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Preface to the Second Edition

Since the first edition of Using Algebraic Geometry was published in 1998, the
field of computational algebraic geometry and its applications has developed rap-
idly. Many new results concerning topics we discussed have appeared. Moreover,
anumber of new introductory texts have been published. Our goals in this revision
have been to update the references to reflect these additions to the literature, to
add discussions of some new material, to improve some of the proofs, and to fix
typographical errors. The major changes in this edition are the following:

e A unified discussion of how matrices can be used to specify monomial or-
ders in §2 of Chapter 1.

e A rewritten presentation of the Mora normal form algorithm in §3 of Chap-
ter 4 and the division of §4 into two sections.

e The addition of two sections in Chapter 8: §4 introduces the Grébner fan of
an ideal and §5 discusses the Grobner Walk basis conversion algorithm.

e The replacement of §5 of Chapter 9 by a new Chapter 10 on the theory
of order domains, associated codes, and the Berlekamp-Massey-Sakata de-
coding algorithm. The one-point geometric Goppa codes studied in the first
edition are special cases of this construction.

e The Maple code has been updated and Macaulay has been replaced by
Macaulay 2.

We would like to thank the many readers who helped us find typographical
errors in the first edition. Special thanks go to Rainer Steinwandt for his heroic
efforts. We also want to give particular thanks to Rex Agacy, Alicia Dicken-
stein, Dan Grayson, Serkan Hosten, Christoph K&gl, Nick Loehr, Jim Madden,
Mike O’Sullivan, Lyle Ramshaw, Hal Schenck, Hans Sterk, Mike Stillman, Bernd
Sturmfels, and Irena Swanson for their help.

August, 2004 David Cox
John Little
Donal O’Shea



Preface to the First Edition

In recent years, the discovery of new algorithms for dealing with polynomial
equations, coupled with their implementation on inexpensive yet fast computers,
has sparked a minor revolution in the study and practice of algebraic geometry.
These algorithmic methods and techniques have also given rise to some exciting
new applications of algebraic geometry.

One of the goals of Using Algebraic Geometry is to illustrate the many uses
of algebraic geometry and to highlight the more recent applications of Grobner
bases and resultants. In order to do this, we also provide an introduction to some
algebraic objects and techniques more advanced than one typically encounters in
a first course, but which are nonetheless of great utility. Finally, we wanted to
write a book which would be accessible to nonspecialists and to readers with a
diverse range of backgrounds.

To keep the book reasonably short, we often have to refer to basic results in
algebraic geometry without proof, although complete references are given. For
readers learning algebraic geometry and Grobner bases for the first time, we
would recommend that they read this book in conjunction with one of the fol-
lowing introductions to these subjects:

e Introduction to Grobner Bases, by Adams and Loustaunau [AL]
e Grobner Bases, by Becker and Weispfenning [BW]
e Ideals, Varieties and Algorithms, by Cox, Little and O’Shea [CLO]

We have tried, on the other hand, to keep the exposition self-contained outside
of references to these introductory texts. We have made no effort at complete-
ness, and have not hesitated to point the reader to the research literature for more
information.

Later in the preface we will give a brief summary of what our book covers.

The Level of the Text

This book is written at the graduate level and hence assumes the reader knows the
material covered in standard undergraduate courses, including abstract algebra.

vii



viii Preface to the First Edition

But because the text is intended for beginning graduate students, it does not re-
quire graduate algebra, and in particular, the book does not assume that the reader
is familiar with modules. Being a graduate text, Using Algebraic Geometry cov-
ers more sophisticated topics and has a denser exposition than most undergraduate
texts, including our previous book [CLO].

However, it is possible to use this book at the undergraduate level, provided
proper precautions are taken. With the exception of the first two chapters, we
found that most undergraduates needed help reading preliminary versions of the
text. That said, if one supplements the other chapters with simpler exercises and
fuller explanations, many of the applications we cover make good topics for an
upper-level undergraduate applied algebra course. Similarly, the book could also
be used for reading courses or senior theses at this level. We hope that our book
will encourage instructors to find creative ways for involving advanced under-
graduates in this wonderful mathematics.

How to Use the Text

The book covers a variety of topics, which can be grouped roughly as follows:

e Chapters 1 and 2: Grobner bases, including basic definitions, algorithms
and theorems, together with solving equations, eigenvalue methods, and
solutions over R.

e Chapters 3 and 7: Resultants, including multipolynomial and sparse resul-
tants as well as their relation to polytopes, mixed volumes, toric varieties,
and solving equations.

e Chapters 4, 5 and 6: Commutative algebra, including local rings, standard
bases, modules, syzygies, free resolutions, Hilbert functions and geometric
applications.

e Chapters 8 and 9: Applications, including integer programming, combina-
torics, polynomial splines, and algebraic coding theory.

One unusual feature of the book’s organization is the early introduction of resul-
tants in Chapter 3. This is because there are many applications where resultant
methods are much more efficient than Grobner basis methods. While Grobner
basis methods have had a greater theoretical impact on algebraic geometry, resul-
tants appear to have an advantage when it comes to practical applications. There
is also some lovely mathematics connected with resultants.

There is a large degree of independence among most chapters of the book.
This implies that there are many ways the book can be used in teaching a course.
Since there is more material than can be covered in one semester, some choices
are necessary. Here are three examples of how to structure a course using our text.

e Solving Equations. This course would focus on the use of Grobner bases
and resultants to solve systems of polynomial equations. Chapters 1, 2, 3
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and 7 would form the heart of the course. Special emphasis would be placed
on §5 of Chapter 2, §5 and §6 of Chapter 3, and §6 of Chapter 7. Optional
topics would include §1 and §2 of Chapter 4, which discuss multiplicities.

e Commutative Algebra. Here, the focus would be on topics from classical
commutative algebra. The course would follow Chapters 1, 2, 4, 5 and 6,
skipping only those parts of §2 of Chapter 4 which deal with resultants.
The final section of Chapter 6 is a nice ending point for the course.

e Applications. A course concentrating on applications would cover inte-
ger programming, combinatorics, splines and coding theory. After a quick
trip through Chapters 1 and 2, the main focus would be Chapters 8 and 9.
Chapter 8 uses some ideas about polytopes from §1 of Chapter 7, and mod-
ules appear naturally in Chapters 8 and 9. Hence the first two sections of
Chapter 5 would need to be covered. Also, Chapters 8 and 9 use Hilbert
functions, which can be found in either Chapter 6 of this book or Chapter 9
of [CLO].

We want to emphasize that these are only three of many ways of using the text.
We would be very interested in hearing from instructors who have found other
paths through the book.

References

References to the bibliography at the end of the book are by the first three letters
of the author’s last name (e.g., [Hil] for Hilbert), with numbers for multiple papers
by the same author (e.g., [Macl] for the first paper by Macaulay). When there is
more than one author, the first letters of the authors’ last names are used (e.g.,
[AM] for Atiyah and Macdonald), and when several sets of authors have the same
initials, other letters are used to distinguish them (e.g., [BoF] is by Bonnesen and
Fenchel, while [BuF] is by Burden and Faires).

The bibliography lists books alphabetically by the full author’s name, fol-
lowed (if applicable) by any coauthors. This means, for instance, that [BS] by
Billera and Sturmfels is listed before [Bla] by Blahut.

Comments and Corrections

We encourage comments, criticism, and corrections. Please send them to any of
us:

David Cox dac@cs.amherst.edu
John Little little@math.holycross.edu
Don O’Shea doshea@mhc.mtholyoke.edu

For each new typo or error, we will pay $1 to the first person who reports it
to us. We also encourage readers to check out the web site for Using Algebraic
Geometry, which is at

http://ww. cs. anher st. edu/ " dac/ uag. ht m



X Preface to the First Edition

This site includes updates and errata sheets, as well as links to other sites of inter-
est.
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Chapter 1

Introduction

Algebraic geometry is the study of geometric objects defined by polynomial
equations, using algebraic means. Its roots go back to Descartes’ introduc-
tion of coordinates to describe points in Euclidean space and his idea of
describing curves and surfaces by algebraic equations. Over the long his-
tory of the subject, both powerful general theories and detailed knowledge
of many specific examples have been developed. Recently, with the devel-
opment of computer algebra systems and the discovery (or rediscovery) of
algorithmic approaches to many of the basic computations, the techniques
of algebraic geometry have also found significant applications, for example
in geometric design, combinatorics, integer programming, coding theory,
and robotics. Our goal in Using Algebraic Geometry is to survey these
algorithmic approaches and many of their applications.

For the convenience of the reader, in this introductory chapter we will
first recall the basic algebraic structure of ideals in polynomial rings. In §2
and §3 we will present a rapid summary of the Grobner basis algorithms de-
veloped by Buchberger for computations in polynomial rings, with several
worked out examples. Finally, in §4 we will recall the geometric notion of
an affine algebraic variety, the simplest type of geometric object defined by
polynomial equations. The topics in §1, §2, and §3 are the common prereq-
uisites for all of the following chapters. §4 gives the geometric context for
the algebra from the earlier sections. We will make use of this language at
many points. If these topics are familiar, you may wish to proceed directly
to the later material and refer back to this introduction as needed.

§1 Polynomials and Ideals

To begin, we will recall some terminology. A monomial in a collection of
variables x1, ..., T, is a product

(L.1) xTrag? e ann



2 Chapter 1. Introduction

where the «; are non-negative integers. To abbreviate, we will sometimes
rewrite (1.1) as ® where a = (ay, . . ., ay,) is the vector of exponents in the
monomial. The total degree of a monomial z® is the sum of the exponents:
ay + -+ + a,. We will often denote the total degree of the monomial ¢
by |a|. For instance z3x3z, is a monomial of total degree 6 in the variables
X1, T, T3, Ty, since a = (3,2,0,1) and |a| = 6.

If k£ is any field, we can form finite linear combinations of monomials
with coefficients in k. The resulting objects are known as polynomials in
Z1, ..., T,. We will also use the word term on occasion to refer to a product
of a nonzero element of £ and a monomial appearing in a polynomial. Thus,
a general polynomial in the variables x1, ..., x, with coefficients in k has

the form
f = Z caxa)

where ¢, € k for each «, and there are only finitely many terms c,z® in
the sum. For example, taking k to be the field Q of rational numbers, and
denoting the variables by z, y, z rather than using subscripts,

_ 2 1,2
(1.2) p=2"+ ;yz—2z—1

is a polynomial containing four terms.

In most of our examples, the field of coeflicients will be either Q, the
field of real numbers, R, or the field of complex numbers, C. Polynomi-
als over finite fields will also be introduced in Chapter 9. We will denote
by klxi,...,xy] the collection of all polynomials in x4, ..., z, with co-
efficients in k. Polynomials in k[z1, ..., z,] can be added and multiplied
as usual, so k[xy,...,z,] has the structure of a commutative ring (with
identity). However, only nonzero constant polynomials have multiplicative
inverses in k[x1,...,Z,], so k[z1,...,2,] is not a field. However, the set
of rational functions {f/g : f,g € k[x1,...,2n], g # 0} is a field, denoted
k(x1,...,zp).

A polynomial f is said to be homogeneous if all the monomials appearing
in it with nonzero coefficients have the same total degree. For instance,
f = 423 + 5xy? — 23 is a homogeneous polynomial of total degree 3 in
Q|z, y, 2], while g = 423 + bzy? — 2° is not homogeneous. When we study
resultants in Chapter 3, homogeneous polynomials will play an important
role.

Given a collection of polynomials, fi,...,fs € k[xi,...,z,], we can
consider all polynomials which can be built up from these by multiplication
by arbitrary polynomials and by taking sums.

(1.3) Definition. Let fi,...,fs € k[z1,...,z,]. We let (f1,..., fs)
denote the collection

(fro-- fs)y =Apfi+ - +psfs i pi € kl[x1,...,xp) fori =1,... s}
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For example, consider the polynomial p from (1.2) above and the two
polynomials

h=a+22-1
fo=2?+ 94" + (2 - 1)? — 4.

We have
p=x+ éyzz—z—l

=(—p2+ D@ +22 = 1)+ (52)(@° +° + (2 — 1) — 4).
This shows p € (f1, f2).

(1.4)

Exercise 1.

a. Show that 2 € (z — y?, zy) in k[z, y] (k any field).
b. Show that (z — y2, zy, v*) = (v, y?).

c. Is (x — y?, xy) = (2%, zy)? Why or why not?

Exercise 2. Show that (fi,..., fs) is closed under sums in k[z1, . .., z,].
Also show that if f € (f1,..., fs), and p € k[z1,...,x,] is an arbitrary
polynomial, then p - f € (f1,..., fs).

The two properties in Exercise 2 are the defining properties of ideals in
the ring k[x1, ..., z,)].

(1.5) Definition. Let I C k[z1,...,z,] be a non-empty subset. I is said

to be an ideal if

a. f+ g € I whenever f € I and g € I, and

b. pf € I whenever f € I, and p € k[xy,...,2,] is an arbitrary
polynomial.

Thus (f1,...,fs) is an ideal by Exercise 2. We will call it the ideal

generated by f1, ..., fs because it has the following property.
Exercise 3. Show that (fi,..., fs) is the smallest ideal in k[zy, ..., 2]
containing fi1,..., fs, in the sense that if J is any ideal containing

fl,...,fs,then <f1,---7fs> CJ.

Exercise 4. Using Exercise 3, formulate and prove a general criterion for
equality of ideals I = (f1,...,fs) and J = {(g1,...,¢:) in K[z, ..., z,].
How does your statement relate to what you did in part b of Exercise 17

Given an ideal, or several ideals, in k[z1, ..., 2,], there are a number of
algebraic constructions that yield other ideals. One of the most important
of these for geometry is the following.
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(1.6) Definition. Let I C k[z1,...,x,] be an ideal. The radical of I is
the set

VI={geklzr,...,z,): g™ €I for some m > 1}.
An ideal I is said to be a radical ideal if VI = I.

For instance,
z+y e (22 + 3xy, 3zy + y2)
in Q[z, y] since
(z 4+ y)® = z(2® + 3zy) + y(3zy + y?) € (x* + 3zy, 32y + y?).

Since each of the generators of the ideal (x? +3xy, 3zy +y?) is homogeneous
of degree 2, it is clear that © +y ¢ (2 + 32y, 3y + y?). It follows that
(22 + 3wy, 3zy + y?) is not a radical ideal.

Although it is not obvious from the definition, we have the following
property of the radical.

e (Radical Ideal Property) For every ideal I C k[zi,...,z,], VI is an
ideal containing I.

See [CLOJ, Chapter 4, §2, for example. We will consider a number of other
operations on ideals in the exercises.

One of the most important general facts about ideals in k[z1, ..., x,] is
known as the Hilbert Basis Theorem. In this context, a basis is another
name for a generating set for an ideal.

e (Hilbert Basis Theorem) Every ideal I in k[z1, . .., z,] has a finite gener-
ating set. In other words, given an ideal I, there exists a finite collection
of polynomials {f1,..., fs} C k[z1,...,x,] such that T = (f1,..., fs).

For polynomials in one variable, this is a standard consequence of the one-
variable polynomial division algorithm.

e (Division Algorithm in k[z]) Given two polynomials f, g € k[x], we can
divide f by g, producing a unique quotient ¢ and remainder r such that

f=a9+,
and either » = 0, or r has degree strictly smaller than the degree of g.

See, for instance, [CLO], Chapter 1, §5. The consequences of this result for
ideals in k[z] are discussed in Exercise 6 below. For polynomials in several
variables, the Hilbert Basis Theorem can be proved either as a byproduct of
the theory of Grobner bases to be reviewed in the next section (see [CLO],
Chapter 2, §5), or inductively by showing that if every ideal in a ring R is
finitely generated, then the same is true in the ring R[x] (see [AL], Chapter
1, §1, or [BW], Chapter 4, §1).
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AppiTiOoONAL EXERCISES FOR §1
Exercise 5. Show that (y — 22,z — 23) = (z — zy,y — 22) in Q[x, v, 2|.

Exercise 6. Let k be any field, and consider the polynomial ring in one
variable, k[x]. In this exercise, you will give one proof that every ideal in
k[x] is finitely generated. In fact, every ideal I C k[z] is generated by a
single polynomial: I = (g) for some g. We may assume I # {0} for there is
nothing to prove in that case. Let g be a nonzero element in I of minimal
degree. Show using the division algorithm that every f in [ is divisible by
g. Deduce that I = (g).

Exercise 7.
a. Let k be any field, and let n be any positive integer. Show that in k[z],

Vi{zm) = (z).

b. More generally, suppose that
p(x) = (x —a) - (z — am)"".

What is \/(p(z))?

c. Let k = C, so that every polynomial in one variable factors as in b.
What are the radical ideals in C[z]?

Exercise 8. An ideal I C k[zy,...,y] is said to be prime if whenever a
product fg belongs to I, either f € I, or g € I (or both).

a. Show that a prime ideal is radical.

b. What are the prime ideals in C[z]? What about the prime ideals in R[x]

or Q[z]?

Exercise 9. An ideal I C k[z1,...,z,] is said to be mazimal if there

are no ideals J satisfying I C J C k[xy,...,x,] other than J = I and

J = kl[x1,. .., 2

a. Show that (x1, 22, ..., z,) is a maximal ideal in k[zq, ..., 2,].

b. More generally show that if (aq,...,ay) is any point in k™, then the
ideal (x1 — a1, ...,Tn — an) C klx1,...,2,] is maximal.

c. Show that I = (22 + 1) is a maximal ideal in R[z]. Is I maximal

considered as an ideal in C[x]?

Exercise 10. Let I be an ideal in k[x1,...,z,], let £ > 1 be an integer,
and let I, consist of the elements in I that do not depend on the first £
variables:

I, =1nN k[:ﬂg+1, .. .,a:n].

I, is called the fth elimination ideal of I.
a. For I = (22 + 9% 2% — 23) C klx, v, 2], show that y? + 23 is in the first
elimination ideal I7.
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b. Prove that I, is an ideal in the ring k[z¢11, . .., zp].

Exercise 11. Let I, J be ideals in k[z1, . .., z,], and define
I+J={f+g:felgeJ}.

a. Show that I + J is an ideal in k[x1, ..., zy].

b. Show that I + J is the smallest ideal containing I U J.

c. T =(f1,...,fs)and J = (g1, ..., qt), what is a finite generating set
for I + J?

Exercise 12. Let I, J be ideals in k[zq, . .., x,].

a. Show that I N J is also an ideal in k1, .. ., 4.

b. Define I.J to be the smallest ideal containing all the products fg where
f € 1,and g € J. Show that IJ C I N J. Give an example where
IJ£1InNJ.

Exercise 13. Let I, J be ideals in k[z1,. .., z,], and define I:J (called
the quotient ideal of I by J) by
I:J={f€klxy,...,z,): fge Tforall g e J}.

a. Show that I:J is an ideal in k[z1,. .., x,).
b. Show that if I N (k) = (g1, ..., g:) (so each g; is divisible by k), then a
basis for I:(h) is obtained by cancelling the factor of h from each g;:

I<h> = <gl/h7agt/h>

§2 Monomial Orders and Polynomial Division

The examples of ideals that we considered in §1 were artificially simple. In
general, it can be difficult to determine by inspection or by trial and error

whether a given polynomial f € E[xy,...,z,] is an element of a given
ideal I = (f1,..., fs), or whether two ideals I = (f1,...,fs) and J =
(g1, .., 9gt) are equal. In this section and the next one, we will consider a

collection of algorithms that can be used to solve problems such as deciding
ideal membership, deciding ideal equality, computing ideal intersections
and quotients, and computing elimination ideals. See the exercises at the
end of §3 for some examples.

The starting point for these algorithms is, in a sense, the polynomial
division algorithm in k[z] introduced at the end of §1. In Exercise 6 of §1,
we saw that the division algorithm implies that every ideal I C k[z] has
the form I = (g) for some g. Hence, if f € k[z], we can also use division
to determine whether f € I.
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Exercise 1. Let I = (g) in k[z] and let f € k[z] be any polynomial. Let
q, 7 be the unique quotient and remainder in the expression f = qg + r
produced by polynomial division. Show that f € I if and only if » = 0.

Exercise 2. Formulate and prove a criterion for equality of ideals I} =
(91) and I = (g2) in k[z] based on division.

Given the usefulness of division for polynomials in one variable, we may
ask: Is there a corresponding notion for polynomials in several variables?
The answer is yes, and to describe it, we need to begin by considering
different ways to order the monomials appearing within a polynomial.

(2.1) Definition. A monomial order on k[z1, ..., x,] is any relation > on

the set of monomials % in k[z1, ..., z,] (or equivalently on the exponent

vectors a € ZY) satisfying:

a. > is a total (linear) ordering relation;

b. > is compatible with multiplication in k[z1, ..., z,], in the sense that if
z® > 27 and 7 is any monomial, then %z = 2*t7 > 20+ = 227,

c. > is a well-ordering. That is, every nonempty collection of monomials
has a smallest element under >.

Condition a implies that the terms appearing within any polynomial f
can be uniquely listed in increasing or decreasing order under >. Then
condition b shows that that ordering does not change if we multiply f by
a monomial z7. Finally, condition c is used to ensure that processes that
work on collections of monomials, e.g., the collection of all monomials less
than some fixed monomial z%, will terminate in a finite number of steps.

The division algorithm in k[x] makes use of a monomial order implicitly:
when we divide g into f by hand, we always compare the leading term
(the term of highest degree) in g with the leading term of the intermediate
dividend. In fact there is no choice in the matter in this case.

Exercise 3. Show that the only monomial order on k[z] is the degree order
on monomials, given by
R R A i S
For polynomial rings in several variables, there are many choices of mono-
mial orders. In writing the exponent vectors o and 3 in monomials % and

2P as ordered n-tuples, we implicitly set up an ordering on the variables x;
in klxy, ..., 2,

X1 > Tg > -0 > Ty

With this choice, there are still many ways to define monomial orders. Some
of the most important are given in the following definitions.
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(2.2) Definition (Lexicographic Order). Let 2 and #° be monomials
in k[z1,...,z,). We say 2% >ies 2P if in the difference o — § € Z", the
leftmost nonzero entry is positive.

Lexicographic order is analogous to the ordering of words used in
dictionaries.

(2.3) Definition (Graded Lexicographic Order). Let 2 and z” be
monomials in k[z1, ..., z,]. We say 2% >gue, o if Y0 > S0 B,
orif 31 ;= Y1 B, and 2 >, 2P

(2.4) Definition (Graded Reverse Lexicographic Order). Let z¢
and 2% be monomials in k[x1, . .., z,]. We say 2® > grevies P if S >
S Biyorif > a; = Y B, and in the difference a — 3 € Z", the

rightmost nonzero entry is negative.

For instance, in k[z, y, 2], with > y > z, we have

(2.5) 239Y%2 >ep 22y0212

since when we compute the difference of the exponent vectors:
(3,2,1) — (2,6,12) = (1, —4, —11),
the leftmost nonzero entry is positive. Similarly,
2y’ >ie, 2Pytz
since in (3,6,0) — (3,4,1) = (0,2, —1), the leftmost nonzero entry is posi-

tive. Comparing the lex and grevlex orders shows that the results can be
quite different. For instance, it is true that

2, 6,12 3,2
Ty z >g7‘evlem Ty z.

Compare this with (2.5), which contains the same monomials. Indeed, lex

and grevlex are different orderings even on the monomials of the same

total degree in three or more variables, as we can see by considering pairs of

monomials such as 2%y%2% and xy?z. Since (2,2,2) — (1,4,1) = (1, -2, 1),
22222 >0, 2ytz.

On the other hand by Definition (2.4),

4 2,22
Yy 2 >grevlem Ty z.

Exercise 4. Show that >jcq, >gries, a0d >greviea are monomial orders in
klxy, ..., z,] according to Definition (2.1).

Exercise 5. Show that the monomials of a fized total degree d in two
variables > y are ordered in the same sequence by >, and >grepics-
Are these orderings the same on all of k[z, y] though? Why or why not?
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For future reference, we next discuss a general method for specifying
monomial orders on k[zy, ..., x,]. We start from any m x n real matrix M
and write the rows of M as wq, ..., W,,. Then we can compare monomials
x® and 2P by first comparing their wi-weights a- wy and o-wy. If - wy >
B -wyor 3-w; > a-wp, then we order the monomials accordingly.
If - wy = - wjp, then we continue to the later rows, breaking ties
successively with the wo-weights, the ws-weights, and so on through the
W ,-weights. This process defines an order relation > . In symbols: % >,
2P if there is an ¢ < m such that o - w; = - w; fori =1,...,¢ — 1, but
a-wy > 0wy

To obtain a total order by this construction, it must be true that ker(M)N
7" = {0}. If the entries of M are rational numbers, then this property
implies that m > n, and M has full rank n. The same construction also
works for M with irrational entries, but there is a small subtlety concerning
what notion of rank is appropriate in that case. See Exercise 9 below. To
guarantee the well-ordering property of monomial orders, it is sufficient
(although not necessary) to require that M have all entries nonnegative.

Exercise 6. All the monomial orders we have seen can be specified as >
orders for appropriate matrices M.
a. Show that the lex order with > y > z is defined by the identity matrix

1 0 0
M=|01 0],
0 0 1
and similarly in k[xq, ..., z,] for all n > 1.

b. Show that the grevlex order with x > y > z is defined by either the
matrix

1 1 1
M=111 0
1 0 0
or the matrix
1 1 1
M =10 0 -1
0 -1 0
and similarly in k[zq, ..., 2,] for all n > 1. This example shows that

matrices with negative entries can also define monomial orders.
¢. The griex order compares monomials first by total degree (weight vector
w1 = (1,1,1)), then breaks ties by the lex order. This, together with
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part a, shows > gpjex=>>)s for the matrix

1 1 1
1 00
M = 01 0
0 0 1
Show that we could also use
1 1 1
M=(1 00
01 0

That is, show that the last row in M is actually superfluous. (Hint:
Making comparisons, when would we ever need to use the last row?)

d. One very common way to define a monomial order is to compare weights
with respect to one vector first, then break ties with another standard
order such as grevlex. We denote such an order by > greviez- These
weight orders are studied, for instance, in [CLO], Chapter 2, §4, Exercise
12. Suppose w = (2,4, 7) and ties are broken by grevlezwith x > y > z.
To define this order, it is most natural to use

2 4 7
11 1
M=1119
1 0 0

However, some computer algebra systems (e.g., Maple V, Release 5
and later versions with the Groebner package) require square weight
matrices. Consider the two matrices obtained from M by deleting a
row:

2 47 2 47
M=1111 M'=[1 11
1 1 0 1 00

Both have rank 3 so the condition ker(M) N Z* = {0} is satisfied.
Which matrix defines the > greyiez Order?

e. Let m > n. Given an m X n matrix M defining a monomial order >y,
describe a general method for picking an n X n submatrix M’ of M to
define the same order.

In Exercise 8 below, you will prove that >,; defines a monomial order
for any suitable matrix M. In fact, by a result of Robbiano (see [Rob]), the
> construction gives all monomial orders on k[zy, . . ., x,].

We will use monomial orders in the following way. The natural gener-
alization of the leading term (term of highest degree) in a polynomial in
k[x] is defined as follows. Picking any particular monomial order > on
k[zy,...,z,], we consider the terms in f = > cqx®. Then the leading
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term of f (with respect to >) is the product c,x® where x® is the largest
monomial appearing in f in the ordering >. We will use the notation 1< (f)
for the leading term, or just LT(f) if there is no chance of confusion about
which monomial order is being used. Furthermore, if LT(f) = ca®, then
Lc(f) = c is the leading coefficient of f and LMm(f) = x“ is the leading
monomial. Note that L1(0), L.c(0), and LM(0) are undefined.

For example, consider f = 3z3y? + 22y23 in Q[z,y, 2] (with variables
ordered x > y > z as usual). We have

LT>lem (f) = 3:173y2

since z3y2 >lex x2yz3. On the other hand

LT>g7‘eulez (f) = x2y23

since the total degree of the second term is 6 and the total degree of the
first is 5.
Monomial orders are used in a generalized division algorithm.

e (Division Algorithm in k[z1,...,x,]) Fix any monomial order > in
Elxi,...,2n], and let F = (f1,..., fs) be an ordered s-tuple of poly-
nomials in k[z1,...,x,]. Then every f € k[xi,...,x,] can be written
as

(26) f:a1f1+"'+asfs+7",

where a;,r € k[z1,...,x,], for each i, a; f; = 0 or LT>(f) > vrs(a;f;),
and either 7 = 0, or r is a linear combination of monomials, none of which
is divisible by any of LT~ (f1), ..., LT (fs). We will call r a remainder of
f on division by F.

In the particular algorithmic form of the division process given in [CLO],
Chapter 2, §3, and [AL], Chapter 1, §5, the intermediate dividend is reduced
at each step using the divisor f; with the smallest possible i such that LT(f;)
divides the leading term of the intermediate dividend. A characterization
of the expression (2.6) that is produced by this version of division can
be found in Exercise 11 of Chapter 2, §3 of [CLO]. More general forms
of division or polynomial reduction procedures are considered in [AL] and
[BW], Chapter 5, §1.

You should note two differences between this statement and the division
algorithm in k[x]. First, we are allowing the possibility of dividing f by
an s-tuple of polynomials with s > 1. The reason for this is that we will
usually want to think of the divisors f; as generators for some particular
ideal I, and ideals in k[zq,...,z,] for n > 2 might not be generated by
any single polynomial. Second, although any algorithmic version of division,
such as the one presented in Chapter 2 of [CLO], produces one particular
expression of the form (2.6) for each ordered s-tuple F' and each f, there are
always different expressions of this form for a given f as well. Reordering
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F or changing the monomial order can produce different a; and r in some
cases. See Exercise 7 below for some examples.

We will sometimes use the notation

F
r=f

for a remainder on division by F.

Most computer algebra systems that have Grobner basis packages pro-
vide implementations of some form of the division algorithm. However, in

most cases the output of the division command is just the remainder fF,
the quotients a; are not saved or displayed, and an algorithm different from
the one described in [CLO], Chapter 2, §3 may be used. For instance, the
Maple Groebner package contains a function normalf which computes a
remainder on division of a polynomial by any collection of polynomials.
To use it, one must start by loading the Groebner package (just once in a
session) with

with(Groebner) ;
The format for the normalf command is
normalf (f, F, torder);

where f is the dividend polynomial, F is the ordered list of divisors (in
square brackets, separated by commas), and torder specifies the monomial
order. For instance, to use the >, order, enter plex, then in parenthe-
ses, separated by commas, list the variables in descending order. Similarly,
to use the > g cuier order, enter tdeg, then in parentheses, separated by
commas, list the variables in descending order. Let us consider dividing
fi = 2%y?> —z and fo» = xy® + y into f = 23y + 22y* using the lex order
on Q[z, y] with > y. The Maple commands

f :=x"3%y"2 + 2xx*xy~4;

(2.7) F:=[x"2%y"2 - x, x¥y"3 + y];
normalf (f,F,plex(x,y));

will produce as output

(2.8) r? — 2%

Thus the remainder is fF = 22 — 2y%. The normalf procedure uses the
algorithmic form of division presented, for instance, in [CLO], Chapter 2,
§3.

The Groebner package contains several additional ways to specify mono-
mial orders, including one to construct >,; for a square matrix M with
positive integer entries. Hence it can be used to work with general mono-
mial orders on k[z1,. .., x,]. We will present a number of examples in later
chapters.
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ApDIiTIONAL EXERCISES FOR §2

Exercise 7.
a. Verify by hand that the remainder from (2.8) occurs in an expression

f=aifi +asfo + 2% — 29%,

where a1 = z, ag = 2y, and f; are as in the discussion before (2.7).

b. Show that reordering the variables and changing the monomial order to
tdeg(x,y) has no effect in (2.8).

c. What happens if you change F in (2.7) to

F = [:c2y2 _ $47$y3 _ y4]

and take f = 22957 Does changing the order of the variables make a
difference now?
d. Now change F to

F = [.’E2y2 - Z4a myS - y4]7

take f = 2%y% + 2%, and change the monomial order to plex(x,y,z).
Also try lex orders with the variables permuted and other monomial
orders.

Exercise 8. Let M be an m x n real matrix with nonnegative entries.
Assume that ker(M) N Z" = {0}. Show that >js is a monomial order on
k:[xl, e ,l‘n}.

Exercise 9. Given w € (R")" define 2 >y, 2% ifa-w > - w.

a. Give an example to show that > is not necessarily a monomial order
on k[z1, ..., Ty

b. With n = 2, let w = (1,v/2). Show that >, is a monomial order on
klx1, 2] in this case.

c. What property of the components of the vector w € (R”)Jr guarantees
that >y does define a monomial order on k[x1,...,z,]? Prove your
assertion. (Hint: See Exercise 11 of Chapter 2, §4 of [CLO].)

§3 Grobner Bases

Since we now have a division algorithm in k[zi,...,z,] that seems to
have many of the same features as the one-variable version, it is natural
to ask if deciding whether a given f € k[zi1,...,x,] is a member of a
given ideal I = (fy,..., fs) can be done along the lines of Exercise 1 in
§2, by computing the remainder on division. One direction is easy. Namely,

from (2.6) it follows that if r = fF = 0 on dividing by F = (f1,..., fs),
then f = a1 f1 + - - - + asfs. By definition then, f € (f1,..., fs). On the
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other hand, the following exercise shows that we are not guaranteed to get
fF = 0 for every f € (f1,..., fs) if we use an arbitrary basis F' for I.

Exercise 1. Recall from (1.4) that p = 2% + %yQZ — 2z — 1 is an element
of the ideal I = (z? + 22 — 1,22 + y* + (2 — 1)? — 4). Show, however,
that the remainder on division of p by this generating set F' is not zero.
For instance, using >, we get a remainder
pf = ész—z—zQ.

What went wrong here? From (2.6) and the fact that f € I in this case,
it follows that the remainder is also an element of I. However, pf is not
zero because it contains terms that cannot be removed by division by these
particular generators for I. The leading terms of f; = 22 + 22 — 1 and
fo = 22 +y? + (2 — 1)? — 4 do not divide the leading term of p¥". In order
for division to produce zero remainders for all elements of I, we need to be
able to remove all leading terms of elements of I using the leading terms
of the divisors. That is the motivation for the following definition.

(3.1) Definition. Fix a monomial order > on k[x1,...,z,], and let I C
klx1,...,2,] be an ideal. A Grébner basis for I (with respect to >) is a
finite collection of polynomials G = {g1,...,9:} C I with the property
that for every nonzero f € I, L1(f) is divisible by r1(g;) for some i.

We will see in a moment (Exercise 3) that a Grobuner basis for I is indeed
a basis for I, i.e., I = (g1,...,q:). Of course, it must be proved that
Grobner bases ezist for all I in k[z1, ..., x,]. This can be done in a non-
constructive way by considering the ideal (LT(I)) generated by the leading
terms of all the elements in I (a monomial ideal). By a direct argument
(Dickson’s Lemma: see [CLO], Chapter 2, §4, or [BW], Chapter 4, §3, or
[AL], Chapter 1, §4), or by the Hilbert Basis Theorem, the ideal (LT(I)) has
a finite generating set consisting of monomials () for i = 1, ..., ¢. By the
definition of (LT(I)), there is an element g; € I such that Lr(g;) = 2
foreachi =1,...,t.

Exercise 2. Show that if (Lr(I)) = (z*M, ... z*®) and if g; € T are
polynomials such that vr(g;) = 2@ for each i = 1,...,t, then G =
{g91,...,g+} is a Grobner basis for I.

Remainders computed by division with respect to a Grobner basis are
much better behaved than those computed with respect to arbitrary sets
of divisors. For instance, we have the following results.

Exercise 3.
a. Show that if G is a Grobner basis for I, then for any f € I, the remainder
on division of f by G (listed in any order) is zero.
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b. Deduce that I = (g1,...,9:) if G = {g1,..., gt} is a Grobner basis for
I. (If T = (0), then G = () and we make the convention that (§) = {0}.)

Exercise 4. If GG is a Grobner basis for an ideal I, and f is an arbitrary
polynomial, show that if the algorithm of [CLO], Chapter 2, §3 is used, the
remainder on division of f by G is independent of the ordering of G. Hint:
If two different orderings of G are used, producing remainders r; and ro,
consider the difference r; — 7o.

Generalizing the result of Exercise 4, we also have the following important
statement.

¢ (Uniqueness of Remainders) Fix a monomial order > and let I C
Elx1,...,2n] be an ideal. Division of f € k[xi,...,z,] by a Grobner
basis for I produces an expression f = g + r where g € I and no term
in r is divisible by any element of Lr(I). If f = ¢’ + / is any other such
expression, then r = 7/,

See [CLO], Chapter 2, §6, [AL], Chapter 1, §6, or [BW], Chapter 5, §2.
In other words, the remainder on division of f by a Groébner basis for
is a uniquely determined normal form for f modulo I depending only on
the choice of monomial order and not on the way the division is performed.
Indeed, uniqueness of remainders gives another characterization of Grébner
bases.

More useful for many purposes than the existence proof for Grobner
bases above is an algorithm, due to Buchberger, that takes an arbitrary
generating set {f1,..., fs} for I and produces a Grobner basis G for I
from it. This algorithm works by forming new elements of I using expres-
sions guaranteed to cancel leading terms and uncover other possible leading
terms, according to the following recipe.

(3.2) Definition. Let f,g € k[z1,...,2,] be nonzero. Fix a monomial
order and let

Lr(f) = ca® and Lr(g) = daP,

where ¢,d € k. Let 7 be the least common multiple of 2 and z”. The
S-polynomial of f and g, denoted S(f, g), is the polynomial
il z7

() T (g Y

Note that by definition S(f,g) € (f, g). For example, with f = 23y —
22%y? + x and g = 32* — y in Q[z, y|, and using >;.,, we have 27 = 2y,
and

S(f,9) =

S(f.9) =af — (y/3)g = —22°y* + 2° + /3.
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In this case, the leading term of the S-polynomial is divisible by the
leading term of f. We might consider taking the remainder on division by
F = (f, g) to uncover possible new leading terms of elements in (f, g). And
indeed in this case we find that the remainder is

(3.3) S(f,9)"
)

= —4a’y® + 2% + 22y + y*/3

and Lr(S(f,g) ) = —42%y® is divisible by neither LT(f) nor Lr(g). An

important result about this process of forming S-polynomial remainders is

the following statement.

® (Buchberger’s Criterion) A finite set G = {g1, ..., g:} is a Grobner basis
of I = {g1,...,g:) if and only if S(gi7gj)G = 0 for all pairs i # j.

See [CLO], Chapter 2, §7, [BW], Chapter 5, §3, or [AL], Chapter 1, §7.

Using this criterion above, we obtain a very rudimentary procedure for
producing a Grébner basis of a given ideal.

e (Buchberger’s Algorithm)

Input: F = (f1,..., fs)
Output: a Grébuer basis G = {g1,...,¢g:} for I = (F), with F C G
G:=F
REPEAT
G =G
FOR each pair p # ¢ in G’ DO

G
S = S(p,q)
IF S # 0 THEN G := G U {5}
UNTIL G = G’

See [CLOJ, Chapter 2, §6, [BW], Chapter 5, §3, or [AL], Chapter 1, §7. For

instance, in the example above we would adjoin h = S(f, g)F from (3.3)
to our set of polynomials. There are two new S-polynomials to consider
now: S(f,h) and S(g, h). Their remainders on division by (f, g, h) would
be computed and adjoined to the collection if they are nonzero. Then we
would continue, forming new S-polynomials and remainders to determine
whether further polynomials must be included.

/

Exercise 5. Carry out Buchberger’s Algorithm on the example above,
continuing from (3.3). (You may want to use a computer algebra system
for this.)

