
ENGINEERING COMPLEX  
PHENOTYPES IN  
INDUSTRIAL STRAINS



ENGINEERING COMPLEX 
PHENOTYPES IN 
INDUSTRIAL STRAINS

Edited by

RANJAN PATNAIK

A JOHN WILEY & SONS, INC., PUBLICATION



Copyright © 2013 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in 
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or 
otherwise, except as permitted under Section 107 or 108 of the 1976 United States  
Copyright Act, without either the prior written permission of the Publisher, or authorization 
through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc.,  
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web  
at www.copyright.com. Requests to the Publisher for permission should be addressed to the 
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,  
(201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best 
efforts in preparing this book, they make no representations or warranties with respect to the 
accuracy or completeness of the contents of this book and specifically disclaim any implied 
warranties of merchantability or fitness for a particular purpose. No warranty may be created 
or extended by sales representatives or written sales materials. The advice and strategies 
contained herein may not be suitable for your situation. You should consult with a professional 
where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any 
other commercial damages, including but not limited to special, incidental, consequential, or 
other damages.

For general information on our other products and services or for technical support, please 
contact our Customer Care Department within the United States at (800) 762-2974, outside the 
United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in 
print may not be available in electronic formats. For more information about Wiley products, 
visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Engineering complex phenotypes in industrial strains / edited by Ranjan Patnaik.
      p. cm.
  Includes bibliographical references and index.
    ISBN 978-0-470-61075-6 (hardback)
  1.  Industrial microorganisms.  2.  Genetic engineering.  I.  Patnaik, Ranjan, 1969–
  QR53.E54 2012
  579'.163–dc23
	 2012015254

Printed in the United States of America

10  9  8  7  6  5  4  3  2  1



CONTENTS

Foreword 	 vii
John Pierce

Preface 	 ix

Contributors	 xi

1	 Classical Strain Improvement	 1
Nathan Crook and Hal S. Alper

2	 Tracer-Based Analysis of Metabolic Flux Networks	 35
Michael Dauner

3	 Integration of “Omics” Data with Genome-Scale  
Metabolic Models	 77
Stephen Van Dien, Priti Pharkya, and Robin Osterhout

4	 Strain Improvement via Evolutionary Engineering	 111
Byoungjin Kim, Jing Du, and Huimin Zhao

5	 Rapid Fermentation Process Development and Optimization	 133
Jun Sun and Lawrence Chew

6	 The Clavulanic Acid Strain Improvement Program at DSM  
Anti-Infectives	 169
Bert Koekman and Marcus Hans

v



vi	 CONTENTS

7	 Metabolic Engineering of Recombinant E. coli for the Production 
of 3-Hydroxypropionate	 185
Tanya Warnecke Lipscomb, Matthew L. Lipscomb, Ryan T. Gill,  
and Michael D. Lynch

8	 Complex System Engineering: A Case Study for an Unsequenced 
Microalga	 201
Michael T. Guarnieri, Lieve M.L. Laurens, Eric P. Knoshaug, Yat-Chen Chou,  
Bryon S. Donohoe, and Philip T. Pienkos

9	 Meiotic Recombination-Based Genome Shuffling of Saccharomyces 
Cerevisiae and Schefferomyces Stiptis for Increased Inhibitor 
Tolerance to Lignocellulosic Substrate Toxicity	 233
Dominic Pinel and Vincent J.J. Martin

Index	 251



vii

FOREWORD

The increasing demands for renewable chemicals, materials, and fuels, as well 
as the continuing evolution of capabilities in biology, chemistry, and engineer-
ing, are giving rise to significant efforts in using biotechnological approaches 
in new process configurations. These approaches are particularly well suited 
to conversions of carbohydrate and other biological starting compounds into 
useful materials, as enzymes and microbes naturally transform these sub-
stances. Building on a fair history of industrial use of microbes in the produc-
tion of high-value, low-volume materials, such as pharmacologically active 
compounds, vitamins, and amino acids, we are now extending these approaches 
to the production of higher volume/lower value chemicals, such as monomers 
for making polymers, lubricants, and fuels. As we progress up this volume 
curve, the demands on the bioprocess become more and more stringent, and 
highly integrative approaches among disciplines are required to produce  
the biocatalysts and associated processes necessary for commercially viable 
outcomes.

Coincident with this evolution, a number of books and monographs have 
appeared on the subject of metabolic engineering and systems biology, and 
the primary literature is becoming more and more detailed. With this back-
drop, this book does not attempt to be an authoritative reference on tools and 
techniques, but rather focuses on the strategies and approaches that enable 
commercial biocatalyst design. It should be of use to graduate students and 
early career professionals in the field, or to other generalists and professionals 
from related disciplines who are eager to grasp the basic tenets of engineering 
biocatalysts. In addition, it may well be of value in providing corporate manag-
ers and government officials with insights into the requirements for successful 
program outcomes.



viii	 Foreword

This book gives an overview of current approaches, with examples drawn 
from academia and industry and covering biocatalysts ranging from Esche-
richia coli and Steptomyces to yeast and microalgae. The vitality of the field is 
exemplified by the relatively young ages of the contributors, who are shaping 
the field with their novel approaches, and the inclusion of case studies adds a 
realistic dimension to the exposition.

John Pierce
London
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PREFACE

This book highlights current trends and developments in the area of engineer-
ing industrial strains for the production of bulk chemicals and biofuels from 
renewable biomass. The commercialization of bioprocesses derived from  
the use of superior engineered strains often requires the balance between 
unknowns and trade-off between multiple complex traits of the biocatalyst. 
Complex phenotypes are traits in a microbe that require more than one 
genetic change (multigenic) to be modulated simultaneously in the microor-
ganism’s genome for full expression. Knowing what those genetic changes are 
for a given trait and how to manipulate those targets in the most efficient way, 
forms the motivation for writing this book. The chapters address tools and 
methodologies developed for engineering such complex traits or phenotypes 
in industrial strains. Emphasis is on the multidisciplinary (metabolic engineer-
ing, screening, fermentation, downstream) nature of the approach or strategy 
that is used during the course of developing such a commercial biocatalyst. 
Keeping in perspective the multidisciplinary nature of activity and the inter-
ests of a broader range of readers, the topics included in the chapters are not 
meant to be fully exhaustive in their respective areas; rather, the emphasis is 
on comparison and integration of different tools and objectives. Chapters 1–5 
summarize broadly the current tools and technologies available for engineer-
ing a complex phenotype in an industrial strain with brief reference to exam-
ples, while Chapters 6–9 highlight in detail the application of such tools and 
methodologies in the form of case studies.

Chapter 1 summarizes the age-old proven approach for engineering in
dustrial strains using mutagenesis, followed by screening or selection, often 
termed classical strain engineering (CSI). Discussions of the applicability of 
CSI for engineering complex traits provide information on its suitability and 
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limitations. Chapter 2 describes the current state of the art in the use of 13C 
tracer-based analysis and metabolic flux analysis for engineering complex 
pathways. Chapter 3 describes the utility of genome-scale models by integra-
tion of “omics” technology and physiological data to address engineering of 
complex traits.

The probability of commercial success of a bioprocess that uses microbial 
catalysts and renewable feedstocks, as compared with platforms that use chem-
ical catalysts and fossil fuel-derived feedstocks, greatly depends on the time  
it takes to engineer these microbes to perform the desired reaction under 
harsh manufacturing conditions at rates, titers, and yields that meet the criteria 
for economic feasibility. Chapter 4 addresses new evolutionary strain engi-
neering approaches that are superior to CSI in developing complex traits 
rapidly. Transitioning from laboratory-scale demonstration to commercial-
scale operation is not only time-consuming but also expensive, especially with 
the uncertainties associated with scalability of complex traits. Chapter 5 
describes an integrative platform for rapid fermentation process development 
and strain evaluation that not only minimizes the number of false positives 
from a strain engineering program but also provides a cost-effective approach 
to optimize fermentation conditions.

Chapter 6 is a case study on the use of CSI (Chapter 1) and improved  
strain screening strategies (Chapter 5) at Dutch State Mines for engineering 
Streptomyces clavuligerus for commercial production of anti-infectives. 
Chapter 7 is a case study on the use of evolutionary approaches (Chapter 4) 
at Opx Biotechnologies for improving tolerance of Escherichia coli to 3-
hydroxypropionoic acid. Chapter 8 is a complete strain engineering case study 
from the National Renewable Energy Laboratory in an unsequenced micro-
alga, Chlorella vulgaris, for production of biofuels. The authors have high-
lighted integration of improved analytics and strain screening approaches 
(Chapters 1 and 5) with “omics” technology (Chapter 3) for addressing needed 
improvements in multiple complex traits. Chapter 9 demonstrates the feasibil-
ity of using genome-shuffling approaches (Chapter 4) in Saccharomyces cere-
visiae and Schefferomyces stiptis for improving tolerance to inhibitors in 
lignocellulosic substrates.

Scientists, engineers, and project managers who are leaders in their respec-
tive areas of research and drawn from diverse fields of science and engineering 
have contributed to the above chapters. The book has attempted to capture 
the thought processes on which they so often rely during the initiation and 
development of a commercial biocatalyst project. I hope the readers find the 
content of the book to be intellectually satisfying.

I would like to thank the editors at John Wiley & Sons for being patient 
and for their cooperation during the course of this project.

Ranjan Patnaik
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FIGURE 7.3.  The 3-HP toleragenic complex (3-HP-TGC) as constructed from meta-
bolic pathway fitness data. Subsections of the 3-HP-TGC are denoted for the choris-
mate, nucleotide biosynthesis pathway, polyamine, and threonine/homocysteine 
superpathways.
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FIGURE 7.4.  Confirmation of 3-HP tolerance corresponding to supplements (red) 
and genetic modifications (green). Tolerance was quantified as the minimum inhibitory 
concentration (MIC) of 3-HP in triplicate (n = 3) at pH = 7.0.
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1
CLASSICAL STRAIN IMPROVEMENT

Nathan Crook and Hal S. Alper

1.0  INTRODUCTION

Improving complex phenotypes, which are typically multigenic in nature, has 
been a long-standing goal of the food and biotechnology industry well before 
the advent of recombinant DNA technology and the genomics revolution. For 
thousands of years, humans have (whether intentionally or not) placed selec-
tive pressure on plants, animals, and microorganisms, resulting in improve-
ments to desired phenotypes. Clear evidence of these efforts can be seen from 
the dramatic morphological changes to food crops since domestication (1). 
These improvements have been predominantly achieved through a “classical” 
approach to strain engineering, whereby phenotypic improvements are made 
by screening and mutagenesis of strains that use methods naive of genome 
sequences or the resulting genetic changes. This approach is well suited for 
strain optimization in industrial microbiology, which commonly exploits 
complex phenotypes in organisms with poorly defined or monitored genetics. 
As a recognition of importance, Arnold Demain and Julian Davies begin their 
Handbook of Industrial Microbiology and Biotechnology with “Almost all 
industrial microbiology processes require the initial isolation of cultures from 
nature, followed by small-scale cultivations and optimization, before large-
scale production can become a reality” (2). The classical approach is concerned 
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2	 Classical Strain Improvement

with the central steps in this process—between isolation and large-scale pro-
duction. Hence, the methods and techniques utilized in this approach amount 
to “unit operations,” that is, standard procedures that can be generically 
applied to any desired strain of interest.

A variety of approaches are used to force genetic (and hence phenotypic) 
diversity including naturally occurring genetic variation and genetic drift, 
mutagenesis, mating/sporulation, and/or selective pressures. These methods 
have garnered large successes across a wide range of host organisms owing 
mostly to the absence of required sophisticated genomic information or 
genetic tools (3). Thus, the classical approach can be applied to both model 
organisms (such as Escherichia coli and Saccharomyces cerevisiae) and newly 
isolated or adapted industrial strains. As a result, the classical approach has 
seen wide adoption in industrial fermentations due to its proven track record 
in alcohol and pharmaceutical production. Finally, strains developed in this 
manner are currently accorded non-genetically modified organism (GMO) 
status, removing significant barriers to their acceptance by both regulatory 
agencies and consumers. This chapter will highlight several of the approaches 
and successes that exemplify the classical approach for improving complex 
phenotypes of industrial cells as well as indicate its limitations and potential 
interfaces with emerging technology.

1.1  THE APPROACH DEFINED

The classical approach is characterized by the introduction of random muta-
tions (either forced or natural) to a population of cells followed by screening 
and/or selection to isolate improved variants. The defining quality of classical 
strain engineering (as opposed to other evolutionary engineering methods) is 
genome-wide mutagenesis. This approach utilizes techniques that introduce 
variation across all regions of the genome, in contrast to other techniques that 
specifically target the mutations to single genes (or subsequences thereof). To 
date, this approach has been successful in improving complex phenotypes 
because of the global nature of classical methodologies (see Box 1.1 in this 
chapter and case study in Chapter 6). Complex phenotypes such as tolerance 
to environmental stress, altered morphology, and improved flocculation char-
acteristics are often influenced by the interactions between multiple (often 
uncharacterized) genes. In contrast, without significant prior understanding, 
variants generated through mutagenesis of specific genomic subsections are 
unlikely to gain proper coverage of the genotype. Indeed, as will be discussed 
later, this approach has continuously yielded improved variants for a wide 
variety of complex biotechnological applications. The theory and techniques 
for the two major steps of classical strain improvement (CSI) (mutagenesis 
and screening) are the focus of this chapter, including practical recommenda-
tions for their implementation as well as brief discussion of examples of each 
method’s industrial application.
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BOX 1.1:  APPLICATION OF CSI IN SAKE FERMENTATION

The Japanese-brewed sake is produced from rice mash using Aspergillus 
oryzae to saccharify the rice and strains of sake yeast (genus Saccharomyces 
cerevisiae) to ferment the sugars to ethanol. The ideal process imposes a 
number of complex traits on the sake yeast, including high fermentation 
capacity over the 20- to 25-day process at low temperatures (typically 
10°C), high ethanol tolerance (ethanol levels can approach 15–20%), 
minimal foaming, resistance to contaminating microbes, and the ability  
to create the correct proportion of flavor components including higher 
alcohols and esters (82). Many of these traits have been approached using 
methods of the classical approach including mutagenesis, selection, and  
cell mating. Specifically, UV and chemical mutagenesis have dominated  
as a means of retaining GRAS status for this yeast. Moreover, difficulty  
in sporulation has limited genetic dissection and a more rational approach 
until recently (83). Natural selection and isolation from hundreds of  
years of fermentation has resulted in the series of commonly used strains 
named the Kyokai series, with Kyokai no. 7 and Kyokai no. 9 as the main 
fermentation strains used industrially. Due to the superior brewing capacity 
of Kyokai no. 7, many attempts have been made to improve this strain 
through the classical approach as well as dissect the underlying genetic 
changes. Recently, it has been demonstrated that the breeding and selec
tion process of this strain resulted in heterozygosity of many alleles re
sponsible for ethanol production and aromatic compound synthesis (84,85) 
as seen by sporulation analysis. Many attempts have been made to im
prove the characteristics of Kyokai no. 7. Non-foaming mutants have been 
isolated from spontaneous clones as well as UV-induced mutants using 
selection methods such as cell agglutination and froth floatation (86). 
Improved strains have also been isolated through chemical mutagenesis 
(e.g., by EMS) to select for improved flavor profiles. In this case, mutant 
Kyokai no. 7 strains more resistant to cerulenin were thought to produce 
more ethyl caproate, an important flavor component. This approach was 
successful in improving this flavor component; however, the complete  
portfolio of complex phenotypes was not fully assayed (47). Finally, preven-
tion of contaminants has been explored through mating sake yeast strains 
with strains exhibiting the killer phenotype (56), which would ward off 
contaminating yeasts. Collectively, these examples of complex pheno
type engineering highlight the difficulties of the process, specifically;  
it is often hard to create all traits at once. The evolution of the sake  
yeast demonstrates the power of the classical approach. More recent 
attempts have been made to use the rational or evolutionary approach for 
this strain; however, Kyokai no. 7 remains the industrial favorite for sake 
production.
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1.2  MUTAGENESIS

A fundamental parameter dictating success in classical strain engineering is 
the frequency and type of mutation applied to the parent cells. Typically, this 
rate is determined by the dose and type of mutagen delivered. To test mutagen 
specificity and rate, it is common to generate an inactive (mutant) form of 
some easily assayable gene (e.g., LacZ in E. coli) that differs from the wild-
type gene by a single base-pair change, and test the frequency of reversion. 
For example, Cupples et al. generated six variants of LacZ to show that many 
common mutagens (EMS, NTG, 2-aminopurine, and 5-azacytidine) are in fact 
quite specific for certain base-pair changes in E. coli (4). Hampsey undertook 
a similar approach in S. cerevisiae and found similarly that mutagens were 
highly specific. However, the mutation frequencies and specificities were sig-
nificantly different from those observed in E. coli (5). Frameshift and deletion 
frequencies can also be detected through analysis of a cleverly mutated marker 
(6). Through analyses of reversion frequencies or high-throughput sequencing, 
a detailed picture of a treatment’s mutagenic profile may be ascertained. This 
detailed information can be then be used to compute several useful quantities, 
such as the average number of mutations per genome or the expected number 
of distinct variants among a mutated population. Knowledge of these frequen-
cies and landscapes are especially useful when designing a selection program, 
as detection of rare variants (e.g., individuals possessing certain particular 
mutations and no more) will require many individuals to be screened, whereas 
more probable patterns of mutagenesis (e.g., if additional silent or neutral 
mutations are tolerable) will not. At the same time, more focused patterns of 
mutation inherently limit the search space.

1.2.1  Numerical Considerations in Screen Design

Although in general every possible base substitution will occur at a different 
frequency (and vary nonuniformly throughout the genome), it is instructive to 
neglect deletions or insertions and assume all base changes at each site are 
equiprobable (i.e., occur at the same frequency) to make use of the binomial 
distribution, to obtain approximate probabilities of any desired mutagenic 
outcome. If the probability of a single base being mutated to any other base 
is p, then the probability that a genome of size g has n mutations after muta-
genesis is:

P g n p
g

n g n
p pn g n, ,

!
! !

( ) .( ) =
−( )

− −1

By using well-known properties of the binomial distribution, the average 
number of mutations per genome is gp with variance gp(1 − p). Random 
genetic drift results in mutation rates of 10−10 to 10−5, while forced mutagenesis 
can elicit rates upwards of 10−3 as described below, so this will restrict the range 
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of p. It is apparent that if p is too low (that is, less than 1/g), there will be many 
variants with few or no mutations and a vanishingly small population of highly 
mutated individuals. Furthermore, the binomial coefficient indicates that 
libraries with low mutation rate (and thus a high population of slightly mutated 
individuals) are very likely to be redundant, that is, have many individuals of 
the same genotype. Thus, it is of interest to know the expected number of 
distinct variants in a mutant library to guide screen design. Patrick et al. devel-
oped a suite of algorithms to compute many quantities of interest for screening 
a mutant pool derived from a mutagenic procedure of arbitrary specificity, 
including the expected number of distinct mutants following mutagenesis 
(7,8). If the library is highly redundant, then screening of the entire mutated 
population may not be necessary to ensure complete coverage. As diversity 
increases, however, the required screening fraction will approach unity. Since 
complex phenotypes are controlled by the action of multiple genes, high muta-
tion rates are often employed, generally resulting in high library diversity and 
a strong incentive to screen the entire mutated pool.

To choose the correct rate of mutagenesis and screening, it is important to 
know the rarity of the phenotype of interest. In the worst and most restrictive 
case, an improved phenotype will be acquired by mutants containing only a 
certain set of mutations. For example, consider a particular phenotype that 
only manifests itself when n-specific mutations are present and no more. In 
this case, one must determine the mutation rate p̂ which maximizes the frac-
tion of n-mutant variants in the mutated population (using one of the tools 
mentioned earlier) and screen until a reasonably high probability of complete 
coverage is achieved. For a genome of g base pairs, we can take the derivative 
of the binomial distribution with respect to mutation rate and set it equal to 
zero:

d
dp

g
n g n

p pn g n!
! !

( ) .
−( )

−





=−1 0

Eliminating constants and taking the derivative, we have:

ˆ ˆ ˆ .p p n gpn g n− − −−( ) −( ) =1 11 0

The obvious interesting candidate for a solution is:

ˆ .p
n
g

=

Taking the second derivative of the binomial distribution yields:

g
n g n

p p n g p g gp nn g n!
! !

1 2 1 1 1 .2 2 2 2

−( )
−( ) − −( ) −( ) + −( ) +( )− − −ˆ ˆ ˆ ˆ
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Because

g
n g n

p pn g n!
! !

1 0,2 2

−( )
−( ) >− − −ˆ ˆ

we can substitute our candidate solution into the remaining portion of the 
second derivative to determine its sign:

n g
n
g

g g
n
g

n
n
g

n− −( ) −





+ −( ) 





+






= −2 1 1 1

2
2

2

,

which is clearly negative for g > n. Hence, the likelihood of attaining n muta-
tions in a genome of size g is maximized when the mutation rate is n/g. This 
maximum likelihood is:

r
g

n g n
n
g

n
g

n g n

≡
−( )







−





−
!

! !
.1

It is generally necessary to screen more than the number of possible mutants 
to ensure coverage of the diversity. To obtain, on average, F fractional coverage 
of all n-mutant variants, it will be necessary to solve

F e r a L= − −1 * *

for L, where a is the probability of selecting the correct n-mutant variant (1/V 
in this case, where V is the number of possible n-mutant variants [given by the 
binomial coefficient]) and L is the library size (7). For a small-sized genome 
(106 base pairs) and a phenotype requiring two specific mutations (hence at 
an optimal mutation rate of 2*10−6), L works out to be 5.5*1012 to obtain 95% 
coverage, on average, which is outside the scope of most screening programs 
(Assuming a standard yeast cell density of 107 per mL and an average cell 
sorting rate of 103 per second, screening this many individuals would require 
550 L of culture (for growth-based selections) or 241 years of cell sorting [for 
fluorescence-based screens]!)

Luckily, most complex phenotypes can tolerate the existence of additional 
silent/neutral mutations. To account for a small number of allowable neutral 
mutations, let us assume that the desired n mutations may be found in any 
variant containing up to m > n total mutations, but no more. The analysis for 
this case proceeds in much the same way as before with one minor alteration 
resulting from the fact that a variant with m > n mutations contains

m
n m n

!
! !−( )

instances of n mutations. Therefore, maximizing the quantity
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i
n i n

P g i p
i n

m !
! !

( , , )
−( )

∗
=
∑

with respect to p will yield the mutation rate p̂ which maximizes the number 
of n-mutant combinations encountered in the randomized pool. This rate may 
be used to find the probability that a variant selected at random will have 
between n and m mutations:

r P g i p
i n

m

≡ ( )
=
∑ , , .ˆ

Given that a variant has between n and m mutations, the probability that it 
contains the mutations of interest can be obtained by summing the probabili-
ties of finding the mutations of interest at each particular mutational level:

a
P g i p

P g i p

i
n i n V

i n

m
i n

m

= ( )
( )

∗
−( )

∗

=
= ∑∑ , ,

, ,

1ˆ

ˆ

!
! !

where

P g i p

P g i p
i n

m

, ,

, ,

ˆ

ˆ

( )
( )

=∑
is the probability that a variant with a mutation rate i is selected, and

i
n i n V

!
! !−( )

∗ 1

is the probability of finding a particular combination of n mutations within 
that variant. r and a can then be substituted to the equation for F, which is 
solved for L as before. Continuing with the example stated above, if the search 
is expanded to allow desired mutations to occur in a background of up to 5 
mutations, then the mutation rate can be increased to 4.2*10−6, requiring 
screening of 4.3*1011 individuals, which, though an order of magnitude less 
than in the previous case, is still rather unmanageable.

The property that allows strain engineering programs to be feasible is the 
additivity of the effects of mutations; that is, even if a particular combination 
of 12 point mutations is optimal, a couple of them, even in isolation, will be 
beneficial. This allows engineering to proceed in several single mutation steps 
as opposed to a single multiple-mutation bound. Because any given single 
mutation is much more probable than a particular double mutation, the prob-
ability of isolating improved variants is greatly increased. Even if a phenotype 
could only be improved by a single base-pair change in the absence of any 
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others, the number of mutants that must be screened is 8.2*106, which is attain-
able from a fraction of a milliliter of culture under growth selection or from 
less than an hour of cell sorting (9).

These probabilities guide strain selection. In the following sections, multiple 
mutagenesis techniques and screening strategies will be discussed. Particular 
attention should be paid to mutation rate and throughput, respectively, so that 
screening programs are designed and carried out efficiently.

1.2.2  Random Genetic Drift

Natural mutations due to errors in replication take place at frequencies 
between 10−5 and 10−10 , depending on the strain and organism. Given this 
frequency, it is not surprising that large-scale selections are required to isolate 
any improved mutant. These frequencies are supported by a meta-analysis of 
phenotype occurrence frequencies for the basic yeast S. cerevisiae (10). Phe-
notype reversions requiring single base-pair changes including amino acid 
auxotrophy reversion and resistances occurred, on average, at a frequency of 
10−8. On the basis of this low mutation rate alone, it would appear that random 
genetic drift may be most suited for the optimization of phenotypes under the 
control of nonepistatic factors, despite the prevalence of epistatic interactions 
in nature (11). However, single point mutations are not the only genetic 
change to take place in evolving cells. Specifically, Lenski et al. found that the 
majority of the genotypic changes observed through the course of a long-term 
natural evolution experiment in E. coli resulted from transpositions and rear-
rangements as opposed to single base-pair substitutions (12). These large-scale 
genetic changes have a much higher probability of generating mutants on 
distant peaks than do point mutations. The variety of possible genetic changes 
resulting from a natural evolution program points to its versatility in optimiz-
ing a wide variety of complex phenotypes. However, generation of mutants 
with this method requires a significant amount of time, during which individu-
als are subjected to growth-based selective pressures. If the phenotype of 
interest is at odds with growth, then this mutagenic procedure may not be 
optimal with respect to library size and screening. Natural mutagenesis, 
however, does lend itself very well to growth phenotypes, as no additional 
effort on the part of the strain engineer is required to generate mutants and 
compare them against the fittest variant.

1.2.2.1  Tracking Evolution through Neutral Phenotypes  Since natural 
evolution experiments are often accomplished in continuous liquid culture, 
new variants are constantly being generated and compared against the fittest 
variant. Therefore, evolution does not proceed in rounds or stages like most 
forced evolution experiments, and so it is unclear when fitness increase has 
ceased or when a population has stopped evolving. To overcome this limita-
tion, one can make use of neutral markers to detect a mutation event. Neutral 
markers are genotypes that confer no alteration in growth rate yet whose 
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phenotype is easily detectable. Common neutral phenotypes include resistance 
to phage T5 or reversion to lactose fermentation (when the appropriate selec-
tive pressure is not present in the screening medium, of course). In a strain 
normally deficient in either of these phenotypes, it is expected that over the 
course of evolution these neutral mutations will become fixed in the evolving 
population at a slow but steady rate. Due to the low probability of attaining 
the neutral marker and the fact that it does not pose a selective pressure on 
those who carry it, it is assumed that neutral markers are never predominant 
in the culture and that over time the prevalence of this phenotype will attain 
a steady state as the rate of incidence becomes balanced by mutational losses. 
When a variant of high competitive fitness is generated (which in all likelihood 
does not possess the neutral marker), it steadily outcompetes the existing 
population, driving the proportion of the neutral marker down. After this  
new variant becomes predominant in the culture, the fraction of mutants con-
taining the neutral marker again increases at a slow but steady rate as before. 
As a result, these sharp declines in the presence of a neutral marker signal the 
appearance of a new adaptive mutation, and the jagged graph of the neutral 
marker over time is called a periodic selection curve (see Figure 1.1). However, 
if the adaptive mutation happens to occur on a variant containing the neutral 
marker, the fraction of the neutral marker will approach unity in the selective 
medium, although it confers no selective advantage. This phenomenon is 
known as “hitchhiking,” and it is predicted to occur often in evolving systems 
(13,14). In addition, the appearance of an additional adaptive mutation does 
not necessarily imply any significant improvement in phenotype as desired by 
the strain engineer, as fixation of mutations may simply result in a competitive 
advantage quite unrelated to the phenotype of interest. Therefore, it is neces-
sary to assay for improvement as selection proceeds, to ensure that progress 
is still occurring.

1.2.2.2  Genetic Determinants of Mutation Rate  Although a wide range 
of chemical and physical agents can serve to mutate a microbial population 
(discussed later), a variety of more natural factors can contribute to an increase 
in the mutation rate of naturally evolving populations, including ploidy, geno-
type, and environmental conditions. Diploid strains have been shown to more 
quickly fix adaptive mutations than haploids. Since diploid strains make copies 
of genes at twice the rate of haploid strains, adaptive mutations are generated 
at twice the rate. Assuming adaptive mutations are dominant, this increased 
generation of adaptive mutations should result in an increase in the rate of 
fixation of adaptive mutations. Indeed, Paquin and Adams showed that diploid 
strains accumulated advantageous mutations at 1.6 times the rate of haploid 
strains (15). This implies that diploid strains may achieve maximum pheno-
typic increase much faster than haploid strains, allowing further selection 
programs to be undertaken.

In addition to diploid strains, a number of additional “mutator” genotypes 
are known to increase the mutation rate in bacteria (16,17). These genotypes 
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may encode for enzymes that are naturally mutagenic or may confer muta-
genic activity upon an existing enzyme. Although the presence of a gene 
conferring a high mutation rate would appear detrimental, it has been theo-
rized that a gene conferring a 1000-fold increase in mutation rate in a particu-
lar individual can cause a population to increase in fitness quite quickly while 
remaining in but a small fraction of individuals (18). The ability of this geno-
type to confer a selective advantage without becoming ubiquitous can be 
understood through the high rate of reversion of the mutator genotype, due 
to its high mutation rate. This implies that mutator strains may be an excellent 
starting point for a variety of evolution experiments, as isolates from the 
resulting culture are likely to be genetically stable. However, it should be noted 
that most known mutator genes only achieve a 100-fold increase in mutation 
frequency, at which level they have been theorized to attain a much larger 

FIGURE 1.1.  Periodic selection in an asexual population. The numbers of successive 
adaptive clones and the number of clones possessing the neutral marker are tracked 
over time. (A) The prevalence of the neutral marker increases in the wild-type popula-
tion at a rate determined by natural mutation frequency. (B) The first adaptive mutant 
(with a large selective advantage) appears in the neutral marker-null population and 
quickly outcompetes the original clone, causing a sharp decline in the number of cells 
containing the neutral marker. (C) The prevalence of the neutral marker increases in 
the first adaptive mutant at a rate determined by natural mutation frequency. (D) The 
second adaptive mutant (with a relatively small selective advantage) appears in the 
neutral marker-null population and gradually outcompetes the original clone, causing 
a slower decline in the number of cells containing the neutral marker than in time 
interval (B). Reproduced with permission of Annual Reviews, Inc., from Reference 
(14); permission conveyed through Copyright Clearance Center, Inc.
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fraction of the population (5–10%) (16,17). In addition, the mutator pheno-
type may be amplified by certain chemicals such as thymidine, allowing for 
increased control over evolutionary rate over the course of the experiment. 
Mutator genes are also unique in that they may have a very specific mutational 
spectrum. In E. coli, mutY increases the frequency of GC->TA transversions, 
mutT results in TA->GC transversions, and the mutD5 mutation appears to 
increase the rate of mutation in a nonspecific manner. The specificity of 
mutator genotypes allows a great deal of control over the spectrum of mutants 
generated, possibly enabling preservation of a counter-selected genotype that 
is necessary for the application of interest.

1.2.2.3  Applications of Random Genetic Drift  Continuous culturing and 
serial transfers have been successfully used to select for fast-growing strains 
generated through a natural evolution program (19–22). Included in this list 
are improvements of basal-level growth rate as well as improvements in 
growth rate on alternative sugars such as xylose. Accumulated mutations in a 
yeast strain selected on xylose over time resulted in greatly altered xylose 
transport kinetics, doubling Vmax (15.8 to 32 mmol/[g dry weight]/h) and reduc-
ing Km by 25% (132 to 99 mM) (22). A second highlighted example involves 
a study on the bacterium E. coli, where 10,000 generations were studied via 
serial culturing (12). The resulting strains exhibited a 50% improvement in 
fitness as well changes in other complex phenotype such as cell size and mor-
phology. Moreover, this study highlighted that the mutations regulating these 
phenotypes were indeed quite rare and diverse. In some cases, this change 
could be accomplished by point mutations; however, genomic rearrangements 
were also seen. Furthermore, most of the change occurred during the first 2000 
generations, with improvements slowed over the last 8000. This highlights the 
importance of screening high levels of mutants, a prime difficulty with natural 
selection-based mutations. Both of these examples are highly relevant because 
growth improvement is a highly complex process. Not only does metabolism 
need to be regulated and carried out more efficiently, but a number of addi-
tional factors such as substrate uptake, metabolite tolerance, and reproductive 
machinery also need to be optimized in a fast-growing strain. This breadth 
obtainable by classical strain engineering would be unfeasible in more directed 
approaches. As a final example, Wiebe et al. used a glucose-limited chemostat 
to select for mutants of Fusarium graminearium with delayed onset of colonial 
morphology, further illustrating the power of natural evolution to enrich for 
highly complex phenotypes (23). Delayed onset of a particular phenotype 
requires alteration of a wide range of regulatory factors, especially for a trait 
that is carried out by a plethora of cellular machinery. Furthermore, because 
many factors controlling morphology are unknown, directed approaches 
would be ineffective at generating highly improved variants.

Industrially, natural genetic drift is always under way in large-scale fer
mentations. As an example, naturally improved strains of yeasts (both  
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Saccharomyces and Pichia sp.) have been isolated from a sulfite liquor fer-
mentation plant. These strains demonstrated the complex phenotype improve-
ment of increased tolerance to acetic acid and enhanced galactose fermentation 
capacity (24). Samples from ongoing fermentations, especially long-term cul-
turing, will present a diverse genetic population. The continuous sampling and 
analysis for these cultures can give rise to novel, complex phenotypes. However, 
other methods such as forced mutagenesis can improve the frequency of 
improvements as well as the prospect for success.

1.2.3  Forced Mutagenesis

Mutagenesis by ultraviolet (UV) or chemical treatment is a widely used 
approach for obtaining point mutations to create auxotrophic markers and 
improve strains. Cellular exposure to UV radiation can disrupt DNA structure, 
leading to a dose-specific occurrence of mutations. In addition, certain chemi-
cals such as ethyl methane sulphonate (EMS) and nitrosomethykguanidine 
(NTG) have been known to cause DNA damage. It should be cautioned that 
all of the agents described in this section are mutagenic and hence carci
nogenic and thus extreme care must be used during handling to prevent 
damaging exposure. In addition, certain chemicals carry orthogonal risks. For 
instance, NTG is explosive (25). Therefore, the benefits of increased mutation 
rate must be weighed against increased safety costs when working with these 
compounds.

The attractiveness of chemical and physical mutagens is the increased muta-
tional capabilities compared with natural variation. Mutation frequencies are 
often measured as a function of auxotrophic marker development or gene 
mutation reversion. While basal-level, natural drift mutations can result in 
average reversion frequencies of nearly 1 in 10−8 (as described above), induced 
mutations by methods such as UV radiation can increase this value upwards 
of 10−3 to 10−5, depending on the organism used and the intensity/duration of 
irradiation (26–28). Similar results and mutation frequencies can be seen with 
chemical mutagenesis using reagents such as EMS and NTG. Given these rates, 
it is still expected that the frequency of obtaining auxotrophic mutants in 
diploids by direct mutagenesis should be rare without prior selection. However, 
it has been demonstrated that auxotrophic mutants due to forced mutagenesis 
of diploid industrial strains can occur at frequencies of 10−4, illustrating that 
the mechanism of mutations is still unknown (29). Therefore, improved mutants 
will occur at rates higher than those suggested by the probabilities. In terms 
of fitness landscapes, this higher mutation rate allows a further exploration of 
genotypic space. Thus, generating mutations with this method may yield vari-
ants located on more distant peaks, possibly at higher levels of fitness. When 
the phenotype of interest is influenced by a significant number of epistatic 
interactions, the resulting landscape will be more rugged, making forced  
mutagenesis more desirable for isolating improved variants than natural 
evolution.
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1.2.3.1  Optimal Mutagen Dose  Mutation rate and cell survival are both 
strongly affected by mutagen dose. Thus, it is necessary to determine optimum 
mutagen dose. If the mutation rate is too low, variants with mutations (and 
especially improved phenotypes) will be rare compared with unmutated cells, 
making detection difficult even in high-throughput screens. In contrast, if the 
mutation rate is too high, the effects of deleterious mutations will swamp those 
of beneficial mutations, yielding poorly performing (or even nonviable) vari-
ants. Since the goal of the strain engineer is to maximize the number of benefi-
cial mutations per variant, plots akin to Figure 1.2 are often constructed to 
evaluate the effects of different types or doses of mutagen on the trait of inter-
est. A crude measure of phenotype on a small number of variants is preferred 
to minimize the resources spent at this preparatory stage. Curves similar to 
those in Figure 1.2 are often seen, depending on the phenotype of interest. 
Reversions to prototrophy or resistance mutations are normally monotonic, 
whereas titer-increasing or decreasing mutations normally follow an inverted 
U curve (30–32). It is important to note that as titer is improved, the likelihood 
of finding further beneficial mutations is reduced, making the statistic of popu-
lation variance as important as the average for selection of optimal mutagen 
dose (33). Indeed, Lenski, et al. found a hyperbolic decline in fitness increase 

FIGURE 1.2.  Common dose–response curves. Determining the optimal mutagen 
dose is critical for success in identifying altered mutants. This optimal level is depen
dent on the type/doses of mutagen and on the trait of interest. In general, three  
types of response curves are seen: reversion to prototrophy or resistance mutations 
normally follow the monotonic curve, whereas titer-increasing or decreasing muta
tions normally have an inverted-U shape. If the culture contains a subpopulation of 
radiation-sensitive individuals, biphasic behavior may be observed.
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over time in a population of E. coli undergoing natural selection, suggesting 
that a small number of mutations of large effect were fixed in the population 
during early times whereas a larger number of mutations of smaller effect were 
fixed in subsequent generations, assuming a constant mutation rate per genera-
tion (34). Hence, the optimal mutagen dose is likely to change as superior 
variants are isolated. The dose that results in the highest enrichment in desir-
able variants is then applied and a large number of variants are screened more 
accurately.

Although plots akin to Figure 1.1 are useful for single-round selection pro-
grams, selecting the optimal mutagen dose based on the maximum observed 
phenotypic increase may cause problems for prolonged selection experiments. 
Although this dose will maximize the single-round phenotypic increase, sub-
sequent rounds of improvement will have to contend with any deleterious 
mutations that will have occurred, possibly limiting maximal improvement in 
phenotype. For cases where improved titer is important, it is generally accepted 
that low mutation rates are better than high, even though high rates will yield 
a more immediate benefit (35). The rationale behind this choice is that the 
small number of mutations selected in a low mutation rate program will have 
a much higher probability of being beneficial than the high number obtained 
in a more error-prone program. Therefore, any subsequent beneficial muta-
tions will not have their effects attenuated by the presence of deleterious 
mutations. Only after low levels of mutagen fail to yield improved variants is 
it desirable to increase mutagen concentration, thus expanding the evolution-
ary search to reveal epistatic peaks in the fitness landscape. By alternating low 
and high mutation rates in this manner, the prevalence of deleterious hitch-
hikers may be minimized.

1.2.3.2  Determination of Mutagen Specificity and Frequency  A wide 
variety of chemical mutagens have been used to introduce DNA damage. Not 
only do individual chemicals produce different mutation profiles as mentioned 
above, but the environmental context and strain in which these mutagens are 
applied can also have a large effect on the changes observed (36,37). Chemical 
mutagens have been found to delete large (∼1 kbp) sections of an organism’s 
genome as well as generate mutations at the single base-pair level (38). Fur-
thermore, the advent of high-throughput sequencing technology allowed the 
identification of mutagen-specific “hotspots” in E. coli, emphasizing the non-
random nature of the induced changes (39). In addition, it has been noted that 
NTG acts upon the DNA replication forks, causing the resulting mutations to 
be tightly clustered (40). Therefore, it is highly recommended to change muta-
gens as a strain improvement program proceeds, not only to avoid develop-
ment of resistance, but also to allow fuller sampling of genomic sequence 
space. Alternatively, it is possible to apply multiple mutagens in the same dose; 
however, the mutagens must act on different DNA repair pathways in order 
for this approach to be beneficial (41). In general, unless mutagenesis rates 
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and specificities have been previously characterized for the strain of interest, 
characteristics of mutagens may be known only approximately, especially if 
the organism’s cellular repair pathways are unusual.

1.2.3.3  Mechanisms of Mutagenesis  Most of the mutagens introduced 
in this section serve to make DNA repair machinery more error prone, in 
addition to damaging DNA directly. Therefore, it is plausible that over  
the course of a selection program a mutation that confers resistance to a par-
ticular mutagen will arise. In this situation, no change in phenotype will  
be observed upon mutagenesis. To distinguish this case from cases where 
further phenotypic improvement is unlikely, some easily observable reversion 
phenotype may be used to confirm efficacy of the mutagenic treatment. In 
cases where resistance has developed it will be necessary to attempt different 
types of mutagens in order to introduce mutations via an alternate repair 
pathway (35).

UV light has been extensively studied in terms of its mutagenic frequency, 
specificity, and mechanism, in large part due to its ease of implementation 
(27,42–44). Cells may be mutated simply by exposing them to UV light for 
some length of time (analogous to the dose of a chemical mutagen). In the 
case of E. coli, it is thought that UV radiation causes DNA damage but that 
these initial lesions are not converted into base-pair changes until activation 
of the SOS repair pathway, a global response to DNA damage. For this reason, 
mutation frequency initially increases according to the square of UV dose, 
confirming that two distinct DNA lesions are required for mutagenesis to 
occur: one to induce the SOS repair pathway, and the second to cause a detect-
able phenotypic change. After this initial stage, mutations increase linearly 
with exposure as lesions continue to accumulate after SOS induction. A regime 
of higher order response to radiation indicates the appearance of mutations 
dependent on the presence of two DNA lesions in proximity (43). Finally, the 
mutation rate reaches a steady value as lethal mutations accumulate. Treat-
ment with UV radiation is analogous to chemical mutagenesis in that UV has 
its own mutagenic specificity and frequency. However, studies have shown UV 
to be slightly broader in its action than other mutagens (4).

1.2.3.4  Effects of Environment  Since each of the mutagens previously 
described require the action of cellular repair machinery, “recovery” of 
mutated cells in rich medium has been found to increase the mutation rate 
realized in the surviving cells. Not only does this treatment allow sufficient 
time for SOS repair to convert DNA lesions into base-pair changes, it also 
allows mutated proteins to be synthesized, which is important if screening 
occurs directly after mutagenesis. Also, certain additives to this recovery 
medium may promote or inhibit recovery of mutated cells. For example, addi-
tion of caffeine and acriflavine following UV mutagenesis will increase the 
mutation rate (35), whereas addition of manganese II, purine nucleosides, and 
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inhibitors of protein synthesis will decrease the mutation rate (45). Interest-
ingly, 8-methoxypsoralen is antimutagenic when present before UV irradia-
tion, but is mutagenic if introduced after UV, illustrating the complexity of  
the repair mechanisms involved (46). It should be noted, however, that any 
treatment that increases the mutation rate will also increase lethality; there-
fore, it should be ascertained whether such treatments actually increase the 
number of mutants per survivor before mutation-amplifying additives are 
introduced (35).

1.2.3.5  Applications of Forced Mutagenesis  Forced mutagens have seen 
wide use in development of complex phenotypes. For example, UV mutagen-
esis was used to generate auxotrophic mutants of sake yeast (29). This is sig-
nificant because it allows this yeast to be used in breeding programs and in 
metabolic engineering efforts utilizing molecular cloning techniques. The 
ability of mutagens to introduce variation in a wide variety of organisms is a 
major benefit to this approach, as standard genetic manipulation techniques 
are only established for a handful of (possibly industrially suboptimal) strains. 
Furthermore, EMS was used to generate sake yeast mutants with improved 
flavor profiles, clearly indicating the ability of forced mutagenesis to improve 
industrially relevant complex phenotypes whose molecular basis may be 
largely unknown (47,48). In addition, a forced mutagenesis/selection scheme 
was used to screen for improved microalgae capable of producing L-ascorbic 
acid. By screening over 105 mutants, a greater than 50-fold improvement 
in specific productivity was achieved (49). These results illustrate the large  
size of libraries necessary to achieve metabolic phenotypes. Many processes 
(including the penicillin production process (50)) also rely on this method to 
continuously enhance strains. As an example of this process improvement, 
penicillin titers are over 40,000-fold higher in improved strains than the origi-
nal isolated wild-type strain (51). Improved antibiotic production is a prime 
example of a complex phenotype, as strains must evolve not only the enzymes 
responsible for antibiotic synthesis but also any factors involved in nutrient 
transport and chemical tolerance. The organisms normally responsible for high 
production of a compound of interest are often genetically uncharacterized; 
thus, the genome-blind nature of the classical approach becomes an asset. This 
approach of mutagenesis and screening has even been used to improve the 
activity of baker’s yeast for bread making purposes (52). As a result of the 
ease of operation and selection, this method continues to be used to generate 
complex phenotypes in industrial cells.

1.2.4  Strain Mating

Strain mating represents an effective tool for generating a population with a 
high number of non-detrimental mutations. One of the main limitations of 
random mutagenesis is the high probability that the changes induced in a 
daughter cell will be detrimental, and this probability increases as the mutation 
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rate increases. However, high mutation rates are required to escape local 
optima on the fitness landscape. Strain mating allows recombination to occur 
between two divergent (yet functional) genotypes, generating a library of 
highly mutated individuals. However, because meiotic recombination operates 
at the level of the gene, as opposed to the base pair, any mutations introduced 
are likely to be in the genomic context in which they were found in one of the 
parents, decreasing the likelihood that such mutations are lethal. In essence, 
this technique allows exploration of distant regions of the fitness landscape 
without the associated high probability of failure, thus allowing generation of 
mutants located specifically on regions of high fitness. It is obvious that strain 
mating will have its maximum effect when applied to two highly divergent 
members of the same species, allowing a high rate of mutation with a low 
probability of lethality. This technique allows the possibility of running mul-
tiple mutagenesis programs in parallel (utilizing perhaps different mutagenic 
techniques and screening strategies) and mating the most successful individu-
als from each program, especially if mutagenesis has been conducted to mini-
mize the occurrence of deleterious mutations. In fact, it has been theorized 
that the accumulation of deleterious mutations causes evolving populations to 
gradually reach a maximum fitness. If this is the case, then strain mating should 
greatly improve the potential for phenotypic increase (53). It should be cau-
tioned, however, that if significant epistatic interactions exist between genes, 
there will be a high likelihood of disrupting them upon mating, possibly leading 
to inferior individuals (54).

Protoplast fusion is a distinct method of strain mating that does not involve 
recombination. Instead, the cell walls of two individuals are digested away and 
their genetic material is combined to form a new individual with both sets of 
chromosomes (55). This technique allows the characteristics of both organisms 
to be combined (forming a heterokaryon) without the risk of recombination 
loss. Heterokaryons are often verified by nutrient complementation. There-
fore, it is imperative that each parent be auxotrophic for a different compound. 
Removing the cell wall while preserving the cell membrane is a delicate 
process. Therefore, reliable isolation of heterokaryons is dependent on a 
number of factors, including protoplast isolation from exponentially growing 
cells, maintenance of isotonicity in the protoplast media, and the addition of 
polyethylene glycol as a fusogenic agent. Since both genomes are isolated from 
viable individuals, the probability of deleterious interactions is small. Further, 
since enzymatic deficiencies are recessive, any lack of functionality in one 
parent will be complemented by the genome of the other. An added benefit 
of generating a polyploid strain is the doubling of the effective mutation rate 
for each gene, allowing evolution of improved phenotypes to proceed at a 
faster pace, as mentioned earlier.

Strain mating can be used to combine two distinct functionalities into one 
organism. For example, a common problem in fermentations is the evolution 
of a “killer” phenotype, whereby a nonproductive individual gains the ability 
to secrete a toxic compound, thus outcompeting the organisms of desirable 
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phenotype and resulting in a failure of the fermentation. However, strain 
mating can be used to generate a productive “killer” phenotype, whereby the 
resulting population is able to both secrete the product of interest and kill any 
contaminants that may be introduced (56). Indeed, Bortol et al. were able to 
fuse strains of S. cerevisiae possessing the “killer” phenotype with traditional 
baker’s yeast, producing competitive variants that retained the ability to make 
dough rise (57). Clearly, strain mating has enormous potential for generating 
mutants improved in a variety of complex phenotypes.

1.3  GENOTYPIC LANDSCAPES

If phenotype and genotype are graphed such that related genotypes are close 
together, the resulting landscape is ripe with series of peaks and valleys, with 
peaks representing genotypes of high fitness and valleys representing geno-
types of low fitness. Natural selection dictates that individuals residing on 
higher peaks are more likely to reproduce, and upon reproduction, a new 
generation arises at some genotypic distance away from their parents, depend-
ing on the mutation rate. As evolution proceeds, the population will tend 
toward peaks and away from valleys if the selection pressure is toward 
improved phenotype. As a result, understanding aspects of this landscape 
helps develop proper mutagenesis and selection strategies. For example, what 
magnitude of fitness differential is observed when moving from a peak to a 
valley? Are there many different peaks, or just one? Do there exist mountain 
ridges connecting each peak, or are each separated by deep chasms? A good 
understanding of the topography of this fitness landscape will allow prediction 
of the evolutionary trajectories of a population under selection. For the strain 
engineer, this understanding will allow comparison of different selection pro-
grams in terms of their ability to generate a mutant residing on the tallest peak 
of this evolutionary landscape.

One important quality of fitness landscapes is their “ruggedness” as devel-
oped by Kauffman (58). This quality indicates the correlation in phenotype 
observed between related genotypes. In the limit of no ruggedness (i.e., perfect 
correlation), it can be shown that there is only one peak in the fitness land-
scape and that this peak is accessible from any genotype by progressing 
through successively more fit one-mutant neighbors. However, in the limit of 
maximal ruggedness (no correlation between related genotypes), the land-
scape is essentially random, with many local optima and a very small chance 
of encountering the global optimum by progressing through successively  
more fit one-mutant neighbors. This quality is therefore extremely important 
for evaluating a priori which mutagenic and selection treatments are likely to 
yield improved mutants. Treatments that result in small genotypic changes 
(such as single base-pair changes) may only be able to proceed in small steps 
through the fitness landscape. If selection is operated such that the fittest 
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mutant is selected for subsequent mutagenesis and selection, then repeated 
rounds of generation and screening are only able to yield a local maxima. 
However, as mutagenic treatments become more severe, the possibility of 
generating a mutant on a more distant peak becomes higher at the expense 
of mutant generation on the current peak. Naturally, more severe mutagenic 
treatments become more desirable as the number of peaks in the evolutionary 
landscape increases. Alternatively, selection regimes that preserve a nonzero 
fraction of suboptimal mutants may also have an advantage in detecting  
more distant peaks. However, the costs associated with running many selec
tion programs in parallel may prove too great (59). It has been shown that 
phenotypes that exhibit a high degree of epistasicity resemble more rugged 
fitness landscapes, whereas phenotypes under the control of genotypes whose 
effects are perfectly additive resemble the gradual “Fujiyama” type of land-
scape (58).

1.4  SCREENING

The success of classical strain engineering is due in large part to the ability  
of researchers to search through a large number of variants to isolate a  
few improved individuals: a process called screening. As more mutants are 
screened, the probability of isolating an improved variant increases linearly 
(assuming the number of mutants generated is large compared with the 
number of mutants screened). Therefore, significant effort has been spent  
to develop improved techniques and technologies to allow larger numbers  
of variants to be assayed per unit time. Screens can be classified into one of 
two broad categories: rational screens and random screens (35). Rational 
screens are defined by their exploitation of knowledge about the system of 
interest, whereas random screens are of more general applicability. Ideally, the 
quantity being measured during the screen will correspond exactly to the 
phenotype of interest, but in cases where this is difficult to measure several 
orthogonal correlates of phenotype may be assayed to decrease the rate of 
false positives. It is important to keep in mind that the optimal screening 
strategy will depend in large part on the phenotype of interest and any prior 
knowledge of the system. In addition, resource limitations may restrict which 
screens may be performed as well as the number of mutants that may be 
assayed. The error rate of a screen is also of critical importance, as poorly 
designed growth screens may yield false positives and noisy assays will neces-
sitate screening replicates to increase confidence. Finally, the importance of 
selecting individuals that exhibit true phenotypic improvements cannot be 
overemphasized. The powerful techniques of classical strain engineering often 
generate individuals that may perform well in a particular screen yet do not 
produce the phenotype of interest. Although detection of these “screening 
artifacts” can be largely eliminated through careful experimental design, 
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further characterization of isolates at the conditions of interest is often 
required.

1.4.1  Rational Screens

In general, there are at least as many ways to screen for a particular phenotype 
as there are measurable phenotypes. However, a handful of rational screening 
strategies stand out due to their popularity and generality. It should be noted 
that all rational screening procedures assume at least a crude knowledge  
of the mechanism by which a phenotype is manifested. For instances in  
which this is not well known, it may be necessary to proceed first with a 
random screen to identify improved variants, followed by a study to determine 
which screens are most selective for the isolated individuals. However, it 
should be noted that none of the techniques mentioned below assume a 
molecular knowledge of the biochemistry involved, which is the minimum 
requirement for a directed approach to succeed, indicating this approach’s 
generality for a wide variety of uncharacterized microbial strains and complex 
phenotypes.

Phenotypic titer depression is a common way of shifting the “detectable 
range” of a random or rational screen. It is often the case that one is interested 
in mutants exhibiting a high rate of product secretion or growth rate. However, 
the method used to detect phenotypic changes may not be accurate at the 
range of interest, especially when the population under selection is derived 
from a highly improved parent. Therefore, by artificially decreasing titer, dif-
ferences among high-producing variants may be discerned. This is often 
accomplished by altering media composition so that a particular nutrient is 
limiting product formation, or through introduction of a metabolic inhibitor. 
It is assumed that individuals proficient under these limiting conditions will 
maintain their superiority in a production setting (60).

