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FOREWORD

The increasing demands for renewable chemicals, materials, and fuels, as well
as the continuing evolution of capabilities in biology, chemistry, and engineer-
ing, are giving rise to significant efforts in using biotechnological approaches
in new process configurations. These approaches are particularly well suited
to conversions of carbohydrate and other biological starting compounds into
useful materials, as enzymes and microbes naturally transform these sub-
stances. Building on a fair history of industrial use of microbes in the produc-
tion of high-value, low-volume materials, such as pharmacologically active
compounds, vitamins, and amino acids, we are now extending these approaches
to the production of higher volume/lower value chemicals, such as monomers
for making polymers, lubricants, and fuels. As we progress up this volume
curve, the demands on the bioprocess become more and more stringent, and
highly integrative approaches among disciplines are required to produce
the biocatalysts and associated processes necessary for commercially viable
outcomes.

Coincident with this evolution, a number of books and monographs have
appeared on the subject of metabolic engineering and systems biology, and
the primary literature is becoming more and more detailed. With this back-
drop, this book does not attempt to be an authoritative reference on tools and
techniques, but rather focuses on the strategies and approaches that enable
commercial biocatalyst design. It should be of use to graduate students and
early career professionals in the field, or to other generalists and professionals
from related disciplines who are eager to grasp the basic tenets of engineering
biocatalysts. In addition, it may well be of value in providing corporate manag-
ers and government officials with insights into the requirements for successful
program outcomes.
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viii FOREWORD

This book gives an overview of current approaches, with examples drawn
from academia and industry and covering biocatalysts ranging from Esche-
richia coli and Steptomyces to yeast and microalgae. The vitality of the field is
exemplified by the relatively young ages of the contributors, who are shaping
the field with their novel approaches, and the inclusion of case studies adds a
realistic dimension to the exposition.

JoHN PIERCE
London



PREFACE

This book highlights current trends and developments in the area of engineer-
ing industrial strains for the production of bulk chemicals and biofuels from
renewable biomass. The commercialization of bioprocesses derived from
the use of superior engineered strains often requires the balance between
unknowns and trade-off between multiple complex traits of the biocatalyst.
Complex phenotypes are traits in a microbe that require more than one
genetic change (multigenic) to be modulated simultaneously in the microor-
ganism’s genome for full expression. Knowing what those genetic changes are
for a given trait and how to manipulate those targets in the most efficient way,
forms the motivation for writing this book. The chapters address tools and
methodologies developed for engineering such complex traits or phenotypes
in industrial strains. Emphasis is on the multidisciplinary (metabolic engineer-
ing, screening, fermentation, downstream) nature of the approach or strategy
that is used during the course of developing such a commercial biocatalyst.
Keeping in perspective the multidisciplinary nature of activity and the inter-
ests of a broader range of readers, the topics included in the chapters are not
meant to be fully exhaustive in their respective areas; rather, the emphasis is
on comparison and integration of different tools and objectives. Chapters 1-5
summarize broadly the current tools and technologies available for engineer-
ing a complex phenotype in an industrial strain with brief reference to exam-
ples, while Chapters 6-9 highlight in detail the application of such tools and
methodologies in the form of case studies.

Chapter 1 summarizes the age-old proven approach for engineering in-
dustrial strains using mutagenesis, followed by screening or selection, often
termed classical strain engineering (CSI). Discussions of the applicability of
CSI for engineering complex traits provide information on its suitability and
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limitations. Chapter 2 describes the current state of the art in the use of *C
tracer-based analysis and metabolic flux analysis for engineering complex
pathways. Chapter 3 describes the utility of genome-scale models by integra-
tion of “omics” technology and physiological data to address engineering of
complex traits.

The probability of commercial success of a bioprocess that uses microbial
catalysts and renewable feedstocks, as compared with platforms that use chem-
ical catalysts and fossil fuel-derived feedstocks, greatly depends on the time
it takes to engineer these microbes to perform the desired reaction under
harsh manufacturing conditions at rates, titers, and yields that meet the criteria
for economic feasibility. Chapter 4 addresses new evolutionary strain engi-
neering approaches that are superior to CSI in developing complex traits
rapidly. Transitioning from laboratory-scale demonstration to commercial-
scale operation is not only time-consuming but also expensive, especially with
the uncertainties associated with scalability of complex traits. Chapter 5
describes an integrative platform for rapid fermentation process development
and strain evaluation that not only minimizes the number of false positives
from a strain engineering program but also provides a cost-effective approach
to optimize fermentation conditions.

Chapter 6 is a case study on the use of CSI (Chapter 1) and improved
strain screening strategies (Chapter 5) at Dutch State Mines for engineering
Streptomyces clavuligerus for commercial production of anti-infectives.
Chapter 7 is a case study on the use of evolutionary approaches (Chapter 4)
at Opx Biotechnologies for improving tolerance of Escherichia coli to 3-
hydroxypropionoic acid. Chapter 8 is a complete strain engineering case study
from the National Renewable Energy Laboratory in an unsequenced micro-
alga, Chlorella vulgaris, for production of biofuels. The authors have high-
lighted integration of improved analytics and strain screening approaches
(Chapters 1 and 5) with “omics” technology (Chapter 3) for addressing needed
improvements in multiple complex traits. Chapter 9 demonstrates the feasibil-
ity of using genome-shuffling approaches (Chapter 4) in Saccharomyces cere-
visiae and Schefferomyces stiptis for improving tolerance to inhibitors in
lignocellulosic substrates.

Scientists, engineers, and project managers who are leaders in their respec-
tive areas of research and drawn from diverse fields of science and engineering
have contributed to the above chapters. The book has attempted to capture
the thought processes on which they so often rely during the initiation and
development of a commercial biocatalyst project. I hope the readers find the
content of the book to be intellectually satisfying.

I would like to thank the editors at John Wiley & Sons for being patient
and for their cooperation during the course of this project.

RANJAN PATNAIK
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FIGURE 3.3. Comparison of network-embedded thermodynamic analysis (NET) and
thermodynamics-based metabolic flux analysis (TMFA). Inputs and outputs to NET
analysis and TMFA are color coded in red and blue, respectively.
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Enzyme interaction
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FIGURE 3.6. Illustration of the proposed algorithm for identifying reporter metabo-
lites and subnetwork structures signifying transcriptionally regulated modules. A meta-
bolic network is converted to metabolic and enzyme-interaction graph representations.
Gene expression data from a particular experiment then are used to identify highly
regulated metabolites (reporter metabolites) and significantly correlated subnetworks
in the enzyme-interaction graph. TCA, tricarboxylic acid cycle; PGI, phosphoglucose
isomerase; PFK, phosphofructokinase; FBP, fructose bisphosphatase. Reproduced from
Reference (64), Copyright 2005 National Academy of Sciences, USA.
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FIGURE 7.3. The 3-HP toleragenic complex (3-HP-TGC) as constructed from meta-

bolic pathway fitness data. Subsections of the 3-HP-TGC are denoted for the choris-
mate, nucleotide biosynthesis pathway, polyamine, and threonine/homocysteine

superpathways.
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CLASSICAL STRAIN IMPROVEMENT

NATHAN CROOK AND HAL S. ALPER

1.0 INTRODUCTION

Improving complex phenotypes, which are typically multigenic in nature, has
been a long-standing goal of the food and biotechnology industry well before
the advent of recombinant DNA technology and the genomics revolution. For
thousands of years, humans have (whether intentionally or not) placed selec-
tive pressure on plants, animals, and microorganisms, resulting in improve-
ments to desired phenotypes. Clear evidence of these efforts can be seen from
the dramatic morphological changes to food crops since domestication (1).
These improvements have been predominantly achieved through a “classical”
approach to strain engineering, whereby phenotypic improvements are made
by screening and mutagenesis of strains that use methods naive of genome
sequences or the resulting genetic changes. This approach is well suited for
strain optimization in industrial microbiology, which commonly exploits
complex phenotypes in organisms with poorly defined or monitored genetics.
As a recognition of importance, Arnold Demain and Julian Davies begin their
Handbook of Industrial Microbiology and Biotechnology with “Almost all
industrial microbiology processes require the initial isolation of cultures from
nature, followed by small-scale cultivations and optimization, before large-
scale production can become a reality” (2). The classical approach is concerned

Engineering Complex Phenotypes in Industrial Strains, First Edition. Edited by Ranjan Patnaik.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.



2 CLASSICAL STRAIN IMPROVEMENT

with the central steps in this process—between isolation and large-scale pro-
duction. Hence, the methods and techniques utilized in this approach amount
to “unit operations,” that is, standard procedures that can be generically
applied to any desired strain of interest.

A variety of approaches are used to force genetic (and hence phenotypic)
diversity including naturally occurring genetic variation and genetic drift,
mutagenesis, mating/sporulation, and/or selective pressures. These methods
have garnered large successes across a wide range of host organisms owing
mostly to the absence of required sophisticated genomic information or
genetic tools (3). Thus, the classical approach can be applied to both model
organisms (such as Escherichia coli and Saccharomyces cerevisiae) and newly
isolated or adapted industrial strains. As a result, the classical approach has
seen wide adoption in industrial fermentations due to its proven track record
in alcohol and pharmaceutical production. Finally, strains developed in this
manner are currently accorded non-genetically modified organism (GMO)
status, removing significant barriers to their acceptance by both regulatory
agencies and consumers. This chapter will highlight several of the approaches
and successes that exemplify the classical approach for improving complex
phenotypes of industrial cells as well as indicate its limitations and potential
interfaces with emerging technology.

1.1 THE APPROACH DEFINED

The classical approach is characterized by the introduction of random muta-
tions (either forced or natural) to a population of cells followed by screening
and/or selection to isolate improved variants. The defining quality of classical
strain engineering (as opposed to other evolutionary engineering methods) is
genome-wide mutagenesis. This approach utilizes techniques that introduce
variation across all regions of the genome, in contrast to other techniques that
specifically target the mutations to single genes (or subsequences thereof). To
date, this approach has been successful in improving complex phenotypes
because of the global nature of classical methodologies (see Box 1.1 in this
chapter and case study in Chapter 6). Complex phenotypes such as tolerance
to environmental stress, altered morphology, and improved flocculation char-
acteristics are often influenced by the interactions between multiple (often
uncharacterized) genes. In contrast, without significant prior understanding,
variants generated through mutagenesis of specific genomic subsections are
unlikely to gain proper coverage of the genotype. Indeed, as will be discussed
later, this approach has continuously yielded improved variants for a wide
variety of complex biotechnological applications. The theory and techniques
for the two major steps of classical strain improvement (CSI) (mutagenesis
and screening) are the focus of this chapter, including practical recommenda-
tions for their implementation as well as brief discussion of examples of each
method’s industrial application.



THE APPROACH DEFINED

BOX 1.1: APPLICATION OF CSI IN SAKE FERMENTATION

The Japanese-brewed sake is produced from rice mash using Aspergillus
oryzae to saccharify the rice and strains of sake yeast (genus Saccharomyces
cerevisiae) to ferment the sugars to ethanol. The ideal process imposes a
number of complex traits on the sake yeast, including high fermentation
capacity over the 20- to 25-day process at low temperatures (typically
10°C), high ethanol tolerance (ethanol levels can approach 15-20%),
minimal foaming, resistance to contaminating microbes, and the ability
to create the correct proportion of flavor components including higher
alcohols and esters (82). Many of these traits have been approached using
methods of the classical approach including mutagenesis, selection, and
cell mating. Specifically, UV and chemical mutagenesis have dominated
as a means of retaining GRAS status for this yeast. Moreover, difficulty
in sporulation has limited genetic dissection and a more rational approach
until recently (83). Natural selection and isolation from hundreds of
years of fermentation has resulted in the series of commonly used strains
named the Kyokai series, with Kyokai no. 7 and Kyokai no. 9 as the main
fermentation strains used industrially. Due to the superior brewing capacity
of Kyokai no. 7, many attempts have been made to improve this strain
through the classical approach as well as dissect the underlying genetic
changes. Recently, it has been demonstrated that the breeding and selec-
tion process of this strain resulted in heterozygosity of many alleles re-
sponsible for ethanol production and aromatic compound synthesis (84,85)
as seen by sporulation analysis. Many attempts have been made to im-
prove the characteristics of Kyokai no. 7. Non-foaming mutants have been
isolated from spontaneous clones as well as UV-induced mutants using
selection methods such as cell agglutination and froth floatation (86).
Improved strains have also been isolated through chemical mutagenesis
(e.g., by EMS) to select for improved flavor profiles. In this case, mutant
Kyokai no. 7 strains more resistant to cerulenin were thought to produce
more ethyl caproate, an important flavor component. This approach was
successful in improving this flavor component; however, the complete
portfolio of complex phenotypes was not fully assayed (47). Finally, preven-
tion of contaminants has been explored through mating sake yeast strains
with strains exhibiting the killer phenotype (56), which would ward off
contaminating yeasts. Collectively, these examples of complex pheno-
type engineering highlight the difficulties of the process, specifically;
it is often hard to create all traits at once. The evolution of the sake
yeast demonstrates the power of the classical approach. More recent
attempts have been made to use the rational or evolutionary approach for
this strain; however, Kyokai no. 7 remains the industrial favorite for sake
production.




4 CLASSICAL STRAIN IMPROVEMENT
1.2 MUTAGENESIS

A fundamental parameter dictating success in classical strain engineering is
the frequency and type of mutation applied to the parent cells. Typically, this
rate is determined by the dose and type of mutagen delivered. To test mutagen
specificity and rate, it is common to generate an inactive (mutant) form of
some easily assayable gene (e.g., LacZ in E. coli) that differs from the wild-
type gene by a single base-pair change, and test the frequency of reversion.
For example, Cupples et al. generated six variants of LacZ to show that many
common mutagens (EMS, NTG, 2-aminopurine, and 5-azacytidine) are in fact
quite specific for certain base-pair changes in E. coli (4). Hampsey undertook
a similar approach in S. cerevisiae and found similarly that mutagens were
highly specific. However, the mutation frequencies and specificities were sig-
nificantly different from those observed in E. coli (5). Frameshift and deletion
frequencies can also be detected through analysis of a cleverly mutated marker
(6). Through analyses of reversion frequencies or high-throughput sequencing,
a detailed picture of a treatment’s mutagenic profile may be ascertained. This
detailed information can be then be used to compute several useful quantities,
such as the average number of mutations per genome or the expected number
of distinct variants among a mutated population. Knowledge of these frequen-
cies and landscapes are especially useful when designing a selection program,
as detection of rare variants (e.g., individuals possessing certain particular
mutations and no more) will require many individuals to be screened, whereas
more probable patterns of mutagenesis (e.g., if additional silent or neutral
mutations are tolerable) will not. At the same time, more focused patterns of
mutation inherently limit the search space.

1.2.1 Numerical Considerations in Screen Design

Although in general every possible base substitution will occur at a different
frequency (and vary nonuniformly throughout the genome), it is instructive to
neglect deletions or insertions and assume all base changes at each site are
equiprobable (i.e., occur at the same frequency) to make use of the binomial
distribution, to obtain approximate probabilities of any desired mutagenic
outcome. If the probability of a single base being mutated to any other base
is p, then the probability that a genome of size g has » mutations after muta-
genesis is:

|
& pr(1-py.

P(&’#PFW

By using well-known properties of the binomial distribution, the average
number of mutations per genome is gp with variance gp(1 — p). Random
genetic drift results in mutation rates of 107" to 107, while forced mutagenesis
can elicit rates upwards of 10~ as described below, so this will restrict the range
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of p. It is apparent that if p is too low (that is, less than 1/g), there will be many
variants with few or no mutations and a vanishingly small population of highly
mutated individuals. Furthermore, the binomial coefficient indicates that
libraries with low mutation rate (and thus a high population of slightly mutated
individuals) are very likely to be redundant, that is, have many individuals of
the same genotype. Thus, it is of interest to know the expected number of
distinct variants in a mutant library to guide screen design. Patrick et al. devel-
oped a suite of algorithms to compute many quantities of interest for screening
a mutant pool derived from a mutagenic procedure of arbitrary specificity,
including the expected number of distinct mutants following mutagenesis
(7,8). If the library is highly redundant, then screening of the entire mutated
population may not be necessary to ensure complete coverage. As diversity
increases, however, the required screening fraction will approach unity. Since
complex phenotypes are controlled by the action of multiple genes, high muta-
tion rates are often employed, generally resulting in high library diversity and
a strong incentive to screen the entire mutated pool.

To choose the correct rate of mutagenesis and screening, it is important to
know the rarity of the phenotype of interest. In the worst and most restrictive
case, an improved phenotype will be acquired by mutants containing only a
certain set of mutations. For example, consider a particular phenotype that
only manifests itself when n-specific mutations are present and no more. In
this case, one must determine the mutation rate p which maximizes the frac-
tion of n-mutant variants in the mutated population (using one of the tools
mentioned earlier) and screen until a reasonably high probability of complete
coverage is achieved. For a genome of g base pairs, we can take the derivative
of the binomial distribution with respect to mutation rate and set it equal to
zero:

%(n!(fin)!pn(l'p)g_")zo'

Eliminating constants and taking the derivative, we have:
An— ~\g-n—1 A
P (1=p)" (n—gp)=0.

The obvious interesting candidate for a solution is:

A n
p=-.
g

Taking the second derivative of the binomial distribution yields:

ﬁin)!ﬁn2(1_ﬁ)g—n—2(n(—2(g—1)13_1)+(g_1)g132 +n2).
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Because

|
e (1= p) T >0,
nl(g—n)!

we can substitute our candidate solution into the remaining portion of the
second derivative to determine its sign:

(n(—Z(g—l)g—lj—i-(g—l)g(g)z +n2j=%2—n,

which is clearly negative for g > n. Hence, the likelihood of attaining » muta-
tions in a genome of size g is maximized when the mutation rate is n/g. This

maximum likelihood is:
| n g—n
s3]
nl(g—n)!\g g

It is generally necessary to screen more than the number of possible mutants
to ensure coverage of the diversity. To obtain, on average, F fractional coverage
of all n-mutant variants, it will be necessary to solve

F=1-e"L

for L, where a is the probability of selecting the correct n-mutant variant (1/V
in this case, where V is the number of possible n-mutant variants [given by the
binomial coefficient]) and L is the library size (7). For a small-sized genome
(10° base pairs) and a phenotype requiring two specific mutations (hence at
an optimal mutation rate of 2¥10™°), L works out to be 5.5%10" to obtain 95%
coverage, on average, which is outside the scope of most screening programs
(Assuming a standard yeast cell density of 10’ per mL and an average cell
sorting rate of 10° per second, screening this many individuals would require
550 L of culture (for growth-based selections) or 241 years of cell sorting [for
fluorescence-based screens]!)

Luckily, most complex phenotypes can tolerate the existence of additional
silent/neutral mutations. To account for a small number of allowable neutral
mutations, let us assume that the desired » mutations may be found in any
variant containing up to m > n total mutations, but no more. The analysis for
this case proceeds in much the same way as before with one minor alteration
resulting from the fact that a variant with m > n mutations contains

m!
n!(m—n)!

instances of n mutations. Therefore, maximizing the quantity



MUTAGENESIS 7

m

il
ZWXP(&I p)

with respect to p will yield the mutation rate p which maximizes the number
of n-mutant combinations encountered in the randomized pool. This rate may
be used to find the probability that a variant selected at random will have
between n and m mutations:

r= P(g.i. )

Given that a variant has between n and m mutations, the probability that it
contains the mutations of interest can be obtained by summing the probabili-
ties of finding the mutations of interest at each particular mutational level:

m

Z Plg.tp) o 1
2 P(g.i, p) n!(l—n)! |4
where

P(g,i,p)

> Pgih)

is the probability that a variant with a mutation rate i is selected, and

i! 1

P

nl(i-n)! V

is the probability of finding a particular combination of #» mutations within
that variant. r and a can then be substituted to the equation for F, which is
solved for L as before. Continuing with the example stated above, if the search
is expanded to allow desired mutations to occur in a background of up to 5
mutations, then the mutation rate can be increased to 4.2*10°°, requiring
screening of 4.3*10'" individuals, which, though an order of magnitude less
than in the previous case, is still rather unmanageable.

The property that allows strain engineering programs to be feasible is the
additivity of the effects of mutations; that is, even if a particular combination
of 12 point mutations is optimal, a couple of them, even in isolation, will be
beneficial. This allows engineering to proceed in several single mutation steps
as opposed to a single multiple-mutation bound. Because any given single
mutation is much more probable than a particular double mutation, the prob-
ability of isolating improved variants is greatly increased. Even if a phenotype
could only be improved by a single base-pair change in the absence of any
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others, the number of mutants that must be screened is 8.2%10°, which is attain-
able from a fraction of a milliliter of culture under growth selection or from
less than an hour of cell sorting (9).

These probabilities guide strain selection. In the following sections, multiple
mutagenesis techniques and screening strategies will be discussed. Particular
attention should be paid to mutation rate and throughput, respectively, so that
screening programs are designed and carried out efficiently.

1.2.2 Random Genetic Drift

Natural mutations due to errors in replication take place at frequencies
between 107 and 107" | depending on the strain and organism. Given this
frequency, it is not surprising that large-scale selections are required to isolate
any improved mutant. These frequencies are supported by a meta-analysis of
phenotype occurrence frequencies for the basic yeast S. cerevisiae (10). Phe-
notype reversions requiring single base-pair changes including amino acid
auxotrophy reversion and resistances occurred, on average, at a frequency of
107%. On the basis of this low mutation rate alone, it would appear that random
genetic drift may be most suited for the optimization of phenotypes under the
control of nonepistatic factors, despite the prevalence of epistatic interactions
in nature (11). However, single point mutations are not the only genetic
change to take place in evolving cells. Specifically, Lenski et al. found that the
majority of the genotypic changes observed through the course of a long-term
natural evolution experiment in E. coli resulted from transpositions and rear-
rangements as opposed to single base-pair substitutions (12). These large-scale
genetic changes have a much higher probability of generating mutants on
distant peaks than do point mutations. The variety of possible genetic changes
resulting from a natural evolution program points to its versatility in optimiz-
ing a wide variety of complex phenotypes. However, generation of mutants
with this method requires a significant amount of time, during which individu-
als are subjected to growth-based selective pressures. If the phenotype of
interest is at odds with growth, then this mutagenic procedure may not be
optimal with respect to library size and screening. Natural mutagenesis,
however, does lend itself very well to growth phenotypes, as no additional
effort on the part of the strain engineer is required to generate mutants and
compare them against the fittest variant.

1.2.2.1 Tracking Evolution through Neutral Phenotypes Since natural
evolution experiments are often accomplished in continuous liquid culture,
new variants are constantly being generated and compared against the fittest
variant. Therefore, evolution does not proceed in rounds or stages like most
forced evolution experiments, and so it is unclear when fitness increase has
ceased or when a population has stopped evolving. To overcome this limita-
tion, one can make use of neutral markers to detect a mutation event. Neutral
markers are genotypes that confer no alteration in growth rate yet whose
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phenotype is easily detectable. Common neutral phenotypes include resistance
to phage TS or reversion to lactose fermentation (when the appropriate selec-
tive pressure is not present in the screening medium, of course). In a strain
normally deficient in either of these phenotypes, it is expected that over the
course of evolution these neutral mutations will become fixed in the evolving
population at a slow but steady rate. Due to the low probability of attaining
the neutral marker and the fact that it does not pose a selective pressure on
those who carry it, it is assumed that neutral markers are never predominant
in the culture and that over time the prevalence of this phenotype will attain
a steady state as the rate of incidence becomes balanced by mutational losses.
When a variant of high competitive fitness is generated (which in all likelihood
does not possess the neutral marker), it steadily outcompetes the existing
population, driving the proportion of the neutral marker down. After this
new variant becomes predominant in the culture, the fraction of mutants con-
taining the neutral marker again increases at a slow but steady rate as before.
As a result, these sharp declines in the presence of a neutral marker signal the
appearance of a new adaptive mutation, and the jagged graph of the neutral
marker over time is called a periodic selection curve (see Figure 1.1). However,
if the adaptive mutation happens to occur on a variant containing the neutral
marker, the fraction of the neutral marker will approach unity in the selective
medium, although it confers no selective advantage. This phenomenon is
known as “hitchhiking,” and it is predicted to occur often in evolving systems
(13,14). In addition, the appearance of an additional adaptive mutation does
not necessarily imply any significant improvement in phenotype as desired by
the strain engineer, as fixation of mutations may simply result in a competitive
advantage quite unrelated to the phenotype of interest. Therefore, it is neces-
sary to assay for improvement as selection proceeds, to ensure that progress
is still occurring.

1.2.2.2 Genetic Determinants of Mutation Rate Although a wide range
of chemical and physical agents can serve to mutate a microbial population
(discussed later), a variety of more natural factors can contribute to an increase
in the mutation rate of naturally evolving populations, including ploidy, geno-
type, and environmental conditions. Diploid strains have been shown to more
quickly fix adaptive mutations than haploids. Since diploid strains make copies
of genes at twice the rate of haploid strains, adaptive mutations are generated
at twice the rate. Assuming adaptive mutations are dominant, this increased
generation of adaptive mutations should result in an increase in the rate of
fixation of adaptive mutations. Indeed, Paquin and Adams showed that diploid
strains accumulated advantageous mutations at 1.6 times the rate of haploid
strains (15). This implies that diploid strains may achieve maximum pheno-
typic increase much faster than haploid strains, allowing further selection
programs to be undertaken.

In addition to diploid strains, a number of additional “mutator” genotypes
are known to increase the mutation rate in bacteria (16,17). These genotypes
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FIGURE 1.1. Periodic selection in an asexual population. The numbers of successive
adaptive clones and the number of clones possessing the neutral marker are tracked
over time. (A) The prevalence of the neutral marker increases in the wild-type popula-
tion at a rate determined by natural mutation frequency. (B) The first adaptive mutant
(with a large selective advantage) appears in the neutral marker-null population and
quickly outcompetes the original clone, causing a sharp decline in the number of cells
containing the neutral marker. (C) The prevalence of the neutral marker increases in
the first adaptive mutant at a rate determined by natural mutation frequency. (D) The
second adaptive mutant (with a relatively small selective advantage) appears in the
neutral marker-null population and gradually outcompetes the original clone, causing
a slower decline in the number of cells containing the neutral marker than in time
interval (B). Reproduced with permission of Annual Reviews, Inc., from Reference
(14); permission conveyed through Copyright Clearance Center, Inc.

may encode for enzymes that are naturally mutagenic or may confer muta-
genic activity upon an existing enzyme. Although the presence of a gene
conferring a high mutation rate would appear detrimental, it has been theo-
rized that a gene conferring a 1000-fold increase in mutation rate in a particu-
lar individual can cause a population to increase in fitness quite quickly while
remaining in but a small fraction of individuals (18). The ability of this geno-
type to confer a selective advantage without becoming ubiquitous can be
understood through the high rate of reversion of the mutator genotype, due
to its high mutation rate. This implies that mutator strains may be an excellent
starting point for a variety of evolution experiments, as isolates from the
resulting culture are likely to be genetically stable. However, it should be noted
that most known mutator genes only achieve a 100-fold increase in mutation
frequency, at which level they have been theorized to attain a much larger
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fraction of the population (5-10%) (16,17). In addition, the mutator pheno-
type may be amplified by certain chemicals such as thymidine, allowing for
increased control over evolutionary rate over the course of the experiment.
Mutator genes are also unique in that they may have a very specific mutational
spectrum. In E. coli, mutY increases the frequency of GC->TA transversions,
mutT results in TA->GC transversions, and the mutD5 mutation appears to
increase the rate of mutation in a nonspecific manner. The specificity of
mutator genotypes allows a great deal of control over the spectrum of mutants
generated, possibly enabling preservation of a counter-selected genotype that
is necessary for the application of interest.

1.2.2.3 Applications of Random Genetic Drift Continuous culturing and
serial transfers have been successfully used to select for fast-growing strains
generated through a natural evolution program (19-22). Included in this list
are improvements of basal-level growth rate as well as improvements in
growth rate on alternative sugars such as xylose. Accumulated mutations in a
yeast strain selected on xylose over time resulted in greatly altered xylose
transport kinetics, doubling V., (15.8 to 32 mmol/[g dry weight]/h) and reduc-
ing K, by 25% (132 to 99 mM) (22). A second highlighted example involves
a study on the bacterium E. coli, where 10,000 generations were studied via
serial culturing (12). The resulting strains exhibited a 50% improvement in
fitness as well changes in other complex phenotype such as cell size and mor-
phology. Moreover, this study highlighted that the mutations regulating these
phenotypes were indeed quite rare and diverse. In some cases, this change
could be accomplished by point mutations; however, genomic rearrangements
were also seen. Furthermore, most of the change occurred during the first 2000
generations, with improvements slowed over the last 8000. This highlights the
importance of screening high levels of mutants, a prime difficulty with natural
selection-based mutations. Both of these examples are highly relevant because
growth improvement is a highly complex process. Not only does metabolism
need to be regulated and carried out more efficiently, but a number of addi-
tional factors such as substrate uptake, metabolite tolerance, and reproductive
machinery also need to be optimized in a fast-growing strain. This breadth
obtainable by classical strain engineering would be unfeasible in more directed
approaches. As a final example, Wiebe et al. used a glucose-limited chemostat
to select for mutants of Fusarium graminearium with delayed onset of colonial
morphology, further illustrating the power of natural evolution to enrich for
highly complex phenotypes (23). Delayed onset of a particular phenotype
requires alteration of a wide range of regulatory factors, especially for a trait
that is carried out by a plethora of cellular machinery. Furthermore, because
many factors controlling morphology are unknown, directed approaches
would be ineffective at generating highly improved variants.

Industrially, natural genetic drift is always under way in large-scale fer-
mentations. As an example, naturally improved strains of yeasts (both
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Saccharomyces and Pichia sp.) have been isolated from a sulfite liquor fer-
mentation plant. These strains demonstrated the complex phenotype improve-
ment of increased tolerance to acetic acid and enhanced galactose fermentation
capacity (24). Samples from ongoing fermentations, especially long-term cul-
turing, will present a diverse genetic population. The continuous sampling and
analysis for these cultures can give rise to novel, complex phenotypes. However,
other methods such as forced mutagenesis can improve the frequency of
improvements as well as the prospect for success.

1.2.3 Forced Mutagenesis

Mutagenesis by ultraviolet (UV) or chemical treatment is a widely used
approach for obtaining point mutations to create auxotrophic markers and
improve strains. Cellular exposure to UV radiation can disrupt DNA structure,
leading to a dose-specific occurrence of mutations. In addition, certain chemi-
cals such as ethyl methane sulphonate (EMS) and nitrosomethykguanidine
(NTG) have been known to cause DNA damage. It should be cautioned that
all of the agents described in this section are mutagenic and hence carci-
nogenic and thus extreme care must be used during handling to prevent
damaging exposure. In addition, certain chemicals carry orthogonal risks. For
instance, NTG is explosive (25). Therefore, the benefits of increased mutation
rate must be weighed against increased safety costs when working with these
compounds.

The attractiveness of chemical and physical mutagens is the increased muta-
tional capabilities compared with natural variation. Mutation frequencies are
often measured as a function of auxotrophic marker development or gene
mutation reversion. While basal-level, natural drift mutations can result in
average reversion frequencies of nearly 1 in 107 (as described above), induced
mutations by methods such as UV radiation can increase this value upwards
of 107 to 107, depending on the organism used and the intensity/duration of
irradiation (26-28). Similar results and mutation frequencies can be seen with
chemical mutagenesis using reagents such as EMS and NTG. Given these rates,
it is still expected that the frequency of obtaining auxotrophic mutants in
diploids by direct mutagenesis should be rare without prior selection. However,
it has been demonstrated that auxotrophic mutants due to forced mutagenesis
of diploid industrial strains can occur at frequencies of 107, illustrating that
the mechanism of mutations is still unknown (29). Therefore,improved mutants
will occur at rates higher than those suggested by the probabilities. In terms
of fitness landscapes, this higher mutation rate allows a further exploration of
genotypic space. Thus, generating mutations with this method may yield vari-
ants located on more distant peaks, possibly at higher levels of fitness. When
the phenotype of interest is influenced by a significant number of epistatic
interactions, the resulting landscape will be more rugged, making forced
mutagenesis more desirable for isolating improved variants than natural
evolution.
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FIGURE 1.2. Common dose-response curves. Determining the optimal mutagen
dose is critical for success in identifying altered mutants. This optimal level is depen-
dent on the type/doses of mutagen and on the trait of interest. In general, three
types of response curves are seen: reversion to prototrophy or resistance mutations
normally follow the monotonic curve, whereas titer-increasing or decreasing muta-
tions normally have an inverted-U shape. If the culture contains a subpopulation of
radiation-sensitive individuals, biphasic behavior may be observed.

Mutagen Dose

1.2.3.1 Optimal Mutagen Dose Mutation rate and cell survival are both
strongly affected by mutagen dose. Thus, it is necessary to determine optimum
mutagen dose. If the mutation rate is too low, variants with mutations (and
especially improved phenotypes) will be rare compared with unmutated cells,
making detection difficult even in high-throughput screens. In contrast, if the
mutation rate is too high, the effects of deleterious mutations will swamp those
of beneficial mutations, yielding poorly performing (or even nonviable) vari-
ants. Since the goal of the strain engineer is to maximize the number of benefi-
cial mutations per variant, plots akin to Figure 1.2 are often constructed to
evaluate the effects of different types or doses of mutagen on the trait of inter-
est. A crude measure of phenotype on a small number of variants is preferred
to minimize the resources spent at this preparatory stage. Curves similar to
those in Figure 1.2 are often seen, depending on the phenotype of interest.
Reversions to prototrophy or resistance mutations are normally monotonic,
whereas titer-increasing or decreasing mutations normally follow an inverted
U curve (30-32). It is important to note that as titer is improved, the likelihood
of finding further beneficial mutations is reduced, making the statistic of popu-
lation variance as important as the average for selection of optimal mutagen
dose (33). Indeed, Lenski, et al. found a hyperbolic decline in fitness increase
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over time in a population of E. coli undergoing natural selection, suggesting
that a small number of mutations of large effect were fixed in the population
during early times whereas a larger number of mutations of smaller effect were
fixed in subsequent generations, assuming a constant mutation rate per genera-
tion (34). Hence, the optimal mutagen dose is likely to change as superior
variants are isolated. The dose that results in the highest enrichment in desir-
able variants is then applied and a large number of variants are screened more
accurately.

Although plots akin to Figure 1.1 are useful for single-round selection pro-
grams, selecting the optimal mutagen dose based on the maximum observed
phenotypic increase may cause problems for prolonged selection experiments.
Although this dose will maximize the single-round phenotypic increase, sub-
sequent rounds of improvement will have to contend with any deleterious
mutations that will have occurred, possibly limiting maximal improvement in
phenotype. For cases where improved titer is important, it is generally accepted
that low mutation rates are better than high, even though high rates will yield
a more immediate benefit (35). The rationale behind this choice is that the
small number of mutations selected in a low mutation rate program will have
a much higher probability of being beneficial than the high number obtained
in a more error-prone program. Therefore, any subsequent beneficial muta-
tions will not have their effects attenuated by the presence of deleterious
mutations. Only after low levels of mutagen fail to yield improved variants is
it desirable to increase mutagen concentration, thus expanding the evolution-
ary search to reveal epistatic peaks in the fitness landscape. By alternating low
and high mutation rates in this manner, the prevalence of deleterious hitch-
hikers may be minimized.

1.2.3.2 Determination of Mutagen Specificity and Frequency A wide
variety of chemical mutagens have been used to introduce DNA damage. Not
only do individual chemicals produce different mutation profiles as mentioned
above, but the environmental context and strain in which these mutagens are
applied can also have a large effect on the changes observed (36,37). Chemical
mutagens have been found to delete large (~1 kbp) sections of an organism’s
genome as well as generate mutations at the single base-pair level (38). Fur-
thermore, the advent of high-throughput sequencing technology allowed the
identification of mutagen-specific “hotspots” in E. coli, emphasizing the non-
random nature of the induced changes (39). In addition, it has been noted that
NTG acts upon the DNA replication forks, causing the resulting mutations to
be tightly clustered (40). Therefore, it is highly recommended to change muta-
gens as a strain improvement program proceeds, not only to avoid develop-
ment of resistance, but also to allow fuller sampling of genomic sequence
space. Alternatively, it is possible to apply multiple mutagens in the same dose;
however, the mutagens must act on different DNA repair pathways in order
for this approach to be beneficial (41). In general, unless mutagenesis rates
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and specificities have been previously characterized for the strain of interest,
characteristics of mutagens may be known only approximately, especially if
the organism’s cellular repair pathways are unusual.

1.2.3.3 Mechanisms of Mutagenesis Most of the mutagens introduced
in this section serve to make DNA repair machinery more error prone, in
addition to damaging DNA directly. Therefore, it is plausible that over
the course of a selection program a mutation that confers resistance to a par-
ticular mutagen will arise. In this situation, no change in phenotype will
be observed upon mutagenesis. To distinguish this case from cases where
further phenotypic improvement is unlikely, some easily observable reversion
phenotype may be used to confirm efficacy of the mutagenic treatment. In
cases where resistance has developed it will be necessary to attempt different
types of mutagens in order to introduce mutations via an alternate repair
pathway (35).

UV light has been extensively studied in terms of its mutagenic frequency,
specificity, and mechanism, in large part due to its ease of implementation
(27,42-44). Cells may be mutated simply by exposing them to UV light for
some length of time (analogous to the dose of a chemical mutagen). In the
case of E. coli, it is thought that UV radiation causes DNA damage but that
these initial lesions are not converted into base-pair changes until activation
of the SOS repair pathway, a global response to DNA damage. For this reason,
mutation frequency initially increases according to the square of UV dose,
confirming that two distinct DNA lesions are required for mutagenesis to
occur: one to induce the SOS repair pathway, and the second to cause a detect-
able phenotypic change. After this initial stage, mutations increase linearly
with exposure as lesions continue to accumulate after SOS induction. A regime
of higher order response to radiation indicates the appearance of mutations
dependent on the presence of two DNA lesions in proximity (43). Finally, the
mutation rate reaches a steady value as lethal mutations accumulate. Treat-
ment with UV radiation is analogous to chemical mutagenesis in that UV has
its own mutagenic specificity and frequency. However, studies have shown UV
to be slightly broader in its action than other mutagens (4).

1.2.3.4 Effects of Environment Since each of the mutagens previously
described require the action of cellular repair machinery, “recovery” of
mutated cells in rich medium has been found to increase the mutation rate
realized in the surviving cells. Not only does this treatment allow sufficient
time for SOS repair to convert DNA lesions into base-pair changes, it also
allows mutated proteins to be synthesized, which is important if screening
occurs directly after mutagenesis. Also, certain additives to this recovery
medium may promote or inhibit recovery of mutated cells. For example, addi-
tion of caffeine and acriflavine following UV mutagenesis will increase the
mutation rate (35), whereas addition of manganese II, purine nucleosides, and
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inhibitors of protein synthesis will decrease the mutation rate (45). Interest-
ingly, 8-methoxypsoralen is antimutagenic when present before UV irradia-
tion, but is mutagenic if introduced after UV, illustrating the complexity of
the repair mechanisms involved (46). It should be noted, however, that any
treatment that increases the mutation rate will also increase lethality; there-
fore, it should be ascertained whether such treatments actually increase the
number of mutants per survivor before mutation-amplifying additives are
introduced (35).

1.2.3.5 Applications of Forced Mutagenesis Forced mutagens have seen
wide use in development of complex phenotypes. For example, UV mutagen-
esis was used to generate auxotrophic mutants of sake yeast (29). This is sig-
nificant because it allows this yeast to be used in breeding programs and in
metabolic engineering efforts utilizing molecular cloning techniques. The
ability of mutagens to introduce variation in a wide variety of organisms is a
major benefit to this approach, as standard genetic manipulation techniques
are only established for a handful of (possibly industrially suboptimal) strains.
Furthermore, EMS was used to generate sake yeast mutants with improved
flavor profiles, clearly indicating the ability of forced mutagenesis to improve
industrially relevant complex phenotypes whose molecular basis may be
largely unknown (47,48). In addition, a forced mutagenesis/selection scheme
was used to screen for improved microalgae capable of producing L-ascorbic
acid. By screening over 10° mutants, a greater than 50-fold improvement
in specific productivity was achieved (49). These results illustrate the large
size of libraries necessary to achieve metabolic phenotypes. Many processes
(including the penicillin production process (50)) also rely on this method to
continuously enhance strains. As an example of this process improvement,
penicillin titers are over 40,000-fold higher in improved strains than the origi-
nal isolated wild-type strain (51). Improved antibiotic production is a prime
example of a complex phenotype, as strains must evolve not only the enzymes
responsible for antibiotic synthesis but also any factors involved in nutrient
transport and chemical tolerance. The organisms normally responsible for high
production of a compound of interest are often genetically uncharacterized,;
thus, the genome-blind nature of the classical approach becomes an asset. This
approach of mutagenesis and screening has even been used to improve the
activity of baker’s yeast for bread making purposes (52). As a result of the
ease of operation and selection, this method continues to be used to generate
complex phenotypes in industrial cells.

1.2.4 Strain Mating

Strain mating represents an effective tool for generating a population with a
high number of non-detrimental mutations. One of the main limitations of
random mutagenesis is the high probability that the changes induced in a
daughter cell will be detrimental, and this probability increases as the mutation
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rate increases. However, high mutation rates are required to escape local
optima on the fitness landscape. Strain mating allows recombination to occur
between two divergent (yet functional) genotypes, generating a library of
highly mutated individuals. However, because meiotic recombination operates
at the level of the gene, as opposed to the base pair, any mutations introduced
are likely to be in the genomic context in which they were found in one of the
parents, decreasing the likelihood that such mutations are lethal. In essence,
this technique allows exploration of distant regions of the fitness landscape
without the associated high probability of failure, thus allowing generation of
mutants located specifically on regions of high fitness. It is obvious that strain
mating will have its maximum effect when applied to two highly divergent
members of the same species, allowing a high rate of mutation with a low
probability of lethality. This technique allows the possibility of running mul-
tiple mutagenesis programs in parallel (utilizing perhaps different mutagenic
techniques and screening strategies) and mating the most successful individu-
als from each program, especially if mutagenesis has been conducted to mini-
mize the occurrence of deleterious mutations. In fact, it has been theorized
that the accumulation of deleterious mutations causes evolving populations to
gradually reach a maximum fitness. If this is the case, then strain mating should
greatly improve the potential for phenotypic increase (53). It should be cau-
tioned, however, that if significant epistatic interactions exist between genes,
there will be a high likelihood of disrupting them upon mating, possibly leading
to inferior individuals (54).

Protoplast fusion is a distinct method of strain mating that does not involve
recombination. Instead, the cell walls of two individuals are digested away and
their genetic material is combined to form a new individual with both sets of
chromosomes (55). This technique allows the characteristics of both organisms
to be combined (forming a heterokaryon) without the risk of recombination
loss. Heterokaryons are often verified by nutrient complementation. There-
fore, it is imperative that each parent be auxotrophic for a different compound.
Removing the cell wall while preserving the cell membrane is a delicate
process. Therefore, reliable isolation of heterokaryons is dependent on a
number of factors, including protoplast isolation from exponentially growing
cells, maintenance of isotonicity in the protoplast media, and the addition of
polyethylene glycol as a fusogenic agent. Since both genomes are isolated from
viable individuals, the probability of deleterious interactions is small. Further,
since enzymatic deficiencies are recessive, any lack of functionality in one
parent will be complemented by the genome of the other. An added benefit
of generating a polyploid strain is the doubling of the effective mutation rate
for each gene, allowing evolution of improved phenotypes to proceed at a
faster pace, as mentioned earlier.

Strain mating can be used to combine two distinct functionalities into one
organism. For example, a common problem in fermentations is the evolution
of a “killer” phenotype, whereby a nonproductive individual gains the ability
to secrete a toxic compound, thus outcompeting the organisms of desirable
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phenotype and resulting in a failure of the fermentation. However, strain
mating can be used to generate a productive “killer” phenotype, whereby the
resulting population is able to both secrete the product of interest and kill any
contaminants that may be introduced (56). Indeed, Bortol et al. were able to
fuse strains of S. cerevisiae possessing the “killer” phenotype with traditional
baker’s yeast, producing competitive variants that retained the ability to make
dough rise (57). Clearly, strain mating has enormous potential for generating
mutants improved in a variety of complex phenotypes.

1.3 GENOTYPIC LANDSCAPES

If phenotype and genotype are graphed such that related genotypes are close
together, the resulting landscape is ripe with series of peaks and valleys, with
peaks representing genotypes of high fitness and valleys representing geno-
types of low fitness. Natural selection dictates that individuals residing on
higher peaks are more likely to reproduce, and upon reproduction, a new
generation arises at some genotypic distance away from their parents, depend-
ing on the mutation rate. As evolution proceeds, the population will tend
toward peaks and away from valleys if the selection pressure is toward
improved phenotype. As a result, understanding aspects of this landscape
helps develop proper mutagenesis and selection strategies. For example, what
magnitude of fitness differential is observed when moving from a peak to a
valley? Are there many different peaks, or just one? Do there exist mountain
ridges connecting each peak, or are each separated by deep chasms? A good
understanding of the topography of this fitness landscape will allow prediction
of the evolutionary trajectories of a population under selection. For the strain
engineer, this understanding will allow comparison of different selection pro-
grams in terms of their ability to generate a mutant residing on the tallest peak
of this evolutionary landscape.

One important quality of fitness landscapes is their “ruggedness” as devel-
oped by Kauffman (58). This quality indicates the correlation in phenotype
observed between related genotypes. In the limit of no ruggedness (i.e., perfect
correlation), it can be shown that there is only one peak in the fitness land-
scape and that this peak is accessible from any genotype by progressing
through successively more fit one-mutant neighbors. However, in the limit of
maximal ruggedness (no correlation between related genotypes), the land-
scape is essentially random, with many local optima and a very small chance
of encountering the global optimum by progressing through successively
more fit one-mutant neighbors. This quality is therefore extremely important
for evaluating a priori which mutagenic and selection treatments are likely to
yield improved mutants. Treatments that result in small genotypic changes
(such as single base-pair changes) may only be able to proceed in small steps
through the fitness landscape. If selection is operated such that the fittest
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mutant is selected for subsequent mutagenesis and selection, then repeated
rounds of generation and screening are only able to yield a local maxima.
However, as mutagenic treatments become more severe, the possibility of
generating a mutant on a more distant peak becomes higher at the expense
of mutant generation on the current peak. Naturally, more severe mutagenic
treatments become more desirable as the number of peaks in the evolutionary
landscape increases. Alternatively, selection regimes that preserve a nonzero
fraction of suboptimal mutants may also have an advantage in detecting
more distant peaks. However, the costs associated with running many selec-
tion programs in parallel may prove too great (59). It has been shown that
phenotypes that exhibit a high degree of epistasicity resemble more rugged
fitness landscapes, whereas phenotypes under the control of genotypes whose
effects are perfectly additive resemble the gradual “Fujiyama” type of land-
scape (58).

1.4 SCREENING

The success of classical strain engineering is due in large part to the ability
of researchers to search through a large number of variants to isolate a
few improved individuals: a process called screening. As more mutants are
screened, the probability of isolating an improved variant increases linearly
(assuming the number of mutants generated is large compared with the
number of mutants screened). Therefore, significant effort has been spent
to develop improved techniques and technologies to allow larger numbers
of variants to be assayed per unit time. Screens can be classified into one of
two broad categories: rational screens and random screens (35). Rational
screens are defined by their exploitation of knowledge about the system of
interest, whereas random screens are of more general applicability. Ideally, the
quantity being measured during the screen will correspond exactly to the
phenotype of interest, but in cases where this is difficult to measure several
orthogonal correlates of phenotype may be assayed to decrease the rate of
false positives. It is important to keep in mind that the optimal screening
strategy will depend in large part on the phenotype of interest and any prior
knowledge of the system. In addition, resource limitations may restrict which
screens may be performed as well as the number of mutants that may be
assayed. The error rate of a screen is also of critical importance, as poorly
designed growth screens may yield false positives and noisy assays will neces-
sitate screening replicates to increase confidence. Finally, the importance of
selecting individuals that exhibit true phenotypic improvements cannot be
overemphasized. The powerful techniques of classical strain engineering often
generate individuals that may perform well in a particular screen yet do not
produce the phenotype of interest. Although detection of these “screening
artifacts” can be largely eliminated through careful experimental design,
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further characterization of isolates at the conditions of interest is often
required.

1.4.1 Rational Screens

In general, there are at least as many ways to screen for a particular phenotype
as there are measurable phenotypes. However, a handful of rational screening
strategies stand out due to their popularity and generality. It should be noted
that all rational screening procedures assume at least a crude knowledge
of the mechanism by which a phenotype is manifested. For instances in
which this is not well known, it may be necessary to proceed first with a
random screen to identify improved variants, followed by a study to determine
which screens are most selective for the isolated individuals. However, it
should be noted that none of the techniques mentioned below assume a
molecular knowledge of the biochemistry involved, which is the minimum
requirement for a directed approach to succeed, indicating this approach’s
generality for a wide variety of uncharacterized microbial strains and complex
phenotypes.

Phenotypic titer depression is a common way of shifting the “detectable
range” of a random or rational screen. It is often the case that one is interested
in mutants exhibiting a high rate of product secretion or growth rate. However,
the method used to detect phenotypic changes may not be accurate at the
range of interest, especially when the population under selection is derived
from a highly improved parent. Therefore, by artificially decreasing titer, dif-
ferences among high-producing variants may be discerned. This is often
accomplished by altering media composition so that a particular nutrient is
limiting product formation, or through introduction of a metabolic inhibitor.
It is assumed that individuals proficient under these limiting conditions will
maintain their superiority in a production setting (60).

Toxic analogs of metabolic precursors can be used to select for variants with
improved metabolic qualities. When a metabolic precursor is synthesized
intracellularly, mutants resistant to its toxic analog may be overproducing the
nontoxic compound, diluting the poisonous effects of the analog and increas-
ing flux through the pathway of interest. This method has been applied suc-
cessfully for bioproducts derived from amino acids (61). For compounds
provided as nutrients in the growth medium, however, sensitivity to their toxic
analog may indicate improved transport properties for that class of molecule,
thus increasing metabolic flux toward the pathway of interest. One potential
drawback of this method (and assaying for sensitivity in general) is that it must
be accomplished through replica plating, which has much lower throughput
and is more labor-intensive than screening in liquid culture (62).

In instances where the product of interest is known to inhibit the activity
of a toxic compound, selection for resistant mutants may result in isolates of
improved production (62). This screening method, called selective detoxifica-
tion, is most applicable to solid media due to its ability to provide each mutant
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with a unique chemical environment; liquid cultures allow the product of inter-
est to diffuse and provide resistance to nonproducers, confounding results. It
should be cautioned, however, that if alternate pathways to resistance are
present, the possibility of encountering screening artifacts may be unavoid-
able. This method has seen success in generating Acremonium chrysogenum
variants proficient in detoxifying metallic ions through production of Cepha-
losporin C (61).

Desirable concentrations of the product of interest may be infeasible for a
number of reasons. First, the desired compound may be directly toxic to the
cell. Second, the product of interest may participate in an inhibitory feedback
loop, which limits its production. The first bottleneck may be alleviated simply
by screening for individuals resistant to high concentrations of the desired
compound. Mutants deficient in feedback inhibition may be isolated by screen-
ing for mutants resistant to a toxic analog of the end product. It is expected
that survivors will be deregulated, overproducing the compound of interest
and thus diluting the effect of the toxic analog (63).

A particularly clever screening strategy involves the mutagenesis of non-
producing strains, isolated through mutagenesis of a productive parent strain.
In theory, productive mutants isolated after this second round of mutagenesis
will have had at least two mutations in the relevant biosynthetic genes:
an inactivating mutation followed by a mutation that restores productive
ability to levels that are (hopefully) higher than the parent strain. An added
benefit of this method is the low level of background activity observed,enabling
more rapid screening techniques to be employed. Furthermore, revertants are
more likely to contain mutations in genes directly related to product synthe-
sis, as opposed to genes whose effect is epistatic (62). This technique has
seen success in overproduction of the antibiotic aurodox in Streptomyces
goldiniensis (63).

As a strain of interest becomes more highly optimized, the likelihood of
generating phenotypic changes of large magnitude steadily decreases. Hence,
the maximum expected improvement in phenotype may be within the error
of the screen. To increase the probability of detecting variants with low (but
significant) improvement, a rapid recycling scheme can be implemented
(35,59). In this statistical approach, a large rake-off (~10-50% ) of mutants are
immediately rescreened. This process is repeated multiple times to enrich the
fraction of genuinely improved variants, the rate of enrichment corresponding
to the magnitude of phenotypic increase. Mutagenesis can be undertaken
between rounds of recycling or after isolation and characterization of improved
individuals. Due to the power of this technique, screening artifacts can become
a major concern if the selective conditions are poorly designed. Although
such statistical rigor is recommended throughout the optimization process, it
becomes critical to continued isolation of improved variants as phenotypic
increases become more marginal and rarer.

A significant number of phenotypes cannot be linked to microbial growth,
necessitating the development of alternate screening methodologies. Colorful
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or fluorescent phenotypes may be detected spectrometrically (9,64), but for
phenotypes that do not exhibit obvious color or fluorescence, a substantial
amount of creativity is often required. Identification of a suitable colorimetric
assay may be relatively simple for popular phenotypes, but in more specialized
cases a solution may have to be developed in-house. In any instance where a
large amount of processing is necessary before a phenotype can be measured,
screen throughput will be significantly diminished and optimization of assay
protocols becomes of paramount importance.

1.4.2 Random Screens

In the absence of any knowledge about the causative factors of the phenotype
of interest, a random screen is often the only option for isolating desirable
variants. However, the conditions of the screen must be very similar to those
of the final production setting of these strains or else screening artifacts will
be encountered. The major concern with random screening is the immense
library size and screening effort required.

A common way of quickly reducing this library size and isolating interesting
variants is known as preselection. In this approach, a crude growth-based cor-
relate of the phenotype of interest is used to eliminate any variants that are
not superior to the parent strain. This scheme is especially useful in cases
where accurate measures of phenotype are difficult to achieve, thus precluding
their use in the entire mutated population. In cases where the phenotype of
interest naturally confers a growth advantage, preselection can simply consist
of a crude growth-based random screen. Otherwise, when interested in the
production of a secondary metabolite, any of the rational screens discussed
above may be used (61). Since the aim of a prescreen is to increase the
throughput of a selection program, the time savings conferred by the prescreen
must be sufficient to make its inclusion worthwhile (59).

1.4.3 Screening Platforms

When the phenotype of interest can be directly coupled to growth, selection
based on growth rate offers a simple, high-throughput method for isolating
improved variants. Growth conditions are of critical importance in such
schemes, as poor choices will result in a high incidence of screening artifacts.
In addition to the chemical environment in which selection takes place, the
physical environment will also have a significant impact upon which mutants
exhibit a growth advantage. The physical environments most commonly used
include agar plates, batch culture, and continuous culture.

1.4.3.1 Solid Media The defining feature of solid media for microbial
growth is its resistance to diffusion. Not only are individual variants spatially
separated, but also any diffusible metabolites remain localized to their parent
colony. As mutants are spatially separated, they do not compete with one
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another for nutrients, allowing individuals to be isolated, maximizing the phe-
notype of interest, as opposed to those who use energy to decrease the fitness
of other mutants. Additionally, mutants exhibiting significant growth differ-
ences are easily discernible by eye or by image processing software. Also,
differential secretion of a colorful or bactericidal compound can be identified
by the size of “halos” surrounding each colony. However, since colony diam-
eter increases as the cube root of population and halo diameter as the square
root of secretion capability, differences among high-producing individuals may
not be discernible. To overcome this limitation, phenotypic titer depression, as
discussed earlier, may be implemented (60). However, phenotypic advantages
in these artificial conditions may not translate to an advantage in a production
setting. Indeed, growth conditions on agar plates in general are significantly
different from those present in a bioreactor, and as such, testing under more
realistic conditions is often necessary to refine the pool of promising individu-
als. An additional consideration when screening on solid media is the maximum
allowable throughput. Although 1 mL of liquid media may contain upwards
of 10® individuals, a 100-mm plate may only contain 10°~10* in order to allow
sufficient time for the phenotype to be expressed before colonies become
indistinguishable. Furthermore, high plating densities on selective media may
decrease the recovered fraction of mutants due to the Grigg effect (65,60).
Briefly, plating a high density of nonviable cells may inhibit the growth of
viable ones due to nutrient consumption or secretion of a toxic compound.
Therefore, the benefit of colony separation must be weighed against increased
throughput when designing such a growth-based screen. Screening programs
incorporating agar plates have been used effectively to select for a variety of
highly complex phenotypes, including antibiotic production (67), amino acid
auxotrophy (68), ethanol production (69), as well as numerous improved toler-
ance applications.

