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Preface 

"About binomial theorems I 'm teeming with a lot 
of news, 

With many cheerful facts about the square on the 
hypotenuse."  

- William S .  Gilbert (The Pirates of Penzance , Act I ) 

The question of divisibility is arguably the oldest problem in mathematics. 
Ancient peoples observed the cycles of nature : the day, the lunar month ,  and 
the year, and assumed that each divided evenly into the next . Civilizations 
as separate as the Egyptians of ten thousand years ago and the Central 
American Mayans adopted a month of thirty days and a year of twelve 
months. Even when the inaccuracy of a 360-day year became apparent , 
they preferred to retain it and add five intercalary days. The number 360 
retains its psychological appeal today because it is divisible by many small 
integers. The technical term for such a number reflects this appeal . It is 
called a "smooth" number. 

At the other extreme are those integers with no smaller divisors other 
than 1, integers which might be called the indivisibles . The mystic qualities 
of numbers such as 7 and 13 derive in no small part from the fact that 
they are indivisibles. The ancient Greeks realized that every integer could 
be written uniquely as a product of indivisibles larger than 1 ,  what we 
appropriately call prime numbers. To know the decomposition of an integer 
into a product of primes is to have a complete description of all of its 
divisors . By the time Euclid wrote his "Elements" in Alexandria, about 300 
B .C . ,  the question of divisibility was recognized to consist of two problems: 
the description or recognition of the prime numbers and the factorization 
into primes of the non-prime or composite numbers. 

Euclid knew these problems to be of more than aesthetic interest . They 
are intimately tied to almost every question involving integers . Among the 
problems considered by the Greeks that we shall study are the generation 
of Pythagorean triples , the characterization of "perfect" numbers, and the 
approximation of square roots by rational numbers. 

It is therefore surprising that a subject that is so very old should at the 
same time be so very new. Factorization and primality testing is a very hot 
area of current research ; yet the research is still at a sufficiently elementary 
level that most of the important breakthroughs made in the past few years 
are accessible to the undergraduate mathematics or computer science ma­
jor. I am not just talking about finding a bigger prime or factoring a larger 
number; it is the theoretical approach to such problems which is still in its 
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infancy. I hope that the student reading this book will share in the sense 
of excitement of being on the leading edge of new mathematics. 

Why is it that these ancient problems have blossomed in the past twenty 
years? In several ways the explanation comes from the electronic computer. 
As a tool, it permits the implement arion of algorithms whose complexity 
made them unthinkable a generation ago. As the computer evolves, it forces 
the researcher to rethink the algorithms. In the past few years, memory has 
become cheap and as we have approached the theoretical limit on process­
ing speed, there has been increasing emphasis on parallel processing. In 
response to these developments, today's most useful algorithms use large 
amounts of memory and are amenable to being run in parallel .  The com­
puter industry itself is a consumer of these algorithms. They have shown 
themselves to be extremely well suited to push computers to their limits, 
to reveal the flaws, to set the benchmarks. 

Among the factors creating interest in factorization and primality test­
ing, one cannot omit the advent of the RSA public key cryptosystem. Based 
on the simple observation that it is immensely easier to multiply two large 
primes together than it is to factor their product ,  it has made the research 
on factorization and primality testing of direct , practical interest to gov­
ernment and business and anyone concerned with secure transmission of 
information. 

There is another reason for studying factorization and primality testing. 
It is my own reason for writing this book. Few other problems in mathemat­
ics draw so richly on the entire history of mathematics. The algorithms of 
Euclid and Eratosthenes, now well over two thousand years old , are as fresh 
and useful today as when they were first discovered. We will be picking up 
contributions from Fermat in the 1 7th century, Euler in the 1 8th , Legen­
dre, Gauss, Jacobi, and a host of modern mathematicians and computer 
scientists. 

Chapters 1 and 2 present basic problems and solutions which were dis­
covered by the Greeks of the classical era. Two of the most important al­
gorithms in use today in factorization and primality testing, the Euclidean 
Algorithm and the Sieve of Eratosthenes, come to us from this period. We 
will also investigate the Greek problem of finding perfect numbers. In Chap­
ter 3, we move to 1 7th-century Europe and some simple observations about 
this problem which were made by Pierre de Fermat , observations that will 
form the theoretical underpinning for many of our future algorithms. 

In Chapters 4 and 5 we leap to the present and look at current factoriza­
tion techniques that depend on the theory that has been built up to this 
point . We also study the applications of factorization and primality testing 
to the construction of codes for transmitting secret information. 

With Chapters 6 and 7 we return to garnering an understanding of the 
integers . It is now the late 18th , early 19th century. We will see how some 
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of the basic knowledge found by Fermat is deepened by Euler, Legendre, 
Jacobi, and most especially Gauss . This gives us the theory needed for 
Chapter 8 in which the Quadratic Sieve will be explained . This algorithm, 
less than a decade old, is the most powerful tool for factorization known 
today. 

In Chapter 9 we return to Gauss for insights that will answer many of 
the questions posed up to this point . Gauss' contributions will also lead us 
to one of the most useful of the current primality tests. There is a natural 
break in the text at the end of Chapter 9. A one-semester course usually 
ends at this point , with a week or two spent highlighting some of the topics 
of the last five chapters. 

In Chapters 10 ,  1 1 ,  and 12 we travel briefly back to the ancient Greeks 
to pick up another thread, another problem that has engendered a chain 
of solutions and problems through the centuries , that of finding rational 
approximations to irrational numbers. Again it is Fermat who provides the 
crucial insight that moves the problem forward into our modern era. In 
these chapters, as the theory is developed we shall jump to the present to 
show how it is used in modern algorithms: the Continued Fraction Algo­
rithm, the p + 1 factorization algorithm, and the primality tests based on 
Lucas sequences. 

Finally, Chapters 13 and 14 delve into the most recent body of theory to 
find application in factorization and primality testing, the theory of elliptic 
curves. Here we will be drawing on results of Hasse and Weil that are only 
a few decades old . Very little is actually proved in these chapters. The 
emphasis is instead on explaining what the results mean and how they are 
used. 

A course such as this should not and in fact cannot be taught except 
in conjunction with a computer. The patterns that Fermat , Euler, Gauss , 
and others saw, the patterns they discovered through many hours of tedious 
calculations, can now be generated in seconds. I strongly recommend that 
each student do all or most the the computer exercises at the ends of the 
chapters and participate in the search for structure . 

To facilitate programming, I have chosen to present all the algorithms 
as computer programs in a generic structured language that owes much to 
the "shorthand Pascal" used by Stanton and White in Constructive Com­
binatorics. It is my hope that anyone with a familiarity with programming 
can readily translate these algorithms into their preferred language. 

The actual programming does present one major obstacle. In this book 
we are often working with integers of 60 or more digits for which we need 
to maintain total accuracy. While high precision subroutines can be writ­
ten, they are cumbersome. In teaching this course, I have used REXX, a 
little known but highly useful language developed by IBM. It is a modern , 
structured language that is extremely simple and ideally suited to integer 
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calculations. It can be run on any IBM compatible machine from a PC up 
to a mainframe and operates with arbitrary precision. I have translated all 
of the algorithms in this book into REXX programs and will gladly send a 
copy to anyone who requests i t .  

I want to say a word about a major omission from this book. Almost 
nothing is said about the computational complexity of the algorithms it 
contains. This was intentional . The most interesting complexity questions 
are extremely difficult . My emphasis in this book is primarily on the theory 
behind the algorithms: how they arise and why they work. Secondarily it is 
on the actual implementation of these algorithms. I feel that to also include 
a discussion of complexity would distract from my purpose. The interested 
reader can find very good discussions of computational complexity in Hans 
Riesel's Prime Numbers and Computer Methods for Factorization and in 
the articles by Carl Pomerance referenced at the end of Chapter 5. 

A note on notation: For small integers of nine or fewer digits I am fol­
lowing the standard international convention of separating ones from thou­
sands from millions by spaces, thus 

362 901 095 

Once I get to ten or more digits I switch to blocks of five digits, such as 

57 29001 87243 8892 1 98362 

This makes it much easier to count the total number of digits. 

I want to thank all the people who have had a hand in making this book 
possible, among them George Andrews who first suggested I put together 
such a course and then encouraged me to write the text , John Brillhart and 
Hugh Williams who helped me find my way into the relevant literature, 
Robert Silverman for his comments on Chapter 8, Raymond Ayoub for 
helpful suggest ions on presentation, Rudiger Gebauer at Springer-Verlag 
who served as a sounding board for different approaches to presenting the 
algorithms, the librarians at Penn State who helped me track down names 
and dates and introduced me to Poggendorf, and the students who put 
up with various preliminary drafts of this book and found many of the 
mistakes for me. I also want to thank the National Science Foundation and 
the National Security Agency whose summer research grants, respectively 
numbers DMS 85-21580 and MDA904-88-H-20 1 7, gave me some of the time 
I needed to write this book. 

David M. Bressoud 

University Park, Pennsylvania 

November, 1988 
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1 

Unique Factorizat ion and the 
Euclidean Algorithm 

"Euclid alone has looked on Beauty bare."  
Edna St. Vincent Millay (The Harp-Weaver) 

1.1  A theorem of Euclid and some of  its 
consequences 

The integers larger than 1 are of two types: the composite integers which 
can be written as a product of two integers larger than 1 and the prime 
integers (or primes) which cannot . This book revolves around two ques­
tions: Given a composite integer , how do we find a decomposition into a 
product of integers larger than I?  How do we recognize a prime integer? 
Our investigation of these questions begins approximately 300 B.C. in the 
Greek city of Alexandria in what is today Egypt. There Euclid wrote his 
great work "Elements" , best known for its treatment of geometry but also 
containing three books on the properties of the integers. In Proposition 30 
of Book VII ,  Euclid states the following. 

Theorem 1 . 1  If a prime divides the product of two integers then it must 
divide at least one of those integers . 

Before proving this theorem. I want to discuss some of its implications 
and point out that , as obvious as it looks, it is not trivial. This was driven 
home very forcefully in the early 19th century when mathematicians were 
led to consider more general types of integers, what we will call extended 
integers. As an example, we can take our extended integers to be all num­
bers of the form m + nv'IO, where m and n are ordinary integers. Such 
extended integers can be added, subtracted , multiplied, and even divided 
using the equality 

a + bv'IO 
m+nv'IO 

a + bv'IO m - nv'IO ---= x ---= 
m + nv'IO m - nv'IO 
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a x m - lOb x n + (b x m - a x n)v'IO 
m2 - lOn2 

It makes sense to say that m + nv'IO is a divisor of a + bv'IO if and only 
if their ratio is another extended integer. Thus 2 + v'IO is a divisor of 
12 + 3v'IO because 

12 + 3v'IO 
2 + v'IO 

-6 - 6v'IO 
= 1 + v'lO. 

-6 

One can now talk about indivisibles in this sytem of extended integers. 
In Exercise 1 . 2  it is shown that the numbers 2 , 4 + v'IO, and 4 - v'IO are 
indivisibles . I call them indivisibles and not primes because they do not 
satisfy Theorem 1 . 1 :  

( 4  + v'lO) x ( 4  - v'lO) = 6, 

which is divisible by 2 ,  and yet 2 does not divide either 4 + v'IO or 4 - v'IO. 
This has been a digression into an apparently esoteric and unrelated area. 

But we will see these extended integers again in Chapters 10 - 14 where 
they will come to play an important role in factorization and primality 
testing. 

The first two applications of Theorem 1 . 1  use the special case where 
the two integers are equal . If a prime p divides a2 , then it must divide a .  
Therefore if p divides a2 , then p2 divides a2• 

Theorem 1 . 2  The square root of 2 cannot be expressed as a ratio of two 
integers. 

Proof Assume that the square root of 2 can be written as min where m 
and n are integers and the fraction has been reduced, that is to say, m 
and n have no common divisors larger than 1 .  Squaring both quantities, 
we have that 

m2 
2 = 2' or equivalently 

n 

2n2 = m2 . 

Thus 2 divides m2 . By the special case of Theorem 1 . 1  we have just ex­
plained , 4 divides m2 . But then 4 divides 2n2 , which means that 2 must 
divide n2 . Again invoking Theorem 1 . 1 ,  2 divides n. That gives us our con­
tradiction because we have shown that 2 must divide both m and n, and 
yet m and n have no common factors larger than 1 .  

Q.E.D.  
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(Q.E.D.  stands for Quod Erat Demonstrandum, a Latin translation of the 
phrase O1rEP E&t &i�at with which Euclid concluded most of his proofs. 
It means "what was to be proved" and signifies that the proof has been 
concluded . ) 

Before giving our next application , we need three definitions. 

Definition. The decomposition of a positive integer into primes is called 
its factorization. This will usually be expressed by 

where PI,P2, . . . ,Pr are distinct primes. 

Definition. If integers m and n have no common primes in their respective 
factorizations, we say that m and n are relatively prime. Thus 45 = 3 x 3 x 5 
and 98 = 2 x 7 x 7 are relatively prime. 

Definition. Three integers (x, y, z ) which satisfy 

are called a Pythagorean triple. If they are all positive and have no common 
factors we call them a fundamental triple. Because of the symmetry in x 

and y , we will consider (x ,  y, z ) and (y ,  x, z ) to be the same triple. 

The best known Pythagorean triples are (3 , 4, 5) and (5 , 1 2 , 13) . The 
triple (6, 8 , 10) is Pythagorean , but it is not a fundamental triple. It is 
obtained trivially from (3 , 4 , 5) by multiplying each integer by two. It should 
be clear that if we want to find all Pythagorean triples , it is sufficient to first 
find all fundamental triples and then take the multiples of the fundamental 
triples. The problem of generating all fundamental triples is solved in the 
following theorem. 

Theorem 1.3 Given any pair of relatively prime integers, say (a, b) , such 
that one of them is odd and the other even and a > b> 0 ,  then 

is a fundamental triple. Furthermore, every fundamental triple is of this 
form. 

Note that (3 , 4, 5) corresponds to a = 2, b = 1 while (5 , 12 , 13) comes 
from a = 3, b = 2 .  
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Proof It is left as Exercise 1.6 to verify that the triple in question is indeed 
a fundamental triple. The more interesting part of this theorem is that 
there are no other fundamental triples. 

Let (x, y, z) be a fundamental triple. Since x, y, and z are not all even, at 
most one of them is even. If x and y are both odd, then it is easily verified 
that x2 and y2 are each one more than a multiple of 4, and so z2 must be 
two more than a multiple of 4. But that says that z2 is divisible by 2 and 
not by 4, a contradiction of Theorem 1.1. Thus either x or y is even. By 
symmetry in x and y we can assume it is y that is even, say y = 2m. 

We can use the Pythagorean equation to obtain an equation for m: 

y2 Z2 
_ x2 

(z-x) X (z+x), 
z-x z+x 
-- x--. 

2 2 
Since x and z are each odd, both (z - x) /2 and (z + x) /2 are integers. 
Furthermore, they are relatively prime because any common divisor would 
have to divide both their sum (which is z) and their difference (which is 
x), and x and z have no common divisors. 

For each prime p which divides (z -x )/2, p divides m2 and so p2 divides 
m2. Since p does not divide (z + x)/2, p2 must divide (z - x)/2. Thus the 
factorization of (z - x)/2 will have only even exponents, which is another 
way of saying that (z - x)/2 is a perfect square. Similarly, (z + x)/2 must 
be a perfect square. Let us write 

z+x 
a2 

2 
, 

z-x 
2 

b2. 

As we have just shown, a and b are relatively prime. Since a2 + b2 = z is 
odd, one of a or b is odd and the other even. Also, a is larger than b. If we 
now solve for x, y, and z we find that: 

z a2 + b2, 

x a2 - b2, 

y 2ab. 

Q.E.D. 
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1 . 2  The Fundamental Theorem of Arithmetic 

One of the most important consequences of Theorem 1 . 1 is the following: 

Theorem 1 .4 (Fundamental Theorem of Arithmetic) Factorization 
into primes is unique up to order. 

What this says is that there may be several ways of ordering the primes 
that go into a factorization : 

30 2 x 3 x 5 , or 

3 x 5 x 2 ,  

but we cannot change the primes that go into the factorization. In  our 
extended integers of the form m + nv'IO this is not true. As an example, 6 
has two distinct factorizations into indivisibles: 

6 2 x 3  

(4 + JIO) x (4 - JIO). 
Proof. We will actually prove that every integer with non-unique factor­
ization has a proper divisor with non-unique factorization. If there were 
integers with non-unique factorization , then eventually we would be re­
duced to a prime with non-unique factorization, and that would contradict 
the fact that it is a prime and thus has no positive divisors other than 1 
and itself. 

Let n be an integer with non-unique factorization: 

n PI x P2 X . • .  X Pr 
ql X q2 X . . . x qs, 

where the primes are not necessarily distinct , but where the second factor­
ization is not simply a reordering of the first . The prime ql divides n and 
so it divides the product of the Pi

'
S. By repeated application of Theorem 

1 . 1 ,  there is at least one Pi which is divisible by ql . If necessary, reorder 
the Pi

'
S so that ql divides Pl . Since PI is prime, ql must equal Pl . This says 

that 

n 

q2 X q3 X • . •  x qs. 

Since the factorizations of n were distinct , these factorizations of n/ql must 
also be distinct . Therefore n/ ql is a proper divisor of n with non-unique 
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factorization. 

Q .E .D .  

Hopefully, this has given you some idea of  the importance of  Theorem 
1 . 1 .  To prove it we will need a very powerful lemma, the essence of which 
is contained in Propositions 1 and 2 of Book VII in Euclid 's "Elements" . 

Definition. Given integers a and b, the greatest common divisor of a and 
b is the largest positive integer which divides both a and b. We will denote 
this by gcd(a , b) . 

Lemma 1 . 5  Let a and b be integers and let 9 = gcd(a , b). Then there exist 
integers m and n such that 

9 = m x a + n x b. 

For example let a = 2 1 and b = 6 . Then 9 = 3 and m = 1 ,  n = -3 will 
work: 

3 = 1 x 2 1  + (-3) x 6 . 

Note that there are other values of m and n that will also work: 

3 = (- I ) x 2 1 + 4 x 6. 

Before proving this lemma, we show that it does imply Theorem 1 . 1 . 

Proof of Theorem 1.1. Let p be a prime which divides a x b. If p divides 
a, then we are done. If not than gcd(p , a) = 1 because 1 is the only other 
positive integer that divides p. By Lemma 1 .5 we can find integers m and 
n such that 

1 = m x p + n x a. 

Multiplying both sides by b yields 

b = m x p x b + n x a x b. 

Since p divides a x b, it divides both summands on the right-hand side and 
so divides their sum, which is b. Thus if p does not divide a then it must 
divide b. 

Q.E.D.  
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1 .3 The Euclidean Algorithm 

It appears as if we have exchanged the proof of something that is obvious, 
namely Theorem 1 . 1 ,  for a proof of a much less obvious statement , Lemma 
1 .5 .  In fact ,  there is a very nice proof of Lemma 1 .5 which not only proves 
the existence of m and n but explicitly shows us how to calculate them and 
how to calculate the greatest common divisor. This constructive proof is 
called the Euclidean Algorithm and it will constantly recur as an essential 
subroutine in factorization and primality testing algorithms. 

The key to the Euclidean Algorithm is the following basic property of 
division in the integers: 

Given integers a and b, b =1= 0, there exist integers m and l' such that 

a = m x b + 1', with 0 � l' < Ibl. 

Proof of Lemma 1.5. We will assume that a and b are positive. Using the 
fact given above, we have that 

a = ml x b + 1'1, 0 � 1'1 < b. 

If 1'1 = 0 then b divides a ,  b is the greatest common divisor, and we can 
choose m = 0, n = 1 .  If not , then we can divide b by 1'1: 

If 1'2 = 0, we stop here. If not , then we continue, now dividing 1'1 by 1'2: 

This process is continued until the remainder is 0, which must eventually 
happen since the remainders are always non-negative and each remain­
der is strictly smaller than the previous one. We write down the last two 
equalities: 

1'k-2 mk x rk-l + rk, 0 < 1'k < rk-l, 

1'k-l mk+l x 1'k + o. 

The last non-zero remainder, rk, is the greatest common divisor of a and 
b. To see this we work back up the list of equalities . By the last equality, 
1'k divides rk-l' By the second last equality, since it divides 1'k and rk-l, it 
also divides rk-2 . . . . By the third equality, since it divides 1'3 and 1'2, it also 
divides 1'1. By the second equality, it also divides b. By the first equality, 
1'k divides a. Thus 1'k is a common divisor of a and b. 

To show that rk is the largest common divisor, let d be any other com­
mon divisor. Since d divides both a and b, it must divide 1'1 by the first 



8 1 .  Unique Factorization and the Euclidean Algorithm 

equality. Continuing down the list , we see that d must divide r2 , r3 , . . .  , rk 
and therefore d is less than or equal to rk . 

We now use these equations to find the m and n such that 

rk = m x a + n x b. 

By the first equation , rl can be written as an integer times a plus an integer 
times b. 

rl = 1 x a + (-ml) x b. 

By making this substitution for rl in the second equality, we can write r2 
as an integer times a plus an integer times b: 

r2 b - m2 x rl 
b-m2 x (a-ml x b) 
-m2 x a + ( 1  + ml x m2) x b. 

Continuing down the list of equations, each ri can be written as an integer 
times a plus an integer times b, and this proves the lemma. 

Let us take as an example a = 1239 and b = 168 :  

gcd(1239, 168) = 2 1 .  

1 239 7 x 168 + 63, 
168 2 x 63 + 42, 
63 1 x 42 + 2 1 ,  
42 2 x 21 + o. 

63 1 239 -7 x 168, 
42 168 - 2 x 63 

168 - 2 x ( 1239 - 7 x 1 68) 
-2  x 1239 + 15  x 168, 

21 63 - 42 
( 1239 - 7 x 168) - (-2  x 1 239 + 15 x 1 68) 
3 x 1 239 - 22 x 168 

m 3j n = -22.  

The proof of Lemma 1 .5 also implies the following useful result . 

Q.E.D.  

Theorem 1 .6  If g = gcd(a, b) and if d is any common divisor of a and b, 

then d divides g .  
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1 .4 The Euclidean Algorithm in practice 

Because this algorithm will be iterated so often in the programs to be 
written later, it is important to streamline it as much as possible. You 
should have two separate subroutines, one to use when all you need to find 
is the greatest common divisor and thus can ignore the mi 's , the other for 
those less frequent occasions when you need to find m and n as well as the 
gcd. 

In the following algorithm, I use standard shorthand : 

a MOD b 

to denote the remainder when integer a is divided by the integer b. Thus 

37 MOD 5 2 
-24 MOD 7 -3. 

Algorithm 1 . 7  This algorithm computes gcd( a, b) using the Euclidean A l­
gorithm. 

INITIALIZE: READ a,b 

Input any two integers a and b. 

DIVISION_LOOP: WHILE b # 0 DO 
temp <- b 
b <- a MOD b 
a <- temp 

Store the value ofb and then compute new values for a and 
b. 

TERMINATE: WRITE lal 

The greatest common divisor is the absolute value of the 
last non-zero b, that is to say I al. 

It should be noted that the Euclidean Algorithm is very forgiving in 
the sense that it can be abused considerably and still come up with the 
correct answer. From the way it is set up, it is natural to enter the larger 
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integer first. The reader should verify that if the smaller number is entered 
first, then the first iteration of DIVI S I ON_LOOP interchanges these initial 
integers. Also, if one or both of the initial values are negative, then the 
absolute value of the final value of a is still the greatest common divisor. 
Even if one or both of the initial values are zero, this algorithm will return 
the correct gcd. 

Algorithm 1.8 This is Donald E. Knuth's algorithm for computingm and 
n as well as the gcd. In practice, we will only ever need the value of m so 
that the second coordinates can be suppressed. Also, as Knuth points out, 
once m and the gcd are known, the value of n is easily computed from the 
relationship 

gcd = m x a + n x b. 

What makes this algorithm work is that Ui, Vi always satisfy: 

INITIALI ZE: 

a x Ul  + b X U2 

READ a ,b 

Ul f- 1; U2 f- 0; U3 f- a 

v 1 f- 1; V2 f- 0; v3 f- a 

Input any two integers a and b. 

DIVISI ON_LOOP : WHILE v3 # 0  DO 

q f- l U3/V3J 
CALL NEW_VALUES 

Compute the greatest integer less than or equal to u3 / v3 
aTJ,d then reset the values of the Ui and Vi' 

TERMI NATE : 

The greatest common divisor is the last non-zero value of 
V3 which is also the current value of U3' By the equation 
satisfied by the u's, m is ul and n is u2' 
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FOR i = 1 t o  3 DO 
temp <- vi 
vi <- ui - q x vi 
ui <- temp 

RETURN 

Store the old value of viand then compute new values of 
v i and Ui' Return new values of Ui and vito caller. 

Note that in Algorithm 1 .8 the third coordinate is precisely running 
through Algorithm 1 .7 and thus when the algorithm terminates, U3 will be 
the value of the gcd. 

Because the gcd algorithm is iterated so frequently in most factorization 
procedures , we want to make it as efficient as possible. What makes the 
Euclidean Algorithm work is the fact that 

gcd(a, b) = gcd(b, a - m x b) , 

for any integer m (see Exercise 1 . 14) .  In the Euclidean Algorithm we choose 
for m that integer which yields the smallest positive value for a - mb. We 
then iterate until one of the integers is zero, at which point the gcd is simply 
the remaining non-zero integer. The optimal value of m is computed by 
division, and division is a relatively time-consuming operation. There are 
several suggestions for speeding up the computation of the gcd by choosing 
less than optimal values for m. 

One of the most practical alternatives is the binary gcd algorithm pro­
posed by Josef Stein in 1961 .  It takes m = 1 and makes use of the fact that 
division by 2 is extremely fast ,  especially in machine language. If a and b 
are both even then 

gcd(a, b) = 2 x gcd(a/2 ,  b/2) , 

while if a is odd and b is even then 

gcd(a, b) = gcd(a, b/2) .  

Algorithm 1 .9  A binary gcd algorithm. 

INITIALIZE : READ a , b  
e <- 0 

Input positive integers a and b .  e counts the power of 2 in 
the gcd . 
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PULL_TWOS : WHILE a and b are even DO 
a+- a/2 
b +- b/2 
e +- e + 1 
a+- REDUCE (a)  
b +- REDUCE (b)  

SUBTRACTION_LOOP : WHILE b # 0 or 1 DO 
c +- l a  - bl 
a +- MINIMUM (a , b) 
b +- REDUCE (c )  

TERMINATE : IF b = 0 THEN gcd = 2e x a 
IF b = 1 THEN gcd = 2e. 
WRITE gcd 

REDUCE (x) : WHILE x is even DO 
x +- x/2 

RETURN 

Pull all factors of 2 out of x .  Return new value of x .  

The reader i s  asked to  compare running times on  Algorithms 1 . 7  and 1 .9 .  
In a high level language, Algorithm 1 . 7  is usually faster. Algorithm 1 .9 is 
most efficient when written directly in an assembly language. 

1 . 5  Continued fractions, a first glance 

We conclude this chapter with a curious phenomenon that comes out of 
the Euclidean Algorithm and which will play a very important role later in 
the development of factorization techniques and primality tests. 

Theorem 1.10 Let a and b be integers and let the Euclidean Algorithm 
run as follows: 

a ml x b +  rl 
b m2 x rl + r2 



The fmction alb can then be expressed as 

a 1 
- = ml + 1 
b m2 + m3+- . .  -1-

mk+ l 
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As an example, if we return to the application of  the Euclidean Algorithm 
to the values a = 1239, b = 168, then this proposition says that 

1 239 
168 

1 7 + 1 
2+ --

1 
1 + 2 

1 7 + 1 
2+ 3/2 
1 7+ 8/3 

59 
8 

A fraction of the form given in Theorem 1 . 10, where the numerator is 
one and the denominator is a non-negative integer plus a fraction of the 
same form is called a continued fraction. It follows from this theorem that 
every rational number can be written as a continued fraction. We leave the 
proof of this theorem as an exercise. 
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1 .6 EXERCISES 

1 . 1 Show that 3 + v'IO is a divisor of every extended integer of the form 
m + nv'IO. An extended integer which divides every extended integer is 
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called a unit. All other extended integers in this system are called non­
units. (For the ordinary integers, 1 and - 1  are the only units. ) The correct 
definition of an indivisible in this system of extended integers is an extended 
integer which cannot be written as the product of two non-units. 

1 . 2  Prove that 2 , 3 , 4 +  v'IO, and 4 -v'IO really are indivisibles in the system 
of extended integers of the form m + nv'IO. Hint: If 

m + nv'iO = (a + bv'iO) x (c + dv'iO), then 

m - nv'iO (a - bv'iO) x (c - dv'iO), and so 

m2 - lOn2 (a2 - lOb2) x (c2 - lOd2). 

If a + bv'IO and c + dv'IO are not units, then in each of these four cases 

a2 - lOb2 and c2 - lOd2 

must be 2 ,  -2, 3, or -3. Show that any perfect square is a multiple of 5 or 
1 more or less than a multiple of 5, and therefore 

a2 - lOb2 = 2 ,  -2, 3, or - 3 ,  

has no integral solutions. 

1 . 3  Prove that the square roots of 3 and 5 cannot be written as rational 
numbers. 

1 . 4  Prove that if n is a positive integer which is not the square of another 
integer than the square root of n cannot be written as a rational number. 

1 . 5  Find all fundamental Pythagorean triples (x, y, z ) with x and y less 
than 50. 

1 .6 Prove that if a and b are relatively prime, a > b > 0,  and one is odd, 
the other even , then 

is a fundamental triple . 

1 .  7 Show that if x, y ,  and z are positive integers which satisfy 

and they have no common divisor, then there exist relatively prime integers 
a and b where b is odd such that 



x 12a2 - b21 , 
Y 2ab, and 

z 2a2 + b2 . 
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1 .8 To say that d divides a means that there is an integer m such that 
a = d x m. Prove that the Fundamental Theorem of Arithmetic implies 
Theorem 1 . 1 .  

1 .9 Using the Euclidean Algorithm and hand calculation, find 

gcd(31408, 2718) .  

1 . 10 Let fcm(a, b) denote the least common multiple of  a and b. Prove that 
fcm(a,  b) = (a x b)/gcd(a, b) . 

1 . 1 1  Write a program to implement Algorithm 1 . 7  and test it on the pairs 

(31 408, 2718) , 

(21 377 104, 1 2 673 234) , 

(355 876 536, 319 256 544) ,  

(84187 85375, 78499 1 1069) , 

1 . 1 2  Show that if the absolute value of a is less than the absolute value of 
b, then the first iteration of DIVISION_LOOP in Algorithm 1 . 7  reverses the 
order of these values . 

1 . 13 Analyze what happens in Algorithm 1 . 7  if a and/or b is negative. 
(Note: Replacing v by -v does not change the value of u MOD v. ) 

1 . 14 Prove that if m is an integer, then the set of common divisors of a and 
b is the same as the set of common divisors of b and a - mb, and thus 

gcd(a, b) = gcd(b, a - m x b) . 

1 . 15 Write a program to implement Algorithm 1 . 8  and test it on the pairs 
of values that appear in exercise 1 . 1 1 . 

1 . 16 In Algorithm 1 .8 ,  verify that after each iteration of DIVISION_LOOP 
the equations 

U3 UI x a + U2 x b, 
V3 VI x a + v2 x b ,  
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are still satisfied. 

1 . 17 What are the values of VI and V2 when Algorithm 1 .8 terminates? 

1 . 18 Find two other integral solutions to the equation 

1 239 x m + 168 x n = 2 1 .  

1 . 1 9  Show that there are infinitely many integral solutions of 

1 239 x m + 168 x n = 2 1 .  

Describe how they are generated . 

1 .20 Write a program to implement Algorithm 1 . 9  and test it on the pairs of 
values that appear in Exercise 1 . 1 1 .  Compare running times with Algorithm 
1 . 7. 

1 . 2 1  Prove that Algorithm 1 . 9  will eventually terminate. 

1 .22 Prove Theorem 1 . 10 .  Hint: Start by rewriting the successive equalities 
of the Euclidean Algorithm as 

alb ml + rdb 
birl m2 + r2 /rl 

rdr2 = m + 3 + r3/r2 

rk-2/rk- l mk + rk lrk- l 
rk-drk mk+ l · 



2 

Primes and Perfect Numbers 
"It is recorded that all God's works were completed 
in six days, because six is a perfect number . . . .  For 
this is the first number made up of divisors, a sixth, 
a third , and a half, respectively, one, two, and three, 
totaling six ." 
- St. Augustine of Hippo (The City of God) 

2 . 1 The Number of Primes 

With this chapter we begin the process of finding the primes and factoring 
the composite integers . The first question that arises is whether or not the 
list of primes is finite. If it were then we could , at least in theory, publish 
a book containing all the prime numbers and anyone wanting to determine 
whether an integer were prime would only have to look it up. Unfortunately, 
there is no limit to the number of primes, a fact which was known to Euclid. 

Theorem 2 . 1  There are infinitely many primes. 

Proof Let us assume that there are only finitely many primes, then we can 
list them all :  

Pl ,P2 ,···,Pr· 

Let P be their product, a very big number but still finite: 

P = Pl X P2 X . . .  X Pr. 

We now consider P + 1 which is an integer and so can be factored into 
primes. But since all of the primes divide P, none of them divide P + 1, 
since if Pi divides P and it divides P + 1 ,  then it must divide 1. This is our 
contradiction. 

Q .E .D .  



18  2 .  Primes and Perfect Numbers 

Observe that all that this proof does for us is prove that there are in­
finitely many primes. It is useless in trying to generate the primes. If we 
know the first n primes, this will give us a new prime, but probably not 
the next prime. Also, this does not promise that P + 1 will be a prime. For 
example : 

(2 x 3 x 5 x 7 x 1 1  x 13) + 1 30031 
59 x 509. 

All it promises is that P + 1 will not have any prime factors from our list . 
The next question to arise naturally is how thickly are the primes spread 

among the integers . A famous result conjectured by several mathematicians 
at the end of the 18th century and not proved until the end of the 19th 
century by Jacques Hadamard ( 1 865- 1963) and Charles-Jean de la Vallee­
Poussin ( 1 866- 1962) is the following theorem which I shall not prove in this 
book. 

Theorem 2 .2  The number of primes less than or equal to n is asymptot­
ically n j ( log n). That is to say, if p( n) denotes the number of primes less 
than or equal to n, then 

p(n) 
nj ( log n) 

approaches 1 in the limit as n approaches infinity. 

This estimate is surprisingly accurate considering its simplicity. I give 
below some sample values: 

n nj ( log n) 
10  144.7 . .  . 
106 72 382 .4 . .  . 
109 48 254 942 .4 . .  . 

actual number of primes 
168 

78 498 
50 847 478 

What this tells us is that there are a lot of primes. They are a lot more 
frequent than perfect squares , for example . This is good news if we want 
to find big primes because it tells us that our chances of hitting one just 
by randomly choosing big numbers are pretty good. 

As an example, let us assume that we want to find a prime with 100 
digits, something just a little smaller than 10 100 . In Chapter 4 we will see 
a situation in which we want a hundred digit prime. The ratio of hundred 
digit primes to hundred digit integers is approximately: 
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1 1 
log( 10 100 ) ' 

or about 
230' 

We can greatly increase our odds j ust by ignoring multiples of 2 and 
3 which make up two-thirds of the hundred digit integers. The odds of 
choosing a prime at random are improved to approximately 1 in 77. 

If we start with a hundred digit integer which is one more than a multiple 
of 6 and then alternately add 4 and then 2 to the last number generated 
until we have a list of 100 numbers, the odds are very good (about 73%) 
that we have at least one prime in our list . If we get our computer to 
generate a thousand integers in this way, we are virtually assured of having 
found a prime (99.9998% confidence) .  There is only one small problem: 
How do we know which numbers in our list are prime? 

In this chapter, we will be looking at two extremely old algorithms for 
finding primes and factoring. While they will not help us much with our 
hundred digit integers, they contain ideas that eventually will. 

Incidentally, the current state of the art is that "generic" integers of up 
to about 100 digits can be factored. Much larger numbers can be recognized 
as primes, however. Up to 300 digits is considered computationally feasible. 

2.2 The Sieve of Eratosthenes 

The first algorithm is called the Sieve of Eratosthenes and is attributed 
to this Greek mathematician from Cyrene in what is now Libya who lived 
about 27&- 194 B .C .  and taught in Alexandria. To find all primes less than 
or equal to n, we list all the integers from 2 to n. We then work our way 
down the list. The first integer (namely 2) must be prime. We cross off all 
multiples of 2 which are larger than 2. The first integer after 2 which has 
not been crossed off (namely 3) must be prime. We cross off all multiples 
of 3 which are larger than 3. We continue in this manner. When we have 
found a new prime, we cross off all multiples of that new prime which are 
larger than the prime itself and then move to the next integer which has 
not been crossed off and which must again be prime. 

One of the worksavers that Eratosthenes realized was that we do not 
have to continue this all the way up to n. Once we have found a prime 
larger than the square root of n, all of the remaining integers which have 
not been crossed off must be prime. If any of them were composite then 
they would have to have a factor less than or equal to their square root . If 
n = a x b then a ::::; .;n or b ::::; .;n. 

Algorithm 2.3 The sieve of Eratosthenes to find all primes less than or 
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equal to a given integer n .  

INITIALIZE : READ n 
FOR i = 2 to n DO 

ai +-i 
j +-2. 

n is the upper bound on the list of primes to be generated. 
The second and third lines set up the values over which we 
sieve. 

NEXT_PRIME : WHILE j 2 :S n DO 
IF aj � 0 THEN CALL SIEVE (j ) 
j +-j + l  

If aj � 0 then j is prime. 

TERMINATE : 

SIEVE ( i ) : 

FOR i = 2 to n DO 
IF ai � 0 THEN WRITE i 

t+-2 xj 
WHILE i :S n DO 

ai +-0 
i+-i + l  

RETURN 

Proper multiples of j are "crossed out" by resetting atj to 
o. New values of the ai are then returned to the caller. 

This algorithm has some serious flaws. If n is very large it requires a lot 
of memory. And if you want to use if to prove that n is prime, it would take 
approximately the square root of n cycles. It does possess , however, a great 
strength which will come into play in the most powerful known factorization 
algorithm, the Quadratic Sieve. This strength is that it requires no division 
and essentially no multiplication . 

2 . 3  Trial Division 

If we are given an integer less than a million , we can find its prime factors 
fairly quickly just by using the fact that if it is not a prime, then it must 



2 .3 .  Trial Division 2 1  

have a factor less than its square root . I n  this case that would mean less 
than a thousand. Thus all we need to do is to take a list of all primes less 
than a thousand and try dividing them into the number to be factored. If 
none of them divide evenly, then the original number was prime. Each time 
we find a prime divisor, we divide it out . Once the unfactored portion that 
remains is less than the square of the last prime we tested , we know that 
the unfactored portion has to be prime. 

There are 168 primes less than or equal to a thousand, and 669 primes 
less than or equal to five thousand . They can be generated by Algorithm 2 .3 
and then stored in permanent memory for future use, but you can greatly 
simplify your memory requirements without sacrificing very much running 
time by trial dividing by 2, 3 ,  and then all integers up to 1000 or 5000 
which are not divisible by 2 or 3. 

Up to one thousand, this means 334 trial divisions instead of 168. Up 
to five thousand, it means 1668 instead of 669. This does slow you down , 
but by a factor of less than 3 on what is a very speedy calculation. And 
in practice, when we are confronted with a number to be factored we will 
only use trial division up to 5000. If the smallest prime factor is larger than 
5000 , then it is probably quite a bit larger than 5000 and there are faster 
ways to find it . 

Algorithm 2.4 Factorization by trial division up to a specified maximum 
(= max) . Final form will be 

n = p�l X p�2 X . . .  X p�r X f, 

where f is the unfactored portion, f is strictly larger than the square of the 
largest trial divisor or f = 1 .  

INITIALIZE : READ n ,  max 
it-- O 
f t-- n 

i counts the number of distinct prime factors. 
f records the still unfactored portion. 

FOR d = 2 to 3 DO 
IF f MOD d = 0 THEN CALL DIVIDE (f , d , i ) 

d t-- 5 
add t-- 2 .  
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TRY_LOOP : WHILE d ::; max and d2 ::; f DO 
IF f MOD d = 0 THEN CALL DIVIDE (f , d , i ) 
d <-- d + add 
add <-- 6 - add 

IF d2 > f THEN DO 
i <-- i + l  

Pi <-- f 
ei <-- 1 
f <-- 1 

If d2 > f, then f is prime. 

TERMINATE : r <-- i 
FOR i = 1 to r DO 

WRITE Pi , ei 
WRITE f 

DIVIDE (f , d , i ) :  i <-- i + 1 

Pi <-- d 
ei <-- 1 
f <-- f/d 
WHILE f MOD d = 0 DO 

ei <-- ei + 1 
f <-- f/d 

RETURN 

When this procedure is called, it means that d is a prime 
divisor of f. It finds ei , the largest power of d that divides 
n, and then returns the new values of f and i to the caller. 

2 . 4  Perfect Numbers 

Algorithms 2 .3 and 2 .4 are very simple but slow and inefficient for large 
numbers. In order to speed things up, we are going to have to delve into 
some of the patterns that are exhibited by the integers . We are going to 
have to study the Theory of Numbers. Most of what we will need got its 
start in some rather esoteric-looking questions posed by the ancient Greeks, 
and Euclid in particular. 
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Definition:  A positive integer is said to be perfect if it is the sum of its 
proper divisors ( those positive divisors strictly less than itself) . 

The first four perfect numbers are 

6 1 + 2 + 3 ,  
28 1 + 2 + 4 + 7 + 14 ,  

496 1 + 24 + 8 + 16 + 31 + 62 + 1 24 + 248, 
8 128 1 + 2 + 4 + 8 + 16 + 32 + 64 + 127 + 254+ 

+ 508 + 1016 + 2032 + 4064. 

Several questions suggest themselves on looking over this admittedly 
skimpy list of perfect numbers: Are there infinitely many? Are there any 
odd ones? Is there any simple way of generating them? Do the even perfect 
numbers have to end in 6 or 8? 

The answers to the first two questions are unknown, but it is believed by 
many that the answer to the first question is "yes" and to the second "no" . 
(It has been shown by Peter Hagis that any odd perfect number must be at 
least 1050 . )  We will postpone the answer to the last question until the next 
chapter. If we restrict ourselves to the even perfect numbers , then there is 
a relatively simple way of finding them. Consider the factorizations of the 
first four perfect numbers: 

6 2 x 3, 
28 22 x 7 = 4 x 7, 

496 24 x 31 = 16 x 31 ,  
8 128 26 x 127 = 64 x 1 27. 

Definition: Let M(n) = 2n - 1 . A Mersenne prime is a prime of the form 
M(n) for some integer n. Thus 3 , 7, 3 1 ,  and 127 are the first four Mersenne 
primes. 

Fr. Marin Mersenne ( 1588- 1648) was among the mathematicians of the 
early 1 7th century who worked on the problem of perfect numbers. The 
special role of these primes had actually been known to Euclid . 

Theorem 2 .5  If M(n) is a Mersenne prime, then 

m = 2n- 1 x M(n) 

is  a perfect number. 

The proof of this theorem and much of the rest of the work on perfect 
numbers relies on the following lemma. 
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Lemma 2.6 xk - 1 = (x - 1) x ( 1  + x + x2 + . . .  + Xk- 1 ) .  

The proof of this lemma is left as an exercise . Note that when x = 2 ,  it 
says that 

Proof of Theorem 2. 5: If M(n) is prime, then the proper divisors of 

m = 2n- 1 x M(n) 

are 1 , 2 , 4 , . . .  , 2n- 1 , M(n) , 2 x M(n) ,  4 x M(n) , . . .  , 2n-2 x M(n) . The sum 
of the proper divisors of m is thus: 

(1 + 2 + 4 + . . .  + 2n- 1 ) + (1 + 2 + 4 + . . .  + 2n-2 ) x M(n) 
= (2n - 1) + (2n- 1 - 1) x (2n - 1 )  
= 2n- 1 x (2n - 1 )  = m. 

Q.E.D.  

Theorem 2 .5  implies that for every Mersenne prime there is  an even 
perfect number. The next theorem states that there are no other even 
perfect numbers. 

Theorem 2 .7  If m is an even perfect number then there is an integer n 
such that 

and 2n - 1 is prime. 

Proof. Write m as 

m = 2n- 1 x (2n - 1 ) ,  

m = 2 a  x t ,  

where t i s  odd and a i s  at least one (because m i s  even) . Let S be  the sum 
of all the divisors of t. In other words, S is the sum of the odd divisors of 
m. 

We take the divisors of m and split them up into the odd divisors , then 
those divisors with one factor of 2, then those with two factors of 2, and so 
on until we get those divisors with a factors of 2. The sum of all divisors 
of m thus looks like :  
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s + 2 X S + 4 X S + . . .  + 2a X S. 

This sum includes the divisor m itself, and so if we want the sum of 
the proper divisors , we must subtract m from the expression given above. 
Since m is perfect ,  the sum of the proper divisors is equal to m. We get 
the following equality: 

m S + 2 X S + 4 X S + . . .  + 2a x S - m, 

(2a+l - 1 )  x S - m. 

If we solve this equality for S, we see that : 

S = 2m 

2a+l - 1 

We now rewrite this last equation using the representation which we have 
for m: 

S 
2a+l x t 

2a+l - 1 
t 

t + 
2a+l _ 1 

(2a+ 1 - 1 + 1 )  x t 

2a+l - 1 
t 

= t + . 
M(a + 1 )  

Since S i s  an integer, t / M (a + 1 )  must also b e  an integer and thus a 
divisor of t . Now S is the sum of all divisors of t ,  but we have it written 
here as a sum of exactly two divisors of t . That means that t has exactly 
two divisors and so t is prime. The two divisors of a prime are itself and 1 
and so: 

t 
-..,---- = 1 ,  
M(a + 1 )  

and the theorem i s  proved. 

Q .E .D .  

2.5 Mersenne Primes 

If we ignore the possibility of odd perfect numbers, then we can characterize 
the perfect numbers by finding the Mersenne primes. When is M(n) prime? 
One quick result tells us when it is not prime. 
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Theorem 2.8 If n is composite, then M (n) is composite. 

Proof Let n = a x b where a and b are each larger than 1 .  Using Lemma 
2 .6  we have that 

M(n) 2a x b - 1 ,  

= (2a ) b - 1 ,  

(2a - 1 )  x ( 1  + 2 a  + 22a + . . . + 2 (b- l ) x a ) . 

Since each of these factors is larger than 1 ,  M(n) is composite. 

Q.E.D.  

Our problem has been reduced to deciding when M(p) is  prime. It starts 
out looking like it is always prime: 

M(2) 3 ,  prime 

M(3) 7, prime 

M(5) 31 ,  prime 

M(7) = 1 27, prime. 