In Maple, there is an implementation of a more sophisticated version of
Buchberger’s algorithm in the Groebner package. The relevant command
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is called gbasis, and the format is
gbasis(F,torder);

Here F is a list of polynomials and torder specifies the monomial order.
See the description of the normalf command in §2 for more details. For
instance, the commands

F := [x"3%y - 2%x"2xy~2 + x,3*%x"4 - y];
gbasis(F,plex(x,y));

will compute a lex Grébner basis for the ideal from Exercise 4. The output
is

(3.4) [—9y + 48y1° — 4957 + 6y*, 2520 — 624y + 493y* — 3y

(possibly up to the ordering of the terms, which can vary). This is not the
same as the result of the rudimentary form of Buchberger’s algorithm given
before. For instance, notice that neither of the polynomials in F' actually
appears in the output. The reason is that the gbasis function actually
computes what we will refer to as a reduced Grobner basis for the ideal
generated by the list F'.

(3.5) Definition. A reduced Grobner basis for an ideal I C k[z1, ..., 4]
is a Grobner basis G for I such that for all distinct p, ¢ € G, no monomial
appearing in p is a multiple of LT(q). A monic Grobner basis is a reduced
Grobner basis in which the leading coefficient of every polynomial is 1, or

0if I = (0).

Exercise 6. Verify that (3.4) is a reduced Grobner basis according to this
definition.

Exercise 7. Compute a Grobner basis G for the ideal I from Exercise 1
of this section. Verify that p© = 0 now, in agreement with the result of
Exercise 3.

A comment is in order concerning (3.5). Many authors include the con-
dition that the leading coefficient of each element in G is 1 in the definition
of a reduced Grobner basis. However, many computer algebra systems (in-
cluding Maple, see (3.4)) do not perform that extra normalization because
it often increases the amount of storage space needed for the Grobner basis
elements when the coefficient field is Q. The reason that condition is often
included, however, is the following statement.

® (Uniqueness of Monic Grobner Bases) Fix a monomial order > on
k[xi,...,2,]. Each ideal I in k[x1, ..., z,] has a unique monic Grobner
basis with respect to >.
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See [CLO], Chapter 2, §7, [AL], Chapter 1, §8, or [BW], Chapter 5, §2.
Of course, varying the monomial order can change the reduced Grobner
basis guaranteed by this result, and one reason different monomial orders
are considered is that the corresponding Groébner bases can have different,
useful properties. One interesting feature of (3.4), for instance, is that the
second polynomial in the basis does not depend on z. In other words, it
is an element of the elimination ideal I N Qy]. In fact, lex Grébner bases
systematically eliminate variables. This is the content of the Elimination
Theorem from [CLO], Chapter 3, §1. Also see Chapter 2, §1 of this book
for further discussion and applications of this remark. On the other hand,
the grevlex order often minimizes the amount of computation needed to
produce a Grobner basis, so if no other special properties are required, it
can be the best choice of monomial order. Other product orders and weight
orders are used in many applications to produce Grobner bases with special
properties. See Chapter 8 for some examples.

AppiTiIONAL EXERCISES FOR §3

Exercise 8. Consider the ideal I = (2%y? — z, zy® + y) from (2.7).

a. Using >, in Q[z, y], compute a Grobner basis G for I.

b. Verify that each basis element g you obtain is in I, by exhibiting
equations g = A(z%y? — z) + B(zy® + y) for suitable A, B € Q[z, y].

c. Let f = 23y + 2zy*. What is fG? How does this compare with the
result in (2.7)?

Exercise 9. What monomials can appear in remainders with respect to
the Grobuer basis G in (3.4)? What monomials appear in leading terms of
elements of the ideal generated by G?

Exercise 10. Let G be a Grobner basis for an ideal I C k[zq, ..., z,] and
suppose there exist distinct p, ¢ € G such that vr(p) is divisible by r1(q).
Show that G \ {p} is also a Grobner basis for I. Use this observation,
together with division, to propose an algorithm for producing a reduced
Grobner basis for I given G as input.

Exercise 11. This exercise will sketch a Grobner basis method for
computing the intersection of two ideals. It relies on the Elimination
Theorem for lex Grobner bases, as stated in [CLO], Chapter 3, §1. Let
I = (fi,...,fs) C k[z1,...,2,]) be an ideal. Given f(t), an arbitrary
polynomial in k[t], consider the ideal

FOI = {(f@®)f1,--, fF@O)fs) C klx1, ..., zn,t].
a. Let I, J be ideals in k[z1, ..., z,]. Show that
INJ=0#I+1—=8)J)Nk[z1,..., 20
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b. Using the Elimination Theorem, deduce that a Grébner basis G for I'NJ
can be found by first computing a Grobner basis H for ¢ + (1 — t)J
using a lex order on k[z1, ..., x,,t] with the variables ordered t > x;
for all i, and then letting G = H N k[z1, ..., x,).

Exercise 12. Using the result of Exercise 11, derive a Grobner basis
method for computing the quotient ideal I:(h). Hint: Exercise 13 of §1
shows that if I N (k) is generated by g1, ..., g¢, then I:(h) is generated by

gl/ha"'vgt/h‘

§4 Affine Varieties

We will call the set k™ = {(a1,...,a,) : a1,...,a, € k} the affine n-
dimensional space over k. With k = R, for example, we have the usual
coordinatized Euclidean space R™. Each polynomial f € k[zq, ..., x,] de-
fines a function f : k™ — k. The value of f at (a1,...,a,) € k™ is
obtained by substituting x; = a;, and evaluating the resulting expres-
sion in k. More precisely, if we write f = > cqa® for ¢ € Fk, then
flar,...,a,) = >, caa® € k, where

(e}

a® =aft - -apn

o
We recall the following basic fact.

® (Zero Function) If k is an infinite field, then f : k™ — k is the zero
function if and only if f =0 € k[z1, ..., z,].

See, for example, [CLO], Chapter 1, §1. As a consequence, when k is infinite,
two polynomials define the same function on k™ if and only if they are equal
in klxy, ..., 2]

The simplest geometric objects studied in algebraic geometry are the
subsets of affine space defined by one or more polynomial equations. For
instance, in R3, consider the set of (z,y, 2) satisfying the equation

2?24+ 22-1=0,

a circular cylinder of radius 1 along the y-axis (see Fig. 1.1).

Note that any equation p = ¢, where p, q € k[z1, ..., x,], can be rewrit-
ten as p — ¢ = 0, so it is customary to write all equations in the form
f = 0 and we will always do this. More generally, we could consider the
simultaneous solutions of a system of polynomial equations.
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FIGURE 1.1. Circular cylinder

(4.1) Definition. The set of all simultaneous solutions (aq, ..., a,) € k™
of a system of equations

fl(xh- . 'axn) -

fo@, o m) = 0

is known as the affine variety defined by fi,..., fs, and is denoted by
V(fi,...,fs)- A subset V C k™ is said to be an affine variety if V. =
V(fi,...,fs) for some collection of polynomials f; € k[x1, ..., x,].

In later chapters we will also introduce projective varieties. For now,
though, we will often say simply “variety” for “affine variety.” For example,
V(z? + 22 — 1) in R? is the cylinder pictured above. The picture was
generated using the Maple command

implicitplot3d(x~2+z"2-1,x=-2..2,y=-2..2,z=-2..2,
grid=[20,20,20]);

The variety V(22 + y? + (z — 1) — 4) in R? is the sphere of radius 2
centered at (0,0, 1) (see Fig. 1.2).

If there is more than one defining equation, the resulting variety can be
considered as an intersection of other varieties. For example, the variety
Vi(z? + 22 — 1,22 + y? + (2 — 1) — 4) is the curve of intersection of the
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FIGURE 1.2. Sphere

F1Gure 1.3. Cylinder-sphere intersection

cylinder and the sphere pictured above. This is shown, from a viewpoint
below the zy-plane, in Fig. 1.3.

The union of the sphere and the cylinder is also a variety, namely V ((2%+
2?2 —1)(2? + y* + (2 — 1)? — 4)). Generalizing examples like these, we have:

Exercise 1.

a. Show that any finite intersection of affine varieties is also an affine
variety.
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b. Show that any finite union of affine varieties is also an affine variety.
Hint: If V = V(f1,...,fs) and W = V(g1,...,9:), then what is
V(figi 11 <i<s,1<j<t)?

c. Show that any finite subset of k™, n > 1, is an affine variety.

On the other hand, consider the set S = R \ {0, 1,2}, a subset of R.
We claim S is not an affine variety. Indeed, if f is any polynomial in
R[z] that vanishes at every point of S, then f has infinitely many roots.
By standard properties of polynomials in one variable, this implies that
f must be the zero polynomial. (This is the one-variable case of the Zero
Function property given above; it is easily proved in k[z] using the division
algorithm.) Hence the smallest variety in R containing S is the whole real
line itself.

An affine variety V' C k™ can be described by many different sys-
tems of equations. Note that if ¢ = p1f1 + pafo + -+ + psfs, where
pi € k[z1,...,x,] are any polynomials, then g(ai,...,a,) = 0 at each
(a1, ...,an) € V(f1,..., fs). So given any set of equations defining a va-
riety, we can always produce infinitely many additional polynomials that
also vanish on the variety. In the language of §1 of this chapter, the g as
above are just the elements of the ideal (fi,..., fs). Some collections of
these new polynomials can define the same variety as the fi,..., fs.

Exercise 2. Consider the polynomial p from (1.2). In (1.4) we saw that
p€ (@2 + 22— 1,22 + y* + (2 — 1)? — 4). Show that
@+ 221,22+ + (212 —4) = @+ 22— 1,y — 22— 2)
in Q[z, y, z]. Deduce that
V2 +22 - 1,22+ 9> + (2 - 1) —4) = V(2? + 22 — 1,y — 22 - 2).

Generalizing Exercise 2 above, it is easy to see that

e (Equal Ideals Have Equal Varieties) If (f1,...,fs) = (g1,...,9¢) in
klx1,...,zp], then V(f1,..., fs) = V(g1, ..., 9t)

See [CLO], Chapter 1, §4. By this result, together with the Hilbert Basis
Theorem from §1, it also makes sense to think of a variety as being defined

by an ideal in k[x1, ..., z,], rather than by a specific system of equations.
If we want to think of a variety in this way, we will write V' = V(I) where
I C E[xy,...,xy,] is the ideal under consideration.

Now, given a variety V' C k™, we can also try to turn the construction of
V from an ideal around, by considering the entire collection of polynomials
that vanish at every point of V.

(4.2) Definition. Let V' C k™ be a variety. We denote by I(V') the set

{f € klx1,...,z,) : fla1,...,an) = 0for all (a1,...,a,) € V}.
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We call I(V) the ideal of V for the following reason.

Exercise 3. Show that I(V) is an ideal in k[z1, ..., x,] by verifying that
the two properties in Definition (1.5) hold.

If V = V(I), is it always true that I(V) = I? The answer is no, as
the following simple example demonstrates. Consider V' = V(2?) in R
The ideal I = (22) in R, y] consists of all polynomials divisible by z2.
These polynomials are certainly contained in I(V'), since the corresponding
variety V consists of all points of the form (0,b), b € R (the y-axis). Note
that p(x,y) = = € I(V), but « ¢ I. In this case, I(V([])) is strictly larger
than 1.

Exercise 4. Show that the following inclusions are always valid:
I cVIcIv()),
where v/T is the radical of I from Definition (1.6).

It is also true that the properties of the field &k influence the relation
between I(V(I)) and I. For instance, over R, we have V(2% + 1) = )
and I(V(z? + 1)) = R[z]. On the other hand, if we take k = C, then
every polynomial in C|x] factors completely by the Fundamental Theorem

of Algebra. We find that V(22 + 1) consists of the two points +i € C, and
I(V(z? +1)) = (22 + 1).

Exercise 5. Verify the claims made in the preceding paragraph. You may
want to start out by showing that if a € C, then I({a}) = (z — a).

The first key relationships between ideals and varieties are summarized
in the following theorems.

e (Strong Nullstellensatz) If k is an algebraically closed field (such as C)
and [ is an ideal in k[zq, ..., zy], then

I(V(I)) = VI.
e (Ideal-Variety Correspondence) Let k be an arbitrary field. The maps
affine varieties —— ideals
and
ideals — affine varieties

are inclusion-reversing, and V(I(V)) = V for all affine varieties V. If k
is algebraically closed, then
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_ I L
affine varieties — radical ideals
and
Lo A -
radical ideals — affine varieties
are inclusion-reversing bijections, and inverses of each other.

See, for instance [CLO], Chapter 4, §2, or [AL], Chapter 2, §2. We con-

sider how the operations on ideals introduced in §1 relate to operations on
varieties in the following exercises.

ApDDITIONAL EXERCISES FOR §4

Exercise 6. In §1, we saw that the polynomial p = 2 + éy2z —z—1is

in
a.

the ideal I = (2% + 22 — 1,22 + y? + (z — 1)? — 4) C R[z, y, 2].

What does this fact imply about the varieties V(p) and V(I) in R3?
(V(I) is the curve of intersection of the cylinder and the sphere pictured
in the text.)

. Using a 3-dimensional graphing program (e.g. Maple’s implicitplot3d

function from the plots package) or otherwise, generate a picture of the
variety V(p).

. Show that V(p) contains the variety W = V(22 — 1,4? — 2). Describe

W geometrically.

. If we solve the equation

x2+éy227271:0

for z, we obtain

2

(4.3) i= " fj
1-3y

The right-hand side r(z, y) of (4.3) is a quotient of polynomials or, in the
terminology of §1, a rational function in x,y, and (4.3) is the equation
of the graph of r(z, y). Exactly how does this graph relate to the variety
V(z% + 3y?2 — z — 1) in R3? (Are they the same? Is one a subset of
the other? What is the domain of r(z, y) as a function from R? to R?)

Exercise 7. Show that for any ideal I C k[z1, ..., 2], \/\/I = /I. Hence
V1 is automatically a radical ideal.

Exercise 8. Assume k is an algebraically closed field. Show that in
the Ideal-Variety Correspondence, sums of ideals (see Exercise 11 of §1)
correspond to intersections of the corresponding varieties:

V(I +J)=V{I)nV(J).
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Also show that if V' and W are any varieties,

(VW) = VI(V) +I(W).

Exercise 9.

a.

b.

Show that the intersection of two radical ideals is also a radical ideal.
Show that in the Ideal-Variety Correspondence above, intersections
of ideals (see Exercise 12 from §1) correspond to unions of the
corresponding varieties:

V(InJ)y=V({I)uV(J).
Also show that if V' and W are any varieties,
IVuUw) =1LV)nLW).

Show that products of ideals (see Exercise 12 from §1) also correspond
to unions of varieties:

V(IJ) = V(I) UV(J).

Assuming k is algebraically closed, how is the product I(V)I(WW) related
to (VU W)?

Exercise 10. A variety V is said to be irreducible if in every expression
of V' as a union of other varieties, V.= V; U V,, either V| = V or Vo, = V.
Show that an affine variety V' is irreducible if and only if I(V) is a prime
ideal (see Exercise 8 from §1).

Exercise 11. Let k be algebraically closed.

a.

Show by example that the set difference of two affine varieties:
VAW ={peV:pg W}

need not be an affine variety. Hint: For instance, consider k[z] and let
V =k=V(0) and W = {0} = V(2).

Show that for any ideals I,J in k[xyi,...,2,], V(I:J) contains
V(I) \ V(J), but that we may not have equality. (Here I:J is the
quotient ideal introduced in Exercise 13 from §1.)

If I is a radical ideal, show that V(I) \ V(J) C V(I : J) and that any
variety containing V(I) \ V(J) must contain V(I:J). Thus V(I:J) is
the smallest variety containing the difference V(I) \ V(J); it is called
the Zariski closure of V(I) \ V(J). See [CLO], Chapter 4, §4.

Show that if I is a radical ideal and J is any ideal, then I:J is also a
radical ideal. Deduce that I(V'):I(W) is the radical ideal corresponding
to the Zariski closure of V' \ W in the Ideal-Variety Correspondence.
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Solving Polynomial Equations

In this chapter we will discuss several approaches to solving systems of
polynomial equations. First, we will discuss a straightforward attack based
on the elimination properties of lexicographic Grobner bases. Combining
elimination with numerical root-finding for one-variable polynomials we get
a conceptually simple method that generalizes the usual techniques used
to solve systems of linear equations. However, there are potentially severe
difficulties when this approach is implemented on a computer using finite-
precision arithmetic. To circumvent these problems, we will develop some
additional algebraic tools for root-finding based on the algebraic structure
of the quotient rings k[z1,...,x,]/I. Using these tools, we will present
alternative numerical methods for approximating solutions of polynomial
systems and consider methods for real root-counting and root-isolation.
In Chapters 3, 4 and 7, we will also discuss polynomial equation solving.
Specifically, Chapter 3 will use resultants to solve polynomial equations,
and Chapter 4 will show how to assign a well-behaved multiplicity to each
solution of a system. Chapter 7 will consider other numerical techniques
(homotopy continuation methods) based on bounds for the total number
of solutions of a system, counting multiplicities.

§1 Solving Polynomial Systems by Elimination
The main tools we need are the Elimination and Extension Theorems. For
the convenience of the reader, we recall the key ideas:

e (Elimination Ideals) If I is an ideal in k[zy,...,x,], then the (th
elimination ideal is

Iy=1nN k‘[xg_;,_l, L ,l‘n].
Intuitively, if I = (f1, ..., fs), then the elements of I, are the linear com-
binations of the fi, ..., fs, with polynomial coefficients, that eliminate
Z1,...,xe from the equations f; = --- = fs = 0.

26
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¢ (The Elimination Theorem) If G is a Grobner basis for I with respect
to the lex order (x1 > x93 > --- > x,) (or any order where monomi-
als involving at least one of x1,...,x, are greater than all monomials
involving only the remaining variables), then

Gy = GNklzegr, ...,z

is a Grobner basis of the £th elimination ideal I,.

e (Partial Solutions) A point (agt1,...,a,) € V(I;) C k"¢ is called a
partial solution. Any solution (a1, ...,an) € V(I) C k™ truncates to
a partial solution, but the converse may fail—not all partial solutions
extend to solutions. This is where the Extension Theorem comes in. To
prepare for the statement, note that each f in I;_; can be written as a
polynomial in x,, whose coefficients are polynomials in xpy1, ..., Ty:

[ =col@ppr, .. xn)xf + -+ co(Teg1s ..o, Tn).

We call ¢q the leading coefficient polynomial of f if z] is the highest
power of x, appearing in f.

¢ (The Extension Theorem) If k is algebraically closed (e.g., k = C), then
a partial solution (agy1, ..., a,) in V(I;) extends to (ag, ars1, - - ., a,) in
V(Iy—1) provided that the leading coefficient polynomials of the elements
of a lex Grobner basis for Iy_1 do not all vanish at (ag41, ..., an).

For the proofs of these results and a discussion of their geometric meaning,
see Chapter 3 of [CLO]. Also, the Elimination Theorem is discussed in §6.2
of [BW] and §2.3 of [AL], and [AL] discusses the geometry of elimination
in §2.5.

The Elimination Theorem shows that a lex Grébner basis G successively
eliminates more and more variables. This gives the following strategy for
finding all solutions of the system: start with the polynomials in G with the
fewest variables, solve them, and then try to extend these partial solutions
to solutions of the whole system, applying the Extension Theorem one
variable at a time.

As the following example shows, this works especially nicely when V(I)
is finite. Consider the system of equations

2?4242 =4
(1.1) 2?4+ 2% =5
rz =1

from Exercise 4 of Chapter 3, §1 of [CLO]. To solve these equations, we
first compute a lex Grobner basis for the ideal they generate using Maple:

with(Groebner) :
PList := [x"2+y~2+z72-4, x"2+2%y~2-5, x*z-1];
G := gbasis(PList,plex(x,y,2z));
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This gives output
G:=[1+22" —32%, 9% — 2% — 1,2 + 2% — 32].

From the Grobner basis it follows that the set of solutions of this system in
C3 is finite (why?). To find all the solutions, note that the last polynomial
depends only on z (it is a generator of the second elimination ideal Io =
I N C[z]) and factors nicely in Q[z]. To see this, we may use

factor (2*xz~4 - 3*%z"2 + 1) ;
which generates the output
(z = 1)(z 4+ 1)(222 - 1).
Thus we have four possible z values to consider:
z =41, +1/V2.

By the Elimination Theorem, the first elimination ideal Iy = I N Cly, 2] is
generated by

y?— 22— 1

22 — 322 + 1.
Since the coefficient of y? in the first polynomial is a nonzero constant,
every partial solution in 'V (I3) extends to a solution in V(I1). There are

eight such points in all. To find them, we substitute a root of the last
equation for z and solve the resulting equation for y. For instance,

subs(z=1,G) ;
will produce:
[—1 4 2,9* — 2,0],

so in particular, y = ++/2. In addition, since the coefficient of z in the first
polynomial in the Grobner basis is a nonzero constant, we can extend each
partial solution in V(I1) (uniquely) to a point of V(I). For this value of z,
we have z = 1.

Exercise 1. Carry out the same process for the other values of z as well.
You should find that the eight points

(1, +v2,1), (=1,£V2, -1), (V2,+£V6/2,1/V2), (—V2,+V6/2, -1/V?2)

form the set of solutions.

The system in (1.1) is relatively simple because the coordinates of the
solutions can all be expressed in terms of square roots of rational numbers.
Unfortunately, general systems of polynomial equations are rarely this nice.
For instance it is known that there are no general formulas involving only
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the field operations in k and extraction of roots (i.e., radicals) for solving
single variable polynomial equations of degree 5 and higher. This is a fa-
mous result of Ruffini, Abel, and Galois (see [Her]). Thus, if elimination
leads to a one-variable equation of degree 5 or higher, then we may not be
able to give radical formulas for the roots of that polynomial.

We take the system of equations given in (1.1) and change the first term
in the first polynomial from z2 to z°. Then executing

PList2 := [x"5+y~2+2"2-4, x"2+2%y~2-5, x*z-1];
G2 := gbasis(PList2,plex(x,y,2));

produces the following lez Grébner basis:
(1.2)  [24227 —32° — 23 4y* — 22° + 323 + 2 — 10, 20 + 225 — 32* — 22].
In this case, the command
factor (2*xz"7 - 3%z"5 - z°3 + 2);
gives the factorization
227 =325 — 28 42 =(2-1)(22% + 225 — 2% — 23 — 2272 — 22— 2),

and the second factor is irreducible in Q[z]. In a situation like this, to
go farther in equation solving, we need to decide what kind of answer is
required.

If we want a purely algebraic, “structural” description of the solutions,
then Maple can represent solutions of systems like this via the solve
command. Let’s see what this looks like. Entering

solve(convert(G2,set) ,{x,y,z});
you should generate the following output:
{{y = RootOf( Z* — 2,label = L4),z =1,z = 1},
{y = 1/2RootOf( Z*
— 2RootOf(2 2% +2 7% — z* — 73 -2 7% —2 7 - 2)°
+ 3RootOf(2 26 +2 725 — 7z* — 73 -2 2% -2 7 — 2)3
+ RootOf(2 2% +2 25 — z* — 73 -2 7% -2 7 — 2)
— 10, label = L1),
z=RootOf(2 28 +22° — 7' — 73 27?2 -2 7 - 2)*
—1/2RootOf(2 2% +2 2% — z* — 73 -2 7?2 — 27 - 2)* -1
+RootOf(2 28 +2 2° — z* — 73 —272 —2 7 - 2)°
— 1/2RootOf(2 2% +2 7% — 7z* — 73 -2 7% —2 7 — 2)3
—RootOf(2 28 +2 2% — z* — 73 -2 7% -2 Z - 2),
z=RootOf(2 28 +2 25 - z* — 73 -2 2% -2 7 - 2)}}
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Here RootOf(2 Z¢+2 75— Z4— 7Z3—2 Z? —2 Z —2) stands for any one
root of the polynomial equation 2 Z6 +2 Z° — 74 — 73 -2 2% -2 7 —
2 = 0. Similarly, the other RootOf expressions stand for any solution of
the corresponding equation in the dummy variable Z.

Exercise 2. Verify that the expressions above are obtained if we solve for
z from the Grobner basis Go and then use the Extension Theorem. How
many solutions are there of this system in C3?

On the other hand, in many practical situations where equations must
be solved, knowing a numerical approrimation to a real or complex solu-
tion is often more useful, and perfectly acceptable provided the results are
sufficiently accurate. In our particular case, one possible approach would
be to use a numerical root-finding method to find approximate solutions of
the one-variable equation

(1.3) 220 4225 — 2t =22 — 2,2 -2, -2=0,

and then proceed as before using the Extension Theorem, except that we
now use floating point arithmetic in all calculations. In some examples,
numerical methods will also be needed to solve for the other variables as
we extend.

One well-known numerical method for solving one-variable polynomial
equations in R or C is the Newton-Raphson method or, more simply but
less accurately, Newton’s method. This method may also be used for equa-
tions involving functions other than polynomials, although we will not
discuss those here. For motivation and a discussion of the theory behind
the method, see [BuF] or [Act].

The Newton-Raphson method works as follows. Choosing some initial
approximation zg to a root of p(z) = 0, we construct a sequence of numbers
by the rule

p(21)
P (zk)

where p'(z) is the usual derivative of p from calculus. In most situations,
the sequence zj will converge rapidly to a solution z of p(z) = 0, that is,
z = limg_, o zx will be a root. Stopping this procedure after a finite number
of steps (as we must!), we obtain an approximation to z. For example, we
might stop when zx41 and z, agree to some desired accuracy, or when a
maximum allowed number of terms of the sequence have been computed.
See [BuF], [Act], or the comments at the end of this section for additional
information on the performance of this technique. When trying to find all
roots of a polynomial, the trickiest part of the Newton-Raphson method is
making appropriate choices of zg. It is easy to find the same root repeatedly
and to miss other ones if you don’t know where to look!

Zhtl = 2k — for k=0,1,2,...,
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Fortunately, there are elementary bounds on the absolute values of the
roots (real or complex) of a polynomial p(z). Here is one of the simpler
bounds.

Exercise 3. Show that if p(z) = 2" + a,_12""! + -+ + ap is a monic
polynomial with complex coefficients, then all roots z of p satisfy |z| < B,
where

B = max{1, |ap—1| + -+ + |a1| + |aol}.
Hint: The triangle inequality implies that |a + b > |a| — [b].

See Exercise 10 below for another better bound on the roots. Given any
bound of this sort, we can limit our attention to zy in this region of the
complex plane to search for roots of the polynomial.

Instead of discussing searching strategies for finding roots, we will use a
built-in Maple function to approximate the roots of the system from (1.2).
The Maple function fsolve finds numerical approximations to all real (or
complex) roots of a polynomial by a combination of root location and
numerical techniques like Newton-Raphson. For instance, the command

fsolve(2*z~6+2*%z"5-2"4-2"3-2%z"2-2%z-2) ;

will compute approximate values for the real roots of our polynomial (1.3).
The output should be:

—1.395052015, 1.204042437.

(Note: In Maple, 10 digits are carried by default in decimal calculations;
more digits can be used by changing the value of the Maple system variable
Digits. Also, the actual digits in your output may vary slightly if you
carry out this computation using another computer algebra system.) To
get approximate values for the complex roots as well, try:

fsolve (2*z~6+2*%z~5-z"4-z"3-2xz"2-2xz-2, complex) ;
We illustrate the Extension Step in this case using the approximate value
z = 1.204042437.
We substitute this value into the Grobner basis polynomials using
subs (z=1.204042437,G2) ;
and obtain
[22 — 1.661071025, —8.620421528 + 412, —.2 « 1075].

Note that the value of the last polynomial was not ezxactly zero at our
approximate value of z. Nevertheless, as in Exercise 1, we can extend this
approximate partial solution to two approximate solutions of the system:

(z,y, 2) = (.8305355125, £1.468027718, 1.204042437).
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Checking one of these by substituting into the equations from (1.2), using
subs (z=1.204042437,y=1.468027718,x=.8305355125, G2);
we find
[0, —4 %1078 —.2 % 107%],

so we have a reasonably good approximate solution, in the sense that our
computed solution gives values very close to zero in the polynomials of the
system.

Exercise 4. Find approximate values for all other real solutions of this
system by the same method.

In considering what we did here, one potential pitfall of this approach
should be apparent. Namely, since our solutions of the one-variable equation
are only approximate, when we substitute and try to extend, the remaining
polynomials to be solved for z and y are themselves only approximate. Once
we substitute approximate values for one of the variables, we are in effect
solving a system of equations that is different from the one we started
with, and there is little guarantee that the solutions of this new system are
close to the solutions of the original one. Accumulated errors after several
approximation and extension steps can build up quite rapidly in systems
in larger numbers of variables, and the effect can be particularly severe if
equations of high degree are present.

To illustrate how bad things can get, we consider a famous cautionary
example due to Wilkinson, which shows how much the roots of a polynomial
can be changed by very small changes in the coefficients.

Wilkinson’s example involves the following polynomial of degree 20:

p(x) = (z + )(z +2)- - (z+20) = 22° + 2102 + - - + 20

The roots are the 20 integers x = —1, —2,..., —20. Suppose now that we
“perturb” just the coefficient of !9, adding a very small number. We carry
20 decimal digits in all calculations. First we construct p(z) itself:

Digits := 20:
p:=1:
for k to 20 do p := px(x+k) end do:

Printing expand(p) out at this point will show a polynomial with some
large coefficients indeed! But the polynomial we want is actually this:

q := expand(p + .000000001*x~19) :
fsolve(q,x,complex) ;
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The approximate roots of ¢ = p+.000000001 z'? (truncated for simplicity)
are:

— 20.03899, —18.66983 — .35064 I, —18.66983 + .35064 I,

— 16.57173 — .88331 I, —16.57173 + .88331 1,

— 14.37367 — 77316 I, —14.37367 + .77316 I,

— 12.38349 — .10866 I, —12.38349 + .10866 I,

— 10.95660, —10.00771, —8.99916, —8.00005,

—6.999997, —6.000000, —4.99999, —4.00000,

— 2.999999, —2.000000, —1.00000.
Instead of 20 real roots, the new polynomial has 12 real roots and 4 com-
plex conjugate pairs of roots. Note that the imaginary parts are not even
especially small!

While this example is admittedly pathological, it indicates that we should
use care in finding roots of polynomials whose coefficients are only approx-
imately determined. (The reason for the surprisingly bad behavior of this p
is essentially the equal spacing of the roots! We refer the interested reader
to Wilkinson’s paper [Wil] for a full discussion.)

Along the same lines, even if nothing this spectacularly bad happens,
when we take the approximate roots of a one-variable polynomial and try
to extend to solutions of a system, the results of a numerical calculation can

still be unreliable. Here is a simple example illustrating another situation
that causes special problems.

Exercise 5. Verify that if x > y, then

G:[z2+2x+3+y5—y,y6—y2+2y]

is a lex Grobner basis for the ideal that G generates in R[z, y].

We want to find all real points (x,y) € V(G). Begin with the equation
v —y? +2y =0,

which has exactly two real roots. One is y = 0, and the second is in the
interval [—2, —1] because the polynomial changes sign on that interval.
Hence there must be a root there by the Intermediate Value Theorem from
calculus. Using fsolve to find an approximate value, we find the nonzero
root is

(1.4) —1.267168305
to 10 decimal digits. Substituting this approximate value for y into G yields
[% + 22 + .999999995, .7 x 10~¥].
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Then use
fsolve(x~2 + 2%x + .999999995) ;
to obtain
—1.000070711, —.9999292893.
Clearly these are both close to z = —1, but they are different. Taken

uncritically, this would seem to indicate two distinct real values of x when
y is given by (1.4).

Now, suppose we used an approximate value for y with fewer decimal
digits, say y = —1.2671683. Substituting this value for y gives us the
quadratic

2% + 22 + 1.000000054.

This polynomial has no real roots at all. Indeed, using the complex option
in fsolve, we obtain two complex values for x:

—1. —.0002323790008 I, —1. 4 .0002323790008 I.

To see what is really happening, note that the nonzero real root of y® —
y? + 2y = 0 satisfies 4° — y + 2 = 0. When the exact root is substituted
into G, we get

[2% + 22 + 1,0]

and the resulting equation has a double root x = —1.
The conclusion to be drawn from this example is that equations with
double roots, such as the exact equation

22 4+220+1=0

we got above, are especially vulnerable to the errors introduced by numer-
ical root-finding. It can be very difficult to tell the difference between a
pair of real roots that are close, a real double root, and a pair of complex
conjugate roots.

From these examples, it should be clear that finding solutions of polyno-
mial systems is a delicate task in general, especially if we ask for information
about how many real solutions there are. For this reason, numerical meth-
ods, for all their undeniable usefulness, are not the whole story. And they
should never be applied blindly. The more information we have about the
structure of the set of solutions of a polynomial system, the better a chance
we have to determine those solutions accurately. For this reason, in §2 and
83 we will go to the algebraic setting of the quotient ring k[xy, ..., z,]/I
to obtain some additional tools for this problem. We will apply those tools
in §4 and §5 to give better methods for finding solutions.

For completeness, we conclude with a few additional words about the
numerical methods for equation solving that we have used. First, if z is a
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multiple root of p(z) = 0, then the convergence of the Newton-Raphson se-
quence zj can be quite slow, and a large number of steps and high precision
may be required to get really close to a root (though we give a method for
avoiding this difficulty in Exercise 8). Second, there are some choices of zg
where the sequence z;, will fail to converge to a root of p(z). See Exercise 9
below for some simple examples. Finally, the location of z in relation to zg
can be somewhat unpredictable. There could be other roots lying closer to
zo. These last two problems are related to the fractal pictures associated to
the Newton-Raphson method over C—see, for example, [PR]. We should
also mention that there are multivariable versions of Newton-Raphson for
systems of equations and other iterative methods that do not depend on
elimination. These have been much studied in numerical analysis. For more
details on these and other numerical root-finding methods, see [BuF] and
[Act]. Also, we will discuss homotopy continuation methods in Chapter 7,
5 of this book.

ApDiTiONAL EXERCISES FOR §1

Exercise 6. Use elimination to solve the system
0=a>42y° —y — 22
0=2a?—-8y2+10z—1
0=2a?—Tyz

How many solutions are there in R?; how many are there in C3?

Exercise 7. Use elimination to solve the system
0=a2+9>+22 -2z
0=2a®—yz—=z
0=z —y+ 2z

How many solutions are there in R?; how many are there in C3?

Exercise 8. In this exercise we will study exactly why the performance
of the Newton-Raphson method is poor for multiple roots, and suggest a
remedy. Newton-Raphson iteration for any equation p(z) = 0 is an example
of fized point iteration, in which a starting value zg is chosen and a sequence

(1.5) Zr+1 = 9(zk) for k=10,1,2,...

is constructed by iteration of a fixed function g(z). For Newton-Raphson
iteration, the function g(z) is g(z) = Np(z) = z — p(2)/p'(2). If the se-
quence produced by (1.5) converges to some limit z, then z is a fized point
of g (that is, a solution of g(z) = z). It is a standard result from analysis
(a special case of the Contraction Mapping Theorem) that iteration as in
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(1.5) will converge to a fixed point z of g provided that |¢’(z)| < 1, and 2o
is chosen sufficiently close to z. Moreover, the smaller |¢’(z)| is, the faster
convergence will be. The case ¢’(z) = 0 is especially favorable.

a. Show that each simple root of the polynomial equation p(z) = 0 is a
fized point of the rational function N,(z) = z — p(2)/p'(2).

b. Show that multiple roots of p(z) = 0 are removable singularities of
N,(z) (that is, |Np(2)| is bounded in a neighborhood of each multiple
root). How should N, be defined at a multiple root of p(z) = 0 to make
N, continuous at those points?

c. Show that Nj(z) = 0 if z is a simple root of p(z) = 0 (that is, if
p(z) = 0, but p'(z) # 0).

d. On the other hand, show that if z is a root of multiplicity & of p(z) (that
is, if p(z) = p'(z) = --- = p*=D(2) = 0 but p®*)(2) # 0), then

1
lim Ny(2) =1 -

Thus Newton-Raphson iteration converges much faster to a simple
root of p(z) = 0 than it does to a multiple root, and the larger the
multiplicity, the slower the convergence.

e. Show that replacing p(z) by

_ p(2)
GCD(p(2), p'(2))

(see [CLO], Chapter 1, §5, Exercises 14 and 15) eliminates this difficulty,
in the sense that the roots of p,.q(z) = 0 are all simple roots.

pred(z)

Exercise 9. There are cases when the Newton-Raphson method fails to

find a root of a polynomial for lots of starting points z.

a. What happens if the Newton-Raphson method is applied to solve the
equation z2 + 1 = 0 starting from a real zo? What happens if you take
zp with nonzero imaginary parts? Note: It can be shown that Newton-
Raphson iteration for the equation p(z) = 0 is chaotic if zg is chosen in
the Julia set of the rational function N,(z) = z — p(z)/p'(z) (see [PR]),
and exact arithmetic is employed.

b. Let p(z) = 2* — 22 — 11/36 and, as above, let N,(2) = 2z — p(2)/p'(2).
Show that +1/v/6 satisfies N,(1/v6) = —1/v6, N,(—=1/v/6) = 1//6,
and N/(1//6) = 0. In the language of dynamical systems, +1/v/6 is
a superattracting 2-cycle for N,(z). One consequence is that for any zo
close to +1/ V 6, the Newton-Raphson method will not locate a root of
p. This example is taken from Chapter 13 of [Dev].

Exercise 10. This exercise improves the bound on roots of a polynomial
given in Exercise 3. Let p(z) = 2" +a,_12" "'+ -+ -+ a1z + ag be a monic
polynomial in C[z]. Show that all roots z of p satisfy |z| < B, where

B =1+ max{|an—1], ..., |a1], |ao]}-
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This upper bound can be much smaller than the one given in Exercise 3.
Hint: Use the Hint from Exercise 3, and consider the evaluation of p(z) by
nested multiplication:

p(2) = (- ((z + an-1)z + an—2)z + - - + a1)z + ao.

§2 Finite-Dimensional Algebras

This section will explore the “remainder arithmetic” associated to a
Grobner basis G = {g1,...,g:} of an ideal I C k[x1, ..., z,]. Recall from
Chapter 1 that if we divide f € k[z1,...,z,] by G, the division algorithm
yields an expression

G
(2.1) f=hig+- -+ g+ [,

. G . . . . .
where the remainder f  is a linear combination of the monomials x® ¢
(ur(I)). Furthermore, since G is a Grobner basis, we know that f € I if

and only if fG = 0, and the remainder is uniquely determined for all f.
This implies

(2.2) =gt = fogel

Since polynomials can be added and multiplied, given f, g € k[z1, ..., z,]
it is natural to ask how the remainders of f 4+ g and fg can be computed
if we know the remainders of f, g themselves. The following observations
show how this can be done.

® The sum of two remainders is again a remainder, and in fact one can
. G G
easily show that f + ¢ = f+g .

® On the other hand, the product of remainders need not be a remain-
G

G ¢ G G
der. But it is also easy to see that f ¢ = fg ,and f -¢% isa
remainder.

We can also interpret these observations as saying that the set of remain-
ders on division by G has naturally defined addition and multiplication
operations which produce remainders as their results.

This “remainder arithmetic” is closely related to the quotient ring
klz1,...,2z,]/I. We will assume the reader is familiar with quotient rings,
as described in Chapter 5 of [CLO] or in a course on abstract algebra.
Recall how this works: given f € k[x1, ..., z,], we have the coset

fl=Ff+T={f+h:hel}

and the crucial property of cosets is

(2.3) fl=lgl=f-gel
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The quotient ring k[z1,...,x,|/I consists of all cosets [f] for f €
k‘[xl, ce ,xn].