1.4.3.2 Batch Culture Batch culture is characterized by repeated cycles of
exponential and stationary phase growth. Therefore, variants under selection
are alternately subjected to rich and starvation conditions. Those mutants that
can reproduce the fastest under rich conditions will be preferentially selected
as colonists of the next batch culture. Given the exponential nature of bacterial
growth, mutants with even a slight growth advantage will come to dominate
the final population. Hence, this environment is best suited for isolating strains
with reduced lag time and higher growth rates (70). However, growth is essen-
tially the only phenotype that may be selected for using this approach. Since
variants are not spatially separated and secreted compounds are freely diffus-
ible, mutants cannot be distinguished based upon their secretory characteris-
tics. Additionally, any mutant that secretes a toxic compound to which the
mutant itself is immune will have a selective advantage unrelated to the
screen’s intended phenotype. These “killer” phenotypes, although seemingly
inconvenient, offer the ability to confer a selective advantage to a production
strain (through a technique such as protoplast fusion), extending the time over
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which a fermentation may take place before contamination occurs (56). It
cannot be overemphasized that the selective environment encountered in
liquid culture is highly dependent on the microbial ecology. Unlike in solid
media, individuals in liquid culture continuously compete for the same nutri-
ents. Hence, selective conditions will change with time as microbial popula-
tions change and the superiority of selected variants will, in general, be
dependent upon the microbial environment in which they were grown. In
other words, the fittest variant among a competitive population may not be
superior when considered in isolation. On the other hand, liquid media pro-
vides an excellent environment for optimization programs using an organism’s
natural mutation rate, as improved variants are continuously being generated
and taking over the existing mutant pool. Perhaps the best known example of
such a long-term evolution experiment comes from Lenski et al., who sub-
jected E. coli to batch conditions for 10,000 generations. It was found that
individuals present at the end of the experiment had a shorter lag phase and
higher growth rate than the strain used to start the experiment. In addition, it
was found that most of the competitive advantage was obtained within the
first 2000 generations of the culture (34). Although Lenski et al. were not
interested in generating an industrially useful phenotype, these results imply
that similar techniques would be very effective at generating improved isolates
of industrial relevance. Indeed, through cycled batch cultivations of S. cerevi-
siae in glucose, xylose, and arabinose, a variant that obtained the ability to
completely ferment all three sugars in almost half the time as the parent was
isolated (71). Such an improvement would require a highly detailed under-
standing of the bottlenecks limiting the consumption of each sugar, including
transport, metabolism regulation (to alter diauxie) and carbon metabolism.
Characterization of each of these components (not to mention analyzing their
interaction) would be an enormous undertaking if a directed approach were
to be followed. However, by simply allowing faster-growing mutants to out-
compete less fit individuals, a highly desirable solution to this complex problem
can be achieved.

1.4.3.3 Continuous Culture Chemostats, in contrast to batch cultures,
operate at steady state, with a steady outflow of culture balanced by a corre-
sponding influx of media (at a level below that which would wash out all of
the cells). Those individuals that are best able to utilize these low levels of
nutrients will have a selective advantage under this condition. Hence, instead
of selecting for mutants with a high L., as is the case in batch cultures, che-
mostats select for variants with a low K|, that is, the concentration of a limiting
nutrient (such as glucose) at which the growth rate of an organism achieves
half its maximal value. Thus, chemostats tend to select for specialists who can
make maximum use of a limiting nutrient instead of selecting for general
opportunists of high growth rate, as for batch cultures. In addition, because all
individuals share the same nutrient pool, the possibility of forming stable
ecologies exists, with the unused nutrients and excreted metabolites of one
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population providing nutrients for a second (72). This situation, though prob-
lematic for instances requiring monoclonal cultures (e.g., when protoplast
fusion with another variant is desired), may be acceptable in other cases (e.g.,
remediation of a toxic compound). When the chemostat population is largely
monoclonal, however, evolution in a chemostat follows a strictly sequential
process, with fitter variants deriving from the most populous clone and subse-
quently replacing it. Since fitness differences are not transitive (due to epistatic
effects), it is possible for the fitness of a population to decrease with time, as
measured by pairwise comparisons between isolates that are not immediately
related to one another (73). In these cases, there is no “best” variant for a
particular selective environment due to fitness’s dependence on the microbial
composition of the chemostat culture. In addition, since chemostats select for
populations with high residence time, adherence to bioreactor walls can
become a major concern (70). Finally, in comparison to agar plates and batch
cultures, the chemostat apparatus can be quite expensive. Nevertheless, che-
mostats have been quite successful in the development of a wide variety of
very complex phenotypes, with results such as altered morphology (23),
increased plasmid stability (74), and increased xylose uptake rate (22).

Although the steady-state operation of the chemostat is desirable for some
selection programs, it is often necessary to control a particular variable as
growth proceeds. The combination of a chemostat with an online controller is
referred to as an auxostat. The increased versatility of this instrument (reflected
in its increased cost) allows a wide variety of schemes to be implemented
during screening. For example, by controlling media flow rate to maintain a
constant low cell density, a strong pressure can be applied to select mutants
with high growth rate in rich media. In essence, this setup results in a batch
reactor with infinite volume, which is useful when the ability to adapt to sta-
tionary phase is not required (75). Alternatively, instead of varying the media
flow rate to control cell density, the concentration of a toxic compound may
be steadily increased, resulting in selection for a tolerant phenotype. The
process of continuously changing selective conditions in real time as improved
variants emerge is known as interactive continuous selection (ICS) (76). This
method has been employed to select for Strepfomyces mutants tolerant to
increasingly high levels of streptomycin, resulting in strains that produce large
quantities of this antibiotic (76). Finally, it is possible to simulate a continuous
culture through serial batch subculturing in which a fraction of a batch culture
is reinoculated into a fresh culture. The growth state of the inoculum and
frequency of transfer will dictate how similar the process will be to either batch
or continuous.

1.4.3.4 Modern Screening Platforms Although liquid culture allows for a
much higher numbers of variants to be screened than solid media, it allows
crosstalk between individuals, altering the selective pressure applied to the
cells. To overcome this limitation, Naki et al. developed a microtube-based
screening system that allows a growth-based selection to be applied in liquid
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media while preventing crosstalk (77). It is estimated that this method can
provide an order of magnitude increase in throughput as compared with solid
media.

When the phenotype of interest results in a visible change at the single-cell
level, microfluidic techniques allow multiple orders of magnitude improve-
ment in throughput over other non-growth-based assay systems. In particular,
10® mutants per hour may be assayed via flow cytometry, which queries indi-
vidual cell size and fluorescence. One issue unique to such a sensitive instru-
ment is the ability to detect significant variability among a monoclonal
population. Hence, it is possible to isolate what seems like improved variants
that reproduce to yield an unimproved population average. Thus, characteriza-
tion of average cell-to-cell variability is of paramount importance in designing
a precise flow cytometric screen. Nevertheless, mutations that increase cell
variability may arise, necessitating the use of a rapid recycling scheme allowing
cell division between each measurement. Of course, the phenotype of interest
must result in a visible difference at the single-cell level, but nevertheless flow
cytometry has been successfully employed to enrich for a wide variety of
phenotypes. For example, carotenoids exhibit a characteristic fluorescence and
are localized to cellular membranes, thus allowing An et al. to select for yeast
variants with improved carotenoid production capabilities (9). Furthermore,
Tyo et al. implemented a product-specific stain to select for overproducers of
poly-3-hydroxybutyrate, a thermoplastic of commercial relevance (64).

Despite efforts to adapt the selection of many phenotypes to high-
throughput platforms such as growth cultures or solid media, it is often neces-
sary to screen variants individually in liquid media. For example, secretion of
a particular compound may not occur on solid media, or it might be desirable
to test isolates obtained via another method under more industrially relevant
conditions. In addition, a large cell count may be necessary for more accurate
phenotype quantification. In instances where development of a phenotype
in 50-mL shake flasks would be too resource-intensive, deep 96-well plates
offer a reasonable compromise. Isolates may be grown in up to 2 mL of
media in plates especially designed to maximize aeration and prevent cross-
contamination (78). Depending on the phenotype of interest, up to 10* variants
may be assayed per day per technician. Finally, the 96-well format has gained
wide acceptance in industry, prompting the development of a plethora of
equipment specifically designed for running experiments in this setting.

The development of robotics and microcontrollers during the past 50 years
has greatly enhanced the efficiency of selection programs, especially for cases
when variants must be kept separate. Screens based on solid media can greatly
benefit from automated colony pickers equipped with image analysis software.
In addition, more specialized systems exist for inoculating a lawn of bacteria
with “plugs” from a plate containing antibiotic-secreting variants to determine
inhibition zones and hence product secretion ability. Furthermore, a wide
variety of robotic systems designed for manipulation of cultures in the 96-well
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plate format have been developed, including media handlers, plate movers,
plate storage systems, and plate readers. One important consideration when
operating a robotic system is maintenance of sterility, as robotic components
comes into regular contact with a large number of cultures. Additionally,
robotic screening systems are only as good as their software; interesting or
unexpected phenotypes will not be selected unless their characteristics have
been programmed into the detection routine. Despite the added complexities
associated with operating a robotic system, expenditure of a reasonable
amount of care will make the operation of a high-throughput, statistically
rigorous screening program much more efficient. (For more information on
high throughput fermentation techniques, see Chapter 5.)

1.5 CONCLUSIONS

Complex phenotype optimization via the classical approach is well established
in the food and pharmaceutical industry. Improvement of yeast strains for
alcohol fermentations has long taken the classical approach due to “generally
recognized as safe” (GRAS) classification and ease of selection. This approach
has been quite successful in improving complex phenotypes such as complex
metabolite profiles, flocculation, and chemical tolerances (79). The success of
this approach can be seen in the evolution of the sake fermentation yeast (See
Box 1.1). In addition, since the advent and discovery of antibiotics, a long-
standing goal has been the increase of titer. The significant improvements seen
in these processes have mostly been due to the use of the classical strain engi-
neering approach (see case study in Chapter 6).

The genome-wide mutations induced by classical strain engineering are not
as efficient when the desired mutations occur in a single gene. However, when
it is desirable to obtain mutations across many genes in the cell (as is often
the case with complex phenotypes), the global nature of this approach is an
asset. Moreover, there is no need to understand the underlying genetic and
regulatory network to direct mutagenesis, as the “space” of possible mutations
covers the entire genome, in contrast to rational methods, which require more
intimate knowledge of influential genes to be successful. Classical strain engi-
neering, therefore, may return mutants that exploit previously unknown regu-
latory mechanisms or metabolic pathways, making this approach applicable
not only to organisms that are poorly characterized, but also to model organ-
isms. Furthermore, techniques of classical strain engineering can induce previ-
ously dormant sections of a genome to become active. Exploitation of these
“cryptic genes” would be unlikely in a rational approach to strain improve-
ment, demonstrating the ability of classical strain engineering to find novel
and nonintuitive solutions to a design goal (80). An important disadvantage
of this method is that the incurred changes are not easily traceable or movable
to another host strain. Recently, advances in whole-genome resequencing and
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“omics” technologies are beginning to evaluate these strains in hopes of
identifying the underlying changes (11) (see Chapter 3). However, this sort
of inverse metabolic engineering is seen to be a new frontier at the inter-
face of the classical and rational approaches for complex phenotype engi-
neering (81).

The classical strain engineering approach has long stood the test of time in
the fermentation industry due to its ability to consistently generate improved
phenotypes using simple techniques. By starting from single base-pair changes
and progressively increasing the rate of mutation, the strain engineer can
explore ever-more distant reaches of the fitness landscape, eventually travers-
ing wide valleys in single bounds as optimized strains are combined to create
individuals for further mutagenesis and improvement. The power of these
techniques to improve complex phenotypes lies in the lack of assumptions
made in their application. No hypotheses about rate-limiting steps or flux
imbalances are needed to generate improved variants, just a well-designed
assay and patience. Luckily, with the continued introduction of cost-effective
robotic and microfluidic systems, the length of time required for isolation of
improved variants will steadily decrease. Further, the use of this technique is
readily accepted by both regulators and consumers for the improvement of
food organisms. The generality of this approach, however, is often its major
downfall. Rational metabolic engineering, with its ability to precisely alter the
function of specific genes, is often able to generate improved variants in much
less time than classical strain engineering when such detailed knowledge is
available (see Chapter 2). Furthermore, the directed nature of such rational
techniques allows inferences to be made about the mechanism underlying a
phenotype, even when such techniques do not work. On the contrary, success-
ful variants isolated through classical techniques cannot yield any information
about underlying causes. As genome sequencing continues to increase in speed
and affordability, however, the ability to uncover and rationalize the causes
of phenotypic increase in classically engineered variants will increase. Thus,
classical techniques promise not only to continue to yield improved strains,
but also to elucidate the hidden bases of complex phenotype display in
microorganisms.
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TRACER-BASED ANALYSIS OF
METABOLIC FLUX NETWORKS

MicHAEL DAUNER

2.0 INTRODUCTION

Biological systems are complex networks consisting of many thousands of
components interacting with each other to constitute a phenotype. Currently
our knowledge of the cellular parts or of their interactions is not sufficient
to model and predict behavior of most biological systems with sufficient accu-
racy in silico as to render experiments in vivo unnecessary. It is for this
reason, as described in Chapter 1, that classical strain engineering approaches,
which entail mutagenesis and screening, were used predominantly to obtain
improved traits in industrial strains. However, it is exactly this complexity
that calls for engineering approaches based on mathematical models for
developing biocatalysts, as mathematical models allow for a systematic inte-
gration and analysis of a wealth of information that is currently being gener-
ated for many industrial strains (1). The advent of the “omics” technologies
(2-6) at the end of last and beginning of the 21st century, providing cell-wide
information on genomes (7-9), transcriptomes (10,11), proteomes (12-14),
and metabolomes (15-18) further emphasized this need. It also illustrated
that knowledge of only the parts of a system does not necessarily translate
into more efficient product development, as was illustrated by the inability
of the pharmaceutical industry to develop new drugs despite a flood of new
data and insights from “omics” analysis (19). This understanding finally gave
rise to the renewed interest in the concepts of systems biology and its tools

(20,21).
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FIGURE 2.1. Metabolic engineering workflow comprising hypothesis generation,
implementation, and observation.

Metabolic engineering (22) represents a systems biology approach to the
analysis and design of metabolic flux networks (23). Successful metabolic
engineering approaches build on a close interaction between hypothesis
generation, implementation, and observations and aim to develop new prod-
ucts and processes, to shorten development times, to improve efficiency and
robustness of processes, and to ensure sustainability and minimal health
and environmental impact of the product and processes over their life time
(Figure 2.1). The metabolic engineering toolbox comprises many experi-
mental, analytical, and mathematical techniques and methods, from recom-
binant DNA technology (24) to directed evolution (25) to sophisticated
modeling approaches (26). Among its most prominent tools are frameworks
for the analysis and design of metabolic flux networks, in particular network
analysis (NA), (stoichiometric) metabolic flux analysis (MFA), their applica-
tion to dynamic conditions (dynamic MFA, D-MFA) and complex cellular
systems (“in silico cells”), as well as their recent extension to integrate
data from tracer experiments, predominantly employing the nonradioactive
carbon isotope “C (*C NA and *C MFA), but also other tracers such as, "N
or *'P (Figure 2.2). Fluxes, equivalent to reaction rates, cannot be measured
directly. It is only from observing and balancing changes of, for example, sub-
strate or product levels, or other quantities related to a reaction rate, such as
temperature or pressure, that fluxes can be inferred from. However, in bio-
technological applications, fluxes (rates) generate the desired amounts of
product (titer) while producing as few as possible by-products (yield). It is
this combination of rate, titer, and yield (RTY) values that form the core
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FIGURE 2.2. Metabolic engineering tools for the analysis of metabolic fluxes. (See
insert for color representation of the figure.)

performance metrics in the development of almost all new biocatalysts and
bioprocesses.

NA and MFA and their extension to dynamic and whole-cell systems are
true engineering approaches to design and balance flux networks using model-
based analyses that take advantage of the conservation laws of elements, mass,
and recently with the incorporation of thermodynamic approximations, the
conservation of energy. The models consisting of a set of balance equations
help not only in designing optimum production pathways, but also in structur-
ing complex data sets and in superimposing additional constraints that allow
for deriving unique insights into complex networks of biological systems by
noninvasive means. In case redundant information is available, consistency of
measurements can be evaluated. This chapter, along with Chapter 3, is devoted
to illustrating the basic steps in designing and analyzing new biotechnological
processes and production systems with the help of NA and MFA. However,
the emphasis of this chapter will be on elucidating the advantages as well as
drawbacks of integrating tracer data into NA and MFA, while Chapter 3 will
focus on the integration of “omics” data into NA and MFA. In addition to
detailing how to carry out a tracer experiment and analyze isotope data,
examples are presented in detail where tracer-based NA and MFA were suc-
cessfully applied to facilitate engineering of new biotechnological processes
and products.

uoneuwLoul
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2.1 SETTING UP A STOICHIOMETRIC NETWORK MODEL

The first step in NA and MFA is to set up a representative stoichiometric
model comprising all relevant reactions of the system. In metabolic networks,
fluxes usually rely on enzyme catalysis. Consequently knowledge of all cata-
lytic genes in an organism and the stoichiometry of the reaction(s) they cata-
lyze allows for the reconstruction of the metabolic network from the annotated
genome (27). With sequencing capabilities improving at a rapid pace, the
number of available sequenced genomes has increased dramatically. The
first genome sequence of Haemophilus influenza was released in 1995 (7).
Today genome sequences of more than 180 organisms have already been
completed (28).

However, identification of all open reading frames (ORFs) in an organism
is a challenge (29), and even in the well-characterized model organisms Esch-
erichia coli and Saccharomyces cerevisiae, 940 out of 4472 (21%) and 1134 out
of 5796 (20%) (30) protein coding genes are still uncharacterized, respectively.
Also, nonenzymatic reactions that occur under physiological conditions need
to be integrated into the model. Examples are the hydrolysis of phosphoglu-
conolactonate (31) in the oxidative pentose phosphate pathway (PPP), the
decomposition of acetolactate to acetoin or diacetyl (32) in the branched-
chain amino acid biosynthesis pathway, or of glutamine to ammonia and
pyrrolidonecarboxylic acid (33). But simple chemical reactions under physi-
ological conditions also play a role in regulatory processes, for example, in
the formation of nitric oxide, an important cellular signaling molecule, from
hydrogen peroxide and arginine (34), or in the reactions of 2,4-dienone 13-
oxooctadecadienoic acid, a regulator in several cellular processes, with gluta-
thione and N-acetylcysteine (35).

Another challenge in setting up a network model results from promiscuous
enzymes (36,37). Last but not least, often stoichiometry of a reaction is not
known. One of the most prominent examples is the adenosine triphosphate
(ATP) synthetase reaction, coupling ATP generation with flux of protons over
the membrane. A general H"-to-ATP ratio of 4 was assumed (38). However,
recently insights into the molecular mechanism of the enzyme and its bioen-
ergetics point to flexible H'-to-ATP ratios, depending on the structure and
localization of the ATP synthetase in the respective organism (39). To further
complicate matters, frequently also stoichiometry of H" transport by the res-
piration chain is difficult to determine, not only because of differing constitu-
ents of the respiratory chain (40), but also because of electron slippage (41),
parallel reactions such as alternative oxidases and uncoupling proteins (42),
or proton and electron leakage (43). There are many more examples of
physiology-dependent reaction stoichiometries, including ion leakage through
membranes (44) or different cofactor preferences of the glucose-6-phosphate
dehydrogenase (45). Therefore, care needs to be taken to keep experimental
conditions defined and reproducible, as well as to have a detailed understand-
ing of these mechanisms in the specific system under investigation.
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Instead of composing a metabolic network model based on its known reac-
tions, alternatively an indirect approach can be taken starting from its known
metabolites. With recent progress in comprehensive metabolite analysis, on a
cellular level referred to as metabolomics, detection of a broad set of metabo-
lites is possible (15,46). Combined with knowledge of reaction biochemistry,
most of the reaction steps that link the detected metabolites can be derived.
However, there may also be cases where parallel reactions with different reac-
tion orders and biochemistry would be possible to explain the detected
metabolites. In this case perturbation experiments of the metabolite pools in
question would be required, for example, by stimulus-response experiments
(47). From observation of the response of the downstream metabolite pools
in question, connectivity could be derived. The feasibility of this approach
with respect to current experimental capabilities is still limited. Nevertheless,
the potential of this alternative avenue to reconstruct a metabolic network is
demonstrated by the finding that variations in metabolite levels observed at
different steady-state conditions revealed connectivity in the underlying met-
abolic network (48).

But what if the desired product is a non-natural compound and no biosyn-
thesis pathways for its production are known? Traditionally the knowledge of
domain experts on enzymatic reactions and substrate specificities of enzymes
is required to explore options for new biosynthesis routes. However, recently
a computational framework was developed that allows for a systematic iden-
tification of possible reaction pathways from a given set of enzyme reaction
rules (49). Molecules are represented using bond-electron matrices (50).
Enzyme-catalyzed reactions use a similar notation. The reactive sites for each
enzyme class are predefined as two-dimensional (2D) molecule fragments. A
set of molecules is given as input and evaluated to determine if it contains
compounds with suited functionality to undergo reactions corresponding to
the specified reaction classes. The reactions are then implemented through
matrix addition (49). This approach opens ways to construct and explore
unknown pathways or compare their efficiency with known biosynthesis path-
ways, as, for example, described for the biosynthesis of 3-hydroxypropanoic
acid (51) or 1,4-butanediol (52). Nevertheless, optimum product pathways
identified by this method may comprise one or more generic reaction steps
for which no enzyme is known to exist, requiring protein engineering efforts
to derive the desired activity from homologous enzymes (53). However, until
protein design methods improve, uncertainty remains as to whether an enzyme
with the required performance can be successfully engineered. Recently dra-
matic progress was made in computational protein design (54), resulting, for
example, in the de novo implementation of new reaction chemistry into
enzymes, such as a Kemp elimination (55) or a bimolecular Diels—Alder reac-
tion (56). It can be assumed therefore that the reaction space defined by
known enzymatic reactions will not be limiting the development of new pro-
cesses and products in the future, but will be expanded to comprise all feasible
and thermodynamically favored chemical reactions.
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2.2 SMALL-SCALE MODELS VERSUS GENOME SCALE MODELS

In setting up stoichiometric metabolic models, the metabolic engineer fre-
quently has to make a decision between focused small-scale models and
comprehensive large-scale models (Figure 2.3). The advantage of small-scale
models is their mathematical amenability and the usually straightforward inter-
pretation of the results obtained. Their construction is “bottom-up,” adding one
reaction at the time to the model. However, while this “step by step” setup of
the model assures a detailed understanding of the model by the metabolic
engineer, at the same time it also represents one of the major challenges of
working with small-scale models. Decisions need to be made as to which reac-
tions to include or not to include in order not to limit the capabilities of the
model to provide mechanistic and quantitative analyses and predictions (57).
Frequently the models only comprise reactions of the major catabolic or ana-
bolic pathways in central carbon metabolism, for example, the Emden—
Meyerhoff pathway (EMP), the PPP, the tricarboxylic acid cycle (TCA), and,
if applicable, the Entner-Doudoroff pathway (EDP) and Calvin—-Benson—
Bassham cycle (CBB). If industrial processes are analyzed, the production
pathway of interest is often included in the model as well. Further model sim-
plification can be achieved by lumping reactions of a linear reaction sequence
into one overall reaction (58-63). If the system is growing, consumption of
precursors for biomass formation has to be considered in the mass balances
of the model as well. For this purpose knowledge on the composition of a cell
is needed or at least needs to be approximated, that is, its protein, lipid, carbo-
hydrate, and nucleic acid content. An additional biomass fraction usually

»
'

FIGURE 2.3. Genome-scale (A) and small-scale model (B) of E. coli. The genome-
scale model (reproduced by M. Dauner from a screenshot of a genome-scale model
of E. coli in Insilico Discovery by J.W. Schmid, 2012, with permission from Insilico Bio-
technology (Stuttgart, Germany, http://www.insilico-biotechnology.com)) comprises
849 metabolites and 1334 transformers. A detail of the model as represented in the
modeling and simulation environment Insilico Discovery is represented in the right
window. Metabolites are displayed as blue and gray circles, metabolic reactions as red,
transmembrane transport processes as yellow squares. Prominent pathways are marked
by gray boxes. Associated data on transcript, protein, and enzyme levels are accessible
in the upper left window, model information in the lower left window. The modeling
environment supports stoichiometric as well as dynamic simulations. In addition, effec-
tor kinetics can be visualized (data not shown). The small-scale model consists of
23 metabolites and 26 reactions (165). Gray arrows represent fluxes of respective
metabolites for biomass formation. Abbreviations: G6P, glucose-6-phosphate; F6P,
fructose-6-phosphate; T3P, glyceraldehyde-3-phosphate; PSP, ribose-5-phosphate; S7P,
sedoheptulose-7-phosphate; E4P, erythrose-4-phosphate; PGA, 3-phosphoglycerate;
SER, serine; GLY, glycine; C1, methyl group bound to tetrahydrofolate; PEP, phospho-
enolpyruvate; PYR, pyruvate; ACA, acetyl-CoA; MAL, malate; FUM, fumarate; OGA,
a-ketoglutarate; OA A, oxaloacetate; TCA, tricarboxylic acid. (See insert for color rep-
resentation of the figure.)
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comprises amounts of intracellular low molecular weight compounds such as
vitamins, pathway intermediates, and salts. In case of macromolecules, for
example, proteins or DNA, further information on their monomer composition
is required, that is, their amino acid and nucleic acid fractions, respectively
(59-62).

In small-scale models, assumptions on the biosynthetic pathways of these
biomass precursors are made that allow for finally expressing biomass biosyn-
thesis as a lumped reaction comprising only input metabolites with a single
“biomass” variable as output (along with some other metabolites produced,
e.g., NADH, CO,, and ADP). However, it is this less stringent and, with respect
to the model balance equations, “hidden” process of deriving a lumped reac-
tion of biomass synthesis that represents one of the major differences in the
use of small-scale versus genome-scale models. In genome-scale models (see
Chapter 3) no reaction lumping and assumptions on biosynthesis pathways is
necessary. Model construction is “top down,” which means it starts with the
list of all reactions expected to occur in the cell. Valuable insights can be gained
into complex biosynthesis requirements and pathways that can function as
bypass reactions and that would usually not be considered in the small-scale
model (64). Nonetheless, genome-derived metabolic networks typically contain
a large set of missing reaction steps and dead-end metabolic pathways to be
curated (65). As a result, a large degree of freedom due to numerous parallel
pathways and redundant reactions frequently render analysis of the model
tedious. Dealing with reaction directionality in a large set of metabolic reac-
tions can be a time-consuming task if thermodynamic constraints are not
already integrated into the model (66).

2.3 NETWORK ANALYSIS: MAXIMUM THEORETICAL YIELD

Once a stoichiometric network model of an organism is set up, a frequently
encountered question in industrial biotechnology is the maximum yield
of a product that is achievable with a given substrate in the respective organ-
ism. With either a small-scale or genome-scale stoichiometric network model
at hand, this question translates mathematically into a linear optimization
problem: given a certain input into a network, what is the maximum output
of the desired compound? In industry this analysis is routinely carried out as
a first step in the evaluation of the economic feasibility of a new product or
process idea, the so-called techno-economic assessment. Results of such a
theoretical yield analysis are, for example, our knowledge on the maximum
theoretical yield of riboflavin that can be achieved with Bacillus subtilis on
glucose: 0.257 mol/mol (59), of penicillin V with Penicillium chrysogenum:
0.43 mol/mol (67), of 1,3-propandiol with E. coli: 1.49 mol/mol (68); and so on.
As costs of the raw materials are known, the maximum theoretical yield
allows for deriving the minimum material costs required to produce a
product in the best thinkable process. The calculation also incorporates
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information on co-substrates that need to be provided (e.g., oxygen), as well
as waste products that are produced (e.g., CO,).

Another outcome of the analysis is knowledge of the optimum metabolic
path associated with the maximum theoretical yield. This knowledge can be
used in developing and evaluating the feasibility of metabolic engineering
strategies for biocatalyst construction. The more reaction steps a production
pathway comprises, not only the more complicated its implementation will be,
for example, with respect to the genetic engineering required, but also the
higher is the expected loss of carbon due to side reactions. This in turn results
in the anticipation of an increased effort necessary for its optimization (69,70).

In cases where the network contains parallel reactions or pathways with
similar cofactor requirements, no unique optimum pathway solution exists.
Linear optimization will only deliver one of the solutions but will fail to iden-
tify all equivalent routes. An alternative to address this shortcoming of linear
optimization is to apply “elementary mode analysis.” In elementary mode
analysis all feasible “steady-state” modes to start from a substrate and to yield
a product that at the same time cannot be simplified (decomposed) further
are identified (71). The solutions can be ranked according to their yields, with
the highest yield solution representing the maximum theoretical yield. In the
case of networks with parallel reactions or pathways with similar cofactor
requirements, elementary mode analysis will identify all possible routes and
will present them as solutions with equal maximum theoretical yield. Finally,
all possible pathway solutions yielding maximum theoretical yield can be
represented by linear combinations of this set of optimum elementary flux
modes. Studies of elementary mode analysis for optimum production modes
were, for example, carried out for lysine and Corynebacterium glutamicum
(72), the metabolic engineering of Saccharomyces cerevisiae for poly-p-
hydroxybutyrate formation (73), or the production of succinate by E. coli (74).
However, while elementary mode analysis provides a more comprehensive
understanding of the system than linear optimization methods, this advantage
comes at the costs of significantly increased computational effort (75). This
chapter does not provide room for an in-depth discussion of the advantages
and limitations of “elementary mode analysis.” Readers interested in more
details are referred to Reference (76).

24 (STOICHIOMETRIC) METABOLIC FLUX ANALYSIS

While NA only uses the stoichiometry of the reaction network, stoichiometric
MFA, frequently also included in the term flux balance analysis (FBA) (77),
additionally introduces a time aspect, usually in the form of specific fluxes of
a substrate or product i, g;. Specific fluxes can be derived from measured volu-
metric reaction rates (Q;), usually determined in “g/L/h” or “mmol/L/h,” by
normalizing them to the actual cell concentration cx, typically determined as
grams of “cell dry weight” per liter (“g (cdw)/L”), resulting in the units of



44 TRACER-BASED ANALYSIS OF METABOLIC FLUX NETWORKS

either “g (i)/g (cdw)/h” or “mmol (i)/g (cdw)/h.” However, from practical con-
siderations, molar units are preferred to mass units, as reaction stoichiometries
usually refer to molar units. Remarkably, apart from the specific product and
substrate fluxes, another commonly used specific flux is the specific growth
rate mu, defined as mu = 1/cx dcx/dt, which essentially represents the specific
flux of biomass formation. Specific fluxes provide a means of directly assessing
cellular physiology/biocatalyst performance independent from process vari-
ables such as the biomass/biocatalyst concentration. They are of utmost impor-
tance in determining progress in strain development efforts in the engineering
of complex phenotypes.

A common misconception is that MFA can only be applied under steady-
state conditions, that is, in conditions where intracellular and extracellular
metabolite and biomass concentrations are not changing, as, for example,
encountered in steady-state chemostat cultivations. However, MFA can be
applied as well to quasi-steady state, yet even highly dynamic conditions,
as long as the mass balances applied hold for the respective time interval.
In this case MFA yields the average specific fluxes for the analyzed time
frame. However, care needs to be taken such that in order to obtain physi-
ologically meaningful results the cell concentration used for normalization
under dynamic conditions is not a constant but represents the average
cell concentration cx, corresponding to the integral of the cell concentration
from the start to the end of the investigated time interval Az. In a batch culture
growing exponentially with the maximum specific growth rate mu,,,,, the
average cell concentration can, for example, be calculated according to the
following equation: cX,e = (CXeng — CXgtare)/ (AL X Mityyyy)-

The stoichiometric matrix used in NA holds the information on the net-
work topology. Every row represents a mass balance and every column the
stoichiometric coefficient of a reaction in the respective mass balance. In
stoichiometric MFA the stoichiometric matrix is multiplied with, for example,
(molar) specific fluxes to yield a homogenous linear equation system. If some
of these fluxes, typically extracellular fluxes, are determined experimentally,
the system can be further decomposed to eliminate these known fluxes.
However, if the number of the remaining independent mass balances (or
mathematically speaking, the rank of the matrix) is smaller than the number
of unknown fluxes considered in the analysis, the system is underdeter-
mined. This means an unlimited number of solutions that can be represented
by a linear combination of a set of independent fluxes exist. If the number
of independent mass balances is equal to the number of unknown reactions,
the system is determined and can be solved to yield either none or a unique
flux solution. However, the system can also be overdetermined with more mass
balance equations and measured fluxes than unknown fluxes. In this case the
redundant measurement information can be used for measurement data rec-
onciliation. For more information on the mathematical details of stoichiomet-
ric MFA the interested reader is referred to Reference (78). While mass
balances on metabolite pools are most broadly used, all other entities that can
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be balanced can also be integrated into the equation system, for example,
elemental (79) or heat balances (80).

Stoichiometric MFA is a remarkable tool in that it allows the metabolic
engineer to noninvasively assess intracellular flux distributions based on mea-
surements from outside the cell. The tool is particularly useful for investigat-
ing redox and energy metabolism, because, for example, redox metabolites
such as nicotinamide adenine dinucleotide (NAD(H)) and nicotinamide
adenine dinucleotide phosphate (NADP(H)) and energy metabolites such as
adenosine mono-, di-, and triphosphates (AMP, ADP, ATP) participate in
many different reactions in metabolism and their metabolite pools exhibit
very high turnover rates. As discussed previously, a resolution of the intra-
cellular fluxes is only possible if the resulting equation system is determined
(81). However, due to duplicate reactions and parallel pathways, and because
not all of the ATP production and consumption processes can be quantita-
tively accounted for, the resulting equation system is usually under- rather
than (over-)determined. Additional balances that can be incorporated into
the analysis (82) are required. Balances on isotope provide such additional
information.

2.5 CARRYING OUT A LABELING EXPERIMENT

Frequently labeling experiments are carried out while metabolism of the
organism is in “steady state,” also referred to as “stationary.” During steady
state, intracellular concentrations of metabolites do not change. Consequently
metabolite and label balances can be drawn on the basis of constant fluxes
and accumulation of metabolites does not need to be considered. Steady-state
conditions are best achieved in continuous culture experiments, where the
specific growth rate of the culture is determined by the dilution rate. Another
advantage of chemostat experiments is that the biomass concentration of
the culture can be set by the concentration of the limiting substrate in the
feed. As comprehensive analysis of labeling experiments frequently requires
large amounts of samples, for example, if fluxes are analyzed in combination
with the transcriptome and proteome, sufficient amounts of samples can be
generated. Usually the labeling experiment is started the moment the investi-
gated culture reaches steady state. As a rule of thumb, it will take 3-5 volume
changes after the onset of substrate limitation to reach steady state, cor-
responding to approximately 95% or 99% of cells being newly generated
under substrate limiting conditions, respectively. During the labeling experi-
ment, unlabeled substrate in the feed (of course usually still containing the
respective isotope at natural abundance) is replaced with a substrate specifi-
cally labeled with an isotope in certain positions. Most frequently used isotope
substrates are glucose labeled with C in position C1 (*C;-glucose), glucose
uniformly labeled in all positions (u-"C glucose), or ammonium labeled with
N ("N-ammonium).
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In order to describe positional labeling patterns of isotopes in molecules,
they are frequently referred to as “isotopomers.” The term “isotopomer” is an
acronym and stands for “isotope isomer.” A metabolite with n atoms of an
element and m isotopes has m" isotopomers, corresponding to all possible
positional combinations of the isotopes in the molecule. Pyruvic acid, for
example, has three carbon atoms and eight isotopomers of the carbon isotopes
2C and "C. Optimal isotopomer composition of the substrate(s) for a labeling
experiment is best determined based on the focus of the analysis, availability
of labeled substrates, and hypothesized flux distribution in the system, apply-
ing optimum experimental design (83). With the replacement of the substrate
with its labeled mixture, the culture is still in a metabolic steady state but is
instationary with respect to the distribution of its labeling patterns in metabo-
lites and macromolecules.

Usually pool sizes of intracellular metabolites are small compared with the
fluxes, so the resulting high turnover rates result in an isotopic steady state of
the metabolite pools rather quickly. However, the advantage of using building
blocks of macromolecules rather than metabolites for label analysis is that no
fast sampling methods need to be applied, as turnover times of macromolecu-
lar pools are rather large. In particular, amino acids that can be gained from
cellular protein by hydrolysis allow for broad insights at various points of
central carbon metabolism (Figure 2.4). If building blocks in macromolecules
rather than metabolites are used for analysis, it takes 3-5 volume changes to
get close to an isotopic steady state, which requires considerable amounts of
labeled substrates for the experiment. Nevertheless, isotopic steady state of
the macromolecular labeling composition is not a conditio sine qua non, but
can be approximated by assuming simple washout kinetic for all macromol-
ecules generated before the onset of the labeling experiment according to fr
(unlabeled) = exp (=D x t.y,), with fr (unlabeled) representing the fraction of
unlabeled macromolecule, D the dilution rate of the continuous culture, and
txp the duration of the labeling experiment. Wiechert et al. (84) approximated
the difference between the two time constants governing the turnover of
metabolite pools and the turnover of macromolecules to be three orders of
magnitude, that is, 0.01 hour and 10 hours, respectively. These approximations
assume that no dilution of intermediates results from the turnover of macro-
molecules. Also, specific fluxes into a pool are presumed to be in the order of
the specific molar glucose uptake. However, if the metabolic flux network is
significantly engineered, labeling patterns in intermediates may not be repre-
sentative. This was for example shown for C. glutamicum, where the deletion
of pyruvate dehydrogenase resulted in very low TCA fluxes (85). Moreover,
macromolecules such as proteins (86) are constantly assembled from and
again decomposed into their monomers, which results in label dilution of
intermediates that can significantly bias the outcome of labeling experiments
(87). Nevertheless, the labeling information of proteinogenic amino acids can
also be used to correct measured mass isotopomer distributions of free amino
acids for any dilution effects, as, for example, reported by Iwatani et al. (88).
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If a protein is produced specifically by an organism, it can be purified and used
to conclude on split ratios of fluxes of the particular organism, even if this
organism was growing in a mixed culture (89). However, it will still be a chal-
lenge to combine the derived split ratios with extracellular fluxes, as these
fluxes can hardly be measured separately.

A process regime frequently used in biotechnology is batch cultures. In
batch cultures all the substrates are provided at the beginning of the process.
No additional substrates are fed nor is any culture broth harvested. Under this
condition the microorganism does not experience any substrate limitation and
usually grows (substrate inhibitions not considered) at its [, in the respective
medium until either a substrate becomes limiting or an extracellular by-
product reaches inhibiting levels. The system is metabolically in “pseudo”
steady state or “quasi” stationary, as intracellular fluxes and concentrations are
virtually constant. This setting allows for carrying out meaningful flux and
tracer experiments in batch cultures (90), making also small-scale experiments
in microtiter or deep-well cultures—cultivation platforms frequently used in
high-throughput screening (see Chapter 5)—possible (91,92).

Recording the degree and pace of label distribution in metabolites in a
metabolically stationary phase provides valuable information for so-called
isotopically instationary MFA. Analysis of the isotopomer time profiles of
metabolites enables determination of fluxes with improved accuracy, and can
also be used for the prediction of intracellular concentrations of metabolites
that cannot be measured directly (93-96). However, systems boundaries in
analysis need to be selected with care as turnover of large intracellular pools
such as storage carbohydrates in S. cerevisiae can significantly influence isotope
labeling patterns of the analyzed metabolites, similar to the metabolic and
isotopic stationary case (97).

Isotopically instationary conditions are also encountered in the analysis of
industrially relevant fed-batch cultures. If labeling information from proteino-
genic amino acids is exploited, high biomass concentrations, slow growth rates,
and high fractions of substrate consumed for maintenance metabolism require
the use of large amounts of labeled substrates, as was the case in an industrial
relevant fed-batch process of a recombinant E. coli producing 1,3-propanediol
(98). However, if metabolites such as free amino acids are used, the amount
of labeled substrates can be significantly reduced (99).

Last but not least there are stimulus-response experiments (SREs). SREs
were established to assess fast regulatory loops on the metabolite level in
vivo (100). Cells are grown under (quasi) steady-state conditions and per-
turbed by a sudden external stimulus. Rapid sampling and quenching proce-
dures are required, as the flux and metabolite network responds within a
sub-second time scale (101,102). By this approach fast processes at the level
of metabolite regulation can be investigated without interference from the
slow gene regulatory processes (103). However, in applying several simpli-
fied model descriptions, it was found that the perturbations in metabolite
concentrations of a single SRE were too small to allow for a complete elucida-
tion of the investigated metabolic flux system (104). Significantly more
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MFA Dynamic MFA
metabolic state stationary instationary
isotopic state no label stationary instationary no label instationary
measurements « concentrations of « concentrations of « concentrations of « concentrations of « concentrations of
extracellular extracellular extracellular extracellular & extracellular &
metabolites metabolites metabolites intracellular intracellular
« labeling patterns « labeling patterns metabolites metabolites
of macromolecule of intracellular « labeling patterns
building blocks metabolites of extracellular &
intracellular
metabolites
variables « net fluxes « net & exchange « intracellular « enzyme kinetics « enzyme kinetics
fluxes metabolite « intracellular « intracellular
« split ratios concentrations metabolite metabolite
« net & exchange concentrations concentrations
fluxes « net fluxes = f(f) * net & exchange
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« split ratios = f(f)
information + ++ +++ ++ ++++
complexity

FIGURE 2.5. Classification of experiments at various combinations of metabolic and
isotopic state together with an overview of the minimum associated measurements,
variables that are required to describe the experiment, as well as the amount of infor-
mation and complexity that need to be handled.

information can be obtained if the experiment is augmented with isotopic
tracer data, called D-MFA (105). An overview of the different combinations
of metabolic and isotopic stationary as well as instationary experiments is
given in Figure 2.5.

2.6 MEASURING ISOTOPE LABELING PATTERNS

Isotopes are variants of atoms of a particular chemical element that have dif-
fering numbers of neutrons and consequently differ in their mass, for example,
C or N. This difference in mass can be detected by mass spectrometry (MS)
(Figure 2.6). The name “mass spectrometry” is a misnomer as the mass is not
what is measured. Instead, MS determines the mass-to-charge (m/z) ratio or
a property related to m/z. A mass spectrum is a plot of ion abundance versus
m/z, although in many cases the x-axis is labeled “mass” rather than m/z (106).
Frequently analysis of complex sample mixtures requires the combination of
both separation techniques and MS. For volatile compounds, separation by gas
chromatography (GC) is frequently applied. For highly polar nonvolatile com-
pounds, separation of liquid chromatography (LC) is the method of choice.
The hyphen used to indicate the coupling of a separation technique to MS, for
example, GC-MS or LC-MS, led to the group term “hyphenated methods”
(107). An obvious limitation of hyphenated methods based on GC or LC
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13C versus 12C
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nuclear spin atomic mass: +1
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FIGURE 2.6. Measurement methods for the detection and quantification of *C label-
ing patterns in metabolites.

technologies is that the sample path is also acting as a filter and not all com-
ponents injected will necessarily pass through. Components will therefore
remain in the injector, column, and detector and the whole system will be
inherently different after each injection. This is in contrast to nuclear magnetic
resonance (NMR), which is a nondestructive spectroscopic technique (108).
NMR is an alternative for analyzing isotope labeling patterns. However, only
isotopes with an odd number of protons and/or of neutrons have an intrinsic
magnetic moment and angular momentum, in other words a nonzero spin, and
can therefore be detected by NMR. Nuclei frequently studied by NMR in
biology are 'H, *C, ®N, and *'P (109) (Figure 2.6).

In GC, sample mixtures are separated based on gaseous—solid phase inter-
actions. Briefly, the sample solution is injected into a heated sample port and
is vaporized. A carrier gas, most of the time helium or nitrogen, sweeps the
vaporized sample molecules into a column. The velocity at which a compound
transitions through the column depends on the strength of its adsorption,
which in turn depends again on its molecular structure, the stationary phase
material, and the temperature. The column is located in an oven to control the
temperature according to a program. Separation of the sample mixture is
therefore primarily based on boiling point and vapor pressure differences
between its components, and to a lesser extent on their interactions with the
stationary phase of the column. Carrier gas flow and column properties such
as coating, diameter, and film thickness, in combination with the temperature
program, result in a characteristic elution profile and retention time of each
molecule. For a more detailed description of GC principles the reader is
referred to Reference (110). GC works well for volatile compounds with
boiling points below 300°C. Most of the commonly used columns are not suit-
able for operation at significantly higher temperatures, due to limited thermal
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stability of their stationary phases. However, the majority of metabolites rel-
evant in biotechnological applications are either polar compounds with low
vapor pressure and significantly higher boiling points, or not stable at these
temperatures, for example, most sugars and amino acids. The boiling point of
a molecule usually increases with its molecular weight and number and polar-
ity of its functional groups. These polar groups allow for dipole—dipole interac-
tions and the formation of hydrogen bonds between the molecules and sample
matrix. To analyze these compounds by GC, derivatization methods were
developed that chemically transform them into compounds with lower boiling
points. Organic acids and amino groups are commonly silylated, predomi-
nantly with trimethylsilyl (TMS) or tertbutyldimethylsilyl (TBDMS) groups
(111). In addition, keto- (oxo-) groups are usually oximated (112) in order to
improve their GC properties and prevent enolization reactions, which can
introduce multiple products, thereby complicating the chromatograms.
However, during high-resolution chromatography, the syn- and anti-isomers
of the oximes can sometimes partially separate, giving rise to recognizable
shoulders on the GC peaks (108). Alternative derivatization methods were
reported; for example, with amino acids the use of (N,N)-dimethylformamide
dimethyl acetal gave dimethylaminomethylene methyl esters (113), or
derivatization with ethyl chloroformate yielded N-ethoxycarbonyl ethyl esters
(114). As the number of derivatized groups increases, there is a danger that
the molecular mass of the derivative will be outside the mass range of the
detector, typically m/z 650-1000, or will be too high that the derivative will
not pass through the GC column. In addition, the likelihood of sterically hin-
dered groups can lead to the formation of multiple products, thereby compli-
cating the chromatogram.There is a wide range of mass spectrometers available
varying in the type of ionization and the mass separation. Single quadrupole
mass spectrometers with electron impact (EI) ionization are the most often
used type of instrument. Compared with other instruments they are relatively
low-cost and offer a range of advantages such as high robustness, high sensitiv-
ity, and high accuracy of the measured labeling patterns (115). An example
flow chart for the analysis of labeling patterns in an amino acid mixture is
shown in Figure 2.7.

In LC-MS, for separation, the sample compound mixture is dissolved in a
fluid called the “mobile phase,” which carries it through a structure holding
another material called the “stationary phase.” The various constituents of the
mixture travel at different speeds, causing them to separate. Many separation
modes exploring various interactions are available, for example, reversed-
phase, hydrophobic interaction, normal-phase, hydrophilic interaction, ion-
exchange, ion-pair, size-exclusion, chiral, ligand exchange, or complexation
chromatography (116). After separation, the sample compounds dissolved
in the “mobile phase” have to be volatized and ionized to carry out MS.
Atmospheric pressure ionization (API)-based interfaces are the most broadly
used today, although many other interfaces are available, such as those based
on particle-beam, continuous-flow fast atom bombardment, or thermospray
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(117). Compared with GC-MS, a major advantage of LC-MS using API has
been the avoidance of a requirement to derivatize the samples. API sources
include both electrospray ionization (ESI) and atmospheric pressure chemical
ionization (APCI). In ESI, a high voltage is used to generate droplets contain-
ing multiply charged ions. In APCI, the LC column effluent is nebulized into
a heated tube, which vaporizes nearly all of the solvent. The solvent vapor acts
as a reagent gas and enters the APCI source, where ions are generated with
the help of electrons from a corona discharge source. API generally produces
much simpler spectra than EI. Depending on the chemical properties of the
compound, the ion source design, the ion source potential, the nature of the
matrix, and the solvent composition, mainly pseudo-molecular ions ([M+H]*
or [M-H]") are produced (108). Analysis of the mass spectral of a pseudo-
molecular ion provides considerably less information on the isotopomer dis-
tribution of a compound than, for example, the multiple fragments obtained
by EI. Moreover, in API it is not always simple to predict whether positive or
negative ions will be produced (118). Matrix effects can comprise ionization
suppression and ionization enhancement caused by salts and other compo-
nents that are ionized at the same time (119). Due to these reasons, only
limited search libraries of product ion mass spectra are available, hampering
the fast identification of unknown peaks obtained in LC-MS analyses.

Label analysis is frequently carried out on monomers derived from hydro-
lysis of macromolecules such as proteins or DNA, while analysis of labeling
patterns in intracellular metabolites was long impeded by their low concentra-
tions and high turnover. However, with improved sampling procedures and
the constantly increasing sensitivity of the analytical methods, these obstacles
were overcome. Free intracellular amino acids were analyzed by GC-MS by
Wittmann et al. (120). LC-MS-MS was used to determine mass isotopomer
distribution in free and proteinogenic amino acids (88), 40 mass isotopers of
10 phoshorylated compounds (121), or 60 mass isotopomers from 13 metabo-
lites (122). In addition to eight phosphorylated compounds, mass isotopomers
of pyruvic acid, alpha-ketoglutaric acid, succinic acid, glutamic acid, and aspar-
tic acid were analyzed. Coupling capillary electrophoresis with MS allowed
the determination of 73 mass isotopomers from 13 metabolites (123). Never-
theless, LC-based separation methods are less sensitive and less accurate, and
provide less resolution power than GC-based methods. Standard deviations in
the determination of mass isotopomer distributions with LC-MS-MS are in
the range of 6-24% (123), considerably higher than for measurements based
on GC-MS analysis of up to 0.4% with, for example, amino acids (124). An
improvement in analysis of mass isotopomers from phosphorylated com-
pounds by LC-MS-MS was recently achieved by operating the triple quad in
multiple reaction monitoring (MRM) mode (125). Fragmentation of the phos-
phorylated compounds resulted in high yields of [PO3]" and/or [H2PO4]
ions that were subsequently used in deriving the carbon labeling patterns of
their parent molecules. MS also usually does not provide positional labeling
information. To overcome this limitation, sustained off-resonance irradiation
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collision-induced dissociation (SORI-CID) has been applied in direct infusion
Fourier transform—ion cyclotron resonance mass spectrometry (FT-ICR MS)
to fragment the molecules. This way positional information on the *C label in
the proteinogenic amino acids glutamic and aspartic acids was retrieved (126).
Another remarkable feature of FT-ICR MS is its high resolution, enabling
high-throughput profiling of metabolites and their mass isotopomers without
prior chromatographic separation. However, molecules with the same mass
(isomers), for example, the amino acids leucine and isoleucine, cannot be dis-
tinguished by this method.

NMR spectroscopy can provide detailed information about the structure,
dynamics, reaction state, and chemical environment of molecules (127). NMR
spectroscopy exploits the physical phenomenon that magnetic nuclei in a
magnetic field absorb and re-emit electromagnetic radiation. This energy is at
a specific resonance frequency that depends on the strength of the magnetic
field and the magnetic properties of the atoms. NMR spectroscopy has been
widely applied to elucidating biosynthetic pathways (128,129). C labeling
patterns can be detected either directly or indirectly through the attached
protons. The choice of detecting *C atoms either directly or indirectly is often
determined by balancing increased sensitivity of '"H NMR detection against
increased spectral resolution of *C NMR. Also, '"H NMR allows detection of
protons attached to "C (i.e., total metabolic pools), whereas *C NMR can
assess *C-"C isotopomer patterns (130).

When using 'H NMR spectroscopy to assess labeling information, “C
enrichments can be calculated from the ratio of the satellite/center peak area
of each proton. In a nondecoupled 'H spectrum, signals of *C-bound protons
appear symmetrically as satellite signals around the signal of "“C-bound
protons. In the “C-decoupled 'H spectrum, signals of *C protons appear at
the same position as signals of *C-bound protons and not as satellite peaks.
Therefore, subtracting the “C-decoupled spectrum from the nondecoupled
spectrum allows for accurate quantification of *C satellite signals areas even
with baseline interferences or background signals from “C-bound protons
(131). However, only proton-bound carbons can be investigated. To address
this shortcoming, a method for determining *C enrichments in nonprotonated
carbon atoms was developed that makes use of unresolved “C satellites of
proton(s) bonded to the vicinal carbon atom (132).

Low sensitivity, due to low natural abundance of the *C isotope (1.1%) and
a gyromagnetic ratio of only 1/4 that of 'H, had originally restricted *C NMR
analysis. However, the advent of signal-averaging and Fourier transform tech-
niques brought about a dramatic change in the utility of *C NMR (133). The
BC nucleus exhibits a wide range of chemical shifts, and these shifts are
extremely sensitive to the chemical environment. Also, because the gyromag-
netic ratio of *C is small, the relaxation rates of this nucleus are relatively low.
The combination of large chemical shifts and favorable relaxation effects,
which result in widely shifted groups of narrow *C resonance, allow for high-
resolution ®C NMR experiments in aqueous solutions (134). In contrast to
"H NMR, the intensities of “C NMR signals are not proportional to the
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number of equivalent *C atoms but instead are strongly dependent on the
number of surrounding spins (127). Hence for determining *C enrichments
by PC NMR, first the signal areas of a carbon atom i in an analyzed compound
n are determined: A1,;. Subsequently a known amount of the said compound
with a known fractional enrichment of *C in the investigated carbon position,
typically a standard solution labeled at natural abundance, is added to the
sample solution: Ny ,.;. Another *C spectrum is acquired, and again the (now
increased) signal area of the respective carbon is determined: A2,,. With
knowledge of the amount of the compound 7 in the sample from a prior mea-
surement, Ny.s », for example, by high-performance liquid chromatography
(HPLC) or GC, the fractional enrichment of the carbon i in compound n
can now be calculated from the relative signals areas determined according
to FE = A1,/(A2,;— Al,;) X Nggnid Nmeas » (131,135). This way Walker et al.
obtained the absolute “C enrichments from 'H NMR spectra and the multi-
plet intensities from the "C NMR spectra and used them to conclude that
Microbacterium ammoiziaphilum synthesizes glutamate mainly via the EMP
pathway and the action of phosphoenolpyruvate carboxylase (EC 4.1.1.31)
(136). Sonntag et al. (131) used “C and 'H NMR to determine the relative
succinylase flux versus the diaminopimelate dehydrogenase branch in a C.
glutamicum strain. >C NMR with proton decoupling was also used to analyze
fractional enrichment in phenylalanine. FE data were used to carry out meta-
bolic flux analysis in a phenylalanine-producing E. coli. Flux results were
compared with optimum flux distributions derived from stoichiometric NA,
and overexpression of phosphoenolpyruvate synthetase (EC 2.7.9.2) was iden-
tified as a promising metabolic engineering strategy to increase production
(137).

Among the large number of heteronuclear NMR schemes, 2D [®C,'H]-
correlation spectroscopy ([*C,'H]-COSY, also referred to as heteronuclear
single quantum coherence [HSQC] spectroscopy) uses large one-bond scalar
coupling to link carbon chemical shifts with the resonances of directly attached
protons. In a 2D [PC,'H]-COSY spectrum, the “C resonance fine structure
observed along o, results from the superposition of the fine structures of the
isotopomers of the respective metabolite, weighted by their relative abun-
dance. Since 2D [“C,'H]-COSY suffices to resolve all relevant resonances,
compound mixtures, for example, of amino acids, can be analyzed without
prior separation (Figure 2.8). As only one-bond scalar coupling constants, 'Jcc,
are large enough to be resolved in the “C dimension (138), the *C fine struc-
ture of an atom is solely determined by the “C-labeling pattern of its directly
attached neighbor carbon atoms. However, in proton-detected 2D [*C,'H]-
COSY, only proton-bound carbons can be investigated (129). Emmerling
et al. (139) used proton-detected 2D [“C,'H]-COSY to show that E. coli
responds to disruption of both pyruvate kinase isoenzymes by local rerouting
of flux via the combined reactions of phosphoenolpyruvate carboxylase and
malic enzyme. Proton-detected 2D [®C,'H]-COSY was also used to analyze
metabolic fluxes of riboflavin producing B. subtilis under carbon limited (140)
and carbon excess conditions (141), as well as during substrate co-metabolism
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FIGURE 2.8. (A) Region of a 2D [®C,'H]-COSY spectrum with the cross peaks of
the C2 atoms (**C2-'H2) of multiple amino acids as well as the C3 peak (*C3-'H2) of
serine according to Reference (186) (B) Idealized cross peak signal of a three-carbon
molecule comprising an isomolar mixture of four isotopomers, labeled at either C2, C1
and C2, C2, and C3, or at all carbon positions, respectively. *C-labeled nuclei are rep-
resented by filled circles. The C2 carbon is the observed nucleus. The multiplet pattern
is a weighted superposition of singlet (S), doublet (D1 and D2), and doublet of doublet
(DD) signals. In case of equal coupling constants Jcyc; = Jeacs, doublets D1 and D2
cannot be distinguished and the completely labeled C3 fragment will give rise to
a triplet instead of a doublet of doublets. Terminal carbons only give singlets or
doublets.

