total of the effective and
natural stresses, it can be recognized that the effective stress is the dif-
ference of the total and the neutral stresses:

G,=0,—p (5.12)

In order to describe the process of consolidation, some approximate
assumptions are made. It is assumed that the pore space of the rock is
perfectly saturated by water. Both the water and the rock grains are
incompressible.

The volume decrease results from the porosity reduction only. The
seepage flow of the expelled pore water can be described by the Darcy’s
law. The development of consolidation in time depends on the displace-
ment process of the pore water.

Thus the continuity equation can be written as:

a(pod)
Fra

It can be decomposed as the derivative of the product:

div(pp V) =0 (5.13)

+ (]) —|— dVgradp + pdiv(dpV) = (5.14)

The second and the third term variable due the incompressibility is:

I, - _ . dp
0} <ﬁ + Vgradp> =04 = 0 (5.15)
It is obtained that:
d
9 +divqg =0 (5.16)
9t
where q = ¢V is the seepage velocity. Since the Darcy’s law is:
— K
q= am gradp (5.17)
after substitution, the result is:
o K . B
yT Edwgradp =0 (5.18)
The other familiar form is:
¢ K (oé°p o°p  °p
5.19
ot (aXZ Tz a2 (-19)

In Terzaghi’s original theory, it is assumed that the only possible mode
of deformation is in the vertical direction, so the volume change &Y can be
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identified with the vertical strain e,,, and assuming a linearly elastic
Hookeian material, this vertical strain can be expressed by the vertical
effective stress as:

€, = —MyG,, (5.20)
where m, is the vertical compressibility. It is a material property that can
be determined in an oedometer test. Because the effective stress is the
difference of the total stress and the pore pressure, it is obtained that:

de 0 do, dp
Substituting this expression into Eq. (5.20), it follows that:
dp do, Pp Pp *p
9 _"9% i ST A 22
TR TR <8x2 o2 T2 (5:22)

The coefficient ¢, is the consolidation coefficient:

K k

Cy = = (5.23)
pmy - My peg
where k is the hydraulic conductivity:
K — Xpi8 (5.24)

u

The simplest application of the consolidation theory is the vertical
consolidation of a clay sample: it is a one-dimensional compression test or
an oedmater test. The sample is loaded at a certain instant (t =0) by a
given load q = const. Because the load is constant, the pore pressure can
vary in the vertical direction only. In this case, the differential equation of
consolidation is obtained as:

dp p
ht A 2

ot~ Vo2 62
This equation is analogous with the one-dimensional transient heat

conduction equation. The solution is also similar. Initially, the pore
pressure sustains the load g, and the effective stress remains zero:

t=0 and p=gq

The lower boundary of the sample holder is impermeable. At the top of
the sample, the porous plate transferring the load is very permeable, thus
the pore pressure at the top is zero:

z=0 and

z=H and p=0
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The solution of the differential equation is found in the form of a
product of two particular solutions. One of them depends on the time t
only, while the other is the function of depth z only:

p=X(z)-Y(t) (5.26)
Substituting it into Eq. (5.25), it is obtained:
day ., d’x

After a slight modification it is:

1dY chzx
Ydt X g2

It can be recognized that the left-hand side of the equation depends
only on t; the right-hand side depends only on z. It is possible only if
both sides equal the same constant a. Thus two ordinary differential
equations can be solved. The final result is than product in the following
form:

(5.28)

4 o : 2n2cy
. _ -(2j-1) b
- ]E 2] cos[ 2j—1)= > H} e i (5.29)

2 o

The solution is represented as a series of curves.

Along the certain curve, the parameter %Vz is constant. The consolida-
tion process is started from the % = 1 value of the abscissa, and practically
is ended where & HZ =2.

At this time the overpressure is eliminated, the excess water is dis-
placed, and the consolidation is finished.

5.3 OVER-PRESSURED GEOTHERMAL RESERVOIRS

The fundamental difference between a hydrostatic and an over-
pressured reservoir is that in an over-pressured reservoir, water cannot
be communicated with the surrounding saturated rocks. Over-pressured
reservoirs develop mainly in rapidly filling tertiary sedimentary basins
such as the Gulf Coast, the Niger Delta, and certain parts of Pannonian
Basin. As it is known, sediments are deposited at the delta front of rivers.
The fresh delta sediments have a high porosity, even more than 40%
completely saturated with water. The loose packed grains compact under
the influence of gravity and the overburden created by the deposition of
even more overlaying fresh sediments. The compaction of a sedimentary
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layer occurs as the porosity decreases, expelling the water from the pore
space. If the displacement of the pore water is unhindered, the pressure
distribution along the depth is hydrostatic. There are some mechanisms
providing a seal, which hinders the displacement of the pore water. The
most common seals are clay and shale layers. Clay or shale sequences
have very low permeability, but they are not perfect seals. The favorable
combination of low permeability and large thickness is necessary to retain
the dewatering of the compacting sedimentary layer.

Consider a thick, compacting clay or silt layer. It can be recognized that
the boundary zone of the layer can be compacting and dewatering, more
so than its inner domain. The expelled pore water must flow along a
longer path from the inner part of the layer. Its pressure loss is necessarily
greater. It requires higher-pressure energy to maintain the flow against
the greater pressure loss. The boundary zone of the formation is almost
perfectly compacted while the inner region remains under-compacted,
containing higher-pressure pore water. As the compaction develops, the
permeability decreases. Thus an almost perfectly sealed domain develops
at the boundary zone of the layer. The closing pore channels don’t expel
the water. The substantial overpressure remains in the inner part of the
layer until it attains the lithostatic pressure, due to the overburden load.
Because the fluid has low compressibility, it supports the majority of the
additional overburden load and retards the further compaction.

However, overpressure can also be present within the pore space by
other fluid expansion mechanisms such as aquathermal expansion,
hydrocarbon maturation, transformation of smectite to illite, and clay
dehydration. The depth interval over which this transition occurs depends
on the local geology and the state of stress of the crust.

5.4 RECOVERABLE FLUID MASS BY ELASTIC
EXPANSION

Consider a closed reservoir of volume V. It contains a porous rock of
homogeneous porosity ¢. The pore volume is filled with a fluid of ho-
mogeneous density p. The thermal state of the fluid is determined
unambiguously by its pressure and temperature. The reservoir has an
outflow opening; the production well. The pressure at the outflow
opening can be controlled arbitrarily.

The balance equation of mass can be written in integral form for the
reservoir fluid:

ot
v (4)

/a(p¢)dv+ / dpVdA =0 (5.30)
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That is the sum of rate of change of pore fluid mass within the volume
V, and the mass flux ¢ppV across the bounding surface of V is zero. Since p
and ¢ has uniform distribution, the integrand of the volume integral is
homogeneous within V. This may be multiplied instead of integration.
The bounding surface of the closed reservoir is impermeable everywhere
except at the outflow opening, where integral obtains the withdrawing
mass flow rate m. Thus we get the equation:
VM +m=0 (5.31)
ot
Since the deformation of the rock matrix is negligible, and the porosity
is constant, it can be written:

Vo %—‘t) +m=0 (5.32)

Since the density distribution is uniform in the reservoir, its convective
derivatives are zero. Thus the local and the material derivatives are equal:
dp dp

- = 5.33

gt dt (5.38)

Tapping the reservoir, its pressure decreases inducing the elastic

expansion of the reservoir fluid mass. It is known through experimental

experience that temperature is unchanged in the case of relatively small

pressure change. Thus the elastic expansion of the reservoir fluid can be
considered to be isothermal. Applying the chain rule we get:

dp dp .
where:
B = 1 @ (5.35)
p dp

is the isothermal compressibility coefficients of the fluid. Thus the out-
flowing mass flow rate can be expressed as:

d
= —Vd)de—Pt) (5.36)

Separating the variables we get the differential equation:
mdt = —V¢Bpdp (5.37)
If the production rate is constant, the integration obtains:

M =m(tp —t1) = VoBp(p; — P») (5.38)
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The subscript 1 refers to the beginning of the production, while 2 refers
to the end of it. M is the cumulated recoverable fluid mass within the time
interval tp — t;, while the reservoir pressure decreases from p; to py. The
proportional factor, the so-called storativity, is:

S = Vo Bp. (5.39)

The recoverable fluid mass from a finite reservoir depends on the
reservoir parameters V and ¢, the fluid properties p and B, and the
reservoir pressure decrease p; — p2. If the lower pressure limit comes
close to the atmospheric pressure, the production will be depleted. In this
case artificial lift methods must be applied. The p; — p» pressure differ-
ence can be increased almost arbitrarily applying submersible centrifugal
pumps. Thus the recoverable fluid mass can be proliferated.

As an illustrative example, we can determine the recoverable water
mass from the Upper Pannonian sandstone aquifer by elastic expansion.

The horizontal extension of the aquifer is 40,000 kmz, its average
thickness is 200 m. The porosity is 20%, the average temperature is
80°C. The density of water 970 kg/m?, its isothermal compressibility
is 4.68-10 ®m?/N. The pressure decrease during production is
3-10°N/m?.

The volume of the aquifer is:

V=Ah=410""m?-200m = 8-10'? m?
Substituting into Eq. (5.38) we get:

2 k
M = 8-102m30.2-4.68-10° =970 X8.3.105 N _ 5 179.1013 g
N m3 m?
It is known that the useable part of the geothermal energy belongs to
the temperature interval over the adjacent temperature at the surface:

E=M-c(T - Tp) (5.40)

where c is the heat capacity of the water, T is its temperature, and Ty is the
annual mean temperature at the surface. The specific heat capacity of
water is 4187 J/kgK, the temperature T =80°C, and Ty = 10.5°C; after
substitution we get:
E=2,179-10" kg-4,187-10° kgLK (180 — 10.5)K = 6,341-10'% J

Using a more familiar unit, it is 6341 P]. Note that the present
geothermal energy utilization in Hungary is approximately 20 PJ/year.
This simple lumped-parameter model is only accurate to an order of
magnitude, for the recoverable part of the geothermal resource found in
the Upper Pannonian sandstone aquifer and fed by naturally upflowing
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wells. Itis obvious that the recovery of a given geothermal reservoir needs
a more sophisticated simulation model.

5.5 THERMAL CONVECTION CURRENTS IN
POROUS MEDIA

The flow of fluid, which is caused solely by density differences brought
about by temperature gradients, is called free or thermal convection. A
fluid body may be in mechanical equilibrium without being in thermal
equilibrium. The hydrostatic equation:

pg = gradp (5.41)

may be satisfied even though the temperature distribution is not uniform.
There are certain temperature gradients that allow the mechanical equi-
librium to be maintained. Other temperature distributions may induce
movements in the fluid. Similar to the bulk fluid bodies, this phenomenon
also occurs in saturated porous media. If the saturated porous medium is
heated from below, convection currents will arise in it. The reason is that
the density of the hotter fluid at the bottom is lower than the cooler fluid at
the top region. This density difference may cause convection currents
as the hotter fluid tends to rise.

Naturally, these convection currents cannot develop in a saturated
porous medium as easily as in a bulk fluid. The energy to maintain the
thermal convection is taken from the terrestrial heat flow.

The aim of the following qualitative analysis is to determine the con-
ditions necessary for the occurrence of the thermal convection currents in
a porous aquifer.

For simplicity, the reservoir is considered to be a homogenous,
isotropic, fluid-saturated, porous medium, bounded by two parallel
horizontal planes. An orthogonal coordinate system is chosen: the x and y
axes are in the horizontal upper boundary surface, while the z axis is
directed vertically downward. Analogously with regard to convection in
bulk fluid bodies, the thermal convection cells will occur in the form of
irregular hexagonal or pentagonal columns with vertical axes. These may
be considered a series of two-dimensional flow patterns. In this case, it is
convenient to investigate the two-dimensional flow in the x-z plane. The
number of the unknown functions is five: the x and z components of the
seepage velocity, the pressure p, the temperature T, and the density p.
There are five equations for determination of the five unknowns: the two
scalar components of the Darcy’s law, the continuity equation, the balance
equation of the internal energy, and the equation of the state. The Darcy
equations are:

gK dH

- &% (5.42)

X v ox
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and

_ gk (Ap; dH
Q=2 <pf = (5.43)

where K is the permeability.
The continuity can be written for incompressible fluid as:

99, , 99,

Xy Tz 44

ax * dz 0 (G44)

The balance equation of the internal energy for the unit volume of
fluid-saturated porous rock is:

(- 0)puc + dored 5 + prce (a5 + .5
b)prck + dpect ot TP\ Qg Tz,

FT 9T
= [(1 = )ky + dkg- (W + %@) (5.45)
Finally, the equation of state, neglecting the pressure dependence of the
density, is:

APt _ AT (5.46)

Pf
One of the boundary conditions is that the velocity is zero along the
bounding surfaces. The temperature along both the lower and the upper
boundary surfaces is constant. The temperature distribution along
the depth is linear:

T=Ty+ vz (5.47)

where vy is the geothermal gradient. The temperature change in the
x-direction is neglected. The solution of the equation system found in the
following form:

qQy = —A-eir sin?sin? (5.48)
q, = —A-eix cos?sin? (5.49)
AT = B-ei= COS?COS? (5.50)

A and B are temporarily unknown coefficients, to is the duration of
the development of the convective cell, and 1 is the distance between the
horizontal boundary surfaces. Substituting into the Darcy Eqs. (5.42) and
(5.43) we obtained the expression:

T2 e sin ™ Xsin T2 (5.51)
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a_H — (ﬂ_}r BB) .e& COSHCOSTC.Z

0z Kg 1 1 (5.52)

The piezo metric head H must be satisfied by the Laplace or the Poisson
equations. Thus it obviously can be derived twice. Since the above
equations are compatible only if the following expression is fulfilled:

B gkBpB
A= 2u

Substituting the Egs. (5.51)—(5.53) into the internal energy balance Eq.
(5.45), regarding the Eq. (5.46) after derivations, it is obtained:
1 2r® (11— ¢k + ok L gKyB- pece

te 12 (1— )pck + dpecs 2v

There is the possibility of the occurrence of convective cells only if the
right-hand side of Eq. (5.54) is positive, that is:

gKyB- pcy ) 2% (1= ¢)ky + dks
2v 12 (1 - ¢)pyck + dpscy

A certain yields geothermal gradient belongs to the fulfillment of the
condition Eq. (5.55), if:

)y _ﬁ (1-9)kg+dke v
Y 12 (1— d)prck + dpscs gKPBpecy

Some important consequences at Eq. (5.56) can be recognized directly.

As large the vertical thickness of the reservoir is, a small geothermal
gradient is efficient for the thermal convection. Rocks of high porosity and
permeability provide good conditions to form convection cells. It is
obvious that poor heat conductivity of the rock matrix actuates the
convective currents of the pore fluid. A high coefficient of thermal
expansion of the pore fluid leads to an increase in the Archimedean lifting
force, which actuates the thermal convection. Finally, low viscosity ad-
vantageously influences the capability of thermal convection.

These conclusions are in agreement with the basic laws of physics.
Thus, the obtained expression for the calculated geothermal gradient
seems to be qualitatively acceptable. It must be noted that many simpli-
fications and approximate assumptions were made in the process of
calculating the geothermal gradient. Thus, Eq. (5.56) has qualitative value
only.

(5.53)

(5.54)

(5.55)

(5.56)
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6.1 BASIC EQUATION

Physically, all flow systems extend in three dimensions. However, in
many problems, the features of pore fluid motion are essentially two-
dimensional, with the motion being substantially the same in parallel
planes. For these problems, we need to concern ourselves with two-
dimensional flow only, and thereby we are able to considerably reduce
the work necessary to obtain a solution. Fortunately, in reservoir engi-
neering, many problems fall into this category.

Flow and Heat Transfer in Geothermal Systems
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In this chapter incompressible steady flows are only considered. In this
case, the continuity equation can be written as:

6qx+%

For steady flow, Darcy’s law is obtained in the form:
q = —kgradH (6.2)

This is equivalent to the existence of a velocity potential:
¢:—k(2+z)+C 63)
Pg

where C is an arbitrary constant. Thus:

_9 _0d

qx - axa qy - ay (64)

Substituting these expressions into the equation of continuity, we
obtain the Laplace equation:
P 9%
Ap=—+-—=5=0 6.5
=52 " 52 (6.5)
This indicates that for conditions of incompressible, steady-state
laminar flow, the pore fluid motion can be completely determined by
solving one equation, subject to the boundary conditions of the flow
domain.
The continuity equation becomes identified with the stream function
W, where the velocity components can be expressed as:

L

I9x = ay7 qy - Ix (66)

It can be easily recognized that the velocity potential ¢ and the stream
function ¥ can be related as:

0o _ dy
" ay 6.7)
op 9y
= o (6.8)

These two extremely important equations are called the Cauchy—
Riemann equations. If ¢ and W have continuous derivatives of the first
order in a given region A, the necessary and sufficient condition that:

W=¢+ip (6.9)
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is an analytic function of:
zZ=X+1iy (6.10)

in A, the Cauchy—Riemann equations are satisfied.

Of the many important properties of analytic functions W(z), we note
the following:

Both real (¢) and imaginary (W) parts of an analytic function satisfy
Laplace’s equation in two dimensions. It was shown that:

e o
ﬁ’LTyZ =0 (6.11)

Since the existence of the velocity potential implies that the flow is
irrotational, it can be written that:

99y dq,

i 0 (6.12)

Substituting the derivatives of the stream function into an equation
where rotation does not occur, we obtain:

F VR o)

a2 oy 0 (6.13)

Any function that satisfies this equation is called a harmonic function.
Two harmonic functions such as ¢ and W that are related so that
W = ¢ +1¥ is an analytic function, are called conjugate harmonic func-
tions, forming a complex potential W.

The following families of curves are the equipotential lines:

¢ = ¢(x,y) = const (6.14)
and the next are the streamlines:
W = W(x,y) = const. (6.15)

Equipotential lines and streamlines intersect each other at right angles. To
prove this, we obtain the slope of each family of curves, respectively.
Along a potential line:

00 g B0
do = - dx + 3y dy =0 (6.16)
from which:
9
dy _ ox _ I (6.17)

dxp gy
dy
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Similarly for the streamlines:

o o

dq):&dx—kg dy =0 (6.18)
ay
dy ox _ Yy
) _ _ox _ ¥ 6.19
dxy 0¥ g, (61
dy
Thus, we obtain:
dy 1
qu,

If a function W(z) is not analytic at some point zy, then zg is said to be
singular point or a singularity of the function. For example, if:

W =In(z) (6.21)

then the function is analytic at every point except the point z = 0, where it
is discontinuous; hence z =0 is a singular point. The flow induced by
singularities has a particular importance in two-dimensional flow theory.

Since the velocity field of any steady, two-dimensional potential flow
satisfies the Cauchy—Riemann equations, any analytic, single-valued
complex variable function W(z) must represent such a flow in the z-plane.

The derivative of an analytic complex function is independent of the
manner in which Az approaches zero:

dw . AW 9o, dd

& AT Ay Tax Ty (6.22)

It can be recognized that:

dw .
— =4 —1iq, (6.23)

cz
Thus, the conjugate velocity equals the derivative of the complex
potential, and the absolute value of the velocity at any point is simply:
_[dw
1= 4z
The lines along which the real part of W is constant are called potential
lines:

(6.24)

Re(W) = ¢ = const (6.25)
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The lines along which the imaginary part of W is constant are the
streamlines

In(W) = W = const (6.26)

Streamlines and potential lines form an orthogonal net. If one chooses
the increment of W to be constant, the discharge between two streamlines
is obtained as the difference of their constants; consider Fig. 6.1. Let’s
choose two arbitrary points in the xy plane. The streamlines passing
through the points 1 and 2 are determined by the constant values of the
stream functions W1 and W,. The tangent of the arbitrary curve 1-2 at
some point is denoted by . It can be recognized easily that:

dx
s cosa. (6.27)
Y _ gina (6.28)
ds

The normal component of the velocity, which is perpendicular to the
curve, can be expressed as

dn = qy Cosa — q, sina. (6.29)

0

FIGURE 6.1 Flow rate between two streamlines.
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The discharge across the arc 1-2 is:

2

Q= /qnds (6.30)

1

After substitution we get:

2 2
/<qxds Yds> /< > =dp — ¢y (6.31)
1 1

6.2 INTEGRATION OF THE CONJUGATE VELOCITY
FIELD

Cauchy’s integral theorem is well known in the complex variable
theory; if C is a closed curve interior to a region R within and on which

q(z) is analytic, then:
/ q(z)dz=0 (6.32)
C

An important corollary of Cauchy’s integral theorem is: if q(z) is
analytic within an on a region R, then the value of the line integral
between any two points within R is independent the path of integration.

If the conjugate of the velocity field is analytic within and on a closed
contour C of a simply connected region R, and if a point a is interior to C,
then:

_ 1 q(z)dz
q@=5— [ — (6.33)
C
This equation is Cauchy’s integral formula. It shows that the value of
the conjugate velocity is an analytic function within a region that is
completely determined through the region in terms of its values on the
boundary.
In order to integrate the velocity field around singularities, consider
Fig. 6.2, applying its notation taking the line integral between two arbi-
trary points A and B.

B B B
/c_ldz: /(qxdx+qydy +1/ qdy — q,dx) (6.34)
A A A
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0

FIGURE 6.2 Line integral of the conjugate velocity field.

It can be recognized easily that the real part of the integral is the in-
tegral of the tangential velocity component by the arc ds (note ds = |dz|).
Calculating the imaginary part we obtain that:

B B B
dy dx .
/ (quS — quS> ds = / (qX sino. — q, cosoc) ds = — / q,,ds, (6.35)
A A A

as it is shown in Fig. 6.3.
—qy = g sina — q cosa. (6.36)

The unit vectors t and T forms a right-handed coordinate system.
Because of this condition, the normal component of the seepage velocity
has a negative sign. Thus the line integral of the conjugate velocity field

can be written as:
B B
/ qdz = / —iq,)d (6.37)
A

Extending the integration to a closed curve we obtain:

/qdz = /qtds —i/ q,ds (6.38)
CF C C
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Horizontal

AR —

Pizometric level

H.

H, y = Const

00“5\
Q z

FIGURE 6.3 Parallel flow.

The first integral at the right hand side is the circulation of the velocity
field:

r= /qtds (6.39)
C

This, as it is known, means that the circulation around C is equal
to the flux of, through the area bounded by C. Thus if the integral on
the closed contour C is non-vanishing, obtaining a real quantity,
there must be vortex-type singularities in the region bounded by the
curve.

If the imaginary part of the complex integral of the velocity field on a
closed contour doesn’t vanish, then there is a surplus through this closed
curve. This surplus is positive if the outflowing fluid is greater than the
inflow, thus:

Q=-/q,ds>0 (6.40)
!

which is called source, while q < 0 is a sink.
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6.3 EXAMPLES OF ANALYTIC FUNCTIONS
REPRESENTING TWO-DIMENSIONAL POTENTIAL
FLOWS

Each analytic function W(z) represents a potential flow in the z-plane.
The simplest example is the linear function:

W= Az = Ax +iAy (6.41)
where A is a real constant. Since:
aw_ (6.42)
dz

The Eq. (6.41) complex potential corresponds to a uniform flow with
velocity A in the x-direction. Let’s note this uniform velocity by q«x, thus,
the complex potential of the uniform parallel flow is:

W = qo,2 (6.43)

The potential lines and streamlines are obtained as the real and
imaginary parts of the complex potential:

® = q,,x = const (6.44)

W =q,,y = const (6.45)

Thus the orthogonal straight flow net is obtained as it is shown in
Fig. 6.3.

Since the velocity has a real component qx only, it is obtained from the
velocity potential.

_9¢
A = X
The velocity potential depends linearly on the piezometric head:

®=-KH+C (6.47)

(6.46)

where K is the hydraulic conductivity, while C is an arbitrary additive
constant. Thus the velocity of a homogeneous parallel flow is:
d(KH)

G=—"3 (6:48)

The velocity is determined by the slope of the piezometric surface (see
Fig. 6.3.).

The effect of different kind of singularities will be discussed in the
following.

Consider the analytic function:

W =C:Inz (6.49)
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in which C is an arbitrary real quantity. It is obvious that at z =0, the
function has a pole, thus z = 0 is a singular point. The conjugate complex
velocity is obtained as:

(z) = dW C

R P

It can be recognized that the point z = 0 is also a singular point of the
velocity field. To determine the kind of singularity, we take the integral of
the velocity field on a closed contour around z = 0. Let’s choose for this

purpose a circle of radius R and with the center at z = 0. On this circle the
line integral of the velocity field can be determined by:

(6.50)

C
/ qdz = / R (cose — ising)iR(cos¢ + ising)de (6.51)
(R) (R)

The real part of the integral will vanish, thus we get:

/ qdz = i2nC =iQ (6.52)
(R)

This is a purely imaginary quantity, thus the singularity at the point
z = 0 must be a source of intensity Q.

Thus, a two-dimensional source of discharge (per unit length in the
direction perpendicular to the xy-plane) placed at the origin can be rep-
resented by the complex potential:

w21, (6.53)
27
Its conjugate velocity field is:
. Q
q=5= (6.54)

The potential lines and streamlines are obtained as the real- and
imaginary part of the complex potential W:

¢ +id :%ln(rem’) :%mwm% (6.55)

Thus the potential lines are concentric circles determined by the
expression:

%lnr = const (6.56)

where the radius of each circle can be calculated by the equation:

r=ed, n=0,+1,£2,... (6.57)
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The streamlines form a family of straight lines passing through the
origin, determined by the equation:

%(p = const (6.58)

The flow net is shown in Fig. 6.4.
It is obvious that the complex potential of a sink is given with a
negative sign, because of Q < 0:

. Q
W= 27‘[7an (6.59)

A\

FIGURE 6.4 Streamlines and potential lines of a source.
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The velocity field is:
q=-—5— (6.60)

Its potential lines are concentric circles with the common center at the
origin, while the streamlines are radial straight lines. The only difference
is the direction; both the velocity and streamlines are directed into the
origin.

Although sources and sinks are simply mathematical conveniences,
they are of great value in that when combined with other simple flow
patterns, they can closely reproduce many complicated natural flow
patterns. The power of the method of sources and sinks stems from the
linearity of the Laplace equation. For if we add together a number of
complex potentials, each of which satisfies Laplace’s equation, the sum
of these will satisfy it, too. This allows the application of the principle of
superposition.

The complex potential of a sink can represent the flow pattern around a
production well in a confined reservoir of constant thickness. The velocity
potential can be expressed by the piezometric head:

® = — KH + const (6.61)
At the wall of the borehole, the potential:

—KHj + const. = — %lnRO (6.62)

while at the infinity (practically at sufficiently large distance from the
well), it can be written:

—KHw + const. = —glan (6.63)
27

If the thickness of the aquifer or the reservoir is b, the discharge of the
well is obtained as:

(6.64)

The piezometric level around the well depends on the distance
logarithmically:

(6.65)
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The in situ value of hydraulic conductivity for a reservoir of thickness b
is obtained as:

In Ry
Qv R
N 271tb H2 — H1 (666)

where Hy and H; are the piezometric levels in two observation wells
placed in distances R, and Ry from the origin, where the production well
is placed.

6.4 METHOD OF SUPERPOSITION

As an example of the method of superposition, we shall consider a
uniform flow of velocity q«x past a well in a layer of thickness b. For
convenience, the well will be located at the origin, as it is shown in Fig. 6.5.

Noting that the complex potential for the well is:

Qw
=— .67
W b Inz, (6.67)
and the complex potential of the uniform flow is:
W = Qo2 (6.68)

For the combined flow, the superposition obtains the complex potential
is:

_ Qw
W= qoon — HIHZ (669)

o x
%

4

T
x

FIGURE 6.5 Source in a parallel flow.
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The conjugate velocity field is obtained as:

Qw

q = qoox - ZTCbZ (670)
The potential and stream functions can be written as:
_ Qw
G = Qo X+ b Inr (6.71)
_ Qw
Y =quy T 054 (6.72)
This may be expressed by Cartesian coordinates:
¢ = qux+In z (6.73)
— Qw y
Y =qu Y+ rc A€ tg " (6.74)

Behind the well, a stagnation point S occurs at which the velocity is
obviously equal to zero:

_ Qw

9x = 9wx — ombzs 0 (6.75)
Expressing z;, we get:
__Qu
Zs = 27bq.. (6.76)

It can be recognized that the stagnation point falls to the x-axis, as large
the capacity of the sink (the discharge of the well), and as far the stag-
nation point from the origin. The so-called zero-streamline passes through
the stagnation point. Its equation can be written as:

B Qx y
Yo = Quyy + 2mb arctg; =0 (6.77)
from which we obtain the implicit formula:
Qw y
= = 7
y 2mbq., arctg ™ (6.78)

The streamlines of this flow pattern are shown in Fig. 6.5.
The complex potential of uniform flow can be replaced by the piezo-
metric head. Thus we get:

Qwx

__ Y
Y =~ 5bKH arctg ~ (6.79)
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The next example of the method of superposition the flow pattern
around a so-called doublet is a production and injection well of equal
strength. It is a rather familiar configuration in geothermal fields.
Consider a source and a sink of equal strengths Q and —Q, spaced at —a
and a respectively, from the origin on the x-axis (see Figs. 6.6 and 6.7.),

Y
z+a z Y Z-a
0, P4
Q X -Q X
-a +a

FIGURE 6.6 Source and sink on the plane of the complex variable z.

1=0 =24

RIS NN

)

FIGURE 6.7 Streamlines of a doublet.
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The resulting complex potential is obviously:

Q Q

It can also be written in the form:
Q. z+a
W= b an — (6.81)
Applying the notations:
z+a=rev (6.82)
and
z—a=re? (6.83)
we obtain for the potential and stream functions:
Q.
¢ = b In - (6.84)
and
_Q
=5 5@ o) (6.85)

To find the equation of the equipotential lines, we note that if
¢ = constant, ry/r; must be similarly constant. Hence, setting:

2 2 2
(1"_2) _ (xta)+y a>2 Y _c (6.86)
n) T -aP 4y
After some manipulation, the equation of the potential lines is found to be:
C+1\* , 4aC
( 1-C ) Y (1-C)> (6.87)

This equation shows that the equipotential lines are a family of circles
with radii 2av/C/(1 — C), and with centers at:

C+1
Xil—Ca’ y=0 (6.88)
To obtain the equation of the streamlines we can take the imaginary
part of the complex potential:

271thby
tg —Q

=tg(p, — 1) =C (6.89)
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whence, noting that:

y
= — 6.90
0 = arctg (690)
and
y
= . 1
01 arctgx — (6.91)
we finally obtain:
2 _a2 1
X2 + (y C) —a (1 +C2> (6.92)

This equation shows that the streamlines are also another family of

circles with radii:
1
R=a/1+ a2 (6.93)

and with centers at x=0and y =a/C.

A more general case is when the flow rate of the production well Qpy,
and the flow rate of the reinjection well Qy,, are different. The complex
potential can be written as:

QpW

Qrw
b In(z+a) — b (z—a) (6.94)

The conjugate of the velocity field is obtained:
_ Qn 1 Qpw 1

W =

=— - 6.95
1 2mbz+a 2nbz-a (6.95)
A stagnation point occurs where the velocity equals zero:
Qw 1 Qw1
= — 6.96
21tb zg+a 2mb zs—a ( )
The complex coordinate of the stagnation point is obtained as:
Qrw + pr
Zg=——1—a (6.97)
° Qrw - pr

Three different flow patterns can be recognized.
If the discharge of the production well is equal to the reinjected flow
rate:

pr = Qrw (698)

then there is no solution for Eq. (6.96), therefore the stagnation point
cannot occur.



124 6. TWO-DIMENSIONAL STEADY FLOW THROUGH POROUS MEDIA

If the reinjected flow rate is greater than the discharge of the production
well:

Qrw > pr (699)

then the stagnation point falls to the positive half of the x-coordinate axis,
further from the origin than the production well:

7zs > a (6.100)

If the discharge of the production well is greater than the reinjected
flow rate:

Qpw > Qrw (6.101)

then the stagnation point occurs on the negative half of the x-coordinate
axis, further from the origin than the recharge well:

—zs < —a (6.102)

The flow patterns of these cases are shown in Fig. 6.8.

Consider now a semi-infinite, confined aquifer between two parallel
horizontal planes, bounded by a straight impermeable contour at one
side. Let a well be placed at the point (z — a) as it is shown in Fig. 6.9,
where a is the distance between the well and the impervious boundary of
the aquifer. In this case, the so-called method of images can be employed
to find the complex potential. The impervious boundary line may be
considered to be a streamline. This streamline can occur due to some
singularity; an added fictitious sink of equal capacity induces it. The

FIGURE 6.8 Streamlines between a source and sink of different strengths.



6.4 METHOD OF SUPERPOSITION 125

y=0
FIGURE 6.9 Method of images: an impervious boundary is replaced by a source.

material sink, and its image symmetrically to the boundary forms a flow
pattern with the complex potential:

__Q Q
W= b In(z — a) b In(z +a) (6.103)
The conjugate of the velocity field can be written as:
_ Q 1 1
=——|— .104
1 27'cb<z—a+z+a> (6.104)

It is obvious that a stagnation point occurs at the origin; the solution of
the equation:

L + ! =0 (6.105)
Zs—a Zg—+a

is zg = 0.
The stream function can be separated easily introducing the notations:

Z+a =rel® (6.106)
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and
z—a=re® (6.107)
After substitution we get:
W=-— gln(z +a)(z—a)=— Q [In(rory) +i(¢y + ¢@1)lne]  (6.108)
27b 27
Thus the equation of the streamlines is:
Qo1 +¢o)
Y =- b = const. (6.109)

The zero-streamline coincides with the y-coordinate axis. The stream-
line pattern is shown in Fig. 6.10. Since the velocity has no component
perpendicular to the streamlines, this zero-streamline forms the boundary
of drainage area of the well. The image-sink has no additional importance,
because it falls out of the drainage area. Its role is that the fictitious

2l

g
-t

FIGURE 6.10 Flow pattern of a row of wells.
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hydrodynamic singularity may replace the impervious boundary of the
drainage area equivalently.

Consider, finally, the configuration of production and reinjection wells
as it is shown in Fig. 6.10. The discharge of production wells and the
capacity of reinjection wells is uniform. The wells are placed along two
parallel rows with constant spacing. Let the number of wells be m along
each straight line. Thus, the complex potential of the system can be
written as:

m
= % > [n(z—a+ivt) - In(z+a+ivt)] (6.110)
v=—m
The velocity distribution is obtained:
_ Q& 1 1
= — J11
d 2'rcbvzz_m{za+iut z+a+ivt (6111)

The streamline pattern is shown in Fig. 6.10.

As the number of wells increases, the boundary lines between their
drainage areas tends to be straight parallel lines midway between two
wells.

6.5 THE HELES—SHAW FLOW

A possible way to describe the flow through fractured media is
replacing the family of fractures by a simple equivalent fracture. The flow
occurring between two narrow, parallel planes is the so-called Hele—
Shaw flow.

Consider a steady, two-dimensional laminar flow of an incompressible
fluid between two parallel planes. The Navier—Stokes equation is valid
for this flow. It can be written as:

oV

T (VV)V

1
g - EVp + VAV (6.112)

Since the flow is steady, the local derivative 4V /dt=0. In a two-
dimensional flow, the velocity component v, = 0. The only body force is
the gravity, thus:

_ _o(gh) _ d(gh)

Since the velocity at the bounding plane walls must be zero, the change
of the velocity components vy and vy with respect to z will be much
greater than the velocity changes with respect to x and y. Hence, in
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comparison to their respective derivatives in the z-direction we may
assume that:

Ivx  Ovx Ovx OV
0z ax’' 0z dy

(6.114)
vy Oy By vy

ot ox’ 0z dy

Thus, the derivatives 9v/dx; 0vy/dy; vy /0x; and ovy /0y can be
neglected together as the second derivatives with respect x and y.

dvx _gdH . (6.115)
dz v 0x
d

vw_sM o (6.116)
dz v dy

Integrating once more we get:

_gdHz
V=S T+ izt G (6.117)

g 0H 72
=5_"Z= 11
Vy v ay 2+C22+C4 (6.118)

The following boundary conditions can be taken to determine the four
constants of integration:

z=9; Vx=vy=0; z=-9; vx=vy=0

Substituting these values we get:

g 9H 3?
5.7 11
v dx 2+C16+C3 (6.119)
2
g oH
=2.— — o 12
0 v Ix 2+C1 +c3 (6.120)
0H 2
0=822% | 54 q 6.121)
v 0x 2
0H &°
—8.700% L st (6.122)
v 0x 2
The ¢; and ¢, constants of integration are zero, while:
0H 2
G=c=-2200% (6.123)



6.5 THE HELES—SHAW FLOW 129

Finally, the two velocity components are obtained as:

OH 72 — 32
vy = % — (6.124)
and
oH z2 — ¥°
vy = % a2 (6.125)

which show a parabolic velocity distribution, as it is shown in Fig. 6.2.
The Egs. (6.124) and (6.125) can be written as:

9 [(eH 22 — ¥
vx = (gv . ) (6.126)
and
9 (gH 7> -

It can be recognized that velocities vy and vy can be interpreted as the
velocities of a potential flow of which velocity potential is:

gHz22-¥
v 2

Strictly speaking, the potential function ¢ defines a family of potential
functions of the parameter z. Each parallel plane z = const. has its own
potential function. Nevertheless, this flow is a quasi-potential flow.
The streamline patterns obtained each parallel plane are congruent, but
the size of the velocities are different along them accordingly to the
Egs. (6.126) and (6.127). The equation of the streamlines can be written as:

¢

(6.128)

9H

dy vy dy

v, o (6.129)
0x

This equation doesn’t contain the variable z, thus the streamline
pattern are really congruent in all planes.

Based on the Eqgs. (6.124) and (6.125), the cross-sectional integral mean
velocities of both vy and vy between —3 and +0 the two planes can be
obtained:

17 5* 9H
= e / vidz =82 22 (6.130)
3v dx

25
3
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and

7 3% 9H
_ _ g0 o
Cy = % / vydz 3v dy (6.131)
-3
The mean velocities cx and ¢y can be obtained as the derivatives of the
potential function:

2
P = “% (6.132)

Since the continuity is also valid for the mean velocities, it can be
written:

dCx 8Cy
e T A 1
ox 3y 0 (6.133)
thus, a stream function can be defined as:
oW oW
Cx = g and Cy = _67)( (6134)
These equations lead to the well-known Cauchy—Riemann equations:
b 3D
S + g =0 (6.135)
W oW
~— =0 (6.136)
dy  dx

The velocity of the Cauchy—Riemann equations guarantee the exis-
tence of a complex potential function:

W(z) = @(x,y) +i¥(x,y) (6.137)

This is the reason that the use of the method of complex potentials is
also feasible to describe the flows between parallel planes. Recognizing
this relationship, Hele-Shaw (1897) devised an apparatus whereby two-
dimensional flows through porous media could be investigated experi-
mentally for structures with complex boundaries.

Reference

Hele-Shaw, H.S., 1897. Experiments on the surface resistance in pipes and on ships. Institute
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7.1 FLOW TOWARD THE WELL IN A POROUS
RESERVOIR

Along a streamline from the contour of the drainage area to the well-
head, two hydraulic sub-systems can be discerned with merely different
flow behavior. One of them is a seepage flow in the reservoir toward the
wall. This flow satisfies Darcy’s law; the dependence of the pressure loss
on the flow rate is linear. The other sub-system is the upward turbulent
flow through the tubing. Its pressure loss depends on the flow rate
parabolic. Nevertheless, these flows are interdependent; any change in
the flow variables of one has a certain reaction on the other flow. These
flows are serially connected; their flow rates are the same while their
pressure losses are added. Notwithstanding, the different nature of the
two flows necessitates to separately determine both of them, and the
obtained solution can be fitted by suitable boundary conditions. First,
the reservoir flow is studied.

Flow and Heat Transfer in Geothermal Systems
http://dx.doi.org/10.1016/B978-0-12-800277-3.00007-4 1 3 1 Copyright © 2017 Elsevier Inc. All rights reserved.
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It is known that the permeable layers of the porous sedimentary
geothermal reservoirs of the Pannonian Basin have a relatively large,
mainly a few kilometers, horizontal extension, but a small vertical
thickness, in most cases a few meters only. Accordingly to the natural
conditions, it is reasonable to assume a two-dimensional Darcy flow in
these reservoirs toward the wells.

Darcy’s law is the generalization of an extended set of experiments
carried out on flow through granulated columns.

The granulated column is considered to homogeneous and isotropic,
having a permeability of K. The fluid is incompressible, Newtonian; its
dynamic viscosity is p. The flow is steady and laminar. In this case the
flow rate depends on the pressure gradient linearly:

A-K dp
Q= o dx (7.1)

Since the fluid flows in the direction of the decreasing pressure, the
sign of the right-hand side of the equation must be negative. The cross-
section of the column A is perpendicular to the velocity.

Ferrandon (1948) generalized Darcy’s equation as:

—

q=—%gmp, (7.2)

where q is the so-called seepage velocity, the flow rate across a unit cross-
section. The flow toward wells is considered two-dimensional and axi-
symmetrical. Thus we get:

e (7.3)

H
|
CAPROCK .
SOONNNONNNNN : Lol
RESERVOIR — S In
8l «— }
T R -
BEDROCK B o ;
|

FIGURE 7.1 Simple axi-symmetrical reservoir model.
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The outer boundary of the reservoir is open. In accordance to the
continuity equation, the produced flow rate through the well is the same
as the cross-flowing flow rate through the outer boundary of the drained
area. The continuity equation for the case of non-deformable porous
matrix is:

? —
"’ait) +div(pq) =0 (7.4)
For incompressible fluids, it can be written as:
divg =0 (7.5)
Substituting Darcy’s law:
div (— K gradp) =0 (7.6)
u
In a cylindrical coordinate system we get:
1d/ dp
P (r dr> =0 (7.6a)

Integrating twice, we obtain:
p= Cilnr+Cy (7.7)

In order to get the constants, the following boundary conditions are
chosen:

r=Re and p=p,, (7.8)
r=Re and p =p, (7.9)
After substitution we get:
~— Pw Pe — Pw
Ci="+3Y and C = + & = H¥InRy 7.10
1 ln% 2 Pw In IE—S/ ( )

Finally, we obtain:

_ Pe — Pw . L
P=Pw Tt & lnRW (7.11)

The pressure distribution can be expressed by the flow rate:
Q =2mrq (7.12)

while:

q= 9P (7.13)
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FIGURE 7.2 Pressure distribution along the radius.

Thus we get:

nQ r

- e L 714
P=Pw oK "R, (7.14)

It can be seen in Fig. 7.2 that the pressure distribution along the radius
is a logarithmic function.

As the flow toward the well attains the borehole, the pressure drop is
more considerable than it would be obtained by the logarithmic distri-
bution. The reason for the increased pressure drop is a thin damaged
region around the borehole with reduced permeability. When the well has
been drilled, the suspended particles of the drilling mud penetrate to the
pore channels of the formation across the surface of the borehole. These
particles can partially plug the pore channels, substantially reducing the
permeability of a relative thin region like a skin on the borehole wall. This
weak permeability zone leads to an additional pressure drop, which can
be calculated by the equation:

nQ

APsin = 5 1K (7.15)

in which s is the so-called mechanical skin factor, which is a dimensionless
quantity. The two pressure drops obtained by Egs. (7.14) and (7.15) are
added as the fluid flows through serially connected elements. Thus the

total pressure drop is obtained as:
nQ Re
- == (In== 7.1

Pe = Pwt 27thK < an + S> ( 6)
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Expressing the flow rate, we obtain:

27thK . Pe — Pwe
B lnl% +s

Q= (7.17)

The reservoir and the production well are interacting elements in serial
connection from a hydraulic point of view. Accordingly, the flow rate of
the reservoir flow toward the well and the flow rate of the upflowing fluid
in the production well must be the same. On the other hand, pressure
drops obtained in the reservoir and in the well must be added. These are
the joint conditions of the two sub-systems; the reservoir and the well.

Consider now a geothermal reservoir, in which the undisturbed
reservoir pressure is 200 bar = 200 - 10° N/m?, the radius of the drainage
area is 500 m, the radius of the inflow cross-section of the well is 0.08 m,
the reservoir thickness is 16 m, and the permeability is 500 md =
0.5 - 10?2 m? the flow rate is 0.02m>/s, and dynamic viscosity is
0.3 - 107> N/m?. The skin factor may be neglected. Calculate the flowing
bottom-hole pressure.