Toxic analogs of metabolic precursors can be used to select for variants with 
improved metabolic qualities. When a metabolic precursor is synthesized 
intracellularly, mutants resistant to its toxic analog may be overproducing the 
nontoxic compound, diluting the poisonous effects of the analog and increas-
ing flux through the pathway of interest. This method has been applied suc-
cessfully for bioproducts derived from amino acids (61). For compounds 
provided as nutrients in the growth medium, however, sensitivity to their toxic 
analog may indicate improved transport properties for that class of molecule, 
thus increasing metabolic flux toward the pathway of interest. One potential 
drawback of this method (and assaying for sensitivity in general) is that it must 
be accomplished through replica plating, which has much lower throughput 
and is more labor-intensive than screening in liquid culture (62).

In instances where the product of interest is known to inhibit the activity 
of a toxic compound, selection for resistant mutants may result in isolates of 
improved production (62). This screening method, called selective detoxifica-
tion, is most applicable to solid media due to its ability to provide each mutant 
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with a unique chemical environment; liquid cultures allow the product of inter-
est to diffuse and provide resistance to nonproducers, confounding results. It 
should be cautioned, however, that if alternate pathways to resistance are 
present, the possibility of encountering screening artifacts may be unavoid-
able. This method has seen success in generating Acremonium chrysogenum 
variants proficient in detoxifying metallic ions through production of Cepha-
losporin C (61).

Desirable concentrations of the product of interest may be infeasible for a 
number of reasons. First, the desired compound may be directly toxic to the 
cell. Second, the product of interest may participate in an inhibitory feedback 
loop, which limits its production. The first bottleneck may be alleviated simply 
by screening for individuals resistant to high concentrations of the desired 
compound. Mutants deficient in feedback inhibition may be isolated by screen-
ing for mutants resistant to a toxic analog of the end product. It is expected 
that survivors will be deregulated, overproducing the compound of interest 
and thus diluting the effect of the toxic analog (63).

A particularly clever screening strategy involves the mutagenesis of non-
producing strains, isolated through mutagenesis of a productive parent strain. 
In theory, productive mutants isolated after this second round of mutagenesis 
will have had at least two mutations in the relevant biosynthetic genes:  
an inactivating mutation followed by a mutation that restores productive 
ability to levels that are (hopefully) higher than the parent strain. An added 
benefit of this method is the low level of background activity observed, enabling 
more rapid screening techniques to be employed. Furthermore, revertants are 
more likely to contain mutations in genes directly related to product synthe
sis, as opposed to genes whose effect is epistatic (62). This technique has  
seen success in overproduction of the antibiotic aurodox in Streptomyces 
goldiniensis (63).

As a strain of interest becomes more highly optimized, the likelihood of 
generating phenotypic changes of large magnitude steadily decreases. Hence, 
the maximum expected improvement in phenotype may be within the error 
of the screen. To increase the probability of detecting variants with low (but 
significant) improvement, a rapid recycling scheme can be implemented 
(35,59). In this statistical approach, a large rake-off (∼10–50%) of mutants are 
immediately rescreened. This process is repeated multiple times to enrich the 
fraction of genuinely improved variants, the rate of enrichment corresponding 
to the magnitude of phenotypic increase. Mutagenesis can be undertaken 
between rounds of recycling or after isolation and characterization of improved 
individuals. Due to the power of this technique, screening artifacts can become 
a major concern if the selective conditions are poorly designed. Although  
such statistical rigor is recommended throughout the optimization process, it 
becomes critical to continued isolation of improved variants as phenotypic 
increases become more marginal and rarer.

A significant number of phenotypes cannot be linked to microbial growth, 
necessitating the development of alternate screening methodologies. Colorful 
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or fluorescent phenotypes may be detected spectrometrically (9,64), but for 
phenotypes that do not exhibit obvious color or fluorescence, a substantial 
amount of creativity is often required. Identification of a suitable colorimetric 
assay may be relatively simple for popular phenotypes, but in more specialized 
cases a solution may have to be developed in-house. In any instance where a 
large amount of processing is necessary before a phenotype can be measured, 
screen throughput will be significantly diminished and optimization of assay 
protocols becomes of paramount importance.

1.4.2  Random Screens

In the absence of any knowledge about the causative factors of the phenotype 
of interest, a random screen is often the only option for isolating desirable 
variants. However, the conditions of the screen must be very similar to those 
of the final production setting of these strains or else screening artifacts will 
be encountered. The major concern with random screening is the immense 
library size and screening effort required.

A common way of quickly reducing this library size and isolating interesting 
variants is known as preselection. In this approach, a crude growth-based cor-
relate of the phenotype of interest is used to eliminate any variants that are 
not superior to the parent strain. This scheme is especially useful in cases 
where accurate measures of phenotype are difficult to achieve, thus precluding 
their use in the entire mutated population. In cases where the phenotype of 
interest naturally confers a growth advantage, preselection can simply consist 
of a crude growth-based random screen. Otherwise, when interested in the 
production of a secondary metabolite, any of the rational screens discussed 
above may be used (61). Since the aim of a prescreen is to increase the 
throughput of a selection program, the time savings conferred by the prescreen 
must be sufficient to make its inclusion worthwhile (59).

1.4.3  Screening Platforms

When the phenotype of interest can be directly coupled to growth, selection 
based on growth rate offers a simple, high-throughput method for isolating 
improved variants. Growth conditions are of critical importance in such 
schemes, as poor choices will result in a high incidence of screening artifacts. 
In addition to the chemical environment in which selection takes place, the 
physical environment will also have a significant impact upon which mutants 
exhibit a growth advantage. The physical environments most commonly used 
include agar plates, batch culture, and continuous culture.

1.4.3.1  Solid Media  The defining feature of solid media for microbial 
growth is its resistance to diffusion. Not only are individual variants spatially 
separated, but also any diffusible metabolites remain localized to their parent 
colony. As mutants are spatially separated, they do not compete with one 
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another for nutrients, allowing individuals to be isolated, maximizing the phe-
notype of interest, as opposed to those who use energy to decrease the fitness 
of other mutants. Additionally, mutants exhibiting significant growth differ-
ences are easily discernible by eye or by image processing software. Also, 
differential secretion of a colorful or bactericidal compound can be identified 
by the size of “halos” surrounding each colony. However, since colony diam-
eter increases as the cube root of population and halo diameter as the square 
root of secretion capability, differences among high-producing individuals may 
not be discernible. To overcome this limitation, phenotypic titer depression, as 
discussed earlier, may be implemented (60). However, phenotypic advantages 
in these artificial conditions may not translate to an advantage in a production 
setting. Indeed, growth conditions on agar plates in general are significantly 
different from those present in a bioreactor, and as such, testing under more 
realistic conditions is often necessary to refine the pool of promising individu-
als. An additional consideration when screening on solid media is the maximum 
allowable throughput. Although 1 mL of liquid media may contain upwards 
of 108 individuals, a 100-mm plate may only contain 103–104 in order to allow 
sufficient time for the phenotype to be expressed before colonies become 
indistinguishable. Furthermore, high plating densities on selective media may 
decrease the recovered fraction of mutants due to the Grigg effect (65,66). 
Briefly, plating a high density of nonviable cells may inhibit the growth of 
viable ones due to nutrient consumption or secretion of a toxic compound. 
Therefore, the benefit of colony separation must be weighed against increased 
throughput when designing such a growth-based screen. Screening programs 
incorporating agar plates have been used effectively to select for a variety of 
highly complex phenotypes, including antibiotic production (67), amino acid 
auxotrophy (68), ethanol production (69), as well as numerous improved toler-
ance applications.

1.4.3.2  Batch Culture  Batch culture is characterized by repeated cycles of 
exponential and stationary phase growth. Therefore, variants under selection 
are alternately subjected to rich and starvation conditions. Those mutants that 
can reproduce the fastest under rich conditions will be preferentially selected 
as colonists of the next batch culture. Given the exponential nature of bacterial 
growth, mutants with even a slight growth advantage will come to dominate 
the final population. Hence, this environment is best suited for isolating strains 
with reduced lag time and higher growth rates (70). However, growth is essen-
tially the only phenotype that may be selected for using this approach. Since 
variants are not spatially separated and secreted compounds are freely diffus-
ible, mutants cannot be distinguished based upon their secretory characteris-
tics. Additionally, any mutant that secretes a toxic compound to which the 
mutant itself is immune will have a selective advantage unrelated to the 
screen’s intended phenotype. These “killer” phenotypes, although seemingly 
inconvenient, offer the ability to confer a selective advantage to a production 
strain (through a technique such as protoplast fusion), extending the time over 
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which a fermentation may take place before contamination occurs (56). It 
cannot be overemphasized that the selective environment encountered in 
liquid culture is highly dependent on the microbial ecology. Unlike in solid 
media, individuals in liquid culture continuously compete for the same nutri-
ents. Hence, selective conditions will change with time as microbial popula-
tions change and the superiority of selected variants will, in general, be 
dependent upon the microbial environment in which they were grown. In 
other words, the fittest variant among a competitive population may not be 
superior when considered in isolation. On the other hand, liquid media pro-
vides an excellent environment for optimization programs using an organism’s 
natural mutation rate, as improved variants are continuously being generated 
and taking over the existing mutant pool. Perhaps the best known example of 
such a long-term evolution experiment comes from Lenski et al., who sub-
jected E. coli to batch conditions for 10,000 generations. It was found that 
individuals present at the end of the experiment had a shorter lag phase and 
higher growth rate than the strain used to start the experiment. In addition, it 
was found that most of the competitive advantage was obtained within the 
first 2000 generations of the culture (34). Although Lenski et al. were not 
interested in generating an industrially useful phenotype, these results imply 
that similar techniques would be very effective at generating improved isolates 
of industrial relevance. Indeed, through cycled batch cultivations of S. cerevi-
siae in glucose, xylose, and arabinose, a variant that obtained the ability to 
completely ferment all three sugars in almost half the time as the parent was 
isolated (71). Such an improvement would require a highly detailed under-
standing of the bottlenecks limiting the consumption of each sugar, including 
transport, metabolism regulation (to alter diauxie) and carbon metabolism. 
Characterization of each of these components (not to mention analyzing their 
interaction) would be an enormous undertaking if a directed approach were 
to be followed. However, by simply allowing faster-growing mutants to out-
compete less fit individuals, a highly desirable solution to this complex problem 
can be achieved.

1.4.3.3  Continuous Culture  Chemostats, in contrast to batch cultures, 
operate at steady state, with a steady outflow of culture balanced by a corre-
sponding influx of media (at a level below that which would wash out all of 
the cells). Those individuals that are best able to utilize these low levels of 
nutrients will have a selective advantage under this condition. Hence, instead 
of selecting for mutants with a high μmax, as is the case in batch cultures, che-
mostats select for variants with a low Ks, that is, the concentration of a limiting 
nutrient (such as glucose) at which the growth rate of an organism achieves 
half its maximal value. Thus, chemostats tend to select for specialists who can 
make maximum use of a limiting nutrient instead of selecting for general 
opportunists of high growth rate, as for batch cultures. In addition, because all 
individuals share the same nutrient pool, the possibility of forming stable 
ecologies exists, with the unused nutrients and excreted metabolites of one 
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population providing nutrients for a second (72). This situation, though prob-
lematic for instances requiring monoclonal cultures (e.g., when protoplast 
fusion with another variant is desired), may be acceptable in other cases (e.g., 
remediation of a toxic compound). When the chemostat population is largely 
monoclonal, however, evolution in a chemostat follows a strictly sequential 
process, with fitter variants deriving from the most populous clone and subse-
quently replacing it. Since fitness differences are not transitive (due to epistatic 
effects), it is possible for the fitness of a population to decrease with time, as 
measured by pairwise comparisons between isolates that are not immediately 
related to one another (73). In these cases, there is no “best” variant for a 
particular selective environment due to fitness’s dependence on the microbial 
composition of the chemostat culture. In addition, since chemostats select for 
populations with high residence time, adherence to bioreactor walls can 
become a major concern (70). Finally, in comparison to agar plates and batch 
cultures, the chemostat apparatus can be quite expensive. Nevertheless, che-
mostats have been quite successful in the development of a wide variety of 
very complex phenotypes, with results such as altered morphology (23), 
increased plasmid stability (74), and increased xylose uptake rate (22).

Although the steady-state operation of the chemostat is desirable for some 
selection programs, it is often necessary to control a particular variable as 
growth proceeds. The combination of a chemostat with an online controller is 
referred to as an auxostat. The increased versatility of this instrument (reflected 
in its increased cost) allows a wide variety of schemes to be implemented 
during screening. For example, by controlling media flow rate to maintain a 
constant low cell density, a strong pressure can be applied to select mutants 
with high growth rate in rich media. In essence, this setup results in a batch 
reactor with infinite volume, which is useful when the ability to adapt to sta-
tionary phase is not required (75). Alternatively, instead of varying the media 
flow rate to control cell density, the concentration of a toxic compound may 
be steadily increased, resulting in selection for a tolerant phenotype. The 
process of continuously changing selective conditions in real time as improved 
variants emerge is known as interactive continuous selection (ICS) (76). This 
method has been employed to select for Streptomyces mutants tolerant to 
increasingly high levels of streptomycin, resulting in strains that produce large 
quantities of this antibiotic (76). Finally, it is possible to simulate a continuous 
culture through serial batch subculturing in which a fraction of a batch culture 
is reinoculated into a fresh culture. The growth state of the inoculum and 
frequency of transfer will dictate how similar the process will be to either batch 
or continuous.

1.4.3.4  Modern Screening Platforms  Although liquid culture allows for a 
much higher numbers of variants to be screened than solid media, it allows 
crosstalk between individuals, altering the selective pressure applied to the 
cells. To overcome this limitation, Naki et al. developed a microtube-based 
screening system that allows a growth-based selection to be applied in liquid 
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media while preventing crosstalk (77). It is estimated that this method can 
provide an order of magnitude increase in throughput as compared with solid 
media.

When the phenotype of interest results in a visible change at the single-cell 
level, microfluidic techniques allow multiple orders of magnitude improve-
ment in throughput over other non-growth-based assay systems. In particular, 
108 mutants per hour may be assayed via flow cytometry, which queries indi-
vidual cell size and fluorescence. One issue unique to such a sensitive instru-
ment is the ability to detect significant variability among a monoclonal 
population. Hence, it is possible to isolate what seems like improved variants 
that reproduce to yield an unimproved population average. Thus, characteriza-
tion of average cell-to-cell variability is of paramount importance in designing 
a precise flow cytometric screen. Nevertheless, mutations that increase cell 
variability may arise, necessitating the use of a rapid recycling scheme allowing 
cell division between each measurement. Of course, the phenotype of interest 
must result in a visible difference at the single-cell level, but nevertheless flow 
cytometry has been successfully employed to enrich for a wide variety of 
phenotypes. For example, carotenoids exhibit a characteristic fluorescence and 
are localized to cellular membranes, thus allowing An et al. to select for yeast 
variants with improved carotenoid production capabilities (9). Furthermore, 
Tyo et al. implemented a product-specific stain to select for overproducers of 
poly-3-hydroxybutyrate, a thermoplastic of commercial relevance (64).

Despite efforts to adapt the selection of many phenotypes to high-
throughput platforms such as growth cultures or solid media, it is often neces-
sary to screen variants individually in liquid media. For example, secretion of 
a particular compound may not occur on solid media, or it might be desirable 
to test isolates obtained via another method under more industrially relevant 
conditions. In addition, a large cell count may be necessary for more accurate 
phenotype quantification. In instances where development of a phenotype  
in 50-mL shake flasks would be too resource-intensive, deep 96-well plates 
offer a reasonable compromise. Isolates may be grown in up to 2 mL of  
media in plates especially designed to maximize aeration and prevent cross-
contamination (78). Depending on the phenotype of interest, up to 104 variants 
may be assayed per day per technician. Finally, the 96-well format has gained 
wide acceptance in industry, prompting the development of a plethora of 
equipment specifically designed for running experiments in this setting.

The development of robotics and microcontrollers during the past 50 years 
has greatly enhanced the efficiency of selection programs, especially for cases 
when variants must be kept separate. Screens based on solid media can greatly 
benefit from automated colony pickers equipped with image analysis software. 
In addition, more specialized systems exist for inoculating a lawn of bacteria 
with “plugs” from a plate containing antibiotic-secreting variants to determine 
inhibition zones and hence product secretion ability. Furthermore, a wide 
variety of robotic systems designed for manipulation of cultures in the 96-well 
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plate format have been developed, including media handlers, plate movers, 
plate storage systems, and plate readers. One important consideration when 
operating a robotic system is maintenance of sterility, as robotic components 
comes into regular contact with a large number of cultures. Additionally, 
robotic screening systems are only as good as their software; interesting or 
unexpected phenotypes will not be selected unless their characteristics have 
been programmed into the detection routine. Despite the added complexities 
associated with operating a robotic system, expenditure of a reasonable 
amount of care will make the operation of a high-throughput, statistically 
rigorous screening program much more efficient. (For more information on 
high throughput fermentation techniques, see Chapter 5.)

1.5  CONCLUSIONS

Complex phenotype optimization via the classical approach is well established 
in the food and pharmaceutical industry. Improvement of yeast strains for 
alcohol fermentations has long taken the classical approach due to “generally 
recognized as safe” (GRAS) classification and ease of selection. This approach 
has been quite successful in improving complex phenotypes such as complex 
metabolite profiles, flocculation, and chemical tolerances (79). The success of 
this approach can be seen in the evolution of the sake fermentation yeast (See 
Box 1.1). In addition, since the advent and discovery of antibiotics, a long-
standing goal has been the increase of titer. The significant improvements seen 
in these processes have mostly been due to the use of the classical strain engi-
neering approach (see case study in Chapter 6).

The genome-wide mutations induced by classical strain engineering are not 
as efficient when the desired mutations occur in a single gene. However, when 
it is desirable to obtain mutations across many genes in the cell (as is often 
the case with complex phenotypes), the global nature of this approach is an 
asset. Moreover, there is no need to understand the underlying genetic and 
regulatory network to direct mutagenesis, as the “space” of possible mutations 
covers the entire genome, in contrast to rational methods, which require more 
intimate knowledge of influential genes to be successful. Classical strain engi-
neering, therefore, may return mutants that exploit previously unknown regu-
latory mechanisms or metabolic pathways, making this approach applicable 
not only to organisms that are poorly characterized, but also to model organ-
isms. Furthermore, techniques of classical strain engineering can induce previ-
ously dormant sections of a genome to become active. Exploitation of these 
“cryptic genes” would be unlikely in a rational approach to strain improve-
ment, demonstrating the ability of classical strain engineering to find novel 
and nonintuitive solutions to a design goal (80). An important disadvantage 
of this method is that the incurred changes are not easily traceable or movable 
to another host strain. Recently, advances in whole-genome resequencing and 
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“omics” technologies are beginning to evaluate these strains in hopes of  
identifying the underlying changes (11) (see Chapter 3). However, this sort  
of inverse metabolic engineering is seen to be a new frontier at the inter
face of the classical and rational approaches for complex phenotype engi
neering (81).

The classical strain engineering approach has long stood the test of time in 
the fermentation industry due to its ability to consistently generate improved 
phenotypes using simple techniques. By starting from single base-pair changes 
and progressively increasing the rate of mutation, the strain engineer can 
explore ever-more distant reaches of the fitness landscape, eventually travers-
ing wide valleys in single bounds as optimized strains are combined to create 
individuals for further mutagenesis and improvement. The power of these 
techniques to improve complex phenotypes lies in the lack of assumptions 
made in their application. No hypotheses about rate-limiting steps or flux 
imbalances are needed to generate improved variants, just a well-designed 
assay and patience. Luckily, with the continued introduction of cost-effective 
robotic and microfluidic systems, the length of time required for isolation of 
improved variants will steadily decrease. Further, the use of this technique is 
readily accepted by both regulators and consumers for the improvement of 
food organisms. The generality of this approach, however, is often its major 
downfall. Rational metabolic engineering, with its ability to precisely alter the 
function of specific genes, is often able to generate improved variants in much 
less time than classical strain engineering when such detailed knowledge is 
available (see Chapter 2). Furthermore, the directed nature of such rational 
techniques allows inferences to be made about the mechanism underlying a 
phenotype, even when such techniques do not work. On the contrary, success-
ful variants isolated through classical techniques cannot yield any information 
about underlying causes. As genome sequencing continues to increase in speed 
and affordability, however, the ability to uncover and rationalize the causes  
of phenotypic increase in classically engineered variants will increase. Thus, 
classical techniques promise not only to continue to yield improved strains, 
but also to elucidate the hidden bases of complex phenotype display in 
microorganisms.
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2
TRACER-BASED ANALYSIS OF 
METABOLIC FLUX NETWORKS

Michael Dauner

2.0  INTRODUCTION

Biological systems are complex networks consisting of many thousands of 
components interacting with each other to constitute a phenotype. Currently 
our knowledge of the cellular parts or of their interactions is not sufficient 
to model and predict behavior of most biological systems with sufficient accu-
racy in silico as to render experiments in vivo unnecessary. It is for this 
reason, as described in Chapter 1, that classical strain engineering approaches, 
which entail mutagenesis and screening, were used predominantly to obtain 
improved traits in industrial strains. However, it is exactly this complexity 
that calls for engineering approaches based on mathematical models for 
developing biocatalysts, as mathematical models allow for a systematic inte-
gration and analysis of a wealth of information that is currently being gener-
ated for many industrial strains (1). The advent of the “omics” technologies 
(2–6) at the end of last and beginning of the 21st century, providing cell-wide 
information on genomes (7–9), transcriptomes (10,11), proteomes (12–14), 
and metabolomes (15–18) further emphasized this need. It also illustrated 
that knowledge of only the parts of a system does not necessarily translate 
into more efficient product development, as was illustrated by the inability 
of the pharmaceutical industry to develop new drugs despite a flood of new 
data and insights from “omics” analysis (19). This understanding finally gave 
rise to the renewed interest in the concepts of systems biology and its tools 
(20,21).

Engineering Complex Phenotypes in Industrial Strains, First Edition. Edited by Ranjan Patnaik.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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FIGURE 2.1.  Metabolic engineering workflow comprising hypothesis generation, 
implementation, and observation.
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Metabolic engineering (22) represents a systems biology approach to the 
analysis and design of metabolic flux networks (23). Successful metabolic 
engineering approaches build on a close interaction between hypothesis  
generation, implementation, and observations and aim to develop new prod-
ucts and processes, to shorten development times, to improve efficiency and 
robustness of processes, and to ensure sustainability and minimal health  
and environmental impact of the product and processes over their life time 
(Figure 2.1). The metabolic engineering toolbox comprises many experi
mental, analytical, and mathematical techniques and methods, from recom
binant DNA technology (24) to directed evolution (25) to sophisticated 
modeling approaches (26). Among its most prominent tools are frameworks 
for the analysis and design of metabolic flux networks, in particular network 
analysis (NA), (stoichiometric) metabolic flux analysis (MFA), their applica-
tion to dynamic conditions (dynamic MFA, D-MFA) and complex cellular 
systems (“in silico cells”), as well as their recent extension to integrate 
data from tracer experiments, predominantly employing the nonradioactive  
carbon isotope 13C (13C NA and 13C MFA), but also other tracers such as, 15N 
or 31P (Figure 2.2). Fluxes, equivalent to reaction rates, cannot be measured 
directly. It is only from observing and balancing changes of, for example, sub-
strate or product levels, or other quantities related to a reaction rate, such as 
temperature or pressure, that fluxes can be inferred from. However, in bio-
technological applications, fluxes (rates) generate the desired amounts of 
product (titer) while producing as few as possible by-products (yield). It is  
this combination of rate, titer, and yield (RTY) values that form the core  
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performance metrics in the development of almost all new biocatalysts and 
bioprocesses.

NA and MFA and their extension to dynamic and whole-cell systems are 
true engineering approaches to design and balance flux networks using model-
based analyses that take advantage of the conservation laws of elements, mass, 
and recently with the incorporation of thermodynamic approximations, the 
conservation of energy. The models consisting of a set of balance equations 
help not only in designing optimum production pathways, but also in structur-
ing complex data sets and in superimposing additional constraints that allow 
for deriving unique insights into complex networks of biological systems by 
noninvasive means. In case redundant information is available, consistency of 
measurements can be evaluated. This chapter, along with Chapter 3, is devoted 
to illustrating the basic steps in designing and analyzing new biotechnological 
processes and production systems with the help of NA and MFA. However, 
the emphasis of this chapter will be on elucidating the advantages as well as 
drawbacks of integrating tracer data into NA and MFA, while Chapter 3 will 
focus on the integration of “omics” data into NA and MFA. In addition to 
detailing how to carry out a tracer experiment and analyze isotope data, 
examples are presented in detail where tracer-based NA and MFA were suc-
cessfully applied to facilitate engineering of new biotechnological processes 
and products.

FIGURE 2.2.  Metabolic engineering tools for the analysis of metabolic fluxes. (See 
insert for color representation of the figure.)
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2.1  SETTING UP A STOICHIOMETRIC NETWORK MODEL

The first step in NA and MFA is to set up a representative stoichiometric 
model comprising all relevant reactions of the system. In metabolic networks, 
fluxes usually rely on enzyme catalysis. Consequently knowledge of all cata-
lytic genes in an organism and the stoichiometry of the reaction(s) they cata-
lyze allows for the reconstruction of the metabolic network from the annotated 
genome (27). With sequencing capabilities improving at a rapid pace, the 
number of available sequenced genomes has increased dramatically. The  
first genome sequence of Haemophilus influenza was released in 1995 (7). 
Today genome sequences of more than 180 organisms have already been 
completed (28).

However, identification of all open reading frames (ORFs) in an organism 
is a challenge (29), and even in the well-characterized model organisms Esch-
erichia coli and Saccharomyces cerevisiae, 940 out of 4472 (21%) and 1134 out 
of 5796 (20%) (30) protein coding genes are still uncharacterized, respectively. 
Also, nonenzymatic reactions that occur under physiological conditions need 
to be integrated into the model. Examples are the hydrolysis of phosphoglu-
conolactonate (31) in the oxidative pentose phosphate pathway (PPP), the 
decomposition of acetolactate to acetoin or diacetyl (32) in the branched-
chain amino acid biosynthesis pathway, or of glutamine to ammonia and  
pyrrolidonecarboxylic acid (33). But simple chemical reactions under physi-
ological conditions also play a role in regulatory processes, for example, in  
the formation of nitric oxide, an important cellular signaling molecule, from 
hydrogen peroxide and arginine (34), or in the reactions of 2,4-dienone 13- 
oxooctadecadienoic acid, a regulator in several cellular processes, with gluta-
thione and N-acetylcysteine (35).

Another challenge in setting up a network model results from promiscuous 
enzymes (36,37). Last but not least, often stoichiometry of a reaction is not 
known. One of the most prominent examples is the adenosine triphosphate 
(ATP) synthetase reaction, coupling ATP generation with flux of protons over 
the membrane. A general H+-to-ATP ratio of 4 was assumed (38). However, 
recently insights into the molecular mechanism of the enzyme and its bioen-
ergetics point to flexible H+-to-ATP ratios, depending on the structure and 
localization of the ATP synthetase in the respective organism (39). To further 
complicate matters, frequently also stoichiometry of H+ transport by the res-
piration chain is difficult to determine, not only because of differing constitu-
ents of the respiratory chain (40), but also because of electron slippage (41), 
parallel reactions such as alternative oxidases and uncoupling proteins (42), 
or proton and electron leakage (43). There are many more examples of 
physiology-dependent reaction stoichiometries, including ion leakage through 
membranes (44) or different cofactor preferences of the glucose-6-phosphate 
dehydrogenase (45). Therefore, care needs to be taken to keep experimental 
conditions defined and reproducible, as well as to have a detailed understand-
ing of these mechanisms in the specific system under investigation.
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Instead of composing a metabolic network model based on its known reac-
tions, alternatively an indirect approach can be taken starting from its known 
metabolites. With recent progress in comprehensive metabolite analysis, on a 
cellular level referred to as metabolomics, detection of a broad set of metabo-
lites is possible (15,46). Combined with knowledge of reaction biochemistry, 
most of the reaction steps that link the detected metabolites can be derived. 
However, there may also be cases where parallel reactions with different reac-
tion orders and biochemistry would be possible to explain the detected 
metabolites. In this case perturbation experiments of the metabolite pools in 
question would be required, for example, by stimulus-response experiments 
(47). From observation of the response of the downstream metabolite pools 
in question, connectivity could be derived. The feasibility of this approach 
with respect to current experimental capabilities is still limited. Nevertheless, 
the potential of this alternative avenue to reconstruct a metabolic network is 
demonstrated by the finding that variations in metabolite levels observed at 
different steady-state conditions revealed connectivity in the underlying met-
abolic network (48).

But what if the desired product is a non-natural compound and no biosyn-
thesis pathways for its production are known? Traditionally the knowledge of 
domain experts on enzymatic reactions and substrate specificities of enzymes 
is required to explore options for new biosynthesis routes. However, recently 
a computational framework was developed that allows for a systematic iden-
tification of possible reaction pathways from a given set of enzyme reaction 
rules (49). Molecules are represented using bond–electron matrices (50). 
Enzyme-catalyzed reactions use a similar notation. The reactive sites for each 
enzyme class are predefined as two-dimensional (2D) molecule fragments. A 
set of molecules is given as input and evaluated to determine if it contains 
compounds with suited functionality to undergo reactions corresponding to 
the specified reaction classes. The reactions are then implemented through 
matrix addition (49). This approach opens ways to construct and explore 
unknown pathways or compare their efficiency with known biosynthesis path-
ways, as, for example, described for the biosynthesis of 3-hydroxypropanoic 
acid (51) or 1,4-butanediol (52). Nevertheless, optimum product pathways 
identified by this method may comprise one or more generic reaction steps 
for which no enzyme is known to exist, requiring protein engineering efforts 
to derive the desired activity from homologous enzymes (53). However, until 
protein design methods improve, uncertainty remains as to whether an enzyme 
with the required performance can be successfully engineered. Recently dra-
matic progress was made in computational protein design (54), resulting, for 
example, in the de novo implementation of new reaction chemistry into 
enzymes, such as a Kemp elimination (55) or a bimolecular Diels–Alder reac-
tion (56). It can be assumed therefore that the reaction space defined by 
known enzymatic reactions will not be limiting the development of new pro-
cesses and products in the future, but will be expanded to comprise all feasible 
and thermodynamically favored chemical reactions.
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2.2  SMALL-SCALE MODELS VERSUS GENOME SCALE MODELS

In setting up stoichiometric metabolic models, the metabolic engineer fre-
quently has to make a decision between focused small-scale models and  
comprehensive large-scale models (Figure 2.3). The advantage of small-scale 
models is their mathematical amenability and the usually straightforward inter-
pretation of the results obtained. Their construction is “bottom-up,” adding one 
reaction at the time to the model. However, while this “step by step” setup of 
the model assures a detailed understanding of the model by the metabolic 
engineer, at the same time it also represents one of the major challenges of 
working with small-scale models. Decisions need to be made as to which reac-
tions to include or not to include in order not to limit the capabilities of the 
model to provide mechanistic and quantitative analyses and predictions (57). 
Frequently the models only comprise reactions of the major catabolic or ana-
bolic pathways in central carbon metabolism, for example, the Emden–
Meyerhoff pathway (EMP), the PPP, the tricarboxylic acid cycle (TCA), and,  
if applicable, the Entner–Doudoroff pathway (EDP) and Calvin–Benson–
Bassham cycle (CBB). If industrial processes are analyzed, the production 
pathway of interest is often included in the model as well. Further model sim-
plification can be achieved by lumping reactions of a linear reaction sequence 
into one overall reaction (58–63). If the system is growing, consumption of 
precursors for biomass formation has to be considered in the mass balances  
of the model as well. For this purpose knowledge on the composition of a cell 
is needed or at least needs to be approximated, that is, its protein, lipid, carbo-
hydrate, and nucleic acid content. An additional biomass fraction usually 

FIGURE 2.3.  Genome-scale (A) and small-scale model (B) of E. coli. The genome-
scale model (reproduced by M. Dauner from a screenshot of a genome-scale model  
of E. coli in Insilico Discovery by J.W. Schmid, 2012, with permission from Insilico Bio-
technology (Stuttgart, Germany, http://www.insilico-biotechnology.com)) comprises 
849 metabolites and 1334 transformers. A detail of the model as represented in the 
modeling and simulation environment Insilico Discovery is represented in the right 
window. Metabolites are displayed as blue and gray circles, metabolic reactions as red, 
transmembrane transport processes as yellow squares. Prominent pathways are marked 
by gray boxes. Associated data on transcript, protein, and enzyme levels are accessible 
in the upper left window, model information in the lower left window. The modeling 
environment supports stoichiometric as well as dynamic simulations. In addition, effec-
tor kinetics can be visualized (data not shown). The small-scale model consists of  
23 metabolites and 26 reactions (165). Gray arrows represent fluxes of respective 
metabolites for biomass formation. Abbreviations: G6P, glucose-6-phosphate; F6P,  
fructose-6-phosphate; T3P, glyceraldehyde-3-phosphate; P5P, ribose-5-phosphate; S7P, 
sedoheptulose-7-phosphate; E4P, erythrose-4-phosphate; PGA, 3-phosphoglycerate; 
SER, serine; GLY, glycine; C1, methyl group bound to tetrahydrofolate; PEP, phospho-
enolpyruvate; PYR, pyruvate; ACA, acetyl-CoA; MAL, malate; FUM, fumarate; OGA, 
α-ketoglutarate; OAA, oxaloacetate; TCA, tricarboxylic acid. (See insert for color rep-
resentation of the figure.)



A
B

E
. c

o
li

g
en

o
m

e-
sc

al
e 

m
o

d
el

E
. c

o
li

sm
al

l-
sc

al
e 

m
o

d
el

Entner−Doudoroff Pathway

N
A

D
P

H

gl
uc

os
e

G
ly

co
ly

si
s

P
en

to
se

 P
h

o
sp

h
at

e 
P

at
h

w
ay

T
C

A
C

yc
le

N
A

D
P

H

2 
N

A
D

P
H

N
A

D
P

H

N
A

D
H

N
A

D
H

+
1/

2 
O

2

N
A

D
H

N
A

D
P

H
N

A
D

H
N

A
D

H

N
A

D
(P

)H N
A

D
H

F
U

M

N
A

D
H

N
A

D
H

C
1

C
1 M
A

L

G
LY

S
E

R
P

G
A

P
E

P

O
A

A

O
G

A

P
Y

R

A
C

A
ac

et
at

e

T
3P

F
6P

E
4P

S
7P

P
5P

G
6P

C
O

2

C
O

2

C
O

2

C
O

2

F
A

D
H

2

C
O

2

C
O

2

C
O

2

P
/O

 ×
 A

T
P

41



42	 Tracer-Based Analysis of Metabolic Flux Networks

comprises amounts of intracellular low molecular weight compounds such as 
vitamins, pathway intermediates, and salts. In case of macromolecules, for 
example, proteins or DNA, further information on their monomer composition 
is required, that is, their amino acid and nucleic acid fractions, respectively 
(59–62).

In small-scale models, assumptions on the biosynthetic pathways of these 
biomass precursors are made that allow for finally expressing biomass biosyn-
thesis as a lumped reaction comprising only input metabolites with a single 
“biomass” variable as output (along with some other metabolites produced, 
e.g., NADH, CO2, and ADP). However, it is this less stringent and, with respect 
to the model balance equations, “hidden” process of deriving a lumped reac-
tion of biomass synthesis that represents one of the major differences in the 
use of small-scale versus genome-scale models. In genome-scale models (see 
Chapter 3) no reaction lumping and assumptions on biosynthesis pathways is 
necessary. Model construction is “top down,” which means it starts with the 
list of all reactions expected to occur in the cell. Valuable insights can be gained 
into complex biosynthesis requirements and pathways that can function as 
bypass reactions and that would usually not be considered in the small-scale 
model (64). Nonetheless, genome-derived metabolic networks typically contain 
a large set of missing reaction steps and dead-end metabolic pathways to be 
curated (65). As a result, a large degree of freedom due to numerous parallel 
pathways and redundant reactions frequently render analysis of the model 
tedious. Dealing with reaction directionality in a large set of metabolic reac-
tions can be a time-consuming task if thermodynamic constraints are not 
already integrated into the model (66).

2.3  NETWORK ANALYSIS: MAXIMUM THEORETICAL YIELD

Once a stoichiometric network model of an organism is set up, a frequently 
encountered question in industrial biotechnology is the maximum yield  
of a product that is achievable with a given substrate in the respective organ-
ism. With either a small-scale or genome-scale stoichiometric network model 
at hand, this question translates mathematically into a linear optimization 
problem: given a certain input into a network, what is the maximum output  
of the desired compound? In industry this analysis is routinely carried out as 
a first step in the evaluation of the economic feasibility of a new product or 
process idea, the so-called techno-economic assessment. Results of such a 
theoretical yield analysis are, for example, our knowledge on the maximum 
theoretical yield of riboflavin that can be achieved with Bacillus subtilis on 
glucose: 0.257 mol/mol (59), of penicillin V with Penicillium chrysogenum: 
0.43 mol/mol (67), of 1,3-propandiol with E. coli: 1.49 mol/mol (68); and so on. 
As costs of the raw materials are known, the maximum theoretical yield  
allows for deriving the minimum material costs required to produce a  
product in the best thinkable process. The calculation also incorporates 
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information on co-substrates that need to be provided (e.g., oxygen), as well 
as waste products that are produced (e.g., CO2).

Another outcome of the analysis is knowledge of the optimum metabolic 
path associated with the maximum theoretical yield. This knowledge can be 
used in developing and evaluating the feasibility of metabolic engineering 
strategies for biocatalyst construction. The more reaction steps a production 
pathway comprises, not only the more complicated its implementation will be, 
for example, with respect to the genetic engineering required, but also the 
higher is the expected loss of carbon due to side reactions. This in turn results 
in the anticipation of an increased effort necessary for its optimization (69,70).

In cases where the network contains parallel reactions or pathways with 
similar cofactor requirements, no unique optimum pathway solution exists. 
Linear optimization will only deliver one of the solutions but will fail to iden-
tify all equivalent routes. An alternative to address this shortcoming of linear 
optimization is to apply “elementary mode analysis.” In elementary mode 
analysis all feasible “steady-state” modes to start from a substrate and to yield 
a product that at the same time cannot be simplified (decomposed) further 
are identified (71). The solutions can be ranked according to their yields, with 
the highest yield solution representing the maximum theoretical yield. In the 
case of networks with parallel reactions or pathways with similar cofactor 
requirements, elementary mode analysis will identify all possible routes and 
will present them as solutions with equal maximum theoretical yield. Finally, 
all possible pathway solutions yielding maximum theoretical yield can be 
represented by linear combinations of this set of optimum elementary flux 
modes. Studies of elementary mode analysis for optimum production modes 
were, for example, carried out for lysine and Corynebacterium glutamicum 
(72), the metabolic engineering of Saccharomyces cerevisiae for poly-β-
hydroxybutyrate formation (73), or the production of succinate by E. coli (74). 
However, while elementary mode analysis provides a more comprehensive 
understanding of the system than linear optimization methods, this advantage 
comes at the costs of significantly increased computational effort (75). This 
chapter does not provide room for an in-depth discussion of the advantages 
and limitations of “elementary mode analysis.” Readers interested in more 
details are referred to Reference (76).

2.4  (STOICHIOMETRIC) METABOLIC FLUX ANALYSIS

While NA only uses the stoichiometry of the reaction network, stoichiometric 
MFA, frequently also included in the term flux balance analysis (FBA) (77), 
additionally introduces a time aspect, usually in the form of specific fluxes of 
a substrate or product i, qi. Specific fluxes can be derived from measured volu-
metric reaction rates (Qi), usually determined in “g/L/h” or “mmol/L/h,” by 
normalizing them to the actual cell concentration cx, typically determined as 
grams of “cell dry weight” per liter (“g (cdw)/L”), resulting in the units of 
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either “g (i)/g (cdw)/h” or “mmol (i)/g (cdw)/h.” However, from practical con-
siderations, molar units are preferred to mass units, as reaction stoichiometries 
usually refer to molar units. Remarkably, apart from the specific product and 
substrate fluxes, another commonly used specific flux is the specific growth 
rate mu, defined as mu = 1/cx dcx/dt, which essentially represents the specific 
flux of biomass formation. Specific fluxes provide a means of directly assessing 
cellular physiology/biocatalyst performance independent from process vari-
ables such as the biomass/biocatalyst concentration. They are of utmost impor-
tance in determining progress in strain development efforts in the engineering 
of complex phenotypes.

A common misconception is that MFA can only be applied under steady-
state conditions, that is, in conditions where intracellular and extracellular 
metabolite and biomass concentrations are not changing, as, for example, 
encountered in steady-state chemostat cultivations. However, MFA can be 
applied as well to quasi-steady state, yet even highly dynamic conditions,  
as long as the mass balances applied hold for the respective time interval.  
In this case MFA yields the average specific fluxes for the analyzed time  
frame. However, care needs to be taken such that in order to obtain physi
ologically meaningful results the cell concentration used for normalization 
under dynamic conditions is not a constant but represents the average  
cell concentration cx, corresponding to the integral of the cell concentration 
from the start to the end of the investigated time interval Δt. In a batch culture 
growing exponentially with the maximum specific growth rate mumax, the 
average cell concentration can, for example, be calculated according to the 
following equation: cxave = (cxend − cxstart)/(Δt × mumax).

The stoichiometric matrix used in NA holds the information on the net
work topology. Every row represents a mass balance and every column the 
stoichiometric coefficient of a reaction in the respective mass balance. In  
stoichiometric MFA the stoichiometric matrix is multiplied with, for example, 
(molar) specific fluxes to yield a homogenous linear equation system. If some 
of these fluxes, typically extracellular fluxes, are determined experimentally, 
the system can be further decomposed to eliminate these known fluxes. 
However, if the number of the remaining independent mass balances (or 
mathematically speaking, the rank of the matrix) is smaller than the number 
of unknown fluxes considered in the analysis, the system is underdeter
mined. This means an unlimited number of solutions that can be represented 
by a linear combination of a set of independent fluxes exist. If the number  
of independent mass balances is equal to the number of unknown reactions, 
the system is determined and can be solved to yield either none or a unique 
flux solution. However, the system can also be overdetermined with more mass 
balance equations and measured fluxes than unknown fluxes. In this case the 
redundant measurement information can be used for measurement data rec-
onciliation. For more information on the mathematical details of stoichiomet-
ric MFA the interested reader is referred to Reference (78). While mass 
balances on metabolite pools are most broadly used, all other entities that can 
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be balanced can also be integrated into the equation system, for example, 
elemental (79) or heat balances (80).

Stoichiometric MFA is a remarkable tool in that it allows the metabolic 
engineer to noninvasively assess intracellular flux distributions based on mea-
surements from outside the cell. The tool is particularly useful for investigat-
ing redox and energy metabolism, because, for example, redox metabolites 
such as nicotinamide adenine dinucleotide (NAD(H)) and nicotinamide 
adenine dinucleotide phosphate (NADP(H)) and energy metabolites such as 
adenosine mono-, di-, and triphosphates (AMP, ADP, ATP) participate in 
many different reactions in metabolism and their metabolite pools exhibit 
very high turnover rates. As discussed previously, a resolution of the intra
cellular fluxes is only possible if the resulting equation system is determined 
(81). However, due to duplicate reactions and parallel pathways, and because 
not all of the ATP production and consumption processes can be quantita-
tively accounted for, the resulting equation system is usually under- rather 
than (over-)determined. Additional balances that can be incorporated into  
the analysis (82) are required. Balances on isotope provide such additional 
information.

2.5  CARRYING OUT A LABELING EXPERIMENT

Frequently labeling experiments are carried out while metabolism of the 
organism is in “steady state,” also referred to as “stationary.” During steady 
state, intracellular concentrations of metabolites do not change. Consequently 
metabolite and label balances can be drawn on the basis of constant fluxes 
and accumulation of metabolites does not need to be considered. Steady-state 
conditions are best achieved in continuous culture experiments, where the 
specific growth rate of the culture is determined by the dilution rate. Another 
advantage of chemostat experiments is that the biomass concentration of  
the culture can be set by the concentration of the limiting substrate in the  
feed. As comprehensive analysis of labeling experiments frequently requires  
large amounts of samples, for example, if fluxes are analyzed in combination 
with the transcriptome and proteome, sufficient amounts of samples can be 
generated. Usually the labeling experiment is started the moment the investi-
gated culture reaches steady state. As a rule of thumb, it will take 3–5 volume 
changes after the onset of substrate limitation to reach steady state, cor
responding to approximately 95% or 99% of cells being newly generated  
under substrate limiting conditions, respectively. During the labeling experi-
ment, unlabeled substrate in the feed (of course usually still containing the 
respective isotope at natural abundance) is replaced with a substrate specifi-
cally labeled with an isotope in certain positions. Most frequently used isotope 
substrates are glucose labeled with 13C in position C1 (13C1-glucose), glucose 
uniformly labeled in all positions (u-13C glucose), or ammonium labeled with 
15N (15N-ammonium).
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In order to describe positional labeling patterns of isotopes in molecules, 
they are frequently referred to as “isotopomers.” The term “isotopomer” is an 
acronym and stands for “isotope isomer.” A metabolite with n atoms of an 
element and m isotopes has mn isotopomers, corresponding to all possible 
positional combinations of the isotopes in the molecule. Pyruvic acid, for 
example, has three carbon atoms and eight isotopomers of the carbon isotopes 
12C and 13C. Optimal isotopomer composition of the substrate(s) for a labeling 
experiment is best determined based on the focus of the analysis, availability 
of labeled substrates, and hypothesized flux distribution in the system, apply-
ing optimum experimental design (83). With the replacement of the substrate 
with its labeled mixture, the culture is still in a metabolic steady state but is 
instationary with respect to the distribution of its labeling patterns in metabo-
lites and macromolecules.

Usually pool sizes of intracellular metabolites are small compared with the 
fluxes, so the resulting high turnover rates result in an isotopic steady state of 
the metabolite pools rather quickly. However, the advantage of using building 
blocks of macromolecules rather than metabolites for label analysis is that no 
fast sampling methods need to be applied, as turnover times of macromolecu-
lar pools are rather large. In particular, amino acids that can be gained from 
cellular protein by hydrolysis allow for broad insights at various points of 
central carbon metabolism (Figure 2.4). If building blocks in macromolecules 
rather than metabolites are used for analysis, it takes 3–5 volume changes to 
get close to an isotopic steady state, which requires considerable amounts of 
labeled substrates for the experiment. Nevertheless, isotopic steady state of 
the macromolecular labeling composition is not a conditio sine qua non, but 
can be approximated by assuming simple washout kinetic for all macromol-
ecules generated before the onset of the labeling experiment according to fr 
(unlabeled) = exp (–D x texp), with fr (unlabeled) representing the fraction of 
unlabeled macromolecule, D the dilution rate of the continuous culture, and 
texp the duration of the labeling experiment. Wiechert et al. (84) approximated 
the difference between the two time constants governing the turnover of 
metabolite pools and the turnover of macromolecules to be three orders of 
magnitude, that is, 0.01 hour and 10 hours, respectively. These approximations 
assume that no dilution of intermediates results from the turnover of macro-
molecules. Also, specific fluxes into a pool are presumed to be in the order of 
the specific molar glucose uptake. However, if the metabolic flux network is 
significantly engineered, labeling patterns in intermediates may not be repre-
sentative. This was for example shown for C. glutamicum, where the deletion 
of pyruvate dehydrogenase resulted in very low TCA fluxes (85). Moreover, 
macromolecules such as proteins (86) are constantly assembled from and 
again decomposed into their monomers, which results in label dilution of 
intermediates that can significantly bias the outcome of labeling experiments 
(87). Nevertheless, the labeling information of proteinogenic amino acids can 
also be used to correct measured mass isotopomer distributions of free amino 
acids for any dilution effects, as, for example, reported by Iwatani et al. (88). 
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If a protein is produced specifically by an organism, it can be purified and used 
to conclude on split ratios of fluxes of the particular organism, even if this 
organism was growing in a mixed culture (89). However, it will still be a chal-
lenge to combine the derived split ratios with extracellular fluxes, as these 
fluxes can hardly be measured separately.

A process regime frequently used in biotechnology is batch cultures. In 
batch cultures all the substrates are provided at the beginning of the process. 
No additional substrates are fed nor is any culture broth harvested. Under this 
condition the microorganism does not experience any substrate limitation and 
usually grows (substrate inhibitions not considered) at its μmax in the respective 
medium until either a substrate becomes limiting or an extracellular by-
product reaches inhibiting levels. The system is metabolically in “pseudo” 
steady state or “quasi” stationary, as intracellular fluxes and concentrations are 
virtually constant. This setting allows for carrying out meaningful flux and 
tracer experiments in batch cultures (90), making also small-scale experiments 
in microtiter or deep-well cultures—cultivation platforms frequently used in 
high-throughput screening (see Chapter 5)—possible (91,92).

Recording the degree and pace of label distribution in metabolites in a 
metabolically stationary phase provides valuable information for so-called 
isotopically instationary MFA. Analysis of the isotopomer time profiles of 
metabolites enables determination of fluxes with improved accuracy, and can 
also be used for the prediction of intracellular concentrations of metabolites 
that cannot be measured directly (93–96). However, systems boundaries in 
analysis need to be selected with care as turnover of large intracellular pools 
such as storage carbohydrates in S. cerevisiae can significantly influence isotope 
labeling patterns of the analyzed metabolites, similar to the metabolic and 
isotopic stationary case (97).

Isotopically instationary conditions are also encountered in the analysis of 
industrially relevant fed-batch cultures. If labeling information from proteino-
genic amino acids is exploited, high biomass concentrations, slow growth rates, 
and high fractions of substrate consumed for maintenance metabolism require 
the use of large amounts of labeled substrates, as was the case in an industrial 
relevant fed-batch process of a recombinant E. coli producing 1,3-propanediol 
(98). However, if metabolites such as free amino acids are used, the amount 
of labeled substrates can be significantly reduced (99).

Last but not least there are stimulus–response experiments (SREs). SREs 
were established to assess fast regulatory loops on the metabolite level in 
vivo (100). Cells are grown under (quasi) steady-state conditions and per-
turbed by a sudden external stimulus. Rapid sampling and quenching proce-
dures are required, as the flux and metabolite network responds within a 
sub-second time scale (101,102). By this approach fast processes at the level 
of metabolite regulation can be investigated without interference from the 
slow gene regulatory processes (103). However, in applying several simpli
fied model descriptions, it was found that the perturbations in metabolite 
concentrations of a single SRE were too small to allow for a complete elucida-
tion of the investigated metabolic flux system (104). Significantly more 
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information can be obtained if the experiment is augmented with isotopic 
tracer data, called D-MFA (105). An overview of the different combinations 
of metabolic and isotopic stationary as well as instationary experiments is 
given in Figure 2.5.

2.6  MEASURING ISOTOPE LABELING PATTERNS

Isotopes are variants of atoms of a particular chemical element that have dif-
fering numbers of neutrons and consequently differ in their mass, for example, 
13C or 15N. This difference in mass can be detected by mass spectrometry (MS) 
(Figure 2.6). The name “mass spectrometry” is a misnomer as the mass is not 
what is measured. Instead, MS determines the mass-to-charge (m/z) ratio or 
a property related to m/z. A mass spectrum is a plot of ion abundance versus 
m/z, although in many cases the x-axis is labeled “mass” rather than m/z (106). 
Frequently analysis of complex sample mixtures requires the combination of 
both separation techniques and MS. For volatile compounds, separation by gas 
chromatography (GC) is frequently applied. For highly polar nonvolatile com-
pounds, separation of liquid chromatography (LC) is the method of choice. 
The hyphen used to indicate the coupling of a separation technique to MS, for 
example, GC-MS or LC-MS, led to the group term “hyphenated methods” 
(107). An obvious limitation of hyphenated methods based on GC or LC 

FIGURE 2.5.  Classification of experiments at various combinations of metabolic and 
isotopic state together with an overview of the minimum associated measurements, 
variables that are required to describe the experiment, as well as the amount of infor-
mation and complexity that need to be handled.
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technologies is that the sample path is also acting as a filter and not all com-
ponents injected will necessarily pass through. Components will therefore 
remain in the injector, column, and detector and the whole system will be 
inherently different after each injection. This is in contrast to nuclear magnetic 
resonance (NMR), which is a nondestructive spectroscopic technique (108). 
NMR is an alternative for analyzing isotope labeling patterns. However, only 
isotopes with an odd number of protons and/or of neutrons have an intrinsic 
magnetic moment and angular momentum, in other words a nonzero spin, and 
can therefore be detected by NMR. Nuclei frequently studied by NMR in 
biology are 1H, 13C, 15N, and 31P (109) (Figure 2.6).

In GC, sample mixtures are separated based on gaseous–solid phase inter-
actions. Briefly, the sample solution is injected into a heated sample port and 
is vaporized. A carrier gas, most of the time helium or nitrogen, sweeps the 
vaporized sample molecules into a column. The velocity at which a compound 
transitions through the column depends on the strength of its adsorption, 
which in turn depends again on its molecular structure, the stationary phase 
material, and the temperature. The column is located in an oven to control the 
temperature according to a program. Separation of the sample mixture is 
therefore primarily based on boiling point and vapor pressure differences 
between its components, and to a lesser extent on their interactions with the 
stationary phase of the column. Carrier gas flow and column properties such 
as coating, diameter, and film thickness, in combination with the temperature 
program, result in a characteristic elution profile and retention time of each 
molecule. For a more detailed description of GC principles the reader is 
referred to Reference (110). GC works well for volatile compounds with 
boiling points below 300°C. Most of the commonly used columns are not suit-
able for operation at significantly higher temperatures, due to limited thermal 

FIGURE 2.6.  Measurement methods for the detection and quantification of 13C label-
ing patterns in metabolites.