(142). Finally, a 2D NMR method based on zero-quantum filtered (ZQF-)
TOtal Correlation SpectroscopY (TOCSY) was developed to measure “C
enrichments in complex mixtures of “C-labeled metabolites. Frequently the
"H NMR spectrum may be too overlapped to obtain a direct measure of *C
enrichment. Using ZQF-TOCSY, more than 30 “C enrichments were mea-
sured in labeled biomass hydrolyzate of E. coli without need for prior separa-
tion of the metabolites (143).
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FIGURE 2.9. Four concepts of describing isotope labeling information as exemplified
on a three-carbon molecule: isotopomers, CLD (carbon labeling degree), mass isoto-
pomers as well as positional enrichments. Black circles indicate a "*C, white circles, a
"2C carbon atom. Boxes indicate positional enrichments, gray boxes or circles indicating
positions that are not relevant.

2.7 TRACER-BASED MFA

There are several ways to describe and balance isotope labeling information
(Figure 2.9). A basic method is to determine the “carbon labeling degree*
(CLD). CLD measurements determine the percentage of an isotope relative
to the total amount of atoms of the element in a molecule or molecule frag-
ment. The CLD concept is similar to the determination of “summed fractional
enrichment” (144) but requires additional normalization to the number of
carbon atoms of the molecule or fragment. The information corresponds to
measurements from experiments with radioactive isotopes, for example, with
4C, where the CLD of molecules is determined via scintillation counters or
radiograms (145,146). The CLD provides quick information on whether a
molecule or fragment contains a label. Molecule- or fragment-based analytical
methods such as MS or scintillation counting are best suited to assess CLD.
The “C CLD of naturally occurring carbon molecules or fragments is about
1.1%, equivalent to the natural occurrence of the *C isotope. Using radioac-
tive isotopes is particularly advantageous if a fraction of the labeled substrate
is incorporated in macromolecules and/or cells of which the label content of
their various building blocks cannot be assessed and quantified comprehen-
sively. For example, a considerable fraction of glucose is not metabolized
by S. cerevisiae through either EMP or oxidative PPP, but rather directly
incorporated into storage and cell wall polymers. A total “C balance was
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successfully applied to quantify flux into these unspecified polymerization
reactions (147).

With knowledge on the labeling pattern(s) of a specific metabolite or set
of metabolites as well as on the network structure, conclusions on the split
ratio of fluxes at a flux branch point can be drawn. Frequently NMR or the
combined analysis of several fragments of the same metabolite measured by
MS analysis can provide position-specific labeling information, usually termed
fractional or positional enrichment (Figure 2.9). In case of a single-carbon
molecule such as CO,, information on the labeling patterns is equivalent to
knowing its CLD. With knowledge of topology of the biochemical system and
the positional fate of atoms in the enzymatic conversions, measured isotope
signals are related by explicit formulas to yield the desired flux ratios. An early
application of this “split ratio analysis” was the use of "*C; and "*C; glucose to
prove the operation of the oxidative PPP in S. cerevisiae (148). These experi-
ments were based on the fact that if glucose labeled in the C1 position enters
the oxidative PPP, labeled CO, will be released in the 6-phosphogluconate
dehydrogenase (EC 1.1.1.44) reaction. However, CO, formed from "“C4-
labeled glucose in the oxidative PPP will not contain any label. Therefore, the
difference in radioactivity in CO, formed from "“C, and "*C, provides a measure
of the relative flux through the oxidative PPP. Nevertheless, interpretation of
the CO, labeling pattern also needs to consider substrate recycling, scrambling
of label in reversible reactions, and generation of CO, from other pathways.
There are also mere implementation effects, for example, the buffer effect
of fermentation broth or carbon fixation in carboxylating reactions (149).
However, while use of radioactive *CQO, is experimentally challenging, good
progress was made recently in using “CO, for flux calculations instead (150).
The value of the approach was demonstrated by analyzing fluxes in a lysine-
producing C. glutamicum (151).

If not CO, but the positional labeling of an intermediate of the triosephos-
phate pool is analyzed, in addition conclusions on the relative fluxes, not only
through the oxidative PPP but also the EDP versus the EMP, can be drawn
(Figure 2.10). Sonntag et al. (131) quantified the flux partitioning in the split
pathway of lysine synthesis in C. glutamicum by using “C-NMR spectroscopy
to analyze labeling patterns in lysine and in pyruvate-derived metabolites.
Another example of the successful use of fractional enrichment measurements
was described by Ishino et al. (152). The authors used NMR and the "*C label
quantified in the C6 position of histidine to derive an EMP:ox. PPP split ratio
of 56:44 in a histidine-producing C. glutamicum strain. This conclusion was
possible because the major source of C, for histidine formation was derived
from serine through action of the serine hydroxymethyltransferase (EC
2.1.2.1). Additional examples for using positional labeling information for flux
calculations include the determination of fluxes through the TCA and the
glyoxylate shunt in E. coli based on the “C NMR spectrum of intracellular
glutamate (153). Rollin et al. (154) derived multiple flux ratios for the deter-
mination of EMP:ox. PPP (55%:45%), anaplerotic pathways (61%), and



TRACER-BASED MFA 59

A 13C,-glucose B 13C,-glucose
amount: 100
X C-mol : co,
H—C—on
EDP po—in PPP -
X. =
HO— (' H ° & €0 flux(ox. PPP)
(‘HZOH o =60%
EMP € w0 S
™ 3
2 W
(=]
20 - a
X C-mol X C-mol 5/6 X C-mol
020G 5% GO 50% OB 100%
O T T T
(:X:X:)SO"/ (:X:X:)SO"/
° ° 00 50 100 150 200
pyruvate CLD [%]

FIGURE 2.10. Split ratio analysis as exemplified by the metabolism of 100% *C;- but
otherwise unlabeled glucose either via EDP, EMP, or ox. PPP to pyruvate. Both
approaches provide only an approximation, as, for example, pyruvate can also originate
from different sources than glucose, as well as due to recycling and exchange reactions
in EMP and nonoxidative branch of the PPP that lead to a scrambling of label. (A) If
pyruvate is labeled in the C1 position, the molecule was generated from "“C;-glucose
via the EDP. If pyruvate is labeled in the C3 position, the molecule was generated from
BC,-glucose via the EMP. As both pathways split the six-carbon glucose molecule into
two pyruvate, but only one pyruvate carries the label, the other 50% of pyruvate mol-
ecules resulting from these pathways will not be labeled. If *C;-glucose is metabolized
via the ox. PPP, the *C; atom of glucose is released as CO, and the resulting five-carbon
molecules are subsequently rearranged to yield pyruvate molecules without any isotope
label. However, as 1/6 of the carbon originally provided in glucose is lost to CO,, the
total amount of unlabeled pyruvate produced will be only containing 5/6 of the original
amount of carbon in glucose. Consequently if the isotopomer composition of pyruvate
can be determined, conclusions on the activity of the three pathways can be drawn. (B)
If only the CLD of pyruvate can be measured, the split ratio of the ox. PPP can be
directly derived, as exemplified with a measured CLD of 7.4%, which corresponds to
a molar flux through the ox. PPP of 60%. However, no conclusions on the relative
activities of the EDP and EMP can be drawn.

glyoxylate shunt (0%) from fractional enrichment measurements in glutamate
in Corynebacterium melassecola.

Sauer et al. (155) finally expanded the use of explicit equations to cover
several important flux ratios in central carbon metabolism and termed the
approach metabolic flux ratio analysis (METAFoR). Flux ratios were derived
from either extensive NMR or MS analyses (156,157). The approach is com-
putationally inexpensive and can be applied for high-throughput analysis of
important flux nodes in metabolic networks (155). Flux ratios can also be used
as additional constraints in stoichiometric MFA (158-160). However, a major
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drawback of the approach is that only a small fraction of the information
gained from analyzing labeling patterns is exploited. Moreover, no compre-
hensive statistical method can be deployed to assess the quality of the calcu-
lated flux distributions. This capability is especially helpful if the network
topology of the biochemical system is not known so that assumptions made
for deriving the analytical equations may not hold valid. Rantanen et al. (161)
developed a computational framework to derive METAFoR constraints auto-
matically and comprehensively for any combination of substrates and isotope
measurements. Previously, deriving constraints required knowledge of domain
experts.

Zupke and Stephanopoulos (162) introduced atom mapping matrices, a
clear and intuitive mathematical formalism that allowed balancing of fractional
enrichments based on knowledge of the biochemical system and the fate of
atoms in the enzymatic reactions. Marx et al. (163) carried out metabolic flux
analysis in a lysine-producing C. glutamicum strain in continuous culture at a
dilution rate of D = 0.1 1/h, based on a comprehensive model comprising bal-
ances on metabolites and fractional enrichment data. Fractional enrichments
in 11 amino acids at 31 positions were determined. For this purpose amino
acids were purified from hydrolyzates of cellular protein by cation exchange
chromatography and analyzed by 'H NMR. With the knowledge of their bio-
synthesis pathway, the positional enrichment in the amino acids allowed the
authors to draw conclusions on the fractional enrichment of 20 positions of
six metabolites in central carbon metabolism. In particular, all carbon positions
of erythrose-4-phosphate, glyceraldehyde-3-phosphate, pyruvate, alpha-
ketoglutarate, oxaloacetate, and carbon dioxide were resolved. Moreover, frac-
tional enrichments in all positions in lysine were determined. A high pentose
phosphate flux of 66.4% of the molar glucose uptake rate, an anaplerotic
pyruvate carboxylase (EC 6.4.1.1) flux of 38%, and a relative flux of the suc-
cinylase as compared with the diaminopimelate dehydrogenase branch of
2.8:1.0 in the lysine biosynthesis pathway were identified, respectively. High
exchange fluxes in the nonoxidative branch of the PPP were discovered, in
particular in the 5-phosphate transketolase (EC 2.2.1.1) reaction. In another
study, Christensen and Nielsen (144) grew Penicillium chrysogenum on a
defined medium with C;-glucose as the sole carbon and energy source, and
added phenoxyacetic acid as side-chain precursor for the biosynthesis of peni-
cillin V. By balancing fractional enrichments and metabolites they found that
glycine was synthesized not only by serine hydroxymethyltransferase, but
also by threonine aldolase. The authors also detected that acetyl-coenzyme A
(acetyl-CoA) was derived not only from citrate via the ATP citrate lyase reac-
tion (EC 2.3.3.8), but also from the degradation of the penicillin side-chain
precursor, phenoxyacetic acid. Finally, Christensen et al. also balanced frac-
tional enrichment and metabolite measurements to carry out a flux analysis
in an aerobic chemostat culture of S. cerevisiae at D = 0.1 1/h and found an
EMP:ox PPP flux ratio of 35:43 and an anaplerotic reaction via carboxylation
of pyruvate of about 26% of the specific glucose uptake rate (164). In both
studies the authors balanced fractional enrichments. However, as GC-MS
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reaction: 1C1 +1glycine —— 1 serine
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FIGURE 2.11. Isotopomer balancing exemplified on hand of the reaction of a one-
and two- to three-carbon atom molecule. For balancing the isotopomers, fractions
(probabilities p) of isotopomers in the one-carbon molecule are multiplied with the
fractions (probabilities p) of the isotopomer of the two-carbon atoms to yield the frac-
tions (probabilities p) of the respective isotopomers of the three-carbon atom. Black
squares and circles illustrate the *C, white squares and circles, the '*C isotope.

analysis was applied to assess mass isotopomer fractions of metabolites,
summed fractional enrichments were used to judge the quality of the fitted
results.

Maximum information retrieval from NMR and MS data obtained in a
tracer experiment is accomplished by using “isotopomer” (140,165-167) or
“cumomer” balances (168). In isotopomer balancing, not the fraction of a
labeled carbon atom in a given position of a metabolite is balanced, but
the fraction of isotopomers. Consequently in a bimolecular reaction of mole-
cules A and B reacting to C, the fraction of a specific isotopomer in C results
from the summation of the products of every single isotopomer fraction in
A multiplied with every single isotopomer fraction in B that yields the said
specific isotopomer of C in the reaction (Figure 2.11). If several reactions
can form molecule C, the isotopomer probability of each reaction need now
to be multiplied with the magnitude of the flux through the respective reaction,
added up, and subsequently normalized to the sum of all fluxes generating the
metabolite. The mathematical formulation of isotopomer balances therefore
results in large and nonlinear terms. The basic principles behind these
approaches as well as their advantages and limitations have been reviewed by
Wiechert (169). An example of MFA based on isotopomer balances is given
in Figure 2.12.

Antoniewicz et al. (170) introduced the “elementary metabolite units” or
EMU framework for balancing isotope labels in metabolic flux networks. The
essence of the EMU approach is that only the labeling information that is
required to describe obtained measurement data is balanced throughout the
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network. This way the approach allows for a significant reduction of balance
equations as compared with isotopomer or cumomer frameworks. For a typical
BC labeling system, the total number of variables and equations that needs to
be solved can be reduced by one order of magnitude. The significantly reduced
number of balance equations now also makes the simultaneous description of
multiple elemental isotopes in a molecule possible, for example, in glucose the
combination of 'H/2H, C/"C, and *O/"®O. In this case the analysis of gluco-
neogenesis, for example, requires only 354 EMU balances, compared with
more than 2 million isotopomer balances.

Tracer-based MFA under isotopic or metabolic instationary conditions
(Figure 2.5) is still in the realm of method development and will require
further refinement before it is broadly applied in industrial R&D (171). This
is due to the dramatic effort necessary to generate and analyze valuable
samples as well as the complexity of extracting information by modeling and
simulation. Nevertheless, analysis of the isotopomer time profiles of metabo-
lites under “isotopically instationary” conditions enables the determination of
fluxes with improved accuracy, and can also be used in predicting intracellular
concentrations of metabolites that cannot be measured with the available
analytical procedures (93-96). Noh and colleagues (122) applied isotopically
nonstationary flux analysis in a fed-batch cultivation of E. coli. Solving the
differential equation system was computationally expensive, with one simula-
tion requiring 3-8 minutes. A 5000-fold reduction in simulation time, from 83
minutes with cumomer balancing to 1 second, was achieved by adapting the
EMU framework to nonstationary flux analysis and applying “block decou-
pling” to decompose the EMU system into smaller sub-problems (172). Esti-
mating fluxes and concentrations from 33 GC-MS fragments in a large E. coli
metabolic network of 35 free fluxes and 46 metabolite pools took only 15
minutes, opening a broad range of new applications for SREs and isotopically
nonstationary flux analysis. Even more information can be obtained in SRE
experiments with isotopic tracers (105) (Figure 2.5).

2.8 VALIDATING METABOLIC FLUX NETWORKS

Conventionally assumptions on the topology of a metabolic flux network are
confirmed by in vitro enzymatic assays or phenotypic comparison of gene
deletion strains. In industrial biotechnology, typically the validation of net-
works are required on two occasions: (i) to make sure that the basic assump-
tions on the metabolic flux network is correct before engaging in an extensive
metabolic engineering project, and (ii) to trace the effect of a genetic modifica-
tion on a metabolic flux system. Because if the gene deletion is just a first step
in a multi-step genetic engineering strategy and either (i) does not cause a
change in phenotype, (ii) no assay for the enzyme of interest exists, or (iii) the
enzyme would have to be purified first (e.g., because multiple enzymes in
the crude extract consume the assay substrates with high rate), tracer-based
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analysis may provide the fastest and most accurate way for hypothesis testing.
The deletion of the two pyruvate kinase (EC 2.7.1.40) enzymes in E. coli, for
example, did not result in any discernible phenotype. However, analysis of the
intracellular fluxes by *C MFA with a comprehensive isotopomer balancing
model did reveal the gene deletion. It was shown that the blocked pyruvate
kinase flux was rerouted via the combined reactions of phosphoenolpyruvate
carboxylase (EC 4.1.1.31), malate dehydrogenase (EC 1.1.1.37) and malic
enzyme (EC 1.1.1.39) (139). Also in E. coli, the transaldolase (EC 2.2.1.2) gene
was deleted and the mutant was subsequently grown on xylose. However,
in contrast to conventional textbook knowledge, a good fit of the labeling
data was only accomplished by the introduction of a new reaction sequence
(37). It was suggested that phosphofructokinase (EC 2.7.1.11) and fructose-
bisphosphate aldolase (EC4.1.2.13) catalyzed the conversion of sedoheptulose-
7-phosphate to sedoheptulose-1,7-bisphosphate and subsequently to erythrose
-4-phosphate and dihydroxyacetone phosphate, respectively. Further support
for the postulated alternative pathway was obtained by metabolite measure-
ments and in vitro enzyme assays. In P. chrysogenum and Aspergillus nidulans
BC-based MFA revealed labeling patterns in cytosolic acetyl-CoA that could
not be explained by operation of EMP and PPP only (173). In a subsequent
study, an active phosphoketolase pathway was detected (174). More examples
of the use of *C MFA for the exploration of metabolic flux networks can be
found in References (175) and (176).

Constraints derived from thermodynamic analyses provide a way of check-
ing consistency of the obtained flux solutions (177-179). In order for a reaction
(or flux) to occur, the change of the associated Gibb’s free reaction energy AG
needs to be negative. Gibb’s free reaction energy depends on the chemical
properties of the reaction partners—their standard Gibbs energy of formation
AG—as well as on their activities. Consequently if the chemical properties
and activities are known, conclusions on the feasibility of a reaction can be
drawn (66,177). The same principles govern exchange fluxes quantified in
isotope labeling experiments (180,181). However, activities do not depend
only on the measured intracellular metabolite concentrations, temperature,
and pressure, but also on other components in the mixture, and consequently
their determination represents a major source of uncertainty. Moreover, many
compounds occurring in biological systems are not available as pure substrates,
and consequently their AG,° values cannot be determined experimentally.
Methods to estimate AG;’ values based on group allocation theories were
developed (182,183). Correcting functions as well as improved methods to
estimate AG,” were introduced to improve the accuracy of AG determinations
(184,185). Nonetheless, a wide range of feasible metabolite concentrations for
a given flux phenotype (66) indicates that vice versa the assessment of the
feasibility of a flux based on error-prone intracellular metabolite concentra-
tions is only of limited value and should be treated with care. More details on
network embedded thermodynamic (NET) analysis and thermodynamics-
based metabolic flux (TMFA) analysis are given in Chapter 3.
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2.9 CONCLUSIONS

Analysis and design of metabolic flux networks is at the core of industrial
biotechnology, as fluxes result in yields and titers, and it is primarily rate, titer,
and yield that contribute to the commercial success of novel products or pro-
cesses. Metabolic engineering provides powerful tools for the modification,
analysis, and design of complex metabolic systems. The advent of “omics”
technologies and the integration of tracer experiments into NA and MFA
considerably expanded our understanding of systems and allows delivery of
fast and accurate predictions. The availability of fully representative in silico
cell models is merely a matter of time and will result in a swift and fundamen-
tal paradigm change in metabolic engineering.
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INTEGRATION OF “OMICS”
DATA WITH GENOME-SCALE
METABOLIC MODELS

STEPHEN VAN DIEN, PrITI PHARKYA, AND ROBIN OSTERHOUT

3.0 INTRODUCTION

Biological discovery and applied biotechnology are constantly challenged by
the complexity of living cells. The existence of unknown factors and poorly
understood processes often leads to unexpected results, which translates to
inefficiencies in both discovery research and product development. With the
advent of high-throughput technologies, such as automated DNA sequencing,
genome-wide expression analysis, proteomics, and high-throughput screening,
the number of unknown cellular components is being reduced. The identifica-
tion of these factors is, however, just the first step. In order for these data to
provide tangible benefits in the scientific, medical, and industrial communities,
technology must be established to interpret this information in the context of
the entire biological system (1). Only then can we begin to utilize such knowl-
edge to predict biological functions and responses, and thus ultimately allevi-
ate the challenges that the complex system presents.

As the common denominator of all cellular functions, metabolism offers
the best place from which to base the development of in silico models used
to evaluate high-throughput “omics” data. Through the utilization of a vast
repertoire of enzymatic reactions and transport processes, unicellular and
multicellular organisms can process and convert thousands of organic com-
pounds into the various biomolecules necessary to support their existence. In
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switchboard-like fashion an organism directs the distribution and processing
of metabolites throughout its extensive map of pathways. The combination
of metabolic models with an experimental research platform can have a pow-
erful impact on the biotechnology industry as a whole. Various technological
advances at the DNA sequence, transcript, and protein levels have accelerated
our ability to characterize and quantify the components of a biocatalyst’s
metabolic machinery. In addition, the continuous development of recombinant
DNA techniques has made it increasingly possible to rationally manipulate
the genetic content of virtually any candidate production organism. Metabolic
models provide a means to capture this data in an organized manner, and
translate it into phenotypic behavior through simulations. In addition, avail-
ability of new data will drive iterative model development. These in silico
models therefore serve as the most concise representation of the biology and
metabolism of a microorganism. As such they can become the focal point for
the integrative analysis of vast amounts of experimental data and a central
resource to design experiments and drive research programs (1,2).

3.1 GENOME-SCALE METABOLIC NETWORKS

Genome-scale models provide a framework to organize genome sequence
information and interpret data in the context of cell metabolism. In order to
analyze, interpret, and predict cellular behavior using metabolic simulations,
each individual link in a biochemical network must be described, normally
with a rate equation that requires a number of kinetic parameters. Unfortu-
nately, it is currently not possible to formulate this level of description for
cellular processes on a genome scale. In the absence of kinetic information, it
is still possible to assess the theoretical capabilities of integrated cellular pro-
cesses by using a data-driven, constraint-based approach (3). Rather than
attempting to calculate and predict exactly what a metabolic network does, we
are able to narrow the range of possible phenotypes that a metabolic system
can display based on the successive imposition of governing physico-chemical
constraints. Thus, instead of calculating an exact phenotypic “solution,” we can
determine the feasible set of phenotypic solutions in which the cell can operate
(illustrated in Figure 3.2). Optimization procedures are then applied to calcu-
late the “best” solution within the allowable range based on a particular objec-
tive function, such as maximizing growth yield (4-6). If the network has
evolved to produce the “best” or optimal function, then agreement is reached
between experimentally determined behavior and the in silico computations.

Construction of genome-scale metabolic models begins with the metabolic
reconstruction, in which genes are linked to proteins and ultimately to the
reactions they catalyze (7). Homology searches are used to assign putative
function to each gene. Proteins are then connected to reactions using “AND/
OR” logic; for example, several proteins may need to form a complex in order
to catalyze a single reaction, one enzyme may perform multiple reactions, or
several isozymes may catalyze the same reaction. Maintaining the correct
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model structure in this dimension is crucial for the interpretation of omics
data. These steps can often be automated using computational tools, such
as the SimPheny platform (Genomatica, Inc., San Diego, CA, http://www.
genomatica.com). Due to incomplete genome sequences, genes of unknown
function, and protein sequences diverging to the extent that they no longer
can be found by homology searching, it is almost certain that the initial meta-
bolic reconstruction will be incomplete. Visualization of the pathways on maps
can highlight where information is complete and where there are knowledge
gaps (8). Such gaps result in dead-end metabolites, orphan genes, or even
missing pathways. Gaps in the network can be filled by physiological knowl-
edge. For example, if only one or two steps are missing in an essential biosyn-
thetic pathway, it is likely that the pathway is present. Research can then be
focused on finding the genes encoding the missing steps, if desired (9). Use of
the models in conjunction with experimental data can also find previously
unknown or poorly characterized pathways, even when they are not essential
for growth on standard laboratory media. Intracellular metabolite measure-
ments (“metabolomics” data) can find metabolites that are not present in the
model (10). These metabolites can be linked to the rest of the metabolic
network using gap-filling algorithms (11), or often just by visual inspection. In
general, model development is an iterative process (Figure 3.1). Models are
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FIGURE 3.1. The in silico model is used to generate hypotheses testable through new
experimental design and through further analysis of existing experimental/bioinformatics
data. The model leads to the design of experiments to enhance our understanding of
the organism, leading to refinements in the model and the notion of iterative model
development to accelerate discovery.
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constructed based on the genome sequence and limited experimental data.
The model can then identify poorly characterized regions of metabolism,
which serve as the focus for further research. This work may then identify
inconsistencies, which are reconciled to improve the model. Although this will
improve model predictions in certain cases, it may also create new questions,
and thus the cycle starts over. In summary, the model drives research effort,
and the research drives model improvement.

Use of growth-phenotyping data, such as that generated by Biolog
(Hayward, CA, http://www.biolog.com), is a relatively inexpensive way to
leverage models for a systems approach to metabolic network discovery
and improving gene annotations. In a recent study with Bacillus subtilis, phe-
notype microarray (PM) data were used to add 75 reactions to the genome-
scale model, which were essential for growth on certain substrates that tested
positive in the array (12). Forty-nine of these reactions are for metabolite
transport, adding to the large number (191) of transporters already in the
model based on genetic and biochemical evidence. For some of the substrates,
addition of the appropriate transporter was not sufficient to allow growth.
Catabolic reactions also had to be added to link certain carbon sources, such
as D-malate, L-arabitol, and dulcitol, to pathways that are already present in
the model. The authors then used bioinformatic approaches to find candidate
genes that may encode these reactions. Although experimental validation is
required, such a model-driven approach provides targets and can save time by
focusing future research in directions that are most likely to succeed. Reed
and coworkers have demonstrated this methodology for improved annotation
of Escherichia coli gene functions (9). As with the Bacillus study, PMs from
Biolog were used to find discrepancies between observed phenotype and
model predictions, and putative reactions were added to the model. Genes
encoding these reactions were identified by a combination of homology
searches, gene expression by microarray analysis and reverse transcriptase-
polymerase chain reaction (RT-PCR), enzyme activity assays, and finally con-
firmed by growth phenotype of deletion mutants on the substrate of interest.
A clear example is the utilization of D-malate, for which the transporter
(dctA), dehydrogenase (yealU), and a regulator (yeaT) were identified.

3.2 CONSTRAINT-BASED MODELING THEORY

The core principle underlying the constraint-based approach lies in the balance
equations imposed by the stoichiometry of the reactions. Basically, this repre-
sents mass, energy, and redox balance constraints. The mathematical formalism
of stoichiometric modeling is well developed (13) and has been used exten-
sively in the field of metabolic engineering under the terms flux balance analy-
sis (FBA) and metabolic pathway analysis (MPA) (5,6,14,15,15,16) (see
Chapter 2). It is based on the application of a pseudo-steady state hypothesis
(16) to the mass balance of metabolites, yielding the equation
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S-v=0.

where S is the stoichiometric matrix and v the vector of reaction rates. The
number of reactions is almost always greater than the number of metabolites,
resulting in an underdetermined system of equations. Thus, instead of a unique
solution, we end up with a feasible solution space as shown in Figure 3.2. It is

Rn

A i/ Stoichiometry and
linear algebra

Subspace of Rn s-v=0

B \L Reaction directions
and convex analysis

v,z 0
Convex cone
C i/ Capacity constraints
> Bounded
convex subset 0 <y s ymax
D i/ Regulatory constraints
7
Union of
convex subsets

FIGURE 3.2. Schematic view of constraint-based modeling. The successive imposition
of governing constraints, including the (A) stoichiometric, (B) thermodynamic, and (C)
enzyme capacity constraints, reduces the size of the feasible set (shown as bounded
space within dotted lines and shaded planes) and is represented through the incorpora-
tion of a set of mathematical statements. In the limiting case where all constraints on
the metabolic network are known (D), for example, enzyme kinetics and gene regula-
tion, the feasible set may be reduced to a single point.
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this space to which we apply our successive constraints and optimization
procedures.

Such a constraint-based approach provides a basis for understanding the
structure and function of biochemical networks (5,6,14,15,16). Beginning
with the solution to the above equation, we then add capacity limitations to
account for the maximum flux through enzymatic reactions. We can further
constrain the solution space by adding experimental data: extracellular fluxes
obtained from fermentation process data; qualitative constraints based on
known metabolite-mediated regulatory interactions; qualitative constraints
from gene expression data; and the assignment of flux directions based
on thermodynamic constraints imposed by metabolite concentrations. Each
additional data input provides new information that can be used to reduce
the range of feasible flux distributions and phenotypes that a metabolic
network can display. The latter two types of constraints indicated above,
derived from gene expression and metabolomics data, is the subject of this
review.

3.3 CURRENT ANALYSIS OF OMICS DATA

Genomics data form the basis of model development, as already discussed. In
the post-genomic era, a variety of omics technologies have been developed to
collect high-throughput data characterizing levels of the central dogma leading
from genotype to phenotype. This includes transcriptomics (microarrays),
proteomics, metabolomics, fluxomics, and phenomics (such as the Biolog PMs).
Systems biology seeks to utilize this information to map the genotype—
phenotype relationship, and ultimately understand the complex behavior of
living cells (17). However, most methods commonly used for the analysis of
such data fall short of this objective, limiting the scope of the analysis to only
one aspect of cell physiology such as gene regulation circuits. On the other
hand, in silico models allow for the holistic investigation of biological systems,
capturing the activity of multiple gene products working together in a globally
orchestrated fashion. Therefore, these models provide an ideal platform for
the analysis and interpretation of omics data to drive both scientific discovery
and biotechnology applications (18).

Since the pioneering work in the mid-1990s, gene expression microarrays
have become ubiquitous. Virtually every major commercial research effort
focused on understanding cellular responses in medical and industrial biotech-
nology is implementing whole-genome expression profiling along with a suite
of other experimental technologies. Concomitant with the improvement in the
technology for creating gene chips and performing microarray experiments, a
variety of statistical tools have been developed to analyze and interpret the
large quantity of data generated from such experiments. A major challenge
recognized early on was how to determine if changes in expression between
two conditions were significant. The simplest method is to apply a heuristic
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such as a twofold expression change compared with baseline (19). Higher
confidence results were obtained using ¢-tests assuming a Gaussian distribu-
tion (20), or nonparametric methods that do not assume a normal distribution
(21). The problem becomes more complex when comparing multiple samples.
Methods such as singular value decomposition (22,23), self-organizing maps
(24), or hierarchical clustering (25) are used to group genes based on expres-
sion patterns over time or across different conditions. However, the utility of
these approaches hinges on the assumption that genes with similar expression
behavior are likely to be related functionally, without consideration for the
biological context of the genes (26). Integration of these data with other omics
data sets and a biological model, particularly a constraints-based model, can
provide further insight on a systems level (27). This is not a substitute for the
above methods, but rather a complement.

Identification and measurement of intracellular metabolites gets us a step
closer to phenotypic characterization, but still can be linked to genotype
through the known metabolic reactions connecting these metabolites. Thus, in
one sense, such metabolomics data are ideal for investigating the genotype-—
phenotype relationship. Metabolomics research has lagged behind that of
transcriptomics and proteomics, primarily due to the wide variety of chemis-
tries involved and thus the need for multiple measurement techniques. None-
theless, metabolomics is gaining traction in both industrial and academic
research groups, and significant improvements have been made in both the
number of metabolites that can be identified and the accuracy with which
intracellular concentrations can be measured (10,28-30). Many of the same
statistical techniques applied to microarrays were used with metabolomics
data to look at trending in profiles among different data sets (31-35). Such
work has proven useful in discovering biomarkers and identifying strains (36),
but provides no biological insight. On the other hand, analysis of metabolomics
data in conjunction with metabolic models will lead to a better understanding
of the metabolic processes that drive cell function, and will utilize these data
sets to their full potential (37-39).

3.4 NEW APPROACHES TO DEVELOPING
MODEL CONSTRAINTS

To improve the predictive capability of metabolic models without the use
of experimental data, new rules must be implemented to restrict the feasible
flux space. One such set of rules is thermodynamic constraints. To a first
approximation, thermodynamics have been traditionally incorporated into
models by specifying each reaction as either reversible or irreversible. Often
such restrictions are chosen somewhat arbitrarily, based on the way they
are written in biochemistry texts or internet reaction databases, without much
true regard for the AG values. The latest genome-scale E. coli model is more
rigorous in its reaction direction assignments (40). Gibbs energies of formation
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are calculated for each metabolite using the group contribution method
(41,42), and used to calculate the possible AG range for each reaction given a
typical physiological range for metabolite concentrations. A related field,
energy balance analysis, was developed to eliminate energy-generating cycles
using loop laws akin to electric circuits (43). Thus, even in a set of cyclic equa-
tions where each reaction individually could proceed in the appropriate direc-
tion, the second law of thermodynamics prohibits operation of a cycle unless
one of the reactions has external energy input such as adenosine triphosphate
(ATP). Although such infeasible cycles could often be detected by inspection
and corrected by making one reaction irreversible, energy balance analysis
formalized the process.

More recently, two new approaches have been developed to incorporate
thermodynamic feasibility constraints in metabolic flux analysis: network-
embedded thermodynamic analysis (NET analysis) (44) and thermodynamics-
based metabolic flux analysis (TMFA) (45). In addition, both of these methods
can incorporate metabolomics data (intracellular metabolite concentration
profiles) to further constrain the simulations. NET analysis employs a nonlin-
ear optimization algorithm to calculate feasible ranges of metabolite concen-
trations and Gibbs energies of reaction based on the topology of a metabolic
network and observed metabolite profiles (44). NET analysis can be applied
to evaluate the quality of metabolomics data, identify putative regulatory sites,
and predict feasible concentration ranges of unmeasured metabolites. Inputs
to the optimization algorithm include a stoichiometric matrix of the network,
a direction of flux for each reaction, the Gibbs energy of formation A/G of
metabolites, and concentration constraints. Flux directions can be derived
from experimental measurements (c.f. °C flux measurements, see Chapter 2),
from metabolic flux analysis predictions, or from preexisting knowledge of the
network. Concentration limits can vary over a wide range (0.001-10mM) or
can be narrowly constrained by metabolomics data. Error associated with
thermodynamic parameters and concentration constraints is also incorporated
into the optimization framework. TMFA is a linear optimization method
recently developed for incorporating thermodynamic data directly into the
metabolic flux analysis framework (45). Unlike NET analysis, TMFA does not
require preexisting knowledge of flux directions. Rather, the method inte-
grates thermodynamic and mass-balance constraints to ensure that predicted
flux distributions are thermodynamically feasible (Figure 3.3). TMFA can be
applied to predict flux and Gibbs energy ranges of each reaction, and also a
feasible concentration range of each metabolite. While NET analysis is formu-
lated as a nonlinear optimization, TMFA as described by Henry et al. (45) is
a linear problem. As such, TMFA is guaranteed to converge on a global
optimum solution. A minor limitation is that a handful of the NET analysis
constraints cannot be implemented within the linear TMFA framework (e.g.,
the ratios of the NAD or NADP cofactors and the adenylate energy charge).
Both techniques have been developed and applied to small metabolomics data
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Inputs Method Outputs
Flux directions Feasible range of
each Gibbs energy

of reaction
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FIGURE 3.3. Comparison of network-embedded thermodynamic analysis (NET) and
thermodynamics-based metabolic flux analysis (TMFA). Inputs and outputs to NET
analysis and TMFA are color coded in red and blue, respectively. (See insert for color
representation of the figure.)

sets. The true potential of metabolomics data for understanding metabolic
behavior awaits to be seen, when these methods are applied to measurements
of a hundred or more metabolites.

Another new development is the incorporation of regulatory constraints
into the flux balance analysis (FBA) framework (rFBA approach). Many regu-
latory rules have been elucidated for common model organisms like E. coli
and Saccharomyces cerevisiae,and such regulatory systems will prevent certain
flux distributions from occurring under a given environment. For example,
pyruvate formate lyase is not active in the presence of oxygen (46), and acetate
is not taken up when glucose is present (47). Therefore, regulatory rules can
constrain the metabolic network and sharpen model predictions. The most
straightforward way to implement regulatory constraints is using a Boolean
representation (48). For example, gene repression can be simulated by the
following logic: if metabolite A exists in the cell (either due to a transporter
or reaction producing it having positive flux), then reaction X is constrained
to zero. A transient process, such as a batch culture, is simulated by running
the metabolic/regulatory model successively over small time intervals. The
output of one time step, including regulatory signals, provides the input to the
next step. Using such a procedure, batch growth and metabolite secretion by
E. coli were accurately predicted in a variety of conditions, including diauxic
growth (48). A total of 104 regulatory genes were then incorporated into the
genome-scale E. coli model, controlling expression of 479 out of 906 of the
metabolic genes. Simulations were performed and compared with the mea-
sured growth phenotypes in over 13,000 combinations of single gene deletions
and environmental conditions. The metabolism-only model correctly predicted
65% of the phenotypes, while the combined metabolism/regulatory model was
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accurate 79% of the time (49). The reason for this difference is that the regula-
tory model is more constrained and that some flux distributions feasible based
on the stoichiometry alone become infeasible once the regulatory rules elimi-
nate possible solutions.

Models can also be used in conjunction with data to elucidate unknown
regulatory rules. Data from genome-wide chromatin immunoprecipitation
experiments were used to find regulatory behavior that was not predicted by
a metabolic/regulatory model of S. cerevisiae (50). Putative regulatory interac-
tions that would match the experimental data if applied were then identified.
A new approach termed EGRIN (Environmental Gene/Regulatory Network)
can reconstruct an entire regulatory network based on data contained in hun-
dreds of carefully designed microarray experiments conducted under a wide
variety of environmental conditions. This technique makes use of two compu-
tational tools: cMONKEY (51) and the Inferelator (52). cMonkey uses a
biclustering methodology (clustering both by genes and conditions) to identify
putative regulons. As an input it takes gene expression data in conjunction
with upstream regulatory sequences and relationship information such as
metabolic pathway (functional) associations or protein interaction informa-
tion. The Inferelator then predicts a set of regulatory interactions for each
bicluster. It accomplishes this by identifying relationships between factors,
including both external environmental signals and mRNA expression levels
of predicted transcription factors, and the expression levels of clusters of genes.
The use of time course data can help elucidate directionality of the interac-
tions. When applied to all the biclusters identified by cMonkey, the result is a
predicted regulatory network, or EGRIN.

Finally, FBA has been combined with regulatory Boolean logic and ordi-
nary differential equations to model the dynamic behavior of metabolic,
regulatory, and signaling networks (53,54). This integrated FBA approach,
iFBA, was used to create a model of E. coli that combined the central meta-
bolic model incorporating the transcriptional regulation and the ordinary-
differential equation (ODE)-based model of carbohydrate uptake (53). The
advantages of this model are that it contains a much greater level of detail for
regulatory activities and events than the rFBA approach. It can also account
for enzymes such as adenylate cyclase which do not participate directly in
metabolism but are critical because of their role in other activities such as
signal transduction. The merits of the iFBA approach over the ODE approach
are that it helps to understand the global effects of a dynamic change because
of its ability to calculate a flux distribution for an entire network with only a
few additional parameters. The predictions of an integrated model were com-
pared with those of the individual models (rFBA based and ODE based) to
predict the phenotypes of single gene perturbations for diauxic growth on
glucose/lactose and glucose/glucose-6-phosphate and were shown to be more
accurate than either approach in several cases. For example, iFBA was able
to predict the dynamic behavior of three metabolites and three transporters
inadequately predicted by rFBA. It was also able to predict more accurate
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phenotypes than the ODE model for 85 out of 334 single gene perturbation
simulations (53).

3.5 USE OF GENE EXPRESSION DATA IN METABOLIC MODELS

Integration of transcriptomics data into the constraints-based modeling frame-
work has presented challenges due to the general lack of correlation between
gene expression and metabolic phenotype (55). For example, cases have been
found where fluxes increase more than 10-fold without corresponding expres-
sion changes in the genes encoding the reactions (56). For reversible reactions,
flux direction can reverse rather rapidly upon condition changes even without
any change in the gene expression level. The problem is further complicated
by situations where multiple genes are needed to encode a multi-subunit
enzyme, or different enzymes can catalyze the same reaction. It is not uncom-
mon to find situations where one isoenzyme is induced while the other is
repressed; for example, different fumarase genes are used under aerobic and
anaerobic conditions (57). Taken together, these issues indicate that one
cannot draw general conclusions about fluxes through metabolic reactions
based on the expression of corresponding genes.

Typically, models have therefore been used as scaffolds to visualize the data
and interpret it in the context of the metabolism of the whole system rather
than using rigorous mathematical approaches to constrain the model using
expression data. For example, microarray data was also used to investigate the
possible causes of tolerance to furfural (58), a toxic compound in biomass
hydrolysates. The expression data were visualized and analyzed with Sim-
Pheny (Genomatica, San Diego, CA), ArrayStar (Arraystar, Rockville, MD),
and Network Component Analysis (NCA) (59). By overlaying the expression
data of the furfural tolerant strain and the control strain on the metabolic
pathways, it was clear that furfural increased the expression of several genes
associated with the assimilation of sulfur into amino acids, primarily cysteine
and methionine (Figure 3.4). Sulfur is supplied as sulfate in AM1 medium, the
growth medium used in the study, and must be reduced to the level of hydro-
gen sulfide for incorporation, an energy-intensive reaction requiring four mol-
ecules of NADPH. The furfural-induced increase in the expression of these
genes was in sharp contrast to the decreased expression of several other bio-
synthetic genes. An increase in tolerance was indeed observed when the
medium was supplemented with cysteine, methionine, and other reduced
sulfur sources, such as thiosulfate. No response was observed upon supple-
mentation with taurine, a sulfur source that requires three molecules of
NADPH for assimilation (Figure 3.4). Overexpression of the membrane-
bound transhydrogenase, encoded by pntAB, also increased tolerance. All of
these results suggested a mechanism for growth inhibition by furfural. When
furfural is present in the culture it can be metabolized by yghD, the high-
affinity alcohol dehydrogenase with a very low binding constant K, for
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NADPH (60), thereby depleting the cell of NADPH needed for biosynthesis.
In this study, the effect of a toxic compound on the metabolism of E. coli was
clearly elucidated by accounting for the overall metabolism of the organism.

In spite of the limitations of using the gene expression data for predicting
metabolic phenotypes, there are clear examples where transcriptome data
have provided insight into metabolic fluxes. One such study (55) examined
expression data from batch and chemostat cultivations of S. cerevisiae on
glucose (61),in conjunction with flux balance predictions from a genome-scale
model of this organism (62). Using growth as the objective function, the model
accurately predicted chemostat behavior but did not predict the reduced
biomass yield and increased byproduct formation seen in the batch culture
relative to the chemostat. The authors of this study then determined which
genes had no evidence of expression (in biological triplicates as well as in
replicate probes on the array), and constrained reactions associated with those
genes to have zero flux (55). This resulted in the removal of 6 reactions for the
chemostat case and 97 for the aerobic batch fermentation. Adding these con-
straints had little effect on the chemostat predictions, but clearly improved
model performance for the batch culture. In contrast to the unconstrained
model, the model constrained with gene expression data showed quantitative
agreement for biomass, ethanol, and glycerol yield (Figure 3.5). Furthermore,
the constrained model improved predictions of key branch point fluxes, known
from C-labeling experiments (see Chapter 2) (63). Expression data may also
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FIGURE 3.5. Improved prediction of biomass and product yields by using gene
expression data in constraint-based modeling. Yields of biomass (Y,), ethanol (Yu),
glycerol (Y,y,), and acetate (Y,.) in an aerobic batch cultivation of S. cerevisiae deter-
mined by experiment (EXP, black bars), standard flux balance analysis (FBA, light gray
bars), and flux balance analysis combined with additional constraints from gene expres-
sion data (FBA+GE, medium gray bars). Reprinted from Metabolic Engineering (55),
with permission from Elsevier.
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be used to discriminate between alternate optimal solutions predicted by
constraint-based modeling, particularly when these alternate solutions are
distinguished primarily by isoenzymes and parallel pathways. Using the same
expression data set (61), the authors showed how two alternate model solu-
tions for aerobic chemostat growth differ drastically in their level of agreement
with transcriptional upregulation and downregulation compared with an
anaerobic case (55).

Patil and Nielsen integrated microarray data with network topology infor-
mation as determined by a genome-scale metabolic model to predict the cel-
lular response to perturbations (64). The premise behind the study was that
the changes in individual gene expression levels in response to a perturbation
are small and are not identified using standard statistical methods or clustering
algorithms. Using genome-scale models, however, it is possible to identify pat-
terns in the network that show a common transcriptional response. The authors
(64) developed an algorithm that identifies a set of reporter metabolites
(metabolites around which the most significant transcriptional changes occur)
and a set of genes with significant and coordinated response to perturbations
(Figure 3.6).

Metabolic pathways Fructose 6P

NH3
Glucose 6P
GABAXxt
NH3xt
GABAXxt

Metabolic Reporter metabolites
graph

Transcription data

TCA cycle

Enzyme interaction

graph Subnetwork structures

FIGURE 3.6. Illustration of the proposed algorithm for identifying reporter metabo-
lites and subnetwork structures signifying transcriptionally regulated modules. A meta-
bolic network is converted to metabolic and enzyme-interaction graph representations.
Gene expression data from a particular experiment then are used to identify highly
regulated metabolites (reporter metabolites) and significantly correlated subnetworks
in the enzyme-interaction graph. TCA, tricarboxylic acid cycle; PGI, phosphoglucose
isomerase; PFK, phosphofructokinase; FBP, fructose bisphosphatase. Reproduced from
Reference (64), Copyright 2005 National Academy of Sciences, USA. (See insert for
color representation of the figure.)
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The same algorithm was used to analyze data from S. cerevisiae to identify
reporter metabolites and the corresponding subnetworks in three cases:
(i) deletion of a gene, (ii) deletion of a regulatory protein, and (iii) change in
the environment of a cell. For example, the transcription data from a wild-type
strain of S. cerevisiae was compared with a deletion mutant of the gene GDHI,
encoding for NADPH-dependent glutamate dehydrogenase and involved in
ammonia assimilation. The genome-scale metabolic model of S. cerevisiae was
used to generate the metabolic and the reaction—interaction graphs. Using the
algorithm, several key metabolites were identified including the three sugar
phosphates: glucose-6-phosphate, sedoheptulose-7-phosphate, and fructose-6-
phosphate. These three metabolites represent branch points between the
Embden-Meyerhof-Parnas pathway and the pentose phosphate pathway.
The deletion of GDHI corresponds with a reduction of the growth-related
requirement of NADPH of the cell by about 40%, and therefore less flux
needs to be routed via the pentose phosphate pathway, the primary source of
NADPH in S. cerevisiae. A high-scoring subnetwork of 34 genes was found,
10 of which involved NADH/NADPH, demonstrating the effects of GDH1
deletion on the redox metabolism. Two key nodes of metabolism were repre-
sented in this network: (i) the glycolysis-pentose phosphate node that is
controlled by the requirement for NADPH and (ii) the alpha-ketoglutarate
node. It has been shown that the level of alpha-ketoglutarate is increased in
a AGDH1 mutant.

3.6 USE OF METABOLOMICS DATA IN METABOLIC
MODELS: TMFA EXAMPLE

Advances in the field of metabolomics are enabling high-throughput and high-
precision detection and quantification of metabolite concentrations. The
resulting large-scale quantitative data sets can be evaluated in the context of
in silico models to generate new insights into metabolism.

Several recently developed computational methods, including NET analysis
and TMFA, directly incorporate metabolite concentration data into the
constraint-based modeling framework (44,45,65). These algorithms integrate
mass-balance constraints with thermodynamic principles by coupling flux
directionality to the second law of thermodynamics, wherein reactions with a
positive flux must have a negative Gibbs energy of reaction (A,,,G < 0) and
reactions with a negative flux must have a positive Gibbs energy of reaction
(ArnG > 0). A schematic of TMFA analysis is shown in Figure 3.7. Inputs
to the optimization include the genome-scale model (represented by the stoi-
chiometric matrix of the network), the Gibbs energy of formation of metabo-
lites (A/G), and concentration constraints. Gibbs energies of formation can be
measured experimentally or calculated using group contribution methods
(42,66). Metabolite concentrations can be allowed to vary over a physiologi-
cally relevant range, or can be narrowly constrained by experimental data. By
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Metabolomics: Thermodynamics: Model: Other constraints:
concentrations Gibbs energies of Stoichiometric Experimental data
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FIGURE 3.7. Schematic of thermodynamics-based metabolic flux analysis (TMFA).
Inputs include available experimental and thermodynamic data and the stoichiometric
matrix. Outputs include numerous objectives including thermodynamically feasible
metabolite concentration, reaction flux, and Gibbs energy of reaction ranges.

integrating mass-balance and thermodynamic constraints with metabolomics
data, thermodynamics-based flux analysis methods enable calculation of ther-
modynamically feasible solutions for a range of properties including flux,
Gibbs energy of reaction, cofactor ratios, and concentration ranges of unmea-
sured metabolites.

Constraint-based methods that utilize thermodynamics and metabolomics
data have numerous applications. The calculated in vivo Gibbs energies of
reaction (A,,G) are useful for identifying thermodynamic bottlenecks and
putative regulatory sites. A reaction may function as a thermodynamic bottle-
neck, meaning it has low driving force, if the A,,G is constrained to operate
very close to zero. In this case, small fluctuations in concentration can drive
the flux through that reaction to zero or change the direction of flux (67,68).
Knowledge of such bottlenecks can then trigger the search for bypass path-
ways, including novel pathways or existing pathways whose physiological sig-
nificance is not yet appreciated. Alternatively, reactions that operate far from
equilibrium (i.e., the A,G range does not span 0) are more likely to serve as
a regulatory control points for the pathways in which they participate (69,70).
In addition to identifying potential thermodynamic bottlenecks and regula-
tory control points, thermodynamics-based flux analysis methods can be
applied to evaluate the quality of metabolomics data and predict feasible
concentration ranges of unmeasured metabolites (44). Other applications
include improving the accuracy of new metabolic reconstructions (40), assess-
ing reaction reversibility (71), and evaluating the feasibility of biodegradation
reactions (66).
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A recent study by Bennett and coworkers (72) successfully demonstrated
how quantitative metabolomics data, in conjunction with in silico modeling
methods, can be used to generate systems-level insights into metabolism. In
this work, the authors introduced a novel C isotope ratio-based method for
precisely determining absolute metabolite concentrations of a large number
of samples in a single experiment. The method was applied to generate high-
quality quantitative measurements of >100 E. coli intracellular metabolite
concentrations during aerobic growth on different carbon sources (glucose,
acetate, and glycerol). The metabolome during growth on all carbon substrates
was dominated by a handful of abundant compound classes: amino acids
(49%), nucleotides (15%), central carbon intermediates (15%), and redox
cofactors (9%). The detected concentrations ranged from 0.1uM to 100 mM.
Glutamate was the most abundant with an intracellular concentration of
100mM, comprising 40% of the total molar concentration. A majority of
metabolites were present at significantly different levels during growth on
different substrates, and the applied methods enabled detection of small
changes in concentration.

The Bennett et al. data set was evaluated in the context of the genome-scale
E. coli metabolic model iJR904 (11) using TMFA. Metabolite concentrations,
associated measurement errors, and thermodynamic properties were incorpo-
rated into the systems-level analysis. The optimal or near optimal growth
solutions predicted by the iJR904 model satisfied the thermodynamically fea-
sible constraints set by the data, validating the quality of both the data set and
the metabolic model. Additionally, the in vivo free energy ranges of 25% of
the known reactions in E. coli metabolism were calculated during growth on
each carbon source. The authors found that over two-thirds of reactions are
strongly forward-driven, with a AG less than —10kJ/mol. Many of the reactions
with free energies near equilibrium were observed in lower glycolysis, render-
ing these reactions more sensitive to fluctuations in metabolite concentrations
and thus allowing these reactions to switch flux directions in response to dif-
ferent growth conditions.

The metabolomics data set was also evaluated in the context of enzyme
kinetics by comparing the observed concentration of each metabolite to the
Ky value of the enzymes that utilize the compound as a substrate. Ky, values
were extracted fromthe BRENDA database (http://www.brenda-enzymes.info).
In a majority of cases (83%), the metabolite concentration exceeded Ky
values. The measured concentrations of 59% of the metabolites were at least
10-fold higher than their Ky values, indicating saturation at their correspond-
ing enzyme active sites. The substrates ATP and NAD* were nearly always
saturating, whereas NADPH was not. Most glycolytic intermediates were
present at saturating concentrations, indicating that other control mechanisms
such as enzyme inhibition, activation, and availability regulate metabolic
flux through glycolysis. Metabolites involved in degradation reactions, on
the other hand, were typically nonsaturating, indicating that substrate avail-
ability plays a key role in regulating flux through these pathways. Substrates
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of central metabolic, tricarboxylic acid (TCA) cycle, and pentose phosphate
pathway enzymes were generally present at levels close to their Ky values.
This observation, along with the near-equilibrium in vivo free energies of
many of the enzymes, is consistent with the bidirectional nature of the central
carbon metabolic pathways. These findings also support the role of substrate
availability in regulating the flux of bidirectional, but not unidirectional,
reactions.

The Bennett et al. study nicely demonstrates the assimilation of high-quality
quantitative metabolite concentration measurements with experimental data
from the literature and public databases, and analysis of this data in the context
of a metabolic model, which itself is curated and validated using experimental
data. As metabolomics technologies become increasingly high-throughput,
precise, and reproducible, quantitative metabolite profiling is certain to provide
fundamental insights into cell physiology and the roles of thermodynamics and
enzyme kinetics in regulating metabolic flux. Knowledge of how fluxes are
regulated will be critical for complex metabolic engineering applications.

3.7 INTEGRATION OF MULTIPLE OMICS DATA SETS

Complex biological phenotypes can arise from the interplay of regulation at
various levels of the central dogma. This is often reflected as contradictions
between different types of omics data sets. It is important to embrace these
differences to better understand how these different modes of control are
integrated to give the observed phenotype. As the collection of omics data sets
becomes more routine and the data more reliable, several researchers have
recently taken the step to assimilate quantitative data sets from different omics
levels, with the ultimate goal of understanding the complex relationship
between genotype and phenotype. Ultimately, these relationships must be
understood in order to apply rational engineering manipulations to manipu-
late metabolism as a whole.

Building on their work to identify reporter metabolites using transcriptome
data (64), Cakir and coworkers (73) developed a hypothesis-driven algorithm
to integrate metabolome data with metabolic models to detect reporter reac-
tions. These are reactions that have significant changes in the levels of metabo-
lites surrounding them following a genetic or environmental perturbation. The
results of the metabolome study were then combined with transcriptome data
to understand the mode of regulation. A graph theoretical representation (74)
of metabolism was used in this study. Since only a small fraction of metabolites
present in genome-scale metabolic models are typically measureable, a reduced
model of metabolism was generated in which the fraction of the measured
metabolites was enriched. A normalized Z-score for each reaction based on
the Z-values of its neighboring metabolites was calculated, with the hypothesis
that the Z-scores of the reactions calculated in this manner would indicate the
significance of how a reaction responded to a perturbation at the metabolic
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level. This was based on the fact that metabolite levels are governed by changes
in fluxes and the enzyme activities. Metabolome data from two different strains
of S. cerevisiae in two different environmental conditions with glucose as the
sole carbon source were considered. Using the reporter reaction analysis, it
was possible to identify a number of reactions that were affected by the per-
turbations. The approach could distinguish between the effects of genetic
perturbation in both the environmental conditions. It could also identify the
results of the genetic changes around the genes that were perturbed.

The next step was to combine this information of reporter reactions with
the array data. All reactions in the network were then classified as metaboli-
cally regulated, hierarchically regulated, a combination of the two, or unregu-
lated. Metabolic regulation was described as regulation at the level of enzyme
kinetics (i.e., changes of the metabolite levels) and hierarchical regulation
denoted regulation of flux at the level of enzyme production or activity
(i.e., transcription/translation/post-translational modifications). The transcript
values of all genes encoding for the same reaction were summed, and the p-
values of the transcripts were then calculated using a t-test with an unequal
variance and further converted into Z-scores to enable comparison with the
Z-scores of reactions based on metabolome data. The reactions where only
the transcript Z-scores were changed significantly were considered to be points
of possible hierarchical regulation, and reactions where only the metabolite-
based Z-score was changed significantly were considered to be metabolically
regulated. When both Z-scores were significant, regulation was shared at both
the levels and when none of these scores was significant, it was inferred that
the reaction was unregulated or unable to be determined.

Permutations of this method, all aimed at distinguishing enzymes exhibiting
transcriptional or metabolic regulation, have been developed more recently
using strictly model predictions of fluxes in the absence of metabolomics or
fluxomics data. For example, Cakir et al. (75) use a weighted average of all
elementary modes (pathways representing the edges of the feasible solution
space (76)) to calculate the “control effective flux” for an organism growing
under a given set of growth conditions. Bordel et al. (77) use a flux sampling
method that randomly chooses 500 feasible flux distributions, and the mean
value of each flux is used. Changes in these predicted fluxes between condi-
tions are then compared with changes in gene expression, and the reactions
characterized as transcriptionally regulated (correlation between flux and
gene expression), post-transcriptionally regulated (changes in gene expression
with no change in flux), or metabolically regulated (changes in flux but not in
gene expression).