Using Eq. (7.16), after some arrangement:

o M Re
Pwt = Pe 21thK Ry

Substituting the above data we get:

o N 03-107% Ns. 0,02 ™ , 500
m2 2-314-16m 05-1012m2  0.08

= 18,956,699 Ez = 189.56 bar
m

7.2 THE FLUID UPFLOW THROUGH THE WELL

In the initial period of geothermal energy production, the natural flow
of thermal water resulting from elastic expansion of the reservoir fluid
was almost exclusive. In this case, the flow in the well starts by pumping
until the whole tubing was filled by hot water. Because of this, the bottom-
hole pressure becomes lower than the pressure of the undisturbed
reservoir. The pressure decrease induces the elastic expansion of the
reservoir fluid, inflowing the well and rising through the tubing to the
surface. After this artificial starting, the well flow becomes self-
supporting, while the separation of the dissolved gases helps also to
maintain the flow. A particularly simple special case involves only the
flow of homogeneous liquid phase in the well. A steady flow is
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considered. The flow is turbulent, and the velocity and the density can be
taken as constants. The mechanical energy equation can be written be-
tween the bottom-hole (1) and the wellhead (2):

2 2
C C /
P +P1t2Z1pg =P+ Py + 2208 + Apyy (7.18)

Since the fluid is incompressible and the diameter of the tubing is
constant, the velocities are the same: ¢c; = ¢ = c. The reference level z, = 0
is at the surface, thus the bottom-hole depth z; = —H. The pressure at the
bottom-hole p; = pw¢, and at the wellhead p; = pwh. The pressure loss
Ap), can be determined by the Weisbach equation:

/ H &2
App, =A=p—= 7.1
P2 =ApP5 (7.19)
where A is the friction factor. The friction factor can be calculated
depending on the Reynolds number, and the relative roughness of the

tubing.
The Reynolds number is obtained as:
Re = C’%, (7.20)

while the relative roughness depends on the pipe material and the tech-
nology. It can be estimated applying the diagram of Colebrook (Fig. 7.3).

VA AVAVAY

N

10 10? 103
—= D [mm]

FIGURE 7.3 Relative roughness of different type pipes.
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Knowing the Reynolds number, and the relative roughness k/D, the
friction factor can be determined by Colebrook’s equation:

1 2.51 1
—=-2g| =t ——s 7.21
VA g(Reﬂ - 3.715-2) (7.21)

The hydraulically smooth pipe, and the wholly rough pipe are
involved in Eq. (7.4) as a special case. For hydraulically smooth pipe, the
second term, while wholly rough pipes, the first term, disappears in the
bracket.

Since the equation of the friction factor is obtained in implicit form, the
A can be calculated by iteration. The convergence of the iteration is rather
fast, particularly when the starting value of A is chosen using the diagram
of Fig. 7.4. In such a case, two, or at the most three, iteration steps are
sufficient.

Finally, after some arrangement, the mechanical energy equation can
be written as:

2

H

D2

It can be recognized that bottom-hole pressure p.s holds dynamical
equilibrium with the wellhead pressure pyh, the hydrostatic pressure of
the water column of height H, and the pressure loss due to fluid friction in
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FIGURE 7.4 Moody’s friction factor diagram for commercial pipes.
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the tubing. Note that the wellhead pressure includes the pressure losses of
the surface facilities, too.

On the other hand, the pressure of the reservoir fluid at the inflow
cross-section of the well is:

Pwi = Pe ~ ZMSK <1n& + S> (7.23)

The comparison of these equations leads to the expression for the
undisturbed pressure of the reservoir pe:

B nQ H &
Pe ng+pwh+2 hK (ln——i-S) +)\Dp7 (7.24)
Since:
D2
Q=c—T= (7.25)
4
this pressure equilibrium can be expressed as:
nQ Re H 2
Pe = PgH +pyn +5 1 hK<l + )HDS pQ (7.26)

The undisturbed pressure of the reservoir holds the equilibrium with
the hydrostatic pressure of the water column of height H, the wellhead
pressure, and indirectly the pressure drop of the surface facilities; filters,
heat exchangers, etc., provide the pressure losses of the reservoir fluid
flow toward the well and the upflowing fluid in the tubing. It is note-
worthy that the hydraulic resistance of the flow in the reservoir depends
on the flow rate linearly, while the dependence of the pressure loss of the
upflowing fluid in accordance to its turbulent nature is parabolic. Note
the sensibility to the tubing diameter; there is an inverse proportion to the
fifth power of the diameter.

It is remarkable to consider the pressure difference maintaining the
upflow through the well. The undisturbed pressure of the reservoir at the
depth of H is obtained as:

2 3

Pe =Po + Pog<H - AYH7 - Bsz§> (7.27)
This pressure is greater than the hydrostatic pressure of the hot water
column in the well. On the other hand, the reservoir pressure at the entrance
cross-section of the well and the flowing bottom-hole pressure are equal.

Thus, an excess pressure develops in the tubing as it is shown in Fig. 7.5.
Closing the flowing well during a short time, pressure waves propa-
gate forward and backwards through the tubing until the fluid friction
dissipates their mechanical energy. As the waves are decayed the fluid
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Pressure distribution of
hot water in the well
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distribution outside
the well
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z

FIGURE 7.5 Excess pressure in the tubing.

comes to equilibrium. This hydrostatic state can be expressed analogously
to the communicating vessels; for the hot water filled tubing and the
adjacent aquifer:

H> O H?
Pwh T P8H = py + pog (H Ay - By 3 ) (7.28)

Considering that:
p = po(1 — AYH — By?H?), (7.29)

substituting it into Eq. (7.18), we obtain the excess pressure at the closed
wellhead:

AyH? 2B
Pwh — Po = Pog( Yz + 3v2H3> (7.30)

This excess pressure maintains the flow through the production well.
This is the so-called thermal lift.

Equalizing Eq. (7.26) and Eq. (7.27), we obtain the following
expression:

H? JHY uQ
HS
s 7270

(7.31)
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Considering Eq. (7.29), we can get a simple quadratic equation for the
flow rate:

H 8
A5 2 pQ’ +m (1n+S)Q+Pwh ~ Po
) (7.32)
H ,H
—pogH| Ay = +2By"— | =0
2 3
Since all parameters of this equation are known, the flow rate of a

naturally flowing well is obtained as the solution of an equation type of:
aQ®>+bQ+c=0 (7.33)

The performance curve of a production well is the graphical repre-
sentation of the relationship between the wellhead pressure and the flow
rate. After some rearrangements of Eq. (7.9), this function is obtained as:

Pwh = Pe — pg ZMICIQK (11'1& + S) - 7\ 5 Q2 (734)

The first and the second term on the right-hand side don’t depend on
the flow rate. Their sum is the static component of the wellhead pressure.
This static wellhead pressure exists in a closed well as the mechanical
equilibrium is developed in it. The pressure drop of the formation de-
pends on the flow rate linearly, while the pressure loss in the well is a
parabolic function of the flow rate. This is shown in Fig. 7.6. The calcu-
lated performance curve describes correctly the behavior of the upflow

p2$
Pe— PgH
,UQ |n&+s
2thK | R,
H 8 >
A 05 2 p
0 Q

FIGURE 7.6 Calculated performance curve.
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through the well in the simplest case of the homogeneous liquid flow. The
actual performance curve of a production well can be determined
experimentally by in situ measurements of the flow rate and the wellhead
pressure in several performance states.

Knowing the performance curve of the well, and the pressure—loss
curve of the surface facilities, the performance point of the system can be
determined. The hydraulic load of the surface pipeline is also a parabolic
function of the flow rate:

=Pt + A5 5P 5 Q. (7.35)

Ls
D
where pg; is the static pressure to overcome the height difference between
the outflowing and inflowing cross-section of the surface pipeline, the
second term is the pressure loss of it. The values A, Ls, and Ds belong the
surface piping. The intersection of the two curves represents the common
performance point, where the flow rates and the pressures are equal.
Thus, according to the Egs. (7.31) and (7.32) we get:

B u Re H38 »_ Ls 2
p. — pgH 2hK<ln —|—>Q 7\D 5> PQ Pst+7\D 5> PQ

(7.36)

It can be outlined clearly that finally the undisturbed reservoir pressure
provides the necessary mechanical energy to maintain the flow in the
reservoir, through the well and in the surface elements in the system.

Following a streamline from the boundary of the undisturbed region of
the reservoir to the wellhead, the mechanical energy equation can be
written. Referring to the unit volume of the flowing fluid, the equation is
obtained in a dimension of pressure. Since the flow is steady, the sum of
mechanical energy and its dissipated parts, the pressure loss is constant.
The graphical representation of this equation is the so-called energy di-
agram. The length of the streamline is the abscissa, while the energy terms
occur in the ordinate.

The streamline begins at the contour of the drainage area at the point
r = Re. Assuming a horizontal reservoir, the total mechanical energy oc-
curs in the form of pressure pe. As the fluid flows toward the well, the
pressure decreases along the streamline logarithmically as it is expressed
by Eq. (7.9). At the entrance section of the well, the mechanical energy is
equal to the flowing bottom-hole pressure py. The pressure loss in the
reservoir is dissipated to heat. In the tubing, the upflowing fluid has a
frictional pressure loss, which increases linearly along the streamline.
This part of mechanical energy dissipates also into heat. The fluid sizes in
the tubing its potential energy pg, increases linearly along the vertical
streamline. At the wellhead, the mechanical energy is the sum of the
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FIGURE 7.7 Energy diagram.

wellhead pressure pyh, and the potential energy pgp, which is the hy-
drostatic pressure of the hot water column in the tubing.

The energy diagram of this system is shown in Fig. 7.7. This diagram
characterizes the energy relations of a naturally outflowing well.

Consider a hot water production well. Its depth is 2000 m, the internal
diameter of the tubing is 160 mm, and the relative roughness D/k = 1000.
The flow rate is 0.02 m>/s. The density of water 958 kg/m? and the
kinematic viscosity is 0.3 - 107° m?/s. Calculate the pressure loss in the
tubing between the bottom-hole and the wellhead.

The cross-sectional average velocity is:

Q 00224 m
- ==t 37 0994 —
¢ D= 0.162m2-3.14 s

The Reynolds number is obtained as:

D 099 m.0.16
Re—S 22777 s " Z0M_ 530 433
v 03-106m

The flow is naturally turbulent; it is shown in the Moody—diagram,
that the corresponding D/k and Re values belong to the transition region.
Applying the Colebrook equation, the starting value of the iteration
Ao = 0.02. Thus, the first step of the iteration is:

1

A= = 0.02020

2
Colef 251, 1
[ 213 (530,133\/0.02 T 3715
The second step obtains:

Ao = 0.02020
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thus, further iteration is unnecessary. Knowing the friction factor the
pressure loss can be calculated:

, .H & 2000 0.994? N _

Ap' = KEpE =0.0202 - 01 958 - — = 119.500 2= 1.195 bar

The next example is the following; consider a vertical closed
geothermal well filled with hot water. The depth of the well is 2000 m, the
geothermal gradient is 0.05°C/m, and the water density at the surface
temperature is 999 kg/m>. The temperature decrease of the water be-
tween the reservoir and the wellhead can be neglected. Calculate the
excess wellhead pressure.

This problem can be solved by substituting the data for Eq. (7.30):

1 2
Pwh —Po = p0g<§AyH2 + gBY2H3>

1 1 o
—999 %8981 ™ (L. 171010 L5.102 C .4 106 m2
m2 52 2 °C m
1 °C2? N
5—25-107% —-8-10° mz) = 590,069 —; =5.90 ba
m m

°C?

+ %3.232 .10

Another problem follows. Determine the wellhead pressure for a
flowing hot water producing well. The necessary data are:

Depth of the well M = 2000 m
Diameter of the tubing D=0.16m
Friction factor A =0.0202
Geothermal gradient vy =0.05°C/m
Water density at surface po = 999 kg/m>
temperature

Flow rate Q=0.02m%/s
Radius of the drainage area R =400 m
Radius of the inflow D =0.08 m
section of the well

Reservoir thickness h=26m
Permeability K = 1000 md = 10" * m?
Skin factor is neglected s=0

Dynamic viscosity p=3-10"*N/m?
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The wellhead pressure can be calculated by Eq. (7.17):

2 3

H H
Pe = Po T P08 <H - AY? - BY2?> = 101,325 +999 - 9.81-

2 4-10°
2

(2000 ~172-107%*-5-10" 3

109
32321025104 - 210 )
N
= 19,322,790 —; = 193.23 bar
m
pgH = pogH (1 — AyH — By?H?) = 999-9.81-2000-

(1-1.72-107*:5-107%-2-10° — 3.232-107°-25-10*-4-10°)
N
= 18,795,960 —; = 187.6 bar
m

N
Ap’ =312.390 — =3,12bar
m

2
pQ? = 0.0202 - 000 i-%s-o.ozz

H 8 '
0.167 3.142

Ap:’\’ = 7\]:)5 2
= 119500 Ez = 1.12 bar
m
Thus the wellhead pressure is obtained as:

Pon = 193.22 — 187.96 — 3.12 — 1.19 = 0.92 bar.

7.3 TWO-PHASE FLOW IN WELLS INDUCED BY
DISSOLVED GAS

Two-phase flows frequently occur in the upper section of hot water
production wells. There are two different types of these two-phase flows.
Both of them arise from the pressure decrease of the upflowing fluid as it
comes close to the wellhead.

One of them occurs as dissolved, non-condensable gases are released
from the hot water. The other type is induced by flashing as the upflowing
fluid pressure achieves the saturated steam pressure at the actual
temperature.

As it is well known that geothermal waters comprise non-condensable
gases in solution. Waters of the Upper Pannonian aquifer contain mainly
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methane, carbon dioxide, and nitrogen. Most Hungarian natural gas
reservoirs are close to geothermal aquifers. The geothermal wells in
Hajdtiszoboszl6, Debrecen, or Karcag produce 1000—2000 m® hot water
per day, together with 3000 m®/day methane. The dissolved gas/water
ratio is usually obtained by empirical correlation or diagrams in Nm?/m?
unit. The solubility depends on the pressure, the temperature, and the
total dissolved solids. An approximate formula for the solved methane
content in hot water is (Culbertson and McKetta, 1951):

Rew = A - (Igp)® + C (7.37)

It must substitute the pressure values in bars. The coefficients A, B, and
C are temperature-dependent:

A = 34.8666 —3.54688 - T + 1.36463 - 1073 - T> — 2.3441 - 10°¢ - T3
+1.51639-1077 - T*

B=-94.191+1.08167 - T — 4.49302 - 102 - T?> + 8.3335- 107 ° - T°
—5.77818-1077 - T*

C =3.79411 —3.52815- T2 +1.08467 - 104 - T?> — 1.09238 - 107 - T3

Eichelberger (1988) has given a correction factor to consider the total
dissolved solids in the thermal water:

1gKp = (—1.66892 - 10" - T—>%521 _1.5486) - x (7.38)

where x is the total dissolved solids.

The total dissolved gas content of the geothermal fluid in solution of
the reservoir fluid is homogeneous liquid phase. As the fluid upflows, its
pressure decreases substantially, and its temperature is reduced slightly.
Although the pressure of the bubble point the gas is released, at the
beginning small bubbles can occur. As the pressure decrease is continued,
gas bubbles expand and various flow patterns develop in the two-phase
flow.

The determination of flow patterns is mostly carried out by direct
visual observation, occasionally complemented with high-speed
photography. These methods are rather subjective; nevertheless suffi-
ciently consistent flow pattern ordination becomes possible. The most
common interpretation of flow patterns is a diagram plotted in terms of
the superficial velocities of each phase, i.e. the flow rate of that phase
divided by the total cross-section of the pipe. The thusly obtained dia-
gram is called a flow pattern map, in which certain regions correspond to
characteristic flow patterns. A great number of flow pattern data are
known from the literature, but unfortunately most relate to water—air
flows, which is the most suitable fluid-pair for visual observation. The
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flow of a dark opaque crude oil—natural gas mixture cannot be investi-
gated by visual methods. In this case measurements of pressure fluctua-
tions or X-radiography may be used. The transition between two flow
patterns is not as sharp as the laminar—turbulent transition of
homogeneous fluid flow. A wide variety of flow patterns can be observed
and defined.

In the following, various types of two-phase flow will be considered
and the flow patterns which occur in them discussed. Consider first a
liquid—gas mixture flowing upward in a vertical transparent section of
pipe. When a homogeneous liquid flows by itself, direct visual observa-
tion cannot provide any information about the flow.

Introducing gas into the liquid at progressively increasing flow rates, a
series of consecutive, changing flow patterns can be distinguished. At the
lowest gas flow rates, the liquid phase is continuous and small, and
spherical gas bubbles move upward near the pipe axis, faster than the
liquid. A short time exposure photograph generally shows a bubble flow
pattern, as depicted in Fig. 7.8A. As the gas flow rate is increased, the
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FIGURE 7.8 Flow patterns of vertical fluid—gas mixture flow.
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number of bubbles increases, and owing to coalescence, the average
bubble size increases. These larger, lens-shaped bubbles are pushed
along in the liquid, with their largest cross-section normal to the flow, in
periodically occurring groups. This is the bubble group flow pattern (see
Fig. 7.8B.). A further increase in the gas flow rate causes an increase in the
volume fraction of the bubbles, up to 30%, while bubble coalescence leads
to the occurrence of large, mushroom-shaped bubbles which nearly
span the entire cross-section of the pipe (see Fig. 7.8C.). These large,
mushroom-shaped bubbles are followed by regions containing disper-
sions of smaller bubbles, and periodically bubble-free liquid plugs. This
marks the beginning of the slug flow pattern. With a further increase in
the gas flow rate, the large bubbles become longer having a bullet shape.
These bullet-shaped bubbles are called Taylor bubbles. The slug flow
pattern is characterized by periodically alternating Taylor bubbles and
liquid regions containing a number of smaller spherical bubbles (see
Fig. 7.8D.). The liquid phase flows down the outside of the Taylor bubbles
as a falling film although the resultant flow of both liquid and gas is
upward. In these flow patterns, the liquid phase is always continuous,
and the gas phase is dispersed.

The slug flow pattern with long Taylor bubbles corresponds to an in-
crease in the pressure loss. The increasing pressure gradient now tends to
collapse the Taylor bubbles. Surface tension acts against this tendency, but
large gas bubbles become unstable and finally collapse. At this point, the
interfaces between the phases become highly distorted, both phases
become dispersed, and the froth flow pattern develops (see Fig. 7.8E).
Froth flow is highly unstable; an oscillatory upward—downward motion
occurs in the liquid phase, particularly in pipes of large diameter. This is
known as churn flow (see Fig. 7.8F). In small-diameter pipes, the break-
down of the Taylor bubbles is not so abrupt; the transition is more gradual
without the occurrence of churn.

As the gas flow rate is increased still further, an upward moving wavy
annular liquid layer develops at the pipe wall, and the gas flows with a
substantially greater velocity in the center of the pipe. This is known as
annular flow. The gas core flow may carry small fluid droplets ripped
from the annular liquid layer, as is shown in Fig. 7.8G. With a further
increase of the gas flow rate, the liquid film becomes progressively thinner
while the number of the droplets in the core flow increases. Finally, the
film will be removed from the wall and a pure mist flow occurs (see
Fig. 7.8H.). The observed flow patterns are interpreted in Fig. 7.8.
Repeating the previous experiment at a higher flow rate of the liquid, the
number of flow patterns developed decreases. First the froth flow is
omitted, later with further increasing liquid flow rates, bubble flow
changes directly into annular or mist flow, without the intermediate stage
of slug flow. All this is evident from Fig. 7.9.
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FIGURE 7.9 Flow pattern map for vertical fluid—gas mixture flow.

Note that such a flow-pattern map is valid only for a given fluid pair,
pipe diameter, pressure level, and temperature. In spite of continuing
efforts, generalized flow-pattern maps are not available. Although
particular flow-pattern maps show the same sequences of flow regimes,
there are no such flow variables by which congruent flow-pattern maps
would be obtained.

A remarkable diagram is obtained by plotting the pressure-loss
gradient against the gas flow rate, while liquid flow rate is taken as a
parameter. This is shown in Fig. 7.10. It is seen that the pressure-loss
gradient curve goes through a local minimum, a maximum, and
a second minimum as the gas flow rate increases. The occurrence of
these minimums and maximums corresponds to flow pattern transitions.
As the liquid flow rate increases, these minimums and maximums
become less distinct, though the slope of the curve still shows changes.
The first minimum corresponds to the transition between the bubble-
group- and slug-flow patterns. The maximum marks the collapse of the
Taylor bubbles and the development of froth flow. The second minimum
corresponds to the transition between the froth- and annular flow pat-
terns. This phenomenon may be used to indicate changes in the flow
pattern where other experimental facilities are not available.

It was previously mentioned that when the phases differ in density and
viscosity one of them, usually the denser phase, flows with a lower in situ
average velocity than the other. This velocity difference results in a change
in the concentration of the phases along the length of the pipe. In the
entrance section of the pipe, the less mobile phase concentrates; this
concentration gradually decreases in the direction of flow. This
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FIGURE 7.10 Pressure-loss gradient depending on gas flow rate.
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phenomenon is called holdup. For a quantitative description of holdup a
number of convenient parameters can be defined.
The local in situ volume fraction of phase i & and its cross-sectional
average value E; are convenient measures of the holdup (see Fig. 7.11).
The average slip velocity is defined as the difference between the
cross-sectional average velocities of the two phases:

CSZCi—Cj

FIGURE 7.11 In situ volume fraction and holdup ratio.

(7.39)
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Sometimes it is convenient to use the apparent phase velocity. This can
be defined as the volumetric rate of flow of the phase divided by the total
cross-sectional area of the pipe:

Q9
Coi = N Coj = A

It is clear that the cross-sectional average velocity of the mixture can be
written as:

(7.40)

_Q_QH'Q]'
CTAT A

The average slip velocity can be expressed in terms of the apparent
phase velocities as:

= Coi + Coj (7.41)

_ Coi  Coj

A further convenient parameter is the flow-rate ratio:
Qi Q
== &=— 7.43
=9 879 (7.43)

By combining Eqgs. (7.41)—(7.43), the average in situ volume fractions
can be expressed in terms of the average velocity of the mixture and the
average slip velocity:

c+cC cC+C C
E; = 25: < S&J (7.44)
Cs 2¢q Cs
Cg —C Cg — C 2 C
E == > — 7.45
1 2¢ + < 2¢s > + E]cs (7.45)

Another measure of holdup is the ratio of the cross-sectional average
in situ velocities at a given cross section; the so-called holdup ratio:

H=3 (7.46)

It is obvious that:

b B 5

=1= = 7.47
G CojEi E]El ( )

from which the average in situ volume fractions are obtained as:
j=— 5 (7.48)

B Coi + Hcoj - & + HE]
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and
_He  HY
) coi + Heoy & + HEj

(7.49)

The relationship of the in situ volume fraction of the less dense phase
and the holdup ratio to the input volume ratio of the phases is shown in
Fig. 7.12.

The relationship between the average slip velocity and the holdup ratio
is obtained as:

Cs = % (coi + Heg) (7.50)

These relationships have general validity for any two-phase flow. The
perfectly suspended two-phase flow pattern with axi-symmetrical
velocity and concentration profiles, without holdup can be character-
ized by H=1.

The holdup relations of various particular two-phase flows may be
represented by a variety of diagrams.

In Fig.7.12, the holdup ratio for a vertical flow of a water—air mixture is
plotted against the superficial air velocity, while the superficial water
velocity is taken as a parameter. In the bubble flow region, the holdup
ratio increases with the air velocity. An increase in the water velocity
decreases the holdup ratio. The holdup ratio increases in the slug flow
region, and reaches a maximum in the froth flow domain. As the air-flow
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FIGURE 7.12 Holdup ratio of water—air mixture flow in vertical pipe.
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rate is increased further, the holdup ratio decreases with the occurrence of
annular-mist flow.

An important task is the determination of pressure losses of two-phase
flow in the tubing. The mechanical energy equation for a two-phase flow
in pipes obviously contains the dissipation terms for each of the phases. In
the following form of the equation the dissipation terms are represented
as pressure losses Ap; and Apf:

c
P1—P2= pzlez —pUr + <— - 1)}92 + Ap; + APJ (7.51)

It can be recognized that holdup influences the changes of both the
potential and the pressure energy. The pressure losses Ap; and Ap may
be combined into a two-phase pressure loss Ap’. Because of the holdup,
this does not equal the pressure drop, even for horizontal pipes.

The pressure loss can be determined by purely analytical methods for
homogeneous Newtonian fluid flow only. For homogeneous fluid flow,
the friction factor is a function of a single similarity invariant, or the
Reynolds number. In contrast, for a two-phase flow, the pressure loss,
which can be calculated with a friction factor, depends on at least six
variables: Reynolds number, Froude number, Weber number, density ra-
tio, viscosity ratio, and the flow rate ratio. It is obvious that the variety of
flow types and flow patterns cannot be encompassed within a single
formula. It is necessary to develop semi-empirical methods of specific
validity, applicable to certain types of flow. In order to obtain pressure-
loss equations suitable for direct application in petroleum engineering
practice, the various types of two-phase flows should be considered
separately.

For vertical two-phase liquid—gas mixture flow, Ros (1961) developed
a method to determine the pressure loss. There are two separate expres-
sions for the pressure loss. If the liquid phase is continuous, i.e. for bubble,
slug, and froth flow, the pressure loss is given by:

2hrpy €2
Ap' = ZPRPLEOL (1 | 0G5, (7.52)
gD CoL

in which AR is the so-called Ros friction factor, cg; and cyg are the
superficial velocities of the liquid and the gas, Az is a finite, short length of
the vertical pipe, and py, is the density of the liquid. If the gas phase is
continuous, i.e. for annular-mist and mist flows, the pressure loss can be
calculated as:

2ARPGCE ( coL
Ap/ = 20206 (1 4 TR Az 7.53
P oD coc (7.53)

where pg now represents the density of the gas.
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The Ros friction factor is defined as:

M
AR = 2
R -)\3

where %Aj, Xy, and A3 are friction factors discussed in the following
section.

For continuous liquid phase flows, %1 is a conventional Fanning friction
factor, which is a function of the Reynolds number, defined as:

(7.54)

(7.55)

and the relative roughness of the pipe wall. The familiar friction factor
relations are modified by Ros in the interval:

700 < Regr, < 3000.

The modified friction factor interval is shown in Fig. 7.13.
Outside of this region, for laminar flow:

64
~ Regr

M (7.56)

and for turbulent flow:

! :—ZIg( k25 ) (7.57)

Vi 3.715D ' Regv/A1
In this modified region, the friction factor can be approximated as:
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FIGURE 7.13 Ros friction factor ;.
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FIGURE 7.14 Ros friction factor ;.

The coefficient X, can be obtained from diagram in Fig. 7.14, where it is
plotted against the parameter:

1
X = 2896 D3 (‘Lgf (7.59)
oL o

This formula applies when:

p 0.25 P 0.25
oc(2L) < 50+an (L) (7.60)
go po

In the annular and mist flow regions, the gas phase is continuous. In
this case:

0.\ 0% 0rs (o 01873
— > 75+ 84c; — 7.61
G <g6> > 75+ 84cy, <g0) (7.61)

while both correction coefficients A and A3 are equal to unity, thus
AR = A1

The relative roughness in this case is not calculated as the wall
roughness k, but it is obtained as the “film roughness” k*. The film
roughness k* is obtained from a curve such as the one shown in Fig. 7.15.

The calculated A; = AR after substitution into Eq. (7.44) leads to the
pressure loss for annular flow in a short pipe of length Az. For a deep well,
it should be used in the form of a series of step calculations.

7.4 TWO-PHASE FLOW IN WELLS INDUCED BY
FLASHING

The two-phase flow in wells induced by the released gases is also a
two-component flow. The water and released gas are chemically two
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FIGURE 7.15 The film roughness of annular flow.

different materials. The reason for the occurrence of the gas bubbles is the
pressure decrease until the bubble point, but in this situation the physical
meaning of the pressure is the normal stress component only. In this case,
the water is considered to incompressible, thus the pressure isn't a
thermal state variable. Mechanical variables govern the phenomenon.

The pressure decrease also induces the process of flashing. Neverthe-
less, the pressure has another physical meaning. It is at once the normal
stress component, and a thermal state variable as the pressure decrease
attains the saturated steam pressure at the actual temperature. A sudden
change of phase occurs as the liquid-phase hot water becomes wet steam;
a water—steam mixture. This phenomenon is governed by thermody-
namic variables.

An important problem in the determination of the depth in the well
where the liquid flashes into vapor Hg, is to locate the depth of the flashing
we need to consider the flow along a streamline from the reservoir
through the well until the point where the hot water pressure decreases to
the saturation pressure corresponding to the water temperature.

It is obvious that taking the mechanical energy equation in the form of
(Eq. 7.17), substituting the elevation of the flashing horizon Hf and the
saturated steam pressure ps instead of the wellhead pressure pyn, we
obtain that:

H
Ps = Pe — PgH; — z“gKl R& - xD—g = Q@ (7.62)

The flashing horizon can be expressed from Eq (7.62):

- ‘In&
HF — pe pS 2TChK R (7.63)

pg+k 5 Q
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From Eq. (7.63), it can be seen that the increase of the flow rate
decreases the elevation of the flash horizon. The location of flash point
moves downward in the well; if flow rate is sufficiently large it can attain
even the entrance section of the well, or the reservoir. Note that Eq. (7.63)
was obtained by applying one-phase flow equations between the reser-
voir and the flash level. In this section, the liquid phase is homogeneous.
The energy equation between the flash point and the wellhead can be
written in modified form, because the water-stem mixture isn’t
barotropic.

The process undergone by the geothermal fluid can be represented in a
thermodynamic state diagram. The fluid-specific entropy is plotted on the
abscissa, while its temperature is plotted on the ordinate. The so-called
temperature—entropy diagram is especially suitable to demonstrate the
change of state of the water—steam mixture. It is shown in Fig. 7.16. The
critical point of the water is at the peak of the typical bell-shaped curve. Its
left-hand side branch separates the domains of the compressed liquid and
the liquid—vapor mixtures. This is the so-called saturation curve; the
corresponding saturation pressure and temperature values fall on this
curve. The right-hand side branch separates the domains of the vapor—
liquid mixture and the superheated steam. One accent mark designates
the state variables belonging to the left-hand side branch, the so-called
lower boundary curve, while the two accent mark designates the vari-
ables belonging to the right-hand side, the so-called upper boundary
curve.

The flashing begins at the point 1’ in the lower boundary curve. In this
point the water content is 100%, while the steam is 0. The flashing process

T critical point
saturation
curve
compressed .
liquid flashing superheated
vapor
2
i"2 i"2
X
x=0 liquid + vapor x=1
mixtures
s'2 s2 s"2 S

FIGURE 7.16 Flashing on temperature—entropy diagram.
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is considered to isenthalpic, because it occurs steadily, without any heat
transfer, and with no work involvement. The change of the kinetic and
potential energy of the fluid is also neglected as it undergoes the flashing.
Thus, we may write:

i =1y (7.64)

that is the enthalpy of the fluid is constant during flashing. This isen-
thalpic change of state is represented by a hyperbola-like curve as it is
shown in Fig. 7.16. The mass fraction of the steam is denoted by x.

Under the bell-shaped saturation curve, in the two-phase domain the
temperature and pressure of the mixture is the same as the corresponding
saturation temperature and pressure. The isotherms and isobars are
horizontal lines in this region. As a result of heat transfer, the temperature
and pressure remain constant, the mass fraction of steam x changes only.
This parameter plays a great part in description of the flashing process.

The change of state of the water—steam mixture cannot be described by
analytical means. Well-known steam tables are used for this purpose. In
the steam tables, the entropy, enthalpy, and density values are given at the
saturation curve both on the lower boundary curve: ¢/, i/, and p’, and the
upper one (s”, 1", p”) as the function of the saturation temperature and
pressure.

Consider now a flashing process between the saturation pressure pj,
and the end pressure p,. The point 1, when the ﬂashlng begms falls to the
lower boundary curve, where s,, iy, and pz, and s, i3 and p} belong to the
end pressure p,. The enthalpy is constant in the process, thus ij =1p. Asit
is known, the following relations are exist:

s=s8 +x(s" —¢) (7.65)
i=i+x(i"-1) (7.66)
p=p"+x(p"—p) (7.67)
In accordance:
=1 =15 + x(iy — i) (7.68)

The mass fraction of the steam is obtained as:

. ./
I~ 1
= 7.69
71, (7.69)
Knowing the values of x, the entropy, the density can be obtained:
2 = sy + x(s5 — ) (7.70)

p2 = P +x(p5 — py) (7.71)
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The velocity at the flash point is taken as equal to that at the well feed
zone since the water is incompressible up to the flash point. The outflow
velocity is the velocity that generates the same kinetic energy carried by
the two-phase mixture:

2 2 2
] Cs2 Cw2

—=£ = Xp—=2= 1-— e 7.72
> =X +(1-x2) > (7.72)

where cy, the water, and c; is the steam velocity.
The steam mass fraction can be expressed as:

PszAs2 * Cs2 mg
Xp =

= = - - (7.73)
Pw2Aw2Cw2 + PspAg2Csr Mg + My

The area terms account for the parts of the exit area occupied by the
two phases. The holdup ratio Hj relates to the velocities of the two phases:

Hy = =2 (7.74)
Cw2

Its value may include the range of 4—5.
Thus, the exit velocity can be expressed as:

1+xp
H3

C) = Cg24 [ X2 + (7.75)

The average density for a lumped-parameter model is expressed as:

1 ! !
Pav =73 {91 +x2pgp + (1 — Xz)Pz} (7.76)

The mass flow rate based on the continuity equation is equal to the
product of the density, the cross-sectional area, and the velocity. Thus, we
can define an expression for the average two-phase velocity:
. m  4m

pav ’ A paV]DZTC

(7.77)

Cav

The two-phase friction factor A,y cannot be obtained as the A for ho-
mogeneous fluids. Experimental data show that it is larger than the one-
phase A

An acceptable empirical formula is:

hav = 1.05(Rey) (7.78)
where Re,, is the Reynolds number, and is the homogeneous flow in the
well before the flashing point.

Now we can assemble the elements of the flow model the mechanical
energy equation to obtain the wellhead pressure including the flashing
within the well. The calculation of the pressure drop from the
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undisturbed reservoir to the flash horizon is unchanged except from the
flash horizon to the wellhead. Finally we get:

nQ Re HF

_ 2
Pwh = Pe — P&HEg — = hKl 7R - § 2 pQ° — pavg(H — Hp)
H-Hg 8 m? 3 -2
- 7\aVT TCZ p—aV — Pav 2 2 = (779)

It can be recognized that the wellhead pressure is developed by the
following effects.

The undisturbed reservoir pressure pe is reduced by the hydrostatic
pressure drop of the water column until the flashing level, the pressure
drop of the flow toward the well in the reservoir, the pressure drop of the
upflowing water until the flash horizon. These obtain the pressure at the
flashing level:

nQ Re HF 2
Pr=Pe ~ P8Hp — 5 G pIng == A5 17 PQ (7.80)

Above the flashing level, the further pressure drop is developed by the
hydrostatic pressure drop of the well in the two-phase section, the pres-
sure loss of the two-phase flow, and the pressure drop due the accelera-
tion of the flow in the two-phase section.

It can be recognized that Eq. (7.80) is an implicit expression. There are
many terms referring to the two-phase flow depending on the wellhead
pressure. The properties of the two-phase water-steam mixture depend
on the mass fraction of steam x. The value of the mass fraction of steam
can be determined only knowing the wellhead pressure. Thus, an itera-
tion procedure must be carried out. It is necessary to choose a starting
value of the wellhead pressure to obtain x. The properties of the two-
phase system can be calculated, and we get the next value of pyh.
We must repeat the successive steps of iteration until the difference of
(pwh)i+1 — (pwh)i decreases to a suitable small value.

Riley (1980) presented several numerical examples to obtain the rela-
tionship between mass flow rate and wellhead pressure. The mass flow
rate plotted against the wellhead pressure obtains the productivity curve
of the well that is its performance curve. Comparison of the calculated
and measured values shows a satisfactory agreement. The general shape
of the curves is not affected by the values of the friction factors, both A and
Aay, but as the friction factor increases the mass flow rate decreases at a
given wellhead pressure. It is remarkable that at a certain wellhead
pressure, further lowering of the pressure does not result the increase the
flow rate. In this case the flow is choked. The explanation of this phe-
nomenon is that in the flashing fluid, the lowering of the pressure does not
increase the velocity (as it is generally), but increases the size of the
bubbles only. The large bubbles narrow down the cross-section, thus the
mass flow rate remains unchanged.
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8.1 MAIN TYPES OF DOWNHOLE PUMPS

The most expensive elements of a geothermal project are the drilling
and completion of the wells. The rentability can be improved by mini-
mizing the number of the wells, increasing their flow rates. The produced
flow rate can be enhanced applying downhole pumps in the well.

Wells drilled for geothermal water operate in many cases by natural
upflowing. With the progress of time, water production lowers the
pressure in hydrostatic reservoirs. The elastic expansion is depleted as the
excess pressure provided by the thermal lift is exhausted. In this case,
downhole pumps are needed to induce a larger pressure drop at the
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bottom-hole, enhancing the elastic expansion of the reservoir fluid.
Downhole pumps are installed not only to lift the fluid to the surface, but
also to prevent the release of non-condensable gases, which can lead to
scale formation. An important benefit is the possibility to the control the
flow rate and wellhead pressure.

Downhole pumps are multistage centrifugal pumps of restricted
diameter in order to have place in the tubing of the production well.
Centrifugal pumps are machines that do work on the fluid flowing
through a rotating impeller. This work increases the mechanical energy
content of the fluid maintaining the flow.

The downhole pumps can be classified into two categories. The so-
called line-shaft pumps operate in the well under the water level. The
multistage centrifugal pump is driven by a long shaft; the electric motor is
at the surface. The shaft can be as long as 100—120 m. This restricts the
depth of the installation. The motor operates at the surface temperature;
its diameter is not restricted. Such a line shaft pump system is shown in
Fig. 8.1.

Submersible pumps are the second category of downhole pumps. A
typical submersible pump is sketched in Fig. 8.2, as it is installed to a well,
together with its complete range of accessories. Down below is the electric
motor which turns the pump. It is usually a two-pole, three-phase squirrel
cage induction type unit. The next component is the so-called seal or
protector section to separate the produced hot water from the motor oil.
Above the protector there is the intake section. The electric motor is cooled
by the upflowing fluid, thus the intake section must be above the pro-
tector. The pump itself is a multi-stage centrifugal pump. Each stage
consists of a rotating impeller and a stationary diffuser with guide vanes.
The impeller and the diffuser may be radial or mixed flow type as it is
shown in Fig. 8.3. For smaller flow rates radial, for larger flow rates mixed
flow impellers are used. The number of stages determines the manometric
head of the pump. It may be a built in centrifugal gas separator between
the protector and the pump. It separates the free gas from the produced
fluid and leads it away from the pump intake. The complete system is
hung from the wellhead with a tubing section. The electric cable, the
switchboard, transformers, and valves are additional accessories of the
submersible pump.

8.2 THEORETICAL HEAD OF THE CENTRIFUGAL
IMPELLER

The purpose of applying centrifugal pumps is to increase the me-
chanical energy of the fluid to maintain flow. The mechanical energy
increase happens as the fluid flows through the blade rows of the



8.2 THEORETICAL HEAD OF THE CENTRIFUGAL IMPELLER

e

MOTOR
WELLHEAD@.&D

—_—

163

LINESHAFT __~ MOTOR
BEARING CONTROLS
SHAFT LUBRICATION
LUBRICATION COLUMN SPACER
COLUMN SEE DETAIL
DRAWINGS
PRODUCTION__A DISCHARGE
TUBING HEAD
MULTI-STAGE
PUMP

WELL __*]

CASING

O
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impeller. Since the only displacement of the blades is in a tangential
direction, work is done by the displacement of tangential component of
force acting on the blades. The velocity triangles are generally used to
represent the flow through the rotating impeller. The absolute velocity ¢
is obtained in a stationary coordinate system, while w is the velocity
relative to the impeller. The peripheral velocity of the impeller is 4.
Subscript 1 refers to the inflowing fluid, subscript 2 the outflowing fluid. It
is shown in Fig. 8.4.
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The absolute velocity ¢ is unsteady, while the relative velocity W is
steady. The fluid is considered to be inviscid; pressure loss is neglected.
The relation:

c=w+1d (8.1)

is obvious. The specific mechanical energy of the fluid can be expressed
by the unsteady Bernoulli equation as:
v & p
I =K 2
ot + > + o +zg (8.2)
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FIGURE 8.3 Radial and mixed flow impellers (Centrilift).

where ¢ is the velocity potential of the perfect fluid. The mechanical
energy of the unit fluid mass is:
¢ p dd
E=—+= =K-— .
> + 0 +zg ot (8.3)
It can be recognized, that the mechanical energy level of the flow is not
steady. This equation was considered by Csanady (1965) to be the basic
equation describing the performance of turbomachines. It is obvious that
energy transfer in a perfect fluid can be possible for an unsteady flow only.
Consider Fig. 8.4, in which a centrifugal impeller is depicted together with
the velocity triangles at the inlet and outlet. The peripheral component of

FIGURE 8.4 Centrifugal impeller with velocity triangles.
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the absolute velocity is ¢, which can be expressed in terms of the velocity
potential:

1900
== 4
C(P r a(p (8 )
Applying the chain rule, we can this write as:
ap ad .6((p —cot) B dd
at  d(p — wt) a ? (e — wt)’ ®.5)

where wt is the periodicity of the transient flow. Since this unsteady flow
is periodic:
99 99
= 8.6
(o —wt) do ®.6)
Combining these expressions, the time derivative of the velocity po-
tential ¢ can be expressed in terms of the velocity component ¢, as:

9 _

at
in which w is the angular velocity of the impeller. The energy increase
between the outlet and inlet is obtained as:

s6-k- (28) k- () | ~olocn-now) 69

This energy increase refers to the unit mass fluid; its dimension is (m?/s?).
The engineering practice to use the energy increase of the unit weight fluid
is more useful:

_wrc, (8.7)

. AE Wl —U1Clg
8 8

Its dimension is (m), and it is called to head. The energy increase of the
perfect fluid is determined assuming a homogeneous velocity distribu-
tion along the outlet and the inlet cross-section. It is equivalent with the
assumption that all streamlines are congruent, as infinitely thin, and
infinitely many blades would form the shape of the streamlines. Thus, we
get the so-called theoretical head belonging to an impeller of infinite
number of blades. A theoretical head-flow rate curve can be obtained by
using Eq. (8.9) and the velocity triangle of Fig. 8.4.

Since all streamlines are congruent with the blades, the angle the
relative velocity w, makes with the peripheral velocity u; is the same as
the blade angle B,. The so-called meridional component of the absolute
velocity com is normal to the periphery. Thus we can be written:

H (8.9)

Cp = Up — szCthIz (8.10)
Q

=— 8.11
C2m D, b, ( )
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where D; is the outlet diameter of the impeller, and b is the width of the

impeller at the outlet. The blade thickness is neglected, and a further

assumption is that cj, = 0. Substituting into Eq. (8.9) we get:
_ u% uzcth/z )

Hoo —
g Dombyg

(8.12)

It can be recognized that a given impeller and speed the theoretical
head H, varies linearly with flow rate Q. In the usual design of centrif-
ugal pumps, the blade angle at the outlet is 20—30 degrees, thus
decreasing theoretical head belongs to an increasing flow rate. The
subscript t. marks the assumption that the congruent streamlines are
obtained with perfect guidance, i.e., an infinite number of blades.

It can be recognized that the circulation of the absolute velocity field
around the impeller:

I'=2m (rzczq, — rlcl(p) (8.13)
The circulation around a single blade is:

' 2w
Fb = N = ﬁ (1‘2C2(P — rlcl(p) (8.14)

where N is the blade number of the impeller. The theoretical head can be
expressed by the circulation:

~ NT'w

o = E (815 )

Pfleiderer (1959) assumed, that the circulation decrease caused by the
finite blade number can be approximated by a single proportionality
factor, the so-called circulation decrease coefficient A:

_Ha
 Ha

As the result of a more sophisticated calculation of Czibere (1960) and
Bobok (1970), it is obtained that the finite number of blades imparts the
relative velocity with angle B, < B, of the blade angle. This inability of
the blades for perfect guidance reduces ¢y, and hence decreases the
theoretical head produced. This decrease of the theoretical head is not a
real hydraulic loss. The difference between H., and H; does not occur in
the power consumption of the pump.

) (8.16)

8.3 HEAD LOSSES OF CENTRIFUGAL PUMPS

The actual flow rate versus head curves are different from the theo-
retical head lines. There are many reasons of this discrepancy. One of
them is the fluid friction in the boundary layers along the rotating and the
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fixed passages. Since the flow is turbulent, this type of head loss is pro-
portional to the square of the flow rate:

he = C;-Q? (8.17)

Another major head loss is the form drag of the blades of the impeller
and the guide vanes of the diffuser. The form drag depends on the di-
rection of the inflow relative to the blade angle at the inlet. The ideal inflow
direction is parallel to the blade angle, in this case the form drag can be
neglected. The flow rate belonging to this performance state is Q-. This is
the point of the best efficiency of the pump at a given speed. For other
flow rates, this loss varies approximately as the square of the difference of
the actual flow rate Q and the flow rate at best efficiency point Qx:

hy =G (Q-Q.)° (8.18)

There are further head losses proportional to the square of the flow
rate. These are the secondary flow loss, the velocity equalization loss after
the blades, and recirculation loss at the inlet. Finally it is obtained that the
actual head curve depends on the flow rate. This is the so-called perfor-
mance or manometric head curve, the lowest line as it is shown in Fig. 8.5.

The performance head curve can be determined experimentally,
together with the brake horsepower and the efficiency. Typical perfor-
mance curves for centrifugal pumps are shown in Fig. 8.6.

An important problem is to determine the necessary energy addition to
the fluid in order to maintain the flow through the well and the pipelines;
that is to determine the manometric head of the pump.