From (2.1), we see that fG € [f], and then (2.2) and (2.3) show that we
have a one-to-one correspondence

remainders «— cosets
G
f—1fl
. . G . .
Thus we can think of the remainder f as a standard representative of its
coset [f] € k[x1,...,x,]/I. Furthermore, it follows easily that remainder
arithmetic is ezactly the arithmetic in k[xy, ..., z,]/I. That is, under the
above correspondence we have

€+ 9% — /] +g]
G

G
fg% — 1119l
Since we can add elements of k[zq, ..., x,]/I and multiply by constants
(the cosets [c] for ¢ € k), k[x1,...,2,]/] also has the structure of a vector

space over the field k. A ring that is also a vector space in this fashion
is called an algebra. The algebra k[xy,...,z,]/I will be denoted by A
throughout the rest of this section, which will focus on its vector space
structure.

An important observation is that remainders are the linear combinations
of the monomials * ¢ (rT([)) in this vector space structure. (Strictly
speaking, we should use cosets, but in much of this section we will identify
a remainder with its coset in A.) Since this set of monomials is linearly
independent in A (why?), it can be regarded as a basis of A. In other
words, the monomials

B ={z%:z% ¢ (xr(I))}
form a basis of A (more precisely, their cosets are a basis). We will refer to
elements of B as basis monomials. In the literature, basis monomials are
often called standard monomials.
The following example illustrates how to compute in A using basis
monomials. Let

(2.4) G = {2 + 3xy/2 + 9*/2 — 32/2 — 3y/2, 2y — x,y° — y}.

Using the grevlex order with x > vy, it is easy to verify that G is a Grébner
basis for the ideal I = (G) C C|z, y] generated by G. By examining the
leading monomials of G, we see that (Lr(I)) = (22, 2y?,v*). The only
monomials not lying in this ideal are those in

B = {1,z,y,zy, y*}

so that by the above observation, these five monomials form a vector space
basis for A = Clx, y]/I over C.
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We now turn to the structure of the quotient ring A. The addition op-
eration in A can be viewed as an ordinary vector sum operation once we
express elements of A in terms of the basis B in (2.4). Hence we will consider
the addition operation to be completely understood.

Perhaps the most natural way to describe the multiplication operation
in A is to give a table of the remainders of all products of pairs of elements
from the basis B. Since multiplication in A distributes over addition, this
information will suffice to determine the products of all pairs of elements
of A.

For example, the remainder of the product = - xy may be computed as
follows using Maple. Using the Grébner basis G, we compute

normalf (x"2*y,G,tdeg(x,y));

and obtain

1
2_ "y

3. 3.3
oY L)

2 2

Exercise 1. By computing all such products, verify that the multiplication
table for the elements of the basis B is:

1z y ay y°

1 1 = y zy 92
r z «a xy B =
y oy oy Yy oz oy
zy xy B x a zy
(2.5) v vy ay y?

where
a = —3zy/2 — y*/2 + 32/2 + 3y/2
B = 3xzy/2 + 3y*/2 — 3x/2 — y/2.

This example was especially nice because A was finite-dimensional as a
vector space over C. In general, for any field & C C, we have the following
basic theorem which describes when k[z1, . . ., ,]/I is finite-dimensional.

¢ (Finiteness Theorem) Let k C C be a field, and let I C k[z1, ..., z,] be
an ideal. Then the following conditions are equivalent:
a. The algebra A = k[z1,...,x,]/I is finite-dimensional over k.
b. The variety V(I) C C" is a finite set.
c. If G is a Grobner basis for I, then for each i, 1 < ¢ < n, there is an
m; > 0 such that 2] = L1(g) for some g € G.

For a proof of this result, see Theorem 6 of Chapter 5, §3 of [CLO], Theorem
2.2.7 of [AL], or Theorem 6.54 of [BW]. An ideal satisfying any of the above
conditions is said to be zero-dimensional. Thus

A is a finite-dimensional algebra <= [ is a zero-dimensional ideal.
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A nice consequence of this theorem is that I is zero-dimensional if and
only if there is a nonzero polynomial in I N k[z;] for each ¢ = 1,...,n. To
see why this is true, first suppose that [ is zero-dimensional, and let G be a
reduced Grobner basis for any lex order with x; as the “last” variable (i.e.,
xj > x; for j # i). By item c above, there is some g € G with LT(g) = ",
Since we’re using a lex order with x; last, this implies g € k[x;] and hence
g is the desired nonzero polynomial. Note that g generates I N k[x;] by the
Elimination Theorem.

Going the other way, suppose I Nk[z;] is nonzero for each 4, and let m; be
the degree of the unique monic generator of I N k[z;] (remember that k[z;]
is a principal ideal domain—see Corollary 4 of Chapter 1, §5 of [CLO]).
Then z[** € (Lr(I)) for any monomial order, so that all monomials not in
(Lr(I)) will contain z; to a power strictly less than m;. In other words, the
exponents « of the monomials ® ¢ (LT(I)) will all lie in the “rectangular
box”

R:{aEZgO: for each 4, 0 < a; < m; — 1}.

This is a finite set of monomials, which proves that A is finite-dimensional
over k.

Given a zero-dimensional ideal I, it is now easy to describe an algorithm
for finding the set B of all monomials not in (LT(7)). Namely, no matter
what monomial order we are using, the exponents of the monomials in
B will lie in the box R described above. For each a € R, we know that
x* ¢ (ur(I)) if and only if 2% = 2 Thus we can list the a € R in some
systematic way and compute 22 for each one. A vector space basis of A
is given by the set of monomials

B:{xa:aeRandmanxo‘}.

See Exercise 13 below for a Maple procedure implementing this method.
The vector space structure on A = kf[z1,...,x,]/] for a zero-
dimensional ideal I can be used in several important ways. To begin, let
us consider the problem of finding the monic generators of the elimina-
tion ideals I N k[x;]. As indicated above, we could find these polynomials
by computing several different lex Grobner bases, reordering the variables
each time to place x; last. This is an extremely inefficient method, however.
Instead, let us consider the set of non-negative powers of [z;] in A:

S = {1, [xi], [z]?, ...}

Since A is finite-dimensional as a vector space over the field k£, S must
be linearly dependent in A. Let m; be the smallest positive integer for
which {1, [z;], [:]2, ..., [1;]™} is linearly dependent. Then there is a linear
combination

S eyfwl = [0
7=0
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in A in which the ¢; € k are not all zero. In particular, ¢,,, # 0 since m; is
minimal. By the definition of the quotient ring, this is equivalent to saying
that

(2.6) pi(x;) = Z ezl €I
=0

Exercise 2. Verify that p;(x;) as in (2.6) is a generator of the ideal
I N k[z;], and develop an algorithm based on this fact to find the monic
generator of I N k[z;], given any Grébner basis G for a zero-dimensional
ideal I as input.

The algorithm suggested in Exercise 2 often requires far less computa-
tional effort than a lex Grébner basis calculation. Any ordering (e.g. grevlex)
can be used to determine G, then only standard linear algebra (matrix op-
erations) are needed to determine whether the set {1, [z;], [1:]%, .. ., [z:]™}
is linearly dependent. We note that the univpoly function from Maple’s
Groebner package is an implementation of this method.

We will next discuss how to find the radical of a zero-dimensional ideal
(see Chapter 1 for the definition of radical). To motivate what we will
do, recall from §1 how multiple roots of a polynomial can cause problems
when trying to find roots numerically. When dealing with a one-variable
polynomial p with coefficients lying in a subfield of C, it is easy to see that
the polynomial

P _ p
" GCD(p, p')

has the same roots as p, but all with multiplicity one (for a proof of this, see
Exercises 14 and 15 of Chapter 1, §5 of [CLO]). We call p,.q the square-free
part of p.

The radical VI of an ideal I generalizes the idea of the square-free part
of a polynomial. In fact, we have the following elementary exercise.

Exercise 3. If p € k[z] is a nonzero polynomial, show that \/(p) = (pred).

Since k[x] is a PID, this solves the problem of finding radicals for all
ideals in k[x]. For a general ideal I C Ek[xy,...,z,], it is more difficult
to find v/I, though algorithms are known and have been implemented in
Macaulay 2, REDUCE, and Singular. Fortunately, when I is zero-dimen-
sional, computing the radical is much easier, as shown by the following
proposition.

(2.7) Proposition. Let I C Clzy,...,x,] be a zero-dimensional ideal.
For each i = 1,...,n, let p; be the unique monic generator of I N Clx;],
and let p; req be the square-free part of p;. Then

\/I =1+ <p1,7"ed7 s ;pn,red>~
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PrOOF. Write J = I + (D1 red, - - -, Pn,red). We first prove that J is a
radical ideal, i.e., that J = v/J. For each 7, using the fact that C is alge-
braically closed, we can factor each p; req to obtain p; req = (; — ain)(x; —
@;2) - - - (x; — @iq,), where the a;; are distinct. Then

J=J+ (P1red) = ﬂ(J + (21 — a1;)),
J
where the first equality holds since pi ¢ € J and the second follows from
Exercise 9 below since pi req has distinct roots. Now use ps req to decompose
each J + (x1 — a1;) in the same way. This gives

J = m(J + <.731 — aij, T2 — a2k>).
ok

If we do this for all ¢ = 1,2, ...,n, we get the expression

J = ﬂ (J+(z1— a1y Tn — Gnjy,))-
J1seesdn

Since (x1 — a1j,, - - -, Tn — Gpj,) is & maximal ideal, the ideal J + (z1 —
A1jys - -y Ty — Gny,) 1s either (z1 — a1j,,. .., Tn — anj,) or the whole ring
Clz1, ..., zn). It follows that J is a finite intersection of maximal ideals.
Since a maximal ideal is radical and an intersection of radical ideals is
radical, we conclude that J is a radical ideal.

Now we can prove that J = +/I. The inclusion I C J is built into
the definition of J, and the inclusion J C /I follows from the Strong
Nullstellensatz, since the square-free parts of the p; vanish at all the points
of V(I). Hence we have

IcJcVI

Taking radicals in this chain of inclusions shows that v/J = v/I. But J is
radical, so v/J = J and we are done.

A Maple procedure that implements an algorithm for the radical of a
zero-dimensional ideal based on Proposition (2.7) is discussed in Exercise
16 below. It is perhaps worth noting that even though we have proved
Proposition (2.7) using the properties of C, the actual computation of
the polynomials p; req Will involve only rational arithmetic when the input
polynomials are in Q[z1, ..., z,].

For example, consider the ideal

(2.8) I = (y'z + 323 — y* — 322 2%y — 222 2z — 23 — 29" + 2?)
Exercise 4. Using Exercise 2 above, show that

INQ[x] = (z® — 2?)
and

INQ = (° —2y").



§2. Finite-Dimensional Algebras 43
Writing py(x) = 2® — 22 and pa(y) = y° — 2y*, we can compute the
square-free parts in Maple as follows. The command
plred := simplify(pl/gcd(pl,diff(pl,x)));
will produce
Di,red(z) = z(z — 1).
Similarly,
P2rea(y) = yly — 2).
Hence by Proposition (2.7), v/T is the ideal
(x4 323 — gyt — 322, 2%y — 222, 2ytx — 23 — 2y + 2% x(z — 1), y(y — 2)).
We note that Proposition (2.7) yields a basis, but usually not a Grébner
basis, for v/I.

Exercise 5. How do the dimensions of the vector spaces C[z,y]/I and
Clx, y]/v/I compare in this example? How could you determine the number
of distinct points in V(I)? (There are two.)

We will conclude this section with a very important result relating the
dimension of A and the number of points in the variety V(I), or what is
the same, the number of solutions of the equations f; = --- = f; = 0 in
C™. To prepare for this we will need the following lemma.

(2.9) Lemma. Let S = {p1,...,pm} be a finite subset of C". There exist

polynomials g; € Clxy,...,xp], i =1,...,m, such that
_JO ifi#j, and
For instance, if p; = (a;,...,a;,) and the first coordinates a;; are

distinct, then we can take

[12i(z1 — aj)

[Lzi(an — aj1)

as in the Lagrange interpolation formula. In any case, a collection of poly-
nomials g; with the desired properties can be found in a similar fashion. We
leave the proof to the reader as Exercise 11 below. The following theorem
ties all of the results of this section together, showing how the dimension

of the algebra A for a zero-dimensional ideal gives a bound on the number
of points in V(I), and also how radical ideals are special in this regard.

gi = gi($1) =

(2.10) Theorem. Let I be a zero-dimensional ideal in Clxy, . .., z,], and
let A = Clxy,...,x,)/I. Then dimc(A) is greater than or equal to the
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number of points in V(I). Moreover, equality occurs if and only if I is a
radical ideal.

PrROOF. Let I be a zero-dimensional ideal. By the Finiteness Theorem,
V(I) is a finite set in C"*, say V(I) = {p1, ..., pm . Consider the mapping

¢ :Clxy,...,zn]/IT — C™
1= (fp1), - f(pm))

given by evaluating a coset at the points of V(I). In Exercise 12 below,
you will show that ¢ is a well-defined linear map.

To prove the first statement in the theorem, it suffices to show that ¢
is onto. Let ¢1, ..., gm be a collection of polynomials as in Lemma (2.9).
Given an arbitrary (A, ..., Ay,) € C™, let f = 3" N\g;. An easy com-
putation shows that ¢([f]) = (A,..., Am). Thus ¢ is onto, and hence
dim(4) > m.

Next, suppose that I is radical. If [f] € ker(y), then f(p;) = 0 for all
i, so that by the Strong Nullstellensatz, f € I(V(I)) = +/I = I. Thus
[f] = [0], which shows that ¢ is one-to-one as well as onto. Then ¢ is an
isomorphism, which proves that dim(A) = m if I is radical.

Conversely, if dim(A) = m, then ¢ is an isomorphism since it is an
onto linear map between vector spaces of the same dimension. Hence ¢ is
one-to-one. We can use this to prove that I is radical as follows. Since the
inclusion I C /I always holds, it suffices to consider f € I = I(V(I))
and show that f € I. If f € v/I, then f(p;) = 0 for all i, which implies
o([f]) = (0,...,0). Since ¢ is one-to-one, we conclude that [f] = [0], or in
other words that f € I, as desired.

In Chapter 4, we will see that in the case I is not radical, there are
well-defined multiplicities at each point in V(I) so that the sum of the
multiplicities equals dim(A).

ADDITIONAL EXERCISES FOR §2

Exercise 6. Using the grevlex order, construct the monomial basis B for
the quotient algebra A = C[z,y|/I, where I is the ideal from (2.8) and
construct the multiplication table for B in A.

Exercise 7. In this exercise, we will explain how the ideal I = (2? +
3xy/2 +y?/2 — 3x/2 — 3y/2, 2y* — x,y> — y) from (2.4) was constructed.
The basic idea was to start from a finite set of points and construct a
system of equations, rather than the reverse.
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To begin, consider the maximal ideals

Il = <xay>a 12 = <$_ ]-ay_ 1>a
13:<x+1,y—1>, I4=<l‘—1,y+1>7
15 :<1‘—2,y+1>

in Clz,y]. Each variety V(I;) is a single point in C?, indeed in Q* C
C2. The union of the five points forms an affine variety V, and by the
algebra-geometry dictionary from Chapter 1, V =V (I; N Lo N--- N I5).

An algorithm for intersecting ideals is described in Chapter 1. Use it
to compute the intersection I = I; N I N --- N I5 and find the reduced
Grobner basis for I with respect to the grevlex order (z > y). Your result
should be the Grébner basis given in (2.4).

Exercise 8.

a. Use the method of Proposition (2.7) to show that the ideal I from (2.4)
is a radical ideal.

b. Give a non-computational proof of the statement from part a using the
following observation. By the form of the generators of each of the ideals
I; in Exercise 7, V(I;) is a single point and I; is the ideal I(V(I;)). As
a result, I; = /I; by the Strong Nullstellensatz. Then use the general
fact about intersections of radical ideals from part a Exercise 9 from §4
of Chapter 1.

Exercise 9. This exercise is used in the proof of Proposition (2.7). Suppose
we have an ideal I C k[xy,...,z,], and let p = (1 — a1) -+ - (21 — aq),
where aq, ..., aq are distinct. The goal of this exercise is to prove that

I+ (p) = (U + (@1 — ay)).
J
a. Prove that I + (p) C (;(I + (z1 — ay)).
b. Let pj = [[,4;(z1 — a;). Prove that p; - (I + (z1 — a;)) C I + (p).
c. Show that pi, ..., p, are relatively prime, and conclude that there are
polynomials hq, ..., h, such that 1 = Zj hjp;.
d. Prove that (;(I+(z1—a;)) C I+ (p). Hint: Given h in the intersection,
write h = 3 h;p;h and use part b.

Exercise 10. (The Dual Space of k[x1, ..., x,]/I) Recall that if V is a
vector space over a field k, then the dual space of V', denoted V*, is the
k-vector space of linear mappings L : V — k. If V is finite-dimensional,
then so is V*, and dim V = dim V*. Let I be a zero-dimensional ideal in
klx1,...,2,], and consider A = k[xy,...,x,]/] with its k-vector space
structure. Let G be a Grobner basis for I with respect to some monomial
ordering, and let B = {z*M) ... 2*@} be the corresponding monomial
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basis for A, so that for each f € k[z1,...,z,],
¢ _ a(j)
=)
j=1

for some ¢;(f) € k.

a. Show that each of the functions c;(f) is a linear function of f €
E[z1,...,zy,]. Moreover, show that ¢;(f) = 0 for all j if and only if
f € I, or equivalently [f] = 0 in A.

b. Deduce that the collection B* of mappings ¢; given by f — ¢;(f),
j=1,...,d gives a basis of the dual space A*.

c. Show that B* is the dual basis corresponding to the basis B of A. That
is, show that

oty )1 ifi=j
¢ (@) = {O otherwise.
Exercise 11. Let S = {p1,...,pm} be a finite subset of C".
a. Show that there exists a linear polynomial ¢(z1, ..., x,) whose values
at the points of S are distinct.
b. Using the linear polynomial ¢ from part a, show that there exist
polynomials ¢g; € Clxy,...,2,], i = 1,...,m, such that

0 ifi# 7, and

Hint: Mimic the construction of the Lagrange interpolation polynomials
in the discussion after the statement of Lemma (2.9).

Exercise 12. As in Theorem (2.10), suppose that V(I) = {p1,...,pm}
a. Prove that the map ¢ : Clxy, ..., 2,]/I — C™ given by evaluation at

D1, - - -, Pm is a well-defined linear map. Hint: [f] = [g] implies f —g € I.
b. We can regard C™ as a ring with coordinate-wise multiplication. Thus

(al, .. .,am) . (bl, .. ,bm) = (albl, N ,ambm).

With this ring structure, C™ is a direct product of m copies of C. Prove
that the map ¢ of part a is a ring homomorphism.

c. Prove that ¢ is a ring isomorphism if and only if I is radical. This
means that in the radical case, we can express A as a direct product
of the simpler rings (namely, m copies of C). In Chapter 4, we will
generalize this result to the nonradical case.

Exercise 13. In Maple, the SetBasis command finds a monomial basis B
for the quotient algebra A = k[x1, ..., x,]/I for a zero-dimensional ideal I.
However, it is instructive to have the following “home-grown” version called
kbasis which makes it easier to see what is happening.
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kbasis := proc(GB,VList,torder)

returns a list of monomials forming a basis of the quotient
ring, where GB is a Groebner basis for a zero-dimensional
ideal, and generates an error message if the ideal is not
O-dimensional.

H H HH

local B,C,v,t,1,m,leadmons,i;

if is_finite(GB,VList) then
leadmons:={seq(leadterm(GB[i],torder),i=1..nops(GB))};
B:=[1];
for v in VList do
m:=degree (univpoly(v,GB),v);
C:=B;
for t in C do
for 1 tom-1do
ti=t*xv;
if evalb(not (1 in map(u->denom(t/u),leadmons))) then
B:=[op(B),t];
end if;
end do;
end do;
end do;
return B;
else
print(‘ideal is not zero-dimensional‘);
end if
end proc:

a. Show that kbasis correctly computes {z® : z* ¢ (vr([))} if A is finite-
dimensional over k and terminates for all inputs.

b. Use either kbasis or SetBasis to check the results for the ideal from
(2.4).

c. Use either kbasis or SetBasis to check your work from Exercise 6
above.

Exercise 14. The algorithm used in the procedure from Exercise 13 can
be improved considerably. The “box” R that kbasis searches for elements
of the complement of (LT(I)) is often much larger than necessary. This is
because the call to univpoly, which finds a monic generator for I N k[x;]
for each i, gives an m; such that x;** € (L1(I)), but m; might not be as
small as possible. For instance, consider the ideal I from (2.4). The monic
generator of I N C[z] has degree 4 (check this). Hence kbasis computes
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G G . . . .
z2 , 3 and rejects these monomials since they are not remainders. But

the Grébner basis G given in (2.4) shows that 2% € (Lr(I)). Thus a smaller
set of o containing the exponents of the monomial basis B can be deter-
mined directly by examining the leading terms of the Grobner basis G,
without using univpoly to get the monic generator for I N k[x;]. De-
velop and implement an improved kbasis that takes this observation into
account.

Exercise 15. Using either Setbasis or kbasis, develop and implement a
procedure that computes the multiplication table for a finite-dimensional
algebra A.

Exercise 16. Implement the following Maple procedure for finding the
radical of a zero-dimensional ideal given by Proposition (2.7) and test it on
the examples from this section.

zdimradical := proc(PList,VList)

# constructs a set of generators for the radical of a
# zero—dimensional ideal.

local p,pred,v,RList;

if is_finite(PList,VList) then
RList := PList;
for v in VList do
p := univpoly(v,PList);
pred := simplify(p/gcd(p,diff(p,v)));
RList:=[op(RList) ,pred]
end do;
return RList
else
print(‘Ideal not zero-dimensional; method does not apply*‘)
end if
end proc:

Exercise 17. Let I C C[zy,...,z,] be an ideal such that for every 1 <
i < n, there is a square-free polynomial p; such that p;(x;) € I. Use
Proposition (2.7) to show that I is radical.

Exercise 18. For 1 < i < n, let p; be a square-free polynomial. Also let

d; = deg(p;). The goal of this exercise is to prove that (p1(z1), ..., pn(xs))

is radical using only the division algorithm.

a. Let r be the remainder of f € C[zy,...,x,] on division by the p;(x;).
Prove that r has degree at most d; — 1 in x;.
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b. Prove that r vanishes on V(pi(x1),...,pn(zy,)) if and only if r is
identically 0.

c. Conclude that (p1(z1), ..., pn(xy,)) is radical without using Proposition
(2.7).

Exercise 19. In this exercise, you will use Exercise 18 to give an ele-
mentary proof of the result of Exercise 17. Thus we assume that I C
Clx1,...,2,] is an ideal such that for every 1 < ¢ < n, there is a
square-free polynomial p; such that p;(z;) € I. Take f € Clxy, ..., xy)
such that fN € I for some N > 0. Let z be a new variable and set
J = <p1(1'1)’ s 5pn(xn)7z - f> - (C[:Ela s ,iL’n,Z]~

a. Prove that there is a ring isomorphism

Clz1, .oy @n, 2]/ 2 Clay, ..., z0]/{(p1(21), - -+, Du(T0))

and conclude via Exercise 18 that J is zero-dimensional and radical.

b. Without using Proposition (2.7), show that there is a square-free
polynomial g such that g(z) € J.

c. Explain why GCD(g, zV) is 1 or z, and conclude that z = p(2)g(z) +
q(2)zY for some polynomials p, q.

d. Under the isomorphism of part a, show that z = p(2)g(z) + q(z)z"
maps to f = q(f)fN + h, where h € (p1(z1),...,pn(zn)). Conclude
that f € I.

This argument is due to M. Mereb.

§3 Grobner Basis Conversion

In this section, we will use linear algebra in A = k[xy,...,2,]/I to show
that a Grobner basis G for a zero-dimensional ideal I with respect to one
monomial order can be converted to a Grobner basis G’ for the same ideal
with respect to any other monomial order. The process is sometimes called
Grébner basis conversion, and the idea comes from a paper of Faugere,
Gianni, Lazard, and Mora [FGLM]. We will illustrate the method by con-
verting from an arbitrary Grébner basis G to a lex Grobner basis Gie,
(using any ordering on the variables). The Grobner basis conversion method
is often used in precisely this situation, so that a more favorable monomial
order (such as grevlez) can be used in the application of Buchberger’s al-
gorithm, and the result can then be converted into a form more suited for
equation solving via elimination. For another discussion of this topic, see
[BW], §1 of Chapter 9.

The basic idea of the Faugere-Gianni-Lazard-Mora algorithm is quite
simple. We start with a Grobner basis G for a zero-dimensional ideal I,
and we want to convert G to a lex Grobner basis G, for some lex order.
The algorithm steps through monomials in k[z1,...,z,] in increasing lex
order. At each step of the algorithm, we have a list Gje,, = {g1,...,9r} of
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elements in I (initially empty, and at each stage a subset of the eventual
lex Grobuer basis), and a list By, of monomials (also initially empty, and
at each stage a subset of the eventual lex monomial basis for A). For each
input monomial x® (initially 1), the algorithm consists of three steps:

(3.1) l\%ain Loop. Given the input =, compute 2. Then:
a. If z«7 is linearly dependent on the remainders (on division by G) of the
monomials in Bj.,, then we have a linear combination

G
xaG _ chjxa(]) = 0,
where 22) € By, and ¢j € k. This implies that
g=a%— chja:o‘(j) el

We add g to the list G, as the last element. Because the z are con-
sidered in increasing lex order (see (3.3) below), whenever a polynomial
g is added to Gy, its leading term is LT(g) = x® with coefficient 1.

b. If 20 is linearly independent from the remainders (on division by G)
of the monomials in By, then we add % to Bj.; as the last element.

After the Main Loop acts on the monomial =%, we test Gy, to see if we
have the desired Grobner basis. This test needs to be done only if we added
a polynomial g to G, in part a of the Main Loop.

(3.2) Termination Test. If the Main Loop added a polynomial g to Gjey,
then compute L1(g). If LT(g) is a power of 1, where z; is the greatest
variable in our lex order, then the algorithm terminates.

The proof of Theorem (3.4) below will explain why this is the correct way
to terminate the algorithm. If the algorithm does not stop at this stage, we
use the following procedure to find the next input monomial for the Main
Loop:

(3.3) Next Monomial. Replace z with the next monomial in lez order
which is not divisible by any of the monomials LT(g;) for ¢; € Gies.

Exercise 3 below will explain how the Next Monomial procedure works.
Now repeat the above process by using the new x® as input to the Main
Loop, and continue until the Termination Test tells us to stop.

Before we prove the correctness of this algorithm, let’s see how it works
in an example.

Exercise 1. Consider the ideal

I=(xy+z—xz,2%— 222 —2?yz — 1)



§3. Grobner Basis Conversion 51

in Q[z,y, z]. For grevlex order with > y > z, I has a Grobner basis

G = {f1, fa. f3, f1}, where
fi=2" =32 —dyz + 222 —y+ 22 -2
fo=y2? +2yz — 2% +1
fa=vy> =2z + 2% — 2
fi=oty— =
Thus (Lr(I)) = (2%, y22, 9% x), B = {1,y, 2, 2%, 23, yz}, and a remainder
f is a linear combination of elements of B. We will use basis conversion
to find a lex Groébner basis for I, with z > y > x.

a. Carry out the Main Loop for 2% = 1, z, 22, 2%, 2%, 2°, 25. At the end of
doing this, you should have

Gres = {2% —2° — 22 + 1}
Biew = {1, 2,22, 23, 2%, 25}

Hint: The following computations will be useful:

1" =1
xG =—-y+=z
2% = ;
2 = —yz + 22
9= 2
x5G:z3+2yz—2z2+1
26 = 23,
Note that 1G7 . 71‘5G are linearly independent while xGG is a linear

combination of x5G, #3% and 1°. This is similar to Exercise 2 of 82.

b. After we apply the Main Loop to 25, show that the monomial provided
by the Next Monomial procedure is y, and after y passes through the
Main Loop, show that

Glez = {xG —a® =23 4+ 1,y — 22 + z}
Biex = {1, 2z, 2%, 23 2* 2°}.
c. Show that after y, Next Monomial produces z, and after z passes through
the Main Loop, show that
Grew = {28 — 2% — 223 + 1,y — 2® + 2,2 — 2%}
Biew = {1, 2z, 2%, 23 2% 2°}.

d. Check that the Termination Test (3.2) terminates the algorithm when
Gles 18 as in part c. Hint: We’re using lex order with z > y > =x.
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e. Verify that Gje, from part c is a lex Grobner basis for 1.

We will now show that the algorithm given by (3.1), (3.2) and (3.3)
terminates and correctly computes a lex Grobner basis for the ideal 1.

(3.4) Theorem. The algorithm described above terminates on every in-
put Grobner basis G generating a zero-dimensional ideal I, and correctly
computes a lex Gréobner basis Gie, for I and the lex monomial basis Bjey
for the quotient ring A.

PRrROOF. We begin with the key observation that monomials are added
to the list Bje, in strictly increasing lex order. Similarly, if Gie, =

{91, -+, gk}, then
LT(gl) <lezx " <lex LT(gk)a

where >, is the lex order we are using. We also note that when the Main
Loop adds a new polynomial gg+1 to Giex = {91,--., 9k}, the leading
term LT(gk+1) is the input monomial in the Main Loop. Since the input
monomials are provided by the Next Monomial procedure, it follows that
for all &,

(3.5) LT(gr+1) is divisible by none of L1(g1), . .., LT(gx)-

We can now prove that the algorithm terminates for all inputs G gener-
ating zero-dimensional ideals. If the algorithm did not terminate for some
input G, then the Main Loop would be executed infinitely many times, so
one of the two alternatives in (3.1) would be chosen infinitely often. If the
first alternative were chosen infinitely often, Gy, would give an infinite list

LT(g1), LT(g2), . . . of monomials. However, we have:
e (Dickson’s Lemma) Given an infinite list 2 2@ of monomials
in k[z1,...,2,], there is an integer N such that every z*() is divisible

by one of W) . z(V),

(See, for example, Exercise 7 of [CLO], Chapter 2, §4). When applied to
LT(g1), LT(g2), - . ., Dickson’s Lemma would contradict (3.5). On the other
hand, if the second alternative were chosen infinitely often, then Bj., would
give infinitely many monomials *(/) whose remainders on division by G
were linearly independent in A. This would contradict the assumption that
I is zero-dimensional. As a result, the algorithm always terminates for G
generating a zero-dimensional ideal I.

Next, suppose that the algorithm terminates with G = {g1,..., 9k}
By the Termination Test (3.2), Lr(gx) = 7', where &1 >z +* >lex Tn.
We will prove that G, is a lex Grobner basis for I by contradiction.
Suppose there were some g € I such that LT(g) is not a multiple of any of
the L1(g;), i = 1,..., k. Without loss of generality, we may assume that g
is reduced with respect to Gje, (replace g by g&te=).
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If uT(g) is greater than vT(gx) = 7', then one easily sees that LT(g) is
a multiple of LT(gr) (see Exercise 2 below). Hence this case can’t occur,
which means that

Lr(gi) < vr(g) < vr(giv1)

for some i < k. But recall that the algorithm places monomials into Bje,
in strictly increasing order, and the same is true for the rr(g;). All the
non-leading monomials in g must be less than L1(g) in the lex order. They
are not divisible by any of LT(g,) for j < 4, since g is reduced. So, the non-
leading monomials that appear in g would have been included in B, by
the time rT(g) was reached by the Next Monomial procedure, and g would
have been the next polynomial after g; included in Gje, by the algorithm
(i.e., g would equal g;+1). This contradicts our assumption on g, which
proves that Gi.; is a lex Grobner basis for 1.

The final step in the proof is to show that when the algorithm terminates,
Bje, consists of all basis monomials determined by the Grobner basis Gie;.
We leave this as an exercise for the reader.

In the literature, the basis conversion algorithm discussed here is called
the FGLM algorithm after the authors Faugere, Gianni, Lazard, and Mora
of the paper [FGLM] in which the algorithm first appeared. We should
also mention that while the FGLM algorithm assumes that I is zero-
dimensional, there are methods which apply to the positive-dimensional
case. For instance, if degree bounds on the elements of the Grébner basis
with respect to the desired order are known, then the approach described
above can also be adapted to treat ideals that are not zero-dimensional. An
interesting related “Hilbert function-driven” basis conversion method for
homogeneous ideals has been proposed by Traverso (see [Trav]). However,
general basis conversion methods that apply even when information such
as degree bounds is not available are also desirable. Such a method is the
Grobner Walk to be described in Chapter 8.

The ideas used in Grobner basis conversion can be applied in other
contexts. In order to explain this, we need to recast the above discus-
sion using linear maps. Recall that we began with a Grobner basis G of a
zero-dimensional ideal I and our goal was to find a lex Grobner basis Gje,

of I. However, for GG, the main thing we used was the normal form f “ of a
polynomial f € klzy,...,zy].

Let’s write this out carefully. Let B be the monomial basis of A =
klx1,...,2p]/I determined by G. Denote fG by L(f) and Span(B) by

V, so that L(f) = fG € V = Span(B). Thus we have a map
(3.6) L:k[zy,...,2n] — V.

In Exercise 10 of §2, you showed that L is linear with kernel equal to I.
Using this, the Main Loop (3.1) can be written as follows.
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(3.7) Main Loop, Restated. Given the input ®, compute L(z®). Then:
a. If L(x®) is linearly dependent on the images under L of the monomials
in Bje,, then we have a linear combination

L(z%) — chjL(x“(j)) =0,

where 2%U) € By, and ¢j € k. This implies that L((E—Zj cjxo‘(j)) = 0.
Since I is the kernel of L, we have

g=a — chjm"‘(j) el

We add g to Gy, as the last element.
b. If L(z%) is linearly independent from the images under L of the
monomials in By, then we add =% to Bj., as the last element.

If we combine (3.7) with the Termination Test (3.2) and Next Monomial
(3.3), then we get the same algorithm as before. But even more is true, for
this algorithm computes a lex Grébner basis of the kernel for any linear
map (3.6), provided that V has finite dimension and the kernel is an ideal
of k[x1, ..., x,]. You will prove this in Exercise 9 below.

As an example of how this works, pick distinct points p1,...,p, € k"
and consider the evaluation map

L : k}[l‘l,...,ﬂ}n] —>km7 L(f) = (f(pl)a7f(pm))

The kernel is the ideal I(p1, . . ., pm) of polynomials vanishing at the given
points. It follows that we now have an algorithm for computing a lex
Grobner basis of this ideal! This is closely related to the Buchberger-Moller
algorithm described in [BuM]. You will work out an explicit example in
Exercise 10.

For another example, consider

(3.8) I ={feClzyl:f0,0) = f2(0,0) = f,(0,0) = far(0,0) = 0}.

In Exercise 11, you will show that I is an ideal of C|z,y]. Since I is the
kernel of the linear map

L:Cla,y] — C°,  L(f) = (£(0,0), fz(0,0), f,(0,0) — f2z(0,0)),

the above algorithm can be used to show that {y?, xy, 2% + 2y} is a lex
Grobner basis with @ > y for the ideal I. See Exercise 11 for the details.

There are some very interesting ideas related to these examples. Dif-
ferential conditions like those in (3.8), when combined with primary
decomposition, can be used to describe any zero-dimensional ideal in
k[z1,...,2zy). This is explained in [MMM1] and [M&S] (and is where we
got (3.8)). The paper [MMM]1] also describes other situations where these
ideas are useful, and [MMM?2] makes a systematic study of the different
representations of a zero-dimensional ideal and how one can pass from one
representation to another.
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AppDiTIONAL EXERCISES FOR §3

Exercise 2. Consider the lex order with x; > --- > x,, and fix a power
x§ of x1. Then, for any monomial % in k[xy, ..., z,], prove that 2% > z¢
if and only if x* is divisible by «{.

Exercise 3. Suppose Giep = {91,--., 9k}, where LT(g1) < - -+ < LT(gk),
and let % be a monomial. This exercise will show how the Next Monomial
(3.3) procedure works, assuming that our lex order satisfies z1 > -+ > z,,.
Since this procedure is only used when the Termination Test fails, we can
assume that LT(gx) is not a power of ;.

a. Use Exercise 2 to show that none of the 1(g;) divide
b. Now consider the largest 1 < k < n such that none of the r1(g;) divide

the monomial

a;+1
1 .

ar . % -1 ap+1
Ty xk, 1 xk .

By part a, £ = 1 has this property, so there must be a largest such k. If
2P is the monomial corresponding to the largest k, prove that z® > z®
is the smallest monomial (relative to our lex order) greater than z®
which is not divisible by any of the LT(g;).

Exercise 4. Complete the proof of Theorem (3.4) by showing that when
the basis conversion algorithm terminates, the set Bje, gives a monomial
basis for the quotient ring A.

Exercise 5. Use Grobner basis conversion to find lex Grobner bases for
the ideals in Exercises 6 and 7 from §1. Compare with your previous results.

Exercise 6. What happens if you try to apply the basis conversion algo-
rithm to an ideal that is not zero-dimensional? Can this method be used
for general Grébner basis conversion? What if you have more information
about the lex basis elements, such as their total degrees, or bounds on those
degrees?

Exercise 7. Show that the output of the basis conversion algorithm is
actually a monic reduced lex Grébner basis for I = (G).

Exercise 8. Implement the basis conversion algorithm outlined in (3.1),
(3.2) and (3.3) in a computer algebra system. Hint: Exercise 3 will be useful.
For a more complete description of the algorithm, see pages 428-433 of
[BW].

Exercise 9. Consider a linear map L : k[z1,...,z,] — V, where V has
finite dimension and the kernel of L is an ideal. State and prove a version
of Theorem (3.4) which uses (3.7), (3.2), and (3.3).
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Exercise 10. Use the method described at the end of the section to find
a lex Grobner basis with > y for the ideal of all polynomials vanishing
at (0,0),(1,0), (0,1) € k2.

Exercise 11. Prove that (3.8) is an ideal of C[z, y] and use the method
described at the end of the section to find a lex Grobner basis with z > y
for this ideal.

84 Solving Equations via Eigenvalues and
Eigenvectors

The central problem of this chapter, finding the solutions of a system of
polynomial equations f; = fo = --- = fs = 0 over C, rephrases in fancier
language to finding the points of the variety V(I), where I is the ideal gen-
erated by fi,...,fs. When the system has only finitely many solutions,
i.e., when V(I) is a finite set, the Finiteness Theorem from §2 says that
I is a zero-dimensional ideal and the algebra A = Clzq,...,2,]/I is a
finite-dimensional vector space over C. The first half of this section ex-
ploits the structure of A in this case to evaluate an arbitrary polynomial
f at the points of V(I); in particular, evaluating the polynomials f = z;
gives the coordinates of the points (Corollary (4.6) below). The values of
f on V(I) turn out to be eigenvalues of certain linear mappings on A. We
will discuss techniques for computing these eigenvalues and show that the
corresponding eigenvectors contain useful information about the solutions.

We begin with the easy observation that given a polynomial f €
Clz1, ..., zy], we can use multiplication to define a linear map my from
A = Clxy,...,z,]/I to itself. More precisely, f gives the coset [f] € A,
and we define my : A — A by the rule: if [g] € A, then

mys(lg]) = [f] - lg] = [fg] € A.

Then my has the following basic properties.

(4.1) Proposition. Let f € C[z1,...,x,]. Then

a. The map my is a linear mapping from A to A.

b. We have my = my exactly when f — g € I. Thus two polynomials give
the same linear map if and only if they differ by an element of I. In
particular, my is the zero map exactly when f € I.