But , unfortunately, this does not last: 

M( l l )  

M(13) 

M(17) 

M(19) 

M(23) 

2047 = 23 x 89, 

8191 ,  prime 

13 1  071 , prime 

524 287, prime 

8 388 607 = 47 x 1 78 481 .  

In fact ,  primes p for which M(p) is prime start to get scarce at this point . 
The next 13  Mersenne primes have the following values for p: 

3 1 , 6 1 , 89, 107, 127, 52 1 , 607, 1279, 2203, 228 1 , 3217 , 4253, 4423. 

M(4423) is a big number. It has 1332 digits. How could anyone possibly 
know that it is a prime? The answer to this is that there is an extremely 
fast and simple algorithm known as the Lucas-Lehmer algorithm for testing 
whether a Mersenne number is a prime. The theory behind it was developed 
by Edouard Lucas ( 1 842- 1891 )  and it was put into its present simplified 
form by Derrick H. Lehmer. It only works on Mersenne numbers, and its 
justification requires some fairly high-powered number theory which we 
will not get to unti l  section 5 of Chapter 1 1 .  But I give it here for your 
amusement. 
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Algorithm 2.9 Test for whether or not M(n) = 2n - 1 is prime. It is 
valid for any odd n ::::: 3. 

INITIALIZE : READ n 
M +-- 2n - 1 
S +-- 4 

MYSTERY_LOOP : FOR i = 2 to n - 1 DO 
S +-- S x S - 2 MOD M .  

TERMINATE : IF S = 0 THEN WRITE M 

M is prime if and only if the final value of S is o .  

The limitation here i s  not the complexity of the algorithm, but the diffi­
culties 'of doing very high precision arithmetic. For n = 4423, we need 2664 
digit accuracy. Most multiple precision packages will give you arbitrarily 
high precision , but the higher the precision , the slower they run . 

It should not be surprising that the largest known prime is a Mersenne 
prime. As of this writing it is 

2216091 - 1 ,  

an integer with 65050 digits. It was found by David Slowinski in 1985. 

REFERENCES 
D. H. Lehmer, "An extended theory of Lucas functions," Ann. Math. , 
31 ( 1930) , 419-448. 

Edouard Lucas, "Theorie des fonctions numeriques simplement periodiques," 
Amer. J. Math. , 1 ( 1878) ,  184-240, 289-32 1 .  

2 . 6  EXERCISES 

2 . 1  Prove that there are infinitely many primes which are one less than a 
multiple of four. Hint: Show that any integer of the form 4n - 1 must be 
divisible by a prime of the same form. 

2 .2 Using Theorem 2 .2 ,  approximately how many hundred digit primes are 
there? How does this compare with the number of primes with at most a 
hundred digits? 
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2 .3  What is the asymptotic formula for the number of perfect squares less 
than or equal to n? 

2.4 Write a program to implement Algorithm 2.3. Use it to find the primes 
less than or equal to 5000. 

EXERCISES 2 .5  - 2 .7  USE THE TABLE OF PRIMES GENERATED IN 
EXERCISE 2 .4 .  

2 .5  How many pairs of primes in the table differ by two? A famous unsolved 
problem asks if there are infinitely many such pairs among all the primes. 

2 .6  How evenly are the primes in the table divided between those one 
more than a multiple of four and those which are one less than a multiple 
of four? Are you prepared to make any conjectures? Can you prove your 
conjectures? 

2 . 7  Can you find any patterns or unusual clusters in your list of primes? 

2 .8  Write a program to implement Algorithm 2 .4 .  Use it to factor or prove 
primality for 

307 82 1 , 16 803 654, 19 46852 76691 .  

2 .9  Choose 100 consecutive seven digit numbers and factor them using trial 
division. 

EXERCISES 2 . 1 0  - 2 . 1 5  USE THE FACTORED NUMBERS FROM EX­
ERCISE 2.9 .  

2 . 1 0  How many primes are in your list of factored numbers? How does this 
compare with the expected number of primes? 

2 . 1 1  How many perfect squares are in your list of factored numbers? How 
does this compare with the expected number of perfect squares? 

2 . 1 2  What is the distribution of the number of distinct primes dividing 
each of your integers? What is the mean and standard deviation of this 
distribution? 

2 . 13  What is the distribution of the sizes of the primes dividing your in­
tegers? How many of the integers n have a prime factor larger than n3/4 ,  
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n1 /2 , n1 /3? Describe the distribution , mean, and standard deviation of the 
logarithm of the largest prime factor divided by the logarithm of n. 

2 . 14  How many of your 100 integers have the number of distinct prime 
factors within one standard deviation of the mean AND the logarithm of 
the largest prime factor divided by the logarithm of n within one standard 
deviation of the mean? 

2 . 1 5  How large a number can "usually" be factored using trial division up 
to 5000? Try your trial division algorithm on 100 consecutive integers of 
this size and report your results. "Usually" should mean at least 75% of 
the time and not more than 95% of the time. 

2 . 16  Prove Lemma 2.6 by induction on k .  

2 . 1 7  In  the proof of Theorem 2 . 7, where did we use the fact that the power of 
2 is at least one? That is to say, why can't  we use this proof to characterize 
odd perfect numbers? 

2 . 18  Write a program to implement Algorithm 2 .9 .  Use it to check that 
M(89) is prime but M(83) is not . 

2 . 19  Use trial division to factor M(29) . Can you find any pattern to or 
properties of the prime divisors of M( l l ) ,  M(23) , and M(29)? 

2 .20 For n less than or equal to 30, when is 2n + 1 a prime? Can you 
make a conjecture on when it will be prime? Try to prove or disprove your 
conjecture. 
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Fermat , Euler , and 
Pseudoprimes 

3 . 1  Fermat 's Observation 

"I have found a very great number 
of exceedingly beautiful theorems."  
- Pierre de Fermat 

We have reduced the problem of finding even perfect numbers to deciding 
when M(p) = 2P - 1 is prime. Algorithm 2 .9 is a very recent development . 
In this chapter we will be starting with some progress made by Pierre de 
Fermat ( 1 601 - 1665) in 1640 . 

Fermat was working with the list of values of M(p) up to P = 23 that 
was given in Chapter 2 .  He observed a curious phenomenon: For each prime 
q that divides M(p) , the remainder when q is divided by p is 1 .  If this is 
always true, then it greatly simplifies our task of looking for divisors of 
M(p) because we can restrict our attention to those primes q which are 
one more than a multiple of p. 

Observe that there does appear to be something special about primes 
going on here because this property does not always hold for M(n) when 
n is composite: 

M(4) 
M(6) 
M(8) 

1 5  
63 

255 

3 x 5 ,  
3 x 3 x 7, 
3 x 5 x 17. 

Definition:  It is useful to introduce some notation . We will  write: 

a == b (mod m ) , 

to mean that m divides a - b. Equivalently, if a and b are positive , it means 
that 

a MOD m = b MOD m .  

This is read as a is congruent to b modulo (or mod) m or a and b belong 
to the same congruence class modulo m. The smallest non-negative integer 
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congruent to  a modulo m will be  called the residue of a modulo m. Again, 
if a is positive, then the residue of a modulo m is a MOD m. 

In this notation , Fermat 's observation is that if a prime q divides M(p) , 
then 

q == 1 (mod p) . 

I leave it as an exercise to verify that if 

a == x (mod m) , and b == y (mod m) , then 

a + b  x + y (mod m) , and 

a x b x x y (mod m) . 

We will also need to use the fact that if gcd(x, m) = 1 and if 

a x x  

a 
b x x (mod m) ,  then 

b (mod m) . 

The proof of this is also left as an exercise. 
Any divisor d of M(p) is a product of primes which divide M(p) and so 

Fermat 's observation implies that any divisor d of M(p) satisfies 

d == 1 (mod p) . 

In particular, M(p) is a divisor of M(p) , that is to say :  

2P - 1 == 1 (mod p) . 

If p is not 2, then we can add 1 to each side and then divide by 2 to get 
the following result .  

Theorem 3.1 If p is an odd prime then 

2P- 1 == 1 (mod p) . 

Note that we do not yet have a proof of this theorem because Fermat 's 
observation is stil l just an observation and not yet a theorem. Ironically, 
we will be proving Theorem 3. 1 by another method and then using it to 
prove Fermat 's observation. 
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3 . 2  Pseudoprimes 

For the moment , let us accept Theorem 3 . 1 .  It tells us that primes satisfy 
a very special equality. If we try this equality on composite numbers, we 
see that it does not seem to work: 

8 
32 

16 384 

o (mod 4) , 
2 (mod 6) , 
4 (mod 15 ) .  

This i s  very nice because we are looking for a way of  distinguishing 
primes from composite numbers . Unfortunately, there are some composite 
numbers which look like primes from this point of view: 

234 1 - 1 == 1 (mod 341 ) ,  however, 

341 = 1 1  x 3 1 .  

This motivates the following definition 

Definition: If n is odd and composite and n satisfies 

2n- 1 == 1 (mod n) , 

then we say that n is a pseudoprime. 

(3 . 1 )  

Despite the fact that the test we have is not a 100% guarantee o f  pri­
mality, in practice it is very useful. As we will see in the next algorithm, 
exponentiation can be done very quickly so that most composite numbers 
are revealed as composite in short order. Furthermore, pseudoprimes are 
fairly scarce, much scarcer than primes. To give you a feel for their scarcity, 
there are only 3 pseudoprimes below a thousand: 

341 , 561 , and 645. 

There are only 245 pseudoprimes below a million (as opposed to 78498 
primes) . If an integer satisfies Equation (3 . 1 ) ,  you know that it is probably 
a prime and can usually proceed on that basis. 

Fermat realized that there was nothing special about the 2 in his theorem 
and proved the following more general result . 

Theorem 3.2 If p is a prime which does not divide b, then 

fl'- 1 == 1 (mod p) . 
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Definition:  If n is an odd composite number which is relatively prime to 
b and if 

bn- 1  == 1 (mod n ) , (3 . 2 ) 
then we say that n is a pseudoprime for the base b . 

We can now strengthen our primality test . If n passes for the base 2 ,  we 
can also check for bases 3 and 5. For example, 

334 1 - 1 == 56 (mod 341 ) ,  

and we now know that 341 i s  composite. 
Unfortunately, there are composite numbers which are pseudoprimes for 

all bases to which they are relatively prime. The first such number is 

561 = 3 x 1 1  x 1 7. 

Such numbers are called Carmichael numbers after Robert Daniel Carmi­
chael ( 1879- 1967) . They are extremely rare, there are only 2 163 Carmichael 
numbers below 25 x 109 . 

3.3 Fast Exponentiation 

The idea behind fast exponentiation is that if the exponent is a power of 2 
then we can exponentiate by successively squaring: 

= 
( (X2 )2 ) 2 ,  
( ( ( ( ( ( (X2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 .  

I f  the exponent is not a power of 2 ,  then we use its binary representation, 
which is just a sum of powers of 2 :  

Thus to raise x to the power n requires only about log n operations. 

Warning: Never use an exponentiation symbol ( - or * * ) to compute expo­
nents when doing factorization or primality testing. It may use logarithms 
to compute the exponent which will result in some round-off. Even if this 
is not the case (for example, REXX does use binary exponentiation ) ,  you 
must be careful of overflow. With an accuracy of seventy decimal digits, 
Algorithm 3.3 given below will quickly compute ab MOD m for a and m 
up to 1035 and b up to 1070 . However, just computing 2234 directly would 
overflow that accuracy. 
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Algorithm 3.3 Computes ab MOD m for b ::::: o. 

INITIALIZE : READ a , b , m  
n +--- 1 

BINARY_LOOP : WHILE b � 0 DO 
IF b is odd THEN DO 

n +--- n x a MOD m 
b +--- lb/2J 
a +--- a x a MOD m 

We find the binary. representation of b while at the same 
time computing successive squares of a. The variable n 
records the product of the powers of a. 

TERMINATE : WRITE n 

The final value of n is the value of ab MOD m.  

In practice , if you have a large number n that you want to factor or  prove 
prime, you will first use Algorithm 2 .4 to check for small divisors. If there 
are no small divisors , then the next step is to use Algorithm 3.3 to compute 

2n- 1 MOD n, 3n- 1 MOD n, 5n- 1 MOD n, and 7n- 1 MOD n. 

If any of these quantities are not 1 ,  then you know that n is composite. 
In Chapter 5 we will look at ways of finding large factors. 

If all of these are 1, then n is prime or a pseudoprime for the bases 2 ,  
3,  5 ,  and 7, and it i s  very likely that n really is a prime. We shall call 
such an n a probable prime. The pseudoprime tests are so powerful that 
the integers which pass them have been dubbed "industrial grade primes" 
by Henri Cohen . If you really want to prove that n is prime, I will start 
talking about primality tests in Chapter 9. 

3 . 4  A Theorem of Euler 

The easiest way to prove Theorem 3.2 (which includes Theorem 3. 1 as a 
special case) is to prove an even more general result which was found by 
Leonard Euler ( 1 707- 1783) and which will be very important to us. As we 
have seen , Theorem 3 .2  is no longer true if we replace p with a composite 
integer. Euler found the right result for the composite integers. 
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Definition:  Let ¢(n) denote the number of positive integers less than or 
equal to n and relatively prime to n. For example : 

¢(4) 2, 
¢(6) 2, 
¢(7) 6, 

¢( 1 5) 8.  

Note that according to this definition , ¢( 1 )  = 1 .  

Theorem 3.4 Let n and b be positive, Telatitely pTime integeTs. Then 

b4>(n) = 1 (mod n) . 

If n is prime, then ¢( n) = n - 1 and so Theorem 3 .2 is a special case of 
Theorem 3.4 . 

As an example, consider 

24>( 1 5 ) = 28 = 256 = 1 (mod 15) . 

Proof Let t = ¢( n) and let aI , a2 , . . .  , at be the posit ive integers less than 
n which are relatively prime to n. Define T I , T2 , . . .  , Tt to be the residues of 
b x aI ,  b x a2 , . . .  , b x at mod n. That is to say, 

b x ai = Ti (mod n) . 

We note that if i and j are distinct , then Ti and Tj are also distinct . If 
they were not then we would have 

b x ai = b x a j (mod n) . 

Since gcd(b, n) = 1 ,  Exercise 3 .2 implies that we can divide by b and thus 

which cannot happen since ai and aj are distinct integers between 0 and 
n. 

We also know that each T i  is relatively prime to n because any common 
divisor of n and Ti would also have to divide ai . Thus TI , T2 , . . .  , Tt is a set 
of ¢(n) distinct integers between 0 and n which are each relatively prime 
to n. This means that they are exactly the same as aI , a2 , . . .  , at , except 
that they are in a different order. In particular, we have proved that 
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Now we use our congruence: 

r l x r2 x . . .  x rt b x al x b x a2 x . . .  x b x at (mod n) 

bt 
x al x a2 x . . .  x at (mod n) 

bt 
x rl x r2 x . . .  x rt (mod n) . 

We can divide both sides by the product of the ri 's to get 

1 == b<!>(n ) (mod n) . 

3 . 5  Proof o f  Fermat 's  Observation 

Q.E.D.  

We have finally proved Theorem 3 . 1 .  Let us now return to Fermat's original 
observation that if a prime q divides M(p) , then q == 1 (mod p) . We will 
need the following lemmas. 

Lemma 3.5 Let x, m, and n be positive integers with m and n relatively 
prime, then 

r 1 + x + x2 + . . .  + xm- l , and 
s 1 + x + x2 + . . .  + xn- l 

are relatively prime. 

Proof Let d be any common divisor of r and s .  Since r and s are each one 
more than a multiple of x, d is relatively prime to x. We can assume that 
m is larger than n. Now d divides 

r - S xn + xn+ l + . . .  + xm- l 

xn x ( l + x + · . .  + xm-n- l ) , 

and so d is also a divisor of 

1 + x + x2 + . . .  + xm-n- l . 

Now m - n is relatively prime to both m and n, and so we can continue 
shortening the geometric series that d divides until eventually we will have 
to have that d divides 1 ,  which means that d is 1 .  

Q .E .D .  
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Lemma 3.6 Let a and b be positive integers, then 

gcd(2a - 1 ,  2b - 1) = 29cd(a ,b) - 1 . 

Proof Let 9 = gcd(a, b) , a = m x g, b = n x g. Then m and n are relatively 
prime and we have that 

(29 - 1 )  x ( 1  + 29 + 22 x 9 + . . .  + 2(m- l ) x 9 ) , 
(29 - 1 )  x ( 1  + 29 + 22 x 9 + . . .  + 2(n- l ) x 9 ) .  

The proof now follows from Lemma 3 . 5  with x = 29 . 

Q.E.D.  

Theorem 3.7  Let p be a prime and let  M (p) = 2P - 1 .  If d is any divisor 
of M(p) , then 

d == 1 (mod p) .  

Proof As we showed at the beginning of this chapter, it is  enough to prove 
this theorem for prime divisors, say q. We know by Theorem 3 . 1  that q 

divides 

But then it has to divide the gcd of 2P - 1 and 2q- 1 - 1 ,  and so by Lemma 
3.6, q divides 

29Cd(P,q- l )  - 1 .  

Now the gcd of p and q - 1 i s  either 1 or p .  I f  i t  i s  1 ,  then q divides 

2 - 1 = 1 ,  

which cannot happen. That means that p divides q - 1 and the theorem is 
proved. 

Q.E.D.  
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3 . 6  Implications for Perfect Numbers 

The study of perfect numbers led Fermat to his observation and eventually 
to Euler's theorem (Theorem 3.4) . These results will suggest more questions 
that will lead us on in our study of properties of the integers, and we are 
ready to bid farewell to perfect numbers until the end of Chapter 1 1  when 
the justification of Algorithm 2 .9  will drop fortuitously out of our study of 
continued fractions. But before going, I want to summarize what we have 
proven about Mersenne primes and answer the question of the last digit in 
an even perfect number. 

The process of testing whether or not M(p) is prime has been consider­
ably simplified by Theorem 3 . 1 .  As an example, let us consider 

M(19) = 524 287. 

If it is not a prime, then it must be divisible by a prime congruent to 1 
modulo 19  and less than the square root of M( 19) which is 724.07 . . . .  Only 
six primes satisfy these requirements: 19 1 , 229, 419 ,  571 , and 647. None of 
them divide evenly into M(19) and so M(19) is prime. 

The question of the last digit is answered in the next result . 

Theorem 3.8 If n is an even perfect number, then its last digit is either 
6 or 8. 

Proof We know that n looks like 

n = 2P- 1 x (2P - 1 ) ,  

for some prime p .  I f  p = 2 ,  then n = 6 and we are okay, so let us assume 
that p is odd. We want to show that 10 divides either n - 6 or n - 8. 

By Theorem 3 . 1 ,  we know that 

24 == 1 (mod 5) . 

Now p - 1 is even and so either p - 1 = 4m or p - 1 = 4m + 2 for some 
integer m. We take the first possibility. Then 

which means that 

(24 )m == 1 (mod 5 ) ,  and 

2P- 1 x 2 - 1 == 2 - 1 == 1 (mod 5) , 

n I x 1 == 1 (mod 5 ) ,  

n 1 or 6 (mod 10) .  
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Since n is even, this case gives us 

n == 6 (mod 10 ) .  

I f  p - 1 = 4 x m + 2 ,  then 

2 p- l = (24 )m X 4 == 4 (mod 5) , and 

2 p - 1 = 2P- 1  X 2 - 1 == 7 (mod 5) , and so 

n == 4 x 7 == 3 (mod 5 ) ,  

n == 3 or  8 (mod 10) . 

Again, n is even and so in this case we have that 

n == 8 (mod 10) . 

Q.E .D .  

Observe that we have proved more than we asked . We now know that if  
p = 2 or p == 1 (mod 4) , then 2P- 1  x M(p) == 6 (mod 10) ;  if p == 3 (mod 4) 
then 2P- 1  x M(p) == 8 (mod 10 ) .  
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3.7 EXERCISES 

IN EXERCISES 3 . 1 - 3 .3 ,  USE THE FACT THAT a == b(mod m) IF AND 
ONLY IF m DIVIDES a - b. 

3. 1 Prove that if a == x (mod m) , and b == y (mod m) , then a + b == x + 
y (mod m) and a x b == x x y (mod m) . 
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3.2 Prove that if gcd(x , m) = 1 and if a x  x == b x x (mod m) , then a == 
b (mod m) . Show that the conclusion does not necessarily follow if gcd(x , m) 
is not 1 .  

3 . 3  Let g = gcd(x , m) . Prove that a x x == b x x (mod m) i f  and only if 
a == b (mod mig) .  

3 .4 Write a program t o  implement Algorithm 3.3 .  Use i t  t o  test whether 
22123 74139 and 1 97076 83773 are pseudoprimes (base 2 ) .  

3 .5 Find ten 12-digit probable primes. 

3.6 Find a 100-digit probable prime. 

3 .7 Take the un factored numbers from your answer to Exercise 2 . 15  and 
test whether they are composite or probable primes. 

3.8 Prove that if p is prime and q = 2 x p + 1 and q divides M (p) , then q 

must be prime. As an example, verify that 1 103 is a prime and that 2207 
divides M(1 103) . By the first part of this exercise , 2207 must be prime. 

3 .9 Using the idea of Exercise 3 .8 ,  show that if p is a prime, q divides M (p) , 
and q is less than p2 , then q must be a prime. As an example, verify that 
1 153 is a prime and that 267 497 divides M ( 1 1 53) and so 267 497 must be 
a prime. 

3 . 10  Exercise 3.9 implies the following primality test : If p is a prime factor 
of q - 1 such that p2 is larger than q and q divides M (p) , then q must be 
prime. Try using this test on the ten probable primes which you found in 
Exercise 3 .5 .  For how many of them does it work? When it fails , why does 
it fail? Does its failure mean that your probable prime is not prime? 

3. 1 1  Verify that the following algorithm produces the binary expansion of 
n: 

INITIALIZE : READ n 
i t-- - 1  

Input a non-negative integer n .  



BINARY_LOOP : WHILE n # 0 DO 
i <--- i + l  

TERMINATE : 

bi <--- n MOD 2 
n <--- In/2J 

k <--- i 
FOR i = 1 to  k DO 

WRITE bi 

3.7 .  EXERCISES 4 1  

3. 12  The following variation of  Algorithm 3 .3 i s  often called peasant mul­
tiplication because it has been used for centuries by European peasants 
who could use it to multiply without needing to memorize multiplication 
tables. Prove that it does provide the product of a and b as long as b is 
non-negative, and that it is equivalent to multiplication in base 2 .  

INITIALIZE : READ a , b  
n <--- 0 

BINARY_LOOP : WHILE b # 0 DO 
IF b is odd THEN DO 

n <--- n + a  
b <--- l b/2 J 
a <--- a + a  

TERMINATE : WRITE n 

3. 13  Use Theorem 3 .2  to prove that if gcd(b, 561 )  = 1 then 

b560 1 (mod 3) , 

b560 1 (mod 1 1 ) ,  

b560 1 (mod 17 ) .  

I t  follows from these three congruences that 

b560 == 1 (mod 561 ) .  

3 . 14  Find the smallest pseudoprime (base 2)  which i s  larger than a thou­
sand. Prove that this number is in fact a Carmichael number. 

3 . 1 5  Find the value of ¢(n) for n = 9 ,  10, 1 1 ,  and 12 .  
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3. 16 Write a program to compute ¢(n) by counting one for each i ::; n such 
that gcd(i ,  n) = 1 . List the values of ¢(n) for n up to 200 . 

3 . 17  What patterns can you pick out of the table of values of ¢(n) ? 

3 . 18  Is ¢(n) always even when n is larger than 2? Prove your assertion. 

3 . 19  Prove that for any integer x > 1 , we have that 

gcd(xa - l , xb - 1 ) = x9cd(a,b) _ 1 . 
3.20 Let p be a prime and b be an integer. Prove that if q is a prime divisor 
of bP - 1 then 

q divides b - 1 or q == 1 (mod p) . 

3.21 In 1909, A. Wieferich proved that if p is an odd prime and if there exist 
non-zero integers x, y, and z not divisible by p and satisfying the Fermat 
equation 

then the following congruence holds: 

Using a computer search, find the smallest prime satisfying this congruence. 



4 

The RSA Public Key 
Crypto- System 

4. 1 The Basic Idea 

"Three may keep a secret , 
if two of them are dead." 
- Benjamin Franklin 

One of the principal motivations for the flurry of work that has been done 
on factorization and primality testing over the past decade has been the 
invention by Rivest , Shamir, and Adleman in 1977 of a "public key crypto­
system" based on the fact that multiplication of two large primes is much 
easier then factoring the resulting product. 

The basic idea of a public key or asymmetric encryption scheme was 
independently proposed by Diffie and Hellman at Stanford and by Merkle 
at the University of California in 1976. In the codes in use until then, the 
encoding and decoding keys were effectively identical . This meant that no 
matter what the computational complexity of the coding scheme might be, 
it was very vulnerable because there were at least two parties with copies 
of the key. And in practice one of these would be an operative out in the 
field where it would be much harder to keep the key secure. 

In a public key or asymmetric encI:yption scheme, the encryption and 
decryption keys are distinct . Of course, it is possible to figure out the 
decryption key from the encryption key, at least in theory. The idea is to 
make this computationally infeasible. If you can measure the time to obtain 
the decryption key from the encryption key in years, even under an assault 
by a battery of the world's fastest computers , then your code is effectively 
secure. 

This is called a public key encryption scheme because not only does it 
eliminate the danger of the encryption scheme being stolen, the encryption 
scheme can now be freely published so that anyone can send in a coded 
message. This has obvious business applications. 

One can also turn this idea around to obtain a "signature code" . Here 
you publish the decryption key but keep the encryption key secret . If you 
send a coded message to your bank, for example, and using your decryption 
key they discover a message to transfer $250 000 to your brother in Toledo, 
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the fact that the decryption key yielded a sensible message means that 
the message was encoded by someone with the encryption key, which they 
assume means you. 

Several people have suggested different asymmetric or public key encryp­
tion schemes. One of the few that has withstood the test of keeping the 
encryption and decryption schemes computationally quick and yet the pas­
sage from one to the other impossible in practice is the scheme by Rivest , 
Shamir, and Adleman (RSA ) developed at M.I .T .  in 1977. It is based on 
Euler's Theorem 3.4 of the last chapter. 

Let p and q be distinct large primes and let n be their product . Assume 
that we also have two integers, d (for decryption ) and e (for encryption) 
such that 

d x e == 1 (mod ¢(n) ) .  (4 . 1 )  

The integers n and e are made public, while p ,  q, and d are kept secret . 
Let M be the message to be sent where M is a positive integer less than 

and relatively prime to n. If we keep M less than both p and q, then we will 
be safe. In practice, if is enough to keep M less than n for the probability 
that a random M is divisible by p or q is so small as to be negligible. A 
plaintext message is easily converted to a number by using, say, 

blank = 99, A = 10 ,  B = 1 1 ,  . . .  , Z = 35, 

so that HELLO becomes 1714212 124. If necessary, the message can be broken 
into blocks of smaller messages: 17142 12124. 

The encoder computes and sends the number 

E = Me MOD n ( 4 .2 ) 
which we know from Algorithm 3.3 can be done very quickly. To decode, 
we simply compute 

Ed MOD n. 

By Theorem 3 .4 and our equation (4 . 1 ) we have that 

Me xd == M(multiple of ¢(n) ) + l (mod n) 
M (mod n) .  

(4 .3) 

Since M and Ed MOD n both lie between 0 and n, they must be equal . 
If e has been chosen relatively prime to ¢(n) ,  then the next lemma guar­

antees that there is a d. The proof of the lemma shows how to find d. 

Lemma 4 .1  Given relatively prime integers a and m, there exists an in­
teger b, unique modulo m, such that 

a x b == 1 (mod m) . 
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Definition: If a x  b == l (mod m) , then we say that b is the inverse of a 
modulo m. 

Proof. By the Euclidean algorithm (Algorithm 1 .8) we can find integers b 
and c such that 

a x b + m x c = 1 . 

This means that a x b is congruent to 1 modulo m. 
Let e be any other integer satisfying 

a x e 1 (mod m) , then 

e e x (a x b) (mod m) 
(a x e) x b (mod m) 
b (mod m) . 

Q.E .D .  

As we shall prove later in this chapter, if we know the factorization of 
n, namely n = p x q where p and q are distinct primes, then we can easily 
compute ¢( n) by 

¢( n) = (p - 1 ) x (q - 1 ) .  (4 .4) 

There is no simpler way of computing ¢(n) . In fact , knowing ¢(n) is equiv­
alent to knowing the factorization because we can find p + q: 

p + q = n - ¢(n) + 1 = p x q - (p x q - p - q + 1 ) + 1 ,  (4 .5) 

and then p - q is  

p - q = J(p + q)2 - 4n 

and finally : 

J p2 + 2p x q + q2 - 4p x q 

J p2 - 2p x q + q2 , 

(4 .6) 

p = [ (p + q) + (p - q) J /2 , q = [ (p + q)  - (p - q)J /2 .  (4 . 7) 
The problem of finding d, the decryption key, has been reduced to finding 

the factorization of n. 
In practice ,  one takes p and q to be roughly IOO-digit primes. Thus their 

product is about two hundred digits, well beyone current publicly known 
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factorization techniques for "generic" integers. You do have to be somewhat 
careful in the choice of p and q. As we will see in Chapter 5, one of the very 
fast factorization techniques looks for prime factors p with the property that 
all primes dividing p - 1 are smail, say less than a million. You therefore 
want to make sure that you choose p and q so that p - 1 and q - 1 are each 
divisible by a big prime, say p' and q' , respectively. 

For reasons that I will not go into, we also want ¢( ¢(p x q ) )  to be large 
and divisible by large primes which means that gcd(p - l , q - 1 )  should 
be small and p' - 1 and q' - 1 should each be divisible by a large prime. 
Further discussion of how the RSA public key encryption scheme works in 
practice can be found in the articles referenced at the end of this chapter. 

4 . 2  An Example 

To construct your code, start by finding large primes to divide p' - 1 and 
q' - 1 .  We will start with two primes over a million: 

p" 4 813  309, and 

q" 1 162 957. 

Run through the integers that are one more than an even multiple of p" 
and q", respectively, until you find one that passes the pseudoprime test. 
Verify that it really is a prime. (For numbers this small, you can use trial 
division to verify primality. ) 

p' 
q' 

22 x (4 813 309) + 1 
6 x ( 1 162 957) + 1 

105 892 799, and 
6 977 743. 

Now run through the integers one more than an even multiple of p' and 
q' , respectively, until you find one that passes the pseudoprime test. Verify 
that it is a prime. 

p 
q 
n 
¢(n) 

20 x ( 105 892 799) + 1 
4 x (6 977 743) + 1 

p x q  
(p - l ) x (q - l ) 

2 1 1 78 55981 ,  and 
27 910 973 , 

59 1 1 142 1 1035 79513, 
59 1 1 141 89578 12560 . 

Choose an e relatively prime to p - 1 and to q - 1 :  

e = 123 

will do nicely. Using Algorithm 1.8 in the manner explained above, find d 
such that e x d == 1 (mod ¢(n) ) .  

d = 18 26206 43934 70547. 
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Note that d must be positive, so that if Algorithm 1 .8 returns a negative 
value then add a multiple of ¢(n) to get a positive value. 

The code is now set up. Publish the values of n and e ,  lock the value of 
d away in a secure place. The actual primes p and q as well as ¢( n) are 
no longer needed and it is safest to destroy all trace of them. If we keep 
our blocks to at most sixteen digits, then each piece of message will be less 
than n. The odds of an arbitrary integer less than 10 16 being divisible by p 
or q is only about 1 in 300 million . As p and q get larger, the odds decrease 
even further. 

The following algorithms are set up for the particular code I have de­
scribed. 

Algorithm 4.2 This is an encoding program for the RSA public-key crypto­
system. 

INITIALIZE : READ message 

CODE : 

number � CONVERT_TO_NUMBER (message ) 
modulus � 591 1 1421 103579513 
exponent � 123 

message is the character string to be encoded. 

Break number into blocks of at most 16 digits each. Let b 
be the number of blocks and let blocki be the i th block. 

FOR i = 1 to b DO 
codei � MODEXPO (blocki , exponent , modulus ) .  

TERMINATE : For i = 1 to b DO 
WRITE codei 

Reading message one character at a time, translate each 
character to a two-digit number and then concatenate the 
resulting numbers. Return the concatenated number. 

MODEXPO ( a , b , m) : 
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Use Algorithm 3. 3 to compute ab MOD m. Return value of 
ab MOD m to caller. 

Algorithm 4.3 This is a decoding algorithm for the RSA public-key crypto­
system. 

INITIALIZE : READ b ,  code l , ' "  ,codeb 
modulus � 591 1 1421 103579513 
exponent � 18262064393470547 

Input the code numbers. 

DECODE :  FOR i = 1 to  b DO 
blocki � MODEXPO ( codei , exponent , modulus ) 

FIND_MESSAGE : number � CONCATENATE (blocki )  
message � CONVERT_TO_CHARACTER(number) . 

Fill each b lock out to sixteen digits by inserting 0 's as 
needed at the beginning of the block and then concatenate 
the resulting blocks into a single number. Then call the 
CONVERT _ TO_CHARACTER subroutine. 

TERMINATE : WRITE message. 

Reading the number from right to left, convert each pair of 
digits to a character. Return the resulting string of char­
acters. 

MODEXPO (a , b , m) : 

Use Algorithm 3. 3 to compute ab MOD m .  Return value of 
a b MOD m to caller. 

The signature code uses the same two algorithms, but with the values 
of d and e reversed so that anyone can decode but only the holder of 
d can encode a message. If a coded message has not been produced by 
Algorithm 4 .2 ,  it is unlikely that running it through Algorithm 4.3 will 
produce anything that makes sense. 
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4 . 3  The Chinese Remainder Theorem 

We will conclude this chapter by investigating Euler's ¢ function a little 
more closely. We need to prove that 

¢(p x q) = (p - 1 ) x (q - 1 ) ,  

but while we are at i t  we will prove a good deal more that will come in 
handy later. The starting point is an algorithm that appeared in the first 
century A.D.  simultaneously in China, in the writings of Sun-Tsu, and in 
Judea, in a book by Nichomachus of Gerasa. 

Theorem 4.4 (Chinese Remainder Theorem) Let mI , m2 , . . .  , mr be 
positive integers that are pairwise relatively prime (i. e . , no two share a 
common factor larger than one) . Let aI , a2 , . . .  , ar be arbitrary integers. 
Then there exists an integer a such that 

a al (modml ) 

a2 (modm2 ) 

Furthermore, a is unique modulo M = ml x m2 x . . . x mr • 

Proof We will actually find an algorithm for constructing a. For each i 
from 1 up to r ,  define Mi by 

Since Mimi is relatively prime to mi and divisible by mj for every j not 
equal to i, we have that 

Define a by 

Mi 1 (mod mi ) ,  

Mj 0 (mod mi ) for every j not equal to i .  

To see that a i s  unique modulo M, let b be  any other integer satisfying 
the r congruences. Then for each mi , a and b are congruent modulo mi . In 
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other words, mi divides b - a. Since this is true for every i, M divides b - a 
which means that 

a == b (mod M) .  

Q.E.D.  

Of course, one need only compute the values of Mi modulo M, which 
keeps the computations a little more reasonable . An even more efficient 
algorithm for finding a was discovered by H. 1. Garner in 1958. 

Algorithm 4.5 Given a set of pairwise relatively prime moduli: 

and a set of residue classes: 

this computes an integer a satisfying 

INITIALIZE : READ r 
FOR i = 1 to r DO 

READ ai , mi 

FIND_INVERSES : FOR j = 2 to r DO 
FOR i = 1 to j - 1 DO 

Ci ,j t- INVERSE (mi , mj ) 

INVERSE ( s ,  t )  is the inverse of s modulo t .  

FOR j = 1 to  r DO 
Wj t- aj MOD mj 
FOR i = 1 to  j - 1 DO 

Wj t- «Wj - Wi ) x Ci ,j ) MOD mj 

This subroutine constructs Wj 'S with the property that 
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a +--- Wr 
FOR i = r - 1 to 1 BY - 1  DO 

WRITE a 

UI +--- 1 ;  U2 +--- S 
VI +--- 0 ;  V2 +--- t 
WHILE V2 i- 0 DO 

q +--- l U2/V2J 

FOR n = 1 to 2 DO 
temp = un - q X Vn 

Un Vn 

Vn temp 
RETURN UI 

This subroutine is A lgorithm 1 . 8  with the second set of 
variables surpressed. The final value of U is the inverse. 

4 .4  What if the Moduli are not Relatively Prime? 

What if two or more of the moduli are divisible by the same prime? Neither 
form of the Chinese Remainder Theorem works in this case. 

We first observe that if we have a congruence with a modulus which is 
divisible by more than one prime, then we can split our single congruence 
into several congruences as long as the new moduli are relatively prime and 
their product is the original modulus. As an example, 

is equivalent to 

x == 3 (mod 45) 

x == 3 (mod 5) AND x == 3 (mod 9) . 

The equivalence is a consequence of the Chinese Remainder Theorem. 
Let us assume that in our system of congruences we have two moduli ,  

say ml and m2 , that are both divisible by the same prime, p. We split each 
of our congruences into two congruences as explained above where one of 
the new moduli is the highest power of p dividing ml or m2 , respectively. 
As an example, the two congruences: 
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x 3 (mod 45) , 

x 7 (mod 756) , 

are split into four congruences: 

x 

x 

3 (mod 9) , 
7 (mod 27) , 

x 

x 

3 (mod 5 ) , 
7 (mod 28 ) . 

We now have two congruences that both involve powers of p. One of two 
things has to happen : 

( 1 ) The congruences are contradictory and so there are no solutions. This 
is the case with the example given above. If x == 3 (mod 9) then x == 3, 12 ,  
or  2 1 (mod 27) . 

or 

(2 ) Both of the congruences for powers of p are implied by the congruence 
with the higher power. This means we can get rid of one of our equations, 
leaving us with three congruences with relatively prime moduli for which 
we can use the Chinese Remainder Theorem. 

The next example shows the second possibility: 

x 7 (mod 200 ) , 

x = 82 (mod 375) . 

This splits into four congruences: 

x 

x 

7 (mod 25) , 
82 (mod 125) , 

x - 7 
x 82 

(mod 8) , 
(mod 3) . 

The congruence modulo 25 is a special case of the congruence modulo 125,  
so we really have three congruences to relatively prime moduli : 

which has as solution 

x 82 (mod 125) , 

x 7 (mod 8) , and 

x 82 == 1 (mod 3 ) , 

x == 1207 (mod 3000) . 
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4 . 5  Properties o f  Euler 's ¢ Function 

Lemma 4.6 If gcd(m, n) = 1 ,  then 

¢(m x n) = ¢(m) x ¢(n) . 

Proof Let a be a positive integer less than and relatively prime to m x n. 
In other words, a is one of the integers counted by ¢( m x n) . We consider 
the correspondence 

a - (a MOD m, a MOD n) . 

The integer a is relatively prime to m and relatively prime to n, so a MOD m 
and a MOD n are relatively prime to m and n, respectively. This means 
that each integer counted by ¢( m x n) corresponds to a pair of integers , 
the first counted by ¢(m) and the second counted by ¢(n) . By the second 
part of Theorem 4.4, distinct integers counted by ¢( m x n) correspond to 
distinct pairs. Therefore ¢(m x n) is at most the number of such pairs: 

¢(m x n) ::::: ¢(m) x ¢(n) . 

In the other direction, we take a pair of integers , one counted by ¢(m) 
and the other counted by ¢( n) . Since m and n are relatively prime, we can 
use the first part of Theorem 4.4 to construct a unique positive integer a 
less than and relatively prime to m x n. 

(b ) ChineseRemainderTheorem - b 
( d ) -

( d ) , c -----+ a = mo m , = c mo n ,  

So the number of such pairs is at most ¢( m x n) : 

¢(m x n) :::: ¢(m) x ¢(n) .  

I n  Exercise 4. 1 7  you are asked t o  prove that if p is a prime, then 

Q .E .D .  

With this equality and Lemma 4 .6 ,  we can rapidly calculate ¢( n) for any 
n which we can factor. 
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Theorem 4.7 Let n have the prime factorization 

n p�l X p�2 X . . . X p�r , then 
<p(n) p�l - I  x (PI - 1 ) X p�2 - I x (P2 - 1 ) x . . .  X p�r - I X (Pr - 1 ) 

1 1 1 
n x ( 1  - - ) x ( 1  - - ) x . . .  x ( 1  - - ) .  

PI P2 Pr 
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4 . 6  EXERCISES 

4 . 1 Prove that if a and m are not relatively prime, then there is no b for 
which 

a x b == 1 (mod m) . 

4 .2  Given that n = 19 74936 15358 94833 and <p(n) = 19 74936 12325 17 120, 
and knowing that n is a product of two primes, find those primes. 

4 .3  For each of the pairs a, m, find an inverse of a modulo m or show that 
no such inverse exists: 
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a = 25, m = 928 102 
864 247 3 15, 

1 00 1 ,  
2643, 
523 1 ,  

2 671  835 
23 1 75 586 
33557 79009 . 

4 .4 Decode the following message sent using the code set up in Algorithm 
4.2. It is a quotation from Shakespeare's "Hamlet" . The coded message 
consists of four integers 

39 25736 57380 83976 
8 66571 70599 56870 

14569 39934 49451 
14 57541 36754 04137 

4 .5 Listed below are the published values of n and e for four public key 
codes, followed by four signatures. Match each signature to the appropriate 
code and decipher the signatures. Each signature is given as two integers. 

n 
n 
n 
n 

1 7 97900 80412 2247 1 ,  
14 38977 95738 78299 , 
34 59502 1 1241 56601 ,  
15 14834 44886 02009, 

e = 10 1 ;  
e = 1 0 1 ;  
e = 101 ; 
e = 10 1 .  

first signature :  

second signature : 

third signature: 

fourth signature: 

19565 10306 21381  
30889 96647 52558 

10  46392 78183 44372 
1 1  79772 25496 34348 

16 19738 57937 34878 
1 2 25442 32940 26625 

28 73245 74914 14758 
5 79586 1 1521  68412 .  

4 . 6  Two people have their own public-key system (ml' el, dl) and (m2' e2, d2) . 

They have each published the values of mi and ei and want to communicate 
with each other so that the communication will be secure and the recipient 
will know that the message could only have come from the other person. 
How can this be done? 

4 .7  It is much easier to read a large integer when it is broken into blocks 
of five digits. Write a subroutine that can be included in your programs so 
that before outputting a number of ten or more digits, the program breaks 
it into substrings of length at most five, as the numbers in Exercise 4 .4 are 
presented. 
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4.8 It is much easier to see that a large integer has been entered correctly if it 
can be entered in blocks with blanks between them. Write a subroutine that 
will check if an inputted number includes blanks and if so will concatenate 
(push everything together) . 

4 .9 Find the decoding key d for the code whose published values of n and 
e are 

n = 233 570 063 , e = 125 .  

4 .10 Construct your own code such that pi - 1 and q
' - 1 each have a prime 

factor over a million and p and q are 12 or 13-digit primes . Only hand in 
your values for n and e.  Keep the value of d secret. As you learn more 
about factorization , try to break each other's codes. 

4 . 1 1  Using Algorithm 4.5 find the smallest positive integer which satisfies 
the following system of congruences: 

a 2 (mod 2 1 ) 
3 (mod 31 ) 
6 (mod 61 ) 
10 (mod 101 ) 
15  (mod 151 ) 
31 (mod 3 1 1 ) 
43 (mod 431 ) . 

4 . 1 2  Find the smallest positive integer which satisfies each of the following 
systems of congruences or prove there is no solution: 

x 22 (mod 441 ) 
36 (mod 455) ; 

y 16 (mod 303) 
25 (mod 378) 
13  (mod 423) ; 

z 25 (mod 275) 
13  (mod 495 ) 
46 (mod 616) . 
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4. 13  Modify Algorithm 4.5 so that it will automatically handle systems of 
congruences where the moduli are not relatively prime. 

4 . 14  Four 12-hour clocks are lined up. The first reads 10 :41  and loses 2 
hours and 24 minutes a day. The second reads 4 :50 and loses 45 minutes 
a day. The third reads 3 :45 and gains 1 hour and 20 minutes a day. The 
fourth reads 1 :05 and keeps perfect time. How long will it be before all four 
clocks read exactly the same time? 

4. 15  In Algorithm 4 .5 ,  explain why the recursive definition of Wj gives us 
the congruence: 

WI + mI x W2 + . . .  + mI x . . . x mj - I x Wj 

== aj (mod mj ) . 

4. 16  In Algorithm 4 .5 ,  explain why 

WI + mI x W2 + . . .  + mI x . . .  x mr- I x Wr 

is congruent to aj (mod mj ) for every j .  

4 . 17  Let p b e  a prime. How many of the positive integers less than o r  equal 
to pa are divisible by p? Use this to prove that 

4. 18  Find two positive integers m and n which are not relatively prime but 
for which 

¢(m x n) = ¢(m) x ¢(n) , 

or prove it cannot be done. 

4 . 19  Write a program using trial division and Theorem 4 .7  to compute 
¢(n) . Use it to compute ¢(n) for each of the following values of n :  

51 005 
107 653 

1 294 704 
1 494 108 

614 739 125 

4.20 Use the results from Exercise 3 .16 to find all integers n for which 
¢(n) = 12 .  Prove that there are no integers n larger than 200 for which 
¢(n) is 12 .  
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Factorizat ion Techniques from 
Fermat to Today 

"The term Science should not be given to anything but 
the aggregate of the recipes that are always successful. 
All the rest is literature." 
- Paul Valery 

5 . 1  Fermat '8 Algorithm 

Our only factorization algorithm so far is Algorithm 2 .4 ,  which will work 
fine for numbers up to ten or eleven digits ,  but quickly bogs down after 
that .  Part of the problem with trial division is that it does too much. It 
is not only a factorization algorithm, it will also prove primality as long 
as you have the t ime to test for divisibility up to the square root of the 
number in question . 

But we are now equipped with the strong pseudoprime test which means 
that before we even start looking for factors we know that the number in 
question is composite .  Also, we are willing to settle for an algorithm that 
does not spit out all the prime divisors but rather just breaks our integer 
into a product of two integers 

n = a x b, 

where a and b are each larger than 1 .  We can now test a and b for primality. 
If either is composite, we break it into two factors and fairly quickly we 
will have n reduced to a product of primes. 

The first of the modern algorithms we will look at is due to Fermat. It is 
not usually implemented these days unless it is known that the number to 
be factored has two factors which are relatively close to the square root of 
the number. But it does contain the key idea behind two of today's most 
powerful algorithms for factoring numbers with large prime factors, the 
Quadratic Sieve and the Continued Fraction Algorithms. 