13C versus 12C

nuclear spin atomic mass: +1
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stability of their stationary phases. However, the majority of metabolites rel-
evant in biotechnological applications are either polar compounds with low 
vapor pressure and significantly higher boiling points, or not stable at these 
temperatures, for example, most sugars and amino acids. The boiling point of 
a molecule usually increases with its molecular weight and number and polar-
ity of its functional groups. These polar groups allow for dipole–dipole interac-
tions and the formation of hydrogen bonds between the molecules and sample 
matrix. To analyze these compounds by GC, derivatization methods were 
developed that chemically transform them into compounds with lower boiling 
points. Organic acids and amino groups are commonly silylated, predomi-
nantly with trimethylsilyl (TMS) or tertbutyldimethylsilyl (TBDMS) groups 
(111). In addition, keto- (oxo-) groups are usually oximated (112) in order to 
improve their GC properties and prevent enolization reactions, which can 
introduce multiple products, thereby complicating the chromatograms. 
However, during high-resolution chromatography, the syn- and anti-isomers 
of the oximes can sometimes partially separate, giving rise to recognizable 
shoulders on the GC peaks (108). Alternative derivatization methods were 
reported; for example, with amino acids the use of (N,N)-dimethylformamide 
dimethyl acetal gave dimethylaminomethylene methyl esters (113), or 
derivatization with ethyl chloroformate yielded N-ethoxycarbonyl ethyl esters 
(114). As the number of derivatized groups increases, there is a danger that 
the molecular mass of the derivative will be outside the mass range of the 
detector, typically m/z 650–1000, or will be too high that the derivative will 
not pass through the GC column. In addition, the likelihood of sterically hin-
dered groups can lead to the formation of multiple products, thereby compli-
cating the chromatogram. There is a wide range of mass spectrometers available 
varying in the type of ionization and the mass separation. Single quadrupole 
mass spectrometers with electron impact (EI) ionization are the most often 
used type of instrument. Compared with other instruments they are relatively 
low-cost and offer a range of advantages such as high robustness, high sensitiv-
ity, and high accuracy of the measured labeling patterns (115). An example 
flow chart for the analysis of labeling patterns in an amino acid mixture is 
shown in Figure 2.7.

In LC-MS, for separation, the sample compound mixture is dissolved in a 
fluid called the “mobile phase,” which carries it through a structure holding 
another material called the “stationary phase.” The various constituents of the 
mixture travel at different speeds, causing them to separate. Many separation 
modes exploring various interactions are available, for example, reversed-
phase, hydrophobic interaction, normal-phase, hydrophilic interaction, ion-
exchange, ion-pair, size-exclusion, chiral, ligand exchange, or complexation 
chromatography (116). After separation, the sample compounds dissolved  
in the “mobile phase” have to be volatized and ionized to carry out MS.  
Atmospheric pressure ionization (API)-based interfaces are the most broadly 
used today, although many other interfaces are available, such as those based 
on particle-beam, continuous-flow fast atom bombardment, or thermospray 
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(117). Compared with GC-MS, a major advantage of LC-MS using API has 
been the avoidance of a requirement to derivatize the samples. API sources 
include both electrospray ionization (ESI) and atmospheric pressure chemical 
ionization (APCI). In ESI, a high voltage is used to generate droplets contain-
ing multiply charged ions. In APCI, the LC column effluent is nebulized into 
a heated tube, which vaporizes nearly all of the solvent. The solvent vapor acts 
as a reagent gas and enters the APCI source, where ions are generated with 
the help of electrons from a corona discharge source. API generally produces 
much simpler spectra than EI. Depending on the chemical properties of the 
compound, the ion source design, the ion source potential, the nature of the 
matrix, and the solvent composition, mainly pseudo-molecular ions ([M+H]+ 
or [M-H]−) are produced (108). Analysis of the mass spectral of a pseudo-
molecular ion provides considerably less information on the isotopomer dis-
tribution of a compound than, for example, the multiple fragments obtained 
by EI. Moreover, in API it is not always simple to predict whether positive or 
negative ions will be produced (118). Matrix effects can comprise ionization 
suppression and ionization enhancement caused by salts and other compo-
nents that are ionized at the same time (119). Due to these reasons, only 
limited search libraries of product ion mass spectra are available, hampering 
the fast identification of unknown peaks obtained in LC-MS analyses.

Label analysis is frequently carried out on monomers derived from hydro-
lysis of macromolecules such as proteins or DNA, while analysis of labeling 
patterns in intracellular metabolites was long impeded by their low concentra-
tions and high turnover. However, with improved sampling procedures and 
the constantly increasing sensitivity of the analytical methods, these obstacles 
were overcome. Free intracellular amino acids were analyzed by GC-MS by 
Wittmann et al. (120). LC-MS-MS was used to determine mass isotopomer 
distribution in free and proteinogenic amino acids (88), 40 mass isotopers of 
10 phoshorylated compounds (121), or 60 mass isotopomers from 13 metabo-
lites (122). In addition to eight phosphorylated compounds, mass isotopomers 
of pyruvic acid, alpha-ketoglutaric acid, succinic acid, glutamic acid, and aspar-
tic acid were analyzed. Coupling capillary electrophoresis with MS allowed 
the determination of 73 mass isotopomers from 13 metabolites (123). Never-
theless, LC-based separation methods are less sensitive and less accurate, and 
provide less resolution power than GC-based methods. Standard deviations in 
the determination of mass isotopomer distributions with LC-MS-MS are in 
the range of 6–24% (123), considerably higher than for measurements based 
on GC-MS analysis of up to 0.4% with, for example, amino acids (124). An 
improvement in analysis of mass isotopomers from phosphorylated com-
pounds by LC-MS-MS was recently achieved by operating the triple quad in 
multiple reaction monitoring (MRM) mode (125). Fragmentation of the phos-
phorylated compounds resulted in high yields of [PO3]− and/or [H2PO4]− 
ions that were subsequently used in deriving the carbon labeling patterns of 
their parent molecules. MS also usually does not provide positional labeling  
information. To overcome this limitation, sustained off-resonance irradiation 
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collision-induced dissociation (SORI-CID) has been applied in direct infusion 
Fourier transform–ion cyclotron resonance mass spectrometry (FT-ICR MS) 
to fragment the molecules. This way positional information on the 13C label in 
the proteinogenic amino acids glutamic and aspartic acids was retrieved (126). 
Another remarkable feature of FT-ICR MS is its high resolution, enabling 
high-throughput profiling of metabolites and their mass isotopomers without 
prior chromatographic separation. However, molecules with the same mass 
(isomers), for example, the amino acids leucine and isoleucine, cannot be dis-
tinguished by this method.

NMR spectroscopy can provide detailed information about the structure, 
dynamics, reaction state, and chemical environment of molecules (127). NMR 
spectroscopy exploits the physical phenomenon that magnetic nuclei in a 
magnetic field absorb and re-emit electromagnetic radiation. This energy is at 
a specific resonance frequency that depends on the strength of the magnetic 
field and the magnetic properties of the atoms. NMR spectroscopy has been 
widely applied to elucidating biosynthetic pathways (128,129). 13C labeling 
patterns can be detected either directly or indirectly through the attached 
protons. The choice of detecting 13C atoms either directly or indirectly is often 
determined by balancing increased sensitivity of 1H NMR detection against 
increased spectral resolution of 13C NMR. Also, 1H NMR allows detection of 
protons attached to 12C (i.e., total metabolic pools), whereas 13C NMR can 
assess 13C–13C isotopomer patterns (130).

When using 1H NMR spectroscopy to assess labeling information, 13C 
enrichments can be calculated from the ratio of the satellite/center peak area 
of each proton. In a nondecoupled 1H spectrum, signals of 13C-bound protons 
appear symmetrically as satellite signals around the signal of 12C-bound 
protons. In the 13C-decoupled 1H spectrum, signals of 13C protons appear at 
the same position as signals of 12C-bound protons and not as satellite peaks. 
Therefore, subtracting the 13C-decoupled spectrum from the nondecoupled 
spectrum allows for accurate quantification of 13C satellite signals areas even 
with baseline interferences or background signals from 12C-bound protons 
(131). However, only proton-bound carbons can be investigated. To address 
this shortcoming, a method for determining 13C enrichments in nonprotonated 
carbon atoms was developed that makes use of unresolved 13C satellites of 
proton(s) bonded to the vicinal carbon atom (132).

Low sensitivity, due to low natural abundance of the 13C isotope (1.1%) and 
a gyromagnetic ratio of only 1/4 that of 1H, had originally restricted 13C NMR 
analysis. However, the advent of signal-averaging and Fourier transform tech-
niques brought about a dramatic change in the utility of 13C NMR (133). The 
13C nucleus exhibits a wide range of chemical shifts, and these shifts are 
extremely sensitive to the chemical environment. Also, because the gyromag-
netic ratio of 13C is small, the relaxation rates of this nucleus are relatively low. 
The combination of large chemical shifts and favorable relaxation effects, 
which result in widely shifted groups of narrow 13C resonance, allow for high-
resolution 13C NMR experiments in aqueous solutions (134). In contrast to 
1H NMR, the intensities of 13C NMR signals are not proportional to the 
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number of equivalent 13C atoms but instead are strongly dependent on the 
number of surrounding spins (127). Hence for determining 13C enrichments 
by 13C NMR, first the signal areas of a carbon atom i in an analyzed compound 
n are determined: A1n,i. Subsequently a known amount of the said compound 
with a known fractional enrichment of 13C in the investigated carbon position, 
typically a standard solution labeled at natural abundance, is added to the 
sample solution: Nstd n,i. Another 13C spectrum is acquired, and again the (now 
increased) signal area of the respective carbon is determined: A2n,i. With 
knowledge of the amount of the compound n in the sample from a prior mea-
surement, Nmeas n, for example, by high-performance liquid chromatography 
(HPLC) or GC, the fractional enrichment of the carbon i in compound n 
can now be calculated from the relative signals areas determined according  
to FE = A1n,i/(A2n,I − A1n,i) × Nstd n,i/Nmeas n (131,135). This way Walker et al. 
obtained the absolute 13C enrichments from 1H NMR spectra and the multi
plet intensities from the 13C NMR spectra and used them to conclude that 
Microbacterium ammoiziaphilum synthesizes glutamate mainly via the EMP 
pathway and the action of phosphoenolpyruvate carboxylase (EC 4.1.1.31) 
(136). Sonntag et al. (131) used 13C and 1H NMR to determine the relative 
succinylase flux versus the diaminopimelate dehydrogenase branch in a C. 
glutamicum strain. 13C NMR with proton decoupling was also used to analyze 
fractional enrichment in phenylalanine. FE data were used to carry out meta-
bolic flux analysis in a phenylalanine-producing E. coli. Flux results were 
compared with optimum flux distributions derived from stoichiometric NA, 
and overexpression of phosphoenolpyruvate synthetase (EC 2.7.9.2) was iden-
tified as a promising metabolic engineering strategy to increase production 
(137).

Among the large number of heteronuclear NMR schemes, 2D [13C,1H]-
correlation spectroscopy ([13C,1H]-COSY, also referred to as heteronuclear 
single quantum coherence [HSQC] spectroscopy) uses large one-bond scalar 
coupling to link carbon chemical shifts with the resonances of directly attached 
protons. In a 2D [13C,1H]-COSY spectrum, the 13C resonance fine structure 
observed along ω1 results from the superposition of the fine structures of the 
isotopomers of the respective metabolite, weighted by their relative abun-
dance. Since 2D [13C,1H]-COSY suffices to resolve all relevant resonances, 
compound mixtures, for example, of amino acids, can be analyzed without 
prior separation (Figure 2.8). As only one-bond scalar coupling constants, 1JCC, 
are large enough to be resolved in the 13C dimension (138), the 13C fine struc-
ture of an atom is solely determined by the 13C-labeling pattern of its directly 
attached neighbor carbon atoms. However, in proton-detected 2D [13C,1H]-
COSY, only proton-bound carbons can be investigated (129). Emmerling  
et al. (139) used proton-detected 2D [13C,1H]-COSY to show that E. coli 
responds to disruption of both pyruvate kinase isoenzymes by local rerouting 
of flux via the combined reactions of phosphoenolpyruvate carboxylase and 
malic enzyme. Proton-detected 2D [13C,1H]-COSY was also used to analyze 
metabolic fluxes of riboflavin producing B. subtilis under carbon limited (140) 
and carbon excess conditions (141), as well as during substrate co-metabolism 
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(142). Finally, a 2D NMR method based on zero-quantum filtered (ZQF-) 
TOtal Correlation SpectroscopY (TOCSY) was developed to measure 13C 
enrichments in complex mixtures of 13C-labeled metabolites. Frequently the 
1H NMR spectrum may be too overlapped to obtain a direct measure of 13C 
enrichment. Using ZQF-TOCSY, more than 30 13C enrichments were mea-
sured in labeled biomass hydrolyzate of E. coli without need for prior separa-
tion of the metabolites (143).

FIGURE 2.8.  (A) Region of a 2D [13C,1H]-COSY spectrum with the cross peaks of 
the C2 atoms (13C2-1H2) of multiple amino acids as well as the C3 peak (13C3-1H2) of 
serine according to Reference (186) (B) Idealized cross peak signal of a three-carbon 
molecule comprising an isomolar mixture of four isotopomers, labeled at either C2, C1 
and C2, C2, and C3, or at all carbon positions, respectively. 13C-labeled nuclei are rep-
resented by filled circles. The C2 carbon is the observed nucleus. The multiplet pattern 
is a weighted superposition of singlet (S), doublet (D1 and D2), and doublet of doublet 
(DD) signals. In case of equal coupling constants JC2C1 = JC2C3, doublets D1 and D2 
cannot be distinguished and the completely labeled C3 fragment will give rise to  
a triplet instead of a doublet of doublets. Terminal carbons only give singlets or 
doublets.
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2.7  TRACER-BASED MFA

There are several ways to describe and balance isotope labeling information 
(Figure 2.9). A basic method is to determine the “carbon labeling degree“ 
(CLD). CLD measurements determine the percentage of an isotope relative 
to the total amount of atoms of the element in a molecule or molecule frag-
ment. The CLD concept is similar to the determination of “summed fractional 
enrichment” (144) but requires additional normalization to the number of 
carbon atoms of the molecule or fragment. The information corresponds to 
measurements from experiments with radioactive isotopes, for example, with 
14C, where the CLD of molecules is determined via scintillation counters or 
radiograms (145,146). The CLD provides quick information on whether a 
molecule or fragment contains a label. Molecule- or fragment-based analytical 
methods such as MS or scintillation counting are best suited to assess CLD. 
The 13C CLD of naturally occurring carbon molecules or fragments is about 
1.1%, equivalent to the natural occurrence of the 13C isotope. Using radioac-
tive isotopes is particularly advantageous if a fraction of the labeled substrate 
is incorporated in macromolecules and/or cells of which the label content of 
their various building blocks cannot be assessed and quantified comprehen-
sively. For example, a considerable fraction of glucose is not metabolized  
by S. cerevisiae through either EMP or oxidative PPP, but rather directly 
incorporated into storage and cell wall polymers. A total 14C balance was 

FIGURE 2.9.  Four concepts of describing isotope labeling information as exemplified 
on a three-carbon molecule: isotopomers, CLD (carbon labeling degree), mass isoto-
pomers as well as positional enrichments. Black circles indicate a 13C, white circles, a 
12C carbon atom. Boxes indicate positional enrichments, gray boxes or circles indicating 
positions that are not relevant.

:
:
:
:
:
:
:
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successfully applied to quantify flux into these unspecified polymerization 
reactions (147).

With knowledge on the labeling pattern(s) of a specific metabolite or set 
of metabolites as well as on the network structure, conclusions on the split 
ratio of fluxes at a flux branch point can be drawn. Frequently NMR or the 
combined analysis of several fragments of the same metabolite measured by 
MS analysis can provide position-specific labeling information, usually termed 
fractional or positional enrichment (Figure 2.9). In case of a single-carbon 
molecule such as CO2, information on the labeling patterns is equivalent to 
knowing its CLD. With knowledge of topology of the biochemical system and 
the positional fate of atoms in the enzymatic conversions, measured isotope 
signals are related by explicit formulas to yield the desired flux ratios. An early 
application of this “split ratio analysis” was the use of 14C1 and 14C6 glucose to 
prove the operation of the oxidative PPP in S. cerevisiae (148). These experi-
ments were based on the fact that if glucose labeled in the C1 position enters 
the oxidative PPP, labeled CO2 will be released in the 6-phosphogluconate 
dehydrogenase (EC 1.1.1.44) reaction. However, CO2 formed from 14C6-
labeled glucose in the oxidative PPP will not contain any label. Therefore, the 
difference in radioactivity in CO2 formed from 14C1 and 14C6 provides a measure 
of the relative flux through the oxidative PPP. Nevertheless, interpretation of 
the CO2 labeling pattern also needs to consider substrate recycling, scrambling 
of label in reversible reactions, and generation of CO2 from other pathways. 
There are also mere implementation effects, for example, the buffer effect  
of fermentation broth or carbon fixation in carboxylating reactions (149). 
However, while use of radioactive 14CO2 is experimentally challenging, good 
progress was made recently in using 13CO2 for flux calculations instead (150). 
The value of the approach was demonstrated by analyzing fluxes in a lysine-
producing C. glutamicum (151).

If not CO2 but the positional labeling of an intermediate of the triosephos-
phate pool is analyzed, in addition conclusions on the relative fluxes, not only 
through the oxidative PPP but also the EDP versus the EMP, can be drawn 
(Figure 2.10). Sonntag et al. (131) quantified the flux partitioning in the split 
pathway of lysine synthesis in C. glutamicum by using 13C-NMR spectroscopy 
to analyze labeling patterns in lysine and in pyruvate-derived metabolites. 
Another example of the successful use of fractional enrichment measurements 
was described by Ishino et al. (152). The authors used NMR and the 13C label 
quantified in the C6 position of histidine to derive an EMP : ox. PPP split ratio 
of 56:44 in a histidine-producing C. glutamicum strain. This conclusion was 
possible because the major source of C1 for histidine formation was derived 
from serine through action of the serine hydroxymethyltransferase (EC 
2.1.2.1). Additional examples for using positional labeling information for flux 
calculations include the determination of fluxes through the TCA and the 
glyoxylate shunt in E. coli based on the 13C NMR spectrum of intracellular 
glutamate (153). Rollin et al. (154) derived multiple flux ratios for the deter-
mination of EMP : ox. PPP (55%:45%), anaplerotic pathways (61%), and 
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FIGURE 2.10.  Split ratio analysis as exemplified by the metabolism of 100% 13C1- but 
otherwise unlabeled glucose either via EDP, EMP, or ox. PPP to pyruvate. Both 
approaches provide only an approximation, as, for example, pyruvate can also originate 
from different sources than glucose, as well as due to recycling and exchange reactions 
in EMP and nonoxidative branch of the PPP that lead to a scrambling of label. (A) If 
pyruvate is labeled in the C1 position, the molecule was generated from 13C1-glucose 
via the EDP. If pyruvate is labeled in the C3 position, the molecule was generated from 
13C1-glucose via the EMP. As both pathways split the six-carbon glucose molecule into 
two pyruvate, but only one pyruvate carries the label, the other 50% of pyruvate mol-
ecules resulting from these pathways will not be labeled. If 13C1-glucose is metabolized 
via the ox. PPP, the 13C1 atom of glucose is released as CO2 and the resulting five-carbon 
molecules are subsequently rearranged to yield pyruvate molecules without any isotope 
label. However, as 1/6 of the carbon originally provided in glucose is lost to CO2, the 
total amount of unlabeled pyruvate produced will be only containing 5/6 of the original 
amount of carbon in glucose. Consequently if the isotopomer composition of pyruvate 
can be determined, conclusions on the activity of the three pathways can be drawn. (B) 
If only the CLD of pyruvate can be measured, the split ratio of the ox. PPP can be 
directly derived, as exemplified with a measured CLD of 7.4%, which corresponds to 
a molar flux through the ox. PPP of 60%. However, no conclusions on the relative 
activities of the EDP and EMP can be drawn.
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glyoxylate shunt (0%) from fractional enrichment measurements in glutamate 
in Corynebacterium melassecola.

Sauer et al. (155) finally expanded the use of explicit equations to cover 
several important flux ratios in central carbon metabolism and termed the 
approach metabolic flux ratio analysis (METAFoR). Flux ratios were derived 
from either extensive NMR or MS analyses (156,157). The approach is com-
putationally inexpensive and can be applied for high-throughput analysis of 
important flux nodes in metabolic networks (155). Flux ratios can also be used 
as additional constraints in stoichiometric MFA (158–160). However, a major 
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drawback of the approach is that only a small fraction of the information 
gained from analyzing labeling patterns is exploited. Moreover, no compre-
hensive statistical method can be deployed to assess the quality of the calcu-
lated flux distributions. This capability is especially helpful if the network 
topology of the biochemical system is not known so that assumptions made 
for deriving the analytical equations may not hold valid. Rantanen et al. (161) 
developed a computational framework to derive METAFoR constraints auto-
matically and comprehensively for any combination of substrates and isotope 
measurements. Previously, deriving constraints required knowledge of domain 
experts.

Zupke and Stephanopoulos (162) introduced atom mapping matrices, a 
clear and intuitive mathematical formalism that allowed balancing of fractional 
enrichments based on knowledge of the biochemical system and the fate of 
atoms in the enzymatic reactions. Marx et al. (163) carried out metabolic flux 
analysis in a lysine-producing C. glutamicum strain in continuous culture at a 
dilution rate of D = 0.1 1/h, based on a comprehensive model comprising bal-
ances on metabolites and fractional enrichment data. Fractional enrichments 
in 11 amino acids at 31 positions were determined. For this purpose amino 
acids were purified from hydrolyzates of cellular protein by cation exchange 
chromatography and analyzed by 1H NMR. With the knowledge of their bio-
synthesis pathway, the positional enrichment in the amino acids allowed the 
authors to draw conclusions on the fractional enrichment of 20 positions of 
six metabolites in central carbon metabolism. In particular, all carbon positions 
of erythrose-4-phosphate, glyceraldehyde-3-phosphate, pyruvate, alpha-
ketoglutarate, oxaloacetate, and carbon dioxide were resolved. Moreover, frac-
tional enrichments in all positions in lysine were determined. A high pentose 
phosphate flux of 66.4% of the molar glucose uptake rate, an anaplerotic 
pyruvate carboxylase (EC 6.4.1.1) flux of 38%, and a relative flux of the suc-
cinylase as compared with the diaminopimelate dehydrogenase branch of 
2.8:1.0 in the lysine biosynthesis pathway were identified, respectively. High 
exchange fluxes in the nonoxidative branch of the PPP were discovered, in 
particular in the 5-phosphate transketolase (EC 2.2.1.1) reaction. In another 
study, Christensen and Nielsen (144) grew Penicillium chrysogenum on a 
defined medium with 13C1-glucose as the sole carbon and energy source, and 
added phenoxyacetic acid as side-chain precursor for the biosynthesis of peni-
cillin V. By balancing fractional enrichments and metabolites they found that 
glycine was synthesized not only by serine hydroxymethyltransferase, but  
also by threonine aldolase. The authors also detected that acetyl-coenzyme A 
(acetyl-CoA) was derived not only from citrate via the ATP citrate lyase reac-
tion (EC 2.3.3.8), but also from the degradation of the penicillin side-chain 
precursor, phenoxyacetic acid. Finally, Christensen et al. also balanced frac-
tional enrichment and metabolite measurements to carry out a flux analysis 
in an aerobic chemostat culture of S. cerevisiae at D = 0.1 1/h and found an 
EMP : ox PPP flux ratio of 35:43 and an anaplerotic reaction via carboxylation 
of pyruvate of about 26% of the specific glucose uptake rate (164). In both 
studies the authors balanced fractional enrichments. However, as GC-MS 
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analysis was applied to assess mass isotopomer fractions of metabolites, 
summed fractional enrichments were used to judge the quality of the fitted 
results.

Maximum information retrieval from NMR and MS data obtained in a 
tracer experiment is accomplished by using “isotopomer” (140,165–167) or 
“cumomer” balances (168). In isotopomer balancing, not the fraction of a 
labeled carbon atom in a given position of a metabolite is balanced, but  
the fraction of isotopomers. Consequently in a bimolecular reaction of mole-
cules A and B reacting to C, the fraction of a specific isotopomer in C results 
from the summation of the products of every single isotopomer fraction in  
A multiplied with every single isotopomer fraction in B that yields the said 
specific isotopomer of C in the reaction (Figure 2.11). If several reactions  
can form molecule C, the isotopomer probability of each reaction need now 
to be multiplied with the magnitude of the flux through the respective reaction, 
added up, and subsequently normalized to the sum of all fluxes generating the 
metabolite. The mathematical formulation of isotopomer balances therefore 
results in large and nonlinear terms. The basic principles behind these 
approaches as well as their advantages and limitations have been reviewed by 
Wiechert (169). An example of MFA based on isotopomer balances is given 
in Figure 2.12.

Antoniewicz et al. (170) introduced the “elementary metabolite units” or 
EMU framework for balancing isotope labels in metabolic flux networks. The 
essence of the EMU approach is that only the labeling information that is 
required to describe obtained measurement data is balanced throughout the 

FIGURE 2.11.  Isotopomer balancing exemplified on hand of the reaction of a one- 
and two- to three-carbon atom molecule. For balancing the isotopomers, fractions 
(probabilities p) of isotopomers in the one-carbon molecule are multiplied with the 
fractions (probabilities p) of the isotopomer of the two-carbon atoms to yield the frac-
tions (probabilities p) of the respective isotopomers of the three-carbon atom. Black 
squares and circles illustrate the 13C, white squares and circles, the 12C isotope.
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network. This way the approach allows for a significant reduction of balance 
equations as compared with isotopomer or cumomer frameworks. For a typical 
13C labeling system, the total number of variables and equations that needs to 
be solved can be reduced by one order of magnitude. The significantly reduced 
number of balance equations now also makes the simultaneous description of 
multiple elemental isotopes in a molecule possible, for example, in glucose the 
combination of 1H/2H, 12C/13C, and 16O/18O. In this case the analysis of gluco-
neogenesis, for example, requires only 354 EMU balances, compared with 
more than 2 million isotopomer balances.

Tracer-based MFA under isotopic or metabolic instationary conditions 
(Figure 2.5) is still in the realm of method development and will require 
further refinement before it is broadly applied in industrial R&D (171). This 
is due to the dramatic effort necessary to generate and analyze valuable 
samples as well as the complexity of extracting information by modeling and 
simulation. Nevertheless, analysis of the isotopomer time profiles of metabo-
lites under “isotopically instationary” conditions enables the determination of 
fluxes with improved accuracy, and can also be used in predicting intracellular 
concentrations of metabolites that cannot be measured with the available 
analytical procedures (93–96). Noh and colleagues (122) applied isotopically 
nonstationary flux analysis in a fed-batch cultivation of E. coli. Solving the 
differential equation system was computationally expensive, with one simula-
tion requiring 3–8 minutes. A 5000-fold reduction in simulation time, from 83 
minutes with cumomer balancing to 1 second, was achieved by adapting the 
EMU framework to nonstationary flux analysis and applying “block decou-
pling” to decompose the EMU system into smaller sub-problems (172). Esti-
mating fluxes and concentrations from 33 GC-MS fragments in a large E. coli 
metabolic network of 35 free fluxes and 46 metabolite pools took only 15 
minutes, opening a broad range of new applications for SREs and isotopically 
nonstationary flux analysis. Even more information can be obtained in SRE 
experiments with isotopic tracers (105) (Figure 2.5).

2.8  VALIDATING METABOLIC FLUX NETWORKS

Conventionally assumptions on the topology of a metabolic flux network are 
confirmed by in vitro enzymatic assays or phenotypic comparison of gene 
deletion strains. In industrial biotechnology, typically the validation of net-
works are required on two occasions: (i) to make sure that the basic assump-
tions on the metabolic flux network is correct before engaging in an extensive 
metabolic engineering project, and (ii) to trace the effect of a genetic modifica-
tion on a metabolic flux system. Because if the gene deletion is just a first step 
in a multi-step genetic engineering strategy and either (i) does not cause a 
change in phenotype, (ii) no assay for the enzyme of interest exists, or (iii) the 
enzyme would have to be purified first (e.g., because multiple enzymes in  
the crude extract consume the assay substrates with high rate), tracer-based 
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analysis may provide the fastest and most accurate way for hypothesis testing. 
The deletion of the two pyruvate kinase (EC 2.7.1.40) enzymes in E. coli, for 
example, did not result in any discernible phenotype. However, analysis of the 
intracellular fluxes by 13C MFA with a comprehensive isotopomer balancing 
model did reveal the gene deletion. It was shown that the blocked pyruvate 
kinase flux was rerouted via the combined reactions of phosphoenolpyruvate 
carboxylase (EC 4.1.1.31), malate dehydrogenase (EC 1.1.1.37) and malic 
enzyme (EC 1.1.1.39) (139). Also in E. coli, the transaldolase (EC 2.2.1.2) gene 
was deleted and the mutant was subsequently grown on xylose. However,  
in contrast to conventional textbook knowledge, a good fit of the labeling  
data was only accomplished by the introduction of a new reaction sequence 
(37). It was suggested that phosphofructokinase (EC 2.7.1.11) and fructose-
bisphosphate aldolase (EC 4.1.2.13) catalyzed the conversion of sedoheptulose-
7-phosphate to sedoheptulose-1,7-bisphosphate and subsequently to erythrose 
-4-phosphate and dihydroxyacetone phosphate, respectively. Further support 
for the postulated alternative pathway was obtained by metabolite measure-
ments and in vitro enzyme assays. In P. chrysogenum and Aspergillus nidulans 
13C-based MFA revealed labeling patterns in cytosolic acetyl-CoA that could 
not be explained by operation of EMP and PPP only (173). In a subsequent 
study, an active phosphoketolase pathway was detected (174). More examples 
of the use of 13C MFA for the exploration of metabolic flux networks can be 
found in References (175) and (176).

Constraints derived from thermodynamic analyses provide a way of check-
ing consistency of the obtained flux solutions (177–179). In order for a reaction 
(or flux) to occur, the change of the associated Gibb’s free reaction energy ΔG 
needs to be negative. Gibb’s free reaction energy depends on the chemical 
properties of the reaction partners—their standard Gibbs energy of formation 
ΔGf°—as well as on their activities. Consequently if the chemical properties 
and activities are known, conclusions on the feasibility of a reaction can be 
drawn (66,177). The same principles govern exchange fluxes quantified in 
isotope labeling experiments (180,181). However, activities do not depend 
only on the measured intracellular metabolite concentrations, temperature, 
and pressure, but also on other components in the mixture, and consequently 
their determination represents a major source of uncertainty. Moreover, many 
compounds occurring in biological systems are not available as pure substrates, 
and consequently their ΔGf° values cannot be determined experimentally. 
Methods to estimate ΔGf° values based on group allocation theories were 
developed (182,183). Correcting functions as well as improved methods to 
estimate ΔGf° were introduced to improve the accuracy of ΔG determinations 
(184,185). Nonetheless, a wide range of feasible metabolite concentrations for 
a given flux phenotype (66) indicates that vice versa the assessment of the 
feasibility of a flux based on error-prone intracellular metabolite concentra-
tions is only of limited value and should be treated with care. More details on 
network embedded thermodynamic (NET) analysis and thermodynamics-
based metabolic flux (TMFA) analysis are given in Chapter 3.
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2.9  CONCLUSIONS

Analysis and design of metabolic flux networks is at the core of industrial 
biotechnology, as fluxes result in yields and titers, and it is primarily rate, titer, 
and yield that contribute to the commercial success of novel products or pro-
cesses. Metabolic engineering provides powerful tools for the modification, 
analysis, and design of complex metabolic systems. The advent of “omics” 
technologies and the integration of tracer experiments into NA and MFA 
considerably expanded our understanding of systems and allows delivery of 
fast and accurate predictions. The availability of fully representative in silico 
cell models is merely a matter of time and will result in a swift and fundamen-
tal paradigm change in metabolic engineering.
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3
INTEGRATION OF “OMICS” 
DATA WITH GENOME-SCALE 
METABOLIC MODELS

Stephen Van Dien, Priti Pharkya, and Robin Osterhout

3.0  INTRODUCTION

Biological discovery and applied biotechnology are constantly challenged by 
the complexity of living cells. The existence of unknown factors and poorly 
understood processes often leads to unexpected results, which translates to 
inefficiencies in both discovery research and product development. With the 
advent of high-throughput technologies, such as automated DNA sequencing, 
genome-wide expression analysis, proteomics, and high-throughput screening, 
the number of unknown cellular components is being reduced. The identifica-
tion of these factors is, however, just the first step. In order for these data to 
provide tangible benefits in the scientific, medical, and industrial communities, 
technology must be established to interpret this information in the context of 
the entire biological system (1). Only then can we begin to utilize such knowl-
edge to predict biological functions and responses, and thus ultimately allevi-
ate the challenges that the complex system presents.

As the common denominator of all cellular functions, metabolism offers 
the best place from which to base the development of in silico models used 
to evaluate high-throughput “omics” data. Through the utilization of a vast 
repertoire of enzymatic reactions and transport processes, unicellular and 
multicellular organisms can process and convert thousands of organic com-
pounds into the various biomolecules necessary to support their existence. In 
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switchboard-like fashion an organism directs the distribution and processing 
of metabolites throughout its extensive map of pathways. The combination  
of metabolic models with an experimental research platform can have a pow-
erful impact on the biotechnology industry as a whole. Various technological 
advances at the DNA sequence, transcript, and protein levels have accelerated 
our ability to characterize and quantify the components of a biocatalyst’s 
metabolic machinery. In addition, the continuous development of recombinant 
DNA techniques has made it increasingly possible to rationally manipulate 
the genetic content of virtually any candidate production organism. Metabolic 
models provide a means to capture this data in an organized manner, and 
translate it into phenotypic behavior through simulations. In addition, avail-
ability of new data will drive iterative model development. These in silico 
models therefore serve as the most concise representation of the biology and 
metabolism of a microorganism. As such they can become the focal point for 
the integrative analysis of vast amounts of experimental data and a central 
resource to design experiments and drive research programs (1,2).

3.1  GENOME-SCALE METABOLIC NETWORKS

Genome-scale models provide a framework to organize genome sequence 
information and interpret data in the context of cell metabolism. In order to 
analyze, interpret, and predict cellular behavior using metabolic simulations, 
each individual link in a biochemical network must be described, normally 
with a rate equation that requires a number of kinetic parameters. Unfortu-
nately, it is currently not possible to formulate this level of description for 
cellular processes on a genome scale. In the absence of kinetic information, it 
is still possible to assess the theoretical capabilities of integrated cellular pro-
cesses by using a data-driven, constraint-based approach (3). Rather than 
attempting to calculate and predict exactly what a metabolic network does, we 
are able to narrow the range of possible phenotypes that a metabolic system 
can display based on the successive imposition of governing physico-chemical 
constraints. Thus, instead of calculating an exact phenotypic “solution,” we can 
determine the feasible set of phenotypic solutions in which the cell can operate 
(illustrated in Figure 3.2). Optimization procedures are then applied to calcu-
late the “best” solution within the allowable range based on a particular objec-
tive function, such as maximizing growth yield (4–6). If the network has 
evolved to produce the “best” or optimal function, then agreement is reached 
between experimentally determined behavior and the in silico computations.

Construction of genome-scale metabolic models begins with the metabolic 
reconstruction, in which genes are linked to proteins and ultimately to the 
reactions they catalyze (7). Homology searches are used to assign putative 
function to each gene. Proteins are then connected to reactions using “AND/
OR” logic; for example, several proteins may need to form a complex in order 
to catalyze a single reaction, one enzyme may perform multiple reactions, or 
several isozymes may catalyze the same reaction. Maintaining the correct 
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model structure in this dimension is crucial for the interpretation of omics 
data. These steps can often be automated using computational tools, such  
as the SimPheny platform (Genomatica, Inc., San Diego, CA, http://www. 
genomatica.com). Due to incomplete genome sequences, genes of unknown 
function, and protein sequences diverging to the extent that they no longer 
can be found by homology searching, it is almost certain that the initial meta-
bolic reconstruction will be incomplete. Visualization of the pathways on maps 
can highlight where information is complete and where there are knowledge 
gaps (8). Such gaps result in dead-end metabolites, orphan genes, or even 
missing pathways. Gaps in the network can be filled by physiological knowl-
edge. For example, if only one or two steps are missing in an essential biosyn-
thetic pathway, it is likely that the pathway is present. Research can then be 
focused on finding the genes encoding the missing steps, if desired (9). Use of 
the models in conjunction with experimental data can also find previously 
unknown or poorly characterized pathways, even when they are not essential 
for growth on standard laboratory media. Intracellular metabolite measure-
ments (“metabolomics” data) can find metabolites that are not present in the 
model (10). These metabolites can be linked to the rest of the metabolic 
network using gap-filling algorithms (11), or often just by visual inspection. In 
general, model development is an iterative process (Figure 3.1). Models are 

FIGURE 3.1.  The in silico model is used to generate hypotheses testable through new 
experimental design and through further analysis of existing experimental/bioinformatics 
data. The model leads to the design of experiments to enhance our understanding of 
the organism, leading to refinements in the model and the notion of iterative model 
development to accelerate discovery.
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constructed based on the genome sequence and limited experimental data. 
The model can then identify poorly characterized regions of metabolism, 
which serve as the focus for further research. This work may then identify 
inconsistencies, which are reconciled to improve the model. Although this will 
improve model predictions in certain cases, it may also create new questions, 
and thus the cycle starts over. In summary, the model drives research effort, 
and the research drives model improvement.

Use of growth-phenotyping data, such as that generated by Biolog 
(Hayward, CA, http://www.biolog.com), is a relatively inexpensive way to 
leverage models for a systems approach to metabolic network discovery  
and improving gene annotations. In a recent study with Bacillus subtilis, phe-
notype microarray (PM) data were used to add 75 reactions to the genome-
scale model, which were essential for growth on certain substrates that tested 
positive in the array (12). Forty-nine of these reactions are for metabolite 
transport, adding to the large number (191) of transporters already in the 
model based on genetic and biochemical evidence. For some of the substrates, 
addition of the appropriate transporter was not sufficient to allow growth. 
Catabolic reactions also had to be added to link certain carbon sources, such 
as D-malate, L-arabitol, and dulcitol, to pathways that are already present in 
the model. The authors then used bioinformatic approaches to find candidate 
genes that may encode these reactions. Although experimental validation is 
required, such a model-driven approach provides targets and can save time by 
focusing future research in directions that are most likely to succeed. Reed 
and coworkers have demonstrated this methodology for improved annotation 
of Escherichia coli gene functions (9). As with the Bacillus study, PMs from 
Biolog were used to find discrepancies between observed phenotype and 
model predictions, and putative reactions were added to the model. Genes 
encoding these reactions were identified by a combination of homology 
searches, gene expression by microarray analysis and reverse transcriptase-
polymerase chain reaction (RT-PCR), enzyme activity assays, and finally con-
firmed by growth phenotype of deletion mutants on the substrate of interest. 
A clear example is the utilization of D-malate, for which the transporter 
(dctA), dehydrogenase (yeaU), and a regulator (yeaT) were identified.

3.2  CONSTRAINT-BASED MODELING THEORY

The core principle underlying the constraint-based approach lies in the balance 
equations imposed by the stoichiometry of the reactions. Basically, this repre-
sents mass, energy, and redox balance constraints. The mathematical formalism 
of stoichiometric modeling is well developed (13) and has been used exten-
sively in the field of metabolic engineering under the terms flux balance analy-
sis (FBA) and metabolic pathway analysis (MPA) (5,6,14,15,15,16) (see 
Chapter 2). It is based on the application of a pseudo-steady state hypothesis 
(16) to the mass balance of metabolites, yielding the equation
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S v⋅ = 0.

where S is the stoichiometric matrix and v the vector of reaction rates. The 
number of reactions is almost always greater than the number of metabolites, 
resulting in an underdetermined system of equations. Thus, instead of a unique 
solution, we end up with a feasible solution space as shown in Figure 3.2. It is 

FIGURE 3.2.  Schematic view of constraint-based modeling. The successive imposition 
of governing constraints, including the (A) stoichiometric, (B) thermodynamic, and (C) 
enzyme capacity constraints, reduces the size of the feasible set (shown as bounded 
space within dotted lines and shaded planes) and is represented through the incorpora-
tion of a set of mathematical statements. In the limiting case where all constraints on 
the metabolic network are known (D), for example, enzyme kinetics and gene regula-
tion, the feasible set may be reduced to a single point.
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this space to which we apply our successive constraints and optimization 
procedures.

Such a constraint-based approach provides a basis for understanding the 
structure and function of biochemical networks (5,6,14,15,16). Beginning  
with the solution to the above equation, we then add capacity limitations to 
account for the maximum flux through enzymatic reactions. We can further 
constrain the solution space by adding experimental data: extracellular fluxes 
obtained from fermentation process data; qualitative constraints based on 
known metabolite-mediated regulatory interactions; qualitative constraints 
from gene expression data; and the assignment of flux directions based  
on thermodynamic constraints imposed by metabolite concentrations. Each 
additional data input provides new information that can be used to reduce  
the range of feasible flux distributions and phenotypes that a metabolic 
network can display. The latter two types of constraints indicated above, 
derived from gene expression and metabolomics data, is the subject of this 
review.

3.3  CURRENT ANALYSIS OF OMICS DATA

Genomics data form the basis of model development, as already discussed. In 
the post-genomic era, a variety of omics technologies have been developed to 
collect high-throughput data characterizing levels of the central dogma leading 
from genotype to phenotype. This includes transcriptomics (microarrays),  
proteomics, metabolomics, fluxomics, and phenomics (such as the Biolog PMs). 
Systems biology seeks to utilize this information to map the genotype–
phenotype relationship, and ultimately understand the complex behavior of 
living cells (17). However, most methods commonly used for the analysis of 
such data fall short of this objective, limiting the scope of the analysis to only 
one aspect of cell physiology such as gene regulation circuits. On the other 
hand, in silico models allow for the holistic investigation of biological systems, 
capturing the activity of multiple gene products working together in a globally 
orchestrated fashion. Therefore, these models provide an ideal platform for 
the analysis and interpretation of omics data to drive both scientific discovery 
and biotechnology applications (18).

Since the pioneering work in the mid-1990s, gene expression microarrays 
have become ubiquitous. Virtually every major commercial research effort 
focused on understanding cellular responses in medical and industrial biotech-
nology is implementing whole-genome expression profiling along with a suite 
of other experimental technologies. Concomitant with the improvement in the 
technology for creating gene chips and performing microarray experiments, a 
variety of statistical tools have been developed to analyze and interpret the 
large quantity of data generated from such experiments. A major challenge 
recognized early on was how to determine if changes in expression between 
two conditions were significant. The simplest method is to apply a heuristic 
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such as a twofold expression change compared with baseline (19). Higher 
confidence results were obtained using t-tests assuming a Gaussian distribu-
tion (20), or nonparametric methods that do not assume a normal distribution 
(21). The problem becomes more complex when comparing multiple samples. 
Methods such as singular value decomposition (22,23), self-organizing maps 
(24), or hierarchical clustering (25) are used to group genes based on expres-
sion patterns over time or across different conditions. However, the utility of 
these approaches hinges on the assumption that genes with similar expression 
behavior are likely to be related functionally, without consideration for the 
biological context of the genes (26). Integration of these data with other omics 
data sets and a biological model, particularly a constraints-based model, can 
provide further insight on a systems level (27). This is not a substitute for the 
above methods, but rather a complement.

Identification and measurement of intracellular metabolites gets us a step 
closer to phenotypic characterization, but still can be linked to genotype 
through the known metabolic reactions connecting these metabolites. Thus, in 
one sense, such metabolomics data are ideal for investigating the genotype–
phenotype relationship. Metabolomics research has lagged behind that of 
transcriptomics and proteomics, primarily due to the wide variety of chemis-
tries involved and thus the need for multiple measurement techniques. None-
theless, metabolomics is gaining traction in both industrial and academic 
research groups, and significant improvements have been made in both the 
number of metabolites that can be identified and the accuracy with which 
intracellular concentrations can be measured (10,28–30). Many of the same 
statistical techniques applied to microarrays were used with metabolomics 
data to look at trending in profiles among different data sets (31–35). Such 
work has proven useful in discovering biomarkers and identifying strains (36), 
but provides no biological insight. On the other hand, analysis of metabolomics 
data in conjunction with metabolic models will lead to a better understanding 
of the metabolic processes that drive cell function, and will utilize these data 
sets to their full potential (37–39).

3.4  NEW APPROACHES TO DEVELOPING  
MODEL CONSTRAINTS

To improve the predictive capability of metabolic models without the use  
of experimental data, new rules must be implemented to restrict the feasible 
flux space. One such set of rules is thermodynamic constraints. To a first 
approximation, thermodynamics have been traditionally incorporated into 
models by specifying each reaction as either reversible or irreversible. Often 
such restrictions are chosen somewhat arbitrarily, based on the way they  
are written in biochemistry texts or internet reaction databases, without much 
true regard for the ΔG values. The latest genome-scale E. coli model is more 
rigorous in its reaction direction assignments (40). Gibbs energies of formation 



84	 GENOME-SCALE METABOLIC MODELS

are calculated for each metabolite using the group contribution method 
(41,42), and used to calculate the possible ΔG range for each reaction given a 
typical physiological range for metabolite concentrations. A related field, 
energy balance analysis, was developed to eliminate energy-generating cycles 
using loop laws akin to electric circuits (43). Thus, even in a set of cyclic equa-
tions where each reaction individually could proceed in the appropriate direc-
tion, the second law of thermodynamics prohibits operation of a cycle unless 
one of the reactions has external energy input such as adenosine triphosphate 
(ATP). Although such infeasible cycles could often be detected by inspection 
and corrected by making one reaction irreversible, energy balance analysis 
formalized the process.

More recently, two new approaches have been developed to incorporate 
thermodynamic feasibility constraints in metabolic flux analysis: network-
embedded thermodynamic analysis (NET analysis) (44) and thermodynamics-
based metabolic flux analysis (TMFA) (45). In addition, both of these methods 
can incorporate metabolomics data (intracellular metabolite concentration 
profiles) to further constrain the simulations. NET analysis employs a nonlin-
ear optimization algorithm to calculate feasible ranges of metabolite concen-
trations and Gibbs energies of reaction based on the topology of a metabolic 
network and observed metabolite profiles (44). NET analysis can be applied 
to evaluate the quality of metabolomics data, identify putative regulatory sites, 
and predict feasible concentration ranges of unmeasured metabolites. Inputs 
to the optimization algorithm include a stoichiometric matrix of the network, 
a direction of flux for each reaction, the Gibbs energy of formation ΔfG of 
metabolites, and concentration constraints. Flux directions can be derived 
from experimental measurements (c.f. 13C flux measurements, see Chapter 2), 
from metabolic flux analysis predictions, or from preexisting knowledge of the 
network. Concentration limits can vary over a wide range (0.001–10 mM) or 
can be narrowly constrained by metabolomics data. Error associated with 
thermodynamic parameters and concentration constraints is also incorporated 
into the optimization framework. TMFA is a linear optimization method 
recently developed for incorporating thermodynamic data directly into the 
metabolic flux analysis framework (45). Unlike NET analysis, TMFA does not 
require preexisting knowledge of flux directions. Rather, the method inte-
grates thermodynamic and mass-balance constraints to ensure that predicted 
flux distributions are thermodynamically feasible (Figure 3.3). TMFA can be 
applied to predict flux and Gibbs energy ranges of each reaction, and also a 
feasible concentration range of each metabolite. While NET analysis is formu-
lated as a nonlinear optimization, TMFA as described by Henry et al. (45) is 
a linear problem. As such, TMFA is guaranteed to converge on a global 
optimum solution. A minor limitation is that a handful of the NET analysis 
constraints cannot be implemented within the linear TMFA framework (e.g., 
the ratios of the NAD or NADP cofactors and the adenylate energy charge). 
Both techniques have been developed and applied to small metabolomics data 
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sets. The true potential of metabolomics data for understanding metabolic 
behavior awaits to be seen, when these methods are applied to measurements 
of a hundred or more metabolites.

Another new development is the incorporation of regulatory constraints 
into the flux balance analysis (FBA) framework (rFBA approach). Many regu-
latory rules have been elucidated for common model organisms like E. coli 
and Saccharomyces cerevisiae, and such regulatory systems will prevent certain 
flux distributions from occurring under a given environment. For example, 
pyruvate formate lyase is not active in the presence of oxygen (46), and acetate 
is not taken up when glucose is present (47). Therefore, regulatory rules can 
constrain the metabolic network and sharpen model predictions. The most 
straightforward way to implement regulatory constraints is using a Boolean 
representation (48). For example, gene repression can be simulated by the 
following logic: if metabolite A exists in the cell (either due to a transporter 
or reaction producing it having positive flux), then reaction X is constrained 
to zero. A transient process, such as a batch culture, is simulated by running 
the metabolic/regulatory model successively over small time intervals. The 
output of one time step, including regulatory signals, provides the input to the 
next step. Using such a procedure, batch growth and metabolite secretion by 
E. coli were accurately predicted in a variety of conditions, including diauxic 
growth (48). A total of 104 regulatory genes were then incorporated into the 
genome-scale E. coli model, controlling expression of 479 out of 906 of the 
metabolic genes. Simulations were performed and compared with the mea-
sured growth phenotypes in over 13,000 combinations of single gene deletions 
and environmental conditions. The metabolism-only model correctly predicted 
65% of the phenotypes, while the combined metabolism/regulatory model was 

FIGURE 3.3.  Comparison of network-embedded thermodynamic analysis (NET) and 
thermodynamics-based metabolic flux analysis (TMFA). Inputs and outputs to NET 
analysis and TMFA are color coded in red and blue, respectively. (See insert for color 
representation of the figure.)
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accurate 79% of the time (49). The reason for this difference is that the regula-
tory model is more constrained and that some flux distributions feasible based 
on the stoichiometry alone become infeasible once the regulatory rules elimi-
nate possible solutions.

Models can also be used in conjunction with data to elucidate unknown 
regulatory rules. Data from genome-wide chromatin immunoprecipitation 
experiments were used to find regulatory behavior that was not predicted by 
a metabolic/regulatory model of S. cerevisiae (50). Putative regulatory interac-
tions that would match the experimental data if applied were then identified. 
A new approach termed EGRIN (Environmental Gene/Regulatory Network) 
can reconstruct an entire regulatory network based on data contained in hun-
dreds of carefully designed microarray experiments conducted under a wide 
variety of environmental conditions. This technique makes use of two compu-
tational tools: cMONKEY (51) and the Inferelator (52). cMonkey uses a 
biclustering methodology (clustering both by genes and conditions) to identify 
putative regulons. As an input it takes gene expression data in conjunction 
with upstream regulatory sequences and relationship information such as 
metabolic pathway (functional) associations or protein interaction informa-
tion. The Inferelator then predicts a set of regulatory interactions for each 
bicluster. It accomplishes this by identifying relationships between factors, 
including both external environmental signals and mRNA expression levels 
of predicted transcription factors, and the expression levels of clusters of genes. 
The use of time course data can help elucidate directionality of the interac-
tions. When applied to all the biclusters identified by cMonkey, the result is a 
predicted regulatory network, or EGRIN.

Finally, FBA has been combined with regulatory Boolean logic and ordi-
nary differential equations to model the dynamic behavior of metabolic,  
regulatory, and signaling networks (53,54). This integrated FBA approach, 
iFBA, was used to create a model of E. coli that combined the central meta-
bolic model incorporating the transcriptional regulation and the ordinary-
differential equation (ODE)-based model of carbohydrate uptake (53). The 
advantages of this model are that it contains a much greater level of detail for 
regulatory activities and events than the rFBA approach. It can also account 
for enzymes such as adenylate cyclase which do not participate directly in 
metabolism but are critical because of their role in other activities such as 
signal transduction. The merits of the iFBA approach over the ODE approach 
are that it helps to understand the global effects of a dynamic change because 
of its ability to calculate a flux distribution for an entire network with only a 
few additional parameters. The predictions of an integrated model were com-
pared with those of the individual models (rFBA based and ODE based) to 
predict the phenotypes of single gene perturbations for diauxic growth on 
glucose/lactose and glucose/glucose-6-phosphate and were shown to be more 
accurate than either approach in several cases. For example, iFBA was able  
to predict the dynamic behavior of three metabolites and three transporters 
inadequately predicted by rFBA. It was also able to predict more accurate 



Use of Gene Expression Data in Metabolic Models� 87

phenotypes than the ODE model for 85 out of 334 single gene perturbation 
simulations (53).

3.5  USE OF GENE EXPRESSION DATA IN METABOLIC MODELS

Integration of transcriptomics data into the constraints-based modeling frame-
work has presented challenges due to the general lack of correlation between 
gene expression and metabolic phenotype (55). For example, cases have been 
found where fluxes increase more than 10-fold without corresponding expres-
sion changes in the genes encoding the reactions (56). For reversible reactions, 
flux direction can reverse rather rapidly upon condition changes even without 
any change in the gene expression level. The problem is further complicated 
by situations where multiple genes are needed to encode a multi-subunit 
enzyme, or different enzymes can catalyze the same reaction. It is not uncom-
mon to find situations where one isoenzyme is induced while the other is 
repressed; for example, different fumarase genes are used under aerobic and 
anaerobic conditions (57). Taken together, these issues indicate that one 
cannot draw general conclusions about fluxes through metabolic reactions 
based on the expression of corresponding genes.

Typically, models have therefore been used as scaffolds to visualize the data 
and interpret it in the context of the metabolism of the whole system rather 
than using rigorous mathematical approaches to constrain the model using 
expression data. For example, microarray data was also used to investigate the 
possible causes of tolerance to furfural (58), a toxic compound in biomass 
hydrolysates. The expression data were visualized and analyzed with Sim-
Pheny (Genomatica, San Diego, CA), ArrayStar (Arraystar, Rockville, MD), 
and Network Component Analysis (NCA) (59). By overlaying the expression 
data of the furfural tolerant strain and the control strain on the metabolic 
pathways, it was clear that furfural increased the expression of several genes 
associated with the assimilation of sulfur into amino acids, primarily cysteine 
and methionine (Figure 3.4). Sulfur is supplied as sulfate in AM1 medium, the 
growth medium used in the study, and must be reduced to the level of hydro-
gen sulfide for incorporation, an energy-intensive reaction requiring four mol-
ecules of NADPH. The furfural-induced increase in the expression of these 
genes was in sharp contrast to the decreased expression of several other bio-
synthetic genes. An increase in tolerance was indeed observed when the 
medium was supplemented with cysteine, methionine, and other reduced 
sulfur sources, such as thiosulfate. No response was observed upon supple-
mentation with taurine, a sulfur source that requires three molecules of 
NADPH for assimilation (Figure 3.4). Overexpression of the membrane-
bound transhydrogenase, encoded by pntAB, also increased tolerance. All of 
these results suggested a mechanism for growth inhibition by furfural. When 
furfural is present in the culture it can be metabolized by yqhD, the high-
affinity alcohol dehydrogenase with a very low binding constant Km for 
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NADPH (60), thereby depleting the cell of NADPH needed for biosynthesis. 
In this study, the effect of a toxic compound on the metabolism of E. coli was 
clearly elucidated by accounting for the overall metabolism of the organism.