PROOF. The proof of part a is just the distributive law for multiplication
over addition in the ring A. If [g], [h] € A and ¢ € k, then

my(clg] +[h]) = [f]- (clg] + [h]) = c[f]-[g]+ [f]-[h] = emy((g]) +my ([R)).
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Part b is equally easy. Since [1] € A is a multiplicative identity, if m; = my,
then

[f1 =171 [1 = ms([]) = my([1]) = [g] - [1] = [g],
so f—g € I. Conversely, if f —g € I, then [f] = [¢g] in A, so my = my.

Since A is a finite-dimensional vector space over C, we can represent m s
by its matrix with respect to a basis. For our purposes, a monomial basis
B such as the ones we considered in §2 will be the most useful, because
once we have the multiplication table for the elements in B, the matrices
of the multiplication operators m; can be read off immediately from the
table. We will denote this matrix also by my, and whether m refers to the
matrix or the linear operator will be clear from the context. Proposition
(4.1) implies that my = M G, SO that we may assume that f is a remainder.

For example, for the ideal I from (2.4) of this chapter, the matrix for the
multiplication operator by f may be obtained from the table (2.5) in the
usual way. Ordering the basis monomials as before,

B = {1,z,y,zy, y*},

we make a 5 X 5 matrix whose jth column is the vector of coefficients in the
expansion in terms of B of the image under m; of the jth basis monomial.
With f = z, for instance, we obtain

0 0 0 0 0
1 32 0 -3/2 1
m.=[0 32 0 —1/2 0
0 -3/2 1 3/2 0
0 -1/2 0 3/2 0

Exercise 1. Find the matrices m1, my, mg,_,2 with respect to B in this
example. How do m,> and (my)? compare? Why?

We note the following useful general properties of the matrices m (the
proof is left as an exercise).

(4.2) Proposition. Let f, g be elements of the algebra A. Then

a. Mgrg = My + My.

b. ms.g = my - my (where the product on the right means composition of
linear operators or matriz multiplication).

This proposition says that the map sending f € Clxy,...,x,] to the
matrix my defines a ring homomorphism from Clzq, ..., z,] to the ring
Maxa(C) of d x d matrices, where d is the dimension of A as a C-vector
space. Furthermore, part b of Proposition (4.1) and the Fundamental
Theorem of Homomorphisms show that [f] — m induces a one-to-one ho-
momorphism A — Mg q4(C). A discussion of ring homomorphisms and the
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Fundamental Theorem of Homomorphisms may be found in Chapter 5, §2
of [CLO], especially Exercise 16. But the reader should note that Myxq(C)
is not a commutative ring, so we have here a slightly more general situation
than the one discussed there.

For use later, we also point out a corollary of Proposition (4.2). Let h(t) =
>, cit' € Clt] be a polynomial. The expression h(f) = > 1" ¢; f* makes
sense as an element of Clz1, ..., x,]. Similarly h(mys) = Y7 ¢;(my)? is
a well-defined matrix (the term ¢y should be interpreted as c¢ol, where I is
the d x d identity matrix).

(4.3) Corollary. In the situation of Proposition (4.2), let h € C[t] and
feClxy,...,z,). Then

mp gy = h(my).

Recall that a polynomial f € Clxy, . .., z,] gives the coset [f] € A. Since
A is finite-dimensional, as we noted in §2 for f = x;, the set {1, [f], [f]?, ...}
must be linearly dependent in the vector space structure of A. In other
words, there is a linear combination

m

i=0
in A, where ¢; € C are not all zero. By the definition of the quotient ring,
this is equivalent to saying that
(44) dafiel
i=0
Hence }"." , ¢; f* vanishes at every point of V(I).

Now we come to the most important part of this discussion, culminating
in Theorem (4.5) and Corollary (4.6) below. We are looking for the points in
V(I), I azero-dimensional ideal. Let h(t) € C[t], and let f € Clz1, ..., zy].
By Corollary (4.3),

Mmp) =0 < () = [0 in A,

The polynomials h such that h(ms) = 0 form an ideal in C[t] by the
following exercise.

Exercise 2. Given a d X d matrix M with entries in a field k, consider
the collection Ip; of polynomials h(t) in k[t] such that h(M) = 0, the d x d
zero matrix. Show that I is an ideal in k[t].

The nonzero monic generator hy; of the ideal I, is called the minimal
polynomial of M. By the basic properties of ideals in k[t], if h is any poly-
nomial with A(M) = 0, then the minimal polynomial hy; divides h. In
particular, the Cayley-Hamilton Theorem from linear algebra tells us that
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hps divides the characteristic polynomial of M. As a consequence, if k = C,
the roots of hy; are eigenvalues of M. Furthermore, all eigenvalues of M
occur as roots of the minimal polynomial. See [Her| for a more complete
discussion of the Cayley-Hamilton Theorem and the minimal polynomial
of a matrix.

Let h; denote the minimal polynomial of the multiplication operator m
on A. We then have three interesting sets of numbers:

® the roots of the equation hy(t) = 0,

® the eigenvalues of the matrix my, and

® the values of the function f on V(I), the set of points we are looking
for.

The amazing fact is that all three sets are equal.

(4.5) Theorem. Let I C Clxy,...,z,] be zero-dimensional, let f €
Clz1,...,zn], and let hy be the minimal polynomial of my on A =
Clz1,...,zn]/I. Then, for X € C, the following are equivalent:

a. A is a root of the equation hy¢(t) = 0,

b. X is an eigenvalue of the matriz my, and

c. A is a value of the function f on V(I).

PrOOF. a < b follows from standard results in linear algebra.

b = c: Let A be an eigenvalue of my. Then there is a corresponding
eigenvector [z] # [0] € A such that [f — A][z] = [0]. Aiming for a con-
tradiction, suppose that A is not a value of f on V(I). That is, letting
V() =A{p1,...,pm}, suppose that f(p;) # Aforalli=1,...,m.

Let ¢ = f — A, so that g(p;) # 0 for all i. By Lemma (2.9) of this
chapter, there exist polynomials g; such that g;(p;) = 0 if ¢ # j, and
gi(pi) = 1. Consider the polynomial ¢ = > 1/g(p;)gi. It follows that
¢ (pi)g(p;) = 1 for all ¢, and hence 1 — ¢’g € I(V(I)). By the Nullstellen-
satz, (1 — g’'g)* € I for some ¢ > 1. Expanding by the binomial theorem
and collecting the terms that contain g as a factor, we get 1 — gg € I for
some § € Clz1,...,z,]. In A, this last inclusion implies that [1] = [g][g],
hence g has a multiplicative inverse [g] in A.

But from the above we have [g][z] = [f — A][z] = [0] in A. Multiplying
both sides by [g], we obtain [z] = [0], which is a contradiction. Therefore
A must be a value of f on V(I).

¢ = a: Let A = f(p) for p € V(I). Since hy(my) = 0, Corollary (4.3)
shows hy([f]) = [0], and then (4.4) implies hs(f) € I. This means hy(f)
vanishes at every point of V(I), so that h¢(\) = hy(f(p)) = 0.

Exercise 3. We saw earlier that the matrix of multiplication by z in the
5-dimensional algebra A = C|x, y]/I from (2.4) of this chapter is given by
the matrix displayed before Exercise 1 in this section.
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a. Using the minpoly command in Maple (part of the 1inalg package) or
otherwise, show that the minimal polynomial of this matrix is

ha(t) = t* — 263 — 2 + 2t.

The roots of h,(t) = 0 are thus ¢t = 0, -1, 1, 2.

b. Now find all points of V(I) using the methods of §1 and show that the
roots of h, are exactly the distinct values of the function f(z,y) = =
at the points of V(I). (Two of the points have the same z-coordinate,
which explains why the degree and the number of roots are 4 instead of
5!1) Also see Exercise 7 from §2 to see how the ideal I was constructed.

c. Finally, find the minimal polynomial of the matrix m,, determine its
roots, and explain the degree you get.

When we apply Theorem (4.5) with f = xz;, we get a general result
exactly parallel to this example.

(4.6) Corollary. Let I C Clzy,...,x,] be zero-dimensional. Then the
eigenvalues of the multiplication operator my, on A coincide with the
x;-coordinates of the points of V(I). Moreover, substituting t = x; in
the minimal polynomial h,, vyields the unique monic generator of the
elimination ideal I N Clx;].

Corollary (4.6) indicates that it is possible to solve equations by comput-
ing eigenvalues of the multiplication operators m,,. This has been studied
in papers such as [Laz], [M6l], and [M&S], among others. As a result a whole
array of numerical methods for approximating eigenvalues can be brought
to bear on the root-finding problem, at least in favorable cases. We include
a brief discussion of some of these methods for the convenience of some
readers; the following two paragraphs may be safely ignored if you are fa-
miliar with numerical eigenvalue techniques. For more details, we suggest
[BuF] or [Act].

In elementary linear algebra, eigenvalues of a matrix M are usually
determined by solving the characteristic polynomial equation:

det(M — tI) = 0.

The degree of the polynomial on the left hand side is the size of the matrix
M. But computing det(M — tI) for large matrices is a large job itself, and
as we have seen in §1, exact solutions (and even accurate approximations
to solutions) of polynomial equations of high degree over R or C can be
hard to come by, so the characteristic polynomial is almost never used in
practice. So other methods are needed.

The most basic numerical eigenvalue method is known as the power
method. It is based on the fact that if a matrix M has a unique dom-
inant eigenvalue (i.e., an eigenvalue A satisfying |A| > |u| for all other
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eigenvalues p of M), then starting from a randomly chosen vector g, and
forming the sequence

Tk4+1 = unit vector in direction of Mxy,

we almost always approach an eigenvector for A as k — oo. An approxi-
mate value for the dominant eigenvalue A\ may be obtained by computing
the norm ||Mzy|| at each step. If there is no unique dominant eigenvalue,
then the iteration may not converge, but the power method can also be
modified to eliminate that problem and to find other eigenvalues of M. In
particular, we can find the eigenvalue of M closest to some fixed s by ap-
plying the power method to the matrix M’ = (M — sI)~!. For almost all
choices of s, there will be a unique dominant eigenvalue of M’. Moreover, if
X is that dominant eigenvalue of M’, then 1/ + s is the eigenvalue of M
closest to s. This observation makes it possible to search for all the eigen-
values of a matrix as we would do in using the Newton-Raphson method to
find all the roots of a polynomial. Some of the same difficulties arise, too.
There are also much more sophisticated iterative methods, such as the LR
and QR algorithms, that can be used to determine all the (real or complex)
eigenvalues of a matrix except in some very uncommon degenerate situa-
tions. It is known that the QR algorithm, for instance, converges for all
matrices having no more than two eigenvalues of any given magnitude in
C. Some computer algebra systems (e.g., Maple and Mathematica) provide
built-in procedures that implement these methods.

A legitimate question at this point is this: Why might one consider apply-
ing these eigenvalue techniques for root finding instead of using elimination?
There are two reasons.

The first concerns the amount of calculation necessary to carry out this
approach. The direct attack—solving systems via elimination as in §1—
imposes a choice of monomial order in the Grébner basis we use. Pure lex
Grobner bases frequently require a large amount of computation. As we saw
in §3, it is possible to compute a greviex Grébner basis first, then convert it
to a lex basis using the FGLM basis conversion algorithm, with some savings
in total effort. But basis conversion is unnecessary if we use Corollary (4.6),
because the algebraic structure of Clzy,...,z,]/I is independent of the
monomial order used for the Grobner basis and remainder calculations.
Hence any monomial order can be used to determine the matrices of the
multiplication operators my, .

The second reason concerns the amount of numerical versus symbolic
computation involved, and the potential for numerical instability. In the
frequently-encountered case that the generators for I have rational coef-
ficients, the entries of the matrices m,, will also be rational, and hence
can be determined ezactly by symbolic computation. Thus the numerical
component of the calculation is restricted to the eigenvalue calculations.



62 Chapter 2. Solving Polynomial Equations

There is also a significant difference even between a naive first idea for
implementing this approach and the elimination method discussed in §1.
Namely, we could begin by computing all the m,, and their eigenvalues
separately. Then with some additional computation we could determine
exactly which vectors (z1,...,x,) formed using values of the coordinate
functions actually give approximate solutions. The difference here is that
the computed values of x; are not used in the determination of the z;,
j # i. In §1, we saw that a major source of error in approximate solutions
was the fact that small errors in one variable could produce larger errors
in the other variables when we substitute them and use the Extension
Theorem. Separating the computations of the values x; from one another,
we can avoid those accumulated error phenomena (and also the numerical
stability problems encountered in other non-elimination methods).

We will see shortly that it is possible to reduce the computational effort
involved even further. Indeed, it suffices to consider the eigenvalues of only
one suitably-chosen multiplication operator mc,z,4-..4c,, . Before devel-
oping this result, however, we present an example using the more naive
approach.

Exercise 4. We will apply the ideas sketched above to find approximations
to the complex solutions of the system:

0=a?—-222+5
0=uay’ +yz+1
0 = 3y? — 8zz.

a. First, compute a Grobner basis to determine the monomial basis for the
quotient algebra. We can use the grevlex (Maple tdeg) monomial order:

PList := [x72 - 2%x*z + 5, x*xy~2 + y*z + 1, 3%y~2 - 8*x*z];
G := gbasis(PList,tdeg(x,y,2));
B := SetBasis(G,tdeg(x,y,z)) [1];

(this can also be done using the kbasis procedure from Exercise 13 in
§2) and obtain the eight monomials:

[17 z,Y,2Y, %, Zza xz, yZ]

(You should compare this with the output of SetBasis or kbasis for
lex order. Also print out the lex Grobner basis for this ideal if you have
a taste for complicated polynomials.)

b. Using the monomial basis B, check that the matrix of the full
multiplication operator m,, is
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0 -5 0 0 0 -3/16 —3/8 0
1 00 0 0 0 0 0
00 0 -5 0 0 0 0
0 0 1 320 0 0 0  3/40
00 0 0 0 52 0 0
00 0 -2 0 0 0 ~1
02 0 0 1 0 0 0
0 0 0 —3/10 0 —3/16 —3/8 —3/20

This matrix can also be computed using the MulMatrix command in
Maple.

c. Now, applying the numerical eigenvalue routine eigenvals from Maple,
check that there are two approximate real eigenvalues:

—1.100987715, 9657124563,

and 3 complex conjugate pairs. (This computation can be done in several
different ways and, due to roundoff effects, the results can be slightly
different depending on the method used. The values above were found
by expressing the entries of the matrix of m,, as floating point numbers,
and applying Maple’s eigenvals routine to that matrix.)

d. Complete the calculation by finding the multiplication operators m,,
m,, computing their real eigenvalues, and determining which triples
(x,y, z) give solutions. (There are exactly two real points.) Also see
Exercises 9 and 10 below for a second way to compute the eigenvalues
of my, my, and m,.

In addition to eigenvalues, there are also eigenvectors to consider. In fact,
every matrix M has two sorts of eigenvectors. The right eigenvectors of M
are the usual ones, which are column vectors v # 0 such that

Muv = Mv

for some A € C. Since the transpose MT has the same eigenvalues \ as M,
we can find a column vector v/ # 0 such that

MT " =\
Taking transposes, we can write this equation as

wM = dw,

where w = v'T is a row vector. We call w a left eigenvector of M.

The right and left eigenvectors for a matrix are connected in the following
way. For simplicity, suppose that M is a diagonalizable n X n matrix, so that
there is a basis for C™ consisting of right eigenvectors for M. In Exercise 7
below, you will show that there is a matrix equation M@Q = QD, where
Q@ is the matrix whose columns are the right eigenvectors in a basis for
C™, and D is a diagonal matrix whose diagonal entries are the eigenvalues
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of M. Rearranging the last equation, we have Q7'M = DQ~'. By the
second part of Exercise 7 below, the rows of Q! are a collection of left
eigenvectors of M that also form a basis for C”.

For a zero-dimensional ideal I, there is also a strong connection between
the points of V(I) and the left eigenvectors of the matrix my relative to
the monomial basis B coming from a Grobner basis. We will assume that
I is radical. In this case, Theorem (2.10) implies that A has dimension m,
where m is the number of points in V(7). Hence, we can write the monomial
basis B as the cosets

B = {[z*M],..., [z*(™]}.

Using this basis, let my be the matrix of multiplication by f. We can relate
the left eigenvectors of m; to points of V(I) as follows.

(4.7) Proposition. Suppose f € Clzy,...,x,] is chosen such that the
values f(p) are distinct for p € V(I), where I is a radical ideal not con-
taining 1. Then the left eigenspaces of the matriz my are 1-dimensional
and are spanned by the row vectors (p™M, ... p*™) for p € V(I).

PrOOF. If we write my = (m;;), then for each j between 1 and m,
(200 1) = (@2 D)) = mayle® V) 4+ a2,

Now fix p € V(f1,..., fn) and evaluate this equation at p to obtain
™9 f(p) = m1jpa(l) + mmjpa(m)
(this makes sense by Exercise 12 of §2). Doing this for j = 1,...,m gives

f(p)(pa(1)7 B 7pa(m)> = (pa(1)7 s ’pa(m)) mg.

Exercise 14 at the end of the section asks you to check this computation
carefully. Note that one of the basis monomials in B is the coset [1] (do
you see why this follows from 1 ¢ I?), which shows that (p@(1), ..., p®(™))
is nonzero and hence is a left eigenvector for my, with f(p) as the
corresponding eigenvalue.

By hypothesis, the f(p) are distinct for p € V(I), which means that the
m X m matrix m¢ has m distinct eigenvalues. Linear algebra then implies
that the corresponding eigenspaces (right and left) are 1-dimensional.

This proposition can be used to find the points in V(I) for any zero-
dimensional ideal I. The basic idea is as follows. First, we can assume that
I is radical by replacing I with v/I as computed by Proposition (2.7). Then
compute a Grébner basis G and monomial basis B as usual. Now consider
the function

fzclx1+"'+cnxn7

where ¢y, ..., ¢, are randomly chosen integers. This will ensure (with small
probability of failure) that the values f(p) are distinct for p € V(I). Rel-
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ative to the monomial basis B, we get the matrix my, so that we can use
standard numerical methods to find an eigenvalue A and corresponding left
eigenvector v of mys. This eigenvector, when combined with the Grébner
basis G, makes it trivial to find a solution p € V(I).

To see how this is done, first note that Proposition (4.7) implies

(48) v = c(p*®, ..., potm)

for some nonzero constant ¢ and some p € V(I). Write p = (a1, ..., an).
Our goal is to compute the coordinates a; of p in terms of the coordinates
of v. Equation (4.8) implies that each coordinate of v is of the form ¢p®(),

The Finiteness Theorem implies that for each ¢ between 1 and n, there is
m; > 1 such that 2" is the leading term of some element of G. If m; > 1,
it follows that [z;] € B (do you see why?), so that ca; is a coordinate of
v. As noted above, we have [1] € B, so that ¢ is also a coordinate of v.
Consequently,

a; =
c

is a ratio of coordinates of v. This way, we get the z;-coordinate of p for
all ¢ satisfying m; > 1.

It remains to study the coordinates with m; = 1. These variables appear
in none of the basis monomials in B (do you see why?), so that we turn
instead to the Grébner basis G for guidance. Suppose the variables with

m; = 1 are x;,,...,x;,. We will assume that the variables are labeled so
that z; > -+ > x, and i1 > - -+ > iy. In Exercise 15 below, you will show
that for j = 1,..., 4, there are elements g; € G such that

gj = r;; + terms involving x; for ¢ > i;.

If we evaluate this at p = (a1, ..., ay), we obtain

(4.9) 0 = a;; + terms involving a; for ¢ > i;.

Since we already know a; for ¢ ¢ {i1,...,i¢}, these equations make it
a simple matter to find a;,, ..., a;,. We start with a;,. For j = ¢, (4.9)

implies that a;, is a polynomial in the coordinates of p we already know.
Hence we get a;,. But once we know a;,, (4.9) shows that a;,_, is also a
polynomial in known coordinates. Continuing in this way, we get all of the
coordinates of p.

Exercise 5. Apply this method to find the solutions of the equations given
in Exercise 4. The z-coordinates of the solutions are distinct, so you can
assume f = x. Thus it suffices to compute the left eigenvectors of the
matrix m, of Exercise 4.

The idea of using eigenvectors to find solutions first appears in the
pioneering work of Auzinger and Stetter [AS] in 1988 and was further de-
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veloped in [M6S], [MT], and [Ste]. Our treatment focused on the radical
case since our first step was to replace I with v/I. In general, whenever
a multiplication map my is nonderogatory (meaning that all eigenspaces
have dimension one), one can use Proposition (4.7) to find the solutions.
Unfortunately, when I is not radical, it can happen that my is deroga-
tory for all f € k[xi,...,x,]. Rather than replacing I with /I as we
did above, another approach is to realize that the family of operators
{my : f € Ek[z1,...,z,]} is nonderogatory, meaning that its joint left
eigenspaces are one-dimensional and hence are spanned by the eigenvec-
tors described in Proposition (4.7). This result and its consequences are
discussed in [MT] and [Moul]. We will say more about multiplication maps
in §2 of Chapter 4.

Since the left eigenvectors of my help us find solutions in V(I), it is
natural to ask about the right eigenvectors. In Exercise 17 below, you will
show that these eigenvectors solve the interpolation problem, which asks
for a polynomial that takes preassigned values at the points of V(I).

This section has discussed several ideas for solving polynomial equations
using linear algebra. We certainly do not claim that these ideas are a com-
putational panacea for all polynomial systems, but they do give interesting
alternatives to other, more traditional methods in numerical analysis, and
they are currently an object of study in connection with the implementa-
tion of the next generation of computer algebra systems. We will continue
this discussion in §5 (where we study real solutions) and Chapter 3 (where
we use resultants to solve polynomial systems).

AppDiTIONAL EXERCISES FOR §4
Exercise 6. Prove Proposition (4.2).

Exercise 7. Let M, @, P, D be n x n complex matrices, and assume D is

a diagonal matrix.

a. Show that the equation M@ = QD holds if and only if each nonzero
column of @) is a right eigenvector of M and the corresponding diagonal
entry of D is the corresponding eigenvalue.

b. Show that the equation PM = DP holds if and only if each nonzero
row of P is a left eigenvector of M and the corresponding diagonal entry
of D is the corresponding eigenvalue.

c. If MQ = QD and Q is invertible, deduce that the rows of Q! are left
eigenvectors of M.

Exercise 8.
a. Apply the eigenvalue method from Corollary (4.6) to solve the system
from Exercise 6 of §1. Compare your results.
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b. Apply the eigenvalue method from Corollary (4.6) to solve the system
from Exercise 7 from §1. Compare your results.

Exercise 9. Let V; be the subspace of A spanned by the non-negative
powers of [x;], and consider the restriction of the multiplication operator
My, : A — Ato Vi Assume {1, [z;], ..., [x;]™ "'} is a basis for V;.

a. What is the matrix of the restriction mg, |y, with respect to this basis?
Show that it can be computed by the same calculations used in Exer-
cise 4 of §2 to find the monic generator of I N C[z;], without computing
a lex Grobner basis. Hint: See also Exercise 11 of §1 of Chapter 3.

b. What is the characteristic polynomial of m,, |y, and what are its roots?

Exercise 10. Use part b of Exercise 9 and Corollary (4.6) to give another
determination of the roots of the system from Exercise 4.

Exercise 11. Let I be a zero-dimensional ideal in C[zy,...,x,], and
let f € Clzi,...,z,]. Show that [f] has a multiplicative inverse in
Clz1, ..., 2]/ if and only if f(p) # 0 for all p € V(I). Hint: See the
proof of Theorem (4.5).

Exercise 12. Prove that a zero-dimensional ideal is radical if and only if
the matrices m,, are diagonalizable for each . Hint: Linear algebra tells
us that a matrix is diagonalizable if and only if its minimal polynomial is
square-free. Proposition (2.7) and Corollary (4.6) of this chapter will be
useful.

Exercise 13. Let A = Clxy,...,xz,]/I for a zero-dimensional ideal I,
and let f € Clzy,...,x,). If p € V(I), we can find g € Clzy,...,z,]
with g(p) = 1, and g(p’) = 0 for all p’ € V(I), p’ # p (see Lemma (2.9)).
Prove that there is an ¢ > 1 such that the coset [¢°] € A is a generalized
eigenvector for my with eigenvalue f(p). (A generalized eigenvector of a
matrix M is a nonzero vector v such that (M —AI)™v = 0 for some m > 1.)
Hint: Apply the Nullstellensatz to (f — f(p))g. In Chapter 4, we will study
the generalized eigenvectors of m¢ in more detail.

Exercise 14. Verify carefully the formula f(p)(p*™®, ..., p*m) =
(pe™, ..., pa(m) my used in the proof of Proposition (4.7).

Exercise 15. Let > be some monomial order, and assume 1 > --- > z,.
If g € klz1, ..., xy,] satisfies LT(g) = z;, then prove that
g = x; + terms involving z; for ¢ > j.

Exercise 16. (The Shape Lemma) Let I be a zero-dimensional radical
ideal such that the x,-coordinates of the points in V(I) are distinct. Let
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G be a reduced Grobner basis for I relative to a lex monomial order with
T, as the last variable.

a. If V(I) has m points, prove that the cosets 1,[z,],...,[z™ ] are
linearly independent and hence are a basis of A = k[z1,...,z,]/I.
b. Prove that G consists of n polynomials
g1 = x1 + hi(zy,)
In-1 = Tp-1+ hn_1(xn)
gn =z + hy(zn),
where hq, ..., h, are polynomials in z,, of degree at most m — 1. Hint:
Start by expressing [z1], . . ., [Tn—1], []] in terms of the basis of part a.

c. Explain how you can find all points of V(I) once you know their z,,-
coordinates. Hint: Adapt the discussion following (4.9).

Exercise 17. This exercise will study the right eigenvectors of the matrix

my¢ and their relation to interpolation. Assume that [ is a zero-dimensional

radical ideal and that the values f(p) are distinct for p € V(I). We write
the monomial basis B as {[z*M],. .., [z*(™)]}.

a. If p € V(I), Lemma (2.9) of this chapter gives us ¢ such that g(p) = 1
and g(p’) = 0 for all p’ # p in V(I). Prove that the coset [g] € A
is a right eigenvector of my and that the corresponding eigenspace has
dimension 1. Conclude that all eigenspaces of my are of this form.

b. If v = (v1,...,vy,)" is a right eigenvector of my corresponding to the
eigenvalue f(p) for p as in part a, then prove that the polynomial

g = lea(l) R Um.Ta("L)
satisfies g(p) # 0 and g(p') = 0 for p’ # p in V(I).
c. Show that we can take the polynomial g of part a to be

1
T
Thus, once we know the solution p and the corresponding right
eigenvector of my, we get an explicit formula for the polynomial g.

d. Given V(I) = {p1, ..., pm} and the corresponding right eigenvectors of
my, we get polynomials g1, ..., gm, such that g;(p;) = 1if i = j and 0
otherwise. Each g; is given explicitly by the formula in part c¢. The in-
terpolation problem asks to find a polynomial A which takes preassigned
values A1,..., Ay, at the points pq, ..., pm. This means h(p;) = \; for
all 7. Prove that one choice for h is given by

h=Xgi+ -+ Angm-
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Exercise 18. Let A = k[xy,...,2,]/I, where I is zero-dimensional. In
Maple, MulMatrix computes the matrix of the multiplication map m,, rel-
ative to a monomial basis computed by SetBasis. However, in §5, we will
need to compute the matrix of my, where f € k[z1,...,z,] is an arbitrary
polynomial. Develop and code a Maple procedure getmatrix which, given
a polynomial f, a monomial basis B, a Grobner basis G, and a term or-
der, produces the matrix of my relative to B. You will use getmatrix in
Exercise 6 of §5.

§5 Real Root Location and Isolation

The eigenvalue techniques for solving equations from §4 are only a first way
that we can use the results of §2 for finding roots of systems of polynomial
equations. In this section we will discuss a second application that is more
sophisticated. We follow a recent paper of Pedersen, Roy, and Szpirglas
[PRS] and consider the problem of determining the real roots of a system
of polynomial equations with coefficients in a field & C R (usually k =
Q or a finite extension field of Q). The underlying principle here is that
for many purposes, explicitly determined, bounded regions R C R", each
guaranteed to contain exactly one solution of the system can be just as
useful as a collection of numerical approximations. Note also that if we
wanted numerical approximations, once we had such an R, the job of finding
that one root would generally be much simpler than a search for all of the
roots! (Think of the choice of the initial approximation for an iterative
method such as Newton-Raphson.) For one-variable equations, this is also
the key idea of the interval arithmetic approach to computation with real
algebraic numbers (see [Mis]). We note that there are also other methods
known for locating and isolating the real roots of a polynomial system (see
§8.8 of [BW] for a different type of algorithm).

To define our regions R in R™, we will use polynomial functions in the
following way. Let h € k[z1,...,x,] be a nonzero polynomial. The real
points where h takes the value 0 form the variety V(h) NR™. We will denote
this by Vg(h) in the discussion that follows. In typical cases, Vr(h) will
be a hypersurface—an (n — 1)-dimensional variety in R™. The complement
of Vg(h) in R™ is the union of connected open subsets on which h takes
either all positive values or all negative values. We obtain in this way a
decomposition of R™ as a disjoint union

(5.1) R" = HY UH~ U Vg(h),

where H = {a € R" : h(a) > 0}, and similarly for H~. Here are some
concrete examples.
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Exercise 1.

a. Let h = (22 +y%—1)(2% +y? —2) in R[z, y]. Identify the regions HT and
H~ for this polynomial. How many connected components does each of
them have?

b. In this part of the exercise, we will see how regions like rectangular
“boxes” in R™ may be obtained by intersecting several regions HT or
H~. For instance, consider the box

R={(z,y) eR*:a<x<b c<y<d}
If hi(z,y) = (x — a)(x — b) and ha(z,y) = (y — ¢)(y — d), show that
R=H; NHy ={(z,y) € R? : hy(z,y) <0, i =1,2}.
What do H;", H and H;” N H, look like in this example?

Given a region R like the box from part b of the above exercise, and
a system of equations, we can ask whether there are roots of the system
in R. The results of [PRS] give a way to answer questions like this, using
an extension of the results of §2 and §4. Let I be a zero-dimensional ideal
and let B be the monomial basis of A = k[x1, ..., z,]/I for any monomial
order. Recall that the trace of a square matrix is just the sum of its diagonal
entries. This gives a mapping Tr from d x d matrices to k. Using the trace,
we define a symmetric bilinear form S by the rule:

S(f9) = Te(my - my) = Tr(my,)
(the last equality follows from part b of Proposition (4.2)).

Exercise 2.

a. Prove that S defined as above is a symmetric bilinear form on A, as
claimed. That is, show that S is symmetric, meaning S(f, g) = S(g, f)
for all f,g € A, and linear in the first variable, meaning

S(efi + f2,9) = ¢S(f1,9) + S(f2, 9)

for all fi1, fo,9 € A and all ¢ € k. It follows that S is linear in the
second variable as well.

b. Given a symmetric bilinear form S on a vector space V with basis
{v1,...,vq}, the matrix of S is the d x d matrix M = (S(v;, v;)). Show
that the matrix of S with respect to the monomial basis B = {2*()}
for A is given by:

M = (Tr(mxa(i)xa(j))) = (Tr(m:ca(i)Jra(j))).
Similarly, given the polynomial h € k[z1, ..., z,] used in the decompo-
sition (5.1), we can construct a bilinear form
Sn(f,9) = Tr(mny - mg) = Tr(magg).
Let M}, be the matrix of S}, with respect to B.
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Exercise 3. Show that S}, is also a symmetric bilinear form on A. What
is the ¢, j entry of M?

Since we assume k C R, the matrices M and M}, are symmetric matrices
with real entries. It follows from the real spectral theorem (or principal axis
theorem) of linear algebra that all of the eigenvalues of M and M), will be
real. For our purposes the exact values of these eigenvalues are much less
important than their signs.

Under a change of basis defined by an invertible matrix @, the matrix
M of a symmetric bilinear form S is taken to Q*M@Q. There are two fun-
damental invariants of S under such changes of basis—the signature o(S),
which equals the difference between the number of positive eigenvalues and
the number of negative eigenvalues of M, and the rank p(S), which equals
the rank of the matrix M. (See, for instance, Chapter 6 of [Her| for more
information on the signature and rank of bilinear forms.)

We are now ready to state the main result of this section.

(5.2) Theorem. Let I be a zero-dimensional ideal generated by polyno-
mials in k[z1,...,zy] (k C R), so that V(I) C C" is finite. Then, for
h € kl[z1,...,x,)], the signature and rank of the bilinear form Sy, satisfy:

o(Sy) = #{a e VI)NR" : h(a) > 0} — #{a € VI) NR" : h(a) < 0}
p(Sn) = #{a € V(I) : h(a) # 0}.

PROOF. This result is essentially a direct consequence of the reasoning
leading up to Theorem (4.5) of this chapter. However, to give a full proof
it is necessary to take into account the multiplicities of the points in
V(I) as defined in Chapter 4. Hence we will only sketch the proof in
the special case when I is radical. By Theorem (2.10), this means that
V() = {p1,...,pm}, where m is the dimension of the algebra A. Given
the basis B = {[z*"]} of A, Proposition (4.7) implies that (p;‘(z)) is an
invertible matrix.

By Theorem (4.5), for any f, we know that the set of eigenvalues of m
coincides with the set of values of the f at the points in V(I). The key new
fact we will need is that using the structure of the algebra A, for each point
p in V(I) it is possible to define a positive integer m(p) (the multiplicity)
so that 37 m(p) = d = dim(A), and so that (¢ — f(p))™®) is a factor of
the characteristic polynomial of m . (See §2 of Chapter 4 for the details.)

By definition, the ¢, j entry of the matrix M}, is equal to

Tr(my,.ga6).gow) )-

The trace of the multiplication operator equals the sum of its eigenvalues.
By the previous paragraph, the sum of these eigenvalues is

(5:3) > mp)h(p)p* IV,
peV(I)
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where p®(® denotes the value of the monomial (%) at the point p. List

the points in V(I) as p1, ..., p4, where each point p in V(I) is repeated
m(p) times consecutively. Let U be the d x d matrix whose jth column
consists of the values pjo.‘ Y fori = 1,...,d. From (5.3), we obtain a matrix

factorization M; = UDU?, where D is the diagonal matrix with entries
h(p1),...,h(pd). The equation for the rank follows since U is invertible.
Both U and D may have nonreal entries. However, the equation for the
signature follows from this factorization as well, using the facts that M}, has
real entries and that the nonreal points in V() occur in complex conjugate
pairs. We refer the reader to Theorem 2.1 of [PRS] for the details.

The theorem may be used to determine how the real points in V(I) are
distributed among the sets H*, H~ and Vg(h) determined by A in (5.1).
Theorem (5.2) implies that we can count the number of real points of
V(I)in H* and in H™ as follows. The signature of Sy, gives the difference
between the number of solutions in H+ and the number in H~. By the same
reasoning, computing the signature of Sj2 we get the number of solutions
in HT U H—, since h? > 0 at every point of H™ U H~. From this we can
recover #V(I) N HY and #V(I) N H~ by simple arithmetic. Finally, we
need to find #V(I) N Vg(h), which is done in the following exercise.

Exercise 4. Using the form S; in addition to S; and Sj2, show that
the three signatures o(S5), 0(Sp), 0(Sp2) give all the information needed to
determine #V(I) N H, #V(I) N H~ and #V(I) N Vg(h).

From the discussion above, it might appear that we need to compute
the eigenvalues of the forms S}, to count the numbers of solutions of the
equations in HT and H~, but the situation is actually much better than
that. Namely, the entire calculation can be done symbolically, so no recourse
to numerical methods is needed. The reason is the following consequence
of the classical Descartes Rule of Signs.

(5.4) Proposition. Let M), be the matriz of Sy, and let
ph(t) = det(Mh - tI)

be its characteristic polynomial. Then the number of positive eigenvalues of
Sy, is equal to the number of sign changes in the sequence of coefficients of
pr(t). (In counting sign changes, any zero coefficients are ignored.)

PROOF. See Proposition 2.8 of [PRS], or Exercise 5 below for a proof.
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For instance, consider the real symmetric matrix

31 5 4
12 6 9
M= 5 6 7 -1
49 -1 0

The characteristic polynomial of M is t* — 12¢3 — 119> + 1098t — 1251,
giving three sign changes in the sequence of coefficients. Thus M has three
positive eigenvalues, as one can check.

Exercise 5. The usual version of Descartes’ Rule of Signs asserts that the

number of positive roots of a polynomial p(t) in R[t] equals the number of

sign changes in its coefficient sequence minus a non-negative even integer.

a. Using this, show that the number of negative roots equals the number
of sign changes in the coefficient sequence of p(—t) minus another non-
negative even integer.

b. Deduce (5.4) from Descartes’ Rule of Signs, part a, and the fact that all
eigenvalues of M), are real.

Using these ideas to find and isolate roots requires a good searching
strategy. We will not consider such questions here. For an example showing
how to certify the presence of exactly one root of a system in a given region,
see Exercise 6 below.

The problem of counting real solutions of polynomial systems in regions
R C R"™ defined by several polynomial inequalities and/or equalities has
been considered in general by Ben-Or, Kozen, and Reif (see, for instance,
[BKR]). Using the signature calculations as above gives an approach which
is very well suited to parallel computation, and whose complexity is rela-
tively manageable. We refer the interested reader to [PRS] once again for
a discussion of these issues.

For a recent exposition of the material in this section, we refer the reader
to Chapter 6 of [GRRT]. One topic not mentioned in our treatment is
semidefinite programming. As explained in Chapter 7 of [Stu5], this has
interesting relations to real solutions and sums of squares.

AppDiTIONAL EXERCISES FOR §5

Exercise 6. In this exercise, you will verify that the equations
0=a?—-222+5
0=ay? +yz+1
0 = 3y? — 8zz

have exactly one real solution in the rectangular box

R={(v,y,2) eR*:0<ax <1, -3<y< -2 3<z<4}



74 Chapter 2. Solving Polynomial Equations

a. Using grevler monomial order with x > y > z, compute a Grébner
basis G for the ideal I generated by the above equations. Also find the
corresponding monomial basis B for Clx, y, z]/I.

b. Implement the following Maple procedure getform which computes the
matrix of the symmetric bilinear form S},.

getform := proc(h,B,G,torder)

computes the matrix of the symmetric bilinear form S_h,
with respect to the monomial basis B for the quotient
ring. G should be a Groebner basis with respect to
torder.

H H H

local d,M,i,]j,p,q;

d:=nops(B);
M := array(symmetric,1..d,1..d);
for i toddo
for j from i to d do
p := normalf (h*B[i]*B[j],G,torder);
M[i,j]:=trace(getmatrix(p,B,G,torder));
end do;
end do;
return eval (M)
end proc:

The call to getmatrix computes the matrix m;, .« o) With respect to
the monomial basis B = {z*("} for A. Coding getmatrix was Exercise
18 in §4 of this chapter.

c. Then, using

x*x(x-1);

S :

getform(h,B,G,tdeg(x,y,2));

compute the matrix of the bilinear form S, for h = z(x — 1).
d. The actual entries of this 8 x 8 rational matrix are rather complicated
and not very informative; we will omit reproducing them. Instead, use

charpoly(S,t);

to compute the characteristic polynomial of the matrix. Your result
should be a polynomial of the form:

8 — a1t7 + a2t6 + CL3t5 — a4t4 — a5t3 — a6t2 + a7t + asg,

where each a; is a positive rational number.
e. Use Proposition (5.4) to show that S, has 4 positive eigenvalues. Since
ag # 0, t = 0 is not an eigenvalue. Explain why the other 4 eigenvalues
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are strictly negative, and conclude that S} has signature
o(Sp) =4—-4=0.

f. Use the second equation in Theorem (5.2) to show that h is nonvanishing
on the real or complex points of V(I). Hint: Show that S;, has rank 8.
g. Repeat the computation for h2:

T := getform(h*h,B,G,tdeg(x,y,2));

and show that in this case, we get a second symmetric matrix with ex-
actly 5 positive and 3 negative eigenvalues. Conclude that the signature
of Sy2 (which counts the total number of real solutions in this case) is

J(Shz) =5—-3=2.
h. Using Theorem (5.2) and combining these two calculations, show that
#V(I)NH =#V(I)NH =1,

and conclude that there is exactly one real root between the two planes
z = 0and x = 1 in R3. Our desired region R is contained in this infinite
slab in R3. What can you say about the other real solution?

i. Complete the exercise by applying Theorem (5.2) to polynomials in y
and z chosen according to the definition of R.