Fermat 's idea is the following. If n is the number to be factored and if n 
can be written as a difference of two perfect squares: 



then 
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n = (x - y) x (x + y) ,  

and we have succeeded in  breaking n into two smaller factors . Furthermore, 
if we assume that the n we start with is odd (a safe assumption) ,  then every 
representation of n as a product of two integers arises in this way. 

To see this, let n = a x b, where a and b are odd because n is odd . Let 

Then 

x = (a + b)/2 and y = (a - b)/2 .  

Fermat 's algorithm works in the opposite direction from trial division . 
In Algorithm 2 .4 we started by looking for small factors and worked our 
way up to the square root of n. Here we start by looking for factors near 
the square root of n and work our way down. 

Given a positive odd integer n to be factored , we search for integers x 
and y such that x2 - y2 = n. We start with x equal to the smallest integer 
greater than or equal to the square root of n and try increasing y's until 
x2 - y2 either equals or is less than n. In the first case we are done, in the 
second we increase x by one and iterate. We continue until we have success . 
If we set r equal to x2 - y2 - n, then we have success when r = O. 

This algorithm is further stream-lined by keeping track of u = 2x + 1 and 
v = 2y + 1 instead of x and y. All we are really interested in is keeping track 
of r. The variable u tracks the amount r increases when x2 is replaced by 
(x + 1 )2 , v tracks the amount r decreases when y2 is replaced by (y + 1 ) 2 . 
As x and y increase by one, u and v increase by 2 .  

Algorithm 5 . 1  Fermat 's algorithm to  find a factor of n near its square 
root. 

INITIALIZE : READ n 
sqrt t- I y'n l 
u t- 2 x sqrt + 1 
v t- 1 
r t- sqrt x sqrt - n 

sqrt is the smallest integer greater than or equal to y'n. 
The initial value of x is  sqrt . The initial value of y is 
O. See Exercise 5. 7 for a subroutine that will compute the 
greatest integer less than or equal to y'n. 
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WHILE r =1= 0 DO 
IF r > 0 THEN CALL Y_LOOP 
IF r < 0 THEN DO 

r +-- r + u  
u +-- u + 2  

If r is negative then we increase x by 1 .  

TERMINATE : a +-- (u + v - 2 ) /2 
b +-- (u - v) /2 
WRITE a ,  b 

x - y and x + y are now two factors of n .  

WHILE r > 0 DO 
r +-- r - v  
v +-- v + 2  

RETURN 

If r is positive then we increase y by 1 .  This decreases r 
by v .  We then reset the value of v .  When r is no longer 
positive, we return the current values of r and v .  

This algorithm has some nice features , chief among them that the loops 
involve no multiplication or division so that they cycle extremely quickly. 
The problem, of course, is the prodigious number of cycles required. To 
factor 

1 7836 47329 = 84 449 x 2 1 1 2 1  

requires 10551 cycles o f  X_LOOP and 31664 cycles o f  LLOOP. 
There are some techniques for speeding up this algorithm. In particular, 

if x2 - n is not a perfect square when we start Y _LOOP, then r will not be 
o when we leave it (see Exercise 5.6) . In the next two chapters, we will be 
developing tests that can quickly tell  us if an integer is probably a perfect 
square or definitely not a perfect square, and these can be incorporated. 

But this algorithm still suffers from the same defect as trial division, it 
will prove primality if you let it run long enough . If run on a prime number 
n, it will eventually come up with the factors 1 and n, and since there are 
no factors of n closer to its square root , n must be prime. Incidentally, this 
is a terrible way to prove primality as the total number of cycles required 
in n minus the square root of n, much worse than proving primality by 
trial division . 
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5 .2  Kraitchik 's Improvement 

Maurice Kraitchik ( 1 882- 1957) realized that a major saving of time could 
be accomplished if instead of looking for x and y satisfying x2 - y2 = n, 
we settle for "random" x and y satisfying 

x2 == y2 (mod n) . 

Finding such a pair (x, y) no longer guarantees us a factorization . But it 
does mean that n divides 

x2 - y2 = (x - y) x (x + y) , 

and you now have at least a 50-50 chance that the prime divisors are 
distributed among the divisors of both of these factors so that the gcd of 
n and x - y will be a nontrivial factor of n. That is to say, the gcd will be 
neither 1 nor n. 

His approach to finding such pairs (x, y) was rather ad hoc. A few years 
later, in 193 1 ,  D. H. Lehmer and R. E. Powers showed how to find these 
pairs systematically by using continued fractions. Their algorithm, however, 
was not particularly practical until the coming of high speed computers. By 
the late 1960s and early 1970s the computer hardware had advanced to the 
point where people realized that the Lehmer-Powers algorithm was worth 
re-examination. Daniel Shanks was one of the first to come up with a prac­
tical algorithm using continued fractions and Kraitchik's idea, the Square 
Forms Factorization (SQUFOF) .  In 1975, John Brillhart and Michael Mor­
rison, using continued fractions more along the lines of Lehmer and Powers 
than Shanks, published what has become the standard form of the contin­
ued fraction algorithm (CFRAC) and started the current cottage industry 
of factoring truly big numbers. 

For about a decade, the Brillhart-Morrison CFRAC reigned as the fastest 
means of factoring large numbers with large prime factors. It is still in use 
today. The "Georgia Cracker" , built at the University of Georgia only a few 
years ago for the sole purpose of factoring numbers, runs on this algorithm 
and is handling roughly 60-digit integers. But the past few years have also 
seen CFRAC supplanted by Carl Pomerance's Quadratic Sieve (QS) and 
Peter Montgomery's refinement , the Multiple Polynomial Quadratic Sieve 
(MPQS) .  These employ a different approach to the problem of finding pairs 
(x, y) for which x2 == y2 (mod n) , an approach using large amounts of 
memory. Their ascendance is directly the result of the advent of large, 
cheap memory. They are also particularly amenable to parallel processing. 

5 . 3  Pollard Rho 

One drawback to both the Continued Fraction and Quadratic Sieve meth­
ods is that they are not any faster on finding moderately sized factors, say 
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around 105 to 10 10 , than they are on finding the really big factors. If a 
composite number has a moderately sized prime divisor, for example, 

1 888 129, 

which is too large to find by trial division , there should still be a quick way 
of finding it .  

I wil l  be describing not one but two such algorithms, both due to J .  M.  
Pollard , the first published in 1975 and the second in 1974. While they will 
not usually work if all the prime factors are big (larger than 101 2 ) ,  they are 
very simple to understand and easy to program. In practice, after exhaust­
ing trial divisors up to 104 or 105 , one runs the Pollard tests for a while 
before pulling out the really big guns of the Elliptic Curve Method (Chap­
ter 14) , CFRAC (Chapter 1 1 ) ,  or a Quadratic Sieve Algorithm (Chapter 
8) . 

The first Pollard algorithm was named the Monte Carlo Method by him 
because of its pseudo-random nature . For reasons that will become clear 
as I explain it , it is now more popularly known as Pollard rho. Let n be a 
composite number and d an unknown nontrivial divisor of n. Let f(x) be 
a simple irreducible (cannot be factored) polynomial in x. In practice we 
will use x2 + 1 or something similar. Starting with an integer xo , we create 
a sequence from the recursive definition: 

Xi = f(xi- d MOD n .  

If Xo = 2 ,  f (x) = x2 + 1 and n = 1 133, our sequence will  be 

Xo 2 
Xl 5 
X2 26 
X3 677 
X4 598 
X5 710  
X6 1049 
X7 259 
X8 235 

Let 

Yi = Xi MOD d. 

If we choose d = 1 1  in our example, then the sequence of Yi 'S is 



Yo 2 

Yl 5 

Y2 4 

Y3 6 

Y4 4 

Y5 6 

Y6 4 
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Since Xi == f(Xi- d  (mod n) , Yi is congruent to f(Yi- d , modulo d. There 
are only a finite number of congruence classes, modulo d (namely d of them) 
and so eventually we will have 

Yi = Yj , 

for some pair ( i , j ) . But once that happens, we will keep cycling and for all 
positive t :  

Yi+t  = Yj+! · (5 . 1 )  

Our sequence of Yi 'S looks like a circle with a tail. In other words, it looks 
like the greek letter rho, giving rise to the name of this algorithm. 

If Yi equals Yj , then 

Xi == Xj (mod d) , 

and so d divides Xi - Xj . There is an excellent chance that Xi and Xj are 
not equal , and if this is the case then 

gcd(n , Xi - Xj ) 

is a non-trivial divisor of n. 
The problem is that since we do not know d, we do not know the values 

of the Yi 'S , and so we do not know when Yi equals Yj . Equation (5 . 1 )  comes 
to our rescue here . There are in fact infinitely many pairs (i , j )  for which 
Yi and Yj are equal . If the length of the cycle is c, then once we are off 
the tail , any pair (i , j )  for which c divides j - i will work. We find some 
systematic way of choosing a lot of pairs ( i , j ) , and for each pair compute 
gcd(n , xi - Xj ) . 
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\ 
Y.., 

" 
Y2 

" 
Yj 

FIGURE 5. 1. 

The form of the algorithm which we will be using is due to R. P. Brent 
( 1980) . In order to avoid storing many values of the x/s, he suggested 
looking at the differences: 

X l X3 

X3 Xij 

X3 X7 

X7 X l2 

X7 Xl 3 

X7 X 1 4  

X 7  X 1 5 ,  

and in  general: 

What is important is the difference between coordinates, which just in­
creases by one each time. We keep moving the smaller coordinate up to 
guarantee that we get off the tail. 
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Since we typically have to compute many gcd 's ,  usually thousands or tens 
of thousands, we get a substantial savings in time if we take the product 
of, say, ten successive values of (Xi - Xj ) MOD n and then take the gcd of 
that product with n .  If the gcd turns out to be n ,  we may want to back 
up over those last ten values and take their gcd 's one at a time with n. In 
practice, however, if n divides the product of ten successive differences, it 
often divides exactly one of the differences , and your best bet is to start all 
over with a different polynomial f(x} .  

WARNING: Never plug a number into either Algorithm 5 .2  or  5 .3  unless 
you have run the pseudoprime test and know your number is composite. 
This algorithm can take a very long time if a prime is entered . For safety 
and convenience, it is a good idea to have this program self-interrupt every 
so often, say every 1000 or 10000 cycles, and ask if you really want it to 
continue. Even if the input is composite, there is no guarantee that this 
algorithm will produce the factorization in your lifetime. 

Algorithm 5 .2  Brent 's version of the Pollard rho factorization algorithm. 
The recursion is given by f (xHd = x� + c. 

INITIALIZE : READ n ,  c ,  max 
xl <-- 2 

x2 <-- 4 + C 
range <-- 1 
product <-- 1 
terms <-- 0 

n is the integer to be factored. max is the maximum number 
of cycles before aborting. range is the number of times we 
use the current value of Xl before resetting. product is the 
product of up to the last ten differences. 

COMPUTE_DIFF : WHILE terms � max DO 
FOR j = 1 to  range DO 

x2 <-- (x2 x x2 + c) MOD n 
product <-- product x (xl - x2 ) MOD n 
terms <-- terms + 1 
IF terms MOD 10 = 0 THEN CALL CHECK_GCD 

CALL RESET 

X l is held fixed while x2 increases. 
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TERMINATE : 

If a factor has not been found, you may wish to prompt for 
a new value of c and then re-initiate the program. 

g � GCD (n , product ) 
IF g > 1 THEN DO 

WRITE g 
CALL TERMINATE 

product � 1 
RETURN 

If the gcd is larger than 1 then either g is a proper divi­
sor or this algorithm does not work with this value of c .  
Otherwise return to  caller with product reset t o  1 .  

GCD (a , b ) : 

RESET : 

Use Algorithm 1 . 7 to compute the gcd (a ,  b) . Return this 
value to caller. 

Xl � x2 
range � 2 x range 
FOR j = 1 to range DO 

x2 � (x2 x x2 + c) MOD n 
RETURN 

Reset Xl to the last value of X2 , double the range, and 
then find the next value of x2 ' Return these new values to 
the caller. 

When implementing this algorithm, it is also a good idea not to start 
out with 2 and 5, but rather to run out the sequence for a while, to give 
yourself a better chance of getting off the tail and onto the cycle . 

In general , you can expect the number of cycles needed to be about the 
square root of the smallest prime dividing n .  That is because the sequence 
of Yi

'
S usually behave as if they were random. The probability that there 

will be no repetitions among the first t terms of the sequence is thus 

d - l d - 2  d - (t - l ) 
-

d
- x -

d
- x . . .  x ----'.

d.,------'-
' 
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and this probability drops below 50% right around where t reaches the 
square root of d. 

Two things can go wrong with this algorithm. One is that the first gcd 
larger than one actually is n.  This just means you have been very unlucky 
in your choice of the polynomial I(x) (or n really is a prime, check your 
strong pseudoprime test ) .  Pick a different polynomial and run it again .  

The other thing that can go  wrong is that this algorithm could need a 
very long time to find a divisor. While the cycle length is expected to be 
around the square root of the smallest prime divisor, it can be as large as 
the smallest prime divisor. There is also the problem that you usually will 
not know the size of the smallest prime divisor of n. If in fact it is very large, 
the Yi 'S will have a cycle length that is very long. You should be prepared 
to abort and try a different I(x) or an entirely different algorithm. 

5 . 4  Pollard p - 1 

This is very similar to the previous Pollard algorithm, although it uses 
Theorem 3 . 1 .  Let us suppose that the number n to be factored has a prime 
factor p with the property that the primes dividing p - 1 are small , say 
less that 10000. Actually, we will work with the slightly greater restriction 
that p - 1 divides 10000 ! .  Since exponentiation modulo n is so fast ,  we can 
compute 

m = 2 1OOOO! MOD n 

fairly quickly: 

By Theorem 3 . 1 ,  since p - 1 divides 10000 ! ,  m is congruent to 1 modulo 
p, so that p divides m - 1 .  Again, there is an excellent chance that n does 
not divide m - 1 ,  so that 

g = gcd(m - 1 , n) 

will be a non-trivial divisor of n. 
Note that there is nothing special about 2 .  The same observations hold 

for ClOOOO! provided that c is relatively prime to n.  
In practice, we do not know how close we have to g�t to 10000 before we 

have picked up the first prime divisor of n. And we do not want to go so far 
that we pick them all up. For that reason, we periodically check the value 
of gcd(ck! - 1 ,  n) . If it is still 1 ,  we continue. If it is n, then we have picked 
up all the divisors of n and we either need to backtrack, try a different 
value of c, or try a different algorithm. Of course, if it is anything other 
than 1 or n, then we have found the nontrivial divisor we were looking for.  
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As in the Pollard rho, we assume that the number n to be factored is 
known to be composite from a pseudoprime test and does not have any 
small divisors. 

Algorithm 5 .3 Pollard 's p - 1 factorization algorithm. 

INITIALIZE : READ n ,  c ,  max 
m +- C 

EXPONENTIATE : FOR i = 1 to  max DO 
m +- MODEXPO (m , i , n) 
IF i MOD 10 = 0 THEN CALL CHECK_GCD 

TERMINATE : 

If a factor has not been found, you may wish to prompt for 
a new value of C and then re-initiate the program. 

MODEXPO (m , i , n) : 

Use Algorithm 3. 3 to compute mi MOD n. Return this 
value to the caller. 

g +- GCD (m- 1 , n) 
IF g > 1 THEN DO 

WRITE g 
CALL TERMINATE 

RETURN 

If the gcd is larger than 1 ,  then either g is a proper divisor 
or this algorithm does not work with value of c .  

GCD (a , b) : 

Use Algorithm 1 . 7 to compute gcd (a ,  b) and then return 
this value to caller. 

There is some wasted effort in this algorithm as presented. The exponent 
10000! contains much higher powers of the small primes than we are ever 
likely to need. One frequently suggested improvement is to list the primes 
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which are less than or equal to 1 0000 and for each such prime p we let e 
take on the value p a number of times equal to the greatest integer less 
than or equal to 

log 1 0000 
log p 

This will cut the number of exponentiations required by about a factor of 
eight . 

This algorithm has the same problems as the previous one. The gcd might 
equal n ,  in which case we can go back and change the base 2 to a different 
integer. It also might crank forever if p - 1 has only large prime factors. 

If p is the smallest prime dividing n ,  then the number of cycles required 
by Algorithm 5 .3 is usually the largest prime dividing p - 1 . Exercises 2 . 1 2  
and 2 . 1 3  should have revealed that the largest prime factor o f  an  arbitrary 
integer usually falls around the 0 .63 power of that integer, so that Algorithm 
5.3 with max = 1 0000 will usually find any prime factors that are less than 
two million . Of course, there is a fairly wide distribution of the size of the 
largest prime divisor. Sometimes much larger prime divisors can be found. 
And there are "small" prime divisors that this algorithm will miss . 

Finally, the Pollard p - 1 algorithm is one of the reasons for the restric­
tions on the primes p and q in the RSA public key crypto-system. If p - 1 
or q - 1 have only small prime factors, then Pollard p - 1 will crack the 
code very quickly. 

5 . 5  Some Musingf? 

There is a deep philosophical difference between the approach of Algo­
rithms 2.4 and 5. 1 and the approach taken in Algorithms 5 .2  and 5 .3 .  The 
first two factorization algorithms are systematic searches for divisors , what 
are sometimes called deterministic algorithms. Because of their methodical 
nature, they are easy to analyze, and one can say exactly how long it will 
take to find a divisor of a given size. 

Algorithms 5.2 and 5.3 are called probabilistic algorithms. We have 
started to introduce chance and randomness into our procedures . We can 
now no longer be certain of finding a factor of a given size within a fixed 
amount of time. But in exchange for that sacrifice we gain that "usually" a 
factor will be found in much less time than a deterministic algorithm would 
take. 

All of our factorization algorithms from here on will be probabilistic . 
You simply cannot factor 20 to 30 digit numbers, much less 80 to 1 00 digit 
numbers, with deterministic methods. One of the things this means is that 
we have to be prepared to be unlucky on occasion . If we run a Pollard rho or 
p-1 test and do not turn up any prime divisors that might be because there 
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are no prime divisors in the appropriate interval or it might be because of 
bad luck. 

The challenge is to learn how to change our luck. All of the probabilistic 
algorithms have parameters that can be varied. In Algorithm 5.2 it is the 
function used to generate the sequence: x2 + 1 .  We can replace this with 
almost any irreducible quadratic polynomial , say x2 + 2 or x2 + 3 (x2 - 2 is 
one of the few that will not work) .  In Algorithm 5.3 it is the base which can 
be varied. Instead of taking powers of 2 we can take powers of 3 or 5. And, 
of course, the reason I have shown you both Algorithm 5.2 and 5.3 is that if 
one of them does not seem to be working, I want you to try the other one. 
In Chapter 12 you will be seeing still another algorithm, Williams p + 1 ,  
which looks for prime divisors of the same size as those sought by Pollard's 
tests. 

How long do you keep looking for these middling sized factors before 
pulling out something like the Quadratic Sieve? That is still more an art 
than a science, but keep in mind that the algorithms of the next level up 
are much more cumbersome and it is worth spending at least a few minutes 
trying to vary your luck first . Theoretically and experimentally, it has been 
shown that you have a better chance of finding .your mid-sized factors if 
you run several algorithms with several choices of parameters rather than 
spending the same amount of time grinding out a single algorithm with a 
single choice of parameter. 

The whole problem of analyzing running times and optimum strategies 
is much more difficult with the probabilistic algorithms than with the de­
terministic. So much depends on the likely distribution of the number of 
prime factors and their sizes. Definitive answers here depend on very deep 
and difficult results on the distribution of primes. Much of what is needed 
has still not been proven . For the interested reader, I recommend Carl 
Pomerance's articles listed in the references at the end of this chapter. 

Finally, I would like to point out that probabilistic factoring algorithms 
are inherently unsuitable for saying anything about primality. There is 
usually no way of distinguishing between consistent bad luck and a prime 
input . Fortunately we have the pseudoprime tests so that there is no excuse 
for ever feeding a prime to a probabilistic algorithm. But on a practical level 
what this means for us is that the problems of factorization and primality 
testing are now completely divorced . No longer will we see algorithms that 
can both factor and prove that the factors are prime. 
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5 . 6  EXERCISES 

5. 1 Why can we assume that the n we insert into Fermat 's Algorithm is 
odd? 

5.2 How many cycles of Algorithm 5 . 1  will it take to produce the factor­
ization 
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90658 64569 = 66 457 x 136 4 17  ? 

5 .3  If p and q are primes , p < q, find a formula for how many cycles of 
Algorithm 5 . 1  it will take to produce the factorization 

n = p x q .  

5.4 In the X_LOOP of Algorithm 5 . 1 ,  if r i s  negative then we replace r by 
r + u. Prove that this new value of r cannot be negative. 

5 .5 In Algorithm 5. 1 ,  why do we not need to reset y back to 0 (reset v to 
1 ) when we leave the LLOOP? 

5.6 In Algorithm 5. 1 ,  why is it that if x2 - n is not a perfect square when 
we enter the Y _LOOP then r will not be 0 when we leave that loop? 

5 .7  Prove that the following algorithm computes lv'n J ,  the greatest integer 
less than or equal to the square root of n: 

INITIALIZE : READ n 
a +-- n 
b +-- l (n + 1 ) /2J 

MYSTERY_LOOP : WHILE b < a DO 
a +-- b 
b +-- l e a  x a + n) / (2 x a) J 

TERMINATE : WRITE a 

5.8 What happens to Algorithm 5 . 1  if the value computed as sqrt is in 
fact less than the square root of n? What happens if it is larger than the 
smallest integer above the square root of n? 

5.9 Use Algorithm 5. 1 to factor 

19 931 83 1 
392 583 509 

24518 39867 
27863 02931 

1 32883 40509 

5 . 10  Let n be composite and x and y random integers satisfying 
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Explain why there is at least a 50-50 chance that gcd( n, x - y) is a non­
trivial factor of n. 

5 . 1 1  Approximately how many primes are there which are less than two 
million? If we stored them in memory and used them to run a trial division 
algorithm, approximately how long would it take to discover the prime 
factor 

1 888 129? 

5 . 1 2  In the explanation of the Pollard rho algorithm, explain why 

Yi == f(Yi -d  (mod d) . 

5. 13  In the explanation of the Pollard rho algorithm, explain why Yi = Yj 
implies that 

Xi == Xj (mod d) . 

5 . 14  Consider the following algorithm for factoring: Given a composite 
integer n, we choose a random integer r between 1 and n and compute 
9 = gcd(r, n ) . If 9 is 1 or n then we choose another random integer and 
repeat . If it is anything else , then we have found a non-trivial divisor of n. 
How does this algorthm differ from Algorithm 5 .2  and in particular, what 
are the respective number of cycles you would anticipate if 

1 888 129 

is in fact the smallest prime dividing n? 

5 . 1 5  Choose 1 00 consecutive integers between 500 and 2000 and for each 
one, call it n, generate the sequence 

Yo 2 

Yl (22 + 1 )  MOD n 

Y.+ l (y; + 1 ) MOD n 
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until one of the values repeats .  What is the index of the first repeated 
value? What is the cycle length (that is to say, what is the difference of 
the indices at which the repeated value occurs)? Describe the distribution 
of the cycle lengths. How close are the cycle lengths to the square root of 
your values of n? 

5 . 1 6  Use Algorithm 5 .2  to factor 

78 59947 71 137 
95 01613 33249 

250 674 1 1  9 1 739 
22779 31950 71 137 
26587 02640 98379 

5 . 1 7  For each of the following values of d, find the smallest integer t for 
which 

d - l d - 2  d - (t - l ) 1 -
d

- x -
d

- x . . . x 
d < "2 ;  

d = 25, d = 100 ,  d = 365, d = 1 0  000, d = 1 000 000. 

5 . 1 8  Approximately how many digits are there in the integer 10  OOO !?  

5 . 19  What i s  the highest power of  2 that divides 10 OOO!?  

5 .20  Explain why it i s  that if p - 1 divides 10000! then p divides 

2 1OOOO! - 1 .  

5 . 2 1  I n  theory, which algorithm, 5 . 2  or 5 .3 ,  needs more cycles to find a 
given prime factor? Explain .  

5 .22 If i runs to 100 000 in Algorithm 5 .3 ,  how large a prime factor can 
you usually expect to pick up? 

5 . 23 Use Algorithm 5 .3  to factor the integers given in Exercise 5 . 16 .  Com­
pare running times. 

5 . 24 Find the decoding key for each of the codes given in Exercise 4 .5 .  
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Strong Pseudoprimes and 
Quadratic Residues 

"When you have to  study a large number, you 
should begin by finding some of its quadratic 
residues."  
- Maurice Kraitchik 

6 . 1 The Strong Pseudoprime Test 

Having pursued some of the consequences of Fermat 's observation , I now 
invite you to delve back into the mysteries of the structure of the integers. 
In these next two chapters we will be pulling out a few more jewels that 
we can apply to our twin problems of factorization and primality testing. 

We begin by taking a closer look at the pseudoprime test described in 
Chapter 3 .  It has several drawbacks that we are now going to address. One 
of them is that pseudoprimes, while relatively rare, are not as uncommon as 
we would like. More troublesome is the presence of the Carmichael numbers 
which tell us that we can never prove primality by using the pseudoprime 
test . The following stronger test was developed by Pomerance, Selfridge , 
and Wagstaff in 1980. 

Let us examine an integer , say n ,  which passes the pseudoprime test for 
the base b, where b and n have been verified to be relatively prime. This 
means that n divides 

We can certainly assume that n is odd, otherwise we would not be wasting 
time trying to decide if it is prime. We can write 

n = 2m + 1 .  

So n divides 

b2m - 1 = (bm - 1 ) x (bm + 1 ) ,  

I f  n really is a prime, then by Theorem 1 . 1  i t  divides at least one o f  the 
factors on the right-hand side. And it cannot divide both of them because 
then it would divide their difference 
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(bm + 1 )  - (bm - 1 )  = 2 .  

So  i f  n really i s  a prime, then 

bm == 1 or - 1 (mod n) . (6. 1 )  

On the other hand, if n i s  composite, there i s  a fair chance that some of 
the factors making up n divide bm + 1 while other factors divide bm - 1 .  
I n  this case, n would pass the pseudoprime test base b ,  but i t  would not 
satisfy Equation (6 . 1 ) .  

We take as an example the first pseudoprime for the base 2 :  

341 = 1 1 x 3 1 .  

In this case, m = 170 .  I t  i s  quickly calculated that 

2 1 70 == 1 (mod 341 ) .  

Our number 341 i s  still looking like a prime. But we are not done yet . That 
exponent is even and this last equation means that 341 divides 

2 1 70 - 1 = (285 - 1) X (285 + 1 ) .  

I f  341 were prime, then we would have that 

285 == 1 or - 1 (mod 341 ) .  

Now we have i t  because, i n  fact 

285 == 32 (mod 341 ) .  

What has happened is that 1 1  divides 285 + 1 while 31  divides 285 - 1 .  
I n  general , let n b e  a candidate for primality which i s  relatively prime 

to b and has passed the pseudoprime test modulo b. Write n as 

n = 2a x t + 1 ,  

where t i s  odd and a i s  at least 1 .  Then 

and if n really is a prime, then it divides exactly one of these factors. 

Definition: An odd integer n is said to be a strong pseudoprime for the 
base b if it is composite, relatively prime to b, and divides one of the factors 
on the right-hand side of Equat ion (6 .2) . 
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This can be put into a very efficient algorithm that essentially runs as 
fast as our old pseudoprime test . It is assumed that trial division has been 
attempted first so that for any small base b which we choose, we know that 
n, the number to be tested , and b are relatively prime. 

Algorithm 6.1 (Strong Pseudoprime Test.) 

INITIALIZE : READ n ,  b 

nis the integer to be tested. b is any positive integer rela­
tively prime to n .  

t +-- n - 1 
a +-- O 
WHILE t is  even DO 

t +-- t/2 
a +-- a + 1 

Find t and a satisfying: n - 1 = 2a x t ,  t odd. 

TEST_N_BASE_B : test +-- MODEXPO (b , t , n) 
IF test = 1 or n - 1 THEN CALL PASSED_TEST 
FOR i = 1 to a - 1 DO 

test +-- (test x test )  MOD n 
IF test = n - 1 THEN CALL PASSED_TEST 

pass +-- 0 

We check the congruence class of b2
i t modulo n for each 

i from 0 to a - 1 .  If any one is correct, then n passes. 
Otherwise, n fails. 

TERMINATE : WRITE pass 

n passes if and only if pass is 1 .  

PASSED_TEST : pass +-- 1 
CALL TERMINATE 
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Strong pseudoprimes do exist . But they are pretty scarce . The first strong 
pseudoprime for the base 2 is 2047, and as the following table shows, strong 
pseudoprimes for the base 2 are much rarer than pseudoprimes for the base 
2. The counts are taken from the article by Pomerance, Selfridge,  and 
Wagstaff referenced at the end of this chapter. 

n # of ps-primes < n # of strong ps-primes < n 
3 

245 
5 597 

21 853 

o 
46 

1 282 
4 842 

The strong pseudoprime test becomes much more exclusive if we run 
it on several bases. The first pseudoprime for bases 2 ,  3 ,  and 5 is 1 729, 
and there are 2522 such pseudoprimes less than 25 x 109 . The first strong 
pseudoprime for bases 2, 3, and 5 is 25 326 001 ,  and there are only 13 such 
strong pseudoprimes less than 25 x 1 09 . If we run our test on bases 2, 3 ,  
5 ,  and 7, then there are 1 770 pseudoprimes less than 25 x 109 and exactly 
one strong pseudoprime 

32 150 3 175 1  = 15 1  x 751 x 28351 .  

This then gives us a solid primality test for integers below 2 5  x 109 . If n 
passes the strong pseudoprime tests for bases 2, 3, 5 ,  and 7, if n is less than 
25 x 109 , and if n is not equal to 32 150 3 175 1  then n is prime. Of course, 
we are still in the range where we can use trial division to prove primality. 

There is good news regarding a strong pseudoprime analog of the Carmi­
chael numbers. There is none. We will be proving that every composite 
number fails the strong pseudoprime test for at least a quarter of the bases 
less than itself. In fact ,  it has been shown that if n is composite then it must 
fail the strong pseudoprime test for at least half the bases less than n. In 
theory, this gives us a test for primality: If n passes the strong pseudoprime 
test for more than half the bases less than n, then n is prime. Of course this 
test would be much slower than trial division and so is impractical. But it 
does demonstrate that we can have very high confidence in the outcome of 
a series of strong pseudoprime tests . 

6 . 2  Refining Fermat 's  Observation 

To prove that composite n must fail a strong pseudoprime test , it is useful 
to go back to the beginning of this chapter and ask a simple question . As 
we saw, if n is prime and n = 2m + 1 ,  then n divides exactly one of the 
two factors: 
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Is there a simple way of telling which one it must divide? 
The following theorem is the first step toward answering this question . 

It was discovered by the same Leonard Euler that we met in Section 3 .4 .  

Theorem 6.2 (Euler's Criterion) Let p be an odd prime: p = 2m + 1 ,  
and let b be a positive integer not divisible by p. Then 

bm == 1 (modp) , 

if and only if there exists an integer t such that 

b == t2 (modp) . 

Proof (one direction ) :  We will just do half of the proof for now. We need 
another result before finishing it .  Assume that such a t exists. Then 

bm == t2m == tp- 1 (mod p) . 

But t cannot be divisible by p and so we can use Theorem 3 .2 ,  

bm == tp- 1 == 1 (mod p) . 

Q.E.D .  

This motivates the following definition . 

Definition: Given an integer n and a prime modulus p, if n is relatively 
prime to p and if there exists an integer t such that 

n == t2 (mod p) , 

then we say that n is a quadratic residue modulo p. 

We can find all quadratic residues mod p just by squaring each of the 
positive integers less than p and looking at their residues. Thus for p = 7 
we have 

1 (mod 7) , 22 
2 (mod 7) , 52 

4 (mod 7) , 32 
4 (mod 7 ) ,  62 

So the quadratic residues mod 7 are 1 ,  2, and 4.  

2 (mod 7) , 
1 (mod 7 ) .  
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Since i2 = (_i) 2 , the number of quadratic residues is at most half of 
p - 1 .  Exercise 6.8 asks you to prove that if 

i2 j2 (mod p) , then 

j or - j (mod p) , 

so that each quadratic residue comes up exactly twice . This means that the 
number of quadratic residues which are positive and less than p is (p- 1 )/2. 

The next theorem was observed and conjectured by John Wilson ( 1741-
1 793) and proved by Joseph-Louis Lagrange ( 1 736- 1813) in 1 773. 

Theorem 6.3 (Wilson's Theorem) : The integer n divides (n - I ) !  + 1 
if and only if n is prime. 

Proof We leave it as an exercise to prove that if n is composite, then either 
n = 4 and 4 does not divide 3! + 1 = 7, or n divides (n - I ) !  and so does 
not divide (n - I ) !  + 1 .  

Assume therefore than n is prime. For each positive integer i less than 
n ,  Lemma 4. 1 tells us that there exists a unique positive integer j less than 
n such that 

i x j = 1 (mod n) . 

Also, if i is not 1 or n - 1 then i and j must be distinct because otherwise 

i2 = 1 (mod n) , 

which means that the prime n divides 

i2 - 1 = (i - 1) x (i + 1 ) .  

Thus when we take the product (n - I ) ! ,  we can pair up the integers 
from 2 to n - 2 with their inverses modulo n :  

(n - I ) !  1 x (product o f  l 's) x (n - 1 )  (mod n) 
n - 1 = - 1  (mod n) . 

And so n divides (n - I ) !  + 1 .  

Q.E.D.  

This also is  a primality test but an impractical one. We can now finish 
the proof of Theorem 6 .2 .  
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Proof of Theorem 6. 2 (other direction) :  Assume that b i s  not a quadratic 
residue modulo p. We need to show that 

bm == - 1 (mod p) . 

For each positive integer i less than p, there exists a unique positive 
integer j less than p such that 

i X j == b (mod p) . 

To find j ,  first find the j' such that i x j' == l (mod p) and then multiply j' 
by b to obtain j .  If 

i x j == i x k == b (mod p) , 

then multiplying each of the first two quantities by the inverse of i modulo 
p tells us that 

j == k (mod p) , 

and thus j is unique modulo p. Since b is not a quadratic residue, i can 
never equal j .  

We take the product o f  the positive integers less than p ,  and pair them 
up into pairs whose product is b modulo p. 

(p - I ) !  

but by Theorem 6.3 

b x b x . . .  x b (mod p) 

bm (mod p) , 

(p - I ) !  == - 1  (mod p) . 

Therefore p divides bm + 1 ,  and so it does not divide bm - 1 .  

6 . 3  No "Strong" Carmichael Numbers 

Q.E.D.  

We will conclude this chapter with a proof that if n has at least two distinct 
prime divisors , then there is a base for which n fails the strong pseudoprime 
test . The case where n is a power of a prime will be proved in Chapter 9, 
Theorem 9 . 13 .  



82 6 . Strong Pseudoprimes and Quadratic Residues 

Lemma 6.4 : Let r and s be positive integers with g = gcd(r, s) . Let p be 
a prime and b an integer not divisible by p. If 

bT 1 (modp) and bB == 1 (modp) , then 
lJ9 1 (modp) . 

Proof Let r = m x g, s = n x g, so that m and n are relatively prime. Then 
p divides 

bT - 1 = (bg - 1 )  x ( 1  + bg + b2g + . . .  + b(m- l ) x 9 ) , 

and p also divides 

bB - 1 = (bg - 1 )  x ( 1  + bg + b2g + . . .  + b(n- l ) x g ) .  

B y  Lemma 3 .5 ,  the two second factors are relatively prime. The prime p 
might divide one of them but it cannot divide both. Since it does divide 
both left-hand sides, it must divide bg - 1 .  

Q .E .D .  

Theorem 6.5 : Let n be an odd composite number with at least two distinct 
prime factors, say p and q. Write 

p 2a x s + 1 ,  

q 2b X t + 1 ,  

where s and t are odd, a and b are a t  least 1 .  Order the primes s o  that 

Let m be any integer relatively prime to n such that m is a quadratic residue 
modulo p and is not a quadratic residue modulo q. (Such integers m exist 
by the Chinese Remainder Theorem, Theorem 4 .4 . )  Then n will fail the 
strong pseudoprime test for the base m .  

Proof Write n as 

n = 2c x u + 1 ,  

where u is odd and c i s  at least 1 .  We know that i f  n i s  a pseudoprime base 
m, then each prime dividing n divides exactly one of the factors 
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u u 2u 2c- 1  x u  m - 1 ,  m + 1 ,  m + 1 ,  . . .  , m  + 1 ,  

and n passes the strong pseudoprime test base m if and only if they all 
divide the same factor. If an odd prime divides 

then it divides 

but it does not divide 

Let j be the smallest integer such that p divides 

and let k be the smallest integer such that q divides 

The exponents j and k are at least 0 and at most c. 
Since m is a quadratic residue modulo p, we know by Theorem 6 .2  that 

p divides 

By Lemma 6.4,  p divides 

mgcd( 21 x u,2a - 1  x s ) _ 1 ,  or equivalently 

mgcd( 21 X U , 2a - 1 X S) == 1 (mod p) . 

If a were less than or equal to j ,  then we would have 

gcd(2j x u, 2a- 1 x s) = 2a- 1 x gcd(u, s ) , 

and so 2a- 1 x u would be a multiple of gcd(2j x u, 2a- 1 x s ) . Thus we would 
have that 

contradicting the minimality of j .  We have proved that 

a > j. 
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We now look at q. Our base m is not a quadratic residue modulo q, so 
by Theorem 6.2 q does not divide 

It does divide 

2b - 1  x t m - 1 . 

Again using Lemma 6.4, q must divide 

If b is larger than k, then 

gcd(2b X t, 2k X u) = 2k x gcd(t ,  u) , 

and so 

m2b- 1 x t == 1 (mod q) , 

contradicting the fact that m is not a quadratic residue modulo q. Therefore 
b must be less than or equal to k. Combining our inequalities, we have that 

j < a :::; b :::; k .  

In particular, this says that j and k cannot be equal . Therefore p and q di­
vide distinct factors and n fails the strong pseudoprime test for the base m. 

Q.E.D.  

REFERENCE 

C .  Pomerance, J .  L. Selfridge, and S. S. Wagstaff , Jr. , "The pseudoprimes 
to 25 x 109" , Math. of Computation, 35 ( 1 980) , 1003- 1026. 

6 . 4  EXERCISES 

6. 1 Write a program to implement Algorithm 6. 1 that will run the strong 
pseudoprime test for each of the bases 2, 3, 5, and 7. 

6 .2  Use Theorem 6 .2 to write a program that uses modular exponentiation 
to determine whether or not b is a quadratic residue modulo p. 
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6.3 For each odd prime p less than 100, determine whether or not 2 is a 
quadratic residue modulo p. Can you see any patterns? 

6.4 Same problem as Exercise 6 .2  but with 2 replaced by 3. 

6.5 Same problem as Exercise 6 .2  but with 2 replaced by 5 .  

6 .6  What are the quadratic residues modulo 10 1?  Can you see any patterns? 

6.7 For each pair of odd primes, p and q,  which are both less than 50, check 
whether p is a quadratic residue modulo q and then check whether q is a 
quadratic residue modulo p. Can you see any patterns? 

6.8 Prove that if p is a prime and if 

i2 j2 (mod p) , then 

i j or - j (mod p) . 

6.9 The number 645 = 3 x 5 x 43 is a pseudoprime base 2 but not a strong 
pseudoprime for the base 2. Which of the factors on the right-hand side of 
Equation 6.2 are divided by each of the primes dividing 645? 

6 . 10  Prove that if n is composite and larger than 4 ,  then n divides (n - I ) ! . 
Consider two cases: n is the square of a prime or n = a x b where a and b 
are distinct integers larger than 1 .  

6. 1 1  What goes wrong i f  we try to replace the prime p i n  Theorem 6 .2 with 
a composite number n? Find values of b and odd n which are relatively 
prime and for which there is a t such that 

b == t2 (mod n) , 

but 
b(n- l ) /2 ¢. 1 (mod n). 

6. 1 2  Find values of b and odd n which are relatively prime and for which 

b(n- l ) /2 == 1 (mod n), 

but for which there is no t such that 

b == t2 (mod n) . 
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6 . 13  As we have seen in Chapter 3, if b and n are relatively prime then n 
divides 

b<!>(n) - 1 .  

Furthermore, we know that ¢(n) i s  even as long as n i s  larger than 2 .  Show 
that if b and n are relatively prime and there is a t such that 

b == t2 (mod n) , 

then n divides 

b<!>(n) /2 - 1 .  

6 . 14  Show that the converse is not necessarily true. The converse is the 
following statement which depends on your choice of n and which we will 
call S (n) . 

S (n) : Given any integer b which is relatively prime to n and for which 

b<!>(n) /2 == 1 (mod n) , 

there is some integer t satisfying 

b == t2 (mod n) . 

Find an integer n for which S (n) is false. 

6. 15 Sometimes S (n ) is true for composite n. Let n = 18, ¢(18 )  = 6.  Prove 
that S ( 18 )  is true. 

6 . 16  Given an n for which ¢(n) is even but not divisible by 4, let k equal 
(¢(n) + 2 )/4 .  Prove that if 

b<!>(n) /2 

b 
1 (mod n ) , then 

(bk ) 2 (mod n) . 

Thus prove that S (n) is true whenever 4 does not divide ¢(n ) . 

6. 1 7  Prove or find a counterexample: S (n) is true if and only if 4 does not 
divide ¢ (n ) . 

6 . 18  Let PROD (n ) be the product of the positive integers less than and 
relatively prime to n .  Prove that if PROD (n ) is not congruent to 1 modulo 
n then S (n ) is true. 
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6. 19 Prove or find a counterexample: S (n) is true if and only if PROD (n ) 
is not congruent to 1 modulo n .  

6.20 For which composite n up to 30 is  S (n) true? Can you make any 
guesses about when S (n) is true? 

6 .21 Let p, q be distinct odd primes dividing n .  Show that exactly one­
quarter of the positive integers less than and relatively prime to n are 
quadratic residues modulo p and are not quadratic residues modulo q .  
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Quadratic Reciprocity 
"The general theorem to which we have given the name 
of reciprocity law between two primes ( is) the most re­
markable and fertile in the theory of numbers." 
- Adrien-Marie Legendre 

7. 1 The Legendre Symbol 

The problem of finding an efficient algorithm for deciding when an integer 
is a quadratic residue for a given prime is one that occupied the attention 
of the greatest mathematicians of the late 18th and early 19th centuries. 
As we have seen, it was Euler who translated the problem of finding the 
residue of b(p- l ) /2 into determining whether or not b is a quadratic residue 
modulo p. Adrien-Marie Legendre ( 1 752- 1833) invented the commonly used 
notation for working on this problem. 

Definition: Let p be an odd prime and n an integer. The Legendre symbol 
(nip) is defined to be 0 if p divides n, + 1  if n is a quadratic residue modulo 
p and - 1  otherwise . 

One of the nice consequences of this definition is that Theorem 6.2 can 
be restated in the following form. 

Corollary 7. 1 If p is an odd prime and n is any integer, then 

n(p- l ) /2 == (nip) (modp) . 

Setting n = - 1  in Corollary 7. 1 gives us a very useful result . 

Corollary 7.2 The Legendre symbol (- l ip) is + 1  if p ==  1 (mod4 ) and is 
- 1  if p == 3 (mod4 ) . 

Corollary 7. 1 also implies the following properties of the Legendre sym­
bol. 

Corollary 7.3 Given any integers a and b 

(a x blp) = (alp) x (blp) · 



If a == b (mod p) , then 

If p does not divide a then 
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(a/p) = (b/p) . 

(a2/p) = 1 .  

The next result ,  known as Gauss' Criterion , was discovered by Carl 
Friedrich Gauss ( 1 777- 1855) , the mathematician who made the greatest 
contributions to the solution of the problem of deciding when an integer is 
a quadratic residue. The criterion is not terribly practical in itself, but will 
lead to an efficient algorithm. 

Theorem 7.4 (Gauss' Criterion) Let p be an odd prime and b a positive 
integer not divisible by p. For each positive odd integer 2i - 1 less than p, 
let ri be the residue of b x (2i - 1 )  modulo p: 

ri == b x (2i - 1 )  (modp) , 0 < ri < p. 

Let t be the number of ri which are even. Then 

Example: Let p = 7, then i = 1, 2 ,  or 3.  If b = 2 (which we know to be a 
quadratic residue) then 

rl == 2 x 1 == 2 (mod 7) , r2 == 2 x 3 == 6 (mod 7) , r3 == 2 x 5 == 3 (mod 7) , 

so that t = 2 and (2/7) = +1 . If b = 3 (which we know is not a quadratic 
residue modulo 7) then 

rl == 3 x 1 == 3 (mod 7) , r2 == 3 x 3 == 2 (mod 7) , r3 == 3 x 5 == 1 (mod 7) , 

so that t = 1 and (3/7) = - 1 .  

Proof Write p = 2m + 1 .  There are m positive odd integers less than p .  Re­
label the residues so that rl , r2 , . . .  , rt are all even and rt+ l , rt+2 , . . .  , rm are 
all odd. Let al , a2 , . . .  , am be the positive odd integers less that p ordered 
so that 

r i == b x ai (mod p) . 

Consider the integers p - rl , P - r2 , . . .  , p  - rt ,  rr+ l rt+2 , · · · ,  rm . These 
are all positive odd integers less than p. We claim that they are all distinct. 
Since the ai 's are all distinct modulo p, there are no repetitions among the 
first t nor among the last m - t .  It suffices to prove that we cannot have 
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where i is at most t and j is larger than t . If we did, then we would have 
that 

b x ai + b x aj (mod p) 

b x (ai + aj ) (mod p) . 

Since p does not divide b, it must divide ai +aj . But ai +aj is even (because 
they are each odd) and 

o < ai + aj < 2p. 

And so p cannot divide ai + aj . 
Since p - rI , . . .  , p  - rt , rt+ l , . . .  , r m are m distinct odd positive integers 

less than p, they must be all of them, and thus 

al x a2 x . . .  x am 
= (p - rd x (p - r2 ) X • • . X (p - rt ) X rt+ l X rt+2 X . . • X rm 

== (_ l ) t X rl X r2 X • . • X rm (mod p) 

== (_ l ) t X b X al X b X a2 X • . • X b X am (mod p) 

== ( - 1 ) t X b
m X al X a2 X ' "  X am (mod p) . 

We can divide both sides by the product of the ai 's since they are all 
relatively prime to p. Therefore: 

(_ l ) t X bm == 1 (mod p) , or 

bm == (_ l ) t (mod p) , 

and the theorem follows from Corollary 7. 1 and the fact that m = (P - 1 )/2 .  

7. 2 The Legendre symbol for small bases 

Q.E.D.  

For small values of b ,  this test can be practical . For example, you may have 
guessed from the data gathered in Exercise 6.3 that b = 2 is a quadratic 
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residue when p == 1 or - 1  (mod 8) and it is not a quadratic residue when 
p == 3 or -3 (mod 8) .  