It is obvious that the mechanical energy decrease maintains the flow
against viscous and turbulent forces. Natural flows through channels or
riverbeds always take place from an inlet with a high mechanical energy
level to an outlet with a low mechanical energy level. This mechanical
energy difference is dissipated by the irreversible process of friction. In
engineering practice, most flows are directed from a low energy inlet to a
higher energy outlet while at the same time a considerable amount of me-
chanical energy is converted into heat. It is obvious that such a flow can exist
only by adding mechanical energy to the flowing fluid. This energy addition
is possible only by introducing unsteady flow resulting from the rotating
blading of a pump or a compressor. The work done by a rigid body on the
fluid can be determined if the velocity distribution on the blading is known.

8.4 FLOW IN PIPES WITH MECHANICAL ENERGY
ADDITION

It is also possible to calculate the mechanical energy required to
maintain the flow against the increasing energy level and fluid friction
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FIGURE 8.5 Theoretical and actual head curves.

from the variables of one-dimensional steady flow in the pipe. At first a
general arrangement is studied.

Consider the flow system depicted in Figs. 8.7 and 8.8. Fluid is pumped
from reservoir A to reservoir B. The flow is steady between reservoir A
and the pump inlet 1, and also between the pump outlet 2 and reservoir B.
For the two steady-flow sections, the mechanical energy equation can be
written:

2 2
Pa CA_P1 < !
Epza+ =421+ B+ h,_ 8.19
pg T2 T gt BlZg A-1 (8.19)
P2yt G Poy, Oy (8.20)
0g 3 22g g B zg 2—B '



170 8. ARTIFICIAL LIFT BY SUBMERSIBLE PUMPS

He?:? Qmin BEP Qmax N'i‘!IPR Opmg{
b = LOAD| EFF
-
=~ ] RECOMMENDED
Head T OPERATING RANGE 1N
30 T X i : 1.50( 60%
| A
I ‘
25 /' L ‘ mifEun N 1.25 50%
v ‘ : : \
B
1
20 e \ 1.00| 40%
\
Efficiency N \
15 / N 0.75| 30%
/ \
\
10 vi 0.50| 20%
rower
g
/ : \
5 L 0.25| 10%
/ @ Bam 2
/ g0 1 3 e e
0 ‘ — 0.00 0%
BPD 0 500 1000 1500 2000 2500 3000 3500 4000

FIGURE 8.6 Performance curves of a submersible pump (Takécs, 2009).

AL, Y

\ h hlzB
2

Ps

h'aq

PA 2 ¢\L /__,—

3lo o
|
N
N
L
«F
'—_|J

Zp

]DA

M

FIGURE 8.7 Flow system of a centrifugal pump.



8.4 FLOW IN PIPES WITH MECHANICAL ENERGY ADDITION 171

Swh Pwh

h' -
2wh 29 pg Zwh

~>

wh

Head loss

Kinetic energy

Potential energy

Pressure energy

I
|
l B
l H L -9 20

<
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Since the diameters of the reservoirs are much greater than the di-
ameters of the pipes, the kinetic energy terms c3 /2g and c3/2g may be
neglected. It can be seen from the energy diagram that the sum of the
mechanical energy and the head loss is constant for both sections A-1 and
2-B of the pipe. The discontinuity in the energy curve represents the
amount of mechanical energy added to the fluid by the pump. Using the
energy equation this can be expressed as:

_ 2 g2
H=P2"P1_ Pacs — Bicy
Pg 2g

Using Egs. (8.20) and (8.21), this energy difference can be rewritten in
the form:

(8.21)

H=PB~Pa
Pg

Since at the free surfaces of the reservoirs the pressure is atmospheric, it
is obvious that:

+ 25 —za +hy; +hyg (8.22)

P =Pa =Po (8.22a)

The major part of the energy increase takes the form of a pressure in-
crease. The potential energy difference between the pump outlet and inlet,
as well as the kinetic energy difference there, is negligibly small compared
to the pressure difference. Thus the energy increase expressed by
Eq. (8.22) is called the manometric head, H, of the pump. The potential
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energy difference between the levels of the fluids in the reservoirs is called
the geodetic head Hg. Thus:

Hy = Zp — Za (8.23)

Using this notation, the manometric head can be written:

H=Hg+) hyp (8.24)

In this expression, the geodetic head is independent of the flow rate,
but the sum of the head losses does depend on the flow rate. For a laminar
flow, this dependence is linear; for a fully developed turbulent flow it is
parabolic. For a smooth pipe, or in the transition region between laminar
and turbulent flow, head losses vary approximately to the 1.8th power of
the flow rate.

Consider now the flow system of a submersible pump built in the
well, as it is shown in Fig. 8.8. The fluid flows up through the casing,
then in the annulus between the casing and the electric motor of the
submersible pump. The fluid inflows to the pump across the intake
screen 1. Over the intake in the annulus, the fluid is in hydrostatic state.
The sum of the atmospheric pressure p and the hydrostatic pressure pgz
actuates the fluid into the pump, where in front of the first impeller
stage, the pressure is lower than at the intake. Energy transfer can occur
only in unsteady flow on the impeller bladings according to Euler’s
turbine equation. At the outflow cross-section of the pump, the flow is
steady again, the energy level is constant between the pump outlet and
the wellhead. The zero level of the potential energy is chosen at the
intake of the pump. Thus the following Bernoulli equations can be
written:

2 2

Puwt Cwt _ P1 1.y

W e+ M =y 7+ 2+ h 8.25

s 25 pg 25 O 629

Between the pump outlet and the wellhead it is:
2 2

P2 € _ Pwh Cwh !
Lt ="z n 22+ h 8.26
g 2 zg g h 2g 2wh ( )

The energy increase is:

H=—e, — o — Pwh ~ Puf _ C\ZNH_szvf h h. (827
=e el_ipg + Zwh ZBH+—2g +hyyn +hg  (8.27)

Using the Egs. (8.25) and (8.26), we obtain:

H=h+p“’hp7;pwf+2h/w (8.28)
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where h=h —h; is the so-called dynamic fluid level, depending on
the flowing bottom-hole pressure and the head loss in the well. It is
obtained as:

hp =h - Pwt —Po (8.29)
Pg

The manometric head H is the energy increase of the unit-weight fluid.
In the energy diagram, it shows the change of each kind of mechanical
energy. The hydraulic power of the pump can be determined as:

P = pgQH (8.30)

This value is lower than the brake horsepower of the pump P. The
efficiency of the pump is obtained as the ratio of the hydraulic and the
brake horsepower.

8.5 DIMENSIONLESS PERFORMANCE COEFFICIENTS

The experimentally determined performance curves, manometric
head, brake horsepower and the efficiency depending on the flow rate, all
at constant speed, are shown in Fig. 8.6.

There are several relationships that permit the data of the performance
curves to be adapted to other speeds or sizes of impellers. If the speed of
the pump changes, it is necessary to correct the performance data. The
theoretical base of the correction is the approximation that the flowing
fluid is considered inviscid. The dynamic similarity of two inviscid flows
is attained if their velocity distributions are similar. This condition is
fulfilled approximately if the velocity triangles are similar in the corre-
sponding performance states. It can be defined with dimensionless
parameters to express this. The capacity coefficient:

¢ =2 (8.31)
uz
and the head coefficient:
¢ = @ (8.32)
up

must be equal in the corresponding performance states. According to
these changing speeds of the pump, the ratio of the flow rates can be
expressed as:

Qi Doy by e <D21>3ﬂ (8.33)

Qz D2 b11 cm2 D2/ np
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Thus since the diameters are the same for two different speeds:

Q_ m
— = 8.34
Q m (539
It follows from the equality of the head coefficients, that:
H (m 2
(s .
The correction of the brake horsepower is possible using the equation:
Py (m 3

There is no such a simple expression for the efficiency correction.
Finally, an important parameter, the so-called specific speed, is obtained
based on the dimensionless performance coefficients:

Q
ng=n-—; (8.37)
4

The physical meaning of specific speed is revolution per minute to
produce the flow rate of one cubic meter per second at 1 m of head with a
similar impeller reduced in size. However, the physical meaning of spe-
cific speed has no application in practice, and specific speed is used only
as a type number for best efficiency point of all similar impellers irre-
spective of their size or rotative speed. For multistage pumps, as all
submersible units, specific speed is referred to the head per stage. The
specific speed of all geometrically similar impellers is the same.

8.6 CAVITATION IN SUBMERSIBLE PUMPS

Cavitation is the process in which the vapor phase of a liquid is generated
due the pressure reduction by hydrodynamic reasons at a constant ambient
temperature. According to this definition, it is necessary to distinguish
between the phase transition caused by pressure decrease, and the process
of boiling caused by addition of heat. Cavitation has paramount importance
in hot water flows near their boiling point. Submersible pumps built in
thermal water production wells operate in high temperature water in which
the connected pressure and temperature values are close to the saturation
curve. In the first stage of submersible pumps, the pressure reduction can be
attained at the saturation pressure of the water.

The presence of the steam bubbles changes the designed flow pattern
drastically. This phenomenon induces a series of unwanted adverse



8.6 CAVITATION IN SUBMERSIBLE PUMPS 175

effects in the operation of the pump. The bubble flow changes the uniform
mass distribution of the water flowing through the impeller. The
dynamically unbalanced rotating impeller causes vibration and noise.
This causes damage to the lifetime of the bearings. The presence of bub-
bles produces a random pulsation of the torque, the produced head, and
the velocities. This pulsation is ceased by intensive turbulent momentum
transfer, producing high pressure and efficiency losses. The hydraulically
active surfaces of the impeller exposed to cavitation are subject to severe
damage especially in zones where the bubbles are collapsed. The
collapsing bubbles preserve their spherical shape as long as it is possible,
while the effect of the surface tension and the decreasing radius of the
bubbles produce local pressure maximums as the radius tends to zero.
These local pressure maximums are certainly high enough to account for
brittle or fatigue failure of most materials. The deterioration of the
impeller blades can occur after a few hours of cavitating operation. Thus,
the operation of a pump in a cavitating state is strictly forbidden.

There are two different ways to investigate the cavitation in centrifugal
pumps. One of them represents the point of view of the designers,
analyzing the flow in the blading by a sophisticated theoretical approach
using comprehensive numerical calculations. Another way to investigate
cavitation represents the standpoint of operators, studying the perfor-
mance variables outside of the pump as the inlet and outlet pressures, the
flow rate, the speed, and the depth of submergence.

Consider the energy diagram in Fig. 8.9 as it is obtained in a coordinate
system rotating together with the impeller. This diagram is the graphical
representation of the Bernoulli equation in the rotating coordinate system.
It can be recognized that the pressure distribution is different at the front
(pressure) side and the back (suction) side of the impeller blades. The
pressure minimum is obtained obviously at the suction side of the blades.
At the beginning of the cavitation, this pressure minimum is equal to the
saturation pressure belonging to the actual temperature. The Bernoulli
equation can be written using the usual notation as it is shown in Fig. 8.9:

P_P uz—ui2+w12—w2

Pg P 28 28
This pressure distribution can be determined correctly by the method
of hydrodynamic singularities (Bobok, 1970). Knowing the pressure
minimum, the so-called blade depression is obtained as the difference of
the pressure heads in front of the leading edge and the pressure

minimum:

(8.38)

2 —w2 ou?—u?

Ah — Pi — Pmin _ “min 1Ly min (8.39)
P 28 28

A%%
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FIGURE 8.9 Energy diagram of a rotating impeller.

where w and u are the relative and peripheral velocities at the point of the
pressure minimum. The expression is usual:

S (G IEI NG [

in which the sum in the curly bracket depends on the shape of the
impeller blading and the relative velocity at the inlet. The parameter
characterizes the impeller in point of view the cavitation:

2gAh
w2

Wi

Aw (8.41)
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The parameters of cavitation can also be determined experimentally by
measuring the flow variables outside the pump in the pipe fitted to it and
in the well. The Bernoulli equation is written between the free water
surface in the well, the so-called dynamic water level, and the inlet cross-
section of the impeller:

IR A TS (8.42)

Pg Zg P8
in which h’y; is the head loss between the suction connection and the eye
of the impeller of the first stage.
On the other hand, between the dynamic level and the suction
connection, the following equation can be written:

Po,, _ S, P (8.43)
Pg 2g g

It can be recognized considering Fig. 8.9 that:

Pi _ Pmin | zp (8.44)
Pg  PE
Substituting into Eq. (8.42) we get:
Po,, & Pmini |z ¢ hy; (8.45)
Pg 2g Pg

The so-called net positive suction head, NPSH is defined as:
2

NPSH = AH = PL { & _ Pmin (8.46)
Pg 28 pg
Considering Eq. (8.43)
NPSH = po_pigmin T 270 (8.47)

It is obvious that in the cavitating operation point, the pressure mini-
mum is equal to the saturation pressure of the water:
Pmin = Psat (8'48)

The critical NPSH value belonging to this state of operation is obtained
as:

NPSHcrit = AI_Icrit = pogigp&at + Zp (849)

Based on this equation the necessary depth of submergence to avoid

cavitation can be determined as:

(20) sy = AHerig — 20 ;gpsat (8.50)



178 8. ARTIFICIAL LIFT BY SUBMERSIBLE PUMPS

Critical Performance State
H ¢ H
ml | o S — e B

) + 0.03H
1
1
1
1
1
1
1
1
|
H |
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
:
i NPSH,,
1
1
1
|
*
NPSH [m]

FIGURE 8.10 Initiation of cavitation.

It is obvious that NPSH depends on the flow rate and the speed of
rotation. Thus the dependence of NPSH on the flow rate belongs to the
performance curves of the pump as the head H (Q), the brake horsepower
P (Q), and the efficiency n (Q) curves characterizing its operation. The
depth of the built-in pump can be determined in the knowledge its NPSH
(Q) curve at a given rpm value.

The critical value of NPSH can be determined by experiments. It
is known that the manometric head decreases as cavitation occurs. It is
generally accepted to consider the 3% manometric head reduction at the
beginning of the cavitation in a certain operating point. The experiment is
carried out in the following way; in some steady operating point holding
the flow rate at a constant value, the submergence of the pump
is decreased step by step. Thus the NPSH obviously decreases. As it is
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shown in Fig. 8.10, the decrease of NPSH in the beginning is not influenced
the manometric head. When the least pressure in the impeller attains the
saturation pressure, vapor bubbles occur producing the rapid decrease of
the manometric head. By repeating this procedure at different flow rates,
the critical NPSH dependence is obtained as it is shown in Fig. 8.11.

As the hot water upflows in the well, its pressure decreases. The pres-
sure attaining the so-called bubble point, non-condensable gases deliberate
from the geothermal water. Above the depth belonging to the bubble point
growing gas bubbles occur in the flow. The gas/water volume ratio
continuously increases in the upflow. This two-phase flow entering the
pump disturbs its normal operation similarly to cavitation in many aspects.
The presence of the gas phase is augmented by the flow rate, thus there are
hydraulic losses too. Because of this, the manometric head and the
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FIGURE 8.11 Performance curves.
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efficiency of the pump decrease drastically. The effect of the bubble flow on
the performance curve of the pump is shown in Fig. 8.12. Another effect is
the unbalanced mass distribution of the impeller, inducing unwanted vi-
bration. The growing gas bubbles tend in opposite directions of the cen-
trifugal force, flowing through the impeller, even blocking the water flow.
As the water flow ceases, the submersible motor can be overheated.

The main difference between the bubble flow and the cavitation is that
the gas bubbles are not collapsed suddenly as the pressure increases
again. Thus, the erosion of the hydraulically active surfaces fails to come
about. Another effect is that the bubble point occurs at a greater depth in
the well than the saturation pressure. It is an effective protection against
this adverse phenomenon to build in a centrifugal separator in front of the
first stage of the pump.
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9.1 TEMPERATURE DISTRIBUTION
OF PRODUCTION WELLS

The temperature of the produced geothermal fluid can substantially
decrease from the reservoir to the wellhead. The reason of this phenomenon
is that the temperature of the upflowing fluid is higher than the adjacent
rock around the well. This temperature inhomogeneity induces a radial heat
flow from the well toward the adjacent rock. The temperature of the
upflowing fluid decreases as it heats the rock around the well. The tem-
perature of the adjacent rock increases slowly as the inhomogeneity of the
temperature field decreases together with the outward radial heat flow.
Thus, the temperature of the produced fluid gradually increases with the
time until the steady state will be achieved. This heat transfer process will be
investigated in the following (D'mour, 1995).

Consider a vertical geothermal well, producing hot water. The sketch
of the well completion is shown in Fig. 9.1. A cylindrical coordinate
system is chosen in accordance the geometry of the well. The z-axis of
the coordinate system is directed downward; its origin z =0 is at the
surface. A cylindrical control surface is chosen coaxially with the axis of
the well, at an arbitrary depth of z. Its upper and lower boundaries are

Flow and Heat Transfer in Geothermal Systems
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FIGURE 9.1 Typical hot water production well completion.

two parallel planes; their distance is dz from one another. The outer
boundary of the cylinder is R,, which is the time-dependent radius of the
domain of the undisturbed natural geothermal temperature distribution.

The control surface is shown in

It is suitable to divide the system into two sub-systems. One of them is
the upflowing fluid in the well, the other is the adjacent rock around

the well.

Fig. 9.2.
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The outstanding feature of the flowing fluid is the convective heat
transfer; in the adjacent rock the transient heat conduction is the domi-
nating phenomenon. Since the governing differential equations are
different for the two sub-systems, it is suitable to deal them separately.
The joint condition of them is the same temperature at their boundary
surface. Thus, we can write the balance equations of the internal energy
for the water as flows up through the tubing:

tedT = 2RywUg(T — Ty )dz, 9.1)

The second equation expresses the equality of the radial heat fluxes
at the boundary surface between the well completion and the sur-
rounding rock:

ZTCkR

f

where m is the mass flow rate of the upflowing water, Ry; is the inner
radius of the tubing, Uy is the overall heat transfer coefficient of the well
completion referring Ry, T, is the temperature at the wall of the borehole,
kg is the heat conductivity of the rock, Te is the undisturbed temperature

2RywUy (T - Th) = (Th - Te)a 9.2)
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of the rock, and f is the so-called transient heat conduction function. This
dimensionless parameter depends on the time, the thermal properties of
the rock and the overall heat transfer coefficient.

Values of f are calculated by Jesse (1990) and experimentally deter-
mined and tabulated by Willhite (1967) as it is shown in Table 9.1.

The overall heat transfer coefficient can be determined considering
the radially outward heat flow as it is passed through the serially
connected elements of the well completion. The mechanism of the heat
transfer is different in the different elements of the system. The internal
surface of the tubing there is a thermal boundary layer with forced
convection across it. The heat flux across the cylindrical surface of unit
thickness is:

Q = 2nRhg(T — Ty) 9.3)

Through the tubing wall the heat propagates by conduction. The heat
flux Q remains naturally the same:

(9.4)

If the annulus is filled with fluid, the heat is transferred by free con-
vection. In this case, the heat flux is obtained as:

Q = 2mRioha (Tto — Toi) (9.5)
Through the casing wall, the conductive heat flux is:
Tq—T
Q =21k ——x—— (9.6)
Inge

ci

Finally, the conductive propagating heat through the cement sheet can
be calculated as follows:

Too — Ty
Q = 27ch —Rh

Ingg,

In this equation, hy; is the heat transfer coefficient of the thermal

boundary layer, ks is the heat conductivity of the steel, h, is the heat

transfer coefficient of the annulus, and k. is the heat conductivity of the

cement sheet. Expressing the temperature differences from these five
equations and summing them, we get:

Q (1 Rtil Ro  Ri T  Rg, Reo RﬁlnRh) (9.8)

(9.7)

T-Th, = B | -t
h 2R, + + n +

JR— JR— ni
hti ka Rti Rio ha ka Rci kc Reo
Let’s compare this to the following equation:

Q = 27Ry U (T — Tp) (9.9)



TABLE 9.1 Transient Heat Conduction Function

Time Function f(t) for the Radiation Boundary Condition Model

Ui %: 0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 o
0.1 0.313 0.313 0.314 0.316 0.318 0.323 0.330 0.345 0.373 0.396 0.417 0.433 0.438 0.445
0.2 0.423 0.423 0.424 0.427 0.430 0.439 0.452 0.473 0.511 0.538 0.568 0.572 0.578 0.588
0.5 0.616 0.617 0.619 0.623 0.629 0.644 0.666 0.698 0.745 0.772 0.790 0.802 0.806 0.811
1.0 0.802 0.803 0.806 0.811 0.820 0.842 0.872 0.910 0.958 0.984 1.00 1.01 1.01 1.02
2.0 1.02 1.02 1.03 1.04 1.05 1.08 1.11 1.15 1.20 1.22 1.24 1.24 1.25 1.25
5.0 1.36 1.37 1.37 1.38 1.40 1.44 1.48 1.52 1.56 1.57 1.58 1.59 1.59 1.59
10.0 1.65 1.66 1.66 1.67 1.69 1.73 1.77 1.81 1.84 1.86 1.86 1.87 1.87 1.88
20.0 1.96 1.97 1.97 1.99 2.00 2.05 2.09 212 2.15 2.16 2.16 217 217 217
50.0 2.39 2.39 2.40 242 244 2.48 2.51 2.54 2.56 2.57 2.57 2.57 2.58 2.58
100.0 2.73 2.73 274 2.75 2.77 2.81 2.84 2.86 2.88 2.89 2.89 2.89 2.89 2.90
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The so-defined overall heat transfer coefficient can be obtained as:

1 1 Ry, R Ry 1 Ry, R Ri, R
= e S Sl o Sty h (9.10)
Uti hti 1<s Rti Rto ha 1<s Rci kc Rco
It still remains to determine the two heat transfer coefficients hy; and h,.
There is an empirical relationship for the similarity invariants of the heat
transfer:

Nu = 0,015-RO% . pr042, (9.11)
where the Nusselt number is:
hy2Ry
Nu = 1 (9.12)
k
the Reynolds number is:
IRy
Re — 274 (9.13)
v
and the Prandtl number is:
pcv
Pr=— 9.14
r= (9.14)

Now v is the cross-sectional average velocity in the tubing, c is the
specific heat capacity, v is the kinematic viscosity, and k is the heat con-
ductivity of the fluid.

For the annulus, the Nusselt number depends on the Grashof number
and the Prandtl number. The experimental relationship can be expressed
by the following formula:

Nu = 0,52 (Gr-Pr)*® (9.15)
where the Grashof number is:

. P — 3
Gr — OLg(Tto — TC;)Z(RCI RtO) (9.16)

where a is the thermal expansion coefficient of the fluid. The heat transfer
coefficient of the annulus is:
k-Nu

T

9.17)

Since Ty, and T are temporarily unknown, we must be carry out
an iteration, but a good estimation of (Ty, — T;) may be suitable. This brief
derivation was presented to indicate how various heat transfer mecha-
nisms are included in an overall heat transfer coefficient. Combining Eqs.
(9.1) and (9.2) we get:

dT o ZﬁkRRtiUti(T — Te)

— = 9.18
dz IhC(kR + thiUti) ( )
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Considering that the undisturbed geothermal temperature is:
Te =To + vz, (9.19)

and that kg is constant along the depth. It is shown in Fig. 9.1 that the well
completion is different through different intervals of depth. Especially the
overall heat transfer coefficient and the heat conduction function changes
by sections. It is suitable to introduce the so-called performance param-
eter, including that variables which are independent or weakly dependent
on the depth:

A me(kg + f-RyUy)

~ 2mRyUgkr

(9.20)

The performance parameter has a dimension of length (m). Variation of
A with depth is usually small because of the overall heat transfer coeffi-
cient Uy appears both in the numerator and the denominator. Thus an
approximation taking the performance parameter to constant causes
negligible inaccuracy only. Frequently used the inverse of A, the so-called
relaxation length parameter Lg having a dimension of 1/m. Assuming the
constant value of A,we obtain a first-order, linear, inhomogeneous dif-
ferential equation as:
dT
A—=T-T,—yz (9.21)
dz
Its solution can be attained in closed form. One of the possible methods
is the superposition of particular solutions of Eq. (9.21). In this case, the
general solution can be obtained without integration as the sum of three
particular solutions. At first it is taken the solution of the homogeneous

equation:
A ar_ T (9.22)
dz '

It is obtained after the separation of variables in the form:
T; = Cek (9.23)

The next step to look for the particular solution of the inhomogeneous
equation:

dT
A—-T=- 24
i YZ (9.24)
The solution is obtained as:
To=v(A+2) (9.25)
Finally the particular solution of the equation:
T
Ad— -T=-T, (9.26)

dz
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is the expression of:
T3 =T, (9.27)
The general solution is the sum of these three particular solution:
T=Ceri+y(z+A)+T, (9.28)

The constant of integration can be determined by the boundary con-
dition z = H; T =T, + YH. It means that the temperature of the inflowing
water is the same as the formation temperature at the perforation. Thus
we get: "

C=—vAe A (9.29)

Finally, the temperature distribution of the upflowing water along the
depth is:
T=To+v(z+A) - yAeT (9.30)

This solution refers to an instantaneous moment of the process, a
snapshot of the time-dependent temperature distribution. Eq. (9.30)
shows that the fluid temperature decreases exponentially from the bottom
hole to the wellhead. The difference in the temperature between the
produced hot water and the formation is generally increases as the water
ascends the well.

The dominant performance variable is the mass flow rate that in-
fluences the velocity distribution. As the mass flow rate increases, the
upflowing fluid temperature also increases. Decreasing flow rate leads to
a substantial temperature drop.

Another strong influence is made by the time of operation.
The upflowing fluid heats the adjacent rock mass around the well. As the
temperature difference between the fluid and the rock decreases the
outward heat flux is also diminished. Thus, the outflowing fluid tem-
perature gradually increases with time until the steady state will
be attained, mainly after 30 days. It is obvious that the warming up of the
surrounding rock around the well is a very slow transient process. The
transient heat conduction function f(Fo, U) has a very weak change with
time, especially the late times.

For very deep wells, the temperature difference between the produced
water and the undisturbed geothermal temperature might asymptotically
approach a constant value. The magnitude of this temperature difference
depends on the value of A. Thus, if the asymptotic approach holds,
temperature logs can be used to determine the value of A. The wellhead
temperature is obtained from Eq. (9.30) as:

Twh = To + YA — yAe A (9.31)
Expressing A from this equation, we get an implicit formula:
H
A= (9.32)

—ln(l - %)
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The calculation of A can be possible by iteration.

Temperature logs are also suitable to estimate flow rates from various
producing zones if thermal properties needed to calculate the perfor-
mance parameter A are available. This calculation is possible because A is
directly proportional to the mass flow rate.

The boundary condition z=H; T=T,+ yH is valid only if the
inflowing section of the well is a relatively narrow interval close to z = H.
Most geothermal wells in the Upper Pannonian aquifer are having a
broad discharge interval, even a few hundred meters with interbedded
impermeable layers. If the difference of the depth between the lowest and
the uppermost discharge formations is 300 m, and the geothermal
gradient is 0,05°C/m, the difference of the inflowing water temperatures
is 15°C. The inflowing waters of different temperatures are mixed rapidly
in the upflow developing a common temperature accordingly the law of
calorimetry. This common temperature after the mixing and the depth
belonging to it form the real boundary condition solving the differential
Eq. (9.21).

Consider many discharge formations at the depths z1, z, ... z,, having
thicknesses hy, hy ... hy, and permeabilities Kj, Ky, ... Ky. The discharges
belonging to them are Qj, Qy, ... Qn with the averaged temperatures Ty,
T, ... Th. The total flow rate of the well is:

n
Q=Q+Q+...4Qy=> (9.33)
i=1
The thermal power of the well is:
P=pc(QT1 + QTa+ ... + QuTa) = Y _ paQT; (9.34)
i=1

After mixing it is the same:
P = pcQT (9.35)
Thus the common temperature T is:

T:Z£5%E (9.36)

The discharge of every single permeable formation may be approxi-
mated based on the Kih; values, thus the connected temperature is:

it Kihiz
T=T == 37
ot Y Z?:l Kih; (9.37)
The C constant of integration in Eq. (9.28) can be obtained as:

C—y 2Kz plet 9.38)

N >K;h;
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FIGURE 9.3 Calculated and measured temperature distribution in the hot water well of
SZR 21.

Thus, the temperature of the upflowing water is obtained as:

-H

2 'h‘ i z
M—H—A)eA (9.39)

EKihi

T:T0+Y(A+z)+y(

As an illustration, the comparison of the calculated and measured
temperature distribution of the geothermal well SZR21 is Szarvas is
demonstrated. There is no greater difference of 1,5°C along the entire
depth of the well. It can be seen in Fig. 9.3.

9.2 TEMPERATURE DISTRIBUTION
OF INJECTION WELLS

Reinjection of the utilized geothermal fluids is necessary for several
reasons. The dissolved solid content of the geofluids represents a serious
environmental problem. It is hazardous to let in fresh waters at the
surface. Another problem is the pressure level decrease of the reservoirs
resulting from the thermal water production. Reinjection helps to
maintain the pressure level in the reservoir. A further important benefit
of reinjection is that with the continuous flushing of the rock matrix by
the cooled water, the recoverable geothermal energy from the reservoir
substantially increases. The recovery factor can be increased even 10
times, relating to the technology based on the elastic expansion.
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The design of the injection process makes it necessary to calculate the
temperature distribution of the injected fluid as it flows down in the
wellbore.

The differential equations describing the heat transfer between the
reinjected water and the surrounding rock can be written considering the
control volume outlined in Fig. 9.4. The system is divided into two sub-
systems. One of them is the flowing fluid in the well, the other is the
adjacent rock around the well. For the downflowing water it is:

thedT = 2RgmUq (T, — T)dz (9.40)

The heat fluxes through the surrounding rock and the well completion
are obviously equal:

- 27‘CkR
- f

The only difference obtained in the heat transfer between the production
and the injection well is in the direction of the heat fluxes. The heat flux
in the production well is directed radially outward toward the rock, while in
the injection well it is directed radially inward toward the well. The conse-
quence of this is the opposite sign of the temperature differences in the
equations. Combining the two equations, the following differential equation
is obtained:

2RimUy (T — T)

(Te — Th) (9.41)

dT  To+vyz-T

dz @ (9.42)

21 \ kgRuUy

FIGURE 9.4 Control surface for an injection well.
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It can be recognized that the performance coefficient A is the same for
both production and injection wells. Thus, we obtain a first-order, linear,
inhomogeneous differential equation:

dT

AE: To+vz-T (9.43)
Introducing the auxiliary variable:
O=T-vyz (9.44)
the modified differential equation can be written:
de
A—=— To — YA 4
i O+T,—-vy (9.45)

It can be solved by variation of constants. At first we attain the solution
of the homogeneous equation:

® = Cer (9.46)

After this, the constant C is taken as it would be the function of z.
Derivation the homogeneous solution by z we get:

C;—(;) = ‘;—fe*i +Ce % (—%) (9.47)
Substituting it into the Eq. (9.45), a differential equation is obtained
for C:
i_i _ (% - v) e (9.48)
Its solution is:
C = (To —yA)er + K (9.49)

The obtained expression of C is substituted into the solution of the
homogeneous differential Eq. (9.46). Thus, we get the expression of:

T—vyz=To—yA+Ke % (9.50)

In order to determine the constant of integration K, the boundary
condition is if z = 0, then T = Tjy;. This leads to the expression:

K= Tinj —T+yA (9.51)

Finally, the general solution for the temperature distribution along the
depth is:

T=To+v(z—A)+ (Tinj — To + YA)e * (9.52)
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FIGURE 9.5 Temperature distribution along the depth at different mass flow rates.

The calculated temperature distributions are shown in Fig. 9.5, taking
the constant values of the mass flow rate as a parameter. It can be seen the
definitive influence of the mass flow rate on the injected water tempera-
ture at the bottomhole. The effect of the elapsed time on the temperature
distribution is shown in Fig. 9.6. The bottomhole temperature becomes
lower as time goes by. The importance of this effect is in that the tem-
perature decrease results in a shrinking of the reservoir rock, the aperture
of the fractures increases, and thus the permeability of the reservoir
increases too.
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FIGURE 9.6 Temperature distribution along the depth at different times.
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10.1 ONE-DIMENSIONAL APPROXIMATION FOR
FLOW IN PIPES

Recovering a geothermal resource there will be a number of wells
tapping the reservoir. The capacity of geothermal fields may be as large as
the geysers with more than 500 wells, or a small resource with a single
well only. The site of the production and the utilization may be located a

Flow and Heat Transfer in Geothermal Systems
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considerable distance away. The transmitted fluid may be steam, a
mixture of steam and hot water, or hot water only. In Hungarian
geothermal practice the typical case is a small, hot water reservoir with at
least a dozen wells. Thus we consider primarily the gathering system of
hot water.

Problems of one-dimensional flow in pipes occur widely scattered
throughout petroleum engineering practice. Design methods for drilling,
cementing, hydraulic fracturing, production, and pipeline transportation
of oil and gas require the handling of such problems. The equations
obtained earlier in this book are totally adequate for calculating the flow
variables for the one-dimensional case. The particular importance of this
type of flow requires a detailed review of the fundamental principles,
limitations, and recommended design methods.

The flow of a fluid along a streamline in the form of an infinitesimal
stream tube of varying cross-section is the simplest example of one-
dimensional flow. Any flow through a pipe forms an analogy with a
stream-tube flow. The bounding surface of a stream tube consists of
streamlines, thus the velocity has no component normal to it. Since the pipe
wall is obviously impermeable, it may be considered to represent a stream
tube of finite cross-section. An essential difference is that the flow variables
are uniform over an infinitesimal cross-sectional area of the stream tube,
while a pipe has a finite cross-section across which the flow variables may
have predetermined nonuniform distributions, though it is always possible
to take at least the integral mean values as uniform variables. In engi-
neering practice the pipe flow is assumed to be one-dimensional. This
assumption is only an approximation, and certain corrections have to be
applied in order to get practical results.

Difficulties arise due to the entrance section of the pipe, the curvature
of the flow, and changes in the cross-section. The longer the section of
pipe, the better does the approximation of considering the flow to be one-
dimensional apply. For large curvatures or moderate changes in cross-
section, the deviation from the one-dimensional character of the flow
may be neglected (Bobok, 1993).

It is known that any pressure change normal to the flow direction is
hydrostatic. Consider now a flow in a cylindrical pipe in which all
streamlines are parallel to the pipe axis. In any cross-section the hydro-
static equation for two arbitrary points 1 and 2 can be written:

P1 T 21Pg = Py + 22Pg

From this it can be seen that although the pressure and the potential
energy may vary considerably over the cross-section, their sum remains
constant. Thus for any cross-section of a pipe with finite size, the single
value represented by this sum applies to the whole flow or to any of the
individual streamlines which compose it. Thus no change has to be made



10.2 BASIC EQUATIONS FOR ONE-DIMENSIONAL FLOW IN PIPES 197

as an infinitesimal stream tube is expanded to encompass a pipe of finite
size; the sum of the pressure and the potential energy are uniform over
any cross-section, assuming, of course, that the streamlines are straight,
parallel lines. It is obvious, that p + zpg cannot remain constant if the
streamlines are sharply convergent, divergent, or curved, so that the flow
cannot be considered to be one-dimensional.

10.2 BASIC EQUATIONS FOR ONE-DIMENSIONAL
FLOW IN PIPES

An arbitrary flow problem can be solved, at least in principle, by the
simultaneous solution of a set of balance equations. These are the equa-
tions for the conservation of mass, the balance of momentum, balance of
kinetic and internal energy, and the equation of state. Tacitly, the balance
of angular momentum is taken into account by the symmetry of the stress
tensor. Similarly, the constitutive relation of a Newtonian fluid is incor-
porated into the Navier—Stokes, Reynolds, or energy equations. Bound-
ary conditions are added to complete the mathematical model. The
integral forms of these basic equations are especially suitable to obtain
the simpler expressions for pipe flow. Consider first the equation for the
conservation of mass. As it is previously shown in Chapter 2:

/ai’dv+ / pvdA =0 (10.1)

Let us apply the equation to the control volume shown in Fig. 10.1. The
closed control surface (A) can be divided into three parts: the inlet surface
A1, the outlet surface Aj, and the pipe wall, treated as an impermeable
stream surface As. As a result of this impermeability:

VAA =0 at Aj (10.1a)

The inlet and outlet cross-sections are not necessarily perpendicular to
the streamlines, thus the velocity vector V and the surface element vector
dA are not necessarily parallel. At the inlet cross-section their scalar
product must be negative; at the outlet cross-section it is obviously pos-
itive. Let the mass of fluid contained in V be designated by M

M = / pdV (10.2)

The integral mean of the velocity at any cross-section is

:% / vdA (10.3)
A
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FIGURE 10.1 Control volume for one-dimensional flow in a pipe.

The area-averaged density is

1
p= K/ pdA (10.4)
A

Thus the equation for the conservation of mass for the pipe section
shown in Fig. 10.1 can be written

oM
T P2A202 — p1AICy (10.5)
For a steady flow
P2A2Cy = p1Ajc; =M (10.6)

thus the mass flow rate is the same across any cross-section. For incom-
pressible fluids

A2C2 = A1C1 = Q (107)

thus the flow rate Q at any cross-section is constant and given by the usual
expression for the cross-sectional average velocity

Q
= 10.8
‘A (108)
The momentum equation can be applied to a pipe section in the same

way as the continuity equation. In its general form, we have

a(pV) — =N\ — -~
Tdv-i- pV(VdA) = [ pgdV+ TdA (10.9)
v A % (A)
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For steady flow this simplifies to

/ pV (VdA) = / pgdv + / TdA (10.10)
(A) v (A)

The convective momentum flux through the pipe wall is obviously
zero. Calculating the integral mean of the convective momentum flux it
should be noted that the integral mean of the product of velocities is not
equal to the product of the integral means of the velocity. This can be
corrected by using a multiplier a. defined by the equation

[ p|¥|(VdA)
_A

o 10.11
A (10.11)
The resultant of the body forces in a gravity field is obviously
/ pgdV=Mg (10.12)
A%
The stress tensor can be split into three components,
T=—pl+Ty+T (10.13)

where Ty is the viscous stress tensor and T’ is the tensor of the Reynolds
stresses.

For incompressible flow the shear stress distribution, as well as
the Reynolds-stress distribution, is the same at any cross-section. Since the
surface normal at the inlet and at the outlet cross-sections are opposite, the
integrals of (T, + T') over A; and A, will cancel. For compressible flow this
condition is only an approximation. At A; and A; the pressure will give
nonzero integrals only. At the pipe wall, the normal stresses will cancel
due to the symmetry, thus only the (T, + T’) term produces nonzero
results.

Thus, we finally obtain

— — — i i
pQ(a2C2—OL1C1):Mg+f1+f2+f3 (10.14)
where
— —
fi=-— / p;dA (10.14a)
Ay
, (10.14b)

I
|
& —
>
Q.
>
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= / (TV + T’)dK (10.14¢)
Az

— —
In the expression f i is the resultant pressure force at the inlet, f ; is the

same at the outlet, and ?3 is the resultant shear force acting on the system.
The vector polygon which represents Eq. (10.14) geometrically is shown
in Fig. 10.2.

In the case of a one-dimensional flow in a pipe inclined at an angle ¢ to
the horizontal, the equation simplifies to

p1A1 — prA2 — f3 = Mg sing (10.15)

The mechanical energy equation for a barotropic fluid in a conservative
body-force field can be written as

/2 Y ius dv+/ Y U+ p)vdA
at\ 2 o )P Pl o)V
(4)

__ / 7<TV+T/)dK—/(TV+T/):SdV
\'

(A)

v (10.16)

FIGURE 10.2 Forces acting on a control volume of pipe flow.
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In discussing the continuity or the momentum equation, it is of no
consequence whether the flow is laminar or turbulent, but for the kinetic
energy equation this is of importance. For a turbulent flow it is even
possible to write different formulations for the balance of kinetic energy
equation, based either on time-averaged velocities, or on the actual ve-
locity fluctuations. For a one-dimensional flow in a pipe the first type of
equation is most suitable. We shall confine ourselves to steady flows only.
At the pipe wall v VdA =0. Note, that on the right-hand side of the
equation the product (Ty+ T') dA _must first be obtained, thus in
this surface integral the condition v VdA =0is not fulfilled. In spite of this
the velocity at the pipe wall is zero, thus the integral over A3 must vanish.
The result is the same, but the manner in which it is obtained is different.
Thus we have

2 2
/p(%JrUJr go)?dKUr/p(%JrUJr p)VdK

2 1

_ /V(TV+T’)C1K+/ V(T +T)dA / . SdV
A, Ay A\
(10.17)

Remember, that the turbulent shear stress is much greater than the
viscous shear stress except within the laminar sublayer. Since the thick-
ness of the latter is negligibly small relative to the diameter of the pipe, the
viscous shear stress may be neglected. For a pipe of constant cross-section
the two surface integrals will cancel, since the velocity distributions are
equal and the surface normals opposite. If the cross-section changes, this
condition is satisfied only approximately. For a long pipeline such an
approximation is acceptable. For the integral mean of the convective
kinetic energy flux a correction factor f is defined as

J(%)VdA
p=t (10.18)
7A
Thus we have
a3 a
P2A2Co (Bzi + U + 502) +Pr = p1A1cq (13131 +Up + 501) (10.19)

where Pt is the mechanical power loss due to the turbulent shear stress:

Pr = / T:SdV (10.20)
\'
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Since
P2A2cy = p1Ajc) =m (10.20a)
subdividing by the mass flow rate m we obtain
2 2
) P ]
5 — =Py 10.21
Bo S+ U2t gt =Pk +Ui+ 9, (10.21)

For the case of a gravity field and an incompressible fluid we obtain,
after subdividing by g, the so-called viscous Bernoulli equation

3 p / c? p
By 2242y +-2+h)_, =Bt +2zg + - 10.22
22g g 2T Mg g (1022)

in which
hy ,=— (10.23)

is the so-called head loss, it is the mechanical energy decrease per unit
mass of fluid flowing between cross Sections 10.1 and 10.2.

All terms of the mechanical energy equation in this Bernoulli-like form
have the dimension of length. Because of this they may also be taken to
represent vertical linear distances to visualize the equation as shown in
Fig. 10.3. This visualization can be realized experimentally by using vertical
piezometer tubes. In this case the slope of the energy line is parallel to the
hydraulic grade line. This type of graphical representation, which is called
an energy diagram, is widely used in the analysis of engineering problems.
The energy line and the hydraulic grade line are also known as the total
head line and the piezometric head line, respectively.

For a laminar flow the head loss can be determined in a purely analytical
way, since the Hagen—Poiseuille equation is valid for such a flow.

For a turbulent flow an approximate, almost analytical computation,
the so-called Weisbach equation, yields the head loss. This was originally
determined as an empirical formula, and later confirmed by dimensional
analysis. In this chapter it will be derived by solving the momentum
equation for turbulent flow.

10.3 DETERMINATION OF THE APPARENT
TURBULENT SHEAR STRESS ACCORDING TO
THE MIXING LENGTH THEORY

On the preceding pages it has already been mentioned that when the
Reynolds equation of motion is used to describe turbulent flow, the
number of unknown variables is increased: even in the simplest case
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FIGURE 10.3 Energy diagram for pipe flow.

where the tensor of the apparent turbulent shear stress is symmetrical, it is
necessary to define six new unknown variables. At the present time no
system of correlation analogous to Stokes’s law is known, according to
which the Reynolds’ stresses and the kinematic parameters characterizing
the average velocity field can be related to each other.

For practical purposes it has thus been tried to find such correlations
between approximations which are suitable, at least in the case of one-
dimensional flows, to permit the determination of the distribution of
the mean velocity and the flow resistance. The simplest of these approx-
imation procedures was worked out by Prandtl (1956).

Consider the mean velocity profile outlined in Fig. 10.4. At the wall
the mean velocity is zero and it increases gradually with increasing
distance away from the wall. At a distance y from the wall the mean
velocity is vx(y)p and the fluctuation components v, and V/y are super-

imposed on it. The turbulent momentum transfer due to the fluctuations
may be approximated in the following way. Consider that a fluid particle
in the layer with a mean velocity vy, moves upward as a result of
the transverse fluctuation V/y to aregion at a distance y + h from the wall.

Here the mean velocity is greater; it is obtained by the linearization of

the velocity profile as vy —|—‘11‘;X h. In the new surrounding the mean
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FIGURE 10.4 Turbulent velocity profile showing the mixing length.

velocity of the particle is smaller than the local average there. The
difference

vx(y) — vx(y +h)

appears as the (negative) velocity fluctuation of the particle

ﬂzw—GﬁﬁWQZJﬂw (10.24)
dy dy

Conversely, the particle which arrlves from above the layer with a
negative vy gives rise to a positive v, in it. On the average therefore, a
positive Vy 1s assoc1ated with a negahve v,, and a negative Vy is associated
with a positive v,.

Assume that V;( and Vly are of the same order of magnitude, thus we
obtain
, dvy

vy = oh dy

(10.25)

where o is a dimensionless multiplier.
Since the apparent turbulent shear stress for the one-dimensional mean
flow is

Ty = pVXVy (10.26)
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it can be written, that

dvy
dy

, dv
_ 2 X
Ty = pah dy

(10.26a)

Since a, h, and the mean velocity gradient are nonfluctuating quanti-
ties, they remain unchanged during averaging, so that we can simply
write

dvy
dy

dvy
dy

T, = pah?