Exercise 7. Use the techniques of this section to determine the number
of real solutions of

0=2a?+2y% —y—22
0=2a?—-8y2+10z—1
0=2a?—"Tyz
in the box R = {(z,9,2) e R¥: 0 <2< 1,0 <y < 1,0 <z < 1}. (This

is the same system as in Exercise 6 of §1. Check your results using your
previous work.)

Exercise 8. The alternative real root isolation methods discussed in §8.8
of [BW] are based on a result for real one-variable polynomials known as
Sturm’s Theorem. Suppose p(t) € QJt] is a polynomial with no multiple
roots in C. Then GCD(p(t), p'(t)) = 1, and the sequence of polynomials
produced by

po(t) = p(t)
() =p'(t)
pi(t) = —rem(p;i—1(t), pi—2(t), t),7 > 2

(so p;(t) is the negative of the remainder on division of p;_1(t) by p;—2(¢) in
Q[t]) will eventually reach a nonzero constant, and all subsequent terms will
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be zero. Let p,,(t) be the last nonzero term in the sequence. This sequence

of polynomials is called the Sturm sequence associated to p(t).

a. (Sturm’s Theorem) If ¢ < b in R, and neither is a root of p(t) = 0, then
show that the number of real roots of p(t) = 0 in the interval [a, b] is
the difference between the number of sign changes in the sequence of
real numbers po(a), p1(a), ..., pm(a) and the number of sign changes in
the sequence pg(b), p1(b), ..., pm(b). (Sign changes are counted in the
same way as for Descartes’ Rule of Signs.)

b. Give an algorithm based on part a that takes as input a polynomial
p(t) € Q[t] with no multiple roots in C, and produces as output a
collection of intervals [a;, b;] in R, each of which contains exactly one
root of p. Hint: Start with an interval guaranteed to contain all the
real roots of p(t) = 0 (see Exercise 3 of §1, for instance) and bisect
repeatedly, using Sturm’s Theorem on each subinterval.



Chapter 3

Resultants

In Chapter 2, we saw how Grobner bases can be used in Elimination Theory.
An alternate approach to the problem of elimination is given by resultants.
The resultant of two polynomials is well known and is implemented in many
computer algebra systems. In this chapter, we will review the properties
of the resultant and explore its generalization to several polynomials in
several variables. This multipolynomial resultant can be used to eliminate
variables from three or more equations and, as we will see at the end of the
chapter, it is a surprisingly powerful tool for finding solutions of equations.

§1 The Resultant of Two Polynomials
Given two polynomials f, g € k[x] of positive degree, say

f:aosr:l+---+al, ap#0, (>0

(1.1)
g:b0$m++bm7 bo?’éo7 m > 0.

Then the resultant of f and g, denoted Res(f, g), is the (I +m) x (I +m)
determinant

ao bo
ar  ag bi  bo
as aq - bg b1
(1.2) Res(f, g) = det 42 a0 b? - bo
ap . . al bm . . bl
ap as bm b2
ap bm
~ ~ s\ ~ -
m columns | columns

7
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where the blank spaces are filled with zeros. When we want to emphasize
the dependence on z, we will write Res(f, g, ) instead of Res(f,g). As a
simple example, we have

(1.3) Res(x® + 2 — 1,22 + 32 +7) = det = 159.

O R = O
== O = O
OO W
SO N W o
N Ww N OO

Exercise 1. Show that Res(f, g) = (—1)""Res(g, f). Hint: What happens
when you interchange two columns of a determinant?

Three basic properties of the resultant are:

¢ (Integer Polynomial) Res(f, g) is an integer polynomial in the coefficients
of f and g.

¢ (Common Factor) Res(f, g) = 0 if and only if f and g have a nontrivial
common factor in k[z].

e (Elimination) There are polynomials A, B € k[z] such that A f + Bg =
Res(f, g). The coefficients of A and B are integer polynomials in the
coefficients of f and g¢.

Proofs of these properties can be found in [CLO], Chapter 3, §5. The Integer
Polynomial property says that there is a polynomial

Resim € Zluo, .., U, Vo, - -« y Uy
such that if f, g are as in (1.1), then
Res(f, g) = Res;m(ao, - .-, a1, b0, .., bm).

Over the complex numbers, the Common Factor property tells us that
f, g € C[z] have a common root if and only if their resultant is zero. Thus
(1.3) shows that 3 + 2 — 1 and 222 + 3x + 7 have no common roots in C
since 159 # 0, even though we don’t know the roots themselves.

To understand the Elimination property, we need to explain how resul-
tants can be used to eliminate variables from systems of equations. As an
example, consider the equations

f=a2y—1=0
g=z>+1y*—4=0.
Here, we have two variables to work with, but if we regard f and g as

polynomials in z whose coefficients are polynomials in y, we can compute
the resultant with respect to x to obtain

Y 0 1
Res(f,g,x) = det [ —1 y 0 — y4 _ 4y2 1
0 -1 y2 —4
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By the Elimination property, there are polynomials A, B € k[z,y] with
A -(xy — 1)+ B - (2®> +y?> — 4) = y* — 4y + 1. This means Res(f, g, )
is in the elimination ideal (f, g) N k[y] as defined in §1 of Chapter 2, and it
follows that y* — 432 + 1 vanishes at any common solution of f = g = 0.
Hence, by solving y* — 4y? + 1 = 0, we can find the y-coordinates of the
solutions. Thus resultants relate nicely to what we did in Chapter 2.

Exercise 2. Use resultants to find all solutions of the above equations f =
g = 0. Also find the solutions using Res(f, g,y). In Maple, the command
for resultant is resultant.

More generally, if f and g are any polynomials in k[z,y] in which x
appears to a positive power, then we can compute Res(f, g, z) in the same
way. Since the coeflicients are polynomials in y, the Integer Polynomial
property guarantees that Res(f, g, x) is again a polynomial in y. Thus, we
can use the resultant to eliminate x, and as above, Res(f, g, ) is in the
elimination ideal (f, g) N k[y] by the Elimination property. For a further
discussion of the connection between resultants and elimination theory, the
reader should consult Chapter 3 of [CLO] or Chapter XI of [vdW].

One interesting aspect of the resultant is that it can be expressed in
many different ways. For example, given f, g € k[z] as in (1.1), suppose
their roots are &1, ..., & and n1, . . ., ., respectively (note that these roots
might lie in some bigger field). Then one can show that the resultant is
given by

Res(f, g) = agnbf) | H(& —nj)

|
—
I
—_
S—
3
3
o>
S
.
I 3
-
g
—
=
=
N

A proof of this is given in the exercises at the end of the section.

Exercise 3.

a. Show that the three products on the right hand side of (1.4) are all
equal. Hint: g = bo(x —m1) - - - (& — Nm)-

b. Use (1.4) to show that Res(f f2, g) = Res(f1, g)Res(f2, 9).

The formulas given in (1.4) may seem hard to use since they involve the
roots of f or g. But in fact there is a relatively simple way to compute
the above products. For example, to understand the formula Res(f, g) =
af’ Hi’:1 g(&), we will use the techniques of §2 of Chapter 2. Thus, consider
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the quotient ring Ay = k[z]/(f), and let the multiplication map m, be
defined by

my([h]) = 9] - [h] = [gh] € Ay,

where [h] € Ay is the coset of h € k[z]. If we think in terms of remainders
on division by f, then we can regard Ay as consisting of all polynomials h
of degree < I, and under this interpretation, mgy(h) is the remainder of gh
on division by f. Then we can compute the resultant Res(f, g) in terms of
mg as follows.

(1.5) Proposition. Res(f,g) = af* det(my : Ay — Ay).

PRrROOF. Note that Ay is a vector space over k of dimension [ (this is clear
from the remainder interpretation of Af). Further, as explained in §2 of
Chapter 2, my : Ay — Ay is a linear map. Recall from linear algebra that
the determinant det(myg) is defined to be the determinant of any matrix M
representing the linear map mg. Since M and mg4 have the same eigenvalues,
it follows that det(imy) is the product of the eigenvalues of mg, counted with
multiplicity.

In the special case when ¢(&1), ..., g(&) are distinct, we can prove our
result using the theory of Chapter 2. Namely, since {{1,...,&} = V(f), it
follows from Theorem (4.5) of Chapter 2 that the numbers g(&1), ..., g(&)
are the eigenvalues of mg,. Since these are distinct and Ay has dimension
[, it follows that the eigenvalues have multiplicity one, so that det(mg) =
g(&1) - - - g(&), as desired. The general case will be covered in the exercises
at the end of the section.

Exercise 4. For f = 23+ — 1 and g = 22% + 3z + 7 as in (1.3), use the
basis {1, z, 22} of Ay (thinking of A in terms of remainders) to show

7 2 3
Res(f,g) = 1*det(my) =det [ 3 5 —1 | = 159.
2 3 5

Note that the 3 x 3 determinant in this example is smaller than the 5 x 5
determinant required by the definition (1.2). In general, Proposition (1.5)
tells us that Res(f, g) can be represented as an [ x [ determinant, while the
definition of resultant uses an (I + m) x (I + m) matrix. The getmatrix
procedure from Exercise 18 of Chapter 2, §4 can be used to construct
the smaller matrix. Also, by interchanging f and g, we can represent the
resultant using an m x m determinant.

For the final topic of this section, we will discuss a variation on Res(f, g)
which will be important for §2. Namely, instead of using polynomials in the
single variable z, we could instead work with homogeneous polynomials in
variables z,y. Recall that a polynomial is homogeneous if every term has
the same total degree. Thus, if F, G € k[z, y] are homogeneous polynomials
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of total degrees [, m respectively, then we can write

ly+ e+ ay

G = boz™ + byx™ Yy + -+ bpy™

F = gzt + a2
(1.6) 0 '

Note that ag or by (or both) might be zero. Then we define Res(F, G) € k
using the same determinant as in (1.2).

Exercise 5. Show that Res(x!,y™) = 1.

If we homogenize the polynomials f and g of (1.1) using appropriate
powers of y, then we get F' and G as in (1.6). In this case, it is obvious that
Res(f, g) = Res(F, G). However, going the other way is a bit more subtle,
for if F and G are given by (1.6), then we can dehomogenize by setting
y = 1, but we might fail to get polynomials of the proper degrees since ag
or by might be zero. Nevertheless, the resultant Res(F, G) still satisfies the
following basic properties.

(1.7) Proposition. Fiz positive integers | and m.
a. There is a polynomial Res; ., € Z[ao, - .., a;, by, . .., by] such that

Res(F, G) = Resym(ag, ..., a1, b0,...,bm)

for all F, G as in (1.6).

b. Over the field of complex numbers, Res(F,G) =
equations F' = G = 0 have a solution (z,y) #
called a nontrivial solution).

0 if and only if the
(0,0) in C? (this is

ProOF. The first statement is an obvious consequence of the determinant
formula for the resultant. As for the second, first observe that if (u, v) € C2
is a nontrivial solution, then so is (Au, Av) for any nonzero complex number
A. We now break up the proof into three cases.

First, if ag = by = 0, then note that the resultant vanishes and that we
have the nontrivial solution (z,y) = (1, 0). Next, suppose that ag # 0 and
by # 0. If Res(F, G) = 0, then, when we dehomogenize by setting y = 1, we
get polynomials f, g € Clz] with Res(f, g) = 0. Since we're working over
the complex numbers, the Common Factor property implies f and g must
have a common root = u, and then (x, y) = (u, 1) is the desired nontrivial
solution. Going the other way, if we have a nontrival solution (u,v), then
our assumption agby # 0 implies that v # 0. Then (u/v,1) is also a
solution, which means that u/v is a common root of the dehomogenized
polynomials. From here, it follows easily that Res(F,G) = 0.

The final case is when exactly one of ag, by is zero. The argument is a
bit more complicated and will be covered in the exercises at the end of the
section.
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We should also mention that many other properties of the resultant,
along with proofs, are contained in Chapter 12 of [GKZ].

ApDITIONAL EXERCISES FOR §1

Exercise 6. As an example of how resultants can be used to eliminate
variables from equations, consider the parametric equations

r=14+s+1t+ st
y=2+s+st+t?
z=s—|—t—|—52.

Our goal is to eliminate s,¢ from these equations to find an equation

involving only z, y, 2.

a. Use Grobner basis methods to find the desired equation in z, y, 2.

b. Use resultants to find the desired equations. Hint: Let f =14+ s+ ¢ +
st—x,g=2+s+st+t2—yand h =s+t+ s? — z Then eliminate
t by computing Res(f, g,t) and Res(f, h, t). Now what resultant do you
use to get rid of s?

c. How are the answers to parts a and b related?

Exercise 7. Let f, g be asin (1.1). If we divide g by f, weget g = q f + 1,
where deg(r) < deg(g) = m. Then, assuming that r is nonconstant, show
that

Res(f, g) = agn_dcg(r)Res(f7 ).

Hint: Let g1 = g — (bo/ap)xz™ ' f and use column operations to subtract
bo/ap times the first [ columns in the f part of the matrix from the columns
in the g part. Expanding repeatedly along the first row gives Res(f,g) =
ag%deg gl)Res(f7 g1)- Continue this process to obtain the desired formula.

Exercise 8. Our definition of Res(f, g) requires that f, g have positive

degrees. Here is what to do when f or g is constant.

a. If deg(f) > 0 but g is a nonzero constant by, show that the determinant
(1.2) still makes sense and gives Res(f, by) = b).

b. If deg(g) > 0 and ap # 0, what is Res(ag, g)? Also, what is Res(ag, bo)?
What about Res(f, 0) or Res(0, g)?

c. Exercise 7 assumes that the remainder r has positive degree. Show that
the formula of Exercise 7 remains true even if r is constant.

Exercise 9. By Exercises 1, 7 and 8, resultants have the following three
properties: Res(f, g) = (—1)"Res(g, f); Res(f, bo) = by; and Res(f, g) =
ag%dcg T)Res(f, r) when g = ¢ f + r. Use these properties to describe an
algorithm for computing resultants. Hint: Your answer should be similar
to the Euclidean algorithm.
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Exercise 10. This exercise will give a proof of (1.4).

a. Given f, g as usual, define res(f, g) = af’ Hizl 9(&), where &1,...,&
are the roots of f. Then show that res(f, g) has the three properties of
resultants mentioned in Exercise 9.

b. Show that the algorithm for computing res(f, g) is the same as the
algorithm for computing Res(f, g), and conclude that the two are equal
for all f, g.

Exercise 11. Let f = apa! + a12!~! + -+ + a; € k[z] be a polynomial

with ag # 0, and let Ay = k[z]/(f). Given g € k[z], let my : Ay — Ay be

multiplication by g.

a. Use the basis {1,,...,2'71} of A; (so we are thinking of A; as
consisting of remainders) to show that the matrix of m, is

00 --- 0 —a/a
1 0 --- 0 —al,l/ao
Cf: o1 --- 0 —al,g/ao
o0 --- 1 —al/ao

This matrix (or more commonly, its transpose) is called the companion
matriz of f.
b. If g = boz™ + - - - + by, then explain why the matrix of m, is given by

9(Cy) = boCF + b1CT "+ + b,

where I is the [ x [ identity matrix. Hint: By Proposition (4.2) of
Chapter 2, the map sending g € k[z] to myg € My (k) is a ring
homomorphism.

c. Conclude that Res(f, g) = ag* det(g(Cy)).

Exercise 12. In Proposition (1.5), we interpreted Res(f, g) as the de-

terminant of a linear map. It turns out that the original definition (1.2)

of resultant has a similar interpretation. Let P, denote the vector space

of polynomials of degree < n. Since such a polynomial can be written

apx™ 4 -+ - + an, it follows that {z", ..., 1} is a basis of P,.

a. Given f, g asin (1.1), show that if (A, B) € Pp,_1©P_1,then A f+Byg
is in Pi4ym—1. Conclude that we get a linear map @5, : Pp—1 ® P—1 —
IDl-l—m—l-

b. If we use the bases {z™~!, ... 1} of P,,_q, {z!~1,...,1} of P_; and
{xttm=1 .1} of Piim_1, show that the matrix of the linear map
@4, from part a is exactly the matrix used in (1.2). Thus, Res(f, g) =
det(®y,q), provided we use the above bases.

c. If Res(f, g) # 0, conclude that every polynomial of degree < 1+ m — 1
can be written uniquely as A f+ B g where deg(A4) < m and deg(B) < I.
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Exercise 13. In the text, we only proved Proposition (1.5) in the special

case when ¢(&1), ..., g(&) are distinct. For the general case, suppose f =
ag(x — &)™ -+ (x — &.)%, where &1, ..., &, are distinct. Then we want to
prove that det(mg) = [Ti_, g(&)*.

a. First, suppose that f = (z — £)?. In this case, we can use the basis

of Ay given by {(z — &)*!, ...,z — & 1} (as usual, we think of A as
consisting of remainders). Then show that the matrix of m, with respect
to the above basis is upper triangular with diagonal entries all equal to
g(&). Conclude that det(mg) = ¢(&)*. Hint: Write g = boz™ + - - - + by,
in the form g = co(x — &)™ + - -+ 4+ cm—1(x — §) + ¢ by replacing x
with (z — &) + € and using the binomial theorem. Then let © = £ to get
cm = g(§).

b. In general, when f = ag(x — &) - - - (x — &,)?", show that there is a
well-defined map

Ay — (K[2]/((z = &)™) © - - @ (k[z]/((x = &)))

which preserves sums and products. Hint: This is where working with
cosets is a help. It is easy to show that the map sending [h] € Af to
[h] € E[z]/{(x — &)™) is well-defined since (x — §;)% divides f.

c. Show that the map of part b is a ring isomorphism. Hint: First show
that the map is one-to-one, and then use linear algebra and a dimension
count to show it is onto.

d. By considering multiplication by g on

(klel/((x = &)") & - - - & (k[z]/{(z = &)*))

and using part a, conclude that det(mg) = [];_; 9(&)® as desired.

Exercise 14. This exercise will complete the proof of Proposition (1.7).

Suppose that F, G are given by (1.6) and assume ag # 0 and bg = - -+ =

b.—1 = 0 but b. # 0. If we dehomogenize by setting y = 1, we get

polynomials f, g of degree [, m — r respectively.

a. Show that Res(F, G) = afRes(f, g).

b. Show that Res(F,G) = 0 if and only FF = G = 0 has a nontrivial
solution. Hint: Modify the argument given in the text for the case when
ag and by were both nonzero.

§2 Multipolynomial Resultants

In §1, we studied the resultant of two homogeneous polynomials F, G in
variables x, y. Generalizing this, suppose we are given n + 1 homogeneous
polynomials Fy, ..., F,, in variables xg, ..., z,, and assume that each F;
has positive total degree. Then we get n + 1 equations in n + 1 unknowns:

(21) FO(Z'Oy---axn):"':Fn(x()v-“;xn)zo-
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Because the F; are homogeneous of positive total degree, these equations
always have the solution xg = - -+ = x,, = 0, which we call the trivial solu-
tion. Hence, the crucial question is whether there is a nontrivial solution.
For the rest of this chapter, we will work over the complex numbers, so
that a nontrivial solution will be a point in C*** \ {(0,...,0)}.

In general, the existence of a nontrivial solution depends on the coef-
ficients of the polynomials Fy,. .., Fj,: for most values of the coefficients,
there are no nontrivial solutions, while for certain special values, they exist.

One example where this is easy to see is when the polynomials F; are all
linear, i.e., have total degree 1. Since they are homogeneous, the equations
(2.1) can be written in the form:

Fo = coozo + -+ + con®n = 0
(2.2)
Fo = cnoxo+ -+ + cunn = 0.

This is an (n 4+ 1) x (n + 1) system of linear equations, so that by linear
algebra, there is a nontrivial solution if and only if the determinant of the
coefficient matrix vanishes. Thus we get the single condition det(c;;) = 0
for the existence of a nontrivial solution. Note that this determinant is a
polynomial in the coefficients c;;.

Exercise 1. There was a single condition for a nontrivial solution of (2.2)
because the number of equations (n + 1) equaled the number of unknowns
(also n + 1). When these numbers are different, here is what can happen.
a. If we have r < m 4 1 linear equations in n + 1 unknowns, explain why
there is always a nontrivial solution, no matter what the coefficients are.
b. When we have r > n + 1 linear equations in n + 1 unknowns, things
are more complicated. For example, show that the equations
FO = CooT + Co1Yy = 0
F1 = ciox + 11y = 0
Fy = ¢ + c21y = 0

have a nontrivial solution if and only if the three conditions

c c c C c c
det 00 0L ) _ det 00 01 ) _ Jet 10 1\ _
€10 €11 C20 C21 C20 C21

are satisfied.

In general, when we have n 4+ 1 homogeneous polynomials Fy, ..., F, €
Clzo, - - ., Zn], we get the following Basic Question: What conditions must
the coefficients of Fy, ..., F, satisfy in order that Fy = --- = F, = 0 has

a nontrivial solution? To state the answer precisely, we need to introduce
some notation. Suppose that d; is the total degree of F;, so that F; can be
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written

F; = E CiaZ™.

la|=d;

For each possible pair of indices %, o, we introduce a variable u; o. Then,
given a polynomial P € Clu; o], we let P(Fy,...,F,) denote the number
obtained by replacing each variable u; , in P with the corresponding coef-
ficient ¢; . This is what we mean by a polynomial in the coefficients of the
F;. We can now answer our Basic Question.

(2.3) Theorem. If we fix positive degrees dy,...,d,, then there is a

unique polynomial Res € Z[u; o] which has the following properties:

a. If Fy, ..., F, € Clxqg,...,x,] are homogeneous of degrees dy, . .. ,dn,
then the equations (2.1) have a nontrivial solution over C if and only if
Res(Fp, ..., F,) = 0.

b. Res(zdo, ... zdn) = 1.

c. Res is irreducible, even when regarded as a polynomial in Clu; o].

PrROOF. A complete proof of the existence of the resultant is beyond the
scope of this book. See Chapter 13 of [GKZ] or §78 of [vdW] for proofs.
At the end of this section, we will indicate some of the intuition behind
the proof when we discuss the geometry of the resultant. The question of
uniqueness will be considered in Exercise 5.

We call Res(Fy, . . ., F,,) the resultant of Fy, . . ., F,,. Sometimes we write
Resg,.,...,q, instead of Res if we want to make the dependence on the degrees
more explicit. In this notation, if each F; = Z?:o cijr; is linear, then the
discussion following (2.2) shows that

Resl ..... I(FOa“'vF’n) :det(CU)

Another example is the resultant of two polynomials, which was discussed in
§1. In this case, we know that Res(Fp, F}) is given by the determinant (1.2).
Theorem (2.3) tells us that this determinant is an irreducible polynomial
in the coefficients of Fy, F}.

Before giving further examples of multipolynomial resultants, we want to
indicate their usefulness in applications. Let’s consider the implicitization
problem, which asks for the equation of a parametric curve or surface. For
concreteness, suppose a surface is given parametrically by the equations

x = f(s,t)
(2.4) Yy = g(S,t)
z = h(s,t),

where f(s,1), g(s,t), h(s,t) are polynomials (not necessarily homogeneous)
of total degrees dy, di1, ds. There are several methods to find the equation
p(x,y, z) = 0 of the surface described by (2.4). For example, Chapter 3 of
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[CLOJ uses Grobner bases for this purpose. We claim that in many cases,
multipolynomial resultants can be used to find the equation of the surface.

To use our methods, we need homogeneous polynomials, and hence we
will homogenize the above equations with respect to a third variable u. For
example, if we write f(s,t) in the form

f(s:t) = fao(s.8) + fag—1(s,t) + -+ + fols, 1),
where f; is homogeneous of total degree j in s, ¢, then we get
F(s,t,u) = fay(s,t) + fag—1(s, )u+ -+ + fo(s, thu®,
which is now homogeneous in s, ¢, u of total degree dy. Similarly, g(s,t)

and h(s,t) homogenize to G(s,t,u) and H(s,t, u), and the equations (2.4)
become

(2.5)  F(s,t,u) — zu® = G(s,t,u) — yu® = H(s,t,u) — zu®™ = 0.

Note that x, y, z are regarded as coeflicients in these equations.
We can now solve the implicitization problem for (2.4) as follows.

(2.6) Proposition. With the above notation, assume that the system of
homogeneous equations

fao(s,t) = ga,(s,t) = hg,(s,t) =0

has only the trivial solution. Then, for a given triple (z,y,z) € C3, the
equations (2.4) have a solution (s,t) € C% if and only if

Resdg,d, ,dy (F — xud07 G- yudl, H — zudz’) =0.

PROOF. By Theorem (2.3), the resultant vanishes if and only if (2.5) has
a nontrivial solution (s, ¢, u). If u # 0, then (s/u,t/u) is a solution to
(2.4). However, if u = 0, then (s,t) is a nontrivial solution of fg,(s,t) =
9d, (s, t) = hg,(s,t) = 0, which contradicts our hypothesis. Hence, u = 0
can’t occur. Going the other way, note that a solution (s, t) of (2.4) gives
the nontrivial solution (s, t, 1) of (2.5).

Since the resultant is a polynomial in the coefficients, it follows that
(2.7) p(x,y, 2) = Resay.dy ., (F — 2u®, G — yu® ) H — zu™)

is a polynomial in z,y, z which, by Proposition (2.6), vanishes precisely
on the image of the parametrization. In particular, this means that the
parametrization covers all of the surface p(x,y,z) = 0, which is not
true for all polynomial parametrizations—the hypothesis that fg,(s,t) =
gd, (8,t) = ha,(s,t) = 0 has only the trivial solution is important here.

Exercise 2.

a. If f4,(s,t) = ga,(s,t) = ha,(s,t) = 0 has a nontrivial solution, show
that the resultant (2.7) vanishes identically. Hint: Show that (2.5) always
has a nontrivial solution, no matter what x,y, z are.
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b. Show that the parametric equations (x,y, z) = (st, s°t, st?) define the
surface 3 = yz. By part a, we know that the resultant (2.7) can’t be
used to find this equation. Show that in this case, it is also true that
the parametrization is not onto—there are points on the surface which
don’t come from any s, .

We should point out that for some systems of equations, such as

r=14+s+t+ st
y=24+s+3t+ st
z=5—1+ st,

the resultant (2.7) vanishes identically by Exercise 2, yet a resultant can
still be defined—this is one of the sparse resultants which we will consider
in Chapter 7.

One difficulty with multipolynomial resultants is that they tend to be
very large expressions. For example, consider the system of equations given
by 3 quadratic forms in 3 variables:

Fo = co12® + coay® + co32% + coary + cosr2 + coeyz = 0
Fi = c12® + e12y® + c132” + cuzy + c1572 + cieyz = 0

Fy = cq2® + 022y2 + c932” + C24TY + Ca5T2 + co6yz = 0.

Classically, this is a system of “three ternary quadrics”. By Theorem (2.3),
the resultant Resg 2 o(Fo, F1, F») vanishes exactly when this system has a
nontrivial solution in z, y, 2.

The polynomial Resy 22 is very large: it has 18 variables (one for each
coefficient ¢;;), and the theory of §3 will tell us that it has total degree
12. Written out in its full glory, Resa 22 has 21,894 terms (we are grateful
to Bernd Sturmfels for this computation). Hence, to work effectively with
this resultant, we need to learn some more compact ways of representing
it. We will study this topic in more detail in §3 and §4, but to whet the
reader’s appetite, we will now give one of the many interesting formulas for
ReS2)2’2.

First, let J denote the Jacobian determinant of Fy, I}, F5:

0Fy, O0F, O0Fy

ox y 0z
B OF, 0F, OF
J = det ox Ay 0z |’
0F, O0F, O0OF,
ox Jy 0z

which is a cubic homogeneous polynomial in z,y, z. This means that the
partial derivatives of J are quadratic and hence can be written in the
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following form:

oJ

o = bo17? + boay? + bozz? + boawy + bosrz + bosyz
a‘]—b 2 4 bioy? + b3z + b +b +b

8y = mx 12Y 132 14TY 15L2 16Y<
o7 _ bor2? 4 bogy? + bozz® 4+ b +b b

o 21T 22Y 232 24TY 252 + D2sYZ.

Note that each b;; is a cubic polynomial in the ¢;;. Then, by a classical for-
mula of Salmon (see [Sal], Art. 90), the resultant of three ternary quadrics
is given by the 6 x 6 determinant

Co1 Co2 Co3 Coa Cos Coe
Ci1 C12 €13 Ci4 Ci5 Ci6

-1
(2.8) Resao2(Fo, Fi, Fp) = det | €21 C22 C23 Caa Cos C26

512 bor bo2 boz bosa bos bos
bir b2 biz by bis big
bat bao bog bos bas  bog

Exercise 3.

a.

b.

Use (2.8) to explain why Resg 22 has total degree 12 in the variables
Co1y - - -5 C26-

Why is the fraction —1/512 needed in (2.8)? Hint: Compute the
resultant Ress 2 o(22, 2, 22).

Use (2.7) and (2.8) to find the equation of the surface defined by the
equations

r=14+s+t+ st
y=2+s+ st+t
z=s54+t+ s
Note that st = st 4+ t> = s2 = 0 has only the trivial solution, so that

Proposition (2.6) applies. You should compare your answer to Exercise 6
of §1.

In §4 we will study the general question of how to find a formula for a

given resultant. Here is an example which illustrates one of the methods
we will use. Consider the following system of three homogeneous equations
in three variables:

Fo =a1xz 4+ ay+azz =0

(29) Fi = bz + bgy + b3z =0

Fy = c1m2 + 02y2 + 0322 + caxy + csxz + cgyz = 0.

Since Fy and Fi are linear and F5 is quadratic, the resultant involved is
Resy,1,2(Fo, Fi, F>). We get the following formula for this resultant.
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(2.10) Proposition. Resy 1,2(Fo, F1, F2) is given by the polynomial
a%b%@ - a?bgbgcg + a%b%@ — 2a1a9b1bacs + aragbibscg
+ ajasbobscs — alagb§C4 + aj1asb1bacg — 2a1a3b1bzcy — a1a3b§c5
+ aiagbobscy + a%b%c;; — a%blbgc5 + a%b%cl — agagbf%
+ asaszbibacs + asazbibscys — 2asa3babzey + a%b?cz — a§b1b264 + agbgcl.

PrROOF. Let R denote the above polynomial, and suppose we have a non-
trivial solution (x,y, z) of (2.9). We will first show that this forces a slight
variant of R to vanish. Namely, consider the six equations

(211) $'F0:y~F0:Z'F0:y~F1:Z'Flzl'FQZO,
which we can write as
ar?  + 0 + 0 + asxy + asrz + 0 = 0
0 + aw? + 0 + azy + 0 + azyz = 0
0 + 0 + as3z® + 0 + axzz + ayz = 0
0 + b + 0 + bazy + 0 + byyz = 0
0 + 0 + b3z + 0 4+ bizz + byz = 0
azr? + cy? + 322 4+ cary 4+ cszz + cgyz = 0.

[\~]

If we regard 22,42, 22, 2y, vz, yz as “unknowns”, then this system of six
linear equations has a nontrivial solution, which implies that the determi-
nant D of its coeflicient matrix is zero. Using a computer, one easily checks
that the determinant is D = —a R.

Thinking geometrically, we have proved that in the 12 dimensional space
C'? with a1, ..., cs as coordinates, the polynomial D vanishes on the set

(2.12) {(a1,...,cs) : (2.9) has a nontrivial solution} ¢ C'2.

However, by Theorem (2.3), having a nontrivial solution is equivalent to
the vanishing of the resultant, so that D vanishes on the set

V(RQSLLQ) C Clz.

This means that D € I(V(Res1,1,2)) = v/(Rest,1,2), where the last equality
is by the Nullstellensatz (see §4 of Chapter 1). But Res 1,2 is irreducible,
which easily implies that \/<Res1,172> = (Res1,1,2). This proves that D €
(Res1,1,2), so that D = —aq R is a multiple of Resy 1 2. Irreducibility then
implies that Res; 12 divides either a; or R. The results of §3 will tell us
that Res; 1,2 has total degree 5. It follows that Res; 1 2 divides R, and since
R also has total degree 5, it must be a constant multiple of Res; ;2. By
computing the value of each when (Fy, F1, Fy) = (z,y, 22), we see that the
constant must be 1, which proves that R = Resy 1,2, as desired.

Exercise 4. Verify that R = 1 when (Fy, Fy, F») = (2, y, 22).

The equations (2.11) may seem somewhat unmotivated. In §4 we will see
that there is a systematic reason for choosing these equations.
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The final topic of this section is the geometric interpretation of the resul-
tant. We will use the same framework as in Theorem (2.3). This means that
we consider homogeneous polynomials of degree dy, ..., d,, and for each
monomial ¢ of degree d;, we introduce a variable u; . Let M be the total
number of these variables, so that C™ is an affine space with coordinates
Ui o for all 0 < 4 < n and |a| = d;. A point of CM will be written (c¢; o).
Then consider the “universal” polynomials

Note that the coefficients of the £ are the variables u; o. If we evaluate

Fo,...,Fyat (ciq) € CM  we get the polynomials Fy, . .., F},, where F; =
Z\a|:di Ci.ax®. Thus, we can think of points of CM as parametrizing all
possible (n + 1)-tuples of homogeneous polynomials of degrees dy, . . ., dy,.

To keep track of nontrivial solutions of these polynomials, we will use
projective space P"*(C), which we write as P for short. Recall the following;:

e A point in P™ has homogeneous coordinates (ag, . . ., ), where a; € C
are not all zero, and another set of coordinates (by, ..., b,) gives the
same point in P™ if and only if there is a complex number A # 0 such
that (bo, ..., bn) = A ag, ..., an).

o If F(xo,...,zn) is homogeneous of degree d and (by,...,b,) =
Mag, - .., a,) are two sets of homogeneous coordinates for some point
p € P then

F(bo,...,by) = XF(ag, ..., an).

Thus, we can’t define the value of F' at p, but the equation F(p) = 0
makes perfect sense. Hence we get the projective variety V(F) C P,
which is the set of points of P where F' vanishes.

For a homogencous polynomial F', notice that V(F) C P™ is determined
by the nontrivial solutions of F© = 0. For more on projective space, see
Chapter 8 of [CLO].

Now consider the product CM x P™. A point (¢; o, ag, - - . , a,) € CM xP"
can be regarded as n + 1 homogeneous polynomials and a point of P". The
“universal” polynomials F; are actually polynomials on C* x P", which
gives the subset W = V(Fy, ..., F,). Concretely, this set is given by
W = {(¢i,ar @0, -.,0n) € CM x P": (ag,...,an) is a

nontrivial solution of Fy = --- = F,, = 0, where
(2.13) Fo, ..., F, are determined by (¢; o)}
. = {all possible pairs consisting of a set of equations
Fy=---=F, =0 of degrees dy, ..., d, and

a nontrivial solution of the equations}.
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Now comes the interesting part: there is a natural projection map
7:CM xpr — CcM

defined by m(c¢ia,a0,...,an) = (i), and under this projection, the
variety W € CM x P™ maps to

7(W) = {(ci,a) € CM : there is (ao,...,a,) € P"
such that (¢; o, ao, - -.,a,) € W}
= {all possible sets of equations Fy = --- = F,, = 0 of

degrees dy, . . ., d,, which have a nontrivial solution}.

Note that when the degrees are (do, d1,d2) = (1,1, 2), 7(W) is as in (2.12).

The essential content of Theorem (2.3) is that the set w(W) is defined
by the single irreducible equation Resg,, . 4, = 0. To prove this, first note
that (W) is a variety in CM by the following result of elimination theory.

e (Projective Extension Theorem) Given a variety W C CM x P" and the
projection map 7 : CM x P* — CM | the image m(W) is a variety in CM.

(See, for example, §5 of Chapter 8 of [CLO].) This is one of the key reasons
we work with projective space (the corresponding assertion for affine space
is false in general). Hence w(W) is defined by the vanishing of certain
polynomials on CM. In other words, the existence of a nontrivial solution
of Fy = --- = F, = 0 is determined by polynomial conditions on the
coefficients of Fy, ..., F,.

The second step in the proof is to show that we need only one polynomial
and that this polynomial is irreducible. Here, a rigorous proof requires
knowing certain facts about the dimension and irreducible components of
a variety (see, for example, [Sha], §6 of Chapter I). If we accept an intuitive
idea of dimension, then the basic idea is to show that the variety m(W) C
CM is irreducible (can’t be decomposed into smaller pieces which are still
varieties) of dimension M — 1. In this case, the theory will tell us that 7(W)
must be defined by exactly one irreducible equation, which is the resultant
Resdo,.“,dn = 0.

To prove this, first note that C* x P™ has dimension M + n. Then
observe that W C CM x P" is defined by the n + 1 equations Fg = - - - =
F,, = 0. Intuitively, each equation drops the dimension by one, though
strictly speaking, this requires that the equations be “independent” in an
appropriate sense. In our particular case, this is true because each equation
involves a disjoint set of coefficient variables u; . Thus the dimension of
Wis (M +n)—(n+1) = M — 1. One can also show that W is irreducible
(see Exercise 9 below). From here, standard arguments imply that 7(1)
is irreducible. The final part of the argument is to show that the map
W — m(W) is one-to-one “most of the time”. Here, the idea is that if
Fy = --- = F, = 0 do happen to have a nontrivial solution, then this
solution is usually unique (up to a scalar multiple). For the special case
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when all of the F; are linear, we will prove this in Exercise 10 below. For the
general case, see Proposition 3.1 of Chapter 3 of [GKZ]. Since W — =«(W)
is onto and one-to-one most of the time, 7(W) also has dimension M — 1.

ApDITIONAL EXERCISES FOR §2

Exercise 5. To prove the uniqueness of the resultant, suppose there are

two polynomials Res and Res’ satisfying the conditions of Theorem (2.3).

a. Adapt the argument used in the proof of Proposition (2.10) to show that
Res divides Res’ and Res’ divides Res. Note that this uses conditions a
and c of the theorem.

b. Now use condition b of Theorem (2.3) to conclude that Res = Res'.

Exercise 6. A homogeneous polynomial in C[z] is written in the form
ar?. Show that Resy(az?) = a. Hint: Use Exercise 5.

Exercise 7. When the hypotheses of Proposition (2.6) are satisfied, the
resultant (2.7) gives a polynomial p(z, y, z) which vanishes precisely on the
parametrized surface. However, p need not have the smallest possible total
degree: it can happen that p = ¢¢ for some polynomial ¢ of smaller total
degree. For example, consider the (fairly silly) parametrization given by
(z,y,2) = (s,s,t%). Use the formula of Proposition (2.10) to show that in
this case, p is the square of another polynomial.

Exercise 8. The method used in the proof of Proposition (2.10) can be
used to explain how the determinant (1.2) arises from nontrivial solutions
F = G = 0, where F,G are as in (1.6). Namely, if (x,y) is a nontrivial
solution of (1.6), then consider the I + m equations

g F =0
2™ 2y F =0
ymfl.FZO
271G =0
22y G =0
.G =o.