This can now be easily proved from Theorem 7 .4  since t i s  even i f  p == 1 
or - 1  (mod 8) , and t is odd if p == 3 or -3  (mod 8) . As an example, if 
p = 8m + 1 ,  then 

2 x 1 , 2 x 3,  . . .  , 2  x (4m - 1 ) 
all have even residues modulo p, while 

2 x (4m + 1 ) , 2 x (4m + 3) , . . .  , 2  x (8m - 1 ) 
all have odd residues. So the number of even residues is 2m which is even. 
We leave the remaining three cases as an exercise . 

Corollary 7.5 If p is an odd prime then 

(2/p) = (_ 1 ) (p2 - l ) /8 . 

Proof Just verify that (p2 - 1 ) /8 is even if p == 1 or - 1  (mod 8) and odd if 
p == 3 or -3 (mod 8) . 

Q .E .D.  

If  b = 3,  then t i s  even if  p == 1 or -1 (mod 12 )  and t is odd if  p == 5 or 
-5 (mod 12 ) .  Again we will just do the first case and leave the remaining 
three cases as an exercise. If p = 12m + 1 ,  then 

3 x 1 , 3 x 3, · · · , 3  x (4m - 1 ) , and 

3 x (8m + 1 ) , 3 x (8m + 3) , · · · , 3  x ( 12m - 1 )  

all have odd residues modulo p ,  while 

3 x (4m + 1 ) , 3 x (4m + 3) , · · · , 3 x (8m - 1 )  

all have even residues. So  the number of even residues i s  2m which i s  even. 

Corollary 7.6 If p is an odd prime, then 

(3/p) 1 
- 1  

if 
if 

p 
p 

1 or - 1  (mod 12 ) ,  
5 or  -5 (mod 12 ) .  

We can continue proving corollaries like these indefinitely, but both the 
proofs and the statements of the corollaries quickly become much more 
complicated. It was the 18th-century analysis of data such as that generated 
in Exercise 6 .7 that led to a really efficient algorithm for computing the 
Legendre symbol. 
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7 . 3  Quadratic Reciprocity 

From Corollary 7.3 we see that if we can compute (p/q) for any pair of 
distinct odd primes p and q, then we can compute (n/q) for any n whose 
factorization into primes is known . The data in Exercise 6 .7  suggested a 
relationship between (p/q) and (q/p) to Euler and Legendre. Both Euler 
and Legendre unsuccessfully tried to prove this relationship. The proof was 
finally discovered in 1 796 by the nineteen-year-old Gauss. 

Theorem 7.7 (Quadratic Reciprocity) If p and q are odd primes and 
at least one of them is = 1 (mod 4) , then 

(p/q) = (q/p) . 

If both p and q are = 3 (mod 4) , then 

(p/q) = - (q/p) . 

Example: We can combine this theorem with Corollaries 7 .2 ,  7 .3 ,  and 7.5 . 
We give three examples 

(5/7) 

( 1 1 /23) 

( 1 003/ 1 15 1  ) 

(7/5) = (2/5) = - 1 ,  so 
5 is not a quadratic residue mod 7, 
or equivalently 7 divides 53 + 1 .  

- (23/ 1 1 )  = - ( 1 / 1 1 )  = - 1 ,  so 
1 1  is not a quadratic residue mod 23, 
or equivalently 23 divides 1 1 1 1  + 1 .  

( ( 1 7  x 59) / 1 1 5 1 )  = ( 1 7/ 1 1 5 1 )  x (59/ 1 15 1 )  
( 1 1 5 1 / 1 7) x (-1 )  x ( 1 1 5 1 /59) 
- ( 1 2/ 17 )  x (30/59) 
- (  4/ 1 7) x (3/ 17)  x (2/59) x (3/59) x (5/59) 
- (3/ 1 7) x ( - 1 )  x (3/59) x (5/59) 
- ( 1 7/3) x ( - 1 ) x ( - 1 )  x (59/3) x (59/5) 
- (2/3) x (2/3) x (4/5) 
- 1 ,  so 
1003 is not a quadratic residue mod 1 15 1 ,  
o r  equivalently 1 1 5 1  divides 1003575 + 1 .  

Proof The theorem i s  trivially true i f  p = q, so we can assume they are 
distinct primes and so each Legendre symbol is either + 1 or - 1 .  As in the 
statement of Theorem 7.4, let s be the number of positive odd integers less 
than p of the form 2i - 1 such that if 

ri = q x (2i - 1 )  MOD p 
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then ri is even. Let t be the number of positive odd integers less than q of 
the form 2j - 1 such that if 

rj = p x (2j - 1) MOD q 

then rj is even . By Theorem 7.4 ,  we know that 

(p/q) x (q/p) = (_ 1 ) 8+t .  

The theorem will follow i f  we can show that s + t is even when at least 
one of our two primes is == 1 (mod 4) , and s + t is odd if both primes are 
== 3 (mod 4) . 

Consider the set S of all integers of the form q x a - p x a' where a runs 
over the positive odd integers less than p and a' runs over the positive odd 
integers less than q. As an example, if p = 5 and q = 7, then a is 1 or 3, 
and a' is 1, 3, or 5. The set S consists of 

7 x 1 - 5 x 1 2, 
7 x l - 5 x 3  -8, 

7 x l - 5 x 5  - 18, 

7 x 3 - 5 x 3  6, and 

7 x 3 - 5 x 5  -4. 

We leave it as Exercise 7.5 to verify that the numbers this generates are 
always even, non-zero, and distinct . 

Consider those pairs (a ,  a' ) for which 

r = q x a - p x a' 

is positive and less than p. This means that 

q x a = p x a' + r == r (mod p) , 

and so r is one of the residues counted by s .  Furthermore, every residue 
counted by s arises in this way, for if 

q x a == r (mod p) , 

where a is positive, odd , and less than p and r is positive ,  even, and less 
than p, then 

q x a - r = p x a' , 

where a' is positive, odd , and 



94 7. Quadratic Reciprocity 

p x a' < q x p - r, and therefore 

a' < q .  
Similarly, every pair (a, a' ) for which q x a - p x a' is negative and larger 

than -q  corresponds to a residue r, 

q x a - p x a' 
= -r, 

p x a' = r (mod q) , 
counted by t .  And every residue counted by t corresponds to a pair (a, a' ) 
for which q x a - p x a' is negative and larger than -q.  Therefore s + t 
equals the number of elements of S which lie between -q and p. 

The proof of the theorem boils down to showing that the number of 
elements of S between -q  and p is even except when p and q are both 
= 3 (mod 4) . 

Let q x a - p x a' be an element of S in the desired range. Let 

b = p - 1 - a and 

b' = q - 1 - a' . 

We have that q x b - p x b' is also an element of S and 

q x b - p x b' = -q + p - (q x a - p x a' ) , 

so that 

-q  = -q + p - p < q x b - p x b' < -q + p - ( -q) = p. 

Therefore, q x b - p x b' is also in the desired range. This means that we 
can pair up the elements of S in the desired range, 

(a, a' ) +-----+ (b, b' ) ,  

and so the number of such elements must b e  even unless some elements 
pair with themselves. But if 

a p - 1 - a, and 
a' = q - 1 - a' , then 
a (p - 1 )/2 and a' = (q - 1 )/2. 

This means that there is at most one element of S in the desired range 
that pairs with itself, and this element exists if and only if (p - 1 ) /2 and 
(q - 1 )/2 are both odd. In other words, the number of elements in S in the 
desired range is odd if and only if p = 3 (mod 4) and q = 3 (mod 4) . 

Q.E.D.  
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We are now equipped with a very powerful tool that enables us to rapidly 
calculate (njp) whenever factorization is not a problem. However, we will 
often be working with large numbers where factorization may present dif­
ficulties. This obstacle was neatly removed by Carl Gustav Jacob Jacobi 
( 1 804- 1851  ) . 

Definition: Let n be an integer and m any positive odd integer, 

m = PI X P2 X . . .  X Pr , 

where the Pi 'S are odd primes which may be repeated . The Jacobi symbol 
(njm) has the value 

where (njpi ) is the usual Legendre symbol . 

The Jacobi symbol (njm) does not tell us whether n is a quadratic 
residue modulo m. It is rather a convenience that enables us to dispose 
of factorizations, except for pulling out powers of 2 which is easy, in the 
computation of the Legendre symbol. Note that if m is a prime, then the 
Legendre and Jacobi symbols are identical. The beauty of the Jacobi symbol 
is that it satisfies the same computational rules as the Legendre symbol. 

Theorem 7.8 Let m and m' be odd positive integers, then 

(a) (njm) x (njm' ) = (nj(m x m') ) ,  

(b) (njm) x (n' jm) = ( ( n  x n' ) jm) , 

(c) (n2 jm) = 1 = (njm2 ) ,  provided n and m are relatively prime, 

(d) if n == n' (modm) , then (njm) = (n' jm) , 

(e) ( - l jm) = 1 if m == 1 (mod4) , = - 1 if m == - 1 (mod4) , 

(f) (2jm) = 1 if m == 1 or - 1  (mod8) , = - 1  if m == 3 or -3 (mod8) , 

(g) (njm) = (mjn) if n and/or m == 1 (mod4) , = - (mjn) if n and 
m == 3 (mod4 ) . 

Example: This theorem implies that , aside from pulling out factors of 2 as 
they arise , one can proceed with quadratic reciprocity without worrying 
about whether or not the numerator is prime. The last example in which 
we computed the Legendre symbol ( 1 003j 1 1 5 1 )  is now much simpler: 
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( 1 003/ 1 1 5 1  ) - ( 1 1 5 1 / 1 003) 

- ( 148/ 1003) = - (4/ 1003) X (37/1003) 

- (37/1003) = - ( 1 003/37) 

- (4/37) 

- 1 .  

Proof Part (a) comes from the definition of the Jacobi symbol. Parts (b)­
(d) are immediate consequences of the definition of the Jacobi symbol and 
the fact that these properties hold for the Legendre symbol. 

For parts (e) and (g) , observe that all of the primes, Pi ,  in the prime 
factorization of m are either congruent to 1 or 3 (mod 4) . The product of 
two primes, both == 3 (mod 4) , is congruent to 1 (mod 4) . So if an even 
number of these primes are == 3 (mod 4 ) ,  then m will be == 1 (mod 4) . On 
the other hand, if an odd number of them are == 3 (mod 4) , then m will be 
== 3 (mod 4) . 

Now (- l/m) = ( - l /pd x ( - 1 /P2 ) x · · ·  x ( - l/Pr )
' and ( - l/pd is - 1  if 

and only if Pi == 3 (mod 4) . So 

( - l /m) ( - 1 ) (# of p, which are =3 (mod 4» 

1 if m == 1 (mod 4) , 

- 1 if m == 3 (mod 4) . 

The proof of part (g) is clearly true if m and n share a common prime 
factor (both sides are 0) . Assume that m and n are relatively prime. We 
need to break both n and m into products of odd primes. If m = PI x · . . XPr 
and n = ql x · · ·  x qs , then (n/m) x (m/n) is the product of (qi fpj ) x (pj /qd 
over all pairs ( i , j )  with 1 ::; i ::; s ,  1 ::; j ::; r .  But (qi fpj ) x (Pj /qi )  is 1 
except when qi and Pj are both == 3 (mod 4) . This means that the number 
of - l 's in this product is the number of Pi 's which are == 3 (mod 4) t imes 
the number of q/s which are == 3 (mod 4) . So (m/n) x (n/m) is + 1  except 
when both m and n are both congruent to 3 modulo 4 .  

Part (f) uses the same idea. The integer m will be == 1 or -1 (mod 8) if  
and only if an even number of the Pi are == 3 or -3 (mod 8) . 

Q .E .D.  
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7. 5 Computing the Legendre Symbol 

We are done! Theorem 7.8 can be restated as a very fast and efficient 
algorithm for deciding when n is a quadratic residue modulo p. 

Algorithm 7.9 Given an integer n and an odd prime p, this algorithm 
computes the Legendre symbol (nip) . 

INITIALIZE : READ n ,  p 
legendre <- 1 
n <- n MOD p 

Input an integer n and a prime p ,  legendre records the 
value of (nip) which is initially set to 1 .  n is reduced mod­
ulo p .  

IF n = 0 THEN DO  
legendre <- 0 
CALL TERMINATE 

If p divides n then (nip) = o .  

MAKE_POSITIVE : IF n < 0 THEN DO 
n <- -1 x n 
IF p MOD 4 = 3 THEN legendre <- - 1  

If n i s  negative, then we  pull out a factor of - 1 .  

QUAD_REC_LOOP : CALL PULL_TWOS 
WHILE n > 1 DO 

IF (n- 1 )  x (p- 1 )  MOD 8 = 4 THEN DO 
legendre <- -1 x legendre 

temp <- n 
n <- p MOD n 
p <- temp 
CALL PULL_TWOS 
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PULL_TWOS pulls out all factors of 2 from n. If n is still 
larger than 1 ,  we exchange n and p, reduce the new value 
of n modulo p, and then take out all factors of 2 .  This is 
iterated until n is 1 .  

TERMINATE : 

PULL_TWOS : 

WRITE legendre 

count +- 0 
WHILE n is even DO 

n +- n/2 
count +- 1 - count 

IF count x (p x p - 1 )  MOD 16 8 THEN DO 
legendre +- -1 x legendre 

RETURN 

count records the parity of the exponent of 2 in n. New 
values of n and legendre are returned to the caller. 

We now have a quick test of whether p divides 

b(p- 1 l /2 - 1 or b(p- 1 l /2 + 1 .  

A natural question at this point is whether this knowledge can be used to 
strengthen our strong pseudoprime test . Recall that the strong pseudoprime 
test on n for the base b checks that n divides one of the factors 

w - 1 ) ,  W + 1 ) ,  (b2t + 1 ) ,  . . . or (b2a - 1 X t + 1 ) ,  where n = 2a x t .  

We can rapidly compute the Jacobi symbol (bin) .  If  n i s  in  fact prime, 
then the value of this symbol is - 1  if and only if n divides the last of these 
factors . Unfortunately, Pomerance, Selfridge, and Wagstaff have shown that 
if n passes the strong pseudoprime test, then it will always divide the right 
factor. 

Have we done all this work for nothing? 
No. The theorems we have proved give us some very important insights 

into the structure of the integers , and our Algorithm 7.9 will be playing a 
crucial role in the factorization techniques and primality proofs throughout 
the rest of this book. 

7 .6  EXERCISES 

7. 1 Find the values of the following Jacobi symbols: 



(35/53) 

(68/233) 

( 1 26/509) 

(672/1297) 

( 1 235/3499) . 

7 .2 Finish the proof of Corollary 7 .5 .  

7 .3 Finish the proof of Corollary 7 .6 .  

7.6 .  EXERCISES 99 

7.4 Find a result analogous to Corollaries 7.5 and 7.6 for determining when 
(5/p) = 1 .  

7 .5 Let p and q be distinct odd primes and consider the integers of the form 
q x a - p x a' where a runs over the positive odd integers less than p and 
a' runs over the positive odd integers less than q . Prove that the numbers 
generated in this fashion are even, non-zero, and distinct . 

7 .6 Write a program to implement Algorithm 7.9 .  Find the values of 

(267 980/14 647 62 1 )  

( 1 073 899/38 149 20 1 )  

(63 829 163/409 482 089) 

(381 902 654/14682 98937) 

(83772 0 1726/ 1 93727 62237) . 

Compare running times with the program written for Exercise 6 .2 .  

7 .7 Does there exist an integer n such that 1009 divides n2 - 150? Justify 
your answer. 

7 .8 For what primes p does there exist an integer x such that p divides 
x2 + 1 .  

7 .9 Given an integer a and a prime p ,  show that -a i s  a quadratic residue 
if and only if there exist integers x and y such that p, x, and y are pair-wise 
relatively prime and p divides x2 + ay2 . 
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7. 10  Describe in terms of congruence class all of the odd primes p = 2m + 1 
such that p divides 10m - 1 .  

7. 1 1  Let m b e  an odd composite integer and n b e  relatively prime t o  m. 
Show by finding counterexamples that each of the following statements is 
false : 

(a) m divides n(m- l ) /2 - (nlm) , 

(b) m divides n<!>(m) /2 - (nlm) , 

(c) if (nlm) = +1 ,  then there exists an integer t such that 

n == t2 (mod m) . 

7. 12  Recall that if n is a perfect square then (nip) = 0 or 1 for any odd 
prime p. If n is not a perfect square but (nip) = 0 or 1 for p = 3 , 5 , 7, and 
1 1 ,  then we will call n a pseudo-square. Write a program to test whether 
or not n is a pseudo-square. 

7. 13  What is the probability that a randomly chosen integer will be a square 
or a pseudo-square? 

7. 14  How many perfect squares are there less than or equal to one million? 
How many pseudo-squares are there less than or equal to one million? 
Compare the efficacy of the pseudo-square test with our pseudoprime tests. 

7. 15  Modify Fermat 's Algorithm (Algorithm 5 . 1 )  to speed things up by 
incorporating the pseudo-square test . 

7. 16 Prove that if p is odd then (p2 - 1 ) /8 is odd if and only if p == 3 or 
-3 (mod 8) . 

7. 17  Prove that if p and q are odd, then (p - 1 )  x (q - 1 ) /4 is odd if and 
only if p and q are both == 3 (mod 4) . 

7. 18 Given that m is not divisible by 2 or 3, prove that the Jacobi symbol 
(31m) is + 1 if and only if m == ±1 (mod 12 ) .  

7. 19 What are the residue classes, p ,  modulo 28  for which the Legendre 
symbol (7Ip) equals + I? If a composite integer m is in one of these residue 
classes, does it follow that the Jacobi symbol (7/m) is equal to + 1 ?  
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7 .20 In what respect does the quadratic reciprocity algorithm (Algorithm 
7.9) resemble the gcd algorithm (Algorithm 1 . 7)? 
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The Quadratic S ieve 
" 'How do you catch lions in the desert? '  Answer: 'In 
the desert you have lots of sand and a few lions; so 
you take a sieve and sieve out the sand, and the lions 
remain . ' " 
- Sir Arthur S. Eddington 

8 . 1 Dixon's  Algorithm 

Once you have used trial division to get all the small divisors out of your 
number, a pseudoprime or strong pseudoprime test has shown that it is 
still composite, and you feel that you have exhausted the possibilities of 
Pollard's rho and p - 1 algorithms, then you need to consider one of the 
big guns: the Elliptic Curve Method (ECM) , the Continued Fraction Al­
gorithm (CFRAC) ,  or the Quadratic Sieve (QS) . The Quadratic Sieve has 
now totally supplanted the Continued Fraction Algorithm. As currently 
implemented , it is faster than CFRAC for any n of at least 18-20 digits, 
the smallest size for which QS is readily usable. The Elliptic Curve Method 
has the advantage of being practical from the point where trial division be­
comes impossible until well into the range where QS can be implemented, 
at least 25-30 digits. I will be describing CFRAC in Chapter 1 1  and ECM 
in Chapter 14 .  

Recall from Section 5 .2 that Kraitchik suggested that if  we can find 
"random" integers x and y such that 

then we have a reasonable chance that gcd( n, x - y) is a non-trivial factor 
of n. To explain how the Quadratic Sieve finds such integers, it is easiest to 
begin with a slightly simpler algorithm suggested by John Dixon in 1981 .  

We choose a random integer r and compute 

g(r) = r x r MOD n. 

N ow we factor g( r ) . We are going to need lots of factored numbers, so we 
do not try too hard. We just do trial division up to 10 000, and if that 
does not work then we pick a different r. We keep doing this until we have 
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more g (  r ) 's that are completely factored than primes below the limit of 
trial division . In this case we would need more than 1 229 values of r for 
which we can factor g(r ) . 

Let Pl , P2 , . . .  , P1229 be the first 1 229 primes. If g(r)  factors completely 
then we can write it as 

where most of the ai 's will be zero. The factorization of g (r )  can be recorded 
by the vector 

v(r )  = (al , a2 , . . .  , a1 229 ) . 

If all of the entries of v(r)  are even, then g(r) is a perfect square and we 
have solved our problem because 

g(r)  == r2 (mod n) . 

Unfortunately, this is a very unlikely occurence. But we have lots of these 
v(r) 's , more than the length of the vector. That means that we can find a 
sum of distinct v (r ) 's which does have all even entries. This is accomplished 
by setting 

bi 0, if ai is even 

1 ,  if ai is odd. 

We then do Gaussian elimination modulo 2 on the resulting vectors to find 
a subset of the r's for which the sum of the corresponding v(r ) ' s  has all 
even coordinates. 

Since the sum of these selected v (r ) 's is a vector with even entries, the 
product of the corresponding g(r) ' s  will be a perfect square. We get a 
congruence that looks like 

both sides of which are perfect squares. We now have at least a 50-50 
chance that this yields a factor of n. If not , we go back and find a different 
subset of the r 's  for which the w(r) 's are linearly dependent modulo 2 .  

This i s  a probabilistic factorization technique. We have no  guarantee that 
it will ever give us a factor of n, at least in any specified length of time like 
the age of the universe. But in practice it will spit out a monster factor 
faster than any deterministic algorithm. 

Gaussian elimination , especially when all the entries are 0 or 1, goes very 
fast ,  even with a 1 230 by 1230 matrix. What takes time is finding those 
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1230 completely factored g (r) 's because most r's chosen at random will not 
yield a g(r) , all of whose prime factors are less than 1 0  000. 

It is not unreasonable to treat the values of g (r) as random numbers 
less than n, which means that most of them are roughly the same size as 
n (see Exercise 8 . 1 ) .  The largest prime factor of g(r)  is expected to be 
about g(r)0.63 . We can only factor g(r) if the largest prime factor is less 
than 1 0  000. If n, and thus g (r) , is a 25-digit integer, we cannot factor 
it unless the largest prime divisor is roughly g(r)O . 1 6 . The probability of 
that happening is only about 1 /50000, which means that we need to choose 
around 62 million values for r in order to get 1 230 g (r) 's that we can factor. 

Actually, the situation is not quite as dismal as this. If we choose our r's 
to be close to the square root of n then the g(r) ' s  will be close to 2v'n. But 
it will still take almost a million of them to factor a 25-digit integer. This 
is where the sieve enters . 

8 . 2  Pomerance's Improvement 

Carl Pomerance's idea, first proposed in 1 98 1 ,  is to incorporate in this 
procedure a sieve ,  like the sieve of Eratosthenes described in Algorithm 
2 .3 ,  which enables us to simultaneously do the trial division on a million 
numbers without doing any division . 

Instead of choosing the r's at random, let 

k = Lv'nJ , 
where La J denotes the greatest integer less than or equal to a. It is read as 
the floor of a. Take for the values of r: k + 1 ,  k + 2 ,  . . . . If we define f (r) to 
be 

f (r) = r x r - n , 

then f (r) = g(r) as long as r lies between k and the square root of 2n. 
We want to find the f(r) 's that factor into primes less than 10  000. Let p 

be any odd prime less than 10 000. We assume we have already done trial 
division on n up to 10  000 so we know that p does not divide n. If p divides 
f(r) , then 

n == r2 (mod p) j 

the Legendre symbol (n/p) must be + 1 .  This means that we only need 
to consider those primes less than 10 000 for which (n/p) = + 1 ,  in other 
words about half of them. The set of primes which we try to divide into 
the f (r) 's is called the factor base. 

If n is a quadratic residue modulo p, then it is the square of one of two 
residues modulo p: 
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n == t2 or (_ t )2 (mod p) , 

which means that r is congruent to either t or -t  modulo p. More impor­
tantly, if r is congruent to t or -t modulo p, then p must divide f(r) . 

We can now make two passes down our list of values of f(r) . Once we 
find the first r congruent to t modulo p, we know that f(r)  and every pth 
f (r) thereafter is divisible by p. Then we find the first r congruent to -t 
modulo p ,  and again run down the line. Since we know which f(r) 's are 
divisible by p without actually doing any division, we can just store the 
logarithm of f(r) (to single precision) and subtract off the logarithm of p 
from the appropriate terms. When the remaining logarithm is sufficiently 
close to 0, we have found an r for which f (r) factors. 

Of course, a given prime p may divide into f(r) more than once, so that 
we should also solve the congruences 

(8 . 1 )  

where p i s  an odd prime and where the exponent on p runs up t o  about 

2 10g L 
log p 

, 

where L is the largest prime in the factor base. 
In practice, however, this means that we will be doing the most sieving 

on the small primes. There are two problems with sieving over the small 
primes. First of all , it is slow going. When p = 3 we are subtracting log 3 
from every third entry. When p = 3 1 1 ,  a single sieving run takes less than 
1/100th of the time because we are subtracting log 31 1 from every 31 1 th 
entry. Secondly, log 3 = 1 . 098 . . .  is much smaller than log 31 1 = 5 .739 . . . . 

A solution to this, proposed and implemented by Robert Silverman, is 
to ignore higher powers, but to be a little more generous on the cut-off for 
an entry that is accepted as probably completely factorable over the factor 
base. There will be few enough of these that trial division over the factor 
base can be used to decide if they really do factor completely. 

Even with a million entries, the sieving goes quite quickly. It takes time 
to solve the quadratic congruence for each prime in the factor base, but 
the combined time of finding the solutions and doing the sieving is much 
faster than running trial division a million t imes. 

In summary, there are three steps to the Quadratic Sieve: 

1 .  Find a factor base and solve the congruences 

x2 == n (mod p) 

for each prime p in the factor base. 
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2. Perform the sieving operation to find sufficient f(r) 's which can be 
completely factored over the factor base. 

3. Use Gaussian elimination to find a product of the f(r) 's which is a 
perfect square. 

These three steps will be examined in more detail in the next three 
sections. 

8.3  Solving Quadratic Congruences 
How large should the factor base be? The factor base should be large enough 
that there is a reasonable probability that a given f(r) will factor. Balanced 
against this is the need to keep the factor base small enough that we can 
do Gaussian elimination on a matrix whose dimensions are the size of the 
factor base. To help you choose the size of the factor base, I include the 
following table, condensed from a much more thorough discussion of the 
size of the kth largest prime divisor of an arbitrary integer which can be 
found in the Knuth and Trabb-Pardo article listed in the references to this 
chapter. 

a probability that largest prime divisor of n is < n1/a 

2 3.07 x lO 
3 4.86 x lO-2 
4 4.91 x lO-3 
5 3.55 x lO-4 
6 1 .96 x lO-5 
7 8 .75 x lO-7 
8 3.23 x lO-8 
9 1 .02 x lO-9 

10  2 . 8  X 10- 1 1  

The prime 2 i s  exceptional and we will dispose of that first . The number 
n to be factored is, of course, odd. If it is congruent to 3 or 7 modulo 8 then 
r2 - n is divisible by 2 when r is odd and it is never divisible by any higher 
power of two. If n is congruent to 5 modulo 8 then r2 - n is divisible by 4 
when r is odd, but is never divisible by 8. If it is congruent to 1 modulo 8, 
then r2 - n is divisible by at least 8 whenever r is odd. 

We would clearly like to have n congruent to 1 modulo 8. There is no 
reason why it cannot be. If the number you have been given to factor is 
congruent to 5 modulo 8, then multiply it by 3, if congruent to 3 then 
mUltiply by 5, and if congruent to 7 then multiply by 7. Remember that 
the Quadratic Sieve does not find factors of one size faster than those of 
another, so that running the Quadratic Sieve on 3n does not decrease your 
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chances of finding a large factor of n. 
This is an example of the use of a multiplier, replacing n by a multiple 

of n in order to increase the odds that r2 - n will factor completely. More 
information on multipliers can be found in the literature referenced at the 
end of this chapter. Remember that if a prime divides your multiplier, then 
it will divide r2 - n if and only if it divides r. Also remember to put your 
multiplier in before you find the factor base. 

For each odd prime p in the factor base, we need to solve the congruence 

x2 == n (mod p) , (8 .2) 

where n is a quadratic residue modulo p. The cases where p == 3 (mod 4) 
or == 5 (mod 8) are given in Theorem 8. 1 .  Theorem 8.2 is valid for any odd 
prime, but it is slightly slower than the procedures described in Theorem 
8. 1 .  

Theorem 8 .1  If n is a quadratic residue modulo the prime p and 

(1) if p = 4k + 3, then 

x == nk+1 (mod p) , 

is a solution to Equation (8.2). 
(2) If p = 8k + 5 and n2k+1 == 1 (mod p) , then 

x == nk+1 (mod p) , 

is a solution to Equation (8.2). 
(3) If p = 8k + 5 and n2k+1 == -1  (mod p) , then 

x == (4n)k+ l x (p ; 1 ) (mod p) , 

is a solution to Equation (8.2). 
Proof Since n is a quadratic residue mod p, we know that n(p- l )/2 
1 (mod p) . If p = 4k + 3 then 

If p = 8k + 5, then 

n4k+2 == 1 (mod p) , 
which implies that 
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n2k+ 1 == 1 or - 1 (mod p) . 

If it is congruent to + 1 then 

If it is congruent to - 1  then 

(4n) 2k+2/4 
- 1  x ( -n) (mod p) , 

because 2 is not a quadratic residue modulo p. 

Q.E.D.  

Theorem 8 .2  Let n be a quadratic residue modulo an odd prime p and 
let h be chosen so that the Legendre symbol (h2 - 4n/p) is - 1 .  Define a 
sequence VI , V2 , . . .  by the recursion 

We then have that 

VI h, 
V2 h2 - 2n, 
Vi h x vi_ I - n x Vi_2 . 

V2i v; - 2ni , and 
V2i+ 1 Vi x Vi+ 1 - h x ni , 

and a solution of Equation (8. 2) is given by 

(p + 1 ) 
x == V(p+ I ) /2 x -

2
- (mod p) . 

This algorithm was suggested by D .  H. Lehmer in 1969. Its justification 
will have to await our study of the properties of continued fractions and 
Lucas sequences in Chapter 1 2 .  The proof will be given in Section 12 .4 .  
For now, you wil l  have to accept its validity on faith. However, for any 
given problem it is easy to check that the specific output satisfies your 
quadratic congruence and I recommend verifying that it does before you 
proceed with the Quadratic Sieve. Note that a satisfactory h can easily be 
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found by randomly testing different values. Each value you test has a 50% 
chance of passing, so this should not take long. 

The relationship between V2i and Vi can be used to compute an arbi­
trary Vj in approximately log j steps in much the same way that Algorithm 
3.3 exponentiates in time proportional to the logarithm of the exponent . 
Knowing Vi and Vi+ l , we can compute V2i , V2i+ l , and V2i+2 . Whether we 
keep V2i and V2i+ l or V2i+ 1 and V2i+2 depends on the binary expansion of 
j .  We make this explicit in the following algorithm. 

Algorithm 8.3 This algorithm computes Vj modulo p as defined in Theo­
rem B. 2. We assume that h has already been found. We input n, h, j and 
p and then will only keep track of V = Vk , W = Vk+ 1 and m = nk . 

INITIALIZE : READ n ,  h ,  j ,  P 
m <- n 
v <- h 
IN <- (h x h - 2 x m) mod p 
CALL BINARY (j )  

n is known to be a quadratic residue mod p. h is chosen 
so that h2 - 4n is not a quadratic residue mod p. j is a 
positive integer. The last line converts j to binary notation. 

FOR k = t - 1 to 1 BY -1 DO 
x <- (v x IN - h x m) MOD p 
v <- (v x v - 2 x m) MOD p 
IN <- (IN X IN - 2 x n x m) MOD p 
m <- m x m MOD p 
IF bk = 0 THEN IN <- x 
ELSE DO 

v <- x 
m <- n x m MOD p 

If v is Vk and IN is Vk+ 1 , then the new value of v is V2k , the 
new value of IN is V2k+2 , and the new value of x is V2k+ 1 . 
m keeps track of the power of n modulo p .  

TERMINATE : WRITE v 
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BINARY (j ) : i +-0 
WHILE j > 0 DO 

i +- i + l 

bi +-j MOD 2 
j +-U /2J 

t +- i 
RETURN 

Return values of t and bi to caller. 

8 . 4  Sieving 

One of the first implementations of the Quadratic Sieve was by Gerver at 
Rutgers in 1 982 on a 47-digit integer. The first step, solving the congru­
ences, took seven minutes. The third step, the Gaussian elimination took 
approximately six minutes. But it needed roughly seventy hours of CPU 
time to do the sieving. The moral is that this is the place to look for ways 
of speeding things up. 

It is easiest to explain the techniques of the sieving process with an 
example. Let us factor n = 499 94860 1 244 1 .  It is worth observing that 
this number factors very quickly by either Pollard rho or Pollard p - 1 .  In 
general , you do not use the Quadratic Sieve on a thirteen digit number. 
But it will serve for purposes of i llustration . We will be looking for a factor 
base of thirty primes and will start with ten thousand values for r .  

The floor of  the square root of  499 94860 1 2441 i s  2 235 953. Rather than 
taking the ten thousand integers r satisfying 

2 235 953 < r < 2 245 954, 

it makes life a little easier to take values of r which straddle the square 
root 

2 230 953 < r < 2 240 954, 

r = 2 230 953 + i , 1 ::; i ::; 10  000. 

This keeps the value of f (r) = r2 - n closer to 0 ,  and the smaller f(r) 
is , the better are our chances that it will factor. Of course, we do now get 
negative values of f(r) , but we can factor a - l out of them and treat - 1  
as the first of our thirty primes i n  the factor base. 

For each prime p in the factor base, n must be a quadratic residue modulo 
p. Since n is congruent to 1 modulo 8, we can treat 8 as an element of the 
factor base dividing r2 - n whenever r is odd . We now run up our list of 
primes until we find 28 more primes satisfying 



In this case they are given by 

3 19 59 
5 3 1  6 1  
7 43 67 

1 7  47 107 

(nip) = + 1 .  

163 229 
181  241  
193 263 
197 271 

277 
31 1 
331 
349 

359 
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367 
389 
397 

For each of these primes, we need to solve the congruence 

n == t2 (mod p) . 

We give the smallest positive solution t in the position of the corresponding 
prime. Recall that p - t is another solution . 

1 1 14  38 
1 5 16  19  
2 19 6 86 
3 18 32 14 

7 39 
18 39 

10 1  65 
22 52 

17 1  
1 25 
69 
50 

We are now ready to set up the sieve. Rather than calculating the loga­
rithm of the absolute value of f(2230953 + i}  ten thousand times, Silverman 
has suggested starting with a vector of zeros to which we add logp when p 
divides the corresponding f(r } .  If we are sieving over 2M values , then the 
logarithm of the absolute value of ( L  y'nJ - M  +i}2 -n will be approximately 

TARGET = (log n } /2 + log M. 

When the sieving is done, there will be few enough entries close to TARGET 
that we can run trial division over the factor base on them to see exactly 
which ones factor completely. 

How close is close enough? If the remaining unfactored portion is less 
than the square of the largest prime in the factor base, then it is prime. 
Even though we may not have a complete factorization over our factor base, 
we do get a complete factorization which, as we will see later, can still be 
used. Silverman's suggestion is therefore to set 

CLOSENUF = TARGET - T  x log (pr,nax ) 

where pr,nax is the largest prime in the factor base and T is a constant near 
2. For thirteen digit numbers, T = 1 .5 works nicely. 
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This Silverman modificat ion does mean that we will miss a few values 
of r for which r2 - n factors completely, but it more than compensates in 
speeding up the sieve. 

Returning now to our example, r is odd when i is even, so the first run 
is to add log 8 to the second entry and every second entry after that . Since 
2 230 953 is divisible by 3, we add log 3 to the first entry and then every 
third and to the second entry and then every third. 

Modulo 5 ,  r is congruent to 3 + i, so that r is congruent to 1 or 4 if and 
only if i is congruent to 3 or 1 modulo 5. For all such i, we add log 5 to 
the corresponding entry. Similarly r is congruent to 2 or 5 modulo 7 if and 
only if i is congruent to 5 or 1. We add log 7 to each of those entries. 

We continue in this manner. In general , if SQRT is the floor of the square 
root of n and we are sieving over an interval of length 2M, then 

r = SQRT - M + i .  
Given an odd prime p and a solution t between 0 and p of  the congruence 
(8 .2) , then the first value of i to which we add logp is 

p + (t - (SQRT - M) MOD p) . 

Remember that unless p divides the multiplier of n there are two solutions 
of Equation (8 .2) , t and p - t .  

The sieve gives us  thirty-nine complete factorizations over the factor 
base: 
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1 =  243; f(r) = 52 x 7 x 1 7  x 1 07 x 241 x 277 
484; 24 x 33 X 7 x 19  x 3 1  x 47 x 241 
649; 3 x 72 x 31 x 59 x 197 x 367 

1 548; 25 x 5 x 7 x 19 x 31 x 67 x 349 
1 755; 7 x 19  x 31 x 43 x 263 x 3 1 1  
2336; 23 x 3 x 5 x 7 x 1 93 X 2712 
2878; 23 x 32 X 5 x 7 x 17 x 19 x 43 x 271 
2916; 24 x 5 x 1 9  x 43 x 359 x 397 
3218 ;  27 x 3 X 52 X 7 x 17  x 19 x 367 
3292 ; 28 x 33 x 1 7  x 18 1  x 359 

3394; 25 x 3 x 17 x 43 x 263 x 389 
4094; 23 x 32 x 19 x 67 x 193 x 229 
4340; 24 x 3 x 17 x 43 x 241 x 349 
4476; 26 x 52 x 17 x 277 x 3 1 1  
4630; 23 x 3 x 59 x 67 x 107 x 163 
4686; 23 x 5 X 1 72 x 331 x 367 
4786; 26 x 32 X 5 x 7 x 197 x 241 
4793; 3 x 52 X 7 x 31 x 163 x 349 
4866; 25 x 5 x 7 x 47 x 59 x 193 
490 1 ;  3 x 55 X 7 x 17  x 397 

5038; 23 x 32 X 5 x 7 x 193 x 349 
5043; 52 x 17 x 47 x 59 x 163 
5 10 1 ;  33 x 52 X 7 x 19  x 47  x 107 
5445; 17 x 6 12 x 163 x 193 
5506; 25 x 33 X 5 x 31 x 61 x 277 
5683; 3 x 5 X 1 73 x 181  x 229 
5840; 23 x 33 x 19 x 43 x 6 1  x 349 
6506; 24 x 32 X 5 x 67 x 359 x 389 
6550; 23 x 32 X 7 X 172 x 18 1  x 263 
7780; 24 x 3 x 1 7  x 19 x 43 x 47 x 397 

82 16; 23 x 34 X 5 x 7 x 1 7  x 163 x 229 
8528; 23 x 3 x 5 x 17 x 67 x 33 1 x 349 
8678; 23 x 3 x 5 x 7 x 31 x 43 x 61 x 241 
8726; 23 x 3 X 52 x 17 x 43 x 193 x 197 
8908; 25 x 33 X 5 x 47 x 277 x 3 1 1  
9226; 24 x 3 X 52 X 3 12 x 47 x 349 
9378; 25 x 5 x 7 x 17  x 47 x 61  x 359 
9763; 32 x 5 X 72 x 1 7  x 31 x 59 x 3 1 1  
9908; 24 x 32 X 5 x 19 x 31 x 197 x 263. 
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8 . 5  Gaussian Elimination 

We now use Gaussian elimination to find a product of the f(r) 's which 
is a perfect square. For each i for which we can factor f(2230953 + i) we 
associate a string of thirty binary digits, each column corresponding to one 
of the thirty primes in the factor base. The digit is 1 if the corresponding 
prime appears to an odd power and 0 if it appears to an even power. It 
is convenient to represent the first prime ( - 1 )  by the right-most digit and 
then read the columns from right to left .  

With thirty-nine factored numbers, these thirty-nine strings form a ma­
trix of O's and l 's with thirty-nine rows and thirty columns. In order to 
keep track of which combination of the f(r) 's gives us a perfect square, we 
adjoin a 39 x 39 identity matrix to the right . For our example, we give the 
first ten rows of the resulting matrix: 

000000010010000010000000 1 10001 
0000000000 1000000000101 1010101  
001000000000 1000000 10010000101  
0000 1000000000000 10000 1 101 101 1 
000000 100100000000000 1 1 1010001 
0000000000000 100000000000 1 1 1 1 1  
00000000 1000000000000 101 1 1 10 1 1 
1 10 100000000000000000 101001001  
00 1000000000000000000001 1 101 1 1  
00010000000000 1000000000 10010 1  

10000000000000000000000000 · · ·  
0 1000000000000000000000000 · · ·  
00100000000000000000000000 · · ·  
00010000000000000000000000· · ·  
0000 1000000000000000000000· · ·  
00000 100000000000000000000 · · ·  
00000010000000000000000000 · · · 
00000001000000000000000000 · · · 
00000000 100000000000000000 · · ·  
000000000 10000000000000000 · · ·  

Starting with the first column on the left-hand side, we find the first 
string with a 1 in that column and add it modulo 2 (0 + 0 = 1 + 1 = 

0 , 0 +  1 = 1 + 0 = 1 )  to each of the succeeding strings with a 1 in that 
column. We then eliminate this first string with a 1 in the first column. 
The remaining thirty-eight strings now all have 0 in the first column. 

The procedure is repeated by finding the first string with a 1 in the 
second column, adding it to each succeeding string with a 1 in the second 
column and then eliminating the first string with a 1 in the second column. 
This is continued until we obtain a string in which the first thirty digits 
are all O 's .  The last thirty-nine digits of this string tell us which of our 
thirty-nine original strings were added together to get this string which 
represents a perfect square . 

The first string produced in which the first thirty digits are all 0 is 

. . .  000000000 000000000000 10001000 1000000000000100000 . 

The l 's in columns 13 ,  1 7, 2 1 ,  and 34 tell us that the product of the 
f(2230953 + i ) 's for the corresponding i 's is a perfect square . Those values 
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of i are 4330, 4786, 5038 , and 8726. Multiplying the corresponding prime 
decompositions gives us 

(2230953+4340)2 X (2230953+4786) 2 x (2230953+5038) 2 X (2230953+8726) 2 

(mod 499948601 2441 ) .  

We have our congruence of type 

We now compute x and y modulo n, being careful after each multiplication 
to reduce modulo n so that we do not overflow our accuracy. Unfortunately, 
in this case the square root of each side modulo 499 94860 1 2441 is the same: 
249 70012  18533. This is the situation we can expect to come up about 50% 
of the time, that 

gcd(x - y, n) = 1  or n. 

But all is  not lost . We started with thirty-nine factorizations. We can 
continue the Gaussian elimination looking for another vector where the 
first thirty digits are all zero. The next one that comes up is 

. . .  000000000 1010 10001 1 1 1010010100010010100000000000. 

We follow the same procedure as before. For x and y we get 

x = 299 99039 16061 ;  Y = 199 95820 96380 . 

Unfortunately, the gcd of the difference of these numbers and 499 94860 
12441 is 1 .  We continue the Gaussian elimination, next producing 

. . .  000000000 10100001010000 1 1 100 10000 1 1 1000 1 1 0000000. 

This time the values of x and y are 

x = 366 53002 35664; y = 91 58474 68484. 

The gcd of x - y and 499 94860 1244 1 is 999 96 1 and we have our factor­
ization: 

499 94860 12441 = 999 961 x 4 999 68 1 .  
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8 . 6  Large Primes and Multiple Polynomials 

Among the many refinements of the Quadratic Sieve which have been sug­
gested and implemented, two have shown themselves to be particularly 
useful in cutting the computing time :  the use of large primes and the use 
of multiple polynomials . 

When we ran the sieve on the example in Section 8 .5 ,  there were 138 
values of i for which we got as far as trial division . Only 39 of these factored 
completely over the factor base. The remaining 99 factored as a product of 
primes from the factor base times an additional factor that was less than 
3971 .5 (and thus the extra factor is necessarily prime) .  The large prime 
refinement uses these extra factorizations with large primes in them. 

There is a reasonably good chance that several large primes will appear 
more than once in these extra factorizations. In our example, if we sieve 
over the interval of length 8000, we will turn up 32 values of f (r) that 
factor completely over the factor base. However, we also obtain three fac­
torizations that involve the large prime 449. This means that the product 
of any two of these three f(r ) 's  will be a product of primes in the factor 
base times a perfect square (namely, 4492 ) .  This is as good as a complete 
factorization over the factor base since our object is to find a product of 
the f(r) 's which is a perfect square. 

Of the three possible products , we only keep two as any two of the 
corresponding 30-digit binary strings will add up to the third. We also have 
two factorizations that involve 443 and two factorizations that include the 
factor 1097. Thus, keeping track of large primes adds four factorizations to 
the 32 f (r) 's which factor completely over the factor base. With a total of 
36 30-digit vectore, we will get at least six distinct products of f (r) 's that 
are perfect squares. 

The second refinement was suggested by Peter Montgomery. The f(r ) 's 
are smallest ,  and thus most likely to factor, when r is close to the square 
root of n. In our example of the sieve of length 10000, sixteen of the thirty­
nine f (r ) 's which factor completely over the factor base have an r which 
lies within 1 000 of the square root of 499 94860 1 244 1 .  Montgomery's re­
finement sieves over a shorter interval but with several different quadratic 
polynomials in r. Instead of just 

f(r )  = r2 - n ,  

we look at polynomials of the form 

F(r)  = ar2 + 2br + c. 

If n = b2 - ac, then 
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a x F(r) a2r2 + 2abr + ac 
a2r2 + 2abr + b2 - n 
(ar + b)2 - n.  

As before, i f  a prime p divides a x F(r) then n i s  a quadratic residue modulo 
p, so that we do not need to change our factor base. 

The number to be factored hits its minimum at r = -b/a. We want to 
choose a, b, and c so as to minimize both 

-F( -b/a) = n/a 

and the extreme values at the edge of the sieved interval 

F(-M - b/a) = F(M - b/a) = a x M2 - n/a. 

If M is prescribed , this is accomplished by setting these values equal, that 
is a should be about 

If a is chosen to be a prime, then we know how to solve the congruence 

x2 == n (mod a) . 

We choose b to be a solution of this congruence and c to be 

c = (b2 - n)/a. 

The Multiple Polynomial Quadratic Sieve (MPQS) described above has 
a number of nice features. As shown in Exercise 8 .24, the upper bound on 
the value of F(r) is less than the bound on f(r) , so that we have a better 
chance of factoring our numbers. We can use a much shorter sieving inter­
val . If we do not get enough completely factored F(r) 's then we generate 
a new polynomial and sieve again over our shortened interval . Keeping the 
interval short increases the chances that a given F(r) will factor. One of 
the nicest features is that the sieving parallelizes perfectly. With N pro­
cessors, one can assign a different polynomial to each processor and the 
algorithm runs N times as fast.  This aspect was used to dramatic effect in 
October 1988 when A. K. Lenstra and M. S. Manasse produced the first 
factorization of a "difficult" 100-digit integer into a product of two primes, 
and accomplished the factorization by farming out their polynomials to 
roughly 400 computers around the world . 