In spite of the limitations of using the gene expression data for predicting 
metabolic phenotypes, there are clear examples where transcriptome data 
have provided insight into metabolic fluxes. One such study (55) examined 
expression data from batch and chemostat cultivations of S. cerevisiae on 
glucose (61), in conjunction with flux balance predictions from a genome-scale 
model of this organism (62). Using growth as the objective function, the model 
accurately predicted chemostat behavior but did not predict the reduced 
biomass yield and increased byproduct formation seen in the batch culture 
relative to the chemostat. The authors of this study then determined which 
genes had no evidence of expression (in biological triplicates as well as in 
replicate probes on the array), and constrained reactions associated with those 
genes to have zero flux (55). This resulted in the removal of 6 reactions for the 
chemostat case and 97 for the aerobic batch fermentation. Adding these con-
straints had little effect on the chemostat predictions, but clearly improved 
model performance for the batch culture. In contrast to the unconstrained 
model, the model constrained with gene expression data showed quantitative 
agreement for biomass, ethanol, and glycerol yield (Figure 3.5). Furthermore, 
the constrained model improved predictions of key branch point fluxes, known 
from 13C-labeling experiments (see Chapter 2) (63). Expression data may also 

FIGURE 3.5.  Improved prediction of biomass and product yields by using gene 
expression data in constraint-based modeling. Yields of biomass (Yx), ethanol (Yeth), 
glycerol (Ygly), and acetate (Yace) in an aerobic batch cultivation of S. cerevisiae deter-
mined by experiment (EXP, black bars), standard flux balance analysis (FBA, light gray 
bars), and flux balance analysis combined with additional constraints from gene expres-
sion data (FBA+GE, medium gray bars). Reprinted from Metabolic Engineering (55), 
with permission from Elsevier. 
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be used to discriminate between alternate optimal solutions predicted by 
constraint-based modeling, particularly when these alternate solutions are 
distinguished primarily by isoenzymes and parallel pathways. Using the same 
expression data set (61), the authors showed how two alternate model solu-
tions for aerobic chemostat growth differ drastically in their level of agreement 
with transcriptional upregulation and downregulation compared with an 
anaerobic case (55).

Patil and Nielsen integrated microarray data with network topology infor-
mation as determined by a genome-scale metabolic model to predict the cel-
lular response to perturbations (64). The premise behind the study was that 
the changes in individual gene expression levels in response to a perturbation 
are small and are not identified using standard statistical methods or clustering 
algorithms. Using genome-scale models, however, it is possible to identify pat-
terns in the network that show a common transcriptional response. The authors 
(64) developed an algorithm that identifies a set of reporter metabolites 
(metabolites around which the most significant transcriptional changes occur) 
and a set of genes with significant and coordinated response to perturbations 
(Figure 3.6).

FIGURE 3.6.  Illustration of the proposed algorithm for identifying reporter metabo-
lites and subnetwork structures signifying transcriptionally regulated modules. A meta-
bolic network is converted to metabolic and enzyme-interaction graph representations. 
Gene expression data from a particular experiment then are used to identify highly 
regulated metabolites (reporter metabolites) and significantly correlated subnetworks 
in the enzyme-interaction graph. TCA, tricarboxylic acid cycle; PGI, phosphoglucose 
isomerase; PFK, phosphofructokinase; FBP, fructose bisphosphatase. Reproduced from 
Reference (64), Copyright 2005 National Academy of Sciences, USA. (See insert for 
color representation of the figure.)
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The same algorithm was used to analyze data from S. cerevisiae to identify 
reporter metabolites and the corresponding subnetworks in three cases:  
(i) deletion of a gene, (ii) deletion of a regulatory protein, and (iii) change in 
the environment of a cell. For example, the transcription data from a wild-type 
strain of S. cerevisiae was compared with a deletion mutant of the gene GDH1, 
encoding for NADPH-dependent glutamate dehydrogenase and involved in 
ammonia assimilation. The genome-scale metabolic model of S. cerevisiae was 
used to generate the metabolic and the reaction–interaction graphs. Using the 
algorithm, several key metabolites were identified including the three sugar 
phosphates: glucose-6-phosphate, sedoheptulose-7-phosphate, and fructose-6-
phosphate. These three metabolites represent branch points between the 
Embden–Meyerhof–Parnas pathway and the pentose phosphate pathway.  
The deletion of GDH1 corresponds with a reduction of the growth-related 
requirement of NADPH of the cell by about 40%, and therefore less flux 
needs to be routed via the pentose phosphate pathway, the primary source of 
NADPH in S. cerevisiae. A high-scoring subnetwork of 34 genes was found, 
10 of which involved NADH/NADPH, demonstrating the effects of GDH1 
deletion on the redox metabolism. Two key nodes of metabolism were repre-
sented in this network: (i) the glycolysis-pentose phosphate node that is  
controlled by the requirement for NADPH and (ii) the alpha-ketoglutarate 
node. It has been shown that the level of alpha-ketoglutarate is increased in 
a ΔGDH1 mutant.

3.6  USE OF METABOLOMICS DATA IN METABOLIC  
MODELS: TMFA EXAMPLE

Advances in the field of metabolomics are enabling high-throughput and high-
precision detection and quantification of metabolite concentrations. The 
resulting large-scale quantitative data sets can be evaluated in the context of 
in silico models to generate new insights into metabolism.

Several recently developed computational methods, including NET analysis 
and TMFA, directly incorporate metabolite concentration data into the 
constraint-based modeling framework (44,45,65). These algorithms integrate 
mass-balance constraints with thermodynamic principles by coupling flux 
directionality to the second law of thermodynamics, wherein reactions with a 
positive flux must have a negative Gibbs energy of reaction (ΔrxnG < 0) and 
reactions with a negative flux must have a positive Gibbs energy of reaction 
(ΔrxnG > 0). A schematic of TMFA analysis is shown in Figure 3.7. Inputs 
to the optimization include the genome-scale model (represented by the stoi-
chiometric matrix of the network), the Gibbs energy of formation of metabo-
lites (ΔfG), and concentration constraints. Gibbs energies of formation can be 
measured experimentally or calculated using group contribution methods 
(42,66). Metabolite concentrations can be allowed to vary over a physiologi-
cally relevant range, or can be narrowly constrained by experimental data. By 
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integrating mass-balance and thermodynamic constraints with metabolomics 
data, thermodynamics-based flux analysis methods enable calculation of ther-
modynamically feasible solutions for a range of properties including flux, 
Gibbs energy of reaction, cofactor ratios, and concentration ranges of unmea-
sured metabolites.

Constraint-based methods that utilize thermodynamics and metabolomics 
data have numerous applications. The calculated in vivo Gibbs energies of 
reaction (ΔrxnG) are useful for identifying thermodynamic bottlenecks and 
putative regulatory sites. A reaction may function as a thermodynamic bottle-
neck, meaning it has low driving force, if the ΔrxnG is constrained to operate 
very close to zero. In this case, small fluctuations in concentration can drive 
the flux through that reaction to zero or change the direction of flux (67,68). 
Knowledge of such bottlenecks can then trigger the search for bypass path-
ways, including novel pathways or existing pathways whose physiological sig-
nificance is not yet appreciated. Alternatively, reactions that operate far from 
equilibrium (i.e., the ΔrxnG range does not span 0) are more likely to serve as 
a regulatory control points for the pathways in which they participate (69,70). 
In addition to identifying potential thermodynamic bottlenecks and regula-
tory control points, thermodynamics-based flux analysis methods can be 
applied to evaluate the quality of metabolomics data and predict feasible 
concentration ranges of unmeasured metabolites (44). Other applications 
include improving the accuracy of new metabolic reconstructions (40), assess-
ing reaction reversibility (71), and evaluating the feasibility of biodegradation 
reactions (66).

FIGURE 3.7.  Schematic of thermodynamics-based metabolic flux analysis (TMFA). 
Inputs include available experimental and thermodynamic data and the stoichiometric 
matrix. Outputs include numerous objectives including thermodynamically feasible 
metabolite concentration, reaction flux, and Gibbs energy of reaction ranges.
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A recent study by Bennett and coworkers (72) successfully demonstrated 
how quantitative metabolomics data, in conjunction with in silico modeling 
methods, can be used to generate systems-level insights into metabolism. In 
this work, the authors introduced a novel 13C isotope ratio-based method for 
precisely determining absolute metabolite concentrations of a large number 
of samples in a single experiment. The method was applied to generate high-
quality quantitative measurements of >100 E. coli intracellular metabolite 
concentrations during aerobic growth on different carbon sources (glucose, 
acetate, and glycerol). The metabolome during growth on all carbon substrates 
was dominated by a handful of abundant compound classes: amino acids 
(49%), nucleotides (15%), central carbon intermediates (15%), and redox 
cofactors (9%). The detected concentrations ranged from 0.1 μM to 100 mM. 
Glutamate was the most abundant with an intracellular concentration of 
100 mM, comprising 40% of the total molar concentration. A majority of 
metabolites were present at significantly different levels during growth on 
different substrates, and the applied methods enabled detection of small 
changes in concentration.

The Bennett et al. data set was evaluated in the context of the genome-scale 
E. coli metabolic model iJR904 (11) using TMFA. Metabolite concentrations, 
associated measurement errors, and thermodynamic properties were incorpo-
rated into the systems-level analysis. The optimal or near optimal growth 
solutions predicted by the iJR904 model satisfied the thermodynamically fea-
sible constraints set by the data, validating the quality of both the data set and 
the metabolic model. Additionally, the in vivo free energy ranges of 25% of 
the known reactions in E. coli metabolism were calculated during growth on 
each carbon source. The authors found that over two-thirds of reactions are 
strongly forward-driven, with a ΔG less than −10 kJ/mol. Many of the reactions 
with free energies near equilibrium were observed in lower glycolysis, render-
ing these reactions more sensitive to fluctuations in metabolite concentrations 
and thus allowing these reactions to switch flux directions in response to dif-
ferent growth conditions.

The metabolomics data set was also evaluated in the context of enzyme 
kinetics by comparing the observed concentration of each metabolite to the 
KM value of the enzymes that utilize the compound as a substrate. KM values 
were extracted from the BRENDA database (http://www.brenda-enzymes.info). 
In a majority of cases (83%), the metabolite concentration exceeded KM 
values. The measured concentrations of 59% of the metabolites were at least 
10-fold higher than their KM values, indicating saturation at their correspond-
ing enzyme active sites. The substrates ATP and NAD+ were nearly always 
saturating, whereas NADPH was not. Most glycolytic intermediates were 
present at saturating concentrations, indicating that other control mechanisms 
such as enzyme inhibition, activation, and availability regulate metabolic  
flux through glycolysis. Metabolites involved in degradation reactions, on  
the other hand, were typically nonsaturating, indicating that substrate avail-
ability plays a key role in regulating flux through these pathways. Substrates 
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of central metabolic, tricarboxylic acid (TCA) cycle, and pentose phosphate 
pathway enzymes were generally present at levels close to their KM values. 
This observation, along with the near-equilibrium in vivo free energies of 
many of the enzymes, is consistent with the bidirectional nature of the central 
carbon metabolic pathways. These findings also support the role of substrate 
availability in regulating the flux of bidirectional, but not unidirectional, 
reactions.

The Bennett et al. study nicely demonstrates the assimilation of high-quality 
quantitative metabolite concentration measurements with experimental data 
from the literature and public databases, and analysis of this data in the context 
of a metabolic model, which itself is curated and validated using experimental 
data. As metabolomics technologies become increasingly high-throughput, 
precise, and reproducible, quantitative metabolite profiling is certain to provide 
fundamental insights into cell physiology and the roles of thermodynamics and 
enzyme kinetics in regulating metabolic flux. Knowledge of how fluxes are 
regulated will be critical for complex metabolic engineering applications.

3.7  INTEGRATION OF MULTIPLE OMICS DATA SETS

Complex biological phenotypes can arise from the interplay of regulation at 
various levels of the central dogma. This is often reflected as contradictions 
between different types of omics data sets. It is important to embrace these 
differences to better understand how these different modes of control are 
integrated to give the observed phenotype. As the collection of omics data sets 
becomes more routine and the data more reliable, several researchers have 
recently taken the step to assimilate quantitative data sets from different omics 
levels, with the ultimate goal of understanding the complex relationship 
between genotype and phenotype. Ultimately, these relationships must be 
understood in order to apply rational engineering manipulations to manipu-
late metabolism as a whole.

Building on their work to identify reporter metabolites using transcriptome 
data (64), Cakir and coworkers (73) developed a hypothesis-driven algorithm 
to integrate metabolome data with metabolic models to detect reporter reac-
tions. These are reactions that have significant changes in the levels of metabo-
lites surrounding them following a genetic or environmental perturbation. The 
results of the metabolome study were then combined with transcriptome data 
to understand the mode of regulation. A graph theoretical representation (74) 
of metabolism was used in this study. Since only a small fraction of metabolites 
present in genome-scale metabolic models are typically measureable, a reduced 
model of metabolism was generated in which the fraction of the measured 
metabolites was enriched. A normalized Z-score for each reaction based on 
the Z-values of its neighboring metabolites was calculated, with the hypothesis 
that the Z-scores of the reactions calculated in this manner would indicate the 
significance of how a reaction responded to a perturbation at the metabolic 
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level. This was based on the fact that metabolite levels are governed by changes 
in fluxes and the enzyme activities. Metabolome data from two different strains 
of S. cerevisiae in two different environmental conditions with glucose as the 
sole carbon source were considered. Using the reporter reaction analysis, it 
was possible to identify a number of reactions that were affected by the per-
turbations. The approach could distinguish between the effects of genetic 
perturbation in both the environmental conditions. It could also identify the 
results of the genetic changes around the genes that were perturbed.

The next step was to combine this information of reporter reactions with 
the array data. All reactions in the network were then classified as metaboli-
cally regulated, hierarchically regulated, a combination of the two, or unregu-
lated. Metabolic regulation was described as regulation at the level of enzyme 
kinetics (i.e., changes of the metabolite levels) and hierarchical regulation 
denoted regulation of flux at the level of enzyme production or activity  
(i.e., transcription/translation/post-translational modifications). The transcript 
values of all genes encoding for the same reaction were summed, and the p-
values of the transcripts were then calculated using a t-test with an unequal 
variance and further converted into Z-scores to enable comparison with the 
Z-scores of reactions based on metabolome data. The reactions where only 
the transcript Z-scores were changed significantly were considered to be points 
of possible hierarchical regulation, and reactions where only the metabolite-
based Z-score was changed significantly were considered to be metabolically 
regulated. When both Z-scores were significant, regulation was shared at both 
the levels and when none of these scores was significant, it was inferred that 
the reaction was unregulated or unable to be determined.

Permutations of this method, all aimed at distinguishing enzymes exhibiting 
transcriptional or metabolic regulation, have been developed more recently 
using strictly model predictions of fluxes in the absence of metabolomics or 
fluxomics data. For example, Cakir et al. (75) use a weighted average of all 
elementary modes (pathways representing the edges of the feasible solution 
space (76)) to calculate the “control effective flux” for an organism growing 
under a given set of growth conditions. Bordel et al. (77) use a flux sampling 
method that randomly chooses 500 feasible flux distributions, and the mean 
value of each flux is used. Changes in these predicted fluxes between condi-
tions are then compared with changes in gene expression, and the reactions 
characterized as transcriptionally regulated (correlation between flux and 
gene expression), post-transcriptionally regulated (changes in gene expression 
with no change in flux), or metabolically regulated (changes in flux but not in 
gene expression).

Focusing specifically on the relationship between enzymes and metabolites, 
Fendt and coworkers postulated different relationships depending on the con-
centration of metabolites participating in a reaction relative to the KM of an 
enzyme catalyzing it (78). If the concentration is far below KM, indicating 
excess enzyme and substrate limitation, then the substrate concentration 
should not vary with the amount of enzyme present. If the concentration is 
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within one order of magnitude of KM, as is predicted to be the case for 
most enzymes (79), then there could be a trade-off between metabolite and 
enzyme abundance resulting in a negative correlation between substrate and 
enzyme concentration. Finally, if the concentration of substrate is much higher 
than the KM, the enzyme concentration is at a minimum for a given flux. In 
such a situation it would be expected that product metabolite concentrations 
exhibit a positive correlation with enzyme capacity. Clearly these rules are 
oversimplifications because they consider a single enzyme without context of 
other reactions that can affect metabolite concentration, but when looking 
across the measurable metabolome, patterns should emerge. To generate a 
variety of data to test these hypotheses, the authors conducted experiments 
with wild-type S. cerevisiae on glucose and a Gcr2p regulatory mutant that 
exhibits altered behavior of glycolysis and TCA cycle genes, enzymes, and 
metabolites (80,81). The fold changes in gene and protein levels for about 50 
reactions were plotted against fold changes in concentrations of related 
metabolites, including substrates, products, and cofactors of these reactions. 
Significant negative correlations were observed for substrate metabolites  
and cofactors, supporting the hypothesis that both concentrations are near  
the KM values of enzymes utilizing them. No significant correlation occurred 
with product metabolites or cofactors. To further test the generality of this 
hypothesis, the researchers grew the same strains on ethanol, a gluconeogenic 
substrate. The same correlations held, even though many of the substrate 
metabolites on glucose became product metabolites on ethanol, and vice  
versa. Finally, Fendt and coworkers created constructs to modulate four 
individual glycolytic steps using a Tet-repressed promoter. In all four cases, 
they found an increase in substrate concentration of at least 2-fold upon down-
regulation of the corresponding enzyme by tetracycline addition. From this 
work the authors concluded that alterations in enzyme level are buffered by 
converse changes in substrate metabolite concentration, thus maintaining 
homeostasis in central metabolism (78). A similar response was observed in a 
yeast regulatory mutant that reduces the production of amino acid biosynthe-
sis genes; lower amino acid concentrations resulted, restoring flux by the relief 
of allosteric inhibition (82).

Yizhak et al. developed a method termed integrative omics-metabolic anal-
ysis (IOMA) that uses a combination of enzyme levels and metabolite con-
centrations to derive constraints for FBA models (83). For a core set of 
reactions for which proteomic and complete metabolomic data are available, 
they used Michaelis–Menten-like rate equations to calculate enzyme satura-
tion level (metabolomics) and enzyme relative Vmax (proteomics). Given a 
baseline (wild-type) flux distribution, the kinetics then provided additional 
constraints to the FBA model, which was solved using quadratic programming 
(due to the nonlinearity of the kinetic equations). Using simulated omics data, 
the integrated model predicted flux distributions of E. coli deletion mutants 
better than FBA alone, although the method has yet to be tested with actual 
omics data.
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There are many examples in the literature where microarrays were used to 
investigate the genetic basis of stress response in E. coli (84), including the 
response of E. coli to solvents and fuels such as butanol and isobutanol (85,86). 
Jozefczuk and coworkers take these microarray-based stress response studies 
a step further to determine how the metabolome responds to stress, and found 
that the metabolic response is similar in nature but surprisingly much more 
specific than the transcriptome response (87). Four different environmental 
perturbations were evaluated: oxidative stress, carbon source shift, heat stress, 
and cold shock. Concentrations of 95 compounds were determined at time 
points between 10 minutes and 4 hours post-shift, in parallel with microarray-
based transcriptome data. In agreement with prior studies, the microarray data 
indicated a general slowdown of central metabolism and cell growth, and a 
tendency toward energy conservation. In agreement with these general trends, 
the concentrations of metabolites in glycolysis, the pentose phosphate pathway, 
and the TCA cycle decreased rapidly, accompanied by accumulation of most 
amino acids. Furthermore, the researchers found both transcriptomic and 
metabolic responses to be greatest in the first two time points after the shift. 
Since there would be a time lag before transcriptional changes are reflected 
in the metabolite concentrations, the coincidence of these two responses sug-
gests that they are independent. Finally, there was more overlap among  
the different stresses observed in the transcriptional response than in the 
metabolic response, indicating that metabolic response is more specific. An 
interpretation is that metabolism has to react faster and in a more targeted 
way to prevent immediate damage from the stress, as opposed to the genetic 
response, which is more general and long term.

Jozefczuk and coworkers then used two statistical approaches to determine 
the level of coordination between the data sets: untargeted co-clustering, and 
a targeted method using prior biological knowledge with canonical correlation 
analysis (CCA). Applying the untargeted method to the entire data set, there 
was only about 10% similarity between metabolomic and transcriptomic clus-
ters. Overrepresented in this data set were co-clustering between amino acids 
and genes encoding amino acid catabolic genes (Figure 3.8), whereas relatively 
few examples were found between amino acids and the corresponding biosyn-
thetic genes. In the targeted approach, the researchers focused on glycolysis, 
the pentose phosphate pathway, the TCA cycle, respiration, and associated 
transcriptional regulators. Clear associations were found for the control condi-
tion (no stress), heat stress, and stationary phase, but not for the other condi-
tions applied. The results are summarized in Figure 3.9. An unexpected 
association in the control case was the mqo gene (encoding malate-quinone 
oxidoreductase) with all TCA cycle intermediates and pyruvate, suggesting 
that the mqo gene product has a major function in regulating TCA cycle flux. 
Indeed, there is evidence that malate-quinone oxidoreductase, as opposed to 
malate dehydrogenase, is the major route of malate oxidation during optimal 
growth conditions (88). In the stationary phase, the association is lost and 
replaced by association of TCA metabolites with frdCD (fumarate reductase), 
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fumB (fumarase), and dcuB (fumarate-succinate antiporter). This suggests 
oxygen limitation and an induction of systems for alternate respiration (e.g., 
fumarate). Finally, the heat stress condition exhibits a strong association 
between pyruvate and genes involved in anaerobic fermentation (encoding 
pyruvate–formate lyase and the FNR transcriptional regulator), and with the 
glycolytic genes glk and pgi (87). Combined with earlier work on the pgi muta-
tion (89), this suggests a complex role of these genes in anaerobic regulation. 
In a related publication, the same researchers looked at correlation among the 
different metabolites in stressed and non-stressed conditions (90). In each 
experiment a directed graph was constructed, with significant correlations 
depicted as edges between nodes (metabolites). The “stable network compo-
nent” was defined as being the portions of these graphs common among all 
conditions. Szymanski et al. found a high degree of similarity of this compo-
nent to the connectivity of these metabolites in the metabolic network (90). 
This finding suggests a possible application of metabolomics data in pathway 
reconstruction, particularly when combined with biochemical pathway predic-
tion algorithms (91). Looking next at the correlations specific to each stress 
condition, they were able to identify key biomarkers as those metabolites that 
acted as central “hubs” (with many connections) in one condition only. An 
example is phosphoenolpyruvate (PEP), which in most conditions is an iso-
lated node with little connectivity to other metabolites. Upon glucose starva-
tion, however, PEP exhibits a high negative correlation with decreasing levels 
of malate, pyruvate, and amino acids. These observations suggest that PEP 
accumulation is a result of shifting metabolic resources from other parts of 
metabolism (90). Overall, application of clustering and correlation analysis on 
omics data is a systems-oriented approach to identifying the metabolic signals 
leading to complex regulatory mechanisms.

A final example is given by Lewis and coworkers (92), who used transcrip-
tome and proteome analysis in conjunction with modeling to compare wild-
type E. coli with strains evolved to grow optimally on different carbon sources 
(93). Using an approach termed parsimonious enzyme usage FBA (pFBA), 
they classified each gene based on its predicted contribution to the optimal 
growth phenotype in each growth condition. Genes are either essential for 
growth, essential for optimal growth, enzymatically or metabolically inefficient 
(contributing to lower growth prediction if used), or unable to carry flux at all. 
Omics data were then mapped onto the metabolic network and compared  
with the pFBA predictions. The essential and optimal genes were clearly  
overrepresented in both the proteins identified and the gene expression  
levels. Furthermore, expression levels exhibited a decreasing trend in the fol-
lowing order: essential > optimal > inefficient > no flux (92). The evolved 
strains had significantly increased growth rate and biomass yield on the carbon 
source used in the selection, which corresponded closely to the optimum 
growth point predicted by the constraint-based model (93). In this study it was 
also shown that this adaptation process repressed the pFBA-predicted no-flux 
genes (92).
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3.8  FUTURE DIRECTIONS AND APPLICATIONS TO  
STRAIN ENGINEERING

The integration of high-throughput experimental data with metabolic model-
ing holds exciting prospects for the future in both discovery research and 
metabolic engineering. Omics techniques will improve in both quality and 
breadth of coverage, and will become more commonplace in the laboratory. 
Computational biologists will continue to develop methods such as those sum-
marized here to interpret these high-quality data, particularly those aligned 
toward closing the gap between different levels of control. For example, as 
discussed earlier, it is clear that changes in gene expression do not always cor-
relate with changes in metabolic flux. Models should be developed to include 
genetic regulation, translation, post-translational modification, and enzyme 
kinetics, thereby providing a theoretical framework for understanding this 
relationship. Finally, it will be important to develop methods that can reliably 
identify key points of flux control, as these would represent targets in meta-
bolic engineering applications (94).

The principal critiques of constraint-based modeling have been the lack of 
regulatory information, and the restriction to steady-state. rFBA provides a 
framework for incorporating regulation in a Boolean sense, and for simulating 
the associated dynamics; however, it is restricted to known regulatory rules. 
Several methods are in development for the elucidation of regulatory rules 
from gene expression data (51,52,59), and could be used to develop rFBA 
networks for poorly characterized organisms. Further effort should also be 
spent developing integrated FBA models (53) to include kinetics of more 
regulatory and metabolic pathways. To date, the interest in such models has 
been rather limited primarily due to the lack of reliable kinetic data. Recently, 
rapid sampling techniques have been used to measure enzyme kinetics in vivo 
(95), and when not measureable kinetic constants can be extracted from fits 
of the model to experimental data. Metabolomics data can also be used for 
parameter identification (96).

One of the ultimate applications of constraint-based modeling is to drive 
strain development efforts for the production of pharmaceuticals, chemicals, 
and fuels (97). Several noteworthy examples of this are in the literature (98), 
but overall this breakthrough technology has been restricted to a small number 
of research groups. Classical strain improvement (CSI) by mutation and 
screening has been used to generate most of the production strains in com-
mercial use today (see Chapters 1 and 6). Both rational engineering and CSI 
have a place in the next generation of strain development, and can often 
complement each other (99,100). The application of constraint-based model-
ing to fermentation data from existing production strains can drive subsequent 
rounds of rational engineering, and has been described (97). The addition of 
omics data, when applied judiciously at the right time and analyzed properly, 
has the potential of further accelerating development timelines. An example 
of how these technologies can be combined to engineer complexity is shown 



102	 GENOME-SCALE METABOLIC MODELS

in Figure 3.10. Evolution for desired strain properties (e.g., tolerance to 
product, substrate, impurities, or process conditions) can be performed in 
parallel to rational strain engineering. Once a strain has been engineered by 
model-driven directed manipulations, random mutagenesis and adaptive evo-
lution can be applied to find improvement by means that could not have been 
predicted. Next-generation sequencing of the mutants will reveal sites of muta-
tion, allowing hypotheses to be drawn about the function of mutated genes. In 
the case of mutated regulators, microarray analysis may suggest regulation 
targets. In a recent study of a classically generated production strain for cla-
vulanic acid, microarray analysis showed significant increase of the expression 
of genes in central metabolism (99). More than half of the reactions predicted 
to correlate with increased clavulanic acid production by flux balance analysis 

FIGURE 3.10.  Use of constraint-based modeling and omics analysis to drive a com-
bined rational and combinatorial strain development program. A first round of model-
driven metabolic engineering is applied to develop an initial production strain. 
Fermentation products are measured and the model is used to guide subsequent 
improvements. High-throughput omics data can also be collected, analyzed by the 
methods discussed in this chapter, and used to identify additional targets. Constraints 
derived from these methods can also be used to refine the model. Once all rational 
manipulations have been made, classical strain improvement is applied. Analysis of the 
random modifications selected in this screen can lead to additional targets and further 
model refinement. The dotted lines show that the wild-type organism can optionally 
be improved by evolution prior to rational engineering. 
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had genes associated with them that were upregulated in the mutant. Further-
more, rationally engineered strains for clavulanic acid redirected flux in a 
similar way, but the classical mutant was actually closer to ideal because it 
allowed a small flux through glyceraldehyde-3-phosphate dehydrogenase, thus 
preventing the potential side effects of a complete deletion. Further rounds of 
rational engineering can then be performed based on these strains, and any 
novel information gained can be fed back into the model. Additional targets 
to achieve modified flux distributions can be identified using the techniques 
described in this chapter, applied to current production strains. Metabolomics 
data can find points of regulation, and in conjunction with gene expression 
data can be used to predict the type of regulation. As unnatural process condi-
tions, such as high product concentration, can induce various stress responses 
in the cell, omics data can be used to elucidate the type of stress. Genetic 
targets will arise for deletion or overexpression, depending on whether the 
stress response should be enhanced or eliminated.

In conclusion, metabolic models can be utilized as scaffolds for the inter-
pretation of omics data in the context of microbial strain development pro-
grams. Several methods for this analysis have been reported, and more are still 
in development. The best time to apply these methods is after the initial round 
of rational and/or classical strain development, so that the results of these 
manipulations can be observed and compared with the effects predicted by 
constraint-based modeling. Application of this approach will identify targets 
for further manipulations, which are often poorly characterized genes that 
would not have been identified using the models alone, and would be found 
much more quickly than with a strictly random approach.
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Byoungjin Kim, Jing Du, and Huimin Zhao

4.0  INTRODUCTION

The development of industrially relevant microbial strains is a challenging task 
due to the complexity of microbial cells and of the phenotypes required for 
industrial processes. Rational approaches for strain improvement involve 
knockout or knock-in of specific target genes in the chromosome. However, 
complex phenotypes associated with multiple genes and their interactions are 
difficult to achieve by rational design targeting one or a few genes at a time 
(1). Although rapidly advancing genomic, proteomic, metabolic, and high-
throughput analytical tools have significantly reduced the labor, time, and cost 
associated with strain engineering, the success of rational approaches largely 
depends on the detailed understanding of the biochemical and regulatory 
networks.

Evolutionary engineering mimics the natural evolutionary processes, con-
sisting of iterative rounds of genetic diversification and functional selection or 
screening (Figure 4.1). Unlike rational design, evolutionary engineering is less 
dependent on prior knowledge of the phenotype–genotype relationship. Strain 
improvement is achieved by efficiently creating genetic diversity through 
mutagenesis (natural or induced) and recombination or shuffling of genes, 
pathways, and genomes, followed by high-throughput screening or selection 
for a desired phenotype. The strains used for industrial processes are often 
required to possess multiple phenotypes, such as tolerance to the metabolic 

Engineering Complex Phenotypes in Industrial Strains, First Edition. Edited by Ranjan Patnaik.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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product and inhibitors and high productivity, in order to meet the commer-
cialization criteria. Evolutionary engineering can be performed for this purpose 
by evolving and identifying adapted strains using screening criteria that reflect 
feasible process conditions.

Creating genetic diversity covering a large sequence space and designing 
an efficient high-throughput screening or selection strategy are the two most 
critical steps in evolutionary engineering. Over the past decades, many advances 
have been made in the methodologies for the creation of genetically hetero-
geneous microbial populations, the automation of genome-wide sequence 
analysis, and high-throughput screening (1–5). In this chapter, some of these 
methodologies will be highlighted and a few representative examples will be 
discussed.

FIGURE 4.1.  Scheme of the strain development process and the key methods avail-
able in each step.
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4.1  METHODOLOGIES FOR EVOLUTIONARY ENGINEERING

4.1.1  Adaptive Evolution

Adaptation refers to an evolutionary process allowing an organism’s repro-
ductive success in a given environment. In the adaptive evolution method, 
the evolutionary engineering cycle begins with the creation of a variant cell 
population, followed by selection or screening for desired phenotypes 
(Chapter 1). Generation of genetic diversity is achieved through the natu-
rally occurring genetic variations in individual microorganisms and their 
continuous propagation through cellular replication. In this method, the evo-
lutionary direction toward a desired phenotype is determined by a selection 
strategy. Adaptive evolution can be performed in batch or continuous cul-
tures. In continuous cultures, variants with better fitness to a given environ-
ment outgrow over time and replace the parental population. In batch 
culture, a small fraction of the current culture (generally 10%) is transferred 
to fresh media before the depletion of nutrients, and this process is sequen-
tially repeated until the targeted number of generations is reached. Cells in 
each batch culture pass through the lag, exponential, and stationary growth 
phases, and a significant change in growth (selection) conditions from 
nutrient-rich to nutrient-limited growth environments occurs in each cycle. 
In sequential batch cultures, it was found that significant fitness improve-
ment occurred in the early stages of adaptive evolution experiments, and 
the rate of competitive fitness improvement hyperbolically decreased over 
time (6,7).

A chemostat is the most frequently used continuous culture system. In a 
chemostat, cells are in a physiological steady state. The cellular growth envi-
ronment, including metabolite concentrations, growth rate, and cell density, is 
held constant, and it can be controlled by adjusting flow rates into the chemo-
stat. These characteristics of a chemostat provide direct control of the selection 
pressure by modulating the culture conditions. Although the chemostat pro-
vides better control of the selection pressure than the batch culture system, 
care should be taken when the desired phenotype is not compatible with the 
improved growth rate (e.g., maximum growth vs. maximum production) 
because the continuous removal from the culture makes the growth rate a part 
of the selection function (8). The fitness can decrease as a result of epistatic 
interactions between multiple adaptive mutations in continuous asexual cul-
tures and consequently it is possible that certain adaptive mutations may 
repeatedly appear and disappear, limiting the repertoire of adaptive mutations 
(9). To avoid this issue and ensure fitness improvement over time, it is neces-
sary to monitor evolutionary progress by characterizing the phenotypes of  
the variants throughout the culture (8). In addition to the above discussed 
classical approaches for creating genetic diversity, newer approaches for creat-
ing diversity in microbial populations, as discussed in Sections 4.1.2 to 4.1.8, 
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have rendered the engineering of multigenic complex phenotype via evolu-
tionary approaches more systematic and predictable.

4.1.2  Genome Shuffling

Genome shuffling is achieved by homologous recombination between genomes 
through protoplast fusion and therefore multiple genes across the entire 
genome can be modified simultaneously (10,11). Since the 1970s, protoplast 
fusion has been used for strain improvement and was shown to be applicable 
to both prokaryotic and eukaryotic cells to obtain a high frequency of gene 
transfer (12–15). In protoplast fusion, protoplasts are isolated from cells by 
digesting the cell wall in the presence of osmotic stabilizers, whereas the fusion 
of protoplasts is induced by fusogen such as polyethylene glycol (Figure 4.2a). 
Unlike classical breeding, which enables recombination between only two 
parents per generation, genome shuffling can be carried out between multiple 
parents, and recursive shuffling can further accelerate the evolution process, 
producing multi-parent complex progeny (Figure 4.2b) (10). Since genome 
shuffling exploits the diversity and sequence homology given by the parental 
strains, the presence of highly homologous regions on the parental genomes 
can cause biased recombination producing representative progenies. This  
issue can be alleviated by taking combinatorial approaches with classical  
strain improvement strategies such as random mutagenesis and chemostat 
enrichments. After isolating a desired phenotype by screening and selection, 

FIGURE 4.2.  Schematic diagram of genome shuffling showing (a) cell-wall digestion, 
protoplast fusion, and the resulting heterogeneous cell population, and (b) fitness 
improvement in asexual and sexual evolution.
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accumulated nonessential or deleterious mutations during rounds of random 
mutagenesis can be removed by back-crossing of progeny to parents (3). 
Genome shuffling can be particularly useful for industrial strain development 
where ill-characterized strains need to be engineered for complex phenotypes 
in a constrained time frame (16). Additional formats for genome shuffling as 
applied to engineering of tolerance in Saccharomyces cerevisiae to inhibitors 
is discussed in Chapter 9.

4.1.3  Global Transcriptional Machinery Engineering

Global transcriptional machinery engineering (gTME) alters the proteins 
regulating the global transcriptome and generates diversity at the transcrip-
tional level, producing a pool of variants with heterogeneous phenotypes 
(Figure 4.3). Instead of modifying genes, gTME aims at perturbing the expres-
sion of multiple proteins simultaneously by creating a mutant library of the 
protein coordinating them. The sigma factor (σ70) in E. coli and the RNA Pol 
II transcription factor D (TFIID) component Spt15 in yeast were engineered 
by gTME to improve product tolerance, metabolite overproduction, and 
xylose utilization (5,17–19). Mutant libraries of global transcriptional machin-
eries can be generated using traditional mutagenesis techniques such as error-
prone PCR (20,21), and strains with the desired phenotype are obtained by 
subsequent screening or selection. Since gTME perturbs the expression of 

FIGURE 4.3.  Global transcription machinery engineering (gTME). (a) From Alper 
and coworkers (17). Reprinted with permission from AAAS. Schematic diagram of 
global transcription machinery in Saccharomyces cerevisiae. (b) Key steps in gTME. 
The three mutations responsible for improved ethanol tolerance and production and 
proposed global transcription mechanism are shown in panel (a).

(a) (b)
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multiple genes simultaneously, it is efficient to exploit the mutation space for 
complex phenotypes involving multiple gene modifications across the genome. 
In addition, gTME combined with microarray-based transcriptional analysis 
can provide insight into the genotype–phenotype correlation, which is valu-
able for further strain improvement (17,18).

4.1.4  Transposon Insertion Mutagenesis

Gene deletion analysis has been used and proven to be an essential technique 
in determining the functionalities of genes (22,23). Distinct from the tradi-
tional gene deletion strategy, transposon insertion mutagenesis utilizes a 
mobile gene element, the transposon, to create a mutation library on the 
genome scale. The transposon is used as an insertional mutagen to disrupt gene 
activity and also serves as a tag that can be easily detected for the identifica-
tion of the mutated gene (24). Commonly used transposon insertion mutagen-
esis systems share bacteria-derived transposons (e.g., Tn3, Tn5, and Tn7), 
antibiotic or auxotrophic markers for selection, and a reporter (e.g., lacZ). 
These gene elements are constructed into a plasmid containing a gene encod-
ing transposase. A transposon mutant library can be generated in vivo or in 
vitro in bacterial microorganisms (25–27) and by shuttle mutagenesis for 
S. cerevisiae (24,28). In the latter, transpositions are generated in a library of 
yeast genomic DNA, and the mutated alleles are shuttled into yeast for sub-
sequent analysis (29). The resulting library is screened under various growth 
conditions for the desired phenotype, and positive mutants are further ana-
lyzed to identify the genes responsible for the phenotypes using the transposon 
sequence as a tag sequence (27,30). Transposon mutagenesis was used to iden-
tify genes involved in cell viability, auxotrophy, antibiotic sensitivity, mobility, 
and growth on various growth conditions in organisms including Mycobacteria, 
Escherichia coli, Pseudomonas aeruginosa, and S. cerevisiae (24,26–28,30). 
Transposon mutagenesis was also used to identify two loci, PHO13 and a 
region 500 bp upstream from the TAL1 ORF, as responsible for the improved 
xylose utilization and fermentation by a recombinant S. cerivisiae strain (31). 
Transposon insertion mutagenesis shares its advantages with gTME and 
genome shuffling for the development of industrially relevant strains with 
complex phenotypes. Similar to gTME and genome shuffling, transposon 
mutagenesis combined with rapidly advancing microarray technologies will 
provide an efficient way of identifying the genotype–phenotype relationship 
on the genome scale.

4.1.5  Multiplex Automated Genome Engineering

Multiplex automated genome engineering (MAGE) offers an efficient method 
to create genetic diversity utilizing oligomer synthesis technology and auto-
mated cell culture and transformation (32). In one format of MAGE, synthetic 
DNAs that consist of degenerate nucleotide oligomer pools targeting specific 
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genomic positions are repeatedly introduced into a continuously evolving cell 
population, and the genetic diversity increases as the number of cycle increases 
(Figure 4.4). Through each cycle, synthetic DNA can be introduced into >30% 
of the cell population every 2–2.5 hours (32) and populations covering a large 
area of sequence space can be readily generated through successive MAGE 
cycles. Oligo-mediated allele replacements can produce mismatch, insertion, 
and deletion mutations on the genome, and the efficiency of allele replacement 
is determined by the type of mutation and the scale of the genetic modifica-
tion. Using MAGE, multiple locations on the chromosome in a single cell can 
be targeted simultaneously across a population of cells. Because the genetic 
target and type of changes can be controlled by the design of the synthetic 
DNAs, MAGE can be flexibly applied to evaluating the effects of a single gene 
modification or a combination of multiple gene modifications on the fitness of 
the evolved strains. MAGE requires the sequence information of target genes, 
and when target alleles are properly selected, this method can produce a desir-
able phenotype on a shorter time scale compared with the rational metabolic 
engineering approach.

4.1.6  Tractable Multiplex Recombineering 

Tractable multiplex recombineering (TRMR) aims at obtaining a comprehen-
sive map of genetic modifications affecting a trait of interest by simultaneous 

FIGURE 4.4.  Steps involved in multiplex automated genome engineering (MAGE).
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creation and evaluation of specific genetic modifications on a genome scale 
(33). TRMR utilizes homologous recombination (recombineering) of bar-
coded oligonucleotides to modify a genetic network at the gene expression 
level. The barcoded oligonucleotides (synDNA) feature targeting oligos and 
functional cassettes. Targeting oligos contain homology regions and barcodes 
specific to each target gene and can include gene expression modulators.  
Functional cassettes are the sequences inserted upstream of the genes replac-
ing the translation start codon and designed to modify gene expressions.  
A mixture of synDNA is transformed into a target organism. Upon successful 
recombineering, gene expression levels are controlled by the functional cas-
settes inserted. Screening or selection on a mixture of variants is followed  
to isolate a variant possessing a desired trait. Using barcode technology  
based on microarray (34), the frequency changes of the alleles during the 
enrichment or screening can be monitored and used to map a specific genetic 
change on the desired trait(s). It was demonstrated that every protein-coding 
gene in E. coli (4077 genes) could be targeted and successfully modified in 
the expression by using a conventional transformation technique. Currently, 
oligomer synthesis and transformation efficiency of various host organisms  
are the major challenges of this method. As the multiplex DNA synthesis  
and associated molecular biology techniques are further improved, TRMR 
might be broadly applicable in metabolic engineering and systems biology by 
providing a fast and efficient way of identifying a unique or a set of genetic 
modifications leading to a trait of interest. TRMR can be performed without 
a priori knowledge of the functions of the target genes and can be combined 
with MAGE or directed evolution to engineer microorganisms of complex 
traits.

4.1.7  Chemically Induced Chromosomal Evolution 

Chemically induced chromosomal evolution (CIChE) provides a useful tech-
nique for maintaining a heterologous pathway on the chromosome to produce 
desired chemicals (35). Stable expression of a gene construct is critical to 
minimizing the fluctuations of productivity and product yield in industrial 
processes. CIChE is carried out by inducing chromosome evolution to contain 
multiple copy numbers of a gene cassette using increasing concentrations of 
antibiotics. Chromosome evolution is accomplished by propagating the CIChE 
cassette of the target genes on the chromosome by recA-mediated DNA cross-
over (35). The CIChE cassette contains the genes of interest, a selectable 
marker, and flanking homologous regions so that the cassette is propagated in 
a tandem manner. A desired copy number on the chromosome can be achieved 
by increasing the selection pressure (e.g., the antibiotic concentration). After 
the target number of generations is reached, recA can be deleted, and no 
further selection pressure is required to maintain the recombinant alleles (35), 
which can be a major advantage for the production on an industrial scale. 
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Genetic stability is another advantage of CIChE. In a long-term subculturing, 
test of strains producing the metabolically demanding product poly-2- 
hydroxybutyrate (PHB), the productivity of the plasmid-carrying strain 
dropped to zero after 40 generations, while the CIChE-engineered strain 
maintained the productivity (>90%) during the entire test (70 generations) 
(35). CIChE can be applicable for most industrially relevant host organisms 
in which the methods for genomic integration of the CIChE cassette, recom-
bination knockout, and a recA homolog that can turn homologous recombina-
tion on and off are available.

4.1.8  Multiscale Analysis of Library Enrichment (SCALE)

Advances in technologies allowing fast and efficient generation of genetic 
diversity should be accompanied by technologies available for the identifica-
tion of the genetic basis of the phenotype. Screening of a genomic DNA library 
under selective conditions involves creation of a genomic DNA library and 
identification of the genomic DNA fragments responsible for the phenotypes. 
Multiple subcloning steps are often required to isolate all genetic factors and 
their combinatorial roles in expression of the desired phenotype. Because of 
its laborious and time-consuming nature, it can delay the time frame for indus-
trial strain development. The advantage of SCALE is its capability to identify 
multiple genes, which can be single short DNA sequences or operons, in a 
single experiment, eliminating time-consuming subcloning steps. Multiple 
populations representing genomic libraries of differently sized DNA frag-
ments in plasmids are generated separately and mixed, resulting in a cell 
population containing multiple inserts of different lengths (36,37). Continuous 
selection is performed on the mixed library and the enriched gene (short 
insert) or operon (long insert) is identified by microarray analysis. The genera-
tion of a mixed library of genomic DNA inserts varying in length (500–8000 
base pairs) and the capability of deconvoluting the microarray signal contribu-
tions from each of the different clones allow the identification of the locations 
as well as the sizes of the relevant DNA fragments responsible for the altered 
phenotype. The ability to obtain a truly representative genomic DNA libraries 
and the reliability of microarray analysis are the two most critical factors for 
successful implementation of this method. Application of SCALE technology 
for engineering tolerance to 3-hydroxypropionic acid in E. coli is discussed in 
Chapter 7.

4.1.9  Screening and Selection

As discussed in Chapter 1, efficient screening and selection techniques are 
critical to the isolation of variant strains with the desired phenotypes within 
the population. Traditional screening and selection involves isolation and 
analysis of individual variant strains for the desired phenotype. The availability 
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of assays and sensitive analytical techniques determine the efficiency of  
the screening and selection process and the resolving power to isolate a variant 
strain with the best fitness in a given condition (38). Rapidly advancing  
“omics” technologies and automation in sample handling and analysis have 
increased the throughput of classical screening and selection tools (Figure 4.5). 
Fluorescence-activated cell sorting (FACS) enables high-throughput screening 
of a large library at a single cell level, and this technique is particularly useful 
when the phenotype can be coupled with fluorescence or unique light scatter-
ing patterns (39,40) (Figure 4.5a). Pre-screening and selection can be used to 
reduce the final size of the library to be tested and to increase the chance to 
isolate a variant strain with the target phenotype with reduced cost and labor 
(38,41). In adaptive evolution, it is important to monitor the evolving popula-
tion to ensure the evolutionary direction toward the global optimum. The time 
and cost for genome sequencing and microarray technology have decreased 
significantly over the past decade, and these technologies are anticipated to 
become even more widely accessible in the near future. Screening and selec-
tion tools combined with these new technologies would increase the efficiency 

FIGURE 4.5.  Technologies applicable for high-throughput analysis: (a) fluorescence-
activated cell sorting, (b) genome-scale microarray, and (c) automatic sample handling 
device (Copyright © CyBio AG, Jena, Germany).
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of evolutionary engineering approaches for the development of industrial 
strains (Figure 4.5b,c).

4.2  EXAMPLES OF EVOLUTIONARY ENGINEERING

Evolutionary engineering approaches have been proven to be effective in 
creating industrial microorganisms with improved complex phenotypes, such 
as enhancement of product yield and productivity, extension of substrate 
range, and improvement of cellular properties (3,8). In this part of the chapter, 
recent progress in using evolutionary engineering approaches for strain 
improvement will be discussed. Development of high-throughput screening 
methods and their potential application for strain engineering will also be 
briefly mentioned.

4.2.1  Enhancement of Product Yield and Productivity

Mostly driven by environmental and energy security considerations, there is a 
growing interest in developing biocatalytic approaches for production of fuels 
and chemicals from renewable feedstock. However, only a few biotechnology 
based approaches have proven economically feasible for production of chemi-
cals (42,43). The efficient production of chemicals in microorganisms can be 
limited by complex metabolic pathways, substrate and intermediate inhibition, 
and other fermentation by-products (44).

One successful example of using evolutionary engineering to improve 
product yield and productivity in microorganisms is the biochemical produc-
tion of 1,3-propanediol (1,3-PD). 1,3-PD is a useful monomer for production 
of several plastics including polytrimethylene terephthalate (45). Otte and 
coworkers started with Clostridium diolis DSM 15410, a microorganism with 
good molar yield and volumetric productivity for conversion of glycerol into 
1,3-PD under anaerobic conditions, and applied the genome shuffling method 
to optimize the substrate and product tolerance and the 1,3-PD productivity. 
A mutant library was generated using chemical mutagenesis. Mutants with 
higher substrate and product tolerance and higher product yields were isolated 
and used as parental strains for genome shuffling. Significant improvements 
in 1,3-PD productivity were observed after four rounds of genome shuffling 
and selection. The best mutant exhibited an 80% improvement in yield com-
pared with the parental wild-type strain, and the final titer of 1,3-PD reached 
85 g/L (46).

Another successful evolutionary engineering approach for the overproduc-
tion of valuable compounds is the gTME method. Although genetic regulation 
has been studied for the engineering of metabolic pathways, no work has been 
carried out to engineer metabolic pathways through the manipulation of 
global regulatory pathways until recently. Tatarko and coworkers engineered 
a carbon storage regulator (Csr), a global regulatory system of E. coli, to 
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improve phenylalanine biosynthesis. The engineered strain with an optimized 
aromatic pathway produced twofold more phenylalanine when csrA was dis-
rupted. This work is the first known example of metabolic engineering utilizing 
a global regulatory pathway, and it also introduced the concept of “global 
metabolic engineering” for the first time (47). Alper and coworkers randomly 
mutagenized the rpoD gene that encodes the main sigma factor σ70 in E. coli. 
The resulting library of rpoD variants was introduced into lycopene-producing 
E. coli with different gene deletion backgrounds. After a single round of 
gTME, several mutants with increased lycopene productivity were identified. 
The best mutants from E. coli with different gene deletion backgrounds har-
bored different mutated versions of rpoD. The lycopene content of several 
mutant strains after a 15-hour fermentation achieved similar increases com-
pared with previously engineered multiple gene knockout strains (Figure 4.6). 

FIGURE 4.6.  Application of gTME to a metabolite production phenotype. (A) Lyco-
pene content, in mg/g dry cell weight (ppm) after 15-hour cultivations. The center of 
the black dots represents the production level of lycopene in ppm for a given strain, 
with the wild-type strain labeled at the bottom of the graph. The arrowheads of curved 
arrows not terminating at a black dot (e.g., gdhA knockout curve) represent the lyco-
pene production of this strain. (B) A dot plot for each of the 16 strains is shown, which 
depicts the maximum fold increase achieved in lycopene production. The size of the 
circle is proportional to the fold increase. Reprinted from Metabolic Engineering 9(3), 
258–267, Copyright 2007, with permission from Elsevier.
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It was shown that a single round of selection using gTME is more effective 
than multiple rounds of single-gene knockout or overexpression (18).

The MAGE method has also been used to improve the production of lyco-
pene through optimization of the 1-deoxy-d-xylulose-5-phosphate (DXP) bio-
synthesis pathway in E. coli. Using synthetic DNA, 24 genetic components in 
the DXP pathway were modified simultaneously. The researchers constructed 
prototype devices that automate the MAGE technology to facilitate the rapid 
and continuous generation of a set of genetic changes including mismatches, 
insertions, and deletions. Using a complex pool of synthetic DNA, facilitated 
by the automated devices, the mutant library was generated over 4.3 billion 
combinatorial genomic variants per day. Mutants that showed more than a 
fivefold increase in lycopene production within 3 days of fermentation were 
isolated (32).

4.2.2  Extension of Substrate Range

In recent years, much effort has been spent on the engineering of microorgan-
isms to convert lignocellulosic biomass into fuels (2). One of the microorgan-
isms under intensive investigation is S. cerevisiae, as it is the microorganism 
currently used for large-scale ethanol production. As a eukaryotic organism, 
the metabolic network of S. cerevisiae is very complicated. In order to engineer 
S. cerevisiae to utilize lignocellulosic biomass efficiently, heterologous path-
ways have been introduced to enable assimilation of five-carbon sugars such 
as d-xylose and l-arabinose (48,49). However, the sugar utilization and ethanol 
production of recombinant yeast strains are still not efficient enough, and 
multiple properties of industrial yeast strains have to be modified. Evolution-
ary engineering approaches have been applied to improve the productivity of 
recombinant yeast strains for ethanol production by extending the substrate 
range from glucose to other sugars (50).

To improve the fermentation of glucose, d-xylose and l-arabinose mixtures 
by engineered S. cerevisiae strains, Wisselink and coworkers applied a novel 
evolutionary engineering approach involving repeated batch cultivation with 
repeated cycles of consecutive growth in media consisting of different sugar 
compositions (49). The strains were evolved in a mixture of sugars containing 
first glucose, d-xylose, and l-arabinose, then d-xylose and l-arabinose, and 
lastly l-arabinose only. The evolved strains can completely ferment a mixture 
of sugars containing 30 g/L glucose, 15 g/L d-xylose, and 15 g/L l-arabinose in 
40% less time (49).

Kuyper and coworkers demonstrated that by introducing a heterologous 
xylose isomerase into S. cerevisiae, the resulting recombinant yeast strain can 
grow on d-xylose without the redox imbalance issue of the fungal d-xylose 
utilizing pathway (51). After a prolonged cultivation on d-xylose, a mutant 
strain that grew aerobically and anaerobically on d-xylose was obtained. The 
anaerobic ethanol yield reached 0.42 g ethanol per gram of d-xylose, and the 
by-product formation was also at a comparable level with the glucose-grown 
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anaerobic culture. This study demonstrated that by using an evolutionary 
engineering approach, the enzyme activities and/or regulatory properties of 
native S. cerevisiae gene products can be optimized for d-xylose utilization 
under anaerobic conditions (51).

Sonderegger and Sauer started with the recombinant S. cerevisiae strain 
TMB3001 that overexpresses the fungal d-xylose utilization pathway from 
Pichia stipitis, and obtained an evolved strain that can grow anaerobically on 
d-xylose (52). They first selected organisms for efficient aerobic growth on 
d-xylose alone and then slowly adapted the organisms to microaerobic condi-
tions, and finally anaerobic conditions. After a total of 460 generations or 266 
days of selection, the culture consisted of primarily two subpopulations  
with distinct phenotypes that can be reproduced stably under anaerobic condi-
tions on d-xylose. Further analysis of the two subpopulations revealed that 
only the larger subpopulation can grow anaerobically on d-xylose, while the 
smaller subpopulation, which was incapable of anaerobic growth, exhibited an 
improved d-xylose catabolism (52).