Regarding this as a system of linear equations in unknowns z!*™~1,

xl+m_2y, R y“‘m_l, show that the coefficient matrix is exactly the trans-
pose of (1.2), and conclude that the determinant of this matrix must vanish
whenever (1.6) has a nontrivial solution.



94 Chapter 3. Resultants

Exercise 9. In this exercise, we will give a rigorous proof that the set W
from (2.13) is irreducible of dimension M — 1. For convenience, we will
write a point of CM as (Fp, ..., F,).

a. If p = (ag,...,a,) are fixed homogeneous coordinates for a point
p € P* show that the map CM — C"*! defined by (Fy,..., Fy,) —
(Fo(p), ..., Fn(p)) is linear and onto. Conclude that the kernel of this
map has dimension M — n — 1. Denote this kernel by K(p).

b. Besides the projection 7 : CM x P* — CM used in the text, we also
have a projection map C™ x P* — P, which is projection on the second
factor. If we restrict this map to W, we get a map 7 : W — P" defined
by #(Fp, ..., Fn,p) = p. Then show that

7 (p) = K(p) x {p},

where as usual 7~1(p) is the inverse image of p € P™ under 7, i.e., the
set of all points of W which map to p under 7. In particular, this shows
that 7 : W — P™ is onto and that all inverse images of points are
irreducible (being linear subspaces) of the same dimension.

c. Use Theorem 8 of [Shal, §6 of Chapter 1, to conclude that W is
irreducible.

d. Use Theorem 7 of [Shal, §6 of Chapter 1, to conclude that W has di-
mension M — 1 = n (dimension of P") + M — n — 1 (dimension of the
inverse images).

Exercise 10. In this exercise, we will show that the map W — #(W) is

usually one-to-one in the special case when Fy, . .., I}, have degree 1. Here,

we know that if F; = 377 c;ja;, then Res(Fp, ..., F,) = det(A), where

A = (c;5). Note that A is an (n + 1) x (n + 1) matrix.

a. Show that Fy = --- = F,, = 0 has a nontrivial solution if and only if A
has rank < n + 1.

b. If A has rank n, prove that there is a unique nontrivial solution (up to
a scalar multiple).

c. Given 0 < 4,5 < n, let A% be the n x n matrix obtained from A by
deleting row ¢ and column j. Prove that A has rank < n if and only if
det(A%7) = 0 for all i, j. Hint: To have rank > n, it must be possible
to find n columns which are linearly independent. Then, looking at the
submatrix formed by these columns, it must be possible to find n rows
which are linearly independent. This leads to one of the matrices A™7.

d. Let Y = V(det(A"7) : 0 < i,5 < n). Show that Y C (W) and that
Y # n(W). Since 7(W) is irreducible, standard arguments show that Y’
has dimension strictly smaller than 7(W) (see, for example, Corollary 2
to Theorem 4 of [Sha], §6 of Chapter I).

e. Show that if a,b € W and n(a) = 7(b) € #(W) \ Y, then a = b. Since
Y has strictly smaller dimension than (W), this is a precise version of
what we mean by saying the map W — «(W) is “usually one-to-one”.
Hint: Use parts b and c.



§3. Properties of Resultants 95

§3 Properties of Resultants

In Theorem (2.3), we saw that the resultant Res(Fp, ..., F,) vanishes if
and only if Fy = --- = F,, = 0 has a nontrivial solution, and is irreducible
over C when regarded as a polynomial in the coefficients of the F;. These
conditions characterize the resultant up to a constant, but they in no way
exhaust the many properties of this remarkable polynomial. This section
will contain a summary of the other main properties of the resultant. No
proofs will be given, but complete references will be provided.

Throughout this section, we will fix total degrees dy, ..., d, > 0 and let
Res = Resq,,....d, € Z[u; o] be the resultant polynomial from §2.

We begin by studying the degree of the resultant.

(3.1) Theorem. For a fized j between 0 and n, Res is homogeneous in
the variables uj o, || = dj, of degree do---dj_1d;y1---dy. This means
that

Res(F, ..., AFj, ..., F,) = X0 dimidividnReg(Fy . F,).
Furthermore, the total degree of Res is Z;L:O do---dj_1dje1---dp.
PROOF. A proof can be found in §2 of [Joul] or Chapter 13 of [GKZ].
Exercise 1. Show that the final assertion of Theorem (3.1) is an immedi-

ate consequence of the formula for Res(Fp, ..., AF}, ..., F,). Hint: What
is Res(AFo, ..., AFy,)?

Exercise 2. Show that formulas (1.2) and (2.8) for Res;,, and Ress 2
satisfy Theorem (3.1).

We next study the symmetry and multiplicativity of the resultant.

(3.2) Theorem.
a. Ifi < j, then
RGS(Fo,...,ﬂ7...,Fj7...,Fn) =
(—=1)% 4 Res(Fo, ..., Fj, ..., Fy, ..., F,),

where the bottom resultant is for degrees do,...,d;, ..., di, ..., dy.
b. If F; = FF} is a product of homogeneous polynomials of degrees d;

and d7f, then

RGS(Fo,...,Fj,...,Fn) =
Res(Fo, ..., Fly.o Fy) - Res(Fo, .., Fl o Fy),

where the resultants on the bottom are for degrees dy, . . . , d;, ..., d, and
do,...,d!, ..., dy,.

) ]7
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PROOF. A proof of the first assertion of the theorem can be found in §5 of
[Joul]. As for the second, we can assume j = n by part a. This case will
be covered in Exercise 9 at the end of the section.

Exercise 3. Prove that formulas (1.2) and (2.8) for Res;,, and Resz 2
satisfy part a of Theorem (3.2).

Our next task is to show that the analog of Proposition (1.5) holds
for general resultants. We begin with some notation. Given homogeneous
polynomials Fy, ..., F, € Clxo, ..., z,] of degrees dy, ..., d,, let

filxo, ..., xn-1) = Fi(xo,...,2n-1,1)

(3.3)

F‘i(x()7 ey xn_l) = E($07 ey Tp—1, 0)
Note that Fy,..., F,_1 are homogeneous in Clxg, ..., x,—1] of degrees
doy ...y dp_1.

(3.4) Theorem. If Res(Fo,...,F,_1) # 0, then the quotient ring A =
Clzo, - -y Tn-1]/{fos -+, fn—1) has dimensiondyg - - - d,,—1 as a vector space
over C, and

Res(Fy, ..., Fn) = Res(Fo, ..., Fr_1) det(my, : A — A),
where my, : A — A is the linear map given by multiplication by f,.

Proor. Although we will not prove this result (see [Joul], §§2, 3 and 4 for
a complete proof), we will explain (non-rigorously) why the above formula
is reasonable. The first step is to show that the ring A is a finite-dimensional
vector space over C when Res(Fy, ..., F,—1) # 0. The crucial idea is to
think in terms of the projective space P". We can decompose P” into two
pieces using x,: the affine space C* C P" defined by =z, = 1, and the
“hyperplane at infinity” P*"~! C P" defined by z, = 0. Note that the

other variables xg, . .., T,—1 play two roles: they are ordinary coordinates
for C* C P™, and they are homogeneous coordinates for the hyperplane at
infinity.

The equations Fy = --- = F,,_1 = 0 determine a projective variety V C
P". By (3.3), fo = -+ = fn_1 = 0 defines the “affine part” C* NV C V,
while Fg = --- = F,,_; = 0 defines the “part at infinity” PP~ NV C V.

Hence, the hypothesis Res(Fo, ..., F,—1) # 0 implies that there are no
solutions at infinity. In other words, the projective variety V is contained in
C™ c P". Now we can apply the following result from algebraic geometry:

e (Projective Varieties in Affine Space) If a projective variety in P™ is
contained in an affine space C™ C P", then the projective variety must
consist of a finite set of points.

(See, for example, [Shal, §5 of Chapter I.) Applied to V, this tells us that V'
must be a finite set of points. Since C is algebraically closed and V' C C"



§3. Properties of Resultants 97

is defined by fo = --- = fn—1 = 0, the Finiteness Theorem from §2
of Chapter 2 implies that A = Clxo,...,Zn-1]/{(f0,---, fn_1) is finite
dimensional over C. Hence det(my, : A — A) is defined, so that the
formula of the theorem makes sense.

We also need to know the dimension of the ring A. The answer is provided
by Bézout’s Theorem:

® (Bézout’s Theorem) If the equations Fy = --- = F,_; = 0 have de-
grees dg, . ..,d,_1 and finitely many solutions in P", then the number
of solutions (counted with multiplicity) is dg - - - dp,—1.

(See [Sha], §2 of Chapter II.) This tells us that V has do---dn_1
pomts counted with multiplicity. Because V' C C™ is defined by fo =

+ = fan—1 = 0, Theorem (2.2) from Chapter 4 implies that the
number of points in V, counted with multiplicity, is the dimension of
A = Clzo,...,zn-1]/{fo,. .., fn-1). Thus, Bézout’s Theorem shows that
dim A = do e dnfl.

We can now explain why Res(Fo, ..., F,—1)% det(my, ) behaves like a
resultant. The first step is to prove that det(my, ) vanishes if and only if
Fy = --- = F, = 0 has a solution in P™. If we have a solution p, then
p € V since Fy(p) = -+ = F—1(p) = 0. But V.C C", so we can write
p = (ag,...,an-1,1), and fr(ag,...,an—1) = 0 since F,(p) = 0. Then
Theorem (2.6) of Chapter 2 tells us that f,,(ao,...,a,—1) = 0 is an eigen-
value of my, , which proves that det(my, ) = 0. Conversely, if det(my,) = 0,
then one of its eigenvalues must be zero. Since the eigenvalues are f,(p)
for p € V (Theorem (2.6) of Chapter 2 again), we have f,,(p) = 0 for some
p. Writing p in the form (ag,...,a,—1,1), we get a nontrivial solution of
Fy=---=F, =0, as desired.

Finally, we will show that Res(Fo, ..., F,,_1)% det(my,) has the homo-
geneity properties predicted by Theorem (3.1). If we replace F; by AF; for
some j < nand A € C\ {0}, then AF; = AF;, and neither A nor my, are
affected. Since

ReS(Fo,...,)\Fj,...,Fn_l) =
AdodimdjerdniReg(Fo, o Fyy oo Frly),
we get the desired power of A\ because of the exponent d, in the for-
mula of the theorem. On the other hand, if we replace F,, with A\F},, then

Res(Fo, ..., F,_1) and A are unchanged, but my, becomes myy, = Amy, .
Since

det(Amy, ) = A4 det(my,)

it follows that we get the correct power of A because, as we showed above,
A has dimension dg - - - dp—1-

This discussion shows that the formula Res(Fo, ..., F,_1)% det(my, )
has many of the properties of the resultant, although some important points
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were left out (for example, we didn’t prove that it is a polynomial in the
coefficients of the F;). We also know what this formula means geometrically:
it asserts that the resultant is a product of two terms, one coming from

the behavior of Fy,..., F,_1 at infinity and the other coming from the
behavior of f,, = Fy,(zg,...,Zn_1,1) on the affine variety determined by
vanishing of fo, ..., frn—_1.

Exercise 4. When n = 2, show that Proposition (1.5) is a special case
of Theorem (3.4). Hint: Start with f, g as in (1.1) and homogenize to get
(1.6). Use Exercise 6 of §2 to compute Res(F).

Exercise 5. Use Theorem (3.4) and getmatrix to compute the resultant
of the polynomials 22 + 2 + 22, zy + zz + yz, 2Yz.

The formula given in Theorem (3.4) is sometimes called the Poisson
Formula. Some further applications of this formula will be given in the
exercises at the end of the section.

In the special case when Fy, . .., F), all have the same total degree d > 0,
the resultant Resy . 4 has degree d™ in the coefficients of each F;, and its
total degree is (n + 1)d"™. Besides all of the properties listed so far, the
resultant has some other interesting properties in this case:

(3.5) Theorem. Res = Resq . q has the following properties:
a. If F; are homogeneous of total degree d and G; = Z?:o a;; F;, where
(aij) is an invertible matriz with entries in C, then

Res(GO, N Gn) = det(aij)anes(FO, . 7Fn)-

b. If we list all monomials of total degree d as x*V), ..., x*N) and pick
n + 1 distinct indices 1 < ig < -+ < i, < N, the bracket [ig .. .1,] is
defined to be the determinant

[io .. Zn] = det(ui@(ij)) € Z[ui@(j)].
Then Res is a polynomial in the brackets [ig . . . in).

PROOF. See Proposition 5.11.2 of [Joul] for a proof of part a. For part b,
note that if (a,;) has determinant 1, then part a implies Res(Gy, . .., Gn) =
Res(Fo, ..., Fp), so Res is invariant under the action of SL(n 4+ 1,C) =
{A € Mq1yxms+1)(C) : det(4) = 1} on (n + 1)-tuples of homogeneous
polynomials of degree d. If we regard the coefficients of the universal poly-
nomials F; as an (n + 1) x N matrix (u;(;)), then this action is matrix
multiplication by elements of SL(n+ 1, C). Since Res is invariant under this
action, the First Fundamental Theorem of Invariant Theory (see [Stul],
Section 3.2) asserts that Res is a polynomial in the (n + 1) x (n + 1)
minors of (u; 4(;)), which are exactly the brackets [ig . . . ).
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Exercise 6. Show that each bracket [ig . . .14,] = det(u; (;;)) is invariant
under the action of SL(n + 1, C).

We should mention that the expression of Res in terms of the brackets
[ig . .. 4n] is not unique. The different ways of doing this are determined
by the algebraic relations among the brackets, which are described by
the Second Fundamental Theorem of Invariant Theory (see Section 3.2
of [Stul)).

As an example of Theorem (3.5), consider the resultant of three ternary
quadrics

Fy = co12® + coay® + co32® + coaxy + cosz + cogyz = 0
Fi = cn2® + e1oy® + c132® + cuuzy + cisrz + cieyz = 0
Fy = c212” + cagy® + c232% + coamy + co532 + cagyz = 0.
In §2, we gave a formula for Ress 2 2(Fp, F1, F2) as a certain 6 x 6 determi-
nant. Using Theorem (3.5), we get quite a different formula. If we list the
six monomials of total degree 2 as 22,42, 22, zy, 2, yz, then the bracket
[ipi1i2] is given by
Coip  Coiy  COiy
ligiria] = det | c1iy iy Cl4
C2iq  C24y  C2iy
By [KSZ], the resultant Ress 2 o(Fo, F1, F») is the following polynomial in
the brackets [igiqis]:

[145)[246] [356][456] — [146][156][246][356] — [145][245][256][356]

— [145][246][346][345] + [125][126][356][456] — 2[124][156][256][356]

— [134][136][246][456] — 2[135][146][346][246] + [235] [234][145][456]

— 2[236][345][245][145] — [126])%[156][356] — [125])%[256][356]

— [134]2[246][346] — [136]%[146][246] — [145][245][235]?
[145][345][234]) + 2[123][124][356][456] — [123][125][346][456]

— [123][134][256][456] + 2[123][135][246][456] — 2[123][145][246][356]
[124]%[356)% + 2[124][125][346][356] — 2[124][134][256][356]

124][135][236][456] — 4[124][135][246][356] — [125]2[346]

125][135][246][346] — [134]2[256] + 2[134][135][246][256]
]2 123][126][146][356]
]

=3

+2[

— 2[135]2[246)> — [123][126][136][456] + 2]

— 2[124][136]2[256] — 2[125][126][136][346] + [123][125][235][456]

— 2[123][125][245][356] — 2[124][235]2[156] — 2[126][125][235][345]

— [123][234][134][456] + 2[123][234][346][145] — 2[236][134][245]

— 2[235)[234][134][146] + 3[136][125][235][126] — 3[126][135][236][125]
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— [136][125]%[236

— [126]?[135][235] — 3[134][136][126][234]

+ 3[124][134][136][236] + [134]*[126][236] + [124][136]%[234]

— 3[124][135][234][235] + 3[134][234][235][125] — [135][234][125]
— [124][235)%[134] — [136])%[126] — [125]?[235]*

— [134)%[234) + 3[123][124][135][236] 4 [123][134][235][126]

+ [123][135][126][234] + [123][134][236][125] + [123][136][125][234]
+ [123][124][235][136] — 2[123]%[126][136] + 2[123]*[125][235]

— 2[123]2[134][234] — [123]*.

This expression for Resy 22 has total degree 4 in the brackets since the
resultant has total degree 12 and each bracket has total degree 3 in the c;;.
Although this formula is rather complicated, its 68 terms are a lot simpler
than the 21,894 terms we get when we express Ress 22 as a polynomial in
the Cij!

Exercise 7. When Fy = agz? + a1y + agy2 and Fy = boz? + bizy + b2y2,
the only brackets to consider are [01] = agby — aibg, [02] = agba — az2bg
and [12] = a1bs — agb; (why?). Express Ress 2 as a polynomial in these
three brackets. Hint: In the determinant (1.2), expand along the first row
and then expand along the column containing the zero.

Theorem (3.5) also shows that the resultant of two homogeneous poly-
nomials Fy(z,y), Fi(x,y) of degree d can be written in terms of the
brackets [ij]. The resulting formula is closely related to the Bézout Formula
described in Chapter 12 of [GKZ].

For further properties of resultants, the reader should consult Chapter 13
of [GKZ] or Section 5 of [Joul].

ApDIiTiIONAL EXERCISES FOR §3

Exercise 8. The product formula (1.4) can be generalized to arbi-
trary resultants. With the same hypotheses as Theorem (3.4), let V =
V(fo,-.., fn—1) be as in the proof of the theorem. Then

Res(Fy, ..., Fp) = Res(Fo, ..., Fn_1)™ [ fa(0)"®,
peV

where m(p) is the multiplicity of p in V. This concept is defined in [Shal, §2
of Chapter 11, and §2 of Chapter 4. For this exercise, assume that V' consists
of dy---d,—1 distinct points (which means that all of the multiplicities
m(p) are equal to 1) and that f,, takes distinct values on these points.
Then use Theorem (2.6) of Chapter 2, together with Theorem (3.4), to
show that the above formula for the resultant holds in this case.
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Exercise 9. In Theorem (3.4), we assumed that the field was C. It turns
out that the result is true over any field k. In this exercise, we will use this
version of the theorem to prove part b of Theorem (3.2) when F,, = F,, F).
The trick is to choose k appropriately: we will let k£ be the field of rational
functions in the coefficients of Fy, ..., F,,_1, F,, F. This means we regard
each coefficient as a separate variable and then k is the field of rational
functions in these variables with coefficients in Q.

a. Explain why Fo,..., F,_; are the “universal” polynomials of degrees
do,...,dp—1 in xg, ..., x,_1, and conclude that Res(Fy, ..., F,_1) is
nonzero.

b. Use Theorem (3.4) (over the field k) to show that
Res(Fo, ..., F,) = Res(Fy, ..., F}) - Res(Fy, ..., F))).

Notice that you need to use the theorem three times. Hint: my, =
mpy;, o mgy.

Exercise 10. The goal of this exercise is to generalize Proposition (2.10)
by giving a formula for Res; ; 4 for any d > 0. The idea is to apply Theo-
rem (3.4) when the field k consists of rational functions in the coefficients
of Fy, F1, F5 (so we are using the version of the theorem from Exercise 9).
For concreteness, suppose that
Fo =a1x 4+ ay + a3z =0
F1 = bll' + bgy + ng =0.
a. Show that Res(Fy, F'1) = a1bs — agb; and that the only solution of
fo=fi=0is
a2b3‘* a3b2 albg‘* agbl
Ty = = — .
0 albg-— a2b1 Yo albg-— a2b1
b. By Theorem (3.4), k[z,y]/{fo, f1) has dimension one over C. Use
Theorem (2.6) of Chapter 2 to show that
det(my,) = fao(zo, yo)-
c. Since fa(z,y) = Fa(x,y, 1), use Theorem (3.4) to conclude that
Resi 1,4(Fo, F1, F2) = Fa(azbs — agba, —(a1bs — azby), a1bs — agby).

Note that asbs — azbs, a1bs — agby, a1bs — asby are the 2 x 2 minors of

the matrix
a1 az as
by by b3 )

d. Use part ¢ to verify the formula for Res; 1 2 given in Proposition (2.10).

e. Formulate and prove a formula similar to part ¢ for the resultant
Resi,...,1,4- Hint: Use Cramer’s Rule. The formula (with proof) can be
found in Proposition 5.4.4 of [Joul].
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Exercise 11. Consider the elementary symmetric functions o1, ..., 0, €
Clz1, . .., Ty]. These are defined by

o1 =21+ -+ x,

[ E Tiy Tjy * Ty,

11 <t < - <ip

Op = 19 *+**Tp.

Since o; is homogeneous of total degree i, the resultant Res(oq,...,0p)

is defined. The goal of this exercise is to prove that this resultant equals

—1 for all n > 1. Note that this exercise deals with n polynomials and n

variables rather than n + 1.

a. Show that Res(z + y, xy) = —1.

b. To prove the result for n > 2, we will use induction and Theorem (3.4).
Thus, let

g; = (71'(5617 N ,IEn_l,O)

6’i = O'i(xl, ceey Tn—1, 1)
as in (3.3). Prove that o; is the ith elementary symmetric function in
Z1,...,2Zn—1 and that 6; = 0; + 0;—1 (where og = 1).

c. f A=Clzy,...,2n-1]/{(61,...,0n-1), then use part b to prove that
the multiplication map ms, : A — A is multiplication by (—1)". Hint:
Observe that 6, = 0,,_1.

d. Use induction and Theorem (3.5) to show that Res(o1,...,0,) = —1
for all n > 1.

Exercise 12. Using the notation of Theorem (3.4), show that

Res(Fo, ..., Fn_1,2%) = Res(Fo, ..., Fn_1)%

§4 Computing Resultants

Our next task is to discuss methods for computing resultants. While Theo-
rem (3.4) allows one to compute resultants inductively (see Exercise 5 of §3
for an example), it is useful to have other tools for working with resultants.
In this section, we will give some further formulas for the resultant and
then discuss the practical aspects of computing Resq,,,... 4,. We will begin
by generalizing the method used in Proposition (2.10) to find a formula for
Res,1,2. Recall that the essence of what we did in (2.11) was to multiply
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each equation by appropriate monomials so that we got a square matrix
whose determinant we could take.

To do this in general, suppose we have Fy,..., F, € Clxo,...,z,] of
total degrees dy, ..., d,. Then set
d=> (di-1)+1=> di—n.
i=0 i=0

For instance, when (dy, d;,d2) = (1,1,2) as in the example in Section 2,
one computes that d = 2, which is precisely the degree of the monomials
on the left hand side of the equations following (2.11).

Exercise 1. Monomials of total degree d have the following special prop-
erty which will be very important below: each such monomial is divisible
by x?i for at least one i between 0 and mn. Prove this. Hint: Argue by
contradiction.

Now take the monomials % = zg° - - - z%" of total degree d and divide
them into n + 1 sets as follows:

So = {z% : |a| = d, zd divides z°}

Sy = {z%: |a| = d, x> doesn’t divide z* but z{* does}

dne .
S, = {z%:|a| =d, zd, ... 20" don’t divide * but 2% does}.

By Exercise 1, every monomial of total degree d lies in one of Sy, ..., S,.
Note also that these sets are mutually disjoint. One observation we will
need is the following:

if 2% € S;, then we can write z® = 2% - 2% /z%.

Notice that x¢ /a:f is a monomial of total degree d — d; since z® € S;.

Exercise 2. When (dy,d1,ds) = (1,1,2), show that So = {22, xy, z2},
S1 = {y? yz}, and So = {22}, where we are using x,y, z as variables.
Write down all of the z®/z% in this case and see if you can find these
monomials in the equations (2.11).

Exercise 3. Prove that the number of monomials in S, is exactly
do -+ dp_1. This fact will play an extremely important role in what fol-
lows. Hint: Given integers ag, ..., a,—1 with 0 < a; < d; — 1, prove that
there is a unique a, such that xg°---z% € S,. Exercise 1 will also be
useful.
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Now we can write down a system of equations that generalizes (2.11).
Namely, consider the equations

xa/xgo - Fy =0 forall z® € 5y
(4.1)

% /zd . F, =0 forall z* € S,,.

Exercise 4. When (dy,d1,d2) = (1,1,2), check that the system of
equations given by (4.1) is ezactly what we wrote down in (2.11).

Since F; has total degree d;, it follows that x® /xf’ - F; has total degree
d. Thus each polynomial on the left side of (4.1) can be written as a linear
combination of monomials of total degree d. Suppose that there are IV such
monomials. (In the exercises at the end of the section, you will show that N
equals the binomial coefficient (d:”) .) Then observe that the total number
of equations is the number of elements in Sy U - -+ U S, which is also N.
Thus, regarding the monomials of total degree d as unknowns, we get a
system of N linear equations in N unknowns.

(4.2) Definition. The determinant of the coefficient matrix of the N x N
system of equations given by (4.1) is denoted D,,.

For example, if we have

Fo=a1x+ay+asz=0
(43) Fl = blﬂﬁ + bgy + ng =0

Fy, = clx2 + 02y2 + C3Z2 + caxy + csx2 + cgyz = 0,
then the equations following (2.11) imply that

aq 0 0 as as 0
0 ag 0 aiy 0 as
0 0 as 0 ay az
0 b2 0 by 0 b3
0 0 b3 0 b by
C1 C2 C3 Cy4 Cs Cg

(44) DQ = det

Exercise 5. When we have polynomials Fy, Fy € C[z, y] as in (1.6), show
that the coefficient matrix of (4.1) is exactly the transpose of the matrix
(1.2). Thus, D; = Res(Fp, F1) in this case.

Here are some general properties of D,,:
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Exercise 6. Since D, is the determinant of the coefficient matrix of (4.1),

it is clearly a polynomial in the coefficients of the F;.

a. For a fixed i between 0 and n, show that D, is homogeneous in the
coefficients of F; of degree equal to the number p; of elements in S;.
Hint: Show that replacing F; by AF; has the effect of multiplying a
certain number (how many?) equations of (4.1) by A. How does this
affect the determinant of the coefficient matrix?

b. Use Exercise 3 to show that D, has degree dj - - - d,,—1 as a polynomial
in the coefficients of F;,. Hint: If you multiply each coefficient of F,, by
X € C, show that D,, gets multiplied by Ao dn-1,

c. What is the total degree of D,,? Hint: Exercise 19 will be useful.

Exercise 7. In this exercise, you will prove that D,, is divisible by the
resultant.

a. Prove that D,, vanishes whenever Fy = --- = F;, = 0 has a nontrivial
solution. Hint: If the F; all vanish at (co,...,cn) # (0,...,0), then
show that the monomials of total degree d in cg, . . ., ¢, give a nontrivial

solution of (4.1).

b. Using the notation from the end of §2, we have V(Res) C CV, where CV
is the affine space whose variables are the coefficients u; , of Fy, ..., F,.
Explain why part a implies that D,, vanishes on V(Res).

c. Adapt the argument of Proposition (2.10) to prove that D,, € (Res), so
that Res divides D,,.

Exercise 7 shows that we are getting close to the resultant, for it enables
us to write

(4.5) D,, = Res - extraneous factor.

We next show that the extraneous factor doesn’t involve the coefficients of
F,, and in fact uses only some of the coefficients of Fy, ..., F,,_1.

(4.6) Proposition. The extraneous factor in (4.5) is an integer polyno-
mial in the coefficients of Fo, ..., Fn_1, where F; = Fy(xo, ..., 2n_1,0).

PROOF. Since D, is a determinant, it is a polynomial in Z[u, o], and we
also know that Res € Z[u; o]. Exercise 7 took place in Clu; o] (because of
the Nullstellensatz), but in fact, the extraneous factor (let’s call it E,,) must
lie in Qu; o] since dividing D,, by Res produces at worst rational coefli-
cients. Since Res is irreducible in Z[u; o], standard results about polynomial
rings over Z imply that E,, € Z[u; o] (see Exercise 20 for details).

Since D,, = Res- E,, is homogeneous in the coefficients of F},, Exercise 20
at the end of the section implies that Res and FE,, are also homogeneous
in these coefficients. But by Theorem (3.1) and Exercise 6, both Res and
D,, have degree dj - - - dj,—1 in the coefficients of F},. It follows immediately
that F,, has degree zero in the coefficients of F,,, so that it depends only
on the coefficients of Fy, ..., Fj_1.
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To complete the proof, we must show that F, depends only on the coef-
ficients of the F';. This means that coefficients of Fy, ..., F,_; with x, to
a positive power don’t appear in E,. To prove this, we use the following
clever argument of Macaulay (see [Macl]). As above, we think of Res, D,
and E, as polynomials in the u; o, and we define the weight of u; o to be
the exponent a,, of x,, (where @ = (ag,...,ay)). Then, the weight of a
monomial in the u;q, say u; ', - u;",, , is defined to be the sum of the
weights of each u;; o, multiplied by the corresponding exponents. Finally, a
polynomial in the u; , is said to be isobaric if every term in the polynomial
has the same weight.

In Exercise 23 at the end of the section, you will prove that every term
in D,, has weight dy - - - d,,, so that D,, is isobaric. The same exercise will
show that D,, = Res- E,, implies that Res and F,, are isobaric and that the
weight of D,, is the sum of the weights of Res and FE,,. Hence, it suffices to
prove that E, has weight zero (be sure you understand this). To simplify
notation, let u; be the variable representing the coefficient of x‘iii in Fj.
Note that wug, ..., u,—1 have weight zero while u, has weight d,. Then
Theorems (2.3) and (3.1) imply that one of the terms of Res is

iuglmd"ufodTud" . ug]o"'dnfl

(see Exercise 23). This term has weight do - - - d,,, which shows that the
weight of Res is dy - - - d,,. We saw above that D,, has the same weight, and
it follows that F,, has weight zero, as desired.

Although the extraneous factor in (4.5) involves fewer coefficients than
the resultant, it can have a very large degree, as shown by the following
example.

Exercise 8. When d; = 2 for 0 < i < 4, show that the resultant has total
degree 80 while D4 has total degree 420. What happens when d; = 3 for
0 < i < 47 Hint: Use Exercises 6 and 19.

Notice that Proposition (4.6) also gives a method for computing the
resultant: just factor D, into irreducibles, and the only irreducible factor
in which all variables appear is the resultant! Unfortunately, this method
is wildly impractical owing to the slowness of multivariable factorization
(especially for polynomials as large as D,,).

In the above discussion, the sets Sy, ..., .S, and the determinant D,, de-
pended on how the variables xg, ..., x, were ordered. In fact, the notation
D,, was chosen to emphasize that the variable z,, came last. If we fix ¢
between 0 and n — 1 and order the variables so that x; comes last, then
we get slightly different sets Sy, ..., S, and a slightly different system of
equations (4.1). We will let D; denote the determinant of this system of
equations. (Note that there are many different orderings of the variables
for which x; is the last. We pick just one when computing D;.)
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Exercise 9. Show that D; is homogeneous in the coefficients of each F}
and in particular, is homogeneous of degree dy - --d;—_1d;4+1 - - -d, in the
coefficients of F;.

We can now prove the following classical formula for Res.

(4.7) Proposition. When Fy, ..., F,, are universal polynomials as at the
end of §2, the resultant is the greatest common divisor of the polynomials
Dy, ..., D, in the ring Zlu; o], i.e.,

Res = +GCD(Dy, . .., D,).

PROOF. For each 7, there are many choices for D; (corresponding to the
(n — 1)! ways of ordering the variables with x; last). We need to prove that
no matter which of the various D; we pick for each ¢, the greatest common

divisor of Dy, ..., D, is the resultant (up to a sign).
By Exercise 7, we know that Res divides D,,, and the same is clearly
true for Dy, ..., Dy_1. Furthermore, the argument used in the proof of

Proposition (4.6) shows that D; = Res - E;, where E; € Z[u; o] doesn’t
involve the coefficients of F;. It follows that

GCD(Dy, ..., D,) = Res - GCD(Ey, . . ., E,).

Since each E; doesn’t involve the variables u; o, the GCD on the right
must be constant, i.e., an integer. However, since the coefficients of D,, are
relatively prime (see Exercise 10 below), this integer must be +1, and we
are done. Note that GCD’s are only determined up to invertible elements,
and in Z[u; o], the only invertible elements are +1.

Exercise 10. Show that Dn(xg", ...,zd) = 41, and conclude that as
a polynomial in Z[u; o], the coefficients of D,, are relatively prime. Hint:
If you order the monomials of total degree d appropriately, the matrix of

(4.1) will be the identity matrix when F; = 2.

While the formula of Proposition (4.7) is very pretty, it is not particularly
useful in practice. This brings us to our final resultant formula, which will
tell us exactly how to find the extraneous factor in (4.5). The key idea,
due to Macaulay, is that the extraneous factor is in fact a minor (i.e., the
determinant of a submatrix) of the N x N matrix from (4.1). To describe
this minor, we need to know which rows and columns of the matrix to
delete. Recall also that we can label the rows and columns of the matrix
of (4.1) using all monomials of total degree d = Y., d; — n. Given such
a monomial %, Exercise 1 implies that xfi divides z® for at least one i.

(4.8) Definition. Let dy,...,d, and d be as usual.
a. A monomial x® of total degree d is reduced if xf divides z® for exactly
one %.
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b. Dj, is the determinant of the submatrix of the coefficient matrix of (4.1)
obtained by deleting all rows and columns corresponding to reduced
monomials z¢.

Exercise 11. When (dy, d1,d2) = (1,1, 2), we have d = 2. Show that all
monomials of degree 2 are reduced except for zy. Then show that the D} =
ay corresponding to the submatrix (4.4) obtained by deleting everything
but row 2 and column 4.

Exercise 12. Here are some properties of reduced monomials and D),.
a. Show that the number of reduced monomials is equal to
n
ZdO"'djqde“'dn.
j=0
Hint: Adapt the argument used in Exercise 3.
b. Show that D], has the same total degree as the extraneous factor in (4.5)
and that it doesn’t depend on the coefficients of F;,. Hint: Use part a
and note that all monomials in S,, are reduced.

Macaulay’s observation is that the extraneous factor in (4.5) is exactly
D! up to a sign. This gives the following formula for the resultant as a
quotient of two determinants.

(4.9) Theorem. When Fy, ..., F, are universal polynomials, the resul-
tant is given by
D,
Res = + D

n

Further, if k is any field and Fy, ..., F, € klzo,...,xy], then the above
formula for Res holds whenever D!, # 0.

PRrOOF. This is proved in Macaulay’s paper [Mac2]. For a modern proof,
see [Jou2].

Exercise 13. Using xg, z1, x2 as variables with xg regarded as last, write
Resi 2.2 as a quotient Dy /Dj{ of two determinants and write down the
matrices involved (of sizes 10 x 10 and 2 x 2 respectively). The reason for
using Dy/Dj instead of Dy/D} will become clear in Exercise 2 of §5. A
similar example is worked out in detail in [BGW].

While Theorem (4.9) applies to all resultants, it has some disadvantages.
In the universal case, it requires dividing two very large polynomials, which
can be very time consuming, and in the numerical case, we have the awk-
ward situation where both D] and D,, vanish, as shown by the following
exercise.
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Exercise 14. Give an example of polynomials of degrees 1, 1, 2 for which
the resultant is nonzero yet the determinants Dy and D7 both vanish. Hint:
See Exercise 10.

Because of this phenomenon, it would be nice if the resultant could be
expressed as a single determinant, as happens with Res; ,,,. It is not known
if this is possible in general, though many special cases have been found. We
saw one example in the formula (2.8) for Ress 2 2. This can be generalized
(in several ways) to give formulas for Res;;; and Res;;;; when [ > 2 (see
[GKZ], Chapter 3, §4 and Chapter 13, §1, and [Sal], Arts. 90 and 91). As an
example of these formulas, the following exercise will show how to express
Res;;; as a single determinant of size 212 — | when [ > 2.

Exercise 15. Suppose that Fy, F, F» € Clz, y, 2] have total degree I > 2.
Before we can state our formula, we need to create some auxiliary equations.
Given nonnegative integers a, b, ¢ with a + b + ¢ = [ — 1, show that every
monomial of total degree [ in xz,y, z is divisible by either xz¢t!, 3**1 or
2¢t1 and conclude that we can write Fy, Fy, F5 in the form

FO _ anrlPO + yb+1Q0 + Zc+1RO
(4.10) Fy = 2%7P +9"H1Qy + 2R,
Fy = ma+1P2 + yb+1Q2 + ZC+1R2.

There may be many ways of doing this. We will regard Fy, Fi, F5 as
universal polynomials and pick one particular choice for (4.10). Then set

Py Qo Ro
Fa,b,c = det Py Ql Ry
P Q2 R

You should check that Fj, ;. has total degree 21 — 2.
Then consider the equations
x® - Fy =0, @ of total degree [ — 2
x® - F =0, x® of total degree [ — 2
(4.11)
x® - Fy =0, @ of total degree [ — 2

Fope =0, z%"2¢ of total degree | — 1.

Each polynomial on the left hand side has total degree 2 — 2, and you

should prove that there are 20> — [ monomials of this total degree. Thus we

can regard the equations in (4.11) as having 2/2 — [ unknowns. You should

also prove that the number of equations is 2/ — I. Thus the coefficient

matrix of (4.11), which we will denote Cj, is a (2% — ) x (21?2 — ) matrix.
In the following steps, you will prove that the resultant is given by

Res; 11 (Fo, F1, Fo) = £ det(Cy).
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a. If (u,v,w) # (0,0,0) is a solution of Fy = F; = F, = 0, show that
F, b, vanishes at (u, v, w). Hint: Regard (4.10) as a system of equations
in unknowns x¢t1, 40+t et

b. Use standard arguments to show that Res;;; divides det(C}).

c. Show that det(C;) has degree [? in the coefficients of Fy. Show that the
same is true for Fy and F5.

d. Conclude that Res;;; is a multiple of det(C}).

e. When (Fy, Fy, Fy) = (2', 4, 2!), show that det(C;) = 41. Hint: Show
that Fiy . = xlilf‘lyl*kbzl*kc and that all monomials of total degree
21—2 not divisible by 2!, 3/*, 2! can be written uniquely in this form. Then
show that C is the identity matrix when the equations and monomials
in (4.11) are ordered appropriately.

f. Conclude that Res; ;1 ;(Fo, F1, Fp) = £ det(C).

Exercise 16. Use Exercise 15 to compute the following resultants.

a. Res(x? + y? + 22, zy + 22z + yz, 2% + 222 + 352).

b. Res(st+su+tu+u?(1—z), st+su+t> +u?(2—y), s* + su+tu—u?z),
where the variables are s,t,u, and x,y, z are part of the coefficients.
Note that your answer should agree with what you found in Exercise 3
of §2.

Other determinantal formulas for resultants can be found in [DD], [SZ],
and [WZ]. We should also mention that besides the quotient formula given
in Theorem (4.9), there are other ways to represent resultants as quo-
tients. These go under a variety of names, including Morley forms [Joul],
Bezoutians [EIM1], and Dizon matrices [KSY]. See [EmM] for a survey.
Computer implementations of resultants are available in [Lew] (for the
Dixon formulation of [KSY]) and [WEM] (for the Macaulay formulation of
Theorem (4.9)). Also, the Maple package MR implementing Theorem (4.9)
can be found at http://minimair.org/MR.mpl.

We will end this section with a brief discussion of some of the practical
aspects of computing resultants. All of the methods we’'ve seen involve
computing determinants or ratios of determinants. Since the usual formula
for an N x N determinant involves N! terms, we will need some clever
methods for computing large determinants.