I have left unanswered the two big questions: How large should the factor 
base be? How large should M be? Definitive answers to these questions do 
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not exist because the optimum choices will depend on the machine being 
used. Because of its pipeline architecture ,  the CRAY runs most efficiently 
with an M value that is larger than would be appropriate for most other 
machines. Silverman has suggested values that appear to work well on 
a VAXj780 when the Quadratic Sieve is used with the large prime and 
multiple polynomial refinements .  I reproduce his table here to serve as a 
starting point for your own fine tuning. (K = 1000 . )  

Number Factor Base M T Median 
of Digits Size Run Time 

24 100 5K 1 .5 15 sec 
30 200 25K 1 . 5  80  sec 
36 400 25K 1 . 75 400 sec 
42 900 50K 2 .0  1 800 sec 
48 1200 lOOK 2 .0 8 100 sec 
54 2000 250K 2 .2  27 600 sec 
60 3000 350K 2 .4 97 200 sec 
66 4500 500K 2 .6 360 000 sec 
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8 . 7  EXERCISES 

8.1 Let n = lOj where j is a fixed positive integer. What is the probability 
that a positive integer less than n will have exactly j digits? What is the 
probability that it will have at least j - 1 digits? At least j - 2 digits? 

8.2 Show that if n is a thirteen digit integer and I r - vnl < 5000, then 
I r2 - n l is less than 3.2 x 10 10 . 

8 .3 Using the table at the beginning of Section 8 .3 ,  what is the probability 
that an integer of size about 3 x 1 0 10 will have its largest prime factor less 
than 400? 

8.4 Continuing Exercise 8 .3 ,  explain the discrepancy between the expected 
number of integers to factor completely over the factor base and the fact 
that we only get 39 complete factorizations when we sieved over the interval 
of length 10 000. 

8.5 Let n be an integer with k digits. If I r - vnl < M, show that I r2 - n l 
is usually about M vn. 

8.6 If the factor base consists of primes less than or equal to F, how many 
primes do you expect to have in the factor base? 

8.7 In the original Quadratic Sieve, approximately how many values of r 
would we need in order to factor a forty-digit integer using primes less than 
500 000 in the factor base? 
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8.8 Verify that the final value of v in Algorithm 8 .7  is in fact the value of 
Vj . This is equivalent to the following problem: The binary expansion of j 
is given by 

Show that the final value of c in the following algorithm is j .  

INITIALIZE : 

TERMINATE : 

READ t ,  bi 
c <--- 1 
d <--- 2 

FOR i = t - 1 to 1 BY - 1  DO 
c <--- 2 x c 
d <--- 2 x d 
t <--- ( c  + d) /2 
IF bi = 0 THEN d <--- t 
ELSE c <--- t 

WRITE c 

8.9 Solve each of the following congruences : 

x2 7 (mod 143) , 
x2 3 1  (mod 4987) , 
x2 3 (mod 143 88 1 ) , 
x2 2 (mod 327 853) , 
x2 26 (mod 5 631 013) , 
x2 1 7  (mod 28 495 993) . 

8 . 10  Find a factor base of size 100 to use in applying the Quadratic Sieve 
to the integer 

35419 05253 35205 94597 94529. 

8 . 1 1  For each prime p in the factor base found in Exercise 8. 10 ,  solve the 
quadratic congruence 

x2 == 35419 05253 35205 94597 94529 (mod pl . 

8 . 1 2  We know that the congruence 

x2 == 1 (mod 8) 
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holds for any x == ±1  (mod 4) . Show that i f  a i s  odd and 

has exactly the solutions x == ±t (mod 2n- 1 ) then 

has either x 
solutions . 

x2 == a (mod 2n+ l ) 

±t (mod 2n ) or x == ±(2n- 1 + t )  (mod 2n ) as its only 

8. 13 Show that if p is an odd prime which does not divide a and if 

has two solutions: x == ±t (mod pn ) ,  then 

has exactly two solutions : x == ±(t + k x pn ) (mod pn+ l ) ,  where k satisfies 

2k x t == (a - t2 ) jpn (mod p) . 

8 . 14  Use the Chinese Remainder Theorem to prove that if m and n are 
relatively prime, if x2 == a (mod m) has s solutions , and x2 == a (mod n) 
has t solutions, then x2 == a (mod m x n) has s x t solutions. 

8. 15  Find all solutions to each of the following congruences : 

x2 2 (mod 4573 ) ,  
x2 3 (mod 372 x 4572 ) ,  
x2 5 (mod 293 x 532 ) .  

8 . 1 6  Let m b e  an odd integer . Show that i f  m and a are relatively prime, 
then we can multiply by the inverse of a and complete the square to rewrite 

ax2 + bx + c == 0 (mod m) 

in the form 

y2 == d (mod m) . 

Find d as a function of a, b, and c. Find x as a function of a, b, c, and y .  

8. 17  Continuing Exercise 8. 16 ,  what happens if m i s  even? 
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8. 18  Combine the results of Exercises 8 . 1 3- 16 to write a program that will 
find all solutions of 

ax2 + bx + c == 0 (mod m) , 

provided that m is odd and relatively prime to a. 

8 . 1 9  Prove that if the Jacobi symbol (n/m) is - 1  then n cannot be a 
quadratic residue modulo m. Does (n/m) = +1  imply that n is a quadratic 
residue modulo m? 

8 .20 In the Gaussian elimination step of the Quadratic Sieve, why does it 
make sense to eliminate the columns that correspond to the largest primes 
first? 

8 .21  In the large prime refinement of the Quadratic Sieve, if we take T > 2 
then it is possible that the extra factor will not be prime. Explain why this 
does not affect the running of this refinement . 

8.22 In the multiple polynomial refinement of the Quadratic Sieve, each 
completely factored a x F(r) is divisible by the large prime a. Explain 
why this means that for a given polynomial F, if k of our F(r) 's factor 
completely over the factor base, we only get k - 1 usable factorizations. 

8.23 For the multiple polynomial refinement , Pomerance has suggested that 
instead of setting a equal to a prime near ffn/M, we set a = p2 where p 

is a prime near J ffn/ M. Explain why this makes every factorization of 
F(r) over the factor base usable. 

8 .24 With a chosen near ffn/M, what is the maximum of the absolute 
value of F(r) for -M - b/a < r < M - b/a? Compare this with the upper 
bound given in Exercise 8 .5 .  

8 .25 Continuing Exercises 8 .10 and 8. 1 1 ,  use the Multiple Polynomial Quad­
ratic Sieve to finish the factorization of 

35419 05253 35205 94597 95629. 
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Primitive Roots and a Test for 
Primality 

"Yet what are all such gaieties to me 
Whose thoughts are full of indices and 

surds? 
x2 + 7x + 53 
= 1 1 /3." 
- Lewis Carroll (Four Riddles) 

9. 1 Orders and Primitive Roots 

In a typical factorization process we take a big number and crack it into 
lots of little pieces plus a few big pieces that pass the strong pseudoprime 
tests. We know in our hearts that those big pieces really are primes, but we 
would like to have absolute certainty. In this chapter we will be examining 
the notion of primitive roots which will lead us to several primality tests 
developed by Edouard Lucas in 1876. Perhaps surprisingly, they are still the 
most efficient way of proving primality for moderately sized primes. U nti! 
a few years ago, they were essentially the only tests to prove primality for 
the really big primes. 

We start by recalling Fermat's Theorem 3 .2 ,  that if p is a prime and if b 
is not divisible by p, then 

bP- 1 == 1 (mod p) . 

As we proved in Corollary 7. 1 ,  if we also know that b is a quadratic residue 
( i. e . ,  a perfect square) modulo p, then 

b(p- l ) /2 == 1 (mod p) . 

If p - 1 is divisible by 4, then we can also ask whether 

b(p- l ) /4 == 1 (mod p)? 

It should come as no surprise that this is true if and only if b is a bi-quadratic 
residue ( i. e . ,  a perfect fourth power) modulo p. 

The natural questions that arise at this point are: Given a prime p and 
an integer not divisible by p, say b, for what exponents m do we have 
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bm = 1 (mod p) ? 

If d divides p - 1 and 

b(p- l ) /d = 1 (mod p) , 

does it always follow that b is a perfect d!-h power modulo p? We can also 
ask the same kinds of questions when the modulus is not prime. If b is 
relatively prime to n, when do we have 

bm = 1 (mod n)? 

We know that 

b¢(n) /d = 1 (mod n) 

does not necessarily imply that b is a perfect d!-h power (see Exercise 6. 14 
for the case d = 2) .  For what integers n and d does b have to be a perfect 
d!-h power? 

Definition: Let b and n be positive, relatively prime integers. Let e be the 
smallest positive integer satisfying 

be = 1 (mod n) . 

Then e is called the order of b modulo n .  

Note that by Theorem 3.4 , e is always less than or equal to ¢(n) . As an 
example, if n = 7 then 

1 has order 1 ,  

2 has order 3 ,  
3 has order 6, 
4 has order 3 ,  
5 has order 6, and 

6 has order 2 . 

Theorem 9 . 1  If b has order e modulo n and if j is a positive integer such 
that 

f} = 1 (mod n) , 

then j is a multiple of e .  
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Proof We know that j is at least as big as e .  Let r denote the remainder 
when j is divided by e :  

j = m x e + r ;  O :S  r < e .  

Then we have that 

Since e is the smallest positive power of b which is congruent to 1 and r is 
less than e, r must be 0, and so j is a multiple of e .  

Q.E.D.  

Corollary 9 .2  For b relatively prime to n,  the order of b modulo n must 
divide </>( n) . 

Note that in the example given above, </>(7) = 6, and the orders we 
obtained were 1 ,  2, 3, and 6. One can ask if all divisors of </>(n) must appear 
as orders of some relatively prime number. The answer will be "yes" when 
n is prime and "sometimes" when it is not . 

Definition: If b is relatively prime to n and if the order of b modulo n is 
</>(n) ,  then we call b a primitive root modulo n. 

Observe that for n = 7, any integer congruent to 3 or 5 modulo 7 is a 
primitive root . 

9 . 2  Properties of Primitive Roots 

Corollary 9.3 If g is a primitive root modulo n, then every integer which 
is relatively prime to n is congruent to gi for some exponent i between 1 
and </>( n) , inclusive. 

Proof We consider the </>( n) integers: g ,  g2 , g3 , . . .  , g4>(n) . No two of them 
are congruent modulo n for if gi were congruent to gj , with i less than j ,  
then dividing both sides of the congruence by gi would give us 

gj- i == 1 (mod n) . 

Since j - i is less than </>( n) , this would contradict the fact that </>( n) is the 
order of g. 

Also, every power of g is relatively prime to n. Since there are only </>(n) 
congruence classes which are relatively prime to n, the powers of g must 



126 9. Primitive Roots and a Test for Primality 

exhaust them. 

Q .E .D .  

If we have a primitive root , then the next theorem guarantees that we 
will have elements of all orders which divide ¢>(n) . Recall that lem denotes 
the least common multiple. 

Theorem 9.4 If b has order e modulo n,  then the order of bi is 

lcm(e , i )  
i 

Proof Recall from Exercise 1 . 10 that 

e 
gcd(e, i) 

. 

e x  i 
lcm(e,  i) = 

d( 
.
) gc e, t 

Since lcm( e, i) is a multiple of e, we have that 

blcm(e ,i ) 

1 (mod n) . 

Therefore the order of bi divides lcm(e,  i )j i .  
Let us write the order of  bi as f ji where f i s  a multiple of  i .  This f is 

less than or equal to lcm(e ,  i) . We also have that 

1 W ) f/i (mod n) 
bf (mod n) . 

Thus f must also be a multiple of e, so it is a common multiple of e and i 
which means it can only be the least common multiple of e and i .  

Q.E.D.  

Observe that if 9 is a primitive root modulo n and if d i s  any divisor of 
¢>(n) , then g¢(n) /d has order d. We can strengthen this observation with the 
following corollary which will go a long way toward answering the question 
posed in Exercise 6.20. 

Corollary 9 .5  If there is a primitive root modulo n,  if d divides ¢>(n) , and 
if b is relatively prime to n, then 

b¢(n) /d == 1 (mod n) , 

if and only if b is a perfect dth power modulo n .  
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Proof It follows from Euler's Theorem (Theorem 3 .4) that if b is a perfect 
cfh power modulo n , then the congruence is satisfied because b == td (mod n ) 
for some t which is also relatively prime to n , and so 

b4>(n)/d == t4>(n) 
== 1 (mod n) . 

In the other direction, we know that if g is the primitive root then 

b == gi (mod n) , 

for some integer i. This implies that 

1 (gi ) 4>(n)/d (mod n ) 

g4>(n) x (i/d) (mod n) . 

Since g has order ¢( n) , i / d must be an integer: i = d x k for some k, and 
thus b is a perfect cfh power: 

9 .3  Primitive Roots for Prime Moduli 

Q.E.D. 

It is our old friend C. F .  Gauss who settled the question of when a modulus 
has a primitive root. In this section we will prove his theorem that there 
always is a primitive root for any prime modulus. 

Lemma 9.6  Let P(x) be a polynomial of degree t and let p be a prime. If 
p does not divide the coefficient of xt in P(x) ,  then the equation 

P(x) == 0 ( mod p), (9. 1 ) 
has at most t incongruent solutions modulo p. 

Proof Assume that Equation (9 . 1 )  has at least t incongruent solutions, say 
X l , X2 , " " Xt . We can divide X - X l  into P(x) to get 

where p divides r because p divides P( X l ) ' Note that PI (x) is a polynomial 
of degree t - 1 in x. Thus 
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P(x) == PI (x) X (x - xJ ) (mod p) . 

Similarly, we can divide x - X2 into PI (x) . We know that PI (X2 ) is divisible 
by p because 

and p does not divide X2 - Xl . Thus we can write PI (x) as 

P2 (x) X (x - X2 ) (mod p) , and so 

P2 (x) x (x - xJ ) x (x - X2 ) (mod p) . 

P2 (x) is a polynomial of degree t - 2 in x .  Continuing in this manner, we 
get that 

P(x) = c x (x - xJ ) x (x - X2 ) x . . . x (x - Xt ) (mod p) , 

where c is a polynomial of degree t - t = 0, i. e . ,  c is the constant coefficient 
of xt in P(x) . Let a be any solution of Equation (9 . 1 ) ,  then 

0 ==  P(a) == c x (a - X l ) x (a - X2 ) x . . .  x (a - xt ) (mod p) . 

Since p does not divide c, it must divide one of the binomials a - Xi , and 
that means that a is congruent to Xi modulo p for some i .  

Q.E.D.  

Note that this lemma is not true if we take a modulus that is  not prime. 
As an example: 

x2 == 1 (mod 8) , 

has four incongruent solutions modulo 8. 
The next theorem, due to Gauss, more than answers our question about 

primitive roots when the modulus is prime. It tells us exactly how many 
there are . 

Theorem 9.7 Let p be a prime and d a divisor of p - 1 ,  then the number 
of positive integers less than p with order d is ¢( d) . 

Observe that this says that modulo p there are ¢(p - 1 )  primitive roots. 
Since this number is always at least one, primitive roots will always exist 
when the modulus is a prime. 
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Proof Let d be a divisor of p - 1 and for the moment let us assume that 
we do have an integer a of order d modulo p. Then a, a2 , a3 , . . .  , ad == 1 are 
all distinct modulo p and they are all solutions to 

xd == 1 (mod p) . (9 .2 )  

The powers of a give us d incongruent solutions to this equation , so by 
Lemma 9.6 they are all of the solutions. 

Let b be any other integer of order d modulo p. The integer b must also 
satisfy Equation (9 . 2 ) , so b is congruent to some power of a. We now use 
Theorem 9.4 . The only values of i for which ai has order d are those i 
which are relatively prime to d. And if i is relatively prime to d, then ai 
has order d. The number of positive integers less than or equal to d which 
are relatively prime to d is ¢( d) . 

What we have proven so far is that if there are any elements of order d, 
then there are exactly ¢(d) elements of order d. Let num(d) be the number 
of elements modulo p which have order d. Then 

num(d) = 0 or ¢(d) . 

Can num( d) ever be O? The following lemma shows us that it cannot . 

Lemma 9.8 The sum of ¢( d) where d ranges over all divisors of n is equal 
to n .  

Example: n = 1 2 ,  

¢( 1 )  + ¢ (2 )  + ¢ (3 )  + ¢(4) + ¢(6) + ¢ ( 12 )  

= 1 + 1 + 2 + 2 + 2 + 4 = 12 .  

Proof Let d be  a divisor of  n and consider the set S (d) of  positive integers 
less than or equal to n whose greatest common divisor with n is n/d. That 
is to say, S( d) is the set of x such that 

gcd(x, n) = n/d and 1 :S  x :S n. 

Clearly n/d is the smallest element of this set . All of the elements can be 
written as k x n/d where k is a positive integer (because x is a multiple 
of n/d) less than or equal to d (because x is less than or equal to n) and 
relatively prime to d (because gcd (x,  n) = n/d) .  For each k satisfying these 
three requirements, k x n/d is a member of the set . Thus S (d) has ¢(d) 
elements. 

Every positive integer less than or equal to n is in exactly one set S( d) 
for some divisor d of n. So the sum of all the elements of all these sets is n. 

Q.E .D .  
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End of Proof of Theorem 9. 7: Recall that num( d) is the number of positive 
integers less than P which have order d, where d is a divisor of P - 1 .  Since 
every positive integer less than P has an order which divides P - 1 ,  the sum 
of num(d) over all divisors of p - 1 is P - 1 .  Since num(d) is either 0 or 
¢(d) , and the sum of ¢(d) over all divisors of p - 1 is also p - 1 ,  we must 
have that 

num(d) = ¢(d) , 

for every divisor d of p - 1 .  

9 . 4  A Test for Primali ty 

Q.E.D.  

The number of primitive roots modulo p i s  thus ¢(p - 1 ) .  This number 
is always at least one. Though it can vary quite a bit , ¢(n) is on average 
6nl7f2 , or roughly two-thirds of n. While this estimate is overly optimistic 
for integers of the form p - 1 ,  we can still expect a sizeable fraction of the 
positive integers less than p to be primitive roots modulo p. To find one, 
just start picking numbers at random. You should not have to go very far 
before you get one. 

How do you recognize a primitive root when you have it? Its order is 
going to have to be p - 1 ,  so just make sure that there is no smaller power 
of our candidate which is congruent to 1 modulo p. You can do this by 
trying all the powers less than p - 1 ,  but a little thought shows that we can 
short-cut this daunting task. 

Let b be a randomly chosen integer larger than 1 and less than p. By 
Corollary 7. 1 it must be a quadratic non-residue ( i. e . ,  (blp) = - 1 )  or 
there is no hope for it to be primitive. Let us assume that we know the 
factorization of p - 1 :  

Since the actual order of b divides p - 1 ,  i f  b is not primitive then there is 
at least one prime, Pi , such that (p - l ) lpi is a multiple of the order of b. 
This means that if b is not primitive then 

b(p- l ) /p, == 1 (mod p) , 

for some i ,  1 :::; i :::; r .  If we have checked that b is not a quadratic residue, 
we only have r - 1 more powers of b to check in order to confirm that it 
really is a primitive root . 

This simple test for primitive roots can be turned around to give us a pri­
mality test . Let n be an integer which has passed some strong pseudoprime 



9.4. A Test for Primality 13 1  

tests and which we suspect to  be prime. Let b be an arbitrary integer larger 
than 1 and less than n, and assume that n passes the ordinary pseudoprime 
test for the base b: 

bn- I == 1 (mod n) . 

The real order of b divides n - 1 .  If n is not prime, then the real order 
of b is at most ¢(n) which is strictly less than n - 1 .  Let us assume that 
we know the factorization of n - 1 ,  and that PI , P2 , . . .  , Pr are the distinct 
primes dividing n - 1 .  If 

b(n- I l /p, ¢ 1 (mod n) ,  

for each i from 1 to  r,  then the real order o f  b i s  n - 1 which means that n 
is a prime (and also that b is a primitive root modulo n) . 

If any of those powers of b are congruent to 1 modulo n, that either means 
that n is not prime or b is not a primitive root . If we have confidence in the 
primality of n, we can try more b's until we hit a primitive root . If we try 
lots of b's and each time find a power which is congruent to 1, then either 
we are incredibly unlucky or n really is composite. This is one of Lucas' 
tests for primality. 

We can save ourselves a few calculations in this test . Instead of checking 
that n is prime or a pseudoprime base b, we check that 

b(n- l l /2 == - 1  (mod n) .  

This will show both that n i s  prime or  a pseudoprime base b and that the 
order of b does not divide (n - 1 ) /2 .  For the other primes dividing n - 1 :  
P2 , P3 , . . .  , Pn we can modestly simplify the calculations by checking that 

b(n- l l /2p, ¢ - 1  (mod n) . 

Brillhart , Lehmer, and Selfridge in 1975 realized that you do not have to 
find a primitive root in order to prove primality, it is enough that for each 
Pi which divides n - 1 you find a bi satisfying 

b�- I 1 (mod n) , but 

bln- I l /p, ¢ 1 (mod n) .  

To see why this i s  so, let us  assume that the factorization of  n - 1 is 
given by 

n - 1 = p�' X p�2 X . . .  X p�r , 
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and that we have found such bi 's . For each i, the order of bi divides n - 1 
but it does not divide (n - l ) /Pi . This means that there is a factor of p�. 
in the order of bi . Since the order of bi divides ¢(n) , p�. must divide ¢(n) . 
But since this is true for every i, n - 1 must divide ¢(n) which can only 
happen if n - 1 equals ¢(n) , and so n is prime. 

All of this can now be summarized in the following algorithm. 

Algorithm 9.9 This is a primality test for an integer n for which we 
know the factorization of n - 1 . If n is indeed composite, then this test 
may not terminate. It should only be applied to integers which have passed 
strong pseudoprime tests. We begin by inputting the number to be tested: 
n, the primes larger than 2 which divide n - 1 :  P2 , . . . , Pr , and a sequence 
of candidates to be the primitive root: bl , b2 , . • .  , usually chosen from the 
small primes starting with 2. 

INITIALIZE : READ n ,  r ,  Pj , bj 
i <- 1 
CALL CHECK 

CHECK verifies that bln-
1 )/2 

MOD n equals n - 1 .  If not, 
then it finds the next bi that satisfies this condition. 

TESLLOOP : 

TERMINATE : 

FOR j = 2 to  r DO 
WHILE MODEXPO (bi , (n- l ) / (2 x Pj ) , n)  

i <- i + l 

CALL CHECK 
prime <- 1 

WRITE prime 

n is prime if and only if prime = 1 . 

CHECK : WHILE MODEXPO (bi , (n- l ) /2 , n) # n - 1 DO 
IF MODEXPO (bi , (n- l ) /2 , n) # 1 THEN DO 

prime <- 0 
CALL TERMINATE 

i <- i + l 

RETURN 

Return last value of i to caller. 

n - 1 DO 
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Use Algorithm 3. 3 to compute ab MOD n .  Return this 
value to  caller . 

Primality testing with this algorithm can be complicated . The problem 
comes in factoring n - 1 .  Very often one or more of the factors of n - 1 
are large integers which pass the strong pseudoprime test but which you 
actually have to prove to be prime before you can proceed. As an example, 
to prove that 

n = 61 89700 19642 69013 74495 62 1 1 1  

is prime, we factor n - 1 and obtain 

n - 1 = 2 x 3 x 5 x 17 x 23 x 89 x 353 x 397 x 683 x 2 1 1 3  x 2931542417 .  

To use this factorization, we need to  prove that 29315 42417 i s  prime, and 
for that we need to factor 

29315 42416 = 24 x 1 1  x 1913 x 8707. 

Starting with a very large n, this process may iterate many times before 
you get a number all of whose factors are known primes. 

9 . 5  More on Primality Testing 

Algorithm 9.9 is especially efficient if the number to be tested is one more 
than a power of 2. Fermat observed that the following numbers are all 
prime: 

2 + 
22 + 
24 + 
28 + 
2 16 + 

Unfortunately, this does not last . 

1 
1 
1 
1 
1 

3 ,  
5 ,  
17 ,  
257, 
65537. 

42949 67297 
641 x 6 700 417 .  

Nevertheless, it motivates the following definition. 
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Definition: For k greater than or equal to 0, the kth Fermat number is 

In 1877, the Jesuit priest and mathematician Fr. Jean Fran�ois Theophile 
Pepin ( 1826- 1904) published the following test for whether or not F(k) is 
prime. 

Theorem 9 .10  F(k) is a prime for k larger than 1 if and only if 

5(F (k ) - 1 ) /2 == - 1 (mod F(k) ) . 

Proof Since the only prime dividing F(k) - 1 is 2 ,  if the congruence is 
satisfied then F(k) must be prime. All we have to do is show that when 
F(k) is prime, 5 is not a quadratic residue modulo F(k) . 

We know that 24 is congruent to 1 modulo 5. Since 2k is a multiple of 4, 
we see that 

F(k) = 2(2k ) + 1 == 2 (mod 5) . 

The Legendre symbol (5/ F(k) ) can be computed using quadratic reci­
procity: 

(5/F(k) )  = (F(k) /5) = (2/5) = - 1 .  

Q.E.D. 

What if you cannot factor n - I ?  The following theorem by Henry 
Cabourn Pocklington ( 1870- 1952) in 1914 shows that you can manage with 
something less than full factorization. 

Theorem 9. 1 1  Let n - 1 = F x R where F has a known factorization 

F = p� l X p�2 X . • .  X p�r , 

and where R is relatively prime to F and less than the square root of n. If 
for each i from 1 to r there exists a bi such that 

then n is prime. 

br- 1 == 1 (mod n) , and 

gcd(b�n- l ) /p, - 1 ,  n) = 1 ,  
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Proof Let p be any prime dividing n .  For each i let ai be the order of bi 
modulo p. We know that ai divides p - 1 .  Since, 

b�- l == 1 (mod p) ,  

ai also divides n - 1 .  O n  the other hand, 

b;n- l ) /Pi ¢. 1 (mod p) , 

and so ai does not divide (n - l ) /Pi . Thus p�i divides ai and so also divides 
p - 1 .  Since this holds for every i, F divides p - 1 .  

But now this implies that every prime p that divides n i s  larger than F 
which itself is larger than the square root of n, and that can only happen 
if n is prime. 

Q.E .D.  

What i f  we cannot even satisfy the conditions of Pocklington's theorem? 
Edouard Lucas came up with another primality test that depends on being 
able to factor p + 1. We will be seeing that test in Chapter 12 .  The elliptic 
curve primality tests in Chapter 14 are based on being able to factor other 
numbers near p. 

9 . 6  The Rest o f  Gauss ' Theorem 

What about a modulus that is not prime? Do primitive roots exist then? 
Consider the orders of the integers modulo 9: 

1 has order 1 
2 has order 6 
4 has order 3 
5 has order 6 
7 has order 3 
8 has order 2 .  

The integers 2 and 5 are primitive roots modulo 9. Consider the orders of 
the integers modulo 12 :  

1 
5 
7 

1 1  

has order 
has order 
has order 
has order 

1 
2 
2 
2 .  

Since ¢(12 )  = 4, there are no  primitive roots modulo 12 .  
A complete characterization of  those moduli which have primitive roots 

was given by Gauss and is summarized in the following theorem. 
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Theorem 9 . 12  There exists a primitive root for the modulus m if and only 
if m is 2, 4, a power of an odd prime, or twice a power of an odd prime. 

Before proving this theorem we shall use it to clear up a loose end left 
dangling from Chapter 6. We shall show that if n is a power of a prime and 
is not a prime, then there is at least one base b relatively prime to n for 
which n fails the strong pseudoprime test . More than this, there is a b for 
which n fails the ordinary pseudoprime test . 

Theorem 9 .13  Let n = pl where p is an odd prime and j is at least 2. Let 
b be any primitive root modulo n. Then n will fail the ordinary pseudoprime 
test for the base b .  

Proof Since b i s  a primitive root , its order is 

¢(n) = pl- l X (p - 1 )  

which is divisible by p .  But n - 1 = pl - 1 is not divisible by p and so is 
not a multiple of the order of b. 

Q.E.D.  

The proof of Theorem 9. 1 2  will be done in pieces. 

Lemma 9.14 Primitive roots exist for the moduli 2 and 4 but for no higher 
power of 2. 

Proof The number 1 is a primitive root modulo 2 and 3 is a primitive root 
modulo 4. If x is odd then 

x2 == 1 (mod 8) .  

This implies that there can be  no primitive roots modulo 8. It also im­
plies that if k is at least 3, then all of the even powers of x from 2 up to 
¢(2k ) = 2k- 1 are congruent to 1 modulo 8. But there are 2k-2 of these even 
powers and only 2k-3 of the congruence classes modulo 2k are congruent 
to 1 modulo 8. Therefore the powers of x cannot be distinct modulo 2k . 

Q.E.D.  

Lemma 9.15 If p is an odd prime and if g is a primitive root modulo p 
but not modulo pk , then g + p is a primitive root modulo pk . 
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Proof Let e be the order of g modulo pk . Since pk divides ge - 1 , p also 
divides it and so e must be a multiple of the order of g modulo p. That is 
to say, p - 1 divides e. Since g is not a primitive root modulo pk , e divides 
but is not equal to (p - 1 ) X pk- l . This implies that 

Since g + p is also a primitive root modulo p, its order modulo pk must 
be divisible by p - 1 and must divide (p - 1) X pk- l . It will be enough to 
show that the order of g + p is not a divisor of (p - 1 )  X pk-2 . We use the 
binomial theorem to expand: 

(g + p) (p_ l ) X pk - 2 == 

== g(P_ l ) X pk -2 + (p _ 1 ) X pk-2 X g(P_ l ) Xpk- 2 _ 1 X P (mod pk ) 

== 1 - g(P_ l ) X pk - 2 _ 1 X pk- l (mod pk ) .  

Since p does not divide any power of g, the right-hand side o f  this con­
gruence is not congruent to 1 modulo pk , and so the order of g + p is not 
a divisor of (p - 1) X pk-2 . This means that the order of g + P must be 
(p _ 1) X pk- l  = ¢>(pk ) . 

Q.E.D .  

Lemma 9 .16 Let p be an odd prime. If g is  odd and a primitive root 
modulo pk then it is a primitive root modulo 2pk . 

Proof As in the proof of Lemma 9 . 15 ,  the order of g modulo 2pk must 
be divisible by the order of g modulo pk . But the order of g modulo pk is 
¢>(pk )  = ¢>(2pk ) . 

Q.E.D .  

Note that in  Lemma 9. 16 ,  if g i s  even and a primitive root modulo pk , 
then we only need to add pk to it to make it odd and a primitive root 
modulo pk . All that remains to prove Theorem 9 . 13  is to show that for all 
other moduli there are no primitive roots. The moduli which we have not 
yet considered can all be written in the form m x n where m and n are 
relatively prime and larger than 2. The fact that a primitive root cannot 
exist in this case follows from the next and last lemma of the chapter. 
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Lemma 9 . 17  If b, m, and n are pairwise relatively prime, then the order 
of b modulo m x n is the least common multiple of the order of b modulo 
m and the order of b modulo n . 

Proof The Chinese Remainder Theorem gives us a one-to-one correspon­
dence between residues modulo m x n and pairs of residues modulo m and 
n: 

b <--> (b MOD m, b MOD n) . 

Furthermore , this correspondence preserves multiplication . If b corresponds 
to (s ,  t) and c corresponds to (u ,  v ) , then b x c corresponds to (s X U, t x v ) . 

Since 1 corresponds to ( 1 , 1 ) , the order of b modulo m x n must be a 
multiple of the order of b modulo m and of the order of b modulo n. Thus 
the order modulo m x n is at least as large as the least common multiple 
of the orders modulo m and n. 

In the other direction , any common multiple of the order of b modulo m 
and the order of b modulo n must be a multiple of the order of b modulo 
m x n. So the least common multiple of the orders modulo m and n is at 
least as large as the order of b modulo m x n.  

Q.E.D.  

This lemma implies that the order of any element modulo m x n must 
divide lcm(¢(m) , ¢(n) ) .  As long as m and n are larger than 2, both values 
of ¢ are even and so 

lcm(¢(m) , ¢(n ) )  < ¢(m) x ¢(n) = ¢(m x n) . 
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9. 1 If b has order 360 modulo m, what is the order of 

9.2 If b has order 2329 modulo m, what is the order of 

9.3 If g is a primitive root modulo 67, what powers of g represent the other 
primitive roots modulo 67? 

9.4 Find a primitive root , say g ,  modulo 3 1 . For each i, 1 ::::; i ::::; 30, find 
the smallest positive exponent ei such that 

ge, == i (mod 31 ) . 

9 .5 Show that if gcd(d, p - 1 ) = 1 ,  then every positive integer less than p is 
congruent to the cfh power of some other integer . 

9.6 Let d be a divisor of p - 1 and let a be an integer with order (p - 1 ) /  d 
modulo p. Show that the congruence 

xd == a (mod p) , 

has exactly d incongruent solutions. 

9. 7  Find all primitive roots for the following moduli : 13, 25, 54. 

9.8  Find a primitive root for each of the following moduli: 

42 641 , 557 761 , 4 855 681 .  

9.9 For each prime p between 500 and 1000, compute 

¢(p - 1 ) 
p - 1 

Why don't these values reflect the expected value of ¢(n)/n of 6/7r2 ? 

9. 10 Prove that 77 5168 1  88161  is prime. 

9. 1 1  Is F(6) prime? What about F (7) and F(8) ? 

9. 12  Prove that if 2n + 1 is prime then n is a power of 2 .  
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9. 1 3  What are the possible orders for an integer modulo 1423 and how 
many positive integers less than 1423 are there of each order? 

9 . 14  What are the possible orders for an integer modulo 35? How many 
positive integers less than 35 are there of each order? 

9 . 1 5  What are the possible orders for an integer modulo 799? How many 
positive integers less than 799 are there of each order? 

9 . 16  Show that if there is no primitive root modulo n then the order of 
each element divides q;(n) /2 . 

9. 1 7  Prove that statement S( n) in Exercise 6. 14  holds if and only if there 
is a primitive root modulo n. 

9 .18 Does 

b4>(35) /3 == 1 (mod 35) 

imply that b is a perfect cube modulo 35? 

9. 19 Suppose we know that a modulus n has a primitive root . Discuss the 
likelihood that n is in fact prime. How is the likelihood affected if we also 
assume that n is odd? 

9 .20 In the proof of Theorem 9. 1 1 ,  why do we need 

gcd(b�n- l ) /p, - 1 ,  n) = 1 

instead of just 

9 .21  Find a primitive root for each of the following moduli: 

9.22 Pepin 's Test (Theorem 9. 10) is often stated with the 5 replaced by a 
3. Prove that if F(k) is prime, then 3 is not a quadratic residue modulo 
F(k) . Can we replace the 5 with a 7 in Pepin's Test? 



1 0  

Continued Fractions 
" (Lord William Brouncker) , that Most Nobel Man, 
after having considered this matter, saw fit to bring 
this quantity by a method of infinitesimals peculiar to 
him." 
- John Wallis 

10. 1  Approximating the Square Root o f  2 

We have been following a single thread that began with the Greek prob­
lem of characterizing the perfect numbers and has led through Fermat 's 
observation , Euler's theorem, the problem of determining the value of the 
Legendre symbol, and finally into understanding the multiplicative struc­
ture of modular arithmetic. The thread does not end there , but it is time 
for us to leave it and return to the ancient Greeks to pick up another. 

Our new thread starts with the problem of approximating square roots. 
As we saw in Chapter 1 , if an integer is not a perfect square then its square 
root is not rational . Nevertheless , the only numbers we can actually com­
pute are rational numbers. The Greeks stumbled upon a fast and accurate 
way of approximating the square root of 2 which was described by Theon 
of Smyrna in the second century A .D .  and is almost certainly much older. 

Algorithm 10.1 This approximates the square root of 2 to within an error 
of less than 1 /2n2 . 

INITIALIZE : 

MYSTERY_LOOP : 

TERMINATE : 

READ n 
a <-- 1 
b <-- 1 

WHILE b < n DO 
b <-- a + b  
a <-- 2 x b - a  

WRITE alb 

If n is 5000 , then the successive approximations we obtain are 
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1 / 1  
3/2 
7/5 

17/ 12  
41/29 
99/70 

239/ 169 
577/408 

1393/985 
3363/2378 
8 1 19/5741 

accurate to within ±O.OOO 000 02 .  

1 
1 .5 
1 .4 
1 .4 16 666 66 . .  . 
1 .4 13 793 10  . .  . 
1 .414 285 71 . .  . 
1 .414 201 18  . .  . 
1 .4 14 2 15 68 . .  . 
1 .4 14 213 19  . .  . 
1 .4 14 2 13 62 . .  . 
1 .4 14 2 13 55 . . .  , 

Algorithm 1 0 . 1  has a magical quality to it. It is too simple , not at all like 
the algorithm for computing square roots that is commonly taught in high 
school . As we try to understand why it works and how it can be extended 
to compute other square roots, we will be led to many more algorithms that 
seem equally magical . This is where we will finally understand Algorithms 
2 .9 and 8.3 .  

Again it  was Pierre de Fermat who made the crucial observation of what 
is going on here. The key lies in considering the equation 

( 10. 1 ) 

If we can find integers a and b which satisfy this equation , then alb will be 
a good approximation to V2 because 

� = V2 ±
b
I
2 ' 

The integers a = b = 1 work. How can we find more? The trick comes 
in thinking of a + bV2 as a new kind of "integer" . As we saw in Chapter 
1 ,  we can add, subtract , multiply, and even divide these extended integers. 
An important consequence of Theorem 1 .2 is that each extended integer 
has a unique representation : 

a + bV2 = r + sV2 

implies that a = r and b = s .  Using the extended integers , the left-hand 
side of Equation ( 10 . 1 )  factors 
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(a + bV2) x (a - bV2) = ±1 .  

Now pick a positive integer i ,  any i . I f  we raise the left-hand side of 
Equation ( 10 . 1 )  to the ith power, the right-hand side will still be either 1 
or - 1 .  In terms of our factorization, this says 

(a + bV2)i x (a - bV2)i = (±I ) i = ±1 .  ( 10 .2 )  

But (a + bV2)i is another one of our extended integers, say 

( 1 0 .3) 

Using the binomial theorem to expand the left-hand side of this equation 
shows that changing the sign of b will not change c and will simply change 
the sign of d, and so 

( 10.4) 

If we substitute these extended integers back into Equation ( 10 .2 )  we get 

c2 - 2d2 = (c + dV2) x (c - dV2) = ±1 ,  

and so c and d are two new solutions o f  Equation ( 1 0. 1 ) .  
Taking a = b = 1 ,  the powers of 1 + V2 have a familiar ring t o  them: 

(1 + V2)2 

( 1  + V2)3 

( 1  + V2)4 

( 1  + V2)5 

3 + 2V2 

7 + 5V2 

17  + 12V2 

41  + 29V2, . . . .  

If a + bV2 is the ith power of 1 + V2, then the (i + l )th power is 

(a + bV2) x (1 + V2) = (a + 2b) + (a + b)V2, 

which is exactly the recursion used in Algorithm 10 . 1 .  
Not only have we explained Algorithm 10 . 1 ,  we also see that there is 

nothing special about the 2 . In order to approximate the square root of n, 
\\<e need to find integers x and y which satisfy 

( 1 0 .5) 

Once we have found one such pair, we can generate infinitely many as 
described in the next theorem which was probably known to the ancient 
Greeks. It is worth noting that the right-hand side of Equation ( 10 .5 )  can 
be - 1  only if - 1  is a quadratic residue modulo n. 
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Theorem 10.2 Let n be a positive integer which is not a perfect square 
and for which Equation (10. 5) has at least one solution in positive integers 
a and b. Then Equation (10. 5) has infinitely many solutions which can be 
computed recursively by 

Xl a, 
YI b, 

Xi+ ! a x Xi + n x b X Yi , 

YH I  b X Xi + a x Yi . 

Proof We know that i� 

then Xi , Yi are solutions of Equation ( 10 .5) . We only have to verify the 
recursion satisfied by these x's and y 's :  

(Xi + Yi vn) x (a + bvn) 
(Xi x a + Yi X b x n) + (Xi X b + Yi X a) vn. 

Since a and b are positive, the x's and y's are strictly increasing and so 
never repeat. 

Q .E .D.  

1 0 . 2  The Bhascara-Brouncker Algorithm 

The equation 

( 10 .6) 

will  always have a solution in positive integers as long as n is positive and 
not a perfect square. (This equation was incorrectly attributed by Euler to 
John Pell ( 1 6 1 1-1 685) and is still commonly known as Pell 's equation. ) For 
n = 3, X = 2 and Y = 1 works. For n = 5 ,  X = 9 and Y = 4 is the smallest 
solution. The first solution can be quite large as is the case of n = 61 where 
the first solution is 

X 1 7663 19049, 

Y 226 153 980, 
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or n = 109 where the first solution is 

x 1 5807 06719 86249, 
y 15 14 04244 55100 .  

How do you find the first solution? Does the algorithm in Theorem 10 .2  
miss any possible solutions? Exactly how accurate is the resulting approx­
imation to y'n? We will answer these questions in reverse order. 

Theorem 10.3 If a and b are positive integers satisfying 

then the absolute value of the difference between alb and y'n is exactly 

1 
b x (a  + by'n) " 

Proof We factor the left-hand side of Equation ( 10 .5 )  and divide by a+by'n: 

a - by'n 
a 
a b 

±l/ (a + by'n) , 
by'n ± 1/ (a  + by'n), 
y'n ± b(a+�fo) ' 

Q.E.D.  

Since a i s  always larger than b, this says that the error will always be 
less than 1 /2b2 • This i s  exceptionally good. Approximating the square root 
of 2 with five digit accuracy means approximating it by a rational number 
whose denominator is 10 000. The error in this case is just under 0 .000 002. 
Approximating the square root of 2 by 8 1 19  I 5741 gives us an error of less 
than 0 .000 000 02. 

We next tackle the second-last question. 

Theorem 10.4 If we start the algorithm of Theorem 1 0. 2  with the positive 
solution of Equation (10. 5) which minimizes the numerical value of a+by'n, 
then that algorithm generates all positive solutions of Equation (10. 5) .  

Proof Let x = r, y = s and x = u ,  y = v be any two solutions of  Equation 
( 10 .5)  and define p and q by 

(r + sy'n) x (u - vy'n) = p + qy'n. 

Then x = Ip l , y = I q l is also a solution of Equation ( 10 .5 )  because 

(r - sy'n) x (u + v y'n) = p - qvln, 
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and so 

(p + q...;ri) x (p - q...;ri) 
(r + s...;ri) x (u - v...;ri) x (r - s...;ri) x (u + v...;ri) 
(r2 - n x S2 ) x (U2 - n x V2 ) = ±l . 

Now, we define e to be the value of a2 - n x b2 , e = ± l .  If x = r ,  Y = s 
is a solution of Equation ( 10 .5) which is not generated by the algorithm of 
Theorem 10 .2 ,  then there is a positive integer j for which 

Define p and q by 

p + q...;ri = (r + s...;ri) x (a - b...;ri)j x ej . 

By what we showed in the first part of this proof, x = Ip l , Y = I q l  i s  a solu­
tion of Equation ( 10 .5 ) .  But if we multiply through our double inequality 
by (a - b...;ri)j x ej we get 

1 < p + q...;ri < a + b...;ri. 

The first of these inequalities guarantees that p and q are both positive (see 
Exercise 10 .5) and the second inequality contradicts the fact that x = a, 
y = b is the positive solution which minimizes x + y...;ri. 

Q.E.D.  

Fermat realized that the crux of the problem lay in finding the first 
solution of Equation ( 10 .5) and in 1657 he sent out a challenge problem, 
to find solutions to Equation ( 10.6) . Rather mischievously, he proposed the 
values n = 61 and n = 109 as very small numbers "in order not to give you 
too much trouble." In response, Lord William Brouncker ( 1620- 1684) and 
John Wallis ( 1616- 1703) sent back the following algorithm which is still the 
most efficient way of finding the first solution. Wallis was later to credit 
Brouncker with the discovery of the algorithm. 

It seems likely that Fermat himself had some method of attacking this 
problem since he was able to single out the two difficult cases of n = 61 and 
109. But there is an algorithm equivalent to Brouncker's which predates 
Fermat by 500 years. It was found by the Indian mathematician Bhascara 
Acharya (ca. 1 1 15- 1 185) . For this reason, I will refer to it as the Bhascara­
Brouncker Algorithm. 

Algorithm 10.5 (Bhascara-Brouncker) We input n and sqrt = (the 
floor of the square root of n) into this algorithm. It generates five sequences: 
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Ai , Bi , Ci , Pi , and Q i . The ratio PdQ i gives progressively better approxi­
mations to the square root of n and in fact we always have the equality: 

The first time Ci = 1 for positive i, the corresponding values of Pi , Qi will 
be the first solution of equation (10. 5) .  

INITIALIZE : READ n 
sqrt - lJiiJ 
A1 - sqrt 
BO - o ·  , B1 - sqrt 
Co - 1 ;  C 1 - n - sqrt x sqrt 
Po - 1 ;  P 1 - sqrt 
QO - O ·  , Q 1 - 1 
i - 1 

MYSTERY_LOOP : WHILE Ci � 1 DO 

TERMINATE : 

k - i - 1 
j - i 
i - i + 1 
Ai - l (sqrt + Bj ) /Cj J 
Bi - Ai x Cj - Bj 
Ci - Ck + Ai x (Bj - Bi ) 
Pi - Pk + Ai x Pj 
Qi - Qk + Ai x Qj 

As an example, I give you the values up to i = 1 1  of the sequences 
generated when n = 13 :  

i Ai Bi Ci Pi Qi 
1 3 3 4 3 1 
2 1 1 3 4 1 
3 1 2 3 7 2 
4 1 1 4 1 1  3 
5 1 3 1 18  5 {:= 
6 6 3 4 1 19 33 
7 1 1 3 137 38 
8 1 2 3 256 71 
9 1 1 4 393 109 

10 1 3 1 649 180 {:= 
1 1  6 3 4 4287 1 189 
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As promised : 

182 - 13 X 52 = 324 - 325 = - 1 .  

The next solution occurs the next time Ci is 1 :  

6492 - 13  X 1802 = 42 1 201 - 421 200 = 1 .  

The remainder o f  this chapter will b e  spent justifying the Bhascara­
Brouncker algorithm and proving that eventually some Ci will be 1 .  

1 0 . 3  The Bhascara-Brouncker Algorithm 
Explained 

There is a general technique for finding rational approximations to arbitrary 
numbers. Christian Huygens ( 1629- 1695) seems to have been the first to 
understand it. To approximate, say, the square root of 13 ,  we apply the 
Euclidean algorithm to the pair v'13 and 1 .  

At first glance, this seems a ridiculous thing to do. The Euclidean algo­
rithm will not terminate because if v'13 and 1 did have a greatest common 
divisor, then either that gcd is rational which means that v'13 is rational, 
or the gcd is irrational , which means that 1 is irrational. But we are not 
looking for a greatest common divisor here. 