Focusing specifically on the relationship between enzymes and metabolites,
Fendt and coworkers postulated different relationships depending on the con-
centration of metabolites participating in a reaction relative to the Ky of an
enzyme catalyzing it (78). If the concentration is far below Ky, indicating
excess enzyme and substrate limitation, then the substrate concentration
should not vary with the amount of enzyme present. If the concentration is
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within one order of magnitude of Ky, as is predicted to be the case for
most enzymes (79), then there could be a trade-off between metabolite and
enzyme abundance resulting in a negative correlation between substrate and
enzyme concentration. Finally, if the concentration of substrate is much higher
than the K, the enzyme concentration is at a minimum for a given flux. In
such a situation it would be expected that product metabolite concentrations
exhibit a positive correlation with enzyme capacity. Clearly these rules are
oversimplifications because they consider a single enzyme without context of
other reactions that can affect metabolite concentration, but when looking
across the measurable metabolome, patterns should emerge. To generate a
variety of data to test these hypotheses, the authors conducted experiments
with wild-type S. cerevisiae on glucose and a Ger2p regulatory mutant that
exhibits altered behavior of glycolysis and TCA cycle genes, enzymes, and
metabolites (80,81). The fold changes in gene and protein levels for about 50
reactions were plotted against fold changes in concentrations of related
metabolites, including substrates, products, and cofactors of these reactions.
Significant negative correlations were observed for substrate metabolites
and cofactors, supporting the hypothesis that both concentrations are near
the Ky values of enzymes utilizing them. No significant correlation occurred
with product metabolites or cofactors. To further test the generality of this
hypothesis, the researchers grew the same strains on ethanol, a gluconeogenic
substrate. The same correlations held, even though many of the substrate
metabolites on glucose became product metabolites on ethanol, and vice
versa. Finally, Fendt and coworkers created constructs to modulate four
individual glycolytic steps using a Tet-repressed promoter. In all four cases,
they found an increase in substrate concentration of at least 2-fold upon down-
regulation of the corresponding enzyme by tetracycline addition. From this
work the authors concluded that alterations in enzyme level are buffered by
converse changes in substrate metabolite concentration, thus maintaining
homeostasis in central metabolism (78). A similar response was observed in a
yeast regulatory mutant that reduces the production of amino acid biosynthe-
sis genes; lower amino acid concentrations resulted, restoring flux by the relief
of allosteric inhibition (82).

Yizhak et al. developed a method termed integrative omics-metabolic anal-
ysis (IOMA) that uses a combination of enzyme levels and metabolite con-
centrations to derive constraints for FBA models (83). For a core set of
reactions for which proteomic and complete metabolomic data are available,
they used Michaelis—-Menten-like rate equations to calculate enzyme satura-
tion level (metabolomics) and enzyme relative V., (proteomics). Given a
baseline (wild-type) flux distribution, the kinetics then provided additional
constraints to the FBA model, which was solved using quadratic programming
(due to the nonlinearity of the kinetic equations). Using simulated omics data,
the integrated model predicted flux distributions of E. coli deletion mutants
better than FBA alone, although the method has yet to be tested with actual
omics data.
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There are many examples in the literature where microarrays were used to
investigate the genetic basis of stress response in E. coli (84), including the
response of E. coli to solvents and fuels such as butanol and isobutanol (85,86).
Jozefczuk and coworkers take these microarray-based stress response studies
a step further to determine how the metabolome responds to stress, and found
that the metabolic response is similar in nature but surprisingly much more
specific than the transcriptome response (87). Four different environmental
perturbations were evaluated: oxidative stress, carbon source shift, heat stress,
and cold shock. Concentrations of 95 compounds were determined at time
points between 10 minutes and 4 hours post-shift, in parallel with microarray-
based transcriptome data. In agreement with prior studies, the microarray data
indicated a general slowdown of central metabolism and cell growth, and a
tendency toward energy conservation. In agreement with these general trends,
the concentrations of metabolites in glycolysis, the pentose phosphate pathway,
and the TCA cycle decreased rapidly, accompanied by accumulation of most
amino acids. Furthermore, the researchers found both transcriptomic and
metabolic responses to be greatest in the first two time points after the shift.
Since there would be a time lag before transcriptional changes are reflected
in the metabolite concentrations, the coincidence of these two responses sug-
gests that they are independent. Finally, there was more overlap among
the different stresses observed in the transcriptional response than in the
metabolic response, indicating that metabolic response is more specific. An
interpretation is that metabolism has to react faster and in a more targeted
way to prevent immediate damage from the stress, as opposed to the genetic
response, which is more general and long term.

Jozefczuk and coworkers then used two statistical approaches to determine
the level of coordination between the data sets: untargeted co-clustering, and
a targeted method using prior biological knowledge with canonical correlation
analysis (CCA). Applying the untargeted method to the entire data set, there
was only about 10% similarity between metabolomic and transcriptomic clus-
ters. Overrepresented in this data set were co-clustering between amino acids
and genes encoding amino acid catabolic genes (Figure 3.8), whereas relatively
few examples were found between amino acids and the corresponding biosyn-
thetic genes. In the targeted approach, the researchers focused on glycolysis,
the pentose phosphate pathway, the TCA cycle, respiration, and associated
transcriptional regulators. Clear associations were found for the control condi-
tion (no stress), heat stress, and stationary phase, but not for the other condi-
tions applied. The results are summarized in Figure 3.9. An unexpected
association in the control case was the mqo gene (encoding malate-quinone
oxidoreductase) with all TCA cycle intermediates and pyruvate, suggesting
that the mgo gene product has a major function in regulating TCA cycle flux.
Indeed, there is evidence that malate-quinone oxidoreductase, as opposed to
malate dehydrogenase, is the major route of malate oxidation during optimal
growth conditions (88). In the stationary phase, the association is lost and
replaced by association of TCA metabolites with frdCD (fumarate reductase),



sselis p|on

pioe

ouAingouiwe-y

L 9SG ¥ € cl

L 9G¥ € cl

L9 S Vv €l

L9 S ¥V € cl

L 9SG ¥ect

NI
0
¢ gnnd

0 onnd

o gnnd

S
-
G0
0
S0

- 3

auluIbiy

'0T0¢ WSuAdo)) ‘(L8) A8ojo1g swaisds 4vjnoajopy 'pyT SIOUSQNJ UeTU
-oe woiy uotsstuiad Aq pajuridoy] ssons oy jo uonesrdde Suimor[oy soinurwt ()] 41949 0) puodsoriod syutod owiy, -o[eds 30] B UO ‘SalI|
-0QEJoW 91} 0 XU S[IAD] 9J[OQLIOUI UT SOTUBYD PUE ‘SOUIT 9} 0) IXOU UMOTS Ik S[oA9] JdIIosuer) ur sofuey)) 'Souasd pue s9JI[0qeIowW A9y
9jedIpUl 0) A[[EonBWOYds umelp ale skemyied Arejduroxe ‘uonIpuod yoro 10, Suonipuod ssaa)s jo uonedrdde oyl Suunp sAemyjed wsiy
-0Qqejed PIOR OUTWE Ul SOSURYD [RUONALIOSURI) PUE S[OAJ] 9}[[OQRIOW U0OM)Oq UONBUIPIOOD PI[BIAI SISA[RUR SULIOISN[-0)) *§°€ HANODIA

$S0.11S BABPIXO

aulubiy

Nl

0

c

y  Hbie

9

0

c

y  3Fbre

9

8

0¢c—

00 g6/

0¢ a

(004

09

0¢c—

00 Hbe

0¢c o

(004

09

G0—

00
auIWeIN|D

S0

o't pioe
olwenn

a

HIYS 8s0108—8S00N|5)

S ¥ € ¢
S ¥ € ¢
S ¥ € ¢
S ¥ € ¢

aseyd Areuonels

BUIAID 9s0oNn|y
0- 9 ¢ v € ¢ |} -
. 00
S'0- o't
0¢Cpay
oo/ og o
(004
S0 0'S
. 9 § ¥ € ¢ | 01—
0= 00
00 o't
: 0'¢asoeyes
o. FcE 06 leyall
0¢ (084 g
o€
. SS011S OANBPIXO
L0 pioe ojedsy
10— ‘0—
auluoaiy ] 90
90— S v € ¢ | ¥O-
o 20~
90 00 gsuy
90~ c9
o 0
0¢ 90
G- siod awi | 0=
01— S v € ¢ | g0
G0— Pe o.omc_mSm.o_m,q
0-goHedsy S0
o't

o) Bo \

98



(-24mn31f ay1 Jo uon
-pJUasa.1da 10]0D 10f 14asu1 238) *0T0T WSLAdOD (L8) ASojorg swiaisA§ 1pjnoajopy *py] sIoysiqng ue[[ruoe]y woiy uoissiurrad £q pojuridoy
"IO[0D QuwIes dU} AQ PoJedIPUl 918 UOHRIDOSSE ISO[O B FJUIMOUS S9)Ijoqelow pue s}dLIosuel], "'p[oq Ul pajedIpul oIk SOI[0qe}OUWl PAINSBIN
'X0Qq puoweIp & ul paAe[dsIp oIt Soudd A10}B[NFaI puk PI[OIId I SOUIF IM[OQRISIA [O4d YD I, oyl pue Kemyjed areydsoyd osojuad oy
‘SISAJ0JA]3 Jo uonejuasaidor onewayds € uo pajoaford pue pojorIIXd 9I0M UOIIBIIOSSE 9SO[0 SUIMOUS SOUT PUE SOI[OQRIIIA S[OAJ] 9T[0qRIoW
pue jduosuer) oY) uo SOTwWRUAP 9su0dsol U9IM]9q UOTBIOOSSE JUPUIdop-UonIPUOd S[BIAJI SISA[RUR UONB[OIIOD [BIIUOUR)) *6°€ AUNOILA

aseyd Areuoneis SSalIs 1eaH [(0110]eg}
no
voO-Auong e olupong VOO-/Auoong "B ouI0oNg voO-lAuioong "8 0IUIONG
A A
/o B ) @ /o e N\ V2 W\
‘e oljean|BoleY-g “e ouewn “e onein|foiey-g “e ouewnd 8 oneinBoiey-z "B ouBWNY
4 416un) 4 4 14 ]
v v v v \/ \/
"8 OU}O0S| e Qe "8 OU}O0S| e QI "2 OLI00S| :
v v Sy v/ Ry
"B OUND ALS) "B OUID YVO "B OUND TAY0)
A A A
b by b
voo-hieoy | voO-edy | v00-{A190y
"8 OWLIO{ <>'B o_n?sn_ "2 olWIo] © B o_\?;n_ "B OIWIO] € B o_\?;n_
4 i o dv3 $ i dong
R OK, N
c c
<o% dzs deo @ <oﬂn_ dzs deo
e e e T
<0m% € _,n_-m.wmo_:_>x d-G-asoqiy <On_%_ e d-G-asojnjAx <On_%_ € Fn_-m.owo_:_\»x d-s-asoqiy
<0 ~. 7 e o0 . 7 0 e ~. 7
40’1y o-g-es0Ina /o' 1-nig d-gregoma o9 -nig dFg-esonay
n_wﬁ 14 “e 91uoon|B-4-9 &M»: 1 n_w* g “e o1uoon|B6-4-9
; 1 OX 1 ; t
d-9-919 «<—>osuojorjouoonB-4-9 O <«—> 8U0joe|I0U0ON|B-4-9 g d-9-0]5) <—> 8uo}or|0U0oN|B-d-9 Y

99



100 GENOME-SCALE METABOLIC MODELS

fumB (fumarase), and dcuB (fumarate-succinate antiporter). This suggests
oxygen limitation and an induction of systems for alternate respiration (e.g.,
fumarate). Finally, the heat stress condition exhibits a strong association
between pyruvate and genes involved in anaerobic fermentation (encoding
pyruvate-formate lyase and the FNR transcriptional regulator), and with the
glycolytic genes glk and pgi (87). Combined with earlier work on the pgi muta-
tion (89), this suggests a complex role of these genes in anaerobic regulation.
In a related publication, the same researchers looked at correlation among the
different metabolites in stressed and non-stressed conditions (90). In each
experiment a directed graph was constructed, with significant correlations
depicted as edges between nodes (metabolites). The “stable network compo-
nent” was defined as being the portions of these graphs common among all
conditions. Szymanski et al. found a high degree of similarity of this compo-
nent to the connectivity of these metabolites in the metabolic network (90).
This finding suggests a possible application of metabolomics data in pathway
reconstruction, particularly when combined with biochemical pathway predic-
tion algorithms (91). Looking next at the correlations specific to each stress
condition, they were able to identify key biomarkers as those metabolites that
acted as central “hubs” (with many connections) in one condition only. An
example is phosphoenolpyruvate (PEP), which in most conditions is an iso-
lated node with little connectivity to other metabolites. Upon glucose starva-
tion, however, PEP exhibits a high negative correlation with decreasing levels
of malate, pyruvate, and amino acids. These observations suggest that PEP
accumulation is a result of shifting metabolic resources from other parts of
metabolism (90). Overall, application of clustering and correlation analysis on
omics data is a systems-oriented approach to identifying the metabolic signals
leading to complex regulatory mechanisms.

A final example is given by Lewis and coworkers (92), who used transcrip-
tome and proteome analysis in conjunction with modeling to compare wild-
type E. coli with strains evolved to grow optimally on different carbon sources
(93). Using an approach termed parsimonious enzyme usage FBA (pFBA),
they classified each gene based on its predicted contribution to the optimal
growth phenotype in each growth condition. Genes are either essential for
growth, essential for optimal growth, enzymatically or metabolically inefficient
(contributing to lower growth prediction if used), or unable to carry flux at all.
Omics data were then mapped onto the metabolic network and compared
with the pFBA predictions. The essential and optimal genes were clearly
overrepresented in both the proteins identified and the gene expression
levels. Furthermore, expression levels exhibited a decreasing trend in the fol-
lowing order: essential > optimal > inefficient > no flux (92). The evolved
strains had significantly increased growth rate and biomass yield on the carbon
source used in the selection, which corresponded closely to the optimum
growth point predicted by the constraint-based model (93). In this study it was
also shown that this adaptation process repressed the pFBA-predicted no-flux
genes (92).
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3.8 FUTURE DIRECTIONS AND APPLICATIONS TO
STRAIN ENGINEERING

The integration of high-throughput experimental data with metabolic model-
ing holds exciting prospects for the future in both discovery research and
metabolic engineering. Omics techniques will improve in both quality and
breadth of coverage, and will become more commonplace in the laboratory.
Computational biologists will continue to develop methods such as those sum-
marized here to interpret these high-quality data, particularly those aligned
toward closing the gap between different levels of control. For example, as
discussed earlier, it is clear that changes in gene expression do not always cor-
relate with changes in metabolic flux. Models should be developed to include
genetic regulation, translation, post-translational modification, and enzyme
kinetics, thereby providing a theoretical framework for understanding this
relationship. Finally, it will be important to develop methods that can reliably
identify key points of flux control, as these would represent targets in meta-
bolic engineering applications (94).

The principal critiques of constraint-based modeling have been the lack of
regulatory information, and the restriction to steady-state. rTFBA provides a
framework for incorporating regulation in a Boolean sense, and for simulating
the associated dynamics; however, it is restricted to known regulatory rules.
Several methods are in development for the elucidation of regulatory rules
from gene expression data (51,52,59), and could be used to develop rFBA
networks for poorly characterized organisms. Further effort should also be
spent developing integrated FBA models (53) to include kinetics of more
regulatory and metabolic pathways. To date, the interest in such models has
been rather limited primarily due to the lack of reliable kinetic data. Recently,
rapid sampling techniques have been used to measure enzyme kinetics in vivo
(95), and when not measureable kinetic constants can be extracted from fits
of the model to experimental data. Metabolomics data can also be used for
parameter identification (96).

One of the ultimate applications of constraint-based modeling is to drive
strain development efforts for the production of pharmaceuticals, chemicals,
and fuels (97). Several noteworthy examples of this are in the literature (98),
but overall this breakthrough technology has been restricted to a small number
of research groups. Classical strain improvement (CSI) by mutation and
screening has been used to generate most of the production strains in com-
mercial use today (see Chapters 1 and 6). Both rational engineering and CSI
have a place in the next generation of strain development, and can often
complement each other (99,100). The application of constraint-based model-
ing to fermentation data from existing production strains can drive subsequent
rounds of rational engineering, and has been described (97). The addition of
omics data, when applied judiciously at the right time and analyzed properly,
has the potential of further accelerating development timelines. An example
of how these technologies can be combined to engineer complexity is shown
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FIGURE 3.10. Use of constraint-based modeling and omics analysis to drive a com-
bined rational and combinatorial strain development program. A first round of model-
driven metabolic engineering is applied to develop an initial production strain.
Fermentation products are measured and the model is used to guide subsequent
improvements. High-throughput omics data can also be collected, analyzed by the
methods discussed in this chapter, and used to identify additional targets. Constraints
derived from these methods can also be used to refine the model. Once all rational
manipulations have been made, classical strain improvement is applied. Analysis of the
random modifications selected in this screen can lead to additional targets and further
model refinement. The dotted lines show that the wild-type organism can optionally
be improved by evolution prior to rational engineering.

in Figure 3.10. Evolution for desired strain properties (e.g., tolerance to
product, substrate, impurities, or process conditions) can be performed in
parallel to rational strain engineering. Once a strain has been engineered by
model-driven directed manipulations, random mutagenesis and adaptive evo-
lution can be applied to find improvement by means that could not have been
predicted. Next-generation sequencing of the mutants will reveal sites of muta-
tion, allowing hypotheses to be drawn about the function of mutated genes. In
the case of mutated regulators, microarray analysis may suggest regulation
targets. In a recent study of a classically generated production strain for cla-
vulanic acid, microarray analysis showed significant increase of the expression
of genes in central metabolism (99). More than half of the reactions predicted
to correlate with increased clavulanic acid production by flux balance analysis
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had genes associated with them that were upregulated in the mutant. Further-
more, rationally engineered strains for clavulanic acid redirected flux in a
similar way, but the classical mutant was actually closer to ideal because it
allowed a small flux through glyceraldehyde-3-phosphate dehydrogenase, thus
preventing the potential side effects of a complete deletion. Further rounds of
rational engineering can then be performed based on these strains, and any
novel information gained can be fed back into the model. Additional targets
to achieve modified flux distributions can be identified using the techniques
described in this chapter, applied to current production strains. Metabolomics
data can find points of regulation, and in conjunction with gene expression
data can be used to predict the type of regulation. As unnatural process condi-
tions, such as high product concentration, can induce various stress responses
in the cell, omics data can be used to elucidate the type of stress. Genetic
targets will arise for deletion or overexpression, depending on whether the
stress response should be enhanced or eliminated.

In conclusion, metabolic models can be utilized as scaffolds for the inter-
pretation of omics data in the context of microbial strain development pro-
grams. Several methods for this analysis have been reported, and more are still
in development. The best time to apply these methods is after the initial round
of rational and/or classical strain development, so that the results of these
manipulations can be observed and compared with the effects predicted by
constraint-based modeling. Application of this approach will identify targets
for further manipulations, which are often poorly characterized genes that
would not have been identified using the models alone, and would be found
much more quickly than with a strictly random approach.
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STRAIN IMPROVEMENT VIA
EVOLUTIONARY ENGINEERING

ByounagiN Kim, JING Du, AND HuMIN ZHAO

4.0 INTRODUCTION

The development of industrially relevant microbial strains is a challenging task
due to the complexity of microbial cells and of the phenotypes required for
industrial processes. Rational approaches for strain improvement involve
knockout or knock-in of specific target genes in the chromosome. However,
complex phenotypes associated with multiple genes and their interactions are
difficult to achieve by rational design targeting one or a few genes at a time
(1). Although rapidly advancing genomic, proteomic, metabolic, and high-
throughput analytical tools have significantly reduced the labor, time, and cost
associated with strain engineering, the success of rational approaches largely
depends on the detailed understanding of the biochemical and regulatory
networks.

Evolutionary engineering mimics the natural evolutionary processes, con-
sisting of iterative rounds of genetic diversification and functional selection or
screening (Figure 4.1). Unlike rational design, evolutionary engineering is less
dependent on prior knowledge of the phenotype—genotype relationship. Strain
improvement is achieved by efficiently creating genetic diversity through
mutagenesis (natural or induced) and recombination or shuffling of genes,
pathways, and genomes, followed by high-throughput screening or selection
for a desired phenotype. The strains used for industrial processes are often
required to possess multiple phenotypes, such as tolerance to the metabolic
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FIGURE 4.1. Scheme of the strain development process and the key methods avail-
able in each step.

product and inhibitors and high productivity, in order to meet the commer-
cialization criteria. Evolutionary engineering can be performed for this purpose
by evolving and identifying adapted strains using screening criteria that reflect
feasible process conditions.

Creating genetic diversity covering a large sequence space and designing
an efficient high-throughput screening or selection strategy are the two most
critical steps in evolutionary engineering. Over the past decades, many advances
have been made in the methodologies for the creation of genetically hetero-
geneous microbial populations, the automation of genome-wide sequence
analysis, and high-throughput screening (1-5). In this chapter, some of these
methodologies will be highlighted and a few representative examples will be
discussed.
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4.1.1 Adaptive Evolution

Adaptation refers to an evolutionary process allowing an organism’s repro-
ductive success in a given environment. In the adaptive evolution method,
the evolutionary engineering cycle begins with the creation of a variant cell
population, followed by selection or screening for desired phenotypes
(Chapter 1). Generation of genetic diversity is achieved through the natu-
rally occurring genetic variations in individual microorganisms and their
continuous propagation through cellular replication. In this method, the evo-
lutionary direction toward a desired phenotype is determined by a selection
strategy. Adaptive evolution can be performed in batch or continuous cul-
tures. In continuous cultures, variants with better fitness to a given environ-
ment outgrow over time and replace the parental population. In batch
culture, a small fraction of the current culture (generally 10%) is transferred
to fresh media before the depletion of nutrients, and this process is sequen-
tially repeated until the targeted number of generations is reached. Cells in
each batch culture pass through the lag, exponential, and stationary growth
phases, and a significant change in growth (selection) conditions from
nutrient-rich to nutrient-limited growth environments occurs in each cycle.
In sequential batch cultures, it was found that significant fitness improve-
ment occurred in the early stages of adaptive evolution experiments, and
the rate of competitive fitness improvement hyperbolically decreased over
time (6,7).

A chemostat is the most frequently used continuous culture system. In a
chemostat, cells are in a physiological steady state. The cellular growth envi-
ronment, including metabolite concentrations, growth rate, and cell density, is
held constant, and it can be controlled by adjusting flow rates into the chemo-
stat. These characteristics of a chemostat provide direct control of the selection
pressure by modulating the culture conditions. Although the chemostat pro-
vides better control of the selection pressure than the batch culture system,
care should be taken when the desired phenotype is not compatible with the
improved growth rate (e.g., maximum growth vs. maximum production)
because the continuous removal from the culture makes the growth rate a part
of the selection function (8). The fitness can decrease as a result of epistatic
interactions between multiple adaptive mutations in continuous asexual cul-
tures and consequently it is possible that certain adaptive mutations may
repeatedly appear and disappear, limiting the repertoire of adaptive mutations
(9). To avoid this issue and ensure fitness improvement over time, it is neces-
sary to monitor evolutionary progress by characterizing the phenotypes of
the variants throughout the culture (8). In addition to the above discussed
classical approaches for creating genetic diversity, newer approaches for creat-
ing diversity in microbial populations, as discussed in Sections 4.1.2 to 4.1.8,
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have rendered the engineering of multigenic complex phenotype via evolu-
tionary approaches more systematic and predictable.

4.1.2 Genome Shuffling

Genome shuffling is achieved by homologous recombination between genomes
through protoplast fusion and therefore multiple genes across the entire
genome can be modified simultaneously (10,11). Since the 1970s, protoplast
fusion has been used for strain improvement and was shown to be applicable
to both prokaryotic and eukaryotic cells to obtain a high frequency of gene
transfer (12-15). In protoplast fusion, protoplasts are isolated from cells by
digesting the cell wall in the presence of osmotic stabilizers, whereas the fusion
of protoplasts is induced by fusogen such as polyethylene glycol (Figure 4.2a).
Unlike classical breeding, which enables recombination between only two
parents per generation, genome shuffling can be carried out between multiple
parents, and recursive shuffling can further accelerate the evolution process,
producing multi-parent complex progeny (Figure 4.2b) (10). Since genome
shuffling exploits the diversity and sequence homology given by the parental
strains, the presence of highly homologous regions on the parental genomes
can cause biased recombination producing representative progenies. This
issue can be alleviated by taking combinatorial approaches with classical
strain improvement strategies such as random mutagenesis and chemostat
enrichments. After isolating a desired phenotype by screening and selection,

Asexual Sexual

Mutagenesis

[9]
@ on a selected progeny Mutagenesis
=
if Mutagenesis
Parent Recursive shuffling
of a population of
Progeny population improved progenies

Mutagenesis cycles

FIGURE 4.2. Schematic diagram of genome shuffling showing (a) cell-wall digestion,
protoplast fusion, and the resulting heterogeneous cell population, and (b) fitness
improvement in asexual and sexual evolution.
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accumulated nonessential or deleterious mutations during rounds of random
mutagenesis can be removed by back-crossing of progeny to parents (3).
Genome shuffling can be particularly useful for industrial strain development
where ill-characterized strains need to be engineered for complex phenotypes
in a constrained time frame (16). Additional formats for genome shuffling as
applied to engineering of tolerance in Saccharomyces cerevisiae to inhibitors
is discussed in Chapter 9.

4.1.3 Global Transcriptional Machinery Engineering

Global transcriptional machinery engineering (gTME) alters the proteins
regulating the global transcriptome and generates diversity at the transcrip-
tional level, producing a pool of variants with heterogeneous phenotypes
(Figure 4.3). Instead of modifying genes, gTME aims at perturbing the expres-
sion of multiple proteins simultaneously by creating a mutant library of the
protein coordinating them. The sigma factor (¢”°) in E. coli and the RNA Pol
II transcription factor D (TFIID) component Sptl5 in yeast were engineered
by gTME to improve product tolerance, metabolite overproduction, and
xylose utilization (5,17-19). Mutant libraries of global transcriptional machin-
eries can be generated using traditional mutagenesis techniques such as error-
prone PCR (20,21), and strains with the desired phenotype are obtained by
subsequent screening or selection. Since gTME perturbs the expression of

(a) (b)

FIGURE 4.3. Global transcription machinery engineering (¢TME). (a) From Alper
and coworkers (17). Reprinted with permission from AAAS. Schematic diagram of
global transcription machinery in Saccharomyces cerevisiae. (b) Key steps in gTME.
The three mutations responsible for improved ethanol tolerance and production and
proposed global transcription mechanism are shown in panel (a).
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multiple genes simultaneously, it is efficient to exploit the mutation space for
complex phenotypes involving multiple gene modifications across the genome.
In addition, gTME combined with microarray-based transcriptional analysis
can provide insight into the genotype—phenotype correlation, which is valu-
able for further strain improvement (17,18).

4.1.4 Transposon Insertion Mutagenesis

Gene deletion analysis has been used and proven to be an essential technique
in determining the functionalities of genes (22,23). Distinct from the tradi-
tional gene deletion strategy, transposon insertion mutagenesis utilizes a
mobile gene element, the transposon, to create a mutation library on the
genome scale. The transposon is used as an insertional mutagen to disrupt gene
activity and also serves as a tag that can be easily detected for the identifica-
tion of the mutated gene (24). Commonly used transposon insertion mutagen-
esis systems share bacteria-derived transposons (e.g., Tn3, TnS, and Tn7),
antibiotic or auxotrophic markers for selection, and a reporter (e.g., lacZ).
These gene elements are constructed into a plasmid containing a gene encod-
ing transposase. A transposon mutant library can be generated in vivo or in
vitro in bacterial microorganisms (25-27) and by shuttle mutagenesis for
S. cerevisiae (24,28). In the latter, transpositions are generated in a library of
yeast genomic DNA, and the mutated alleles are shuttled into yeast for sub-
sequent analysis (29). The resulting library is screened under various growth
conditions for the desired phenotype, and positive mutants are further ana-
lyzed to identify the genes responsible for the phenotypes using the transposon
sequence as a tag sequence (27,30). Transposon mutagenesis was used to iden-
tify genes involved in cell viability, auxotrophy, antibiotic sensitivity, mobility,
and growth on various growth conditions in organisms including Mycobacteria,
Escherichia coli, Pseudomonas aeruginosa, and S. cerevisiae (24,26-28,30).
Transposon mutagenesis was also used to identify two loci, PHOI3 and a
region 500 bp upstream from the TALI OREF, as responsible for the improved
xylose utilization and fermentation by a recombinant S. cerivisiae strain (31).
Transposon insertion mutagenesis shares its advantages with gTME and
genome shuffling for the development of industrially relevant strains with
complex phenotypes. Similar to gTME and genome shuffling, transposon
mutagenesis combined with rapidly advancing microarray technologies will
provide an efficient way of identifying the genotype—phenotype relationship
on the genome scale.

4.1.5 Multiplex Automated Genome Engineering

Multiplex automated genome engineering (MAGE) offers an efficient method
to create genetic diversity utilizing oligomer synthesis technology and auto-
mated cell culture and transformation (32). In one format of MAGE, synthetic
DNAs that consist of degenerate nucleotide oligomer pools targeting specific
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FIGURE 4.4. Steps involved in multiplex automated genome engineering (MAGE).

genomic positions are repeatedly introduced into a continuously evolving cell
population, and the genetic diversity increases as the number of cycle increases
(Figure 4.4). Through each cycle, synthetic DNA can be introduced into >30%
of the cell population every 2-2.5 hours (32) and populations covering a large
area of sequence space can be readily generated through successive MAGE
cycles. Oligo-mediated allele replacements can produce mismatch, insertion,
and deletion mutations on the genome, and the efficiency of allele replacement
is determined by the type of mutation and the scale of the genetic modifica-
tion. Using MAGE, multiple locations on the chromosome in a single cell can
be targeted simultaneously across a population of cells. Because the genetic
target and type of changes can be controlled by the design of the synthetic
DNAs, MAGE can be flexibly applied to evaluating the effects of a single gene
modification or a combination of multiple gene modifications on the fitness of
the evolved strains. MAGE requires the sequence information of target genes,
and when target alleles are properly selected, this method can produce a desir-
able phenotype on a shorter time scale compared with the rational metabolic
engineering approach.

4.1.6 Tractable Multiplex Recombineering

Tractable multiplex recombineering (TRMR) aims at obtaining a comprehen-
sive map of genetic modifications affecting a trait of interest by simultaneous
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creation and evaluation of specific genetic modifications on a genome scale
(33). TRMR utilizes homologous recombination (recombineering) of bar-
coded oligonucleotides to modify a genetic network at the gene expression
level. The barcoded oligonucleotides (synDNA) feature targeting oligos and
functional cassettes. Targeting oligos contain homology regions and barcodes
specific to each target gene and can include gene expression modulators.
Functional cassettes are the sequences inserted upstream of the genes replac-
ing the translation start codon and designed to modify gene expressions.
A mixture of synDNA is transformed into a target organism. Upon successful
recombineering, gene expression levels are controlled by the functional cas-
settes inserted. Screening or selection on a mixture of variants is followed
to isolate a variant possessing a desired trait. Using barcode technology
based on microarray (34), the frequency changes of the alleles during the
enrichment or screening can be monitored and used to map a specific genetic
change on the desired trait(s). It was demonstrated that every protein-coding
gene in E. coli (4077 genes) could be targeted and successfully modified in
the expression by using a conventional transformation technique. Currently,
oligomer synthesis and transformation efficiency of various host organisms
are the major challenges of this method. As the multiplex DNA synthesis
and associated molecular biology techniques are further improved, TRMR
might be broadly applicable in metabolic engineering and systems biology by
providing a fast and efficient way of identifying a unique or a set of genetic
modifications leading to a trait of interest. TRMR can be performed without
a priori knowledge of the functions of the target genes and can be combined
with MAGE or directed evolution to engineer microorganisms of complex
traits.

4.1.7 Chemically Induced Chromosomal Evolution

Chemically induced chromosomal evolution (CIChE) provides a useful tech-
nique for maintaining a heterologous pathway on the chromosome to produce
desired chemicals (35). Stable expression of a gene construct is critical to
minimizing the fluctuations of productivity and product yield in industrial
processes. CIChE is carried out by inducing chromosome evolution to contain
multiple copy numbers of a gene cassette using increasing concentrations of
antibiotics. Chromosome evolution is accomplished by propagating the CIChE
cassette of the target genes on the chromosome by recA-mediated DNA cross-
over (35). The CIChE cassette contains the genes of interest, a selectable
marker, and flanking homologous regions so that the cassette is propagated in
a tandem manner. A desired copy number on the chromosome can be achieved
by increasing the selection pressure (e.g., the antibiotic concentration). After
the target number of generations is reached, recA can be deleted, and no
further selection pressure is required to maintain the recombinant alleles (35),
which can be a major advantage for the production on an industrial scale.
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Genetic stability is another advantage of CIChE. In a long-term subculturing,
test of strains producing the metabolically demanding product poly-2-
hydroxybutyrate (PHB), the productivity of the plasmid-carrying strain
dropped to zero after 40 generations, while the CIChE-engineered strain
maintained the productivity (>90%) during the entire test (70 generations)
(35). CIChE can be applicable for most industrially relevant host organisms
in which the methods for genomic integration of the CIChE cassette, recom-
bination knockout, and a recA homolog that can turn homologous recombina-
tion on and off are available.

4.1.8 Multiscale Analysis of Library Enrichment (SCALE)

Advances in technologies allowing fast and efficient generation of genetic
diversity should be accompanied by technologies available for the identifica-
tion of the genetic basis of the phenotype. Screening of a genomic DNA library
under selective conditions involves creation of a genomic DNA library and
identification of the genomic DNA fragments responsible for the phenotypes.
Multiple subcloning steps are often required to isolate all genetic factors and
their combinatorial roles in expression of the desired phenotype. Because of
its laborious and time-consuming nature, it can delay the time frame for indus-
trial strain development. The advantage of SCALE is its capability to identify
multiple genes, which can be single short DNA sequences or operons, in a
single experiment, eliminating time-consuming subcloning steps. Multiple
populations representing genomic libraries of differently sized DNA frag-
ments in plasmids are generated separately and mixed, resulting in a cell
population containing multiple inserts of different lengths (36,37). Continuous
selection is performed on the mixed library and the enriched gene (short
insert) or operon (long insert) is identified by microarray analysis. The genera-
tion of a mixed library of genomic DNA inserts varying in length (500-8000
base pairs) and the capability of deconvoluting the microarray signal contribu-
tions from each of the different clones allow the identification of the locations
as well as the sizes of the relevant DNA fragments responsible for the altered
phenotype. The ability to obtain a truly representative genomic DNA libraries
and the reliability of microarray analysis are the two most critical factors for
successful implementation of this method. Application of SCALE technology
for engineering tolerance to 3-hydroxypropionic acid in E. coli is discussed in
Chapter 7.

4.1.9 Screening and Selection

As discussed in Chapter 1, efficient screening and selection techniques are
critical to the isolation of variant strains with the desired phenotypes within
the population. Traditional screening and selection involves isolation and
analysis of individual variant strains for the desired phenotype. The availability
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FIGURE 4.5. Technologies applicable for high-throughput analysis: (a) fluorescence-
activated cell sorting, (b) genome-scale microarray, and (c) automatic sample handling
device (Copyright © CyBio AG, Jena, Germany).

of assays and sensitive analytical techniques determine the efficiency of
the screening and selection process and the resolving power to isolate a variant
strain with the best fitness in a given condition (38). Rapidly advancing
“omics” technologies and automation in sample handling and analysis have
increased the throughput of classical screening and selection tools (Figure 4.5).
Fluorescence-activated cell sorting (FACS) enables high-throughput screening
of a large library at a single cell level, and this technique is particularly useful
when the phenotype can be coupled with fluorescence or unique light scatter-
ing patterns (39,40) (Figure 4.5a). Pre-screening and selection can be used to
reduce the final size of the library to be tested and to increase the chance to
isolate a variant strain with the target phenotype with reduced cost and labor
(38,41). In adaptive evolution, it is important to monitor the evolving popula-
tion to ensure the evolutionary direction toward the global optimum. The time
and cost for genome sequencing and microarray technology have decreased
significantly over the past decade, and these technologies are anticipated to
become even more widely accessible in the near future. Screening and selec-
tion tools combined with these new technologies would increase the efficiency
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of evolutionary engineering approaches for the development of industrial
strains (Figure 4.5b,c).

4.2 EXAMPLES OF EVOLUTIONARY ENGINEERING

Evolutionary engineering approaches have been proven to be effective in
creating industrial microorganisms with improved complex phenotypes, such
as enhancement of product yield and productivity, extension of substrate
range, and improvement of cellular properties (3,8). In this part of the chapter,
recent progress in using evolutionary engineering approaches for strain
improvement will be discussed. Development of high-throughput screening
methods and their potential application for strain engineering will also be
briefly mentioned.

4.2.1 Enhancement of Product Yield and Productivity

Mostly driven by environmental and energy security considerations, there is a
growing interest in developing biocatalytic approaches for production of fuels
and chemicals from renewable feedstock. However, only a few biotechnology
based approaches have proven economically feasible for production of chemi-
cals (42,43). The efficient production of chemicals in microorganisms can be
limited by complex metabolic pathways, substrate and intermediate inhibition,
and other fermentation by-products (44).

One successful example of using evolutionary engineering to improve
product yield and productivity in microorganisms is the biochemical produc-
tion of 1,3-propanediol (1,3-PD). 1,3-PD is a useful monomer for production
of several plastics including polytrimethylene terephthalate (45). Otte and
coworkers started with Clostridium diolis DSM 15410, a microorganism with
good molar yield and volumetric productivity for conversion of glycerol into
1,3-PD under anaerobic conditions, and applied the genome shuffling method
to optimize the substrate and product tolerance and the 1,3-PD productivity.
A mutant library was generated using chemical mutagenesis. Mutants with
higher substrate and product tolerance and higher product yields were isolated
and used as parental strains for genome shuffling. Significant improvements
in 1,3-PD productivity were observed after four rounds of genome shuffling
and selection. The best mutant exhibited an 80% improvement in yield com-
pared with the parental wild-type strain, and the final titer of 1,3-PD reached
85¢g/L (46).

Another successful evolutionary engineering approach for the overproduc-
tion of valuable compounds is the gTME method. Although genetic regulation
has been studied for the engineering of metabolic pathways, no work has been
carried out to engineer metabolic pathways through the manipulation of
global regulatory pathways until recently. Tatarko and coworkers engineered
a carbon storage regulator (Csr), a global regulatory system of E. coli, to
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improve phenylalanine biosynthesis. The engineered strain with an optimized
aromatic pathway produced twofold more phenylalanine when csrA was dis-
rupted. This work is the first known example of metabolic engineering utilizing
a global regulatory pathway, and it also introduced the concept of “global
metabolic engineering” for the first time (47). Alper and coworkers randomly
mutagenized the rpoD gene that encodes the main sigma factor ¢’ in E. coli.
The resulting library of rpoD variants was introduced into lycopene-producing
E. coli with different gene deletion backgrounds. After a single round of
gTME, several mutants with increased lycopene productivity were identified.
The best mutants from E. coli with different gene deletion backgrounds har-
bored different mutated versions of rpoD. The lycopene content of several
mutant strains after a 15-hour fermentation achieved similar increases com-
pared with previously engineered multiple gene knockout strains (Figure 4.6).
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FIGURE 4.6. Application of gTME to a metabolite production phenotype. (A) Lyco-
pene content, in mg/g dry cell weight (ppm) after 15-hour cultivations. The center of
the black dots represents the production level of lycopene in ppm for a given strain,
with the wild-type strain labeled at the bottom of the graph. The arrowheads of curved
arrows not terminating at a black dot (e.g., gdhA knockout curve) represent the lyco-
pene production of this strain. (B) A dot plot for each of the 16 strains is shown, which
depicts the maximum fold increase achieved in lycopene production. The size of the
circle is proportional to the fold increase. Reprinted from Metabolic Engineering 9(3),
258-267, Copyright 2007, with permission from Elsevier.
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It was shown that a single round of selection using gTME is more effective
than multiple rounds of single-gene knockout or overexpression (18).

The MAGE method has also been used to improve the production of lyco-
pene through optimization of the 1-deoxy-p-xylulose-5-phosphate (DXP) bio-
synthesis pathway in E. coli. Using synthetic DNA, 24 genetic components in
the DXP pathway were modified simultaneously. The researchers constructed
prototype devices that automate the MAGE technology to facilitate the rapid
and continuous generation of a set of genetic changes including mismatches,
insertions, and deletions. Using a complex pool of synthetic DNA, facilitated
by the automated devices, the mutant library was generated over 4.3 billion
combinatorial genomic variants per day. Mutants that showed more than a
fivefold increase in lycopene production within 3 days of fermentation were
isolated (32).

4.2.2 Extension of Substrate Range

In recent years, much effort has been spent on the engineering of microorgan-
isms to convert lignocellulosic biomass into fuels (2). One of the microorgan-
isms under intensive investigation is S. cerevisiae, as it is the microorganism
currently used for large-scale ethanol production. As a eukaryotic organism,
the metabolic network of S. cerevisiae is very complicated. In order to engineer
S. cerevisiae to utilize lignocellulosic biomass efficiently, heterologous path-
ways have been introduced to enable assimilation of five-carbon sugars such
as D-xylose and L-arabinose (48,49). However, the sugar utilization and ethanol
production of recombinant yeast strains are still not efficient enough, and
multiple properties of industrial yeast strains have to be modified. Evolution-
ary engineering approaches have been applied to improve the productivity of
recombinant yeast strains for ethanol production by extending the substrate
range from glucose to other sugars (50).

To improve the fermentation of glucose, b-xylose and L-arabinose mixtures
by engineered S. cerevisiae strains, Wisselink and coworkers applied a novel
evolutionary engineering approach involving repeated batch cultivation with
repeated cycles of consecutive growth in media consisting of different sugar
compositions (49). The strains were evolved in a mixture of sugars containing
first glucose, p-xylose, and L-arabinose, then p-xylose and L-arabinose, and
lastly L-arabinose only. The evolved strains can completely ferment a mixture
of sugars containing 30 g/L glucose, 15 g/L. p-xylose, and 15 g/L. L-arabinose in
40% less time (49).

Kuyper and coworkers demonstrated that by introducing a heterologous
xylose isomerase into S. cerevisiae, the resulting recombinant yeast strain can
grow on D-xylose without the redox imbalance issue of the fungal p-xylose
utilizing pathway (51). After a prolonged cultivation on p-xylose, a mutant
strain that grew aerobically and anaerobically on p-xylose was obtained. The
anaerobic ethanol yield reached 0.42 g ethanol per gram of D-xylose, and the
by-product formation was also at a comparable level with the glucose-grown
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anaerobic culture. This study demonstrated that by using an evolutionary
engineering approach, the enzyme activities and/or regulatory properties of
native S. cerevisiae gene products can be optimized for p-xylose utilization
under anaerobic conditions (51).

Sonderegger and Sauer started with the recombinant S. cerevisiae strain
TMB3001 that overexpresses the fungal p-xylose utilization pathway from
Pichia stipitis, and obtained an evolved strain that can grow anaerobically on
D-xylose (52). They first selected organisms for efficient aerobic growth on
D-xylose alone and then slowly adapted the organisms to microaerobic condi-
tions, and finally anaerobic conditions. After a total of 460 generations or 266
days of selection, the culture consisted of primarily two subpopulations
with distinct phenotypes that can be reproduced stably under anaerobic condi-
tions on D-xylose. Further analysis of the two subpopulations revealed that
only the larger subpopulation can grow anaerobically on D-xylose, while the
smaller subpopulation, which was incapable of anaerobic growth, exhibited an
improved D-xylose catabolism (52).

The construction of S. cerevisiae strains that ferment lactose is also useful
for cheese whey fermentation. A recombinant flocculent lactose-consuming S.
cerevisiae strain expressing the LACI2 (lactose permease) and LAC4 (B-
galactosidase) genes of Kluyveromyces lactis has been constructed, but the
lactose fermentation efficiency is suboptimal. Guimaraes and coworkers
applied an evolutionary engineering process, that is, serial transfer and dilution
in lactose medium, and yielded an evolved recombinant strain (53). The
evolved strain can consume lactose twofold faster, and produce 30% more
ethanol than the original recombinant. The researchers then investigated the
evolved strain and identified two molecular events that targeted the LAC
construct: a 1593-bp deletion in the promoter region between LAC4 and
LACI2 and a decrease in the plasmid copy number by about 10-fold compared
with the parental strain. The results suggest that the evolved promoter enabled
the transcription of LAC4 and LACI2. Together with the decreased copy
number of both genes, the different levels of transcriptional induction for
LAC4 and LACI2 improved lactose utilization in the evolved strain. The
evolved strain obtained by simple adaptive engineering can efficiently ferment
threefold more concentrated cheese whey, and provided an attractive alterna-
tive to the fermentation of lactose-based media (53).

4.2.3 Improvement of Cellular Properties

For industrial microorganisms, resistance to stresses is highly desirable due
to the simultaneous or sequential combinations of different environmental
stresses present in biotechnological processes. The molecular basis of stress
resistances is complicated, making it difficult to engineer stress resistance
by rational approaches (50). However, using evolutionary engineering
approaches, engineering strains with multiple-stress resistances is possible.
Cakar and coworkers tested various selection procedures in chemostats and
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batch cultures systematically for a multiple-stress resistance phenotype in
S. cerevisiae (Figure 4.7) (50). Mutant populations were harvested at different
time points and clones were randomly chosen and grown in batch cultures that
were exposed to oxidative, freezing—thawing, high-temperature, and ethanol
stress. A special procedure involving the use of a 96-well plate-based high-
throughput screening method combined with a most-probable-number assay
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was developed for the selection of multi-stress resistant strains. In this study,
the best selection strategy to obtain highly improved multiple-stress-resistant
yeast was found to be batch selection for the freezing—thawing stress. Although
mutants were selected toward freezing—thawing stress in this strategy, the
resulting mutants were significantly improved not only in freezing—thawing
stress resistance, but also in the other stress resistances mentioned earlier.
The best isolated strain exhibited 102-, 89-, 62-, and 1429-fold increased resis-
tance to freezing-thawing, temperature, ethanol, and oxidative stress, respec-
tively (50).

Genome shuffling is another method that has been applied to improve
microbial cellular properties such as ethanol tolerance (54), acetic acid toler-
ance (55), and tolerance to other inhibitors (56). Bajwa and coworkers (56)
applied genome shuffling based on cross mating to improve the tolerance of
fermentation ability of Pichia stipitis toward hardwood spent sulphite (HW
SSL) (see also Chapter 9). After four rounds of genome shuffling, the mutants
were able to produce ethanol from xylose present in undiluted HW SSL (56).
The genome shuffling method has been used to improve the tolerance of
microorganisms toward pesticides and the degradation of pesticides using
Sphingobium chlorophenolicum. Pentachlorophenol (PCP) is a highly toxic
anthropogenic pesticide, which can be mineralized and degraded by the gram-
negative bacterium S. chlorophenolicum. However, wild-type S. chloropheno-
licum can only degrade PCP at a very slow rate because of low tolerance to
the compound. Dai and coworkers generated a mutant library using genome
shuffling, and mutants with higher PCP tolerance were identified. After three
rounds of genome shuffling using protoplast fusion, the mutant strains exhib-
ited more than a 10-fold increase in tolerance toward PCP. Some mutant
strains can also degrade 3mM PCP in one-quarter-strength tryptic soy broth,
while no degradation can be observed by their parental strains under the same
condition (57).

4.3 CONCLUSIONS AND FUTURE PROSPECTS

Microorganisms have become increasingly exploited to address some of the
most challenging global problems such as global warming, energy security,
severe pollutions, and environmental degradation (4,58). In many cases, micro-
organisms used for industrial applications require multiple complex phe-
notypes such as high tolerance to stresses, substrates, products, pH, and
temperatures. Evolutionary engineering approaches offer a promising alterna-
tive to traditional strain improvement methodologies in coping with this chal-
lenge. By harnessing the natural algorithm to select the fittest variants through
continuous evolution, evolutionary engineering allows a more efficient and
comprehensive searches across the rugged fitness landscape. The evolutionary
pathway can be modulated depending on the type and complexity of the phe-
notype by carefully designing the screening and selection strategy over the
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course of evolution, which will enable the development and isolation of a
phenotype compatible with the industrial operation conditions and facilitate
scale-up from bench-top to production line. In addition, because the genetic
backgrounds and phenotypic characteristics of many industrial strains are not
available for rational metabolic engineering, evolutionary engineering will
continue to be a valuable metabolic engineering strategy. By complementing
rational approaches and emerging genome and transcriptome analysis tools,
evolutionary engineering approaches will also expand our understanding of
the genotype—phenotype relationship, providing new insights for further strain
engineering.
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RAPID FERMENTATION
PROCESS DEVELOPMENT
AND OPTIMIZATION

JuN Sun AND LAWRENCE CHEW

5.0 INTRODUCTION

For the past decade advances in metabolic engineering and high-throughput
technologies have made it possible to rapidly generate and screen large
amounts of genetically engineered strains (see Chapters 1, 3, and 4) (1,2). The
objective of these high-throughput technologies is to narrow down the list of
strains to a very few (mostly just one) lead candidates that will be used in
industrial-scale for production. Thus, challenges arise for bioprocess engineers
to identify the best candidate strain that has the highest probability of dem-
onstrating the desired performance on scale-up. These challenges include:

1. Effectively evaluating the performances of these large numbers of strains
under conditions close to that observed in large-scale fermentors. The
traditional strain evaluation strategy involves the processes of evaluating
performance of strains from test tubes to shake flasks, then to benchtop
fermentors, and eventually to pilot-scale fermentors. These processes are
not only labor-intensive and time-consuming, but also costly if the start-
ing pools of candidate strains are large.

2. Defining a set of criteria for the selection of the best candidate strain for
scale-up. Product yield, rate, and titer are generally the most important
parameters to justify strain performance. However, often these are not
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the only factors to be considered. Sometimes process operability and
downstream process constraints will impose a big impact on total pro-
duction cost, necessitating further analysis of strain performance in the
light of additional metrics. For example, a strain with the highest yield,
rate, and titer may not be a winner if it causes unreliable fermentation
process and unrealistically high downstream purification cost. Some of
these additional performance criteria can be addressed either by engi-
neering approaches or more cost-effectively by engineering these traits
into production strains.

3. Rapidly developing an optimized robust process for scale-up after strains
are identified from high-throughput screening or selection programs. A
variety of scale-down tests may need to be performed at this stage to
address potential problems that might surface at large scale, such as mass
and/or heat transfer limitations resulting from high oxygen utilization
rates of the culture.

This chapter will illustrate a roadmap on how to use new fermentation tools
to address the above three challenges in the most cost-effective and practical
manner such that the throughput of a fermentation process development
program is compatible with the throughput of typical strain development
programs.

5.1 OVERVIEW OF CLASSICAL FERMENTATION PROCESS
DEVELOPMENT METHODOLOGY

The traditional fermentation process development workflow can be illustrated
in Figure 5.1A. First, a pool of strains identified from strain screening or meta-
bolic engineering efforts are tested in either test tubes or shake flasks. By
comparing the final product titer and yield indicative of each strain, the size
of the initial strains pool is reduced for a more detailed characterization. This
process can be performed iteratively in several cycles with varied culture
conditions and media compositions for each cycle. Typically, the number of the
selected strains that are moved forward for further characterization in fermen-
tors is limited by the capacity of the fermentation laboratory. It is difficult to
quantitatively monitor and control all important scale-up parameters such as
pH, dissolved oxygen (DO) level, and substrate concentration profiles in test
tubes or shake flasks, as typical results from flask characterization only provide
an end-point data in batch fermentation mode. However, these results from
flask characterization are sufficient to compare the performance of the strains
if the final production process is a simple anaerobic batch process, such as
ethanol fermentation. For fed-batch production process and other aerobic
fermentations where oxygen transfer rates are important for scale-up, this type
of screening method may miss some potential good candidates due to limita-
tions arising from the batch mode of operation.
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FIGURE 5.1. Roadmap for traditional fermentation process development (A) and
for rapid fermentation process development using high-throughput fermentation
systems (B).

The next step is to evaluate each selected strain from the preliminary
screening stage under well-controlled conditions in small-scale fermentors
(1-20 L). This is probably the most laborious and expensive step during
process development. Some statistical methods and mathematical modeling
tools can be used to design fermentation experiments to evaluate the strains
under a broad range of conditions that are unable to be controlled in shake
flasks. After extensive strain evaluation, a few strains will be selected based
on product yield, rate, and titer for further process development and optimiza-
tion. Many times it will end up with no good candidate strain to move forward,
and the process returns to the first step for screening more strains as illustrated
in Figure 5.1A.

When a process is developed at small scale, it will take a couple of tests to
validate the performance at different pilot scales. Further optimization of the
process is required to scale-up to production scale. At this stage, many scale-
down experiments should be performed to address the potential problems that
may occur at production scale. These tests include strain stability and process
robustness subjected to the constraints of the large scale. However, it is not
unusual that some specific problems will be found only after the process is
scaled up. In such cases more scale-down experiments will be designed to
operate at small-scale fermentors to identify the causes of the problems and
develop possible solutions.

The above-described traditional approach for industrial strain development
and scale-up puts significant pressure on fermentation equipment resources at
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the 1-20 L scale, and often this step becomes the bottleneck in a strain devel-
opment program. In order to improve the throughput of strains that are char-
acterized in representative fermentation conditions, in recent years new
technologies on high-throughput fermentation have been developed to keep
pace with the throughput of the strain engineering programs.

5.1.1 Noninvasive Sensor Technologies

The traditional process development strategy as described in Section 5.1
can last for years and cost tremendous resources to the strain engineering
program. The bottleneck of the process is the speed of strain evaluation and
process development. To alleviate the bottleneck, there are two approaches:
(i) change the screening methods to evaluate the strains more effectively such
that false positives are minimized, and (ii) increase the throughput of fermen-
tation at the small scale without significantly compromising the metrics rele-
vant to scale-up.

Fortunately, recent development in new fermentation technologies makes
these approaches possible. Thanks to the noninvasive sensing technologies, it
becomes practical to attach optical pH and DO sensors to the flasks that
enable monitoring and controlling pH/DO in fermentation cultures grown
in shake flasks. Furthermore, when these optical sensor technologies are
integrated with microwell reactors, it creates minibioreactors that have
most of the functionalities and similar performances to that for small bench-
top fermentors, plus the high-throughout capability. This leads to a new
roadmap for rapid strain evaluation and process development as proposed in
Figure 5.1B.

In this case the minibioreactors will combine the functions of both shake
flasks and small-scale fermentors (as shown in Figure 5.1A) to perform the
strain screening and evaluations. An early decision can be made if there is no
good strain for further process development. The high-throughput fermentors
can expedite the process development by enabling optimization across a wider
range of operating parameters. In addition, some scale-down experiments
reflective of the scaled-up process can even be done in minibioreactors without
the need for piloting, which results in significant cost savings. By using these
approaches, the bottleneck in traditional fermentation process development
can be dramatically alleviated, although not completely eliminated.

In this chapter, the basic tools for fermentation process development
will be introduced and illustrated by some case studies. The advances in
minibioreactor technologies will be reviewed, and the different options
of commercially available minibioreactors and parallel benchtop high-
throughput fermentation systems will be introduced and compared. Some case
studies will be presented to demonstrate how to use the available high-
throughput fermentation systems to expedite strain evaluation and process
development.
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5.2 FERMENTATION PROCESS DEVELOPMENT
AND OPTIMIZATION

Fermentation process development and optimization includes optimization of
growth medium and growth conditions to achieve maximal economic advan-
tage at production scale. It also involves optimization of fermentation perfor-
mance using a scale-down approach to simulate the conditions typically
encountered at scale-up. This section will discuss the development and opti-
mization of microbial fermentation processes using currently available
technologies.

5.21 Medium Design and Optimization

When evaluating strains and developing a fermentation process, the fermenta-
tion medium is one of the most critical factors that influences strain perfor-
mance. The medium design and strain screening process often form an iterative
cycle to test the strain pools in different media in order to increase the prob-
ability of finding an optimal combination. It is impossible for one medium to
fit or be conducive for all strains.

There are typically two strategies for medium design and optimization:
(i) “open strategy,” which involves selecting the best combination of all pos-
sible components, and (ii) “closed strategy,” which is done by identifying the
best combination of given components. The different approaches on how to
design or optimize media using the above two strategies are summarized in
References (3) and (4).

5.2.1.1 Phenotype Microarray for Rapid Media Development Compo-
nent swapping (swap one component for another at the same level) (5,6) and
pulsed injection in continuous fermentation techniques (addition of growth
limiting nutrient results in growth simulation) (7,8) are two experimental
techniques for medium design with open strategy. Combined with mathemati-
cal and statistical tools, these two methods have been successfully applied
to identify the essential medium components for microbial fermentation.
However, a single-medium optimization study using these low-throughput
“trial and error” methods will take a long time, with high variation in results.
They are not suitable for medium design when a significant number of strains
generated by genetic engineering are being evaluated because the genetically
engineered strains will have different requirements for optimal fermentation
performance. To determine the best medium composition for the specific strain
or most promising media for strain screening, a systematic physiology-driven
approach is preferable.