As Exercise 16 illustrates, the determinants can be either numerical,
with purely numerical coefficients (as in part a of the exercise), or sym-
bolic, with coefficients involving other variables (as in part b). Let’s begin
with numerical determinants. In most cases, this means determinants whose
entries are rational numbers, which can be reduced to integer entries by
clearing denominators. The key idea here is to reduce modulo a prime p and
do arithmetic over the finite field IF,, of the integers mod p. Computing the
determinant here is easier since we are working over a field, which allows
us to use standard algorithms from linear algebra (using row and column
operations) to find the determinant. Another benefit is that we don’t have
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to worry how big the numbers are getting (since we always reduce mod p).
Hence we can compute the determinant mod p fairly easily. Then we do this
for several primes pq, ..., p, and use the Chinese Remainder Theorem to
recover the original determinant. Strategies for how to choose the size and
number of primes p; are discussed in [CM] and [Man2], and the sparseness
properties of the matrices in Theorem (4.9) are exploited in [CKL].

This method works fine provided that the resultant is given as a single
determinant or a quotient where the denominator is nonzero. But when we
have a situation like Exercise 14, where the denominator of the quotient
is zero, something else is needed. One way to avoid this problem, due to
Canny [Canl], is to prevent determinants from vanishing by making some
coefficients symbolic. Suppose we have Fy,..., F, € Zlzg,...,zy,]. The
determinants D,, and D), from Theorem (4.9) come from matrices we will
denote M,, and M) . Thus the formula of the theorem becomes

det(M,,)
Res(Fy, ..., F,) = +
eS( 0> ) ) det(M,’L)
provided det(M]) # 0. When det(M]) = 0, Canny’s method is to
introduce a new variable u and consider the resultant

(4.12) Res(Fy —uzlo, ... F, —uzi).

Exercise 17. Fix an ordering of the monomials of total degree d. Since

each equation in (4.1) corresponds to such a monomial, we can order the

equations in the same way. The ordering of the monomials and equations

determines the matrices M,, and M. Then consider the new system of

equations we get by replacing F; by F; — u xf in (4.1) for 0 < i < n.

a. Show that the matrix of the new system of equations is M,, — u I, where
1 is the identity matrix of the same size as M,,.

b. Show that the matrix we get by deleting all rows and columns corre-
sponding to reduced monomials, show that the matrix we get is M) —u I
where [ is the appropriate identity matrix.

This exercise shows that the resultant (4.12) is given by

dy = & det(M,, —ul)

O T det(M] —ul)

since det(M,, — ulI) # 0 (it is the characteristic polynomial of M]). It
follows that the resultant Res(Fp, . .., F,) is the constant term of the poly-
nomial obtained by dividing det(M,, — u I) by det(M, — wI). In fact, as
the following exercise shows, we can find the constant term directly from
these polynomials:

Res(Fy —ua:g",...,Fn —uzx

Exercise 18. Let F' and G be polynomials in u such that F' is a multiple
of G. Let G = b,.u" + higher order terms, where b, # 0. Then F = a,u" +
higher order terms. Prove that the constant term of F/G is a, /b,
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It follows that the problem of finding the resultant is reduced to comput-
ing the determinants det(M,, — u I) and det(M], — u I). These are called
generalized characteristic polynomials in [Canl].

This brings us to the second part of our discussion, the computation
of symbolic determinants. The methods described above for the numerical
case don’t apply here, so something new is needed. One of the most interest-
ing methods involves interpolation, as described in [CM]. The basic idea is
that one can reconstruct a polynomial from its values at a sufficiently large
number of points. More precisely, suppose we have a symbolic determinant,
say involving variables wug, ..., u,. The determinant is then a polynomial
D(uq, ..., up). Substituting u; = a;, where a; € Z for 0 < i < n,
we get a numerical determinant, which we can evaluate using the above
method. Then, once we determine D(ayg,...,a,) for sufficiently many
points (ag, - . ., a,), we can reconstruct D(ug, . .., u,). Roughly speaking,
the number of points chosen depends on the degree of D in the variables
Ug, - . ., Up. There are several methods for choosing points (aq, ..., a,),
leading to various interpolation schemes (Vandermonde, dense, sparse,
probabilistic) which are discussed in [CM]. We should also mention that
in the case of a single variable, there is a method of Manocha [Man2] for
finding the determinant without interpolation.

Now that we know how to compute resultants, it’s time to put them to
work. In the next section, we will explain how resultants can be used to
solve systems of polynomial equations. We should also mention that a more
general notion of resultant, called the sparse resultant, will be discussed in
Chapter 7.

ApDITIONAL EXERCISES FOR §4

Exercise 19. Show that the number of monomials of total degree d in
n + 1 variables is the binomial coefficient (dtn).

Exercise 20. This exercise is concerned with the proof of Proposi-

tion (4.6).

a. Suppose that E € Z[u; o] is irreducible and nonconstant. If F' € Q[u; o]
is such that D = EF € Z[u; ], then prove that F' € Z[u; o). Hint:
We can find a positive integer m such that mF € Z[u; o). Then apply
unique factorization to m - D = E - mF.

b. Let D = EF in Z[u; 4], and assume that for some j, D is homogeneous
in the u; q, |a| = d;. Then prove that E and F are also homogeneous
in the Uj,a |Oé| = dj.

Exercise 21. In this exercise and the next we will prove the formula for
Resg, 2,2 given in equation (2.8). Here we prove two facts we will need.
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a. Prove Euler’s formula, which states that if FF € Ek[xo,...,x,] is
homogeneous of total degree d, then
Sl
dF = i .

Hint: First prove it for a monomial of total degree d and then use
linearity.
b. Suppose that

Ay Ay Ag
M = det Bl BQ B3 y
C: Cy Cs
where Ay, ..., Cs are in k[zo, . .., ,]. Then prove that
OM 8A1/8:r1 A2 A3 A1 8142/81’1 A3
P = det 831/81'1 By Bg + det | By aBg/axl Bs
i dCy/0x; Cy Cis C1 9Cy/dx; Cs

A1 AQ 8143/833‘1
+ det Bl BQ 8B3/3xz
Cl CQ 803/0331

Exercise 22. We can now prove formula (2.8) for Ress 22. Fix Fy, Fy, Fy €
Clz, y, 2] of total degree 2. As in §2, let J be the Jacobian determinant

8F0/8a: 8F0/8y 8F0/32
J=det | OF1/0x OF1/0y OF/0z

a. Prove that J vanishes at every nontrivial solution of Fy = F; = F, = 0.
Hint: Apply Euler’s formula (part a of Exercise 21) to Fy, Fy, Fb.
b. Show that

FQ 8F0/8y 6F0/8z
x-J=2det | Iy O0F1/0y OF\/0z |,
FQ 8F2/8y 8F2/32

and derive similar formulas for y - J and z - J. Hint: Use column
operations and Euler’s formula.

c. By differentiating the formulas from part b for z - J, y - J and z - J with
respect to z,y, z, show that the partial derivatives of J vanish at all
nontrivial solutions of Fy = F} = F5 = 0. Hint: Part b of Exercise 21
and part a of this exercise will be useful.

d. Use part ¢ to show that the determinant in (2.8) vanishes at all nontrivial
solutions of Fy = F} = F5 = 0.

e. Now prove (2.8). Hint: The proof is similar to what we did in parts b—f
of Exercise 15.
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Exercise 23. This exercise will give more details needed in the proof of

Proposition (4.6). We will use the same terminology as in the proof. Let

the weight of the variable u; o be w(u; o).

a. Prove that a polynomial P(u; ) is isobaric of weight m if and only if
PO\Wie)y, ) = X" P(u; ) for all nonzero A € C.

b. Prove that if P = QR is isobaric, then so are @ and R. Also show that
the weight of P is the sum of the weights of @) and R. Hint: Use part a.

c. Prove that D,, is isobaric of weight dj - - - d,,. Hint: Assign the variables
oy . .., Tp_1, Ty respective weights 0,...,0,1. Let 27 be a monomial
with |y| = d (which indexes a column of D,,), and let o € S; (which
indexes a row in D,,). If the corresponding entry in D, is Cy,a,i, then
show that

w(Cyai) = w(x") = w(a® /)

0 i<n
_ Yy a
= w(x) w(x)Jr{dn i—mn

Note that 27 and x® range over all monomials of total degree d.
d. Use Theorems (2.3) and (3 1) to prove that if u; represents the coeflicient
of J; in F;, then iudl . -uno" ‘41§ in Res.

85 Solving Equations via Resultants

In this section, we will show how resultants can be used to solve polynomial
systems. To start, suppose we have n homogeneous polynomials Fy, ..., F),
of degree dy, . .., d, in variables xg, . . . , z,,. We want to find the nontrivial
solutions of the system of equations

(5.1) Fi=--=F,=0.

But before we begin our discussion of finding solutions, we first need to
review Bézout’s Theorem and introduce the important idea of genericity.
As we saw in §3, Bézout’s Theorem tells us that when (5.1) has finitely
many solutions in P™, the number of solutions is d - - - d,,, counting multi-
plicities. In practice, it is often convenient to find solutions in affine space.
In §3, we dehomogenized by setting z,, = 1, but in order to be compatible
with Chapter 7, we now dehomogenize using o = 1. Hence, we define:

fi('rla s ,I’n) = E(17I17 <. .,SCn)

(5.2)
Fi(xl, ce ,.’I,‘n) = FZ‘(O, T1y. .. ,$n>.

Note that f; has total degree at most d;. Inside P", we have the affine space
C™ C P™ defined by zy = 1, and the solutions of the affine equations



85. Solving Equations via Resultants 115

(5.3) fi=-=f,=0

are precisely the solutions of (5.1) which lie in C* C P"™. Similarly, the
nontrivial solutions of the homogeneous equations

Fi=---=F,=0

may be regarded as the solutions which lie “at 00”. We say that (5.3) has
no solutions at oo if F; = --- = F,, = 0 has no nontrivial solutions. By
Theorem (2.3), this is equivalent to the condition

(54) Resdh___dn(Fl, ey Fn) 7& 0.

The proof of Theorem (3.4) implies the following version of Bézout’s
Theorem.

(5.5) Theorem (Bézout’s Theorem). Assume that f1,..., f, are de-
fined as in (5.2) and that the affine equations (5.3) have no solutions at co.
Then these equations have dy - - - d,, solutions (counted with multiplicity),
and the ring

A= (C[l‘l,--~axn]/<f1a"'7f7l>

has dimension dy - - - d,, as a vector space over C.

Note that this result does not hold for all systems of equations (5.3). In
general, we need a language which allows us to talk about properties which
are true for most but not necessarily all polynomials f1, ..., f,. This brings
us to the idea of genericity.

(5.6) Definition. A property is said to hold generically for polynomials
fi,- .., fn of degree at most dy, . .., d, if there is a nonzero polynomial in
the coefficients of the f; such that the property holds for all fq, ..., f, for
which the polynomial is nonvanishing.

Intuitively, a property of polynomials is generic if it holds for “most”
polynomials fi,..., f,. Our definition makes this precise by defining
“most” to mean that some polynomial in the coefficients of the f; is non-
vanishing. As a simple example, consider a single polynomial az? + bx + c.
We claim that the property “az? + bz + ¢ = 0 has two solutions, counting
multiplicity” holds generically. To prove this, we must find a polynomial
in the coefficients a, b, ¢ whose nonvanishing implies the desired property.
Here, the condition is easily seen to be a # 0 since we are working over the
complex numbers.

Exercise 1. Show that the property “axz? + bz + ¢ = 0 has two distinct
solutions” is generic. Hint: By the quadratic formula, a(b?> — 4ac) # 0
implies the desired property.
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A more relevant example is given by Theorem (5.5). Having no solutions
at 0o is equivalent to the nonvanishing of the resultant (5.4), and since
Resq,,....a, (F'1, ..., Fy) is a nonzero polynomial in the coefficients of the
fi, it follows that this version of Bézout’s Theorem holds generically. Thus,
for most choices of the coefficients, the equations f; = --- = f, = 0
have d; - - - d,, solutions, counting multiplicity. In particular, if we choose
polynomials f1, ..., f, with random coefficients (say given by some random
number generator), then, with a very high probability, Bézout’s Theorem
will hold for the corresponding system of equations.

In general, genericity comes in different “flavors”. For instance, consider
solutions of the equation az? + bx 4+ ¢ = 0:

® Generically, az? + bx + ¢ = 0 has two solutions, counting multiplicity.
This happens when a # 0.

e Generically, ax? + bx 4+ ¢ = 0 has two distinct solutions. By Exercise 1,
this happens when a(b? — 4ac) # 0.

Similarly, there are different versions of Bézout’s Theorem. In particular,
one can strengthen Theorem (5.5) to prove that generically, the equations
fi =+ = fn = 0 have dy ---d, distinct solutions. This means that
generically, (5.3) has no solutions at oo and all solutions have multiplicity
one. A proof of this result will be sketched in Exercise 6 at the end of the
section.

With this genericity assumption on fi, ..., f,, we know the number of
distinct solutions of (5.3), and our next task is to find them. We could
use the methods of Chapter 2, but it is also possible to find the solutions
using resultants. This section will describe two closely related methods,
u-resultants and hidden variables, for solving equations. The next section
will discuss further methods which use eigenvalues and eigenvectors.

The u-Resultant

The basic idea of van der Waerden’s u-resultant (see [vdW]) is to start with
the homogeneous equations Fy = --- = F,, = 0 of (5.1) and add another
equation Fy = 0 to (5.1), so that we have n + 1 homogeneous equations in
n + 1 variables. We will use

FO = UoTo + - -+ UnTnp,

where wuyg,...,u, are independent variables. Because the number of
equations equals the number of variables, we can form the resultant

Resi,4,,....a, (Fo, Fi, ..., Fp),

which is called the u-resultant. Note that the u-resultant is a polynomial
in ug, ..., U,.
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As already mentioned, we will sometimes work in the affine situa-
tion, where we dehomogenize Fy, ..., F;, to obtain fy, ..., f,. This is the
notation of (5.2), and in particular, observe that

(5.7) fo=1ug +uiTs + -+ UpTp.
Because fy, ..., fn and Fy, ..., F, have the same coefficients, we write the
u-resultant as Res(fo, ..., fn) instead of Res(Fy, ..., Fy,) in this case.

Before we work out the general theory of the u-resultant, let’s do an
example. The following exercise will seem like a lot of work at first, but its
surprising result will be worth the effort.

Exercise 2. Let
Fy =23 +25 — 1023 =0
Fy = x% + x129 + 2x§ — 1635(2) =0

be the intersection of a circle and an ellipse in P2. By Bézout’s Theorem,
there are four solutions. To find the solutions, we add the equation

Fy = ugxg + w11 + usxe = 0.

a. The theory of §4 computes the resultant using 10 x 10 determinants Dy,
D, and Ds. Using Dy, Theorem (4.9) implies

Dy

Dy

If the variables are ordered o, x1, xg, show that Dy = det(Mj), where

My is the matrix

Resy2,2(Fo, 1, F2) = £

Uuop (751 u 0 0 0 0 0 0 0

0 Ug 0 U2 U1 0 0 0 0 0

0 0 (') Uq 0 U9 0 0 0 0

0 0 0 () 0 0 0 Uy U2 0

My = —-10 O 0 0 1 1 0 0 0 O
0 —-10 O 0 0 0 1 0 1 O

0 o -10 0o 0 0 0 1 0 1

-16 0 0 11 2 0 0 0 O

0 —-16 0 0 0 0 1 1 2 0

0 o -16 0 0 0 0 1 1 2

Also show that D} = det(MY), where M| is given by

1 1
Mé:<1 2).

Hint: Using the order s, 1,0 gives Sy = {x3, 231, 2320, o122},
S1 = {zo2?, 23, 2315} and Sy = {wox3, x12%, 23}. The columns in M
correspond to the monomials z3, #3771, 237s, Tow122, T023, ToT3, T3,
2wy, 1122, 3. Exercise 13 of §4 will be useful.
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b. Conclude that
Resy 2.2(Fo, F1, F2) = + (2ug + 16u] + 36us — 80ubus + 120uqul
— 18udu? — 22ulu3 + 52uiud — duduius).
c. Using a computer to factor this, show that Res; 2 2(Fo, F1, F2) equals
(uo + w1 — 3uz)(uo — uy + 3ug)(ui — 8ui — 2u3 — Suquz)

up to a constant. By writing the quadratic factor as u3 — 2(2u; + u2)?,
conclude that Res; 2 2(Fp, F1, F») equals

(uo +uy — 3ug)(ug — ug +3usg) (ug + 2v/2u; + \/2uz)(u0 —2v/2uy — \/2u2)

times a nonzero constant. Hint: If you are using Maple, let the resul-
tant be res and use the command factor(res). Also, the command
factor(res,Root0f (x~2-2)) will do the complete factorization.

d. The coefficients of the linear factors of Resy o 2(Fo, F1, Fa) give four
points

(1,1,-3), (1,-1,3), (1,2v2,v?2), (1,-2v2, —V2)

in P2. Show that these points are the four solutions of the equations
F| = F, = 0. Thus the solutions in P? are precisely the coefficients of
the linear factors of Resy 22(Fo, F1, F2)!

In this exercise, all of the solutions lay in the affine space C? C P2
defined by xg = 1. In general, we will study the u-resultant from the affine
point of view. The key fact is that when all of the multiplicities are one,
the solutions of (5.3) can be found using Resi a, .4, (fos-- - fn)-

(5.8) Proposition. Assume that fi = -+ = f, = 0 have total degrees
bounded by dy, ..., d,, no solutions at co, and all solutions of multiplicity
one. If fo = ug + w11 + - -+ + UpT,, where ug, ..., u, are independent
variables, then there is a nonzero constant C' such that

Resi,4y,...a, (fos -y fn) = C H fo(p).

PEV (f1,.,fn)

PrROOF. Let C' = Resy,,...a, (F1, ..., Fy), which is nonzero by hypothesis.
Since the coefficients of fj are the variables ug, . . . , u,, we need to work over
the field K = C(uy, . .., u,) of rational functions in uy, . .., u,. Hence, in
this proof, we will work over K rather than over C. Fortunately, the results
we need are true over K, even though we proved them only over C.
Adapting Theorem (3.4) to the situation of (5.2) (see Exercise 8) yields

Resladl,...,dn (f07 ey f’n) = C det(mfo),

where my, : A — A is the linear map given by multiplication by fo on the
quotient ring
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A:K[le,...,{L‘,L]/<f1,...,fn>.

By Theorem (5.5), A is a vector space over K of dimension dj - - - d,, and
Theorem (4.5) of Chapter 2 implies that the eigenvalues of my, are the

values fo(p) for p € V(f1,..., fn). Since all multiplicities are one, there
are dy - - - d,, such points p, and the corresponding values fo(p) are distinct
since fo = wo+ui1r1+- - -+ u,x, and ug, . . . , u, are independent variables.

Thus my, has d; - - - d,, distinct eigenvalues fo(p), so that

dettmp,) = [[ fol).

PEV(f1,5fn)

This proves the proposition.

To see more clearly what the proposition says, let the points of
V(fi,...yfn) be p; for 1 < ¢ < dy---d,. If we write each point as
pi = (@i, ..., a;n) € C", then (5.7) implies

Jo(pi) = wo + ajur + -+ - + Gintig,
so that by Proposition (5.8), the u-resultant is given by

dy--dy,
(5.9) Resia,,..d,(fo, - fu) = C H (uo + aitur + -+ + Gintin).
i=1
We see clearly that the u-resultant is a polynomial in ug, . . ., u,. Further-
more, we get the following method for finding solutions of (5.3): compute
Resi,4y,...d, (fo, - - - fn), factor it into linear factors, and then read off the

solutions! Hence, once we have the u-resultant, solving (5.3) is reduced to
a problem in multivariable factorization.

To compute the w-resultant, we use Theorem (4.9). Because of our
emphasis on fy, we represent the resultant as the quotient

(5.10) Resua, (oo ) = %0

0
This is the formula we used in Exercise 2. In §4, we got the determinant Dy
by working with the homogenizations F; of the f;, regarding x( as the last
variable, and decomposing monomials of degreed = 1+dy +---+d, — n
into disjoint subsets Sy, ..., S,. Taking zy last means that Sy consists of
the dq - - - d,, monomials

(5.11) Sp = {zglzi - afm 1 0<a; <d; —1fori >0, > ja; = d}.

Then Dy is the determinant of the matrix My representing the system of
equations (4.1). We saw an example of this in Exercise 2.
The following exercise simplifies the task of computing u-resultants.

Exercise 3. Assuming that D{ # 0 in (5.10), prove that D} does not
involve uo, . . ., u, and conclude that Resy 4,,....a, (fo, - - -, fn) and Dy differ
by a constant factor when regarded as polynomials in Cluo, . . ., uy].
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We will write Dy as Dy(ug, ..., u,) to emphasize the dependence on
Uy - - -, Up. We can use Dy(uo, . . ., u,) only when Dfj # 0, but since D, is
a polynomial in the coefficients of the f;, Exercise 3 means that generically,
the linear factors of the determinant Dg(ug, ..., u,) give the solutions of
our equations (5.3). In this situation, we will apply the term u-resultant to
both Res1,q4,....d, (fo, - - - fn) and Do(uog, - - ., Uy).

Unfortunately, the u-resultant has some serious limitations. First, it is
not easy to compute symbolic determinants of large size (see the discussion
at the end of §4). And even if we can find the determinant, multivariable
factorization as in (5.9) is very hard, especially since in most cases, floating
point numbers will be involved.

There are several methods for dealing with this situation. We will de-
scribe one, as presented in [CM]. The basic idea is to specialize some of the
coefficients in fy = ug + w121 + - - - + upx,. For example, the argument of
Proposition (5.8) shows that when the x,-coordinates of the solution points
are distinct, the specialization v = -+ = u,_1 = 0,u, = —1 transforms
(5.9) into the formula

dldn
(5.12) Resi,dy,...d, (W0 — Ty f1, -, fn) = C H (uo - am),
i=1
where a;y, is the x,-coordinate of p; = (a1, ..., ain) € V(f1,..., fn). This

resultant is a univariate polynomial in ug whose roots are precisely the x,,-
coordinates of solutions of (5.3). There are similar formulas for the other
coordinates of the solutions.

If we use the numerator Do (uo, . . ., uy) of (5.10) as the u-resultant, then
setting w3 = -+ = u, = 0,u, = —1 gives Dy(uo,0,...,0,—1), which
is a polynomial in ug. The argument of Exercise 3 shows that generically,
Do (ug, 0, ...,0,—1) is a constant multiple Res(ug —xp, f1, ..., fn), so that
its roots are also the x,,-coordinates. Since Dg(ug, 0, ...,0, —1) is given by
a symbolic determinant depending on the single variable ug, it is much
easier to compute than in the multivariate case. Using standard techniques
(discussed in Chapter 2) for finding the roots of univariate polynomials
such as Dg(ug, 0, ...,0,—1), we get a computationally efficient method for
finding the x,,-coordinates of our solutions. Similarly, we can find the other
coordinates of the solutions by this method.

Exercise 4. Let Dy(ug, u1, ug) be the determinant in Exercise 2.

a. Compute Dy (ug, —1,0) and Dg(ug, 0, —1).

b. Find the roots of these polynomials numerically. Hint: Try the Maple
command fsolve. In general, fsolve should be used with the complex
option, though in this case it’s not necessary since the roots are real.

c. What does this say about the coordinates of the solutions of the equa-
tions 27 + 23 = 10, 22 + z122 + 223 = 167 Can you figure out what
the solutions are?
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As this exercise illustrates, the univariate polynomials we get from the
u-resultant enable us to find the individual coordinates of the solutions,
but they don’t tell us how to match them up. One method for doing this
(based on [CM]) will be explained in Exercise 7 at the end of the section.
We should also mention that a different u-resultant method for computing
solutions is given in [Can2].

All of the u-resultant methods make strong genericity assumptions on
the polynomials fy, ..., f,. In practice, one doesn’t know in advance if a
given system of equations is generic. Here are some of the things that can go
wrong when trying to apply the above methods to non-generic equations:

® There might be solutions at infinity. This problem can be avoided by
making a generic linear change of coordinates.

® [f too many coefficients are zero, it might be necessary to use the sparse
resultants of Chapter 7.

® The equations (5.1) might have infinitely many solutions. In the language
of algebraic geometry, the projective variety V(Fy,. .., F,) might have
components of positive dimension, together with some isolated solutions.
One is still interested in the isolated solutions, and techniques for finding
them are described in Section 4 of [Canl].

® The denominator D} in the resultant formula (5.10) might vanish. When
this happens, one can use the generalized characteristic polynomials
described in §4 to avoid this difficulty. See Section 4.1 of [CM] for details.

® Distinct solutions might have the same z;-coordinate for some i. The
polynomial giving the z;-coordinates would have multiple roots, which
are computationally unstable. This problem can be avoided with a
generic change of coordinates. See Section 4.2 of [CM] for an example.

Also, Chapter 4 will give versions of (5.12) and Proposition (5.8) for the
case when f; = --- = f, = 0 has solutions of multiplicity > 1.

Hidden Variables

One of the better known resultant techniques for solving equations is the
hidden variable method. The basic idea is to regard one of variables as a
constant and then take a resultant. To illustrate how this works, consider
the affine equations we get from Exercise 2 by setting zo = 1:

fi=al+23-10=0

5.13
( ) f2:33%+1315€2+2£€§—1620.

If we regard x5 as a constant, we can use the resultant of §1 to obtain

Res(f1, fo) = 2z — 2222 + 36 = 2(z2 — 3)(x2 + 3)(z2 — V2)(z2 + V2).
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The resultant is a polynomial in x5, and its roots are precisely the zo-
coordinates of the solutions of the equations (as we found in Exercise 2).
To generalize this example, we first review the affine form of the resultant.

Given n + 1 homogeneous polynomials Gy, . . ., G,, of degrees dy, . . ., d, in
n + 1 variables xo, . . ., Tn, we get Resq,,... 4, (Go, ..., Gr). Setting xo = 1
gives

gi(xh <. 7Z‘n) = Gl(17 T1y--- axn)v

and since the g; and G; have the same coefficients, we can write the re-
sultant as Resq,, .4, (g0, - - -, gn). Thus, n + 1 polynomials go, ..., g, in n
variables 1, ..., x, have a resultant. It follows that from the affine point
of view, forming a resultant requires that the number of polynomials be one
more than the number of variables.

Now, suppose we have n polynomials f1, ..., f, of degrees di, ..., d, in
n variables x1, ..., z,. In terms of resultants, we have the wrong numbers
of equations and variables. One solution is to add a new polynomial, which
leads to the u-resultant. Here, we will pursue the other alternative, which
is to get rid of one of the variables. The basic idea is what we did above:
we hide a variable, say x,, by regarding it as a constant. This gives n

polynomials f1, ..., f, in n — 1 variables x1, ..., x,_1, which allows us to
form their resultant. We will write this resultant as
(5.14) Resgr g (1o o5 fn)-

The superscript z,, reminds us that we are regarding z, as constant.
Since the resultant is a polynomial in the coeflicients of the f;, (5.14) is a
polynomial in x,,.

We can now state the main result of the hidden variable technique.

(5.15) Proposition. Generically, Reszf,_“,dn (f1,..., fn) is a polynomial
in x, whose roots are the x,-coordinates of the solutions of (5.3).

PROOF. The basic strategy of the proof is that by (5.12), we already know
a polynomial whose roots are the x,-coordinates of the solutions, namely
1:{esl,dl,...,dn (U'O — Tn, fl) R fn)

We will prove the theorem by showing that this polynomial is the same as
the hidden variable resultant (5.14). However, (5.14) is a polynomial in x,,,
while Res(ug — @, f1, ..., fn) is a polynomial in ug. To compare these two
polynomials, we will write

Resgl‘f%n (fiy--oy fn)

to mean the polynomial obtained from (5.14) by the substitution z,, = uo.
Using this notation, the theorem will follow once we show that

Resﬁf’iqun (f17 ceey fn) = iReSl,dl,...,dn (UO — Tn, f17 ceey fn)
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We will prove this equality by applying Theorem (3.4) separately to the
two resultants in this equation.

Beginning with Res(ug — @, f1,. .., fn), first recall that it equals the
homogeneous resultant Res(uozo — @n, F1, ..., Fy) via (5.2). Since ug is
a coefficient, we will work over the field C(ug) of rational functions in wug.
Then, adapting Theorem (3.4) to the situation of (5.2) (see Exercise 8), we

see that Res(uoxo — @, F1, ..., F,) equals
(516) R6317d17,“7dn71(7.'11n, F17 ) Fn—l)dn det(mfn)’
where —x,, F'1,..., F,_1 are obtained from ugxg — z,, F1,..., Fh_1 by

setting zo = 0, and my, : A — A is multiplication by f, in the ring
A=Cu)[zy,...,z)/{u—p, f1,. . [n)

Next, consider Res™~"°(fy, ..., fn), and observe that if we define
filzr, ... xpo1) = fi(w1, ..., 21, up),

then Res®™ =" (f1,..., fn) = Res(f1, ..., fn). If we apply Theorem (3.4)
to the latter resultant, we see that it equals

(5.17) Resa,, .d,_,(F1, ..., Foo1)™ det(my ),

where E is obtained from fl by first homogenizing with respect to z¢ and
then setting zo = 0, and mj : A — A is multiplication by f, in

n

A = C(uo)[z1, .. xn_1]/{f1, - Fu)-

To show that (5.16) and (5.17) are equal, we first examine (5.17). We
claim that if f; homogenizes to F;, then F; in (5.17) is given by
(5.18) Fi(z1,...,%p_1) = F;(0,21,...,%,_1,0).
To prove this, take a term of Fj, say
cxy® -z, ag+ -+ an = d,.

Since xg = 1 gives f; and z,, = ug then gives f;, the corresponding term
in f; is
An—1_an __ a Ap—1

ag ,,a1 a
c1™xt - " ug" = cug™t o xytx,

When homogenizing fl with respect to zg, we want a term of total degree

d; in xg, ..., Ty_1. Since cug™ is a constant, we get
a ao+a ai An—1 __ agp Ap—1 Qan
cug™ - "yt e m, = e ag - (uoo)

It follows that the homogenization of f,» is Fy(xo, ..., Tn_1, uoTo), and since
F; is obtained by setting 2o = 0 in this polynomial, we get (5.18).
Once we know (5.18), Exercise 12 of §3 shows that

Resl,d17___7dn71(—l‘n, Fl, . ,Fn_l) = Il:ReSdl,... d",l(Fly . 7Fn—1)

)
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since Fi(x1,...,x,) = F;(0, 21, ..., 2,). Also, the ring homomorphism
C(UO)[Z‘l, R axn] - (C(U'O)['rh .. ,an_l]

defined by x, — wug carries f; to jl It follows that this homomorphism
induces a ring isomorphism A = A (you will check the details of this in
Exercise 8). Moreover, multiplication by f, and f,, give a diagram

o~

A o A
(5.19) mfﬂl l m;
A o A

In Exercise 8, you will show that going across and down gives the same map
A — A as going down and across (we say that (5.19) is a commutative
diagram). From here, it is easy to show that det(my,) = det(mj ), and it
follows that (5.16) and (5.17) are equal.

The advantage of the hidden variable method is that it involves re-
sultants with fewer equations and variables than the wu-resultant. For
example, when dealing with the equations f; = fo = 0 from (5.13), the u-
resultant Resy 2 2(fo, f1, f2) uses the 10 x 10 matrix from Exercise 2, while
Resy%(f1, f2) only requires a 4 x 4 matrix.

In general, we can compute Res™(fi, ..., fn) by Theorem (4.9), and as
with the u-resultant, we can again ignore the denominator. More precisely,
if we write

Dy

(5.20) Resyr 4 (fi,-o i fo) = % =,
Dy

)

then f)(’) doesn’t involve x,,. The proof of this result is a nice application of
Proposition (4.6), and the details can be found in Exercise 10 at the end
of the section. Thus, when using the hidden variable method, it suffices
to use the numerator Dg—when fi, ..., f, are generic, its roots give the
xn-coordinates of the affine equations (5.3).

Of course, there is nothing special about hiding x,,—we can hide any of
the variables in the same way, so that the hidden variable method can be
used to find the z;-coordinates of the solutions for any i. One limitation of
this method is that it only gives the individual coordinates of the solution
points and doesn’t tell us how they match up.

Exercise 5. Consider the affine equations
h=at+22+22-3
f2 .’E% + 1’% -2

fs

o3+ x5 — 23,
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a. If we compute the u-resultant with fy = ug + w121 + uexs + uzxs, show
that Theorem (4.9) expresses Resi 22.2(fo, f1, f2, f3) as a quotient of
determinants of sizes 35 x 35 and 15 X 15 respectively.

b. If we hide x3, show that Resy% 5(f1, fa, f3) is a quotient of determinants
of sizes 15 x 15 and 3 x 3 respectively.

c. Hiding z3 as in part b, use (2.8) to express Resy% 5(f1, f2, f3) as the
determinant of a 6 x 6 matrix, and show that up to a constant, the
resultant is (z2 + 2x3 — 3)%. Explain the significance of the exponent 4.
Hint: You will need to regard x3 as a constant and homogenize the f;
with respect to zo. Then (2.8) will be easy to apply.

The last part of Exercise 5 illustrates how formulas such as (2.8) allow
us, in special cases, to represent a resultant as a single determinant of
relatively small size. This can reduce dramatically the amount of compu-
tation involved and explains the continuing interest in finding determinant
formulas for resultants (see, for example, [DD], [SZ], and [WZ]).

AppDiTIONAL EXERCISES FOR §5

Exercise 6. In the text, we claimed that generically, the solutions of n
affine equations f; = --- = f,, = 0 have multiplicity one. This exercise
will prove this result. Assume as usual that the f; come from homogeneous
polynomials F; of degree d; by setting zop = 1. We will also use the following
fact from multiplicity theory: if F} = --- = F,, = 0 has finitely many
solutions and p is a solution such that the gradient vectors

OF; OF;

VE®) = (5, 00 ot @)

), 1<i<n

are linearly independent, then p is a solution of multiplicity one.

a. Consider the affine space CM consisting of all possible coefficients of the
F;. As in the discussion at the end of §2, the coordinates of CM are ¢; ,

where for fixed i, the ¢; o are the coefficients of F;. Now consider the set
W C CM x P x P! defined by

W = {(Cia,psa1,...,a,) €ECM xP" xP" ! :pisa

nontrivial solution of Fy = --- = F,, = 0 and
a1 VF(p)+ - -+ a,VF,(p) = 0}.

Under the projection map 7 : CM x P* x P»~1 — CM, explain why
a generalization of the Projective Extension Theorem from §2 would
imply that (W) C CM is a variety.
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b. Show that 7(W) C CM is a proper variety, i.e., find Fy, ..., F, such
that (Fi,...,F,) € CM \ x(W). Hint: Let F; = II%, (z; — jxo) for
1 <1< n.

c. By parts a and b, we can find a nonzero polynomial G in the co-
efficients of the F; such that G vanishes on w(WW). Then consider
G - Res(Fy,...,F,). We can regard this as a polynomial in the co-
efficients of the f;. Prove that if this polynomial is nonvanishing at
fi,- .., fn, then the equations fo = --- = f, = 0 have d; - - - d,, many
solutions in C™, all of which have multiplicity one. Hint: Use Theorem
(5.5).

Exercise 7. As we saw in (5.12), we can find the z,-coordinates of the
solutions using Res(u — xy, f1, ..., fn), and in general, the x;-coordinates
can be found by replacing u — x,, by u — x; in the resultant. In this exercise,
we will describe the method given in [CM] for matching up coordinates to
get the solutions. We begin by assuming that we’ve found the x1- and zo-
coordinates of the solutions. To match up these two coordinates, let o and
08 be randomly chosen numbers, and consider the resultant

Rl,Q(u) = Resl,dl ..... dn(u - (041'1 + ﬁx2)a fla SRR fn)
a. Use (5.9) to show that

dy---dy

Ry o(u) = C' H (u = (aain + Bai)),

=1

where C’ is a nonzero constant and, as in (5.9), the solutions are p; =
(ail, N 7am).

b. A random choice of o and 3 will ensure that for solutions p;, p;, pr, we
have aa;1 + faje # aarr + Bage except when p; = p; = pi. Conclude
that the only way the condition

a - (an zp-coordinate) + (3 - (an xp-coordinate) = root of Ry 2(u)

can hold is when the xj-coordinate and zs-coordinate come from the
same solution.

c. Explain how we can now find the first two coordinates of the solutions.

d. Explain how a random choice of «, 3, v will enable us to construct a poly-
nomial R 2 3(u) which will tell us how to match up the z3-coordinates
with the two coordinates already found.

e. In the affine equations f; = fo = 0 coming from (5.13), compute
Res(u — x1, f1, f2), Res(u — 2, f1, f2) and (in the notation of part a)
Ry 2(u), using @« = 1 and § = 2. Find the roots of these polynomials
numerically and explain how this gives the solutions of our equations.
Hint: Try the Maple command fsolve. In general, fsolve should be
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used with the complex option, though in this case it’s not necessary
since the roots are real.

Exercise 8. This exercise is concerned with Proposition (5.15).

a. Explain what Theorem (3.4) looks like if we use (5.2) instead of (3.3),
and apply this to (5.16), (5.17) and Proposition (5.8).

b. Show carefully that the the ring homomorphism

Clu)[z1, ..., zn] — Cu)]z1, ..., Tp1]

defined by z, +— u carries f; to fi and induces a ring isomorphism
A=A,

c. Show that the diagram (5.19) is commutative and use it to prove that
det(my,) = det(mfn).

Exercise 9. In this exercise, you will develop a homogeneous version of the
hidden variable method. Suppose that we have homogeneous polynomials
Fy,...,F,in xq,...,x, such that

fi(a:l, e ,l’n) = E(l, Ty 7?[7“).

We assume that F; has degree d;, so that f; has degree at most d;. Also
define

fi(l‘l, e ,-Tn—l) = fi(l‘l, ey Tn—1, u)

As we saw in the proof of Proposition (5.15), the hidden variable resul-
tant can be regarded as the affine resultant Resq, .. 4, (fl, e fn) To get
a homogeneous resultant, we homogenize fi with respect to zg to get a
homogeneous polynomial F;(zg,...,z,—1) of degree d;. Then

Resdl,_“’dn(fl, ceny fn) = Resdl,_“’dn (Fl, e 7Fn).
a. Prove that
Fi(.’E(), N ,l'nfl) = Fi((Eo, T1,y... ,LU()U).

Hint: This is done in the proof of Proposition (5.15).

b. Explain how part a leads to a purely homogeneous construction of the
hidden variable resultant. This resultant is a polynomial in u.

c. State a purely homogeneous version of Proposition (5.15) and explain
how it follows from the affine version stated in the text. Also explain why
the roots of the hidden variable resultant are a,/ag as p = (ag, ..., ay)
varies over all homogeneous solutions of F} = -+ = F,, = 0 in P™.

Exercise 10. In (5.20), we expressed the hidden variable resultant as a
quotient of two determinants £Dq/Dj. If we think of this resultant as a
polynomial in u, then use Proposition (4.6) to prove that the denominator
D{ does not involve u. This will imply that the numerator Dy can be
regarded as the hidden variable resultant. Hint: By the previous exercise,
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we can write the hidden variable resultant as Res(ﬁ Tyenoy ﬁn). AAlso note
that Proposition (4.6) assumed that z,, is last, while here Dy and Dj mean
that z¢ is taken last. Thus, applying Proposition (4.6) to the F; means
setting g = 0 in F;. Then use part a of Exercise 9 to explain why u
disappears from the scene.