\ (10.27)

It is obvious that there is a certain distance h between the mixing layers,
at which the absolute values of the velocity fluctuations v, and V/y are
equal, so that o = 1. This length is obtained to a characteristic quantity of
the turbulent flow. It may be regarded as a correlation factor, and it is
called the mixing length 1. The mixing length can be considered as the
average distance perpendicular to the mean flow covered by the mixing
particles. If the turbulent momentum transfer is intense, the value of 1
increases. If, however, the degree of fluctuations decreases, 1 tends to zero.
The mixing length changes with the distance from the wall. Prandtl
assumed that

I, =y (10.28)

where k is a dimensionless constant, which is obtained indirectly from
observations of the mean velocity distribution.

Karman introduced another concept by means of the similarity theory.
He assumed that mixing length had a real physical sense only, if the
correlation is the same in all points of the flow region considered. This
assumption seems to be valid in all cases in which mixing length is small
in comparison with the dimensions of the region. Kdrman’s mixing length
expression is

(e

<

V.

d
d?v,
dy2

~

lc =«

(10.29)

where k is the same constant as in Eq. (10.28). Thus the apparent turbulent
shear stress is obtained as

-2
3 dvy

dy

d?v,
dy2

dvy
dy

’
— 2
Ty = PK

(10.30)

This relation yields velocity distributions and pipe resistance factors
which are in excellent agreement with experimental results for flow in
pipes or between parallel plates.
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10.4 TURBULENT FLOW THROUGH PIPES

Consider a steady flow through a straight cylindrical pipe of infinite
length. The fluid is incompressible and the mean velocity has only one
component; in the direction of the pipe axis. It is assumed that the dis-
tribution of the velocity fluctuations v, and v, are also axisymmetric. This
assumption seems at first rather arbitrary, but the velocity distribution
obtained from this solution is in good agreement with experimental data.
The gravitational force has a potential

‘g = —grad(gh) (10.31)

Let us use cylindrical coordinates as shown in Fig. 10.5. Then the
control volume of the integration is a cylinder of radius r and length L,
coaxial with the pipe axis. The mean velocity field is steady, thus the local
derivative of the momentum is zero. Hence:

/pV(VdX):/pngf / de+/VdX— / (v ev)dA
(A) \ (A) (A) (A)
(10.32)

The surface integral on the left-hand side represents the convective
change of momentum due to the mean velocity field. Along the cylin-
drical stream surface VdA = 0. The velocity distributions are identical at
the inlet and the outlet cross-section but the unit normal vectors are in
opposite directions. Thus this integral vanishes on account of the conti-
nuity condition. We now transform the surface integral of the pressure
force into a volume integral, thus the first and second terms of the right-
hand side can be added up to form a volume integral of a gradient vector.

FIGURE 10.5 Turbulent flow in a cylindrical pipe.
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Eq. (10.32) thus becomes:

0= —/grad(pgh+p)dV+ / TodA — / p(Vev)dA  (1033)
v (A) (A)

The viscous shear stress generated on the cylindrical surface is constant
since the flow pattern is axisymmetric and does not change in the
z-direction.

At the inlet and the outlet cross-section the flow patterns are the same
but the unit normal vectors are in opposite directions, thus these two
terms vanish. This is obviously also valid for the apparent turbulent shear
stress. Consequently the second and third integrals should only be taken
over the cylindrical surface of radius r.

The evaluation of the integrals is done in the following way. The force
maintaining the motion is:

— / grad(pgh +p)dV = —?/ %(pgh +p)dV = JPalk (10.34)
v v

The sum pgh + p is a linear function of z only, thus its gradient is
constant (—J). Instead of integration we can multiply it simply by the
volume. This does not require any special explanation. The viscous force
acting on the cylindrical surface is:

/ T dA = pg?dA - u%zm? (10.35)
Ap Ap

Since the velocity decreases in radial direction, the value of the de-
rivative dv/dr is negative and the sign of the viscous friction force is
opposite to that of the force maintaining the motion.

To determine the apparent force due to the turbulent exchange of
momentum the following integral needs to be evaluated:

- / p(v"ov”>dK (10.35a)

Ap

Let us assume an axisymmetric distribution for v, and v, though, of
course, it also changes both with the radius and with z.

Based on Taylor’s correlation theorem it is possible to replace the time
average of the product of the velocity fluctuations with the mean inte-
grated value of the same over the length L. This is acceptable since we can

—_—
regard the mean integrated value of v,v, over the length L as a time
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average formed during the time ty = L/v over which the averaging is
carried out. Accordingly:

- / p<7/°7/)dx = - / pv'rv’z?dA = —pv,V, Vv 2mrL K (10.36)
Ap Ap

If the evaluated integrals are now added and their sum divided by
2mrL we obtain the differential equation for turbulent flow in a pipe

P%]r n ujv VY =0 (10.37)

Solving this equation we can distinguish two domains in which the
flow behavior is totally different.

Experimental data show that all turbulent fluctuations vanish at the
pipe wall, while they are very small in its immediate neighborhood. Thus
the Reynolds stresses are zero in a very thin layer. Consequently, in every
turbulent flow there exists this so-called laminar sublayer, in which the
motion is laminar; thus for this laminar sublayer the third term of
Eq. (10.37) may be omitted so that the differential equation for this sub-
layer is:

pglr | dv

St ug =0 (10.38)

Integrating this equation the velocity profile may be obtained in this
domain.

The thickness of the laminar sublayer 3 is very small in comparison to
the radius of the pipe, thus Prandtl introduced an additional assumption,
namely that the shear stress 1 is constant throughout the laminar sublayer
and equal to the shear stress at the wall t:

S @ (10.39)

Dividing the shear stress at the wall by the density, and then extracting
the square root results in a parameter called the friction velocity

gJR

Vi =

(10.40)

ﬁ

which is not a real velocity, having only the dimension of velocity. Thus
the differential equation

dv

2
V*
= v (10.41)
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is obtained from which, after integration, we obtain the velocity distri-
bution in the laminar sublayer:
vi
v=-"" (R—r) (10.42)
Outside the laminar sublayer the effect of the viscous shear stress
diminishes and the role of the turbulent momentum flux, the so-called
Reynolds stress, increases. Under these conditions we can omit the sec-
ond term, the viscous shear stress, from Eq. (10.37). In order to determine
the velocity distribution of the turbulent core flow it is necessary to find an
expression for the apparent turbulent shear stress which would relate it to
the mean velocity. Prandtl’s mixing-length theory is one of the simplest
methods of estimating the Reynolds stress. As an extension of the mixing-
length theory, Karmén proposed the following expression

||
_ T
Ix = &y (10.43)
dr?
which leads to the expression
S )
T = —pV,v, = przcl; (10.44)
d'v
(%)
for the turbulent momentum flux. After substitution we obtain:
w4
g 23 (10.45)

This equation requires some manipulation, while care should also be
taken with the sign of the square roots.

The derivative d*v/dr* must be negative, since the velocity distribu-
tion reaches a maximum value along the centerline of the pipe. Thus,
again using the friction velocity, we obtain:

r @
—V*\/% =K (@) (10.46)

Taking the reciprocal of both sides, we have

dZ
o _x R

d_V2 ve Vr
dr

(10.47)
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which can be readily integrated. After integration we obtain:

1 2«
&= VRr+Ky (10.48)
av Vi
dr

In order to determine the constant of integration K; we may prescribe
as a boundary condition that the velocity gradient at the wall becomes
infinite:

dv
<E> e (10.48a)

This assumption is permitted since it is outside the validity interval of
the solution.
Thus:

Ky = — ZSR (10.48b)

Substituting the constant Ky, the following expression is obtained:

1 2kR r
@:_ v (1_ ﬁ) (10.49)

Taking the reciprocal of both sides and integrating yields

V:VK*Ni —&—ln(l—\/;)] 1Ko (10.50)

Now we need one more boundary condition to determine the constant
of integration K. It is a known experimental fact that the maximum of the
velocity distribution is at the pipe axis. Therefore, at r = 0, v = vax, thus
K2 = Vinax-

Thus we obtain the following dimensionless velocity profile:

1 r
—4+Inf[1-=,/=
V(=)

This relation offers a good description of the velocity distribution, but
does contain vpax as an unknown arbitrary additional term. It is obvious
that the velocities are equal on both sides of the surface which forms the
boundary between the turbulent core flow and the laminar sublayer

adjacent to the wall. Thus the turbulent velocity profile must match that of
the laminar sublayer at the positionr =R — 9, i.e.,

R_E\)—Hn 1 R-9
R R

Vmax —V 1

(10.51)

Vi

0 1
ViO  Vmax ) C (10.52)

Vi
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A very important observation of Prandtl is that
V0
v

= o. = const. (10.52a)

Since 3/R <« I, the following approximation based on the binominal
theorem is convenient:
3

1-o=1 (10.52b)

1n<1 — \/g) =In {1 — (1 — %)} = ln% (10.52¢)

Substituting these expressions into the velocity profile which matches
that of the laminar sublayer as given by Eq. (10.42), the following result is
obtained:

and

Vmax _ 11 V2R 14 4 ey + o (10.53)
Vi K K

The constant o and k can be determined from experimental data. One
possible method is to evaluate these constants from velocity profile
measurements, another one, which has less uncertainty, is by measuring
the pressure drop for different flow rates. These methods yield the
following values:

o =12.087

(10.53a)
k = 0.407

The velocity distribution along a radius is:

v 1 T r 1 Rev, 1
V_*_E|:\/% +1n(1—\/%)}+Eln< c )—E(l—l—lna)—i—a (10.54)

This dimensionless velocity profile satisfies the boundary conditions.
From this expression, the influence of the Reynolds number (Re) on the
radial velocity distribution is obvious. The cross-sectional average
velocity may be obtained by equation

R
o - Vl 27 dr (10.55)

Substituting v/v. from Eq. (10.54) into Eq. (10.55), using the values for
o and k, and integrating we have:

C  Vmax 177  Vmax

Vi Vi Kk 60 Vi

~3.153 (10.56)
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Finally, the averaged velocity is obtained as

£ _249.In (Recv*> — 2811

Vi

Another dimensionless velocity profile is:

v _1+\/%+ln(1+\/%)

Vmax 1.42 +InRe**

(10.57)

(10.58)

In Fig. 10.6 velocity distributions are demonstrated along the
dimensionless pipe radius (r/R), taking the Reynolds number as a
parameter. This shows that the velocity distribution becomes more
uniform over the cross-section as the Reynolds number increases, while
the averaged velocity tends to the hypothetical velocity distribution of a
perfect fluid. As a consequence, during kinematic investigations, the
inviscid, perfect fluid model can be used satisfactorily in the range of
high Reynolds numbers. Naturally the perfect fluid model cannot be
used for pressure-drop calculations because of the intensive turbulent

dissipation.

Vmax

FIGURE 10.6 Turbulent velocity distribution in a pipe.
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10.5 HEAD LOSS IN STRAIGHT CYLINDRICAL PIPES

The determination of head loss as a function of the flow rate is perhaps
the most common problem of fluid mechanics. In this section we shall
only consider the case of an incompressible Newtonian fluid. It is obvious
that the flow through a pipe can be either laminar or turbulent. For a
laminar flow the Hagen—Poiseuille equation gives the head loss as

, 8vLc

=— 10.59
1-2 ng ( )

For practical applications this equation has to be somewhat modified.
In engineering practice the diameter of a pipe is given rather than the
radius. We also wish to obtain an equation for the head loss which de-
pends explicitly on the Reynolds number. Expressing Eq. (10.59) in terms
of the diameter D and rearranging the terms, we have

: 64 L ¢
12=®p 2 (10.60)
v
which may be written as
’ L ¢
h,_, = 7\5 28 (10.61)

where A is called the friction factor. It can be calculated from the equation
64

A=—

Re

This expression is valid for the range of Re < 2300, i.e., laminar flow
only. If the Reynolds number of the flow exceeds the critical value of 2300,
the flow becomes turbulent, and the friction factor increases abruptly.
Thus the smallest value of the friction factor is obtained for laminar flow
immediately before the transition. For Re = 2300 the friction factor is

64
A= 7300 = 0.0278 (10.62a)

If the laminar—turbulent transition could be retarded the friction factor,
and thus the head loss, would be much smaller. This is a frequently
applied technique in the petroleum industry. Long-chain polymer addi-
tives can reduce the friction factor of a “solvent,” thus retarding the
laminar—turbulent transition. This phenomenon will be discussed in
detail in Chapter 11.

Turbulent flow is a more complex phenomenon compared to laminar
flow. Thus the determination of the head loss for such flows is a rather
difficult problem. For turbulent flow in a pipe two cases can be distinguished.

(10.62)
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If the laminar sublayer covers the surface roughness of the pipe wall
the turbulent flow is not affected by the roughness, as the pipe can be
considered to be absolutely smooth. This case is referred to as that of a
turbulent flow in a hydraulically smooth pipe. On the other hand there are
flows, where the laminar sublayer cannot cover the surface roughness
of the pipe wall, or there is no laminar sublayer at the pipe wall. Such a flow
is independent of the Reynolds number; all flow variables are functions
of the surface roughness only. When a pipe wall exhibits this behavior, it
is called hydraulically fully rough.

Consider first the turbulent flow in a hydraulically smooth pipe. The
mechanical energy equation can be written as

Bt - B P1—P2
hy_,=—5 - +h; —hy + o (10.63)

Since the cross-section of the pipe is constant and the fluid is

incompressible

=0 (10.63a)
B1=B2 (10.63b)

The head loss is obtained as
h) ,=h;—hy + —pli;gpz =]JL (10.64)

therefore it is the product of the hydraulic gradient ] and the pipe
length L. The hydraulic gradient can be expressed in terms of the friction
velocity v+, since by definition

]= ng v? (10.65)

Substituting this into the equation for h’' we get

/ 2L
hy , =— v?

. (10.66)
gR

The friction velocity can be expressed in terms of the cross-sectional
average velocity c:
c 1 v
—=-In (Re —*)
K c

Vi

1
(2.283 + Inat) + o (10.67)

K
It is clear that v+/c depends on the Reynolds number only, since o and «
are temporarily unknown constants. Therefore,

Vi

~ = f(Re) (10.68)
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This relationship together with Eq. (10.66) leads to the equation for the
head loss
/ L 2
—_gf2 = =
h,_, =8f D 2g (10.69)
in which the group of coefficients 8f* is designated by
A = 8f2(Re) (10.70)

which is the friction factor for the turbulent flow.
We can write
Vi A
— =1/ 10.71
. 3 (10.71)
This can be substituted into Eq. (10.67), thus resulting in an implicit
equation for the friction factor:

1 _ lln (Re\é) — %(2.283 +Ina) + o (10.72)

A K
8

Assuming that o and « are constants, we obtain the following values
from friction factor measurements

o = 12.087 (10.72a)
k = 0.407 (10.72b)
Thus, using common logarithms, we can write

1
7 2lg(RevA) — 0.8 (10.73)

Experimental results confirm this equation to be valid with a fair
degree of accuracy. Nikuradse conducted experiments on the turbulent
flow of water in smooth pipes for Reynolds numbers ranging from 4000 to
3,240,000. The data from his investigation are shown in Fig. 10.7, where
the friction factor is plotted versus the Reynolds number. The curve
representing Eq. (10.73) is plotted for comparison.

Since the equation for the friction factor is obtained in implicit form, A
can be calculated by iteration. The convergence of the iteration is rather
fast, particularly when the starting value of A is chosen using Fig. 10.7. In
such a case two, or at the most three, iteration steps are sufficient.

The surface of the pipe walls is usually quite rough. Glass and PVC
pipes or drawn steel pipes may be considered to be smooth, but standard
pipes are generally rather rough, even when new. This boundary
roughness is shown schematically in Fig. 10.8. The average height of the
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FIGURE 10.7 Friction factor data of Nikuradse for smooth pipes.

3

FIGURE 10.8 Pipe wall roughness and laminar sublayer.

roughness projections is expressed by the height k. The radius of the pipes
is a fictitious length extending from the pipe axis to the average distance
of the wall.

In hydraulically rough pipes there is no continuous boundary surface
between the laminar sublayer and the turbulent core flow. For very large
Reynolds numbers or very rough pipe walls there is no continuous
laminar sublayer at all. The derived velocity distribution for the turbulent
core flow is connected to the velocity of the laminar sublayer. It is obvious
that this velocity profile equation cannot be valid for turbulent flow in
rough pipes. Thus for rough pipes a new equation for the velocity dis-
tribution is required in order to derive the friction factor equation.

Examining the microgeometry of a commercial pipe wall (Fig. 10.8), it
is clear that this random surface profile is too complex to be characterized
by a single parameter. A full characterization of the roughness would
require a complete description of its geometry, including the height,
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FIGURE 10.9 Friction factor data of Nikuradse for artificially roughened pipes.

length, width, and shape of all protrusions or indentations, together with
their distribution. This would be a hopeless task, thus for experimental
purposes an artificially created roughness is used. Nikuradse (1933)
applied uniform sand grains to cover the pipe wall; in his experiments the
parameter k represents the grain size of the sand. The roughness of the
wall in this case may be characterized by a single roughness parameter,
the relative roughness ks/R. Nikuradse’s results are shown in Fig. 10.9,
where the friction factor is plotted against the Reynolds number. It is seen
that for each value of R/k; an individual friction factor curve is obtained.
In the turbulent region of the flow each friction factor curve eventually
tends to be horizontal as the Reynolds number increases.

This shows that in this region the friction factor is independent of the
Reynolds number and is solely a function of the relative roughness. This
region, where the friction factor curves are horizontal, is called the region
of fully developed turbulent flow. Nikuradse obtained experimentally a
friction factor equation for fully developed turbulent flow:

1 R
7 ZngS +1.74 (10.74)
In Nikuradse’s experiments the sand roughness k, could be measured
directly. The natural roughness of a commercial pipe can be determined
indirectly as follows. If, for a given section of pipe, the flow rate Q and
the pressure difference Ap are measured, the friction factor can be
calculated as

2DAp
)\ =
Lpc?

(10.75)
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The value of Reynolds number can be obtained from its definition

_CD
Y

Re (10.75a)

Thus the point corresponding to the measured values of A and Re can
be determined in the friction factor chart. If it is in the fully developed
turbulent region, we obtain

k=R102G17% (10.76)

Note, that k is the equivalent sand grain roughness and that the natural
roughness of the pipe is expressed in terms of the sand grain roughness
which would result from the same friction factor. The only way this can be
done is to compare the behavior of a naturally rough pipe with an arti-
ficially roughened pipe. Moody has made these comparisons; his results
are plotted in Fig. 10.10.

The friction factor and the relative roughness can also be related
theoretically. Kairman derived such an equation for fully developed tur-
bulent flow. Consider the rough pipe wall in Fig. 10.8. The thickness 8 of
the laminar sublayer is smaller than the average height of the roughness.
Since the height k is much smaller than the radius of the pipe R, it seems to
be an acceptable approximation to consider the turbulent shear stress near
the wall to be constant within a layer of thickness k.

919 . [T 1]
0.09

2 008 N - TT 11
’ . — L: . ’27
T 0.07 3 :_*\ D '?079 7
0.06 -\ =TT e 31072 |
0.05 \\ NN 2102 -
‘ L T 1.5-1072
! N |
0.04 \ T 1102 J
\ - 810 o
0.03 = 6107
: N == 4107 4
\ \ VY 7
' =S RN R 2107 |
\\ T fb} £ 3 7
0.02 N NNY) 11073
0.018 A AN S —— 810 2
. N =. 3 61074 —
0.015 N I
" \\\\\ ~ 7107
0.014 N = 210
0.012 S ~d 1101
N T T——L | [N 5107

0.01 AN - ~
0.009 AN ot
0.0 [0 N8 70~ 10

6810° 2 34 6810* 2 34 6810° 2 34 6810° 2 34 6810" 2 34 68108
—> Re

FIGURE 10.10 Moody’s friction factor diagram for commercial pipes.
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Thus it is assumed, that

! ! k
TR =Ty = f<v%) pvi (10.77)

where vy is the velocity at the edge of the constant shear stress layer.
Introducing the friction velocity v+, we can write

2
Ve _ f(v—k V*k) (10.78)

vi Ve V

It is clear that the vi/v+ ratio depends only on the so-called roughness

Reynolds Rei number, i.e.
E— g <V*k> (10.79)

Vi A%

It is well known that the integration constant of the velocity profile of a
turbulent flow in a pipe is an additional unknown. It can be determined
using vi/ v+ At the radius r = R — k we have

Vk _ Vimax 1 R -k B R—-k
Ve | Vs +K[ R +in1 R

Since k < R, expanding the expression in binomial form we get

(10.80)

RT_k; 1 (10.80a)
and
R-k k
In [1 “\Vx =lnﬁ (10.80b)
Applying these formulas, we obtain
VK Vmax 1 k
=—=—d4- = 81
¢ V.. +K(1+lnD) (10.81)
Alternatively, the cross-sectional average velocity c, given by
C Vmax 1/25 4
—=——-—|=—-z 10.82
Vi Vi K (12 5> (1082)

It can be used to eliminate v,y / v+ Thus we get

gyt (2.283 + 1n11;) (10.83)

Vi K
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From Eq. (10.71) we have

C 8
— =4/ 10.83
- 5 ( a)
so that the friction factor is obtained as
1. D 22
\/g —Zln=— —83 +o (10.84)
A ok k K

The coefficient k has the same value for both smooth and rough pipes.
The relationship between ¢ and the roughness Reynolds Rex number can
be determined experimentally. The result is shown in Fig. 10.11. In the
interval Rex < 3 a linear relation is evident. In the region Rey > 70 the
horizontal line shows that ¢ is independent of Rey. In this region ¢ is
constant, thus A is a function of the relative roughness D/k only. In the
interval 3 < Rex < 70 the curve of ¢ attains a maximum. This is the
transition zone between the smooth and the fully developed turbulent
behavior.

If Rek < 3, as long as the roughness is covered by the laminar sublayer,
it has no effect on the friction factor.

It is clear from Fig. 10.11 that the roughness makes itself felt only at
values of Rey > 3. The measured points start to plot away from the
straight line for a smooth pipe. Up to a value of Rei =70, the friction
factor depends on both the relative roughness and the Reynolds number.

For values of Rei > 70 the laminar sublayer vanishes and the friction
factor depends solely on the relative roughness. For this fully developed
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FIGURE 10.11 Regions of smooth, transition, and fully rough flow depending on Rey.
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turbulent flow, after substitution of k and ¢, the friction factor equation is
obtained as
1 3.715D
—=2lg—— 10.85
Nt (1085)
For the transition region, where the friction factor is a function of both

the Reynolds number and the relative roughness, Colebrook’s equation is
applicable:

1 k 2.51
7 2lg (3.715D + Reﬂ) (10.86)

Colebrook’s equation is an implicit expression, thus iteration is
required to calculate the friction factor in the transition zone.

Finally a series of curves is presented (Fig. 10.12) to estimate the
relative roughness of a pipe as a function of the diameter and the
material of the pipe. These protrusions are representative of the mate-
rials indicated, but cannot be expected to be sufficiently accurate for
actual calculations. It is recommended that whenever possible and
economic, the results of an actual flow test through a certain length of the
pipe in question be used to calculate the friction factor and the actual
relative roughness. These values are sufficient for further engineering
calculations.
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FIGURE 10.12 Relative roughness of different types of pipes.
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10.6 FLOW PATTERNS IN HORIZONTAL
STEAM—WATER MIXTURE FLOW

Transporting hot water at or near its boiling point through a pipeline it
is suitable that the pressure will be higher along the pipe length than the
saturated pressure at the actual temperature of the fluid. If the pressure
were lower the flowing fluid would flash and characteristic two-phase
flow patterns occur. Gas—liquid mixtures flowing in horizontal pipes
tend to be somewhat more complex than vertical flows. If the density
difference between the phases is pronounced, the flow is asymmetric: the
more dense phase tends to accumulate at the bottom of the pipe (Govier
and Aziz, 1972).

Consider a horizontal transparent pipe with a constant liquid flow rate,
into which gas is introduced. If the superficial liquid velocity is suffi-
ciently high, say 2—3 m/s, the introduced gas is present as small spherical
bubbles, as shown in Fig. 10.13A. The finely dispersed bubbles have no
symmetrical concentration profile; the maximum concentration occurs in
the upper part of the pipe cross-section. Increasing the gas flow rate leads
to the formation of larger bubbles, and the occurrence of bubble groups.
The larger bubbles occupy the uppermost part of the pipe, while the
smaller bubbles are dispersed asymmetrically, as shown in Fig. 10.13B. As
the gas flow rate is increased further, still larger bubbles occur at the
upper pipe wall. Here elongated bubbles are followed by smaller

FIGURE 10.13  Flow patterns of horizontal water—steam mixture flow.
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spherical bubbles, and they frequently coalesce (see Fig. 10.13C). With the
further increase in the gas flow rate, very large elongated bubbles slide
along the upper pipe wall and suffer distortion resulting in unstable
shapes (see Fig. 10.13D). Each deformed elongated bubble is followed by a
liquid plug which may contain trains of gas bubbles. A further increase in
the gas flow rate leads to a separated stratified flow pattern. The hori-
zontal phase interface may be smooth, wavy or become ripply as the gas
flow rate increases (see Fig. 10.13E). As the gas flow rate is increased
further, the waves on this interface become so large that the thinned liquid
layer can no longer support them, the liquid spreads along the walls of the
pipe, forming an annular film, with some liquid droplets dispersed in the
gas core flow (see Fig. 10.13F). Finally, a mist flow pattern develops with
the further increase in the gas flow rate, as shown in Fig. 10.13G. A flow-
pattern map for the flow of a water—air mixture is shown in Fig. 10.14.

If the track of the pipeline is located at an uneven surface the pressure
can be increased at certain points. The pressure rise produces the collapse
of the steam phase. This could cause serious waterhammer, or even
rupture of the pipe with disastrous consequences. To avoid such an event
it must be maintained at an adequate pressure level to suppress flashing
by pumping.

Shock waves occur when the velocity changes, as may result from
operating a control valve at the outflowing end of a pipeline. Every
movement of a valve, opening or closing, causes pressure waves, the
amplitude of which depends on the rate of velocity change.

Ap = paAc, (10.87)
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FIGURE 10.14 Flow pattern map of horizontal water—air mixture flow.
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where a is the wave velocity in the fluid confined within the pipe, and Ac
is the sudden change of the velocity. As it is known

— = (10.88)
1+R2

where B is the bulk elasticity modulus of the fluid, p is its density, D is the
diameter of the pipe, 8 is the wall thickness, and E is the elasticity
modulus of the pipe material. A typical example: water flows in steel pipe
B =2.10°-10° N/m? p = 998 kg/m? E = 2-10" N/m? D/3 = 100. In this
case

2,105-10°

a=,|—8 __ _—1012m/s

2,105-10°
1+100-21%1

If the flowing fluid has a velocity of 1.5 m/s and the flow is suddenly
stopped the pressure rise

Ap =998-1012-1.5 = 1514964 N/m2 = 15.15 bar

It is a substantial pressure rise, and it can be recognized that in a long
pipeline a sudden stopping of the moving water mass would cause a large
rise dynamic effect. It is more dangerous when the sudden pressure
decrease is caused by rapid acceleration with resultant formation of steam
which subsequently collapses.

Valve movements must be carefully controlled, such that the time of
the valve operation should be longer than the time of the refraction there
and back of the waves.

Determination of the pressure loss for a homogeneous liquid flow is a
conventional problem. The two-phase pressure loss in a horizontal pipe
may be determined using the semiempirical method of Lockhart and
Martinelli (1949). The method is based upon the assumption that the
pressure loss of the liquid phase is equal to the pressure loss of the gas
phase regardless of the actual flow pattern:

Ap; = Apg (10.89)

The gas phase is assumed to be incompressible. Thus the pressure
losses are obtained as

’ L &
App = AL Ry "2 (10.90)
and

L c2
Apc = AG RFC 2G (10.91)
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where Ryy, and Ryg are the hydraulic radii of the region of the pipe in
which the liquid or the gas phase flows. The cross-sectional average
velocities of the liquid and the gas are

oL = QZL (10.92)
LR ™
and
= Q—ZG (10.93)
EGRi™

where £;, and &g are hydraulic radius correction factors.
The friction factors of the liquid and gas A, and Ag are expressed as
functions of the Reynolds number in the form of an approximate equation:

BL

AN ="7—"= 10.94
L ( Q >m ( )
ELRuLTvL
and
B
P e — (10.95)
Qg
(EGRHGTWG)

B and Bg can be evaluated experimentally.
Let us define two fictitious pressure losses for both the liquid and the
gas, using the apparent velocities

QL Qg
QL = —5—; CoG = —— 10.96
0L = g2 €06 = - ( )
We can then write
/ L ¢
Apg, = 7\OLEPL% (10.97)
and
/ L c2
ApoG = MG PG o (10.98)
It is obvious, that
B
ML = —— (10.99)
(=)
RTEVL
and
B
NG = Qic (10.100)
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Using these expressions the relationships between the actual and the
fictitious pressure losses are obtained as

: : R \>™
Ap; = Apy &2 (R—HL> (10.101)
and
, C ool RN
Apg = ApycEs (E) (10.102)
The ratio of the actual to the fictitious pressure loss is designated by
5-m
oF =En? (i> (10.103)
R
and
5-n
Og =82 X (10.104)
Rug

Lockhart and Martinelli experimentally determined the functions ¢,
and ¢g. The results are plotted as a function of the dimensionless

parameter
A !
X = /=B (10.105)
Apyg

Lockhart and Martinelli grouped their data into four separate groups
as follows.

1. Both components flow laminar. In this case the Reynolds numbers
obtained from the superficial velocities must be smaller than 1000.

D D
Regr, = CO% < 1000; Regi; = C(’% <1000

2. The liquid flow is laminar, the gas flow is turbulent. In this case

COLD

D
< 1000; Regg = S~ < 2000

Rey =
€L G

3. The liquid flow is turbulent, the gas flow is laminar

COLD

D
Regp = < 2000; Regs = Cog < 1000
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4. Both phases flow turbulently, thus

D D
Regp — CO% < 2000; Reg = CO% < 2000

These four flow regions are indicated by the subscripts 1, 2, 3, and 4 in
Fig. 10.15.

The critical value of Rep = 1000 is chosen since the actual velocity is
always greater than the apparent velocity, thus the actual Reynolds
number is greater than Rey.

For large, commercial-size pipes the error of the Lockhart—Martinelli
method may be as much as 50%, particularly for stratified flow. This is
because the basic assumption is not valid and the pressure loss depends
on the actual flow pattern. Thus modified empirical relationships can be
obtained for large pipes with diameters of up to 300 mm. The source of
experimental data is a flow of gasoline—natural gas mixture in a 300-mm
diameter pipeline.
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FIGURE 10.15 The Lockhart—Martinelli functions.
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A comparison of the pressure losses calculated by the Lockhart—
Martinelli method with experimental data indicates that the actual pres-
sure drop is generally smaller than the calculated values. The difference
varies with the flow pattern: it is least for dispersed bubble flow, and
greatest for stratified flow. If both phases of a stratified flow are in tur-
bulent motion, separate equations can be derived to modify the original
Lockhart—Martinelli relationships for each flow pattern. These approxi-
mate equations, which are recommended for design purposes, are listed
below.

For a dispersed bubble flow pattern

b = 4 — 121gX + 28(1gX)? (10.106)
For elongated bubble flow
b = 4 — 151gX + 26(1gX)? (10.107)
For a smooth surface stratified flow
dG = 2+ 4.51gX + 3.6(1gX)? (10.108)
For a stratified-wavy flow
dg = 3+ 1.651gX + 0.45(1gX)? (10.109)
For slug flow
b = 2.2+ 6.51gX (10.110)

Finally, for annular-mist flow the following equation is recommended:
dg = 4 + 2.51gX + 0.5(1gX)? (10.111)

The phenomenon of the holdup occurs in horizontal two-phase flows
too. Fig. 10.16 shows the holdup ratio for a liquid—gas mixture flow in a
horizontal pipe. It is noticeable that each curve has a local maximum and a
minimum. The maximum corresponds to the ripply stratified flow, the
minimum coincides with the occurrence of capillary waves.

10.7 PRESSURE LOSS OF A LOW-VELOCITY
SUPERHEATED STEAM FLOW

The produced superheated steam is transported from the wellheads to
the power plant through the gathering pipeline system. This system is
generally rather complex because many wells produce the necessary
amount of steam for the power plant. At first a single pipe section is
studied as the fundamental element of the steam-gathering pipeline. The
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FIGURE 10.16 Holdup in horizontal two-phase flow.

temperature of the steam changes very slightly as it flows through an
insulated pipe section. Thus it is an acceptable approximation to treat a
low-velocity compressible flow as being isothermal.

Consider first a horizontal pipeline for which the change in potential
energy is zero. Thus for an infinitesimal length of this pipe the mechanical
energy equation can be written as

d /
cdc+ ?p +gdh' =0 (10.112)
The infinitesimal change in kinetic energy caused by the expansion of
the gas can be treated as being the effect of an additional friction factor A,
i.e., we can write

—dL ¢?
The infinitesimal friction loss is
, dL 2
h="n—— 10.114
gd D 2 (10.114)

Using the above expressions the mechanical energy equation can be
written as

P+ G50 (10.115)
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For isothermal flow

Po_P (10.116)
Ppo P

Since the cross-section of the pipe is uniform the continuity equation
becomes

poCo = pc (10.117)
Thus the kinetic energy at any cross-section can be expressed as

2 2
€ _PoPo %

2 pp 2

Substituting this into the mechanical energy equation we have

(10.118)

Podp , A+ XppPo -
PodP At APoPo 24y _ 10.119
Po P 2D 0 ( :

Multiplying this equation by pp, and using the relation

p_P (10.120)
Po Po
we get the differential equation
2
pdp=—(A+7) %dL (10.121)

Before integrating this expression, consider the change in the friction
factors A and A along the length of the pipe due to velocity and density
changes. For a “fully developed” turbulent flow the friction factor does
not depend on the Reynolds number, nor of course on the velocity. For
smooth pipes A depends on the Reynolds number only. Since

Re = P _ p<D (10.121a)
v 0
and
pc = const, (10.122)

the Reynolds number is constant along the pipe axis, and therefore, the
friction factor is also constant:

dRe 0: dr

dL 7 dL

The additional friction factor A is not constant along the length of the

pipe. From Eq. (10.114) it can be expressed as
2D dc
c dL

0 (10.123)

A= (10.124)
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For an isothermal flow

P = const; pc = const
thus
pc = const. (10.125)
This leads to the relation
E = d—p (10.126)
¢ P
thus the additional friction factor can be written as
- 2D dp
A=— ——— 10.127
. (10.127)

Substituting this into Eq. (10.121) and replacing po, po, co by the inlet
flow variables p1, p1, ¢1 the following integral is obtained:

2
_ Pi© 1 <P2> _ 2p;. L C1
d In =1-h= (10.128)
/ PP b1 b1 p; D2

This, after a little manipulation, leads to the following result

2 2
(&) LT (&) _q_2m,Lq (10.129)
P1 P1 P1 pp D2

This expression is implicit for p; or p» — p1, but p> can be more readily
determined using the Newton—Raphson method as described below.

Consider the error caused by neglecting the kinetic energy change due
to expansion. The ratio of the two friction factors is

A pc? c?

i:p—ch:RT—c2

For superheated steam at 250°C and 50 m/s, it is 0.01045. Therefore, for
a low-velocity compressible flow, e.g., superheated steam pipelines, the
effect of expansion may be neglected. Thus Eq. (10.129) is obtained in a
simpler form:

(10.130)

L
P — P2 = Ap1Pig < (10.131)

The pressure loss can be expressed as the function of the mass flow
rate. It must be considered that the change of the thermal state of the
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superheated steam near to the upper boundary curve is different than the
perfect gas. An acceptable approximation is obtained using a modified
equation of state as:

P _ ZrT (10.132)
P

where Z is the compressibility factor, and R is the technical gas constant.
In this case:
D2
=cp—- (10.133)

Substituting into Eq. (10.131) it is obtained that:
4\? L
22 _ .2
PI—P; = 7\(71:) ZRT1— m (10.134)

This expression is more suitable than Eq. (10.131) for simulation of a
complex gathering system.

For an inclined high-pressure pipeline or in a vertical well, gravity
effects must be taken into account. In the mechanical energy equation, we
need not use the acceleration term c-dc. Instead, we can use the term ¢?. So
we can write:

p; dp dL ¢?
Lt tedz+——=0 (10.135)
P P 87D 2

Let o be the angle between the pipe axis and the horizontal direction,

thus

dz = dLsina (10.136)

Substituting into the mechanical energy equation, and multiplying by
p2/p1/p1, and since c?p? = c3p?, we obtain

dL c1

10.137
55 =0 (10.137)

pdp + g;pzdLsmoc + Ap1P1—=
For an infinitesimal length of pipe we thus obtain the expression

pdp
ar= g p 2 ging 4+ A BiPic2 (10.138)
2D 1

Integrating this expression we obtain

P1 gsina + >3 XC‘
Tl - (10.139)
pigsma (p2> gsino + 5
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Rearranging, the pressure ratio (p2/p1) can be expressed as

2 2 i 2
(&) _ (1 _ZDL> exp< - ZLplgSH‘“) S (g0
< gsina P1 2Dgsina

For modest temperature variations along the length of the pipe, it is
convenient to perform the calculations assuming an average temperature.
If the temperature variation is considerable, the pipeline should be
divided along its length into a finite number of isothermal sections, each
of which is then treated individually.

A complex gathering system consists of one or more large-diameter
main pipelines to which smaller-diameter branch pipes connect coming
from the wellheads. The mass flow rate is increasing in the direction of the
flow as the main pipeline approaches the powerhouse. The main
consideration in the design of the gathering system is to determine the
pipe diameters. The reservoir, the wells, and the gathering pipeline form a
synergetic flow system. The change of the performance of any elements
influences the performance of the whole system. The wellhead pressure,
the mass flow rate, the length of the branch line, and its elevation are
generally different. The reservoir, the well, and the branch pipe are in
serial connection; their pressure losses must be added. On the other hand
all branch pipes are in parallel connection, thus their mass flow rates must
be added. Because of this the diameter of the main gathering line is
increased in the direction of the flow. There is an allowable velocity
maximum based on the experience of everyday industrial practice. This
velocity limit is necessary since the water droplets and fine solid particles
carried by the high-velocity steam flow cause erosion of elbows, valve
seats, or other exposed parts. In large-diameter pipes this velocity limit
can even be 50 m/s, in the branch pipes it is at most 20 m/s.

10.8 HEAT TRANSFER OF HOT WATER
TRANSPORTING PIPELINES

The energy content of the produced geofluid decreases as it flows from
the well to the site of utilization. It is necessary for lagging of the pipes
with an insulating material in order to minimize heat loss. The steel pipe
is lagged with the isolating material coaxially, which is surrounded by a
thin, mainly alumina, protecting cover. The isolated hot water trans-
porting pipe is surrounded by the ambient air.

Consider now an infinitesimal length dl of the pipe. Neglecting the
head loss, the interval energy balance can be written to the control volume
sketched in Fig. 10.17. It is assumed that the flowing fluid is incom-
pressible, its density p, specific heat capacity ¢, viscosity p, and heat
conductivity k is constant in the actual temperature interval. The flow is
steady, turbulent, and one-dimensional. The temperature field is also
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FIGURE 10.17 Control surface of an isolated pipe.

steady p. The conductive heat flux in the direction of the flow can be
neglected. In this case

—1hedT = 2R, U (T — Ty)dl (10.141)

where m is the mass flow rate, R, is the internal radius of the pipe, U, is
the overall heat transfer coefficient referring to R,, and T, is the temper-
ature of the ambient air. It can be recognized that the internal energy
decrease of the flowing fluid equals the radially outward heat flux across
the pipe and the insulation. The overall heat transfer coefficient can be
calculated as
1 1 Ry, Ri Ry, R Ry, R3 Rg

—= —In—+—In=—="+—In—"+-—— 10.142

U, ho 1<s nRo+ ki nR1+ka 1‘le_‘_R?)h?)’ ( )
where h, is the heat transfer coefficient of the forced convection between
the fluid and the pipe wall, ks, ki, and k, are the heat conductivity of the
steel, the insulation and the alumina, hs is the heat transfer coefficient of
the free convection between the outer surface of the cover and the ambient
air.

The heat transfer coefficient h, can be determined as

Nulk
h, = 10.14
°7 2R, (10.143)
where the Nusselt number is obtained as
Nu; = 0,015 - Re?®pr042, (10.144)
The Reynolds number is
Re = Y P2Ro (10.145)

n
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in which v is the cross-sectional average velocity, and p is the dynamical
viscosity. The Prandtl number is

o
-

The protecting cover thermal resistance is very small may be neglected.
The heat transfer coefficient of the free convection is obtained as

Pr (10.146)

_ Nus - Kair
h; = R, (10.147)
where the Nus Nusselt number can be calculated as
Nuz = 0,52(Gr-Pr)’? (10.148)
Now the Grashof number is obtained as
. . 3 J— .
Gr — a g (2R3) (T3 Talr) , (10149)

2
in which a is the thermal expansion of the air <2;3) v is the kinematical

viscosity of the air. The T3 — Ty temperature difference can be estimated
by a trial-and-error procedure. Since the temperature of the ambient air is
constant along the pipe, its derivative

dTair
= 10.1
4 0, (10.150)
which may be subtracted from the left-hand side of Eq. (10.1)
—rhc% (T = Tair) = 2R Uy (T — Tair) (10.151)

The inflowing hot water temperature at the entrance of the pipe is Tj.
The temperature difference T; — Ty, is obviously constant, thus both sides
of the equation can be divided by Ty — Ta. Introducing the dimensionless
temperature

_ T- Tair
Tl - Tair

the differential equation becomes clearly arranged for the integration

® (10.152)

40 _  2Romlo ) (10.153)
(C] mc
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After integration it is obtained that:

2mRoUol |
mc

In® = - C (10.154)
The boundary condition to determine the constant of integration is
L=0,T=Ty thatis® =1.

Substituting into Eq. (10.154) we get that C = 0. Turning back to the
actual temperatures it is obtained that
T—Tar _  27RoUol

1 =
n Tl — Tair mc

(10.155)

After a little manipulation we get the formula obtaining the tempera-
ture of the hot water at distance 1 from the pipe inlet:

_ 2RomUpl

T = Tair + (T1 — Tair) e e (10.156)

The arriving hot water temperature at the end of an insulated pipe of
length L and diameter D is

_ DrlUo

Ty = Tair + (T1 — Tair>e me (10.157)

The thermal power loss during the transportation is
P = rhc(Ty — Tair) (1 - e—m—) (10.158)

It is obvious, that the thermal properties of the water; p, p, k slightly
vary as the temperature decreases. Since the value of U, depends pri-
marily on the thermal resistance of the insulation: there is no substantial
error neglecting the temperature dependence of p, , and k.
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FIGURE 10.18 Effect of mass flow rate on temperature distribution.
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FIGURE 10.19  Effect of the overall heat transfer coefficient on temperature distribution.
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FIGURE 10.20 Effect of the initial temperature on temperature distribution.

The obtained results give a clear answer for the distance of trans-
portation of geothermal energy. In Figs. 10.18—10.20 the effect of the pa-
rameters m, Uy, and T; on the temperature distribution along the pipe
length are demonstrated.

Another usual configuration is that the pipeline is buried by soil. In this
case the overall heat transfer coefficient can be calculated regarding
different conditions. Considering Fig. 10.21, it can be recognized that the
soil cover is asymmetric around the pipe. The heat conduction through
this asymmetric soil mass can be determined analytically by the method
of thermal singularities. The heat flow patterns are two-dimensional in
parallel plans which are perpendicular to the symmetry axis of the pipe.
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FIGURE 10.21 Heat conduction model of a buried pipe by method of thermal
singularities.

The mathematical model is analogous to that used to describe two-
dimensional potential flows.
The equation of heat conduction for a steady two-dimensional case can
be written in the simple form:
9 ad
99 My _ (10.159)
ox  dy
where qx and gy are the orthogonal components of the heat flux vector. On
the other hand, Fourier’s law of heat conduction is obtained as
aT aT
qy = —ka—X; qy = —k—— (10.160)

Assuming that the heat conductivity is constant, an obvious conse-
quence of Eq. (10.159) and Eq. (10.160) is that

9y dq, _

= 10.161
ax dy (10-161)

If these equations are satisfied in every points of the xy plane, it must
require the existence of the following expressions
U U

I = 5 and q, = By (10.162)
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Y% Y%
qy = 3y and g, — Ix (10.162a)

in which U and V are harmonic functions. These relationships conduce to
the Cauchy—Riemann equations

U v

— = 10.1

ax 3y (10.163)
u__ v (10.163a)
dy dx

Any analytical complex variable function is solution of the Cauchy—
Riemann equations, in which U is the real V which is the imaginary part of
this function:

W(z) =U(x,y) +iV(x,y) (10.164)
The lines along which

U = —kT + const. (10.164a)

are called thermal potential lines.