The recent advances in metabolomics have made it possible to design
a medium using an unbiased selection and ranking in high-throughput
formats (9). For example, the phenotype microarray (PM) from Biolog
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(Hayward, CA) is a high-throughput method to globally characterize cell
phenotype and reveal microbial cell physiology via a systematic approach
(10,11). The PM set for bacteria consists of 1920 phenotype assays in 96-well
microplates to test cell metabolism and chemical sensitivity (12). The microti-
ter plate wells contain chemicals dried on the bottom to create unique culture
conditions after rehydration. Assays are initiated by inoculating all wells with
cell suspensions. After incubation, some of the wells turn various shades of
purple due to reduction of a tetrazolium dye as the cells respire. Instead of
measuring cell growth, cell respiration activities are measured colorimetrically
to give an accurate reflection of the physiological state of cells with improved
sensitivity of assays. This is particularly important for some assays that do not
depend on growth. Assays of carbon (C), nitrogen (N), phosphorous (P), and
sulfur (S) metabolism provide quantitative information about the activity of
various metabolic pathways that are present and active in cells. Assays of ion,
pH, and chemical sensitivities provide information on stress and repair path-
ways that are present and active in cells.

By using the PM system, it is feasible to compare and fingerprint differences
between the genetically engineered strains generated in a strain engineering
program. Furthermore, combining with statistical tools such as multivariate
data analysis, it is possible to scan 2000 culture conditions simultaneously to
identify the essential growth medium components. Knowledge and insights
obtained from phenotypic fingerprinting of strains not only influence cost-
effective medium design but also enable modulating other traits through
either addition or exclusion of certain micronutrients.

5.2.1.2 Media Optimization Using Design of Experiment (DOE) The
traditional method for medium development is a trial-error process in shake
flasks or benchtop fermentors. Typical approaches include changing one vari-
able at a time to determine the impact of one component on the strain per-
formance. But this approach cannot identify the interactive effect of multiple
components on process performance.

The DOE approach to optimize medium formulation has been used widely
by microbiologists and fermentation engineers. The most commonly used
DOE methods include:

1. Factorial design methods allow for the simultaneous study of the effects
that several medium components may have on performance. Varying the
levels of many components simultaneously rather than one at a time
allows for the study of interactions between the components. Using the
factorial design, a few vital components can be quickly identified for
further optimization. The fractional two-factorial Plackett-Burman
design, which allows for investigation of up to N-1 variables in N experi-
ments, is an efficient design used frequently as a starting point when
many variables need to be screened to identify the vital components to
be optimized further.
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2. Response surface methods are used to examine the relationship between
one or more fermentation performance variables (e.g., product yield,
rate, and titer) and a set of “vital few” medium components identified by
other methods (e.g., factorial design methods). The medium components
can be optimized to achieve best fermentation performance. Designs of
this type are usually chosen when the curvature in the response surface
may exist.

Canonical analysis is a method used to further characterize the surface
response function to identify the minimal or maximal points on the response
surface. In most cases, it is difficult to understand the shape of a fitted response
surface by mere inspection of the algebraic expression of the Taylor polyno-
mial. When there are many independent variables in the model, it is also dif-
ficult to evaluate the shape of the surface by looking at isocontour projections
of the variables two by two. A canonical analysis facilitates the interpretation
of the results obtained by surface response methods (13). A detailed example
using above three statistic tools to optimize the medium components for nat-
tokinase production by Bacillus natto NLSSEm can be found in Reference
(14). Many commercial software, such as Statistica (Statsoft Inc, Tulsa, OK)
and Minitab (Minitab Inc., State College, PA) can be used to facilitate DOE
and data analysis.

When selecting a medium for fermentation, it has to be kept in mind that
most often the final product will need to be separated from the medium com-
ponents at the end of the process. Therefore, the medium used at production
scale should be as lean as possible not only to meet the requirement of cell
growth and product formation but also to minimize the medium cost and
downstream processing burden (see case study in Chapter 6).

5.2.2 Optimization of Growth Conditions

The use of DOE methods as described in Section 5.2.1.2 has also been reported
extensively to optimize the growth conditions (15). Some conditions such as
pH, temperature, and induction/fermentation batch cycle time can be con-
trolled in the shake flasks. Thus, it is possible to optimize these growth condi-
tions in shake flasks or microtiter plates. However, some growth parameters
such as DO cannot be easily measured and controlled in the shake flasks. Thus,
the small-scale fermentor is a preferable tool.

When using fermentors to optimize growth conditions, it is laborious to run
10-20 batches of fermentation based on DOE. One traditional approach is to
use continuous chemostat culture to test different growth conditions at each
steady state. However, depending on the growth rate, it usually takes a long
time to reach a steady state in continuous culture. To test growth conditions
at different levels, the continuous fermentation may last for a long period,
imposing the risk of contamination or genetic instability. With the combination
of mathematical modeling, it becomes practical to identify optimal growth
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conditions by varying the growth parameters before a steady state is reached
(16,17).

5.3 RAPID PROCESS DEVELOPMENT AND OPTIMIZATION
USING CONVENTIONAL FERMENTATION SYSTEM

The fed-batch fermentation is the most widely used fermentation mode to
achieve high product titer and yield. When developing fed-batch fermentation,
the most important variable that needs to be defined is the substrate feed
profile. Various methods have been described to determine and optimize the
feed profile for specific strain and process as reviewed by Lee in Reference
(18). However, when evaluating multiple strains to identify the good candi-
dates, it is impractical to determine the optimized feed profile for each strain.
A common strategy is to use a predefined feed profile based on a designated
specific growth rate for all strains to be evaluated. This may exclude some good
candidates because the predefined feed profile may not be optimal for these
strains. Thus, it is preferable to define and customize feed profile online during
the fermentation process for each strain to be evaluated. The following two
methods are practical and robust to define the feed profiles for carbon source-
limited fermentation or carbon source-excess fermentation.

5.3.1 Dynamic DO Control to Determine Optimal Feed Rate for Carbon
Source-Limited Fermentation

Many fed-batch fermentation processes need to keep carbon source at a
limited level to minimize by-product formation. For example, when producing
brewery yeast using fed-batch fermentation, excess sugar in the culture leads
to the production of ethanol. Another example is Escherichia coli fermenta-
tion for protein expression, where excess glucose in the media can divert the
carbon flux into acetate formation, resulting in inhibition of cell growth and
protein expression.

When a fermentation system is equipped with advanced instrumentations,
such as online measurement of substrates using bioanalyzer or off-gas mea-
surement by gas analyzer, and so on, it is not difficult to design a feedback
program to control the feed rate to evaluate strains with different growth
phenotypes. However, most small-scale fermentors are equipped only with
basic controllers for pH, DO, temperature, and so on, but not any advanced
instrumentation. Thus, a practical approach is needed to define feed profile
using a standard fermentation system without additional advanced
instrumentation.

For strain evaluation purposes, the feeding strategy should be (i) universal
(independent of strains, products, media, etc.), (ii) robust, (iii) requiring
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minimum number of online measurements as possible, (iv) amenable to scale-
up, and (v) ease of implementation, preferably with full automation. Based on
these criteria, DO-stat and pH-stat are the two best choices as DO and pH
probes are relatively reliable and cheap. Most of the modern fermentation
systems have the DO-stat/pH-stat substrate feeding control program built in
the control unit. But because the pH-stat has several disadvantages such
as slow response to feed addition and media dependence, the DO-stat is a
suitable strategy for substrate limited fed-batch fermentation for strain
evaluation.

The commonly used DO-stat control strategy for fed-batch fermentations
involves adding substrate when the DO level rises above the setpoint due to
substrate depletion. When this strategy is used for certain fermentations such
as recombinant protein expression or when the product is toxic to the cells, it
can cause substrate overfeeding as shown in Figure 5.2A (19). In this example,
a built-in DO-stat control program in a Sartorius Biostat C control unit (Sar-
torius, Gottingen, Germany) was used to control feed rate of the glucose feed
solution by keeping the DO value at 30%. However, after induction at 8.5
hours, the DO stayed higher than its setpoint due to slowing down of cell
metabolism, subsequently resulting in overfeeding of glucose. The glucose feed
has to be shut off manually to prevent further adverse impact of high glucose
concentration on the protein expression.

When using DO-stat, one approach to resolve the overfeeding problem is
to feed the substrate dynamically by the pattern of DO change. As described
in Reference (19), the increase in DO can be caused by (i) substrate depletion;
(ii) slowing down of cellular metabolism or product toxicity; (iii) noise of DO
probe. If standard DO-stat control strategy is used, substrate over-feeding will
occur for scenarios of (ii) and (iii). Fortunately it is possible to design a soft-
ware controller to distinguish the patterns of DO change and to feed substrate
only in response to substrate depletion.

A control strategy of differentiating the pattern of DO change by changing
the DO setpoint dynamically to follow the DO profile with 1-2 minutes of
delay has been described in detail in Reference (19). In this dynamic DO-stat
feeding control strategy, the feed will be triggered if DO is higher than DO
setpoint (DOy,) plus a high threshold value (DOy,) which is a value higher
than the probe noise. When substrate is exhausted, the DO will increase drasti-
cally and the feed will start because DO > (DO, + DOy,). In the case of the
cell metabolism slowing down or product toxicity, the DO will increase slowly
and the DO setpoint will dynamically follow the DO profile with 100s of delay
to avoid substrate overfeeding. For the DO probe noise issue, the parameter
of DOy, which is higher than the probe signal noise will prevent substrate
overfeeding.

This dynamic DO-stat can be easily programmed and has been imple-
mented using different commercially available fermentation SCADA software
(19). An example of fed-batch fermentation using this dynamic DO-stat
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FIGURE 5.2. Examples of fed-batch fermentation using conventional DO-stat (A) or
dynamic DO-stat (B) to control the substrate feed rate. In both fermentations, a recom-
binant protein was expressed in E. coli cell. The feed solution is 50% (w/w) glucose.
The protein expression was induced at 8.5 hours. The DO setpoint is at 30% for (A).
The minimal DO setpoint is at 20% for (B). Grey solid line: DO profile (% ); dashed
line: feed rate (g/min); grey dotted line: DO setpoint (% ); square: glucose concentration
(g/L). Part (A) is adapted with kind permission from Springer Science + Business
Media: In Cheng, Q. (ed.), Microbial Metabolic Engineering, Methods in Molecular
Biology. Chapter 15, Rapid strain evaluation using dynamic DO-stat fed-batch fer-
mentation under scale-down conditions. SpringerLink, New York, vol. 834, 2012,
pp. 233-244, Jun Sun.
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control strategy is shown in Figure 5.2B. After induction at 8.5 hours, the cell
metabolism slowed down and caused DO to increase above 20%, but the
control program was able to distinguish this DO increase pattern and con-
trolled glucose feeding accordingly to keep the glucose at limited level.
Another advantage of using this dynamic DO-stat is that the by-product can
be reduced for E. coli fermentation as reported in Reference (20) because of
the oscillation of DO.

The above dynamic DO-stat control strategy is suitable for initial strain
screening and process development without prior knowledge about the sub-
strate utilization rate or growth rate of strains. It can provide a baseline feed
profile after strain evaluation for further process optimization.

5.3.2 Feed Forward Control for Carbon Source Excess Fermentation

The feed control for substrate excess fermentation is not as challenging as for
substrate-limited fed-batch fermentation because the substrate concentration
will be controlled within a certain range. However, when the substrate level is
out of the specified range, the fermentation performance will be impacted
adversely due to by-product formation or substrate inhibition. Among the
various feed strategies as described in Reference (18), the direct feed back
control based on substrate concentration is suitable for substrate excess fer-
mentation and is easy to implement. Since the substrate level only needs to
be controlled within certain range, most of the time no online measurement
of substrate is needed. A rapid offline measurement of substrate level with 2-3
hours of sampling interval is generally enough to meet the requirement for
feed rate adjustment. One option is shown in Table 5.1. In this case, the online
or offline measurement for broth weight, cumulative feed weight, and sub-
strate concentration is used to calculate the substrate consumption rate. Then
the substrate consumption rate for the next sampling interval is calculated by
linear extrapolation of the substrate consumption rate of the past two sam-
pling intervals. Thus, the feed rate can be calculated based on the predicted
substrate consumption rate plus a term to calibrate the difference between
substrate concentration and the setpoint for substrate level. This method can
be implemented in spreadsheet software or in the modern fermentation
SCADA software for automatic control of the feed rate. One example of using
this feed forward control strategy is shown in Figure 5.3. A sample was taken
every 2-3 hours and measured for sugar concentration. The offline measure-
ment was entered into an excel file to predict the feed rate for next sampling
interval. The robustness of this method can be demonstrated by the sugar level,
which was stably controlled within the range of 10-15 g/L with the setpoint of
15 g/L. This method is suitable for strain evaluation when no prior knowledge
of strain growth property is available and excess substrate during fermentation
is desirable. It is also very useful for process development and scale-up since
the method is independent of scale.
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FIGURE 5.3. An example of a bacterial fed-batch fermentation using sugar as sub-
strate. The feed forward control program as shown in Table 5.1 was used to generate
the feed profile. Diamond: sugar concentration; triangle: calculated feed consumption
rate as described in the 5™ column in Table 5.1; solid line: actual feed rate predicted by
the 6™ column in Table 5.1.

54 STRAIN EVALUATION AND PROCESS OPTIMIZATION
UNDER SCALE-DOWN CONDITIONS

While fermentation in small-scale fermentors can be a homogeneous and well-
controlled process, most of the time it does not match the conditions in large-
scale fermentors, where the gradient of pH, temperature, DO, and substrates
can be significant. Furthermore, there are mass and heat transfer capacity
limitations at larger scale that further constraints fermentation optimization.
Cells in a large-scale reactor move through different zones and experience
steady changes in their environment (21). Consequently, they experience a
different history with respect to their physiology, especially stress responses
compared with cells that have been grown in a homogeneous well-mixed
culture (22). This often significantly affects the fermentation performance in
large vessels. Therefore, when using small-scale fermentors for strain evalua-
tion, the performance of the leading candidate may not translate to large-
scale vessels. It is often necessary to test certain scale-down conditions during
evaluation of the candidate strains so that the performance of the best strain
translates to a large-scale vessel. The review paper by Neubauer and Junne
(21) has given the latest update on how to set up the systems to simulate the
conditions in large-scale reactors using conventional benchtop fermentors,
phototrophic fermentors, and micro high-throughput bioreactors, as well as
study the metabolic changes with rapid sampling techniques and computa-
tional tools.
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5.4.1 Identify Scale-Down Parameters

To simulate the conditions of a large-scale reactor in small-scale vessels, the
right parameters should be identified so that the scale-down fermentation
system can be set up accordingly.

The leading cause of deviation of fermentation performance in large-scale
vessels from small vessels is the heterogeneity due to the limitation of power
input for mixing in large-scale vessels. This leads to gradient formation for pH,
substrate, temperature, and a hot spot in the large vessel, into which the sub-
strate and pH adjusting agents are fed. It also causes the limitation of mass
transfer, especially oxygen transfer rate (OTR) for aerobic fermentation. In
small-scale fermentors, the OTR can sometimes reach as high as 300 mM/h
using air as the oxygen supply, in contrast to about 100-150 mM/h in large-
scale vessels. In addition, because of the hydrostatic pressure and good solubil-
ity of CO, at high CO, partial pressure, the dissolved CO, level in large-scale
vessels is generally higher than that in small-scale vessels. Certain strains
cannot tolerate high dissolved CO,, which indirectly affects performance. If
these scale-down parameters can be tested at the strain evaluation and process
development stage, some engineering solutions can be implemented to resolve
these issues at the scale-up stage. In this section, practical approaches for
testing these scale-down parameters in lab-scale fermentors are discussed.

5.4.2 Scale-Down of Mixing Related Parameters

One powerful tool for studying the effect of mixing-related scale-down param-
eter is using the multiple-component fermentation system. The setups were
summarized by Neubauer and Junne (21). These setups have been successfully
applied to study the impact of gradients in substrate feeding zone (23,24) and
pH agent feeding zone (25,26) on fermentation performance. The dynamic
DO-stat control (19) as discussed in Section 5.3.1 is actually the pulse feeding
scale-down strategy.

Except for the setup of direct rapid sampling and pulse feeding, which can
be implemented in commercially available bioreactors, other configurations,
such as stop-flow sampling and two compartment reactors, require setting up
of multiple fermentors (21). This limits the application of these scale-down
strategies during the early stages of strain evaluation due to the cost of labor
and equipment. A high-throughput format of the above-described configura-
tions using microliter bioreactors is more suitable to test the scale-down
parameters as described in Section 5.7.

5.4.3 Oxygen Uptake Rate (OUR) Clipping

In large-scale vessels, the OTR is limited to 100-150 mM/h due to limitations
on mixing power supply and volumetric air flow rate (vvm). In benchtop
scale fermentors, the OTR can easily reach more than 200 mM/h. Thus, it is
necessary to test the performance of engineered strains under the OTR
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limiting conditions early at the strain evaluation stage. Since OUR equals
OTR at pseudo-steady state, this scale-down strategy is called OUR
clipping.

The most common method of testing OUR clipping is to limit the maximal
feed rate to keep the OUR below the setpoint. If a gas analyzer is available
for online off-gas monitoring, it is easy to set the maximal feed rate based on
online calculation of OUR. However, if the fermentor is not equipped with an
off-gas analyzer, the approach can be as follows: (i) measure oxygen transfer
coefficient (k;,) and correlate k;, with agitation speed and air flow rate (27);
(ii) set the maximal agitation speed and/or air flow rate based on their correla-
tions with ki, so that the maximal OTR can match that in the large-scale vessel;
and (iii) design the feed profiles to limit the maximal feed rate when agitation
speed and air flow rate reach their maximal setpoints.

An example of comparison of fermentation performance with and without
OUR clipping is described in Reference (19). In the OUR clipping experiment,
the maximal agitation speed and air flow were set to the current process values
when OUR reached the setpoint. It was observed that cells grew slightly
slower at OUR clipping condition (OUR was set at 165 mM/h) compared to
regular fed-batch fermentation where OUR reached as high as 300 mM/h. The
feed profiles for both runs were generated automatically using dynamic DO-
stat as discussed in Section 5.3.1.

5.4.4 Dissolved CO,

The dissolved CO, level in large-scale vessels is 2-3 times higher than that in
the benchtop fermentor because of the higher hydrostatic pressure and low
volumetric air flow rate (vvm) in large-scale vessels. It has been reported that
high dissolved CO, (or high partial CO, pressure) can impose a negative
impact on fermentation performance (28-31). Thus, it is important to check
the fermentation performance on high dissolved CO, level at small scale
before scale-up.

The most common approach to evaluate the effect of CO, on fermentation
performance is using mixed gas with high CO, concentration as influent gas
(29,30). This can mimic the conditions observed in large-scale fermentors with
elevated CO, level. Another approach is autogenous CO, methods in which
the airflow is adjusted automatically to keep off-gas CO, at the desired level
(31). If the small fermentor is equipped with a pressure regulator as that in
many sterilize-in-place (SIP) fermentation systems, the dissolved CO, effect
can be evaluated by adjusting vessel back pressure to keep partial CO, pres-
sure at a preset level equivalent to that in large-scale vessels.

5.5 CONTROL AND SENSOR TECHNOLOGIES
FOR MINIBIOREACTOR

As discussed in Sections 5.2 to 5.4, the regular benchtop fermentors (0.5-10 L)
are powerful tools to evaluate strains and develop scalable processes. However,
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as the pool size of the strains to be evaluated gets large, it is unrealistic to
use benchtop fermentors to accomplish the strain screening and evalua-
tion task effectively due to the labor, time and cost to operate benchtop fer-
mentors. While many labs are still using the shake flasks or microtiter plates
to screen the strains, the minibioreactors (50 pL.-200 mL) equipped with tem-
perature, pH, DO, and aeration sensors/controllers can offer high throughput
with high reproducible and comparable results as that obtained from regular
benchtop fermentors. The high data density from minibioreactors enables
thorough data analysis to select and rank strains effectively using multiple
metrics.

The minibioreactor can be classified in two categories based on the reactor
volume: milliliter bioreactor (ranging from 1 to 200 mL) and microliter biore-
actor (ranging from 5 to 700 puL). As the volume decreases, losses due to water
evaporation become a challenging issue. From the viewpoint of practical appli-
cation, the milliliter bioreactor can offer more flexibility in terms of the amount
of sampling allowed and commercial availability.

The key factor in successful application of minibioreactor in strain screen-
ing and process development programs is the integration of sensor technolo-
gies with the hardware of the equipment. Because of the volume limitation of
minibioreactors, online measurement of many fermentation parameters imple-
mented in minibioreactors can prevent significant loss of culture broth due to
sampling. In this section, sensing and control technologies used in minibioreac-
tors are reviewed. Most of the sensors for temperature, pH, DO, and biomass
have been integrated together into different minibioreactors for practical
applications (32,33).

5.5.1 Temperature Sensing and Control

In minibioreactors, temperature is typically measured by thermistors or resis-
tance temperature detectors (RTDs). These sensors are commercially avail-
able and can be fabricated in small sizes to be embedded into minibioreactors
to measure temperature precisely and reliably.

While it is relatively easy to measure temperature, it is a challenging task
to control the temperature because of the high surface area to working volume
ratio (S/V). The smaller the working volume, the higher is the S/V ratio, thus
the faster is the heat transfer or heat loss from the reactors. Therefore, it is
necessary to have a well-functioning temperature control loop in minibioreac-
tors to keep the temperature precisely at the desired setpoint.

Based on the type of minibioreactors, various methods have been applied
to control temperature. For most of commercial minibioreactors, incubator or
heated chamber are used to control temperature. However, for microliter
reactors different approaches have been used to regulate temperature such as
heating foil (34) or resistive heating (35) mounted on the base of microreactor.
This can allow tight control of temperature. It is preferred to have an inte-
grated heater in microliter bioreactors for temperature control because of



CONTROL AND SENSOR TECHNOLOGIES FOR MINIBIOREACTOR 149

the cost and flexibility of allowing parallel operation of individual bioreactors
at different temperatures.

5.5.2 Mixing

A bioreactor has good mixing properties if it meets the following criteria:
(i) it maintains the homogeneity of fermentation broth, which means short
mixing time, and (ii) it provides enough power for mass/heat transfer but does
not generate high shear force to disturb microbial physiology. As the scale of
the reactor decreases, it is more difficult to provide adequate mixing power
because of a small Reynolds number, which is an indication of turbulence.
Based on the type of minibioreactors as summarized in Reference (36), the
mixing power is provided by (i) shaking in the case of microtiter plate and
shake flask-type minibioreactors; (ii) stirring in the case of stirred minibioreac-
tors; and (iii) microfluidics in the case of microliter bioreactors embedded on
chips (34).

Among the three mixing methods, the stirring method provides enough
mixing power and support OTR as close as attainable in benchtop fermentors.
The power consumption and ki, for different minibioreactors have been dis-
cussed in References (27) and (37).

553 DO

Oxygen is a critical variable to be monitored and controlled during aerobic
fermentation process. For past decades, the DO level is measured mostly by
Clark-type oxygen electrode which has serious drawbacks and limitations on
the application for minibioreactor, such as its bulk size, signal to noise ratio
and signal drift. For minibioreactor, the optical DO sensor (optode) based on
the quenching of fluorescence by oxygen (38,39) is a better option and has
been widely used in commercial minibioreactors and other microreactor pro-
totypes. The DO optode can be easily embedded into the minireactor as a
disposable DO sensor. Another option of DO sensor used in minibioreactors
is electrochemical sensor such as ultra-microelectrode array (UMEA), an
amperometric sensor measuring DO based on the electrochemical reduction
of oxygen. This kind of sensor can be fabricated small enough to fit into indi-
vidual well of a 96 microtiter plate (33).

The control of DO in minireactors is a critical task because of the difficulty
of providing enough mixing power to promote mass transfer as described in
Section 5.5.2. For shake flask type and microwell type minibioreactor, the
shaking speed is the only way to control the OTR. However, for certain mil-
liliter bioreactor, aeration can be used to control the DO as in u-24 microreac-
tor (Pall Corporation, Covina, CA). For stirred minibioreactors, varying the
stirring speed can be much more effective than aeration to control DO. Stirring
in combination with aeration systems such as gas-inducing impellers (40) can
generate ky, as high as 1440/h, which even outperforms the k;, observed in
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typical benchtop fermentors. However, for microliter bioreactors, direct gas
sparing is not a feasible method to control DO because of concerns over liquid
evaporation. So oxygen supply in microliter bioreactors is usually achieved by
membrane aeration. One option is to supply oxygen by in situ electrolytic gas
generation through a thin gas-permeable membrane mounted on the bottom
of the microreactor (35). In this case, large bubbles will form, which is not
preferable for microliter reactors. Another option is to push the gas stream
into a gas chamber with a gas-permeable membrane mounted on the top of
the microreactor to allow diffusion of oxygen from the gas phase into the
liquid phase without formation of gas bubbles (34,41-43). Under good mixing
conditions, a ky, as high as 500/h can be achieved with comparable fermenta-
tion performance as that in benchtop fermentors.

554 pH

The most commonly used pH sensors for minibioreactor are optical sensors
(optodes) based on fluorescence (41-43) and solid-state ion-selective field-
effect transistor (ISFET) pH sensor chips (32,35). Optodes are cheap and easy
to integrate into minibioreactors but have a relatively short lifetime and a
narrow pH measurement range (pH 4-9). ISFET can operate at a wide pH
range (pH 2-12) and high temperature (up to 120°C), but the ISFET sensor
chips would need to be reused due to their high cost. Both types of sensors
offer rapid and precise pH measurements over a long period of time.

While online monitoring of pH is reliable with commercially available pH
sensors, pH control in minibioreactors is not well developed. The use of media
with high pH buffering capacity is still the simplest way to control pH in mini-
bioreactors. However, it is not always practical, especially when the cell density
rises and the pH buffering capacity cannot compensate for the pH changes.
Moreover, certain microorganisms cannot be cultivated in media that have
high ion strength. Another option to control pH is by injecting acid or base
intermittently into the minibioreactors (34,44). For milliliter bioreactors,
adding a pH agent is not a major concern as long as the mixing is adequate.
But for microliter reactors, pH control cannot be stable by this method.
Another alternative approach to controlling pH is by dosing of CO, gas and
NHj; vapor (45). This approach has been implemented in commercial minibio-
reactors such as u-24 reactors from Pall Corporation.

5.5.5 Cell Concentration

Due to volume limitations, it is impractical to take many samples from mini-
bioreactors for cell concentration measurement. In minibioreactors, the cell
concentration is normally measured in optical density (OD) by optical probes.
Light from light-emitting diodes (LED) is guided into the reactor via optical
fibers, passing through the vessel, and then received by a photodetector. Many
minibioreactors have implemented this technology for OD measurement. For
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milliliter bioreactors, a microtiter plate reader can be used to measure OD
at-line handled by a liquid handling robot (40).

OD measurement can only provide an estimate of total cell concentration
without distinguishing viable cells from dead cells. Using impedance spectros-
copy is an alternative way of measuring living cells by measuring the capaci-
tance of cells, which is only detectable when the cell membrane is intact. This
technology has been successfully integrated into a sensor array for a micro-
bioreactor (32).

5.5.6 Feeding

Because many industrial fermentation processes are fed-batch fermentations,
itisreasonable to evaluate strain performance and develop initial fermentation
process in fed-batch mode. Various control strategies have been developed for
benchtop fermentors as discussed in Reference (18). But feeding substrate in
a controlled mode into a minibioreactor is a very challenging task due to the
scale and the type of minibioreactors, especially for shaken minibioreactors.

One option to feed substrates in shaken minibioreactors is to use an enzy-
matic glucose auto-delivery system in which starch is digested by glucoamylase
to release glucose (46). The commercial product of glucose auto-delivery
system is available as EnBase, marketed by BioSilta (Oulu, Finland). This
technology has been successfully used in shake flasks and microwells to achieve
arelatively high cell density (ODg, > 30) and high protein expression in E. coli.
It has been used to screen a protein expression library in fed-batch mode in
microtiter plates and shake flasks to identify the best strain and to determine
its optimal specific growth rate for scale-up in benchtop fermentors (47,48).

However, the glucose auto-delivery system has certain limitations for strain
evaluation: (i) The amount of enzyme addition needs to be predetermined to
ensure high cell growth rates under glucose-limited conditions. For high-
throughput strain screening, this is not practical. (ii) Glucose is not always the
carbon source of interest. In these cases, a more general method is preferable
for substrate delivery. One example is to use a liquid handling system to deliver
feed solution based on pH (40,49). For microliter bioreactors embedded on
chips, it has been reported that a feeding system is embedded in the microreac-
tor for a chemostat continuous culture (43).

5.6 COMMERCIAL HIGH-THROUGHPUT
FERMENTATION SYSTEMS

While different types of minibioreactors have been reported, most of them
are still in the prototype stage. Only a few have been commercialized and
have the capability for high-throughput fermentation. For most research labo-
ratories, it is preferable to consider using commercially available systems for
strain evaluation and process development. In this section, the commercial
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high-throughput fermentation system is reviewed to provide guidelines for
system selection.

5.6.1 Shaken Minibioreactors

Shaken minibioreactors are most widely used in high-throughput fermenta-
tion due to its high reliability, small footprint, rapid prototyping, and low cost.
Use of microtiter plates as minibioreactors has been reviewed for their capa-
bility for oxygen transfer as a function of different well sizes and shapes (22).
Integrating new DO and pH sensors into microtiter plates (50) and shake
flasks (51) has greatly extended the applications of microtiter plates and shake
flasks for strain evaluation and process development.

5.6.1.1 Disposable Shake Flask/Microtiter Plate with Integrated DO and
pH Sensors Shake flasks are still the most widely used tool for initial strain
screening and evaluation in majority of laboratories because of it is low-cost and
easy to set up. By integrating DO and pH optical sensor spots into disposable
shake flask as sold by PreSens (Regensburg, Germany), more information for
pH and DO profiles during the culturing process can be obtained, thus making
shake flasks economical high-throughput minibioreactors. These sensors are
precalibrated and ready to use. The shake flasks are mounted on a shake flask
reader that can monitor DO and pH online for up to nine shake flasks and log
the data wirelessly into a PC (52). PreSens also offers 6-well,24-well,and 96-well
microwell plates integrated with DO or pH sensors called “SensorDishes.”
These disposable shake flasks and microwell plates offer a quick and cheap
method of establishing simple high-throughput minibioreactor systems with
reliable pH and DO online measurement. Scientific Industries (Bohemia, NY)
also sells similar optical DO and pH sensors (named CellPhase) to be attached
to any transparent flasks and vessels for real-time monitoring. The applications
include media optimization and cell growth characterization, and so on.

5.6.1.2 Bioscreen C Bioscreen C was developed by the Finnish company
Labsystems Oy (now Oy Growth Curves, Helsinki) in the mid-1980s initially
for testing mutagenity/carcinogenity. It soon became a very useful tool for
automating routine microbiology and was optimized for microbiology growth
experiments. Bioscreen C is a computer-controlled incubator/reader/shaker
that can run 200 samples with OD measurement within wave lengths ranging
from 405to 600 nm. It is the first high-throughput microreactor with in-line
turbidity measurement. Over the past 20 years, Bioscreen C has been used in
many areas involving microbial growth curve measurement. Using Bioscreen
C for media and growth condition optimization has been reported (53,54).
However, the lack of measurement of other important fermentation param-
eters (e.g., pH and DO) has limited the application of Bioscreen C, which may
finally be replaced by similar products but with more sensors integrated into
the design.
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5.6.1.3 BioLector The BioLector,from DASGIP AG (Jiillich, Germany), is
a system similar to Bioscreen but with optical pH and DO sensors integrated
into 48-well and 96-well plates. Its optimized flower-shaped microwell can
offer a k;, as high as 500/h. Because of the capability of online monitoring of
pH, DO, optical cell density, and other products that can be measured by fluo-
rescence such as green fluorescent protein (GFP) protein, BioLector is a
powerful benchtop high-throughput fermentation system for strain screening,
media optimization, and process development. Due to the use of standard
format of microtiter plate, it can be integrated with liquid handling systems to
add more capabilities such as pH control, nutrient feeding, and inducer addi-
tion (49).

5.6.1.4 u-24 Bioreactor The n-24 bioreactor, originally developed by
Microreactor Technologies Inc (now a division of Pall Corporation), is a high-
throughput fermentation system with real-time monitoring and control of
temperature, pH, and DO. The diagram of each well with temperature, pH,
and DO control can be found in Reference (55). The reactor cassettes are
conforming to the SBS standard for 24-well culture plates with working volume
of 1-7 mL. Each well can be controlled individually for temperature, pH, and
DO with four control loops: temperature control loop by thermo conductor,
DO control loop by air/oxygen aeration, two pH control loops with CO, as
acid agent, and NHj; as base agent. The detailed technologies for pH and DO
sensors and controller are discussed in Reference (55). The p-24 bioreactor
cultivations for Saccharomyces cerevisiae demonstrated comparable growth to
a 20-L stirred tank bioreactor fermentation in terms of offline metabolite and
biomass analyses. High inter-well reproducibility was observed for process
parameters such as online temperature, pH, and DO (45). A case study data
on the use of u-24 bioreactor for rapid process development can be found in
Section 5.8.

5.6.2 Stirred Minibioreactor

The stirred minibioreactors use mechanic or magnetic stirring to provide
mixing power and promote mass transfer rate. The oxygen transfer coefficient
ki, in stirred minibioreactors can be close to that in benchtop fermentors,
thus making the stirred minibioreactors a good replacement for benchtop
fermentors in terms of mass transfer. In addition, the stirred minibioreactors
can be used in applications where the viscosity of the medium is relatively
high, such as high solid content fermentation. However, due to the cost of
manufacturing, there are not that many commercial stirred minibioreactors
on the market.

5.6.2.1 CellStation HTBR The CellStation HTBR from Fluorometrix
(Stow, MA) is the first commercial high-throughput stirred minibioreactor.
Detailed information on the product can be found in Reference (56). The
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system consists of 12 mini-stirred tank bioreactors (working volume of approx-
imately 30 mL) equipped with disposable DO and pH optical sensing patches,
a detector board, a gas distributor, and a turntable, which also serves as a water
bath. All the bioreactors are positioned on the turntable, which is driven by
a stepper motor underneath it. Agitation is provided by two 6 mm x 18 mm
paddles powered by the agitation motors and can be adjusted continuously
from 10 to 1000 rpm. Each bioreactor has a pH optode patch and a DO optode
patch on the bottom for at-line measurement. Temperature is controlled by
circulating water between a temperature-controlled circulator and the turn-
table. Gas mixtures sparging into each vessel are obtained by blending differ-
ent gases through two flow meters. Process parameters in one bioreactor are
measured one at a time (56). This system has been used in cell culture applica-
tions and the performance is comparable to that in disposable bag bioreactors
(57). However, this product line was discontinued in late 2011 after Fluorome-
trix was acquired by Scientific Industries. A new version of high-throughput
stirred minibioreactor system called BioGenie TriStation bioreactor has been
developed by Scientific Industries.

5.6.2.2 2mag Bioreactor 48 Another stirred minibioreactor launched by
2mag AG (Munich, Germany) is the 48-parallel milliliter bioreactor block
originally developed by Professor Weuster-Botz at Technical University of
Munich. Each baffled bioreactor has a nominal volume of 8-15 mL equipped
with a gas-inducing impeller containing permanent magnet. The detailed view
of one bioreactor with gas-inducing impeller mounted in the bioreactor block
is depicted in Reference (58). The gas-inducing impeller rotates freely on a
hollow shaft, which is mounted in the bioreactor block. Due to the rotation of
the impeller, the medium is sucked in from the bottom and sterile gas is
sucked in via the hollow shaft from the headspace of each bioreactor (40).
The headspace is flushed continuously with sterile gas. Another type of impel-
ler is also available for cultivation of mycelium-forming microorganisms as
described in Reference (59). The bioreactor block fits a maximum of 48
stirred tank reactors, which are arranged in six rows each containing eight
bioreactors. The bioreactor block is equipped with an electromagnetic multi
drive, two heat exchangers (the first for temperature control of the bioreac-
tors and the second for exhaust gas cooling) and a sterile gas supply. The gas
distributor assures sterile gas distribution into all of the 48 stirred tank reac-
tors and enables individual outlets for exhaust gas. The exhaust gas outlets at
the same time serve as individual sampling ports. Optical fluorescent sensors
for pH and DO are integrated in the bottom of each bioreactor, allowing
online monitoring and control of these important state variables (44). The
bioreactor block has been integrated into an automated experimental setup
with a liquid handling system (40). The liquid handler can be used to auto-
matically take samples as well as for realizing fed-batch processes and con-
trolling pH individually for every single reactor. An additional microtiter
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plate photometer allows for at-line analysis of OD, substrate and/or product
concentrations, and so on. The process control software DASGIP fed-batch
XP can store and present 3264 fermentation variables and control 144 set-
point profiles.

A significant advantage of this high-throughput minibioreactors is the high
oxygen transfer capability. The maximal k;, for the 48 stirred tanks with gas
inducing impellers can be as high as 1400/h (40). The fermentation perfor-
mance done in this 48-bioreactor system using different microorganisms such
as E. coli (40), Bacillus subtilis (60,61), and Streptomyces tendae (59) is consis-
tent with the data obtained from liter-scale benchtop fermentors.

5.6.3 Parallel Benchtop Fermentation System

As discussed in Sections 5.6.1 and 5.6.2, the advances in the technology of
minibioreactor have made them popular in high-throughput fermentation
development programs. But most commercially available minibioreactors still
cannot replace the benchtop fermentation system in terms of reliability, flex-
ibility, controllability, and scale-up/scale-down capability. Thus, commercial
parallel benchtop fermentation systems can be another option used for high-
throughput fermentation for process development with all the capabilities of
a regular benchtop fermentor. In all commercial parallel benchtop fermenta-
tion systems, since each fermentor is independently controlled, each vessel can
be used as a regular benchtop fermentor.

The BIOSTAT® Qplus from Sartorius is designed for parallel operation
with high-throughput capability. The BIOSTAT® Qplus has the capability to
control fully independently up to 12 culture vessels (0.5-1 L) with minimal
manual operation. The system is equipped with powerful supervisory process
control software for data acquisition, visualization, advanced process control,
and recipe function.

Similar to BIOSTAT® Qplus, the DASGIP Parallel Bioreactor System is
designed for parallel and controlled fermentation. Individual control of tem-
perature, agitation, pH, and DO in up to 16 vessels in parallel allows DASGIP
fermentation systems to accommodate most complex microbiology require-
ments. Flexible working volumes from 60 mL to 3 L provide a broad range of
laboratory-scale experiment possibilities under aerobic and anaerobic condi-
tions. By using the DASGIP Multipump Module for individual culture supple-
mentation and substrate feed, batch and fed-batch operation is feasible. Using
the DASGIP Gas Mixing Module, mass-flow-controlled individual blending of
air, nitrogen, oxygen, and carbon dioxide for each vessel is precise and intui-
tive. The advantage of the DASGIP parallel bioreactor system is that most of
the parts are modularized, which provides great flexibility for building custom-
ized parallel fermentation systems.

The GRETA multiple fermentation system, made by Belach Bioteknik
AB (Stockholm, Sweden), was originally designed to produce recombinant
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proteins for structural genomics (62). The GRETA multifermenter system
consists of bioreactor units, each encompassing six parallel fermentors. Up to
four bioreactor units (24 parallel fermentors) can be integrated into one
GRETA system. Each fermentor is built using stainless steel with either 0.5
or 1 L maximum working volume and equipped with a magnetic coupled
bottom stirrer with combined impeller/sparger, sterile air filter, and an O,/N,/
air gas-mixing system. A single cleaning-in-place (CIP) station supports the
1-4 bioreactor units of a GRETA system. All parts in contact with media or
product can be SIP. The system is also equipped with pneumatic syringes for
automatic induction. OD is measured in each reactor by a built-in photometer.
Calibration of sensors is performed in parallel and in a semi-automated mode
to minimize setup time. Compared with other benchtop parallel fermentation
systems, the GRETA system mostly resembles industrial SIP fermentation
system with many automation features to minimize manual operation.
This system is so far the best commercially available high-throughput fermen-
tation system at liter scale for fermentation process development and optimi-
zation. The GRETA system has been used for DOE to develop and optimize
the fermentation process for antibody production using E. coli (63).

5.7 TRENDS IN DEVELOPMENT OF HIGH THE GREATA-
THROUGHPUT MINIBIOREACTOR SYSTEM

When developing or selecting a high-throughput fermentation system, it is
better to integrate the fermentation system with other high-throughput unit
operations such as strain screening, sample analysis, and product recovery. This
kind of integrated high-throughput bioprocess can eliminate/minimize bottle-
necks and improve productivity significantly (64). The microwell-type minibio-
reactors as discussed in Section 5.6.1 are a good fit for this framework. That
is why currently most of commercial minibioreactors, except CellStation
HTBR and 2mag bioreactor 48, are based on microwell-type reactors and can
be easily integrated into the high-throughput framework by combining with
liquid handling robots and microtiter plate readers (44,49).

By comparing the shaken and stirred minibioreactors, the stirred minibio-
reactors are closer to the benchtop fermentors in terms of mass transfer,
mixing, process control, and sampling, while the shaken microbioreactors are
more cost-effective. The 48-well multiple milliliter fermentors discussed in
Section 5.6.2.2 is a comprehensive approach as it combined the advantages of
shaken minibioreactors and stirred minibioreactors and has been applied for
very complex fermentation processes such as filament fungi fermentation. If
more feeding and control strategies can be implemented in this system, it will
be almost indistinguishable from the regular benchtop fermentors.

On the other hand, in the case of microfluidic microbioreactor devices, the
lack of cross-platform standardization and automation integration prevents
them from being widely accepted by industrial bioprocess groups (64). So
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far all reports about microbioreactors based on microfluidics are laboratory
prototypes. No commercial product is available. However, this type of mini-
bioreactor can still find good application niches for fermentation process
development. For example, the 150 uL microbioreactor reported in Reference
(43) is equipped with a feed pump with pH, DO, and OD sensors embedded.
This microbioreactor can be set up to perform a continuous chemostat culture,
which cannot be implemented in current microwell minibioreactors. Chemo-
stat cultivation of microorganisms offers unique opportunities for experimen-
tal manipulation of individual environmental parameter at a fixed, controllable
specific growth rate. The chemostat method has been used as a tool to provide
reproducible data for systematic physiology studies (65). However, it is labor-
consuming to set up and maintain a chemostat in benchtop fermentors because
of the long periods required to reach and maintain steady state after pertur-
bation of a single parameter. The microbioreactor on the chip can be an
excellent tool for performing chemostat continuous culture effectively in high-
throughput formats to obtain intrinsic information regarding cell metabolism
at various cultivation conditions.

5.8 CASE STUDIES OF FERMENTATION PROCESS
DEVELOPMENT AND OPTIMIZATION USING
HIGH-THROUGHPUT MINIBIOREACTORS

Due to the above-described advancements in the development of minibioreac-
tors and parallel fermentation systems, now it is feasible for an industrial
microbiology or biotechnology laboratory to choose the right combination of
high-throughput fermentation systems for strain screening/evaluation, process
development, and process scale-up/scale-down as illustrated in Figure 5.1B.
For example, a set of minibioreactors can be used for strain screening, media
optimization, and initial process development, and then the lead candidate
strains can be moved forward for process development and optimization,
scale-up/scale down studies in a set of parallel benchtop fermentation systems.
This approach will accelerate process development activities in a high-
throughput format while reducing the capital cost and increasing the probabil-
ity of successful scale-up. In addition, using auto-substrate release technology
described in Section 5.5.6, all the high-throughput screenings carried out in
minibioreactors can be performed in fed-batch mode, which mimics the envi-
ronment of high cell density culture more effectively (47).

Comparison of fermentation performance between minibioreactors and
benchtop fermentors has been reported extensively (40,55,63,64,66,67).
However, use of minibioreactors in the framework of high-throughput process
development has not been reported frequently. Forty-eight parallel minibio-
reactor systems have been used to establish a scale-down tool for riboflavin
fed-batch fermentation using B. subtilis (61). Subsequently this minibioreactor
system has been successfully applied to screen or discriminate four different
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riboflavin-producing B. subtilis strains. The results are validated by the data
from liter-scale benchtop fermentors (60). Another example is reported on
direct scale-up from a microwell minibioreactor to a 75-L pilot fermentor for
E. coli recombinant protein expression. The scale-up is based on maintaining
a similar level of oxygen transfer coefficient k; , at each scale. It was found that
at high k;, level, the fermentation performance is consistent between the
minibioreactor and the pilot fermentor (68).

5.8.1 Case Study 1: Protein Production

The ability to produce high-quality protein products in a timely and cost-
efficient manner is of particular value throughout the discovery to commer-
cialization stages of protein products useful in therapeutic, vaccine, and other
industrial processes. To this effect, Pfenex Inc. (San Diego, CA) has developed
a suite of toolboxes integrating strain, analytics, fermentation, and downstream
process development for a Pseudomonas fluorescens-based expression plat-
form. Seamless development of robust protein expression strains results from
combining off-the-shelf toolboxes of expression plasmids that utilize a wide
range of gene expression strategies with host strains of diverse phenotypes
that are screened by high-throughput analytical methods. Subsequent simul-
taneous strain and far-reaching fermentation evaluation in mini and parallel
bioreactor systems frequently results in high levels of soluble, properly folded
protein production, which can be predictably scaled. These upstream platforms
are coupled with high-throughput purification development involving rapid
resin and process screens to ensure rapid development of production strain
and process.

The fermentation evaluation process at Pfenex involves evaluating several
strain candidates identified by the 96-well culture screen in multiple fermenta-
tion conditions in p-24 minibioreactors in order to assess the potential of these
strains to eventually perform in a scalable production process. Significant
effort was made to develop a cultivation process in the minibioreactor to be
predictable for a scalable high cell density fed-batch production process, with
pH, temperature and DO monitoring and control. As demonstrated in this
case study, the pu-24 minibioreactor has the capabilities to play a key role in
expediting strain and fermentation development.

In this case study, the contributions of a mini and a parallel bioreactor
system in the context of a fermentation development project are illustrated.
A production strain isolate for a protein vaccine candidate selected at the
96-well-scale microtiter plate was evaluated under multiple fermentation con-
ditions as part of a statistical design of experiments in the pu-24 minibioreactor.
The various fermentations resulted in a 12-fold range of expression levels, with
the identification of an optimum set of conditions, #2, for a further scale-up
(Figure 5.4). Statistical model analysis of the data generated from this experi-
ment highlights the effects of the different process variables and helps define
the design spaces to predict the optimum ranges of the control variables
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FIGURE 54. (A) Gel-like image of the sodium dodecyl sulfate—capillary electropho-
resis (SDS-CGE) analysis of culture broth samples from the 24 fermentations using
the 17 different fermentation conditions as part of a factorial experimental design.
Molecular weight markers (Mw) are indicated by sizes in kDa. The numbers indicate
the experimental number. The arrow points to the target protein expressed. (B) A plot
of the concentrations of target protein expressed as determined by SDS-CGE in the
17 fermentation conditions tested. Repeat experiments are indicated by multiple dots.
The star indicates fermentation with the best expression.

and interactions between them (Figure 5.5). The information generated is
particularly useful during subsequent process development and further defini-
tion of the ultimate production process.

The best fermentation conditions identified in the y-24 bioreactor (#2) was
subsequently confirmed to be scalable to the 20-L stainless steel conventional
bioreactor scale in terms of cell growth, product titer, and productivity (Figure
5.6). The fact that high cell densities of greater than 200 OD can be obtained
using the p-24 bioreactor illustrates the superior oxygen and heat transfer
capabilities of the minibioreactor system. In this particular case, it did require
manual feeding of the carbon source to sustain the high cell density culture
in the p-24 bioreactor, but this operation should be automatable with liquid
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FIGURE 5.5. Plots produced by JMP statistical software (SAS Institute, Cary, NC) to
highlight the main effects of the different fermentation parameters (factor) investi-
gated (A) and to map the optimum ranges of the different factors and their interaction
with each other (B).

handling systems. Table 5.2 illustrates how the process conditions identified in
the p-24 bioreactor enhanced expression level by approximately 15-fold over
that in the 96-well culture. This enhancement was due in part to a 4.5-fold
increase in cell density as a result of carbon feeding, better oxygen and
pH control, and a 3.4-fold higher specific productivity as a result of a more
optimum set of fermentation conditions. These contributions to the overall
productivity were maintained during scale-up to the 20-L bioreactor.

5.8.2 Case Study 2: Antibody Fragment Expression

Several lead Pseudomonas fluorescens strains expressing an antibody frag-
ment were identified to perform comparably to each other at the 96-well
microtiter plate scale. When they were evaluated in multiple fermentations as
part of a multivariate experimental design in the p-24 bioreactor, overall
expression levels were improved and differentiations between the strains
became obvious. In a number of fermentations, the relative soluble titers of
strains #2 and #4 were significantly higher than the remaining strains (Figure
5.7A). Nevertheless, as standard protocol, three lead strains in up to four lead
fermentation conditions, a total of 12 fermentations were evaluated in a fully
scalable high cell density fed-batch protocol in the 2-L parallel bioreactors.
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FIGURE 5.6. Growth curves (A) and productivity curves (B) of cultures grown in
u1-24 minibioreactor and 20 L conventional stainless steel bioreactors to demonstrate
scalability of the small scale process.

TABLE 5.2. Comparison of Cell Densities (OD), Volumetric Product
Concentration, and Specific Productivities of Cultures Grown in a 96-Well Deep
Well Microtiter Plate, p1-24 Minibioreactor, and 20-L Conventional Stainless Steel
Bioreactors to Demonstrate Scalability

Fermentation Scale Product Specific Productivity
(Working Volume) Final OD  Concentration (g/L) (mg/L/OD)
96-well (0.5 mL) 50 0.8 16

u-24 (4 mL) 220 12 55

20 L bioreactor (10 L) 230 12 52
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specified.
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In this evaluation, the scalability of six of the fermentations was confirmed at
the 2-L scale (Figure 5.7B). However, two fermentations, strain #1 in fermenta-
tion condition #4 and strain #2 in fermentation condition #8, showed surprising
increases in expression at the 2-L scale. The exact cause of this is not known,
but a possible explanation is that some unknown fermentation parameter that
had a significant effect on expression of this particular protein in these par-
ticular strains was controlled better at the 2 L. Nevertheless, strains #1 and #2
have subsequently been confirmed to be lead strains for expression of this
particular antibody fragment in further studies.

These two case studies illustrate the range of results that one can encounter
in the use of u-24 bioreactors during simultaneous strain and fermentation
evaluation. In one case, the scale-up of a strain and process from the p-24
bioreactor to the 20-L scale bioreactor was successful and straightforward. In
the second case, the scale-up was also successful but the results were not fully
expected. These studies emphasize that with enough redundancies or contin-
gencies built into the strain and fermentation development process, that is by
evaluating more than one lead strain and one set of fermentation conditions,
a high degree of success can be assured.

5.9 CONCLUSIONS AND THE PATH FORWARD

Current commercially available minibioreactors and parallel small-scale fer-
mentation systems have enabled multidisciplinary metabolic engineering
teams to quickly establish a fermentation research laboratory for high-
throughput strain evaluation and rapid fermentation process development and
optimization. Because of the small-scale and the high-throughput capability,
the development cost and time can be reduced dramatically in a typical strain
engineering program. Due to the availability of process monitoring and control
capabilities, the DOE-type experiments for medium and growth condition
optimization can be carried out under well-controlled and monitored condi-
tions in minibioreactors. The parallel small-scale fermentors can be used to
further validate fermentation performance, develop a scalable process, and
challenge the process under scale-down conditions for identifying the opera-
tional windows for robustness. The advantage of this approach is that at the
end of a scouting optimization program, a set of strains may be selected to fit
different conditions and constraints at large scale. For example, depending on
the limitation of OTR for different large-scale vessels, different strains instead
of one can be picked up to give the best performance under the different OTR
capacity of large-scale fermentors.

Furthermore, the mathematical model-based process development and
optimization has a great advantage over traditional “trial and error” approaches.
However, large amounts of reproducible historical fermentation data are
needed to identify and validate the mathematical models before they can be
used to predict and optimize the processes. The conventional high-throughput
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methods using regular microtiter plates or shake flasks can provide only end-
point data, which is not sufficient to set up the models; thus, the models have
to be identified using fully instrumented benchtop fermentors to generate
dynamic process data sets. Nevertheless, using minibioreactors in strain evalu-
ation, medium and growth condition optimization will generate massive repro-
ducible dynamic data sets under well-controlled conditions for model
identification and validation; thus, the model-based process optimization can
now be implemented at an earlier stage of process development without
depending on fermentations at benchtop scales. This enables evaluation of
performance in benchtop fermentors at the optimal condition for each specific
strain instead of using one standard set of conditions to evaluate all strains.
Following characterization at the benchtop scale, the best candidate with its
optimal fermentation conditions can be transferred for a further scale-up. As
more and more sensors are integrated into minibioreactors, they can provide
more dynamic process information to match the information quantity and
quality typically obtained from benchtop fermentors, thus making it practical
to develop strains and process more effectively.
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THE CLAVULANIC ACID STRAIN
IMPROVEMENT PROGRAM AT
DSM ANTI-INFECTIVES

BERT KOEKMAN AND MARcCUS HANS

6.0 INTRODUCTION

Clavulanic acid is a naturally occurring antibiotic produced by Streptomyces
clavuligerus. It has a weak antibiotic activity, but it is clinically important
because it is a potent inhibitor of many B-lactamases. Due to this ability, it is
used in combination with other B-lactam antibiotics to combat infections
caused by B-lactamase-producing bacteria.

Its discovery, as a result from a screening program for B-lactamase inhibi-
tors carried out at the Beecham Laboratories in England, was first reported
in 1976 (1). One of the microbial cultures that gave a positive response in this
screen was S. clavuligerus ATCC 27064 (syn. NRRL 3585), isolated from a
South American soil sample (2), and the active component in the culture fil-
trate was shown to be a novel B-lactam, different from the other cephalospo-
rins (cephamycin C) produced by S. clavuligerus.

To develop a commercially viable process, departing from a wild-type
isolate producing only a small amount of therapeutically active substance
requires substantial efforts in terms of optimization of cultivation conditions,
up-scaling these conditions from shake flask format to large-scale stirred tank
reactors, and modifying the genetic make-up of the strain to not only increase
its production potential but also to improve other complex uncharacterized
desirable fermentation phenotypes such as decreased viscosity and improved
growth behavior. As will be set forth in the sections to follow, the interaction
between fermentation and genetics disciplines is vital to successful process
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development of strains bearing multiple complex traits, one of the challenges
being the translation of large-scale process conditions to small-scale, high-
throughput strain selection conditions and vice versa (see Chapter 5).

6.1 THE BIOSYNTHETIC PATHWAY TO CLAVULANIC ACID

Three gene clusters for clavulanic acid/clavam biosynthesis have been identi-
fied in S. clavuligerus: the clavulanic acid cluster, the clavam gene cluster, and
a third cluster, the paralogous gene cluster, containing duplications from the
first and second clusters. The biosynthetic pathway is shown in Figure 6.1, and
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FIGURE 6.1. Biosynthetic pathway of clavulanic acid and clavams. Modified from
Liras et al. (3), figure 3, with kind permission from Springer Science + Business Media.
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FIGURE 6.2. The position of clavulanic acid biosynthesis in central metabolism. After
Bushell et al. (4). Reprinted from Enzyme Microb. Technol. 39, Michael E. Bushell,
Samantha Kirk, Hong-Juan Zhao, Claudio Avignone-Rossa, Manipulation of the physi-
ology of clavulanic acid biosynthesis with the aid of metabolic flux analysis, pp. 149-157
(2006), with permission from Elsevier. ARG, arginine; ORN, ornithine; THR, threonine;
ASP, aspartic acid; ASN, asparagine; PEP, phosphoenolpyruvate; TCA, tricarboxylic
acid.

the positioning of this pathway in the metabolic network providing the C5
precursor (arginine) and the C3 precursor (deriving from glycerol) is shown
in Figure 6.2.

6.2 THE STRATEGY FOR IMPROVEMENT OF MULTIPLE
COMPLEX PHENOTYPES

In 1992, Gist-brocades n.v., a fermentation industry based in Delft, the Neth-
erlands, already having extensive activities in the production of B-lactam
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antibiotics, decided to develop its own production process for clavulanic acid.
The strain development part of the program was ordered out on an exclusive
basis with Panlabs, Inc. at its Taipei facility. Panlabs had already conducted
preliminary strain improvement activities in 1991, starting with the culture
collection strain, ATCC 27064, and was to resume this program for the first
six years of the project (1993-1999).

At the time, classical strain improvement (CSI) (see Chapter 1) was the
sole option to tackle the program, since knowledge on the pathway was scarce,
biosynthetic genes were not cloned, and gene manipulation techniques were
not available for S. clavuligerus. CSI does not require a priori knowledge
referred to above, as it essentially introduces genetic variation in a random
fashion by mutation, the outcome being determined by the selection applied.

In 1999, one year after the merging of Gist-brocades with DSM (Dutch
State Mines, based in Heerlen, the Netherlands), the research agreement with
Panlabs was discontinued, and further strain improvement was carried out
in-house with DSM for the years to follow. The motivation underlying this
decision was the closer interaction between the genetics and fermentation
disciplines involved, which was deemed critical for the success of the project
as it entered into a mature phase, necessitating scale-up of multiple complex
phenotypes, often antagonistic to each other.

The last cycle of CSI was finalized in 2006, after which the focus of the
project switched to genomics (see Chapter 3). In 2009, the company decided
to divest its activities on the clavulanic acid market, and the research program
was terminated.