What we do is to iterate the Euclidean algorithm until the remainder is 
sufficiently close to zero and then stop, say after k iterations. It follows from 
Theorem 1 . 10 that the values of m that we have generated are precisely 
the m's that would occur if we applied the Euclidean algorithm to the 
continued fraction 

and the integer 1 .  Thus, the rational number represented by this continued 
fraction should be a good approximation to the irrational number with 
which we started, and we can improve the approximation just by continuing 
the iteration of the Euclidean algorithm. 

Applying this to the square root of 13 we get 

v'13 =  3.60555 12  . . .  3 x 1 + 0.6055512  . . .  
1 1 x 0.6055512  . . .  + 0 .3944487 . . .  
0 .6055512  . . .  1 x 0 .3944487 . . .  + 0. 2 1 1 1025 . . .  
0 .3944487 . . .  1 x 0.2 1 1 1025 . . .  + 0 . 1833461 . . .  
0 . 2 1 1 1025 . . .  1 x 0 . 1833461 . . .  + 0.0277563 . . .  
0 . 1 833461 . . .  6 x 0.0277563 . . .  + 0 .0168079 . . .  
0 .0277563 . . .  1 x 0 .0168079 . . .  + 0 .0109484 . . .  
0 .0168079 . . .  1 x 0 .0109484 . . .  + 0.0058594 . . . .  
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The successive rational approximations are 

3 
3 + 

3 + 

3 + 

3 + 

3 + 

and then 

1 / 1 = 4 
1 / ( 1  + 1 / 1 )  = 7/2 
1 / ( 1  + 1 / ( 1  + 1 / 1 ) )  = 1 1 / 13  
1 / ( 1  + 1/ ( 1  + 1/ ( 1  + 1 /1 ) ) )  = 18/5 
1 / ( 1  + 1 / ( 1  + 1 / ( 1  + 1/ ( 1 + 1/6) ) ) )  = 1 19/33, 

137 256 393 649 
38 ' 71 ' 109 ' 1 80 ' 

It was Euler who first realized that these are exactly the approximations 
to the square root of 13 which the Bhascara-Brouncker algorithm yields. 
In fact for any n the Bhascara-Brouncker algorithm amounts to no more 
than a calculation of the continued fraction approximations of the square 
root of n. 

Actually, this is quite fortunate. To compute the continued fraction ap­
proximations to yn using the Euclidean algorithm, we needed a good ra­
tional approximation of yn. What the Bhascara-Brouncker algorithm says 
is that we can get the continued fraction approximations just by starting 
with the greatest integer less than or equal to yn. This can be found by 
using the algorithm given in Exercise 5.7 .  

Before stating Euler's theorem which explains the Bhascara-Brouncker 
algorithm, we need a better notation for continued fractions. From now on, 
instead of 

we will write this as 

1 1 1 
ml + -- -- · · · - · 

m2+ m3 + mk 

If the continued fraction does not have a terminating value, then it repre­
sents the corresponding irrational number: 

1 1 1 1 1 1 1 1 1 1 v'i3 = 3 + - - - - - - - - - - . . . . 
1 + 1 + 1 + 1 + 6+ 1 + 1 + 1 + 1 + 6+ 

Theorem 10.6 Let Ai , Bi , Gi , Pi , and Qi be as defined in Algorithm 10. 5  
where n is not a perfect square. Then the following properties hold for 
positive values of i :  
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2 2 · Pi - n X Qi = (- 1 ) '  x C , 

o < Ai < 2 X y'ri, 

0 < Bi < y'ri, 

o < Ci < 2 X y'ri, 

B; + Ci X Ci- l = n, 

let Ei+ 1 = (y'ri + Bi ) /Ci , then 

1 1 1 1 
y'ri - Al + -- -- . . .  - --- A2+ A3+ Ai+ Ei+ l ' 

Pi 1 1 1 1 
- = A1 + -- -- · · · -- - , 
Qi A2+ A3+ Ai- l + Ai 

Pi X Qi- l - Pi- l X Qi = (_ I ) i , 

gcd(Pi , Qi ) = 1 .  

( 10 .7) 

( 10.8) 

( 10.9) 

( 10. 10) 

( 1 0 . 1 1 ) 

( 10. 12) 

( 10. 13) 

( 10. 14) 

( 10. 15) 

( 10. 16) 
Furthermore, the sequence of triples (Ai , Bi , C )  is eventually periodic. We 
shall denote this period by p(n) . (For example, p(13) = 5 .)  

Proof The periodicity follows from Equations ( 10.8)- ( 10 . 10) which imply 
that there are only finitely many triples which can occur. Eventually a 
succession of two triples repeats itself. By the recursive definition of these 
sequences, once two successive triples repeat we have entered a loop. 

We first prove Equation ( 1 0 . 1 1 )  by induction . Note that it is true when 
i = 1 .  Assume that it is true for i, we will see that it also holds for i + 1 .  

B;+ l + Ci+ l  X Ci 
= (Ai+ l X Ci - Bi ) X Bi+ l  

+ [Ci- l + Ai+ l X (Bi - Bi+ l ) ] X Ci 
= Ai+ l  X Bi+ l X Ci - Bi X Bi+ l  + Ci- 1 X Ci 

+Ai+ l  X Bi X Ci - Ai+ l  X Bi+ l  X Ci 
= -Bi X (Ai+ l  X Ci - Bi ) + Ci- 1 X Ci 

+Ai+ l X Bi X Ci 
= B; + Ci- 1 X Ci = n. 
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This concludes the proof of  Equation ( 1 0 . 1 1 ) .  
The next piece that we attack consists of Equations ( 10 . 12) and ( 10 . 1 3 ) .  

We first observe that by  the definition o f  Ei , A i  i s  the greatest integer 
less than or equal to Ei • We use Equation ( 1 0 . 1 1 )  to obtain the following 
equation for the E's: 

Ei l /Ei+ 1 
Vn + Bi- l Ci 

Ci- l  Vn + Bi 
n + Vn x (Bi + Bi- d + Bi x Bi- l  - Ci X Ci- l 

Ci - l  X (Vn + Bi ) 
Bi x Bi + Vn X (Bi + Bi- l ) + Bi x Bi- l 

Ci- l X (Vn + Bi ) 
Bi + Bi- l 

Ci- l 
Ai X Ci- l 

Ci- l  
Ai . 

We can write this equality as 

Now we have it because 

Vn EI 

by the recursion formula for Bi , 

Al + 1 /E2 
1 1 = A1 + -- -­A2+ E3 

1 1 1 
A1 + -- -- -- · · · . 

A2+ A3+ A4+ 

This concludes the proof of Equations ( 10 . 12 )  and ( 10 . 1 3 ) .  

( 10 . 1 7) 

We next look at the inequalities ( 1 0.8) - ( 10 . 10 ) .  By Equation ( 10 . 1 7) ,  
we know that 

which means that 
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Since Ai+! is the floor of Ei+ l , we can conclude that 

We now establish the bounds on Ci and Bi by induction . Observe that 

0 < Co = 1 < 2v'n and 

0 < BI = lv'nJ < v'n. 
Assume that these same bounds hold for Ci and Bi+I ' Again using Equation 
( 10 . 1 7) ,  we have that 

Vn + Bi+ I ' 

And thus Ci+I must be larger than zero. If we multiply numerator and 
denominator of this last fraction by Vn - Bi+ 1 and then use Equation 
( 10 . 1 1 )  to simplify the denominator, we get that 

1 Ci+ I X (v'n - Bi+d 
Ei+2 n - Br+ I 

Vn - Bi+ I 
Ci 

Note that this gives us another equation that can be used to define Ei : 

E _ Ci-2 , - Vn - Bi- I 
Replacing i by i + 3 in this equation gives us 

Ci+ I o < Ei+3 = r;; B y n - i+2 

Since Ci+ I is positive, Bi+2 must be less than Vn' 

( 10 . 18) 

If Bi+2 were not posit ive, then by the recursion for B we would have 
that Ai+2 x Ci+ I - Bi+ I is less than or equal to zero, and therefore 

But if Ci+ I is less than the square root of n and Bi+2 is not positive, then 
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1 > Ei+2 - Ai+2 
y'n - Bi+2 > 

y'n 
> 1 .  

Ci+ 1 - Ci+ 1 
Since 1 cannot be strictly larger than 1 ,  Bi+2 must be positive. 

We finish the inductive argument by observing that 

y'n + Bi+ 1 2y'n 1 < Ei+2 = < -- , and so 
Ci+ 1 Ci+ 1 

Finally, we have that 

A · E· - y'n + Bi- I 
2 r:: l < l -

C < y n. 
i - l 

This concludes the proofs of inequalities ( 10 .8)- ( 10 . 10) . 
We next prove Equations ( 10 . 14)- ( 10 . 16) ; in fact we will prove more than 

that . Let (aI , a2 , a3 , . . . ) be any sequence of posit ive numbers. They do not 
have to be integers. We define two sequences; Pi and qi by 

I claim that then 

P- I qo = 0, 

Po q- I = 1 ,  
Pi+ 1 Pi- I + ai+ 1 x Pi , 
qi+ 1 qi- I + ai+ 1 x qi ' 

Pi X qi- I - Pi- I X qi = (_ l ) i and 

Pi 1 1 1 
- = al + -- -- . . .  - . 
qi a2+ a3+ ai 

If the ai 's are integers, then the Pi 'S and qi 'S must be integers. It follows 
from the first of these equalities that for each i, Pi and qi are relatively 
prime. 

The first of these equalities is proven by induction . We can easily verify 
that it is true when i = O. Assume that it is true for some i. Then by our 
recursion we have that 

Pi X qi+ 1 
(Pi- I + ai+ 1 x Pi ) x qi - Pi X (qi- I + ai+ 1 x qi ) 
Pi- I x qi - Pi X qi- I 
_ (_ l ) i = (_ 1 ) i+ 1 . 
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And so it is also true for i + 1 .  This proves Equations ( 10 . 15 )  and ( 10 . 16) . 
We also prove the second identity by induction , first checking the first 

two values of i :  

PI 
ql 
P2 
q2 

= al 
T = al , 

1 + al x a2 1 
----='--- = al + - . 

a2 a2 

We now proceed by induction. Assume that 

We replace ai by ai + l/ai+1 

1 1 
ai+  ai+ l 
Pi-2  + (ai + � ) x Pi- l 
qi-2  + (ai + ai� l ) X qi- l 
P + _1_ x P ' t ai + l  0- 1 
qi + ai� l X qi- l 
ai+ 1 x Pi + Pi- l 
ai+l x qi + qi- l 
Pi+ l 
qi+ 1 

This concludes the proof of Equation ( 10 . 14) . The fraction l!.!. is called q, 
the ith convergent. 

We are finally ready to prove Equation ( 10 . 7) .  From Equation ( 10 . 13) 
and what we have just proven about continued fractions, we see that 

Pi-2 + (Ai + � )�- 1 
Qi-2  + (Ai + -E1 )Qi- l , + 1  
Pi + -E 1 X �- 1 i + l  
Qi + -E1 X Qi- l H i  
Pi- 1 + Ei+l X Pi 
Qi- l + Ei+ 1 X Qi ' 

( 10 . 19) 

We multiply through by the denominator and rewrite Ei+ 1 in terms of yn, 
Bi , and Ci . 
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Vn X (Qi- l + Qi X (Vn + Bi )/Ci ) 
= Pi- l + Pi X (Vn + Bi )/Ci , 

which can be rewritten as 

Vn X (Qi- l + Qi x Bi/Ci ) + n x Qi/C 
= Vn x Pi/Ci + Pi- l + Bi X Pi/Ci . 

The coefficients of y'n must be equal . This gives us two equations: 

Pi = Ci X Qi- l + Bi X Qi ,  

n x Qi  = Bi X Pi + Ci X Pi- I ' 
We now use these equations: 

(Ci X Qi- l + Bi x Qi ) x � 

- (Bi X Pi + Ci x Pi- d X Qi 
Ci X (Qi- l X Pi - Pi- l x Qi ) 
Ci x (_ l ) i . 

1 0 . 4  Solutions Really Exist 

( 10 .20) 

( 10 . 2 1 )  

Q.E.D.  

We still have not proven that Equation ( 1 0.5)  has a solution, nor that the 
smallest solution must occur in the Bhascara-Brouncker Algorithm. This 
was first done by Joseph-Louis Lagrange. 

Theorem 10.7 If n is a positive integer and not a perfect square, then 
there exists an integer solution to Equation (10. 5) .  

Proof Algorithm 10 .5 generates infinitely many distinct pairs (Pi , Qi ) which 
satisfy Equation ( 10 .7) . Since we know that Ci is less than 2y'n and there 
are only finitely many integers between -2y'n and 2y'n, there has to be at 
least one integer m between -2y'n and 2y'n for which 
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has infinitely many solutions. 

( 10 .22) 

We sort our solutions of Equation ( 10.22) according to the residues of x 
and Y modulo m. With infinitely many of them to sort , we can find two 
that agree in both residues: 

X l == X2 (mod m) and YI == Y2 (mod m) . 

We now define the integers u and v by 

We have that 

(u + vvn) x (u - vvn) 
(Xl + YI vn) X (X2 - Y2vn) X (Xl - YI vn) X (X2 + Y2vn) 
(xi - n x yi ) x (x� - n x y� ) = m2 . 

But we also have that 

U Xl X X2 - n x YI x Y2 
Xl X Xl - n x YI x YI (mod m) 
o (mod m) , and 

v YI x X2 - Xl X Y2 == 0 (mod m) , 

and so u and v are both divisible by m. If we set a = u/m and b = v/m 
then 

Q.E .D .  

We finish up by showing not just that the first solution of Equation 
( 10 .5) must be generated by Algorithm 10 .5 ,  but that in fact every good 
approximation of the square root of n is generated by this algorithm. 

Theorem 10.8 Let n be a positive integer which is not a perfect square 
and let X and Y be positive integers such that 
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Then for some i in Algorithm 10. 5, 

Recall that Theorem 10 .3 guaranteed that every solution of Equation 
( 10 .5)  gives us an approximation to Vn with at least this accuracy, and thus 
all solutions of Equation ( 1 0 .5) are generated by the Bhascara-Brouncker 
algorithm. 

Proof Find the largest i such that Qi is less than or equal to y. If Qi = y ,  
then ?;. = x because both PdQi and x/y differ from Vn by less than 1 /2y. 
We now consider what happens if 

Consider the following system of linear equations in a and b: 

a x Qi + b x 
a x ?;. + b x 

y ,  
x .  

The determinant i s  Qi x ?;.+I - Qi+ I x ?;. = 1 or  -1 by  Equation ( 10 . 1 5) .  
Thus this system has a unique solution in integers a and b .  Since y lies 
between Qi and Qi+ l ' a and b cannot both be positive and a cannot be 
zero. 

By Equation ( 10 . 7) , the real numbers 

have opposite signs, and so 

a x (Qi x Vn - Pi ) and 

b x (Qi+ I X Vn - Pi+d , 

must have the same sign if b is not zero. It therefore follows that 

I y x Vn - x l l a x (Qi x Vn - ?;. )  + b x (Qi+ l x Vn - Pi+I ) 1 
l a l  x IQi x Vn - Pi l + I b l x IQi+ l x Vn - Pi+ I I 

> IQi x Vn - Pi l · 

Dividing this last inequality by Qi yields 



158 10. Continued Fractions 

Using this inequality and the fact that Pi and Qi are relatively prime, we 
get that 

_
1
_ < I y x Pi - X X Qi I 

y X Qi - y X Qi 
IPdQi - x/y l 

< I PdQi - v'nl + I v'n - x/y l 
< 

1 1 
----=- + -2y x Qi 2y2 ' 

Multiplying through by 2y2 x Qi gives us 

2y < y + Qi , or equivalently 

y < Qi , 

But this contradicts our original assumption that y lay between Qi and 
QHI . 

Q.E.D.  

We have gone to an awful lot of trouble if all we want to do is  approximate 
square roots. A careful re-reading of the proofs of Theorems 10 .6- 10 .8 will 
reveal that we have actually proved a great deal about rational approx­
imations of any irrational number. This is worked out in detail in Exer­
cises 10 .20- 10 .23 .  Also, as we will see in the next chapter, the structure of 
these sequences can be used to say a great deal about the integers. These 
sequences will now play an important role in factoring and determining 
primality. 
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1 0 . 5  EXERCISES 

10 . 1 Use Exercise 1 .4 to prove that if a, b, x ,  and y are integers and n is 
not a perfect square, then 

a + b x y'ri = x + y x y'ri, 

implies that a = x and b = y. 

10 .2 Prove that if 

u + vy'ri = (a + by'ri) x (c + dy'ri) , 

then 

u - vy'ri = (a - by'ri) x (c - dy'ri) . 

10 .3 Prove that if 

then 

x and c2 - n x d2 = y ,  and 

(a + by'ri) x (c + dy'ri) , 

10 .4 Prove that if 

then 

x + y x y'ri = (a + b x y'ri) i , 

x [ (a + b x y'ri)i + (a - b x y'ri)i ] j2 and 

y [ (a + b x y'ri)i - (a - b x y'ri)i ] /2y'ri. 

10 .5 In the proof of Theorem 10 .4 ,  why does 

p2 _ n x q2 
= ±1 and p + qy'ri > 1 

imply that p and q are both positive? (Hint: Show that p - qy'ri must lie 
between - 1  and 1 . )  

10 .6 Write a program which uses Algorithm 1 0 . 5  t o  compute square roots 
to 200 digit accuracy. Compute the square roots of 2, 3, and 5 to this 
accuracy. 
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10 . 7  If we run Algorithm 10 .5 with n = 6 1 ,  the first t ime that C = 1 is 
when P = 29718 and Q = 3805. Explain why this does not contradict 
the assertion that the smallest solution of Equation ( 10 .6) with n = 61 is 
P = 1 7663 19049 and Q = 226 153 980. 

10 .8  Find the first solution to Equation ( 1 0 .6) for each of the following 
values of n: 433, 613 ,  1 709. 

10 .9 What happens to Algorithm 10 .5  if the greatest integer less than or 
equal to the square root of n is incorrectly evaluated? 

10 . 10  Run Algorithm 10 .5  with n = 3 out to i = 50. Which P's and Q's are 
divisible by 3? by 5? by 7? by I I ?  by 13? Can you make any conjectures? .-

10 . 1 1  Same problem as Exercise 10 . 1 0  but with n = 5 .  

10 . 1 2  Find the sequences of  the  Ai 's in the continued fraction expansions 
of the square roots of each of the integers up to twenty which are not 
perfect squares. Can you make any conjectures? Can you prove any of your 
conjectures? 

10 . 13  Compute p(n) (the period of Algorithm 10 .5 )  for each n < 100 which 
is not a perfect square . Can you make any conjectures? 

10 . 14  Run twenty iterations of the Euclidean algorithm on the pair v'2 and 
1 .  How does the size of the remainder compare with the size of the error 
when the corresponding continued fraction is used to approximate v'2? 

1 0. 1 5  What irrational number is represented by the infinite continued frac­
tion : 

1 1 1 1 1 1 
1 + - - - - - - · · · ?  

1+  1+  1+  1+  1+  1+  

(Hint: It will have t o  satisfy the equation x = 1 + Ijx. )  This number is 
known as the "Golden Ratio" , it is the proportion of length to width which 
the Greeks found most beautiful .  

10 . 1 6  Compute the first ten terms of Pi and Qi in the convergents to the 
Golden Ratio in Exercise 10 . 1 5 .  These sequences were first described by 
Leonardo of Pisa ( 1 1 80-1250 ) ,  popularly known as Fibonacci .  

10 . 1 7  What irrational number is represented by the infinite continued frac­
tion 
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1 1 1 1 1 1 
1 + - - - - - - · · · ?  

2+ 3+ 1+ 2+ 3+ 1+  

(Hint: I t  will have to satisfy the equation : x = 1 + 1 / [2 + 1/ (3 + l/x) ] . )  

10. 18 I t  follows from the periodicity o f  Algorithm 1 0 . 5  that the continued 
fraction for any square root is eventually periodic . Prove that if an irrational 
number has a continued fraction expansion which is eventually periodic, 
then it must be the root of a quadratic polynomial with integer coefficients .  

10. 19 Prove that 

IN EXERCISES ( 10 .20)- ( 1 0 .23) , LET u BE AN ARBITRARY POSITIVE 
IRRATIONAL NUMBER WHOSE CONTINUED FRACTION EXPAN­
SION IS GIVEN BY 

LET E... BE THE ith CONVERGENT TO u ,  q ,  

AND DEFINE ei BY 

SO THAT 

10 .20 Prove that 

1 
ei+ l  = -­ei - ai 

Pi X qi- l - Pi- l X qi = (- 1 ) \ 

and therefore gCd(Pi ' qi ) = 1 .  

10 .21  Prove that 

Pi + (ei - ai ) x Pi- l 
u - =--=-------'----'----.:.:---=--::........::. - qi + (ei - ai ) x qi- l 

. 
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10 .22 Prove that 

and therefore 

Pi (_ l ) i+ l x (ei - ai)  u - - - ---'-,:---'-.,-----'-----,--'-______=_ 
qi - qi X [qi + (ei - ai ) x qi- J ] 

, 

10 .23 Let x and y be positive, relatively prime integers which satisfy 

x 1 l u - - I < - . 
y 2y2 

Show that !!: must be one of the convergents to u : x = Pi and y = qi for y 
some i .  

10 . 24  Show that if 

a2 - n x b2 = e = ±l , then 

(a + by'n) - l = e x (a - by'n) . 

In the extended integers of the form x + yy'n, we call an integer a unit if 
its inverse is also an integer. Show that if n is positive and not a perfect 
square then there is unit a + by'n (called the fundamental unit) such that 
every unit is of the form 

for some integer i .  

10 .25 Prove that the definition of a unit given in Exercise 10 .24 i s  equivalent 
to the definition given in Exercise 1 . 1 .  
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Continued Fractions 
Continued, Applications 

1 1 . 1  CFRAC 

"Mazes intricate, 
Eccentric, interwov'd,  yet regular 

Then most, when most irregular they 

seem." 

- John Milton 

We are now ready to explain the Brillhart-Morrison Continued Fraction 
Algorithm (commonly known as CFRAC) for factoring large numbers. The 
original idea is actually due to D.  H. Lehmer and R. E. Powers in 193 1 
and it draws much of its inspiration from Legendre who used the continued 
fraction expansion in a procedure t hat restricted the congruence classes of 
possible divisors, but it was put in its present form by John Brillhart and 
Michael Morrison who published a thorough account of it in 1975. 

The basic approach is the same as in the Quadratic Sieve .  We want to 
find solutions to 

( 1 1. 1) 

If n is the number to be factored , the Quadratic Sieve generates a large 
number of integers of the form m2 MOD n which can be completely fac­
tored using a set of primes in a relatively small factor base. Once the 
number of completely factored integers exceeds the size of the factor base, 
we can find a product of them which is a perfect square. This gives us a 
sol ution to the congruence ( 1l . 1) .  As we have seen, t here is at least a 50-50 
chance that gcd( n ,  x - y) will be a non-trivial divisor of n .  

The difference between the Continued Fraction Algorithm and the Quad­
ratic Sieve lies in how we generate the integers m. Recall that in the 
Quadratic Sieve, we simply take the integers closest to the square root 
of n. The resulting integer m2 

- n that we need to factor tends to be quite 
large. Using the Multiple Polynomial variation with an opt imal choice of 
parameters still leaves us with numbers as large as � yin to be factored, 
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and so the probability that it can be factored using the primes in the factor 
base is fairly small .  The Quadratic Sieve gets its speed from the fact that 
deciding which integers can be factored is accomplished very quickly by 
means of the sieving technique. 

The Continued Fraction Algorithm chooses values of m for which m2 
MOD n has a smaller upper bound, staying in absolute value less than 

twice the square root of n. The probability that it can be factored using 
our factor base is thus somewhat higher. The penalty for this is that there 
is no fast way to decide whether m2 MOD n can be factored using the 
factor base. One has to resort to trial division. 

The values of m that are used in the Continued Fraction Algorithm are 
precisely the Pi generated in Algorithm 10 .5 .  Observe that from Equation 
( 10 . 7) we have that 

( 1 1 .2) 

Equation ( 10 . 10) gives us the promised bound on Gi . As in the Quadratic 
Sieve, we treat - 1  as a prime in our factor base. Also note that from 
Equation ( 10 .7) , if a prime p divides Gi , then n is a quadratic residue 
modulo p. We can thus restrict our factor base to primes p for which (nip) = 

1 ,  exactly as we did in the Quadratic Sieve. 
We modify Algorithm 10 .5 so that it ignores the Q's and only keeps track 

of Pi MOD n, Gi , and the parity of i. For each new Gi , we call up a trial 
division subroutine that attempts to factor Gi over the factor base. If it is 
successful , then we store Pi MOD n, Gi , and the factorization of ( _ l ) i x Gi . 
If it is unsuccessful, then we return to Algorithm 10 .5  to generate the next 
set of values. When the number of completely factored Gi 's exceeds the size 
of the factor base, we use Gaussian elimination (exactly as in the Quadratic 
Sieve) to find a product of Gi 's which is a perfect square. 

There are several strategies that can be used to speed up CFRAC. One of 
them is the use of multipliers, as in the Quadratic Sieve. In fact ,  multipliers 
are sometimes essential for if the period of the continued fraction is too 
short then there may not be enough distinct C; 's .  The large prime variation 
that works for the Quadratic Sieve is also appropriate for CFRAC. 

There is also an early abort strategy that has proven useful. If the factor 
base is large, then it can be worthwhile to pause at some point in the midst 
of the trial division and see how far you have succeeded in reducing Gi into 
its factors . If very little progress has been made, then you will probably do 
better to abandon this Gi and look to the next . 

Discussion of these strategies can be found in the papers of Morrison and 
Brillhart and of Pomerance listed at the end of this chapter. 
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1 1 . 2  Some Observations on the 
Bha,scara-Brouncker Algorithm 

The continued fraction algorithm also comes up in primality testing. To see 
why this is so, I want to look at part of the solution of Exercise 10 . 10 ,  the 
first 27 lines of Algorithm 10 .5 with n = 3. 

i Ai Bi Ci Pi Qi 
1 1 1 2 1 1 
2 1 1 1 2 1 
3 2 1 2 5 3 
4 1 1 1 7 4 
5 2 1 2 19 1 1  
6 1 1 1 26 15  
7 2 1 2 71 41 
8 1 1 1 97 56 
9 2 1 2 265 1 53 

10 1 1 1 362 209 
1 1  989 571 
12 135 1 780 
13 3691 2 13 1  
14 5042 291 1 
15  13775 7953 
16 188 17  10864 
1 7  5 1409 29681 
18  70226 40545 
19 191861 1 10771 
20 262087 151316 
2 1  716035 413403 
22 978122 564719 
23 2672279 1542841 
24 3650401 2107560 
25 9973081 5757961 
26 13623482 786552 1 
27 37220045 2 1489003 

At first glance there does not appear to be much structure to the Pi 'S 
and Qi 'S. But then looking down the list of Qi 'S, we may notice that Qi is 
divisible by 3 if and only if i is divisible by 3, and Qi is divisible by 4 if 
and only if i is divisible by 4. Q5 is not divisible by 5, but it is by 1 1  and 
Qi turns out to be divisible by 1 1  every time i is divisible by 5 .  

The Pi 'S do not seem to work quite as nicely. Two divides P2 but i t  
does not divide Pi whenever i i s  even, only when i i s  an odd multiple of  2 .  
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Similarly, 5 divides P3 • It does not divide Pi whenever i is a multiple of 3, 
but only when i is an odd multiple of 3. These observations are summed 
up in the next two theorems. 

Theorem 1 1 . 1  Let Pi , Qi be the sequences generated by Algorithm 1 0. 5  
when n = 3 .  If j is a multiple of i then Qj is a multiple of Qi . If j is an 
odd multiple of i then Pj is a multiple of Pi . 

Theorem 1 1 . 2  Let Qi be as in Theorem 1 1 . 1 .  Let m be an integer larger 
than 1 and let e be the smallest positive integer such that m divides Qe . 
Then m divides Qi if and only if e divides i .  

Notice how similar Theorem 1 1 .2  sounds to Theorem 9 . 1  which can be 
stated as 

Let e be the smallest positive integer such that m divides be - 1 ,  
then m divides bi - 1 if and only if e divides i .  

While we still have not proved anything, let u s  assume for the moment 
that Theorems 1 1 . 1  and 1 1 .2 hold. We will pursue the analogy with orders. 
If p is an odd prime larger than 3, then the order of 3 modulo p is a divisor 
of p - 1 .  Let us call e ,  the smallest integer such that p divides Qe , the rank 
of p. We observe some values of e :  

the rank of 3 is 3 ,  
the rank of 5 is 6 ,  
the rank of 7 is 8 ,  
the rank of 1 1  is 5 ,  
the rank of 13  is 12 ,  
the rank of 1 7  is 9, 
the rank of 19 i s  10 ,  
the rank of 23 is 22. 

It is no longer true that the rank always divides p - 1. For p = 3,  the rank 
divides p. Sometimes the rank divides p + 1 .  This is true if p is 5, 7, 17 ,  or 
19 .  Comparing this list with Corollary 7.6 suggests that the rank in fact 
divides p - (3/p) where (3/p) is the Legendre symbol. 

Theorem 1 1 .3 Let p be an odd prime, then the rank ofp divides p- (3/p) , 
where (3/p) is the Legendre symbol. 

Before proving these theorems, we will need two lemmas. 

Lemma 1 1 .4 Let Pm and Qm be as defined in Algorithm 1 0. 5  with n = 3, 
then 
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Proof. If we compare our table of values for Gi , �, Qi with Theorem 10 .2 ,  
we see that 

Xi P2i and 

Yi Q2i .  

Making this substitution into Equation ( 1 0.3) gives us 

By using the identity 

we get that 

which is the statement of the theorem when m is even. 
To prove the lemma for odd m, we first observe that by Theorem 10 .2 ,  

( 1 1 .3)  

Q2i+2 = P2i + 2Q2i . ( 1 1 .4)  

It  follows from Algorithm 10 .5  that we also have 

( 1 1 .5 )  

Q2i+2 = Q2i + Q2i+ l . ( 1 1 .6) 

Subtracting the first pair of equations from the second yields 

( 1 1 .  7) 

( 1 1 .8)  

We now use this  pair of identities and the fact that we have already 
proved our lemma for m even. 
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Lemma 1 1 .5 Let 

then 

2i x ( 1 + v3)2i x (1 + v3) 
(P2i + Q2i X v3) x ( 1  + v3) 
P2i + 3Q2i + (P2i + Q2i ) x v3 
P2i+ l + Q2i+1 x v3. 

ti 2 Li/2J X Pi , 
ui 2 Li/2J X Qi , 

and if i is at least as large as j then 

(-2)j x ti-j = ti x tj - 3Ui X Uj . 

Proof By Lemma 1 1 .4 we have that 

Therefore, 

Q .E.D. 

( 1 1 .9) 

( 1 1 . 10) 

( 1 1 . 1 1 )  

( 1 1 . 12 )  

Multiplying out the right-hand side and comparing the constants and co­
efficients of v3 yields Equations ( 1 1 .9) and ( 1 1 . 10) . 

For the remaining equations we have that 
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(ti - Ui X v3) X (tj + Uj X v3) 
= ( 1  - v3)i X ( 1  + v3)j 

= ( 1  - v3)i-j X (-2)j 

= (-2)j X (ti-j - Ui-j X v3) .  

Equations ( 1 1 . 1 1 ) and ( 1 1 . 12 )  follow by comparing the constant terms and 
coefficients of v3 as before . 

1 1 . 3 Proofs of the Observations 

Q.E.D.  

Proof of Theorem 1 1 . 1 :  We will first show that if  j is  a multiple of i ,  then 
Uj is a multiple of Ui , and if j is an odd multiple of i then tj is a multiple 
of ti . Since ti and Ui only differ from Pi and Qi , respectively, by a factor 
which is a power of 2, it will only remain to verify that the powers of 2 are 
correct . 

From Equation ( 1 1 . 10) with i = j we have that 

U2i = 2Ui X ti , ( 1 1 . 13) 
therefore Ui divides U2i . We proceed by induction. Assume that Ui divides 
Uri . Again using Equation ( 1 1 . 10) we have that 

U(r+ l ) i = Uri X ti + Ui X tri o 

Since Ui divides both products on the right-hand side, it also divines U(r+ l ) i . 
Again by Equation ( 1 1 . 10) with i = j ,  we see that ti divides U2i , and so 

by what we have just proven, ti divides U2ri for any positive integer r .  By 
Equation ( 1 1 .9) we have that 

t (2r+ l ) i = t2ri X ti + 3U2ri X Ui · 

Since ti divides both products on the right-hand side, it also divides t (2r+ l ) i . 
Using Equations ( 1 1 .3) and ( 1 1 .4) we obtain 

7 Pi + 12Qi , 
7Qi + 4Pi when i is even. 

Equations ( 1 1 . 5) and ( 1 1 .6) imply that 

( 1 1 . 14) 
( 1 1 . 15 )  
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Pi Pi+ l  - Pi - I , 

Qi Qi+ l  - Qi- l when i is odd, 

and so Equations ( 1 1 . 14) and ( 1 1 . 1 5) hold for any value of i .  From these 
equalities and the first four values of Pi and Qi , it follows that Pi is odd 
unless i is congruent to 2 modulo 4, in which case Pi is congruent to 2 
modulo 4. Qi is only even when 4 divides i. From Equation ( 1 1 . 10) we 
know that 

( 1 1 . 16) 

If i is odd then 2 divides P2i once and it does not divide Q2i , so that there 
are exactly two factors of 2 in Q4i ' If i is even, say 

i = 2t X (odd integer) , 

then it follows by induction using Equation ( 1 1 . 16) that there are exactly 
2 + t factors of 2 in Q4i . 

Q.E.D.  

Proof of Theorem 1 1 . 2 :  Let e be the rank of m and let us assume that m 
also divides Qi . We need to show that i is a multiple of e .  By what we have 
just shown in the proof of Theorem 1 1 . 1 ,  it is enough to prove this theorem 
when m is odd . We can write i as 

i = q x e + r, 0 � r < e .  

I f  r = 0 then i i s  a multiple o f  e .  I f  not , then i t  follows from Equation 
( 1 1 . 1 1 )  that 

Since m divides Qe ,  it also divides Qqe = Qi-n and thus m divides Ui-r ' 
By our assumption , m divides Ui . It follows that m divides Ur x ti . Since 
r is less than the rank, the greatest common divisor of m and ti must be 
larger than 1 . 

We now use Equation ( 1 1 . 12 )  with i = j to get 

i 2 2 ( - 2) = ti - 3Ui ' 
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Now m i s  relatively prime to  the  left-hand side of  this equation, but not to 
the right-hand side. This is our contradiction which implies that r must be 
zero. 

Q .E .D.  

Proof of Theorem 1 1 . 3 :  Let p be an odd prime. Using Lemma 1 1 .4 and the 
binomial expansion, we have that 

(1 + V3? 

1 + pV3 + 
p x (p - 1 )  

x 3 
1 x 2 

p x (p - 1 )  x (p - 2)  
33/2 + x + . . .  

1 x 2 x 3 

+ P X 3(p- l ) /2 + 3P/2 

1 + 3(p- l ) /2 V3 (mod p) . 

Comparing constant terms and coefficients of y'3, we see that 

tp == 1 (mod p) , 

Up == 3(p- l ) /2 == (3/p) (mod p) . 

The second congruence follows from Corollary 7. 1 .  

( 1 1 . 1 7) 

( 1 1 . 18)  

Using Equations ( 1 1 . 10)  and ( 1 1 . 1 1 )  and the fact that t l  = Ul = 1 ,  we 
get that 

Up X tl + Ul X tp 

(3/p) + 1 (mod p) , 
-2 X Up- l up x t l  - Ul X tp 

(3/p) - 1 (mod p) . 

Thus if (3/p) = 1 ,  then p divides up_ l  and so p divides Qp- l .  If (3/p) = - 1 , 
then p divides Up+ l  and so p divides Qp+ l .  By inspection we see that if 
p = 3,  then p divides Qp . 

Q .E .D .  
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1 1 .4 Primality Testing with Continued Fractions 

We are now on the verge of explaining the primality test for Mersenne 
primes given in Algorithm 2 .9 .  Recall from Chapter 9 that if we can find 
an element with order n - 1  modulo n, then n must be prime. An analogous 
statement works for ranks. We first need to find the analog of the Euler 
function. 

Definition: Let n be an odd integer with factorization given by 

We define the function 1jJ(n) to be 

1jJ(n) = 2 1 -r 
X (PI - (3/pI ) )  x p;1 - 1 x . .  · X (Pr - (3/Pr ) )  x par- I . 

t" 
Note that this looks just like the ¢ function except that we have a non­

positive power of 2 out front and if 3 is not a quadratic residue modulo Pi , 
then we have a factor of Pi + 1 instead of Pi - 1 .  Just as the order of 3 mod 
n always divides ¢( n) ,  we shall now show that the rank of n always divides 
1jJ(n) . 

Lemma 1 1.6 If n is a power of an odd prime, then the rank of n divides 
1jJ(n) .  

Proof. By Theorem 1 1 . 2 ,  this lemma is equivalent to saying that n divides 
Q,p(n) ' Let n = pi where P is an odd prime. When i = 1 ,  this lemma 
reduces to Theorem 1 1 .3 .  We proceed by induction. We need to show that 
if pi divides Qrn then pHI divides Qprn .  

I f  pi divides Qrn, then i t  also divides Urn . B y  Lemma 1 1 .4 and the bino­
mial expansion, we have that 

(trn + Urn X V3)P 
t!:.. + P x t!:..- l x Urn X V3 

+ P x (p - 1 )  x tp-2 x u2 x 3 + . . . 
1 x 2 rn rn 

+ U!:.. X 3(p- I ) /2 x V3. 

Comparing coefficients of V3 on both sides yields 

tp- l P x (p - 1 )  x (p - 2) 
x tp-3 x u3 x 3 p x rn X Urn + l x 2 x 3 rn rn 

+ . . . + U!:.. X 3(p- I ) /2 . 
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Since pi divides Urn and i is at least 1 ,  pHl divides each term on the 
right side of the equality above, and so it divides upm . Since p is odd and 
u and Q only differ by a factor which is a power of 2 ,  pHl also divides Qpm . 

Q.E.D.  

Lemma 1 1 . 7  Let m and n be positive relatively prime odd integers which 
are not divisible by 3. Let i = 1j;(m) and j = 1j;(n) , then m x n divides 
Qij/2 . 

Proof. Since 3 does not divide m or n, i and j are both even, and the lemma 
follows from Theorem 1 1 . 1 .  

Q.E.D.  

Theorem 11.8 Let n be an odd integer which is not divisible by 3 .  Then 
the rank of n is a divisor of 1j;( n) . 

Proof. This follows by induction on r ,  the number of distinct primes divid­
ing n, using Lemmas 1 1 .6 and 1 1 .7 .  

Q.E.D.  

Theorem 1 1 .9 Let n be a positive odd integer not divisible by 3 and let 
(3/n) be the Jacobi symbol ( =  1 if n == 1 or - 1 (mod 12) , = - 1 if n == 5 
or -5  (mod 12)) . If the rank of n is n - (3/n) , then n is prime. 

Proof. Assume that n is composite. We first consider the case where n is a 
power of a prime, say n = pi , i at least two. If the rank of n is n ± 1 then 
it is relatively prime to p. On the other hand, by Theorem 1 1 .8 ,  the rank 
must divide 

1j;(n) = (p - (3/p) ) X pi - l , 

and so the rank must divide p - (3/p) . But the rank of n is at least pi - 1 
which is strictly larger than p - (3/p) . 

If n is divisible by at least two distinct primes, say 

n = p�' X . • •  X p�r , then 
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'I/J( n) 2 1 -r 
X (PI - (3/pd) X p�l - l 

x . . .  X (Pr - (3/Pr ) ) x p�r - l 

2 x n x  (� _  (3/Pd ) x . . .  x (� _  (3/Pr ) ) 2 2PI 2 2pr 

< 

< 

2 x n x (� + _1 ) x . . .  x (� + _1 ) 2 2PI 2 2pr 

2 x n x (p�; 1 ) x . . .  x (p;� 1 ) 
2 x n x  (� : !) x (� : �) 
24 
35

n 

< n - (3/n) . 

Thus if n is composite then n - (3/n) cannot divide 'I/J(n) , and so the 
rank cannot be n - (3/n) . 

Q.E.D.  

Theorem 1 1 .9 gives a primality test which is remarkably like that es­
tablished in Chapter 9. If you know all of the distinct primes which di­
vide n - (3/n) , then you need only verify that for each prime divisor P of 
n - (3/n) , n divides Qn- (3/n) and it does not divide Q(n- (3/n) ) /p . Using 
Equations ( 1 1 .9) and ( 1 1 . 10) , we can express P2i and Q2i in terms of Pi 
and Qi ,  so that there is an exact analog of our exponentiation algorithm 
which enables us to compute any specific Qj in time proportional to log j .  
Keep in mind, however, that if n is prime there is no guarantee that the 
rank of n will be n - (3/n) . All we know for certain is that the rank will 
divide n - (3/n) . Much of the time, this particular test will be inconclusive. 

If 3 is a quadratic residue mod n ,  then this test of primality rests on 
being able to factor n - 1 ,  and we gain nothing over the primality test 
established in Chapter 9. On the other hand, if 3 is not a quadratic residue 
mod n, then we are looking for the factorization of n + 1 .  Sometimes it is 
easier to factor n + 1 than n - 1. One such instance is when we want to 
decide if a Mersenne number M(p) = 2P - 1 is prime. We will show that 
for all Mersenne numbers M(p) , the Jacobi symbol (3/M(p) )  is - 1 .  And 
as we will see in the next section , when M(p) is prime its rank is M(p) + 1 .  
In  this particular instance, this test i s  always conclusive .  
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1 1 . 5 The Lucas-Lehmer Algorithm Explained 

Theorem 1 1.10 Let M(n) = 2n - 1 where n is odd and at least 3. M(n) 
is prime if and only if M(n) divides P(M(n)+ I ) /2 = P2n - l . 

Proof Since 4 is congruent to 1 mod 3, every even power of 2 is congruent 
to 1 mod 3, and so every odd power of 2 is congruent to 2 mod 3. This 
implies that M(n) = 2n - 1 is congruent to 1 mod 3. 

Since n is at least 3, M(n) is congruent to 7 modulo 8 .  From these two 
congruences, we know that M(n) is congruent to 7 modulo 24. This implies 
that the Jacobi symbol (3/M(n) ) equals - 1 .  It also implies that the Jacobi 
symbol (-2/M(n) ) equals - 1 .  

We know that Pi and Qi are relatively prime and by Equation ( 1 1 . 13) 
that U2i = 2 X t i X Ui ' Thus if M(n) divides P2n- l , it must divide Q2n and 
it cannot divide Q2n - 1 . Therefore the rank of M(n) is 2n = M(n) + 1, and 
by Theorem 1 1 .9 M(n) must be prime. 

To prove the other direction , we first set j = i in Equations ( 1 1 .9) and 
( 1 1 . 1 1 ) :  

t2i t; + 3u; , 
(_2) i t; - 3u; ' 

By adding this pair of equations we get 

i 2 t2i + (-2)  = 2ti · ( 1 1 . 19) 

Now if M(n) is prime, then let i = (M(n) + 1 ) /2 = 2n- 1 in Equation 
( 1 1 . 19) 

Using Equation ( 1 1 .9) to rewrite t2n yields 

2 2 - t 3 2 ( 2 ) (M(n) - I ) /2 t2n - 1  - M(n) + X UM(n) - X - . 

From the congruences ( 1 1 . 1 7) and ( 1 1 . 18)  as well as Corollary 7. 1 ,  this 
becomes 

2t�n - l == 1 + 3 x (3/M(n) ) - 2 x ( - 2/M(n) ) (mod M(n) ) .  

Using the values for the Jacobi symbols which were established at the be­
ginning of this proof, we see that the right-hand side is zero, and so M(n) 
divides the left-hand side, which means it must divide P2n- l . 

Q.E.D.  
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Equation ( 1 1 . 19) can be used to very speedily calculate P2n- 1 . It is equiv­
alent to the following equality 

( 1 1 .20) 

provided i is even. Let St = 2P2t , then Sl = 2P2 = 4 and the equation just 
given translates as 

St+ ! = S; - 2 .  ( 1 1 .2 1 )  

Theorem ( 1 1 . 10) says that M(n) i s  a prime i f  and only i f  M(n) divides 
Sn- 1 ,  and this is precisely Algorithm 2 .9 .  

The reader has probably guessed by now that there is nothing partic­
ularly magical about the continued fraction expansion of the square root 
of 3. Similar properties hold for the continued fraction expansion of the 
square root of other positive integers which are not perfect squares. As we 
will see, however, there are related sequences which are easier to handle 
than our sequences I{ and Qi ' These are called Lucas sequences, which 
will be discussed in the next chapter. 
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1 1 . 6 EXERCISES 

1 . 1 1  Prove that in Algorithm 10 .5 ,  an equivalent formula for generating the 
next value of Ci is given by 



n - B� 
Ci = 

C ' . 
i- I 
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While this has the disadvantage of involving a division, that division must 
be exact .  Especially in hand calculations, the exactness of the division can 
serve as a check that no errors have been made. 

1 1 . 2 Write a program to implement CFRAC and use it to factor 

31 61907 57417 40159. 

1 1 .3 What are the possible ranks of 29, 3 1 ,  37, and 41? Determine the rank 
of each of these four primes by just using the table of values of Qi provided. 

1 1 .4 Compute 1j;(n) for n = 35, 49, and 715 .  

1 1 . 5  Find the rank of 35 ,  49 ,  and 715 .  

1 1 .6 Define the rank mod 5 of m to be the smallest integer e such that m 
divides the Qi generated by Algorithm 10 .5  with n = 5 .  Find the rank mod 
5 of every prime less than 50. Verify that it divides p - (5Ip) . 

IN ALL OF THE REMAINING EXERCISES, Pi AND Qi ARE THE 
SEQUENCES GENERATED BY ALGORITHM 10 .5  WITH n = 5. 

1 1 .  7 Find a and b such that 

1 1 .8 Find formulas like Equations ( 1 1 .9) and ( 1 1 . 10 )  for PHj and QHj . 

1 1 .9 Prove that 

Pi-j ( - I )j X (Pi x Pj - 5 X Qi x Qj ) , 
Qi-j (- I )j X (Qi x Pj - P; x Qj ) .  

1 1 . 10 Use the results of Exercises 1 1 .8 and 1 1 .9  to prove that i f  j is a 
multiple of i ,  then Qj is a multiple of Qi . 

1 1 . 1 1  Use the results of Exercises 1 1 .8 and 1 1 .9 to prove that if j is an odd 
multiple of i then Pj is a multiple of Pi . 
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1 1 . 1 2 Let e be the rank mod 5 of m. Prove that m divides Qi if and only 
if e divides i .  