Actually, these are the isotherms of the temperature field. The lines
along which V is constant are called the heat streamlines. The isotherms
and the heat streamlines form an orthogonal net. Since both U and V are
harmonic, namely potential functions, W is called the thermal complex
potential function of the heat flux vector field. The singular points of the
analytic function W are the thermal singularities. In the singular points the
basic Egs. (10.159) and (10.161) are not satisfied. These singularities
modify the homogeneous heat flux field, inducing additional heat flux
vector components. The mathematical model of the thermal singularities
is perfectly analogous to the formulas referring to a two-dimensional
potential flow. Knowing the complex potential W, all important vari-
ables of the heat flux field can be calculated.

The conjugate complex heat flux vector is obtained by a simple deri-
vation as:

__dw .
9="3, =19y (10.165)

The equation of the isotherms is the equipotential lines of the real part
of W, while the equation of the heat streamlines is the equipotential lines
of the imaginary part of W.

Based on the principle of superposition complicated heat flow patterns
can be constructed by combining elementary complex potentials, for
example sources, sinks, or doublets.
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When the heat flux vector field has straight or circular boundaries, the
method of images can be applied to obtain the complex potential of the
system. This method consists of the finding of the images of singularities
beyond the boundary of the system and the superposition of the heat flux
generated these images on the original heat flow pattern.

The complex potential of the two-dimensional asymmetric heat flux
vector field around the buried pipe can be constructed from a heat source
which represents the pipe, and an image, a heat sink beyond the soil
surface “suspending” over the straight line as a reflection of mirror. This
apparent singularity represents the soil surface, which is an isothermal
line. In order to ensure that this condition be satisfied, the heat flux field
due to the mirror image is superimposed on that due to the heat source
itself. Since the Cauchy—Riemann equations are linear, the combined
complex potential satisfies again the Cauchy—Riemann equations. The
boundary condition referring the soil surface is now automatically
satisfied.

The complex potential of this combined system is the sum of complex
potentials of the source and the sink:

- Q Q
W= %ln(z +a)— Eln(z —a) (10.166)
This can be written in a brief form as:
T (10.167)
zZ—a

Let denote z+a=rpe® and z—a=rrjel®. Substituting into
Eq. (10.167) we get:

ip
wo Qe (10.168)
2T rie'®
Its real and imaginary parts can be separated easily
U=k (10.169)
2T 1
Q
=—(¢p — 10.17
b (92 — ¢1) (10.170)
The equation of the isotherms is obtained as:
L_28 (10.171)

Iy
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After some manipulation we get:
<r2)2 — M —C (10.172)
r (x —a)® +y?

The C =1 value belongs to the coordinate axis, which is the soil sur-
face. One of the circle-shaped isotherms coincides with the contour of the

pipe.
The conjugate of the heat flux vector is obtained as:
Q/ 1 1
== - 10.17
2t \z+a z-—a (10173)
The equation of the heat streamlines is based on the expression of
27n
— Q1 = —(~— 10.174
P2 — 91 Q ( )
Regarding that
y
= = 10.174
tge, y_aemdtg(pl ra (10.174a)
finally the equation of the heat streamlines is obtained as:
24 (v 214 L
X2 (y C) —a (1 + C2) (10.175)
Regarding that
1+C
h= ¢ (10.176)
and
2
R? — L‘Z (10.177)
1-0
the parameter a can be eliminated. Thus we get:
h? R?
— == (10.178)
(1+C)> 4C

The canonical form of Eq. (10.178) is

2
2+ (2 - %)C +1=0 (10.179)
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Its solution is

h\? h //h\?
C12:2<§) ~1-2g (E) -1 (10.180)

Obviously, the relevant isotherm equation at the soil surface is

—kT + const = glnCO =0
27

The isotherm coinciding to the pipe contour is obtained as

2(%)2 —1- 2%111 (%)2 - 1] (10.181)

Thus the overall heat flux between the pipe and the soil surface is
Tz —Ts

m[ (17 —1—-281n ()2_1]

Based on this equation a form-parameter can be introduced, denoted

by

—kTRrs + const = gln
41

Q = —2wks

. (10.182)

2(h>2 120 (h)z - 1]045 (10.183)
R R R
The overall heat transfer coefficient for the buried gathering pipe is
obtained as
1 1R011R012R013

S naA 10.184
Uo ho ks Ry ki Ry ky R ks (10.184)

A =

The following steps of the calculation are the same as the
preceding case.
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11.1 CHANGE OF STATE OF WET STEAM

The law of conservation and conversion of energy is the fundamental
general law of nature. This law states that energy does not vanish nor
appear anew, it only passes from one form of energy into another through
various physical and chemical processes. Geothermal energy is produced
as the enthalpy content of the recovered reservoir fluids. The conversion
of heat into work is realized in steam power cycles. The distinguishing
feature of steam power cycles is that the state of aggregation of the
working medium used in the cycle changes from liquid to a two-phase
mixture (wet steam), then to superheated steam. The state of super-
heated steam is usually so close to the saturation region that the laws for
an ideal gas are not applicable. In general, it is not possible to express the
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equation of state in a simple analytic form. It can be tabulated or plotted
against the variables of state. It is obvious that an equation such as:

p=p(V.T)

can be represented by a surface in the coordinate system p,V,T. This
surface of state consists of piecewise continuous surface parts as shown in
Fig. 11.1. It is customary to plot this relation as projected onto any ones of
the three planes, p-V, p-T, and V-T. In such a projection, the third variable
is treated as a parameter. The shape of the state surface is characteristic of
a particular material.

Other thermal state variables, such as enthalpy (i) or entropy (s), are
also single-valued functions of the saturation temperature or pressure
along the boundary curves. The experimentally determined values of i’
and s’ along the lower boundary curve are tabulated depending on the
saturation pressure. Similarly, i” and s” values obtained along the upper
boundary curve are embedded this so-called steam table. It can be found
in the Appendix. Steam tables are used to calculate thermodynamic
processes of steam—water mixtures, while a temperature—entropy (T—s)
diagram helps with understanding by visualization of them. Consider
certain properties of the T—s diagram in the following.

The so-called T—s diagram is shown in Fig. 11.2. Only the regions of
steam and liquid states of water that are of great interest in engineering
are plotted in the diagram. Consider the main properties of this diagram.
The entropy is plotted in the abscissa, and the temperature is plotted in
the ordinate. The characteristic bell-shaped piece of the thermal state
surface occurs in the center of this diagram. The contour of this domain is
the boundary curve. At the top of the curve, the critical point can be

triple point line

FIGURE 11.1 Thermal state surface. http://www.met.reading.ac.uk/pplato2/h-flap/phys7 _
3.html.
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FIGURE 11.2 Temperature—entropy (T—s) diagram of water. https://commons.wikimedia.
org/wiki/File:T-s_diagram.svg.

found. The critical parameters of water are p. = 217.7 bar, T.; = 374°C,
Ve = 0.00318 m®/kg, s¢; = 4.4296 k] /kg °C, and i, = 2099.7 k] /kg.

The left-hand branch of the contour line is the so-called lower
boundary curve, while the right-hand branch is the upper boundary
curve. The lower boundary curve separates the regions of the liquid water
and the two-phase water-steam mixture. The latter is called wet steam.
Along the lower boundary curve, the saturated liquid state can be found.
The upper boundary curve separates the two-phase region from the
dry, superheated steam region.

The values of the thermodynamic variables along the boundary curves
are functions of only one variable. For example, the value of the specific
volume of a boiling liquid v’ is uniquely determined by the value of satu-
ration pressure or temperature. Similarly, the specific volume of the satu-
rated steam v// is determined by the saturation temperature or pressure.

It can be recognized that the difference between the specific volumes of
the coexisting phases v/ — v’ decreases as the temperature increases. It is
clear that this difference is zero in the critical point. In order to determine
the state of the wet steam unambiguously, the ratio of the saturated steam
mass to the mass of the mixture must be known. The so-called dryness
fraction is defined as:

x=— s (11.1)
me + mg
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Then, the content of liquid in the mixture is:
me

l-x=—>=2—
me+ms

(11.2)

The quantity 1 — x is called the degree of wetness of the two-phase
mixture.

The value x =1 corresponds to the dry saturated steam at the upper
boundary curve, and the value x = 0 to the saturated liquid water at the
lower boundary curve.

The shape of the isobars in the two-phase region is horizontal lines
coincident with the isotherms. The supercritical isobars are increasing as
entropy increases, having an inflexion. The isobar passes through the
critical point has a horizontal tangent at this point. The area below the
subcritical isobars equal to T(s” — s’) represents the latent heat of vapor-
ization at a certain pressure.

The lower and upper boundary curves are almost symmetrical.

Thermodynamic variables of wet steam can be calculated easily,
because of volume, density, enthalpy, entropy, and internal energy are
extensive thus additive quantities. Therefore the following equations are
valid in the two-phase domain:

v=(1-x)V +xv" (11.3)
p=(1-x)p" +xp" (11.4)
1=(1-x)1 +xi .

(1 =)' +xi" (11.5)
s=(1-x)s' +xs" (11.6)
u=(1-x)u +xu” (11.7)

The entropy is assumed to be zero at the triple point of water, namely at
p=611.7N/m? and T = 0.01°C. This is an arbitrarily chosen reference
point.

Isobars and isotherms are horizontal lines across the wet steam region.
Vertical straight lines represent the isentropic processes, while isenthalpic
change of state occurs as a hyperbolic curve on the diagram. It is signif-
icant that the enthalpy maximum of the wet steam domain doesn’t
coincide with the highest temperature point. It is more apparent in the so-
called i—s (enthalphy—entropy) diagram, which is shown in Fig. 11.3.
Consider the main properties of this diagram.

Interestingly, the critical point is located far to the left of the boundary
curve’s maximum point of enthalpy. The slope of the isobars is always
positive, as the diagram shows. The isobars do not have an inflexion in the
supercritical region. The higher the saturation pressure and the temper-
ature, the steeper the isobar in the two-phase regions. The isotherms
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FIGURE 11.3 Enthalpy—entropy diagram. https://en.wikipedia.org/wiki/Enthalpy—entropy_
chart#/media/File:HS-Wasserdampf_engl.png.

coincide with isobars in the wet steam domain, but their slope has a
discontinuity crossing the boundary curve. Moving away from the upper
boundary curve, the isotherms approach the horizontal line asymptoti-
cally, as the superheated steam tends to behave like a perfect gas.

11.2 THE CLAUSIUS—RANKINE CYCLE

A power cycle consists of a series of repeating thermodynamic
processes along a closed process path, while heat is converted into
mechanical work. The most widespread working medium is water.
The power cycle involves the water’s change of phase from a liquid
state into superheated steam. The expanding steam performs work
on its surroundings, then it returns to its initial state, changing its
phase into liquid. Such a cycle was invented by Clausius and Rankine,
and is usually called the Clausius—Rankine cycle (in the English-
speaking world, Rankine cycle only). A schematic diagram of the
power plant in which the Clausius—Rankine cycle is realized is shown
in Fig. 11.4.

The boiler feed pump (1) does work on the water increasing its pres-
sure. The high-pressure water flows into the steam boiler (2). The liquid
water is warmed up to its saturation temperature, then vaporization
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FIGURE 11.4 Schematic diagram of the Clausius—Rankine cycle (Bobok, 2014).

begins. As heat is added to the wet steam, its dryness fraction rises to the
value of x = 1. The saturated steam becomes superheated steam, heated
further in special equipment of the boiler; the so-called steam superheater
(3). The temperature of the superheated steam increases near to 565°C,
which is the creep limit of stainless steel. The superheated steam flows
across nozzles to the impeller of the turbine (4), where it expands, and its
high kinetic energy is converted into mechanical energy of rotation,
driving the electric generator (5). At the turbine’s exit, pressure and
temperature of the steam substantially decrease. The steam then flows to
the condenser (6), which is a heat exchanger to remove remaining heat
from the steam. The steam condenses in the condenser, and its dryness
fraction tends to zero. Thus, the condensed water flows to the intake of the
boiler feed pump and the cycle will be repeated. The T—s diagram is
especially suitable to represent the above mentioned power cycle as it is
shown in Fig. 11.5.

The boiler feed pump increases the pressure of the water, while its
temperature also increases adiabatically. The entropy increase through the
pump is neglected (1-2). As the water is heated in the boiler, its temper-
ature increases at a constant pressure. The pressure loss of the flowing
water is also neglected. The temperature rises until attains the saturation
temperature belonging the given pressure (2-3). As the water begins to
boil, pressure and temperature will be constant, while its dryness fraction
rises until the upper boundary curve (3-4). Attaining the upper boundary
curve, the temperature of the saturated steam increases again as the steam
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FIGURE 11.5 Clausius—Rankine cycle in a T—s diagram (Bobok, 2014).

becomes superheated (4-5). The superheated steam expands through
flowing the turbine (5-6), its pressure and temperature decreases sub-
stantially about to 30 °C and 0.02 bar. Thus, the expanded superheated
steam arrives the wet steam region while its dryness fraction is close to 1.0
yet. Along the isobar (6-1), the heat content of the wet steam is rejected
and finally the condensed liquid flows to the suction side of the boiler feed
pump and the cycle begins again.

The Clausius—Rankine cycle with superheating is the basic cycle of
thermopower plants. For geothermal power plants, many details of the
actual power cycle may be different, but the essential nature remains
the same.

The amount of heat added to the working fluid is represented on the
T—s diagram as the area under the actual section of the curve. The added
heat during the Clausius—Rankine cycle is represented by the area A-1-2-
3-4-5-B-A. The rejected heat in the cycle is equivalent to the area A-1-6-B-A.
The work done during the cycle is obviously the difference of the added
and the rejected heat, corresponding to the area of 1-2-3-4-5-6-1. Since both
the heat addition and the rejection happens at constant pressure, the added
and rejected heats are equal to the enthalpy differences between the
beginning and the end point is the process:

Q, = is— iz (11.8)

and

Qr=ig—11 (11.9)
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The thermal efficiency of the cycle is obviously:

Qa - Qr
—=a =t 11.10
=g, (11.10)
or expressing by the enthalpies is:
n= (15 - 12) - (16 B 11) (1111)

i5 — 1y
This expression can be written as:

n=ls—ie) ~(a—h) (11.12)
15 — 1

It means that i5 — i¢ is the enthalpy decrease converted into the kinetic
energy of the flowing steam and then into mechanical work in the turbine.
Accordingly the enthalpy difference ip — i; equals to the mechanical work
of the boiler feed pump.

It must be noted that the unique shape of the boundary curve is
different for any material. Especially for hydrocarbons or other complex
molecule fluids, the upper boundary curve has a positive slope. These
fluids are used as secondary working fluids in binary power cycles.

The secondary working fluids have a low boiling point and high vapor
pressure at low temperature relative to steam. The use of an organic fluid
with the low temperature Rankine cycle has many advantages over using
water. There is no substantial difference of the cycle efficiency between
organic working fluids and water. The main advantage of an organic fluid
is that it is able to extract more heat from the geothermal heat source than
water. This results from so-called pinch point heat exchanger limitations,
which are primarily a consequence of the organic fluid having a far lower
ratio of latent heat of vaporization (at these lower boiling temperatures)
versus specific heat capacity than water. The consequence is that the
overall efficiency higher for the organic fluid even though the cycle effi-
ciency is about the same for both fluids. The overall efficiency as it is
known is the cycle efficiency times the ratio of thermal power extracted to
thermal power available from the heat source. The available thermal
power is obtained using an arbitrary minimum temperature 10°C higher
than the lower temperature of the cycle. There are some further advan-
tages of the use of organic fluids.

The expansion process takes place in the superheated region outside
the upper boundary curve. Thus, in the absence of liquid droplets the
blade erosion can be avoided.

The enthalpy drop is small, and it is possible to apply single stage
turbines having better efficiency. For water, the enthalpy decrease is too
high for expansion of a single stage. This requires a multiphase, compli-
cated, and expensive turbine.
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For a given power, the mass flow rate of organic fluids is proportionally
higher, but the size of the turbine is not as large due to the high density of
the vapor.

The density of an organic fluid at the exhaust is high. The flow rate of
steam is about 16 times higher, thus the steam turbine size is considerably
higher. Turbines using organic working fluids are more economical.

11.3 STEAM TURBINES

The energy conversion from heat to work is realized in a power cycle
as the high-enthalpy steam expands flowing through the steam turbine.
A steam turbine is a device that extracts thermal energy from the steam
and converts it to mechanical work on a rotating output shaft.
The rotary motion generated by the turbine is particularly suitable to
drive the electrical generator. There are several ways to classify steam
turbines.

In accordance to the principle of operation, steam turbines can be im-
pulse or reaction turbines. According to their steam supply and exhaust
condition, they can be distinguished as condensing or back-pressure
types.

The basis of the distinction may be the number of the stages or the
arrangements of the casing and the rotor.

The expansion of an ideal steam turbine is considered to be isentropic.
Actual steam turbines are close to this approximation; their isentropic
efficiency can be even more than 90%.

The isentropic efficiency is defined as the ratio of the actual work to the
ideal work obtained by an isentropic expansion:

15— 1
gy (11.13)
where i5 is the specific enthalpy at the beginning of the expansion, ig is the
enthalpy at the end of the expansion for the actual turbine, and if is the
enthalpy at the end of an isentropic expansion.

The impulse turbine has fixed nozzles in which the high enthalpy of the
high temperature and pressure steam is converted into kinetic energy of
high-speed jets. These jets flow to the bucket-shaped rotor blades
changing the direction of the flow. The pressure drop occurs in the nozzle
with an increase of velocity. As the steam flows thorough the rotating
buckets, its pressure is unchanged. The absolute value of the velocity is
also unchanged, but its direction is changed. The steam leaving the
rotating buckets has a high amount of kinetic energy. This high exit ve-
locity is the cause of the so-called leaving loss.
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In the reaction turbines, the rotor blades themselves are designed to
form convergent nozzles. The steam flowing through the blades accel-
erates and produces a reaction force acting on the rotor. Steam is
directed to the rotor by the fixed blades of the stator. The steam then
changes its direction, and its velocity increases relative to the rotation
speed of the blades. The pressure drop occurs both in the stator and the
rotor blades.

The steam leaving the turbine may flow to the atmosphere or even
against a higher back-pressure. This is the practice for process steam
applications. Condensation turbines are most frequently applied in elec-
trical power generation. The condenser’s pressure is 0.02 bar, and the
temperature of the exchanged steam is only about 30°C.

The arrangement may be single casing, tandem compound, or cross-
compound turbines. Single casing units are the most common type,
where a single casing and the shaft are coupled to the generator. Tandem
compound is used where two casings are directly coupled together to
drive the generator. The cross-compound turbine arrangement contains
two shafts not in line, driving two generators, which may operate at
different speeds.

The flowing steam exerts not only rotating torque on the rotor, but also
an axial thrust.

To balance this axial force, two-flow rotors are used. The steam inflows
at the middle of the rotor, and outflows at both ends. The cross-section of
the flow channel increases in the direction of the flow. The length of the
blades increases also as it is shown in Fig. 11.6. Thus, axial forces are
balanced while tangential forces act together.
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FIGURE 11.6 Steam turbine rotor. http://www.energy.siemens.com/cofen/fossil-power-
generation/steam-turbines/sst-800.htm.
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11.4.1 Single Flash Steam Power Plants

The Rankine cycle is the archetype of all working cycles operating with
steam as working fluid. Geothermal energy conversion systems are
different in lesser or greater degrees. The main difference is that the
heat addition to the working fluid isn’t done by a boiler, it is a natural
underground heating. The pressure level of the heating is not produced by
a boiler feed pump, it is induced by the hydrostatic pressure of the water
column above the reservoir. In the Rankine cycle, the steam is superheated,
while in a geothermal reservoir the geofluid can be at least saturated steam.
Generally, the pressure and temperature of the Rankine cycle is higher than
in geothermal working cycles. In consequence of the lower temperatures,
the thermal efficiency of a geothermal working cycle is substantially lower
than in the case of fossil-heated Rankine cycle (Tester et al., 2006).

The single flash steam power plants are the most widespread type of
geothermal power plants. Except for the few dry steam reservoirs, the
high temperature geofluids are in liquid state, since the formation pres-
sure is substantially higher than the saturation pressure belonging to the
given temperature. The thermal state of the reservoir fluid is represented
by the point on the entropy—temperature diagram in the pressurized
liquid region, close to the lower saturation curve as it is shown in Fig. 11.7.
The pressure of the upflowing hot water decreases continuously in the
tubing because of the increase of potential energy and fluid friction.
The flow in the tubing is steady, incompressible, and turbulent. Where the
reducing pressure attains the saturation pressure, a phase change begins;
the liquid flashes into vapor. The temperature drop of the upflowing
liquid is negligible between the reservoir and the saturation state. In spite
of this, the pressure decrease of the isenthalpic two-phase flow induces
substantial temperature drop while the part of the steam continuously
increases to the wellhead. Thus, a two-phase water-steam mixture, the so-
called wet steam is produced at the wellhead. The wet steam must be
separated into steam and liquid phases with a minimum pressure loss.
This is done in cylindrical cyclone separators, where steam and water
disengage, owing to their substantially large density difference. The
thermal state of the separated steam is represented by the far right point
on the upper saturation curve, while the state of the separated water falls
on the far left point at the lower saturation curve.

The steam mass fraction or dryness fraction xc can be determined by
the equation:

Xe = I (11.14)
Ip —1g
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® Total flow from reservoir condition
M (1241-975) = 266M kW, 100%
) Total flow from optimised separation condition
M (1241-1031) =210M kW, 79%
Optimised separated steam flow through condensing turbine
0.263M (2764-2146) =163M kW, 61%
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FIGURE 11.7 Flash process in T—S diagram (Bobok, 2014).

If m is the total mass flow rate upflowing in the tubing, then x.-m is the
steam mass flow rate flowing to the turbine. The steam expands flowing
through the turbine, while its pressure, temperature, and enthalpy
decrease along the vertical line 3 as it is shown in Fig. 11.6. The work
produced in the rotor is equal to the enthalpy drop.

The work produced by the turbine per unit mass flow rate of steam:

Wi = ip — if (11.15)

assuming no heat loss from the turbine, and neglecting the kinetic energy
change between the inlet and the outlet of the turbine. The maximum
possible work would be obtained if the turbine operated isentropically.
This ideal expansion is done between points E and F.

It can be defined the isentropic turbine efficiency nis as the ratio of the
actual work to the isentropic work:

ig —if

T (11.16)

Nis
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The power produced by the turbine can be obtained:
Py = x. - m(ig — i) (11.17)

The gross electrical power is obtained as the product of the turbine
power and the generator efficiency:

Py = xc - m(ig — ip) (11.18)

The performance of the entire plant can be characterized by the utili-
zation efficiency, or efficiency of the plant. This is the ratio the actual
electric power output and the maximum theoretical thermal power that
could be produced from the given geothermal fluid. The latter is the
product of the total mass flow rate and the specific exergy:

Pmax = me (11.19)
The specific exergy can be determined as:

€= 1(P>T) - i(p()v TO) - TO[S(P»T) - S(Poa TO)]v (11.20)

where p and T is the pressure and temperature of the geofluid at the
wellhead, pg and Ty is the pressure and temperature of the surrounding.
The i, specific enthalpy, and the s, specific entropy, values can be taken
from the steam table. Finally, the utilization efficiency is:

Pe
Nu =

Pmax

(11.21)

Naturally, many auxiliary units make complete the entire system. A
schematic drawing can be seen in Fig. 11.8, where the main components of
a single-flashed geothermal power plant are shown.

The production well (PW) provides the geofluid for the power plant. It
is obvious that the reservoir is tapped by many PWs. As it is known, the
maximum theoretical thermal power that could be produced from a
single production well can be determined as:

Pmax = mliwg — ip — To(swu — s0))- (11.22)

That is the total mass flow rate of the production well times the specific
energy, referring to the thermal parameters of the produced geofluid at
the wellhead and the surroundings. This value isn’t satisfied by the en-
ergy demand of a power plant. A typical single flash power plant pro-
duces 25—30 MW electric powers, and needs at least five to seven
production and four to five injection wells. The largest geothermal power
plants are implemented to large reservoirs of many production wells.
Some examples are found in Table 11.1 as follows.

The electric power obtained from a single well is 3.92 MW at the
Geysers and 0.7 MW at Larderello. It can be taken as a preliminary esti-
mation that the electric power of a geothermal well is about 2 MW.
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PW - Production Well ST - Steam Turbine BDP - Blow Down Pump
IW - Injection Well G - Generator NCG - Non Condensable Gas Disposal
GS - Steam CT - Cooling Tower (steam ejector type)
PU - Purifier CP - Condensate Pump SV - Stop Valve
CSV - Control Valve CWP - Cooling Water Pump
RM - Rock Muffler CW - Cooling Water
WV - Wellhead Valve SW - Spent Water
SC - Scrubber BD - Blow Down
FIGURE 11.8 Schematic drawing of a single-flashed power plant (Bobok, 2014).
TABLE 11.1 The Largest Geothermal Power Plants (Bertrani, 2015)
Power Plant Country Electric Power (MW)
Geysers USA 1584
Larderello-Travale Ttaly 795
Tongonan/Leyte Philippines 726
Cerro Prieto Mexico 720
Olkaria Kenya 591
Mak-Ban/Laguna Philippines 458
Wairaki New Zealand 399
Salton sea USA 388
Coso USA 292
Darajat Indonesia 260
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FIGURE 11.9 Wellhead equipment system (Bobok, 2014).

At each production well, there is an assemblage of equipment to con-
trol and monitor the flow of the produced steam-water mixture. The
equipment includes the blowout preventer, master valves, bleed line, and
a silencer, which is a cyclone separator for emergency venting. Pressure
and temperature gauges also are equipped at the wellhead. A typical
wellhead equipment system is shown in Fig. 11.9.

Production wells generally are placed on a wide area around the power
plant.

The produced two-phase mixture flows from the wellhead to the
centrifugal separator. It may be designed with different configurations.
The separator can be placed directly at each wellhead. In the centrifugal
separator, the mixture is separated into two distinct phases, steam and
water. In this case, individual steam transporting pipes connect the sep-
arators to a steam collector at the plant, while the separated water flows
directly to the injection well through individual water lines.

It is another arrangement, when the production wells supply with two-
phase geofluid a large central cyclone separator placed directly to the
powerhouse.

Production wells may be connected to intermediate satellite separators
in the field. The separated steam flows from the satellite separators to the
steam collector, while the water flows from the separators to the injection
wells.
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The type of the flow in the gathering pipe can be different depending
on the arrangement of the separator. If the centrifugal separator is placed
directly at the wellhead, homogeneous steam phase flows toward the
steam collector. Since the length of the gathering pipe may be rather long,
the occurring pressure losses of the steam flow cannot be neglected. Steam
then flows through a ball check valve. To achieve a practically dry state of
the steam, a further cyclone separator, the so-called moisture remover
(MR) is built in the steam-transporting pipeline (SP). The MR is usually
placed directly near the powerhouse. General design specifications of
the cyclone separator and moisture remover are shown in Figs. 11.10
and 11.11.

The flow rate, the wellhead pressure, and the elevation are obviously
different at each well. The distance between a well and the powerhouse is
also different in each case. Thus the pressure loss of each gathering line is
also different. In front of the powerhouse, the pressures of each arriving
steam flow are not uniform. Control and stop valves are built in to adjust a
uniform pressure level in the steam collector to provide a steady pressure
level at the turbine inlet.

Geothermal steam turbines (T) differ markedly from the turbines
usually found at fossil-fired power plants. In fossil plants, highly super-
heated steam is used with high pressure and temperature (Thorhallsson
and Ragnarsson, 1992). The entrancing steam at the inlet of a geothermal
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FIGURE 11.10 Cyclone separator (DiPippo, 2008).
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FIGURE 11.11 Moisture remover (DiPippo, 2008).

FIGURE 11.12 Impulse-reaction blade rows of a steam turbine (Bobok, 2014).

steam turbine is saturated with pressures that range 5—10 bar. Turbines
for single-flash power plants consist of four to five stages of impulse-
reaction blade rows. It is shown in Fig. 11.12. Especially at the last
stage, a significant amount of condensed water appears. These small
droplets strike the leading edge of the turbine blades causing erosion. The
turbines must be made of corrosion-resistant materials because of the
corrosive nature of the geofluid.
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Turbines of single flash power plants are typically rated at 25—55 MW.
Single-flow and double-flow arrangements are usually designed. The
isentropic efficiency can be attained at the 80% value.

The steam exhausted from the turbine enters to the steam condenser.
Steam condensers may be classified as surface type and direct-contact
steam condensers. In the surface-type condensers, the steam and the
cooling fluid (water or air) is separated. The condenser really is a shell-
and-tube heat exchanger, which converts steam to its liquid state at a
pressure below atmospheric pressure. During the condensation process
the pressure and temperature is constant as it is shown in Fig. 11.7 be-
tween points F and G, while the latent heat of the steam is liberated and is
carried away by the cooling water.

It can be expressed by the equation:

Mew * Cw(Tout - Tin) =Xc - Ih(iF - iG)7 (11.23)

in which me is the mass flow rate of the cooling water, c,, is the specific
heat capacity of the water, Tyt and Tj, is the outflowing and the inflowing
cooling water temperature as it flows through the condenser, X.m is the
mass flow rate of steam as it enters to the condenser, it is the specific
enthalpy at the end of the expansion, while ig is at the end of conden-
sation process.

In this case, the Eq. (11.23) is modified as:

mew - cw(Tg — Tin) = xem(if — ig). (11.24)

In most surface condensers, the cooling water flows through the tube
bundle, while the exhausted steam flows through the shell. The necessary
internal vacuum in the shell is maintained by an external steam ejector
(SE) or a vacuum pump. An SE uses steam as the motive fluid removing
non-condensable gases, mostly carbon dioxide. A steam jet ejector is
sketched in Fig. 11.13.

Motive Fluid
Nozzle i .
Converging Diverging
Inlet Outlet
Nozzle Diffuser
Motive
Fluid "™ = Outlet
Diffuser Throat
1
Inlet Gas, Liquid,
or Other

FIGURE 11.13  Steam jet ejector (Bobok, 2014).
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FIGURE 11.14 Direct contact heat exchanger.

A direct-contact steam condenser is shown in Fig. 11.14. Its main
advantage is the simple construction. It is little more than a pressure
vessel with an entrance opening for the exhausted steam, nozzles for the
cooling water and an exit port for the condensed liquid. The steam and
the cooling water flows are in direct contact and will mix. Since the heat
transfer area is the surface of the cooling water droplets, it is larger than
the area of the tube bundle, thus the heat transfer between the two flows is
more effective and lower temperature difference is necessary between
them. Another advantage is that there are no separating surfaces, and
their corrosion and fouling are omitted, thus the heat transfer perfor-
mance can be improved. The frictional pressure drop of direct contact
condensers is lower than the surface type units. A final advantage is the
lower capital cost.

The temperature of the cooling water rises as it flows through the
condenser. The cooling tower is used to accommodate the heat load from
the condensing steam (see Fig. 11.15).

At the end of the condensing process, a low-pressure condensate flows
out from the condenser. The low-pressure steam condensate is pumped
into the cooling tower. The cooling tower is essentially also a direct-
contact heat exchanger where the mixture of the condensate and the
cooling water is sprayed into a counter-current airflow.

An axial flow ventilator at the top of the cooling tower draws the
upflowing air, as it is shown in Fig. 11.17. The ambient air enters with a
certain amount of water vapor, determined by its relative humidity. The
airflow picks up more water vapor as the condensate partially evaporates.
The evaporation process requires heat that is provided from the water
itself, thereby dropping its temperature. The process involves simulta-
neously both heat and mass transfer between the water and the air.
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FIGURE 11.15 Cooling tower (DiPippo, 2008).
Assuming that the tower is an adiabatic system, neglecting the power of

the ventilator, the balance equations of the enthalpy and the mass can be
written obviously:

myiy — Mgig = Myiq — Maia + Mypip (11.25)
The other two equations are the mass balance of water and the air:
my + My, = Mg + My, + Myqg (11.26)
and
My = May (11.27)

Note that both the inflowing and outflowing air flows contain water in
the vapor phase. The terms my, and m,,q represent the vapor content
of the entering and leaving air flow, respectively. These can be expressed
by the relative humidity w of the air flow:

Mya = W, - Ma, (11.28)
and
Ihwd = g - Ii’ld (1129)

These equations can be used to determine the various mass flow rates.
The properties of steam, water, and humid air are given in steam tables
and graphically in psychometric charts referring to the given conditions.

It is remarkable that cooling towers for geothermal power plants have a
much larger cooling capacity than a traditional fossil power plants of the
same capacity. It is known that the net amount of work obtained by a
power cycle is equal to the difference of the added and rejected heat:

Q-0O =W (11.30)
The thermal efficiency is obtained as:

w

Nth = Q. (11.31)
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The rejected heat can be expressed as:

Q, = W(L - 1) (11.32)
Tth

Fossil-fired, combined steam-and-gas turbine plants have a typical
thermal efficiency of 50%, while binary geothermal plants have at least
14%. Thus, the rejected heat of a binary geothermal plant is seven times
greater than the waste heat of a combined fossil-fired plant. Accordingly,
the binary plant must have a cooling tower seven times larger in cooling
capacity than a modern fossil fuel plant of the same power capacity.

A flash-steam power plant operates as an open system, thus Eq. (11.31)
is not applicable. The waste heat can be calculated by the equation:

Q, = xpm(is — ig) (11.33)

This can be compared to the assaults obtained by the expression (11.32).
The general qualitative conclusion is very similar to that obtained for a
binary plant.

11.4.2 Dry-Steam Power Plants

Dry-steam geothermal reservoirs can be developed only where a series
of necessary conditions are fulfilled simultaneously. The most important
condition amongst them a high-strength heat source, which is able to raise
the temperature of connate water to the boiling point. This heat source can
be a shallow magma intrusion, not deeper than 5—6 km. Highly perme-
able formations must be located above the intrusion to form a reservoir. It
is necessary that some vertical permeability between the reservoir and the
surface allows the steam to escape to the surface during a geologically
long duration of time. Meanwhile, the liquid level lowers substantially. It
is necessary also the sufficient large vertical extension of the reservoir to
allow the thermal convection currents of the reservoir fluid. There must
be sufficient impermeable lateral boundaries of the reservoir, to avoid
flowing the cooler groundwater into the steam reservoir. An impermeable
uppermost formation, the so-called cap rock is also necessary to hold the
steam in the reservoir. The fortunate coincidence of these various condi-
tions makes very rare the existence of dry-steam reservoirs. Large dry-
steam reservoirs are known only in two areas of the world: Larderello
in Italy and The Geysers in California, United States. Smaller dry-steam
fields are found in Indonesia, Japan, New Zealand, and in Utah, United
States. There are more than 500 production wells both in The Geysers and
Larderello. These two huge dry-steam reservoirs are the base of more than
60 electric power production unit, producing more than 25% the total
geothermal power worldwide.
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The produced steam is transported from the well to the powerhouse
through the gathering pipeline system. It consists of one or more large
diameter main pipelines to which smaller diameter branch pipes connect
coming from the wellheads. The mass flow rate is increasing in the main
pipeline as approaches the powerhouse. The main consideration in the
design of the gathering system is the choice of the pipe diameters. The
reservoirs, the wells, and the gathering pipelines form a synergetic flow
system. The change of performance of any elements influences the per-
formance of the whole system. The wellhead pressure, the mass flow rate,
and the temperature are generally different, together with the length of the
branch line and the elevation. All branch pipes are in parallel connection;
their mass flow rates are added. Thus, the diameter of the main gathering
pipe is increased in the direction of the flow. For steam transporting
pipelines there is an accepted allowable velocity maximum based on
the experience of everyday industrial practice. It is obtained to 50—60 m/s
for large-diameter (>300 mm) pipes while for smaller diameter pipes
20—25 m/s is recommended. These velocity limits are necessary since the
water droplets and fine solid particles carried by the high velocity steam
flow cause erosion of elbows, valve seats, or other exposed parts.

At the wells, there are the usual valves and mainly an in-line axial
centrifugal separator, to remove the droplets and particles before entering
the pipe system. The steam pipes are thermally insulated and mounted on
stanchions. Standard piping practice provides for axial thermal expansion
to take place between stanchions or anchors to which the pipe is fixed and
which transfer thrust to the ground. Main anchors are provided generally
at pipe ends, at changes of pipeline direction, at shut off valves, and at
manifolds where pipes are interconnected. Intermediate anchors are
provided to divide the pipeline into separate expanding sections and to
bear any unbalanced thrust. Pipe movement is accommodated by sup-
porting the pipe on rollers, or by use of flexible hangers. Connections of
the branch pipelines are suitable be made at or near anchor points of the
main pipeline. Expansion bends of U shape, rectangular loops, or other
configurations may be built in into straight sections of pipe. Steam traps
are sited strategically along the pipes to remove condensate, which is than
flow through separate lines for reinjection.

As the main pipeline approaches the powerhouse, there is an emer-
gency pressure relief station. This allows for the temporary release of
steam in the case of a turbine trip. The steam generally passes through a
silencer before it enters the atmosphere. It is experienced that it is better to
maintain the wells in a steady open state, than changing the wells through
open and closed positions.

There are at the powerhouse a steam header, a final moisture remover,
a vertical cyclone separator, and a Venturi meter for accurate measure-
ment of the steam flow rate.
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FIGURE 11.16 Schematic drawing of a dry-steam power plant (DiPippo, 2008).

The energy conversion system of a dry-steam power plant is rather
similar to the single-flash system. Its block diagram is shown in Fig. 11.16.
After the wellhead valve (WV), the particle remover (PR), and the MR, the
steam flow toward the powerhouse. At the powerhouse the emergency
pressure relief unit: control and stop valves are built in. An auxiliary pipe
leads steam to the steam ejector (SE/C) to provide the vacuum in the
condenser (C). The turbines may be single-flow for smaller units or
double-flow for larger units (>60 MW). The condensers can be both
direct-contact and surface-type.

The energy conversion process is shown in Fig. 11.17. It consists of two
sections. Since the produced steam is in saturated state, the starting point

T critical point N

saturation
line

compressed
liqud  / 1

superheated
vapor

-
. 2s 2
liquid + vapor

mixtures

FIGURE 11.17 Dry-steam energy conversion process (DiPippo, 2008).
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can be found at the upper saturation curve (1). The expansion process in
the turbine is represented by the curve 1-2. The isentropic expansion
would be the 1-2 s straight line. The condensation process goes on be-
tween the 2-3 section at constant temperature and pressure.

The work produced by the turbine while the unit mass steam flows
through it can be obtained as:

W =11 — i (11.34)

The maximum possible work would be obtained if the turbine oper-
ated isentropically. The isentropic turbine efficiency can be calculated as
the ratio of the effective work to the isentropic work, so:

i1 —1ip

= 11.35
Nt i —in ( )

The power produced by the turbine can be obtained as:
P= IifISWt = Ii’ls(il — iz) (1136)

The produced electric power is obviously lower, it can be obtained as
the product of the turbine power output and the generator efficiency:

Pe = 14-P (11.37)

Considering the expansion process in the T—s diagram it can be
recognized that the entire process occurs in the two-phase region.
Adopting the Baumann rule to calculate the decrease in performance of a
wet-steam expansion, it is obtained:

1+ X
NMtw = Mid > (11.38)

in which ny, is the efficiency of the wet-steam expansion, while nq is
the efficiency of the expansion in the dry-steam region. A conservative
approximation is: to take ny = 0.85.

It was mentioned earlier that the value of the wellhead pressure in-
fluences the power output of a dry-steam plant. There is an optimum
wellhead pressure, at which the turbine power output has a maximum.

11.4.3 Binary Cycle Power Plants

In conventional geothermal power plants, the produced gas fluid
is also the working fluid of the energy conversion process. In the
binary cycle power plants the produced reservoir fluid and the sec-
ondary working fluid flows in two separated flow systems. The conven-
tional geothermal energy conversion systems one open: the produced
steam flows through the turbine, then it is rejected. The binary energy
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conversion system is a closed cycle: the same working fluid flows through
the turbine repetitively.

A binary cycle is the closest to the classical Clausius—Rankine cycle.
The working fluid receives heat from the geofluid in a heat exchanger,
where it evaporates, expands flowing through the turbine, condenses,
and the process repeats again.

The efficiency of the energy conversion cycle depends primarily on the
steam temperature at the turbine inlet. The temperature of the wet stream
decreases substantially in the flashing process. Because of this, flash
technology is handily efficient and economic in the temperature region of
the heat source below 170°C. For the utilization of these low temperature
resources, binary cycle power plants can be applied advantageously.

A very important objective of the binary technology is to select a
suitable working fluid. The suitable working fluids for binary plants have
critical temperature and pressure far lower than water. These working
fluids include the hydrocarbons, especially the aromatic-structure types,
halogen-substituted hydrocarbons, steers, and simple-molecule materials
such as ammonia, carbon dioxide, or even water.

Another important characteristic of binary cycle working fluids is the
shape of the saturation curves: especially the upper boundary curve as
viewed in the T—s diagram. This curve for simple molecule fluids up to
four to five atoms has negative slope everywhere as it is shown in
Fig. 11.18. When the number of the atoms increases the upper boundary
curve becomes almost vertical for 6-10 atom molecules. For complex
molecules having more than 10 atoms the slope of the saturated vapor
curve is positive. In this case expansion from the saturated vapor curve
happens in the superheated region, reducing blade erosion.

Since the critical pressure is reasonably low, it is feasible to consider
supercritical cycles for these organic fluids. Considering Fig. 11.19, it can
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FIGURE 11.18 Saturation curves of different binary working fluids.
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FIGURE 11.19 Supercritical binary cycle.

be recognized that the temperature difference between the geofluid
cooling curve and the supercritical heating—boiling curve of the working
fluid is not significant. Thus, the thermodynamical losses of the heat
exchanger can be reduced. Some properties of organic fluids are tabulated
in Table 11.2.

It is important to assess the chemical stability of the fluid, the aggres-
sively towards metals, and thermodynamically and transport properties
of them.

A simplified schematic drawing of a binary power plant is shown in
Fig. 11.20.

The PW operates with a submersible pump (P) installed below the flash
depth so as to prevent two-phase flow. The sand remover prevents
erosion in the pipeline and the tubes. The heating and boiling process of
the working fluid happens in two steps: first, the condensed working fluid
is heated to its boiling temperature in the preheater (PH); it then turns to
saturated or supercritical steam in the evaporator (E). The geofluid is
always kept at a pressure above its flash point as flows through the
evaporator and the preheater. An injection pump (IP) produces the
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TABLE 11.2 Chemical and Physical Properties of Some Organic Fluids.

Latent Heat
Name Molar Weight Terie (K) P (bar) (KJ/kg)
R125 Pentafluormethane 120 339 36.2 81.5
R218 Octafluorpropane 180 345 48.7 223
R290 Propane 44 369.8 425 292
R600 Butane 58 425 38.0 337
R601 Pentane 72 469.7 33.7 347
R717 Ammonia 17 405 113.3 1064
R718 Water 18 647 220.6 2392
R744 Carbon dioxide 44 304 738 167.53

necessary pressure to make the fluid flow through a fine-particle filter (FF)
before finally reaching the injection well (IW).

The working fluid circulates in a secondary loop: through the pre-
heater, the evaporator, it expands in the turbine (T) then condenses in
the condenser (C). A condensate-feed pump (CP) maintains the flow in
the loop.

A third, auxiliary loop is added to the system. The cooling water cir-
culates through the condenser, and the cooling tower (CT).

The use of organic fluids with the low temperature Rankine cycle has
many advantages over using water. The organic Rankine cycle efficiency
is little different from that steam cycle between the same two top and
bottom cycle temperature. Organic cycle deficiency is often less than
water steam cycle.

PW o FF
FIGURE 11.20 Scheme of a binary power plant (DiPippo, 2008).
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FIGURE 11.21 Heat transfer in the heat exchanger and pre-heater (DiPippo, 2008).

The main advantage of an organic working fluid is that it can extract
more heat from the primary geothermal heat source than water. This is the
consequence of the organic fluid having a far lower ratio of latent heat of
vaporization at lower boiling temperature v3 specific heat capacity than
water.

The only definitive difference between a binary and a fossil fuel power
plant is the preheater and the evaporator, where the produced hot geo-
fluid transfers heat to the working fluid. Analyzing this phenomenon we
assume that the shells of the heat exchangers are perfectly insulated, the
whole heat transfer is occurred between the geofluid and the working
fluid. Further assumptions are the steady flow, and the differences of
kinetic and potential energy are negligible between the inlet and the
outlet.

Applying the notations of Fig. 11.21, the simplified energy equation can
be written as:

my (ia — ic) = Myg(is —1i4), (11.39)
If the geofluid is incompressible, having very low amount of dissolved

gases, the enthalpy can be written as the product of its specific heat and
the temperature:

my - p(Ta — Te) = mye(is —ia) (11.40)

The required geofluid mass flow rate for a given cycle is obtained as:

. . il i4
my = Myf—0on——— 11.41
b wi b (Ta Tc) ( )

The heat transfer process can be understood easier, using the so-called
T—q, or temperature—heat transfer diagram. The abscissa represents to
total amount of heat, transferred from the geothermal brain to the
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FIGURE 11.22 Temperature versus heat transfer diagram (DiPippo, 2008).

working fluid, as it can be seen in Fig. 11.22. The transferred heat can be
given either in energy units (KJ/kg) or in percent.