The construction of S. cerevisiae strains that ferment lactose is also useful 
for cheese whey fermentation. A recombinant flocculent lactose-consuming S. 
cerevisiae strain expressing the LAC12 (lactose permease) and LAC4 (β-
galactosidase) genes of Kluyveromyces lactis has been constructed, but the 
lactose fermentation efficiency is suboptimal. Guimaraes and coworkers 
applied an evolutionary engineering process, that is, serial transfer and dilution 
in lactose medium, and yielded an evolved recombinant strain (53). The 
evolved strain can consume lactose twofold faster, and produce 30% more 
ethanol than the original recombinant. The researchers then investigated the 
evolved strain and identified two molecular events that targeted the LAC 
construct: a 1593-bp deletion in the promoter region between LAC4 and 
LAC12 and a decrease in the plasmid copy number by about 10-fold compared 
with the parental strain. The results suggest that the evolved promoter enabled 
the transcription of LAC4 and LAC12. Together with the decreased copy 
number of both genes, the different levels of transcriptional induction for 
LAC4 and LAC12 improved lactose utilization in the evolved strain. The 
evolved strain obtained by simple adaptive engineering can efficiently ferment 
threefold more concentrated cheese whey, and provided an attractive alterna-
tive to the fermentation of lactose-based media (53).

4.2.3  Improvement of Cellular Properties

For industrial microorganisms, resistance to stresses is highly desirable due  
to the simultaneous or sequential combinations of different environmental 
stresses present in biotechnological processes. The molecular basis of stress 
resistances is complicated, making it difficult to engineer stress resistance  
by rational approaches (50). However, using evolutionary engineering 
approaches, engineering strains with multiple-stress resistances is possible. 
Cakar and coworkers tested various selection procedures in chemostats and 
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batch cultures systematically for a multiple-stress resistance phenotype in  
S. cerevisiae (Figure 4.7) (50). Mutant populations were harvested at different 
time points and clones were randomly chosen and grown in batch cultures that 
were exposed to oxidative, freezing–thawing, high-temperature, and ethanol 
stress. A special procedure involving the use of a 96-well plate-based high-
throughput screening method combined with a most-probable-number assay 

FIGURE 4.7.  The algorithm for batch stress applications and formation of stress-
resistant mutants. The term “constant” indicates constant, mild stress selection strategy 
for that particular stress (oxidative, ethanol, heat or freezing–thawing) resistance. 
YMM, yeast minimal medium. Reprinted from FEMS Yeast Research, 5(6–7), 569–578, 
Copyright 2005, with permission from John Wiley & Sons, Inc.
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was developed for the selection of multi-stress resistant strains. In this study, 
the best selection strategy to obtain highly improved multiple-stress-resistant 
yeast was found to be batch selection for the freezing–thawing stress. Although 
mutants were selected toward freezing–thawing stress in this strategy, the 
resulting mutants were significantly improved not only in freezing–thawing 
stress resistance, but also in the other stress resistances mentioned earlier.  
The best isolated strain exhibited 102-, 89-, 62-, and 1429-fold increased resis-
tance to freezing–thawing, temperature, ethanol, and oxidative stress, respec-
tively (50).

Genome shuffling is another method that has been applied to improve 
microbial cellular properties such as ethanol tolerance (54), acetic acid toler-
ance (55), and tolerance to other inhibitors (56). Bajwa and coworkers (56) 
applied genome shuffling based on cross mating to improve the tolerance of 
fermentation ability of Pichia stipitis toward hardwood spent sulphite (HW 
SSL) (see also Chapter 9). After four rounds of genome shuffling, the mutants 
were able to produce ethanol from xylose present in undiluted HW SSL (56). 
The genome shuffling method has been used to improve the tolerance of 
microorganisms toward pesticides and the degradation of pesticides using 
Sphingobium chlorophenolicum. Pentachlorophenol (PCP) is a highly toxic 
anthropogenic pesticide, which can be mineralized and degraded by the gram-
negative bacterium S. chlorophenolicum. However, wild-type S. chloropheno-
licum can only degrade PCP at a very slow rate because of low tolerance to 
the compound. Dai and coworkers generated a mutant library using genome 
shuffling, and mutants with higher PCP tolerance were identified. After three 
rounds of genome shuffling using protoplast fusion, the mutant strains exhib-
ited more than a 10-fold increase in tolerance toward PCP. Some mutant 
strains can also degrade 3 mM PCP in one-quarter-strength tryptic soy broth, 
while no degradation can be observed by their parental strains under the same 
condition (57).

4.3  CONCLUSIONS AND FUTURE PROSPECTS

Microorganisms have become increasingly exploited to address some of the 
most challenging global problems such as global warming, energy security, 
severe pollutions, and environmental degradation (4,58). In many cases, micro-
organisms used for industrial applications require multiple complex phe
notypes such as high tolerance to stresses, substrates, products, pH, and 
temperatures. Evolutionary engineering approaches offer a promising alterna-
tive to traditional strain improvement methodologies in coping with this chal-
lenge. By harnessing the natural algorithm to select the fittest variants through 
continuous evolution, evolutionary engineering allows a more efficient and 
comprehensive searches across the rugged fitness landscape. The evolutionary 
pathway can be modulated depending on the type and complexity of the phe-
notype by carefully designing the screening and selection strategy over the 
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course of evolution, which will enable the development and isolation of a 
phenotype compatible with the industrial operation conditions and facilitate 
scale-up from bench-top to production line. In addition, because the genetic 
backgrounds and phenotypic characteristics of many industrial strains are not 
available for rational metabolic engineering, evolutionary engineering will 
continue to be a valuable metabolic engineering strategy. By complementing 
rational approaches and emerging genome and transcriptome analysis tools, 
evolutionary engineering approaches will also expand our understanding of 
the genotype–phenotype relationship, providing new insights for further strain 
engineering.
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5
RAPID FERMENTATION 
PROCESS DEVELOPMENT 
AND OPTIMIZATION

Jun Sun and Lawrence Chew

5.0  INTRODUCTION

For the past decade advances in metabolic engineering and high-throughput 
technologies have made it possible to rapidly generate and screen large 
amounts of genetically engineered strains (see Chapters 1, 3, and 4) (1,2). The 
objective of these high-throughput technologies is to narrow down the list of 
strains to a very few (mostly just one) lead candidates that will be used in 
industrial-scale for production. Thus, challenges arise for bioprocess engineers 
to identify the best candidate strain that has the highest probability of dem-
onstrating the desired performance on scale-up. These challenges include:

1.	 Effectively evaluating the performances of these large numbers of strains 
under conditions close to that observed in large-scale fermentors. The 
traditional strain evaluation strategy involves the processes of evaluating 
performance of strains from test tubes to shake flasks, then to benchtop 
fermentors, and eventually to pilot-scale fermentors. These processes are 
not only labor-intensive and time-consuming, but also costly if the start-
ing pools of candidate strains are large.

2.	 Defining a set of criteria for the selection of the best candidate strain for 
scale-up. Product yield, rate, and titer are generally the most important 
parameters to justify strain performance. However, often these are not 
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the only factors to be considered. Sometimes process operability and 
downstream process constraints will impose a big impact on total pro-
duction cost, necessitating further analysis of strain performance in the 
light of additional metrics. For example, a strain with the highest yield, 
rate, and titer may not be a winner if it causes unreliable fermentation 
process and unrealistically high downstream purification cost. Some of 
these additional performance criteria can be addressed either by engi-
neering approaches or more cost-effectively by engineering these traits 
into production strains.

3.	 Rapidly developing an optimized robust process for scale-up after strains 
are identified from high-throughput screening or selection programs. A 
variety of scale-down tests may need to be performed at this stage to 
address potential problems that might surface at large scale, such as mass 
and/or heat transfer limitations resulting from high oxygen utilization 
rates of the culture.

This chapter will illustrate a roadmap on how to use new fermentation tools 
to address the above three challenges in the most cost-effective and practical 
manner such that the throughput of a fermentation process development 
program is compatible with the throughput of typical strain development 
programs.

5.1  OVERVIEW OF CLASSICAL FERMENTATION PROCESS  
DEVELOPMENT METHODOLOGY

The traditional fermentation process development workflow can be illustrated 
in Figure 5.1A. First, a pool of strains identified from strain screening or meta-
bolic engineering efforts are tested in either test tubes or shake flasks. By 
comparing the final product titer and yield indicative of each strain, the size 
of the initial strains pool is reduced for a more detailed characterization. This 
process can be performed iteratively in several cycles with varied culture 
conditions and media compositions for each cycle. Typically, the number of the 
selected strains that are moved forward for further characterization in fermen-
tors is limited by the capacity of the fermentation laboratory. It is difficult to 
quantitatively monitor and control all important scale-up parameters such as 
pH, dissolved oxygen (DO) level, and substrate concentration profiles in test 
tubes or shake flasks, as typical results from flask characterization only provide 
an end-point data in batch fermentation mode. However, these results from 
flask characterization are sufficient to compare the performance of the strains 
if the final production process is a simple anaerobic batch process, such as 
ethanol fermentation. For fed-batch production process and other aerobic 
fermentations where oxygen transfer rates are important for scale-up, this type 
of screening method may miss some potential good candidates due to limita-
tions arising from the batch mode of operation.
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The next step is to evaluate each selected strain from the preliminary 
screening stage under well-controlled conditions in small-scale fermentors 
(1–20 L). This is probably the most laborious and expensive step during 
process development. Some statistical methods and mathematical modeling 
tools can be used to design fermentation experiments to evaluate the strains 
under a broad range of conditions that are unable to be controlled in shake 
flasks. After extensive strain evaluation, a few strains will be selected based 
on product yield, rate, and titer for further process development and optimiza-
tion. Many times it will end up with no good candidate strain to move forward, 
and the process returns to the first step for screening more strains as illustrated 
in Figure 5.1A.

When a process is developed at small scale, it will take a couple of tests to 
validate the performance at different pilot scales. Further optimization of the 
process is required to scale-up to production scale. At this stage, many scale-
down experiments should be performed to address the potential problems that 
may occur at production scale. These tests include strain stability and process 
robustness subjected to the constraints of the large scale. However, it is not 
unusual that some specific problems will be found only after the process is 
scaled up. In such cases more scale-down experiments will be designed to 
operate at small-scale fermentors to identify the causes of the problems and 
develop possible solutions.

The above-described traditional approach for industrial strain development 
and scale-up puts significant pressure on fermentation equipment resources at 

FIGURE 5.1.  Roadmap for traditional fermentation process development (A) and 
for rapid fermentation process development using high-throughput fermentation 
systems (B).
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the 1–20 L scale, and often this step becomes the bottleneck in a strain devel-
opment program. In order to improve the throughput of strains that are char-
acterized in representative fermentation conditions, in recent years new 
technologies on high-throughput fermentation have been developed to keep 
pace with the throughput of the strain engineering programs.

5.1.1  Noninvasive Sensor Technologies

The traditional process development strategy as described in Section 5.1  
can last for years and cost tremendous resources to the strain engineering 
program. The bottleneck of the process is the speed of strain evaluation and 
process development. To alleviate the bottleneck, there are two approaches: 
(i) change the screening methods to evaluate the strains more effectively such 
that false positives are minimized, and (ii) increase the throughput of fermen-
tation at the small scale without significantly compromising the metrics rele-
vant to scale-up.

Fortunately, recent development in new fermentation technologies makes 
these approaches possible. Thanks to the noninvasive sensing technologies, it 
becomes practical to attach optical pH and DO sensors to the flasks that 
enable monitoring and controlling pH/DO in fermentation cultures grown  
in shake flasks. Furthermore, when these optical sensor technologies are  
integrated with microwell reactors, it creates minibioreactors that have  
most of the functionalities and similar performances to that for small bench
top fermentors, plus the high-throughout capability. This leads to a new 
roadmap for rapid strain evaluation and process development as proposed in 
Figure 5.1B.

In this case the minibioreactors will combine the functions of both shake 
flasks and small-scale fermentors (as shown in Figure 5.1A) to perform the 
strain screening and evaluations. An early decision can be made if there is no 
good strain for further process development. The high-throughput fermentors 
can expedite the process development by enabling optimization across a wider 
range of operating parameters. In addition, some scale-down experiments 
reflective of the scaled-up process can even be done in minibioreactors without 
the need for piloting, which results in significant cost savings. By using these 
approaches, the bottleneck in traditional fermentation process development 
can be dramatically alleviated, although not completely eliminated.

In this chapter, the basic tools for fermentation process development  
will be introduced and illustrated by some case studies. The advances in  
minibioreactor technologies will be reviewed, and the different options  
of commercially available minibioreactors and parallel benchtop high-
throughput fermentation systems will be introduced and compared. Some case 
studies will be presented to demonstrate how to use the available high-
throughput fermentation systems to expedite strain evaluation and process 
development.
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5.2  FERMENTATION PROCESS DEVELOPMENT  
AND OPTIMIZATION

Fermentation process development and optimization includes optimization of 
growth medium and growth conditions to achieve maximal economic advan-
tage at production scale. It also involves optimization of fermentation perfor-
mance using a scale-down approach to simulate the conditions typically 
encountered at scale-up. This section will discuss the development and opti-
mization of microbial fermentation processes using currently available 
technologies.

5.2.1  Medium Design and Optimization

When evaluating strains and developing a fermentation process, the fermenta-
tion medium is one of the most critical factors that influences strain perfor-
mance. The medium design and strain screening process often form an iterative 
cycle to test the strain pools in different media in order to increase the prob-
ability of finding an optimal combination. It is impossible for one medium to 
fit or be conducive for all strains.

There are typically two strategies for medium design and optimization:  
(i) “open strategy,” which involves selecting the best combination of all pos-
sible components, and (ii) “closed strategy,” which is done by identifying the 
best combination of given components. The different approaches on how to 
design or optimize media using the above two strategies are summarized in 
References (3) and (4).

5.2.1.1  Phenotype Microarray for Rapid Media Development  Compo-
nent swapping (swap one component for another at the same level) (5,6) and 
pulsed injection in continuous fermentation techniques (addition of growth 
limiting nutrient results in growth simulation) (7,8) are two experimental 
techniques for medium design with open strategy. Combined with mathemati-
cal and statistical tools, these two methods have been successfully applied  
to identify the essential medium components for microbial fermentation. 
However, a single-medium optimization study using these low-throughput 
“trial and error” methods will take a long time, with high variation in results. 
They are not suitable for medium design when a significant number of strains 
generated by genetic engineering are being evaluated because the genetically 
engineered strains will have different requirements for optimal fermentation 
performance. To determine the best medium composition for the specific strain 
or most promising media for strain screening, a systematic physiology-driven 
approach is preferable.

The recent advances in metabolomics have made it possible to design  
a medium using an unbiased selection and ranking in high-throughput  
formats (9). For example, the phenotype microarray (PM) from Biolog 
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(Hayward, CA) is a high-throughput method to globally characterize cell 
phenotype and reveal microbial cell physiology via a systematic approach 
(10,11). The PM set for bacteria consists of 1920 phenotype assays in 96-well 
microplates to test cell metabolism and chemical sensitivity (12). The microti-
ter plate wells contain chemicals dried on the bottom to create unique culture 
conditions after rehydration. Assays are initiated by inoculating all wells with 
cell suspensions. After incubation, some of the wells turn various shades of 
purple due to reduction of a tetrazolium dye as the cells respire. Instead of 
measuring cell growth, cell respiration activities are measured colorimetrically 
to give an accurate reflection of the physiological state of cells with improved 
sensitivity of assays. This is particularly important for some assays that do not 
depend on growth. Assays of carbon (C), nitrogen (N), phosphorous (P), and 
sulfur (S) metabolism provide quantitative information about the activity of 
various metabolic pathways that are present and active in cells. Assays of ion, 
pH, and chemical sensitivities provide information on stress and repair path-
ways that are present and active in cells.

By using the PM system, it is feasible to compare and fingerprint differences 
between the genetically engineered strains generated in a strain engineering 
program. Furthermore, combining with statistical tools such as multivariate 
data analysis, it is possible to scan 2000 culture conditions simultaneously to 
identify the essential growth medium components. Knowledge and insights 
obtained from phenotypic fingerprinting of strains not only influence cost-
effective medium design but also enable modulating other traits through 
either addition or exclusion of certain micronutrients.

5.2.1.2  Media Optimization Using Design of Experiment (DOE)  The 
traditional method for medium development is a trial–error process in shake 
flasks or benchtop fermentors. Typical approaches include changing one vari-
able at a time to determine the impact of one component on the strain per-
formance. But this approach cannot identify the interactive effect of multiple 
components on process performance.

The DOE approach to optimize medium formulation has been used widely 
by microbiologists and fermentation engineers. The most commonly used 
DOE methods include:

1.	 Factorial design methods allow for the simultaneous study of the effects 
that several medium components may have on performance. Varying the 
levels of many components simultaneously rather than one at a time 
allows for the study of interactions between the components. Using the 
factorial design, a few vital components can be quickly identified for 
further optimization. The fractional two-factorial Plackett–Burman 
design, which allows for investigation of up to N-1 variables in N experi-
ments, is an efficient design used frequently as a starting point when 
many variables need to be screened to identify the vital components to 
be optimized further.
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2.	 Response surface methods are used to examine the relationship between 
one or more fermentation performance variables (e.g., product yield, 
rate, and titer) and a set of “vital few” medium components identified by 
other methods (e.g., factorial design methods). The medium components 
can be optimized to achieve best fermentation performance. Designs of 
this type are usually chosen when the curvature in the response surface 
may exist.

Canonical analysis is a method used to further characterize the surface 
response function to identify the minimal or maximal points on the response 
surface. In most cases, it is difficult to understand the shape of a fitted response 
surface by mere inspection of the algebraic expression of the Taylor polyno-
mial. When there are many independent variables in the model, it is also dif-
ficult to evaluate the shape of the surface by looking at isocontour projections 
of the variables two by two. A canonical analysis facilitates the interpretation 
of the results obtained by surface response methods (13). A detailed example 
using above three statistic tools to optimize the medium components for nat-
tokinase production by Bacillus natto NLSSEm can be found in Reference 
(14). Many commercial software, such as Statistica (Statsoft Inc, Tulsa, OK)  
and Minitab (Minitab Inc., State College, PA) can be used to facilitate DOE 
and data analysis.

When selecting a medium for fermentation, it has to be kept in mind that 
most often the final product will need to be separated from the medium com-
ponents at the end of the process. Therefore, the medium used at production 
scale should be as lean as possible not only to meet the requirement of cell 
growth and product formation but also to minimize the medium cost and 
downstream processing burden (see case study in Chapter 6).

5.2.2  Optimization of Growth Conditions

The use of DOE methods as described in Section 5.2.1.2 has also been reported 
extensively to optimize the growth conditions (15). Some conditions such as 
pH, temperature, and induction/fermentation batch cycle time can be con-
trolled in the shake flasks. Thus, it is possible to optimize these growth condi-
tions in shake flasks or microtiter plates. However, some growth parameters 
such as DO cannot be easily measured and controlled in the shake flasks. Thus, 
the small-scale fermentor is a preferable tool.

When using fermentors to optimize growth conditions, it is laborious to run 
10–20 batches of fermentation based on DOE. One traditional approach is to 
use continuous chemostat culture to test different growth conditions at each 
steady state. However, depending on the growth rate, it usually takes a long 
time to reach a steady state in continuous culture. To test growth conditions 
at different levels, the continuous fermentation may last for a long period, 
imposing the risk of contamination or genetic instability. With the combination 
of mathematical modeling, it becomes practical to identify optimal growth 



140	 Rapid Fermentation Process Development and Optimization

conditions by varying the growth parameters before a steady state is reached 
(16,17).

5.3  RAPID PROCESS DEVELOPMENT AND OPTIMIZATION  
USING CONVENTIONAL FERMENTATION SYSTEM

The fed-batch fermentation is the most widely used fermentation mode to 
achieve high product titer and yield. When developing fed-batch fermentation, 
the most important variable that needs to be defined is the substrate feed 
profile. Various methods have been described to determine and optimize the 
feed profile for specific strain and process as reviewed by Lee in Reference 
(18). However, when evaluating multiple strains to identify the good candi-
dates, it is impractical to determine the optimized feed profile for each strain. 
A common strategy is to use a predefined feed profile based on a designated 
specific growth rate for all strains to be evaluated. This may exclude some good 
candidates because the predefined feed profile may not be optimal for these 
strains. Thus, it is preferable to define and customize feed profile online during 
the fermentation process for each strain to be evaluated. The following two 
methods are practical and robust to define the feed profiles for carbon source-
limited fermentation or carbon source-excess fermentation.

5.3.1  Dynamic DO Control to Determine Optimal Feed Rate for Carbon 
Source-Limited Fermentation

Many fed-batch fermentation processes need to keep carbon source at a 
limited level to minimize by-product formation. For example, when producing 
brewery yeast using fed-batch fermentation, excess sugar in the culture leads 
to the production of ethanol. Another example is Escherichia coli fermenta-
tion for protein expression, where excess glucose in the media can divert the 
carbon flux into acetate formation, resulting in inhibition of cell growth and 
protein expression.

When a fermentation system is equipped with advanced instrumentations, 
such as online measurement of substrates using bioanalyzer or off-gas mea-
surement by gas analyzer, and so on, it is not difficult to design a feedback 
program to control the feed rate to evaluate strains with different growth 
phenotypes. However, most small-scale fermentors are equipped only with 
basic controllers for pH, DO, temperature, and so on, but not any advanced 
instrumentation. Thus, a practical approach is needed to define feed profile 
using a standard fermentation system without additional advanced 
instrumentation.

For strain evaluation purposes, the feeding strategy should be (i) universal 
(independent of strains, products, media, etc.), (ii) robust, (iii) requiring 
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minimum number of online measurements as possible, (iv) amenable to scale-
up, and (v) ease of implementation, preferably with full automation. Based on 
these criteria, DO-stat and pH-stat are the two best choices as DO and pH 
probes are relatively reliable and cheap. Most of the modern fermentation 
systems have the DO-stat/pH-stat substrate feeding control program built in 
the control unit. But because the pH-stat has several disadvantages such  
as slow response to feed addition and media dependence, the DO-stat is a 
suitable strategy for substrate limited fed-batch fermentation for strain 
evaluation.

The commonly used DO-stat control strategy for fed-batch fermentations 
involves adding substrate when the DO level rises above the setpoint due to 
substrate depletion. When this strategy is used for certain fermentations such 
as recombinant protein expression or when the product is toxic to the cells, it 
can cause substrate overfeeding as shown in Figure 5.2A (19). In this example, 
a built-in DO-stat control program in a Sartorius Biostat C control unit (Sar-
torius, Göttingen, Germany) was used to control feed rate of the glucose feed 
solution by keeping the DO value at 30%. However, after induction at 8.5 
hours, the DO stayed higher than its setpoint due to slowing down of cell 
metabolism, subsequently resulting in overfeeding of glucose. The glucose feed 
has to be shut off manually to prevent further adverse impact of high glucose 
concentration on the protein expression.

When using DO-stat, one approach to resolve the overfeeding problem is 
to feed the substrate dynamically by the pattern of DO change. As described 
in Reference (19), the increase in DO can be caused by (i) substrate depletion; 
(ii) slowing down of cellular metabolism or product toxicity; (iii) noise of DO 
probe. If standard DO-stat control strategy is used, substrate over-feeding will 
occur for scenarios of (ii) and (iii). Fortunately it is possible to design a soft-
ware controller to distinguish the patterns of DO change and to feed substrate 
only in response to substrate depletion.

A control strategy of differentiating the pattern of DO change by changing 
the DO setpoint dynamically to follow the DO profile with 1–2 minutes of 
delay has been described in detail in Reference (19). In this dynamic DO-stat 
feeding control strategy, the feed will be triggered if DO is higher than DO 
setpoint (DOset) plus a high threshold value (DOht) which is a value higher 
than the probe noise. When substrate is exhausted, the DO will increase drasti-
cally and the feed will start because DO > (DOset + DOht). In the case of the 
cell metabolism slowing down or product toxicity, the DO will increase slowly 
and the DO setpoint will dynamically follow the DO profile with 100s of delay 
to avoid substrate overfeeding. For the DO probe noise issue, the parameter 
of DOht which is higher than the probe signal noise will prevent substrate 
overfeeding.

This dynamic DO-stat can be easily programmed and has been imple-
mented using different commercially available fermentation SCADA software 
(19). An example of fed-batch fermentation using this dynamic DO-stat 
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FIGURE 5.2.  Examples of fed-batch fermentation using conventional DO-stat (A) or 
dynamic DO-stat (B) to control the substrate feed rate. In both fermentations, a recom-
binant protein was expressed in E. coli cell. The feed solution is 50% (w/w) glucose. 
The protein expression was induced at 8.5 hours. The DO setpoint is at 30% for (A). 
The minimal DO setpoint is at 20% for (B). Grey solid line: DO profile (%); dashed 
line: feed rate (g/min); grey dotted line: DO setpoint (%); square: glucose concentration 
(g/L). Part (A) is adapted with kind permission from Springer Science + Business 
Media: In Cheng, Q. (ed.), Microbial Metabolic Engineering, Methods in Molecular 
Biology. Chapter 15, Rapid strain evaluation using dynamic DO-stat fed-batch fer
mentation under scale-down conditions. SpringerLink, New York, vol. 834, 2012, 
pp. 233–244, Jun Sun. 
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control strategy is shown in Figure 5.2B. After induction at 8.5 hours, the cell 
metabolism slowed down and caused DO to increase above 20%, but the 
control program was able to distinguish this DO increase pattern and con-
trolled glucose feeding accordingly to keep the glucose at limited level. 
Another advantage of using this dynamic DO-stat is that the by-product can 
be reduced for E. coli fermentation as reported in Reference (20) because of 
the oscillation of DO.

The above dynamic DO-stat control strategy is suitable for initial strain 
screening and process development without prior knowledge about the sub-
strate utilization rate or growth rate of strains. It can provide a baseline feed 
profile after strain evaluation for further process optimization.

5.3.2  Feed Forward Control for Carbon Source Excess Fermentation

The feed control for substrate excess fermentation is not as challenging as for 
substrate-limited fed-batch fermentation because the substrate concentration 
will be controlled within a certain range. However, when the substrate level is 
out of the specified range, the fermentation performance will be impacted 
adversely due to by-product formation or substrate inhibition. Among the 
various feed strategies as described in Reference (18), the direct feed back 
control based on substrate concentration is suitable for substrate excess fer-
mentation and is easy to implement. Since the substrate level only needs to 
be controlled within certain range, most of the time no online measurement 
of substrate is needed. A rapid offline measurement of substrate level with 2–3 
hours of sampling interval is generally enough to meet the requirement for 
feed rate adjustment. One option is shown in Table 5.1. In this case, the online 
or offline measurement for broth weight, cumulative feed weight, and sub-
strate concentration is used to calculate the substrate consumption rate. Then 
the substrate consumption rate for the next sampling interval is calculated by 
linear extrapolation of the substrate consumption rate of the past two sam-
pling intervals. Thus, the feed rate can be calculated based on the predicted 
substrate consumption rate plus a term to calibrate the difference between 
substrate concentration and the setpoint for substrate level. This method can 
be implemented in spreadsheet software or in the modern fermentation 
SCADA software for automatic control of the feed rate. One example of using 
this feed forward control strategy is shown in Figure 5.3. A sample was taken 
every 2–3 hours and measured for sugar concentration. The offline measure-
ment was entered into an excel file to predict the feed rate for next sampling 
interval. The robustness of this method can be demonstrated by the sugar level, 
which was stably controlled within the range of 10–15 g/L with the setpoint of 
15 g/L. This method is suitable for strain evaluation when no prior knowledge 
of strain growth property is available and excess substrate during fermentation 
is desirable. It is also very useful for process development and scale-up since 
the method is independent of scale.
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5.4  STRAIN EVALUATION AND PROCESS OPTIMIZATION  
UNDER SCALE-DOWN CONDITIONS

While fermentation in small-scale fermentors can be a homogeneous and well-
controlled process, most of the time it does not match the conditions in large-
scale fermentors, where the gradient of pH, temperature, DO, and substrates 
can be significant. Furthermore, there are mass and heat transfer capacity 
limitations at larger scale that further constraints fermentation optimization. 
Cells in a large-scale reactor move through different zones and experience 
steady changes in their environment (21). Consequently, they experience a 
different history with respect to their physiology, especially stress responses 
compared with cells that have been grown in a homogeneous well-mixed 
culture (22). This often significantly affects the fermentation performance in 
large vessels. Therefore, when using small-scale fermentors for strain evalua-
tion, the performance of the leading candidate may not translate to large- 
scale vessels. It is often necessary to test certain scale-down conditions during 
evaluation of the candidate strains so that the performance of the best strain 
translates to a large-scale vessel. The review paper by Neubauer and Junne 
(21) has given the latest update on how to set up the systems to simulate the 
conditions in large-scale reactors using conventional benchtop fermentors, 
phototrophic fermentors, and micro high-throughput bioreactors, as well as 
study the metabolic changes with rapid sampling techniques and computa-
tional tools.

FIGURE 5.3.  An example of a bacterial fed-batch fermentation using sugar as sub-
strate. The feed forward control program as shown in Table 5.1 was used to generate 
the feed profile. Diamond: sugar concentration; triangle: calculated feed consumption 
rate as described in the 5th column in Table 5.1; solid line: actual feed rate predicted by 
the 6th column in Table 5.1. 
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5.4.1  Identify Scale-Down Parameters

To simulate the conditions of a large-scale reactor in small-scale vessels, the 
right parameters should be identified so that the scale-down fermentation 
system can be set up accordingly.

The leading cause of deviation of fermentation performance in large-scale 
vessels from small vessels is the heterogeneity due to the limitation of power 
input for mixing in large-scale vessels. This leads to gradient formation for pH, 
substrate, temperature, and a hot spot in the large vessel, into which the sub-
strate and pH adjusting agents are fed. It also causes the limitation of mass 
transfer, especially oxygen transfer rate (OTR) for aerobic fermentation. In 
small-scale fermentors, the OTR can sometimes reach as high as 300 mM/h 
using air as the oxygen supply, in contrast to about 100–150 mM/h in large-
scale vessels. In addition, because of the hydrostatic pressure and good solubil-
ity of CO2 at high CO2 partial pressure, the dissolved CO2 level in large-scale 
vessels is generally higher than that in small-scale vessels. Certain strains 
cannot tolerate high dissolved CO2, which indirectly affects performance. If 
these scale-down parameters can be tested at the strain evaluation and process 
development stage, some engineering solutions can be implemented to resolve 
these issues at the scale-up stage. In this section, practical approaches for 
testing these scale-down parameters in lab-scale fermentors are discussed.

5.4.2  Scale-Down of Mixing Related Parameters 

One powerful tool for studying the effect of mixing-related scale-down param-
eter is using the multiple-component fermentation system. The setups were 
summarized by Neubauer and Junne (21). These setups have been successfully 
applied to study the impact of gradients in substrate feeding zone (23,24) and 
pH agent feeding zone (25,26) on fermentation performance. The dynamic 
DO-stat control (19) as discussed in Section 5.3.1 is actually the pulse feeding 
scale-down strategy.

Except for the setup of direct rapid sampling and pulse feeding, which can 
be implemented in commercially available bioreactors, other configurations, 
such as stop-flow sampling and two compartment reactors, require setting up 
of multiple fermentors (21). This limits the application of these scale-down 
strategies during the early stages of strain evaluation due to the cost of labor 
and equipment. A high-throughput format of the above-described configura-
tions using microliter bioreactors is more suitable to test the scale-down 
parameters as described in Section 5.7.

5.4.3  Oxygen Uptake Rate (OUR) Clipping

In large-scale vessels, the OTR is limited to 100–150 mM/h due to limitations 
on mixing power supply and volumetric air flow rate (vvm). In benchtop  
scale fermentors, the OTR can easily reach more than 200 mM/h. Thus, it is 
necessary to test the performance of engineered strains under the OTR 
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limiting conditions early at the strain evaluation stage. Since OUR equals 
OTR at pseudo-steady state, this scale-down strategy is called OUR 
clipping.

The most common method of testing OUR clipping is to limit the maximal 
feed rate to keep the OUR below the setpoint. If a gas analyzer is available 
for online off-gas monitoring, it is easy to set the maximal feed rate based on 
online calculation of OUR. However, if the fermentor is not equipped with an 
off-gas analyzer, the approach can be as follows: (i) measure oxygen transfer 
coefficient (kLa) and correlate kLa with agitation speed and air flow rate (27); 
(ii) set the maximal agitation speed and/or air flow rate based on their correla-
tions with kLa so that the maximal OTR can match that in the large-scale vessel; 
and (iii) design the feed profiles to limit the maximal feed rate when agitation 
speed and air flow rate reach their maximal setpoints.

An example of comparison of fermentation performance with and without 
OUR clipping is described in Reference (19). In the OUR clipping experiment, 
the maximal agitation speed and air flow were set to the current process values 
when OUR reached the setpoint. It was observed that cells grew slightly 
slower at OUR clipping condition (OUR was set at 165 mM/h) compared to 
regular fed-batch fermentation where OUR reached as high as 300 mM/h. The 
feed profiles for both runs were generated automatically using dynamic DO-
stat as discussed in Section 5.3.1.

5.4.4  Dissolved CO2

The dissolved CO2 level in large-scale vessels is 2–3 times higher than that in 
the benchtop fermentor because of the higher hydrostatic pressure and low 
volumetric air flow rate (vvm) in large-scale vessels. It has been reported that 
high dissolved CO2 (or high partial CO2 pressure) can impose a negative 
impact on fermentation performance (28–31). Thus, it is important to check 
the fermentation performance on high dissolved CO2 level at small scale 
before scale-up.

The most common approach to evaluate the effect of CO2 on fermentation 
performance is using mixed gas with high CO2 concentration as influent gas 
(29,30). This can mimic the conditions observed in large-scale fermentors with 
elevated CO2 level. Another approach is autogenous CO2 methods in which 
the airflow is adjusted automatically to keep off-gas CO2 at the desired level 
(31). If the small fermentor is equipped with a pressure regulator as that in 
many sterilize-in-place (SIP) fermentation systems, the dissolved CO2 effect 
can be evaluated by adjusting vessel back pressure to keep partial CO2 pres-
sure at a preset level equivalent to that in large-scale vessels.

5.5  CONTROL AND SENSOR TECHNOLOGIES  
FOR MINIBIOREACTOR

As discussed in Sections 5.2 to 5.4, the regular benchtop fermentors (0.5–10 L) 
are powerful tools to evaluate strains and develop scalable processes. However, 
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as the pool size of the strains to be evaluated gets large, it is unrealistic to  
use benchtop fermentors to accomplish the strain screening and evalua
tion task effectively due to the labor, time and cost to operate benchtop fer-
mentors. While many labs are still using the shake flasks or microtiter plates 
to screen the strains, the minibioreactors (50 µL–200 mL) equipped with tem-
perature, pH, DO, and aeration sensors/controllers can offer high throughput 
with high reproducible and comparable results as that obtained from regular 
benchtop fermentors. The high data density from minibioreactors enables 
thorough data analysis to select and rank strains effectively using multiple 
metrics.

The minibioreactor can be classified in two categories based on the reactor 
volume: milliliter bioreactor (ranging from 1 to 200 mL) and microliter biore-
actor (ranging from 5 to 700 µL). As the volume decreases, losses due to water 
evaporation become a challenging issue. From the viewpoint of practical appli-
cation, the milliliter bioreactor can offer more flexibility in terms of the amount 
of sampling allowed and commercial availability.

The key factor in successful application of minibioreactor in strain screen-
ing and process development programs is the integration of sensor technolo-
gies with the hardware of the equipment. Because of the volume limitation of 
minibioreactors, online measurement of many fermentation parameters imple-
mented in minibioreactors can prevent significant loss of culture broth due to 
sampling. In this section, sensing and control technologies used in minibioreac-
tors are reviewed. Most of the sensors for temperature, pH, DO, and biomass 
have been integrated together into different minibioreactors for practical 
applications (32,33).

5.5.1  Temperature Sensing and Control

In minibioreactors, temperature is typically measured by thermistors or resis-
tance temperature detectors (RTDs). These sensors are commercially avail-
able and can be fabricated in small sizes to be embedded into minibioreactors 
to measure temperature precisely and reliably.

While it is relatively easy to measure temperature, it is a challenging task 
to control the temperature because of the high surface area to working volume 
ratio (S/V). The smaller the working volume, the higher is the S/V ratio, thus 
the faster is the heat transfer or heat loss from the reactors. Therefore, it is 
necessary to have a well-functioning temperature control loop in minibioreac-
tors to keep the temperature precisely at the desired setpoint.

Based on the type of minibioreactors, various methods have been applied 
to control temperature. For most of commercial minibioreactors, incubator or 
heated chamber are used to control temperature. However, for microliter 
reactors different approaches have been used to regulate temperature such as 
heating foil (34) or resistive heating (35) mounted on the base of microreactor. 
This can allow tight control of temperature. It is preferred to have an inte-
grated heater in microliter bioreactors for temperature control because of  
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the cost and flexibility of allowing parallel operation of individual bioreactors 
at different temperatures. 

5.5.2  Mixing

A bioreactor has good mixing properties if it meets the following criteria:  
(i) it maintains the homogeneity of fermentation broth, which means short 
mixing time, and (ii) it provides enough power for mass/heat transfer but does 
not generate high shear force to disturb microbial physiology. As the scale of 
the reactor decreases, it is more difficult to provide adequate mixing power 
because of a small Reynolds number, which is an indication of turbulence. 
Based on the type of minibioreactors as summarized in Reference (36), the 
mixing power is provided by (i) shaking in the case of microtiter plate and 
shake flask-type minibioreactors; (ii) stirring in the case of stirred minibioreac-
tors; and (iii) microfluidics in the case of microliter bioreactors embedded on 
chips (34).

Among the three mixing methods, the stirring method provides enough 
mixing power and support OTR as close as attainable in benchtop fermentors. 
The power consumption and kLa for different minibioreactors have been dis-
cussed in References (27) and (37).

5.5.3  DO

Oxygen is a critical variable to be monitored and controlled during aerobic 
fermentation process. For past decades, the DO level is measured mostly by 
Clark-type oxygen electrode which has serious drawbacks and limitations on 
the application for minibioreactor, such as its bulk size, signal to noise ratio 
and signal drift. For minibioreactor, the optical DO sensor (optode) based on 
the quenching of fluorescence by oxygen (38,39) is a better option and has 
been widely used in commercial minibioreactors and other microreactor pro-
totypes. The DO optode can be easily embedded into the minireactor as a 
disposable DO sensor. Another option of DO sensor used in minibioreactors 
is electrochemical sensor such as ultra-microelectrode array (UMEA), an 
amperometric sensor measuring DO based on the electrochemical reduction 
of oxygen. This kind of sensor can be fabricated small enough to fit into indi-
vidual well of a 96 microtiter plate (33).

The control of DO in minireactors is a critical task because of the difficulty 
of providing enough mixing power to promote mass transfer as described in 
Section 5.5.2. For shake flask type and microwell type minibioreactor, the 
shaking speed is the only way to control the OTR. However, for certain mil-
liliter bioreactor, aeration can be used to control the DO as in μ-24 microreac-
tor (Pall Corporation, Covina, CA). For stirred minibioreactors, varying the 
stirring speed can be much more effective than aeration to control DO. Stirring 
in combination with aeration systems such as gas-inducing impellers (40) can 
generate kLa as high as 1440/h, which even outperforms the kLa observed in 
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typical benchtop fermentors. However, for microliter bioreactors, direct gas 
sparing is not a feasible method to control DO because of concerns over liquid 
evaporation. So oxygen supply in microliter bioreactors is usually achieved by 
membrane aeration. One option is to supply oxygen by in situ electrolytic gas 
generation through a thin gas-permeable membrane mounted on the bottom 
of the microreactor (35). In this case, large bubbles will form, which is not 
preferable for microliter reactors. Another option is to push the gas stream 
into a gas chamber with a gas-permeable membrane mounted on the top of 
the microreactor to allow diffusion of oxygen from the gas phase into the 
liquid phase without formation of gas bubbles (34,41–43). Under good mixing 
conditions, a kLa as high as 500/h can be achieved with comparable fermenta-
tion performance as that in benchtop fermentors.

5.5.4  pH

The most commonly used pH sensors for minibioreactor are optical sensors 
(optodes) based on fluorescence (41–43) and solid-state ion-selective field-
effect transistor (ISFET) pH sensor chips (32,35). Optodes are cheap and easy 
to integrate into minibioreactors but have a relatively short lifetime and a 
narrow pH measurement range (pH 4–9). ISFET can operate at a wide pH 
range (pH 2–12) and high temperature (up to 120°C), but the ISFET sensor 
chips would need to be reused due to their high cost. Both types of sensors 
offer rapid and precise pH measurements over a long period of time.

While online monitoring of pH is reliable with commercially available pH 
sensors, pH control in minibioreactors is not well developed. The use of media 
with high pH buffering capacity is still the simplest way to control pH in mini-
bioreactors. However, it is not always practical, especially when the cell density 
rises and the pH buffering capacity cannot compensate for the pH changes. 
Moreover, certain microorganisms cannot be cultivated in media that have 
high ion strength. Another option to control pH is by injecting acid or base 
intermittently into the minibioreactors (34,44). For milliliter bioreactors, 
adding a pH agent is not a major concern as long as the mixing is adequate. 
But for microliter reactors, pH control cannot be stable by this method. 
Another alternative approach to controlling pH is by dosing of CO2 gas and 
NH3 vapor (45). This approach has been implemented in commercial minibio-
reactors such as μ-24 reactors from Pall Corporation.

5.5.5  Cell Concentration

Due to volume limitations, it is impractical to take many samples from mini-
bioreactors for cell concentration measurement. In minibioreactors, the cell 
concentration is normally measured in optical density (OD) by optical probes. 
Light from light-emitting diodes (LED) is guided into the reactor via optical 
fibers, passing through the vessel, and then received by a photodetector. Many 
minibioreactors have implemented this technology for OD measurement. For 
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milliliter bioreactors, a microtiter plate reader can be used to measure OD 
at-line handled by a liquid handling robot (40).

OD measurement can only provide an estimate of total cell concentration 
without distinguishing viable cells from dead cells. Using impedance spectros-
copy is an alternative way of measuring living cells by measuring the capaci-
tance of cells, which is only detectable when the cell membrane is intact. This 
technology has been successfully integrated into a sensor array for a micro-
bioreactor (32).

5.5.6  Feeding

Because many industrial fermentation processes are fed-batch fermentations, 
it is reasonable to evaluate strain performance and develop initial fermentation 
process in fed-batch mode. Various control strategies have been developed for 
benchtop fermentors as discussed in Reference (18). But feeding substrate in 
a controlled mode into a minibioreactor is a very challenging task due to the 
scale and the type of minibioreactors, especially for shaken minibioreactors.

One option to feed substrates in shaken minibioreactors is to use an enzy-
matic glucose auto-delivery system in which starch is digested by glucoamylase 
to release glucose (46). The commercial product of glucose auto-delivery 
system is available as EnBase, marketed by BioSilta (Oulu, Finland). This 
technology has been successfully used in shake flasks and microwells to achieve 
a relatively high cell density (OD600 > 30) and high protein expression in E. coli. 
It has been used to screen a protein expression library in fed-batch mode in 
microtiter plates and shake flasks to identify the best strain and to determine 
its optimal specific growth rate for scale-up in benchtop fermentors (47,48).

However, the glucose auto-delivery system has certain limitations for strain 
evaluation: (i) The amount of enzyme addition needs to be predetermined to 
ensure high cell growth rates under glucose-limited conditions. For high-
throughput strain screening, this is not practical. (ii) Glucose is not always the 
carbon source of interest. In these cases, a more general method is preferable 
for substrate delivery. One example is to use a liquid handling system to deliver 
feed solution based on pH (40,49). For microliter bioreactors embedded on 
chips, it has been reported that a feeding system is embedded in the microreac-
tor for a chemostat continuous culture (43).

5.6  COMMERCIAL HIGH-THROUGHPUT  
FERMENTATION SYSTEMS

While different types of minibioreactors have been reported, most of them  
are still in the prototype stage. Only a few have been commercialized and  
have the capability for high-throughput fermentation. For most research labo-
ratories, it is preferable to consider using commercially available systems for 
strain evaluation and process development. In this section, the commercial 
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high-throughput fermentation system is reviewed to provide guidelines for 
system selection.

5.6.1  Shaken Minibioreactors

Shaken minibioreactors are most widely used in high-throughput fermenta-
tion due to its high reliability, small footprint, rapid prototyping, and low cost. 
Use of microtiter plates as minibioreactors has been reviewed for their capa-
bility for oxygen transfer as a function of different well sizes and shapes (22). 
Integrating new DO and pH sensors into microtiter plates (50) and shake 
flasks (51) has greatly extended the applications of microtiter plates and shake 
flasks for strain evaluation and process development.

5.6.1.1  Disposable Shake Flask/Microtiter Plate with Integrated DO and 
pH Sensors  Shake flasks are still the most widely used tool for initial strain 
screening and evaluation in majority of laboratories because of it is low-cost and 
easy to set up. By integrating DO and pH optical sensor spots into disposable 
shake flask as sold by PreSens (Regensburg, Germany), more information for 
pH and DO profiles during the culturing process can be obtained, thus making 
shake flasks economical high-throughput minibioreactors. These sensors are 
precalibrated and ready to use. The shake flasks are mounted on a shake flask 
reader that can monitor DO and pH online for up to nine shake flasks and log 
the data wirelessly into a PC (52). PreSens also offers 6-well, 24-well, and 96-well 
microwell plates integrated with DO or pH sensors called “SensorDishes.” 
These disposable shake flasks and microwell plates offer a quick and cheap 
method of establishing simple high-throughput minibioreactor systems with 
reliable pH and DO online measurement. Scientific Industries (Bohemia, NY) 
also sells similar optical DO and pH sensors (named CellPhase) to be attached 
to any transparent flasks and vessels for real-time monitoring. The applications 
include media optimization and cell growth characterization, and so on.

5.6.1.2  Bioscreen C  Bioscreen C was developed by the Finnish company 
Labsystems Oy (now Oy Growth Curves, Helsinki) in the mid-1980s initially 
for testing mutagenity/carcinogenity. It soon became a very useful tool for 
automating routine microbiology and was optimized for microbiology growth 
experiments. Bioscreen C is a computer-controlled incubator/reader/shaker 
that can run 200 samples with OD measurement within wave lengths ranging 
from 405to 600 nm. It is the first high-throughput microreactor with in-line 
turbidity measurement. Over the past 20 years, Bioscreen C has been used in 
many areas involving microbial growth curve measurement. Using Bioscreen 
C for media and growth condition optimization has been reported (53,54). 
However, the lack of measurement of other important fermentation param-
eters (e.g., pH and DO) has limited the application of Bioscreen C, which may 
finally be replaced by similar products but with more sensors integrated into 
the design.
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5.6.1.3  BioLector  The BioLector, from DASGIP AG (Jülich, Germany), is 
a system similar to Bioscreen but with optical pH and DO sensors integrated 
into 48-well and 96-well plates. Its optimized flower-shaped microwell can 
offer a kLa as high as 500/h. Because of the capability of online monitoring of 
pH, DO, optical cell density, and other products that can be measured by fluo-
rescence such as green fluorescent protein (GFP) protein, BioLector is a 
powerful benchtop high-throughput fermentation system for strain screening, 
media optimization, and process development. Due to the use of standard 
format of microtiter plate, it can be integrated with liquid handling systems to 
add more capabilities such as pH control, nutrient feeding, and inducer addi-
tion (49).

5.6.1.4  μ-24 Bioreactor  The μ-24 bioreactor, originally developed by 
Microreactor Technologies Inc (now a division of Pall Corporation), is a high-
throughput fermentation system with real-time monitoring and control of 
temperature, pH, and DO. The diagram of each well with temperature, pH, 
and DO control can be found in Reference (55). The reactor cassettes are 
conforming to the SBS standard for 24-well culture plates with working volume 
of 1–7 mL. Each well can be controlled individually for temperature, pH, and 
DO with four control loops: temperature control loop by thermo conductor, 
DO control loop by air/oxygen aeration, two pH control loops with CO2 as 
acid agent, and NH3 as base agent. The detailed technologies for pH and DO 
sensors and controller are discussed in Reference (55). The μ-24 bioreactor 
cultivations for Saccharomyces cerevisiae demonstrated comparable growth to 
a 20-L stirred tank bioreactor fermentation in terms of offline metabolite and 
biomass analyses. High inter-well reproducibility was observed for process 
parameters such as online temperature, pH, and DO (45). A case study data 
on the use of μ-24 bioreactor for rapid process development can be found in 
Section 5.8.

5.6.2  Stirred Minibioreactor

The stirred minibioreactors use mechanic or magnetic stirring to provide 
mixing power and promote mass transfer rate. The oxygen transfer coefficient 
kLa in stirred minibioreactors can be close to that in benchtop fermentors, 
thus making the stirred minibioreactors a good replacement for benchtop 
fermentors in terms of mass transfer. In addition, the stirred minibioreactors 
can be used in applications where the viscosity of the medium is relatively 
high, such as high solid content fermentation. However, due to the cost of 
manufacturing, there are not that many commercial stirred minibioreactors 
on the market.

5.6.2.1  CellStation HTBR  The CellStation HTBR from Fluorometrix 
(Stow, MA) is the first commercial high-throughput stirred minibioreactor. 
Detailed information on the product can be found in Reference (56). The 
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system consists of 12 mini-stirred tank bioreactors (working volume of approx-
imately 30 mL) equipped with disposable DO and pH optical sensing patches, 
a detector board, a gas distributor, and a turntable, which also serves as a water 
bath. All the bioreactors are positioned on the turntable, which is driven by 
a stepper motor underneath it. Agitation is provided by two 6 mm × 18 mm 
paddles powered by the agitation motors and can be adjusted continuously 
from 10 to 1000 rpm. Each bioreactor has a pH optode patch and a DO optode 
patch on the bottom for at-line measurement. Temperature is controlled by 
circulating water between a temperature-controlled circulator and the turn-
table. Gas mixtures sparging into each vessel are obtained by blending differ-
ent gases through two flow meters. Process parameters in one bioreactor are 
measured one at a time (56). This system has been used in cell culture applica-
tions and the performance is comparable to that in disposable bag bioreactors 
(57). However, this product line was discontinued in late 2011 after Fluorome-
trix was acquired by Scientific Industries. A new version of high-throughput 
stirred minibioreactor system called BioGenie TriStation bioreactor has been 
developed by Scientific Industries.

5.6.2.2  2mag Bioreactor 48  Another stirred minibioreactor launched by 
2mag AG (Munich, Germany) is the 48-parallel milliliter bioreactor block 
originally developed by Professor Weuster-Botz at Technical University of 
Munich. Each baffled bioreactor has a nominal volume of 8–15 mL equipped 
with a gas-inducing impeller containing permanent magnet. The detailed view 
of one bioreactor with gas-inducing impeller mounted in the bioreactor block 
is depicted in Reference (58). The gas-inducing impeller rotates freely on a 
hollow shaft, which is mounted in the bioreactor block. Due to the rotation of 
the impeller, the medium is sucked in from the bottom and sterile gas is 
sucked in via the hollow shaft from the headspace of each bioreactor (40). 
The headspace is flushed continuously with sterile gas. Another type of impel-
ler is also available for cultivation of mycelium-forming microorganisms as 
described in Reference (59). The bioreactor block fits a maximum of 48 
stirred tank reactors, which are arranged in six rows each containing eight 
bioreactors. The bioreactor block is equipped with an electromagnetic multi 
drive, two heat exchangers (the first for temperature control of the bioreac-
tors and the second for exhaust gas cooling) and a sterile gas supply. The gas 
distributor assures sterile gas distribution into all of the 48 stirred tank reac-
tors and enables individual outlets for exhaust gas. The exhaust gas outlets at 
the same time serve as individual sampling ports. Optical fluorescent sensors 
for pH and DO are integrated in the bottom of each bioreactor, allowing 
online monitoring and control of these important state variables (44). The 
bioreactor block has been integrated into an automated experimental setup 
with a liquid handling system (40). The liquid handler can be used to auto-
matically take samples as well as for realizing fed-batch processes and con-
trolling pH individually for every single reactor. An additional microtiter 
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plate photometer allows for at-line analysis of OD, substrate and/or product 
concentrations, and so on. The process control software DASGIP fed-batch 
XP can store and present 3264 fermentation variables and control 144 set-
point profiles.

A significant advantage of this high-throughput minibioreactors is the high 
oxygen transfer capability. The maximal kLa for the 48 stirred tanks with gas 
inducing impellers can be as high as 1400/h (40). The fermentation perfor-
mance done in this 48-bioreactor system using different microorganisms such 
as E. coli (40), Bacillus subtilis (60,61), and Streptomyces tendae (59) is consis-
tent with the data obtained from liter-scale benchtop fermentors.

5.6.3  Parallel Benchtop Fermentation System

As discussed in Sections 5.6.1 and 5.6.2, the advances in the technology of 
minibioreactor have made them popular in high-throughput fermentation 
development programs. But most commercially available minibioreactors still 
cannot replace the benchtop fermentation system in terms of reliability, flex-
ibility, controllability, and scale-up/scale-down capability. Thus, commercial 
parallel benchtop fermentation systems can be another option used for high-
throughput fermentation for process development with all the capabilities of 
a regular benchtop fermentor. In all commercial parallel benchtop fermenta-
tion systems, since each fermentor is independently controlled, each vessel can 
be used as a regular benchtop fermentor.

The BIOSTAT® Qplus from Sartorius is designed for parallel operation 
with high-throughput capability. The BIOSTAT® Qplus has the capability to 
control fully independently up to 12 culture vessels (0.5–1 L) with minimal 
manual operation. The system is equipped with powerful supervisory process 
control software for data acquisition, visualization, advanced process control, 
and recipe function.

Similar to BIOSTAT® Qplus, the DASGIP Parallel Bioreactor System is 
designed for parallel and controlled fermentation. Individual control of tem-
perature, agitation, pH, and DO in up to 16 vessels in parallel allows DASGIP 
fermentation systems to accommodate most complex microbiology require-
ments. Flexible working volumes from 60 mL to 3 L provide a broad range of 
laboratory-scale experiment possibilities under aerobic and anaerobic condi-
tions. By using the DASGIP Multipump Module for individual culture supple-
mentation and substrate feed, batch and fed-batch operation is feasible. Using 
the DASGIP Gas Mixing Module, mass-flow-controlled individual blending of 
air, nitrogen, oxygen, and carbon dioxide for each vessel is precise and intui-
tive. The advantage of the DASGIP parallel bioreactor system is that most of 
the parts are modularized, which provides great flexibility for building custom-
ized parallel fermentation systems.