1 1 . 13  Prove that if p i s  any odd prime then the rank mod 5 of  p divides 
p - (5Ip) · 

1 1 . 14  If n is odd and relatively prime to k, define the function 

( 1 (kip) ) '¢(k , n) = 2n x n 2 - � , 
where the product is over all primes p which divide n. Verify that ,¢(n) = 

'¢(3, n) . 

1 1 . 1 5  Prove that if n is a power of an odd prime then the rank mod 5 of n 
divides '¢(5 ,  n) . 

1 1 . 16 Let m and n be positive ,  relatively prime odd integers which are not 
divisible by 5. Prove that if i = ,¢(m) and j = '¢(n) then m x n divides 
Qij/2 . 

1 1 . 1 7 Prove that if n is odd and not divisible by 5 then the rank mod 5 of 
n divides '¢(5, n) . 

1 1 . 18 Prove that if n is a positive odd integer not divisible by 5 whose rank 
mod 5 equals n - (5In) , then n is prime. 

1 1 . 19  Use the results of Exercises 1 1 .8 and 1 1 .9 to find an algorithm that 
will compute Pj in time proportional to log j .  

1 1 . 20 Let m = 2n  - 1 .  Prove that the Jacobi symbol (5Im) i s  - 1 i f  and 
only if n == 2 or 3 (mod 4) . 

1 1 . 2 1  Find an algorithm based on the results of Exercises 1 1 .8 and 1 1 . 18 
that wil l  decide if M(p) = 2P - 1 is prime when p == 3 (mod 4) . 



1 2  

Lucas Sequences 
"The Mathematicians are a sort of  Frenchmen: when 
you talk to them, they immediately translate it into 
their own language, and right away it is something 
utterly different ." 
- Johann Wolfgang Von Goethe 

1 2 . 1 Basic Definitions 

What really made everything tick in Chapter 1 1  was Lemma 1 1 .4 : 

Unfortunately, few continued fraction expansions satisfy such a nice re­
lationship. It was Lucas' idea to concentrate on those sequences that do 
whether or not they arise from a continued fraction expansion. 

Definition: Let D be an integer congruent to 0 or 1 modulo 4 which is not 
a perfect square and let P be an integer with the same parity as D so that 
4 divides p2 - D. Then the Lucas sequences {Ui } and {Vi}  for P and D 
are defined by 

Note that if we take D = 12  and P = 2 :  

Vi + Ui X 2 x v3 = 2 x ( 1  + v3) i , 

then Vi is twice ti as defined in Chapter 1 1  and Ui is the same as Ui as 
defined in Chapter 1 1 .  

Lemma 12.1 The Lucas sequences for P and D satisfy 

1 1 
- P  x V; + - D  x U 
2 l 2 

" 

1 1 - V; + - P x U . 
2 ' 2 ' 
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Proof 

Ti X (P + v'l5)i+ l 

T l x (\;i + Ui X v'l5) X (P + v'l5) 
1 
2 (P x \;i + D X Ui + (\;i + P x Ui ) x v'l5) .  

The lemma now follows by comparing coefficients. 

Q .E .D.  

Definition: Given parameters P and D for Lucas sequences, we define the 
parameter Q to be 

Q = (P2 _ D)/4. 

Lemma 12.2 For any pair of Lucas sequences, we have that 

Proof 

v.2 - D X U2 t t (\;i + ui v'l5) x (\;i - ui v'l5) 
2 1 -i x (P + v'l5)i X 2 1 -i X (P - v'l5)i 

4 X 4-i X (P2 _ D)i = 4Qi . 

Q.E.D.  

Corollary 12 .3  Any common divisor of Ui and \;i must divide 4Qi . 

Theorem 12 .4 The Lucas sequences for P and D are recursively gener­
ated by 

2 ,  
P, 

0 ,  
1 ,  

Ui+ l P x Ui - Q X Ui- 1 , 
\;i+ l P x \;i - Q X \;i- I · 
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Note that i f  P = 1 ,  D = 5 ,  and Q = - 1 ,  then the Lucas sequence Ui 
is the familiar Fibonacci sequence: 1 ,  1 ,  2, 3, 5, 8, 13 ,  . . . . Often we will 
begin by specifying the values of P and Q and thus the recursion which we 
want . The value of D is then given by 

D = p2 - 4Q. 

Proof The initial conditions are readily verified from the definition. Using 
our definition of Vi and Ui we have that 

21 - ( i+ l )  x (P + v'I5)i+ l 

2 1 -i X (P + v'I5)i- l X 2- 1 X (P2 + 2Pv'I5 + D) 

2 1 - i X (P + v'I5)i- l X (P2 + Pv'I5 + (D _ p2 )/2)  
2 1 -i x (P + v'I5)i- l X (P2 + Pv'I5 - 2Q) 
2 1 -i X (P + v'I5)i X P - 21 - (i- l ) x (P + v'I5)i- l X Q 
P x (Vi + ui v'I5) - Q x (Vi- l + Ui- 1 v'I5) 

(P X Vi - Q x Vi-d + (P x Ui - Q x Ui- d v'I5. 

Q.E .D .  

Lemma 12 .5  The following equalities hold for the Lucas sequences defined 
by the parameters P and D .  

U2i = Ui X Vi ,  

2Qj x V; . = V; x V - D x U x U · ' -J ' J ' J ' 

2Qj x U · = U x V - U x V; , -J ' J J " 

( 1 2 . 1 ) 

( 1 2 . 2 )  

( 12 .3) 

( 1 2 .4) 

( 1 2 .5) 

( 12 .6) 

( 12 . 7) 
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Proof From the definition of Vi and Ui we have that 

2 1 -i-j X (P + VD)i+j 

1 
2 (Vi + Ui x VD) X (Vj + Uj x VD).  

Equations ( 1 2 . 1 )  and ( 12 .2 )  follow by multiplying out the right-hand side 
and then comparing coefficients. Equation ( 12 .3) is the special case of Equa­
tion ( 1 2 . 1 ) where i = j .  

I t  follows from Lemma 1 2 . 2  that the inverse of Vj + uj'l15 is 

(V, U ·  0) - 1 = Vj -
uj'l15 

J + J V 1J 4Qj ' 

We therefore have that 

Vi-j + Ui-j X VD 21 -i+j X (P + VD?-j 

(Vi + Ui VD) x 2 x (Vj + Uj VD)- l 

(Vi + ui JD) x (Vj - uj JD) 
2Qj 

Equations ( 1 2 .4) and ( 12 .5)  now follow by multiplying out the right-hand 
side and comparing coefficients .  

If we add Equations ( 12 .2 )  and ( 1 2 .4) and then divide through by 2 we 
get 

Equation ( 12 .6) is the case j = i while Equation ( 12 .7 )  is the case where i 
is replaced by i + 1 and then j is set equal to i .  

Q.E.D.  

1 2 . 2  Divisibility Properties 

All of the structure that we found in Chapter 1 1  also exists for these se­
quences. 

Theorem 12.6 Let { Vi } ,  {U; }  be a pair of Lucas sequences and let p be 
an odd prime. If p divides Ui and j is any multiple of i, then p divides Uj . 
If p divides Vi and j is any odd multiple of i ,  then p divides Vj .  
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Proof The proof exactly follows that of Theorem 1 1 . 1 .  For the first part 
we use Equation ( 1 2 . 1 ) .  For the second part we combine Equations ( 1 2 .2 )  
and ( 1 2 .3) to get that 

2\0+2i = \0 X V2i + D x Uj X Ui X Vi · 

Thus if p divides Vi and \0 ,  it also divides \0+2i . 

Q .E .D .  

Theorem 12.7 Let m be an integer which is relatively prime to 2Q and let 
e be the smallest positive integer such that m divides Ue . Then m divides 
Ui if and only if e divides i .  

Proof Let m divide Ui where i = q x e + r where r is at least 0 and less 
than e. If r is not zero, then by Equation ( 1 2 .5 )  

2Qqe x Ur = Ui X Vqe - Ueq X Vi , 

Since m is relatively prime to 2Q, it must divide Un contradicting the min­
imality of e .  

Q .E .D .  

Definition: Let m be an integer which is relatively prime to 2Q. The rank 
of m (relative to P and D) is the smallest positive integer e such that m 
divides Ue . 

Theorem 12 .8  If p is a prime which does not divide 2Q, then the rank of 
p divides p - (D / p) where (D / p) is the Legendre symbol. Furthermore, if p 
does not divide 2Q x D then 

Vp- (D/p) == 2 x Q( 1 - (D/p) ) /2 (modp) . 

Proof Using the definit ion of the Lucas sequences , we have that 

Since 2 has an inverse modulo p, 2 1 -p is congruent to 1 modulo p. If we 
expand the right-hand side by the binomial theorem and then compare 
coefficients, we get that 

pP (mod p) 
P (mod p) , 

( 12 .8)  
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Up == D(p- I ) /2 (mod p) 
== (Dip) (mod p) . 

Now using the equations of Lemma 12 .5 ,  we see that 

2Q X Up- I 

Up X VI + UI X Vp 
(Dip) x P + P (mod p) 
P x ( (Dip) + 1 )  (mod p) . 

Up x P - Vp 
(Dip) x P - P (mod p) 
P x ( (  DIP) - 1 )  (mod p) . 

Vp x P +  D x Up 
p2 + D x (DIP) (mod p) . 

2Q X Vp- I = Vp X P - D x Up 
== p2 _ D x (Dip) (mod p) . 

( 12 .9) 

( 12 . 10) 

( 12 . 1 1 ) 

( 1 2 . 12) 

( 12 . 13) 

If p divides D, then (Dip) = 0 and by Equation ( 1 2 .9) p divides Up. If 
(Dip) = - 1 ,  then p divides Up+ 1 and 

2Vp+ 1 == 4Q (mod p) . 

If (DIp) = 1 ,  then p divides Up- I and 

2Q X Vp- I == 4Q (mod p) . 

Q .E .D.  

Henceforth ,  we shall assume that p does not divide 2Q. If  p does not 
divide D, then p - (Dip) is even. Equation ( 1 2 .3) then says that 

Up- (D/p) = U(p- (D/P) ) /2 x V(p- (D/p ) ) /2 . 

By Theorem 12 .8  p divides the left-hand side of this equality. By Corollary 
12 .3  p can divide at most one of the factors on the right-hand side. The 
following theorem says which one. 
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Theorem 12.9 If p does not divide 2Q x D, then p divides U(p- (D/p) ) /2 
if and only if (Q/p) = l .  

Proof From Equation ( 1 2 .6) we have that 

2 . 
Vi = V2i + 2Q' . 

Setting i = (p - (D/p»/2 and using the results from Theorem 1 2 . 8 yields 

l-(;- (D/p) /2 Vp- (D/p) + 2Q(p- (D/p) ) /2 

2Q( 1 - (D/p) ) /2 x ( 1 + Q(p- I ) /2 ) (mod p) 
2Q( 1 - (D/p) ) /2 x ( 1  + (Q/p» (mod p) . 

Thus p divides ¥rp- (D/p ) ) /2 if and only if (Q/p) = - 1 .  

1 2 . 3  Lucas ' Primality Test 

Q.E .D .  

We continue to parallel what was done in  Chapter 1 1 ,  now developing a 
primality test that relies on being able to factor p - (D/p) . 

Definition: Given P and D, let n be a positive integer relatively prime to 
2Q with factorization given by 

n = p�l X p�2 X . . .  X p�r . 

We define the function 'I/J(n) (or 'I/J(D, n) if the parameter D needs to be 
specified) to be 

Lemma 12. 10 If n is a power of a prime and if n is relatively prime to 
2Q, then the rank of n divides 'I/J(n) . 

Proof Let n = pi where p is an odd prime which does not divide Q. If 
i = 1 ,  this lemma reduces to Theorem 1 2 .8 .  We proceed by induction on i .  
Let us assume that pi divides Urn . We need t o  b e  able t o  show that pH I 
divides Upm • 

By the definition of the Lucas sequences , we have that 
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If we expand the right-hand side by the binomial theorem and compare 
coefficients of .Jj5, we see that 

v.p- l U + P x (p - 1 )  x (p - 2) 
X v.p-3 

X U3 
X D p x m X m 1 x 2 x 3  m m 

+ . . . + u::,. X D(p- I ) /2 . 

Since pi divides Um and i is at least 1 ,  pH I divides each term on the right­
hand side of the above equality. 

Q.E .D.  

Lemma 1 2. 1 1  Let m and n be positive relatively prime integers which are 
each relatively prime to 2Q x D.  Let i = 1/J( m) and j = 1/J( n) , then m x n 
divides Uij /2 . 

Proof Since m and n are relatively prime to D, i and j are both even. Thus 
(i x j )/2 is a multiple of i and is also a multiple of j .  It follows that both m 
and n divide Uij/2 , and since they are relatively prime so does their product. 

Q.E.D.  

Theorem 1 2. 1 2  Let n be an integer which is relatively prime to 2Q x D. 
Then the rank of n is a divisor of 1/J(n) . 

Proof This follows by induction on r ,  the number of distinct primes divid­
ing n, using Lemmas 1 2 . 1 0  and 1 2 . 1 1 .  

Q.E.D.  

Theorem 12. 13 Let n be a positive integer which is relatively prime to 
2Q x D and let  (Din) be the Jacobi symbol. If the rank of n is n - (Din) 
then n is prime. 

Proof The proof is identical to that of Theorem 1 1 .9 except that 3 is re­
placed by D. 

Q.E .D .  
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In practice, what this all boils down to is the following. Suppose that n 
is a suspected prime and that we do not know the factorization of n - 1 
but we do know the factorization of n + 1 .  Say, 

n + 1 = pfl X • • •  X p�r . 

We can always find a D such that (Din) = - 1 .  In practice , we choose 
pairs (P, Q) until we find one for which (Qln) = - 1  and (Din) = - 1  
where D = p2 - 4Q .  We check that gcd(n ,  2Q x D )  = 1 and compute Un+ 1 
and U(n+ 1 ) /p for each prime p dividing n + 1 .  If the first is divisible by n 
and none of the others are divisible by n, then we know that n is prime. If 
Un+ 1 is not divisible by n, then we know that n is composite. Otherwise, 
the test is inconclusive and we need to choose new values for P and Q .  

This can be simplified slightly using the fact that 2 must be one of  the 
primes dividing n + 1 .  It is enough to check that n divides Vcn+ 1 ) /2 which 
implies that it divides Un+ 1 but not U(n+ 1 ) /2 , and then to check for each i 
from 2 to r that n does not divide Vcn+1 ) /2Pi . Since we have chosen Q such 
that (Qln) = - 1 ,  Theorem 12 .9 tells us that if n does not divide Vcn+1 ) /2 
then n cannot be prime. On the other hand, if n does divide Vcn+ 1 )/2Pi for 
some i between 2 and r, that only means an inconclusive choice of Lucas 
sequences and one must choose a different value for P or different values 
for both P and Q.  

This test i s  predicated on the assumption that if n is prime, then there 
is some Lucas sequence for which the rank of n is n + 1 .  A proof that this 
assumption is valid is outlined in Exercises 13 . 16  and 13 . 1 7. 

Brillhart , Lehmer, and Selfridge have also published several theorems 
simila� to Pocklington's Theorem (Theorem 9. 1 1 )  in which it is sufficient 
to partially factor n + 1 or to prove primality from a partial factorization 
of n + 1 together with a partial factorization of n - 1 .  

1 2 . 4  Computing the V ' s  

Values of Vi can be computed very quickly. Equations ( 1 2 .6) and ( 1 2 . 7) tell 
us how to compute V2i , V2i+ 1 ,  and V2i+2 from Vi and Vi+ l . We keep either 
V2i and V2i+1 or V2i+ 1 and V2i+2 , depending on the binary expansion of t .  

This should look very familiar. I t  i s  Algorithm 8.3 with h = P and n = Q.  
We now see that we have all the ingredients for a proof of  Theorem 8 .2 .  

Proof of Theorem 8.2: The sequence Vi given in this theorem i s  in fact the 
Lucas sequence Vi for P = h and Q = n. Since D = p2 - 4Q , the condition 
on the Legendre symbol is simply that 

(Dip) = - 1 .  
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The equation for V2i is Equation ( 1 2 .6) . Using this equation and Theorem 
1 2 .8 with Q = n we have that 

Vp+ l  + 2n(p+ I ) /2 

2n + 2n x (nip) (mod p) . 

Now we are under the assumption that 

x2 
== n (mod p) 

has a solution . Therefore (nip) = 1 ,  and so 

4n (mod p) , 

n (mod p) . 

Q.E.D.  

One can also use the Lucas sequences to build a p + 1 method of factor­
ization analogous to the Pollard p - 1 method . This factorization method 
was first described by Hugh Williams. 

Let us assume that n is composite and p is an unknown prime dividing 
n with the property that p + 1 is only divisible by small primes. More 
specifically, let us assume that p + 1 divides 10000 ! .  If we generate a Lucas 
sequence with a value of D which satisfies (Dip) = - 1 ,  then p will divide 
UlOOOO! and so 

gcd( n, UlOOOO! ) > 1 . 

This gcd will be less than n as long as there is at least one prime, say q, 
dividing n and such that q - (D I q) does not divide UlOOOO! ' 

There are two problems that we run into here that we did not encounter 
with the p - 1 method . The first involves the computation of UlOOOO! ' We 
were able to compute bIOOOO! very efficiently by using bk ! MOD n to compute 
b(k+ l ) ! MOD n in only about log(k+ l )  steps. In fact , we needed to compute 
the intermediate values in order to increase our chances of picking up one 
of the prime divisors of n without picking them all up. 

In general , there is no simple way of computing Ukm directly from Um . 
Furthermore, Algorithm 8.3 tells us how to compute the values of Vi ,  not 
Ui . Perhaps surprisingly, we do have the following result for the V's .  
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Lemma 12 . 14 Define Ui (P) and Vi (P) to be the ith terms in the Lucas 
sequences with parameters P, Q = 1 ,  and D = p2 - 4 .  We then have the 
equalities 

( 1 2 . 14) 

( 12 . 15 )  

Proof Let P' = Vk (P) and Q' = 1 ,  then the corresponding D' i s  given by 
p,2 - 4  and by Lemma 12 . 2  we can rewrite Vk (p) 2 in terms of D and Uk (P) 
so that 

The lemma now follows from the definition of the Lucas sequences: 

2 1 -mk X (P + v0)mk 

2 1 -m X (2 1 - k X (P + v0)k )m 

2 1 -m X (Vk (P) + Uk (P) x v0)m 

2 1 -m X (P' + -.fiji)m 

Vm (P' ) + Um (P' ) x -.fiji 

Vm (P' ) + Um (P' ) X Uk (P) x v0. 

Q.E .D .  

We see that it i s  much easier to  compute VlOOOO! than UlOOOO! ' Fortunately, 
we can use VlOOOO! to locate the prime factors, p, of n for which p+ 1 divides 
10000 ! .  

Lemma 12 . 15  Let Vi be a Lucas sequence with parameters P, Q = 1 ,  and 
D = p2 - 4. Let p be a prime such that (Dip) = - 1  and let m be a positive 
integer, then 

Vm(p+ l ) == 2 (mod p) . 

Proof The case m = 1 is given by Theorem 12 .8 .  Since p divides Um(p+l ) , 
we have that 
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Vm(p+ l ) + Um(p+ l ) X "ff5 (mod p) 

2 ' -m x (TP x (P + "ff5)p+ l )m (mod p) 
2 1 -m X (Vp+ l  + Up+1 X "ff5)m (mod p) 
2 1 -m X 2m == 2 (mod p) .  

Therefore, if P + 1 divides 10000! then p will divide VlOOOO! - 2 . 

Q.E.D.  

We now come to our second problem. The prime p is  unknown. How can 
we pick a P such that D = p2 - 4 satisfies (D / p) = - I? The answer is 
that we cannot , not with certainty. But we do have roughly a 50-50 chance 
that a randomly chosen P will work, provided of course that p + 1 really 
does have only small prime divisors. In practice, one tries several different 
values of P, say at least three . If none of those work, then there probably 
is no prime divisor p of n such that p + 1 divides 10000 ! ,  and we move on 
to a different factorization technique. 

Algorithm 12 . 16  Williams ' p + 1 method. Our input consists of m ,  the 
number to be factored, a randomly chosen integer P, and max, the maximum 
number of cycles to go through before aborting. 

INITIALIZE : READ m ,  P ,  max 
count +-- 1 
v +-- P 

count is one more than the number of v 's that have been 
computed. 

FIND_lOTH_V : WHILE GCD (v-2 , m) = 1 AND count � max DO 
FOR i = 1 to 10 DO 

v +-- NEXTV ( l , P , count , m) 
P +-- v 
count +-- count + 1 

TERMINATE : WRITE GCD (v-2 , m) 

NEXTV (n , h , j , p) : 
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This is Algorithm 8. 3, returning the final value of v to the 
caller. 

GCD (a , b) : 

This is Algorithm 1 . 7, returning the final value of u to the 
caller. 
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1 2 . 5  EXERCISES 

12 . 1 Why is D restricted to be congruent to 0 or 1 modulo 4 in the definition 
of a Lucas sequence? 

12 . 2  Prove that for any prime p, 

(a + b)P  == aP + bP (mod p) . 

12 .3  Prove that Ui and Vi are always integers. 

12 .4 Compute the first fifty terms of the Lucas sequences for P = 1 ,  D = 5 .  
Compare them with the first fifty terms of  Pi and Qi  in  the continued 
fraction expansion of the square root of 5 .  

12 .5  Compute the first fifty terms of  the  Lucas sequences for P = 3 ,  D = 5 .  
Compare them with the  sequences in  Exercise 12 .4 .  



192 12 .  Lucas Sequences 

12 .6  For each of the three pairs of sequences described in Exercises 12 .4 
and 12 . 5 ,  find the rank of each of the primes p = 5 , 7 , 1 1 , 13 ,  and 17 .  Verify 
that in each case the rank of p divides p - (5Ip) . 

1 2 . 7  If we extend our notion of an extended integer to also include 

a + bv'D 
2 

when D == 1 (mod 4) and a and b are both odd, then 2 + V5, ( 1  + V5)/2, 
and (3 + V5)/2 are all units. What is the relationship among them? 

12 . 8  Let a and b be the roots of 

x2 - Px + Q = o. 

Prove that the Lucas sequences Vi ,  Ui for P and D = p2 - 4Q satisfy 

12 .9  The Fibonacci sequence is defined by Fl = F2 = 1 ,  Fi+l  = Fi + Fi- l . 
Show that 

p _ ( 1  + V5) i - ( 1  - V5) i 
• -

2V5 

12 . 10 Consider the  Lucas sequences for P = 1 ,  D = 5 .  Use Equations 
( 1 2 . 10 )- ( 1 2 . 13 )  to compute the congruence class modulo p of Up- l , Up+ l , 
Vp- l and Vp+ l  for each of the following primes: 

1 70 809, 43054 72081 ,  3 83725 33757. 

IN EXERCISES ( 1 2 . 1 1 ) - ( 1 2 . 14) , Vi IS A LUCAS SEQUENCE FOR P 
AND D = p2 - 4. 

1 2 . 1 1  Prove that if p is an odd prime that does not divide D, then Vp-(D/p) 
is congruent to 2 modulo p. 

1 2 . 1 2  We shall call n a Lucas pseudoprime for the base P if n is not prime 
but it is relatively prime to 2D and Vn- (D/n) is congruent to 2 modulo n.  
Find the Lucas pseudoprimes for the base 3 which are less than 500. 

1 2 . 1 3  Prove that if p is a prime and V2i is congruent to 2 modulo p, then 
Vi is congruent to either 2 or -2 modulo p. Show that this implies that if 

p - (Dip) = 2t x S , 
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where t is at least 1 and s is odd , then p divides exactly one of the following: 

12 . 14 We shall call n a strong Lucas pseudoprime for the base P if it is 
not prime but it is relatively prime to 2D and it divides exactly one of the 
t + 1 expressions in Exercise 12 . 13 .  Show that a strong Lucas pseudoprime 
is always a Lucas pseudoprime. Find the strong Lucas pseudoprimes for 
the base 3 which are less than 500 . 

12 . 15 Compute '¢(5,  38 913)  and '¢(7,  738 261 ) .  

12 . 16 Compute '¢(D, n )  for D = 3 ,  5 ,  and 7 and all values of n less than 
50 for which the function is defined . 

12 . 17  Prove that if Vi is a Lucas sequence for P and D = p2 - 4 and if n 
is relatively prime to 2D, then for any integer m 

Vm x 1/>(n)+ l == Vl (mod n) . 

This identity establishes an RSA-type crypto-system based on Lucas se­
quences. If p and q are odd primes and n = p x q, choose an e which is 
relatively prime to p - 1 ,  P + 1 ,  q - 1 ,  and q + 1 .  The values of n and e 

are published. The encoder converts his message to a number P less than 
n. The encoded message is then the term Ve of the Lucas sequence for P 
and D = p2 - 4, where we can safely assume that n and D are relatively 
prime. If d is the inverse of e modulo ,¢(n) , then Vde == Vl == P (mod n) .  
Furthermore, by Lemma 12 . 14 ,  Vde is the rf h  term in the Lucas sequence 
with P = Ve and D = Ve2 - 4, so that it is easily computed . 

The only drawback to this version of the RSA crypto-system is that the 
value of ,¢(n) depends on the values of (DIp) and (Dlq ) ,  which depend 
on the message being sent . However, there are only two possible values for 
each, so only four possible values of ,¢(n) . One computes the four inverses 
of e, one for each possible value of ,¢(n) . One of those four values of d will 
successfully decode the incoming message. 

12 . 18  For the Lucas sequence with P = 5, Q = 1 ,  compute Vi for each of 
the following three values of i :  

1067, 235 061 ,  892 466 712 .  

1 2 . 19  Use the Lucas sequence primality test to  prove that each of  the 
following is really a prime: 

8779, 98 641 ,  290 249. 
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1 2 .20 Use the Lucas sequence primality test to prove that 

14357 40214 80139 

is prime. 

12 . 2 1  Use Williams ' p + 1 algorithm to factor: 

41 953 267 and 24839 76259. 

12 .22 Use Williams' p + 1 algorithm to factor: 

69 70561 65709. 



1 3  

Groups and Ellipt ic C urves 

1 3 . 1 Groups 

"The Theory of Groups is a branch of mathematics in 
which one does something to something and then com­
pares the result with the result obtained from doing 
the same thing to something else, or something else to 
the same thing."  
- James R. Newman (The World of Mathematics ) 

Something has been going on in the past few chapters that we should get 
such very similar factorization techniques and primality tests from con­
structions as distinct as exponentiation and Lucas sequences. If we can 
understand the general framework of what works, it may help us find more 
specific examples in which the tests are faster and more efficient . With that 
hope in mind , we introduce some notation . 

Definition: A group, G is a set together with a binary operation , say 0, 
such that 

1 .  The operation is closed. If x and y are in G, then xoy is also in G. 

2 .  The operation is associative. If x ,  y ,  and z are in G, then (xoy )oz = 
xo(yoz ) . 

3. G contains an identity, say e .  For each x in G, xoe = eox = x .  

4. Each element of  G has an inverse. I f  x is in G, then there i s  a y in G 
such that xoy = yox = e .  

The integers with addition form a group .  Zero i s  the identity and -x is 
the inverse of x .  This group is called Z. 

If n is any posit ive integer, then the positive integers less than and rela­
tively prime to n together with multiplication modulo n form a group. For 
example, if n = 12 then 1 is the identity, 5, 7, and 1 1  are the remaining 
elements and they are each their own inverses . If n = 9 then 1 is the iden­
tity, 5 is the inverse of 2, 7 is the inverse of 4, and 8 is its own inverse .  
Lemma 4. 1 guarantees that we always have a unique inverse . We shall call 
this group U(ZjnZ) .  
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For a much more complicated example, we consider the group that sits 
behind what is happening in the Lucas sequences when Q = 1, what we 
will call L(D,  n) where D is congruent to 0 or 1 modulo 4 and n is relatively 
prime to 2D. The elements of L(D, n) are pairs of residues modulo n, say 
(a, b) , satisfying 

a2 - D x b2 == 4 (mod n) . 

If (a, b) and (x, y) are both elements of L(D,  n) , then the binary operation 
is defined by setting 

n + 1  
-

2
- x (a x x + D x b x y) MOD n, 

(3 
n + 1  
-

2
- x (b x x + a x y) MOD n, 

and then 

(a, b)8(x, y) = (a, (3) . 

It is left as an exercise to verify that this operation is closed , associative, 
that (2 ,0) is the identity, and that the inverse of (a, b) is (a, -b) .  

Definition: The order of a group G ,  denoted by IG I , is the number of 
elements in G. 

For the three examples given above, the respective orders are I Z I = 00 ,  
I U(ZjnZ) 1 = ¢(n) , and IL(D,  n) 1 = 2T- 1 x 1/J(D, n) where r is the number 
of distinct primes dividing n and 1/J(D,  n) is the function defined in Section 
12 .3 .  The order of L(D,  n) is derived in the exercises. 

Definition: Given a group G with binary operation 8, identity e, and an 
element x in G, we define the powers of x in G as follows: 

x# - l the inverse of x,  
x#O e ,  
x#l  x ,  
x#2 x8x , 
x#3 x8x8x , 

and in general 

x#i = x8(x#(i - 1 ) )  = (x# - 1 )8(x#(i + 1 ) ) .  
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Definition: The order of an element x in G is the smallest positive integer 
i such that 

e = x#i. 

Lemma 13. 1 If the group G has finite order, then every x in G has a 
finite order. 

Proof Since x#i is always in G and G has only finitely many elements, we 
can find two positive integers i < j such that 

x#i = x#j = (x#i)8(x#(j - i ) ) .  

Since x#i i s  i n  G,  i t  has an inverse and so 

e = x#(j - i ) .  

Q .E .D .  

Theorem 13.2 If x has order i ,  then x#j = e if and only if i divides j .  

Proof If  j = m x i ,  then 

x#j = (x#i )#m = e#m = e .  

I f  x#j = e ,  then write j = m x i + r where 0 :S r < i .  Then 

e = x#j = (x#(m x i ) )8(x#r) = x#r. 

Therefore r = 0 by the minimality of i .  

Q .E .D.  

Theorem 13.3 If x is an element of G then the order of x divides the 
order of G. 

Proof Let HI be the set of al l  elements of G which can be written in the 
form x#i where i is a positive integer . The number of elements in HI is 
the order of x. Note that x,  the inverse of x,  and e are all in HI . If HI is 
all of G then the orders of x and G are equal and the theorem holds. 

If HI is not all of G, let a be an element of G which is not in HI . Let 
H2 be the set of elements of the form a8(x#i) where i is a positive integer 
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less than or equal to the order of x. If there are positive integers i and j 
less than or equal to the order of x and such that 

a8(x#i) = a8(x#j) ,  

then 

x#i = x#j, 

which implies that i equals j . Thus the elements of H2 are distinct . If any 
element of H2 were also in HI , say 

a8(x#i) = x#j, 

then 

a = x#(j - i) ,  

and so a would b e  i n  HI . Therefore all elements of HI and H2 are distinct 
and the number of elements in the union of HI and H2 is twice the order 
of x. If there are no other elements in G, then the order of G is twice the 
order of x and the theorem holds . 

We proceed by induction. Assume that we have constructed k sets HI , H2 , 
. . .  , Hk such that each set consists of elements of the form b8(x#i) where 
b is an element of G which does not appear in any of the preceding sets 
and i is a positive integer less than or equal to the order of x. Furthermore, 
we assume that these k sets have distinct elements so that their union has 
k x (order of x) elements. Finally, we assume that there is an element of 
G, say c, which is not in this union. We form the set Hk+ 1 of elements 
of the form c8(x#i) where i is a positive integer less than or equal to the 
order of x. The elements of Hk+ I  are distinct and if any of them were in 
a previous set , then c would be in that set . Therefore, the union of our 
k + 1 sets contains (k + 1 )  x (order of x) distinct elements. If this exhausts 
G, then the theorem holds. If not , then we can repeat our inductive step. 
Since the order of G is finite, we must eventually exhaust all of G. 

Q.E.D.  

1 3 . 2  A General Approach to Primality Tests 

Let n be a candidate for primality and assume that we have a group G 
whose elements are a subset of the residues modulo n or some subset of 
vectors of residues modulo n .  Let us further assume that the possible orders 
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of elements of G depend on the factorization of n in such a way that an 
element of order m can exist if and only if n is prime. We have this situation 
in U(ZjnZ) where an element can only have order n - 1 if n is prime . We 
also have it in L(D, n) where the order of each element divides '¢(D,  n) and 
so if we can find an element of order n + 1 or n - 1 then n must be prime. 

If we know the factorization of m, we can prove that an element x in G 
has order m if we can verify that 

x#m = e and x#(mjp) =1= e 

for every prime p dividing m. 
This procedure can be modified in the manner of Pocklington 's theorem 

(Theorem 9. 1 1 ) .  We first define two terms. 

Definition: We say that G is a group modulo n if its elements are vectors of 
residues modulo n and its binary operation is defined in terms of arithmetic 
operations modulo n.  If d is any divisor of n, then the restricted group 
modulo d, denoted Gld, is the group derived from G by reducing each 
coordinate modulo d. 

If n is composite then it is divisible by a prime less than or equal to the 
square root of n. Call this prime q .  In both of our examples, G is a group 
modulo n and the order of Glq  is at most q + 1 which is at most one more 
than the square root of n. If m is at least two more than the square root 
of n, then every element of Glq  has order strictly less than m. 

If there is  an element x in G such that 

x#m = e ,  

and for every prime p dividing m some coordinate of  x#(mjp) - e i s  rel­
atively prime to n, then the order of x in Glq  is m, contradicting the 
assumption that all elements of Glq  have order strictly less than m. Thus 
n must be prime. 

In practice , we may have to try several different elements before we find 
one which has order m. In our first example, this means choosing different 
bases b. In the second example, it means trying different choices of P. In 
the general situation, we want the group G to have a lot of elements of 
order m so that our odds of hitting one by chance are fairly high . Note 
that we do not want to invoke a primality test of this form unless we have 
a very high confidence that our number really is prime. If x does not have 
order m, it might be because n is composite or it might be only due to a 
poor choice of x. 

We sum up this approach in the following theorem. 

Theorem 13.4 Let n be a suspected prime and assume that we have a 
group modulo n, say G. Let G ld  be the restricted group modulo d and let e 
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be the identity in G. If we can find an element x in G and an integer m 
satisfying the following conditions, then n is prime: 

(1) The integer m is larger than the order of G l q  would be for any prime 
q dividing n and less than the square root of n.  

(2) x#m = e .  

(3) For each prime p dividing m, some coordinate of x#(m/p) - e is 
relatively prime to n .  

1 3 . 3  A General Approach to Factorization 

Both the Pollard p - 1 method and the Williams p + 1 method fit into this 
context of groups whose elements are vectors of residues modulo n .  We now 
let n be a number which is known to be composite and p be an unknown 
prime divisor of n. Let G be a group modulo n and Glp the restricted group 
modulo p. 

If the order of Glp is considerably less than the order of G, then we 
can hope to find an element x in G and an integer k such that x#(k! )  
is not the identity in G, but the corresponding computation in Glp does 
yield the identity of Glp. This means that there is at least one coordinate 
of x#(k ! )  - e which is not divisible by n, but all of the coordinates are 
divisible by p. Taking the greatest common divisor of n and the coordinate 
which is not divisible by n will yield a non-trivial divisor of n. 

In our first example, we choose a base b and compute 

gcd(bk ! - 1 ,  n) . 

In the second example, we choose the parameter P, set Q = 1 ,  and for the 
resulting Lucas sequence compute 

gcd(Vk ! - 2, n) . 

Note that since we do not know p in advance, we also do not know what 
value of k will work. In practice, we compute the gcd at regular intervals, 
say for every tenth value of k.  

Like the primality test , this algorithm could go on for a long time without 
yielding an answer. If n really is prime, it will only come up with inconclu­
sive results . There is also no way of knowing a priori that the order of Glp 
will divide k! for some prime p dividing n .  We observe in addition that this 
approach requires an efficient means of calculating at least one coordinate 
of x#(k! ) .  

We sum up this approach i n  the following theorem. 
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Theorem 13.5 Let n be a composite number and let G be a group modulo 
n. Let p be a prime dividing n and let G lp be the restricted group modulo p .  
If the order of Glp divides k ! ,  then p divides each coordinate ofx#(k ! ) - e .  If 
n does not divide the tth coordinate of x#(k ! )  - e , then the greatest common 
divisor of n and the tth coordinate of x#(k ! )  - e is a non-trivial divisor of 
n .  

1 3 . 4  Elliptic Curves 

All of this theory would be wasted if we did not have any more examples of 
groups modulo n with all the desired properties . But there is at least one 
more, it arises out of the arithmetic of elliptic curves . 

Consider the equation 

y2 = x3 + ax + b, 

where a and b are constants chosen so that 

4a3 
+ 27b =1= O. 

This merely guarantees that the cubic equation 

z = x3 + ax + b, 

( 1 3 . 1 )  

( 13 .2 )  

( 1 3 .3) 

has three distinct roots. Equation ( 13 . 1 )  is only solvable for y when the 
right-hand side is positive, and then y is merely + or - the square root of 
the right-hand side. If Equation ( 13 .3) has three real roots, then the graph 
of Equation ( 1 3 . 1 )  looks like Figure 2 .  

This curve has the curious property that i f  a non-vertical line intersects 
it at two points, then it will also have a third point of intersection . A 
tangent to the curve is considered to have two points of intersection at the 
point of tangency. We can compute the extra point of intersection using 
the following lemma. 

Lemma 13.6 Let (X l , yJ ) and (X2 ' Y2 ) be two points on the elliptic curve 
given by 

We assume that if Xl = X2 then YI =1= -Y2 . We do, however, permit the 
two points to be the same provided YI =1= O. The third point of intersection, 
(X3 , Y3 ) ,  is calculated in the following manner: 

If Xl =1= X2 , then set 
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If X l = X2 , then set 

We then have that 

FIGURE 13. 1 .  

.x = 3xi + a 

2YI 

X3 .x2 - Xl - X2 , 
Y3 .x x (x3 - xd + YI ' 

Proof The quantity .x is the slope of the line connecting our two points. 
This is clear if Xl =1= X2 . It needs to be proven if the x's are equal . Since 
both points satisfy Equation ( 13 . 1 ) ,  we have that 

yr - y� 
(YI - Y2 ) X (YI + Y2 ) 

X� - x� + a x (Xl  - X2 ) ,  
(X l - X2 ) x (xi + X l x X2 + X� + a) ,  
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xi + Xl X X2 + X� + a 

YI + Y2 
As X2 approaches Xl , the right-hand side approaches 

3xi + a 
2YI 

( 1 3 .4) 

Equation ( 13 .4) holds for any pair of points on our l ine, so we also have 
that 

A X (Y3 + yd 
A x (Y3 + Y2 ) 

Subtracting the second equation from the first yields 

Dividing both sides by Xl - X2 gives us that 

from which we can calculate X3 . The calculation of Y3 follows from the def­
inition of the slope of our line. 

Q .E .D .  

I t  should be clear from Lemma 13 .6 that if both points have rational 
coordinates then so does the third point . 

Definition: Given an elliptic curve and two rational points on that curve: 
(X l , yI ) and (X2 ' Y2 ) =1= (X l , -yd , we define a binary operation by 

where X3 and Y3 are defined by Lemma 13 .6. Note that the sum of two 
points is not the third point on that line, but the reflection across the x­
axis of that third point as shown in Figure 2 . It is still on the same elliptic 
curve. 

We now have a set , namely the rational points on an elliptic curve,  and 
a binary operation . We would like to make this into a group. To do this, 
we need to define (x, y)8(x, -y) , we need to find an identity, and we have 
to find inverses. We can solve all our problems with one stroke. 
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Definition: We define 00 to be the identity for the binary operation 8 and 
define 

(x, y)8(x, -y) = (x, -y)8(x, y) = 00 .  

The point 00 can be  thought of  as a point infinitely far north so that 
every vertical line passes through it . One of the beauties of this definition 
is that now every straight line which intersects the curve at two points also 
intersects at a third . 

Definition: Given an elliptic curve, 

let E(a, b) denote the group of rational points on the curve together with 
the point 00 at infinity with the binary operation 8 as defined above. 

1 3 . 5  Elliptic Curves Modulo p 

Definition: All of our arithmetic operations make perfectly good sense 
modulo n, provided that the denominators are relatively prime to n. Specif­
ically, we define the operation 8 modulo n by 

00 is the identity. 

If Xl == X2 (mod n) and Yl == -Y2 (mod n) , then 

If X l ¢ X2 (mod n) and if gCd(X l - X2 , n) = 1, then let s be the inverse 
of X l - X2 modulo n and define ,X by 

,X = (Yl - Y2 ) x s MOD n .  

If Xl == X2 (mod n) and if gcd(Yl + Y2 , n) = 1 ,  then Yl == Y2 (mod n ) , so 
let s be the inverse of 2Yl modulo n and define ,X by 

,X = (3 x xi + a) x s MOD n.  

Define X3 and Y3 by 

X3 (,X2 - Xl - X2 ) MOD n ,  
Y3 (,X X (X3 - Xl ) + yd MOD n.  

The binary operation 8 modulo n is then given by 
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when X3 and Y3 are defined. In particular, if n is an odd prime then our 
binary operation is always defined. 

Definition:  Let p be a prime larger than 3 and let a and b be integers 
chosen such that 

4a3 + 27b2 ¢. ° (mod p) . 

Then E(a, b) /p denotes the elliptic group modulo p whose elements are 
pairs (x, y) of non-negative integers less than p satisfying 

y2 == x3 + ax + b (mod p) , 

together with the identity, 00 ,  and whose binary operation is given by a 
modulo p as defined above. 

The machinery developed in Section 13 .2  and 13 .3 can now be brought 
into play. Given (x l , yd in E(a, b) /p, we define 

As an example, let p = 5, a = b = - 1 .  The points of E(- l ,  - 1 ) /5 must 
satisfy 

y2 == x3 - x - I (mod 5) . 

Note that x cannot be 3 because 23 is not a quadratic residue modulo 5 .  
The elements of our group are 

(0, 2 ) ,  
(0, 3) , 

( 1 , 2 ) ,  
( 1 , 3 ) ,  

I f  (X l , yt }  = (0 , 2 ) ,  then 

(2 , 0) , (4 , 2 ) ,  
(4, 3) , and 00 .  



206 13 .  Groups and Elliptic Curves 

(0, 2 )8(0, 2) 

( 1 , 2 ) ;  

( 1 , 2 )8(0, 2 )  

= (4, 3) ;  

(X4 ,  Y4 )  = (4.3)8(0, 2) 

(xs , ys ) 

(xs , YS )  

(2 , 0) ; 

(2 , 0)8(0, 2 )  

(4, 2 ) ;  

(4, 2)8(0, 2) 

( 1 , 3 ) ;  

( 1 , 3)8(0, 2 )  

(0 , 3 ) ;  

(0 , 3)8(0, 2) 

_ (3 x O - l ) x 4 
_ 1 - 0 0 
_ 1 x ( 1  - 0) + 2 

A (2 - 2) x 1 
X3 _ 0 - 1 - 0 

-Y3 - 0 x (4 - 0) + 2 

A (3 - 2) x 4 
X4 - 16 - 4 - 0 

-Y4 4 x (2 - 0) + 2 

A _ (0 - 2) x 3 
Xs _ 16 - 2 - 0 
-ys 4 x (4 - 0) + 2 

00 .  

_ (2 - 2) x 4 
0 - 4 - 0 
O x  ( 1  - 0) + 2 

_ (3 - 2) x 1 
1 - 1 - 0 
1 x (0 - 0) + 2 

1 (mod 5) , 
_ 1 (mod 5) , 

3 (mod 5) , 

o (mod 5) ,  
4 (mod 5) , 
2 (mod 5) , 

(mod 5) , 
2 (mod 5) , 
o (mod 5) , 

4 (mod 5) , 
4 (mod 5) , 
3 (mod 5) , 

o (mod 5) ,  
1 (mod 5) , 

_ 2 (mod 5) , 

1 (mod 5) , 
_ 0 (mod 5) ,  

2 (mod 5) ,  

Just as in our previous techniques for factorization and primality testing, 
the key to elliptic curve methods lies in knowing the order of E(a ,  b)/p. This 
order can be evaluated by observing that for every residue class modulo p, 
if x3 + ax + b is a quadratic residue, then there are two values of y that 
correspond to that x, if x3 + ax + b is divisible by p, then there is one value 
of y that corresponds to that x, and otherwise there are no values of y 

that correspond to that x .  Since we also have one point at infinity, we can 
express the order of E(a, b) /p in terms of the Legendre symbol: 

I E(a, b)/pl = 
1 

+ t ( ( x3 + ;x + b) + 1) . 
Unfortunately, this formula is totally impractical for large values of p. 

Nevertheless , we do know a lot about the possible order of E(a, b)/p, some 
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of which we state in the next two theorems whose proofs are well beyond 
the scope of this book. The first of these is due to Helmut Hasse ( 1898-
1979) and was published in 1934; the second was first proved by William 
Waterhouse in 1969. 

Theorem 13.7 The order of E( a, b) / p lies in the interval 

I(p) = (p + 1 - 2..JP, p + 1 + 2..JP) . 

Theorem 13.8 Given a prime p larger than 3 and any integer n in the 
interval I (p) , there exists a and b such that 

I E(a, b) /p l  = n. 

Furthermore, the orders of the groups of elliptic curves modulo p are fairly 
uniformly distributed over the interval I (p) . 

One other aspect of the groups U(Z/nZ) and L (D, n) that enabled our 
primality tests was the existence of elements of orders near the order of the 
group. Results exist which promise that this also holds for E(a, b) /p. 

We are in a very nice situation here . Our previous groups modulo p had 
order p + 1 or p - 1 .  In order to prove primality we had to be able to factor 
p + 1 or p - 1 .  In order to find a prime divisor q of n, we needed to have 
either q - 1 or q + 1 divide K! for suitable K. Our group orders now lie in a 
much larger range. To prove primality, we need only find an integer in the 
interval I(p) which we can factor. To find a prime divisor q of n we only 
need to have some integer in the interval I(q) divide KL 

However, the situation is not quite as idyllic as it sounds. It is  not simple 
to determine the order of E(a, b)/p , nor given an integer n in I(p) is it 
simple to find a and b such that I E(a, b) /p l = n. We shall have to rely on 
the fact that the orders are fairly uniformly distributed . We will randomly 
choose elliptic curves until we find one that works . All this will be made 
clearer in the next chapter. 
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1 3 . 6  EXERCISES 

13 . 1 Prove that L(D, n) i s  closed. 

13 .2  Prove that L(D, n) is associative . 

13 .3  Prove that in L(D, n) , (2 ,0) is the identity and (a, -b) is the inverse 
of (a, b) . 