The flows of the geofluid and the working fluid are counter-current.
The geofluid flows at first through the evaporator (section of a-b) then the
preheater (b-c). The preheater provides sensible heat for the working fluid
rising its temperature to the boiling point 5. The evaporation occurs be-
tween the points 5 and 1, where the temperature is constant while the
evaporator provides latent heat for the phase charge of the working fluid.
The place in the process, where the temperature difference is the
minimum between the brine and the working fluid is the so-called pinch-
point. The value of that difference is designated the pinch-point tem-
perature difference: ATpp.

In the state four the working fluid is a compressed liquid, at the outlet
of the feed pump. In the state five the working fluid is a saturated liquid at
the boiling point, while state 1. is saturated vapor at the turbine inlet. Thus
the two heat exchangers: the preheater and the evaporator can be inves-
tigated separately as:

Qpy = mpcp(Tp — Te) = thye(is — i1) (11.42)
and
Qg = mpey(Ta — Tp) =ty (iy — is) (11.43)

The geofluid inlet temperature T, is always known. The pinch-point
temperature difference is given from manufacturer’s data. Thus Ty, can
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be determined knowing the turbine inlet temperature T;. In the ideal
case the pinch-point occurs at the outlet had of the preheater. The evap-
orator heat transfer surface area between the two fluids Ag can be
determined from the expression:

Qp = URgApATg (11.44)

where Uy is the overall heat transfer coefficient, ATyg is the logarithmic
mean temperature difference of the evaporator
(Ta = T1) — (Tp — Ts)

ATig = [T, (11.45)

Tp—Ts

The corresponding equations for the preheater are:

Qpr = Upn-Ap - ATjnpy (11.46)
and
Ty, —Ts) — (T —T
ATjpry = 0 S)Tr(TSC ) (11.47)
In T,

Since heat exchangers can be made in a great variety of geometrical
arrangements, it must be applied different correction factors for shell and
tube, pure counterflow, crossflow and plate units. These valves can be
found in the handbook of Roshenow and Hartnett.

The thermal efficiency of the binary plant can be obtained as

W
Nih = — (11.48)
Q

Since the net power of the cycle is the difference of the input and the

rejected thermal power, it can be written:

_ QPH + QE - Qc
Qpy + Qg

This formula is valid to the cycle, not to the whole plant. In the latter
case the auxiliary power needs (pumps, cooling power fan etc.) must be
subtracted from the not cycle power W. The binary power plant effi-
ciencies depending on the heat source temperatures are plotted in.

N (11.49)
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12.1 INTRODUCTION

The implementation of the first Hungarian geothermal pilot power
plant occurred in 2004. After a comprehensive site investigation, a frac-
tured limestone reservoir was selected in southwestern Hungary, close to
the Slovenian border. It is located at a depth of 3000 m. The reservoir
temperature is 142°C. There are two unsuccessful petroleum prospecting
boreholes with good mechanical integrity. The distance between the wells
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is 1000 m. After some work a doublet was found to be a production and an
injection well. A prefeasibility study investigated the hydraulic and
thermal behavior of the reservoir within production and injection. The
most important questions of this study were:

¢ What kind of flow system will be developed between and around
the wells?

e How will injection affect the temperature distribution in the
reservoir and the adjacent rock mass?

¢ How will the cooled region propagate from the injection well toward
the production well?

* How will the produced water temperature decrease with time?

Armed with the answers to these questions we can predict the lifetime
of the system.

This problem was investigated first by Bodvarsson (1975) and later
Bodvarsson et al. (1985), and Ghassemi and Tarasov (2004).

12.2 THE CONCEPTUAL MODEL

The existing large, horizontal, fractured Triassic limestone reservoir is
replaced by a single equivalent fracture bounded by parallel plane walls.
The primary reason for this simplification is to get a preliminary result
without suitable or reliable input data. The fracture is filled with hot water
which is considered incompressible. Thus mechanical and thermal pro-
cesses can be treated separately. There is no overpressure in the reservoir.
The pressure distribution is hydrostatic with depth. The horizontal extent
of the equivalent fracture is much greater than the distance between the
two boreholes. The injection well occurs in the plane fracture as a source,
the production well is a sink. This model is valid for the flow pattern
developed in a large equivalent fracture. The flow net in this case extends
over the whole plane. A relative smaller equivalent fracture has a closer
boundary curve around the doublet. The closed boundary is modeled by
superimposing a fictitious parallel flow to the source and the sink. The
flow net remains inside this closed curve. The flow in the fracture is
steady, laminar, and two-dimensional. This is the so-called Hele—Shaw
flow. The Hele—Shaw flow is a quasipotential motion having a complex
potential function. The bottom-hole temperature in the injection well is
constant. The injected cold water occurs in the fracture as an abrupt
thermal inhomogeneity, thus, near the fracture transient heat conduction
is generated within the adjacent rock. Thus, the hot rock heats the injected
cold water. The water temperature increases as it flows toward the pro-
duction well, while the rock temperature decreases. As the result of this
heat transfer, the produced water temperature decreases. If the produced
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water temperature drops below a given limit the doublet will not operate
efficiently and its operation will be terminated.

12.3 THE MATHEMATICAL MODEL

An orthogonal coordinate system is chosen. The x—y plane is parallel
to the fracture walls at halfway between them, z is the transverse direc-
tion; 2b is the gap between the fracture surfaces. The x-axis passes
through to the source and the sink. It is directed toward the sink. Because
of the incompressibility of water, the flow and the heat transfer can be
determined separately.

The governing equations of the Hele—Shaw flow (Polubarinova-
Kotschina, 1952) are

ap vy ép azvy. ap

ax Va2 dy Vo2 9z 0 (12.1)
It can be proven that
#p p
) E =0 (12.2)
Solving Eq. (12.1) using the no-slip boundary condition, we have
L 2 12y0pP L 2 12y0pP
x=7—(z"—b") == =—(2z"—-b") = 12.
v 2oy (z b ) I vy 2oy (Z b ) 3y (12.3)
Their integral means between the planes
_ b B op

o (12.4)

" 3vp ax’ Cyi?wp dy

The pressure p is a harmonic function fulfilling Eq. (12.2), and cx and ¢y,
can be derived from a scalar potential.

P 0P
X = 7 =_— 12.
x=50 & 3y (12.5)
where
2
_bp (12.6)
3pv
Because the fluid is incompressible
d
dex | 9 _ g (12.7)

9x | dy
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which becomes an identity, if

9 (12.8)

CX_W y ax

Egs. (12.5) and (12.8) are Cauchy—Riemann equations

faLi) v
6;{):67111; —_—=——— (12.9)
ox dy’ dy ax
Fulfillment of Eq. (12.9) is equivalent to the existence of an analytic
complex variable function W(E), the so-called complex potential

W(E) = o(x,y) +i-¥(x,y) (12.10)

of which real part is the velocity potential ® and the imaginary part is the
stream function ¥. The ¥ = const curves are the streamlines.

The complex potential of the Hele—Shaw flow between the source
and the sink can be written applying the method of hydrodynamic
singularities:

Q,  E+a

== 12.11
\ ZWIHE—a ( )

Fig. 12.1 shows the two singularities at the point x = —a, the source of
Q and at the point x = a, the sink of capacity of —Q. Using the expo-
nential form of &, the real and imaginary parts of W can be separated
easily.

Q

21

W=d+iW= 1n£—1+i~2(<p1—(p2) (12.12)
2

27

P2

¥
x

Q
-a

FIGURE 12.1 The two singularities.
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Thus the equation of the streamlines is

P — ¢Qp = % = const (12.13)
Q
Considering Fig. 12.1, we see that
J _ ¥
tg(e1 — @2) = ﬁ =C (12.14)

X—a X+a

After some manipulation we obtain

2 1
X2+ (y - %) — (1 n C2) (12.15)

The shape of the streamlines is a family of circles between the source
and the sink, with centers at x =0 and y = & as is shown in Fig. 12.2.

In the case of C = 0 the circle becomes a straight line along the x axis. If
C= o, tg%Tr k=, k= % and the radius of the circle is a. Thus, half of the
flow rate runs inside an origin-centered circle of radius a.

FIGURE 12.2 Subdivision of the fracture into part-channels.
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In a small fractured reservoir the lateral extent of the equivalent frac-
ture has the same order of magnitude as the distance between the two
wells. The effect of the boundary proximity is the change of the streamline
pattern. The circular-shaped streamlines are deformed, they are com-
pressed in the direction of the y-axis.

This effect can be modeled by the method of singularities. The
impermeable contour line coinciding with the fracture edge around the
doublet can be replaced by an equivalent closed streamline. This closed
streamline can be obtained by superimposing a fictitious apparent ho-
mogeneous parallel flow of x-direction into the doublet flow pattern. The
complex potential in this case can be written as

Q t+a
=Cox +—1 12.1
W =cCwx+ = n‘E — (12.16)
Its imaginary part is the stream function
W= Cooxy — 9 (92 — 1) (12.17)
27
After some manipulation we obtain
2ay 27
iy —a tg {6 (Cox'y — @)] (12.18)

The streamline equation is obtained by the substitution of W = const.
The W =0 curve is the closed contour-streamline separating an “inner”
and an “outer” flow. This streamline pattern is shown in Fig. 12.3.

As the apparent parallel flow velocity c«y increases, the compression
of the contour streamline is greater. Thus coy influences the size of the
contour line in both directions. Substituting y =0, and ¥ =0 into
Eq. (12.18) we got the length of the contour in the x-direction:

o =2y fa2 4+ —Q (12.19)
T Coox

Similarly, substituting x = 0 and ¥ = 0 into Eq. (12.18) we obtained the
width of the contour in the y-direction:

2y 27
This equation can only be solved numerically. These expressions are

suitable to estimate the extent of the fracture based on tracer test data.
The conjugate of the velocity is the derivative of the complex potential:

- Q 1 1
C _me—i_E(EJra_Ea) (12.21)
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FIGURE 12.3 Streamline pattern inside the closed boundary curve.

The velocity along the x-axis has an x-component only:

szcwx—i-g( ! ! ) (12.22)

27 x—|—a_x—a

Its average is

a—Xx
= Q / 1 1
= Cw = _ 12.2
= X+27c X+a X—a dx ( 3)
x=0

This average can be obtained from tracer tests, as the ratio of the dis-
tance between the two wells and the measured average residence time of
the tracer.

)

tay

[eR

(12.24)

In this way we can determine c.y and the length and width of the
fracture.
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The plane of the flow can be decomposed into part-channels, in each of
which the flow rates are the same. In these part-channels the flow is one-
dimensional in a curvilinear coordinate system. Thus the two-dimensional
plane flow is replaced by a finite set of one-dimensional flows. In this way
ordinary differential equations are obtained along the streamlines, while
finite differences are obtained perpendicular to them. The heat transfer in
the fracture can be solved by this complex method, simultaneously using
finite differences and ordinary differential equations.

12.4 HEAT TRANSFER IN THE FRACTURE

At the beginning of the injection the fracture is filled with hot water. Its
temperature is the same as the natural geothermal temperature at the
given depth. As the injected water flows along the streamlines, it will
warm up, while the rock temperature decreases. The whole heat transfer
process can be separated into two subprocesses: advection in the water
and transient one-dimensional heat conduction toward the fracture in the
rock mass (Toth and Bobok, 2008). Since the injected water mass is much
smaller than the rock, the slow transient heat transfer is followed by the
fluid instantaneously. The internal energy balance for an infinitesimal
volume element (as shown in Fig. 12.4) is written as:

m c[(T +dT) — T] = 2UL(T+ — T)ds (12.25)

where m is the injected mass flow rate, c is the heat capacity, U is the
transient overall heat transfer coefficient, T, is the initial geothermal rock

T

FIGURE 12.4 Infinitesimal volume element schema.
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temperature, and L is the width of the part-channel. Solving Eq. (12.16) we
can get

2ULs
T=T«w — (Tew —T1)-€me
where T is the temperature of the injected water at the bottom-hole, and s
is the actual length along the streamline in question.
The transient overall heat transfer coefficient can be calculated as

(12.26)

1 1 Tt
6_E+ (ka)r (12.27)

In which p is the density, c is the heat capacity, and k is the heat con-
ductivity of the rock. From the point of view of computation, a very
favorable condition exists in the Nusselt number which is constant for the
heat transfer on a flat plate between the solid and the laminar flow. The
experimentally determined value is Nu = 5.12 (Lundberg et al., 1963).
Thus the heat transfer coefficient is obtained as

512k
T b

where k,, is the heat conductivity of the water. Consequently h is inde-
pendent of the changing velocity along the streamlines, heat transfer co-
efficient can be determined without knowledge of the velocities.

Knowing the value of U, the water temperature can be calculated in
any part-channel as a function with length and time. Note that Eq. (12.19)
is valid only for that region of the fracture which is filled the injected
water.

Propagation of the cooled region along the streamlines lags behind the
motion of the injected fluid. This is an important difference in comparison
to oil displacement by water. The boundary surface between the water
and the oil phase moves together with the flowing fluids, and the material
properties experience an abrupt jump on this strong material singular
surface. In the geothermal reservoir the injected water temperature in-
creases gradually as there is no sharp contour of the cooled region.

At the bottom-hole of the production well the cooled region will arrive
first along the straight streamline between the two wells. All other part-
channels still carry hot water of undisturbed reservoir temperature. The
parallel connected part-channels carry water of different temperatures.
This homogenized temperature is shown in Fig. 12.5 depending on time.
These temperatures characterize the sustainability of the system.

Increase of the mass flow rate results in a temperature drop of the
injected water and in effect, a smaller temperature decrease. Choosing the
best and most economic temperature limit of this produced water enables
one to estimate the lifetime of the doublet.

h (12.28)
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FIGURE 12.5 Temperature is dependent on time.

12.5 SUMMARY

This chapter is part of a prefeasibility study, made for the imple-
mentation of the first Hungarian geothermal pilot power plant. The site
chosen is a fractured limestone reservoir in the southwestern part of
Hungary. A doublet was planned to supply geothermal energy for the
plant. For this preliminary investigation the fracture system is replaced by
an equivalent fracture in which a Hele—Show flow is observed. The flow
pattern and the streamline system are treated by methods of hydrody-
namic singularities. The heat transfer in the fracture is advection and
conduction in the adjacent rock. The cooled region propagates from the
injection well towards the production well and it lags behind the motion
of the fluid. The decrease in the produced water temperature is not a
sudden drop, but it suffers from a gradual change. This is determined as
the function of time. If we use appropriate heat temperature limits, an
accurate, effective operational lifetime of the doublet can be determined
as outlined in this work.
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13.1 INTRODUCTION

The heat content of rocks near the surface of the Earth is a huge
resource of geothermal energy. The top few hundred meters of the Earth’s
crust is not a geothermal reservoir in its classical sense. The temperature
of this region is too low for immediate utilization. Only adaption of heat
pumps makes this vast resource accessible, increasing the temperature of
the heat-carrying fluid. The most widespread technology to utilize the
shallow geothermal resources is borehole heat exchangers (BHEs)
equipped with geothermal heat pumps. The borehole heat exchanger is a
device to extract geothermal heat from the shallow rocks without geofluid
production. It is a heat exchanger installed inside a borehole, circulating
any heat-carrying fluid through it. The heat exchanger inside the borehole
can be a double U tube or two coaxial pipes. The borehole round the pipes
is backfilled with a material of high thermal conductivity. The energy
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supply of the BHE is transferred by conduction which is rather weak to
reach at least a medium output temperature. The reason for this is the
relatively shallow depth of the BHE, the low heat transfer area, the low
surrounding temperature, and the weak heat conductivity of the rock
around it. The output temperature of the circulating fluid can be increased
to the required level by the operating electrical heat pump.

Higher output temperature can be attained by the so-called deep
borehole heat exchangers (DBHEs), which are transformed from dry
unsuccessful boreholes. In this case the depth is the same as thermal water
or hydrocarbon wells, the heat transfer area is larger, the temperature of
the surrounding rock is higher, and the heat conductivity of the deep
compacted rocks is also higher than the shallow region. Naturally a DBHE
has a lower thermal power capacity than a similar thermal water well.

To solve this problem some useful ideas were suggested by Horne
(1980), Armstead (1983), and Morita et al. (1985, 2005). Their recommen-
dations are to circulate water in a closed casing well. The water flows
downward through the annulus between the casing and the tubing while
it warms up, and it returns at the bottom-hole and flows upward through
the tubing. The upward-flowing water cools to a certain extent because of
the heat transfer across the tubing wall.

Such an experimental production unit was installed in 1989 in Szolnok,
central Hungary. The results, as expected, were rather modest because
of the insufficient heat transfer area around the well and the low heat
conductivity of the surrounding rocks. The circumstances were analyzed
by Bobok et al. (1991) and Bobok and Toth (2000, 2002, 2008). In the
following we shall introduce a more sophisticated mathematical model to
describe the heat transfer mechanics of such a system, to predict its
thermal behavior in order to avoid further inefficient and expensive ex-
periments, and to show the range of the dry hole geothermal utilization.
Our attention is focused on the annular heat transfer phenomenon.

13.2 THE MATHEMATICAL MODEL

The simplified model of a closed geothermal well is shown in the
following. The casing is closed at the bottom without any perforations.
The water flows downward through the annulus between the coaxial
casing and tubing. Since the adjacent rock is warmer than the circulating
water, the water temperature increases in the direction of the flow. An
axisymmetric thermal inhomogeneity is developed around the well,
together with radial heat conduction toward the well. This is the heat
supply of the system. The warmed-up water flows upward through the
tubing while its temperature slightly decreases, depending mainly on the
heat conduction coefficient of the tubing. The system is analogous to a
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FIGURE 13.1 Schematic drawing of control volume.

countercurrent heat exchanger. The main difference is the increasing
adjacent rock temperature distribution with the depth. Thus the familiar
methods for design of heat exchangers are not sufficient for this case.

Let’s consider the schematic drawing of the system in Fig. 13.1. The
geometric parameters are defined as shown in the figure. It is convenient
to separate the system into two subsystems. One is the flowing fluid, in
which the convective heat transfer is dominant. The other is the adjacent
rock mass around the well, with a radial conductive heat flux. Thus the
internal energy balance can be written for the two subsystems in a
simplified form. Cylindrical coordinates are chosen. The radial coordinate
r is measured from the axis of the coaxial cylinders, while z lies along the
axis directed downward. The steady, axisymmetric turbulent flow is
taken to be uniform at a cross-section; the velocity v and temperature Tare
cross-sectional average values. The t, ¢, and a indices refer to the tubing,
the casing, and the annulus, respectively. Thus the balance equation of the
internal energy for the flow across the tubing is:

RZmpevidTy = 2RymwUy (Ty — Ta)dz (13.1)

in which p is the density, c is the heat capacity of the fluid, and Uy is the
overall heat transfer coefficient referring the inner radius of the tubing.
For the annular flow we get:

(Re

cl

RY))mpevadTa = 2R U (T — Ta)dz + 2RymUy (Tt — Ta)dz
(13.2)

where T, is the temperature at the borehole radius Ry, and U is the
overall heat transfer coefficient referring to the radius Rg.
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The unsteady axisymmetric heat flux around the well is equal to the
heat flux through the casing. It can be expressed as:
. To — Ty
Q= 27r1<RT = 2R Uq(Tp — Ta) (13.3)
in which Q is the heat flux over the unit length cylinder, and kg is the heat
conductivity of the rock. The undisturbed natural rock temperature is T,
its distribution linear with depth

Tew =Ts+ vz (13.4)

where T is the annual mean temperature at the surface, and vy is the
geothermal gradient. The parameter f(t) is the transient heat conduction
time function (Ramey, 1962).

13.3 SOLUTION

To solve the differential equation system it is necessary to know the
overall heat transfer coefficients Uy and U,;. The determination of U;g and
U needs the knowledge of the heat transfer coefficients hy, and hg
referring to the inner and outer surface of the annulus.

The down-flowing fluid in the annulus of the closed-loop geothermal
system is heated from two directions independently: across the tubing
and across the casing. These heat fluxes can be varied independently. It is
obvious that two independent heat transfer coefficients and two different
Nusselt numbers are obtained on the inner and outer walls of the annulus.
To determine this heat transfer mechanism is more difficult than in a
simple circular tube.

Lundberg et al. (1963) have shown that it is possible to reduce the
problem to four fundamental solutions in accordance with the different
boundary conditions. These can be combined using superposition tech-
niques to yield a solution for any desired boundary conditions. The
present case can be interpreted as the superposition of two fundamental
solutions. One is perfectly insulated. Another particular solution is ob-
tained interchanging the two surfaces. The two particular solutions can be
superimposed providing solution for the two-sided heating.

Following the familiar semianalytical treatment, we will employ the
subscript t1 to designate conditions on the tubing surface when this surface
alone is heated. The subscript c1 designates conditions on the casing sur-
face when this surface alone is heated. The opposite surface in either case is
insulated. The single subscript t or c refers to the conditions on the tubing
or casing surfaces, respectively, under any conditions of simultaneous
heating at both surfaces.
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For the case of constant heat rate per unit tube length it is possible to
express Nurand Nu, for any heat flux ratio on the two surfaces in terms of
Nuy and Nug;. Similarly two influence coefficients can be derived, 6; and
07. Finally the following expressions are obtained:

N
Nup = — g (13.5)
1-— q—:let
Nue

da

Kays and Leung (1963) carried out experiments in annuli using air for
various values of radius ratio with constant heat rate per unit tube length
but with various heat flux ratios at the inner and outer surfaces including
the two limited cases of only one side being heated. They then obtained a
solution in tabulated form for constant heat rate under fully developed
turbulent flow based upon empirical data. The results are presented in the
form Nuy and Nug; and the two influence coefficients 6; and 6. These are
given in tables for a wide range of Reynolds and Prandtl numbers and for
radius ratios. These results are then directly applicable to Egs. (13.5) and
(13.6). Data are widened by some of our experimental results obtaining
with water for 4%4” and 7” tubing and casing diameters. The heat flux qc
can be obtained from the temperature distribution of an injection well. As
it is known (Ramey, 1962), the bottom-hole temperature of the injected
water is

Tpn = Ts + y(H — A) + (T; — T + yA)-e* (13.7)
The overall heat flow into the down-flowing water is
Q = te(Tpn — Tj) (13.8)
Thus the integral main of the heat flux per unit length of casing is
mc(Tpn — Ti)
91 = ToRGwH (13.9)

In the second case the casing is perfectly insulated, the annular flow is
heated across the tubing only. The mass flow rates in the tubing and in the
annulus are the same. Eqs. (13.1) and (13.2) lead to the relation

dTy dTa
= 13.1
dz dz (13.10)
Derivating Eq. (13.1) by z, we obtain
2
) Tt dT; dT,
mc i = 21tR; Uy (E P ) (13.11)
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comparing Egs. (13.1) and (13.2) it is obtained that

Cizt =0 and ‘i;a =0 (13.12)

Thus the general solutions of Eq. (13.12)
T =Kiz+K; (13.13)
T. =Kiz+Kj (13.14)

The boundary conditions are the following:
ifz=0 T,=T;, ifz=H Ti=T, and K;=2nR;Ugx(T;—Ta)
Solving the obtained equation system, finally the heat flux across the
tubing wall
_ 1e(Tpn — Tj)
=" H

Egs. (13.9) and (13.15) can be substituted into Eqgs. (13.5) and (13.6).
Based on experimental data the particular Nusselt numbers can be
calculated by the following formulas:

(13.15)

Nuy = 0.016 - Re"®Pr®® Nugy = 0.018 - Re%® - Pr0? (13.16)
0; =0.410 - Re 007 . pr=058 g* — 0325 . Re 0078 . pr 0% (13.17)

Determining the Nusselt numbers on both surfaces the heat transfer
coefficients on the walls of the annulus are
N k- Nut

he = h. —
(=R A he=pc

(13.18)

Knowing the hy and h; values, the overall heat transfer coefficients Uy
and U, can be determined as
1 1 Ry R , Ry

—=—+ cIn—+
Ui hg  Kkins Ri  Ryhyo

(13.19)

and

1 1 Rig . Ro Ri Ry
—=—+4+— In—+4+-—In— 13.20
Uci hci ks Rci kc Rco ( )
Combining the Eqs. (13.1)—(13.3) we obtain two simple differential
equations:

d(Te — Ta)

A dz

=To —Ta (13.21)
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in which
m-c- (kr + RciUcif)
A = 13.22
27R Uik, ( )
and
dT;
B=—=T:—-T 13.2
dz t a ( 3 3)
where
m-c
B=—1— 13.24
ZWRtiUﬁ ( 3 )

Combining Egs. (13.21) and (13.23), a second-order inhomogeneous
differential equation is obtained:

AB(j;aJrB(g;—TaJrTSer(Z—B) =0 (13.25)
In a similar way we can obtain for the flow through the tubing:
AB%—FB%—TH—TS—YZ:O (13.26)
These equations can be solved easily in the form
Ty = Ts + v(z + B) + K1 + Kye*?* (13.27)
and
T, =Ts + vz — T + C1e7% + Coe™?* (13.28)

where x; and x; are the roots of the characteristic Egs. (13.25) and (13.26),
ie.,

1 4A 1 4A
xl:—ﬁ<1—\/1+§> and Xz:_ﬂ<1+“1+F> (13.29)

The constants of integration in Eqgs. (13.27) and (13.28) can be deter-
mined satisfying the following boundary conditions.

1. At z =0, T, =Tj, where T; is the temperature of the cooled injected
water;

2. Atz =H, T, = Ty, the bottom-hole temperatures in the annulus and
in the tubing are the same;

3. Atz=H, % = 0, the depth derivative of the tubing temperature at
the bottom-hole is zero. This is the consequence of Eq. (13.23);
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4. The energy increase of the circulating fluid is equal to the integral of

the heat flux across the borehole wall between the bottom and the
surface:

H
mc(Tou — Tj) = / q(z)dz (13.30)
0

where Ty is the temperature of the outflowing water at the wellhead.
The obtained equations from the boundary conditions are

Ti-Ts=C +C (13.31)
Kyt 4 KpeH 4 yB = C1eH 4 Cpe! (13.32)
Kix e 4+ Koxpee = —y (13.33)

A(T; — Ty + YB+ K1Kp) = G (e9H —1) _&

xH
. L (€ =1) (33

After solving the equation system for the constants Cy, Cp, Ky, and Ky,
the temperature distributions in the annulus and in the tubing can be
determined by Egs. (13.27) and (13.28).

The thermal power can be calculated using the equation

P =1h — c(Tyn — T}) (13.35)

where Ty, is the temperature of the outflowing water.

13.4 RESULTS

The temperature distribution, both of the annulus and the tubing along
the depth, is determined. The solution makes it possible to take into
consideration the parameters influencing the temperature distribution
and the thermal power of the system. The first example is the temperature
distribution of a closed-loop well. The depth of the well is 2000 m, the
casing is 7”, and the tubing is 4%%”. The tubing is a steel pipe with poly-
propylene heat insulation. Three different mass flow rates are taken: 5, 10,
and 15 kg/s. Geothermal gradient is 0.05°C/m, the heat conductivity of
the polypropylene is 0.2 W/m °C. The average heat conductivity of the
rock is 2.5 W/m °C.

It can be recognized that the bottom-hole temperature depends
strongly on the mass flow rate. The temperature difference between the
produced and the injected water is decreasing as the mass flow rate is
increasing. These can be shown in Fig. 13.2.
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FIGURE 13.2 Temperature distributions along the depth.

H[m]

The quality of the heat insulation of the tubing has a very important
role. Applying a vacuum-insulated tubing (VIT) of an extreme low heat
conductivity (k =0.006 W/m °C) the up-flowing water temperature is
almost constant. In this case the casing diameter is 9 5/8", the inner tube
diameter is 4%%”, the outer is 5%”. This is shown in Fig. 13.3.

The temperature distribution both in the annulus and in the tubing
depends strongly on the operation time of the system. There is a short
initial period of important temperature decrease. Later the rate of change
will be smaller. Finally the solution tends to a steady temperature, as is
shown in Fig. 13.4.

The influence of the mass flow rate and the operation time on the
thermal power of the system can be seen in Fig. 13.5. The thermal power is
plotted against the production time. The mass flow rate is the parameter
of the family of the curves. For small mass flow rates the effect of the time
is very small. For higher flow rates the change with time is important.
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FIGURE 13.3 Temperature distributions obtained with vacuum-insulated tubing,

kVIT = 0.006 W/m °C.
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FIGURE 13.5 Thermal power decrease versus time.

While the growth of the mass flow rate has a substantial influence on the
thermal power in the initial stage of production, as the operation time
increases the differences of the power curves caused by the different mass
flow rates decrease. The curves converge, especially for higher flow rates
as they tend to an equilibrium state. It can be recognized that there exists
an upper limit of the flow rate over which the equilibrium thermal power
is not increasable. This thermal power determines the sustainability of the
system. Heat conduction toward the well cannot carry more heat than this
upper limit. Heat conductivity of the adjacent rock mass restricts the
exploitable thermal power by a single closed-loop geothermal well. The
sustainable power production of such a system can be determined
knowing the depth and the completion of the well, the way of heat
insulation of the tubing, the local geothermal gradient, and the material
properties of the rocks around the well.

It can be seen that the temperature and the thermal power of such a
closed-loop system is rather moderate. The cause of this is the small heat
transfer area and the low heat conductivity of the rocks. It seems only
small-scale utilizations can be based on this clean technology, even
applying heat pumps as well.
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14.1 INTRODUCTION

On a drilling rig, the drilling fluid is pumped from the mud pit
through the drill pipe down to the drilling bit. The fluid transmits
down the necessary mechanical energy for cleaning the drill bit and
the bottom hole, then carries the cuttings up to the surface through the
annulus. On the surface, cuttings are filtered out and the fluid returns
to the mud pit. The fluid is then pumped down to the drill pipe and
re-circulated.

Flow and Heat Transfer in Geothermal Systems
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14.2 RHEOLOGY OF THE DRILLING FLUIDS

Drilling fluids must be suitable for several requirements during
drilling operations. It is necessary to keep the drill bit clean and cool.
Another demand is to remove the cuttings from the bottom hole and
to transport them to the surface through the annular space between
the drilling pipe and the casing. It is suitable to raise density of the
fluid, since the greater density produces greater Archimedean and
hydrodynamic lifting forces. The raised density provides a higher
hydrostatic pressure to prevent formation fluids from entering into the
bare wellbore. The greater hydrostatic pressure maintains the wellbore
stability, too.

The most frequently used drilling fluids are water-based bentonite
suspensions, the so-called drilling muds. Most drilling muds are shear-
thinning, in other words pseudoplastic. Simultaneously, the thixotropic
behavior also occurs. In the following, these rheological behaviors are
taken with a glance.

Purely viscous fluids may be completely characterized by their shear
stress-shear rate relationship under conditions of one-dimensional
laminar flow. Thus the shear stress-shear rate function can be deter-
mined by measuring only one component of the stress tensor and the
deformation rate tensor. In view of the wide range over which measure-
ments need to be made for these variables, it is convenient to plot the
shear rate-shear stress relationship. The curve thus obtained, the so-called
flow curve, is suitable to characterize the rheological behavior of the fluid
and forms an important aid in the classification of the different types of
non-Newtonian fluids.

The flow curve of a Newtonian fluid is a straight line. Flow curves of
Newtonian fluids of different viscosities pass through the origin; the slope
of the lines representing viscosity of the fluid. Logarithmically plotted
flow curves are parallel straight lines with slopes equal to unity. They
have intercepts at dv/dr = 1 equal to their viscosities. Both types of flow
curve are shown in Figs. 14.1 and 14.2.

The terms pseudoplastic and dilatant refer to fluids for which the
logarithmically plotted flow curves have slopes of less than unity and
greater than unity, respectively. The apparent viscosity decreases with
increasing shear rate for pseudoplastic fluids, while it increases as the
shear rate increases for dilatant material, as shown in Fig. 14.3. These flow
curves also show that pseudoplastic and dilatant behavior may exist only
over a limited range of the shear rate.

Mo = 3 (14.1)
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FIGURE 14.1 Flow curves of Newtonian fluids with arithmetic coordinates.
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FIGURE 14.3 Pseudoplastic and dilatant flow curves.

There is no single simple form of the constitutive relation that
adequately expresses the rheological behavior of pseudoplastic materials.
Widely used in petroleum engineering is the so-called power law equation,
which is valid over a limited range of the shear rate, where the logarithmic
flow curve is a straight line. This law is obtained empirically as:
dv|"
dr
in this equation, K is the so-called consistency index, and n is the behavior
index. Both K and n depend on the temperature of the fluid. Fig. 14.3
shows the flow curves at different temperatures. The variation of the
consistency index and the behavior index as a function of temperature is
shown in Fig. 14.4.

A more precise expression for the power law can be written using
cylindrical coordinates as:

| =K (14.2)

dv["tdv
K| = 14.
=K dr dr (143)
It is obvious that the apparent viscosity:
dV n—1
=K|— 14.4
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FIGURE 14.4 Consistency index and behavior index varying with temperature.

Within its validity range, the power law equation is in excellent
agreement with experimental data. The accuracy of the power law
equation decreases at very low and very high shear rates. For pseudo-
plastic fluids, the behavior index is always less than unity. Most crude
oils, fine clay suspensions, certain types of drilling muds, and washing
fluid exhibit pseudoplastic behavior.

The power law equation may also be applied to dilatant fluids with
appropriately different values of the consistency index and the behavior
index. The behavior index of dilatant fluids is always greater than unity.
Dilatancy can be observed in dense suspensions of irregularly shaped
solids in liquids. The dilatancy can vary rapidly with the concentration.
The same suspension at lower a concentration may be pseudoplastic,
while at a higher concentration the behavior is dilatant.

The so-called Bingham plastic materials are fluids for which a finite
shearing stress is required to initiate motion, and for which there is a
linear relationship between the shear rate and the shear stress once the
initiating stress has been exceeded. This behavior characterizes asphalt,
bitumen, certain drilling muds, fly ash suspensions, sewage sludge, etc.
The main advantage of such a drilling mud is that it the cuttings are
suspended while drilling is paused or the drilling assembly is brought in
and out of the borehole.

The constitutive relation of a Bingham fluid is of the form:

dv
IT| = 1y + u‘a‘ (14.5)

where Ty i8 the yield stress. Fig. 14.5 shows the flow curves of a Bingham
drilling mud at different concentrations.
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FIGURE 14.5 Flow curve of a Bingham plastic fluid: a drilling mud at different
concentrations.

Certain materials exhibit a yield stress like a Bingham fluid, but the
relationship between the shear rate and the shear stress after the yield
stress has been exceeded is not linear. This category comprises mainly
drilling muds, but there are some crude oils which also display this yield-
pseudoplastic character. Fig. 14.6 shows the flow curves of a fluid which
exhibits such behavior. The constitutive relation for these fluids can be
written as:

n—ld—v
dr

dv

= K
T ry+ ar

(14.6)

It is an important observation that the yield stress decreases as the
temperature increases.

Newtonian, pseudoplastic, and dilatant fluids respond instantaneously
to a change in the shear stress. Their rheological behavior is influenced by
structural changes in the system. Their equilibrium structure depends on
the shear rate, and follows any change in the shear rate without the
slightest delay. This structural change can be considered as instantaneous
and reversible.
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FIGURE 14.6 Flow curves of a yield-pseudoplastic fluid at different temperatures.

In contrast to this, certain other fluids exhibit slow structural changes,
which follow changes in the shear rate with a considerable delay. The
reconstruction of the changed structure may be so extremely slow that the
process can be considered irreversible. This time-dependent rheological
behavior is rather common. Certain drilling fluids and crude oils exhibit
time-dependent rheological properties. Fig. 14.7 shows the decrease in the
shear stress at a constant shear rate as a function of the duration of shear,
as measured for a Kiskunhalas (Hungary) crude oil.

If the shear stress at a constant shear rate decreases with the duration of
shear, the fluid is called thixotropic. As Fig. 14.7 shows, the shear stress
decreases asymptotically to a stabilized value 5. The duration of shear,
necessary to reach the stabilized value of shear stress, decreases as the
shear rate increases. The value of the stabilized shear stress depends on

the shear rate as:
dv™
=K — 14.7
Ts s (dr) ( )
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FIGURE 14.7 Thixotropic shear stress decrease depending on the duration of shear.

This power law equation has a behavior index m of less than unity, thus
the relationship is of a pseudoplastic type. It characterizes an ultimate
structural state which is independent of time, i.e., stable. Eq. (14.7) can be
used as an adequate constitutive relation for a flow of crude oil after the
first few kilometers of a pipeline.

The thixotropic character of a drilling mud may be important for
relatively short pipes, especially for the drill string.

A great number of constitutive relations have been proposed for thixo-
tropic fluids, which out of necessity are more complex than the power law
equation. A relatively simple constitutive equation was developed by Bobok
and Navratil (1982) for thixotropic fluids on the basis of a wide range of
experimental results. In this model, the thixotropic material is considered
to be a pseudoplastic fluid with changing rheological properties.

The shear stress in this model depends on two variables; the shear rate
and a dimensionless structural parameter 3:

1= (%, a) (14.8)

It is assumed that the structure of a thixotropic fluid can be completely
characterized by the structural parameter, which depends on the shear
rate and the duration of shear. The function given by Eq. (14.8) can be
represented by a surface in the coordinate system dv/dr, §, and t as
shown in Fig. 14.8. Any changes in the shear condition occur along a curve
on this surface of the shear state. The path on this surface between two
arbitrary points can be broken down along the orthogonal parameter

coordinates (% and 8), into a constant shear rate, and a constant
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FIGURE 14.8 Shear state surface of thixotropic fluids.

d section. The processes of constant shear rate, and of constant structural
parameter have a merely different nature.

The constant-shear-rate process is considered irreversible. It can pro-
ceed along a dv/dr = const. curve in one direction only, namely that in
which the structural parameter decreases, i.e., the thixotropic structure is
broken down. Since the breakdown of the structure is much faster than its
regeneration (less than an hour as opposed to a few days), and regener-
ation may already have started at rest, the irreversibility of this process
seems to be acceptable. Another important feature of the constant-shear-
rate process is that its ultimate state is on the stabilized flow curve. At any
constant shear rate, both & and t decrease as the duration of shear
increases, until the stabilized values &5 and 15, are reached. Values of
d and t that are smaller than 3 and 14 cannot be achieved by the further
increase in the duration of shear only. The stabilized-flow curve cannot be
crossed along a constant-shear-rate line.

Along the constant structural—parameter curves, the consistency index
and the flow-behavior index are constant, thus the parameter curves
3 = const. are real pseudoplastic flow curves, i.e.:

dv\"
T= K(a) (14.9)



308 14. FLOW AND HEAT TRANSFER DURING DRILLING OPERATIONS

Experimental observations show that the consistency index changes
with §, but that the behavior index may be considered constant. Along the
parameter lines 8 = const., the stabilized flow curve can be crossed in both
directions. The shear rate of the crossing point C is an important quantity in
evaluating the consistency index K of an arbitrary flow curve of constant o.

As is shown in Fig. 14.9, at the point C, the stabilized flow curve and an
arbitrary flow curve of constant 3 intersect each other. It is obvious that:

dv\™ dv\"
Tse =K () = K() =1 (14.10)
5 *\dr /. dr).
Thus, K can be expressed as:
dV m—n
K=Ks| 5 14.11
(5) (1411)
Substituting this into Eq. (14.9), we get:
dv\ ™" 7dv\"
C
In the interval where:
dv dv
dr dr.

it is possible, at a given dv/dr, to achieve smaller shear stresses than the
stabilized shear stress at this dv/dr.
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FIGURE 14.9 Flow curves of thixotropic fluid.
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The flow curve in the interval:

is reversible, changing the shear rate whenever the measured shear stress
falls to the curve 0C. Increasing the shear rate to a greater value g—r‘;, the
immediately obtained shear stress 7, will be on the same flow curve of
constant 9, since the thixotropic structure remains the same. But from this
instant the breakdown of the structure begins, and the state of shear will
reach stabilized flow curve, along a constant-shear-rate line at point C'.

The shear stress for this constant-shear-rate breakdown process can be
expressed as:

m dv\—m !
=K (ﬁ> 1+ (ji)ﬁ — 1| e (=&+B)9 (14.13)
dr/c

(&)

in which % is the actual shear rate, (%) is the earlier shear rate for the
C
stabilized state of shear, a and B are material constants, ¥ is the duration of

shear at the present shear rate.

The equation contains five material constants (Ks, m, n, a, B), which can
be determined using a rotational viscometer. Thus we have piecewise,
valid constitutive relations for certain restricted changes of the shear state
of a thixotropic fluid.

For the entrance region of a one-dimensional steady thixotropic flow in
a pipe, Eq. (14.13) can be used. Naturally, the “entrance region” is
considered in a thixotropic sense. After the necessary duration of shear,
the stabilized shear state will be attained for which Eq. (14.9) is valid. For
an abrupt change in the shear rate (change in pipe diameter or flow rate)
the new shear stress can be determined using Eq. (14.12). For a decreased
shear rate (increase in pipe diameter or decrease in flow rate) the devel-
oped shear stress is stable, and smaller than the stabilized shear stress Ts.
For an increased shear rate (decrease in pipe diameter or increase in flow
rate), the obtained shear stress represents the initial value of a beginning
structure breakdown process, which can be determined using Eq. (14.13).

An important consequence of Eq. (14.12) is that a considerable shear
stress decrease can be achieved by applying an initially large shear rate.
The flow through a centrifugal pump is not sufficient for this purpose
because of the very short duration of shear. An entrance pipe section of
smaller diameter may be satisfactory provided it is of a suitable length to
produce the necessary duration of shear.

If the shear stress at a constant shear rate increases with the duration of
shear, the fluid is called rheopectic. The best-known example of this type
of behavior is that of egg-white. Rheopectic behavior is less commonly
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encountered than thixotropy, although a rheopectic material would be
useful as a fracturing fluid.

14.3 LAMINAR FLOW OF PSEUDOPLASTIC
FLUIDS IN PIPES

Laminar flow occurs only on rare occasions in the drillpipe. Never-
theless, it is discussed briefly for the sake of completeness. Consider a
straight cylindrical pipe of constant cross-section. The orientation of the
pipe is arbitrary w.r.t. the gravity field. A steady, one-dimensional flow of
an incompressible, pseudoplastic fluid is investigated. It is convenient to
choose a cylindrical coordinate system with the notation as shown in
Fig. 14.10. The momentum equation for the depicted control volume,
similarly to the Newtonian case, can be written as:

ﬁ
dr

n

pelr _ -0 (14.14)

2

Rearranging, the velocity gradient can be expressed as:

1
dv _ /pgJryn
e ( e ) (14.15)
Integrating this equation yields:
_ (8} n e
V= <2K)n+1r +k (14.16)

FIGURE 14.10 Cylindrical coordinate system and control volume for pseudoplastic
pipe flow.
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where k is a constant of integration, which can be obtained from the usual
boundary conditions:

r=R;, v=0
Substituting these values into Eq. (14.16), we get:

(o8 e
k_n+1<21<> R

which leads to the final form of the velocity distribution along the pipe

radius:
_n [(pgR\" (Y
V_nJrl(ZK)R[l (R) } (14.17)
The flow rate is obtained as:
R R 5
_ . n PEIR\"S3
Q= 275/ rvdr = Il (2K ) R® (14.18)
0

Consequently the cross-sectional average velocity is:

_Q n /pgR z
T (—2K > R (14.19)

It is convenient to express the velocity distribution in terms of the
averaged velocity:

3n+1 %
/)7 (1420
The velocity maximum is obtained at the pipe axis:
3n+1
Vmax = H—HC (14.21)
The maximum shear rate occurs at the pipe wall:
1
dv pgJR\» ¢ 1+3n
=) =—(==) == 14.22
(dr)R ( 2K R n ( )
The shear stress at the wall is:
= P8R (14.23)

2

The shear-stress distribution along the radius is obviously linear:

_pgIR 1w
=2 =t (14.24)
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The relation between the wall-shear stress and the wall-shear rate is
obtained by combining Eqgs. (14.22) and (14.23):

dv\"
w=K (E) ) (14.25)

The dimensionless velocity distributions are plotted in Fig. 14.11 for
pseudoplastic fluids of different behavior indexes, as:

ntl

v 3n+1 r\s
et @] (429

This figure illustrates the effect of the behavior index on the velocity
profile. In the special case of a Newtonian fluid, n =1, and the usual
parabola is obtained. It can be seen that as n approaches zero, the ve-
locity profiles flattens (resembling a plug flow), whereas as n increases in
the dilatant region the profile steepens, tending towards an inclined
straight line.

The head loss of a pipe section of length L and diameter D can be also
determined. The mechanical energy equation in its general form can be
written as:

2 2
TP =2 P 14.27
2g+g+] 2g+g+ 2+ 1-2 ( . )
Since the cross-section of the pipe is constant:
C1 =0C
1.0
r P
R AN
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FIGURE 14.11 Dimensionless velocity distribution of pseudoplastic fluid flows.
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thus we get:

hy ,=P1"F2 ;gpz +hy —hy =L (14.28)

Using Eq. (14.19) to express the hydraulic gradient J, and after substi-
tution into Eq. (14.28), the head loss is obtained as:

B, =2 <3n * 1) L (14.29)

n Rn+1

It is conspicuous that the head loss is not a linear function of the cross-
sectional average velocity, not even for laminar flow. The head loss for
pseudoplastic flow increases with the averaged velocity to a lesser degree
than in the Newtonian case. The head loss is linearly proportional to the
length of the pipe. For pseudoplastic flow, a decrease in the diameter
causes a smaller increase in the head loss than for a Newtonian fluid.
Naturally, for n=1, Eq. (14.29) reduces to the special case of the
Hagen—Poiseuille equation.