The GRETA multiple fermentation system, made by Belach Bioteknik  
AB (Stockholm, Sweden), was originally designed to produce recombinant 
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proteins for structural genomics (62). The GRETA multifermenter system 
consists of bioreactor units, each encompassing six parallel fermentors. Up to 
four bioreactor units (24 parallel fermentors) can be integrated into one 
GRETA system. Each fermentor is built using stainless steel with either 0.5 
or 1 L maximum working volume and equipped with a magnetic coupled 
bottom stirrer with combined impeller/sparger, sterile air filter, and an O2/N2/
air gas-mixing system. A single cleaning-in-place (CIP) station supports the 
1–4 bioreactor units of a GRETA system. All parts in contact with media or 
product can be SIP. The system is also equipped with pneumatic syringes for 
automatic induction. OD is measured in each reactor by a built-in photometer. 
Calibration of sensors is performed in parallel and in a semi-automated mode 
to minimize setup time. Compared with other benchtop parallel fermentation 
systems, the GRETA system mostly resembles industrial SIP fermentation 
system with many automation features to minimize manual operation.  
This system is so far the best commercially available high-throughput fermen-
tation system at liter scale for fermentation process development and optimi-
zation. The GRETA system has been used for DOE to develop and optimize 
the fermentation process for antibody production using E. coli (63).

5.7  TRENDS IN DEVELOPMENT OF HIGH THE GREATA-
THROUGHPUT MINIBIOREACTOR SYSTEM

When developing or selecting a high-throughput fermentation system, it is 
better to integrate the fermentation system with other high-throughput unit 
operations such as strain screening, sample analysis, and product recovery. This 
kind of integrated high-throughput bioprocess can eliminate/minimize bottle-
necks and improve productivity significantly (64). The microwell-type minibio-
reactors as discussed in Section 5.6.1 are a good fit for this framework. That 
is why currently most of commercial minibioreactors, except CellStation 
HTBR and 2mag bioreactor 48, are based on microwell-type reactors and can 
be easily integrated into the high-throughput framework by combining with 
liquid handling robots and microtiter plate readers (44,49).

By comparing the shaken and stirred minibioreactors, the stirred minibio-
reactors are closer to the benchtop fermentors in terms of mass transfer, 
mixing, process control, and sampling, while the shaken microbioreactors are 
more cost-effective. The 48-well multiple milliliter fermentors discussed in 
Section 5.6.2.2 is a comprehensive approach as it combined the advantages of 
shaken minibioreactors and stirred minibioreactors and has been applied for 
very complex fermentation processes such as filament fungi fermentation. If 
more feeding and control strategies can be implemented in this system, it will 
be almost indistinguishable from the regular benchtop fermentors.

On the other hand, in the case of microfluidic microbioreactor devices, the 
lack of cross-platform standardization and automation integration prevents 
them from being widely accepted by industrial bioprocess groups (64). So  



Case Studies of Fermentation Process Development � 157

far all reports about microbioreactors based on microfluidics are laboratory 
prototypes. No commercial product is available. However, this type of mini-
bioreactor can still find good application niches for fermentation process 
development. For example, the 150 µL microbioreactor reported in Reference 
(43) is equipped with a feed pump with pH, DO, and OD sensors embedded. 
This microbioreactor can be set up to perform a continuous chemostat culture, 
which cannot be implemented in current microwell minibioreactors. Chemo-
stat cultivation of microorganisms offers unique opportunities for experimen-
tal manipulation of individual environmental parameter at a fixed, controllable 
specific growth rate. The chemostat method has been used as a tool to provide 
reproducible data for systematic physiology studies (65). However, it is labor-
consuming to set up and maintain a chemostat in benchtop fermentors because 
of the long periods required to reach and maintain steady state after pertur
bation of a single parameter. The microbioreactor on the chip can be an  
excellent tool for performing chemostat continuous culture effectively in high-
throughput formats to obtain intrinsic information regarding cell metabolism 
at various cultivation conditions.

5.8  CASE STUDIES OF FERMENTATION PROCESS  
DEVELOPMENT AND OPTIMIZATION USING  
HIGH-THROUGHPUT MINIBIOREACTORS

Due to the above-described advancements in the development of minibioreac-
tors and parallel fermentation systems, now it is feasible for an industrial 
microbiology or biotechnology laboratory to choose the right combination of 
high-throughput fermentation systems for strain screening/evaluation, process 
development, and process scale-up/scale-down as illustrated in Figure 5.1B. 
For example, a set of minibioreactors can be used for strain screening, media 
optimization, and initial process development, and then the lead candidate 
strains can be moved forward for process development and optimization, 
scale-up/scale down studies in a set of parallel benchtop fermentation systems. 
This approach will accelerate process development activities in a high-
throughput format while reducing the capital cost and increasing the probabil-
ity of successful scale-up. In addition, using auto-substrate release technology 
described in Section 5.5.6, all the high-throughput screenings carried out in 
minibioreactors can be performed in fed-batch mode, which mimics the envi-
ronment of high cell density culture more effectively (47).

Comparison of fermentation performance between minibioreactors and 
benchtop fermentors has been reported extensively (40,55,63,64,66,67). 
However, use of minibioreactors in the framework of high-throughput process 
development has not been reported frequently. Forty-eight parallel minibio-
reactor systems have been used to establish a scale-down tool for riboflavin 
fed-batch fermentation using B. subtilis (61). Subsequently this minibioreactor 
system has been successfully applied to screen or discriminate four different 
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riboflavin-producing B. subtilis strains. The results are validated by the data 
from liter-scale benchtop fermentors (60). Another example is reported on 
direct scale-up from a microwell minibioreactor to a 75-L pilot fermentor for 
E. coli recombinant protein expression. The scale-up is based on maintaining 
a similar level of oxygen transfer coefficient kLa at each scale. It was found that 
at high kLa level, the fermentation performance is consistent between the 
minibioreactor and the pilot fermentor (68).

5.8.1  Case Study 1: Protein Production

The ability to produce high-quality protein products in a timely and cost-
efficient manner is of particular value throughout the discovery to commer-
cialization stages of protein products useful in therapeutic, vaccine, and other 
industrial processes. To this effect, Pfenex Inc. (San Diego, CA) has developed 
a suite of toolboxes integrating strain, analytics, fermentation, and downstream 
process development for a Pseudomonas fluorescens-based expression plat-
form. Seamless development of robust protein expression strains results from 
combining off-the-shelf toolboxes of expression plasmids that utilize a wide 
range of gene expression strategies with host strains of diverse phenotypes 
that are screened by high-throughput analytical methods. Subsequent simul-
taneous strain and far-reaching fermentation evaluation in mini and parallel 
bioreactor systems frequently results in high levels of soluble, properly folded 
protein production, which can be predictably scaled. These upstream platforms 
are coupled with high-throughput purification development involving rapid 
resin and process screens to ensure rapid development of production strain 
and process.

The fermentation evaluation process at Pfenex involves evaluating several 
strain candidates identified by the 96-well culture screen in multiple fermenta-
tion conditions in μ-24 minibioreactors in order to assess the potential of these 
strains to eventually perform in a scalable production process. Significant 
effort was made to develop a cultivation process in the minibioreactor to be 
predictable for a scalable high cell density fed-batch production process, with 
pH, temperature and DO monitoring and control. As demonstrated in this 
case study, the μ-24 minibioreactor has the capabilities to play a key role in 
expediting strain and fermentation development.

In this case study, the contributions of a mini and a parallel bioreactor 
system in the context of a fermentation development project are illustrated. 
A production strain isolate for a protein vaccine candidate selected at the 
96-well-scale microtiter plate was evaluated under multiple fermentation con-
ditions as part of a statistical design of experiments in the μ-24 minibioreactor. 
The various fermentations resulted in a 12-fold range of expression levels, with 
the identification of an optimum set of conditions, #2, for a further scale-up 
(Figure 5.4). Statistical model analysis of the data generated from this experi-
ment highlights the effects of the different process variables and helps define 
the design spaces to predict the optimum ranges of the control variables  
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and interactions between them (Figure 5.5). The information generated is 
particularly useful during subsequent process development and further defini-
tion of the ultimate production process.

The best fermentation conditions identified in the μ-24 bioreactor (#2) was 
subsequently confirmed to be scalable to the 20-L stainless steel conventional 
bioreactor scale in terms of cell growth, product titer, and productivity (Figure 
5.6). The fact that high cell densities of greater than 200 OD can be obtained 
using the μ-24 bioreactor illustrates the superior oxygen and heat transfer 
capabilities of the minibioreactor system. In this particular case, it did require 
manual feeding of the carbon source to sustain the high cell density culture  
in the μ-24 bioreactor, but this operation should be automatable with liquid 

FIGURE 5.4.  (A) Gel-like image of the sodium dodecyl sulfate–capillary electropho-
resis (SDS-CGE) analysis of culture broth samples from the 24 fermentations using 
the 17 different fermentation conditions as part of a factorial experimental design. 
Molecular weight markers (Mw) are indicated by sizes in kDa. The numbers indicate 
the experimental number. The arrow points to the target protein expressed. (B) A plot 
of the concentrations of target protein expressed as determined by SDS-CGE in the 
17 fermentation conditions tested. Repeat experiments are indicated by multiple dots. 
The star indicates fermentation with the best expression. 
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handling systems. Table 5.2 illustrates how the process conditions identified in 
the μ-24 bioreactor enhanced expression level by approximately 15-fold over 
that in the 96-well culture. This enhancement was due in part to a 4.5-fold 
increase in cell density as a result of carbon feeding, better oxygen and  
pH control, and a 3.4-fold higher specific productivity as a result of a more 
optimum set of fermentation conditions. These contributions to the overall 
productivity were maintained during scale-up to the 20-L bioreactor.

5.8.2  Case Study 2: Antibody Fragment Expression

Several lead Pseudomonas fluorescens strains expressing an antibody frag-
ment were identified to perform comparably to each other at the 96-well 
microtiter plate scale. When they were evaluated in multiple fermentations as 
part of a multivariate experimental design in the μ-24 bioreactor, overall 
expression levels were improved and differentiations between the strains 
became obvious. In a number of fermentations, the relative soluble titers of 
strains #2 and #4 were significantly higher than the remaining strains (Figure 
5.7A). Nevertheless, as standard protocol, three lead strains in up to four lead 
fermentation conditions, a total of 12 fermentations were evaluated in a fully 
scalable high cell density fed-batch protocol in the 2-L parallel bioreactors.  

FIGURE 5.5.  Plots produced by JMP statistical software (SAS Institute, Cary, NC) to 
highlight the main effects of the different fermentation parameters (factor) investi-
gated (A) and to map the optimum ranges of the different factors and their interaction 
with each other (B).
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FIGURE 5.6.  Growth curves (A) and productivity curves (B) of cultures grown in 
μ-24 minibioreactor and 20 L conventional stainless steel bioreactors to demonstrate 
scalability of the small scale process. 
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TABLE 5.2.  Comparison of Cell Densities (OD), Volumetric Product 
Concentration, and Specific Productivities of Cultures Grown in a 96-Well Deep 
Well Microtiter Plate, μ-24 Minibioreactor, and 20-L Conventional Stainless Steel 
Bioreactors to Demonstrate Scalability

Fermentation Scale 
(Working Volume) Final OD

Product 
Concentration (g/L)

Specific Productivity 
(mg/L/OD)

96-well (0.5 mL) 50 0.8 16
μ-24 (4 mL) 220 12 55
20 L bioreactor (10 L) 230 12 52
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FIGURE 5.7.  (A) Comparison of relative soluble product titers of cultures grown in 
a single set of fermentation conditions in a 96-well deep well microtiter plate versus 
those grown in multiple fermentation conditions in a μ-24 minibioreactor. (B) Relative 
soluble product titers of cultures grown in a μ-24 minibioreactor and 2-L conventional 
bioreactors to demonstrate the scalability of the small-scale process. The different 
fermentation conditions (3, 4, 6, 7, 8, and 9) and strains (#1, #2, and #4) are as 
specified.
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In this evaluation, the scalability of six of the fermentations was confirmed at 
the 2-L scale (Figure 5.7B). However, two fermentations, strain #1 in fermenta-
tion condition #4 and strain #2 in fermentation condition #8, showed surprising 
increases in expression at the 2-L scale. The exact cause of this is not known, 
but a possible explanation is that some unknown fermentation parameter that 
had a significant effect on expression of this particular protein in these par-
ticular strains was controlled better at the 2 L. Nevertheless, strains #1 and #2 
have subsequently been confirmed to be lead strains for expression of this 
particular antibody fragment in further studies.

These two case studies illustrate the range of results that one can encounter 
in the use of μ-24 bioreactors during simultaneous strain and fermentation 
evaluation. In one case, the scale-up of a strain and process from the μ-24 
bioreactor to the 20-L scale bioreactor was successful and straightforward. In 
the second case, the scale-up was also successful but the results were not fully 
expected. These studies emphasize that with enough redundancies or contin-
gencies built into the strain and fermentation development process, that is by 
evaluating more than one lead strain and one set of fermentation conditions, 
a high degree of success can be assured.

5.9  CONCLUSIONS AND THE PATH FORWARD

Current commercially available minibioreactors and parallel small-scale fer-
mentation systems have enabled multidisciplinary metabolic engineering 
teams to quickly establish a fermentation research laboratory for high-
throughput strain evaluation and rapid fermentation process development and 
optimization. Because of the small-scale and the high-throughput capability, 
the development cost and time can be reduced dramatically in a typical strain 
engineering program. Due to the availability of process monitoring and control 
capabilities, the DOE-type experiments for medium and growth condition 
optimization can be carried out under well-controlled and monitored condi-
tions in minibioreactors. The parallel small-scale fermentors can be used to 
further validate fermentation performance, develop a scalable process, and 
challenge the process under scale-down conditions for identifying the opera-
tional windows for robustness. The advantage of this approach is that at the 
end of a scouting optimization program, a set of strains may be selected to fit 
different conditions and constraints at large scale. For example, depending on 
the limitation of OTR for different large-scale vessels, different strains instead 
of one can be picked up to give the best performance under the different OTR 
capacity of large-scale fermentors.

Furthermore, the mathematical model-based process development and 
optimization has a great advantage over traditional “trial and error” approaches. 
However, large amounts of reproducible historical fermentation data are 
needed to identify and validate the mathematical models before they can be 
used to predict and optimize the processes. The conventional high-throughput 
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methods using regular microtiter plates or shake flasks can provide only end-
point data, which is not sufficient to set up the models; thus, the models have 
to be identified using fully instrumented benchtop fermentors to generate 
dynamic process data sets. Nevertheless, using minibioreactors in strain evalu-
ation, medium and growth condition optimization will generate massive repro-
ducible dynamic data sets under well-controlled conditions for model 
identification and validation; thus, the model-based process optimization can 
now be implemented at an earlier stage of process development without 
depending on fermentations at benchtop scales. This enables evaluation of 
performance in benchtop fermentors at the optimal condition for each specific 
strain instead of using one standard set of conditions to evaluate all strains. 
Following characterization at the benchtop scale, the best candidate with its 
optimal fermentation conditions can be transferred for a further scale-up. As 
more and more sensors are integrated into minibioreactors, they can provide 
more dynamic process information to match the information quantity and 
quality typically obtained from benchtop fermentors, thus making it practical 
to develop strains and process more effectively.
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6
THE CLAVULANIC ACID STRAIN 
IMPROVEMENT PROGRAM AT 
DSM ANTI-INFECTIVES

Bert Koekman and Marcus Hans

6.0  INTRODUCTION

Clavulanic acid is a naturally occurring antibiotic produced by Streptomyces 
clavuligerus. It has a weak antibiotic activity, but it is clinically important 
because it is a potent inhibitor of many β-lactamases. Due to this ability, it is 
used in combination with other β-lactam antibiotics to combat infections 
caused by β-lactamase-producing bacteria.

Its discovery, as a result from a screening program for β-lactamase inhibi-
tors carried out at the Beecham Laboratories in England, was first reported 
in 1976 (1). One of the microbial cultures that gave a positive response in this 
screen was S. clavuligerus ATCC 27064 (syn. NRRL 3585), isolated from a 
South American soil sample (2), and the active component in the culture fil-
trate was shown to be a novel β-lactam, different from the other cephalospo-
rins (cephamycin C) produced by S. clavuligerus.

To develop a commercially viable process, departing from a wild-type 
isolate producing only a small amount of therapeutically active substance 
requires substantial efforts in terms of optimization of cultivation conditions, 
up-scaling these conditions from shake flask format to large-scale stirred tank 
reactors, and modifying the genetic make-up of the strain to not only increase 
its production potential but also to improve other complex uncharacterized 
desirable fermentation phenotypes such as decreased viscosity and improved 
growth behavior. As will be set forth in the sections to follow, the interaction 
between fermentation and genetics disciplines is vital to successful process 
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FIGURE 6.1.  Biosynthetic pathway of clavulanic acid and clavams. Modified from 
Liras et al. (3), figure 3, with kind permission from Springer Science + Business Media. 
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development of strains bearing multiple complex traits, one of the challenges 
being the translation of large-scale process conditions to small-scale, high-
throughput strain selection conditions and vice versa (see Chapter 5).

6.1  THE BIOSYNTHETIC PATHWAY TO CLAVULANIC ACID

Three gene clusters for clavulanic acid/clavam biosynthesis have been identi-
fied in S. clavuligerus: the clavulanic acid cluster, the clavam gene cluster, and 
a third cluster, the paralogous gene cluster, containing duplications from the 
first and second clusters. The biosynthetic pathway is shown in Figure 6.1, and 
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the positioning of this pathway in the metabolic network providing the C5 
precursor (arginine) and the C3 precursor (deriving from glycerol) is shown 
in Figure 6.2.

6.2  THE STRATEGY FOR IMPROVEMENT OF MULTIPLE  
COMPLEX PHENOTYPES

In 1992, Gist-brocades n.v., a fermentation industry based in Delft, the Neth-
erlands, already having extensive activities in the production of β-lactam 

FIGURE 6.2.  The position of clavulanic acid biosynthesis in central metabolism. After 
Bushell et al. (4). Reprinted from Enzyme Microb. Technol. 39, Michael E. Bushell, 
Samantha Kirk, Hong-Juan Zhao, Claudio Avignone-Rossa, Manipulation of the physi-
ology of clavulanic acid biosynthesis with the aid of metabolic flux analysis, pp. 149–157 
(2006), with permission from Elsevier. ARG, arginine; ORN, ornithine; THR, threonine; 
ASP, aspartic acid; ASN, asparagine; PEP, phosphoenolpyruvate; TCA, tricarboxylic 
acid.
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antibiotics, decided to develop its own production process for clavulanic acid. 
The strain development part of the program was ordered out on an exclusive 
basis with Panlabs, Inc. at its Taipei facility. Panlabs had already conducted 
preliminary strain improvement activities in 1991, starting with the culture 
collection strain, ATCC 27064, and was to resume this program for the first 
six years of the project (1993–1999).

At the time, classical strain improvement (CSI) (see Chapter 1) was the 
sole option to tackle the program, since knowledge on the pathway was scarce, 
biosynthetic genes were not cloned, and gene manipulation techniques were 
not available for S. clavuligerus. CSI does not require a priori knowledge 
referred to above, as it essentially introduces genetic variation in a random 
fashion by mutation, the outcome being determined by the selection applied.

In 1999, one year after the merging of Gist-brocades with DSM (Dutch 
State Mines, based in Heerlen, the Netherlands), the research agreement with 
Panlabs was discontinued, and further strain improvement was carried out 
in-house with DSM for the years to follow. The motivation underlying this 
decision was the closer interaction between the genetics and fermentation 
disciplines involved, which was deemed critical for the success of the project 
as it entered into a mature phase, necessitating scale-up of multiple complex 
phenotypes, often antagonistic to each other.

The last cycle of CSI was finalized in 2006, after which the focus of the 
project switched to genomics (see Chapter 3). In 2009, the company decided 
to divest its activities on the clavulanic acid market, and the research program 
was terminated.

6.3  RESULTS AND DISCUSSION

6.3.1  The Panlabs Years—Results from 1991 to 1999

In the initial years of the strain improvement program, the selection of supe-
rior mutants largely relied on so-called rational selections (see Chapter 1). 
Using this approach, a sub-population that is anticipated to be enriched for 
mutants with the phenotype of real interest, viz. improved productivity, is 
preselected from the mutant population to be used as input for the screen. The 
aim is to reduce the number of mutants to be examined by a few orders of 
magnitude compared with that of a brute-force random productivity screen. 
Of course, this will only produce a meaningful result when the rationale under-
lying the selection of the phenotype(s) in question is valid. For a review on 
the methodology, see, for example, References (5,6).

During the course of the strain improvement program, the following classes 
of rational selections were employed by Panlabs:

1.	 Selections aimed at increased product precursor availability: resistance 
to toxic analogues of arginine and related amino acids (ornithine, glu-
tamic acid); resistance to inhibitors of glycerol uptake/utilization.
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2.	 Selections aimed at relief of repression by C, N, or P: resistance to toxic 
analogues of glucose, ammonium, or phosphate; good clavulanic acid 
productivity in the presence of excess phosphate.

3.	 Detoxification of heavy metals that are sequestered by β-lactams: resis-
tance to copper, nickel.

4.	 Resistance to the end product, clavulanic acid, itself.
5.	 Osmotolerance: resistance to high glycerol concentrations.
6.	 Resistance to agents not directly related to clavulanic acid biosynthesis, 

for example, protein synthesis inhibitors.
7.	 Selection of mutants with altered morphology on solid media.
8.	 Bioassay: selection of colonies producing large growth inhibition zones 

on a lawn of sensitive indicator bacteria (Bacillus licheniformis).

The specific selections that were used are listed in Table 6.1. The selections 
that were successful also appear in the Tables 6.2 and 6.4 of the strain lineage. 
Summarizing, all types of rationales, with the exception of (3), (4), and (7) 
have, at any time, yielded useful mutants during the course of the program.

Shortly after the start of the program, the strain lineage split into two 
branches, indicated by left and right (Figure 6.3). By far the most strains that 
have been in production derive from the right branch. Of the left branch, DS 
30455 (culture #PF-19-41) was the sole strain to be used on production scale. 
However, because of its initially more favorable viscosity properties, this line 
was pursued for quite some time in parallel with the right branch, until it was 
abandoned in 2002 (results not shown in the table). In order to harvest the 
potential of the left branch after all (in the development of which a consider-
able amount of work had been invested for some years), an attempt was made 
to engineer its favorable properties into the right (production) branch. 
However, efforts to merge both lines by protoplast fusion (see Chapters 1 and 
4) remained unsuccessful. The inability to easily migrate a complex phenotype 
from one strain lineage to another is a real limitation for the widespread 
applicability of CSI in engineering complex phenotypes.

An overview of the strain lineage is shown in Figure 6.3. A detailed list of 
the strains selected until the strain improvement program moved to DSM is 
shown in Table 6.2. During the course of the strain improvement program, 
various mutagens were used to induce genetic variation (e.g., ultraviolet irra-
diation, alkylating agents, and nitrous acid). However, from the table of the 
strain lineage it becomes apparent that virtually all improved mutants were 
selected from populations obtained by mutagenesis with alkylating agents 
(mostly NTG, occasionally EMS, see Chapter 1), that is, mutagens independent 
of the SOS-repair pathway. It is suspected that this pathway might be absent 
in S. clavuligerus.

The product titer development of the right branch in shake flask from the 
start of the program until 1996 is shown in the graph in Figure 6.4. The graph 
shows that productivity increases tend to become smaller with the progression 
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of the program, as is commonly experienced in classical strain improvement 
programs. The selection conditions used in shake flasks were established by 
down-scaling the production conditions in so far as possible. Thus, in the first 
years of the program, selections were carried out in complex media, derived 
from the recipe used on production scale. Many different variants have been 
in use, due to frequent rebalancing of the recipe in order to make the most of 
the potential of newly selected strains, but the important medium components 
shared in common are soy flour and casein hydrolysate as nitrogen sources, 
and glycerol and sometimes maltodextrins as carbon source, as S. clavuligerus 
is unable to grow on glucose. Initially, phosphate was used as buffer, but this 
was largely replaced by N-morpholino-propanesulfonic acid (MOPS) to 
prevent phosphate repression. During the course of the program, there has 

TABLE 6.1.  Selective Agents Employed in Rational Selections

Class 1A—C5 precursor availability
  α-amino-δ-hydroxyvaleric acid Ornithine analogue
  Arginine hydroxamate Arginine analogue
  Canaline Ornithine analogue
  Canavanine Arginine analogue
  Homo-arginine Arginine analogue
  (DL)-lysine Arginine analogue
  Methionine sulfoxide Glutamate (ornithine precursor) analogue
  Methionine sulfoximine Glutamate (ornithine precursor) analogue
  α-methylornithine Ornithine analogue

Class 1B—C3 precursor availability
  L-cysteine Glycerol transport inhibitor
  Ethanolamine Glycerol transport inhibitor
  β-mercaptoethanol Glycerol transport inhibitor
  Methylglyoxal Glycerol utilization inhibitor
  L-serine Glycerol transport inhibitor

Class 2—Relief of catabolite repression
  2-deoxyglucose Glucose analogue
  Methylamine Ammonium analogue
  Tetramethylammoniumchloride Ammonium analogue
  Trimethylamine Ammonium analogue
  Sodium arsenate Phosphate analogue
  Sodium vanadate Phosphate analogue

Class 6—Antibiotic resistances
  Chloramphenicol
  Erythromycin
  Fusidic acid
  Kasugamycin
  Streptomycin
  Tetracycline
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been a tendency toward lighter recipe strengths to prevent oxygen limitation 
during the fermentation and to better reflect the intrinsic production potential 
of the mutants. In Table 6.3, representative examples of media are given.

From 1997 onward, (semi-)defined media were developed that lacked the 
particulate component, soy flour. Although the titers obtained in these media 
were lower than in the complex ones in absolute sense, productivities had 
advanced sufficiently during the improvement program to afford this lapse, 
and still to enable discrimination of superior cultures. In the end, it was felt 
that development toward “cleaner” recipes would be more advantageous.

The last strain to be delivered by Panlabs (PF-19-450, to become production 
strain DS36063) was selected on semi-defined medium in 1999. Thereafter, the 

TABLE 6.2.  Strains Selected at Panlabs

Year Culture# Parent Mutagen Selection Production#

1991 1991-10-125 ATCC 27064 — cnvR (1) —
1991-41-145 1991-10-125 NTG Random —

1993 PF-19-2 1991-41-145 — Re-isolation —
23-82 PF-19-2 NTG montR (1) —
PF-19-5 23-82 — Re-isolation —
PF-19-24 PF-19-5 NTG montR (1) —

1994 PF-19-41 PF-19-24 NTG cmlR (6) DS30455
1993 PF-19-10 PF-19-2 NTG montR (1) —

31-150R3 PF-19-10 — Re-isolation —
1994 PF-19-35 31-150R3 NTG PO4 (2) —

PF-19-85 PF-19-35 EMS+UV Random —
PF-19-130 PF-19-85 NTG Bioassay (8) —

1995 PF-19-188 PF-19-130 NTG Bioassay (8) —
PF-19-230 PF-19-188 NTG Bioassay (8) DS31810

1996 PF-19-307 PF-19-230 — Re-isolation DS33037
1997 PF-19-381 PF-19-307 NTG Osmotol. (5) —

PF-19-409 PF-19-381 NTG cmlR (6) —
1998 PF-19-429 PF-19-409 NTG Osmotol. (5) —

PF-19-432 PF-19-409 NTG Random DS33871
1999 PF-19-440 PF-19-429 NTG Osmotol. (5) —

PF-19-446 PF-19-440 NTG PO4 (2) —
PF-19-450 PF-19-446 NTG Defind. med. DS36063

Year refers to the first isolation of the culture. When a strain was adopted as a production strain 
(entry in column Production#), there is usually a considerable lapse of time (∼0.5–1 year) after 
its first isolation.
Selection: the type of rationale (see list in Section 6.3.1) is stated in brackets. cmlR, chlorampheni-
col resistance; cnvR, canavanine (arg analogue) resistance; montR, α-methylornithine (ornithine 
analogue) resistance; random, no (rational) preselection prior to shake flask testing.
Mutagen: NTG, N-methyl-N’-nitro-N-nitrosoguanidine; EMS + UV: ethyl methane sulfonate 
assisted by ultraviolet irradiation.
The first seven entries represent the left branch; the other entries represent the right branch.
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FIGURE 6.3.  A bird’s eye overview of DSM’s clavulanic acid lineage. For further 
details, see the tables in Sections 6.1 and 6.2.
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FIGURE 6.4.  Productivity development of clavulanic acid in complex media in shake 
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TABLE 6.3.  Media Compositions

Solid Media

Ingredients (g/L) Plate Agar Sporulation Agar

Glucose. aq. 10 10
Casein hydrolysate 2 2
Yeast extract 1 1
Beef extract 1 1
CaCO3 1 5
Trace elements #1 (mL) 5 5
Bacto agar 20 10
Oatmeal agar — 30

Trace Elements

Ingredients (g/L) Cocktail #1 Cocktail #2

H2SO4 concentrated — 20.4
Citric acid. aq. — 50
Fe(NH4) 2HC6H5O7 2.7 —
ZnSO4. 7aq. 2.8 16.75
CuSO4. 5aq. 0.125 1.6
CoCl2. 6aq. 0.1 —
MnSO4. aq. 1.2 —
MnCl2. 4aq. — 1.5
Na2B4O7. 10aq. 0.16 —
H3BO3 — 2
Na2MoO4. 2aq. 0.054 2

Production Media

Ingredients (g/L) CM-3 50% CM-3 SM-2 50% MM-1

Casein hydrolysate 15 7.5 5 1.25
Soy flour 15 7.5 — —
Asparagine — — 3.5 0.9
Glycerol 50 25 30 7.5
MOPS 10 10 10 10
KH2PO4 1.35 0.7 0.7 0.2
MgSO4. 7aq. 0.6 0.3 0.3 0.1
CaCl2. 2aq. 0.35 0.2 0.2 0.05
FeSO4. 7aq. 0.45 0.2 0.2 0.05
Trace elements #2 (mL) 1.9 1 1 0.25
Basildon (mL) 0.2 0.2 0.1 —

Solid media: Presterile pH 6.7, no further adjustment after autoclaving (20 minutes. 120°C).
Production media: Presterile pH 7.0, no further adjustment after autoclaving (20 minutes. 120°C). 
CM-3 and 50% CM-3 are complex recipes (standard and light variant), SM-2 and 50% MM-1 are 
semi-defined (the latter was especially designed for use in microtiter formats).
Conditions for growth and production: 26.5–28°C, orbital shaker at 280 rpm, harvest time 96–120 
hours.
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program was transferred to DSM, where semi-defined media became routinely 
included in the selection of mutants. In the declining years of the program, the 
fermentation process was adapted by replacing the most expensive medium 
ingredient, casein hydrolysate, by cheaper nitrogen sources (wheat gluten, pea 
protein), and the media used for strain selection were changed accordingly by 
small-scale optimization, to mimic the new large-scale conditions as far as 
possible, just as these conditions were established at the start of the program 
(see above). However, in contrast to the situation at that time, a set of consecu-
tive production strains with ascending titers had become available by now, 
which was helpful in validating shake flask protocols in terms of reflecting the 
correct order of these strains.

6.3.2  The DSM Years—Results from 1999 to 2006

When DSM proceeded with the strain improvement program, the efforts 
shifted from rational preselections to high-throughput miniaturized prescreen-
ing in 96-well microtiter plate formats (see Chapter 5). Two conditions had to 
be met to make this type of screening possible:

1.	 The development of semi-defined media without insoluble components 
(see previous section and Table 6.2—the light recipe MM-1 was espe-
cially designed for this purpose).

2.	 The development of high-throughput analytical techniques. This was real-
ized by replacing the high-performance liquid chromatography (HPLC) 
assay method used with Panlabs by stopped-flow nuclear magnetic reso-
nance (NMR) analysis capable of handling large numbers of samples.

In the first three cycles of mutation and selection, the number of mutants 
processed by the MTP screen was still limited, but from 2003 onward, screen-
ing capacity reached throughputs of approximately 60,000 (selections with 
DS41411 as the progenitor) to 110,000 (with DS48802). A list of the strains 
selected at DSM is shown in Table 6.4; see also the overview of the lineage in 
Figure 6.3.

TABLE 6.4.  Strains Selected at DSM

Year Strain Parent Mutagen Selection

2000 DS37853 DS36063 NTG MTP
2001 DS39876 DS37853 EMS Random
2002 DS41411 DS39876 NTG strR (6)
2003 DS48802 DS41411 NTG MTP
2005–2006 DS54901 DS48802 nUV+8-MOP MTP

See Table 6.2; strR, streptomycin resistance; nUV+8-MOP, near UV (365 nm) as sensitizer in com-
bination with the cross-linking agent, 8-methoxypsoralen.
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In contrast with the strains selected at Panlabs, of which only a limited 
number attained the production status, as indicated by the DS number in the 
last column, all strains listed in Table 6.4 have been production strains. The 
reason for this is the closer interaction between genetics and fermentation 
groups as both disciplines operated on the same site since the transfer of the 
program in 1999: the decision to enter into a next cycle of mutation and selec-
tion was made only after the new progenitor strain had been successfully 
introduced on production scale. Thus, selections operated in a campaign-wise 
fashion rather than being conducted continuously. There is a hiatus in Table 
6.4 in 2004 due to an earlier campaign with strain DS48802, which failed to 
yield an improved strain. For this reason, the campaign was repeated a year 
later, using an alternative mutagen, which resulted in the selection of strain 
DS54901. Again, all progenitors of consecutive cycles of mutation and selec-
tion are mutants induced by SOS-independent mutagens (see previous section). 
DS54901 was the last strain to be used in production, from 2007 until the 
close-down of the plant at the end of 2009.

The above example reiterates the notion that scale-up of complex traits 
such as production titers requires not only integration between the high-
throughput strain evaluation assays and the fermentation group but also the 
ability to continuously validate and improve assay conditions to mimic produc-
tion fermentation.

6.4  FUTURE PERSPECTIVES

Recent insights into S. clavuligerus genomics have generated new options for 
targeted engineering approaches. The biosynthetic gene cluster of clavulanic 
acid is located contiguous to the cephamycin gene cluster in the genome of  
S. clavuligerus (7). The region is ∼15 kb in size and includes all genes of the 
biosynthetic enzymes needed for clavulanic acid formation. Starting from 
L-arginine, clavulanic acid is formed via a series of at least seven enzymatic 
steps. Key enzymes are β-lactam synthase (BLS) and clavaminate synthase 
(CAS). Noteworthy, a regulatory protein, ClaR, has been identified as well. It 
was shown earlier that this protein is involved in the regulation of the late 
steps of clavulanic acid biosynthesis (8).

While those findings shed light on the mechanisms of clavulanic acid forma-
tion, it became clear that elucidation of the genome sequence would prove 
valuable for further targeted engineering approaches. With the aid of bio
informatics, metabolic network knowledge combined with transcript analysis 
data (see Chapter 3) will provide leads to improving the yield of clavulanic 
acid production. Leads can include the overproduction of biosynthetic enzymes, 
fine-tuning of regulator abundance or activity, formation and transport of 
precursors, but also pathways that influence the morphology of the cells.

In the last years, progress has been made to elucidate the genome sequence 
of S. clavuligerus. Further system biological comparisons of wild-type and 
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classically improved strains revealed important insights that can be used for 
future rational strain development programs (9,10). This chapter highlights the 
findings of those two publications.

Genome sequencing of the wild-type strain S. clavuligerus ATCC 27064 
revealed several remarkable features of this member of the Streptomyces 
family. On the one hand, the observed genome size of 6.7 Mb is quite small 
compared with that of other sequenced Streptomyces bacteria. Interestingly, a 
giant linear plasmid that has a length of 1.8 Mb was identified. Although earlier 
reports suggested the presence of more than one plasmid, in the reported 
sequencing project only two replicons were identified, indicative of the pres-
ence of only one plasmid. Furthermore, the sum of the putative protein encod-
ing genes on those two replicons matched well with the typical makeup seen 
in other Streptomyces genomes. Therefore, it can be seen as certain that 
S. clavuligerus indeed possesses one large linear plasmid.

Analysis of the 1.8-Mb plasmid revealed several interesting features.  
The replicon contained no genes crucial for the metabolism of S. clavuligerus. 
All stable RNAs necessary for primary metabolism (rRNA and tRNA) are 
encoded on the main chromosome. Therefore, the megaplasmid seems to be 
dispensable for the core metabolism of S. clavuligerus. Strikingly, the plasmid 
is packed with secondary metabolite gene clusters. No fewer than 25 such gene 
clusters, a number of the same order as observed in the chromosomes of other 
Streptomyces genomes, were dispersed throughout the plasmid. Together with 
the clusters identified on the chromosome, the total number of putative sec-
ondary metabolite gene clusters identified in S. clavuligerus is 48. As expected, 
the three known antibiotic gene clusters were identified in the genome assem-
bly. While the supercluster encoding the clavulanic acid and cephamycin C 
biosynthetic pathways (SMC10-11) and one of the clavam clusters (SMC9) are 
on the main chromosome, the alanylclavam cluster (SMCp13) is located on 
the megaplasmid. There are indications that cross-regulation takes place 
between the megaplasmid and the chromosome. A gene encoding a γ-
butyrolactone receptor protein (ScaR/Brp) was identified and shown to regu-
late clavulanic and cephamycin C production. It turned out that the only copy 
of the brp gene is located on the megaplasmid, which is remarkable, because 
all other characterized γ-butyrolactone receptors are located on the chromo-
some. Moreover, it also means that Brp transregulates several factors on the 
chromosome (at least the clavulanic acid and cephamycin C gene clusters).

Looking at the possible evolution of the megaplasmid in S. clavuligerus, the 
central position of the origin of replication suggested that multiple recombina-
tion events within the chromosome took place that finally led to megaplasmid 
pSCL4; this theory is in contrast to the situation in Streptomyces coelicolor 
A3(2), where likely one single crossover between a 365-kb plasmid and the 
chromosome led to the formation of a 1.8-Mb plasmid, a plasmid very similar 
to the S. clavuligerus pSCL4.

After gaining insight in the genome organization of S. clavuligerus, the 
authors chose a functional genomics approach (see Chapter 3) to elucidate 
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transcription and expression differences between wild-type and classically 
improved industrial S. clavuligerus strains. By doing so, more could be learned 
about metabolic changes induced by strain improvement, and ultimately targets 
and hints would be obtained for future strain improvement programs.

In order to better understand and predict the metabolism, the metabolic 
fluxes during antibiotic production were computationally predicted, using a 
constraints-based genome-scale metabolic network model of S. clavuligerus 
(10). By using Affymetrix microarray gene chips (Affymetrix, Cleveland, OH), 
the transcript levels of the wild-type strain ATCC 27064 and industrial strain 
DS48802 during the stationary phase were elucidated and compared.

First, it turned out that almost all genes associated in the clavulanic acid 
gene cluster were overexpressed significantly (between two- and eightfold) in 
the industrial strain compared with the wild-type strain. Interestingly, the 
pathway specific regulator genes claR and ccaR are also overexpressed in the 
industrial strain. They are located within the same supercluster and their prod-
ucts have been shown to regulate clavulanic acid production positively (11). 
Importantly, hybridization of S. clavuligerus DS48802 genomic DNA revealed 
no amplifications of genes of the clavulanic acid cluster, as observed for other 
industrial strains such as the industrial kanamycin producers Streptomyces 
kanamyceticus (12). Therefore, the overexpression observed appeared to be 
caused by transcriptional (and post-translational) changes only.

Second, the obtained transcriptomic data correlate well with the flux balance 
analysis of increased clavulanic acid production. For this test, a constraints-
based genome-scale metabolic model of S. clavuligerus was developed and the 
flux changes during increased production of clavulanic acid were dynamically 
modeled. Forty percent of the genes that showed increased transcript levels 
(fold change >2) were also predicted to do so using the described metabolic 
network model. Although 40% might appear to be not a large percentage, it 
is still statistically very significant. The observed increase in the clavulanic acid 
cluster gene expression seems to be a crucial change for antibiotic overproduc-
tion in this strain. A complete redirection of primary metabolism seems not 
to be necessary for overproduction.

Furthermore, some significant changes in primary metabolism gene expres-
sion could still be observed and correlated to clavulanic acid overproduction. 
Glycerol uptake and metabolism is clearly upregulated, indicating improved 
utilization of glycerol as a carbon source and increased production of the 
clavulanic acid precursor, G3P. Moreover, aconitase and citrate synthase  
from the citric acid cycle are downregulated, which is likely to result in an 
increased intracellular G3P pool. This situation is remarkably similar to the 
result of the rationally designed gap1 deletion (13) that blocked G3P conver-
sion into 1,3-diphosphoglycerate, thus improving clavulanic acid biosynthesis 
by increasing the intracellular G3P pool. Also, a significant upregulation of 
glutamine synthetases and glutamate importers have been observed. Gluta-
mate can serve as a source for biosynthesis of the clavulanic acid precursor 
arginine.
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To conclude, the data generated by Medema et al. showed that a strain 
improvement program by random mutagenesis and screening caused gene 
transcript changes in primary as well as secondary metabolism. The overlap 
with results obtained by rational metabolic engineering is intriguing. New 
leads from transcript changes in those studies, such as the increased transcrip-
tion of glutamine and glutamate synthetase, and those encoding several trans-
porters, can be combined to rationally design novel clavulanic acid high 
producer strains.
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7
METABOLIC ENGINEERING OF 
RECOMBINANT E. COLI FOR 
THE PRODUCTION OF 
3-HYDROXYPROPIONATE

Tanya Warnecke Lipscomb, Matthew L. Lipscomb,  
Ryan T. Gill, and Michael D. Lynch

7.0  INTRODUCTION TO BIOSYNTHESIS OF 
3-HYDROXYPROPIONIC ACID

Bioprocesses directed toward the production of commodity chemicals from 
renewable resources have become a major focus of the chemical industry. 
Organic acids are one group that comprises a significant portion of the pro-
posed commodity chemical market from bioprocesses. One particular organic 
acid, 3-hydroxypropionate (3-HP), has been identified as a highly attractive 
potential chemical feedstock for the production of numerous large market 
commodity chemicals that are currently derived from petroleum (1). Com-
modity products that can be readily produced using 3-HP include acrylic acid, 
1,3-propanediol, methyl-acrylate, and acrylamide. The current estimated global 
market value of acrylic acid alone exceeds $10 billion annually.

Research in the biotechnology arena during the past decade has encom-
passed several key categories, including the efficient extraction of carbon 
sources from waste biomass, overall biocatalyst development, and downstream 
processes required for commercialization of valuable products. The field of 
biocatalyst development has grown from the humble beginning of overexpres-
sion of native metabolites to the rational, holistic microbial engineering design 
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for production of heterologous compounds. This case study will focus primarily 
on biocatalyst development through understanding organic acid tolerance and 
the engineering of a tolerant strain for the economical fermentative produc-
tion of 3-HP from a renewable feedstock. 3-HP is a naturally occurring metab-
olite produced at low levels by several photosynthetic microorganisms that 
use a carbon fixation cycle termed the 3-HP cycle (2–4). However, for all 
microorganisms tested to date in our laboratory, including various gram-
negative and gram-positive microorganisms, 3-HP displays toxicity at levels as 
low as 20 g/L in minimal media. This observed inhibition, which occurs by 
shutting down various metabolic pathways at titer levels well below what are 
needed for successful commercialization, will be discussed in detail below.

7.1  ORGANIC ACID TOXICITY

Evolving tolerance to organic acids requires approaches reliant on under-
standing of how the acid affects the organism as a whole. Traditional selection 
studies (see Chapter 1) remain focused on the identification of a single genetic 
element or mutant associated with a measureable improvement in a given 
phenotype. While such strategies may result in improved traits for simple 
phenotypes, they do not address how numerous mutations or genetic changes 
in combination may be required for improvements in complex phenotypes. As 
organic acid inhibition affects many different cellular processes, acid tolerance 
is one such phenotype that can be conferred to varying degrees by many dif-
ferent combinations of genetic changes.

Organic acids have been historically utilized as preservatives in both food 
and feed products due to their inhibitory properties to various microorganisms 
(5). Although the antimicrobial properties of these organic acids have been 
widely exploited commercially, the observed growth inhibition also stands as 
a critical hurdle in the development of economical bioprocesses. Organic acid-
related growth inhibition has several reported modes of action, including 
disturbance of cytoplasmic pH, anion accumulation within the cytosol at high 
organic acid titers, and increasing osmotic stress due to addition of neutralizing 
agents along the fermentative time course (6,7). While pH deviations are 
minimized in controlled fermentations, anion accumulation and osmotic 
stresses continue to challenge metabolic engineering efforts in the develop-
ment of highly productive host strains (8). The rest of this chapter will focus 
on alleviating the anionic effects of organic acid stress toward the development 
of a robust production strain.

Anion accumulation inside the cell can cause growth defects in a number 
of ways. Explicitly, undissociated weak acids are able to diffuse freely through 
the cell membrane where they release a proton and subsequently lower cyto-
solic pH (9). Significant accumulation of anions in the cytosol results in 
increased osmotic stress and a corresponding increase in free potassium (10). 
The physiological response to balance anionic concentrations and maintain a 
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constant turgor pressure is to increase export of glutamate, resulting in reduced 
growth and viability of the cell (11). Additionally, the anion itself can result in 
increased inhibition of metabolic pathways characterized by severe growth 
defects. For example, measurements of the intracellular metabolite pools 
under acetate stress indicate a significant increase in homocysteine pools 
accompanied by a reduction in the downstream methionine pools, implying 
inhibition at this step in methionine biosynthesis. Further, methionine supple-
mentation has been shown to relieve growth inhibition due to acetate levels 
as high as 8 mM (11). Such inhibitory effects are anion specific and often hard 
to elucidate across the complex metabolic networks. These findings from Roe 
et al. (11) surrounding the metabolic inhibition specific to acetate stress helped 
to form the hypothesis that similar metabolic inhibition may be the basis for 
the apparent growth inhibition specific to 3-HP.

7.2  UNDERSTANDING 3-HP TOXICITY

The work described herein focuses on improving the understanding of organic 
acid tolerance mechanisms, specifically for 3-HP, in Escherichia coli. Biosyn-
thetic processes yielding 3-HP have previously been demonstrated from devel-
opment of recombinant hosts (12,13). However, as mentioned previously, severe 
growth inhibition has been observed for extracellular acid levels as low as 20 g/L 
in minimal media (pH 7.0), which severely impacts the economic feasibility of 
3-HP production as a platform chemical. Furthermore, engineering a tolerant 
host for production has proven complex with numerous genetic targets and 
integrated metabolic networks incorporated into an overall toxicity profile.

7.2.1  Choosing an Approach for Evolving Tolerance

Traditional approaches to strain engineering typically employ either informed 
metabolic engineering methods (see Chapters 2 and 3), which are reliant on 
previous understanding of genetic function, or directed evolutionary approach
es (see Chapter 4), which are based on application of a selective pressure on 
a genetically diverse population to identify previously unknown or uncharac-
terized genotypes (Figure 7.1). Although directed evolution approaches do 
provide insight into the unknown, they are oftentimes laborious and qualita-
tive, and result in an incomplete understanding of the engineered phenotype. 
Further, since phenotypes such as growth or productivity are a function of 
numerous unknown factors, successful strain selections have primarily relied 
on an iterative mutation strategy, which simultaneously result in the accumula-
tion of deleterious mutations. Recent reports have disclosed the use of extra-
chromosomal or disruptional mutagenesis approaches that are meant to 
address the concerns with traditional directed evolution (14,15). However, 
these approaches still require substantial follow up to identify exact causal 
linkages between a given phenotype and the underlying genotype.
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For this study we chose to employ multi-SCale Analysis of Library Enrich-
ment (SCALEs). This approach involved simultaneous growth selections on 
mixtures of multiple plasmid libraries containing defined, yet unique, insert 
sizes (or scales). Through microarray and multiscale analysis, the signal con-
tribution and associated fitness (W) of each of the distinct, different sized 
libraries was identified. Fitness, in this case, is defined as the enrichment of 
each region in the selected population over time (W = ln(Xi,t/Xi,t-1)). This 
resulted in the accurate identification of the location and size of the fitness-
altering loci that contributed to the desired phenotype. For a detailed 

FIGURE 7.1.  Sample flowchart for evolving new phenotypes. Informed engineering 
approaches are displayed in dark gray shaded boxes, whereas directed evolutionary 
approaches are illustrated in light gray shaded boxes. GTME, global transcription 
machinery engineering; CSTR, continuous stirred tank reactor; COG, clusters of orthol-
ogous groups.
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description of the procedures involved in the multiscale analysis of library 
enrichment, the reader is referred to Lynch et al. (16).

The model system described herein was focused on the identification of 
clones exhibiting increased growth rate in the presence of 3-HP. Our studies 
first involved the use of the SCALEs method to characterize the genotypes 
and phenotypes under selection in a continuous culture selection. The infor-
mation from this analysis was then used to design a new selection directed 
more precisely at 3-HP tolerance phenotypes. Finally, a receiver operator 
curve (ROC) analysis, enabled by SCALEs, was employed to measure and 
compare the sensitivity and selectivity of both selections and provide a unique 
insight into the complexities of selection design (16–19).

7.2.2  Selection Design for Evolving 3-HP Tolerance

Continuous culture methodologies, such as the use of chemostats and tur-
bidistats, are traditionally employed for strain selection in the presence of dif-
fering levels of a toxic compound (18–21). We chose to first employ this 
approach as a base case to select for clones exhibiting increased 3-HP tolerance 
from our E. coli plasmid-based genomic library (18). The starting population for 
selection was comprised of five representative E. coli K12 genomic libraries that 
were transformed into MACH1-T1R (18) and recovered until mid-log phase 
(OD600 ∼0.2) under microaerobic conditions. Greater than 106 library clones 
were then introduced to the continuous flow reactor (CFR) and cultured for 60 
hours, at which point the selection was stopped due to significant biofilm growth 
on the reactor walls. The CFR was fed with 3-(N-morpholino)propanesulfonic 
acid (MOPS) minimal media blended with increasing levels of 3-HP (pH = 7.0, 
0–20 g/L). The CFR was maintained similar to a common turbidistat, in that the 
dilution rate was constantly adjusted in an effort to maintain an approximate 
cell density of 107 cells/mL and to avoid a nutrient-limited environment. Samples 
of the population were acquired at approximately 30, 40, and 50 doublings (cor-
responding to 100-, 1000-, and 10,000-fold enrichment, respectively) and were 
analyzed via microarray and decomposed according to the SCALEs methodol-
ogy (16). By performing this analysis we were able to quantify the concentration 
of each library clone (Xi), or member of the library, maintained within the 
plasmid library throughout the selection. Following this quantification, we were 
able to map the genome-wide fitness and enrichment patterns for the continu-
ous flow selections in the presence of 3-HP at each time point.

To further characterize the efficacy of the selection for identification of 
3-HP tolerant clones, we chose 17 clones to observe for further testing. Clones 
were obtained either via sequencing individual clones isolated from selection 
samples or conventional molecular cloning of regions corresponding to signifi-
cantly increased fitness from the SCALEs analysis. These clones were then 
introduced individually into batch cultures with minimal media and 20 g/L of 
neutralized 3-HP. Growth was monitored as a function of OD600 over a 24-hour 
period and specific growth rates were calculated for regions of growth 
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corresponding to minimal doubling times. For this particular selection, only 
53% of clones tested (9 of the 17 tested) demonstrated significantly increased 
fitness in the presence of inhibitory levels of 3-HP. As expected, these results 
confirm that the CFR selection not only resulted in enrichment of 3-HP toler-
ant clones, but was also selected for other various phenotypes that may have 
increased residence time with the reactor, such as wall adherence and/or 
biofilm formation.

In an effort to better quantify these observations, we performed an ROC 
analysis (17). ROC curves have traditionally been used in signal detection 
theory to compare the predictive power of a model as the criterion, or thresh-
olds, are varied. ROC curves plot the true positive rate (sensitivity) against 
the false positive rate (1-specificity), which allows for the rapid assessment of 
the predictive power of a test and, importantly, to compare the utility of mul-
tiple tests.

Sensitivity True Positive Rate TPR

true positives/ true p

=
=

( )

( oositives false negatives+ )

Specificity True Negative Rate TNR

true negatives/ false 

=
=

( )

( ppositives true negatives+ )

We used this technique to assess how efficiently our CFR selections identified 
clones with 3-HP tolerant phenotypes. True positives were quantified from 
clones that were identified by the SCALEs method with significant fitness 
gains that were separately confirmed to grow faster than the control at ele-
vated 3-HP concentrations. Similarly, false positives were quantified from 
clones characterized by increased fitness as identified by SCALEs that did not 
relate to an observed increased growth in the presence of 3-HP. Finally, the 
number of true negatives was set according to clones with fitness values below 
a given cutoff that did not show increased tolerance, while false negatives were 
those with low fitness values and an increased growth rate (Figure 7.2).

The advantage to a genome-wide analysis, such as SCALEs, in this type of 
evaluation is the ability to gain information about the true and false negatives, 
which are essential for a quantitative ROC analysis. These data are unique 
when compared with a traditional library selection followed by a sequencing-
based output in which nothing can be determined about the unsequenced 
population. A measure of the overall quality of a test can be provided by 
assessing the area under the ROC curve (AUC), where larger values corre-
spond to tests that increase in true positives relative to any increase in false 
negatives.

In all cases the CFR selections produced ROC curves above the x = y line, 
indicating that gains in true positives were not accompanied by an equivalent 
increase in false negatives (see Warnecke et al. (18) for detailed ROC dia-
grams). This result confirms that 3-HP tolerance was under selection in our 
CFR. However, the AUC values for the CFR selection maintain a constant 
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value of approximately 0.77, suggesting that selective pressure specific to 3-HP 
tolerance is stagnant after the initial sample. This finding is counterintuitive in 
that selective pressure should have increased as increasing amounts of 3-HP 
were introduced to the growth media. In actuality, the frequency of clones 
contributing to the formation of biofilm communities resulted in an increased 
false positive rate, thus keeping the AUC constant. This finding implies that 
selective pressure was being increasingly driven by wall adherence as opposed 
to 3-HP tolerance.