13 .4 Let G be a group. An element 9 in G is called a generator if every 
element of G can be written as g#i for some integer i .  Prove that if G has 
finite order, then 9 is a generator if and only if the order of 9 equals IG I . 

13 .5 Prove that if x has order j ,  then x#i has order 

j lc�(i , j )  
gcd(i , j ) 

13 .6 Prove that if a finite group G has a generator, then it has exactly 
4>( IG I )  generators. 

FOR EXERCISES 13 .7  - 13 . 10 ,  LET P(n) BE THE SET OF PERMU­
TATIONS ON J(n) = { I ,  2, . . .  , n } .  THAT IS THE SET OF 1 TO 1 
FUNCTIONS FROM J(n) TO J(n) . WE MAKE IT INTO A GROUP 
BY USING COMPOSITION AS THE BINARY OPERATION: 

8 0  t(i) = 8 ( t (i ) ) .  

13 .7  Let 8 ,  t b e  the elements of P(4) given by 

8 ( 1 )  = 3, 
t ( l )  = 1 ,  

8 (2 )  = 1 ,  
t (2 )  = 3 ,  

8 (3) = 4, 
t (3) = 4, 

8 (4) = 2 ,  
t (4) = 2 .  

These permutations can be conveniently coded as 8 = 3142, t = 1342. Find 
8 0  t, t o  8, 8#2, 8#3, t#2,  t#3. 

13 .8 What is the identity of P(n)? Prove that every element of P(n) has a 
unique inverse. 

13 .9 Show that I P(2) 1  = 2, IP(3) 1 = 6, I P(4) 1 = 24, and in general , I P(n) 1 = 
nL 

13 . 10  Find the order of each element in P(3) . 

13 . 1 1  Prove that if p is a prime that does not divide 2D then 
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a2 - Db2 == 4 (mod p) ( * ) 
has p - (Dip) solutions. (Hint: If b == O (mod p) , then there are two possible 
values for a. If p does not divide b, then we can rewrite this congruence as 

Show that there is a 1 to 1 correspondence between solutions of Equation 
( * ) where p does not divide b and pairs of integers r, s such that r is not 
congruent to s modulo p and 

r x s == D (mod p) . )  

13 . 1 2  Prove that if 

has m solutions, then 

has p x m solutions. (Hint: Let x, y be a solution of Equation (* * ) . Show 
that there are exactly p pairs of residue classes modulo p, say (j, k ) ,  such 
that 

13 . 13  Show that if m and n are relatively prime, then the number of solu­
tions of 

a2 - Db2 == 4 (mod m x n) 

is the product of the number of solutions modulo m times the number of 
solutions modulo n. 

13 . 14  Pull together exercises 13 . 1 1  - 13 . 13  to prove that if gcd(n, 2D) = 1 , 
then 

I L (D, n) 1 = n x IT ( 1 -
(D:P) ) , 

where the product is over all primes p which divide n. 

13 . 15  Show that if n is divisible by r distinct primes, then the order of any 
element in L(D, n) divides 1jJ(D, n) = 2 1 -r X n x IT (1 - (DiP) ) .  
13. 16 Show that the order of an element (a, b) in L(D, n) is the smallest 
positive integer, say e, for which 
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( a + bv75) e 

2 
== 1 (mod n) . 

13 . 1 7  Use Exercise 13 . 16  to show that if p is prime, then there exists at least 
one element of L( D, p) whose order is p - (D / P) .  Show that this implies 
that there are ¢(p - (D / p) ) elements of order p - (D / p) . 

13 . 18  In Theorem 13 .4 ,  prove that n will be prime if for each prime p 
dividing m there is an x such that x#m = e and x#(m/p) - e is relatively 
prime to n in at least one coordinate. (In other words, we do not have to 
find one x that works for all values of p. ) 

13 . 19 Graph the elliptic curves: 

y2 x3 - 9x, 
y2 x3 - 3x - 2 ,  
y2 x3 - 3x + 2 ,  
y2 x3 - 9x + 12 .  

13 .20 In  E( -2 , 5 ) ,  compute 

(2 , 3)8( 1 , 2 ) ,  ( 1 , 2 )8( 1 , 2 ) ,  ( 1 ,  2)8( -2 , 1 ) .  

13 . 2 1  Note what happens i f  we ignore the condition 4a3 + 27b2 i- o .  Show 
that in E(-3,  -2 ) ,  if (x, y) i- ( - 1 , 0) then 

( - 1 , 0)8(x , y) = ( - 1 , 0) .  

13 .22 I n  E(O, 3 ) ,  compute ( 1 ,  2 )#i for i i n  { 2 ,  3 ,  . . .  , 1 O } .  

13 .23 In  E(0, 4)/5 ,  find the order o f  (3 , 1 ) .  

13 .24 What i s  the order of E( I ,  2) /57 

13 .25 For each pair (a, b) such that 4a3 + 27b2 ¢ 0 (mod 5), find the order 
of E(a, b)/5. 
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Applications of Elliptic Curves 
"And there he plays extravagant matches 
In fitless finger-stalls 
On a cloth untrue 
With a twisted cue 
And elliptical billiard balls. "  

William S .  Gilbert (The Mikado, Act II )  

14 . 1 Computation on Elliptic Curves 

If we are going to be able to implement factorization techniques and pri­
mality tests using the arithmetic of elliptic curves, we need a fast way of 
computing (x, y)#i .  Actually, the fastest techniques just compute the first 
coordinate. 

Lemma 14.1 In the elliptic group E(a, b) , let (p, q) = (x , y)8(x, y) , if y -# 
o then 

(x2 - a)2 - 8bx 
p -- 4(x3 + ax + b) 

. 

Proof From Lemma 13 .6 we have that 

p .x2 - 2x 
(3x2 + a)2 

(2y) 2 
- 2x 

(3x2 + a) 2 - 2x x 4 X (x3 + ax + b) 
4(x3 + ax + b) 

(x2 - a)2 - 8bx 
4(x3 + ax + b) 

. 

Q.E.D.  



212  14 .  Applications of  Elliptic Curves 

Thus , given the first coordinate of (x ,  y)#i ,  we can compute the first 
coordinate of (x ,  y)#2i . The next lemma shows us how to compute the 
first coordinate of (x ,  y )# (2i + 1 )  from the first coordinates of (x, y)#i and 
(x ,  y)# (i + 1 ) .  

Lemma 14.2 In the elliptic group E(a, b) , let (p, q) = (x, y)#i, (r, 8) = 

(x ,  y) # (i + 1 )  and (u ,  v ) = (x ,  y )# (2i + 1 ) , if p =1= r and x =1= 0 then 

(a - pr) 2 - 4b x (p + r) 
u = -'-------=----'-----,-----,+--....:.. 

x x (p - r)2 
. 

Proof Since (u ,  v ) = (p, q)8( r, 8 ) ,  we can use Lemma 13 .6 to get that 

u x (p - r) 2 

We also have that 

(q _ 8) 2 
U = - p - r, 

(p - r)2 

(q - 8) 2 - (p + r) x (p - r) 2 

-2q8 + 2b + (a + pr) x (p + r ) .  

(x ,  y) = (r, 8)8(p, -q) , 

and therefore, by a similar argument , 

( 14 . 1 )  

x x (p - r) 2 = 2q8 + 2b  + (a  + pr) x (p + r) . ( 14 .2) 

Multiplying Equations ( 14 . 1 )  and ( 14 .2)  yields 

x x u x (p - r) 4 

= (2b + (a + pr) x (p + r) ) 2 - 4 x (p3 + ap + b) x (r3 + ar + b) 
= ( (a - pr)2 - 4 x b x (p + r) )  x (p - r) 2 . 

The lemma now follows by dividing through by x x (p - r) 4 . 

Q.E.D.  

We can avoid rational numbers and restrict our attention to integers if  
we introduce a third coordinate and write 

x = XjZi Y = YjZ, ( 14.3) 

where X, Y ,  and Z are now integers satisfying 
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(YjZ)2 = (XjZ)3 + a(XjZ) + b ,  

or  equivalently 

( 14 .4) 

Observe that in view of Equation ( 14.3) , the solutions (X, Y, Z) and 
(cX, cY, cZ) of Equation ( 14 .4) represent the same rational solution (x ,  y) 
for any non-zero value of c. For this reason, we shall consider the two triples 
given above to be equal : 

(X, Y, Z) = (cX, cY, cZ) for any non-zero integer c. 

This notation has an added bonus beyond just enabling us to work with 
integers, it gives us an explicit representation for the identity element . The 
identity corresponds to the new solution of Equation ( 14.4) where Z = 0 
(and thus X = 0 and Y can be any integer) . 

The computational rules given in Lemmas 14 . 1 and 14 .2  are restated in 
terms of X and Z in the following theorem. 

Theorem 14.3 Let (X, Y, Z) be an integral solution of Equation (14 .4) 
and define (Xi , Yi , Zi ) by 

(XdZi ' YijZi ) = (XjZ, YjZ)#i . 

We shall also write this relationship as 

(Xi , Yi , Zi ) = (X, Y, Z)#i .  

We then have the following computational rules: 

(Xl - a x Zl )2 - 8b X Xi x zl , 
4Zi x (Xl + a x Xi x zl + b x Zl ) ,  
Z x [ (Xi X Xi+ l - a x Zi x Zi+d2 

-4b X Zi x Zi+ l X (Xi X Zi+ l + Xi+ l x Zi ) ] , 

X x (Xi+ l X Zi - Xi X Zi+d2 . 

Proof From Lemma 14 . 1 we have that 
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Since X2i and Z2i are determined up to multiplication by a constant , we 
can take the numerator of the expression on the right-hand side as X2i and 
the denominator as Z2i . 

The proof of the equalities for X2i+1 and Z2i+1 follow from Lemma 14 .2 
in a similar fashion . 

Q.E.D.  

While we shall not need the value for Ii, it is  worth noting that ,  up to 
sign , Ii can be recovered from the values of Xi and Zi by using Equation 
( 14 .4) . 

The computational rules given in Theorem 14.3 are equally valid for the 
operation a modulo n provided we do all of our computations modulo n. 
We put these rules into the following algorithm for computing the first and 
third coordinates in (X, Y, Z)#k modulo n. 

Algorithm 14.4 This algorithm uses the binary expansion of k and the 
computational rules of Theorem 14 . 3  to compute the first and third coordi­
nates in (X, Y, Z)#k modulo n . 

INITIALIZE : READ X ,  Z ,  k ,  n ,  a ,  b 
i <- 0 
WHILE k > 0 DO 

i <- i + l  
Ci +-- k MOD 2 
k +-- lk/2J 

length <- i 
Xl  +-- X 
Z l <- Z 
X2 <- X_SUB_2I (X , Z ) 
Z2 <- Z_SUB_2I (X , Z ) 

We convert k into its binary representation: 

k = Cl + C2 x 2 + C3 x 4 + . . .  + Cl x 2length - 1 
ength 

The initial values of (Xl , Z l )  and (X2 , Z2)  are (Xl , Z l ) 
and (X2 , Z2 ) ,  respectively. 



14. 1 .  Computation on Elliptic Curves 2 15 

FOR i length - 1 to 1 BY - 1  DO 

U l  � X_SUB_2I _PLUS_ l ( X l , Z l , X2 , Z 2 )  

U2 � Z_SUB_2I _PLUS_ l ( X l , Z l , X2 , Z2 )  

I F  Ci = 0 THEN DO 

t emp � X_SUB_2I ( X l , Z l )  

Z l  � Z _SUB_ 2I ( X l , Z l )  

X l  � t emp 

X2 � Ul 

Z2 � U2 

ELSE DO 

t emp � X_SUB_ 2 I (X2 , Z 2 )  

Z2 � Z_SUB_2I (X2 , Z2 )  

X2 � t emp 

X l  � Ul 

Zl � U2 

TERMI NATE : WRITE X l , Z l  

X_SUB_2I ( r , s ) : t erm � r2 - a x s2 MOD n 

value � t erm 2 - 8 x b x r x s 3 MOD n 

RETURN value 

Return value to caller . 

Z_SUB_2I ( r , s ) : t erm � r3 
+ a x r x 82 + b x s3 MOD n 

value � 4 x s x t erm MOD n 

RETURN value 

Return value to caller. 

X_SUB_2I _PLUS_ l ( r , s , u , v ) : 

t erm l � r x u - a x s x v MOD n 

term2 � b x s x v x (r x v + s x u) MOD n 

value � Z x (t erm12 - 4 x t erm2 ) MOD n 

RETURN value 

Return value to caller. 
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Z_SUB_2I_PLUS_ l (r , s , u , v ) : 
term t-- U x s - r x v MOD n 
value t-- X x term2 MOD n 
RETURN value 

Return value to caller. 

1 4 . 2 Factorization with Elliptic Curves 

The following procedure for factoring integers by means of elliptic curves 
is essentially due to A. K. Lenstra and H. W. Lenstra, Jr. Let n be a 
composite number relatively prime to 6. In practice, n is known to have 
no small prime factors . We randomly choose a parameter a for our elliptic 
curve and a point (x, y) on the curve, 

0 :::; x , y < n. 

Note that the values of a, x, and y uniquely determine b: 

b == y2 - x3 - ax (mod n ) . 

We verify that 

gcd(4a3 + 27b2 , n) = 1 ,  

if not then we have probably found a factor of n .  Converting to triples, 
(X, Y, Z) , our initial triple is (x, y , 1 ) .  

I f  p i s  a prime dividing n and IE (  a ,  b )  Ip i divides k ! ,  then 

(X, Y, Z)#k! = ( . . .  ( ( (X, Y, Z)#1 )#2)#3 . . .  )#k 

will be the identity in E(a,  b) lp , which means that p will divide Zk! . If k is 
not too large, there is an excellent chance that gcd(Zk ! ' n) is a non-trivial 
divisor of n .  

Algorithm 14.5 Factorization by elliptic curves. Let n be  the integer to 
be factored, n must be relatively prime to 6. The constants X ,  Y, and a are 
arbitrary integers, X and Y are non-negative and less than n.  MAX is the 
maximal value for k before aborting. 
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b t- Y X Y - X x X x X - a x X MOD n 
g t- GCD (4 x a x a x a + 27 x b x b ,  n) 
IF g � 1 THEN CALL TERMINATE 
Z t- 1 
k t- 2 

WHILE k � MAX DO 
FOR i = 1 to 10 DO 

CALL NEXTVALUES (X , Z , k) 
k t- k + l 

g t- GCD ( Z , n) 
IF g � 1 THEN CALL TERMINATE 

WRITE g 

If g = 1 ,  then MAX was not high enough to find the first 
prime divisor of n. If g = n, then we have picked up all 
the prime divisors of n.  In either of these cases, start over 
with different values of X ,  Y ,  a. If g � 1 or n, then n 
factors as n = g x n/g. 

NEXTVALUES (X , Z , k) 

This is Algorithm 14 . 4  with n ,  a, and b fixed. Return final 
values of Xl and Zl as the new values of X and Z, respec­
tively. 

As in the Pollard p - 1 and Williams p + 1 methods, you can speed 
this algorithm by restricting k to a set of powers of primes less than MAX 
rather than running over all integers less than MAX. Also as with the other 
methods, you can expect better results if you regularly interrupt the run 
and restart with a new set of parameters rather than grinding on with your 
initial choice. 

1 4 . 3  Primality Testing 

Primality testing with elliptic curves follows the same principles we have 
developed for our previous primality tests. Let n be a suspected prime. If 
it really is prime, then I E(a, b) /n l lies in the interval (n + 1 - 2y'n, n + 
1 + 2y'n) .  Furthermore, it is known that if n is prime, then there are 
always many elements of high order. The statement I have just made is 
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very imprecise , suffice it to say that by it I mean that there are enough 
elements of sufficiently high orders to make the primality test I am about 
to describe practical . 

If we can factor I E(a, b)/n l ,  say 

I E(a, b) /n l = qfl x . . .  X q�r , 
then we choose a point P = (Xo, Yo , Zo ) at random and find its order. 
The order must be a divisor of I E(a, b)/n l and so we can start by checking 
P#( I E(a, b)/n l /qi )  for each i . If the Z coordinate is relatively prime to 
n for each i and if n divides the Z coordinate of P# I E(a, b)/n l ,  then the 
order of P in E(a, b) /p is I E(a, b) /n l  � n+ 1 - 2vn for any prime p dividing 
n. It follows that n must be prime. 

There is still hope even if one or more of the Z coordinates is divisible 
by n. For each such i , we find the smallest positive integer bi such that the 
Z coordinate of 

P# ( I E(a, b) /nl ) 
q�' 

is relatively prime to n. The order of P in E(a, b)/p will then be at least 

I E(a, b) /n l x q: -b1 x q�-b2 x · · . X q�-br , 
for any prime p dividing n. By Theorem 13 .4 ,  as long as this order is larger 
than 1 + vn + 2 x �, n must be prime. 

The problem of primality testing with elliptic curves has come down 
to evaluating the order of E(a, b) /n. Unfortunately, this is not easy. As 
we saw in Section 13 .5 ,  the most direct formula for computing the order 
involves finding and summing n terms. The first elliptic curve primality 
test , proposed by S. Goldwasser and J. Kilian in 1986, used something 
called the division points algorithm to find I E(a, b) /n l .  While this method 
is much faster, it still appears to be impractical for large values of n. 

The first practical means of computing I E(a, b)/n l for large n was de­
scribed by A .  K. Lenstra and H. W. Lenstra, Jr. in 1987 and is based on 
an idea suggested to them by A. O. 1. Atkin.  It relies very heavily on 
twentieth-century mathematics and in particular a notion that goes by the 
name of "elliptic curves with complex multiplication."  To set it up in its 
full power necessitates evaluating certain theta functions and is way be­
yond the scope of this book. However, I would like to convey some of its 
flavor by showing how it works in some very special cases. Specifically, if 
n is congruent to 1 modulo 4 ,  we shall determine the orders of four of the 
elliptic groups modulo n. And if n is congruent to 1 modulo 3 ,  we shall see 
how to determine the orders of six elliptic groups. 

Even these special cases rely on some very powerful mathematical results 
which will take us the next two sections to understand without even at­
tempting to prove all of them. In Section 14 .4 we shall get a glimpse of what 
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has happened in the past 200 years in extending the results of Chapter 10 .  
In Section 14 .5 ,  we shall briefly pick up again the thread we dropped at 
the end of Chapter 9. 

14 .4  Quadratic Forms 

In Chapter 10, we looked for integer solutions of the equation 

( 14 .5) 

Fermat , Euler, and other mathematicians of the seventeenth and eighteenth 
centuries ran across other quadratic polynomials in x and y for which they 
needed integer solutions. By the end of the eighteenth century, mathemati­
cians such as Lagrange, Legendre, and Gauss had started the systematic 
study of what are now called quadratic forms, polynomials of the form 

where a, b, and c are integers. 
Many questions can be asked about quadratic forms: For what integers 

n does 

ax2 + bxy + cy2 
= n ( 14.6) 

have a solution in integers? How many solutions are there? How are the 
solutions related? How can a specific solution be found? 

We will be asking the last question about two particular quadratic forms: 

where n is the number we want to test for primality. The next theorem 
tells us precisely when we have a solution. 

Theorem 14.6 If p is a prime larger than 3 then the equation 

has a solution in integers if and only if p is congruent to 1 modulo 4. The 
equation 

has a solution in integers if and only if p is congruent to 1 modulo 3. 

It is a straightforward exercise to see that in the first case p is congruent 
to 1 modulo 4, and in the second p is congruent to 1 modulo 3. I shall 
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show that solutions exist when the appropriate congruence is satisfied by 
showing how to construct a solution. 

Certain quadratic forms are very closely related . As an example, consider 

x2 + 2xy + 2y2 = (x + y)2 + y2 . 

If we can find a solution to 

X2 + 2xy + 2y2 = 29, 

then we can use it to find a solution to 

X2 + y2 = 29, 

and vice-versa. This motivates the following definitions. 

Definition: There are three basic transformations of a quadratic form: 
replacing x by x + ky where k is an integer, replacing x by -x, and inter­
changing x and y. We say that two quadratic forms are equivalent if it is 
possible to pass from one to the other by a sequence of basic transforma­
tions. 

If P(x, y) and Q(x, y) are equivalent quadratic forms, then the number of 
solutions of P(x, y) = n is the same as the number of solutions of Q(x, y) = 

n. Furthermore, if we know a sequence of transformations that will take us 
from P(x, y) to Q(x, y) and if we know a solution of P(x, y) = n, then we 
can use it to find a solution of Q(x, y) = n .  

As an example, the equation 

13x2 + lOxy + 2y2 = 13  

has the solution x = 1 ,  y = o .  This quadratic form i s  equivalent to  x2 + y2 
by the following sequence of basic transformations : 

Interchange x and y : 2X2 + lOxy + 13y2 , 
Replace x by x - 2y : 2X2 + 2xy + y2 , 
Interchange x and y : x2 + 2xy + 2y2 , 
Replace x by x - y : x2 + y2 . 

Taking our original solution ( 1 , 0) through this sequence of transformations, 
it becomes 

( 1 , 0) ---> (0 , 1 )  ---> (2 , 1 )  ---> ( 1 , 2 )  ---> (3 , 2 ) .  

One of  the remarkable properties of  the basic transformations i s  that 
they do not change the value of the discriminant of the quadratic form 

D = b2 - 4ac. 

This property is left as an exercise . It should be noted that the discriminant 
is always congruent to 0 or 1 modulo 4. 
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Lemma 14.7 If two quadratic forms are equivalent, then they have the 
same discriminant. 

Unfortunately, not all quadratic forms with the same discriminant are 
equivalent . When a is positive and D is negative we say that the quadratic 
form is positive (or sometimes positive definite) . There is an efficient algo­
rithm for determining whether two positive quadratic forms are equivalent 
and for finding a sequence of basic transformations that will take you from 
one to the other. The term "positive" comes from the fact that if a is pos­
itive and D is negative, then the quadratic form is always strictly positive 
unless x = y = o. 

Theorem 14.8 Every positive quadratic form is equivalent to exactly one 
reduced form, that is a form whose coefficients satisfy: 

c ::::: a ::::: b ::::: o. 

While I will not prove this theorem for you, I will show you how to find 
this unique reduced form. A proof of this theorem is outlined in Exercises 
14 .8 ,  14 . 1 1 ,  and 14. 12 .  If a is larger than c, then exchange x and y. If b 
does not lie between a and 0, replace x by x + ky where k is chosen so that 
the new value of b lies between -a and a. If the new value of b is negative,  
then replace x by -x. Now iterate these steps until the form is reduced. 
This is exactly what I was doing in the example given above. 

If two positive quadratic forms are equivalent then we can always pass 
from one to the other by using this algorithm and passing through the 
unique reduced quadratic form. 

The next algorithm, which we will need for the elliptic curve primality 
test , accomplishes this reduction and at the same times transforms a known 
solution of when the original quadratic form equals n to a solution of when 
the reduced quadratic form equals n. 

Algorithm 14.9 Given a, b, c, x, y, and n satisfying 

ax2 + bxy + cy2 = n,  

this algorithm finds the equivalent reduced quadratic form and values of x 
and y at which it equals n .  

INITIALIZE : READ a ,  b ,  c ,  x ,  y 
D f-- b x b - 4 x a x c  
CALL CHECK 

CHECK verifies that we really have a positive quadratic form. 
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REDUCTION_LOOP : WHILE b < 0 or a < b or c < a DO 
IF c < a THEN DO 

temp f- a 
a f- C 
C f- temp 
temp f- x 
x f- Y 
Y f- temp 

IF a < I b l  THEN DO 
k f- L (a  + b) / (2a) J 
c f- b - 2 x k x a  
C f- (b x b - D)  / ( 4 x a) 
x f- x + k x y  

IF b < 0 THEN DO 
b f- -b 
X f- -x 

If C is less than a, then we interchange x and y . If a is 
less than I b I ,  then we replace x by x + ky where 2ka lies 
between b - a and b + a. If b is negative, then we change 
the sign of x . This is all iterated until we have a reduced 
form. 

TERMINATE : WRITE a ,  b ,  c ,  x ,  Y 

CHECK : IF a < 0 OR D � 0 THEN DO 
WRITE " ERROR ' , 
CALL TERMINATE 

RETURN 

In a reduced positive quadratic form, we have that 

and so 

which implies that 

b2 - D a2 - D 
a < c = --- < ---- 4a - 4a 

a :::; JID I /3. 

For the two quadratic forms in which we are interested, the discriminant 
is -4 or -3, respectively. This forces a to be 1 and b to be 0 or 1 .  The 
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parameters a, b, and D uniquely determine c, and so there is only one 
reduced form for each of these two discriminants. Thus every quadratic 
form of discriminant -4 is equivalent to x2 + y2 and every quadratic form 
of discriminant -3 is equivalent to x2 + xy + y2 . If we can find a quadratic 
form of the right discriminant for which we can solve equation ( 14.6) , then 
we can use Algorithm 14 .9 to transform that solution into one that we are 
looking for. The quadratic forms we are looking for are given in the next 
lemma. 

Lemma 14.10 If D is congruent to 0 or 1 modulo 4 and if p is an odd 
prime for which D is a quadratic residue, then find b such that 

b2 == D (mod p) 

and b has the same parity as D. It then follows that (b2 - D)/4p is an 
integer and 

is a quadratic form which has discriminant D and which is equal to p when 
x = 1 ,  y = o. 

The proof of this lemma is just the calculation of the discriminant . What 
is important is that -4 is a quadratic residue precisely when p is congruent 
to 1 modulo 4, and -3 is a quadratic residue precisely when p is congruent 
to 1 modulo 3. We can find the value of b by using Algorithm 8.3 .  If the 
resulting b does not have the same parity as D, then we use p - b instead . 

As an example, to solve 

we first solve 

b2 == -4 (mod 673) , 

using Algorithm 8.3 . The solutions are b = 1 1 6  or 557 modulo 673. We 
choose b = 1 16, then (b2 - D)/4p = ( 1 162 - -4)/4 x 673 = 5 .  This gives 
us the quadratic form 

which has discriminant -4 and equals 673 when x = 1 ,  y = o. Running 
this through Algorithm 14 .8 produces the solution x = 23 , y = 12 to our 
original problem. 
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1 4 . 5  The Power Residue Symbol 

The Legendre symbol (nip) , encodes whether or not n is a perfect square 
modulo p. In the nineteenth century, a number of mathematicians worked 
on the problem of extending this notion to higher powers. The work began 
with Gauss who found but did not publish the results on the third and 
fourth power residue symbols. Ferdinand Gotthold Eisenstein ( 1823- 1852) 
published several proofs of these results and Ernst Edward Kummer ( 18 10-
1893) extended the results to arbitrary power residue symbols. We know 
from Corollary 9.5 that if d divides p - 1 ,  then n is a perfect crh power 
modulo p if and only if 

n(p- l ) /d == 1 (mod p) . 

We have also seen that as long as p does not divide n, we can define the 
Legendre symbol by (nip) = ( _ l ) i where i is the unique integer, modulo 
2, such that 

n(p- l ) /2 == ( _ l ) i (mod p) . 

To get the right analog for the rfh power, we need to extend our integers 
to include the crh root of unity: 

There are a number of complications that enter at this point . One of 
them is that numbers that were prime as ordinary integers will suddenly 
factor in our extended integers. 

Let us take as an example d = 4. The fourth root of 1 is i = A and we 
are looking at complex integers: a + bi . From Section 14 .4 ,  we know that 
any prime p which is congruent to 1 modulo 4 can be written as a2 + b2 . 
But in our extended integers , this factors as 

p =  (a - bi) x (a + bi) .  

This means that ordinary primes like 5 ,  1 3 ,  and 1 7  are no longer prime in 
the complex integers: 

5 ( 1  + 2i) x ( 1  - 2i ) ,  
1 3  (3 + 2i) x (3 - 2i) , 
1 7  ( 1 + 4i) x ( 1 - 4i ) .  

The next result promises that we do  not have to  worry about our primes 
breaking up any further . 
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Theorem 14. 1 1  The primes in the system of complex integers are (up to 
multiplication by ±1 or ±i) the ordinary primes which are congruent to 3 
modulo 4, 1 + i , and the complex integers a ± bi where a2 + b2 is an ordinary 
prime congruent to 1 modulo 4 .  If p is a prime in the system of complex 
integers and p does not divide 2, then among ±p and ±ip, exactly one of 
these four primes in congruent to 1 modulo 2 + 2i (in the sense that 2 + 2i 
exactly divides the difference between that prime and 1) .  

Remember that the Legendre symbol is only defined when the bottom 
parameter is prime, the same is true here. The fourth power symbol is not 
defined when the bottom parameter is an ordinary prime congruent to 1 
modulo 4. Before defining the fourth power symbol, we need one more idea. 

Definition: The conjugate of the complex integer a + bi is 

a + bi = a - bi .  

The norm of a complex integer, a + bi, is 

Definition: If p is a prime in the system of complex integers, and if p does 
not divide either 2 or the complex integer n, then the fourth power symbol, 
(nlp)4 ' is defined to be ij where j is the unique integer modulo 4 satisfying 

n(N(p) - I ) /4 == ij (mod p) , 

or, equivalently, p divides n(N(p) - I ) /4 - ij . While j is well defined, I shall 
not prove that it is. 

It is worth noting that if p is a complex prime which does not divide 2 ,  
then the norm of  p i s  always congruent to  1 modulo 4 .  

As an example, to compute ( 1  + 2i/3)4 , we observe that 

( 1  + 2i) (9 - 1 ) /4 = -3 + 4i == i (mod 3) , 
so that 

( 1 + 2i/3)4 = i .  

To compute (3/ 1 + 2i)4 , we observe that 1 + 2i divides 5 and therefore 

3(5- 1 ) /4 = 3 3 - 3 - 6i (mod 1 + 2i) 
-6i == -i (mod 1 + 2i) , 
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so that 

(3/ 1 + 2i)4 = -i .  

We can now say something about the order of  certain elliptic curves 
modulo p. Both this theorem and Theorem 14 . 14 were proved by Andre 
Wei! in 1952. 

Theorem 14. 12  Let n be an ordinary prime which is congruent to 1 mod­
ulo 4 and let p be a complex prime that divides n and is congruent to 1 
modulo 2 + 2i . If D is any integer not divisible by n then the order of 
E(-D, O) /n is 

IE (  -D, O) /n l = n + 1 - (D/P)4 X P - (D/P)4 X p. 

As an example, take n = 13 and p = 3 + 2i . 

I E(  - 1 , 0) /13 1  
I E ( I , 0) / 13 1 

IE (  -2 , 0) /13 1  
I E(2 , 0) / 13 1 

14 - (3 + 2i) - (3 - 2i) = 8, 

14 - (- 1 ) x (3 + 2i) + (- 1 ) x (3 - 2i) = 20, 
14 - (i ) x (3 + 2i ) - (-i )  x (3 - 2i) = 18 ,  
14  - (- i) x (3 + 2i) - (i) x (3 - 2i)  = 10. 

For the next result, we consider the sixth power symbol, which means 
that we are working with extended integers of the form 

a + bw + cw2 ,  

where w = e27ri/3 • Since w3 = 1 and w =f. 1 , we have that 

w3 - 1 
0 =  -- = 1 + w + w2 ,  

w - 1 

and so w2 = - 1 - w, which means that 

a + bw + cw2 = (a - c) + (b - c)w. 

For this reason, we will write all integers in this extended system of cubic 
integers as a + bw where a and b are ordinary integers. 

Definition: The conjugate of the cubic integers a + bw is 

a + bw = a + bw2 = (a - b) - bw. 

The norm of  the cubic integer a - bw is 
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From Section 14 .4 ,  we know that any ordinary prime which is congruent 
to 1 modulo 3 will factor in the cubic integers. For example, 

13  42 + 4 x (-3) + (-3) 2 = (4 + 3w) x ( 1 - 3w) , 
19 22 + 2 x (-5) + (_5) 2 = (2 + 5w) x (-3  - 5w) .  

Theorem 14. 13  The primes in the system of cubic integers are (up to 
multiplication by ± 1 ,  ±w, or ±w2) the ordinary primes which are congruent 
to 2 modulo 3, 1 - w, and the cubic integers a - bw and a - bw2 where 
a2 + ab + b2 is an ordinary prime congruent to 1 modulo 3. If p is a prime 
in the system of cubic integers and p does not divide 3, then among ±p, 
±wp, and ±w2p, exactly one of these six primes is congruent to 2 modulo 
3. 

Definition: If p is a prime in the system of cubic integers , and if p does not 
divide either 6 or the cubic integer n, then the sixth power symbol, (n/p)6 , 
is defined to be (-w)j where j is the unique integer modulo 6 satisfying 

n(N(p) - 1 ) /6 = (-w)j (mod p) , 

or, equivalently, p divides n(N(p) - 1 ) /6 - (-w)j . While j is well-defined, I 
shall not prove that it is. 

If n = -4 - 3w and p = 5 ,  then we have 

(-4 - 3w) (25- 1 ) /6 

so that (-4 - 3w/5)6 = - 1 . 

256 + 768w + 864w2 + 432w3 + 81w4 

(688 - 864) + (849 - 864)w 
4 (mod 5) , 
- 1  (mod 5) , 

If n = 5 and p = -4 - 3w then we have 

5( 13- 1 ) /6 = 25 == - 1  (mod - 4 - 3w) ,  

so that (5/ - 4 - 3W ) 6 = - 1 .  

Theorem 14.14 Let n be an ordinary prime which is congruent to 1 mod­
ulo 3 and let p be a cubic prime that divides n and is congruent to 2 modulo 
3. If D is any integer not divisible by n then the order of E(O, D)/n is 

I E(O, D) /n l = n + 1 + (4D/p)6 X P + (4D /P)6 x p. 
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As an example, take n = 13 and p = -4 - 3w: 

IE(0, 1 ) /13 1 

IE(0 , 2) / 13 1  

IE(0, 3) /13 1 
I E(0, 4) /13 1 
IE (O, 5) / 13 1 
I E(0, 6) /13 1 

14 + (w2 ) x (-4 - 3w) + (w) x (- 1 + 3w) = 12,  
= 14 + (- 1 ) x (-4 - 3w) + (- I ) x (- I + 3w) = 19, 

14 + ( 1 ) x (-4 - 3w) + (I )  x ( - 1 + 3w) = 9, 
14 + (w) x (-4 - 3w) + (w2 x (-1 + 3w) = 21 ,  
14  + (_w2 ) X (-4 - 3w) + (-w) x (- 1 + 3w) = 16, 

= 14 + ( -w) x (-4  - 3w) + (-w2) x ( - 1  + 3w) = 7. 
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14 .6  EXERCISES 
PETER MONTGOMERY HAS SUGGESTED USING THE FOLLOW­
ING REPRESENTATION FOR ELLIPTIC CURVES: 

By2 = x3 + Ax2 + X ,  B X (A2 - 4) =f. 0 .  

EXERCISES 14 . 1  - 14 .4  DEVELOP THE COMPUTATIONAL RULES 
FOR THIS REPRESENTATION. 

14. 1 Let (xI , yd ,  (X2 , Y2 ) , and (X3 , Y3 ) be the three points of intersection 
of a straight line of slope A with an elliptic curve in the Montgomery form. 
Prove that 

A 2 = Xl + X2 + X3 + a .  

14 .2  Let (x, y) be a point on an elliptic curve in the Montgomery form and 
let (p, q) = (x, y)#2. Show that 



(x2 _ 1 )2 
p =  --����--7 

4x(x2 + Ax + l ) ·  
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14.3 Let (x, y) be a point on an elliptic curve in the Montgomery form and 
let (p, q) = (x, y)#i , (r, s ) = (x ,  y )#(i + 1 ) , (u, v ) = (x, y)# (2i + 1 ) . Show 
that 

(pr - 1 ) 2 
u = -=--------'-_,, 

x(p - r) 2 

14.4 Rewrite Algorithm 14.4 so that it will compute Xk and Zk for points 
on an elliptic curve in the Montgomery form. 

14.5 Assume that if 1801 is prime, then the order of E( - 1 , 0) / 1801 is 1872. 
Prove that 1801 is prime by the elliptic curve method. 

14.6 Prove that if n is odd and equal to x2 + y2 for integers x and y,  then 
it is congruent to 1 modulo 4. Prove that if n is not divisible by 3 and it is 
equal to x2 + xy + y2 for integers x and y ,  then it is congruent to 1 modulo 
3. 

14 .7 Find the reduced quadratic form equivalent to each of the following: 

14.8 Let ax2 + bxy + cy2 be any quadratic form for which b > a > o. Show 
that there is a basic transformation which will reduce the absolute value of 
the coefficient of xy. Use this to prove that every positive quadratic form 
is equivalent to a reduced form. 

14.9 Find a sequence of basic transformations to get from 

3039x2 + 2415xy + 481y2 

to 
1 1635x2 + 12873xy + 3561y2 . 

14 .10 Prove that each of the three basic transformations leaves the discrim­
inant unchanged. 

14. 1 1  Let f(x, y) = ax2 + bxy + cy2 be a reduced positive quadratic form. 
Show that a and c are the smallest positive integer values of n for which 
f(x, y) = n has a solution . (Hint: Show that if x ?:  - y  ?: 1 and f(x, y ) =1= a 
or c, then f(x - 1 ,  y ) < f(x,  y ) . ) 
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14. 12 Use the result of Exercise 14 . 1 1  to prove that every positive quadratic 
form is equivalent to a unique reduced quadratic form. 

14. 13 Find all reduced quadratic forms of discriminant -39. 

14 .14 Solve x2 + y2 = n for the following prime values of n: 

4 1 ,  409, 588 1 ,  12 541 ,  4 332 721 .  

14. 15 Solve x2 + xy + y2 = n for the following prime values of n: 

43, 547, 501 1 ,  12 409, 1 554 841 .  

14 . 16 Factor 2 9  i n  the complex integers. 

14 . 17  Let a + bi and c + di be any two complex integers . Show that we can 
always find two other complex integers, say u + vi and r + si such that 

a +  bi 

o < 
(u + vi) x (c + di) + r + si , 

N(r + si) < N(c + di) . 

and 

(Hint: Let x + yi be any complex number and choose a complex integer 
m + ni such that Ix - m l ::; 1/2 ,  Iy - n l ::; 1/2 .  Show that the norm of 
(x + yi) - (m + ni) is strictly less than 1 . )  

14 . 18 Describe a Euclidean algorithm for the complex integers . Use i t  to 
prove that if f + gi = gcd(a + bi ,  c+di) (greatest common divisor means the 
common divisor with the largest norm) , then there exist complex integers 
w + xi and y + zi such that 

j + gi = (a + bi) x (w + xi) + (c + di) x (y + zi) . 

14. 19 Using the result of Exercise 14 .18 ,  prove that in the complex integers 
factorization is unique up to order and multiplication by ± 1 ,  ±i .  

14 .20 Why doesn't the fact that 

13 = (2 + 3i)  x (2 - 3i)  = (3 + 2i ) x (3 - 2i) 

contradict uniqueness of factorization in the complex integers? 

14 .21 Factor 163 in the cubic integers. 

14 .22 Prove that a + bw is a unit in the cubic integers if and only if it has 
norm equal to 1 (see Exercises 1 . 1 ,  10.24, and lO .25 ) .  Use this fact to prove 
that ± 1 ,  ±w, and ±w2 are the only units in the cubic integers. 
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14 .23 Let a + bw and c + dw be any two cubic integers. Show that we can 
always find two other cubic integers, say u + vw and r + sw such that 

a + bw 
o 

(u + vw) x (c + dw) + r + sw and 
< N(r - sw) < N(c + dw).  

(Hint: Let x + yw be any cubic number and choose a cubic integer m + nw 

such that Ix - m l ::; 1 /2 ,  I y - n l ::; 1 /2 .  Show that the norm of (x + yw) -
(m + nw ) is strictly less than 1 . ) 

14 .24 Describe a Euclidean algorithm for the cubic integers. Use it to prove 
that if f + gw = gcd(a + bw, c + dw) (greatest common divisor means the 
common divisor with the largest norm) ,  then there exist cubic integers 
m + nw and y + zw such that 

f + gw = (a + bw) x (m + nw) + (c + dw) x (y + zw) .  

14 .25 Using Exercise 14 .24 ,  prove that factorization in  the cubic integers is 
unique up to order and multiplication by units. 

14 .26 Why doesn't  the fact that 

13  = ( 1  + 4w) x (-3  - 4w) = (4 + 3w) x ( 1  - 3w) 

contradict the uniqueness of factorization? 

14 .27 Compute the following fourth power symbols: 

(1 + i/7)4 , ( 1 1 / 1 + lOi)4 , ( 1  + 4i/2 + 3i) 4 , (28 + 37i/ 105 1k 

14 .28 For each ordinary prime between 2 and 30, find a complex prime 
which divides it and is congruent to 1 modulo 2 + 2i . 

14 .29 For each pair of complex primes found in Exercise 14 .28 ,  compute the 
fourth power symbols (p/q)4 and (q/pk Can you conjecture a reciprocity 
law for the fourth power symbol? 

14.30 Use Theorem 14 . 1 2  to compute the order of E( -2 , 0) / 17 .  

14 .3 1  Use Theorem 14 . 1 2  to compute the order of  E(3 ,  0) /4332721 .  

14 .32 Compute the following sixth power symbols : 

( l - w/5)6 , ( 1 7/ 1 + 3w)6 , (3 + 7w/2 + 5w)6 , ( 1361/26 + 41w}s . 
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14 .33 For each ordinary prime between 3 and 30, find a cubic prime which 
divides it and is congruent to 2 modulo 3. 

14 .34 For each pair of cubic primes found in Exercise 14 .33, compute the 
sixth power symbols (P/q) 6 and (q/pk Can you conjecture a reciprocity 
law for the sixth power symbol? 

14 .35 Use Theorem 14 . 14 to compute the order of E(O, 5)/19 .  

14 .36 Use Theorem 14 . 14 to compute the order of  E(O, - 1 ) / 1554841 . 
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The Primes Below 5000 

2 181  431 683 977 1 277 1 567 1877 
3 191  433 691 983 1279 1571  1879 
5 193 439 701 99 1 1283 1579 1889 
7 197 443 709 997 1289 1 583 1901 

1 1  199 449 719 1009 1 291  1 597 1907 
13 2 1 1  457 727 1013  1297 1601 1913  
17  223 461 733 1019  1301  1607 1931  
19  227 463 739 102 1  1303 1609 1933 
23 229 467 743 1031 1307 1613 1949 
29 233 479 751 1033 1319  1619  1951  
31 239 487 757 1039 132 1  162 1 1973 
37 241 491 761 1049 1327 1627 1979 
41 251 499 769 1051 1361 1637 1987 
43 257 503 773 1061  1367 1657 1993 
47 263 509 787 1063 1373 1663 1997 
53 269 521 797 1069 1381  1667 1999 
59 271 523 809 1087 1399 1669 2003 
61  277 541 8 1 1  1091 1409 1693 20 1 1  
67 281 547 821 1093 1423 1697 2017  
71  283 557 823 1097 1427 1699 2027 
73 293 563 827 1 103 1429 1 709 2029 
79 307 569 829 1 109 1433 1721 2039 
83 3 1 1  571 839 1 1 1 7 1439 1 723 2053 
89 313  577 853 1 123 1447 1 733 2063 
97 3 17  587 857 1 129 145 1  1 741 2069 

101 331 593 859 1 15 1  1453 1 747 2081 
103 337 599 863 1 1 53 1459 1 753 2083 
107 347 601 877 1 163 1471  1 759 2087 
109 349 607 881 1 1 71 1481  1 777 2089 
1 13 353 613  883 1 18 1  1483 1 783 2099 
127 359 617  887 1 1 87 1487 1787 2 1 1 1  
13 1  367 619 907 1 1 93 1489 1789 2 1 1 3  
137 373 631 9 1 1  1201 1493 1801 2 129 
139 379 641 919  1213  1499 181 1 2 13 1  
149 383 643 929 1 2 17  1 5 1 1  1823 2 1 37 
151  389 647 937 1223 1 523 1831 2141  
157 397 653 941 1 229 1531  1847 2 143 
163 401 659 947 1231 1 543 1861 2 153 
167 409 661 953 1237 1549 1867 2 161 
173 417 673 967 1 249 1553 1871 2 1 79 
179 421 677 971 1 259 1559 1873 2203 
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2207 2543 2857 3251 3581 3923 4273 4657 
2213 2549 2861 3253 3583 3929 4283 4663 
2221 2551 2879 3257 3593 3931 4289 4673 
2237 2557 2887 3259 3607 3943 4297 4679 
2239 2579 2897 3271 3613 3947 4327 4691 
2243 2591 2903 3299 3617 3967 4337 4703 
2251 2593 2909 3301 3623 3989 4339 4721 
2267 2609 2917 3307 3631 4001 4349 4723 
2269 2617 2927 3313 3637 4003 4357 4729 
2273 2621 2939 3319 3643 4007 4363 4733 
2281 2633 2953 3323 3659 4013 4373 4751 
2287 2647 2957 3329 3671 4019 4391 4759 
2293 2657 2963 3331 3673 4021 4397 4783 
2297 2659 2969 3343 3677 4027 4409 4787 
2309 2663 2971 3347 3691 4049 442 1 4789 
231 1 2671 2999 3359 3697 4051 4423 4793 
2333 2677 3001 3361 3701 4057 4441 4799 
2339 2683 301 1 3371 3709 4073 4447 4801 
2341 2687 3019 3373 3719 4079 4451 4813 
2347 2689 3023 3389 3727 4091 4457 4817  
2351 2693 3037 3391 3733 4093 4463 4831 
2357 2699 3041 3407 3739 4099 4481 4861 
2371 2707 3049 3413 3761 41 1 1  4483 4871 
2377 271 1 3061 3433 3767 4127 4493 4877 
2381 2713 3067 3449 3769 4129 4507 4889 
2383 2719 3079 3457 3779 4133 4513 4903 
2389 2729 3083 3461 3793 4139 451 7  4909 
2393 2731 3089 3463 3797 4153 4519 4919  
2399 2741 3109 3467 3803 4157 4523 4931 
241 1 2749 31 19  3469 3821 4159 4547 4933 
241 7  2753 3121  3491  3823 4177 4549 4937 
2423 2767 3137 3499 3833 4201 4561 4943 
2437 2777 3163 351 1  3847 421 1  4567 4951 
2441 2789 3167 3517 3851 42 17  4583 4957 
2447 2791 3169 3527 3853 4219 4591 4967 
2459 2797 3181  3529 3863 4229 4597 4969 
2467 2801 3187 3533 3877 4231 4603 4973 
2473 2803 3191 3539 3881 4241 4621 4987 
2477 2819 3203 3541 3889 4243 4637 4993 
2503 2833 3209 3547 3907 4253 4639 4999 
2521 2837 3217  3557 391 1 4259 4643 
2531 2843 3221 3559 3917  4261 4649 
2539 2851 3229 3571 3919 4271 4651 
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