Metzner and Reed (1955) proposed extending the Weisbach equation:

’ L ¢?
h =25 % (14.30)
to pseudoplastic fluid flow, as well.

Comparing Egs. (14.29) and (14.30), the friction factor is obtained as:

_ 8K (6n +2)\"c" 2
p n D"

A (14.31)
In the manner usual for Newtonian fluids, we shall express the friction

factor in terms of the Reynolds number:
A= o (14.32)

*
Rep

Using this, we obtain the expression:

Cn72Dn
Re;, = @ (14.33)
8 n

If the friction factor is plotted against Rej, all points fall along the same
curve, irrespective of the value of n, as it is shown in Fig. 14.12.

It has already been noted that the power law equation is not applicable
at very low shear rates. Near to the pipe axis, the shear rate approaches
zero, thus in this region the accuracy of the power law approximation
decreases. Fortunately, the shear stress similarly tends to zero in this inner
region so that the contribution of this zone to the energy dissipation is
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FIGURE 14.12  Friction factor and Reynolds number.

negligible. Thus friction factor and head loss calculations based on the
power law equation are sufficiently accurate for practical purposes.

14.4 PSEUDOPLASTIC FLUID FLOW IN ANNULI

Flow in annuli is encountered in drilling and well-completion
technology, in which drilling mud or cement paste flows between the
borehole wall and the drilling pipe, or between two concentric pipes of
casing. Since most drilling fluids are pseudoplastic, or thixotropic—
pseudoplastic, the importance of this problem is obvious.

We consider a steady laminar flow of an incompressible, pseudoplastic
fluid in a straight, infinitely long, concentric annulus. The position of the
symmetry axis is arbitrary w.r.t. the gravity field. A cylindrical coordinate
system is chosen; its z-axis directed parallel with the flow. The velocity
field is axisymmetrical, having only one non-zero component:

vy=Vv; vi=0; vo=0

The momentum equation for this case can be written as:

~d [ dry
pglr = 3 (r ar > (14.34)

Considering Fig. 14.13, it is seen that at a radial position r = Ry both
dv/dr and 1., change signs.
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FIGURE 14.13 Pseudoplastic fluid flow through an annulus.
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The sign of shear stress is determined by the sign of the velocity

gradient; where:

dv

r < Rp; dr

In the region:

dv

r > Ry; dr

The differential equation for this problem is:

dv r11dv}

dr

dr

d
—pgJr = ar [rK
Its first integral is readily obtained:

dv

dv 14y A pgJr?
dr

K — =
r dr 2

<0,and 1, <0

> 0, and thus 1, >0

(14.35)

(14.36)
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Using the fact that at:

dv
=Ry —=0
TR G
we obtain the constant of integration as:
Ao pgIR)
2
Substituting into Eq. (14.36), we obtain:
dv|"dv pg) R%
— —==(=- 14.37
dr] dr 2K ( r r) (1437)

It is clear that the differential Eq. (14.37) has two domains of solution
which interconnect at r = R.
When r < Ry, the right-hand side of the equation has a positive sign,

since RTS > r, accordingly we have the condition dv/dr > 0.
On the other hand, when r > Ry, the right-hand side of the equation has

a negative sign, since “ < 1, so that we now have the condition 4¥ < 0.
We will first solve the differential equation in the domain r < Ro The
sign of the nth root is of course positive:

1
dv pe] RZ — r2\*
= (% I (14.38)
The function:
R(z) —r2

r

cannot be integrated in quadratic form, since it does not satisfy
Tschebischew’s conditions. Since the function is monotonic in the region
of Ry <r <Ry, it can be replaced by a linear function of interpolation.

Since the velocity must be zero at r = Ry the constant of integration can
be obtained. Thus the velocity distribution in the interval Rj<r < Ry is
given by:

(pgl)l (M)

12 R}
——R, RoR; — = 14.
K ) Ry = Ro( of + RoRy 2) (14.39)

2

This equation contains the temporarily unknown parameter Ry. This
can be eliminated by relating the two velocity distributions obtained from
the two solutions. To do this, it is necessary to make use of the maximum
velocity. Substituting the condition r = Rq; v = vipax we get:

1 RS — R% 2 2
_ p_g]n( Ry )RO_Rl_ B
Vmax = (2K> R, — Ry > RO(RO Rl) (14.40)
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After simplification the maximum velocity is obtained as:

1
pgl Rf — RT\"Ro — Ry

=== 14.41

Vmax (ZK R, 2 ( )

The second part of the solution is that for the region of Ry <r <Ry,
where:

2
r > Ry, %<O, and (%—r><0

The shear stress is also negative in this region. To take into account the
signs, Eq. (14.37) may be written as:

dv|" . /dv R3
i sign (§> = —g—i] <TO — r) (14.42)
For the velocity gradient we get:
2 n 2
% = [g—i] <% — r>] sign <% — r) (14.43)

Since:

R _

2
(lio—r) <0, wehave r| =

r

and thus sign (&% - r) =-1.

Thus the differential equation which we have to solve is:

dv 2 — R? n
= [g_gK] — 0] (14.44)

The integral of this expression cannot be obtained in quadratic form;
we must again interpolate using the linear function:

fp = apr+by

The function is fitted to the points Ry and R». The coefficients are found

to be:
1
R3 — R3\"
AR/

R; — Ry

1
(s
by = 2 =Ro/ p

" R —R

ay =
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After substitution and integration we obtain:

pg] %<R§1{ RS)% 1.2
ve - <_) VR ) (— - Ror) e (14.45)

2K/ Ry, —Rp \2
Since at r = Ry, and v = 0, expressing and substituting the constant of
integration Cp, we obtain:
2

1(RE-R]
_ (r8] F( R ) RS —r% B
v = ( 21<> - [ 5 Ro(Ry — 1) (14.46)

The maximum velocity at r = Rg is obtained as:

2 p2rp.
Vmax = |:p_g] R RO:| R~ Ro (14.47)

2K Ry 2
(See Fig. 14.14).
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FIGURE 14.14 Velocity distribution of the annular flow.
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Since the vinax Obtained by Eqs. (14.41) and (14.47) has to have the same
value, we can equate Eqs. (14.41) and (14.47), and obtain the following

equation for Ry:
1
Ry R3—R?\" R, —Ryg
— = 14.48
(Rl R3 — R? Ro— Ry ( )

This implicit equation can be solved by iteration if Ry, Ry and n are
known. The results can be tabulated, for example for a borehole with a
diameter of Dy =12 % in. and a drill-pipe diameter of D; =5 in.

Knowing the two parts of the velocity distribution the flow rate can be
determined. After determination of the integrals:

RO Rz
Q=2rw / vr dr + / vrdr (14.49)
R Ro

the flow rate is obtained as:

R? —R?
Q=27 gl g (UR ) Ré—R‘%_Ro(Ré—R%)+R0R1(R5_R§)
2K Rl_RO 8 3 2

s gy
RS- (")

3 3
CRERERo(RE-RY
4 R; — Ry

8 3

R R ()] R 19) | KO }

2 4 2 4
(14.50)
If we designate the quantity in the curl bracket by A, then:
o (P8TY
Q=2mA (2K> (14.51)

Representative values of A together with values of Ry are listed in
Table 14.1. The cross-sectional average velocity is:

1
24 (pgl\?
= o 14.52
c R%-R%<2K> (14.52)
Using this equation the hydraulic gradient is found to be:
2K (RZ-RAH" |
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TABLE 14.1 Borehole Diameter 12 %4” Outer
Diameter Drilling Pipe 5"

n Ro(m) ]

0.30 0.1116 1.422274
0.35 0.1108 1.617641
0.40 0.1099 1.827188
0.45 0.1091 2.049351
0.50 0.1084 2.283278
0.55 0.1078 2.534876
0.60 0.1071 2.803840
0.65 0.1065 3.092167
0.70 0.1060 3.401992
0.75 0.1054 3.735550
0.80 0.1049 4.092524
0.85

0.90 0.1040 4.903305
0.95 0.1036 5.357264
1.00 0.1032 5.847680

The head loss of an annulus of length L can thus be expressed as:

. 2KL (RE —R%\" |
A so-called annulus shape parameter can be defined by the equation:
R3 —R3\"
_ _ n+1 2 1
¢ = (R —Ry) (72A > (14.55)

Applying this notation the head loss is obtained as:
W - % oL

= — " 14.56
Pg (Ry — Ry)™ ( )

The Weisbach equation for non-circular channels can be written as:

h =h— — (14.57)
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where Ry is the hydraulic radius. By comparing Eqs. (14.56) and (14.57),

we obtain the friction factor for the annulus:
8Kp 2

N=— 14.58

op (RR—RY)" ( )

A modified “annulus” Reynolds number can be defined in terms of the

equation:
64

)\ =
a Re,

(14.59)

From Egs. (14.58) and (14.59), the annulus Reynolds number can be
expressed as:
8pc® (R — Ry)"

Re, = Ko

(14.60)

Thus the recommended steps of calculation to determine the head loss
for a laminar annular flow of a pseudoplastic fluid are the following:

1. Determination of the radial position Ry of the maximum velocity by
iteration from Eq. (14.48).

2. Knowing Ry, the constant A, and the annulus form, parameter ¢ can
be calculated from Eqgs. (14.50) and (14.55).

3. Determination of the modified annulus Reynolds number from
Eq. (14.60).

4. Calculation of the friction factor using Eq. (14.59).

5. Finally we can determine the head loss for the annulus by applying
Eq. (14.57) or, more directly, by omitting steps 3 and 4 and using
Eq. (14.56).

14.5 TURBULENT FLOW OF NON-NEWTONIAN
FLUIDS IN PIPES

For any kind of non-Newtonian fluid, laminar flow gives way to tur-
bulent flow once a critical value of the Reynolds number is exceeded.
Experimental data show that the value of the critical Reynolds number
differs slightly from fluid to fluid. For the most common pseudoplastic
fluids, the following relationship is found to hold:

n+2
6464 2)nst
(Rey) = SotnnL2rT (14.61)
cr (3n+1)
The friction factor values corresponding to the critical Reynolds
number are shown in Fig. 14.15. The laminar—turbulent transition is
strongly influenced by the elastic properties of the fluid. Methods of
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FIGURE 14.15 Critical friction factor values for different pseudoplastic fluids.

retarding this transition will be discussed later in connection with tur-
bulent drag reduction.

In the following, our analysis will be restricted solely to pseudoplastic
turbulent flow. The analogous equations for other types of flow are ob-
tained in a similar way.

We consider the case of a steady, one-dimensional axisymmetrical
turbulent flow in a circular, infinitely long pipe. A cylindrical coordinate
system is chosen. The momentum equation for this case is.

n—1
pelr (ﬂ> —puw =0 (14.62)

dv
> K

dr dr

where —pu'w’ is the ., component of the turbulent stress tensor.

The solution of this differential equation can be resolved into two parts
in accordance with the nature of the flow. The flow near the wall is
laminar within a very thin laminar sublayer. Turbulent momentum
transfer cannot be developed here. Since the thickness of the laminar
sublayer 8 is very small relative to the radius R of the pipe, the velocity
distribution within the laminar sublayer may be taken as linear. This is
equivalent to the existence of a uniform shear stress in the sublayer equal
to the wall-shear stress tg. Thus, we can write:

pelr _ p|dv

n
> 5| =0 (14.63)

The definition of the friction velocity:

v, = % (14.64)
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can be used again, so that we obtain:

dv vZp z
BrTie ( K ) (14.65)

The linearized velocity profile within the laminar sublayer can be
expressed in dimensionless form:

Vo mnp\ao

= (K) (R 1) (14.66)

Outside the laminar sublayer, the viscous shear stresses are negligibly

small compared to the turbulent stresses. Applying Karman’s (1930)

equation for the mixing length, the momentum equation is obtained as:
dvy4

pelr _ 2 (a) (14.67)

P )
dr?
The integration of this differential equation is the same as for the

Newtonian case. Thus, the dimensionless velocity distribution for the
turbulent core flow is obtained as:

e 1 r r Vmax
V*_K[ﬁ +1n(1—\/;)} T (14.68)

The velocity distribution of the laminar sublayer and that of the tur-
bulent core flow have to yield the same value for the velocity at the
boundary of the two regions, i.e., where r = R — 3. Thus, equating the two
expressions for the velocity distributions, we obtain:

2-n

Vmax 1| |/ 3 / d SO
—+ - l—-=+4+Inl1—4/1—-= = 14.
p

Since & << 1, the quantity (1 —4/1 —ﬁ) can be expanded into a

— | <
s

binomial series. Neglecting the higher-order terms we get:

d d

(1) o () e

After substitution the maximum velocity is obtained as:

2—n 3
Vmax _ (V0N 1 ()0
e (E0)5 1 (101n) am)
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To calculate the maximum velocity it is necessary that & be known.
Prandtl assumed that for a Newtonian fluid:

V4O
Res = —— = const.
v

Analogously, we assume that for a pseudoplastic fluid:

V2 nanp
Reps = W const. (14.71)
Using Eqgs. (14.71) and (14.33), the thickness of the laminar sublayer can

be expressed as: s
—n

Repa n
(Rep> (V*> D (14.72)

Substituting this into Eq. (14.70), we get:

2- InR Reps\ ®
Yo Ln[Rep(£) "] - 1 (1458 + L2 (52) )
mk K n

Vi n 8

This expression contains two temporarily unknown constant Reps
and k. The velocity distribution is obtained as:

vl [\[ﬁ +1n(1 - @} L in[Rep (%)

_1 1+lr1Rep5 +6n+2 Reps A
K n n 8

The cross-sectional average velocity can be calculated in the usual way,
and is found to be:

(14.74)

C  Vmax 1/25 4
ST (12 5) (14.75)
thus:
C 2-n1 1 /77 In(Reps) 6n +2 (Reps "
z_n—ln{Rep( ) } E(@‘i‘ - >+ - ( . ) (14.76)

The friction factor can be calculated in the same manner as for the
Newtonian case:

1 0.8141 n n—2
= 0 (Repn(179)) 4 0.7532 =2
Vi nK g( p ) +0.753 2n

2 /R 1 InR
403535 [6“ + ( ep5> ] ! <2.283 + nep?’)
n 8 K n

(14.77)
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Laboratory and in situ measurements by Bobok and Navratil (1982)
both provided similar values of:
Reps = 12.087,

k = 0.407

These values are the same as those obtained for the Newtonian case.
Thus, finally we can write:

1 2 n 1(0.707
—= = ~1g(Rep(179)) 415115 (0 7 2.121)
Vi on 015 n (14.78)
————1.057
n
or, in a simpler form:
L2 (1-3)
== nlg(Repx 3 ) B (14.79)
For a fully rough pipe, the friction factor is invariably:
1 D
— =2Ig(3.715—= 14.80
7263715 (1450

In the transition region between the friction factor curve for a smooth
pipe and that for a wholly rough region, an interpolation formula can be
obtained analogous to the Colebrook equation:

1 10~ k
_ o 14.81
Vi 8 L{e%p &= 3715D (1481)

This so-called BNS-equation was elaborated by Bobok et al. (1981).
Friction factor charts based on the BNS equation are shown in Figs. 14.16
and 14.17. The slope of the friction factor curves for hydraulically smooth
pipes decreases as the behavior index decreases. The eventual laminar—
turbulent transition is the other remarkable feature of the curves for a
certain range of n. Experimental data obtained for crude oil pipelines with
diameters ranging from 100 to 600 mm are in good agreement with the
equation.

14.6 TURBULENT FLOW OF PSEUDOPLASTIC
FLUIDS THROUGH ANNULI

The vertical upflow of the drilling mud through the annular space
between the casing and the drill string is a complex mechanical and ther-
modynamical phenomenon. Considering the fluid to be incompressible, it
is possible the substantial simplification of the mathematical model. It is
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FIGURE 14.16 Friction factor chart for turbulent flow of a pseudoplastic fluid n = 0.4.
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FIGURE 14.17 Friction factor chart for turbulent flow of a pseudoplastic fluid n = 0.6.

well-known fact that for incompressible fluids, the pressure is not a ther-
modynamic variable, thus it is independent of the temperature. Since there
is no relation between the pressure and the temperature, the mechanical
energy equation and the thermal energy equation can be solved indepen-
dently. This fact makes possible an easy method of calculating the head loss
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of an incompressible, non-isothermal flow. It is obvious that the mathe-
matical model refers to a simplified hypothetical phenomenon.

Consider the annular space between two coaxial cylindrical surfaces
with radii of R; and Rj. Between the two cylindrical surfaces incom-
pressible, pseudoplastic fluid flows in an axial direction. The flow is
steady, axisymmetrical, and turbulent. An axisymmetrical, cylindrical
control surface is chosen between the radii of r and r + dr. The mo-
mentum equation in this case can be written as:

n-1 dw\4
dvy d| L (&) | _
(dl‘z)

It can be recognized that the first term is the force that maintains the
flow. The second term represents the viscous shear stress, while the third
one is the apparent turbulent shear stress, based on the mixing length
formula of Karman’s (1930). Both shear stress acts against the flow. A
more brief form of Eq. (14.82) is:

dv
dr

pglr + — (rK

d ,
pglr = —- [r (rrz + r)] (14.83)
The radial distribution of the sum of the stresses is obtained as:
1, = B A (14.84)

Since both the viscous and the turbulent shear stresses are zero in
the location of the velocity maximum, the constant of integration A can
be determined by satisfying the boundary condition; if r =Ry, then
Ty + 1, =0.

Thus, we get:

T Ty = —&]r + (Rro r) (14.85)

Ry is the temporarily unknown radius of the location of the velocity
maximum. This separates the two domain of the solution of Eq. (14.82). In
the region of:

d
Ri<r<Ry —<0,
dr
while within the interval:
d
Roy<r<Ry v >0,
dr

Thus the momentum equation is solved separately in these two re-
gions. Further, two regions of solution are obtained within the two
laminar sublayers on the two cylindrical bounding surfaces. The laminar
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FIGURE 14.18 Different regions of solution of the momentum equation.

sublayers have different thicknesses of 8; and 3;. All this is shown in

Fig. 14.18.
The differential equation for the laminar sublayers is:
d [/ [dv[*dv
- =— - = 14.
pelr dr (rK dr dr) (14.86)

In the inner, turbulent region, the following equation is valid:

df @
glr =1 lr.@%] (14.87)
dr’

Thus in the whole annular cross-section, the velocity distribution is
composed from four sections as it is shown in Fig. 14.19. These part-
distributions are obtained by the following expressions:

The linearized velocity distribution refers to the laminar sublayer on
the outer cylindrical surface is:

R2 _ R2]"
vy — [g_gK]. 2R2R0] Ry — 1) (14.88)

The turbulent velocity profile, which is valid in the interval of
Ry > r > Ry, is obtained as:

V2 — Vmax 1 I‘fRO rfRO
Y27 Vmax _ 2 Inl1—
Va2 Kl Rz—RoJrn( Rz—Ro>

The turbulent velocity profile belonging to the interval of Ry > r > Ry is:

Rofr Rofr
In{1-
Ro—R1+n< RO_R1>

(14.89)

V1 = Vmax _ 1
K

_ (14.90)
Vil
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FIGURE 14.19 Turbulent velocity profile in the annulus.

The linearized laminar velocity distribution of the laminar sublayer on
the inner cylindrical surface is:

2 _ Rp27n
v = {g—ilRoTl] (r—Ry) (14.91)

The location of the velocity maximum depends on the relationship of
R1/Ry. The turbulent velocity distributions are fitted to the corresponding
laminar sections. The velocity maximum is obtained the same from both
equations. The radius belonging to the velocity maximum is determined
by the equal values of the laminar and turbulent velocities obtained at the
edge of the laminar sublayer. Finally, the obtained equation can be solved
by the Newton—Raphson method. This result can be approximated for the
everyday practice by the formula:

7
R +Ry (%) ?

Ry 7 (14.92)
R, )20
1+ (%)
Based on Eq. (14.90), the cross-sectional mean velocity is obtained as:
C  Vmax 4 77 5 19
= — — (R — R —Rp(Ry — R

R [77
240

R, , 11
+ R, (R_R) 510 (Ro —Rq) +§R0(R0—R1)}} (14.93)
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The friction factor for the turbulent annular flow can be determined
by the equation:

2

L _ g [1 ’ <%) ]10_2 i (14.94)

- + .
& Reb 25" 30 R,—R

VA

In this equation, the modified Reynolds number for the annular flow is:

2 2(Ry + Ry)|"p

Re! = K (@) (14.95)
8\ n
The power is:
B=1,511n (O’ r7107 +2, 121> _3 1(‘)115 — 1,057 (14.96)

As a special case, when R; =0 and Ry =0, this formula obtains the
BNS-equation for cylindrical pipes. The dependence of the friction factor
of the annular flow on the modified Reynolds number and the relative
roughness is shown in Fig. 14.20.

Knowing the friction factor, the head loss in the annular section is:

’ L C2

h=A———— 14.97

Thus the head losses for all elements of the closed-loop circulation
system of the drilling mud are determined.
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FIGURE 14.20 Friction factor chart of the annular flow.
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S

FIGURE 14.21 Sketch of the borehole flow system.

Consider the mud circulation system as it is shown in Fig. 14.21. The
point 1 denotes the inlet cross-section of the drill pipe. The drill pipe is
connected to the drill bit at the point 2. The point 3 belongs to the outlet
cross-section of the drill bit nozzle. The point 4 denotes that cross-section of
the annulus where, after the cleaning of the bottomhole, the drilling fluid
and the removed drill cuttings are completely mixed. The point 5 is the
outlet cross-section of the annulus, from where the mud flows to the shale
shaker, which separates drill cuttings from the mud before it is pumped
back down the drill pipe. The streamlines of the mud circulation system are
closed curves, the flow can be considered to one-dimensional and steady.
All elements of this system are in serial connection. It is obvious that the
flow rate is constant while all arising head losses are added. Thus the
mechanical energy equation can be written between the points 1 and 5 as:

2 2
C C
&+h1+—1=&+h5+—5

+hyy 4+ hon +hay +hye + W, 14.98
og 26 g 2g T a2 T has sy s bh )
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W is the specific work of the unit-weight fluid necessary to clear away
the drill cuttings from the bottomhole. Some terms of this equation can be
neglected. Since the inlet pressure is about 10 MP, the differences of the
potential energies h; — hs and the kinetic energies c%/2g — cZ/2g can be
taken negligible. The outlet pressure of the annulus is atmospheric:
p5 = po- The density difference of the downflowing drilling mud and the
upflowing mixture of mud and cuttings can be also neglected. Thus the
manometric head of the pump is obtained as:

PO by bt Wy (1499)

The manometric head provides the necessary energy against the head
losses and the work of for bottomhole cleaning. The useful energy con-
sumption to accelerate the jets, to remove the drill cuttings from bot-
tomhole and to mix the mud and cuttings is:

Win + hys +hy, = H—h}, —hys (14.100)

The efficiency of the circulation system can be improved by decreasing
the head losses in the drill pipe and the annulus. It is a very effective
method for this the addition of long-chain polymer materials to the
drilling fluid. The addition a very small amount (a few ppm only) of
polymers to a turbulent pipe flow can result a large reduction of the
friction factor. This effect is not viscosity reduction, but the turbulent
shear stress is suppressed. The head loss reduction can be even 70%.

14.7 DETERMINATION OF THE TEMPERATURE
DISTRIBUTION IN THE CIRCULATING DRILLING
FLUID

The knowledge of the temperature distribution in the circulating
drilling fluid has a great importance to design drilling operations. Flow
and heat transfer in drilling operations is a complex simultaneous inter-
action between the circulating fluid and the surrounding rock mass
around the borehole. The temperature of the flowing fluid in the drill pipe
and the annulus is lower than the undisturbed rock temperature. This
temperature-inhomogeneity induces a radial heat flux toward the bore-
hole. It must be noted that the upper section of the borehole the fluid is
warmer than the rock, thus the heat flux is directed radially outward.

The drilling fluid is heated by the surrounding rock, which is cooled.
The heat transfer process is a time-dependent phenomenon during the
drilling history. An analytical mathematical model is elaborated to
describe this transient heat transfer. It makes it possible to calculate
temperature profiles for the entire wellbore and to investigate the influ-
ence of the main performance parameters.
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Two types of mathematical models, analytical and numerical, have
emerged for determination the circulating fluid temperature. Their
theoretical bases are the same; the balance equations of mass, mo-
mentum, and energy. The initial and boundary conditions, and the
material properties are obviously the same. The definitive difference
between the two models is the different ways to solve the equations.
Applying analytical solutions the obtained differential equations are
integrated in closed form as mathematical analytic functions. In order to
easy integration some simplifying assumptions can be made. Analytic
functions can give information about the system behavior even for lack
of detailed calculations. Numerical models use some time and space
stepping procedure; the solution is obtained by a generated table or a
graph. Numerical techniques are suitable to consider more realistic
models of greater complexity, at the cost of extended amount of
calculations.

Many early models assumed constant temperatures of the flowing
fluid as Edvardson et al. (1962). Others used experimentally determined
approximative correlations as Dowdle and Cobb (1975). A sophisticated
analytical model was made by Boldizsar (1958), neglecting the thermal
resistance of the multiple casing string. Raymond’s first numerical model
(1969) has included the transient response of the flow for the initial short-
time period.

The present model is an analytical approach, in which the unnec-
essary simplifications are avoided, and a rigorous analytical treatment is
applied as far as it is possible within reasonable limits. The temperature
distribution is determined along the depth both in the drilling pipe and
the annulus. Influencing factors include flow rate, well completion,
elapsed time, and geothermal conditions of the surrounding rock are
investigated.

The so-called forward circulation system is investigated, where the
drilling fluid flows down in the drill pipe and back up in the annulus.

The thermal interaction between the drilling fluid and the formation is
considered axisymmetrical. In accordance to the system’s geometry a
cylindrical coordinate system is chosen. It's z-axis is coaxial with the
drillpipe, directing downward. The origin z = 0 is at the surface.

At the depth of z, a suitable chosen control volume is taken in order to
write the balance equation of the internal energy. The control volume is
coaxial with the borehole. Its boundaries consist of a cylindrical surface of
radius R, and two horizontal parallel planes of distance dz between
them. The radius R« belongs to the location of the undisturbed formation
temperature T.. The temperature difference between the formation and
the drilling fluid induces a radial heat flux through several elements of the
wellbore. The control volume is shown in Fig. 14.22. It is convenient to
separate it into four sub-systems: the flowing fluid in the drill pipe and the
annulus, the well completion, and the formation.
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FIGURE 14.22 Elementary control surface.

In the downward flow through the drill pipe, the forced convection is
the dominant mechanism of the heat transfer. In the upward flow through
the annulus there is a twofold forced convection on both surfaces of the
annulus. The well completion may be a completed section of the borehole,
but it may be an open hole where the only thermal resistance is simply the
forced convection between the formation and drilling fluid. In the for-
mation radial conduction is the definitive phenomenon. These heat flux
crossing the boundaries of the sub-systems must be the same on both
sides.

Before balance equations are written, some simplifying assumptions
can be taken. The drilling fluid is considered incompressible. The flow is
steady and turbulent both through the drill pipe and the annulus. It is
well-known that the velocity and temperature distribution becomes
more uniform over the pipe cross-section as the Reynolds number in-
creases, while the average velocity tends to the hypothetical velocity
distribution of a perfect fluid. Thus the cross-sectional average velocities
and temperatures can be used in the balance equations. The steep
temperature change near the pipe wall in the thermal boundary layer is
replaced by an abrupt temperature drop between the solid wall and the
flowing fluid. The axial component of the conductive heat flux in the
fluid is negligible. The temperature field of the formation is considered
to axisymmetrical around the borehole. The rate of change of the tem-
perature in the fluid is substantially greater than in the surrounding
rock. Thus the transient heat transfer process can be considered to a slow
temperature change of the huge heat capacity rock mass, while the
thermal response of the tiny fluid filament in the borehole follows it
instantaneously.
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Thereafter the balance equation of the internal energy can be written
for the drill pipe as follows:

l’i'lCdTD = 27‘CRD1UD1(TA — TD)dZ (14101)

where m is the mass flow rate of the fluid (kg/s), c is its specific heat
capacity (J/kg°C). Uiy is the overall heat transfer coefficient referring to
the inner surface of the drill pipe (W/m?°C), Tp and T, are the flowing
fluid temperatures in the drill pipe and the annulus. The other notations
are clearly shown in Fig. 14.24.

The internal energy balance for the upflowing fluid in the annulus is:

Ii’ICdTA = ZWRCiUCi(TB — TA)dZ — ZTCRDiUDi(TA - TD)dZ (14.102)

where Uy; is the overall heat transfer coefficient referring to the inner
surface of the casing, Tg is the temperature of the cement sheet at the
borehole radius Rg.

The heat fluxes at the boundary of the cement sheet and the sur-
rounding rock are the same:

T =T
27RcUci(Tp — Ta) = 2TCkRTB

where kg is the heat conductivity of the rock (W/m°C), T is the undis-
turbed temperature of the rock at the given depth:

To =Ty + vz (14.104)

(14.103)

Ty is the surface temperature, vy is the geothermal gradient (°C/m), and
f(t) is the so-called transient heat conduction function, depending on the

Fourier number and the quantity RCI'(—EC‘

The balance Eq. (14.102) can be slightly modified:

dTp Ta-Tp
- B (14.105)
where the quantity:
mc
B=——— 14.106
ZTCRDiUDi ( )
doesn’t depend on the depth z.
Balance Eqs. (14.102) and (14.103) are added, thus we get:
. (dT, dT
rhe (dZA + dZD) = 2R UG (T — Ta) (14.107)

The temperature difference Tg — T can be expressed from (14.107):

mc <dT A dTD)

Tp — Tp =
B AT RGUG \dz | dz

(14.108)
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Similarly, T — Tp is obtained from Eq. (14.107):

Tow —Tp = w (Tg — Ta) (14.109)
R

The sum of Eq. (14.108) and Eq. (14.109) obtains:

T. _ AZ( me +RCiUCif(t) me )(dTA dTp

: 14.110
27RiUci krp  2mRgUg/ \ dz * dz) ( )

After some simplification, we get the expression:

dT, dT Tew —T
A, 9D _ A

EPR N (14.111)
in which the so-called performance state coefficient:
mc(kg + ReiUcif)
A= 14.112
2R Ucikr ( :

It seems to be independent of the depth z. Nevertheless, A depends
linearly on the circulating mass flow rate and the specific heat capacity of
the drilling fluid. Thus at a given state of performance, A can be
considered constant. In the case of constant A, the equation system is
linear and an analytic solution can be obtained relative easily. However, A
has a weak dependence on depth, temperature, and time.

In accordance to the well completion, R¢; and Ug;j changes in different
depth intervals. Heat conductivity kg can be replaced by its depth-
averaged value. Heat transfer coefficient between flowing fluid and
pipe wall depends on the viscosity; that is the temperature. In fluid-filled
annular sections natural convection occurs. Its heat transfer coefficient
depends on the temperature both directly, and because of the viscosity-
dependence, indirectly, too. The transient heat conduction function f de-
pends on the Fourier—number, that is the time and the well completion.
At a given time it can be taken to constant, thus we obtain different f
values for different time-step. However, Eq. (14.112) has a slightly non-
linear character, simple depth-averaged material properties are suitable
to determine temperature distributions.

Finally, the differential equation system from pure mathematical point
of view is:

AdTa p9To g g, (14.113)
dz dz
and:
Bdh +Tp =Tx (14.114)

dz
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Derivating Eq. (14.114) by z, after substitution we obtain a second-
order, linear, inhomogeneous differential equation with constant coeffi-
cient for Ts:

AB%—B%—TD+TO+YZ:O (14.115)
The homogeneous differential equation belonging to it is:
AB%—B%—TB =0 (14.116)
Its characteristic equation is:
ABN —Br—1=0 (14.117)

The roots of the characteristic equation are:

1 [ 4A
=_— 1+— 14.11
M A (1 + + B ) ( 8)
1 [ 4A
=—|1—-1/14+—= 14.11
A2 A (1 + B ) ( 9)

Since both A and B are real, the solution of the homogeneous differ-
ential equation is obtained as:

and:

Tphom = C1e’? + Coe™* (14.120)

Since the right-hand side of Eq. (14.113) is linear, a particular solution of
it is looking for also in linear form:

Tpinh = @+ Bz (14.121)
Substituting it into Eq. (14.114), we get:
Tpinh = By — To — vz (14.122)

Thus, the general solution of Eq. (14.114) is the sum of Egs. (14.121) and
(14.120):

Tp = C1eM* + Cre? + Ty + vz — By (14.123)

The temperature distribution of the annular flow can be determined
substituting Eq. (14.123) into Eq. (14.114).
Thus we get:

Ta = C1(1+Biy)eM? + Cy(1 + Bhp)e™? + Ty + vz (14.124)
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The constant coefficients C; and C; can be determined satisfying the
following boundary conditions; if z = 0, Tp = T,. That is, the drilling fluid
temperature at the entrance in the drill pipe on the surface is Te. The other
is that the bottomhole temperatures both in the drill pipe and the annulus
are the same. If z=H, Tp(H) = Tao(H). Thus, the following linear alge-
braic equation system is obtained:

Ci+C,=Te — Ty + By (14.125)
and:
CineMH 4 ConpeH = —By (14.126)
The roots of this equation system are:
Dy Dy
C=—=; G== 14.127
1= G= (14127)

where:
D = aelH — 3 et
D; = A (Te — To + By)elH 4 ¢ (14.128)
Dy = —Ai(Te — To + By)eH — y

Temperature distributions Tp(z) and Ta(z) can be determined by Egs.
(14.123) and (14.124). In order to calculate these, it is necessary to evaluate
the constants A and B. Both constants depend on the data of borehole
geometry, drilling fluid properties, surrounding rock parameters, and the
data of performance. These are the following:

* borehole depth, drill pipe outer and inner diameters, drill bit size,
and the instantaneous completion of the borehole

e entrance mud temperature, density, viscosity, specific heat capacity,
and heat conductivity of the mud

* average density, heat conductivity, specific heat capacity of the rock,
surface earth temperature, and geothermal gradient

e circulation mass flow rate, mud temperature at the entrance, and
elapsed time during drilling operation

Knowing these data, the overall heat transfer coefficients Up; and Ug;,
and the transient heat conduction function f(t) can be calculated in the
well-known manner (Willhite, 1967). The transient heat transfer function
has different values belonging successive steps of elapsed time.

Using the evaluated constants A and B, temperature distributions
is obtained from Egs. (14.123) and (14.124). It is obvious that many
independent variables influence temperature distributions in the bore-
hole. This can be followed in the calculated temperature distribution
diagrams.
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FIGURE 14.23 The temperature distribution in the drillpipe.

Considerable observations can be made examining the calculated
temperature distribution functions.

The temperature of the downward flow in the drillpipe increases
monotonically. Bottomhole temperatures decrease as the mass flow rates
increase. Temperature gradient of the downward flow at the bottomhole
equals zero. These observations are demonstrated in Fig. 14.23.

As the fluid turns upward, at the bottomhole, temperature increases
until attains its maximum. The location of this maximum is obtained at
hardly different depths as it is shown in Fig. 14.24. It is remarkable that the
annular temperature distribution differs greatly from the undisturbed
natural geothermic temperature.

Above this depth, the temperature of the upflowing fluid decreases,
tending to the downflowing fluid temperature. It is shown in Fig. 14.25.

Both the downflowing and the upflowing fluid temperature depends
on the mass flow rate and the specific heat capacity of the circulating
drilling fluid. As mass flow rate increases, the fluid temperature decreases
since the performance coefficients A and B are linear functions of the mass
flow rate.

Bottomhole temperature is also influenced by the mass flow rate.
Entrance temperature of the drilling fluid influences the bottomhole
temperature especially at high mass flow rates. The change of the bot-
tomhole temperature can be seen in Fig. 14.26.



340 14. FLOW AND HEAT TRANSFER DURING DRILLING OPERATIONS

120

— —— A=3000
2 -
v = =A=5000
3 — - A<7000
©
= T = A=9000
g. - + A=11000
]
[ = = A=15000
-« =A=20000
- T,
0 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Depth [m]
FIGURE 14.24 The temperature distribution in the annulus.
80
)
)
i
S
fror)
©
= —d
8 —
]
-
10
0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Depth [m]
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FIGURE 14.26 The effect of the injection temperature on the temperature distributions.

The findings, based on this mathematical model, seem to be general
valid.

The above analytic mathematical model is convenient to predict the
temperature distribution of the circulating drilling fluid both in the drill
pipe and the annulus. Calculations are referred to for forward circulation.
Many independent variables influence temperature distribution in the
drill pipe and the annulus. Some of these are constant, like rock properties
geothermal gradient, borehole geometry, etc. Others change as perfor-
mance parameters vary, e.g., mass flow rate, entrance fluid temperature,
and the elapsed time. The knowledge of the temperature distribution in
the circulating drilling fluid can be applied in the design of different
drilling operations.
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Serious plant accidents can occur in geothermal energy generation
plants. Primarily, the period of drilling, well preparation works, and the
trial run is critical, and unforeseeable, hard to handle events can take
place. A serious field accident happened in Hungary during the recovery
of a deep, high temperature, high-pressure geothermal reservoir, causing
severe environmental damage. The suppression of the steam blowout of
Fabiansebestyén’s well Number 4, which occurred under unique condi-
tions all over the world, was achieved by the exemplary cooperation of
Hungarian and American professionals of the oil industry. The review of
the case study is edifying, and provides a great opportunity to sum up
what was learned so far by reconstructing the fluid dynamic and ther-
modynamic processes of the eruption.
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344 15. A CASE STUDY ABOUT A SERIOUS INDUSTRIAL ACCIDENT

15.1 THE BRIEF STORY OF THE BLOWOUT

The Hungarian Oil Research Company drilled several deep, pro-
specting wells on the southeastern part of the Great Plain of Hungary in
the hope of hydrocarbon deposits in the 1980s. In the area of Nagyszénas
and Fabiansebestyén, after several 3200—3500 m deep wells, a deeper
region was targeted with well Number 4 of Fabidnsebestyén. On the 16th
of December, 1985, the actual depth of the borehole had been 4239 m,
when the replacement of the drilling bit became necessary. While the
drilling string was pulled out, the movement induced pressure waves in
the mud column. This caused the pressure balance between the mud
column and the over-pressured reservoir fluid to end, and a remarkable
mud overflow occurred at the wellhead. The master valve was success-
fully shut off, but the choke line remained open yet. While the choke line
was closed, the resulting pressure surge pushed the drill collar and the bit
to the blowout preventer and the master valve was broken off. As the
donuts were opened, the high overpressure (about 360 bar) threw out the
drill collar and a piece of the drill pipe from the well. The drill collar was
broken into three pieces and fell to the platform, killing the head driller.
The over-pressured hot water displaced the mud from the well soon, and
became a steam blowout produced from a mixture of hot water and
steam. Since the inner shaft of the blowout preventer was also broken, the
closing of the upper valve was not successful. Later a huge explosion
happened, shooting the broken shaft laterally, and another lateral jet
occurred in place of the shaft.

The eruption reproduced the legendary steam-cannon of Archimedes.
According to the antique scripts, Archimedes fired one-pound stone balls
by steam pressure on Roman ships assaulting Syracuse. Leonardo da
Vinci planned the steam-cannon from the scripts, and it was assembled
and tested by researchers of the Massachusetts Institute of Technology in
2006. The fired one-pound stone ball was accelerating to 300 m/s speed,
and its energy exceeded the energy of the today’s machine-gun bullet.

The hot steam cloud from the horizontal steam jet perfused the
equipment creating almost zero visibility and making the suppression
attempt impossible. After the blowing of the jet, different filling materials
were applied to stop the eruption, unsuccessfully.

The Hungarian and American well control experts, and the engineer-
ing corps of the Army dismounted and transported the drilling rig be-
tween the 3rd and 21st of January 1986. Then a new blowout preventer
was mounted in the place of the old one between the 22nd and 26th. From
the 27th until the 30th, they tried to fit production tubing under pressure,
unsuccessfully. Hence, on the 31st, traditional killing techniques were
used and “killed” the well by pumping sludge into the 8 5/8 inch casing
and closing of the choke line.
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The destroyed blowout preventer, the desperate work environment,
and the extreme conditions of the well did not allow the usual well
analysis with proper measurements to the strict standards. Despite these
conditions, many valuable data were recorded along with the main aim of
suppressing the blowout. A pithy, accurate, and reliable summary of the
incident was done by E. Buda (1996). His excellent case study is the basis
of much research. The overview, systemization, evaluation, and reliability
check are the aims of the following discussion.

15.2 THE HYDRODYNAMIC AND THERMODYNAMIC
RECONSTRUCTION OF THE BLOWOUT

The suppression of the steam blowout of Fabiansebestyén’s well
Number 4 was an internationally acknowledged, remarkable achieve-
ment of Hungarian and American professionals of the oil industry. The
reconstruction of the fluid dynamic and thermodynamic processes of the
blowout can be done by the reliable, accurate case study of E. Buda (1996),
and the observations, notes, and photographs from the well control ex-
perts. This is a very useful tool in unveiling the parameters and behavior
of the reservoir. Fig. 15.1 shows a typical photo of the initial phase of the
blowout.

The reconstruction of the blowout pf well Number 4 in Fabianse-
bestyén can be done through the analysis of its mathematical model.
Before the mathematical model can be constructed, the conceptual model
of the phenomenon should be determined.

FIGURE 15.1 Initial phase of the blowout (Buda, 1996).



346 15. A CASE STUDY ABOUT A SERIOUS INDUSTRIAL ACCIDENT

The essence of the conceptual model is the following. A deep, over-
pressured hot water reservoir was tapped by the borehole of Fabianse-
bestyén-4. The well blew out; the high pressure and temperature hot
water flowed up from the depth of about 4 km to the surface through the
damaged blowout preventer. The upflowing fluid pressure decreased
substantially as the decrease of the depth and because of the friction
losses. Nevertheless, the wellhead pressure attained the 360 bar level.
This high wellhead pressure excluded the occurrence of continuous fluid
flow at the outflow opening.

The high pressure at the wellhead disintegrated the continuous liquid
phase into a set of discrete small particles generating a spray. It was a
sudden change of state, at the outflow opening a finite pressure jump
formed a discontinuity surface. The phenomenon is analogous to the in-
jection process into the combustion chamber of diesel engines. In the case
of modern diesel engines, the pressure of injection can be even 300 bar
into the combustion chamber, having a lower pressure of 10—12 bar.
Relative to this, the vaporization from 360 bar to the atmospheric pressure
is not an essential difference. The vaporization terminates the continuous
nature of the jet. Thus, the hot water flows through the well at a high-
pressure level; at the outlet cross-section it is vaporized and moves
away as a set of individual particles. The liquid—steam phase change
happens as the over-pressured droplets arrive to the atmospheric pres-
sure surroundings. This theory is confirmed by the irregular shape of the
jet, as can be seen in Fig. 15.2.

The mathematical model is made within this conceptual framework.
It is based upon three pillars. The first is the system of balance equations.
The second is the conditions of uniqueness: the geometry of the system,
the initial and boundary conditions, and the material properties. The third
pillar is the method of the solution; it can be analytical, numerical, or
experimental.

FIGURE 15.2 The irregular shape of the jet (Buda, 1996).
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The basic equations are the balance equation of the mass, the mo-
mentum, and the energy. These can be simplified remarkably for the one-
dimensional flow across the well. An adequate approximation is to
consider the flowing water incompressible. Thus the mechanical and
thermal processes can be treated separately, the equation system becomes
substantially simple.

It is necessary to determine the boundaries of the system. It is conve-
nient to subdivide the whole system into two subsystems. These are the
reservoir and the well. The reservoir is considered two-dimensional. Its
outer boundary is the cylindrical contour of the undisturbed region
around it. The upper and lower plane boundaries surrounded the reser-
voir part of interest. The internal cylindrical boundary is the wellbore
surface. The well is bounded by its cylindrical surface with the casing and
the cement sheet. There is no mass transfer across this surface, but heat is
transferred across it. Thus, the upflowing hot water heats the surrounding
rock mass around the well, while its temperature decreases. The flow of
the hot water ends at the outflowing cross-section of the blowout pre-
venter. This cross-section is a so-called strong singular surface on which
the disintegration of the continuous liquid phase occurs. The mathe-
matical model can operate only if the adequate data of the system are
known and used for calculations. In order to achieve this, it is necessary to
account for the available data.

15.2.1 Available Data Measured During the Blowout

The geometry of the system is shown in Fig. 15.3, which is the sketch of
the well completion. The wellhead equipment, and the damaged blowout
preventer with the place of the outflow can be seen in Fig. 15.4. The actual
bottomhole depth is 4239 m. The density of the mud used before the
blowout was 2130 kg/m”.

The pulling out of the drill string induced pressure waves. The pres-
sure balance between the mud column and the formation was disturbed
by the pressure minimum of the waves caused an intense inflow into the
well. The depth of the inflow was about 3880 m, where the well is sur-
rounded a fractured Triassic dolomite and dolomite breccia formation.