7.2.3  Taking a Closer Look at Selection Design

Based on this analysis, we began a second selection where improvement would 
be measured by an increase in the AUC resulting from a comparable ROC 
analysis. This selection was designed in order to enhance the specificity of the 
selection toward increased specific growth rate in the presence of 3-HP and 
not for increased biofilm formation or other potentially selectable phenotypes 
such as decreased lag time and increased final density. We chose to utilize serial 
batch selections with a progressively decreasing concentration of 3-HP in an 
effort to both reduce clones with improved fitness resulting from wall adher-
ence and to increase the corresponding true positive rate throughout the 
selection in contrast to the stagnant sensitivity observed for the CFR. The 
design of selection varied from the original based on the inhibitory, rather than 
bactericidal, effect that 3-HP has on growth rate. Specifically it can be assumed 

FIGURE 7.2.  Quantifying true and false negatives and positives in an ROC analysis. 
Following the SCALEs analysis, genes were categorized by fitness (W) as having posi-
tive or negative effect on 3-HP tolerance and confirmed as a true positive or negative 
by experimentation to confirm increased growth rate in the presence of 3-HP.
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that high levels of 3-HP will inhibit growth of all but the most tolerant clones, 
or the true positives, at the onset of selection. This initial growth inhibition 
provides the selective pressure required for the fastest-growing clones to 
become enriched relative to clones that are more sensitive to 3-HP. Under the 
reverse scenario of an increasing gradient of 3-HP, all clones capable of growing 
at an initially low concentration of 3-HP will have an opportunity to become 
enriched over the entire period of selection. Additionally, those clones exhibit-
ing mutations by random genetic drift will also be enriched greatly toward the 
culmination of the selection. Some of such clones may grow rapidly at low 
concentrations but not at all at high concentrations. These clones would be 
considered false positives. In terms of the ROC analysis, selection using a 
decreasing 3-HP concentrations gradient should result in an increase in speci-
ficity (a decrease in false negative rate) accompanied by an increase in sensi-
tivity (true positives).

A second selection, employing successive batch cultures with decreasing 
levels of 3-HP (20 to 0 g/L), was designed. Following each batch, transfer 
samples were taken and the plasmid population was isolated, labeled, and 
hybridized to DNA microarrays. Microarray data were further examined 
according to the SCALEs methodology. To test for increased sensitivity and 
specificity, we chose 20 unique clones from the serial dilution (SD) selections 
by isolating and sequencing of individual clones from enriched pools or by 
molecular cloning of the highly enriched clones identified by the SCALEs 
data. We used this clonal subset to generate data to perform an ROC analysis 
used to quantitatively compare the two selections. As was expected, 0% of the 
clones obtained from the SD expressed biofilm phenotypes, whereas 88% of 
the clones obtained from the 60-hour CFR sample showed this phenotype. The 
clones isolated from the SD selection were then used to evaluate growth rates 
in the presence of 20 g/L 3-HP. We found that 100% of these clones had a 
statistically improved growth rate compared with only 53% of the clones 
evaluated from the CFR selection.

These data were then used to generate a ROC curve, which showed a quan-
tifiable improvement in the SD selection when compared with the original 
CFR data (the reader is again referred to Warnecke et al. (18) for the detailed 
ROC diagram). More specifically, the AUC increased with each successive 
sample for the SD selection, indicating that selection for 3-HP tolerance phe-
notypes was maintained throughout the experiment. This is in contrast to the 
CFR selection, which maintained a more stagnant AUC profile throughout. 
Further, the SD selection shows a 17% overall increase in AUC when com-
pared with the cumulative CFR selection, implying that the SD selection more 
effectively identified true 3-HP tolerant clones compared with the CFR 
selection.

7.2.4  Constructing the 3-HP Toleragenic Complex

As shown above, we have performed a selection that showed a strong cor
relation between fitness and the desired 3-HP tolerant phenotype. The  
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clone-specific fitness was calculated according to the SCALEs analysis for the 
optimized selection described above. This fitness was then further segmented 
to assign fitness values to the individual genes contained within the clone’s 
insert DNA. Genes and their corresponding fitness measures were then 
grouped according to their associated metabolic pathways. This analysis 
allowed for the assessment of the fitness of, or enrichment for, specific meta-
bolic pathways. The distribution of pathway enrichment values revealed a clear 
pattern of differentiation across all metabolic pathways considered.

Segmenting the fitness according to metabolic pathway demonstrated that 
3-HP related fitness was conferred by increased dosage of genes from only  
a handful of metabolic pathways. The identified metabolic pathways that 
accounted for the most significant improvement in overall fitness included 
chorismate, threonine–homocysteine, arginine–polyamine, and nucleotide bio-
synthesis superpathways. These pathways and their interactions mostly com-
prise what we have termed the 3-hydroxypropionic acid toleragenic complex 
(3-HP-TGC). The metabolic complex, shown in Figure 7.3, comprises all of the 
genes identified by the SCALEs approach as contributing to metabolic pro-
cesses and increased tolerance to 3-HP (22).

This complex has been confirmed both by supplementation of media 
metabolites from the complex and by genetic modifications of the 3-HP-TGC 
(Figure 7.4). These data illustrate the importance of the selection strategy on 
the identification of a phenotype of interest, in this case increased growth rates 
in the presence of the growth inhibitor 3-HP. More specifically, it would not 
be possible to construct meaningful networks for a selection correlated to a 

FIGURE 7.3.  The 3-HP toleragenic complex (3-HP-TGC) as constructed from meta-
bolic pathway fitness data. Subsections of the 3-HP-TGC are denoted for the choris-
mate, nucleotide biosynthesis pathway, polyamine, and threonine/homocysteine 
superpathways. (See insert for color representation of the figure.)
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high false positive rate. In particular, decreasing the selective pressure over 
time ensures that enrichment occurs for clones with even a small selective 
advantage.

7.3  STRAIN DESIGN

7.3.1  Evaluation of the 3-HP-TGC

To better evaluate the toleragenic complex, we divided the 3-HP-TGC into 
component pathways, or gene groupings, surrounding highly connected nodes 
involved in the homocysteine, chorismate, polyamine, lysine, uracil, and citrate 
synthesis pathways. Each of the component pathways was then used to high-
light genetic elements at key toxicity points as well as potential supplemental 
strategies to overcome limitations. Toxicity evaluations were carried out 

FIGURE 7.4.  Confirmation of 3-HP tolerance corresponding to supplements (red) 
and genetic modifications (green). Tolerance was quantified as the minimum inhibitory 
concentration (MIC) of 3-HP in triplicate (n = 3) at pH = 7.0. (See insert for color 
representation of the figure.)
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involving the identified supplements, genetic modifications, and combinations 
designed to evaluate the groupings of multiple branches of the 3-HP-TGC.

The supplement data gathered according to the combinatorial strategy 
above showed the significant impact that saturation of the polyamine pathway, 
by addition of the entire polyamine group (composed of putrescine, spermi-
dine, ornithine, citrulline, bicarbonate, and glutamine), has on the overall  
tolerance to 3-HP. As such, it was important to design a strain with an em
phasis on optimization of polyamine production to alleviate a large fraction 
of growth inhibition. Additionally, increased tolerance (as demonstrated by a 
greater than 200% increase in minimum inhibitory concentration [MIC]) was 
noted for supplementation with one supplement from each of the chorismate, 
homocysteine, polyamine, and lysine pathways suggesting that modifications 
from each of the pathways should be included in the final tolerant strain 
design.

The results presented above illustrate the foundation of technology that has 
been developed in our laboratories that can be applied to explore complex 
phenotypes such as solvent tolerance. The ability to fully characterize selection 
dynamics toward the identification of a single desired phenotype is critical for 
the project proposed herein. Further development of this high-resolution, 
genome-wide technology platform is ongoing and will enable the rapid evalu-
ation of desirable phenotypes.

7.3.2  Complex Tolerant Phenotype: Metabolism of 3-HP  
to a Toxic Intermediate

Evolving improved tolerance of the 3-HP production host is complex in that 
it includes developing increased resistance to not only the final 3-HP product, 
but also to potential toxic intermediates or degradation products. In the case 
of the OPXBIO 3-HP production route, preliminary fermentations with 3-HP 
production strains demonstrated significant metabolic conversion of 3-HP to 
3-hydroxypropionaldehyde (3-HPA), which resulted in both decreased 3-HP 
yield and increased toxicity toward the production strain. 3-HPA, also known 
as reuterin, is an antibiotic naturally produced by Lactobacillus reuteri and is 
commonly used as a biopreservative in food products (23). 3-HPA exists in a 
three-way equilibrium between the hydrate, the dimer, and acrolein. Although 
the exact antimicrobial mechanism of reuterin has not been elucidated to date, 
the proposed targets include the sulfhydryl enzymes (24).

A review of the SCALEs results described above identified a particular 
genetic network composed of 22 aldehyde dehydrogenases (ALDs), which 
demonstrated a low level of enrichment throughout the serial-dilution selec-
tion (1 < W < 2). To further investigate this apparent metabolism, assays were 
developed to quantify 3-HPA/3-HP for various ALD deletion strains cultured 
with exogenous 3-HP. One particular ALD identified in the SCALEs data set, 
puuC, had been previously reported to catalyze the conversion of 3-HP to 
3-HPA (25). Further experimentation with ΔpuuC base strains showed a 
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significant decrease in 3-HP conversion to the toxic aldehyde, which thereby 
improved overall tolerance to the host.

The puuC findings have further implications when applied to the under-
standing of improved tolerance to 3-HP. Specifally, puuC has been charac
terized as a γ-glutamyl-γ-aminobutyraldehyde dehydrogenase involved in 
polyamine degradation that is induced by increased levels of polyamines. The 
observed conversion to 3-HPA in the presence of 3-HP implies that increased 
polyamine pools may be inducing this conversion mechanism. This mechanism 
was further established by quantification of increased 3-HPA/3-HP in the pres-
ence of supplemental polyamines such as putriscine. The polyamine pathway 
is critical for increased tolerance to 3-HP due to the global effects on the 
overall metabolic network as illustrated in the toleragenic complex above. 
Polyamines are synthesized in the cell as natural osmolarity stabilizers and are 
required for numerous cellular processes. While E. coli do produce polyamines 
naturally, the basal levels are not sufficient for normal cellular activities under 
conditions of 3-HP stress. More specifically, 3-HP can act as a potent chelator, 
particularly at high concentrations, causing the cell to sense a hypo-osmolar 
state, which can be countered by overproduction of various polyamines. Inter-
estingly, overexpression of polyamine biosynthetic genes alone is not able to 
counter the toxic effects of 3-HP without balancing accompanying side effects 
such as conversion to the toxic aldehyde. Additionally, increased production 
of polyamines can lead to the accumulation of carbamoyl-phosphate, a precur-
sor to polyamine synthesis, which degrades to the toxic byproduct, cyanate. As 
such, it is important to balance the increased polyamine levels with increased 
expression of a cyanase, which is capable of minimizing accumulation of 
cyanate within the cell.

Figure 7.5 illustrates the MIC of 3-HP on wild-type E. coli with and without 
supplementation of various polyamines (putrescine, cadaverine, and spermi-
dine), as well as an isolate overexpressing a cyanase. By applying these findings 
in concert with the other components of the 3-HP-TGC, it has been possible 
to engineer E. coli to tolerate 3-HP levels as high as 100 g/L.

7.4  COMBINING 3-HP TOLERANCE AND 3-HP PRODUCTION

Engineering strains for industrial production requires stacking multiple 
complex phenotypes (4). Three production strains were constructed with 
various genetic modifications that correspond to increased 3-HP tolerance 
corresponding to the 3-HP-TGC for further evaluation. Specifically, we were 
interested in evaluating the impact that each of the tolerance modules had on 
production metrics such as final titer and specific productivity. The results for 
the three tolerance modules are displayed in Figure 7.6. As shown below, each 
of the three tolerant strains resulted in significant improvements in both 3-HP 
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titer and specific productivity, and in the case of tolerant strain 3, the specific 
productivity was increased by 10-fold compared with the control.

7.5  SUMMARY

The work described in this chapter was focused on improving the understand-
ing of organic acid tolerance mechanisms, specifically for increased production 
of 3-hydroxypropionic acid (3-HP), in E. coli. Successfully evolving complex 
phenotypes, such as organic acid tolerance, relies on approaches capable of 
generating a global understanding of toxicity in an effort to utilize synergistic 
effects. In this chapter, we described how to design a selection that shows a 
strong correlation between fitness and the desired 3-HP-tolerant phenotype 
and how the application of a genome-wide approach such as SCALEs allowed 
for the rapid identification of numerous genetic changes. The results of our 
studies identified hundreds of genes and other genetic elements that when at 
increased copy confer varying levels of tolerance to the presence of 3-HP in  
E. coli. When applied alone, these genetic changes may allow for small increases 
in tolerance; but when applied together they allow for insight into the 3-HP 
toxicity mechanisms. By grouping genetic elements that confer tolerance  
by their metabolic roles, we were able to identify key metabolic pathways  
that are inhibited by 3-HP and to increase productivity by overcoming 3-HP 
inhibition.

FIGURE 7.5.  MICs for 3-HP with and without supplementation with the polyamines 
(putrescine, cadaverine, and spermidine) as well as overexpressing a cyanase. MICs 
were performed in triplicate (n = 3) at pH = 7.0.
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8
COMPLEX SYSTEM ENGINEERING: 
A CASE STUDY FOR AN 
UNSEQUENCED MICROALGA

Michael T. Guarnieri, Lieve M.L. Laurens, Eric P. Knoshaug, 
Yat-Chen Chou, Bryon S. Donohoe, and Philip T. Pienkos

8.0  HISTORICAL PERSPECTIVE

In 1978, the U.S. Department of Energy (DOE) initiated the Aquatic Species 
Program (ASP), which was managed by the National Renewable Energy 
Laboratory (NREL, known at the time as the Solar Energy Research Insti-
tute). The purpose of the ASP was to evaluate the potential of non-terrestrial 
crops to serve as feedstocks for biofuel production. Initially the scope of the 
investigation included microalgae, cyanobacteria, macroalgae, and wetland 
emergents, and the potential products included hydrogen, lipids, ethanol and 
other alcohols, syngas, and pyrolysis fluids. The intermediates could be used in 
fuel cells or upgraded to a variety of fuels including biodiesel, renewable 
diesel, renewable gasoline, and renewable jet fuel. Very quickly the target 
organisms were downselected to eukaryotic microalgae primarily because of 
anticipated productivity of algae, the high energy density of lipids, and the ease 
of conversion to biodiesel.

For 18 years, from 1978 to 1996, DOE funded the ASP (through significant 
swings in annual budgets) with most of the work carried out by academic 
subcontractors with NREL providing the overall project management. During 
that period, all aspects of the value proposition were investigated, ranging 
from basic algal biology through large-scale cultivation, harvest, dewatering, 
conversion to fuels, and techno-economic analysis. Many breakthroughs  
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were achieved including the assembly of a 3000-strain culture collection, devel-
opment of a capital- and energy-minimized raceway pond for cultivation, 
continuous operation of two 1000 m2 raceways for a year in Roswell, New 
Mexico, and production of biodiesel samples for testing. The best results and 
assumptions were used to estimate capital and operating costs. Optimistic 
assumptions led to a conclusion that algal biofuels could be produced at a cost 
of $40–60 per barrel. Crude oil prices at the time held at around $20 per barrel 
and most projections suggested that the price would remain at that level for 
decades to come. Facing budget challenges and recognizing the long-term 
nature of R&D needed to bring algal biofuels to production costs that could 
compete with petroleum, DOE decided to terminate the ASP in 1996 to focus 
on cellulosic ethanol. A comprehensive closeout report on the microalgae 
work done for the ASP was released in 1998 (http://www.nrel.gov/biomass/
pdfs/24190.pdf). The detail and comprehensive nature of this report have 
provided great value in the intervening years for researchers seeking to enter 
this field.

In 2005, DOE and the U.S. Department of Agriculture (USDA) released a 
report, commonly known as the “Billion Ton Study” (http://feedstockreview. 
ornl.gov/pdf/billion_ton_vision.pdf), which provided for the first time esti-
mates of the amount of terrestrial biomass that could be sustainably harvested 
on a yearly basis. This upper limit provided guidance for our national capacity 
for biofuels, somewhere in the range of 40–60 billion gallons gasoline equiva-
lents (gge), depending on the yields of biofuel that could be derived from 
biomass. Considering that the United States burns approximately 140 billion 
gallons of gasoline, 40 billion gallons of diesel fuel, and 25 billion gallons of 
jet fuel annually, this limited capacity for domestic biofuel production was 
clearly inadequate to provide energy security. Also considering that the only 
biofuel that was being considered from terrestrial biomass (excluding food 
crops such as corn or soybeans) in 2005 was ethanol, it was clear that biofuel 
replacements for high energy density fuels such as diesel and jet fuel would 
require a different feedstock.

With that in mind, researchers at NREL began to reconsider the assump-
tions that led to the close of the ASP. Among the changes that had occurred 
in that 10-year period were increases and increased volatility in the price of 
crude oil, increased awareness of the role of CO2 emissions in global climate 
change, increased demand for energy security, and increased sensitivity to the 
food versus fuel debate. At this point it became apparent that algal biofuels 
could be a game changer because algae could capture and recycle CO2 directly 
from fixed sources such as power plants, steam methane reformers, cement 
kilns, and other large-scale contributors to CO2 emissions. Algae could also be 
cultivated on nonproductive lands that would not even support growth of 
energy crops such as switchgrass and miscanthus. And algae could be culti-
vated with brackish or saline water taken from marine sources or from saline 
aquifers or oil well-produced water. And so, in 2006, NREL began a strategic 
initiative to look for ways to revive its algal biofuels R&D effort.
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In addition to industrial outreach, NREL built a strategy around small 
projects funded either internally through the national lab Laboratory Directed 
Research and Development (LDRD) program, which makes a percentage  
of overhead funds available for competitive research proposals. Other fund
ing opportunities also became available, including one from the Air Force 
Office of Scientific Research, initiating a program to fund basic research  
in algal biology with a focus on lipid production. None of these funding mecha-
nisms could match the peak funding days of the ASP, but taken together,  
they provided a vehicle for NREL to re-establish itself as a leader in algal 
biofuels R&D.

It must be noted that this began to take place at a time of phenomenal 
growth in interest in algal biofuels, a time in which many new companies were 
being formed to commercialize algal biofuels. It was essential that the limited 
funding available from these sources be put to work in the most effective 
manner. After evaluating the overall landscape we determined that our biggest 
contributions could be made in algal biology and algal compositional analysis, 
and so our proposals and subsequent projects focused on these two areas. To 
further focus our efforts and to leverage the funding from different sources, 
we chose a single organism, Chlorella vulgaris, to be our model organism, to 
be used in as many projects as we could. We chose C. vulgaris for a number 
of reasons:

•	 Rapid growth and high lipid content.
•	 Large-scale cultivation history for production of nutritional supplements.
•	 Reports of successful genetic transformation.

There were also a number of drawbacks for this choice:

•	 Small cell size and very tough, uncharacterized cell wall made lipid 
extraction and cell lysis difficult.

•	 The genome sequence was not available, although related strains were in 
the queue at the Joint Genome Institute.

•	 C. vulgaris is a fresh water strain, which would raise issues for sustainable 
large-scale production for biofuels.

Ultimately, we determined that the positive attributes outweighed the negative 
and began working with C. vulgaris as our model organism. The challenges, 
though real, would provide guidance for research groups who also wished to 
work with unsequenced strains. The freshwater adaptation of C. vulgaris was 
certainly a major issue, but other groups were also developing freshwater 
strains for production. In addition, it had been shown that it is possible to 
adapt fresh water strains for growth in brackish or saline water, and so we 
decided to focus our work on C. vulgaris.
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As a result, in 2008 we assembled a project portfolio using C. vulgaris, 
exploiting the synergy that would develop from connecting a number of small 
projects and otherwise individual researchers with a common single model 
organism. It was clear from the outset that strain improvement based on 
increased lipid production would be challenging. The lipid metabolic pathways 
are well known and have been investigated in plants for improved productivity 
in oil seed crops (1) and in animals for drug discovery (2). But the pathways 
for storage lipid production and metabolism are complicated by the common 
steps involved in production of storage lipids (triacylglycerides [TAGs]) and 
membrane lipids (phospholipids, sulfolipids, and glycolipids). Some successes 
have been reported for altered flux into TAG synthesis in algae through both 
classical selection for mutants resistant (see Chapter 1) to herbicides, which 
block lipid biosynthetic steps (3–4), and, more recently, fluorescence-activated 
cell sorting (FACS) enrichments using the lipid-specific dye Nile Red (5). 
Strain improvements based on genetic engineering of algae had been attempted 
during the aquatic species program (6), which saw successful overexpression 
of the ACCase gene but no increases in lipid production. In the past two years, 
several papers have been published describing alteration of specific gene 
expression levels with mixed success at improving lipid production in Chlam-
ydomonas reinhardtii (7–8) and unpublished reports indicate that further 
improvements are in hand, but it is widely recognized that C. reinhardtii is not 
sufficiently robust to serve as a production strain. And so we have been 
encouraged to pursue this path in a strain that begins with better production 
characteristics.

8.1  ANALYSIS OF ALGAL BIOMASS COMPOSITION

8.1.1  Defining the Parameters of an “Ideal” Strain

A techno-economic analysis of the biofuels production process made it clear 
that overall lipid productivity of the algal production strain is intricately linked 
with the economics of the production process (9). A sensitivity analysis of the 
techno-economic model of microalgae for fuel production showed that dou-
bling and halving the lipid content of the algae used caused a $4 decrease and 
an $8 increase, respectively, around the benchmark of $9.64 per gallon of 
biofuel. This analysis reveals lipid content as the most important determinant 
of the algal biofuels process economics, followed closely by biomass produc-
tion and growth rate of the algae (9). Furthermore, the lipid content and 
composition of algae has been one of the challenges, but also drivers for 
process development and accelerated algal biofuels research in the past couple 
of years (10). In light of these economic implications, it is necessary to have 
an accurate, objective measure of lipids in algae. In addition to having an 
accurate lipid content determination, there is also an emphasis on obtaining 
this measure rapidly, in a high-throughput manner to enable screening of a 
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large number of strains (see Chapter 5). Besides lipids, algal biomass also 
contains proteins and carbohydrates, and the ratio and composition of these 
compounds will further determine the fate of the residual algal biomass after 
the lipids have been extracted, which can play a significant role in the overall 
process, perhaps even drive the development of alternative uses for the resid-
ual algal biomass; for example, high fermentable sugar content of the residue 
could be converted into fuel ethanol.

8.1.2  Tool Development for the Analysis of Growth and Lipid Production

A robust tool for measuring lipid in algae has to provide an accurate, precise, 
and reproducible measure of total lipids and preferably can be carried out on 
a small scale (in the mg of biomass range, requiring milliliter volumes of 
culture rather than liter volumes). The tool also has to be species agnostic, in 
that the measurement cannot be dependent on the algae type subjected to the 
analysis; for example, susceptibility of the method to cell wall permeability is 
unacceptable. A survey of the literature indicates a wide range in reported 
lipid contents, which can be traced back to a vague definition of lipids and the 
inherent variability of the lipid content in algae throughout the growth phase 
of a culture.

It is well known that physiological conditions will influence the composition 
and the total lipid content of algae. Lipid content and fatty acid (FA) composi-
tion vary considerably during the growth cycle. Algal lipids from cultures that 
are in the exponential growth phase consist mainly of polar lipids, such as 
phospho- and glycolipids, which make up the cell organelle and photosynthetic 
membranes. In many algal species, an increase in TAGs is observed during the 
stationary phase. For example, in the chlorophyte Parietochloris incise, TAGs 
increased from 43% (of the total FAs) in the logarithmic phase to 77% in the 
stationary phase (11), and in the marine dinoflagellate Gymnodinium sp., the 
relative amount of TAGs increased from 8% during the logarithmic growth 
phase to 30% during the stationary phase.

In the context of quantification of lipids, this variation in lipid composition 
over the culture’s growth period leads back to the problem with the definition 
of lipids as molecules more soluble in organic solvents than in water (12). In 
agreement with this definition, traditional lipid quantification is based on the 
gravimetric solvent extraction yield. However, the wide variety of extraction 
procedures and solvents used has led to the inconsistent lipid yields reported 
in the literature and industry, primarily because of the lack of a standard lipid 
quantification procedure, differences in compatibility of the polarity of the 
solvents chosen and the polarity of the lipid molecules present and accessibil-
ity of the lipids to solvent penetration. Inevitably, the extractable oil fraction 
will contain nonfuel components (e.g., chlorophyll, pigments, proteins, and 
hydrophobic carbohydrates), and thus it is necessary to assess the fuel fraction 
of these isolated oils (i.e., FA content of extracted lipids). This variability leads 
to the question of how one confirms actual improvements in particular strain 
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development programs. For example, is an observed 15% increase in extracted 
lipids translated in an increase in the fuel potential of the algae strain or an 
artifact of the measurement process? Is this difference smaller than the preci-
sion of the measurement methodology?

An alternative measure of the lipid content in algae is a whole biomass trans-
esterification procedure. This method performs simultaneous hydrolysis and 
transmethylation of lipids in whole algal biomass and the resulting FA methyl 
esters are quantified by gas chromatography (GC; a typical chromatogram is 
shown in Figure 8.1). Since FAs make up the direct feedstock for lipid-based 
biofuels, an accurate measure of the total FA content is a better metric than 
through the process of lipid extraction. Of course, this ignores the constraints of 
the conversion process. Biodiesel production (based on alkaline NaOH− cata-
lyzed transesterification of TAGs) has a low tolerance for polar lipids and free 
FAs. Catalytic hydrogenation to produce renewable diesel, jet fuel, or gasoline, 
has not been explored to that extent, and process constraints are not well estab-
lished. Free FAs, in addition to TAGs, appear to be an acceptable feedstock. It 
seems likely that the refining industry, which has successfully addressed the 
challenges of changing petroleum feedstocks (light crude, high sulfur crude, 
heavy crudes, tar sands, etc.), will be able to also make use of polar lipids despite 
the inclusion of contaminating elements such as N, P, and S. The pivotal point in 
developing robust conversion processes will be the demonstrated ability to 
produce algal lipids in quantities consistent with the refining industry scale.

FIGURE 8.1.  A typical FAME fingerprint chromatogram of Chlorella vulgaris 
UTEX395. The identification of the peaks is based on mass spectrometry (GC-MS) to 
identify the peaks. The designations C13 through C23 indicate the acyl chain length of 
the FAME; tridecanoate and tricosanoate methyl ester (C13 IS and C23 IS) were 
included as quantitative internal standards.
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The use of an in situ transesterification procedure is already being used in 
the algae research community (13–14); however, the choice of catalyst varies 
and detailed description of the methodology is often lacking. These issues may 
hinder the adoption of this method as a standard procedure. The methods 
published typically have used a two-stage alkaline hydrolysis with NaOMe 
followed by an acid (BF3) transmethylation of the fatty acyl chains and detec-
tion by GC; however, a detailed study of the parameters influencing the con-
version efficiency was not reported. Recent work has yielded a simple one-stage 
acid hydrolysis (HCl) method for in situ transesterification and reports on a 
detailed description of the method, its influencing parameters and a direct 
comparison with the two-stage NaOMe : BF3 procedure (15). This procedure 
was demonstrated to be robust across species; it is reproducible (with less than 
3% relative variation between replicate measurements); and its efficacy is not 
dependent on the parameters listed above that influence an extraction process. 
This method can be adopted across algal strains, requires a small amount of 
biomass (4–7 mg, achievable in shake flask cultures), is accurate, reproducible, 
and precise, and can be applied in a rapid high-throughput manner to a large 
number of strains.

There is a continuing demand for higher-throughput analysis methodolo-
gies (see Chapter 5) to support research efforts to engineer or select superior 
algal strains as improved bioenergy feedstocks. These research efforts often 
require screening a large number of strains to identify one that accumulates 
high levels of desirable triglyceride lipids. Traditional analysis using chroma-
tography methods are currently the bottleneck in such screening efforts. The 
number of samples in a typical screen can exceed several hundred, and it is 
not feasible to generate this amount of data using traditional analytical meth-
odologies. This means that rich sources of biodiversity such as those included 
in large culture collections may be leveraged for the selection of superior 
bioenergy feedstock strains.

Fluorescent lipophilic dyes, such as Nile Red and BODIPY (4,4-difluoro-
1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene), can be used for lipid 
visualization and strain screening because of their selective affinity for neutral 
lipid droplets inside the cells (16). However, a major disadvantage of the dye-
based assays is that they are affected by uneven dye uptake due to the inherent 
variability of different strains of algae and their cell wall composition, which 
can be affected by growth conditions (17).

One technology that is able to address the issue of a comprehensive screen-
ing of a large number of samples is vibrational spectroscopy (in particular 
infrared [IR] spectroscopy) and can be applied to monitor the biochemical 
composition of algae over time. IR spectroscopy measures the absorption of 
energy in the IR region of the spectrum by chemical bonds in molecules. 
Changes in mid-IR spectra for biomass harvested from cultures at different 
time during the growth are shown in Figure 8.3. Because of the broad over-
tones of IR spectra, particularly in the near-IR spectra, the quantification of 
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constituents heavily relies on the use of chemometrics, that is, multivariate 
calibration models. The advantage of IR spectroscopy is its tolerance to varia-
tion in the samples; spectral absorbance due to nonlipid components of the 
biomass can be subtracted in multivariate calibration models. IR spectroscopy 
also requires minimal sample preparation, is nondestructive, and is relatively 
independent of the biomass matrix. Overall, IR spectroscopy can be applied 
as a fast, accurate, and nondestructive analytical method that requires only 
very small amounts of homogenized biomass (∼10 mg) using a 96-well plate 
setup. Calibration models have been developed that can be used as rapid high-
throughput methods for the estimation of algal lipid content (18). Using the 
IR spectroscopic methods, algal lipid content of almost any algal species can 
be measured in a matter of minutes rather than days. Calibration models have 
been generated for single species as well as for multiple species combined, 
where the infrared spectra are correlated with lipid content. The main chal-
lenge with IR-based prediction of lipids is to have a good quality calibration 
model, which in turn depends on robust chemical data of a large set of “cali-
bration samples.” These prediction models can then be used to predict the lipid 
content in new, unknown samples.

8.1.3  Selection and Characterization of a Promising C. vulgaris Strain

The tools described above were applied to a set of 10 C. vulgaris strains avail-
able from the University of Texas (UTEX) culture collection in order to 
rapidly select and develop a high lipid-producing new algae lab strain. In order 
to move forward with a strain that has desirable parameters as a model pro-
duction strain, we measured the growth rate and the lipid content of all 10 
strains, grown under synchronized conditions. In order to rank the strains with 
regard to lipid and biomass productivity, growth experiments were set up in 
both nutrient replete and deplete media (in this case deplete refers to the lack 
of nitrate in the growth media). The biomass was collected from cultures after 
10 days of growth in replete [+N] media, followed by 5 days of growth in 
deplete [-N] media. The growth of the cultures was measured as volumetric 
cell number since this is the most accurate measure of growth compared with 
measuring optical density. Lipid content is still expressed on a biomass basis, 
which still reflects the ultimate measure of productivity of a production system, 
and the data can feed directly into existing techno-economic models. For lipid 
quantification, the in situ transesterification method was used to avoid the 
inherent inaccuracies of gravimetric analysis of extracted lipids (15). Of the 
strains investigated, the UTEX395 C. vulgaris outperformed its competitors’ 
growth rate and lipid productivity. The lipid content showed the biggest dif-
ference between the replete and deplete conditions: a 3.5-fold increase com-
pared with a 1.7–2.3-fold increase seen for the other C. vulgaris strains. These 
data allowed us to conclude that UTEX395 had the most potential to be a 
production-relevant model organism; high growth rates corresponded with 
high lipid content and a potential to engineer metabolism to take advantage 
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of the big lipid content increases observed between replete and deplete growth 
conditions. This strain was then selected to move forward for further detailed 
investigation of the lipid productivity over the growth period. A study of the 
lipid content during the growth of UTEX395 under both replete and deplete 
conditions is shown in Figure 8.2. The data indicate exponential growth in 
replete media with a relatively low lipid content (<10%) until day 5, where 
the growth slows down and the lipid content of the harvested biomass increases 
to 20% and ultimately the lipid content after 10 days in replete media increases 
up to 35%. In deplete media the growth rate of the culture drops off dramati-
cally at day 3 and the lipid content increases rapidly over subsequent days to 
close to 60% of the biomass dry weight (Figure 8.2).

The changes observed in overall lipid content over the growth of a culture 
reflect a significant shift in the biochemical composition of the biomass. In 
addition to building calibration models with IR spectroscopy, one can also 
observe overall biochemical changes in the biomass composition. Figure 8.3 
illustrates the changes observed in mid-IR spectra over the course of the 
growth of a culture. Regions of the spectrum corresponding to carbohydrates, 
lipids, and proteins are highlighted and indicate considerable changes over the 
growth of the culture. The information present in the spectra can be used for 
building accurate calibration models to rapidly predict the concentration of 

FIGURE 8.2.  Growth of C. vulgaris (as measured cell density per mL of culture, closed 
symbols) and lipid content (FAME %dw as open symbols) over time in both a nitrate-
replete (circles connected by solid line) and a nitrate-deplete (triangles connected by 
dashed line) culturing conditions.

0
10

20
30

40
50

60
F

A
M

E
 (

%
 D

W
)

0e
+

00
2e

+
08

4e
+

08
6e

+
08

8e
+

08
1e

+
09

C
el

ls
/m

L

0
Time (days)

FAME [+N]
FAME [-N]
Cells [+N]
Cells [-N]

10987654321



210	 COMPLEX SYSTEM ENGINEERING

lipids in algal biomass. This technology has the potential to rapidly increase 
the throughput of analyses and strain development discussed later.

8.2  DEVELOPMENT OF HYPOTHESIS-DRIVEN STRAIN  
IMPROVEMENT STRATEGIES

8.2.1  Systems Biology Analysis in an Unsequenced Microalga

Following downselection to a single algal cultivar (UTEX395), we next sought 
to utilize systems biology approaches to identify targets for strain improve-
ment strategies aimed at optimization of lipid productivity. Systems biology, 
or “omics” analyses (see Chapter 3), such as comparative transcriptomics 
(RNA-seq) and proteomics, offer valuable platforms for the development of 
hypothesis-driven metabolic engineering strategies through the elucidation of 
key biosynthetic components involved in algal lipid production. However, 
these analyses are highly dependent on available genomic sequence data. 
Obtaining such genomic sequence data can often be cost-prohibitive, and 
efficient assembly and bioinformatics analysis of such data can be extremely 
time and labor-intensive. As such, many promising strains of potential 
commercial-relevance remain relatively unexplored, with most systems analy-
sis to date largely focused upon established model organisms (19). While such 
model systems offer valuable insight into general algal biology, they may fail 
to present appropriate models for elucidation of the molecular underpinnings 
of high lipid productivity in oleaginous microalgae. For example, the model 
organism C. reinhardtii, which has served as the platform for the majority of 
fundamental microalgal research due to its well-established laboratory cultiva-
tion and genetic transformation systems, only produces ∼20% lipid on a dry-
cell weight (dcw) basis under nitrogen deprivation (13). By comparison, the 

FIGURE 8.3.  Illustration of changing mid-infrared fingerprints of algal biomass over 
the course of 3 weeks of growth and 2 weeks of nitrogen starvation (for lipid induction) 
(a). The region corresponding to lipids is shown in close-up, indicating significant 
increases over time (b).
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unsequenced, oleaginous microalga C. vulgaris (UTEX395) produces ∼60% 
dcw lipid under similar wild-type conditions (Figure 8.2).

As discussed in Chapter 3, transcriptomic analysis allows for expression 
profiling of mRNAs present in a given cell population under varying growth 
conditions. Comparative RNA-seq analyses under varying growth conditions 
can thus implicate genes and gene sets (gene set enrichment analysis) respon-
sible for phenotypes of interest. In this case study, the phenotype of interest 
is the high lipid accumulation observed in C. vulgaris UTEX395 under nitro-
gen limitation. Although traditional transcriptome assembly is performed 
through mapping of short sequence reads to a complete genome, emerging 
technologies now allow for de novo assembly of short cDNA sequence reads 
in the absence of available genome information. We took advantage of these 
technologies, utilizing the Velvet and Oases software packages to assemble the 
short reads obtained via Illumina sequencing (20,21). Assembly of a C. vulgaris 
transcriptome will ultimately allow for mRNA expression profiling, although 
methods for accurate transcript quantitation in the absence of a genome 
require further development (discussed below). More immediately, however, 
we sought to utilize the assembled transcriptome for a less obvious purpose, 
proteomic analysis.

8.2.2  Transcriptome-to-Proteome Pipelining

Although transcriptomic analysis offers a great deal of insight into the genetic 
control of product formation, it does not fully define this regulation, as mRNA 
expression levels are not always proportional to the expressional levels of 
protein for which they code. Additionally, higher plant and algal metabolic 
regulation has been shown to be largely influenced by post-transcriptional 
gene regulation (22–27). As such, proteomic analysis is a critical complemen-
tary tool in the successful strain engineering of a commercially relevant ole-
aginous microalga. However, proteomic analysis of unsequenced microalgae 
(and unsequenced organisms in general) is challenging, largely due to the low 
peptide identification rates associated with orthologous database searching 
(19). Proteomic analysis using orthologous sequence databases requires nearly 
identical mass/charge values (±1–2 Da) between the search database peptides 
and peptides of interest in order to match an equivalent mass/charge ratio  
of statistical significance and avoid the production of unmanageably large 
result databases of questionable reliability. As such, a single amino acid dif-
ferential between a search model sequence and a peptide fragment sequence 
of interest can result in a failure to produce a statistically significant match, 
leaving significant gaps in protein identification (19). We bypassed the  
necessity for genomic sequence data by moving directly from the de novo 
transcriptomic assembly discussed above, to proteomic analysis using the 
resultant assembled transcriptome as a search database (Figure 8.4). Through 
six-frame translation, transcriptome sequence data can be matched to mass 
spectral peptide data, offering a powerful proteomic database. This strategy is 
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advantageous in that it meets the stringent requirements for sequence  
accuracy of translated gene sequences needed for whole organism shotgun 
tandem mass spectrometry (MS/MS) approaches. Additionally, utilization of a 
transcriptome-to-proteome pipeline allows the coupling of gene and protein 
annotation, again allowing for increased throughput in systems data analysis. 
As discussed below, the utilization of a transcriptome-to-proteome pipeline 
dramatically enhanced our proteomics results.

We utilized the lipid content of our chosen model strain as the basis for 
comparative proteomic analysis. Lipid accumulation throughout the growth 
cycle was examined using the FAME analysis tools described above (Figure 
8.2), and was utilized to select optimal harvest points for comparative pro-
teomics. Cells were harvested under both nitrogen replete (low lipid) and 
nitrogen deplete (high lipid) conditions, and soluble protein fractions from 
whole cell lysates were obtained for samples corresponding to 10% and 60% 
FAME. Proteomic analysis was performed using gel-based liquid chromatog-
raphy mass spectrometry (GeLC/MS). Product ion data were searched against 
both Chlorophyta (all available green algal genome sequences, which at present 
consists of C. reinhardtii, Ostreococcus sp., Coccomyxa sp. C-169, Micromonas 
pusilla, Volvox carteri, and Chlorella sp. NC64A) and a six-frame translated 
de novo assembled C. vulgaris transcriptome database. In order to utilize the 
C. vulgaris transcriptome in this capacity, we developed a pipeline of in-house 
Python and Awk scripts in order to annotate the transcriptome using basic 
local alignment search tool (BLAST) (blastn) results, and to properly format 
the resultant annotated transcriptome for use in Mascot, which allows for six-
frame translation and database interrogation (28). Each transcript isoform in 
the assembled transcriptome was annotated using the fasta header of the best 
blastn hit, which in turn was utilized to annotate positive MS/MS peptide 
identifications. The numbers of proteins, matching spectra, unique peptides, 
mean and median spectra/protein, and mean and median unique peptides/

FIGURE 8.4.  Workflow for de novo transcriptome assembly and comparative pro-
teomic analyses in an unsequenced organism. Adapted from Reference 19.
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protein all increased approximately twofold using the de novo assembled C. 
vulgaris transcriptome compared with the Chlorophyta database, clearly indic-
ative of a superior search database (Table 8.1).

Further underscoring the advantages of a transcriptome-to-proteome pipe-
line, the utilization of the C. vulgaris transcriptome database identified a 
number of proteins along the central metabolic pathways that were initially 
absent from the data obtained using only Chlorophyta sequence databases. 
Many of the proteins in this newly identified dataset play critical roles in FA 
and TAG biosynthesis. A schematic of the enzymatic components involved in 
FA and TAG biosynthesis is shown in Figure 8.5. Although orthologous search-
ing identified only three enzymatic components of the FA biosynthetic pathway, 
and none of the TAG enzymatic components, utilization of the C. vulgaris 
transcriptome as a search database allowed us to identify the enzymatic com-
ponents of the FA and TAG biosynthetic pathways in their entirety (Figure 
8.5). We examined changes in spectral counts (indicative of protein abun-
dance) for the components of the FA and TAG biosynthetic pathways under 
nitrogen-replete and nitrogen-deplete conditions. Components of the FA bio-
synthetic pathways demonstrated relatively minor changes in abundance 
(approximately one- to twofold) (Figure 8.5). Conversely, the change in protein 
abundance for the TAG biosynthetic pathway was far more pronounced, one 
to two orders of magnitude greater than those observed in the FA biosynthetic 
pathway (Figure 8.5).

Our results demonstrate the necessity for accurate sequence information 
in proteomic analysis, and more importantly, the utility of a de novo assembled 
transcriptome as a search model for proteomic analysis of unsequenced micro-
algae. Bypassing the necessity for genomic sequence data avoids the time- and 
cost-prohibitive nature of complete genome assembly and annotation. A 
transcriptome-to-proteome pipeline narrows sequence data down to just 
coding sequences, avoiding intronic regions and thus allowing for more rapid 
assembly and interpretation of sequence data using readily available RNA-seq 

TABLE 8.1.  Improved Database Interrogation Using a De Novo Assembled 
Transcriptome. Adapted from Reference 19

MS/MS Data Acquisition (Average  
for Both N-replete and N-deplete)

All Chlorophyta 
Genomes

C. vulgaris 
Transcriptome

No. of proteins 2,061 2,949
No. of matching spectra 25,638 64,923
No. of unique peptides 7,831 30,543
Mean spectra/protein 17 26.7
Median spectra/protein 9 16
Mean unique peptides/protein 5.2 12.6
Median unique peptides/protein 5 9



FIGURE 8.5.  Improved pathway identification using a de novo assembled transcrip-
tome database and changes in protein abundance under nitrogen depletion. (A) Criti-
cal components of the fatty acid and triacylglycerol (TAG) biosynthetic pathways were 
absent from initial MS/MS searches against all available Chlorophyta databases. All 
proteins were absent from initial MS/MS identification, except for AMPK, ACCase, 
and ENR, yet positively identified when searching against the C. vulgaris transcriptome 
database. Numbers below proteins represent normalized spectral abundance factor 
(NSAF) values (105) for nitrogen-replete and nitrogen-deplete conditions, respectively. 
ACCase, acetyl-CoA carboxylase; ACP, acyl carrier protein; AMPK, AMP-activated 
kinase; DAGK, diacylglycerol kinase; DGAT, diacylglycerol acyltransferase; DHAP, 
dihydroxyacetone phosphate; ENR, enoyl-ACP reductase; FATP, fatty acyl-ACP thioes-
terase (putative); G3PDH, glycerol-3-phosphate dehydrogenase; GPAT, glycerol-3-
phosphate acyltransferase; HD, 3-hydroxyacyl-ACP dehydratase; KAR, 3-ketoacyl-ACP 
reductase; KAS, 3-ketoacyl-ACP synthase; LPAAT, lyso-phosphatidic acid acyltrans-
ferase; LPAT, lyso-phosphatidylcholine acyltransferase; MAT, malonyl-CoA : ACP 
transacylase; PAP, phosphatidic acid phosphatase. (B) Corresponding spectral count 
fold-changes for components of the FA (left panel) and TAG (right panel) biosynthetic 
components. Reproduced from Reference 19.

A

B

214



Hypothesis-Driven Strain Improvement Strategies � 215

software. In turn, it provides a platform on which to perform systems biology 
analyses in unsequenced, “nonmodel” organisms, leading to the identification 
of strain engineering targets in organisms of commercial relevance.

Although transcriptome-to-proteome pipelining offers a number of advan-
tages, it does have limitations. Incomplete sequence data potentially limits the 
identification of promoters, coding start and stop sites, and stretches of internal 
coding sequences (largely an artifact of current NextGen sequencing plat-
forms), all of which are critical for the development of transformation methods 
(discussed in the following section). In addition, incompletely assembled tran-
scripts (an artifact of current assembler tools) constrain annotation, limiting 
positive protein matches. Likewise, transcripts that are temporally expressed 
may not be identified under certain harvest conditions, and in turn will not 
yield a positive protein hit. Small regulatory RNAs (such as micro-RNAs) may 
also be absent under certain harvest conditions, and are frequently discarded 
by currently available de novo assembler programs. However, it is worth 
noting that with the rapid pace at which next generation sequencing tools are 
advancing, these limitations are likely to be minimized soon. Regardless, 
transcriptome-to-proteome pipelining offers a rapid, effective tool for identi-
fying strain engineering targets in organisms for which a genome sequence is 
lacking.

8.2.3  Identification of Strain Engineering Targets

The dramatic protein abundance differential between FA biosynthetic and 
TAG biosynthetic components may imply that TAG biosynthesis plays a sig-
nificant role in the rate-limiting production of neutral lipids, suggesting that 
future studies aimed at strain improvement might be focused on overexpres-
sion of TAG biosynthetic components. Although all proteins in this pathway 
were greatly increased in abundance following nitrogen starvation, the largest 
increase was observed for diacylglycerol acyltransferase (DGAT), the enzyme 
responsible for committed entry into TAG biosynthesis, with greater than 100-
fold spectral count increase, making this an attractive target for engineering 
strategies (Figure 8.5). Indeed, overexpression of DGAT in higher plants has 
already been shown to increase TAG accumulation, indirectly validating this 
hypothesis (29,30).

Committed entry into FA biosynthesis is also of interest, as it may be an 
upstream bottleneck of neutral lipid synthesis. acetyl-CoA carboxylase 
(ACCase) governs entry into FA biosynthesis, and early algal strain engineer-
ing strategies from the ASP targeted this enzyme for expression (although no 
increase in lipid accumulation was observed). Interestingly, AMPK, an ACCase 
inhibitor, was downregulated under high lipid-producing conditions (Figure 
8.5). This lends potential insight into the regulation of FA synthesis through 
rate-limiting ACCase activity. It is possible that AMPK plays a critical role in 
driving the equilibrium between acetyl-CoA and malonyl-CoA in the reverse 
direction, ultimately slowing the rate of FA biosynthesis and increasing the 
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rates of FA beta-oxidation. The activity of AMPK under nitrogen-replete and 
nitrogen-deplete conditions warrants further investigation, and also presents 
a potential strain engineering target. FA and TAG targets, however, represent 
just some of the many proteins identified with extreme differential abundance. 
As data analysis progresses, we will generate a number of additional targets 
from less obvious pathways.

Beyond target identification, utilization of the C. vulgaris transcriptome also 
allowed for identification and differentiation of protein isoforms. Homomeric 
and heteromeric ACCase isoforms, as well as multiple ketoacyl-ACP synthase 
(KAS) isoforms, were identified during the annotation stage. Isoform differ-
entiation can have a dramatic impact on strain engineering strategies. For 
example, it has been suggested that overexpression of cytosolic homomeric 
ACCase, coupled with plastidial sub-cellular localization, as opposed to over-
expression of the more complex, multi-subunit heteromeric plastidial isoform, 
may be a simpler and more efficient means to increase FA content in oleagi-
nous organisms (31). Targeted strain improvement efforts and complete 
pathway analyses will thus be greatly facilitated by the isoform identification 
and maximal identification coverage that a de novo assembled transcriptome 
search database affords.

We have focused our initial investigation of differential protein expression 
upon dramatically different lipid accumulation states (see Figure 8.2) in 
N-replete and deplete C. vulgaris. These analyses indicate that the FA and 
TAG biosynthetic pathways are upregulated under nitrogen limitation, espe-
cially for the case of TAG components. We hypothesize that future analyses 
using intermediate harvest points will lead to a less pronounced differential 
between FA and TAG biosynthetic components, with an increased abundance 
of FA components and a decreased abundance of TAG components prior to 
nitrogen exhaustion. Future analyses will therefore be focused on intermedi-
ate time points for accumulation, which will allow for abundance mapping 
throughout the lipid accumulation cycle and help clarify the rates of TAG 
biosynthetic component expression. Concurrently, quantitative analyses of 
TAG and TAG biosynthetic intermediates, such as phosphatidic acid and dia-
cylglycerides, will lend further insight into the flux through the TAG pathway, 
as well as temporal regulation throughout the lipid accumulation cycle. Data 
from intermediate accumulation states will also likely provide a wealth of 
additional information with regard to the stages at which gene and protein 
expression are initiated. However, a more complete, integrated systems biology 
analysis, incorporating transcriptomic, proteomic, and metabolomic data will 
be necessary to fully elucidate potential flux bottlenecks in the FA and TAG 
pathways. At present the most effective means of quantifying RNA-seq data 
in the absence of a genome is analyzing reads per kilobase of exon model per 
million mapped reads (RPKM). Efforts are currently under way to improve 
this methodology, as expression profiling will be an essential component in 
downselection of targets. As mentioned above, we have focused our initial 
investigation on the most obvious pathways of interest, namely the FA and 
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TAG biosynthesis pathways. However, initial results also suggest that dramatic 
changes in protein abundance are occurring in other central metabolic path-
ways, transcription factors, lipases, translation machinery, and many other 
factors, all of which may ultimately prove to be key targets for strain manipula-
tion. Iterative compositional analysis, using the near-infrared (NIR) methods 
discussed in Section 8.1.2, will allow for high-throughput assessment and vali-
dation of genetic manipulation of these targets (discussed below) and resultant 
product formation.

8.3  IMPLEMENTATION OF BIOLOGICAL TOOLS I— 
DEVELOPMENT OF A TRANSFORMATION SYSTEM

With a number of promising strain improvement targets identified, we next 
sought to develop an effective transformation system to initiate our hypothesis-
driven strain improvement strategies. As discussed above, meeting the eco-
nomic goals of biodiesel production requires optimization of many complex 
phenotypes in algal strains, including growth rates, lipid production and accu-
mulation capacity, and contamination control. Genetic engineering offers not 
only the means to manipulate a strain by introducing, removing, or modifying 
DNA, which results in new or more desired phenotypes, but also the means 
to test or confirm a hypothesis derived from advanced genomic studies, such 
as transcriptomics or proteomics. A tremendous amount of data have been 
generated using transcriptomics and proteomics on our model microalga,  
C. vulgaris UTEX395, in our laboratory. Expression of numerous genes in the 
lipid and FA pathways was found to be significantly upregulated or downregu-
lated under nitrate starvation (19). This information provides valuable insight 
into the regulation mechanisms of lipid synthesis, and these genes can be 
further used as targets for modification to improve the pathways. In any case, 
capability to transform C. vulgaris is a crucial part of genetic engineering in 
our microalgae projects. Although several publications have reported success-
ful genetic transformation in Chlorella spp. (32–40), these methods tend to be 
strain specific and in many cases the results are not reproducible. In order to 
fully utilize the information obtained from our transcriptomic and proteomic 
studies and to modify our model strain, C. vulgaris UTEX395, for desired 
characteristics using genetic engineering, we initiated the development of an 
efficient transformation system in this microalga.

8.3.1  Vector Construction

To assemble a vector for efficient transformation, several elements need to be 
considered. Typically, antibiotic resistance is used as selection for the transfor-
mants. We have tested the sensitivity of UTEX395 to a few antibiotics. The 
results indicated that UTEX395 is highly sensitive to phleomycin, zeocin, and 
G418, and moderately sensitive to paromomycin and hygromycin. Therefore, 



218	 COMPLEX SYSTEM ENGINEERING

genes conferring resistance to the mentioned antibiotics (sh ble, nptII, aphVIII, 
and hph) may be incorporated in the vectors. Promoters are important ele-
ments for vector construction and a subject area that will be discussed further 
below. In the initial vector construction for transformation development, we 
used a Chlorella viral promoter, AMTp (adenine methyltransferase (41)) for 
the expression of ble and the promoter of C. vulgaris nitrate reductase gene 
for the expression of egfp (42). Terminator sequences used were of HSP70 
(heat shock protein) and nitrate reductase genes, respectively, from C. vulgaris. 
It has been noted that codon optimization can be prudent for the expression 
of genes in some algae (43,44). We have taken this into account and optimized 
the genes of interest (ble and egfp) based on the known Chlorella codon usage 
table when constructing our vectors.

8.3.2  Protoplast Preparation and Transformation of C. vulgaris UTEX395

A variety of methods have been employed for Chlorella transformation. These 
methods include electroporation, microprojectile bombardment, glass bead 
agitation, and protoplast transformation (45). One of the major barriers to 
transformation is the resilient cell wall structure of Chlorella, which makes 
DNA penetration into the cells more difficult (45,46). To overcome this chal-
lenge, much effort was undertaken for the protoplast formation in UTEX395 
to ensure the uptake of DNA. Protoplast generation was achieved by treat
ing the cells with cell wall-degrading enzymes, cellulase, acromopeptidase,  
and macerozyme (47). Multiple transformation protocols (35,39,48,49) were 
adopted and modified into the current protocol for UTEX395. Enzyme-treated 
protoplasts of UTEX395 were incubated with the vector DNA in polyethylene 
glycol (PEG) and lithium acetate followed by addition of dimethyl sulfoxide 
(DMSO) and a heat shock at 42°C. Transformed cells were mixed with soft 
agar (0.75%) and plated on agar medium plates containing the antibiotic 
phleomycin. Treatment with cell wall-degrading enzymes followed by heat 
shock enhanced the transformation efficiency by at least 10-fold relative to 
the untreated, intact cells (Figure 8.6A). Successful transformation was con-
firmed by polymerase chain reaction (PCR) using genomic DNA (gDNA) of 
the transformants and primers specific to ble (Figure 8.6B). Furthermore, 
expression of ble in the transformants was demonstrated by quantitative real-
time PCR (qRT-PCR) (data not shown). Transformants exhibited a range of  
ble expression levels up to threefold difference. However, despite the pheno-
typic and genetic evidence for the transformants obtained, we have subse-
quently experienced challenges in the reproducibility of the transformation 
results. Several protoplast transformation experiments were attempted after 
the initial successful transformations; however, to date, we have been unable 
to generate new transformants using the protocol described above. This phe-
nomenon is not uncommon in the area of algal transformation, and many 
factors may be attributed to this irreproducibility (50,51). For example, the 
importance of endogenous promoters for heterologous gene expression was 
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recently demonstrated in the oleaginous alga Nannochloropsis gaditana (51). 
We have taken into account this understanding, and redesigned our plasmids 
to incorporate strong, endogenous promoters from C. vulgaris UTEX395 to 
drive ble expression. We are currently evaluating these vectors using the meth-
odology described above.