6.3 RESULTS AND DISCUSSION

6.3.1 The Panlabs Years—Results from 1991 to 1999

In the initial years of the strain improvement program, the selection of supe-
rior mutants largely relied on so-called rational selections (see Chapter 1).
Using this approach, a sub-population that is anticipated to be enriched for
mutants with the phenotype of real interest, viz. improved productivity, is
preselected from the mutant population to be used as input for the screen. The
aim is to reduce the number of mutants to be examined by a few orders of
magnitude compared with that of a brute-force random productivity screen.
Of course, this will only produce a meaningful result when the rationale under-
lying the selection of the phenotype(s) in question is valid. For a review on
the methodology, see, for example, References (5,6).

During the course of the strain improvement program, the following classes
of rational selections were employed by Panlabs:

1. Selections aimed at increased product precursor availability: resistance
to toxic analogues of arginine and related amino acids (ornithine, glu-
tamic acid); resistance to inhibitors of glycerol uptake/utilization.
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2. Selections aimed at relief of repression by C, N, or P: resistance to toxic
analogues of glucose, ammonium, or phosphate; good clavulanic acid
productivity in the presence of excess phosphate.

3. Detoxification of heavy metals that are sequestered by -lactams: resis-
tance to copper, nickel.

4. Resistance to the end product, clavulanic acid, itself.
5. Osmotolerance: resistance to high glycerol concentrations.

6. Resistance to agents not directly related to clavulanic acid biosynthesis,
for example, protein synthesis inhibitors.

7. Selection of mutants with altered morphology on solid media.

8. Bioassay: selection of colonies producing large growth inhibition zones
on a lawn of sensitive indicator bacteria (Bacillus licheniformis).

The specific selections that were used are listed in Table 6.1. The selections
that were successful also appear in the Tables 6.2 and 6.4 of the strain lineage.
Summarizing, all types of rationales, with the exception of (3), (4), and (7)
have, at any time, yielded useful mutants during the course of the program.

Shortly after the start of the program, the strain lineage split into two
branches, indicated by left and right (Figure 6.3). By far the most strains that
have been in production derive from the right branch. Of the left branch, DS
30455 (culture #PF-19-41) was the sole strain to be used on production scale.
However, because of its initially more favorable viscosity properties, this line
was pursued for quite some time in parallel with the right branch, until it was
abandoned in 2002 (results not shown in the table). In order to harvest the
potential of the left branch after all (in the development of which a consider-
able amount of work had been invested for some years), an attempt was made
to engineer its favorable properties into the right (production) branch.
However, efforts to merge both lines by protoplast fusion (see Chapters 1 and
4) remained unsuccessful. The inability to easily migrate a complex phenotype
from one strain lineage to another is a real limitation for the widespread
applicability of CSI in engineering complex phenotypes.

An overview of the strain lineage is shown in Figure 6.3. A detailed list of
the strains selected until the strain improvement program moved to DSM is
shown in Table 6.2. During the course of the strain improvement program,
various mutagens were used to induce genetic variation (e.g., ultraviolet irra-
diation, alkylating agents, and nitrous acid). However, from the table of the
strain lineage it becomes apparent that virtually all improved mutants were
selected from populations obtained by mutagenesis with alkylating agents
(mostly NTG, occasionally EMS, see Chapter 1), that is, mutagens independent
of the SOS-repair pathway. It is suspected that this pathway might be absent
in S. clavuligerus.

The product titer development of the right branch in shake flask from the
start of the program until 1996 is shown in the graph in Figure 6.4. The graph
shows that productivity increases tend to become smaller with the progression
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TABLE 6.1. Selective Agents Employed in Rational Selections

Class 1A—CS5 precursor availability

o-amino-8-hydroxyvaleric acid Ornithine analogue
Arginine hydroxamate Arginine analogue
Canaline Ornithine analogue
Canavanine Arginine analogue
Homo-arginine Arginine analogue
(DL)-lysine Arginine analogue
Methionine sulfoxide Glutamate (ornithine precursor) analogue
Methionine sulfoximine Glutamate (ornithine precursor) analogue
o-methylornithine Ornithine analogue
Class 1B—C3 precursor availability
L-cysteine Glycerol transport inhibitor
Ethanolamine Glycerol transport inhibitor
B-mercaptoethanol Glycerol transport inhibitor
Methylglyoxal Glycerol utilization inhibitor
L-serine Glycerol transport inhibitor
Class 2—Relief of catabolite repression
2-deoxyglucose Glucose analogue
Methylamine Ammonium analogue
Tetramethylammoniumchloride Ammonium analogue
Trimethylamine Ammonium analogue
Sodium arsenate Phosphate analogue
Sodium vanadate Phosphate analogue

Class 6—Antibiotic resistances
Chloramphenicol
Erythromycin
Fusidic acid
Kasugamycin
Streptomycin
Tetracycline

of the program, as is commonly experienced in classical strain improvement
programs. The selection conditions used in shake flasks were established by
down-scaling the production conditions in so far as possible. Thus, in the first
years of the program, selections were carried out in complex media, derived
from the recipe used on production scale. Many different variants have been
in use, due to frequent rebalancing of the recipe in order to make the most of
the potential of newly selected strains, but the important medium components
shared in common are soy flour and casein hydrolysate as nitrogen sources,
and glycerol and sometimes maltodextrins as carbon source, as S. clavuligerus
is unable to grow on glucose. Initially, phosphate was used as buffer, but this
was largely replaced by N-morpholino-propanesulfonic acid (MOPS) to
prevent phosphate repression. During the course of the program, there has
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TABLE 6.2. Strains Selected at Panlabs
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Year Culture# Parent Mutagen Selection Production#
1991 1991-10-125 ATCC 27064 — cnv® (1) —
1991-41-145 1991-10-125 NTG Random —
1993 PF-19-2 1991-41-145 — Re-isolation —
23-82 PF-19-2 NTG mont® (1) —
PF-19-5 23-82 — Re-isolation —
PF-19-24 PF-19-5 NTG mont® (1) —
1994 PF-19-41 PF-19-24 NTG cml® (6) DS30455
1993 PF-19-10 PF-19-2 NTG mont® (1) —
31-150R3 PF-19-10 — Re-isolation —
1994 PF-19-35 31-150R3 NTG PO, (2) —
PF-19-85 PF-19-35 EMS+UV Random —
PF-19-130 PF-19-85 NTG Bioassay (8) —
1995 PF-19-188 PF-19-130 NTG Bioassay (8) —
PF-19-230 PF-19-188 NTG Bioassay (8) DS31810
1996 PF-19-307 PF-19-230 — Re-isolation DS33037
1997 PF-19-381 PF-19-307 NTG Osmotol. (5) —
PF-19-409 PF-19-381 NTG cml® (6) —
1998 PF-19-429 PF-19-409 NTG Osmotol. (5) —
PF-19-432 PF-19-409 NTG Random DS33871
1999 PF-19-440 PF-19-429 NTG Osmotol. (5) —
PF-19-446 PF-19-440 NTG PO, (2) —
PF-19-450 PF-19-446 NTG Defin’. med. DS36063

Year refers to the first isolation of the culture. When a strain was adopted as a production strain
(entry in column Production#), there is usually a considerable lapse of time (~0.5-1 year) after
its first isolation.

Selection: the type of rationale (see list in Section 6.3.1) is stated in brackets. cmlI®, chlorampheni-
col resistance; cnv®, canavanine (arg analogue) resistance; mont®, o-methylornithine (ornithine
analogue) resistance; random, no (rational) preselection prior to shake flask testing.

Mutagen: NTG, N-methyl-N’-nitro-N-nitrosoguanidine; EMS + UV: ethyl methane sulfonate
assisted by ultraviolet irradiation.

The first seven entries represent the left branch; the other entries represent the right branch.

been a tendency toward lighter recipe strengths to prevent oxygen limitation
during the fermentation and to better reflect the intrinsic production potential
of the mutants. In Table 6.3, representative examples of media are given.
From 1997 onward, (semi-)defined media were developed that lacked the
particulate component, soy flour. Although the titers obtained in these media
were lower than in the complex ones in absolute sense, productivities had
advanced sufficiently during the improvement program to afford this lapse,
and still to enable discrimination of superior cultures. In the end, it was felt
that development toward “cleaner” recipes would be more advantageous.
The last strain to be delivered by Panlabs (PF-19-450, to become production
strain DS36063) was selected on semi-defined medium in 1999. Thereafter, the
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FIGURE 6.3. A bird’s eye overview of DSM’s clavulanic acid lineage. For further
details, see the tables in Sections 6.1 and 6.2.
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FIGURE 6.4. Productivity development of clavulanic acid in complex media in shake
flasks.
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TABLE 6.3. Media Compositions
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Solid Media

Ingredients (g/L)

Plate Agar

Sporulation Agar

Glucose. aq.

Casein hydrolysate
Yeast extract

Beef extract

CaCO;

Trace elements #1 (mL)
Bacto agar

Oatmeal agar

10
2

N = ==

20

10
2
1

—
S O W=

w

Trace Elements

Ingredients (g/L)

Cocktail #1

Cocktail #2

H,SO, concentrated
Citric acid. aq.
Fe(NH,) ,HC:H;0;
ZnS0O,. 7aq.
CuSO.. 5aq.

CoCl,. 6aq.
MnSO.,. aq.

MnCl,. 4aq.
Na,B,0;. 10aq.
H;BO;

Na,MoO,. 2aq.

2.7
2.8
0.125
0.1
1.2

0.16

0.054

20.4

50

16.75
1.6

1.5
2
2

Production Media

Ingredients (g/L)

CM-3

50% CM-3

SM-2 50% MM-1

Casein hydrolysate 15
Soy flour 15
Asparagine —
Glycerol 50
MOPS 10

KH,PO, 1.35

MgSO,. 7aq. 0.6

CaCl,. 2aq. 0.35
FeSO,. 7aq. 0.45

Trace elements #2 (mL) 1.9
Basildon (mL) 0.2

7.5
7.5
25
10
0.7
0.3
0.2
0.2
1
0.2

5 1.25
3.5 0.9
30 7.5
10 10
0.7 0.2
0.3 0.1
0.2 0.05
0.2 0.05
1 0.25
0.1 —

Solid media: Presterile pH 6.7, no further adjustment after autoclaving (20 minutes. 120°C).
Production media: Presterile pH 7.0, no further adjustment after autoclaving (20 minutes. 120°C).
CM-3 and 50% CM-3 are complex recipes (standard and light variant), SM-2 and 50% MM-1 are
semi-defined (the latter was especially designed for use in microtiter formats).

Conditions for growth and production: 26.5-28°C, orbital shaker at 280 rpm, harvest time 96-120

hours.
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program was transferred to DSM, where semi-defined media became routinely
included in the selection of mutants. In the declining years of the program, the
fermentation process was adapted by replacing the most expensive medium
ingredient, casein hydrolysate, by cheaper nitrogen sources (wheat gluten, pea
protein), and the media used for strain selection were changed accordingly by
small-scale optimization, to mimic the new large-scale conditions as far as
possible, just as these conditions were established at the start of the program
(see above). However, in contrast to the situation at that time, a set of consecu-
tive production strains with ascending titers had become available by now,
which was helpful in validating shake flask protocols in terms of reflecting the
correct order of these strains.

6.3.2 The DSM Years—Results from 1999 to 2006

When DSM proceeded with the strain improvement program, the efforts
shifted from rational preselections to high-throughput miniaturized prescreen-
ing in 96-well microtiter plate formats (see Chapter 5). Two conditions had to
be met to make this type of screening possible:

1. The development of semi-defined media without insoluble components
(see previous section and Table 6.2—the light recipe MM-1 was espe-
cially designed for this purpose).

2. The development of high-throughput analytical techniques. This was real-
ized by replacing the high-performance liquid chromatography (HPLC)
assay method used with Panlabs by stopped-flow nuclear magnetic reso-
nance (NMR) analysis capable of handling large numbers of samples.

In the first three cycles of mutation and selection, the number of mutants
processed by the MTP screen was still limited, but from 2003 onward, screen-
ing capacity reached throughputs of approximately 60,000 (selections with
DS41411 as the progenitor) to 110,000 (with DS48802). A list of the strains
selected at DSM is shown in Table 6.4; see also the overview of the lineage in
Figure 6.3.

TABLE 6.4. Strains Selected at DSM

Year Strain Parent Mutagen Selection
2000 DS37853 DS36063 NTG MTP
2001 DS39876 DS37853 EMS Random
2002 DS41411 DS39876 NTG str® (6)
2003 DS48802 DS41411 NTG MTP
2005-2006 DS54901 DS48802 nUV+8-MOP MTP

See Table 6.2; str®, streptomycin resistance; nUV+8-MOP, near UV (365nm) as sensitizer in com-
bination with the cross-linking agent, 8-methoxypsoralen.



FUTURE PERSPECTIVES 179

In contrast with the strains selected at Panlabs, of which only a limited
number attained the production status, as indicated by the DS number in the
last column, all strains listed in Table 6.4 have been production strains. The
reason for this is the closer interaction between genetics and fermentation
groups as both disciplines operated on the same site since the transfer of the
program in 1999: the decision to enter into a next cycle of mutation and selec-
tion was made only after the new progenitor strain had been successfully
introduced on production scale. Thus, selections operated in a campaign-wise
fashion rather than being conducted continuously. There is a hiatus in Table
6.4 in 2004 due to an earlier campaign with strain DS48802, which failed to
yield an improved strain. For this reason, the campaign was repeated a year
later, using an alternative mutagen, which resulted in the selection of strain
DS54901. Again, all progenitors of consecutive cycles of mutation and selec-
tion are mutants induced by SOS-independent mutagens (see previous section).
DS54901 was the last strain to be used in production, from 2007 until the
close-down of the plant at the end of 2009.

The above example reiterates the notion that scale-up of complex traits
such as production titers requires not only integration between the high-
throughput strain evaluation assays and the fermentation group but also the
ability to continuously validate and improve assay conditions to mimic produc-
tion fermentation.

6.4 FUTURE PERSPECTIVES

Recent insights into S. clavuligerus genomics have generated new options for
targeted engineering approaches. The biosynthetic gene cluster of clavulanic
acid is located contiguous to the cephamycin gene cluster in the genome of
S. clavuligerus (7). The region is ~15kb in size and includes all genes of the
biosynthetic enzymes needed for clavulanic acid formation. Starting from
L-arginine, clavulanic acid is formed via a series of at least seven enzymatic
steps. Key enzymes are -lactam synthase (BLS) and clavaminate synthase
(CAS). Noteworthy, a regulatory protein, ClaR, has been identified as well. It
was shown earlier that this protein is involved in the regulation of the late
steps of clavulanic acid biosynthesis (8).

While those findings shed light on the mechanisms of clavulanic acid forma-
tion, it became clear that elucidation of the genome sequence would prove
valuable for further targeted engineering approaches. With the aid of bio-
informatics, metabolic network knowledge combined with transcript analysis
data (see Chapter 3) will provide leads to improving the yield of clavulanic
acid production. Leads can include the overproduction of biosynthetic enzymes,
fine-tuning of regulator abundance or activity, formation and transport of
precursors, but also pathways that influence the morphology of the cells.

In the last years, progress has been made to elucidate the genome sequence
of S. clavuligerus. Further system biological comparisons of wild-type and
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classically improved strains revealed important insights that can be used for
future rational strain development programs (9,10). This chapter highlights the
findings of those two publications.

Genome sequencing of the wild-type strain S. clavuligerus ATCC 27064
revealed several remarkable features of this member of the Streptomyces
family. On the one hand, the observed genome size of 6.7 Mb is quite small
compared with that of other sequenced Streptomyces bacteria. Interestingly, a
giant linear plasmid that has a length of 1.8 Mb was identified. Although earlier
reports suggested the presence of more than one plasmid, in the reported
sequencing project only two replicons were identified, indicative of the pres-
ence of only one plasmid. Furthermore, the sum of the putative protein encod-
ing genes on those two replicons matched well with the typical makeup seen
in other Streptomyces genomes. Therefore, it can be seen as certain that
S. clavuligerus indeed possesses one large linear plasmid.

Analysis of the 1.8-Mb plasmid revealed several interesting features.
The replicon contained no genes crucial for the metabolism of S. clavuligerus.
All stable RNAs necessary for primary metabolism (rRNA and tRNA) are
encoded on the main chromosome. Therefore, the megaplasmid seems to be
dispensable for the core metabolism of S. clavuligerus. Strikingly, the plasmid
is packed with secondary metabolite gene clusters. No fewer than 25 such gene
clusters, a number of the same order as observed in the chromosomes of other
Streptomyces genomes, were dispersed throughout the plasmid. Together with
the clusters identified on the chromosome, the total number of putative sec-
ondary metabolite gene clusters identified in S. clavuligerus is 48. As expected,
the three known antibiotic gene clusters were identified in the genome assem-
bly. While the supercluster encoding the clavulanic acid and cephamycin C
biosynthetic pathways (SMC10-11) and one of the clavam clusters (SMC9) are
on the main chromosome, the alanylclavam cluster (SMCp13) is located on
the megaplasmid. There are indications that cross-regulation takes place
between the megaplasmid and the chromosome. A gene encoding a Y-
butyrolactone receptor protein (ScaR/Brp) was identified and shown to regu-
late clavulanic and cephamycin C production. It turned out that the only copy
of the brp gene is located on the megaplasmid, which is remarkable, because
all other characterized y-butyrolactone receptors are located on the chromo-
some. Moreover, it also means that Brp transregulates several factors on the
chromosome (at least the clavulanic acid and cephamycin C gene clusters).

Looking at the possible evolution of the megaplasmid in S. clavuligerus, the
central position of the origin of replication suggested that multiple recombina-
tion events within the chromosome took place that finally led to megaplasmid
pSCLA4; this theory is in contrast to the situation in Streptomyces coelicolor
A3(2), where likely one single crossover between a 365-kb plasmid and the
chromosome led to the formation of a 1.8-Mb plasmid, a plasmid very similar
to the S. clavuligerus pSCLA4.

After gaining insight in the genome organization of S. clavuligerus, the
authors chose a functional genomics approach (see Chapter 3) to elucidate



FUTURE PERSPECTIVES 181

transcription and expression differences between wild-type and classically
improved industrial S. clavuligerus strains. By doing so, more could be learned
about metabolic changes induced by strain improvement,and ultimately targets
and hints would be obtained for future strain improvement programs.

In order to better understand and predict the metabolism, the metabolic
fluxes during antibiotic production were computationally predicted, using a
constraints-based genome-scale metabolic network model of S. clavuligerus
(10). By using Affymetrix microarray gene chips (Affymetrix, Cleveland, OH),
the transcript levels of the wild-type strain ATCC 27064 and industrial strain
DS48802 during the stationary phase were elucidated and compared.

First, it turned out that almost all genes associated in the clavulanic acid
gene cluster were overexpressed significantly (between two- and eightfold) in
the industrial strain compared with the wild-type strain. Interestingly, the
pathway specific regulator genes claR and ccaR are also overexpressed in the
industrial strain. They are located within the same supercluster and their prod-
ucts have been shown to regulate clavulanic acid production positively (11).
Importantly, hybridization of S. clavuligerus DS48802 genomic DNA revealed
no amplifications of genes of the clavulanic acid cluster, as observed for other
industrial strains such as the industrial kanamycin producers Streptomyces
kanamyceticus (12). Therefore, the overexpression observed appeared to be
caused by transcriptional (and post-translational) changes only.

Second, the obtained transcriptomic data correlate well with the flux balance
analysis of increased clavulanic acid production. For this test, a constraints-
based genome-scale metabolic model of S. clavuligerus was developed and the
flux changes during increased production of clavulanic acid were dynamically
modeled. Forty percent of the genes that showed increased transcript levels
(fold change >2) were also predicted to do so using the described metabolic
network model. Although 40% might appear to be not a large percentage, it
is still statistically very significant. The observed increase in the clavulanic acid
cluster gene expression seems to be a crucial change for antibiotic overproduc-
tion in this strain. A complete redirection of primary metabolism seems not
to be necessary for overproduction.

Furthermore, some significant changes in primary metabolism gene expres-
sion could still be observed and correlated to clavulanic acid overproduction.
Glycerol uptake and metabolism is clearly upregulated, indicating improved
utilization of glycerol as a carbon source and increased production of the
clavulanic acid precursor, G3P. Moreover, aconitase and citrate synthase
from the citric acid cycle are downregulated, which is likely to result in an
increased intracellular G3P pool. This situation is remarkably similar to the
result of the rationally designed gap! deletion (13) that blocked G3P conver-
sion into 1,3-diphosphoglycerate, thus improving clavulanic acid biosynthesis
by increasing the intracellular G3P pool. Also, a significant upregulation of
glutamine synthetases and glutamate importers have been observed. Gluta-
mate can serve as a source for biosynthesis of the clavulanic acid precursor
arginine.
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To conclude, the data generated by Medema et al. showed that a strain
improvement program by random mutagenesis and screening caused gene
transcript changes in primary as well as secondary metabolism. The overlap
with results obtained by rational metabolic engineering is intriguing. New
leads from transcript changes in those studies, such as the increased transcrip-
tion of glutamine and glutamate synthetase, and those encoding several trans-
porters, can be combined to rationally design novel clavulanic acid high
producer strains.
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METABOLIC ENGINEERING OF
RECOMBINANT E. COLI FOR
THE PRODUCTION OF
3-HYDROXYPROPIONATE
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RyaN T. GiLL, AND MicHAEL D. LyncH

7.0 INTRODUCTION TO BIOSYNTHESIS OF
3-HYDROXYPROPIONIC ACID

Bioprocesses directed toward the production of commodity chemicals from
renewable resources have become a major focus of the chemical industry.
Organic acids are one group that comprises a significant portion of the pro-
posed commodity chemical market from bioprocesses. One particular organic
acid, 3-hydroxypropionate (3-HP), has been identified as a highly attractive
potential chemical feedstock for the production of numerous large market
commodity chemicals that are currently derived from petroleum (1). Com-
modity products that can be readily produced using 3-HP include acrylic acid,
1,3-propanediol, methyl-acrylate, and acrylamide. The current estimated global
market value of acrylic acid alone exceeds $10 billion annually.

Research in the biotechnology arena during the past decade has encom-
passed several key categories, including the efficient extraction of carbon
sources from waste biomass, overall biocatalyst development, and downstream
processes required for commercialization of valuable products. The field of
biocatalyst development has grown from the humble beginning of overexpres-
sion of native metabolites to the rational, holistic microbial engineering design
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for production of heterologous compounds. This case study will focus primarily
on biocatalyst development through understanding organic acid tolerance and
the engineering of a tolerant strain for the economical fermentative produc-
tion of 3-HP from a renewable feedstock. 3-HP is a naturally occurring metab-
olite produced at low levels by several photosynthetic microorganisms that
use a carbon fixation cycle termed the 3-HP cycle (2-4). However, for all
microorganisms tested to date in our laboratory, including various gram-
negative and gram-positive microorganisms, 3-HP displays toxicity at levels as
low as 20g/L in minimal media. This observed inhibition, which occurs by
shutting down various metabolic pathways at titer levels well below what are
needed for successful commercialization, will be discussed in detail below.

71 ORGANIC ACID TOXICITY

Evolving tolerance to organic acids requires approaches reliant on under-
standing of how the acid affects the organism as a whole. Traditional selection
studies (see Chapter 1) remain focused on the identification of a single genetic
element or mutant associated with a measureable improvement in a given
phenotype. While such strategies may result in improved traits for simple
phenotypes, they do not address how numerous mutations or genetic changes
in combination may be required for improvements in complex phenotypes. As
organic acid inhibition affects many different cellular processes, acid tolerance
is one such phenotype that can be conferred to varying degrees by many dif-
ferent combinations of genetic changes.

Organic acids have been historically utilized as preservatives in both food
and feed products due to their inhibitory properties to various microorganisms
(5). Although the antimicrobial properties of these organic acids have been
widely exploited commercially, the observed growth inhibition also stands as
a critical hurdle in the development of economical bioprocesses. Organic acid-
related growth inhibition has several reported modes of action, including
disturbance of cytoplasmic pH, anion accumulation within the cytosol at high
organic acid titers, and increasing osmotic stress due to addition of neutralizing
agents along the fermentative time course (6,7). While pH deviations are
minimized in controlled fermentations, anion accumulation and osmotic
stresses continue to challenge metabolic engineering efforts in the develop-
ment of highly productive host strains (8). The rest of this chapter will focus
on alleviating the anionic effects of organic acid stress toward the development
of a robust production strain.

Anion accumulation inside the cell can cause growth defects in a number
of ways. Explicitly, undissociated weak acids are able to diffuse freely through
the cell membrane where they release a proton and subsequently lower cyto-
solic pH (9). Significant accumulation of anions in the cytosol results in
increased osmotic stress and a corresponding increase in free potassium (10).
The physiological response to balance anionic concentrations and maintain a
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constant turgor pressure is to increase export of glutamate, resulting in reduced
growth and viability of the cell (11). Additionally, the anion itself can result in
increased inhibition of metabolic pathways characterized by severe growth
defects. For example, measurements of the intracellular metabolite pools
under acetate stress indicate a significant increase in homocysteine pools
accompanied by a reduction in the downstream methionine pools, implying
inhibition at this step in methionine biosynthesis. Further, methionine supple-
mentation has been shown to relieve growth inhibition due to acetate levels
as high as 8mM (11). Such inhibitory effects are anion specific and often hard
to elucidate across the complex metabolic networks. These findings from Roe
et al. (11) surrounding the metabolic inhibition specific to acetate stress helped
to form the hypothesis that similar metabolic inhibition may be the basis for
the apparent growth inhibition specific to 3-HP.

7.2 UNDERSTANDING 3-HP TOXICITY

The work described herein focuses on improving the understanding of organic
acid tolerance mechanisms, specifically for 3-HP, in Escherichia coli. Biosyn-
thetic processes yielding 3-HP have previously been demonstrated from devel-
opment of recombinant hosts (12,13). However,as mentioned previously,severe
growth inhibition has been observed for extracellular acid levels as low as 20 g/L
in minimal media (pH 7.0), which severely impacts the economic feasibility of
3-HP production as a platform chemical. Furthermore, engineering a tolerant
host for production has proven complex with numerous genetic targets and
integrated metabolic networks incorporated into an overall toxicity profile.

7.2.1 Choosing an Approach for Evolving Tolerance

Traditional approaches to strain engineering typically employ either informed
metabolic engineering methods (see Chapters 2 and 3), which are reliant on
previous understanding of genetic function, or directed evolutionary approach-
es (see Chapter 4), which are based on application of a selective pressure on
a genetically diverse population to identify previously unknown or uncharac-
terized genotypes (Figure 7.1). Although directed evolution approaches do
provide insight into the unknown, they are oftentimes laborious and qualita-
tive, and result in an incomplete understanding of the engineered phenotype.
Further, since phenotypes such as growth or productivity are a function of
numerous unknown factors, successful strain selections have primarily relied
on an iterative mutation strategy, which simultaneously result in the accumula-
tion of deleterious mutations. Recent reports have disclosed the use of extra-
chromosomal or disruptional mutagenesis approaches that are meant to
address the concerns with traditional directed evolution (14,15). However,
these approaches still require substantial follow up to identify exact causal
linkages between a given phenotype and the underlying genotype.
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FIGURE 7.1. Sample flowchart for evolving new phenotypes. Informed engineering
approaches are displayed in dark gray shaded boxes, whereas directed evolutionary
approaches are illustrated in light gray shaded boxes. GTME, global transcription
machinery engineering; CSTR, continuous stirred tank reactor; COG, clusters of orthol-
ogous groups.

For this study we chose to employ multi-SCale Analysis of Library Enrich-
ment (SCALEs). This approach involved simultaneous growth selections on
mixtures of multiple plasmid libraries containing defined, yet unique, insert
sizes (or scales). Through microarray and multiscale analysis, the signal con-
tribution and associated fitness (W) of each of the distinct, different sized
libraries was identified. Fitness, in this case, is defined as the enrichment of
each region in the selected population over time (W =In(X;/X;.)). This
resulted in the accurate identification of the location and size of the fitness-
altering loci that contributed to the desired phenotype. For a detailed
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description of the procedures involved in the multiscale analysis of library
enrichment, the reader is referred to Lynch et al. (16).

The model system described herein was focused on the identification of
clones exhibiting increased growth rate in the presence of 3-HP. Our studies
first involved the use of the SCALEs method to characterize the genotypes
and phenotypes under selection in a continuous culture selection. The infor-
mation from this analysis was then used to design a new selection directed
more precisely at 3-HP tolerance phenotypes. Finally, a receiver operator
curve (ROC) analysis, enabled by SCALEs, was employed to measure and
compare the sensitivity and selectivity of both selections and provide a unique
insight into the complexities of selection design (16-19).

7.2.2 Selection Design for Evolving 3-HP Tolerance

Continuous culture methodologies, such as the use of chemostats and tur-
bidistats, are traditionally employed for strain selection in the presence of dif-
fering levels of a toxic compound (18-21). We chose to first employ this
approach as a base case to select for clones exhibiting increased 3-HP tolerance
from our E. coli plasmid-based genomic library (18).The starting population for
selection was comprised of five representative E. coli K12 genomic libraries that
were transformed into MACH1-T1® (18) and recovered until mid-log phase
(ODgy ~0.2) under microaerobic conditions. Greater than 10° library clones
were then introduced to the continuous flow reactor (CFR) and cultured for 60
hours, at which point the selection was stopped due to significant biofilm growth
on the reactor walls. The CFR was fed with 3-(N-morpholino)propanesulfonic
acid (MOPS) minimal media blended with increasing levels of 3-HP (pH =7.0,
0-20 g/L). The CFR was maintained similar to a common turbidistat, in that the
dilution rate was constantly adjusted in an effort to maintain an approximate
cell density of 10 cells/mL and to avoid a nutrient-limited environment. Samples
of the population were acquired at approximately 30,40, and 50 doublings (cor-
responding to 100-, 1000-, and 10,000-fold enrichment, respectively) and were
analyzed via microarray and decomposed according to the SCALEs methodol-
ogy (16). By performing this analysis we were able to quantify the concentration
of each library clone (X;), or member of the library, maintained within the
plasmid library throughout the selection. Following this quantification, we were
able to map the genome-wide fitness and enrichment patterns for the continu-
ous flow selections in the presence of 3-HP at each time point.

To further characterize the efficacy of the selection for identification of
3-HP tolerant clones, we chose 17 clones to observe for further testing. Clones
were obtained either via sequencing individual clones isolated from selection
samples or conventional molecular cloning of regions corresponding to signifi-
cantly increased fitness from the SCALEs analysis. These clones were then
introduced individually into batch cultures with minimal media and 20g/L of
neutralized 3-HP. Growth was monitored as a function of ODg, over a 24-hour
period and specific growth rates were calculated for regions of growth
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corresponding to minimal doubling times. For this particular selection, only
53% of clones tested (9 of the 17 tested) demonstrated significantly increased
fitness in the presence of inhibitory levels of 3-HP. As expected, these results
confirm that the CFR selection not only resulted in enrichment of 3-HP toler-
ant clones, but was also selected for other various phenotypes that may have
increased residence time with the reactor, such as wall adherence and/or
biofilm formation.

In an effort to better quantify these observations, we performed an ROC
analysis (17). ROC curves have traditionally been used in signal detection
theory to compare the predictive power of a model as the criterion, or thresh-
olds, are varied. ROC curves plot the true positive rate (sensitivity) against
the false positive rate (1-specificity), which allows for the rapid assessment of
the predictive power of a test and, importantly, to compare the utility of mul-
tiple tests.

Sensitivity = True Positive Rate (TPR)

= true positives/(true positives + false negatives)
Specificity = True Negative Rate (TNR)

= true negatives/(false positives + true negatives)

We used this technique to assess how efficiently our CFR selections identified
clones with 3-HP tolerant phenotypes. True positives were quantified from
clones that were identified by the SCALEs method with significant fitness
gains that were separately confirmed to grow faster than the control at ele-
vated 3-HP concentrations. Similarly, false positives were quantified from
clones characterized by increased fitness as identified by SCALEs that did not
relate to an observed increased growth in the presence of 3-HP. Finally, the
number of true negatives was set according to clones with fitness values below
a given cutoff that did not show increased tolerance, while false negatives were
those with low fitness values and an increased growth rate (Figure 7.2).

The advantage to a genome-wide analysis, such as SCALE:s, in this type of
evaluation is the ability to gain information about the true and false negatives,
which are essential for a quantitative ROC analysis. These data are unique
when compared with a traditional library selection followed by a sequencing-
based output in which nothing can be determined about the unsequenced
population. A measure of the overall quality of a test can be provided by
assessing the area under the ROC curve (AUC), where larger values corre-
spond to tests that increase in true positives relative to any increase in false
negatives.

In all cases the CFR selections produced ROC curves above the x =y line,
indicating that gains in true positives were not accompanied by an equivalent
increase in false negatives (see Warnecke et al. (18) for detailed ROC dia-
grams). This result confirms that 3-HP tolerance was under selection in our
CFR. However, the AUC values for the CFR selection maintain a constant
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FIGURE 7.2. Quantifying true and false negatives and positives in an ROC analysis.
Following the SCALEs analysis, genes were categorized by fitness (W) as having posi-
tive or negative effect on 3-HP tolerance and confirmed as a true positive or negative
by experimentation to confirm increased growth rate in the presence of 3-HP.

value of approximately 0.77, suggesting that selective pressure specific to 3-HP
tolerance is stagnant after the initial sample. This finding is counterintuitive in
that selective pressure should have increased as increasing amounts of 3-HP
were introduced to the growth media. In actuality, the frequency of clones
contributing to the formation of biofilm communities resulted in an increased
false positive rate, thus keeping the AUC constant. This finding implies that
selective pressure was being increasingly driven by wall adherence as opposed
to 3-HP tolerance.

7.2.3 Taking a Closer Look at Selection Design

Based on this analysis, we began a second selection where improvement would
be measured by an increase in the AUC resulting from a comparable ROC
analysis. This selection was designed in order to enhance the specificity of the
selection toward increased specific growth rate in the presence of 3-HP and
not for increased biofilm formation or other potentially selectable phenotypes
such as decreased lag time and increased final density. We chose to utilize serial
batch selections with a progressively decreasing concentration of 3-HP in an
effort to both reduce clones with improved fitness resulting from wall adher-
ence and to increase the corresponding true positive rate throughout the
selection in contrast to the stagnant sensitivity observed for the CFR. The
design of selection varied from the original based on the inhibitory, rather than
bactericidal, effect that 3-HP has on growth rate. Specifically it can be assumed



192 METABOLIC ENGINEERING OF RECOMBINANT E. COLI

that high levels of 3-HP will inhibit growth of all but the most tolerant clones,
or the true positives, at the onset of selection. This initial growth inhibition
provides the selective pressure required for the fastest-growing clones to
become enriched relative to clones that are more sensitive to 3-HP. Under the
reverse scenario of an increasing gradient of 3-HP, all clones capable of growing
at an initially low concentration of 3-HP will have an opportunity to become
enriched over the entire period of selection. Additionally, those clones exhibit-
ing mutations by random genetic drift will also be enriched greatly toward the
culmination of the selection. Some of such clones may grow rapidly at low
concentrations but not at all at high concentrations. These clones would be
considered false positives. In terms of the ROC analysis, selection using a
decreasing 3-HP concentrations gradient should result in an increase in speci-
ficity (a decrease in false negative rate) accompanied by an increase in sensi-
tivity (true positives).

A second selection, employing successive batch cultures with decreasing
levels of 3-HP (20 to 0g/L), was designed. Following each batch, transfer
samples were taken and the plasmid population was isolated, labeled, and
hybridized to DNA microarrays. Microarray data were further examined
according to the SCALEs methodology. To test for increased sensitivity and
specificity, we chose 20 unique clones from the serial dilution (SD) selections
by isolating and sequencing of individual clones from enriched pools or by
molecular cloning of the highly enriched clones identified by the SCALEs
data. We used this clonal subset to generate data to perform an ROC analysis
used to quantitatively compare the two selections. As was expected, 0% of the
clones obtained from the SD expressed biofilm phenotypes, whereas 88% of
the clones obtained from the 60-hour CFR sample showed this phenotype. The
clones isolated from the SD selection were then used to evaluate growth rates
in the presence of 20g/L 3-HP. We found that 100% of these clones had a
statistically improved growth rate compared with only 53% of the clones
evaluated from the CFR selection.

These data were then used to generate a ROC curve, which showed a quan-
tifiable improvement in the SD selection when compared with the original
CFR data (the reader is again referred to Warnecke et al. (18) for the detailed
ROC diagram). More specifically, the AUC increased with each successive
sample for the SD selection, indicating that selection for 3-HP tolerance phe-
notypes was maintained throughout the experiment. This is in contrast to the
CFR selection, which maintained a more stagnant AUC profile throughout.
Further, the SD selection shows a 17% overall increase in AUC when com-
pared with the cumulative CFR selection, implying that the SD selection more
effectively identified true 3-HP tolerant clones compared with the CFR
selection.

7.2.4 Constructing the 3-HP Toleragenic Complex

As shown above, we have performed a selection that showed a strong cor-
relation between fitness and the desired 3-HP tolerant phenotype. The
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clone-specific fitness was calculated according to the SCALESs analysis for the
optimized selection described above. This fitness was then further segmented
to assign fitness values to the individual genes contained within the clone’s
insert DNA. Genes and their corresponding fitness measures were then
grouped according to their associated metabolic pathways. This analysis
allowed for the assessment of the fitness of, or enrichment for, specific meta-
bolic pathways. The distribution of pathway enrichment values revealed a clear
pattern of differentiation across all metabolic pathways considered.

Segmenting the fitness according to metabolic pathway demonstrated that
3-HP related fitness was conferred by increased dosage of genes from only
a handful of metabolic pathways. The identified metabolic pathways that
accounted for the most significant improvement in overall fitness included
chorismate, threonine-homocysteine, arginine—polyamine, and nucleotide bio-
synthesis superpathways. These pathways and their interactions mostly com-
prise what we have termed the 3-hydroxypropionic acid toleragenic complex
(3-HP-TGC). The metabolic complex, shown in Figure 7.3, comprises all of the
genes identified by the SCALEs approach as contributing to metabolic pro-
cesses and increased tolerance to 3-HP (22).

This complex has been confirmed both by supplementation of media
metabolites from the complex and by genetic modifications of the 3-HP-TGC
(Figure 7.4). These data illustrate the importance of the selection strategy on
the identification of a phenotype of interest, in this case increased growth rates
in the presence of the growth inhibitor 3-HP. More specifically, it would not
be possible to construct meaningful networks for a selection correlated to a

FIGURE 7.3. The 3-HP toleragenic complex (3-HP-TGC) as constructed from meta-
bolic pathway fitness data. Subsections of the 3-HP-TGC are denoted for the choris-
mate, nucleotide biosynthesis pathway, polyamine, and threonine/homocysteine
superpathways. (See insert for color representation of the figure.)
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FIGURE 7.4. Confirmation of 3-HP tolerance corresponding to supplements (red)
and genetic modifications (green). Tolerance was quantified as the minimum inhibitory
concentration (MIC) of 3-HP in triplicate (n =3) at pH =7.0. (See insert for color
representation of the figure.)

high false positive rate. In particular, decreasing the selective pressure over
time ensures that enrichment occurs for clones with even a small selective
advantage.

7.3 STRAIN DESIGN

7.3.1 Evaluation of the 3-HP-TGC

To better evaluate the toleragenic complex, we divided the 3-HP-TGC into
component pathways, or gene groupings, surrounding highly connected nodes
involved in the homocysteine, chorismate, polyamine, lysine, uracil, and citrate
synthesis pathways. Each of the component pathways was then used to high-
light genetic elements at key toxicity points as well as potential supplemental
strategies to overcome limitations. Toxicity evaluations were carried out
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involving the identified supplements, genetic modifications, and combinations
designed to evaluate the groupings of multiple branches of the 3-HP-TGC.

The supplement data gathered according to the combinatorial strategy
above showed the significant impact that saturation of the polyamine pathway,
by addition of the entire polyamine group (composed of putrescine, spermi-
dine, ornithine, citrulline, bicarbonate, and glutamine), has on the overall
tolerance to 3-HP. As such, it was important to design a strain with an em-
phasis on optimization of polyamine production to alleviate a large fraction
of growth inhibition. Additionally, increased tolerance (as demonstrated by a
greater than 200% increase in minimum inhibitory concentration [MIC]) was
noted for supplementation with one supplement from each of the chorismate,
homocysteine, polyamine, and lysine pathways suggesting that modifications
from each of the pathways should be included in the final tolerant strain
design.

The results presented above illustrate the foundation of technology that has
been developed in our laboratories that can be applied to explore complex
phenotypes such as solvent tolerance. The ability to fully characterize selection
dynamics toward the identification of a single desired phenotype is critical for
the project proposed herein. Further development of this high-resolution,
genome-wide technology platform is ongoing and will enable the rapid evalu-
ation of desirable phenotypes.

7.3.2 Complex Tolerant Phenotype: Metabolism of 3-HP
to a Toxic Intermediate

Evolving improved tolerance of the 3-HP production host is complex in that
it includes developing increased resistance to not only the final 3-HP product,
but also to potential toxic intermediates or degradation products. In the case
of the OPXBIO 3-HP production route, preliminary fermentations with 3-HP
production strains demonstrated significant metabolic conversion of 3-HP to
3-hydroxypropionaldehyde (3-HPA), which resulted in both decreased 3-HP
yield and increased toxicity toward the production strain. 3-HPA, also known
as reuterin, is an antibiotic naturally produced by Lactobacillus reuteri and is
commonly used as a biopreservative in food products (23). 3-HPA exists in a
three-way equilibrium between the hydrate, the dimer, and acrolein. Although
the exact antimicrobial mechanism of reuterin has not been elucidated to date,
the proposed targets include the sulthydryl enzymes (24).

A review of the SCALEs results described above identified a particular
genetic network composed of 22 aldehyde dehydrogenases (ALDs), which
demonstrated a low level of enrichment throughout the serial-dilution selec-
tion (1 < W < 2).To further investigate this apparent metabolism, assays were
developed to quantify 3-HPA/3-HP for various ALD deletion strains cultured
with exogenous 3-HP. One particular ALD identified in the SCALESs data set,
puuC, had been previously reported to catalyze the conversion of 3-HP to
3-HPA (25). Further experimentation with ApuuC base strains showed a
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significant decrease in 3-HP conversion to the toxic aldehyde, which thereby
improved overall tolerance to the host.

The puuC findings have further implications when applied to the under-
standing of improved tolerance to 3-HP. Specifally, puuC has been charac-
terized as a 7y-glutamyl-y-aminobutyraldehyde dehydrogenase involved in
polyamine degradation that is induced by increased levels of polyamines. The
observed conversion to 3-HPA in the presence of 3-HP implies that increased
polyamine pools may be inducing this conversion mechanism. This mechanism
was further established by quantification of increased 3-HPA/3-HP in the pres-
ence of supplemental polyamines such as putriscine. The polyamine pathway
is critical for increased tolerance to 3-HP due to the global effects on the
overall metabolic network as illustrated in the toleragenic complex above.
Polyamines are synthesized in the cell as natural osmolarity stabilizers and are
required for numerous cellular processes. While E. coli do produce polyamines
naturally, the basal levels are not sufficient for normal cellular activities under
conditions of 3-HP stress. More specifically, 3-HP can act as a potent chelator,
particularly at high concentrations, causing the cell to sense a hypo-osmolar
state, which can be countered by overproduction of various polyamines. Inter-
estingly, overexpression of polyamine biosynthetic genes alone is not able to
counter the toxic effects of 3-HP without balancing accompanying side effects
such as conversion to the toxic aldehyde. Additionally, increased production
of polyamines can lead to the accumulation of carbamoyl-phosphate, a precur-
sor to polyamine synthesis, which degrades to the toxic byproduct, cyanate. As
such, it is important to balance the increased polyamine levels with increased
expression of a cyanase, which is capable of minimizing accumulation of
cyanate within the cell.

Figure 7.5 illustrates the MIC of 3-HP on wild-type E. coli with and without
supplementation of various polyamines (putrescine, cadaverine, and spermi-
dine), as well as an isolate overexpressing a cyanase. By applying these findings
in concert with the other components of the 3-HP-TGC, it has been possible
to engineer E. coli to tolerate 3-HP levels as high as 100 g/L.

74 COMBINING 3-HP TOLERANCE AND 3-HP PRODUCTION

Engineering strains for industrial production requires stacking multiple
complex phenotypes (4). Three production strains were constructed with
various genetic modifications that correspond to increased 3-HP tolerance
corresponding to the 3-HP-TGC for further evaluation. Specifically, we were
interested in evaluating the impact that each of the tolerance modules had on
production metrics such as final titer and specific productivity. The results for
the three tolerance modules are displayed in Figure 7.6. As shown below, each
of the three tolerant strains resulted in significant improvements in both 3-HP
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FIGURE 7.5. MICs for 3-HP with and without supplementation with the polyamines
(putrescine, cadaverine, and spermidine) as well as overexpressing a cyanase. MICs
were performed in triplicate (n = 3) at pH =7.0.

titer and specific productivity, and in the case of tolerant strain 3, the specific
productivity was increased by 10-fold compared with the control.

7.5 SUMMARY

The work described in this chapter was focused on improving the understand-
ing of organic acid tolerance mechanisms, specifically for increased production
of 3-hydroxypropionic acid (3-HP), in E. coli. Successfully evolving complex
phenotypes, such as organic acid tolerance, relies on approaches capable of
generating a global understanding of toxicity in an effort to utilize synergistic
effects. In this chapter, we described how to design a selection that shows a
strong correlation between fitness and the desired 3-HP-tolerant phenotype
and how the application of a genome-wide approach such as SCALE:s allowed
for the rapid identification of numerous genetic changes. The results of our
studies identified hundreds of genes and other genetic elements that when at
increased copy confer varying levels of tolerance to the presence of 3-HP in
E. coli. When applied alone, these genetic changes may allow for small increases
in tolerance; but when applied together they allow for insight into the 3-HP
toxicity mechanisms. By grouping genetic elements that confer tolerance
by their metabolic roles, we were able to identify key metabolic pathways
that are inhibited by 3-HP and to increase productivity by overcoming 3-HP
inhibition.
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FIGURE 7.6. The effects of improved tolerance on 3-HP production: (a) improved
titers and (b) improved rates with tolerance modifications incorporated.
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COMPLEX SYSTEM ENGINEERING:
A CASE STUDY FOR AN
UNSEQUENCED MICROALGA

MicHAEL T. GUARNIERI, LIEVE M.L. LAURENS, Eric P. KNOSHAUG,
YAT-CHEN CHoU, BrYON S. DONOHOE, AND PHILIP T. PIENKOS

8.0 HISTORICAL PERSPECTIVE

In 1978, the U.S. Department of Energy (DOE) initiated the Aquatic Species
Program (ASP), which was managed by the National Renewable Energy
Laboratory (NREL, known at the time as the Solar Energy Research Insti-
tute). The purpose of the ASP was to evaluate the potential of non-terrestrial
crops to serve as feedstocks for biofuel production. Initially the scope of the
investigation included microalgae, cyanobacteria, macroalgae, and wetland
emergents, and the potential products included hydrogen, lipids, ethanol and
other alcohols, syngas, and pyrolysis fluids. The intermediates could be used in
fuel cells or upgraded to a variety of fuels including biodiesel, renewable
diesel, renewable gasoline, and renewable jet fuel. Very quickly the target
organisms were downselected to eukaryotic microalgae primarily because of
anticipated productivity of algae, the high energy density of lipids, and the ease
of conversion to biodiesel.

For 18 years, from 1978 to 1996, DOE funded the ASP (through significant
swings in annual budgets) with most of the work carried out by academic
subcontractors with NREL providing the overall project management. During
that period, all aspects of the value proposition were investigated, ranging
from basic algal biology through large-scale cultivation, harvest, dewatering,
conversion to fuels, and techno-economic analysis. Many breakthroughs
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were achieved including the assembly of a 3000-strain culture collection, devel-
opment of a capital- and energy-minimized raceway pond for cultivation,
continuous operation of two 1000m?* raceways for a year in Roswell, New
Mexico, and production of biodiesel samples for testing. The best results and
assumptions were used to estimate capital and operating costs. Optimistic
assumptions led to a conclusion that algal biofuels could be produced at a cost
of $40-60 per barrel. Crude oil prices at the time held at around $20 per barrel
and most projections suggested that the price would remain at that level for
decades to come. Facing budget challenges and recognizing the long-term
nature of R&D needed to bring algal biofuels to production costs that could
compete with petroleum, DOE decided to terminate the ASP in 1996 to focus
on cellulosic ethanol. A comprehensive closeout report on the microalgae
work done for the ASP was released in 1998 (http://www.nrel.gov/biomass/
pdfs/24190.pdf). The detail and comprehensive nature of this report have
provided great value in the intervening years for researchers seeking to enter
this field.

In 2005, DOE and the U.S. Department of Agriculture (USDA) released a
report, commonly known as the “Billion Ton Study” (http://feedstockreview.
ornl.gov/pdf/billion_ton_vision.pdf), which provided for the first time esti-
mates of the amount of terrestrial biomass that could be sustainably harvested
on a yearly basis. This upper limit provided guidance for our national capacity
for biofuels, somewhere in the range of 40-60 billion gallons gasoline equiva-
lents (gge), depending on the yields of biofuel that could be derived from
biomass. Considering that the United States burns approximately 140 billion
gallons of gasoline, 40 billion gallons of diesel fuel, and 25 billion gallons of
jet fuel annually, this limited capacity for domestic biofuel production was
clearly inadequate to provide energy security. Also considering that the only
biofuel that was being considered from terrestrial biomass (excluding food
crops such as corn or soybeans) in 2005 was ethanol, it was clear that biofuel
replacements for high energy density fuels such as diesel and jet fuel would
require a different feedstock.

With that in mind, researchers at NREL began to reconsider the assump-
tions that led to the close of the ASP. Among the changes that had occurred
in that 10-year period were increases and increased volatility in the price of
crude oil, increased awareness of the role of CO, emissions in global climate
change, increased demand for energy security, and increased sensitivity to the
food versus fuel debate. At this point it became apparent that algal biofuels
could be a game changer because algae could capture and recycle CO, directly
from fixed sources such as power plants, steam methane reformers, cement
kilns, and other large-scale contributors to CO, emissions. Algae could also be
cultivated on nonproductive lands that would not even support growth of
energy crops such as switchgrass and miscanthus. And algae could be culti-
vated with brackish or saline water taken from marine sources or from saline
aquifers or oil well-produced water. And so, in 2006, NREL began a strategic
initiative to look for ways to revive its algal biofuels R&D effort.
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In addition to industrial outreach, NREL built a strategy around small
projects funded either internally through the national lab Laboratory Directed
Research and Development (LDRD) program, which makes a percentage
of overhead funds available for competitive research proposals. Other fund-
ing opportunities also became available, including one from the Air Force
Office of Scientific Research, initiating a program to fund basic research
in algal biology with a focus on lipid production. None of these funding mecha-
nisms could match the peak funding days of the ASP, but taken together,
they provided a vehicle for NREL to re-establish itself as a leader in algal
biofuels R&D.

It must be noted that this began to take place at a time of phenomenal
growth in interest in algal biofuels, a time in which many new companies were
being formed to commercialize algal biofuels. It was essential that the limited
funding available from these sources be put to work in the most effective
manner. After evaluating the overall landscape we determined that our biggest
contributions could be made in algal biology and algal compositional analysis,
and so our proposals and subsequent projects focused on these two areas. To
further focus our efforts and to leverage the funding from different sources,
we chose a single organism, Chlorella vulgaris, to be our model organism, to
be used in as many projects as we could. We chose C. vulgaris for a number
of reasons:

e Rapid growth and high lipid content.
e Large-scale cultivation history for production of nutritional supplements.
e Reports of successful genetic transformation.

There were also a number of drawbacks for this choice:

e Small cell size and very tough, uncharacterized cell wall made lipid
extraction and cell lysis difficult.

e The genome sequence was not available, although related strains were in
the queue at the Joint Genome Institute.

e C. vulgaris is a fresh water strain, which would raise issues for sustainable
large-scale production for biofuels.

Ultimately, we determined that the positive attributes outweighed the negative
and began working with C. vulgaris as our model organism. The challenges,
though real, would provide guidance for research groups who also wished to
work with unsequenced strains. The freshwater adaptation of C. vulgaris was
certainly a major issue, but other groups were also developing freshwater
strains for production. In addition, it had been shown that it is possible to
adapt fresh water strains for growth in brackish or saline water, and so we
decided to focus our work on C. vulgaris.
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As a result, in 2008 we assembled a project portfolio using C. vulgaris,
exploiting the synergy that would develop from connecting a number of small
projects and otherwise individual researchers with a common single model
organism. It was clear from the outset that strain improvement based on
increased lipid production would be challenging. The lipid metabolic pathways
are well known and have been investigated in plants for improved productivity
in oil seed crops (1) and in animals for drug discovery (2). But the pathways
for storage lipid production and metabolism are complicated by the common
steps involved in production of storage lipids (triacylglycerides [TAGs]) and
membrane lipids (phospholipids, sulfolipids, and glycolipids). Some successes
have been reported for altered flux into TAG synthesis in algae through both
classical selection for mutants resistant (see Chapter 1) to herbicides, which
block lipid biosynthetic steps (3—4), and, more recently, fluorescence-activated
cell sorting (FACS) enrichments using the lipid-specific dye Nile Red (5).
Strain improvements based on genetic engineering of algae had been attempted
during the aquatic species program (6), which saw successful overexpression
of the ACCase gene but no increases in lipid production. In the past two years,
several papers have been published describing alteration of specific gene
expression levels with mixed success at improving lipid production in Chlam-
ydomonas reinhardtii (7-8) and unpublished reports indicate that further
improvements are in hand, but it is widely recognized that C. reinhardtii is not
sufficiently robust to serve as a production strain. And so we have been
encouraged to pursue this path in a strain that begins with better production
characteristics.

8.1 ANALYSIS OF ALGAL BIOMASS COMPOSITION

8.1.1 Defining the Parameters of an “Ideal” Strain

A techno-economic analysis of the biofuels production process made it clear
that overall lipid productivity of the algal production strain is intricately linked
with the economics of the production process (9). A sensitivity analysis of the
techno-economic model of microalgae for fuel production showed that dou-
bling and halving the lipid content of the algae used caused a $4 decrease and
an $8 increase, respectively, around the benchmark of $9.64 per gallon of
biofuel. This analysis reveals lipid content as the most important determinant
of the algal biofuels process economics, followed closely by biomass produc-
tion and growth rate of the algae (9). Furthermore, the lipid content and
composition of algae has been one of the challenges, but also drivers for
process development and accelerated algal biofuels research in the past couple
of years (10). In light of these economic implications, it is necessary to have
an accurate, objective measure of lipids in algae. In addition to having an
accurate lipid content determination, there is also an emphasis on obtaining
this measure rapidly, in a high-throughput manner to enable screening of a
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large number of strains (see Chapter 5). Besides lipids, algal biomass also
contains proteins and carbohydrates, and the ratio and composition of these
compounds will further determine the fate of the residual algal biomass after
the lipids have been extracted, which can play a significant role in the overall
process, perhaps even drive the development of alternative uses for the resid-
ual algal biomass; for example, high fermentable sugar content of the residue
could be converted into fuel ethanol.

8.1.2 Tool Development for the Analysis of Growth and Lipid Production

A robust tool for measuring lipid in algae has to provide an accurate, precise,
and reproducible measure of total lipids and preferably can be carried out on
a small scale (in the mg of biomass range, requiring milliliter volumes of
culture rather than liter volumes). The tool also has to be species agnostic, in
that the measurement cannot be dependent on the algae type subjected to the
analysis; for example, susceptibility of the method to cell wall permeability is
unacceptable. A survey of the literature indicates a wide range in reported
lipid contents, which can be traced back to a vague definition of lipids and the
inherent variability of the lipid content in algae throughout the growth phase
of a culture.

It is well known that physiological conditions will influence the composition
and the total lipid content of algae. Lipid content and fatty acid (FA) composi-
tion vary considerably during the growth cycle. Algal lipids from cultures that
are in the exponential growth phase consist mainly of polar lipids, such as
phospho- and glycolipids, which make up the cell organelle and photosynthetic
membranes. In many algal species, an increase in TAGs is observed during the
stationary phase. For example, in the chlorophyte Parietochloris incise, TAGs
increased from 43% (of the total FAs) in the logarithmic phase to 77% in the
stationary phase (11), and in the marine dinoflagellate Gymnodinium sp., the
relative amount of TAGs increased from 8% during the logarithmic growth
phase to 30% during the stationary phase.