The last formation temperature and pressure measurements were
made at the depth of 3684 m. The obtained formation temperature was
190.5°C, the pressure was 712.26 bar. The geothermal gradient can be
calculated considering that the annual mean temperature is 10.5°C at the
surface. Thus we get:

CT-T, 1905-105
T H 36845

= 0.04885'C/m (15.1)



348 15. A CASE STUDY ABOUT A SERIOUS INDUSTRIAL ACCIDENT

A -

=

SSS|

TRt 02 2 AR

e

2750 m

105/8 n

EOSONSES

8.?3 "

Hydrostatic pressure of
mud column 790 bar
Mud density 2130 kg/m®

7$$ n
Hydrostatic pressure of

mud colummn 907 bar
TD4239m

FIGURE 15.3 Well completion of Fab-4 (Arpasi, 1997).

The assumed depth of the sudden inflow into the well is 3880 m. The
extrapolated formation temperature is here:

T =Ty + yH = 10,5 + 0,04885-3880 = 199,6 C (15.2)

The extrapolated formation pressure in the over-pressured region at
this depth is 731 bar.

During the blowout, the wellhead pressure had a stabilized value of
360 bar. This was measured by the manometer at the wellhead equipment.
There were several attempts to block the damaged blowout preventer
with different kinds of filling materials. When the outflow was tempo-
rarily stopped for a few minutes, the wellhead pressure increased to
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410 bar. The temperature of the wellhead equipment at its outer surface
was measured by a contact thermometer. The result was 150°C. The
preceding listed measured parameters are certain. The characteristic
pressure values in the well can be calculated based on these certainly
measured values.

When the flow is stopped, transient pressure waves occur in the well.
The amplitude of the pressure waves is obtained as:

N
Ap = pac = 920-1012-3,1 =28,86-10° — =29bar  (15.3)
m

where a is the speed of sound in the water-filled steel pipe, and c is the
cross-sectional average velocity before the flow stopped. The static pres-
sure at the temporarily closed wellhead is obviously the difference of the
pressure maximum and the amplitude:

Pstk = Pmax — Ap = 410 — 29 = 381 bar (15.4)

When the flow is stopped, the well can be considered a piezometric
tube. Naturally the flow is also stopped in the formation, thus the whole
system is in hydrostatic state. The formation pressure is balanced by the
wellhead pressure and the hydrostatic pressure of the hot water column.
Consider the pressure distribution along the depth in the well as it is
shown in Fig. 15.5. The straight line AB represents the natural hydrostatic
pressure distribution of the hot water of 190.5°C. The section AC is the
lithostatic pressure distribution of the rock. The line CD represents the
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FIGURE 15.5 Static pressure distribution in the well.
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pressure distribution in the over-pressured formation, where the fluid
bears the weight of the overburden rock mass. The point E marks the
depth of the latest pressure measurement (3684 m) where the static for-
mation pressure is 712 bar. It is assumed that the well column is filled by
hot water of density 920 kg/m?>. Thus, the pressure gradient is constant
from the surface to the over-pressured region (AC) and in the over-
pressured zone to the depth of the inflow (CD).

The static wellhead pressure was 381 bar when the flow had been
temporarily stopped. The average rock density over the over-pressured
region is 2340 kg/m®. Two static equations can be written with the pre-
ceding data. The lithostatic pressure at the point C is:

Pe = Pk 8 he (15.5)
The hydrostatic pressure at the point C is obtained as:
Pc = P+ pghe (15.6)

From these two equations the depth of the top of the over-pressured
region can be calculated:

P 381-10°
g(pk—p) 9,81-(2340 — 920)

=2735m (15.7)

This depth is obtained to 2730 m from geophysical logging. The coin-
cidence of these two values seems to be satisfactory. The static pressure at
the depth of inflow (point D) is:

N
Pu = Py + pgH = 3,81-10° +920-9, 813880 = 731-10° — =731 bar
(15.8)

These data form the cardinal points of the reconstruction of the
blowout phenomenon. One of the most important basic parameters is the
flow rate in the well. Correct flow rate measurements were not feasible in
the time of the blowout, but it can be determined using the preceding
available data. Thus the flow in the reservoir and the well can be
determined.

15.2.2 The Flow in the Reservoir and the Well

As mentioned in the previous section, there were not adequate flow
rate measurements at the time of blowout. All of the present experts were
in complete agreement that the flow rate was uncommonly high; it was
estimated to 5000—8000 m?/day. The wellhead pressure remained con-
stant, even if the remarkable scaling resulted a cross-sectional decrease in
the upper section of the well. The flow rate of the well can be calculated
reliably based on the measured pressure and temperature data.
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As the hot water upflows in the well, the pressure decreases from
731 bar to 360 bar while its temperature also decreases from 199.6°C to
191.5°C. It is obvious that the water must be in liquid phase along its
pathway. Since the saturation pressure of the hot water of 191.5°C is
13.3 bar, the occurrence of steam phase in the well is impossible. Conse-
quently the frictional pressure loss can be determined exactly depending
on the flow rate for the homogeneous liquid phase. On the other hand, the
formula for this case is much more simple than in the case of two-phase
flow. This is also true for the calculations of the temperature distribution.

The well is a very suitable diagnostic tool to determine the behavior of
the reservoir. The flowing pressure and temperature at the depth of the
inflow can be calculated reliably knowing the wellhead pressure and
temperature.

Knowing the pressures at the inflow and the wellhead, the flow rate of
the upflowing water can be calculated with high accuracy. The short
initial transient period of the blowout is excluded in the calculations. It is
assumed that during this initial period, the drilling mud was displaced
from the well by the hot water, thus homogeneous, steady, turbulent hot
water flow is considered. Since the temperature of the hot water changes
only slightly, its temperature-dependent material properties such as
density and viscosity are taken at an average temperature. The water is
considered to be incompressible. The mechanical energy balance between
the inflow depth and the wellhead can be written as:

Pwt = Pyn + pgH + Ap/ (15.9)

in which pys is the pressure of the inflowing water, py is the wellhead
pressure, H is the depth of the inflow, and Ap’ is the frictional pressure
drop in the well. The lower, uncased section of the well has a length of L,
a diameter of Dy and a friction factor A;. The length of the cased section is
Ly, its diameter is D, and its friction factor is A,. It is assumed that the
hydraulic behavior of the well is fully rough, depending on the relative
roughness only. In this case:

AL (15.10)

(21g3,715D)*

where D/k is the relative roughness, the ratio of the diameter and the
average height of the roughness of the pipe wall.
Knowing the friction factor, the pressure loss can be calculated by
Weisbach'’s equation:
L ¢
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The cross-sectional average velocity is obtained with the mass flow
rate as:

dri
— (15.12)
Dm-p
Substituting this into Eq. (15.11), we get that:
8 L
o 2

The inflowing pressure py¢ also depends on the mass flow rate because
the frictional pressure loss of the flow toward the well in the reservoir:

mv Rs

where R, is the radius of the contour of the drained area, p« is the un-
disturbed reservoir pressure there. The thickness of the reservoir is h, its
permeability is K, and the kinematic viscosity is v.

The difference of the undisturbed reservoir pressure and the wellhead
pressure is the supply of the potential energy increase of the upflowing
water, and the frictional pressure loss in the formation and in the well:

B mv . Re 8 Ly .2
Pw — Pk = PgH + = hKl R, + (7\ D5 +)\2Dg> (15.15)

Thus, we get for the mass flow rate a quadratic algebraic equation:

am? + b +c =0 (15.16)
In which:
8 Ly L,
a=—|M—=+1n—= 15.17
e ( 1D§ 2D§> ( )
v R
C=Pp, —px— pgH (15.19)

To determine the constants a, b, and ¢, most of the necessary parame-
ters are known accurately, while others are estimated only. The parame-
ters used for calculations are the following;:

The undisturbed reservoir pressure is 731 bar, while the wellhead
pressure during the blowout is 360 bar. The density of the hot water is
920 kg/m?, its kinematic viscosity is 1.3 x 10~" m?/s. The depth of the
inflow is 3881 m. The relative roughness of the uncased borehole is 200,
while of the cased section is 1000. The length of the uncased section is
197 m, its diameter is 194 mm, and the friction factor is obtained to 0.0303.
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The length of the cased section is 3684 m, its diameter is194 mm, and the
friction factor is 0.0197.

The estimated parameters are: The radius of the contour of the drained
area is 500 m, the reservoir thickness is 24 m, the permeability is 1 darcy
(1072 m?).

Substituting these values into Egs. (15.16)—(15.19), the mass flow rate is
obtained as 89.45 kg/s. This can be proven with easily accounting the
pressure drops. The pressure loss in the reservoir is:

Ao b — p TV nR_w_89745'1,3-10’7-8,5172
Pr=Pe = Put Zomk "Ry 6,28-24-10-12

=4,11-10° % = 4,11 bar (15.20)

The friction pressure loss in the well is obtained:

Ly L\ 8m? 197 3684\ 8-89,52
AP = [Nzt | = ooy 0,02 ’
P ( 1D§+ 2D§> 2-p <0’03 0.102 100 072> 3,142-920

=17, 11.105£2 = 17,1 bar
m
(15.21)

The hydrostatic pressure of the hot water column is p = pgH.
The static pressure of the undisturbed reservoir is:
P = Ap. + pgH + Ap' + p, = 4,11 +350 + 17,1 + 360 = 731 bar
(15.22)
Thus the mass flow rate is obtained to 89.45 kg/s, that is7728.5 t/day.
The volume flow rate is 8400 m®/day, which is slightly higher than the
estimated value of 8000 m>/day by E. Buda. This value decreased

somewhat, since the scaling caused the decreasing of the casing diameter
during the blowout.

15.2.3 Temperature Distribution in the Flowing Well

The temperature of the inflowing hot water is the same as the forma-
tion temperature at the given depth:

T=T,+vH (15.23)

where Ty is the annual mean temperature at the surface, y is the
geothermal gradient, and H is the depth of the inflow. The temperature of
the surrounding rock around the well is:

Tw =To+ vz (15.24)
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The temperature inhomogeneity T — T induces a radially outward
heat flow toward the far rock mass of undisturbed temperature. Thus the
temperature and the thermal energy content of the upflowing water de-
creases continuously. As the consequence of the thermal energy loss of the
water, the surrounding rock is warmed up, thus the inhomogeneity of
the temperature field is decreased together with the radial heat flow. Thus
the water temperature at the wellhead increases gradually until the whole
system attains a steady state. A heated region of characteristic shape is
developed around the well, an axially symmetric body of revolution
(Toth, 2005). This transient thermal interaction will be investigated in the
following sections. The calculated temperature distribution is suitable to
obtain another independent method for verification the calculated value
of the inflow depth.

In accordance to the geometry of the well, a cylindrical coordinate
system is chosen. Its downward directed z-axis coincides with the sym-
metry axis of the well, the z = 0 point is belongs to the surface. A suitable
control volume is chosen as a limit for the balance equation of the internal
energy. It is a cylinder, coaxial with the well. At the arbitrary depth of z,
there are two parallel planes of an infinitesimal distance of dz. These are
the upper and lower boundaries of the control volume. The outer cylin-
drical boundary has a radius of R, which belongs to the undisturbed
temperature of the formation. The control volume is shown in Fig. 15.6.
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FIGURE 15.6 Control volume for the energy equation.
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It is divided to two subsystems: one of them is the upflowing fluid
confined by the tubing wall of the radius Rig. The heat transfer between
the upflowing hot water and the tubing is happened along this surface.
The other is the well completion and the surrounding rock around the
well. All radii necessary for the calculations are marked in the figure. The
radially outward heat conduction is the dominant phenomenon across
the well completion and the surrounding rock. Since the determination of
the two different phenomena needs disparate kinds of differential equa-
tions, it is convenient to calculate the two subsystems separately. The joint
condition between them is that the heat flux transferred from the water to
the tubing is the same that is conducted across the well components to-
ward the rock:

mcdT = ZRlBTCUl]g(T — TF)dZ (15.25)

The heat flux transferred across the well completion is the same as the
conductive heat flux in the rock:

2RypmUs (T — T) = Dk F— L
f(t)
where c is the specific heat capacity of the water, U is the overall heat
transfer coefficient, Tr is the temperature at the borehole wall, kx is the
heat conductivity of the rock, T is the undisturbed geothermal temper-
ature, and f(t) is the so-called transient heat conduction function

depending on the Fourier number and the coefficient RigU1p/k.

In order to calculate the overall heat transfer coefficient, consider the
horizontal section of the well completion of unit thickness, as it can be
seen in Fig. 15.6. The elements of the well completion: tubing, casings, and
cement sheets have thermal resistances in serial connection. Across all
elements, the temperature drops are added, while the heat fluxes are the
same.

The mechanism of the heat transfer across the single elements is
different. There is forced convection between the upflowing water and the
tubing wall, conduction occurs across the tubing and casing walls and
free convection develops in the fluid-filled annulus. The heat flux between
the water and the tubing wall is:

Q = 27‘5R1]3h1]3 (T — T]B) (15.27)

(15.26)

where hip is the heat transfer coefficient on the cylindrical surface of
radius Rjp, while Typ is the wall temperature there. The heat flux across
the tubing wall is:

Q= 2nka+ (15.28)
1K
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where k, is the heat conductivity of the steel. If the annulus between the
tubing and the casing is filled with water, the heat flux by free convection
can be written as:

Q = 2mRikhgy(Tik — Tap) (15.29)

in which hgy is the heat transfer coefficient of the free convection through
the annulus.

The heat is transferred also by conduction across the casing wall. The
heat flux is obtained as:

Q= ok, 128 — Dok (15.30)

The heat is conducted through the cement sheet with a flux:

—TF

In RF
Rox

Q = 27kt (15.31)

where k. is the heat conductivity of the cement.

Expressing the temperature differences from Egs. (15.27)—(15.31) and
summing up them, we get the temperature difference between the water
and the rock at the borehole wall:

1 R R R 1 R R
Q ( 1131 1k, Ris L Rigy Rox

T-Tp=— -L__-
F 2R1BTC

— n—— n
hig Rip Rik hgy ka Rop

RlB In
k RzK

The so-called overall heat transfer coefficient can be defined based on
the equation:

(15.32)

Q = 2R1BTCU1]3 (T — TF) (15.33)
Thus, we obtain the expression:

1 1 Rp R11< Rip Rip RZK RlB
U hip ki RlB Rikhgy ki RZB ke R2K

(15.34)

to calculate Uyp.

Naturally the overall heat transfer coefficient is not constant along the
whole depth of the well. In the uncased section, it is 1/hjp, and as the
number of the casings increases as the terms of Eq. (15.34) increases also.
Combining the Egs. (15.25)—(15.34) we get the differential equation:

dT ZTERl]gUlBkK(T — TO — ‘YZ)

dT _ 2nR 1535
dz mc(kg + RipUipf(t)) ( :
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Introducing a few approximations we obtain a first-order, linear,
inhomogeneous differential equation of constant coefficients. The neces-
sary assumptions are the following: the heat conductivity coefficient of
the rock is replaced by its depth-averaged value, the overall heat transfer
coefficient is similarly averaged along the depth and we assume that the
transient heat conduction function does not depend on the depth. Thus
the so-called well-performance coefficient can be introduced in which all
parameters are constant along the depth:

_ mc (kg + RigUipf)
~ 2wRipUspkk

(15.36)

The dimension of A is m. Using it, Eq. (15.35) can be written in the
simple form:
dT
A—=T-Tp—vyz (15.37)
dz
It can be solved easily by pure analytic means (Téth, 2005). The
boundary condition is that the temperature of the inflowing water is the
same as the reservoir temperature. Thus we get:

T=Ty+v(z+A)—yAer (15.38)

This equation expresses the temperature distribution of the upflowing
water along the depth. The time-dependence is considered implicitly, as
the well-performance coefficient contains the transient heat conduction
function. The time-dependent nature occurs remarkably in the initial
period of the blowout, later it tends gradually to the steady state.

Calculate the temperature of the flowing water at the wellhead using
the following actual data: the mass flow rate is 89.45 kg/s, and the specific
heat capacity of the water is 4187 ] /kgC. The average heat conductivity of
the rock is 3.5 W/mC. The inner radius of the tubing is 0.1 m, and the
overall heat transfer coefficient is 42 W/m?C. The value of the transient
heat conductivity function f is 1.80. Thus, the well performance coefficient
is obtained to:

_ mC(kK + RlBUl]gf) . 89.45-4187(3.5 4+ 0.1-42- 1.8)
 2mRigUgkx 6.28-0.1-42-3.5

= 44870 m

(15.39)

Thus the temperature of the water at the wellhead, in the depth of
z=0is:

Ty = 10 + 0.04885 44870 (1 - e*%) =1915°C (15.40)
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The depth of the inflow H can be calculated from the measured well-
head temperature:

T = To + YA — yAe & (15.41)

The wellhead temperature of the water was not measured directly.
The temperature of the outer surface of the blowout preventer was
measured only by a contact thermometer. Knowing this measured tem-
perature, the water temperature can be calculated. The depth of inflow
can be obtained as:

1
1+ 0 ki

YA

Thus, the depth of the inflow can be calculated not only by the over-
pressure distribution, but it can be verified by another independent
method based on the temperature measurement. As it was mentioned,
the measured temperature is available on the outer cylindrical surface of
the casing directly below the blowout preventer. Thus the temperature
of the flowing water can be calculated knowing the overall heat transfer
coefficient and the heat flux across the well completion. The former is
obtained as:

11 Rip Rk Rip Rip ) Rox . Rip  Rigy Rsk

U hip ki Rip Rikhgyir  ka  Rop Roxhaa  ka R

(15.43)

The heat flux across the well completion is equal with the sum of the
leaving heat flux due the free convection, and radiation on the outermost
cylindrical surface of radius R3k. It can be expressed by the equation:

Q = 2Rskhak (Tak — Tr) + 2Rsxmed (Tag — Ti) (15.44)

in which hgy is the heat transfer coefficient of the free convection, Ty, is the
temperature of the surrounding air, € is the emissivity of the cast steel
surface, ¢ is the Stefan—Boltzmann coefficient. In order to get the heat
transfer coefficient of the free convection, it is necessary to determine the
Grashof number by the parameters of the air:

B-AT-g-D* 3.2:1073-100-9.8-10.5%
V2 N 1.32-10-12

The product of the Grashof number and the Prandtl number is 1.16.107,
thus the Nusselt number is obtained as:

Gr = =2.32-107 (15.45)

Nu = 0.52(GrPr)*® = 30.35 (15.46)
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The heat transfer coefficient can be calculated as:
kp-Nu  0.025-30.35 W

hsx = = =1.518 —— 15.47
K7D 05 m2°C (1547)
On the other hand, the heat flux is:
Q = 2RypmU1(Ty — Tsk) (15.48)
The temperature of the flowing water is:
Q
T=T —_ 15.49
3K + 37RisUn ( )

Calculate the heat flux using the following data: Rz =0.25m,
T, =50C, ¢=0.25 ¢ =>5.67.108 W/m?K* Gr=2.32.10", Nu = 30.35,
hyx = 1.518 W/m?C, and hig = 29 W/m?C. Finally, we get:

Q= 6.28-0.25-1.518(150 — 50) + 6.28-0.25-0.25~5.67-10_8)

5 5 (15.50)
x (4.23-10° — 3.24-10°) = 707 W/m
Thus the water temperature at the wellhead is:
707 .
Ty =150 + 6280129 188.8 C (15.51)

This temperature is in good agreement with the value obtained by
Eq. (15.41).

The experts working on the suppression of the steam blowout at
Fabiansebestyén, despite the hard circumstances, recorded many valu-
able data, which gave the opportunity to discover the features of the
revealed high pressure over-pressured reservoir. The verification of the
given data was achieved by a coherent reconstruction based on fluid
dynamic and thermodynamic calculations. The physical laws as gov-
erning principles were suitable to check the reliability of the recorded data
and could fit in a non-contradictory system. The estimated value of
output, which was one of the most doubtful data among the experts,
proved the excellent sense of reality of the onsite petroleum engineers.
From the calculations, without considering the effect of scaling the
volumetric flow rate, was 8400 m>/day, which strengthens the estimated
8000 m>/day for the initial period of the eruption. Because of the sup-
pressing effect of scaled casing and choke line, the volumetric flow rate
could easily drop to the estimated 5000 m’/day or even less.

The 360 bar wellhead pressure could hardly fit in the model, while the
actions at the wellhead were considered as isenthalpic expansion and the
jet was seen as continuous. The conception of the individual droplet set
broken by vaporization made it possible to understand and fit the outlier
pressure value in the model.
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The wellhead temperature also caused some discrepancy. The water
temperature was estimated much higher already by E. Buda (1996) than it
was deduced from the measured temperature of the casing head’s outer
surface with a contact thermometer. Because of the extreme flow rate, the
temperature decrease of the upwelling water was relatively low, even
before the stationary state.

The conformity of the results of heat loss calculations of the well and
deduced temperatures from the casing surface measurements are well-
looking. This initial period temperature is increasing with time until a
heated region evolves around the well. This final value can be well
calculated, and they show the changes of temperature with time in the
simulation model. Nevertheless, our current knowledge on the reservoir
can only become fact if it is supported by a well analysis on a future
production well.
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16.1 A PROSPECTIVE GEOTHERMAL POTENTIAL OF
AN ABANDONED COPPER MINE

The Recsk copper mine is an unfortunate implementation of the
Hungarian ore mining industry. Recsk, as can be seen in Fig. 16.1, is sit-
uated in the Matra Mountains, Northern Hungary.

The Matra Mountains belong to the Inner Carpathian volcanic arc. This
is the highest (1014 m) and the largest Tertiary volcanic range of Hungary.

Flow and Heat Transfer in Geothermal Systems
http://dx.doi.org/10.1016/B978-0-12-800277-3.00016-5 363 Copyright © 2017 Elsevier Inc. All rights reserved.


http://dx.doi.org/10.1016/B978-0-12-800277-3.00016-5

364 16. MISCELLANEOUS GEOTHERMAL APPLICATIONS

ol ] CENTRAL MTS. é’ /G<7
BUDAPEST BELT ,\C,) $ 00
@6\( &%
® \ y —_—
A

’u' .ll"

Zz—>>

/ l Egere
e x umll
J .;*:;’«” GyBngybsoroszi b iy
AAASS _ \
2
) £t 6
'Gyongyos / \ 2 X317
- (=13 8
=39
AR 5 CxJo

FIGURE 16.1 Geology of the Méatra Mountains. (1) Basement formations. (2) Upper
Eocene biotite-hornblende andesites. (3) Eggenburgian andesites. (4) Lower Rhyolite Tuffs.
(5) Carpathian pyroxene andesites. (6) Middle Rhyolite Tuffs. (7) Badenian pyroxene
andesites. (8) Diatomites (Caldera stage sediments). (9) Hydroquartzies (Caldera stage). (10)
Mining area. After Foldessy (1975).

In the last century detailed geological and geophysical surveys have been
made, providing a great number of data for both the surface and
subsurface geology. The most informative contributions to our knowledge
about this area are the works of Kubovics and Pant6 (1950), Foldessy
(1975), and Zelenka (1973). More than 1200 ore exploratory drillings have
been undertaken to find and evaluate the important copper deposits of
Recsk.

16.1.1 Geological Background

The pre-Tertiary basement of the Matra Mountains is separated by a
regional scale deformation zone, the so-called Darné line. Two essentially
different basement structures can be recognized: the folded Mesozoic of
the Eastern Métra and the faulted Mesozoic structural belt of Western
Matra. The structural differences between the two units separated by this
zone have been maintained throughout the Tertiary period.

The first Tertiary volcanic activity belonged to the vertical movements
along the Darnd line, and four substages of volcanism resulted. The first
was entirely subaqueous volcanism in the Upper Eocene. The rocks are
typically biotite-hornblende andesites. The second substage has developed
by step-by-step assimilation and contamination as well as the build up of a
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stratovolcanic character. The originally andesitic character was shifted to-
ward the more acidic range, producing dacites. In the third substage the
eruptive center was shifted northward, produced a stratovolcanic sequence
of biotite partly overlapping the earlier volcanic sequences. The fourth
stage was the development of a central explosive caldera of the stratovol-
cano, and resulted in the formation of radial and irregular dyke patterns.
The quickly subsided volcanic area has filled with reef limestones.

This subsidence reached its maximum by the middle Oligocene, when
the largest part of the Eocene volcanics were covered by marine sediments.
The Upper Eocene volcanic activities have associated with very significant
mineralizations in connection with shallow intrusive porphyric body
and its skarn environment producing porphyric copper ores, skarnous
copper ores in the intrusives, and altered country rocks. The third substage
of volcanism has produced intensive hydrothermal alterations as well as
formation of stockwork copper ores. In the caldera area exhalative-
sedimentary copper mineralization developed during this stage.

The Neogene volcanism includes andesitic and rhyolitic phases.
Through these phases the initial rhyolitic predominance has been
changed toward the andesitic character.

The entire ore-forming process was restricted to the hydrothermal
temperature range. Its complexity is due to its temporally multiphase
nature and the variety in the environmental controls of localization. Two
stages of mineralization can be distinguished. The main stage comprises
mineralization related to the intrusive host rocks. A second, less impor-
tant stage is coupled to the latest effusives. The ore formation began at
400°C, and ended at about 150°C.

The most important ore type is the porphyry copper mineralization, in
the form of disseminations, microveinlets and veins throughout the inner
alteration zones within intrusive bodies. The porphyry copper ore
reserves total several hundred million tons at 0.4% copper cut off grade,
with a 0.77% average copper grade. From the low-grade central core a
gradual enrichment occurs, 0.4—0.6% values in the phyllic region and
0.9—1% Cu maxima in the propylitic zone.

The highest concentrations of copper can be found in the limestone
skarns, with an average 1.5% Cu content. Two main localizations of these
skarn ores have been recognized: one is stratabound and parallel to the
original bedding of the skarnified sediments, the other is represented by
cross-cutting steep lenses and veins. The ores related to the skarn zone
represent 30% of the economic ore reserves of the deposit.

There are two main ore zones in the Recsk area. The so-called upper ore
zone is situated at the depth interval between —490 and —690 m below sea
level. The lower ore zone can be found between —690 and —890 m below
sea level. The two ore zones are separated by a quartzit layer without any
ore content.
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16.1.2 The Story of the Mine

Recognizing the existence of the important copper ore reserves in 1969,
it was decided to deepen a shaft directly instead of further exploratory
drillings. The first shaft—Recsk I—was deepened with an internal
diameter of 8 m, with a depth of 1202 m. It was completed in 1974. In the
same year the deepening of the second shaft (Recsk-II) had been started.
During this deepening, there was some serious water inrush. The largest
happened at a depth of 770 m, with a flow rate of 0.95 m?®/min. The
salinity of the inrushed water was very high, at 9000 g/m>. The scale
deposit was removed steadily from the wall of the shaft.

To connect the two shafts, two horizontal roadways were driven to a
depth of —700 and —900 m below sea level. The cross-section of the
roadway is 20 m” Generally the roadways have provd to be consistent,
but mainly were supported by roofbolts of 1.8 m length. The roadway
system of the mine is shown in Fig. 16.2.

There was a water inrush during the roadway driving too. This
happened at the lower —700 m level with a flow rate of the 2 m’/min. The
inflowing cross-section was cemented with difficulty, because the pres-
sure of the water was as high as 70 bar. In the lower roadway at the level

Recsk |. shaft
surface height +208.35 m
above Baltic sea

Recsk Il. shaft (
surface height +258.86 m
above Baltic sea

FIGURE 16.2 The roadway system of the mine.
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of —900 m there was no problem with the water, because the upper
roadway drained the water, its pressure at —900 m depth was 25 bar only.

By the time the roadways had been completed, the price of the copper
in the world market fell radically despite forecasts. While the IBRD
(International Bank for Reconstruction and Development) prognosticated
6090 USD/ton for 1995, the actual price on the international market was
2000 USD/ton only. Since the price of the copper remained permanently
low, the development of the Recsk mine has not continued, since 1981.
The Hungarian Council of Ministers ordered the steady interruption of
any activity in the mine. The pumping of the water has also been sus-
pended. Thus the roadway and the shafts of the mine are currently
flooded. The rise of the water level with time is shown in Fig. 16.3. The
shafts are plugged, but a monitoring pipe having a diameter of 250 mm
makes possible the measurements of the level, concentration, and tem-
perature of the water.

16.1.3 Geothermal Conditions

High underground temperatures were observed in the Recsk mine
during the roadway drifting. Intensive ventilation was necessary in the
whole period of implementation. Many temperature data have been
obtained in exploratory boreholes. Most the data were measured by mer-
cury thermometers a few days after finishing the drilling operations.
Apparently these values are lower at least by 10—20% according to mea-
surements, than the undisturbed rock temperatures. The corrected tem-
perature data of the rock obtained an average value at the upper roadway
level 960 m under the surface is 51.8°C. The geothermal gradient based on
these data is 0.0435°C/m. The average temperature obtained at the lower
roadway level 1.160 m depth from the surface is 59.5°C. The geothermal
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FIGURE 16.3 The rising water level over time.
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gradient calculated by these temperatures is 0.0427°C/m. The comparison
of these gradients seems to be in rather good agreement. The rock mass
around and above the roadway is mainly andesite and limestone. The
overall heat conductivity of the cover layers is obtained as 2.53 W/m °C.
Thus the terrestrial heat flow calculated by these data is 0.108 W/m?. The
heating of the area is slightly greater than the Hungarian average of the
terrestrial heat flow (0.095 W/m?). The supply of the water flooding the
roadway and the shafts is deep water-bearing rock mass around the mine.
The temperature of the water is essentially the same as the rock tempera-
ture. Temperatures measured on the occasion of water inrushes are in
agreement with rock temperatures (Toth, 2007).

The water-filled mine has a large geothermal potential. The volume of
the flooded mine is more than 200,000 m>. At the free surface of the water
in the shaft the temperature of the water is 29°C. This temperature
increases along the depth. The walls of the roadway are in thermal equi-
librium with the water. In the shafts some free convection can occur,
deforming the linear geothermal temperature distribution along the depth.

A submersible pump can be lowered to the bottom of the shaft to produce
warm water. Assuming 1.2 m>/min flow rate and 30°C temperature, the
obtainable thermal power is 2.512 kW. After utilization the produced warm
water can be discharged without any back-pressure into the other shaft.

The utilization may be primarily district heating. It seems necessary to
built in suitable heat pumps to increase the temperature of the produced
water. Another possibility, to use the large-diameter shaft, is to build in a
hairpin-type bore-hole heat exchanger without any water production.
Both methods can be economic. The area close to the mine is a wooded
recreation area. There are some health resorts with medicinal springs and
hotels with medical treatment facilities. The produced water is suitable to
supply spas and swimming pools. The clean geothermal heating main-
tains the clean healthy air. The produced geothermal energy is sustainable
for a long time. The heat transfer surface of the roadways and the shafts is
more than 150,000 m?. Assuming a temperature difference of 4°C between
the rock and the water, the heat transfer coefficient is 4.8 W/ m? °C, the
thermal power supply of the system is obtained 2.880 kW. Thus the
planned thermal power can be enlarged. The geothermal energy is really
renewable on this area.

16.2 GEOTHERMAL DEICING OF A MINE TUNNEL

16.2.1 Geological Background

In the southwestern part of Hungary in the Bataapati region, a small-
to-medium-level underground radioactive waste deposit system was
built. The storage space is connected by two 1800-m-long mine tunnels.
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The storage area was constructed through these tunnels, and afterwards
they were used for the operational traffic and ventilation. If the outside
temperature is less than —5°C, then to improve the workplace climate and
prevent the icing of the entrance section to the mine tunnel, it is necessary
to warm the intake air to the tunnels. The original design included the use
of traditional oil burners to warm the air. During the construction period
80 m?/s of air flow was used. This was the maximum air demand. During
normal operations 25 m>/s air flow is utilized. Regardless of the season
these air flows had to be heated to between +2°C and +5°C. In the case of
an extreme weather condition (for example —18°C), the air temperature
must be increased to between +20°C and +22°C. In this latter case,
2316 kW of heating capacity is required. This requires 247 L/h of fuel for
the oil burners. The next phase of the development of the waste deposit
system would have required the installation of two more oil burners.
Instead of this expensive solution, and to decrease the huge CO; emission
from the oil burners, I recommended a geothermal solution for the floor
and the roof heating for deicing the floor of the tunnel and avoiding the
formation of icicles on the roof.

16.2.2 Using Geothermal Energy

Tempering the air of the mine tunnels is necessary on the one hand to
ensure that the facility’s climate is comfortable for the workers, and on the
other hand for deicing the floor of the entrance section. Geothermal
energy has always had a dominant role in the climate of underground
facilities and mine tunnels. The wall temperature of the mine tunnel is
about +17C°C to +18°C, which is much higher than the inflowing air
temperature in winter. The surface of the tunnel walls is a very large heat
transfer area. The air intake tunnel walls with the floor and the roof
constitute 36,000 m* of surface area over the length of 1800 m. The heat
flow is constant over this major surface and, thus, heats the air flow in the
mine tunnel. This can be determined by a simple calculation.

16.2.2.1 Heating Requirement for the Icing Intake Tunnel

It is enough to heat the first 300 m section of the intake-air tunnels just
where the icing appears. The heating system uses hot water and glycol
solution being circulated in pipe loops below the floor and on the roof
of the mine tunnel. Similar installations like sidewalk, roadway, and
bridge deicing systems have been demonstrated in several countries,
including Argentina, Japan, and the United States. In our case the
heating requirement can be met by two sources. The first is air—water
heat pumps utilizing the heat content of the warmed-up air as it flows
out of the mine tunnel. The other source is the heat content of the drained
water from the deep part of the mine.
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Chapman and Katunich (1956) derives and explains equations for the
heating requirement of a snow-melting system. Chapman and Katunich
(1956) derive the general equation for the required heat output (q) in
W/m?. We can use it for the tunnel floor.

do =95 + I T A(qe + qp) (16.1)

where g is the sensible heat transferred to the ice (W/ m?); Jm is the heat
of fusion (W/m?); A is the ratio of snow-free area to total area (dimen-
sionless); g is the heat of evaporation (W/m?); qy, is the heat transfer by
convection (W/m?).

The sensible heat g5 to bring the ice to 0°C (32°F) is:

q. =s-hep; (16.2)

where s is the rate of taken in snow layer on the floor (0.0025 m/day); p is
the density of ice (917 kg/ m®); cp is the specific heat of snow (J/kg °C); hiis
the enthalpy of fusion for water (J/kg); ¢; is the conversion factor
(86,400 s).

It can be assumed that the ice and snow carried by vehicles immedi-
ately start to melt, resulting in it not cooling below 0°C. Thus, in the g
member this can be ignored.

Suppose that the thickness of snow cover entered into the tunnel is
2.5 mm by day. The heat of fusion gn, to melt the snow is:

S W
qm = a-cp-p = 0.8835 2 (16.3)

The heat of evaporation of the molten snow ge:

W
Qo = —Cm-Poy = 7.238 —

. = (16.4)

where p,, is the density of water (1000 kg/ m?); ¢y, is the heat of evapo-
ration (2512 kJ /kg).

The heat transfer gy is between the water film on the floor and the
intake air. We can calculate the heat transfer coefficient by turbulent flow.
In this case the heat transfer coefficient depends on the Reynolds number.

qy = h-(Ty —Ty) =39.24 % (16.5)

where T, is the water film temperature (°C), usually taken as 1°C (33°F);
T is the intake air temperature at the entrance cross-section in winter
(=5°C).

Summing the fluxes, give:

w
q,=47.35 — (16.6)



16.2 GEOTHERMAL DEICING OF A MINE TUNNEL 371

The heated area in the length of 300 m is 1800 mz, thus the needed
thermal power on the floor of the tunnel is:

Qi =A-q, = 85.23kW (16.7)

where Qs is the thermal power for the floor heating (kW).

In winter, where some water appears from the roof of the mine tunnel,
the icing occurs as icicles. It appears only in the first 300 m of the tunnel. If
we can warm the roof surface over the freezing point (0°C) icicles should
not develop, and the water drops could disperge in the intake air flow. If
we heat the 6-m arch of the tunnel roof, to a length of 300 m we get
1800 m? area. Thus the needed thermal power on the roof is:

Q, = h-A-AT = 70.63 kW (16.8)

where AT = 6°C is the temperature difference between the freezing point
and the intake air (1 — (—5))°C; Q; is the thermal power for the roof
heating (kW).

The floor and the roof heating demand together is

Qr = Q¢+ Q, =85.23 +70.63 = 155.86 kW (16.9)
where Qr is the total thermal power demand (kW).

16.2.3 Geothermal Sources for Heating the Mine Tunnel

The maximum inflowing air is 80 m®/s which occurred during con-
struction. In this case the cross-sectional average velocity is:

g0 m’ 2
c= % =g = 267 m? (16.10)
S

where c is the cross-sectional average velocity (m/s); Q is the maximum
inflowing air (m3/s); A is the cross-section of the tunnel (m?).
The hydraulic radius of the tunnel:

_A_303
H= ¥ 7201

where K is the hydraulically active perimeter.
The Reynolds number is

=15lm (16.11)

_ c-4Ry _ 2.67 $4:1.51m

Re - 105 ™
S

= 1612680 (16.12)

The Prandtl number of the air is obtained as

pr=" chp — 0.541 (16.13)
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where p is the air density (1.292kg/m’); v is the kinematic viscosity
coefficient (0.024 m?/s); cp is the specific heat (1005]/kg °C); k is the
thermal conductivity (0.024 W/m °C).

The Nusselt number can be calculated from the Reynolds number and
the Prandtl number.

Nu = 0.015-Re%83.Pro4? — 1645 .5 (16.14)
The heat transfer coefficient on the wall is:
_ Nu-k \W
- 4Ry T m2°C
The temperature distribution along the length can be calculated by the
equation:

h

(16.15)

4Ry7Lh

T = Twan — (Twan — Tr)e ™ (16.16)
where L is the length of the air in the tunnel (m); T is warmed-up air
temperature after the length L (°C); Tyap is the tunnel wall temperature
(°C); Ty is the outside air temperature (°C); m is the mass flow rate of air
(kg/s).

If the length of the tunnel is 1800 m and the outside temperature
is =5°C, the air temperature at the end of the intake tunnel can be
calculated.

4151 1-1800-6.54
TL =18 — (18 — (-5))-e”  103-1005 =15.3°C (16.17)

This calculated temperature was checked by the measured tempera-
ture at the end of the intake tunnel, when the outside temperature was
—5°C. The result was very close. The measured temperature was 16°C.

In an average winter day the air temperature after passing through the
intake tunnel is warmed from —5°C to +15.3°C. This means: AT = 20.3°C.

During the construction period 80 m®/s (103 kg/s) of air flow is used.
This is the maximum air demand.

In this case the maximum thermal power Q, is:

Quax power = Mcp (T — Ty) = 2101 kW (16.18)

It can be seen that the thermal power from the tunnel wall is almost as
much as the thermal power of a traditional oil burner at 2310 kW at the
maximum air demand.

In order to heat the mine tunnel, it is not possible to use all of the
maximum heat power. It can be exploited by the enthalpy difference
between the inlet and outlet air of the heat pump: AT =15.3 — 5 =11.3°C.
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In this case the useful thermal power from the air is:
Quirmax = tcp(Tp, — Tp) = 1138.7 kW (16.19)

where Tj is the outlet air temperature (5°C).
During normal operations 25 m®/s (32.3 kg/s of) air flow is utilized.
In this case the thermal power Q, is:

Qn = mcp(Ty — Tp) = 652.8 kW (16.20)
The useful power in the normal operation is:
Quirmin = ey (T, — To) = 357 kW (16.21)

Another enthalpy source is the collected mine water. Every day in the
mine tunnel about 500m® of water is produced, which means
m =5.79 k?g mass flow rate. After a long-term test the temperature of this
mine water is about 15°C. This temperature does not depend on the
season, as it is the same in winter or summer. At normal operations this
water is collected in a sump under the surface in the mine. From time to
time this water is pumped to a creek on the surface. Since the flow rate of
this inflowing water is steady, and its temperature is constant, we can use
its thermal power as a natural geothermal source. The heat power from
the mine water is then:

Qy = ey (Ty — Tp) = 242.4 kW (16.22)

where m is the mass flow rate of the collected mine water (57.9 kg/s);

cy is the specific heat of water (4.187 k] /kg °C); T, is the mine water

temperature (15.3°C); T is the outlet water temperature (5°C).

It can be seen that the heating demand is 156 kW. The heat supply from
the air is 357 kW and from the mine water is 242 kW. Thus either heat
source is enough to satisfy the heating demand of the mine tunnel deicing.

To collect the mine water, a 100-mm-diameter pipe is used. Every day
about 500 m? (0.00578 m®/s) is produced in the mine tunnel. The cross-
sectional average velocity in the pipe is:

3

_ 4Q :4-0.00579 mT
D2 0.12- 7Tt m?

_v:D_ 0737 2-01m

v 106w

—0.737 ? (16.23)

Re = 73700 (16.24)

The Reynolds number is high and in this case the flow is turbulent.

A heating loop system is designed on the floor and on the roof for
the first 300-m section in the mine tunnel. Present practice is to use
plastic pipe, with the typical being polyethylene (PE) according to
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Lund (1999, 2000). The relative roughness (the ratio between pipe diameter
and absolute roughness) of the PE pipe is D/k = 10,000. These Reynolds
number and relative roughness values determine the hydraulically smooth
behavior of the flow. In this case the friction factor (Karman, 1930) is

1
R — (16.25)

(218357) i
From this implicit equation it is obtained by iteration that A = 0.01919.
The total pressure loss is the sum of the pressure loss from the tube and
the pressure losses from the resistance of the 1500 elbows by Varga (1970).
The tube spacing is 0.4 m in the 750 loops and along the 300 m length. The
procedure is similar to running radiant heat in a building’s floor slab.

L v? v2
I3V A
Ap' =Ag5p +) &ep 5 (16.26)
where A is the friction factor (0.01919 dimensionless); L is total length of
the tube (15,000 m); p is the water density (1000 kg/ m3),' v is the cross-
sectional average velocity (0.732m/s); D is the pipe diameter (0.1 m);
£ = 0.3 is the elbow loss coefficient.

N
Ap’ = 903833 — (16.27)
m

which is about 9 bar.

The temperature distribution along the length is

_4uL
T =Ty + (Ty — Tp)e pcvD (16.28)

where Ty is the wall temperature of the mine tunnel (°C); T; is the intake
water temperature in the tube (°C); U is the overall heat transfer coeffi-
cient (W/m? °C); ¢, is the specific heat of water (kJ/kg °C).

We can calculate the overall heat transfer coefficient.

1 1 Rin Rout Rin

U h * ktube n Rin - kcement In @ (16.29)
where h is the heat transfer coefficient between the flowing water and the
tube wall (W/m? °C); Ry, is the internal diameter of the tube (m); Ryy is
the external diameter of the tube (m); k is the thermal conductivity of the
PE tube (W/m °C); ¢ is the shape coefficient.

The shape coefficient can be used for consideration of the asymmetric

heat flow pattern around the heating pipe (Bobok, 1993).

Nu = 0.015-Re%®.Prd42 = 372 4 (16.30)

_Nu-k
D

h

(16.31)
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W 1 m?°C
h = 2234 20 ho 0.00045 W

X 2 X X 2 %
d=|2 -1-2 -1 16.
|: <R0ut> Rout (Rout> :| ( 6 33)

where x is the distance between the floor surface and the centerline of the
tube (m). It is obtained for the shape

(16.32)

@ =0.2679
Finally the overall heat transfer coefficient is
1 W
U= =11.90 ———= 16.34
0.0045 + 0.00455 + 0.07901 m? °C ( )

If the temperature of the wall tunnel is Tyay =2°C and the outlet
temperature of the heat pump is Tpp = 24°C, then the outlet water tem-
perature from the tube is

_4UL
Ty = Tyan + (Thp - Twall)e prevD (16.35)
4-11.90-15000
T, =2+ (24 — 2)e 1000-4187-0.737-0.1 = 4.175°C (16.36)
The thermal power from the heating loop is
Q=r-c(T; — Ty), (16.37)
. kg KJ
=579 —=.4.187 ——-(24 — 4.18) =488 kW 16.38
Q S A7 e ) (16.38)

16.3 CONCLUSIONS

The tunnel floor of the entrance section of an underground waste
deposit system in Hungary is exposed to frost and icing in winter. This is
rather dangerous for the heavy vehicle traffic. To avoid this danger, an
in situ floor deicing heating loop system has been designed. This floor
heating system is much more effective than the originally designed intake
air heating by traditional oil burners. There are two heat sources of the
geothermal energy. One is the heat content of the surrounding rock, which
warms up the ventilated air. The other is the heat content of the collected
mine water. The temperature of the mine water and the circulated air
are the same at about 15°C. The floor heating system from the warmed
intake air is a two-stage geothermal direct use. The first stage is the
geothermal heating of the intake air by the rock through the huge heat
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transfer surface of the tunnel walls. The second stage is an air—water heat
pump exploiting the enthalpy of the circulated air and transferring it to
the heating loop system. Using the thermal power of the mine water
makes necessary to apply a water—water heat pump. Both thermal
sources are enough to satisfy the deicing heat demand. In this case the
geothermal potential of the mine tunnel is proven greater than the deicing
heat demand. The benefits of the geothermal solution in spite of the oil
burners are lower heating power, elimination of the use of fuel oil, and
decreasing the CO, emissions radically.
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