8.3.3  Stability Evaluation of Transformants

A second major barrier to a successful transformation is the maintenance of 
the foreign DNA in the genome of the host. Transient expression and instability 
have been observed in Chlorella transformation (33,52), although claims were 
also made with stable transformation and expression of certain foreign proteins 
(35,37). The instability is indicated by the gradual loss of phenotypes during 
subculturing of transformants in the absence of selection pressure. Our group 
views the stability of transformants as an important criterion for a useful trans-
formation. Although we noted above our uncertainty regarding the status of 
the transformants generated by protoplast/PEG transformation, we believe 
that the subsequent steps taken to test their stability are worth describing to 
serve as a guide for others following this path. To test stability, 25 phleomycin-
resistant transformants were cultured in the growth medium without phleomy-
cin for 10 successive transfers followed by scoring the phleomycin-resistant 
population from each transfer. The results indicated that over 60% of the 
transformants were stable for at least 10 transfers (30 generations) in the 

FIGURE 8.6.  (A) Transformants of Chlorella vulgaris. U: untreated cells, 1–3: cell 
wall-degrading enzyme-treated cells. (B) PCR analysis of transformants. +: Vector 
DNA; –: untransformed gDNA; 1, 2: transformants gDNA. (See insert for color repre-
sentation of the figure.)
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absence of the selection pressure, phleomycin. Less than 40% of the transfor-
mants exhibited poor stability. More work is ongoing to study the instability of 
this population.

8.3.4  C. vulgaris Endogenous Promoter Identification 
and Characterization

Establishment of a stable transformation system is a prerequisite for a useful 
genetic tool box. In addition, among the many regulatory factors in microalgae, 
promoters may play an important role in modulating the expression level of 
genes. To modify the metabolic pathways in microalgae using genetic engineer-
ing, availability of inducible promoters or those with different strengths will 
add a great attribute to the tool box. Promoters from a variety of organisms, 
including mammalian cells, diatoms, Chlorella spp., plants, and viruses have 
been demonstrated to be functional for gene expression in Chlorella spp. 
(32,36,38,39,53). Among these studies, viral promoters (e.g., CaMV 35S) 
appear to be the most commonly used, with the exception of nitrate reductase 
promoter from C. vulgaris (36). Due to the complex genetic diversity of Chlo-
rella spp., we thought that transformation and gene expression in C. vulgaris 
UTEX395 would benefit from the use of the endogenous promoters, as dis-
cussed above. Taking advantage of the systems biology data (a combination 
of transcriptomics and proteomics analyses, discussed above) from UTEX395, 
we have identified several genes in the lipid and FA pathways that have ele-
vated or reduced expression due to nitrate starvation. Promoters of those 
genes will be isolated by genome walking techniques (54) and characterized 
using a reporter gene, such as egfp (42) or uidA (55), for their strength. Simi-
larly, constitutive promoters (strong or weak), indicated by the expression 
level of genes, will be of great value to us in the strain improvement of C. 
vulgaris and are in the plan for isolation and further characterization.

8.4  IMPLEMENTATION OF BIOLOGICAL TOOLS II—
DEVELOPMENT OF A SELF-LYSING, OIL-PRODUCING  
ALGA FOR BIOFUELS PRODUCTION

8.4.1  Algal Lipid Extraction

Although the majority of the work presented thus far has focused on “upstream” 
strain improvement strategies, namely strategies to increase oil accumulation, 
it was also important to think ahead to downstream strain engineering strate-
gies focused on product isolation and recovery. Even with highly productive 
strains, many challenges remain in the development of an algal biomass to 
liquid transportation fuel process (56–58). Among these is the challenge of 
extracting the internal oil stores for processing into finished biofuels. Few other 
problems have generated as much interest from the industrial and research 
communities, and numerous approaches have been explored. Many of these 
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methods rely on solvent extraction from intact or mechanically ruptured algal 
cells and, depending on the solvent used, may also require extensive drying, a 
potentially huge cost driver. Solvents such as toluene, hexane, butanol, ethanol, 
methanol, and ionic liquids are being considered (59–62). Depending on a 
number of factors, solvent extraction may not be optimal as microalgae are 
known to have thick, complex, recalcitrant cell walls. Solvents must pass through 
the cell wall, cell membrane, and oil body membrane to interact with the inter-
nal algal oils and then reverse this movement to transport the oils outside the 
cell. In our techno-economic model, we have included a mechanical disruption 
step to facilitate extraction, although it adds both cost and energy demands to 
the overall process (9). Additionally, solvents are usually classified as hazardous 
materials, are expensive, and would require complete recovery and recycling 
to be economically viable. Finally, solvent recycle is poorly understood and life 
cycle analysis suggests that a significant amount of solvent, up to 2 g of hexane 
per kg of biomass treated, will be lost during processing (63).

In an effort to avoid using solvents, alternative methods are being pursued 
that rely on external energy inputs in the form of ultrasound, electromagnetic 
pulses, and physical disruption, or on chemical acid or base treatments 
(59,64,65) to either augment or replace extraction. These methods may be 
costly due to the high energy required to rupture the algal cell walls. In techno-
economic studies, the extraction process has been modeled to be one of the 
top contributors to both the capital equipment costs and operating costs of an 
algal biorefinery process (9,62,66). Therefore, it represents a key opportunity 
for cost reduction. Our entry point into this challenge is to look to the natural 
processes and to take advantage of the biology. Biological systems, having 
been tuned to efficiently overcome entropy over evolutionary time, are typi-
cally simple, specific, and, most importantly, function with the lowest energy 
input required. Thus, an elegant solution with low energy and chemical inputs, 
exemplified by secretion in current fermentation processes, would take advan-
tage of a natural, inducible cellular response. This would require development 
of an industrially relevant, oil-producing algal strain with a complex pheno-
type. Ideally, this means an algal strain capable of high oil production with 
controlled, self-induced cell wall degradation that releases internal organelles, 
oil bodies, under a controlled external stimulus. Our strategy to achieve this 
goal has been to develop an enzyme-based process to facilitate oil release 
(Figure 8.7). An additional benefit is that enzymatic treatment of algal biomass 
would leave the residual algal biomass pretreated in a way that downstream 
processes such as nutrient recycling, anaerobic digestion, thermal depolymer-
ization, or gassification may be more facile. Enzymatic degradation has the 
potential to vastly simplify the harvesting, dewatering, and oil extraction pro-
cesses. We envision a process where algae will be partially dewatered, perhaps 
to 20% solids, then induced for self-lysis by partial cell wall degradation. Oil 
bodies will escape from the cells and can be easily recovered by simply skim-
ming the surface, or using an established emulsion breaking process, or using 
a recycled portion of the algal oil stream for enhanced recovery. To develop 
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an industrial algal strain for use in a process involving an enzymatic degrada-
tion step, a suite of enzymes must be tested for efficient cell wall degradation. 
The relationship of cell wall degradation to the release of oil bodies must be 
determined. Finally, production of the enzymes will need to be established in 
the algal host under inducible promoter control that does not require expen-
sive reagents or conditions to effect an economically viable induction of the 
enzymatic degradation and subsequent oil release.

8.4.2  Algal Cell Wall Complexity and Enzymatic Treatment Effects

Due to the chemical complexity of the polymers involved, and the structural 
complexity of cell wall architecture, there is still a considerable knowledge gap 
concerning accurate and definitive algal cell wall composition for most candi-
date species (67,68). Our approach to deconstructing algal cell walls has been 
to utilize digestive enzymes themselves to derive information about specific 
linkages present in algal cell walls and how those linkages can be exploited to 
promote oil body release. This approach will not necessarily fill in the knowl-
edge gap concerning specific algal cell wall polymers, but enzymes can help 
determine cell wall structure and composition by providing details about spe-
cific glycosidic linkages present. Information gained in this way can then be 
used to figure out how to best break down algal cell walls. A two-pronged strat-
egy was employed to find effective enzymes: examining the impacts on colony 
growth and the impacts on mature cells by tracking increasing permeabilization 
via the entry of a DNA staining dye. An enzyme impacting growth is important 
during formation of the cell wall and if it inhibits growth, one can presume that 

FIGURE 8.7.  Release of internal algal oil bodies by internally or externally applied 
enzymes. (See insert for color representation of the figure.)
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by preventing those specific linkages from forming, the enzyme is preventing a 
mature cell wall from being established and thus those susceptible linkages and 
components are present. For mature cell walls these same enzymes may or may 
not still work because the target glycosidic bonds may now be inaccessible in 
the complex architecture of the mature cell wall. The linkages that were avail-
able to enzymes as the cell wall polymers were first produced may now be 
enclosed in a matrix of other materials or buried deep within the cell wall. We 
used a plate-based assay to determine the effects of various enzymes from dif-
ferent classes on the growth of C. vulgaris UTEX395. By inoculating a dilute 
culture into appropriate nutrient containing soft top-agar and then spotting 
enzymes directly on this top-agar, while the dilute culture is growing, zones of 
inhibition will appear around active enzymes. Table 8.2 describes the effects of 
various enzymes having different classes of enzymatic activity.

Several enzymes, chitinase, sulfatase, β-glucuronidase, pectinase, and lyso-
zyme strongly inhibit growth of C. vulgaris. Cellulase, hemicellulase, and xyla-
nase do not inhibit growth, suggesting a lack of accessible cellulose or 
hemicelluloses such as found in higher plant cell walls. Alginate lyase which 
cleaves β-1-4 mannuronic bonds, also showed no inhibition of growth. We ana-
lyzed some of the more effective growth inhibiting enzymes both singly and in 
combination with lysozyme for their effects on mature, nitrogen-sufficient cells 
in overnight digestions. The cells were then incubated with a DNA staining dye, 
SYTOX green, which only stains compromised, permeable cells. In the absence 
of enzymes, cells were not permeable to the dye and after exposure to various 
enzymatic activities a portion of the population became permeable (Table 8.3).

TABLE 8.2.  Growth Inhibition of C. vulgaris by Various 
Enzyme Classes

Enzyme Inhibition

Alginate lyase No
β-glucuronidase ++
Cellulase No
Chitinase +++
Chitosanase +
Dreiselase No
Hemicellulase No
Hyaluronidase No
Lysozyme +++
Lyticase No
Macerozyme No
Pectinase ++
Pectolyase No
Sulfatase ++
Trypsin +
Xylanase No
Zymolyase No
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The results of the cell permeabilization experiments suggest that a coating 
of chitodextrin (β-1-4 linked N-acetylglucosamine) or peptidoglycan (β-1-4 
linked N-acetylmuramic acid and N-acetylglucosamine)-type material, both 
polymers sensitive to lysozyme, surrounds or otherwise protects many of the 
other polymers from enzymatic attack. It is only after lysozyme strips away or 
damages the outer layer that other enzymes are then able to act on the cell 
wall, causing increased permeabilization. In some cases the results are dra-
matic. Treating C. vulgaris with lysozyme and sulfatase permeabilizes nearly 
100% of the cells, whereas with lysozyme alone, only 12% of the population 
is permeabilized. Sulfatases hydrolyse O- and N-linked sulfate ester bonds, 
suggesting that sulfated polymers are integral to cell wall architecture in C. 
vulgaris. It is also interesting that some enzymes have a large effect on growing 
cells by inhibiting growth yet do not seem to have much effect on permeabiliz-
ing the cell walls of mature cells. As an example, cellulase and lyticase applied 
individually do not have much effect on growth. However, each in combination 
with lysozyme permeabilizes up to 21% and 48% of the C. vulgaris population, 
respectively. These results suggest that algal cell wall sensitivities to enzymatic 
activities change as the cell matures. Perhaps cellulose is synthesized in the 
cell wall at a later maturing stage and is covered by another resistant polymer 
during this process such that cellulase cannot inhibit growth and can only 
attack the embedded cell wall cellulose once it is rendered accessible by 
another enzymatic activity such as lysozyme.

8.4.3  High-Resolution Imaging of Enzymatic Treatment Effects

To further explore the nanoscale architecture of the algal cell wall that may 
underlie these results from enzyme mixture digestions, we employed surface 
characterization by high-resolution imaging. Transmission and scanning elec-
tron microscopy were used to directly visualize the effects of enzymes on algal 
cell walls. The effects of lysozyme on the cell walls of C. vulgaris are dramatic 
and complex. Transmission electron micrographs reveal the complete loss of 
the hair-like fiber layer of the outer wall surface, swelling of the outer layers, 
and a peeling or dissolution of material from the outer cell wall (Figure 

TABLE 8.3.  Percentage of C. vulgaris Population Permeable to SYTOX Green Dye 
after Enzymatic Treatment

Enzyme % Permeable % Permeable + Lysozyme

No enzyme 2.2 —
β-glucuronidase 2.6 54.1
Cellulase 1.2 21.1
Lysozyme 11.9 —
Lyticase 1.09 48.4
Pectinase 1.45 32.7
Sulfatase 1.5 98.8
Trypsin 0.9 29.9
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8.8A,B). At first glance, it seems counterintuitive that a digested cell wall that 
has lost material would appear thicker. In fact, this is typical for a complex, 
compact, layered cell wall to swell significantly as its internal cross-linked 
structure is weakened. Although there is no apparent pitting or other surface 
defects readily observable by scanning electron microscopy (SEM), the same 
amorphous extracellular matrix from degradation of the cell wall is clearly 
apparent (Figure 8.8C,D). This extracellular material appears to derive from 
dislodged outer cell wall layers and is still attached to the cell by fibrous strands. 
More work remains to determine what the key architectural changes are and 
the level of structural disruption that will be required to generate a self-lysing 
phenotype. It is almost certain that the cell wall does not need to be entirely 
digested away to improve oil extraction; however, it may need to be permea-
bilized beyond what is required for a small dye molecule to pass through.

8.4.4  Production Strain Development

As mentioned previously, the growth assays, permeabilization, and surface 
characterization studies do not provide an unambiguous determination of the 

FIGURE 8.8.  TEM and SEM images showing changes in and degradation of C. 
vulgaris cell walls by lysozyme.
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composition of algal cell walls but do provide the critical information on the 
types of linkages present and indicate how to functionally degrade the algal 
cell walls. Using the data from these experiments, a cocktail of enzymatic 
activities for efficient cell wall disruption can be created either from enzymes 
in-hand or through the mining of transcriptomic and proteomic datasets to 
provide sequence data on native enzymes possessing the desired enzymatic 
activity. Native, intracellular cell wall-degrading enzymes needed for cell divi-
sion to partially degrade the algal cell wall have been described (69–71). The 
enzyme screening experiments demonstrated that multiple layers of differing 
cell wall material will need to be degraded. This will require a combination 
of synergistic enzymatic activities. The data suggest that 2–4 different enzy-
matic activities should be sufficient to penetrate or weaken the cell wall suf-
ficiently to enhance lipid extraction. Engineering an algal strain to produce a 
small number of additional enzymes will likely not pose much of a metabolic 
burden.

The final step in effecting an elegant solution to this strategy is the devel-
opment of the production organism. This involves, as discussed above, the 
tightly controlled induction of the relevant enzymes. The genes of interest will 
have to be placed under the appropriate expression controls and stably trans-
formed into the host organism. Transformation of many walled organisms 
requires some level of cell wall permeabilization in order for intact DNA to 
pass through to the nucleus (72). In algae this may be particularly important, 
as algal cell walls are known to be tough and resistant to a wide variety of 
stresses. Additionally, to effectively express cell wall-degrading enzymes in a 
green alga such as C. vulgaris, native expression systems will be required. Of 
critical needs are those that are tightly regulated and have a rapid, specific, 
and effective signal to induce high levels of expression. Inducible promoters 
responding to changes in pH or temperature may be useful but ultimately  
not specific enough. Although engineering controls can be very effective at 
maintaining well-mixed growth conditions, numerous micro-environments 
will still exist in the bends, eddies, CO2 sumps, and other incongruous areas 
of large open ponds. Thus, pH and temperature signals may not be specific 
enough, and addition of an inducing chemical and requisite genetic control 
will be required.

In conclusion, the solutions to difficult hurdles in biological processes,  
such as algae-to-liquid transportation fuels, often require the development of 
complex biological phenotypes and rely on pursuing multiple strategies con-
currently. In the case of the construction of a self-lysing, industrially robust, 
oil-producing algal strain, this is certainly true. Green algae do not enjoy the 
same well-established genetic engineering tools and methods as other organ-
isms, such as E. coli and yeast, yet through focused persistent efforts, success 
can be achieved. As one project seeks to develop reliable transformation 
strategies in green alga, discussed in Section 8.3.2, this project seeks to iden-
tify the appropriate genes to then utilize these systems to achieve internal, 
tightly controlled expression of cell wall-degrading enzymes.
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8.5  CONCLUDING REMARKS

Pursuing a hypothesis-driven strain-improvement program in an unsequenced 
microorganism can present a number of unique challenges. Successfully imple-
menting genetic engineering strategies in such an organism requires a multi-
faceted, yet integrated effort. In the current case study we have presented an 
efficient strategy for the initiation of such efforts. Careful selection of a com-
mercially relevant microorganism is a critical first step. The development of 
compositional analysis tools for selection of ideal strains and validation of 
downstream strain engineering strategies thus served as a platform on which 
to build our program. Once a promising strain was selected, the development 
of a strain engineering toolbox must be rapidly developed and implemented. 
We have demonstrated that an omics pipeline focused on transcriptome-to-
proteome analyses can be applied to generate promising targets for genetic 
and metabolic engineering. We then presented an ongoing strategy for the 
development of a transformation system with which to genetically manipulate 
the targets identified through omics analyses or implement downstream targets 
focused on improved product recovery. These strain development strategies 
are intimately linked, and successful complex phenotype engineering will ulti-
mately rely on utilizing these processes iteratively.
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9
MEIOTIC RECOMBINATION-BASED 
GENOME SHUFFLING OF 
SACCHAROMYCES CEREVISIAE 
AND SCHEFFEROMYCES 
STIPTIS FOR INCREASED 
INHIBITOR TOLERANCE TO 
LIGNOCELLULOSIC  
SUBSTRATE TOXICITY

Dominic Pinel and Vincent J.J. Martin

9.0  INTRODUCTION

With uncertainty in energy security, the rising demand and price for oil and 
gas derived energy, and climate change becoming omnipresent issues in society, 
producing alternative cleaner energy has become an important goal for gov-
ernments, industry, and academia alike (1). In this climate, opportunities exist 
for using lignocellulosic substrates as cleaner and renewable source of sugars 
for bioderived products such as fuels and chemicals via fermentation. The 
proposed merits of bioderived fuels and chemicals from lignocellulosic sub-
strates include reducing atmospheric carbon output, diminishing reliance on 
imports, and adding value to existing agricultural and forestry industries. Using 
waste residues as fermentable sources of sugar alleviates some concerns that 
arise in existing starch-based biofuel production processes. Starch-based 
ethanol, for example, which uses food crops as feedstock, raises concerns about 

Engineering Complex Phenotypes in Industrial Strains, First Edition. Edited by Ranjan Patnaik.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.



234	 MEIOTIC RECOMBINATION-BASED GENOME SHUFFLING

detrimentally affecting food supplies, and has at best a marginal to neutral 
carbon footprint, while currently relying heavily on governmental subsidies 
for industry viability (2). Waste streams from the forestry industry exist as 
by-products of an existing process, and are therefore desirable as fermentation 
feedstocks to add value and make full use of existing resources.

Generally, two barriers exist in the fermentation of lignocellulose-derived 
sugars. First, using plant biomass as a biofuel substrate is technically challeng-
ing due to its recalcitrant and variable nature. Plant material is broken down 
into the three major constituents of cellulose, hemicellulose, and lignin, com-
posed of variable average amounts: 33–51% (w/w), 19–34%, and 21–32%, 
respectively (3,4). Lignocellulosic bioconversion seeks to access the sugars 
contained in these polymers for microbial fermentation to fuels and commod-
ity chemicals, with the most developed processes leading to ethanol produc-
tion. Several pretreatment practices have been developed such as acid 
treatment, steam explosion, and wet oxidation (5), with the aim of separating 
out lignin from hemicellulose, and at least partially disrupting the crystallinity 
of the cellulose. When biomass is broken down through such treatments a 
variety of inhibitory compounds derived from lignin or the breakdown prod-
ucts of the polysaccharides are also released (6). Inhibitors are generally sepa-
rated into the groupings of furans such as 2-furaldehyde (furfural) and 
5-hydroxymethyl-2-furaldehyde (HMF), organic acids such as acetic, formic, 
and levulinic acids, and phenolics such as 4-hydroxybenzoic acid and vanillin 
(7). Other stressors accompany lignocellulosic hydrolysates, such as sulfites, 
high dissolved solids (osmotic pressure), wood extractives, lignosulfonates, 
nutrient limitations, heat, and fermentation product toxicity including ethanol 
(8). The synergistic effects of multiple sources of inhibition have been demon-
strated (6). Furthermore, it is likely that not all sources of inhibition have been 
accounted for in biomass hydrolysates (9). All of these sources of inhibition 
combine to create a toxic environment for any microorganism that might be 
used for the bioconversion of the lignocellulose derived sugars. To circumvent 
costly detoxification of the substrate prior to fermentation, it is desirable to 
discover or create microbial strains that can survive and ferment these sub-
strates despite their inhibitory effects.

Yet another major barrier to the fermentation of lignocellulosic hydroly-
sates is in the capacity of the microorganism to efficiently metabolize all the 
sugars available in the substrate (1). For example, Saccharomyces cerevisiae is 
a robust fermentation biocatalyst traditionally used in the bioethanol industry, 
but it cannot make use of pentose sugars like xylose, which are abundant in 
biomass, and will only ferment hexose sugars to ethanol. The most economi-
cally viable fermentation process would make use of a microorganism that can 
simultaneously ferment all sugars within the substrate to the desired product, 
diminishing production times and infrastructure costs, such as additional fer-
mentors for sequential fermentation by multiple biocatalysts (1).

Both challenges, tolerance to substrate toxicity and total sugar utilization, 
are complex phenotypes to obtain in that their optimum expression requires 
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modulation of multiple genes and metabolic processes. As mentioned, more 
inhibitor-tolerant organisms such as S. cerevisiae are unable to use pentose 
sugars, while pentose-fermenting organisms are generally less tolerant to lig-
nocellulosic substrate toxicity (10). Therefore, generating a suitable biocatalyst 
to ferment lignocellulosic substrates will require either reprogramming metab-
olism to generate pentose fermentation capabilities or increasing stress toler-
ance, or likely a combination of the two. The stress responses of microorganisms 
have been documented through gene expression studies that show they are 
multigenic in nature, leading at times to the differential regulation of approxi-
mately 900 genes (11). A handful of genetic targets that would make rational 
strain manipulation through classical molecular biology techniques plausible, 
such as gene knockouts or upregulation, are difficult to pinpoint, and the 
desired traits may not be possible without addressing large-scale multigenic 
cellular responses. Furthermore, using classical random mutation for strain 
development makes it difficult to affect a large number of mutations in a short 
amount of time, based on the sequential nature of mutational addition inher-
ent in classical strain improvement schemata (see Chapters 1 and 4). Given 
the apparent complexity of developing lignocellulose inhibitor-tolerant traits, 
and the fact that the precise genetic factors involved in tolerance are largely 
unknown, genome shuffling is an attractive technology for developing strains 
that can ferment lignocellulosic substrates effectively.

To this end, a meiotic-based genome shuffling strategy was developed for 
yeast strains to increase tolerance to hardwood spent sulfite liquor (HWSSL) 
(12,13), a by-product of the acid bisulfite pulping process that can contain up 
to 20 g/L xylose and 30 g/L hexoses (14). HWSSL can therefore be used as a 
substrate for ethanol production to add value to the sulfite pulping process 
and to diminish biological oxygen demand resulting from disposing of unfer-
mented SSL. However, HWSSL contains high concentrations of inhibitors 
commonly found in lignocellulosic hydrolysates, such as those mentioned 
above (15,16). It was hypothesized that quickly generating a microbe that 
could overcome HWSSL toxicity would require a strain development technol-
ogy that could combine several mutations into a single genome in order to 
reprogram multigenic stress responses and achieve this complex trait. The 
genome shuffling approaches that were used to address this challenge will be 
discussed throughout this chapter and will serve as case studies of meiotic 
recombination-based genome shuffling (12,13).

9.1  METHODOLOGY

The two methodologies used in this study approach the challenge of HWSSL 
fermentation from different perspectives. The first used the yeast Schefferso-
myces stipitis (13) as a biocatalyst, while the second used the common fermen-
tation yeast S. cerevisiae (12). S. stipitis was chosen because of its natural ability 
to ferment hexose and pentose sugars, and S. cerevisiae was chosen because it 
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is currently the least sensitive microorganism to the types of stress or inhibitors 
found in HWSSL (17). Although S. stipitis is generally more sensitive to 
HWSSL toxicity (10,16), S. cerevisiae populations will also die off after pro-
longed exposure to HWSSL (18).

9.1.1  Meiotic Recombination-Mediated Genome Shuffling

When the biocatalysts of choice are eukaryotic, as is the case with both of the 
above-mentioned studies, it may be possible to manipulate the natural mating 
cycle of the organism to propagate genetic recombination through meiosis, 
between mating parental mutants. The principal theories governing meiotic 
recombination-based genome shuffling are the same as those for protoplast 
fusion-based genome shuffling formats (see Chapter 4). The rationale is to 
create large, diverse populations of mutant strains of a particular organism as 
a pool of genetic diversity for combining beneficial mutations. Here, instead 
of using protoplast fusion to orchestrate recombination, the natural mating 
cycle of an organism is used in a reiterative process. Large populations of 
mutants are manipulated into sexually recombining to evolve individual 
genomes and enhance useful traits that arise from the changing genotypes. 
Theoretically, the natural process by which reiterative mating effects recom-
bination bypasses the potential instability of protoplast generation, fusion, and 
cellular regeneration.

In order to use genome shuffling through meiotic recombination, a shuffling 
methodology had to be implemented for both organisms. S. cerevisiae has a 
well-understood mating cycle. The haploid generation of S. cerevisiae can exist 
in two opposite mating types, MATa and MATα. Haploid S. cerevisiae strains 
will mate under conditions that favorably promote growth of the organism, 
such as growing on rich media like yeast peptone dextrose (YPD). Meiotic 
division and subsequent sporulation can then be carried out by transfer to a 
nitrogen-poor media with a nonpreferred carbon source such as potassium 
acetate. The asci can be disrupted by enzymatic digestion of the cell wall, fol-
lowed by sonication to separate sister spores. This step is crucial for genome 
shuffling in that it is desirable for haploids bearing one genotype to have equal 
opportunity to mate with haploid strains bearing differing genotypes and thus 
maintain the diversity of the mating populations, promoting rare mating events 
that bring together synergistically beneficial mutations. This process can be 
repeated indefinitely to accumulate beneficial mutations while retaining the 
ability to backcross out any deleterious mutations (Figure 9.1). To ascertain 
whether the mating process could be sufficiently manipulated in order to 
engender sexual genetic recombination on large populations, auxotrophic  
S. cerevisiae strains with differing auxotrophies were mated population-wise 
and screened for loss of auxotrophy (Figure 9.2). Four strains of each mating 
type, which were auxotrophic for 3 out of 4 essential nutrients (including 
leucine, histidine, tryptophan, and uracil) due to mutations affecting single 
genes, were mated as depicted in Figure 9.2. The entire population for mating 
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was initially comprised of triple auxotrophs of both mating types, based on 
combinations of permutations for nutritional requirements coupled with one 
wild-type allele. As population mating and haploid regeneration was carried 
out as depicted in Figure 9.2, members of the population recombined to 
contain more than one wild-type allele in their genome, and thus lost auxot-
rophy. If the wild-type alleles are treated as beneficial mutations, it is clear that 
they can be added together into a single genome through this process, with 
complete prototrophy being representative of four combined beneficial muta-
tions. Theoretically, it was hypothesized that because the alleles corresponding 
to auxotrophy, or lack thereof, were on different chromosomes, after two 
rounds of reiterative mating two-wild type alleles could be brought together 
during the first mating event and four during the second, a product of mating 
doubly auxotrophic strains. Indeed, after the first mating round, ∼35% of the 

FIGURE 9.1.  Schematic representation of meiotic recombination-based genome shuf-
fling of S. cerevisiae. First, haploid mutant pools are generated through ultraviolet (UV) 
mutagenesis for each mating type (MATa and MATα). Mutant populations are mated 
on rich media (YPD) to obtain the diploid generation. Diploids are sporulated on 
potassium acetate. Spores are segregated by enzymatic cell wall degradation followed 
by sonication to generate a haploid generation. Haploids are germinated and mated 
on YPD and reiterative mating is carried out.
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population was comprised of double auxotrophs, while two rounds of mating 
led to a small percentage of completely prototrophic strains (∼0.02%), which 
grew to nearly 1% of the population after three rounds. It should be noted 
that no form of population enrichment or selection for decreased auxotrophy 
was used between rounds, which could have led to more accelerated combina-
tion of the surrogate beneficial mutations. Also, these findings did not adhere 
strictly to Mendelian genetic predictions. This was likely due to the different 
growth rates of strains bearing differing auxotrophies (12). Because growth 
occurred during germination and mating, strict Mendelian statistics no longer 
applied. However, if one extrapolates the findings of the mating for loss of 
auxotrophy experiment, with a large and diverse enough population or by 
enriching the mating population between rounds, beneficial mutations can be 
accumulated indefinitely at an exponential rate as rounds of reiterative mating 
progress. If one contrasts this with classical strain improvement, which is 

FIGURE 9.2.  Testing of S. cerevisiae genome shuffling methodology using auxotrophic 
strains. A parental population of haploid strains, which were auxotrophic for 3 of 4 
nutritional requirements, were reiteratively mated using meiotic recombination-based 
genome shuffling. The auxotrophies were based on deletion in single genes (depicted 
by lowercase letters: l for leucine, t for tryptophan, h for histidine, and u for uracil 
auxotrophies). Wild-type alleles are depicted by corresponding uppercase letters. After 
one round of genome shuffling, 35% of the population harbored two wild-type alleles, 
and after two rounds, 0.024% of the screened population showed complete prototro-
phy, or four wild-type alleles. The table (bottom) depicts an extrapolation of the amount 
of beneficial mutations (y-axis) that are possible through multiple rounds of meiotic 
genome shuffling (R1–R6).
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sequentially subjecting a single strain to mutation for iterative improvement 
(see Chapter 1), as genome shuffling progresses it should greatly outpace the 
beneficial mutation accumulation possible in classical mutation-based strain 
development.

A similar mating protocol was developed for S. stipitis, although on a 
smaller scale. One of the issues working with S. stipitis is the insufficient infor-
mation that exists on manipulating its mating cycle. When working with organ-
isms that cannot undergo sexual recombination, or when large-scale population 
mating would be difficult, it is common practice to use reiterative protoplast 
fusion to shuffle genomes (19–25). However, Bajwa et al. (13) were successful 
in establishing a mating protocol for S. stipitis. By mating two auxotrophic 
strains in a similar fashion to that described in Figure 9.1, it was possible to 
combine two wild-type alleles and establish strains with diminished auxotro-
phy. Mating was made possible by spreading S. stipitis cultures on malt extract 
agar, which after incubation led to spore formation as well. Unfortunately, the 
percentage of the population that had combined two wild-type alleles after 
one round of mating was only 0.05% of the population, as opposed to the 
∼35% mark that was attained with S. cerevisiae. This low recombination effi-
ciency suggests that future genome shuffling projects involving S. stipitis might 
benefit from protoplast fusion-based genome shuffling in order to accelerate 
strain evolution.

9.1.2  Inducing Genome Shuffling through Meiosis versus Protoplast Fusion

One of the goals of genome shuffling is to preserve genetic diversity within 
the population to promote microbial strain evolution through the combination 
of mutations. Maintaining large, diverse populations throughout genome shuf-
fling is a successful method for maintaining evolution of traits of interest 
beyond a few rounds of reiterative mating. Additionally, the efficiency of 
recombination will greatly influence the outcome of the genome shuffling 
experiment. A lower level of recombination will require larger, perhaps pro-
hibitively so, parental mutant populations in order to effect the beneficial 
combination of mutations that might comprise a small percentage of the popu-
lation. Additionally, higher recombination efficiency can minimize the amount 
of rounds of genome shuffling required by a given project. As outlined above, 
with meiosis-enacted recombination, the efficiency will rely on mating and 
sporulation. If these steps cannot achieve a reasonable level of efficiency, 
protoplast fusion-based genome shuffling may be a viable option, which has a 
recombination efficiency that relies equally on protoplast generation, fusion, 
and strain regeneration efficiencies.

As genome shuffling technology is still developing, direct comparisons 
between the utility of differing techniques, based on separate modes of genetic 
recombination, are scarce. However, protoplast fusion-mediated genome  
shuffling has been attempted using S. cerevisiae as well as the meiotic 
recombination-mediated shuffling discussed above (Table 9.1). Shi et al. (26) 
have reported protoplast fusion-based genome shuffling with S. cerevisiae in 
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order to engineer the trait of enhanced thermotolerance (26). In this study, a 
haploid S. cerevisiae population was made into a population of protoplasts by 
enzymatic digestion of the cell wall. Protoplast fusions were enacted by expo-
sure to polyethylene glycol and fused protoplasts were regenerated on rich 
media containing inhibitory levels of ethanol. This study reports protoplast 
preparation and regeneration rates of 100% and 75%, respectively, but does 
not address the level of protoplast fusion attained. Assuming fusion rates are 
high, protoplast fusions with fungi appear to be a strong option for genome 
shuffling. However, one unknown to protoplast fusion-based genome shuffling 
is the effect that the process of reiterative protoplast fusion and cellular regen-
eration may have on the stability of the final strain. Shi et al. report DNA 
levels at 5.089, 5.144, 6.289, and 7.477 mg/g of cells for the UV mutant popula-
tion and rounds one, two, and three of genome shuffling, respectively (26). It 
is clear that the DNA content of strains resulting from protoplast fusion 
increases as genome shuffling is carried out. In the end, it is yet to be deter-
mined if such an increase will affect strain stability, although after 50 genera-
tions the thermotolerant phenotype was preserved in the strains obtained 
through this study. As a control, classical strain improvement was carried out 
alongside the genome shuffling for increased thermotolerance experiment. It 
was found that only slight improvements to thermotolerance could be obtained 
by reiterative UV mutation and selection, again demonstrating the power of 
genome shuffling, regardless of the method of exacting recombination.

9.2  RESULTS AND DISCUSSION OF STRAIN DEVELOPMENT

9.2.1  Generation of Mutant Pools

Using the reiterative mating methodologies described above, mutant strains 
were genome shuffled for increased tolerance to HWSSL. UV mutagenesis 

TABLE 9.1.  Comparison of Genome Shuffling by Meiosis versus Protoplast Fusion 
in S. cerevisiae

Method Meotic Recombinaton Protoplast Fusion

Recombination 
efficiency

<35% Unknown (100% protoplast 
generation, 75% cell 
regeneration)

Possible size of mutant 
mating pools

Indefinite Indefinite

DNA level per cell Wild-type level  
(haploid/diploid)

Increased per protoplast fusion

Steps involved Mutation, mating, 
sporulation, spore 
segregation

Mutation, protoplast generation, 
protoplast fusion, cellular 
regeneration
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was used for both S. cerevisiae and S. stipitis, with strains being exposed to UV 
dosages that led to a ∼50% death rate. It was hypothesized that this death rate 
would lead to a low amount of mutations per genome, in order to minimize 
the chance that other deleterious mutations would mask beneficial ones. These 
irradiated populations were selected to enrich a population of mutants that 
displayed increased tolerance to HWSSL, which would be used as the parental 
pool for meiotic recombination-based genome shuffling.

It should be noted that other forms of mutagenesis have been applied to 
generate mutant pools, such as chemical mutagenesis with ethyl methane 
sulfate (EMS) (21). The choice of mutagen will affect the types of mutations 
that can occur (see Chapter 1), although most reports have used mutagens 
that generate point mutations, such as with UV irradiation and EMS exposure. 
The mutagenesis step can also be carried out on haploid (12) or diploid strains 
(27), or on protoplasts in the case of protoplast fusion-based genome shuffling 
(26). One S. cerevisiae genome shuffling project has reported starting with 
diploid strains and using a high dosage of EMS (leading to a ∼90% death rate) 
to introduce mutation into the population (27). The rationale cited for using 
diploids as the initial population is that when using a higher dosage of mutagen, 
beneficial mutations might accompany lethiferous ones, which could mask any 
favorable effects. These deadly mutations will be more likely accommodated 
by a strain if a second copy of the wild-type genome is present. Transversely, 
Pinel et al. (12) chose to expose haploids of each mating type to UV muta-
genesis to generate initial mutant pools (12). This measure was taken in order 
to ensure that if a recessive beneficial mutation is generated it will not be 
masked by the presence of a wild-type allele. Transversely, if a diploid is used 
for the parental mutant population it would be more difficult to generate 
recessive beneficial mutations that would be selected through screening diploid 
mutant populations. In this case, the diploid parental mutant population would 
have to be sporulated in order to screen the haploid generation and obtain 
strains bearing recessive beneficial mutations. Furthermore, here a lower 
dosage of mutagen was used in order to minimize the chances of generating 
deleterious mutations that would accompany the beneficial ones (12). Since 
most mutations will either be deleterious or have no phenotypic effect, it 
remains to be shown whether a high rate of mutation, introducing more than 
one mutation into a parental strain at once, is of benefit.

9.2.2  Screening and Selection of Mutant and Evolved Populations

Finding a large-scale, high-throughput screen is of paramount importance for 
any genome shuffling strategy. This may in some instances become the bottle-
neck for a genome shuffling project. For instance, if the phenotype of interest 
is increased product titers, it may be difficult to screen large populations for 
increased product output, especially if the product of interest requires cultur-
ing and an involved product extraction and analysis procedure. In the two 
studies addressed herein, growth at higher concentrations of HWSSL than the 
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wild-type starting strains was used as a surrogate screen for tolerant organisms 
that could ferment HWSSL more efficiently. When the complex phenotype 
being addressed is increased tolerance to substrate toxicity, growth becomes 
an easy method for screening and therefore lends itself more easily to genome 
shuffling-based strain improvement. Both S. stipitis and S. cerevisiae mutants 
were screened primarily using gradient agar plates. The large gradient plates 
were made by overlaying solidified HWSSL agar with minimal media that 
contained similar sugar content to that found in HWSSL (Figure 9.3). This 
created a gradient of increasing concentration of HWSSL across the plate. The 
plates were divided into lanes and mutant or shuffled strains could be com-
pared with the wild type on one plate. In this way, a large population of cells 
(∼107) could be assessed for increased tolerance in any one lane of the gradient 
plate. The rationale behind screening large populations is to increase the prob-
ability of identifying strains that contain rare single or combined mutations.

9.2.3  Increasing HWSSL Tolerance through Genome Shuffling

At the onset of the two studies, the wild-type strains would die off readily upon 
exposure to undiluted HWSSL. The wild-type laboratory CEN.PK strain of  
S. cerevisiae was chosen for its general robustness and ability to mate and 
sporulate efficiently (28). The tolerance of the wild-type S. cerevisiae and 
S. stipitis starting strains to HWSSL was assessed at approximately 60% (v/v) 
HWSSL diluted with water. Mutant pools for reiterative mating were obtained 
by scraping the mutant populations from gradient plates that grew to higher 
levels of HWSSL concentration than the wild type. Mutants of S. cerevisiae 
grew to approximately 70% (v/v) HWSSL, and members of the final S. stipitis 
mutant population were able to grow at 75% (v/v), although they underwent 

FIGURE 9.3.  Profile of HWSSL gradient plate. HWSSL gradient agar plates were 
used for screening S. cerevisiae and S. stipitis UV mutants and genome-shuffled strains. 
Plastic plates (25 cm2) were elevated and HWSSL agar was allowed to solidify. The 
plates were then brought to a level position and overlaid with minimal media. The 
plates were subdivided and populations of yeast were spread for side-by-side compari-
son of HWSSL tolerance.
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three rounds of sequential UV mutagenesis as opposed to one round for  
S. cerevisiae. After five rounds of genome shuffling and selection it was found 
that a small number of S. cerevisiae genome-shuffled strains could grow and 
ferment undiluted HWSSL, while S. stipitis genome-shuffled strains could grow 
in 85% (v/v) HWSSL. The surrogate screen of growth on increasing concentra-
tions of HWSSL led to strains that could ferment the sugars in HWSSL better 
than the wild type, for longer periods of exposure to HWSSL, seemingly 
indefinitely in the case of the S. cerevisiae strains (discussed below).

Individual strains, evolved through genome shuffling and selected on 
HWSSL gradient agar plates, were randomly selected from the frontier of 
growth in the S. cerevisiae study (12). Thirty mutants from the UV mutant 
population and 15 from rounds 1, 3, and 5 of genome shuffling with population 
enrichment were tested for increased tolerance to undiluted HWSSL. Although 
all of these strains displayed higher tolerance to HWSSL than the wild type 
at diluted concentrations of HWSSL agar, it remained to be shown how that 
tolerance would translate to exposure to 100% HWSSL liquid in shake flask 
fermentations. Cultures were sampled daily for viability through plate counts 
(CFUs/mL). The viability results showed the heterogeneity that existed within 
the mutant and genome-shuffled generations. For example, only 1 of the 30 
tested UV mutant strains showed a noticeable increase in viability over the 
wild type in undiluted HWSSL. Subsequent sampling from the genome-
shuffled populations led to an increased average tolerance among the 15 
sampled colonies, which grew as the rounds progressed. Although heterogene-
ity still existed within the sampled subpopulation with regard to HWSSL toler-
ance at 100% HWSSL, an overall evolution toward HWSSL tolerance was 
achieved.

9.2.4  Tolerance to HWSSL Leads to Increased Ethanol Production

As discussed above, it should be noted that in both of the highlighted studies, 
growth and survivability on HWSSL were used as surrogate screens to identify 
better fermentative strains of HWSSL. In order to determine if increased 
HWSSL tolerance equates to increased ethanol productivity on HWSSL, the 
most HWSSL-tolerant strains were tested for sugar consumption and ethanol 
production at high cell densities, to mimic industrial conditions, in increased 
HWSSL concentrations. The three most HWSSL-tolerant S. cerevisiae strains 
were able to maintain fermentation of hexose sugars to ethanol over pro-
longed and repeated exposure to HWSSL (Figure 9.4) (12). Cells from the 
high cell density S. cerevisiae cultures were centrifuged and resuspended in 
fresh undiluted HWSSL after 2 days for the first pass and 3 days for each 
additional pass, up to six passes. It was shown that the HWSSL-tolerant 
genome-shuffled strains remained productive; that is, they survived HWSSL 
toxicity, consumed hexose sugars, and produced ethanol near theoretical levels 
of ethanol production, for all six passes, while the wild type lost the ability to 
ferment hexose sugars to ethanol during pass 3 in HWSSL. The S. stipitis study 
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was able to produce a strain that could produce ethanol from HWSSL glucose 
alone to levels between 0.15% and 0.18% (w/v) for a single 48-hour period in 
HWSSL, while the wild-type control was unable to ferment any of the sugars 
in HWSSL (13). These results suggest that using a surrogate screen of growth 
and viability on increased concentrations of inhibitory substrate is an appro-
priate screen for genome shuffling projects that aim to produce higher ethanol 
titers in the presence of lignocellulosic hydrolysate inhibitors.

9.2.5  Tolerance to HWSSL Leads to Cross-Tolerance to  
Multiple Inhibitors

Both organisms were further tested on individual inhibitors in attempts to 
explain the root of the tolerant phenotype. It was shown that genome-shuffled 

FIGURE 9.4.  Ethanol production from hexose sugars in HWSSL by an S. cerevisiae 
strain obtained through genome shuffling versus wild type. The most HWSSL-tolerant 
strain of S. cerevisiae generated through genome shuffling was tested in shake flasks 
containing undiluted HWSSL at a high cell density for hexose sugar consumption (X 
sign, solid line) and ethanol production (square, dashed line) versus the wild-type 
parental S. cerevisiae strain (+ sign, solid line for sugar consumption, diamond with a 
dashed line for ethanol production). Cultures of each strain were resuspended in 
HWSSL for six passes to mimic the prolonged exposure to SSL that occurs in industrial 
fermentation plants.
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S. stipitis strains displayed increased tolerance to the individual inhibitors like 
acetic acid, furfural, and HMF (13). Furthermore, HWSSL tolerance translated 
into cross-tolerance to three other wood hydrolysates (29). Genome-shuffled 
S. cerevisiae strains displayed tolerance to the individual inhibitors like acetic 
acid, HMF, hydrogen peroxide, and osmotic pressure (12). These findings  
demonstrate that the phenotype that has been evolved for is based on a 
general tolerance to multiple common sources of inhibition in lignocellulosic 
hydrolysates. Interestingly, the modes of tolerance to specific inhibitors do not 
seem to be identical. It was shown that the three most HWSSL-tolerant  
S. cerevisiae strains display increased acetic acid tolerance over the wild type 
only after pre-exposure to HWSSL, whereas the osmotic pressure and hydro-
gen peroxide tolerant traits were apparent with and without pre-exposure to 
HWSSL (12). This is consistent with recent findings, which suggest that toler-
ance to acetic acid can be an inducible response (30). Furthermore, the top-
performing HWSSL strain showed increased tolerance to hydrogen peroxide, 
while the two other HWSSL-tolerant strains tested showed decreased hydro-
gen peroxide tolerance as compared with the wild type. Such findings demon-
strate the heterogeneity that can exist phenotypically within a genome-shuffled 
population. This suggests that within a given population the ways that a single 
strain can arrive at the phenotype of interest are by multiple paths, in turn 
suggesting that the strains will harbor differing mutations and/or combinations 
thereof.

9.2.6  Comparison between the S. stipitis and S. cerevisiae Genome 
Shuffling Studies

There were differences in how the two studies were performed. A brief com-
parison can be seen in Table 9.2. One major difference was the size of the 
initial UV mutant population. The S. stipitis study used only six to eight indi-
vidual colonies for meiotic recombination for each round of shuffling, while 
the S. cerevisiae study used the entire population that displayed more tolerance 
to the wild type, although the extent of the population diversity was not 
assessed. The tolerance to HWSSL displayed by S. cerevisiae grew from 
approximately 70% (v/v) to 100% (v/v) from UV mutant populations to round 
five of genome shuffling. The tolerance of S. stipitis increased from approxi-
mately 75% (v/v) to 85% (v/v) from UV mutant populations to round three 
of genome shuffling. Notably, two additional rounds of genome shuffling did 
not lead to a significant increase in tolerance in S. stipitis, while the evolution 
of S. cerevisiae progressed throughout all five rounds. This observation may 
stem from the fact that larger, more diverse populations were used for genome 
shuffling of S. cerevisiae, increasing the chance of bringing together synergistic 
mutations. Transversely, the smaller sample of tolerant individual strains used 
in the genome shuffling of S. stipitis may have exhausted the number of muta-
tions existing in the initial mutant pool that were available for recombination, 
or minimized the possibility of combining rarer, synergistically beneficial 
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mutations. Alternatively, it is possible that S. cerevisiae is naturally more genet-
ically predisposed to inhibitor tolerance. Finally, the poor mating efficiency of 
S. stipitis, as shown through the mating for loss of auxotrophy assessment, may 
have played a role in the stagnation of population evolution. Similarly, to 
assess the usefulness of mating a limited number of tolerant individuals to 
overcome HWSSL toxicity, following round three of S. cerevisiae genome shuf-
fling, five individual colonies that were able to grow at 85% (v/v) HWSSL were 
inter-mated using the methodology described above. However, no noticeable 
increase in tolerance, by HWSSL gradient plate comparisons, was witnessed 
(unpublished data). This finding, coupled with the lack of evolution displayed 
through reiterative mating past three rounds in the S. stipitis study, supports 
the theory that continued evolution of a phenotype of interest through genome 
shuffling is correlated to the size and diversity of the mating populations. 
Transversely, it was also shown by Pinel et al. (12) that using a large nonen-
riched population as a mating pool may act to slow the advance toward a strain 
displaying a desired trait as well. It was shown that if the shuffled populations 
are enriched for tolerant subpopulations between rounds, prior to the subse-
quent round of population mating, a more inhibitor-tolerant phenotype could 
be obtained with fewer rounds of genome shuffling. Specifically, two rounds 
of genome shuffling with enrichment between rounds led to populations that 
were more tolerant to HWSSL than four rounds without enrichment in 
between, shown through gradient plate screening (12). Enrichment was carried 
out by selecting the portion of each genome-shuffled population that displayed 
more tolerance than the wild type to HWSSL for use in the subsequent 
population-wise mating step. Here, it was hypothesized that by limiting the 
amount of strains displaying wild-type-level tolerance to HWSSL, the chances 
of combining the genomes of strains harboring beneficial mutations could be 
enhanced.

TABLE 9.2.  Comparison of Genome Shuffling in S. cerevisiae and S. stipitis for 
HWSSL Tolerance

Organism S. stipitis S. cerevisiae

Mating efficiency 0.05% <35%
Possible size of mutant mating pools 6–8 individual 

colonies
107 individual 

colonies
Level of HWSSL concentration tolerated after 

genome shuffling
85% v/v 100%

Rounds of genome shuffling that led to increased 
tolerance

3 5

Increased ethanol production from HWSSL Yes Yes
Displayed cross-tolerance to multiple individual 

inhibitors
Yes Yes
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Although the tolerance attained by S. cerevisiae outpaced that attained 
by S. stipitis under the conditions described, it is important to note that 
S. stipitis has the added advantage of being able to utilize pentose sugars 
found in HWSSL (16). However, in undiluted HWSSL the most tolerant  
S. stipitis strains isolated in the Bajwa et al. study were unable to use the xylose 
present (29). Ultimately, the adverse effects of HWSSL toxicity on pentose 
fermentation with S. stipitis may prove to be a formidable barrier to overcome. 
However, further genome shuffling with more diverse populations could 
perhaps yield S. stipitis strains that can tolerate undiluted HWSSL and still 
make use of the pentose sugars found therein. To make full use of the HWSSL 
substrate, the ability to ferment pentose sugars would have to be engineered 
into S. cerevisiae for xylose utilization in particular, which has been shown 
to be a viable option (14). The tolerant strains produced in the Pinel et al.  
(12) study could act as background strains for rationally engineering a  
pentose-fermenting, HWSSL-tolerant S. cerevisiae strain, and further genome 
shuffled for strain optimization. In this way, rational strain engineering and 
genome shuffling may be complementary technologies for evolving complex 
phenotypes.

9.3  CONCLUSIONS AND FUTURE DIRECTIONS

The two studies focused on in this chapter were successful in implementing 
meiotic-based genome shuffling to evolve the complex phenotype of HWSSL 
tolerance. Juxtaposing the two cases highlights important factors that need  
to be addressed when developing a genome shuffling strain improvement 
regime. The choice of a parent organism is the first integral step. If a strain  
has a desirable native ability, such as pentose fermentation with S. stipitis, this 
may circumvent the need for combining rational metabolic engineering with 
strain evolution. Likewise, S. cerevisiae has a long history of use as a biocatalyst 
under harsh fermentation conditions, which may be based on an inherent 
predisposition toward robust inhibitor tolerance, and can perhaps therefore 
be evolved more readily to high levels of tolerance. Genome shuffling of 
organisms with well-understood mating cycles like S. cerevisiae can increase 
the utility of genome shuffling through reiterative mating by supporting high 
recombination efficiencies and the subsequent ability to bring together benefi-
cial mutations in an exponential fashion, which is only attenuated by the size 
and diversity of the parental mutant populations and the high-throughput 
screen involved in generating mating populations. When mating efficiency  
is low, however, protoplast fusion-based genome shuffling may be a viable 
option.

These studies show the utility of using genome shuffling technology to 
develop strains that are tolerant of lignocellulosic substrate inhibitors. As 
research and interest in biofuels progress, such methods may become 
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commonplace for developing strains that are fine-tuned to fermenting specific 
substrates, or creating organisms that display traits of cross-tolerance to spe-
cific inhibitors or a multitude of similar lignocellulosic substrates.

Finally, as high-throughput “omics” technologies become more common 
and accessible and the price of sequencing continues to diminish (see Chapter 
3), the genetic changes that accompany the traits that are evolved in strain 
development through random approaches such as genome shuffling will help 
to understand complex trait evolution and inform more rational approaches 
to strain development. By comparing the genomes of parental strains with final 
mutant strains at single nucleotide resolution, it will be possible to identify the 
mutations that have taken place, the genes that have been targeted, and sub-
sequently, the most important genetic factors involved in a phenotype of 
interest.
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8–9
Evolutionary engineering, 111–127
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3-HPA. See 3-Hydroxypropionaldehyde 
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Inferelator, 86
Infrared spectroscopy, 207–208
In silico cell, 36, 37
In silico models, 79
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Research and Development 
(LDRD) program

Levulinic acid, 234
Lignocellulosic biomass, conversion into 

fuels, 123–124
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Metabolism, clavulanic acid biosynthesis 

in, 171
Metabolites

13C labeling patterns in, 50
multiple omics data sets and 

relationship between enzymes 
and, 95–96

TMFA analysis and concentrations of, 
91, 92–94

Metabolomics, 39, 79, 82
enzyme kinetics and, 93–94
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NADPH, in S. cerevisiae, 91
15N-ammonium, 45
National Renewable Energy Laboratory 

(NREL), 201, 202–203
NCA. See Network Component Analysis 

(NCA)



262	 INDEX

NET. See Network embedded 
thermodynamic (NET) analysis

Network analysis (NA), 36, 37, 43, 44
maximum theoretical yield, 42–43

Network Component Analysis (NCA), 
87

Network embedded thermodynamic 
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OUR. See Oxygen uptake rate (OUR) 

clipping
Oxidative pentose phosphate pathway, 
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Oxidative stress, engineering resistance 
to, 125

Oxygen transfer rate (OTR), scale-down 
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Paramomycin, 217
Parietochloris incise, 205
Parsimonious enzyme usage FBA 
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pH control for minibioreactors, 150
Phenolics, derived from lignin, 234
Phenomics, 82
Phenotype microarray (PM)
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acid tolerance and, 195
Polyamines, 3-hydroxypropionic acid 

tolerance and, 196, 197
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conditions, 145–147
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enhancement of, 121–123
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Protein production, 158–160
Proteomic analysis, 210
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Protoplast fusion, 17, 23–24, 114
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expression platform, 158

Purine nucleosides, mutagenesis and, 15



264	 INDEX

Putrescine, 196, 197
puuC, 195–196
Pyruvic acid, 46

Quasi stationary conditions, 48

Random genetic drift, classical strain 
improvement and, 2, 4–5, 8–12
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Rate, titer, and yield (RTY) values, 
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