In the context of quantification of lipids, this variation in lipid composition
over the culture’s growth period leads back to the problem with the definition
of lipids as molecules more soluble in organic solvents than in water (12). In
agreement with this definition, traditional lipid quantification is based on the
gravimetric solvent extraction yield. However, the wide variety of extraction
procedures and solvents used has led to the inconsistent lipid yields reported
in the literature and industry, primarily because of the lack of a standard lipid
quantification procedure, differences in compatibility of the polarity of the
solvents chosen and the polarity of the lipid molecules present and accessibil-
ity of the lipids to solvent penetration. Inevitably, the extractable oil fraction
will contain nonfuel components (e.g., chlorophyll, pigments, proteins, and
hydrophobic carbohydrates), and thus it is necessary to assess the fuel fraction
of these isolated oils (i.e., FA content of extracted lipids). This variability leads
to the question of how one confirms actual improvements in particular strain
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FIGURE 8.1. A typical FAME fingerprint chromatogram of Chlorella vulgaris
UTEX3095. The identification of the peaks is based on mass spectrometry (GC-MS) to
identify the peaks. The designations C13 through C23 indicate the acyl chain length of
the FAME; tridecanoate and tricosanoate methyl ester (C13 IS and C23 IS) were
included as quantitative internal standards.

development programs. For example, is an observed 15% increase in extracted
lipids translated in an increase in the fuel potential of the algae strain or an
artifact of the measurement process? Is this difference smaller than the preci-
sion of the measurement methodology?

An alternative measure of the lipid content in algae is a whole biomass trans-
esterification procedure. This method performs simultaneous hydrolysis and
transmethylation of lipids in whole algal biomass and the resulting FA methyl
esters are quantified by gas chromatography (GC; a typical chromatogram is
shown in Figure 8.1). Since FAs make up the direct feedstock for lipid-based
biofuels, an accurate measure of the total FA content is a better metric than
through the process of lipid extraction. Of course, this ignores the constraints of
the conversion process. Biodiesel production (based on alkaline NaOH™ cata-
lyzed transesterification of TAGs) has a low tolerance for polar lipids and free
FAs. Catalytic hydrogenation to produce renewable diesel, jet fuel, or gasoline,
has not been explored to that extent, and process constraints are not well estab-
lished. Free FAs, in addition to TAGs, appear to be an acceptable feedstock. It
seems likely that the refining industry, which has successfully addressed the
challenges of changing petroleum feedstocks (light crude, high sulfur crude,
heavy crudes, tar sands, etc.), will be able to also make use of polar lipids despite
the inclusion of contaminating elements such as N, P,and S. The pivotal point in
developing robust conversion processes will be the demonstrated ability to
produce algal lipids in quantities consistent with the refining industry scale.
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The use of an in situ transesterification procedure is already being used in
the algae research community (13-14); however, the choice of catalyst varies
and detailed description of the methodology is often lacking. These issues may
hinder the adoption of this method as a standard procedure. The methods
published typically have used a two-stage alkaline hydrolysis with NaOMe
followed by an acid (BF;) transmethylation of the fatty acyl chains and detec-
tion by GC; however, a detailed study of the parameters influencing the con-
version efficiency was not reported. Recent work has yielded a simple one-stage
acid hydrolysis (HCl) method for in situ transesterification and reports on a
detailed description of the method, its influencing parameters and a direct
comparison with the two-stage NaOMe :BF; procedure (15). This procedure
was demonstrated to be robust across species; it is reproducible (with less than
3% relative variation between replicate measurements); and its efficacy is not
dependent on the parameters listed above that influence an extraction process.
This method can be adopted across algal strains, requires a small amount of
biomass (4-7mg, achievable in shake flask cultures), is accurate, reproducible,
and precise, and can be applied in a rapid high-throughput manner to a large
number of strains.

There is a continuing demand for higher-throughput analysis methodolo-
gies (see Chapter 5) to support research efforts to engineer or select superior
algal strains as improved bioenergy feedstocks. These research efforts often
require screening a large number of strains to identify one that accumulates
high levels of desirable triglyceride lipids. Traditional analysis using chroma-
tography methods are currently the bottleneck in such screening efforts. The
number of samples in a typical screen can exceed several hundred, and it is
not feasible to generate this amount of data using traditional analytical meth-
odologies. This means that rich sources of biodiversity such as those included
in large culture collections may be leveraged for the selection of superior
bioenergy feedstock strains.

Fluorescent lipophilic dyes, such as Nile Red and BODIPY (4,4-difluoro-
1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene), can be used for lipid
visualization and strain screening because of their selective affinity for neutral
lipid droplets inside the cells (16). However, a major disadvantage of the dye-
based assays is that they are affected by uneven dye uptake due to the inherent
variability of different strains of algae and their cell wall composition, which
can be affected by growth conditions (17).

One technology that is able to address the issue of a comprehensive screen-
ing of a large number of samples is vibrational spectroscopy (in particular
infrared [IR] spectroscopy) and can be applied to monitor the biochemical
composition of algae over time. IR spectroscopy measures the absorption of
energy in the IR region of the spectrum by chemical bonds in molecules.
Changes in mid-IR spectra for biomass harvested from cultures at different
time during the growth are shown in Figure 8.3. Because of the broad over-
tones of IR spectra, particularly in the near-IR spectra, the quantification of
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constituents heavily relies on the use of chemometrics, that is, multivariate
calibration models. The advantage of IR spectroscopy is its tolerance to varia-
tion in the samples; spectral absorbance due to nonlipid components of the
biomass can be subtracted in multivariate calibration models. IR spectroscopy
also requires minimal sample preparation, is nondestructive, and is relatively
independent of the biomass matrix. Overall, IR spectroscopy can be applied
as a fast, accurate, and nondestructive analytical method that requires only
very small amounts of homogenized biomass (~10mg) using a 96-well plate
setup. Calibration models have been developed that can be used as rapid high-
throughput methods for the estimation of algal lipid content (18). Using the
IR spectroscopic methods, algal lipid content of almost any algal species can
be measured in a matter of minutes rather than days. Calibration models have
been generated for single species as well as for multiple species combined,
where the infrared spectra are correlated with lipid content. The main chal-
lenge with IR-based prediction of lipids is to have a good quality calibration
model, which in turn depends on robust chemical data of a large set of “cali-
bration samples.” These prediction models can then be used to predict the lipid
content in new, unknown samples.

8.1.3 Selection and Characterization of a Promising C. vulgaris Strain

The tools described above were applied to a set of 10 C. vulgaris strains avail-
able from the University of Texas (UTEX) culture collection in order to
rapidly select and develop a high lipid-producing new algae lab strain. In order
to move forward with a strain that has desirable parameters as a model pro-
duction strain, we measured the growth rate and the lipid content of all 10
strains, grown under synchronized conditions. In order to rank the strains with
regard to lipid and biomass productivity, growth experiments were set up in
both nutrient replete and deplete media (in this case deplete refers to the lack
of nitrate in the growth media). The biomass was collected from cultures after
10 days of growth in replete [+N] media, followed by 5 days of growth in
deplete [-N] media. The growth of the cultures was measured as volumetric
cell number since this is the most accurate measure of growth compared with
measuring optical density. Lipid content is still expressed on a biomass basis,
which still reflects the ultimate measure of productivity of a production system,
and the data can feed directly into existing techno-economic models. For lipid
quantification, the in situ transesterification method was used to avoid the
inherent inaccuracies of gravimetric analysis of extracted lipids (15). Of the
strains investigated, the UTEX395 C. vulgaris outperformed its competitors’
growth rate and lipid productivity. The lipid content showed the biggest dif-
ference between the replete and deplete conditions: a 3.5-fold increase com-
pared with a 1.7-2.3-fold increase seen for the other C. vulgaris strains. These
data allowed us to conclude that UTEX395 had the most potential to be a
production-relevant model organism; high growth rates corresponded with
high lipid content and a potential to engineer metabolism to take advantage
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FIGURE 8.2. Growth of C. vulgaris (as measured cell density per mL of culture, closed
symbols) and lipid content (FAME %dw as open symbols) over time in both a nitrate-
replete (circles connected by solid line) and a nitrate-deplete (triangles connected by
dashed line) culturing conditions.

of the big lipid content increases observed between replete and deplete growth
conditions. This strain was then selected to move forward for further detailed
investigation of the lipid productivity over the growth period. A study of the
lipid content during the growth of UTEX395 under both replete and deplete
conditions is shown in Figure 8.2. The data indicate exponential growth in
replete media with a relatively low lipid content (<10%) until day 5, where
the growth slows down and the lipid content of the harvested biomass increases
to 20% and ultimately the lipid content after 10 days in replete media increases
up to 35%. In deplete media the growth rate of the culture drops off dramati-
cally at day 3 and the lipid content increases rapidly over subsequent days to
close to 60% of the biomass dry weight (Figure 8.2).

The changes observed in overall lipid content over the growth of a culture
reflect a significant shift in the biochemical composition of the biomass. In
addition to building calibration models with IR spectroscopy, one can also
observe overall biochemical changes in the biomass composition. Figure 8.3
illustrates the changes observed in mid-IR spectra over the course of the
growth of a culture. Regions of the spectrum corresponding to carbohydrates,
lipids, and proteins are highlighted and indicate considerable changes over the
growth of the culture. The information present in the spectra can be used for
building accurate calibration models to rapidly predict the concentration of
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FIGURE 8.3. Illustration of changing mid-infrared fingerprints of algal biomass over
the course of 3 weeks of growth and 2 weeks of nitrogen starvation (for lipid induction)
(a). The region corresponding to lipids is shown in close-up, indicating significant
increases over time (b).

lipids in algal biomass. This technology has the potential to rapidly increase
the throughput of analyses and strain development discussed later.

8.2 DEVELOPMENT OF HYPOTHESIS-DRIVEN STRAIN
IMPROVEMENT STRATEGIES

8.2.1 Systems Biology Analysis in an Unsequenced Microalga

Following downselection to a single algal cultivar (UTEX395), we next sought
to utilize systems biology approaches to identify targets for strain improve-
ment strategies aimed at optimization of lipid productivity. Systems biology,
or “omics” analyses (see Chapter 3), such as comparative transcriptomics
(RNA-seq) and proteomics, offer valuable platforms for the development of
hypothesis-driven metabolic engineering strategies through the elucidation of
key biosynthetic components involved in algal lipid production. However,
these analyses are highly dependent on available genomic sequence data.
Obtaining such genomic sequence data can often be cost-prohibitive, and
efficient assembly and bioinformatics analysis of such data can be extremely
time and labor-intensive. As such, many promising strains of potential
commercial-relevance remain relatively unexplored, with most systems analy-
sis to date largely focused upon established model organisms (19). While such
model systems offer valuable insight into general algal biology, they may fail
to present appropriate models for elucidation of the molecular underpinnings
of high lipid productivity in oleaginous microalgae. For example, the model
organism C. reinhardtii, which has served as the platform for the majority of
fundamental microalgal research due to its well-established laboratory cultiva-
tion and genetic transformation systems, only produces ~20% lipid on a dry-
cell weight (dew) basis under nitrogen deprivation (13). By comparison, the
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unsequenced, oleaginous microalga C. vulgaris (UTEX395) produces ~60%
dew lipid under similar wild-type conditions (Figure 8.2).

As discussed in Chapter 3, transcriptomic analysis allows for expression
profiling of mRNAs present in a given cell population under varying growth
conditions. Comparative RNA-seq analyses under varying growth conditions
can thus implicate genes and gene sets (gene set enrichment analysis) respon-
sible for phenotypes of interest. In this case study, the phenotype of interest
is the high lipid accumulation observed in C. vulgaris UTEX395 under nitro-
gen limitation. Although traditional transcriptome assembly is performed
through mapping of short sequence reads to a complete genome, emerging
technologies now allow for de novo assembly of short cDNA sequence reads
in the absence of available genome information. We took advantage of these
technologies, utilizing the Velvet and Oases software packages to assemble the
short reads obtained via Illumina sequencing (20,21). Assembly of a C. vulgaris
transcriptome will ultimately allow for mRNA expression profiling, although
methods for accurate transcript quantitation in the absence of a genome
require further development (discussed below). More immediately, however,
we sought to utilize the assembled transcriptome for a less obvious purpose,
proteomic analysis.

8.2.2 Transcriptome-to-Proteome Pipelining

Although transcriptomic analysis offers a great deal of insight into the genetic
control of product formation, it does not fully define this regulation, as mRNA
expression levels are not always proportional to the expressional levels of
protein for which they code. Additionally, higher plant and algal metabolic
regulation has been shown to be largely influenced by post-transcriptional
gene regulation (22-27). As such, proteomic analysis is a critical complemen-
tary tool in the successful strain engineering of a commercially relevant ole-
aginous microalga. However, proteomic analysis of unsequenced microalgae
(and unsequenced organisms in general) is challenging, largely due to the low
peptide identification rates associated with orthologous database searching
(19). Proteomic analysis using orthologous sequence databases requires nearly
identical mass/charge values (+1-2 Da) between the search database peptides
and peptides of interest in order to match an equivalent mass/charge ratio
of statistical significance and avoid the production of unmanageably large
result databases of questionable reliability. As such, a single amino acid dif-
ferential between a search model sequence and a peptide fragment sequence
of interest can result in a failure to produce a statistically significant match,
leaving significant gaps in protein identification (19). We bypassed the
necessity for genomic sequence data by moving directly from the de novo
transcriptomic assembly discussed above, to proteomic analysis using the
resultant assembled transcriptome as a search database (Figure 8.4). Through
six-frame translation, transcriptome sequence data can be matched to mass
spectral peptide data, offering a powerful proteomic database. This strategy is
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FIGURE 8.4. Workflow for de novo transcriptome assembly and comparative pro-
teomic analyses in an unsequenced organism. Adapted from Reference 19.

advantageous in that it meets the stringent requirements for sequence
accuracy of translated gene sequences needed for whole organism shotgun
tandem mass spectrometry (MS/MS) approaches. Additionally, utilization of a
transcriptome-to-proteome pipeline allows the coupling of gene and protein
annotation, again allowing for increased throughput in systems data analysis.
As discussed below, the utilization of a transcriptome-to-proteome pipeline
dramatically enhanced our proteomics results.

We utilized the lipid content of our chosen model strain as the basis for
comparative proteomic analysis. Lipid accumulation throughout the growth
cycle was examined using the FAME analysis tools described above (Figure
8.2), and was utilized to select optimal harvest points for comparative pro-
teomics. Cells were harvested under both nitrogen replete (low lipid) and
nitrogen deplete (high lipid) conditions, and soluble protein fractions from
whole cell lysates were obtained for samples corresponding to 10% and 60%
FAME. Proteomic analysis was performed using gel-based liquid chromatog-
raphy mass spectrometry (GeLC/MS). Product ion data were searched against
both Chlorophyta (all available green algal genome sequences, which at present
consists of C. reinhardtii, Ostreococcus sp., Coccomyxa sp. C-169, Micromonas
pusilla, Volvox carteri, and Chlorella sp. NC64A) and a six-frame translated
de novo assembled C. vulgaris transcriptome database. In order to utilize the
C. vulgaris transcriptome in this capacity, we developed a pipeline of in-house
Python and Awk scripts in order to annotate the transcriptome using basic
local alignment search tool (BLAST) (blastn) results, and to properly format
the resultant annotated transcriptome for use in Mascot, which allows for six-
frame translation and database interrogation (28). Each transcript isoform in
the assembled transcriptome was annotated using the fasta header of the best
blastn hit, which in turn was utilized to annotate positive MS/MS peptide
identifications. The numbers of proteins, matching spectra, unique peptides,
mean and median spectra/protein, and mean and median unique peptides/
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TABLE 8.1. Improved Database Interrogation Using a De Novo Assembled
Transcriptome. Adapted from Reference 19

MS/MS Data Acquisition (Average All Chlorophyta C. vulgaris
for Both N-replete and N-deplete) Genomes Transcriptome
No. of proteins 2,061 2,949

No. of matching spectra 25,638 64,923

No. of unique peptides 7,831 30,543
Mean spectra/protein 17 26.7
Median spectra/protein 9 16
Mean unique peptides/protein 52 12.6
Median unique peptides/protein 5 9

protein all increased approximately twofold using the de novo assembled C.
vulgaris transcriptome compared with the Chlorophyta database, clearly indic-
ative of a superior search database (Table 8.1).

Further underscoring the advantages of a transcriptome-to-proteome pipe-
line, the utilization of the C. vulgaris transcriptome database identified a
number of proteins along the central metabolic pathways that were initially
absent from the data obtained using only Chlorophyta sequence databases.
Many of the proteins in this newly identified dataset play critical roles in FA
and TAG biosynthesis. A schematic of the enzymatic components involved in
FA and TAG biosynthesis is shown in Figure 8.5. Although orthologous search-
ing identified only three enzymatic components of the FA biosynthetic pathway,
and none of the TAG enzymatic components, utilization of the C. vulgaris
transcriptome as a search database allowed us to identify the enzymatic com-
ponents of the FA and TAG biosynthetic pathways in their entirety (Figure
8.5). We examined changes in spectral counts (indicative of protein abun-
dance) for the components of the FA and TAG biosynthetic pathways under
nitrogen-replete and nitrogen-deplete conditions. Components of the FA bio-
synthetic pathways demonstrated relatively minor changes in abundance
(approximately one- to twofold) (Figure 8.5). Conversely, the change in protein
abundance for the TAG biosynthetic pathway was far more pronounced, one
to two orders of magnitude greater than those observed in the FA biosynthetic
pathway (Figure 8.5).

Our results demonstrate the necessity for accurate sequence information
in proteomic analysis, and more importantly, the utility of a de novo assembled
transcriptome as a search model for proteomic analysis of unsequenced micro-
algae. Bypassing the necessity for genomic sequence data avoids the time- and
cost-prohibitive nature of complete genome assembly and annotation. A
transcriptome-to-proteome pipeline narrows sequence data down to just
coding sequences, avoiding intronic regions and thus allowing for more rapid
assembly and interpretation of sequence data using readily available RNA-seq



FIGURE 8.5. Improved pathway identification using a de novo assembled transcrip-
tome database and changes in protein abundance under nitrogen depletion. (A) Criti-
cal components of the fatty acid and triacylglycerol (TAG) biosynthetic pathways were
absent from initial MS/MS searches against all available Chlorophyta databases. All
proteins were absent from initial MS/MS identification, except for AMPK, ACCase,
and ENR, yet positively identified when searching against the C. vulgaris transcriptome
database. Numbers below proteins represent normalized spectral abundance factor
(NSAF) values (10°) for nitrogen-replete and nitrogen-deplete conditions, respectively.
ACCase, acetyl-CoA carboxylase; ACP, acyl carrier protein; AMPK, AMP-activated
kinase; DAGK, diacylglycerol kinase; DGAT, diacylglycerol acyltransferase; DHAP,
dihydroxyacetone phosphate; ENR, enoyl-ACP reductase; FAT}, fatty acyl-ACP thioes-
terase (putative); G3PDH, glycerol-3-phosphate dehydrogenase; GPAT, glycerol-3-
phosphate acyltransferase; HD,3-hydroxyacyl-ACP dehydratase; KAR,3-ketoacyl-ACP
reductase; KAS, 3-ketoacyl-ACP synthase; LPAAT, lyso-phosphatidic acid acyltrans-
ferase; LPAT, lyso-phosphatidylcholine acyltransferase; MAT, malonyl-CoA :ACP
transacylase; PAP, phosphatidic acid phosphatase. (B) Corresponding spectral count
fold-changes for components of the FA (left panel) and TAG (right panel) biosynthetic
components. Reproduced from Reference 19.
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software. In turn, it provides a platform on which to perform systems biology
analyses in unsequenced, “nonmodel” organisms, leading to the identification
of strain engineering targets in organisms of commercial relevance.

Although transcriptome-to-proteome pipelining offers a number of advan-
tages, it does have limitations. Incomplete sequence data potentially limits the
identification of promoters, coding start and stop sites, and stretches of internal
coding sequences (largely an artifact of current NextGen sequencing plat-
forms), all of which are critical for the development of transformation methods
(discussed in the following section). In addition, incompletely assembled tran-
scripts (an artifact of current assembler tools) constrain annotation, limiting
positive protein matches. Likewise, transcripts that are temporally expressed
may not be identified under certain harvest conditions, and in turn will not
yield a positive protein hit. Small regulatory RNAs (such as micro-RNAs) may
also be absent under certain harvest conditions, and are frequently discarded
by currently available de novo assembler programs. However, it is worth
noting that with the rapid pace at which next generation sequencing tools are
advancing, these limitations are likely to be minimized soon. Regardless,
transcriptome-to-proteome pipelining offers a rapid, effective tool for identi-
fying strain engineering targets in organisms for which a genome sequence is
lacking.

8.2.3 Identification of Strain Engineering Targets

The dramatic protein abundance differential between FA biosynthetic and
TAG biosynthetic components may imply that TAG biosynthesis plays a sig-
nificant role in the rate-limiting production of neutral lipids, suggesting that
future studies aimed at strain improvement might be focused on overexpres-
sion of TAG biosynthetic components. Although all proteins in this pathway
were greatly increased in abundance following nitrogen starvation, the largest
increase was observed for diacylglycerol acyltransferase (DGAT), the enzyme
responsible for committed entry into TAG biosynthesis, with greater than 100-
fold spectral count increase, making this an attractive target for engineering
strategies (Figure 8.5). Indeed, overexpression of DGAT in higher plants has
already been shown to increase TAG accumulation, indirectly validating this
hypothesis (29,30).

Committed entry into FA biosynthesis is also of interest, as it may be an
upstream bottleneck of neutral lipid synthesis. acetyl-CoA carboxylase
(ACCase) governs entry into FA biosynthesis, and early algal strain engineer-
ing strategies from the ASP targeted this enzyme for expression (although no
increase in lipid accumulation was observed). Interestingly, AMPK, an ACCase
inhibitor, was downregulated under high lipid-producing conditions (Figure
8.5). This lends potential insight into the regulation of FA synthesis through
rate-limiting ACCase activity. It is possible that AMPK plays a critical role in
driving the equilibrium between acetyl-CoA and malonyl-CoA in the reverse
direction, ultimately slowing the rate of FA biosynthesis and increasing the
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rates of FA beta-oxidation. The activity of AMPK under nitrogen-replete and
nitrogen-deplete conditions warrants further investigation, and also presents
a potential strain engineering target. FA and TAG targets, however, represent
just some of the many proteins identified with extreme differential abundance.
As data analysis progresses, we will generate a number of additional targets
from less obvious pathways.

Beyond target identification, utilization of the C. vulgaris transcriptome also
allowed for identification and differentiation of protein isoforms. Homomeric
and heteromeric ACCase isoforms, as well as multiple ketoacyl-ACP synthase
(KAS) isoforms, were identified during the annotation stage. Isoform differ-
entiation can have a dramatic impact on strain engineering strategies. For
example, it has been suggested that overexpression of cytosolic homomeric
ACCase, coupled with plastidial sub-cellular localization, as opposed to over-
expression of the more complex, multi-subunit heteromeric plastidial isoform,
may be a simpler and more efficient means to increase FA content in oleagi-
nous organisms (31). Targeted strain improvement efforts and complete
pathway analyses will thus be greatly facilitated by the isoform identification
and maximal identification coverage that a de novo assembled transcriptome
search database affords.

We have focused our initial investigation of differential protein expression
upon dramatically different lipid accumulation states (see Figure 8.2) in
N-replete and deplete C. vulgaris. These analyses indicate that the FA and
TAG biosynthetic pathways are upregulated under nitrogen limitation, espe-
cially for the case of TAG components. We hypothesize that future analyses
using intermediate harvest points will lead to a less pronounced differential
between FA and TAG biosynthetic components, with an increased abundance
of FA components and a decreased abundance of TAG components prior to
nitrogen exhaustion. Future analyses will therefore be focused on intermedi-
ate time points for accumulation, which will allow for abundance mapping
throughout the lipid accumulation cycle and help clarify the rates of TAG
biosynthetic component expression. Concurrently, quantitative analyses of
TAG and TAG biosynthetic intermediates, such as phosphatidic acid and dia-
cylglycerides, will lend further insight into the flux through the TAG pathway,
as well as temporal regulation throughout the lipid accumulation cycle. Data
from intermediate accumulation states will also likely provide a wealth of
additional information with regard to the stages at which gene and protein
expression are initiated. However, a more complete, integrated systems biology
analysis, incorporating transcriptomic, proteomic, and metabolomic data will
be necessary to fully elucidate potential flux bottlenecks in the FA and TAG
pathways. At present the most effective means of quantifying RNA-seq data
in the absence of a genome is analyzing reads per kilobase of exon model per
million mapped reads (RPKM). Efforts are currently under way to improve
this methodology, as expression profiling will be an essential component in
downselection of targets. As mentioned above, we have focused our initial
investigation on the most obvious pathways of interest, namely the FA and
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TAG biosynthesis pathways. However, initial results also suggest that dramatic
changes in protein abundance are occurring in other central metabolic path-
ways, transcription factors, lipases, translation machinery, and many other
factors, all of which may ultimately prove to be key targets for strain manipula-
tion. Iterative compositional analysis, using the near-infrared (NIR) methods
discussed in Section 8.1.2, will allow for high-throughput assessment and vali-
dation of genetic manipulation of these targets (discussed below) and resultant
product formation.

8.3 IMPLEMENTATION OF BIOLOGICAL TOOLS I—
DEVELOPMENT OF A TRANSFORMATION SYSTEM

With a number of promising strain improvement targets identified, we next
sought to develop an effective transformation system to initiate our hypothesis-
driven strain improvement strategies. As discussed above, meeting the eco-
nomic goals of biodiesel production requires optimization of many complex
phenotypes in algal strains, including growth rates, lipid production and accu-
mulation capacity, and contamination control. Genetic engineering offers not
only the means to manipulate a strain by introducing, removing, or modifying
DNA, which results in new or more desired phenotypes, but also the means
to test or confirm a hypothesis derived from advanced genomic studies, such
as transcriptomics or proteomics. A tremendous amount of data have been
generated using transcriptomics and proteomics on our model microalga,
C. vulgaris UTEX395, in our laboratory. Expression of numerous genes in the
lipid and FA pathways was found to be significantly upregulated or downregu-
lated under nitrate starvation (19). This information provides valuable insight
into the regulation mechanisms of lipid synthesis, and these genes can be
further used as targets for modification to improve the pathways. In any case,
capability to transform C. vulgaris is a crucial part of genetic engineering in
our microalgae projects. Although several publications have reported success-
ful genetic transformation in Chlorella spp. (32-40), these methods tend to be
strain specific and in many cases the results are not reproducible. In order to
fully utilize the information obtained from our transcriptomic and proteomic
studies and to modify our model strain, C. vulgaris UTEX395, for desired
characteristics using genetic engineering, we initiated the development of an
efficient transformation system in this microalga.

8.3.1 Vector Construction

To assemble a vector for efficient transformation, several elements need to be
considered. Typically, antibiotic resistance is used as selection for the transfor-
mants. We have tested the sensitivity of UTEX395 to a few antibiotics. The
results indicated that UTEX395 is highly sensitive to phleomycin, zeocin, and
G418, and moderately sensitive to paromomycin and hygromycin. Therefore,
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genes conferring resistance to the mentioned antibiotics (sh ble, nptll, aphVIII,
and Aph) may be incorporated in the vectors. Promoters are important ele-
ments for vector construction and a subject area that will be discussed further
below. In the initial vector construction for transformation development, we
used a Chlorella viral promoter, AMTp (adenine methyltransferase (41)) for
the expression of ble and the promoter of C. vulgaris nitrate reductase gene
for the expression of egfp (42). Terminator sequences used were of HSP70
(heat shock protein) and nitrate reductase genes, respectively, from C. vulgaris.
It has been noted that codon optimization can be prudent for the expression
of genes in some algae (43,44). We have taken this into account and optimized
the genes of interest (ble and egfp) based on the known Chlorella codon usage
table when constructing our vectors.

8.3.2 Protoplast Preparation and Transformation of C. vulgaris UTEX395

A variety of methods have been employed for Chlorella transformation. These
methods include electroporation, microprojectile bombardment, glass bead
agitation, and protoplast transformation (45). One of the major barriers to
transformation is the resilient cell wall structure of Chlorella, which makes
DNA penetration into the cells more difficult (45,46). To overcome this chal-
lenge, much effort was undertaken for the protoplast formation in UTEX395
to ensure the uptake of DNA. Protoplast generation was achieved by treat-
ing the cells with cell wall-degrading enzymes, cellulase, acromopeptidase,
and macerozyme (47). Multiple transformation protocols (35,39,48,49) were
adopted and modified into the current protocol for UTEX395. Enzyme-treated
protoplasts of UTEX395 were incubated with the vector DNA in polyethylene
glycol (PEG) and lithium acetate followed by addition of dimethyl sulfoxide
(DMSO) and a heat shock at 42°C. Transformed cells were mixed with soft
agar (0.75%) and plated on agar medium plates containing the antibiotic
phleomycin. Treatment with cell wall-degrading enzymes followed by heat
shock enhanced the transformation efficiency by at least 10-fold relative to
the untreated, intact cells (Figure 8.6A). Successful transformation was con-
firmed by polymerase chain reaction (PCR) using genomic DNA (gDNA) of
the transformants and primers specific to ble (Figure 8.6B). Furthermore,
expression of ble in the transformants was demonstrated by quantitative real-
time PCR (qRT-PCR) (data not shown). Transformants exhibited a range of
ble expression levels up to threefold difference. However, despite the pheno-
typic and genetic evidence for the transformants obtained, we have subse-
quently experienced challenges in the reproducibility of the transformation
results. Several protoplast transformation experiments were attempted after
the initial successful transformations; however, to date, we have been unable
to generate new transformants using the protocol described above. This phe-
nomenon is not uncommon in the area of algal transformation, and many
factors may be attributed to this irreproducibility (50,51). For example, the
importance of endogenous promoters for heterologous gene expression was
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FIGURE 8.6. (A) Transformants of Chlorella vulgaris. U: untreated cells, 1-3: cell
wall-degrading enzyme-treated cells. (B) PCR analysis of transformants. +: Vector
DNA; —: untransformed gDNA; 1, 2: transformants gDNA. (See insert for color repre-
sentation of the figure.)

recently demonstrated in the oleaginous alga Nannochloropsis gaditana (51).
We have taken into account this understanding, and redesigned our plasmids
to incorporate strong, endogenous promoters from C. vulgaris UTEX395 to
drive ble expression. We are currently evaluating these vectors using the meth-
odology described above.

8.3.3 Stability Evaluation of Transformants

A second major barrier to a successful transformation is the maintenance of
the foreign DNA in the genome of the host. Transient expression and instability
have been observed in Chlorella transformation (33,52), although claims were
also made with stable transformation and expression of certain foreign proteins
(35,37). The instability is indicated by the gradual loss of phenotypes during
subculturing of transformants in the absence of selection pressure. Our group
views the stability of transformants as an important criterion for a useful trans-
formation. Although we noted above our uncertainty regarding the status of
the transformants generated by protoplast/PEG transformation, we believe
that the subsequent steps taken to test their stability are worth describing to
serve as a guide for others following this path. To test stability, 25 phleomycin-
resistant transformants were cultured in the growth medium without phleomy-
cin for 10 successive transfers followed by scoring the phleomycin-resistant
population from each transfer. The results indicated that over 60% of the
transformants were stable for at least 10 transfers (30 generations) in the
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absence of the selection pressure, phleomycin. Less than 40% of the transfor-
mants exhibited poor stability. More work is ongoing to study the instability of
this population.

8.3.4 C. vulgaris Endogenous Promoter Identification
and Characterization

Establishment of a stable transformation system is a prerequisite for a useful
genetic tool box. In addition, among the many regulatory factors in microalgae,
promoters may play an important role in modulating the expression level of
genes. To modify the metabolic pathways in microalgae using genetic engineer-
ing, availability of inducible promoters or those with different strengths will
add a great attribute to the tool box. Promoters from a variety of organisms,
including mammalian cells, diatoms, Chlorella spp., plants, and viruses have
been demonstrated to be functional for gene expression in Chlorella spp.
(32,36,38,39,53). Among these studies, viral promoters (e.g., CaMV 355)
appear to be the most commonly used, with the exception of nitrate reductase
promoter from C. vulgaris (36). Due to the complex genetic diversity of Chlo-
rella spp., we thought that transformation and gene expression in C. vulgaris
UTEX395 would benefit from the use of the endogenous promoters, as dis-
cussed above. Taking advantage of the systems biology data (a combination
of transcriptomics and proteomics analyses, discussed above) from UTEX395,
we have identified several genes in the lipid and FA pathways that have ele-
vated or reduced expression due to nitrate starvation. Promoters of those
genes will be isolated by genome walking techniques (54) and characterized
using a reporter gene, such as egfp (42) or uidA (55), for their strength. Simi-
larly, constitutive promoters (strong or weak), indicated by the expression
level of genes, will be of great value to us in the strain improvement of C.
vulgaris and are in the plan for isolation and further characterization.

8.4 IMPLEMENTATION OF BIOLOGICAL TOOLS II—
DEVELOPMENT OF A SELF-LYSING, OIL-PRODUCING
ALGA FOR BIOFUELS PRODUCTION

8.4.1 Algal Lipid Extraction

Although the majority of the work presented thus far has focused on “upstream”
strain improvement strategies, namely strategies to increase oil accumulation,
it was also important to think ahead to downstream strain engineering strate-
gies focused on product isolation and recovery. Even with highly productive
strains, many challenges remain in the development of an algal biomass to
liquid transportation fuel process (56-58). Among these is the challenge of
extracting the internal oil stores for processing into finished biofuels. Few other
problems have generated as much interest from the industrial and research
communities, and numerous approaches have been explored. Many of these
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methods rely on solvent extraction from intact or mechanically ruptured algal
cells and, depending on the solvent used, may also require extensive drying, a
potentially huge cost driver. Solvents such as toluene, hexane, butanol, ethanol,
methanol, and ionic liquids are being considered (59-62). Depending on a
number of factors, solvent extraction may not be optimal as microalgae are
known to have thick,complex,recalcitrant cell walls. Solvents must pass through
the cell wall, cell membrane, and oil body membrane to interact with the inter-
nal algal oils and then reverse this movement to transport the oils outside the
cell. In our techno-economic model, we have included a mechanical disruption
step to facilitate extraction, although it adds both cost and energy demands to
the overall process (9). Additionally, solvents are usually classified as hazardous
materials, are expensive, and would require complete recovery and recycling
to be economically viable. Finally, solvent recycle is poorly understood and life
cycle analysis suggests that a significant amount of solvent, up to 2 g of hexane
per kg of biomass treated, will be lost during processing (63).

In an effort to avoid using solvents, alternative methods are being pursued
that rely on external energy inputs in the form of ultrasound, electromagnetic
pulses, and physical disruption, or on chemical acid or base treatments
(59,64,65) to either augment or replace extraction. These methods may be
costly due to the high energy required to rupture the algal cell walls. In techno-
economic studies, the extraction process has been modeled to be one of the
top contributors to both the capital equipment costs and operating costs of an
algal biorefinery process (9,62,66). Therefore, it represents a key opportunity
for cost reduction. Our entry point into this challenge is to look to the natural
processes and to take advantage of the biology. Biological systems, having
been tuned to efficiently overcome entropy over evolutionary time, are typi-
cally simple, specific, and, most importantly, function with the lowest energy
input required. Thus, an elegant solution with low energy and chemical inputs,
exemplified by secretion in current fermentation processes, would take advan-
tage of a natural, inducible cellular response. This would require development
of an industrially relevant, oil-producing algal strain with a complex pheno-
type. Ideally, this means an algal strain capable of high oil production with
controlled, self-induced cell wall degradation that releases internal organelles,
oil bodies, under a controlled external stimulus. Our strategy to achieve this
goal has been to develop an enzyme-based process to facilitate oil release
(Figure 8.7). An additional benefit is that enzymatic treatment of algal biomass
would leave the residual algal biomass pretreated in a way that downstream
processes such as nutrient recycling, anaerobic digestion, thermal depolymer-
ization, or gassification may be more facile. Enzymatic degradation has the
potential to vastly simplify the harvesting, dewatering, and oil extraction pro-
cesses. We envision a process where algae will be partially dewatered, perhaps
to 20% solids, then induced for self-lysis by partial cell wall degradation. Oil
bodies will escape from the cells and can be easily recovered by simply skim-
ming the surface, or using an established emulsion breaking process, or using
a recycled portion of the algal oil stream for enhanced recovery. To develop
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FIGURE 8.7. Release of internal algal oil bodies by internally or externally applied
enzymes. (See insert for color representation of the figure.)

an industrial algal strain for use in a process involving an enzymatic degrada-
tion step, a suite of enzymes must be tested for efficient cell wall degradation.
The relationship of cell wall degradation to the release of oil bodies must be
determined. Finally, production of the enzymes will need to be established in
the algal host under inducible promoter control that does not require expen-
sive reagents or conditions to effect an economically viable induction of the
enzymatic degradation and subsequent oil release.

8.4.2 Algal Cell Wall Complexity and Enzymatic Treatment Effects

Due to the chemical complexity of the polymers involved, and the structural
complexity of cell wall architecture, there is still a considerable knowledge gap
concerning accurate and definitive algal cell wall composition for most candi-
date species (67,68). Our approach to deconstructing algal cell walls has been
to utilize digestive enzymes themselves to derive information about specific
linkages present in algal cell walls and how those linkages can be exploited to
promote oil body release. This approach will not necessarily fill in the knowl-
edge gap concerning specific algal cell wall polymers, but enzymes can help
determine cell wall structure and composition by providing details about spe-
cific glycosidic linkages present. Information gained in this way can then be
used to figure out how to best break down algal cell walls. A two-pronged strat-
egy was employed to find effective enzymes: examining the impacts on colony
growth and the impacts on mature cells by tracking increasing permeabilization
via the entry of a DNA staining dye. An enzyme impacting growth is important
during formation of the cell wall and if it inhibits growth, one can presume that
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TABLE 8.2. Growth Inhibition of C. vulgaris by Various
Enzyme Classes

Enzyme Inhibition
Alginate lyase No
B-glucuronidase ++
Cellulase No
Chitinase -
Chitosanase +
Dreiselase No
Hemicellulase No
Hyaluronidase No
Lysozyme -+
Lyticase No
Macerozyme No
Pectinase ++
Pectolyase No
Sulfatase ++
Trypsin +
Xylanase No
Zymolyase No

by preventing those specific linkages from forming, the enzyme is preventing a
mature cell wall from being established and thus those susceptible linkages and
components are present. For mature cell walls these same enzymes may or may
not still work because the target glycosidic bonds may now be inaccessible in
the complex architecture of the mature cell wall. The linkages that were avail-
able to enzymes as the cell wall polymers were first produced may now be
enclosed in a matrix of other materials or buried deep within the cell wall. We
used a plate-based assay to determine the effects of various enzymes from dif-
ferent classes on the growth of C. vulgaris UTEX395. By inoculating a dilute
culture into appropriate nutrient containing soft top-agar and then spotting
enzymes directly on this top-agar, while the dilute culture is growing, zones of
inhibition will appear around active enzymes. Table 8.2 describes the effects of
various enzymes having different classes of enzymatic activity.

Several enzymes, chitinase, sulfatase, B-glucuronidase, pectinase, and lyso-
zyme strongly inhibit growth of C. vulgaris. Cellulase, hemicellulase, and xyla-
nase do not inhibit growth, suggesting a lack of accessible cellulose or
hemicelluloses such as found in higher plant cell walls. Alginate lyase which
cleaves 3-1-4 mannuronic bonds, also showed no inhibition of growth. We ana-
lyzed some of the more effective growth inhibiting enzymes both singly and in
combination with lysozyme for their effects on mature, nitrogen-sufficient cells
in overnight digestions. The cells were then incubated with a DNA staining dye,
SYTOX green, which only stains compromised, permeable cells. In the absence
of enzymes, cells were not permeable to the dye and after exposure to various
enzymatic activities a portion of the population became permeable (Table 8.3).
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TABLE 8.3. Percentage of C. vulgaris Population Permeable to SYTOX Green Dye
after Enzymatic Treatment

Enzyme % Permeable % Permeable + Lysozyme
No enzyme 22 —
B-glucuronidase 2.6 54.1
Cellulase 1.2 21.1
Lysozyme 11.9 —
Lyticase 1.09 48.4
Pectinase 1.45 32.7
Sulfatase 1.5 98.8
Trypsin 0.9 29.9

The results of the cell permeabilization experiments suggest that a coating
of chitodextrin (B-1-4 linked N-acetylglucosamine) or peptidoglycan (B-1-4
linked N-acetylmuramic acid and N-acetylglucosamine)-type material, both
polymers sensitive to lysozyme, surrounds or otherwise protects many of the
other polymers from enzymatic attack. It is only after lysozyme strips away or
damages the outer layer that other enzymes are then able to act on the cell
wall, causing increased permeabilization. In some cases the results are dra-
matic. Treating C. vulgaris with lysozyme and sulfatase permeabilizes nearly
100% of the cells, whereas with lysozyme alone, only 12% of the population
is permeabilized. Sulfatases hydrolyse O- and N-linked sulfate ester bonds,
suggesting that sulfated polymers are integral to cell wall architecture in C.
vulgaris. It is also interesting that some enzymes have a large effect on growing
cells by inhibiting growth yet do not seem to have much effect on permeabiliz-
ing the cell walls of mature cells. As an example, cellulase and lyticase applied
individually do not have much effect on growth. However, each in combination
with lysozyme permeabilizes up to 21% and 48% of the C. vulgaris population,
respectively. These results suggest that algal cell wall sensitivities to enzymatic
activities change as the cell matures. Perhaps cellulose is synthesized in the
cell wall at a later maturing stage and is covered by another resistant polymer
during this process such that cellulase cannot inhibit growth and can only
attack the embedded cell wall cellulose once it is rendered accessible by
another enzymatic activity such as lysozyme.

8.4.3 High-Resolution Imaging of Enzymatic Treatment Effects

To further explore the nanoscale architecture of the algal cell wall that may
underlie these results from enzyme mixture digestions, we employed surface
characterization by high-resolution imaging. Transmission and scanning elec-
tron microscopy were used to directly visualize the effects of enzymes on algal
cell walls. The effects of lysozyme on the cell walls of C. vulgaris are dramatic
and complex. Transmission electron micrographs reveal the complete loss of
the hair-like fiber layer of the outer wall surface, swelling of the outer layers,
and a peeling or dissolution of material from the outer cell wall (Figure
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FIGURE 8.8. TEM and SEM images showing changes in and degradation of C.
vulgaris cell walls by lysozyme.

8.8A,B). At first glance, it seems counterintuitive that a digested cell wall that
has lost material would appear thicker. In fact, this is typical for a complex,
compact, layered cell wall to swell significantly as its internal cross-linked
structure is weakened. Although there is no apparent pitting or other surface
defects readily observable by scanning electron microscopy (SEM), the same
amorphous extracellular matrix from degradation of the cell wall is clearly
apparent (Figure 8.8C,D). This extracellular material appears to derive from
dislodged outer cell wall layers and is still attached to the cell by fibrous strands.
More work remains to determine what the key architectural changes are and
the level of structural disruption that will be required to generate a self-lysing
phenotype. It is almost certain that the cell wall does not need to be entirely
digested away to improve oil extraction; however, it may need to be permea-
bilized beyond what is required for a small dye molecule to pass through.

8.4.4 Production Strain Development

As mentioned previously, the growth assays, permeabilization, and surface
characterization studies do not provide an unambiguous determination of the
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composition of algal cell walls but do provide the critical information on the
types of linkages present and indicate how to functionally degrade the algal
cell walls. Using the data from these experiments, a cocktail of enzymatic
activities for efficient cell wall disruption can be created either from enzymes
in-hand or through the mining of transcriptomic and proteomic datasets to
provide sequence data on native enzymes possessing the desired enzymatic
activity. Native, intracellular cell wall-degrading enzymes needed for cell divi-
sion to partially degrade the algal cell wall have been described (69-71). The
enzyme screening experiments demonstrated that multiple layers of differing
cell wall material will need to be degraded. This will require a combination
of synergistic enzymatic activities. The data suggest that 2—4 different enzy-
matic activities should be sufficient to penetrate or weaken the cell wall suf-
ficiently to enhance lipid extraction. Engineering an algal strain to produce a
small number of additional enzymes will likely not pose much of a metabolic
burden.

The final step in effecting an elegant solution to this strategy is the devel-
opment of the production organism. This involves, as discussed above, the
tightly controlled induction of the relevant enzymes. The genes of interest will
have to be placed under the appropriate expression controls and stably trans-
formed into the host organism. Transformation of many walled organisms
requires some level of cell wall permeabilization in order for intact DNA to
pass through to the nucleus (72). In algae this may be particularly important,
as algal cell walls are known to be tough and resistant to a wide variety of
stresses. Additionally, to effectively express cell wall-degrading enzymes in a
green alga such as C. vulgaris, native expression systems will be required. Of
critical needs are those that are tightly regulated and have a rapid, specific,
and effective signal to induce high levels of expression. Inducible promoters
responding to changes in pH or temperature may be useful but ultimately
not specific enough. Although engineering controls can be very effective at
maintaining well-mixed growth conditions, numerous micro-environments
will still exist in the bends, eddies, CO, sumps, and other incongruous areas
of large open ponds. Thus, pH and temperature signals may not be specific
enough, and addition of an inducing chemical and requisite genetic control
will be required.

In conclusion, the solutions to difficult hurdles in biological processes,
such as algae-to-liquid transportation fuels, often require the development of
complex biological phenotypes and rely on pursuing multiple strategies con-
currently. In the case of the construction of a self-lysing, industrially robust,
oil-producing algal strain, this is certainly true. Green algae do not enjoy the
same well-established genetic engineering tools and methods as other organ-
isms, such as E. coli and yeast, yet through focused persistent efforts, success
can be achieved. As one project seeks to develop reliable transformation
strategies in green alga, discussed in Section 8.3.2, this project seeks to iden-
tify the appropriate genes to then utilize these systems to achieve internal,
tightly controlled expression of cell wall-degrading enzymes.
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8.5 CONCLUDING REMARKS

Pursuing a hypothesis-driven strain-improvement program in an unsequenced
microorganism can present a number of unique challenges. Successfully imple-
menting genetic engineering strategies in such an organism requires a multi-
faceted, yet integrated effort. In the current case study we have presented an
efficient strategy for the initiation of such efforts. Careful selection of a com-
mercially relevant microorganism is a critical first step. The development of
compositional analysis tools for selection of ideal strains and validation of
downstream strain engineering strategies thus served as a platform on which
to build our program. Once a promising strain was selected, the development
of a strain engineering toolbox must be rapidly developed and implemented.
We have demonstrated that an omics pipeline focused on transcriptome-to-
proteome analyses can be applied to generate promising targets for genetic
and metabolic engineering. We then presented an ongoing strategy for the
development of a transformation system with which to genetically manipulate
the targets identified through omics analyses or implement downstream targets
focused on improved product recovery. These strain development strategies
are intimately linked, and successful complex phenotype engineering will ulti-
mately rely on utilizing these processes iteratively.
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MEIOTIC RECOMBINATION-BASED
GENOME SHUFFLING OF
SACCHAROMYCES CEREVISIAE
AND SCHEFFEROMYCES

STIPTIS FOR INCREASED
INHIBITOR TOLERANCE TO
LIGNOCELLULOSIC

SUBSTRATE TOXICITY

Dominic PINEL AND VINCENT J.J. MARTIN

9.0 INTRODUCTION

With uncertainty in energy security, the rising demand and price for oil and
gas derived energy, and climate change becoming omnipresent issues in society,
producing alternative cleaner energy has become an important goal for gov-
ernments, industry, and academia alike (1). In this climate, opportunities exist
for using lignocellulosic substrates as cleaner and renewable source of sugars
for bioderived products such as fuels and chemicals via fermentation. The
proposed merits of bioderived fuels and chemicals from lignocellulosic sub-
strates include reducing atmospheric carbon output, diminishing reliance on
imports, and adding value to existing agricultural and forestry industries. Using
waste residues as fermentable sources of sugar alleviates some concerns that
arise in existing starch-based biofuel production processes. Starch-based
ethanol, for example, which uses food crops as feedstock, raises concerns about
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detrimentally affecting food supplies, and has at best a marginal to neutral
carbon footprint, while currently relying heavily on governmental subsidies
for industry viability (2). Waste streams from the forestry industry exist as
by-products of an existing process, and are therefore desirable as fermentation
feedstocks to add value and make full use of existing resources.

Generally, two barriers exist in the fermentation of lignocellulose-derived
sugars. First, using plant biomass as a biofuel substrate is technically challeng-
ing due to its recalcitrant and variable nature. Plant material is broken down
into the three major constituents of cellulose, hemicellulose, and lignin, com-
posed of variable average amounts: 33-51% (w/w), 19-34%, and 21-32%,
respectively (3,4). Lignocellulosic bioconversion seeks to access the sugars
contained in these polymers for microbial fermentation to fuels and commod-
ity chemicals, with the most developed processes leading to ethanol produc-
tion. Several pretreatment practices have been developed such as acid
treatment, steam explosion, and wet oxidation (5), with the aim of separating
out lignin from hemicellulose, and at least partially disrupting the crystallinity
of the cellulose. When biomass is broken down through such treatments a
variety of inhibitory compounds derived from lignin or the breakdown prod-
ucts of the polysaccharides are also released (6). Inhibitors are generally sepa-
rated into the groupings of furans such as 2-furaldehyde (furfural) and
5-hydroxymethyl-2-furaldehyde (HMF), organic acids such as acetic, formic,
and levulinic acids, and phenolics such as 4-hydroxybenzoic acid and vanillin
(7). Other stressors accompany lignocellulosic hydrolysates, such as sulfites,
high dissolved solids (osmotic pressure), wood extractives, lignosulfonates,
nutrient limitations, heat, and fermentation product toxicity including ethanol
(8). The synergistic effects of multiple sources of inhibition have been demon-
strated (6). Furthermore, it is likely that not all sources of inhibition have been
accounted for in biomass hydrolysates (9). All of these sources of inhibition
combine to create a toxic environment for any microorganism that might be
used for the bioconversion of the lignocellulose derived sugars. To circumvent
costly detoxification of the substrate prior to fermentation, it is desirable to
discover or create microbial strains that can survive and ferment these sub-
strates despite their inhibitory effects.

Yet another major barrier to the fermentation of lignocellulosic hydroly-
sates is in the capacity of the microorganism to efficiently metabolize all the
sugars available in the substrate (1). For example, Saccharomyces cerevisiae is
a robust fermentation biocatalyst traditionally used in the bioethanol industry,
but it cannot make use of pentose sugars like xylose, which are abundant in
biomass, and will only ferment hexose sugars to ethanol. The most economi-
cally viable fermentation process would make use of a microorganism that can
simultaneously ferment all sugars within the substrate to the desired product,
diminishing production times and infrastructure costs, such as additional fer-
mentors for sequential fermentation by multiple biocatalysts (1).

Both challenges, tolerance to substrate toxicity and total sugar utilization,
are complex phenotypes to obtain in that their optimum expression requires
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modulation of multiple genes and metabolic processes. As mentioned, more
inhibitor-tolerant organisms such as S. cerevisiae are unable to use pentose
sugars, while pentose-fermenting organisms are generally less tolerant to lig-
nocellulosic substrate toxicity (10). Therefore, generating a suitable biocatalyst
to ferment lignocellulosic substrates will require either reprogramming metab-
olism to generate pentose fermentation capabilities or increasing stress toler-
ance, or likely a combination of the two.The stress responses of microorganisms
have been documented through gene expression studies that show they are
multigenic in nature, leading at times to the differential regulation of approxi-
mately 900 genes (11). A handful of genetic targets that would make rational
strain manipulation through classical molecular biology techniques plausible,
such as gene knockouts or upregulation, are difficult to pinpoint, and the
desired traits may not be possible without addressing large-scale multigenic
cellular responses. Furthermore, using classical random mutation for strain
development makes it difficult to affect a large number of mutations in a short
amount of time, based on the sequential nature of mutational addition inher-
ent in classical strain improvement schemata (see Chapters 1 and 4). Given
the apparent complexity of developing lignocellulose inhibitor-tolerant traits,
and the fact that the precise genetic factors involved in tolerance are largely
unknown, genome shuffling is an attractive technology for developing strains
that can ferment lignocellulosic substrates effectively.

To this end, a meiotic-based genome shuffling strategy was developed for
yeast strains to increase tolerance to hardwood spent sulfite liquor (HWSSL)
(12,13), a by-product of the acid bisulfite pulping process that can contain up
to 20g/L xylose and 30g/L hexoses (14). HWSSL can therefore be used as a
substrate for ethanol production to add value to the sulfite pulping process
and to diminish biological oxygen demand resulting from disposing of unfer-
mented SSL. However, HWSSL contains high concentrations of inhibitors
commonly found in lignocellulosic hydrolysates, such as those mentioned
above (15,16). It was hypothesized that quickly generating a microbe that
could overcome HWSSL toxicity would require a strain development technol-
ogy that could combine several mutations into a single genome in order to
reprogram multigenic stress responses and achieve this complex trait. The
genome shuffling approaches that were used to address this challenge will be
discussed throughout this chapter and will serve as case studies of meiotic
recombination-based genome shuffling (12,13).

9.1 METHODOLOGY

The two methodologies used in this study approach the challenge of HWSSL
fermentation from different perspectives. The first used the yeast Schefferso-
myces stipitis (13) as a biocatalyst, while the second used the common fermen-
tation yeast S. cerevisiae (12). S. stipitis was chosen because of its natural ability
to ferment hexose and pentose sugars, and S. cerevisiae was chosen because it
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is currently the least sensitive microorganism to the types of stress or inhibitors
found in HWSSL (17). Although S. stipitis is generally more sensitive to
HWSSL toxicity (10,16), S. cerevisiae populations will also die off after pro-
longed exposure to HWSSL (18).

9.1.1 Meiotic Recombination-Mediated Genome Shuffling

When the biocatalysts of choice are eukaryotic, as is the case with both of the
above-mentioned studies, it may be possible to manipulate the natural mating
cycle of the organism to propagate genetic recombination through meiosis,
between mating parental mutants. The principal theories governing meiotic
recombination-based genome shuffling are the same as those for protoplast
fusion-based genome shuffling formats (see Chapter 4). The rationale is to
create large, diverse populations of mutant strains of a particular organism as
a pool of genetic diversity for combining beneficial mutations. Here, instead
of using protoplast fusion to orchestrate recombination, the natural mating
cycle of an organism is used in a reiterative process. Large populations of
mutants are manipulated into sexually recombining to evolve individual
genomes and enhance useful traits that arise from the changing genotypes.
Theoretically,the natural process by which reiterative mating effects recom-
bination bypasses the potential instability of protoplast generation, fusion, and
cellular regeneration.

In order to use genome shuffling through meiotic recombination, a shuffling
methodology had to be implemented for both organisms. S. cerevisiae has a
well-understood mating cycle. The haploid generation of S. cerevisiae can exist
in two opposite mating types, MATa and MATo. Haploid S. cerevisiae strains
will mate under conditions that favorably promote growth of the organism,
such as growing on rich media like yeast peptone dextrose (YPD). Meiotic
division and subsequent sporulation can then be carried out by transfer to a
nitrogen-poor media with a nonpreferred carbon source such as potassium
acetate. The asci can be disrupted by enzymatic digestion of the cell wall, fol-
lowed by sonication to separate sister spores. This step is crucial for genome
shuffling in that it is desirable for haploids bearing one genotype to have equal
opportunity to mate with haploid strains bearing differing genotypes and thus
maintain the diversity of the mating populations, promoting rare mating events
that bring together synergistically beneficial mutations. This process can be
repeated indefinitely to accumulate beneficial mutations while retaining the
ability to backcross out any deleterious mutations (Figure 9.1). To ascertain
whether the mating process could be sufficiently manipulated in order to
engender sexual genetic recombination on large populations, auxotrophic
S. cerevisiae strains with differing auxotrophies were mated population-wise
and screened for loss of auxotrophy (Figure 9.2). Four strains of each mating
type, which were auxotrophic for 3 out of 4 essential nutrients (including
leucine, histidine, tryptophan, and uracil) due to mutations affecting single
genes, were mated as depicted in Figure 9.2. The entire population for mating
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FIGURE 9.1. Schematic representation of meiotic recombination-based genome shuf-
fling of S. cerevisiae. First, haploid mutant pools are generated through ultraviolet (UV)
mutagenesis for each mating type (MATa and MAT ). Mutant populations are mated
on rich media (YPD) to obtain the diploid generation. Diploids are sporulated on
potassium acetate. Spores are segregated by enzymatic cell wall degradation followed
by sonication to generate a haploid generation. Haploids are germinated and mated
on YPD and reiterative mating is carried out.

was initially comprised of triple auxotrophs of both mating types, based on
combinations of permutations for nutritional requirements coupled with one
wild-type allele. As population mating and haploid regeneration was carried
out as depicted in Figure 9.2, members of the population recombined to
contain more than one wild-type allele in their genome, and thus lost auxot-
rophy. If the wild-type alleles are treated as beneficial mutations, it is clear that
they can be added together into a single genome through this process, with
complete prototrophy being representative of four combined beneficial muta-
tions. Theoretically, it was hypothesized that because the alleles corresponding
to auxotrophy, or lack thereof, were on different chromosomes, after two
rounds of reiterative mating two-wild type alleles could be brought together
during the first mating event and four during the second, a product of mating
doubly auxotrophic strains. Indeed, after the first mating round, ~35% of the
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FIGURE 9.2. Testing of S. cerevisiae genome shuffling methodology using auxotrophic
strains. A parental population of haploid strains, which were auxotrophic for 3 of 4
nutritional requirements, were reiteratively mated using meiotic recombination-based
genome shuffling. The auxotrophies were based on deletion in single genes (depicted
by lowercase letters: 1 for leucine, t for tryptophan, h for histidine, and u for uracil
auxotrophies). Wild-type alleles are depicted by corresponding uppercase letters. After
one round of genome shuffling, 35% of the population harbored two wild-type alleles,
and after two rounds, 0.024% of the screened population showed complete prototro-
phy, or four wild-type alleles. The table (bottom) depicts an extrapolation of the amount
of beneficial mutations (y-axis) that are possible through multiple rounds of meiotic
genome shuffling (R1-R6).

population was comprised of double auxotrophs, while two rounds of mating
led to a small percentage of completely prototrophic strains (~0.02% ), which
grew to nearly 1% of the population after three rounds. It should be noted
that no form of population enrichment or selection for decreased auxotrophy
was used between rounds, which could have led to more accelerated combina-
tion of the surrogate beneficial mutations. Also, these findings did not adhere
strictly to Mendelian genetic predictions. This was likely due to the different
growth rates of strains bearing differing auxotrophies (12). Because growth
occurred during germination and mating, strict Mendelian statistics no longer
applied. However, if one extrapolates the findings of the mating for loss of
auxotrophy experiment, with a large and diverse enough population or by
enriching the mating population between rounds, beneficial mutations can be
accumulated indefinitely at an exponential rate as rounds of reiterative mating
progress. If one contrasts this with classical strain improvement, which is
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sequentially subjecting a single strain to mutation for iterative improvement
(see Chapter 1), as genome shuffling progresses it should greatly outpace the
beneficial mutation accumulation possible in classical mutation-based strain
development.

A similar mating protocol was developed for S. stipitis, although on a
smaller scale. One of the issues working with S. stipitis is the insufficient infor-
mation that exists on manipulating its mating cycle. When working with organ-
isms that cannot undergo sexual recombination, or when large-scale population
mating would be difficult, it is common practice to use reiterative protoplast
fusion to shuffle genomes (19-25). However, Bajwa et al. (13) were successful
in establishing a mating protocol for S. stipitis. By mating two auxotrophic
strains in a similar fashion to that described in Figure 9.1, it was possible to
combine two wild-type alleles and establish strains with diminished auxotro-
phy. Mating was made possible by spreading S. stipitis cultures on malt extract
agar, which after incubation led to spore formation as well. Unfortunately, the
percentage of the population that had combined two wild-type alleles after
one round of mating was only 0.05% of the population, as opposed to the
~35% mark that was attained with S. cerevisiae. This low recombination effi-
ciency suggests that future genome shuffling projects involving S. stipitis might
benefit from protoplast fusion-based genome shuffling in order to accelerate
strain evolution.

9.1.2 Inducing Genome Shuffling through Meiosis versus Protoplast Fusion

One of the goals of genome shuffling is to preserve genetic diversity within
the population to promote microbial strain evolution through the combination
of mutations. Maintaining large, diverse populations throughout genome shuf-
fling is a successful method for maintaining evolution of traits of interest
beyond a few rounds of reiterative mating. Additionally, the efficiency of
recombination will greatly influence the outcome of the genome shuffling
experiment. A lower level of recombination will require larger, perhaps pro-
hibitively so, parental mutant populations in order to effect the beneficial
combination of mutations that might comprise a small percentage of the popu-
lation. Additionally, higher recombination efficiency can minimize the amount
of rounds of genome shuffling required by a given project. As outlined above,
with meiosis-enacted recombination, the efficiency will rely on mating and
sporulation. If these steps cannot achieve a reasonable level of efficiency,
protoplast fusion-based genome shuffling may be a viable option, which has a
recombination efficiency that relies equally on protoplast generation, fusion,
and strain regeneration efficiencies.

As genome shuffling technology is still developing, direct comparisons
between the utility of differing techniques, based on separate modes of genetic
recombination, are scarce. However, protoplast fusion-mediated genome
shuffling has been attempted using S. cerevisiae as well as the meiotic
recombination-mediated shuffling discussed above (Table 9.1). Shi et al. (26)
have reported protoplast fusion-based genome shuffling with S. cerevisiae in
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TABLE 9.1. Comparison of Genome Shuffling by Meiosis versus Protoplast Fusion
in 8. cerevisiae

Method Meotic Recombinaton Protoplast Fusion
Recombination <35% Unknown (100% protoplast
efficiency generation, 75% cell
regeneration)
Possible size of mutant Indefinite Indefinite
mating pools
DNA level per cell Wild-type level Increased per protoplast fusion
(haploid/diploid)
Steps involved Mutation, mating, Mutation, protoplast generation,
sporulation, spore protoplast fusion, cellular
segregation regeneration

order to engineer the trait of enhanced thermotolerance (26). In this study, a
haploid S. cerevisiae population was made into a population of protoplasts by
enzymatic digestion of the cell wall. Protoplast fusions were enacted by expo-
sure to polyethylene glycol and fused protoplasts were regenerated on rich
media containing inhibitory levels of ethanol. This study reports protoplast
preparation and regeneration rates of 100% and 75%, respectively, but does
not address the level of protoplast fusion attained. Assuming fusion rates are
high, protoplast fusions with fungi appear to be a strong option for genome
shuffling. However, one unknown to protoplast fusion-based genome shuffling
is the effect that the process of reiterative protoplast fusion and cellular regen-
eration may have on the stability of the final strain. Shi et al. report DNA
levels at 5.089, 5.144, 6.289, and 7.477 mg/g of cells for the UV mutant popula-
tion and rounds one, two, and three of genome shuffling, respectively (26). It
is clear that the DNA content of strains resulting from protoplast fusion
increases as genome shuffling is carried out. In the end, it is yet to be deter-
mined if such an increase will affect strain stability, although after 50 genera-
tions the thermotolerant phenotype was preserved in the strains obtained
through this study. As a control, classical strain improvement was carried out
alongside the genome shuffling for increased thermotolerance experiment. It
was found that only slight improvements to thermotolerance could be obtained
by reiterative UV mutation and selection, again demonstrating the power of
genome shuffling, regardless of the method of exacting recombination.

9.2 RESULTS AND DISCUSSION OF STRAIN DEVELOPMENT

9.2.1 Generation of Mutant Pools

Using the reiterative mating methodologies described above, mutant strains
were genome shuffled for increased tolerance to HWSSL. UV mutagenesis
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was used for both §. cerevisiae and S. stipitis, with strains being exposed to UV
dosages that led to a ~50% death rate. It was hypothesized that this death rate
would lead to a low amount of mutations per genome, in order to minimize
the chance that other deleterious mutations would mask beneficial ones. These
irradiated populations were selected to enrich a population of mutants that
displayed increased tolerance to HWSSL, which would be used as the parental
pool for meiotic recombination-based genome shuffling.

It should be noted that other forms of mutagenesis have been applied to
generate mutant pools, such as chemical mutagenesis with ethyl methane
sulfate (EMS) (21). The choice of mutagen will affect the types of mutations
that can occur (see Chapter 1), although most reports have used mutagens
that generate point mutations, such as with UV irradiation and EMS exposure.
The mutagenesis step can also be carried out on haploid (12) or diploid strains
(27), or on protoplasts in the case of protoplast fusion-based genome shuffling
(26). One S. cerevisiae genome shuffling project has reported starting with
diploid strains and using a high dosage of EMS (leading to a ~90% death rate)
to introduce mutation into the population (27). The rationale cited for using
diploids as the initial population is that when using a higher dosage of mutagen,
beneficial mutations might accompany lethiferous ones, which could mask any
favorable effects. These deadly mutations will be more likely accommodated
by a strain if a second copy of the wild-type genome is present. Transversely,
Pinel et al. (12) chose to expose haploids of each mating type to UV muta-
genesis to generate initial mutant pools (12). This measure was taken in order
to ensure that if a recessive beneficial mutation is generated it will not be
masked by the presence of a wild-type allele. Transversely, if a diploid is used
for the parental mutant population it would be more difficult to generate
recessive beneficial mutations that would be selected through screening diploid
mutant populations. In this case, the diploid parental mutant population would
have to be sporulated in order to screen the haploid generation and obtain
strains bearing recessive beneficial mutations. Furthermore, here a lower
dosage of mutagen was used in order to minimize the chances of generating
deleterious mutations that would accompany the beneficial ones (12). Since
most mutations will either be deleterious or have no phenotypic effect, it
remains to be shown whether a high rate of mutation, introducing more than
one mutation into a parental strain at once, is of benefit.

9.2.2 Screening and Selection of Mutant and Evolved Populations

Finding a large-scale, high-throughput screen is of paramount importance for
any genome shuffling strategy. This may in some instances become the bottle-
neck for a genome shuffling project. For instance, if the phenotype of interest
is increased product titers, it may be difficult to screen large populations for
increased product output, especially if the product of interest requires cultur-
ing and an involved product extraction and analysis procedure. In the two
studies addressed herein, growth at higher concentrations of HWSSL than the
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FIGURE 9.3. Profile of HWSSL gradient plate. HWSSL gradient agar plates were
used for screening S. cerevisiae and S. stipitis UV mutants and genome-shuffled strains.
Plastic plates (25c¢m?) were elevated and HWSSL agar was allowed to solidify. The
plates were then brought to a level position and overlaid with minimal media. The
plates were subdivided and populations of yeast were spread for side-by-side compari-
son of HWSSL tolerance.

wild-type starting strains was used as a surrogate screen for tolerant organisms
that could ferment HWSSL more efficiently. When the complex phenotype
being addressed is increased tolerance to substrate toxicity, growth becomes
an easy method for screening and therefore lends itself more easily to genome
shuffling-based strain improvement. Both S. stipitis and S. cerevisiae mutants
were screened primarily using gradient agar plates. The large gradient plates
were made by overlaying solidified HWSSL agar with minimal media that
contained similar sugar content to that found in HWSSL (Figure 9.3). This
created a gradient of increasing concentration of HWSSL across the plate. The
plates were divided into lanes and mutant or shuffled strains could be com-
pared with the wild type on one plate. In this way, a large population of cells
(~107) could be assessed for increased tolerance in any one lane of the gradient
plate. The rationale behind screening large populations is to increase the prob-
ability of identifying strains that contain rare single or combined mutations.

9.2.3 Increasing HWSSL Tolerance through Genome Shuffling

At the onset of the two studies, the wild-type strains would die off readily upon
exposure to undiluted HWSSL. The wild-type laboratory CEN.PK strain of
S. cerevisiae was chosen for its general robustness and ability to mate and
sporulate efficiently (28). The tolerance of the wild-type S. cerevisiae and
S. stipitis starting strains to HWSSL was assessed at approximately 60% (v/v)
HWSSL diluted with water. Mutant pools for reiterative mating were obtained
by scraping the mutant populations from gradient plates that grew to higher
levels of HWSSL concentration than the wild type. Mutants of S. cerevisiae
grew to approximately 70% (v/v) HWSSL, and members of the final S. stipitis
mutant population were able to grow at 75% (v/v), although they underwent
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three rounds of sequential UV mutagenesis as opposed to one round for
S. cerevisiae. After five rounds of genome shuffling and selection it was found
that a small number of S. cerevisiae genome-shuffled strains could grow and
ferment undiluted HWSSL, while S. stipitis genome-shuffled strains could grow
in 85% (v/v) HWSSL. The surrogate screen of growth on increasing concentra-
tions of HWSSL led to strains that could ferment the sugars in HWSSL better
than the wild type, for longer periods of exposure to HWSSL, seemingly
indefinitely in the case of the S. cerevisiae strains (discussed below).

Individual strains, evolved through genome shuffling and selected on
HWSSL gradient agar plates, were randomly selected from the frontier of
growth in the S. cerevisiae study (12). Thirty mutants from the UV mutant
population and 15 from rounds 1, 3, and 5 of genome shuffling with population
enrichment were tested for increased tolerance to undiluted HWSSL. Although
all of these strains displayed higher tolerance to HWSSL than the wild type
at diluted concentrations of HWSSL agar, it remained to be shown how that
tolerance would translate to exposure to 100% HWSSL liquid in shake flask
fermentations. Cultures were sampled daily for viability through plate counts
(CFUs/mL). The viability results showed the heterogeneity that existed within
the mutant and genome-shuffled generations. For example, only 1 of the 30
tested UV mutant strains showed a noticeable increase in viability over the
wild type in undiluted HWSSL. Subsequent sampling from the genome-
shuffled populations led to an increased average tolerance among the 15
sampled colonies, which grew as the rounds progressed. Although heterogene-
ity still existed within the sampled subpopulation with regard to HWSSL toler-
ance at 100% HWSSL, an overall evolution toward HWSSL tolerance was
achieved.

9.2.4 Tolerance to HWSSL Leads to Increased Ethanol Production

As discussed above, it should be noted that in both of the highlighted studies,
growth and survivability on HWSSL were used as surrogate screens to identify
better fermentative strains of HWSSL. In order to determine if increased
HWSSL tolerance equates to increased ethanol productivity on HWSSL, the
most HWSSL-tolerant strains were tested for sugar consumption and ethanol
production at high cell densities, to mimic industrial conditions, in increased
HWSSL concentrations. The three most HWSSL-tolerant S. cerevisiae strains
were able to maintain fermentation of hexose sugars to ethanol over pro-
longed and repeated exposure to HWSSL (Figure 9.4) (12). Cells from the
high cell density S. cerevisiae cultures were centrifuged and resuspended in
fresh undiluted HWSSL after 2 days for the first pass and 3 days for each
additional pass, up to six passes. It was shown that the HWSSL-tolerant
genome-shuffled strains remained productive; that is, they survived HWSSL
toxicity, consumed hexose sugars, and produced ethanol near theoretical levels
of ethanol production, for all six passes, while the wild type lost the ability to
ferment hexose sugars to ethanol during pass 3 in HWSSL. The S. stipitis study
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FIGURE 9.4. Ethanol production from hexose sugars in HWSSL by an S. cerevisiae
strain obtained through genome shuffling versus wild type. The most HWSSL-tolerant
strain of S. cerevisiae generated through genome shuffling was tested in shake flasks
containing undiluted HWSSL at a high cell density for hexose sugar consumption (X
sign, solid line) and ethanol production (square, dashed line) versus the wild-type
parental S. cerevisiae strain (+ sign, solid line for sugar consumption, diamond with a
dashed line for ethanol production). Cultures of each strain were resuspended in
HWSSL for six passes to mimic the prolonged exposure to SSL that occurs in industrial
fermentation plants.

was able to produce a strain that could produce ethanol from HWSSL glucose
alone to levels between 0.15% and 0.18% (w/v) for a single 48-hour period in
HWSSL, while the wild-type control was unable to ferment any of the sugars
in HWSSL (13). These results suggest that using a surrogate screen of growth
and viability on increased concentrations of inhibitory substrate is an appro-
priate screen for genome shuffling projects that aim to produce higher ethanol
titers in the presence of lignocellulosic hydrolysate inhibitors.

9.2.5 Tolerance to HWSSL Leads to Cross-Tolerance to
Multiple Inhibitors

Both organisms were further tested on individual inhibitors in attempts to
explain the root of the tolerant phenotype. It was shown that genome-shuffled
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S. stipitis strains displayed increased tolerance to the individual inhibitors like
acetic acid, furfural, and HMF (13). Furthermore, HWSSL tolerance translated
into cross-tolerance to three other wood hydrolysates (29). Genome-shuffled
S. cerevisiae strains displayed tolerance to the individual inhibitors like acetic
acid, HMF, hydrogen peroxide, and osmotic pressure (12). These findings
demonstrate that the phenotype that has been evolved for is based on a
general tolerance to multiple common sources of inhibition in lignocellulosic
hydrolysates. Interestingly, the modes of tolerance to specific inhibitors do not
seem to be identical. It was shown that the three most HWSSL-tolerant
S. cerevisiae strains display increased acetic acid tolerance over the wild type
only after pre-exposure to HWSSL, whereas the osmotic pressure and hydro-
gen peroxide tolerant traits were apparent with and without pre-exposure to
HWSSL (12). This is consistent with recent findings, which suggest that toler-
ance to acetic acid can be an inducible response (30). Furthermore, the top-
performing HWSSL strain showed increased tolerance to hydrogen peroxide,
while the two other HWSSL-tolerant strains tested showed decreased hydro-
gen peroxide tolerance as compared with the wild type. Such findings demon-
strate the heterogeneity that can exist phenotypically within a genome-shuffled
population. This suggests that within a given population the ways that a single
strain can arrive at the phenotype of interest are by multiple paths, in turn
suggesting that the strains will harbor differing mutations and/or combinations
thereof.

9.2.6 Comparison between the S. stipitis and S. cerevisiae Genome
Shuffling Studies

There were differences in how the two studies were performed. A brief com-
parison can be seen in Table 9.2. One major difference was the size of the
initial UV mutant population. The S. stipitis study used only six to eight indi-
vidual colonies for meiotic recombination for each round of shuffling, while
the S. cerevisiae study used the entire population that displayed more tolerance
to the wild type, although the extent of the population diversity was not
assessed. The tolerance to HWSSL displayed by S. cerevisiae grew from
approximately 70% (v/v) to 100% (v/v) from UV mutant populations to round
five of genome shuffling. The tolerance of S. stipitis increased from approxi-
mately 75% (v/v) to 85% (v/v) from UV mutant populations to round three
of genome shuffling. Notably, two additional rounds of genome shuffling did
not lead to a significant increase in tolerance in S. stipitis, while the evolution
of S. cerevisiae progressed throughout all five rounds. This observation may
stem from the fact that larger, more diverse populations were used for genome
shuffling of S. cerevisiae, increasing the chance of bringing together synergistic
mutations. Transversely, the smaller sample of tolerant individual strains used
in the genome shuffling of S. stipitis may have exhausted the number of muta-
tions existing in the initial mutant pool that were available for recombination,
or minimized the possibility of combining rarer, synergistically beneficial
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TABLE 9.2. Comparison of Genome Shuffling in S. cerevisiae and S. stipitis for
HWSSL Tolerance

Organism S. stipitis S. cerevisiae
Mating efficiency 0.05% <35%
Possible size of mutant mating pools 6-8 individual 107 individual
colonies colonies
Level of HWSSL concentration tolerated after 85% viv 100%
genome shuffling
Rounds of genome shuffling that led to increased 3 5
tolerance
Increased ethanol production from HWSSL Yes Yes
Displayed cross-tolerance to multiple individual Yes Yes
inhibitors

mutations. Alternatively, it is possible that S. cerevisiae is naturally more genet-
ically predisposed to inhibitor tolerance. Finally, the poor mating efficiency of
S. stipitis, as shown through the mating for loss of auxotrophy assessment, may
have played a role in the stagnation of population evolution. Similarly, to
assess the usefulness of mating a limited number of tolerant individuals to
overcome HWSSL toxicity, following round three of S. cerevisiae genome shuf-
fling, five individual colonies that were able to grow at 85% (v/v) HWSSL were
inter-mated using the methodology described above. However, no noticeable
increase in tolerance, by HWSSL gradient plate comparisons, was witnessed
(unpublished data). This finding, coupled with the lack of evolution displayed
through reiterative mating past three rounds in the S. stipitis study, supports
the theory that continued evolution of a phenotype of interest through genome
shuffling is correlated to the size and diversity of the mating populations.
Transversely, it was also shown by Pinel et al. (12) that using a large nonen-
riched population as a mating pool may act to slow the advance toward a strain
displaying a desired trait as well. It was shown that if the shuffled populations
are enriched for tolerant subpopulations between rounds, prior to the subse-
quent round of population mating, a more inhibitor-tolerant phenotype could
be obtained with fewer rounds of genome shuffling. Specifically, two rounds
of genome shuffling with enrichment between rounds led to populations that
were more tolerant to HWSSL than four rounds without enrichment in
between, shown through gradient plate screening (12). Enrichment was carried
out by selecting the portion of each genome-shuffled population that displayed
more tolerance than the wild type to HWSSL for use in the subsequent
population-wise mating step. Here, it was hypothesized that by limiting the
amount of strains displaying wild-type-level tolerance to HWSSL, the chances
of combining the genomes of strains harboring beneficial mutations could be
enhanced.
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Although the tolerance attained by S. cerevisiae outpaced that attained
by S. stipitis under the conditions described, it is important to note that
S. stipitis has the added advantage of being able to utilize pentose sugars
found in HWSSL (16). However, in undiluted HWSSL the most tolerant
S. stipitis strains isolated in the Bajwa et al. study were unable to use the xylose
present (29). Ultimately, the adverse effects of HWSSL toxicity on pentose
fermentation with S. stipitis may prove to be a formidable barrier to overcome.
However, further genome shuffling with more diverse populations could
perhaps yield S. stipitis strains that can tolerate undiluted HWSSL and still
make use of the pentose sugars found therein. To make full use of the HWSSL
substrate, the ability to ferment pentose sugars would have to be engineered
into S. cerevisiae for xylose utilization in particular, which has been shown
to be a viable option (14). The tolerant strains produced in the Pinel et al.
(12) study could act as background strains for rationally engineering a
pentose-fermenting, HWSSL-tolerant S. cerevisiae strain, and further genome
shuffled for strain optimization. In this way, rational strain engineering and
genome shuffling may be complementary technologies for evolving complex
phenotypes.

9.3 CONCLUSIONS AND FUTURE DIRECTIONS

The two studies focused on in this chapter were successful in implementing
meiotic-based genome shuffling to evolve the complex phenotype of HWSSL
tolerance. Juxtaposing the two cases highlights important factors that need
to be addressed when developing a genome shuffling strain improvement
regime. The choice of a parent organism is the first integral step. If a strain
has a desirable native ability, such as pentose fermentation with S. stipitis, this
may circumvent the need for combining rational metabolic engineering with
strain evolution. Likewise, S. cerevisiae has a long history of use as a biocatalyst
under harsh fermentation conditions, which may be based on an inherent
predisposition toward robust inhibitor tolerance, and can perhaps therefore
be evolved more readily to high levels of tolerance. Genome shuffling of
organisms with well-understood mating cycles like S. cerevisiae can increase
the utility of genome shuffling through reiterative mating by supporting high
recombination efficiencies and the subsequent ability to bring together benefi-
cial mutations in an exponential fashion, which is only attenuated by the size
and diversity of the parental mutant populations and the high-throughput
screen involved in generating mating populations. When mating efficiency
is low, however, protoplast fusion-based genome shuffling may be a viable
option.

These studies show the utility of using genome shuffling technology to
develop strains that are tolerant of lignocellulosic substrate inhibitors. As
research and interest in biofuels progress, such methods may become
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commonplace for developing strains that are fine-tuned to fermenting specific
substrates, or creating organisms that display traits of cross-tolerance to spe-
cific inhibitors or a multitude of similar lignocellulosic substrates.

Finally, as high-throughput “omics” technologies become more common
and accessible and the price of sequencing continues to diminish (see Chapter
3), the genetic changes that accompany the traits that are evolved in strain
development through random approaches such as genome shuffling will help
to understand complex trait evolution and inform more rational approaches
to strain development. By comparing the genomes of parental strains with final
mutant strains at single nucleotide resolution, it will be possible to identify the
mutations that have taken place, the genes that have been targeted, and sub-
sequently, the most important genetic factors involved in a phenotype of
interest.
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hypothesis-driven strain improvement
strategies, 210-217
Computational protein design, 39
Concentration constraints, 91-92
Constraint-based modeling
applications in strain engineering,
101-103
applications of, 92
schematic view of, 81
theory, 80-82
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adaptive evolution and, 113-114
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Control and sensor technologies for
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temperature sensing and control,
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Corynebacterium glutamicum, 43, 46
histidine-producing, 58
lysine synthesis in, 58, 60
succinylase flux vs. diaminopimelate
dehydrogenase branch in, 55
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244-245
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batch, 22, 23-24
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Cysteine biosynthesis, 87, 88

DASGIP AG, 153

DASGIP Gas Mixing Module, 155
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Diels-Alder reaction, 39
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Diploid strains, advantageous mutations
and, 9
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Disposable shake flask/microtiter plate
with integrated DO and pH
sensors, 152

Dissolved carbon dioxide, effect on
fermentation, 146, 147
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Dissolved oxygen control
to determine optimal feed rate for
carbon source-limited
fermentation, 140-143
for minibioreactors, 149-150
Dissolved oxygen optode, 149
Dissolved oxygen sensors, 136
disposable shake flask/microtiter plate
with, 152
Dissolved oxygen-stat control strategy,
141-143
D-MFA. See Dynamic MFA (D-MFA)
DNA, maintenance of foreign in host
genome, 219-220
DNA microarray, 192
DNA repair machinery, effect of
mutagens on, 15
DOE. See Design of experiment
(DOE)
Dose-response curves, 13
Doublet of doublet signals, 56
Doublet signals, 56
DSM Anti-infectives, clavulanic acid
strain improvement program and,
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Regulatory Network), 86
Electroporation, 218
Electrospray ionization (ESI), 53
Elementary metabolite units, 61-63
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Emden-Meyerhoff pathway (EMP), 40,
55,64
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split ratio analysis and, 59
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(EMS)
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Energy metabolism, MFA and, 45
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split ratio analysis and, 59
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Enzymatic glucose auto-delivery system,
151
Enzyme-based process, for algal lipid
extraction, 221-226
Enzyme capacity constraints, 81
Enzyme classes, growth inhibition of
C. vulgaris by, 223
Enzyme reaction rules, reaction
pathways from, 39
Enzymes, multiple omics data sets and
relationship between metabolites
and, 95-96
Enzyme saturation levels, 96
Escherichia coli. See also
3-Hydroxypropionate (3-HP),
recombinant E. coli in production
of
antibody production in, 156
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fermentation in 48-bioreactor, 155
genetic basis of stress response in, 97
genome-scale and small-scale model
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functions, 80
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of, 96-97
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concentrations, 93
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of, 140, 142, 143
metabolic flux in, 58
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1,3-propandiol from, 42
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regulatory rules for, 85
succinate from, 43
tolerance to 3-hydroxypropionic acid
in, 119
transaldolase gene in, 64
transposon mutagenesis in, 116
UV mutagenesis in, 15



256

Escherichia coli metabolic model iJR904,
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Ethanol stress, engineering resistance to,
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Ethanol tolerance, 126
Ethyl methane sulfate exposure, 241
Ethyl methane sulphonate (EMS), 3, 4,
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mutagenesis and, 12
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adaptive, 113-114
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8-9
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examples, 121-126
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123-124
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124-126
future prospects for, 126-127
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multiscale analysis of library
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limited, 140-143
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Feeding control for minibioreactors,
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fermentation process
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classical development methodology,
134-136
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Fitness, 3-hydroxypropionic acid related,
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Fitness landscapes, 18-19
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(FACS), 120, 204
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See also under Metabolic flux
constraints for, 96-97
integrated, 86-87
parsimonious enzyme usage, 100
regulatory constraints in (rFBA),
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Fluxomics, 82
Forced mutagenesis, 12-16
applications, 16
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mechanisms of, 15
mutagen specificity and frequency and,
14-15
optimal mutagen dose, 13-14
Formic acid, 234
Fourier transform ion cyclotron
resonance mass spectrometry
(FT-ICR MS), for analysis of
metabolic flux networks, 54
Fractional two-factorial Plackett Burman
design, 138
Frameshift frequencies, 4
frdCD, 97
Freezing/thawing stress, engineering
resistance to, 125, 126
FT-ICR MS. See Fourier transform ion
cyclotron resonance mass
spectrometry (FT-ICR MS)
Fuels, conversion of lignocellulosic
biomass into, 123-124. See also
Biofuel production
Fujiyama type of landscape, 19
fumB, 97
2-Furaldehyde (furfural), 234
Furans, 234
Furfural, 245
tolerance to, 87-89
Fusarium graminearium, 11

G418, 217
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tracer data, 49, 50-51
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spectroscopy (MS), for isotope
tracer data, 49-50, 53

GC. See Gas chromatography (GC)
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Gene expression data, metabolic models
and, 87-91
Gene expression microarrays, 82-83
Generally recognized as safe (GRAS),
classical strain improvement and,
27
Gene repression, simulation of, 85
Genetic determinants of mutation rate,
9-11
Genetic drift. See Random genetic drift
Genome-scale metabolic networks,
78-80
constraint-based modeling theory,
80-82
development of model constraints,
83-87
future directions, 101-103
gene expression data in metabolic
models, 87-91
metabolomics data in metabolic
models, 91-94
multiple omics data sets, integration
of, 94-100
omics data, 82-83
Genome-scale microarray, 120
Genome-scale model
small-scale vs., 40-42
TMFA analysis and, 91
Genome shuffling, 114-115
engineering tolerance using, 126
Genome-wide mutagenesis, 2
Genomic DNA library, multiscale
analysis of, 119
Genomic rearrangements, 11
Genomics of S. clavuligerus, 179-180
Genotype, 9
mutator, 9-11
Genotype-phenotype relationship
¢TME and, 116
transposon insertion mutagenesis and,
116
Genotypic landscapes, 18-19
Gibbs energies of formation, 83-84, 91
Gibbs energies of reaction, 84
TMFA analysis and, 91, 92
Gibb’s free reaction energy, 64
Gist-brocades n.v., 171-172
Glass bead agitation, 218
Global metabolic engineering, 122
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Global transcriptional machinery
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method, 121-123
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polymers, 57
Glucose auto-delivery system, 151
Glucose fermentation, 123-124
Glucose-limited chemostat, 11
Glutamate, arginine biosynthesis and,
181
Glutamate synthesis, by M.
ammoiziaphilum, 55
Glutathione, 38
Glycolysis, 41
concentrations of metabolites in, 97
correlation between transcriptional
and metabolic responses in, 97, 99
Glyoxylate shunt, 59
GRAS. See Generally recognized as safe
(GRAS)
Gravimetric solvent extraction, 205
GREAT multiple fermentation system,
155-156
Grigg effect, 23
Growth conditions, optimization of,
139-140
Growth-phenotyping data, 80
G3P pool, 181
¢TME. See Global transcriptional
machinery engineering (gTME)
Gymnodinium sp., 205

Haemophilus influenza genome
sequence, 38
Handbook of Industrial Microbiology
and Biotechnology (Demain &
Davies), 1
Haploid strain, advantageous mutations
and, 9
Hardwood spent sulfite liquor (HWSSL),
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increasing tolerance to, 235-236
strain development for tolerance to,
240-247
Heating foil, 148
Heat stress, engineering resistance to,
125
Hemicellulase, 223
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treatment effects, 224-225
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applicable to, 119-121
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151-153
shaken minibioreactors, 152-153
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High-throughput sequencing,
mutagenesis and, 4
Histidine-producing C. glutamicum, 58
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HME. See 5-Hydroxymethyl-2-
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3-HP. See 3-Hydroxypropionate (3-HP)
3-HPA. See 3-Hydroxypropionaldehyde
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HWSSL. See Hardwood spent sulfite
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4-Hydroxybenzoic acid, 234
5-Hydroxymethyl-2-furaldehyde (HMF),
234,245
3-Hydroxypropionaldehyde (3-HPA),
195-196
3-Hydroxypropionate (3-HP),
recombinant E. coli in production
of, 185-198
combining 3-HP tolerance and 3-HP
production, 196-197, 198
3-HP toxicity, 187-194
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overview of biosynthesis, 185-186
strain design, 194-196
3-Hydroxypropionic acid (3-HP)
engineering tolerance to, 119
metabolism to toxic intermediate,
195-196
3-Hydroxypropionic acid (3-HP)
toleragenic complex, 192-194
evaluation of, 194-195
Hypothesis-driven strain improvement
development of self-lysing,
oil-producing alga, 220-226
transformation system for, 217-220
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strategies, 210-217

identification of strain engineering
targets, 215-217

systems biology analysis in
unsequenced microalga,
210-211

transcriptome-to-proteome pipelining,
211-215

Impedance spectroscopy, 151

Incubators, for minibioreactors, 148

Inferelator, 86

Infrared spectroscopy, 207-208

In silico cell, 36, 37

In silico models, 79

“omics” data and development of,

77-78,79

In situ transesterification procedure,
207-208

Integrated FBA approach (iFBA), 86-87,
101

Integrative omics-metabolic analysis
(IOMA), 96-97

Ton-selective field-effect transistor
(ISFET) pH sensor chips, 150

ISFET. See Ion-selective field-effect
transistor (ISFET) pH sensor
chips

Isobutanol, 97

Isotope substrates, 45

Isotope tracer data, measuring,
49-56

Isotopically instationary MFA, 46

Isotopomer balancing, 61-63, 64

Isotopomers, 46, 57

Iterative compositional analysis, 217

JMP statistical software, 160

KAS. See Ketoacyl-ACP synthase (KAS)
isoforms
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Ketoacyl-ACP synthase (KAS) isoforms,
216

Killer phenotypes, 17-18, 23-24
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Label analysis, 53
Labeling experiment process, 4549
Laboratory Directed Research and
Development (LDRD) program,
203
Labsystems Oy, 152
LAC4, 124
LACI2, 124
Lactobacillus reuteri, 195
Lactose fermentation, 124
LacZ, 4
LC. See Liquid chromatography (LC)
LDRD. See Laboratory Directed
Research and Development
(LDRD) program
Levulinic acid, 234
Lignocellulosic biomass, conversion into
fuels, 123-124
Lignocellulosic substrate
as sugar source, 233-234
toxicity of, 234-236
Lipid content, of C. vulgaris UTEX 395,
208-210, 211, 212
Lipid extraction, algal, 220-222
Lipid production
in algae, 204, 205-208
algal biofuels and, 204
Liquid chromatography (LC), for
isotope tracer data, 49
Liquid chromatography (LC)-MS, for
isotope tracer data, 49-50, 51-54
Liquid chromatography (LC)-MS-MS,
isotope tracer data and, 53
Liquid media, as screening platform,
25-27
Lycopene productivity
¢TME method and, 122
MAGE method and, 123
Lysine, 43
Lysine pathway, 3-hydroxypropionic acid
tolerance and, 195
Lysine synthesis, in C. glutamicum, 58,
60
Lysozyme, growth inhibition of C.
vulgaris by, 223-225

MACH1-T1, 189
Macromolecules, labeling experiments
and, 46
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MAGE. See Multiplex automated
genome engineering (MAGE)
D-Malate, utilization of, 80
Malate oxidation, 97
Malonyl-CoA, 215
Manganese II, mutagenesis and, 15
Mascot, 212
Mass isotopomer fractions, 61
Mass isotopomers, 57
Mass spectroscopy (MS)
carbon labeling degree and, 57
with electron impact (EI) ionization, 51
for isotope tracer data, 49
Mathematical models, engineering
approaches based on, 35
Mating/sporulation, 2
Maximum theoretical yield, 42-43
Media, used in clavulanic acid strain
improvement, 175, 177, 178
Media handlers, 27
Media optimization using design of
experiment, 138-139
Medium design and optimization, for
fermentation, 137-139
Megaplasmid pSCL4, 180
Meiotic recombination-based genome
shuffling
induction of genome shuffling through
meiosis vs. protoplast fusion,
239-240
of S. cerevisiae, 236-239
Metabolic engineering, 36
of recombinant E. coli for
3-hydroxypropionate production
(See 3-Hydroxypropionate
(3-HP), recombinant E. coli in
production of)
workflow, 36
Metabolic flux, transcriptome data and,
89-90
Metabolic flux analysis (MFA), 36, 37
dynamic, 36, 37, 49
stoichiometric, 43-45
thermodynamics-based, 64, 84-85,
91-94
Metabolic flux networks, tracer-based
analysis of, 57-63
isotope tracer data, 49-56
labeling experiment, 45-49
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small-scale vs. genome-scale models,
40-42
stoichiometric metabolic flux analysis,
43-45
stoichiometric network model, 38-39
validating, 63-64
Metabolic flux ratio analysis
(METAFoR), 59-60
Metabolic models
gene expression data and, 87-91
metabolomics data in, 91-94
Metabolic networks, genome-scale.
See Genome-scale metabolic
networks
Metabolic pathway analysis (MPA), 80
Metabolic precursors, toxic analogs of, 20
Metabolic “pseudo” steady state, 48
Metabolic reconstruction, 78-79
Metabolism, clavulanic acid biosynthesis
in, 171
Metabolites
C labeling patterns in, 50
multiple omics data sets and
relationship between enzymes
and, 95-96
TMFA analysis and concentrations of,
91, 92-94
Metabolomics, 39, 79, 82
enzyme kinetics and, 93-94
genotype-phenotype relationship and,
83
in metabolic models, 91-94
NET analysis and TMFA and, 84-85,
92
parameter identification and, 101
pathway reconstruction and, 100
METAFoR. See Metabolic flux ratio
analysis (METAFoR)
Methionine biosynthesis, 87, 88, 187
8-Methoxypsoralen, 16
Methyl-acrylate, 185
MFA. See Metabolic flux analysis
(MFA)
Microalgae
algal biomass composition, 204-210
biofuel production and, 201-204
development of self-lysing, oil-
producing alga, 220-226
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development of transformation
system, 217-220
hypothesis-driven strain improvement
strategies, 210-217
Microarray analysis
furfural tolerance and, 87-89
investigation of genetic basis of stress
response using, 97
strain engineering and, 102-103
Microbacterium ammoiziaphilum, 55
Microbioreactors, 156-157
Microcontrollers, selection programs
and, 26
Microfluidic microbioreactors, 156157
Microliter bioreactors, 146, 148
Micromonas pusilla, 212
Microprojectile bombardment, 218
Microreactor Technologies Inc., 153
Microtiter plate, disposable shake flask
and, 152
Microwell reactors, 136
Microwell-type minibioreactors, 156
Milliliter bioreactor, 148
Minibioreactors, 136. See also
u24-minibioreactors
case studies, 157-163
comparison to benchtop fermentors,
157-164
control and sensor technologies for,
147-151
shaken, 152-153
stirred, 153-155, 156
trends in development of high-
throughput, 156-157
Minitab, 139
Mixing control for minibioreactors, 149
Mixing related parameters, scale-down
of, 146
Mobile phase, of LC-MS, 51
Model constraints, development of,
83-87
Modern screening platforms, 25-27
N-Morpholino-propanesulfonic acid
(MOPS), 174
MPA. See Metabolic pathway analysis
(MPA)
mqo gene, 97
MRM. See Multiple reaction monitoring
(MRM)
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MS. See Mass spectroscopy (MS)
Multiple-component fermentation
system, 146
Multiple reaction monitoring (MRM), 53
Multiplex automated genome
engineering (MAGE), 116-117,
123
Multiscale analysis of library enrichment
(SCALE), 119, 188-189, 190, 192,
197
u-24 bioreactors, 150, 153
H-24 minibioreactors
antibody fragment expression study,
160-163
protein production study, 158-160
Mutagen
optimal dose of, 13-14
specificity and frequency of, 14-15
Mutagenesis, 2
chemical, 3
in classical strain improvement, 2, 4-18
forced mutagenesis, 12-16
numerical considerations in screen
design, 4-8
random genetic drift, 8-12
strain mating, 16-18
forced, 12-16
of non-producing strains, 21
ultraviolet light, 12, 15, 16, 240-241,
243
Mutant pools
generation of, 240-241
screening and selection of, 241-242
Mutation rate, genetic determinants of,
9-11
Mutator genotypes, 9-11
mutD5, 11
mutT, 11
muty, 11
Mycobacteria, transposon mutagenesis
in, 116

NA. See Network analysis (NA)

NADPH, in S. cerevisiae, 91

5N-ammonium, 45

National Renewable Energy Laboratory
(NREL), 201, 202-203

NCA. See Network Component Analysis
(NCA)
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NET. See Network embedded
thermodynamic (NET) analysis

Network analysis (NA), 36, 37, 43, 44

maximum theoretical yield, 42-43

Network Component Analysis (NCA),
87

Network embedded thermodynamic
(NET) analysis, 64, 84, 85, 91

Neutral phenotypes, 8-9

Nile Red, 207

96-well deep well microtiter plate,
160-163

Nitric oxide, formation of, 38

Nitrosomethylguanidine (NTG), 4, 14

mutagenesis and, 12

NMR. See under Nuclear magnetic
resonance (NMR)

Non-genetically modified organism
status, classical strain
improvement and, 2

Noninvasive sensor technologies,
136

NREL. See National Renewable Energy
Laboratory (NREL)

NTG. See Nitrosomethylguanidine
(NTG)

Nuclear magnetic resonance (NMR), for
isotope tracer data, 50

Nuclear magnetic resonance (NMR)
spectroscopy, for analysis of
metabolic flux networks, 54-57

Nucleotide biosynthesis superpathway,
193

Oases software, 211
ODE. See Ordinary-differential equation
(ODE)-based model of
carbohydrate uptake
Omics data
current analysis of, 82-83
development of in silico models and,
77-78,79
integration of multiple sets of, 94-100
Omics technology
mathematical models and, 35
strain engineering and, 101-103
One-stage acid hydrolysis
transesterification, 207
Open reading frames, 38
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Open strategy, for medium design and
optimization, 137
Optical density measurement, 150-151
Optical DO sensor, 149
Optodes, 149, 150
Ordinary-differential equation (ODE)-
based model of carbohydrate
uptake, 86-87
Organic acids, 185
derived from lignin, 234
toxicity of, 186-187
Ostreococcus sp., 212
OTR. See Oxygen transfer rate (OTR)
OUR. See Oxygen uptake rate (OUR)
clipping
Oxidative pentose phosphate pathway,
58
split ratio analysis and, 59
Oxidative stress, engineering resistance
to, 125
Oxygen transfer rate (OTR), scale-down
parameters and, 146-147
Oxygen uptake rate (OUR) clipping,
146-147

Pall Corporation, 150, 153
Panlabs, Inc., clavulanic acid strain
improvement program at, 172-178
Parallel benchtop fermentation system,
155-156
Paralogous gene cluster, 170
Paramomycin, 217
Parietochloris incise, 205
Parsimonious enzyme usage FBA
(pFBA), 100
PCP. See Pentachlorophenol (PCP)
Pectinase, 223
Penicillin production, 16
Penicillin V, 42
biosynthesis of, 60
Penicillium chrysogenum, 42, 60, 64
Pentachlorophenol (PCP), 126
Pentose phosphate pathway (PPP)
concentrations of metabolites in, 97
correlation between transcriptional
and metabolic responses in, 97, 99
metabolic flux analysis and, 57, 64, 91,
94
oxidative, 58, 59
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small-scale vs. genome-scale models
and, 40, 41
stoichiometric network model and, 38
Pentose sugars
S. cerevisiae and, 234-235
S. stipitis and, 235, 247
PEP, 100
Peptidoglycan, 224
Periodic selection curve, 9, 10
Pertubations, cellular response to, 90
pFBA. See Parsimonious enzyme usage
FBA (pFBA)
Pfenex Inc., 158
PHB. See Poly-2-hydroxybutyrate
(PHB)
pH control for minibioreactors, 150
Phenolics, derived from lignin, 234
Phenomics, 82
Phenotype microarray (PM)
genome-scale model and, 80
for rapid media development, 137-138
Phenotype reversions, 8
Phenotypes
flowchart for evolving, 188
genotypic landscapes and, 18-19
improvements through strain
improvement, 1
neutral, 8-9
Phenotypic titer depression, 20, 23
Phenylalanine biosynthesis, 121-122
Phleomycin, 217
PHOI3, 116
5-Phosphate transketolase reaction, 60
Phosphoenolpyruvate synthetase, 55
6-Phosphogluconate dehydrogenase
reaction, 58
Phosphoketolase pathway, 64
pH sensors, 136
disposable shake flask/microtiter plate
with, 152
pH-stat control strategy, 141
Pichia sp., genetic drift in, 12
Pichia stipitis, 124,126
Plasmid stability, 25
Plate movers, 27
Plate readers, 27
Plate storage systems, 27
Ploidy, 9
PM. See Phenotype microarray (PM)
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Point mutations, 8, 11
ultraviolent or chemical treatment
and, 12
Polyamine pathway, 3-hydroxypropionic
acid tolerance and, 195
Polyamines, 3-hydroxypropionic acid
tolerance and, 196, 197
Poly-B-hydroxybutyrate, 43
Poly-3-hydroxybutyrate, 26
Poly-2-hydroxybutyrate (PHB), 119
Positional enrichments, 57
Position-specific labeling information, 58
PPP. See Pentose phosphate pathway
(PPP)
Preselection, random screens and, 22
PreSens, 152
Process optimization, under scale-down
conditions, 145-147
Process robustness, assessment of, 135
Production media, used in clavulanic
acid strain improvement program,
177
Production strain development, of C.
vulgaris, 225-226
Product yield and productivity,
evolutionary engineering and
enhancement of, 121-123
Promoters, in C. vulgaris, 220
1,3-Propanediol, 42, 185
biochemical production of, 121
Protein design, computational, 39
Protein isoforms, differentiation of, 216
Protein production, 158-160
Proteomic analysis, 210
of C. vulgaris, 211-215
Proteomics, 82
Protoplast fusion, 17,23-24, 114
induction of genome shuffling through,
239-240
Protoplast preparation and
transformation of C. vulgaris
UTEX395, 218
Pseudomonas aeruginosa, transposon
mutagenesis in, 116
Pseudomonas fluorescens, antibody
fragment expression and, 160-163
Pseudomonas fluorescens-based
expression platform, 158
Purine nucleosides, mutagenesis and, 15
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Putrescine, 196, 197
puuC, 195-196
Pyruvic acid, 46

Quasi stationary conditions, 48

Random genetic drift, classical strain
improvement and, 2, 4-5, 8-12
applications, 11-12
genetic determinants of mutation rate,
9-11
neutral phenotypes, 8-9
Random mutations, in classical strain
improvement, 2
Random screens, 19, 22
Rapid fermentation process
development and optimization,
133-164
case studies, 157-163
classical fermentation process
development methodology,
134-136
commercial high-throughput
fermentation systems, 151-153
control and sensor technologies for
minibioreactor, 147-151
fermentation process development
and optimization, 137-139
future directions, 163-164
high-throughput minibioreactor
system trends, 156157
optimization of growth conditions,
139-140
parallel benchtop fermentation
system, 155-156
roadmap, 135
stirred minibioreactor, 153-155
strain evaluation and process
optimization under scale-down
conditions, 145-147
using conventional fermentation
system, 140-145
dynamic DO control to determine
optimal feed rate for carbon
source-limited fermentation,
140-143
feed forward control for carbon
source excess fermentation,
143-145
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Rate, titer, and yield (RTY) values,
36-37
Rational metabolic engineering, 28
Rational screens, 19, 20-22
Rational selection
clavulanic acid strain improvement
program and, 172-178
selective agents used in, 174
Rational strain engineering, 101-103
Reaction pathways, from enzyme
reaction rules, 39
Reads per kilobase of exon model per
million mapped reads, 216
recA-mediated DNA crossover, 118
Receiver operator curve (ROC) analysis,
189, 190, 191, 192
Recombinant DNA technology, 36
Redox metabolism, MFA and, 45
Regulatory constraints, 81, 85-87
in FBA framework, 85-87
Regulatory rules, constraint-based
modeling and, 101
Regulatory sites, identification of, 92
Reporter metabolites, identification of,
90-91
Reporter reactions, multiple omics data
sets to detect, 94-95
Resistance temperature detectors
(RTDs), 148
Resistive heating, 148
Respiration, correlation between
transcriptional and metabolic
responses in, 97
Response surface methods, 139
Reuterin, 195
Reversion frequencies, mutagenesis and,
4
Reynolds number, 149
Riboflavin, maximum theoretical yield
of, 42
Riboflavin-producing B. subtilis, 55,
157-158
RNa Pol H transcription factor D, 115
RNA sequence data, for C. vulgaris
UTEX395, 210, 211, 213, 215,
216
Robotics, selection programs and, 26-27
ROC. See Receiver operator curve
(ROC) analysis
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rpoD gene, 122

rRBA, 101

RTDs. See Resistance temperature
detectors (RTDs)

RTY. See Rate, titer, and yield (RTY)
values

Ruggedness, 18

Saccharomyces, genetic drift in, 12
Saccharomyces cerevisiae
biomass and product yields from
cultivation on glucose, 89-90
CEN.PK strain, 242
classical strain improvement and, 2, 3
conversion of biomass into fuel and,
123-124
genome shuffling in, 115
comparison to S. stipitis, 245-247
induction through meiosis vs.
protoplast fusion in, 239-240
meiotic recombination-mediated,
236-239
global transcription machinery
engineering in, 115
hardwood spent sulfite liquor
fermentation and, 235-236
identification of reporter metabolites
in, 91
killer phenotype and, 18
lactose fermentation and, 124
metabolic engineering for poly-f-
hydroxybutyrate formation, 43
metabolic/regulatory model of, 86
multiple-stress resistance phenotype
in, 125-126
u-24 bioreactor for, 153
oxidative PPP in, 58
protein coding genes, 38
regulatory rules for, 85
shuttle mutagenesis for, 116
strain development for tolerance to
HWSSL, 240-247
sugar utilization by, 234-235
transposon mutagenesis in, 116
Sake fermentation, classical strain
improvement in, 3
Sartorius, 155
Sartorius Biostat C control unit, 141
SCADA software, 141, 143
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SCALE. See Multiscale analysis of
library enrichment (SCALE)
Scale-down conditions, strain evaluation
and process optimization under,
145-147
Scale-down parameters, 146
Scanning electron microscopy, 225
Schefferomyces stipitis
comparison with genome shuffling in
S. cerevisiae, 245-247
hardwood spent sulfite liquor toxicity
and, 235-236, 242-247
meiotic recombination-based genome
shuffling of, 239
Scintillation counting, carbon labeling
degree and, 57
Screen design, numerical considerations
in, 4-8
Screening, 19-27
random screens, 19, 22
rational screens, 19, 20-22
techniques, 119-121
Screening artifacts, 19, 21
Screening platforms, 22-27
batch culture, 23-24
continuous culture, 24-25
modern, 25-27
solid media, 22-23
SD. See Serial dilution (SD) selections
Selection design, 191-192
for evolving 3-hydroxypropionate
tolerance, 189-191
Selection techniques, 119-121
Selective agents used in rational
selection, 174
Selective pressures, 2
Seletive detoxification, 20-21
Self-organizing maps, 83
SensorDishes, 152
Sensor technologies for minibioreactor,
147-151
Serial dilution (SD) selections, 192
Serine biosynthesis, 87, 88
Shake flask/microtiter plate, 152
Shaken minibioreactors, 152-153, 156
Shuttle mutagenesis, 116
Sigma factor, in E. coli, 115,122
Sim-Pheny, 87
Sim-Pheny platform, 79
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Singlet signals, 56
Singular value decomposition, 83
SIP, 155
Small-scale models, genome-scale vs.,
40-42
Solar Energy Research Institute, 201
Solid media
as screening platform, 22-23
used in clavulanic acid strain
improvement program, 177
SORI-CID. See Sustained off-resonance
irradiation collision-induced
dissociation (SORI-CID)
SOS-repair pathway, 173
Soy flour, 174, 175
Spermidine, 197
Sphingobium chlorophenolicum,
126
Split ratio analysis, 58, 59
SREs. See Stimulus-response
experiments (SREs)
Stationary phase, of LC-MS, 51
Statistica, 139
Stimulus-response experiments (SREs),
39, 48-49
Stirred minibioreactors, 153-155, 156
CellStation HTBR, 153-154
2mag Bioreactor 48, 154-155
Stoichiometric constraints, 81
Stoichiometric matrix, 92
Stoichiometric metabolic flux analysis,
43-45
Stoichiometric modeling, 80, 81
Stoichiometric network model, 38-39
Strain design, for 3-HP tolerant E. coli,
194-196
Strain development, 112
comparison between S. cerevisiae and
S. stipitis, 245-247
generation of mutant pools, 240-241
HWSSL tolerance
cross-tolerance to multiple
inhibitors and, 244-245
genome shuffling and increased,
242-243
increased ethanol production and,
243-244
screening and selection of mutant and
evolved populations, 241-242
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Strain engineering
constraint-based modeling and,
101-103
identification of targets, 215-217
omics techniques and, 101-103
Strain evaluation
under scale-down conditions, 145-147
strategy, 133
Strain improvement. See also Classical
strain improvement; Hypothesis-
driven strain improvement
strategies
via evolutionary engineering
(See Evolutionary engineering)
Strain mating, 16-18
Strain selection, 7-8
Strain stability, assessment of, 135
Streptomyces clavuligerus, 169
genomics of, 179-180
wild-type vs. industrial, 181
Streptomyces clavuligerus ATCC27064,
169, 176, 180, 181
Streptomyces clavuligerus DS30455, 173,
176
Streptomyces clavuligerus DS36063, 175,
176,178
Streptomyces clavuligerus DS48802, 178,
179,181
Streptomyces clavuligerus DS54901, 176,
179
Streptomyces clavuligerus pSCLA4,
180
Streptomyces coelicolor A3, 180
Streptomyces goldiniensis, 21
Streptomyces kanamyceticus, 181
Streptomyces mutants tolerant to
streptomycin, 25
Streptomyces tendae, fermentation in
48-bioreactor, 155
Streptomycin, 25
Stress resistances, evolutionary
engineering and, 124-125
Stress response, genetic basis of, 97
Substrate excess fermentation, 143-145
Substrate feed profile, 140
Substrate feed rate, for carbon source-
limited fermentation, 140-143
Substrate range, extension of, 123-124
Succinate, from E. coli, 43
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Sugar. See also Pentose sugars
bacterial fed-batch fermentation using,
143,145
utilized by S. cerevisiae, 233-234
Sulfatase, 223-224
Sulfate assimilation, methionine
biosynthesis and, 87, 88
Summed fractional enrichment, 57
Sustained off-resonance irradiation
collision-induced dissociation
(SORI-CID), 53-54
synDNA, 118
Systems biology. See also Omics data;
Omics technology
analysis in unsequenced microalga,
210211
omics data and, 82
SYTOX green dye, 223, 224

TAG. See Triacylglycerol (TAG)
TALI OREF, 116
Taurine metabolism, methionine
biosynthesis and, 87, 88
TBDMS. See Tertbutyldimethylsilyl
(TBDMS)
TCA. See Tricarboxylic acid (TCA) cycle
Techno-economic assessment, 42
Temperature sensing and control for
minibioreactors, 148-149
Tertbutyldimethylsilyl (TBDMS), amino
acids derived with, 51, 52
Tertbutyldimethylsilyl (TBDMS)-alanine,
mass spectrum of, 52
Thermistors, for minibioreactors, 148
Thermodynamic bottlenecks,
identification of, 92
Thermodynamic constraints, 81, 83-84
Thermodynamics
flux directionality and second law of,
91
TMFA and, 91-92
Thermodynamics-based metabolic flux
analysis (TMFA), 64, 84-85
example of, 91-94
Threonine-homocysteine superpathway,
193, 195
TMFA. See Thermodynamics-based
metabolic flux analysis (TMFA)
TMS. See Trimethylsilyl (TMS)

267

Toxic analogs of metabolic precursors,
rational screens and, 20
Toxicity
of 3-hydroxypropionate, 187-194
lignocellulosic substrate, 234-236
of organic acids, 186-187
Tracer-based analysis, 63—-64. See also
Metabolic flux networks, tracer-
based analysis of
Tracer-based MFA, 57-63
Tractable multiplex recombineering
(TRMR), 117-118
Transaldolase gene, 64
Transcriptional regulators, 97
Transcriptomics, 82
of C. vulgaris, 211-215
metabolic fluxes and, 89-90
Transesterification procedure, biomass,
206-207
Transformants, stability evaluation of,
219-220
Transformation system, development of,
217-220
C. vulgaris endogenous promoter
identification and
characterization, 220
protoplast preparation and
transformation of C. vulgaris
UTEX395, 218-219
stability evaluation of transformants,
219-220
vector construction, 217-218
Transposon insertion mutagenesis, 116
Triacylglycerol (TAG) biosynthetic
pathway, C. vulgaris and, 213, 214,
215217
Triacylglycerol (TAG) synthesis in algae,
204, 205, 206
Tricarboxylic acid (TCA) cycle
concentrations of metabolites in, 97
correlation between transcriptional
and metabolic responses in, 97, 99
metabolic flux networks and, 40, 41, 46
TMFA and, 94
Trimethylsilyl (TMS), 51
TRMR. See Tractable multiplex
recombineering (TRMR)
Turbidistats, 189
20-L bioreactor, 160-163
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2D ["C, 'H]-correlation spectroscopy,
55-56

2mag AG, 154

2mag bioreactor, 156

2mag Bioreactor 48, 154-155

Two-stage alkaline hydrolysis
NaOMe:BF; procedure, 207

u-*C glucose, 45

Ultra-microelectrode array (UMEA),
149

Ultraviolet light mutagenesis, 12, 15, 16,
240-241, 243

UMEA. See Ultra-microelectrode array
(UMEA)

Unit operations, 2

University of Texas culture collection,
208

Untargeted co-clustering, 97, 98

U.S. Department of Agriculture, 202

Vanillin, 234
Vector construction, 217-218
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Velvet software, 211

Vibrational spectroscopy, 207
Viral promoters, in C. vulgaris, 220
Volumetric reaction rates, 43
Volvox carteri, 212

Waste streams, as fermentation
feedstocks, 234
Weuster-Botz, Dirk, 154

Xylanase, 223

Xylose
improvements in growth rate using, 11
S. cerevisiae and, 234, 247

D-Xylose, 123-124

Xylose uptake rate, 25

Yeast peptone dextrose, 236

Zeocin, 217

Zero-quantum filtered -TOtal
Correlation SpectroscopY
(ZQF-TOCSY), 56