Exercise 11. Suppose that fi,..., f, are polynomials of total degrees

diy ..oy dy in K[z, ... 2y

a. Use Theorem (2.10) of Chapter 2 to prove that the ideal (f1,..., fn) is
radical for f1,..., f, generic. Hint: Use the notion of generic discussed
in Exercise 6.

b. Explain why Exercise 16 of Chapter 2, §4, describes a lex Grobner basis
(assuming x,, is the last variable) for the ideal (f1, ..., f,) when the f;
are generic.

86 Solving Equations via Eigenvalues and
Eigenvectors

In Chapter 2, we learned that solving the equations f; = --- = f, = 0 can
be reduced to an eigenvalue problem. We did this as follows. The monomials
not divisible by the leading terms of a Grobner basis G for (f1, ..., f,) give
a basis for the quotient ring

(61) A:C[xl’axn]/<fla>fn>

(see §2 of Chapter 2). Using this basis, we find the matrix of a multiplication
map my, by taking a basis element * and computing the remainder of
x® fo on division by G (see §4 of Chapter 2). Once we have this matrix, its
eigenvalues are the values fo(p) for p € V(f1,..., fn) by Theorem (4.5)
of Chapter 2. In particular, the eigenvalues of the matrix for m,, are the
x;-coordinates of the solution points.

The amazing fact is that we can do all of this using resultants! We first
show how to find a basis for the quotient ring.

(6.2) Theorem. If fi1,...,fn, are generic polynomials of total degree
di,...,d,, then the cosets of the monomials

it eeeabr where 0 < a; <d;—1fori=1,...,n

form a basis of the ring A of (6.1).

PRrROOF. Note that these monomials are precisely the monomials obtained
from Sp in (5.11) by setting zp = 1. As we will see, this is no accident.
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By fi,..., fn generic, we mean that there are no solutions at oo, that all
solutions have multiplicity one, and that the matrix M;; which appears
below is invertible.

Our proof will follow [ER] (see [PS1] for a different proof). There are
dy - -+ d,, monomials z{* - 2% with 0 < a; < d; — 1. Since this is the
dimension of A in the generic case by Theorem (5.5), it suffices to show
that the cosets of these polynomials are linearly independent.

To prove this, we will use resultants. However, we have the wrong number
of polynomials: since fi, ..., f, are not homogeneous, we need n + 1 poly-
nomials in order to form a resultant. Hence we will add the polynomial
fo = up + wixy + -+ + upx,, where ug, ..., u, are independent vari-
ables. This gives the resultant Res1 4,....d4,, (fo, - - - » fn), Which we recognize
as the u-resultant. By (5.10), this resultant is the quotient Dy/Dy{), where
Dy = det(My) and My is the matrix coming from the equations (4.1).

We first need to review in detail how the matrix My is constructed.
Although we did this in (4.1), our present situation is different in two ways:
first, (4.1) ordered the variables so that x, was last, while here, we want
Zo to be last, and second, (4.1) dealt with homogeneous polynomials, while
here we have dehomogenized by setting xg = 1. Let’s see what changes this
makes.

As before, we begin in the homogeneous situation and consider monomi-
als 7 = xg° - - - 2%~ of total degree d = 1+ dy + - - - + d,, — n (remember
that the resultant is Resy g, 4, ). Since we want to think of = as last, we
divide these monomials into n + 1 disjoint sets as follows:

S, = {z7 : |y| = d, z% divides z7}

Sp_1 = {27 : |y| = d, x% doesn’t divide z7 but :UZ”_T does}

So = {27 : |y| =d, x% ... 2% don’t divide 7 but zy does}

(remember that dy = 1 in this case). You should check that Sy is precisely
as described in (5.11). The next step is to dehomogenize the elements of
S; by setting g = 1. If we denote the resulting set of monomials as S,
then S{ U S U --- U S, consists of all monomials of total degree < d in
Z1, ..., Ty Furthermore, we see that Sj) consists of the dy - - - d,, monomials
in the statement of the theorem.

Because of our emphasis on S, we will use ® to denote elements of S},
and 27 to denote elements of S} U --- U S’,. Then observe that

if x* € S}, then z* has degree < d — 1,
if 29 € S/, i > 0, then z/z" has degree < d — d;.

Then consider the equations:
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¥ fo =0 forall z* € S
(2P /z8) f1 =0 forall 2% € S

(2P /xdn) f, =0 forall 2 € S.

Since the z® fy and 2 /a:f fi have total degree < d, we can write these
polynomials as linear combinations of the 2% and x®. We will order these
monomials so that the elements z® € S| come first, followed by the
elements x% € S} U--- U S/,. This gives a square matrix My such that

T z* fo
T2 z? fo
MO .’L'Bl = xﬁl/xdl fl 5

xﬁz $B2 /1.1 1 fl

where, in the column on the left, the first two elements of S} and the first
two elements of S7 are listed explicitly. This should make it clear what the
whole column looks like. The situation is similar for the column on the

right.
For p € V(f1,..., fn), we have fi(p) = --- = fao(p) = 0. Thus,
evaluating the above equation at p yields
P p™ fo(p)
P p*? fo(p)
S 0
p7 0
To simplify notation, we let p® be the column vector (p®1, p®2,...)T given

by evaluating all monomials in S, at p (and T means transpose). Similarly,
we let p? be the column vector (p®,p%,...)T given by evaluating all
monomials in S U --- U S), at p. With this notation, we can rewrite the
above equation more compactly as

(6.3) M, <Ip);) = <f0(%) pa>.

The next step is to partition My so that the rows and columns of M,
corresponding to elements of Sj) lie in the upper left hand corner. This
means writing My in the form
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Moy Mo
My = ,
0 ( My M

where Myg is a g X p matrix for p = dy - - - d,,, and M7; is also a square
matrix. With this notation, (6.3) can be written

(6.4) (Moo M01> (po‘> _ (fo(p) pa> .
My My p’ 0
By Lemma 4.4 of [Emil], M is invertible for most choices of fi, ..., fy.

Note that this condition is generic since it is given by det(Mj1) # 0 and
det(Mi1) is a polynomial in the coefficients of the f;. Hence, for generic

fi, ..., fn, we can define the p x p matrix
(6.5) M = Moy — Moy My, M.
Note that the entries of M are polynomials in ug, . . ., u, since these vari-

ables only appear in Myg and Mo, . If we multiply each side of (6.4) on the
left by the matrix

I —MyM;!

0 I ’

then an easy computation gives
M0 P\ _ (fol)p™ )
My My p’ 0

This implies

(6.6) Mp® = fo(p) p°,

so that for each p € V(f1,..., fn), fo(p) is an eigenvalue of M with p< as
the corresponding eigenvector. Since fo = ug+uix1+- - - +uy Ty, the eigen-
values fo(p) are distinct for p € V(f1,..., fn). Standard linear algebra
implies that the corresponding eigenvectors p® are linearly independent.

We can now prove the theorem. Write the elements of S as z, ..., 2%,
where as usual 4 = dj - - - d,,, and recall that we need only show that the
cosets [x®!], ..., [x*] are linearly independent in the quotient ring A. So
suppose we have a linear relation among these cosets, say

alz®] + -+ cuz®] = 0.

Evaluating this equation at p € V(f1, ..., fn) makes sense by Exercise 12
of Chapter 2, §4 and implies that c;p** + - - - 4+ ¢,p** = 0. In the generic
case, V(f1,...,fn) has p = dy---d, points p1,...,p,, which gives p
equations

clp?l + P + C‘up?” =

Clpzl + e + C,U‘pfl.é“ —
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In the matrix of these equations, the ith row is (p{*,...,p;*), which in
the notation used above, is the transpose of the column vector p§* obtained
by evaluating the monomials in S} at p;. The discussion following (6.6)
showed that the vectors p§* are linearly independent. Thus the rows are
linearly independent, so ¢; = --- = ¢, = 0. We conclude that the cosets
[¥1], ..., [x®] are linearly independent.

Now that we know a basis for the quotient ring A, our next task it to find
the matrix of the multiplication map m, relative to this basis. Fortunately,
this is easy since we already know the matrix!

(6.7) Theorem. Let fi,..., [, be generic polynomials of total degrees
di,...,dn, and let fo = ug + wix1 + -+ + upx,. Using the basis of
A = Clzy,...,xa)/{f1,. .., fn) from Theorem (6.2), the matriz of the
multiplication map my, is the transpose of the matriz

M = Mgy — Moy M My

from (6.5).
PROOF. Let My, = (my;;) be the matrix of my, relative to the basis
[z¢1], ..., [z%] of A from Theorem (6.2), where y = dj - - - d,,. The proof

of Proposition (4.7) of Chapter 2 shows that for p € V(f1,..., fn), we
have

fO(p)(pala S 7pa“) = (pa17 s ’pa“) Mfo'

Letting p® denote the column vector (p®,...,p* )T as in the previous

proof, we can take the transpose of each side of this equation to obtain
(0% (07 (07 T
fo) p* = (o)™, ..., p™))
(07 (67 T
= ((p 17"'ap H)Mfo)
= (Mfo)T P,
where (My,)T is the transpose of My,. Comparing this to (6.6), we get
(Mf())T p* = Mp“
for all p € V(f1,..., fn). Since fi,..., f, are generic, we have u points
p € V(fi,..., fn), and the proof of Theorem (6.2) shows that the corre-

sponding eigenvectors p® are linearly independent. This implies (M )T =
M, and then My, = M7 follows easily.

Since fo = up + w11 + - - + up Ty, Corollary (4.3) of Chapter 2 implies

My, =uol +uy My, + -+ +u, M,

where M, is the matrix of m,, relative to the basis of Theorem (6.2). By
Theorem (6.7), it follows that if we write

(68) MZUOI+U1M1+'~~—|—U7LM7“
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where each M,; has constant entries, then My = M M7 implies that M,
(M )T for all i. Thus M simultaneously computes the matrices of the n
multiplication maps mg,, ..., My

n*

Exercise 1. For the equations

fi=a22 422 -10=0

fo=a? + 21wy + 222 —16 =0
(this is the affine version of Exercise 2 of §5), show that M is the matrix
uo U U2 0
M _ duq Uo 0 Ul + U2
6ua 0 [ up — U2

0 3up + 3us  2u; — 2ug Uo

Use this to determine the matrices M,, and M,,. What is the basis of
Clx1, x2]/{f1, f2) in this case? Hint: The matrix My of Exercise 2 of §5 is
already partitioned into the appropriate submatrices.

Now that we have the matrices M,,, we can find the x;-coordinates of
the solutions of (5.3) using the eigenvalue methods mentioned in Chap-
ter 2 (see especially the discussion following Corollary (4.6)). This still
leaves the problem of finding how the coordinates match up. We will follow
Chapter 2 and show how the left eigenvectors of My, , or equivalently, the
right eigenvectors of M = (My,)T, give the solutions of our equations.

Since M involves the variables uyg, . .., u,, we need to specialize them
before we can use numerical methods for finding eigenvectors. Let

/
fo=co+cizy + -+ cpmy,

where ¢y, . . ., ¢, are constants chosen so that the values f{(p) are distinct
for p € V(f1,..., fn). In practice, this can be achieved by making a ran-
dom choice of co, ..., c,. If we let M’ be the matrix obtained from M by

letting w; = ¢;, then (6.6) shows that p® is a right eigenvector for M’
with eigenvalue f{(p). Since we have y = dj - - - d,, distinct eigenvalues in a
vector space of the same dimension, the corresponding eigenspaces all have
dimension 1.

To find the solutions, suppose that we’ve used a standard numerical
method to find an eigenvector v of M’. Since the eigenspaces all have
dimension 1, it follows that v = ¢ p® for some solution p € V(f1,..., fn)
and nonzero constant c. This means that whenever z* is a monomial in S,
the corresponding coordinate of v is ¢p®. The following exercise shows how
to reconstruct p from the coordinates of the eigenvector v.

Exercise 2. As above, let p = (a1,...,a,) € V(f1,..., fn) and let v be
an eigenvector of M’ with eigenvalue f{(p). This exercise will explain how
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to recover p from v when dy, ..., d, are all > 1, and Exercise 5 at the end
of the section will explore what happens when some of the degrees equal 1.
a. Show that 1,z1,...,x, € S), and conclude that for some ¢ # 0, the
numbers ¢, caq, . .., ca, are among the coordinates of v.
b. Prove that a; can be computed from the coordinates of v by the formula
aj:ca] forj=1,...,n.
c
This shows that the solution p can be easily found using ratios of certain
coordinates of the eigenvector v.

Exercise 3. For the equations f; = f, = 0 of Exercise 1, consider the
matrix M’ coming from (ug, u1,uz,uz) = (0,1,0,0). In the notation of
(6.8), this means M’ = M; = (M,,)T. Compute the eigenvectors of this
matrix and use Exercise 2 to determine the solutions of fi = fo = 0.

While the right eigenvectors of M relate to the solutions of f=-=
fn = 0, the left eigenvectors give a nice answer to the interpolation problem.
This was worked out in detail in Exercise 17 of Chapter 2, §4, which applies
without change to the case at hand. See Exercise 6 at the end of this section
for an example.

Eigenvalue methods can also be applied to the hidden variable resul-
tants discussed earlier in this section. We will discuss this very briefly.
In Proposition (5.15), we showed that the z,-coordinates of the solutions

of the equations f; = -+ = f,, = 0 could be found using the resul-
tant Resg" , (f1,..., fa) obtained by regarding x, as a constant. As we
learned in (5.20),
Dy
Resgr,...,dn(fla ey fn) == B, )
0

and if Mo is the corresponding matrix (so that /E\O = det(ﬁo)), one could
ask about the eigenvalues and eigenvectors of Mpy. It turns out that this
is not quite the right question to ask. Rather, since M, depends on the
variable x,,, we write the matrix as

(69) MO =A0+$nA1++$£LAl,

where each A; has constant entries and A; # 0. Suppose that /Z\Zo and the
A; are m X m matrices. If A; is invertible, then we can define the generalized
companion matric

0 I 0 0
0 0 Im 0

C = : )
0 0 0 I
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where I, is the m x m identity matrix. Then the correct question to pose
concerns the eigenvalues and eigenvectors of C. One can show that the
eigenvalues of the generalized companion matrix are precisely the roots of
the polynomial Dy = det(My), and the corresponding eigenvectors have a
nice interpretation as well. Further details of this technique can be found
in [Man2] and [Man3].

Finally, we should say a few words about how eigenvalue and eigenvector
methods behave in the non-generic case. As in the discussion of u-resultants
in §5, there are many things which can go wrong. All of the problems listed
earlier are still present when dealing with eigenvalues and eigenvectors, and
there are two new difficulties which can occur:

¢ In working with the matrix My as in the proof of Theorem (6.2), it can
happen that Mj; is not invertible, so that M = My — M01M1_11M10
doesn’t make sense. -

¢ In working with the matrix My as in (6.9), it can happen that the leading
term A; is not invertible, so that the generalized companion matrix C
doesn’t make sense.

Techniques for avoiding both of these problems are described in [Emi2],
[Manl], [Man2], and [Man3].

Exercise 4. Express the 6 x 6 matrix of part ¢ of Exercise 5 of §5 in the
form Ag + 341 + 23 Az and show that Aj is not invertible.

The idea of solving equations by a combination of eigenvalue/eigenvector
methods and resultants goes back to the work of Auzinger and Stetter [AS].
This has now become an active area of research, not only for the resultants
discussed here (see [BMP], [Man3], [Moul] and [Ste], for example) but also
for the sparse resultants to be introduced in Chapter 7. Also, we will say
more about multiplication maps in §2 of Chapter 4.

AppDiTIONAL EXERCISES FOR §6

Exercise 5. This exercise will explain how to recover the solution p =
(a1, ..., a,) from an eigenvector v of the matrix M’ in the case when some
of the degrees d, ..., d, are equal to 1. Suppose for instance that d; = 1.
This means that z; ¢ Sj, so that the ith coordinate a; of the solution
p doesn’t appear in the eigenvector p®. The idea is that the matrix M,
(which we know by Theorem (6.7)) has all of the information we need. Let

¢1,. ..,y be the entries of the column of M,, corresponding to 1 € 5.
a. Prove that [z;] = ci[z*] + -+ + ¢ufa*] in A, where S} =
{z, ... x%}

b. Prove that a; = ¢;p™ + - -+ + ¢, p™*.
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It follows that if we have an eigenvector v as in the discussion preced-
ing Exercise 2, it is now straightforward to recover all coordinates of the
solution p.

Exercise 6. The equations f; = fo = 0 from Exercise 1 have solutions
p1, D2, P3, P4 (they are listed in projective form in Exercise 2 of §5). Apply
Exercise 17 of Chapter 2, §4, to find the polynomials g1, g2, g3, g4 such that
gi(p;) = 1if i = j and 0 otherwise. Then use this to write down explicitly
a polynomial h which takes preassigned values A1, As, A3, Ay at the points
P1, P2, P3, P4. Hint: Since the z1-coordinates are distinct, it suffices to find
the eigenvectors of M,,. Exercise 1 will be useful.



Chapter 4

Computation in Local Rings

Many questions in algebraic geometry involve a study of local properties of
varieties, that is, properties of a single point, or of a suitably small neigh-
borhood of a point. For example, in analyzing V(I) for a zero-dimensional

ideal I C k[z1,...,x,], even when k is algebraically closed, it some-
times happens that V(I) contains fewer distinct points than the dimension
d = dimk[zq,...,2,]/I. In this situation, thinking back to the conse-

quences of unique factorization for polynomials in one variable, it is natural
to ask whether there is an algebraic multiplicity that can be computed
locally at each point in V(I), with the property that the sum of the multi-
plicities is equal to d. Similarly in the study of singularities of varieties, one
major object of study is local invariants of singular points. These are used
to distinguish different types of singularities and study their local structure.
In §1 of this chapter, we will introduce the algebra of local rings which is
useful for both these types of questions. Multiplicities and some invariants
of singularities will be introduced in §2. In §3 and §4, we will develop al-
gorithmic techniques for computation in local rings parallel to the theory
of Grobner bases in polynomial rings. Applications of these techniques are
given in §5.

In this chapter, we will often assume that k is an algebraically closed
field containing Q. The results of Chapters 2 and 3 are valid for such fields.

§1 Local Rings

One way to study properties of a variety V is to study functions on the
variety. The elements of the ring k[z1, ..., z,]/I(V) can be thought of as
the polynomial functions on V. Near a particular point p € V we can also
consider rational functions defined at the point, power series convergent
at the point, or even formal series centered at the point. Considering the
collections of each of these types of functions in turn leads us to new rings
that strictly contain the ring of polynomials. In a sense which we shall make
precise as we go along, consideration of these larger rings corresponds to

137
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looking at smaller neighborhoods of points. We will begin with the following
example. Let V' = k™, and let p = (0,...,0) be the origin. The single
point set {p} is a variety, and I({p}) = (z1,...,2n) C k[z1,...,Ts].
Furthermore, a rational function f/g has a well-defined value at p provided

g(p) # 0.

(1.1) Definition. We denote by k[x1, ..., Tn](z,.... 2,) the collection of all
rational functions f/g of a1, ..., z, with g(p) # 0, where p = (0, ..., 0).

The main properties of k[z1, ..., Zn](z, ... 2,) are as follows.

(1.2) Proposition. Let R = k[x1, ..., %n)(z,,... 2,y Then

a. R is a subring of the field of rational functions k(x1, ..., x,) containing
k[l‘l, e ,J}n].

b. Let M = (x1,...,2,) C R (the ideal generated by x1,...,x, in R).
Then every element in R \ M is a unit in R (i.e., has a multiplicative
inverse in R).

c. M is a maximal ideal in R, and R has no other mazimal ideals.

PROOF. Asabove, let p = (0,...,0). Part a follows easily since R is closed
under sums and products in k(z1, ..., z,). For instance, if f1/g1 and fo/go
are two rational functions with g1 (p), g2(p) # 0, then

fi/gr + fa/g2 = (fr92 + f291)/(9192)-

Since g1(p) # 0 and g2(p) # 0, g1(p) - g2(p) # 0. Hence the sum is an
element of R. A similar argument shows that the product (f1/91) - (f2/g2)
is in R. Finally, since f = f/1 is in R for all f € k[xy,...,z,], the
polynomial ring is contained in R.

For part b, we will use the fact that the elements in M = (z1,...,z,)
are exactly the rational functions f/g € R such that f(p) = 0. Hence if
f/g ¢ M, then f(p) # 0 and g(p) # 0, and g/f is a multiplicative inverse
for f/g in R.

Finally, for part ¢, if N # M is an ideal in R with M C N C R, then
N must contain an element f/g in the complement of M. By part b, f/g
is a unit in R, so 1 = (f/g)(9/f) € N, and hence N = R. Therefore M
is maximal. M is the only maximal ideal in R, because it also follows from
part b that every proper ideal I C R is contained in M.

Exercise 1. In this exercise you will show that if p = (a1,...,a,) € k"
is any point and

R = {f/g :f,g € k[$17...,$n},g(p) 750}7

then we have the following statements parallel to Proposition (1.2).

a. R is a subring of the field of rational functions k(x1, ..., zy).

b. Let M be the ideal generated by 1 — a1, ..., T, — ap in R. Then every
element in R\ M is a unit in R (i.e., has a multiplicative inverse in R).
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c. M is a maximal ideal in R, and R has no other maximal ideals.

An alternative notation for the ring R in Exercise 1 is

R = k[xlv cee >xn](x1—a1,...,xn—an)>

where (1 — a1, ..., %y — ayn) is the ideal I({p}) in k[z1,..., 2], and in R
we allow denominators that are not elements of this ideal.

In the following discussion, the term 7ing will always mean a commuta-
tive ring with identity. Every ring has maximal ideals. As we will see, the
rings that give local information are the ones with the property given by
part ¢ of Proposition (1.2) above.

(1.3) Definition. A local ring is a ring that has exactly one maximal
ideal.

The idea of the argument used in the proof of part ¢ of the proposition
also gives one general criterion for a ring to be a local ring.

(1.4) Proposition. A ring R with a proper ideal M C R is a local ring
if every element of R\ M is a unit in R.

PrOOF. If every element of R \ M is a unit in R, the unique maximal
ideal is M. Exercise 5 below asks you to finish the proof.

Definition (1.1) above is actually a special case of a general procedure
called localization that can be used to construct many additional examples
of local rings. See Exercise 8 below. An even more general construction
of rings of fractions is given in Exercise 9. We will need to use that
construction in §3 and §4.

We also obtain important examples of local rings by considering functions
more general than rational functions. One way such functions arise is as
follows. When studying a curve or, more generally, a variety near a point,
one often tries to parametrize the variety near the point. For example, the
curve

2 +2c+9y>=0

is a circle of radius 1 centered at the point (—1,0). To study this curve
near the origin, we might use parametrizations of several different types.

Exercise 2. Show that one parametrization of the circle near the origin
is given by
—2t? 2t
T = = .
1420 YT g

Note that both components are elements of the local ring k[t] .
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In this case, we might also use the parametrization in terms of
trigonometric functions:

r = —1+ cost, y = sint.

The functions sin ¢ and cos ¢ are not polynomials or rational functions, but
recall from elementary calculus that they can be expressed as convergent
power series in ¢:
o0
sint =Y (=1)M*/(2k + 1)!
k=0
(o]
cost =y (—=1)F%* /(2k)! .
k=0
In this case parametrizing leads us to consider functions more general than
polynomials or rational functions.
If k. = C or kK = R, then we can consider the set of convergent power
series in n variables (expanding about the origin)

k{zy,...,2,} = {Zaezgocaxa : Cq € k and the series

(1.5)

converges in some neighborhood of 0 € k:"}

With the usual notion of addition and multiplication, this set is a ring (we
leave the verification to the reader; see Exercise 3). In fact, it is not difficult

to see that k{z1,...,x,} is also a local ring with maximal ideal generated
by x1,. .., Tp.

No matter what field k is, we can also consider the set k[[z1, ..., z,]] of
formal power series
(1.6) El[z1, ..., za]] = {Zaezgocaxa D co € kY,

where, now, we waive the condition that the series need converge. Alge-
braically, a formal power series is a perfectly well defined object and can
easily be manipulated—one must, however, give up the notion of evaluating
it at any point of k™ other than the origin. As a result, a formal power series
defines a function only in a rather limited sense. But in any case we can
define addition and multiplication of formal series in the obvious way and
this makes k[[z1, ..., zy]] into a ring (see Exercise 3). Formal power series
are also useful in constructing parametrizations of varieties over arbitrary
fields (see Exercise 7 below).

At the beginning of the section, we commented that the three rings
Elz1, . s Tnlier,zn), k{21, ... 20}, and k[[z1, ..., 2,]] correspond to
looking at smaller and smaller neighborhoods of the origin. Let us make
this more precise. An element f/g € k[z1,...,Tn](,, .. 2,) is defined not
just at the origin but at every point in the complement of V(g). The do-
main of convergence of a power series can be a much smaller set than the
complement of a variety. For instance, the geometric series 1+ + 2% + - - -
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converges to the sum 1/(1 — x) € k[x],y only on the set of z with |z| < 1
in k = Ror C. A formal series in k[[z1, .. ., ,]] is only guaranteed to con-
verge at the origin. Nevertheless, both k{z1,...,z,} and k[[z1, ..., z,]]
share the key algebraic property of k[z1,. .., Tn](z,, . 2.)-

(1.7) Proposition. k[[x1,...,z,]] is a local ring. If k = R or k = C
then k{x1,...,2,} is also a local ring.

PrOOF. To show that k[[z1,...,x,]] is a local ring, consider the ideal
M = (z1,...,2,) C E[[z1,...,2ys]] generated by x1,...,z,. If f & M,
then f = ¢o+ g with ¢g # 0, and g € M. Using the formal geometric series
expansion

1
=1—1 t2 e 71ntn e
L4t +tT A () 4
we see that
1 1

co+g  coll+g/c)
= (1/eo)(1 = g/co + (g/co)* +---).

In Exercise 4 below, you will show that this expansion makes sense as
an element of k[[xy,...,z,]]. Hence f has a multiplicative inverse in
E[[x1, ..., Zy]]. Since this is true for every f ¢ M, Proposition (1.4) implies
that k[[z1, ..., x,]] is a local ring.

To show that k{z1,...,z,} is also a local ring, we only need to show
that the formal series expansion for 1/(co + g) gives a convergent series.
See Exercise 4.

All three types of local rings share other key algebraic properties with
rings of polynomials. See the exercises in §4. By considering the power
series expansion of a rational function defined at the origin, as in the proof

above, we have k[z1, ..., Tn](z,,.. 2,y C k[[Z1,...,2,]]. In the case k = R
or C, we also have inclusions:
Elzy, ..o 2nlier,mn) C K{21, .o 20} CE[[Tr, .0, 2]l

In general, we would like to be able to do operations on ideals in these
rings in much the same way that we can carry out operations on ideals in
a polynomial ring. For instance, we would like to be able to settle the ideal
membership question, to form intersections of ideals, compute quotients,
compute syzygies on a collection of elements, and the like. We will return
to these questions in §3 and §4.

AppDiTiONAL EXERCISES FOR §1

Exercise 3. The product operations in k[[z1, . .., x,]] and k{z1,..., 2.}
can be described in the following fashion. Grouping terms by total degree,
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rewrite each power series

as » 5o fn(z), where

fulx) = Z Ca®
€y,
la|=n
is a homogeneous polynomial of degree n. The product of two series f(x)
and g(x) is the series h(x) for which

hn = fngo + fn—lgl + -+ ngn

a. Show that with this product and the obvious sum, k[[z1, ..., z,]] is a
(commutative) ring (with identity).

b. Now assume k£ = R or k = C, and suppose f, g € k{z1,...,z,}. From
part a, we know that sums and products of power series give other formal
series. Show that if f and g are both convergent on some neighborhood
U of (0,...,0), then f + g and f - g are also convergent on U.

Exercise 4. Let h € (x1,...,2,) C k[[z1,...,Z5]]
a. Show that the formal geometric series expansion
1
1+h
gives a well-defined element of k[[z1, ..., z,]]. (What are the homoge-
neous components of the series on the right?)

b. Show that if h is convergent on some neighborhood of the origin, then
the expansion in part a is also convergent on some (generally smaller)
neighborhood of the origin. (Recall that

1
1+t

is convergent only for ¢ satisfying || < 1.)

=1—h+h>—h 4

=1—t+t2 -3+

Exercise 5. Give a complete proof for Proposition (1.4).

Exercise 6. Let F be a field. A discrete valuation of F is an onto mapping
v: F\ {0} — Z with the properties that

1. v(z + y) > min{v(z), v(y)}, and

2. v(zy) = v(z) + v(y).

The subset of F consisting of all elements x satisfying v(xz) > 0, together
with 0, is called the valuation ring of v.

a. Show that the valuation ring of a discrete valuation is a local ring. Hint:
Use Proposition (1.4).
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b. For example, let F' = k(z) (the rational function field in one variable),
and let f be an irreducible polynomial in k[z] C F. If g € k(z), then
by unique factorization in k[x], there is a unique expression for g of the
form g = f* - n/d, where a € Z, and n,d € k[z] are not divisible by
f. Let v(g) = a € Z. Show that v defines a discrete valuation on k(x).
Identify the maximal ideal of the valuation ring.

c. Let FF = Q, and let p be a prime integer. Show that if g € Q, then by
unique factorization in Z, there is a unique expression for g of the form
g = p® - n/d, where a € Z, and n,d € Z are not divisible by p. Let
v(g) = a € Z. Show that v defines a discrete valuation on Q. Identify
the maximal ideal of this valuation ring.

Exercise 7. (A Formal Implicit Function Theorem) Let f(z,y) € k[z, y]
be a polynomial of the form

Fla,y) =y" +a@y"" + -+ @)y + en(2),
where ¢;(z) € k[z]. Assume that f(0,y) = 0 has n distinct roots a; € k.
a. Starting from y, '(z) = a;, show that there is a unique a;; € k such

that y§”(:c> = a; + a;1¢ satisfies
[z, yl(l)(l“)) = 0 mod (z?).

b. Show that if we have a polynomial yy)(x) = a; + apnx + - + aya’,
that satisfies

f@, 9 (@) = 0mod (1),
then there exists a unique a; ¢+1 € k such that

(€+1)

g (@) = 419 (@) + ag et

satisfies
Flz, v (@) = 0 mod (x'12).

c. From parts a and b, deduce that there is a unique power series y;(x) €
k[[z]] that satisfies f(z,y;(z)) = 0 and y;(0) = a;.

Geometrically, this gives a formal series parametrization of the branch of
the curve f(z,y) passing through (0,a;): (z,y;(z)). It also follows that
f(z,y) factors in the ring k[[z]][y]:

n

fa,y) = [[w = vilx)).

i=1

Exercise 8. Let R be an integral domain (that is, a ring with no zero-
divisors), and let P C R be a prime ideal (see Exercise 8 of Chapter 1, §1
for the definition, which is the same in any ring R). The localization of R
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with respect to P, denoted Rp, is a new ring containing R, in which every
element in R not in the specified prime ideal P becomes a unit. We define

Rp={r/s:r,s € R,s ¢ P},

so that Rp is a subset of the field of fractions of R.

a. Using Proposition (1.4), show that Rp is a local ring, with maximal
ideal M = {p/s:p € P,s ¢ P}.

b. Show that every ideal in Rp has the form Ip = {a/s : a € I, s ¢ P},
where I is an ideal of R contained in P.

Exercise 9. The construction of Rp in Exercise 8 can be generalized in

the following way. If R is any ring, and S C R is a set which is closed under

multiplication (that is, s1,s2 € S implies s1 - so € S), then we can form

“fractions” a/s, with a € R, s € S. We will say two fractions a/s and b/t

are equivalent if there is some u € S such that u(at — bs) = 0 in R. We

call the collection of equivalence classes for this relation S~!R.

a. Show that forming sums and products as with ordinary fractions gives
well-defined operations on S™'R.

b. Show that S™!'R is a ring under these sum and product operations.

c. If R is any ring (not necessarily an integral domain) and P C R is a
prime ideal, show that S = R \ P is closed under multiplication. The
resulting ring of fractions S~!R is also denoted Rp (as in Exercise 8).

Exercise 10. Let R = k[x1,...,2z,] and I = (f1,..., fm) be an ideal in
R. Let M = (z1,...,x,) be the maximal ideal of polynomials vanishing
at the origin and suppose that I C M.

a. Show that the ideal M/I generated by the cosets of 1, ...,x, in R/I
is a prime ideal.

b. Let TRp; denote the ideal generated by the f; in the ring Rjs, and
let (R/I)pyr be constructed as in Exercise 8. Let 7/s € Ry, let [r], [s]
denote the cosets of the numerator and denominator in R/I, and let [r/s]
denote the coset of the fraction in Rys/IRps. Show that the mapping

@ RM/IRM — (R/I)M/I
[r/s] — [r]/Is]

is well defined and gives an isomorphism of rings.

Exercise 11. Let R = k[x1, ..., %n](z,,... 2,)- Show that every ideal I C
R has a generating set consisting of polynomials f1, ..., fs € k[z1, ..., z,].

Exercise 12. (Another interpretation of k{z1,...,z,}) Let kK = R or C
and let U C k™ be open. A function f : U — k is analytic if it can be
represented by a power series with coefficients in k& at each point of U. One
can prove that every element of k{x1, ..., z,} defines an analytic function
on some neighborhood of the origin. We can describe k{z1,...,z,} in
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terms of analytic functions as follows. Two analytic functions, each defined

on some neighborhood of the origin, are equivalent if there is some (smaller)

neighborhood of the origin on which they are equal. An equivalence class
of analytic functions with respect to this relation is called a germ of an
analytic function (at the origin).

a. Show that the set of germs of analytic functions at the origin is a ring
under the usual sum and product of functions.

b. Show that this ring can be identified with k{xi,...,z,} and that the
maximal ideal is precisely the set of germs of analytic functions which
vanish at the origin.

c. Consider the function f : R — R defined by

e/ if >0
€Tr) =
/(@) { 0 ifx <O0.
Show that f is C* on R, and construct its Taylor series, expanding
at a = 0. Does the Taylor series converge to f(x) for all z in some
neighborhood of 0 € R?

If £ = R, the example given in part ¢ shows that the ring of germs of
infinitely differentiable real functions is not equal to k{z1,...,2,}. On
the other hand, it is a basic theorem of complex analysis that a complex
differentiable function is analytic.

§2 Multiplicities and Milnor Numbers

In this section we will see how local rings can be used to assign local
multiplicities at the points in V(I) for a zero-dimensional ideal I. We will
also use local rings to define the Milnor and Tjurina numbers of an isolated
singular point of a hypersurface.

To see what the issues are, let us turn to one of the most frequent com-
putations that one is called to do in a local ring, that of computing the
dimension of the quotient ring by a zero-dimensional ideal. In Chapter 2, we
learned how to compute the dimension of k[z1, ..., z,]/I when [ is a zero-
dimensional polynomial ideal. Recall how this works. For any monomial
order, we have

dim k[zy, . .., x,]/] = dim k[zq, . .., z,]/(LT(])),

and the latter is just the number of monomials x such that x® ¢ (Lr(I)).
For example, if

I = (2* +2°,y%) C klz,y),

then using the lex order with y > x for instance, the given generators form
a Grobner basis for I. So

dim k[z, y]/I = dim k[z, y]/(Lr(I)) = dim k[z, y]/(z*, y*) = 6.
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The rightmost equality follows because the cosets of 1, z, 22, y, xy, 22y form
a vector space basis of k[x, y]/(z3, y?). The results of Chapter 2 show that
there are at most six common zeros of 22 + 2% and y? in k2. In fact, from
the simple form of the generators of I we see there are precisely two distinct
points in V(I): (—=1,0) and (0, 0).

To define the local multiplicity of a solution of a system of equations,
we use a local ring instead of the polynomial ring, but the idea is much

the same as above. We will need the following notation. If I is an ideal

in k[x1, ..., z,], then we sometimes denote by Ik[z1,. .., Tn](a,. . 2,) the
ideal generated by I in the larger ring klz1, ..., Tn](z,,.. 2.)-
(2.1) Definition. Let I be a zero-dimensional ideal in k[xy, ..., z,],

so that V(I) consists of finitely many points in £, and assume that
(0,0,...,0) is one of them. Then the multiplicity of (0,0, ...,0) as a point
in V(I) is

dimk k[xl, ey xn](zl,‘..,zn)/Ik[fElv e 7x"]<301,m796n)'
More generally, if p = (a1, ...,a,) € V(I), then the multiplicity of p, de-
noted m(p), is the dimension of the ring obtained by localizing k[z1, . . . , 4]
at the maximal ideal M = I({p}) = (x1 — a1, ..., zn — ay,) corresponding
to p, and taking the quotient:
dim k[z1, . .., x| p/TE[z1, - o o 20 M

Since k[z1,...,x,]p is a local ring, it is easy to show that the quo-
tient k[z1, ..., zp)ar/Ik[x1, . .., 2y 18 also local (see Exercise 6 below).
The intuition is that since M is the maximal ideal of p € V(I), the ring
Elx1,. .., zn]pm/IK[z1, ..., 2] p should reflect the local behavior of I at

p. Hence the multiplicity m(p), which is the dimension of this ring, is a
measure of how complicated I is at p. Theorem (2.2) below will guarantee
that m(p) is finite.

We can also define the multiplicity of a solution p of a specific system
fi == fs =0, provided that p is an isolated solution (that is, there
exists a neighborhood of p in which the system has no other solutions).
From a more sophisticated point of view, this multiplicity is sometimes
called the local intersection multiplicity of the variety V(f1,..., fs) at p.
However, we caution the reader that there is a more sophisticated notion of
multiplicity called the Hilbert-Samuel multiplicity of I at p. This is denoted
e(p) and is discussed in [BH], Section 4.6.

Let us check Definition (2.1) in our example. Let R = k[z,y|(,) be
the local ring of k? at (0,0) and consider the ideal J generated by the
polynomials 2 + 23 and 32 in R. The multiplicity of their common zero
(0,0) is dim R/J.

Exercise 1. Notice that 2% + 2% = 2%(1 + z).
a. Show that 1 + x is a unit in R, so 1/(1 + z) € R.
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b. Show that 22 and y? generate the same ideal in R as x? + 2 and y?.

c. Show that every element f € R can be written uniquely as f = g/(1 +
h), where g € kl[z,y] and h € (z,y) C k[z,y|.

d. Show that for each f € R, the coset [f] € R/(2%,3?)R is equal to the
coset [g(1 — h + h?)], where g, h are as in part c.

e. Deduce that every coset in R/(x?, y?)R can be written as [a + bz + cy +
dxy] for some unique a, b, ¢, d € k.

By the result of Exercise 1,
dim R/J = dim R/(2?, y*)R = 4.

Thus the multiplicity of (0,0) as a solution of 2% + 2% = y? = 0 is 4.

Similarly, let us compute the multiplicity of (—1,0) as a solution of this
system. Rather than localizing at the prime ideal (z + 1,y), we change
coordinates to translate the point (—1,0) to the origin and compute the
multiplicity there. (This often simplifies the calculations; we leave the fact
that these two procedures give the same results to the exercises.) So, set
X=2+1Y =y (we want X and Y to be 0 when z = —1 and y = 0)
and let S = k[X,Y]xyy. Then 2? + 2% = (X — 1)* + (X —1)* =
X3 —2X? + X and y? = Y? and we want to compute the multiplicity
of (0,0) as a solution of X? — 2X%2 + X = Y? = 0. Now we note that
X3 —2X2+ X = X(1 —2X + X?) and 1/(1 — 2X + X?) € S. Thus,
the ideal generated by X and Y? in S is the same as that generated by
X3 —2X + X and Y? and, therefore,

dim S/(X? — 2X? + X, Y?)S = dim S/(X,Y?)S = 2.

Again, the equality on the right follows because the cosets of 1, Y are a basis
of S/{X,Y?). We conclude that the multiplicity of (—1,0) as a solution of
2+ =y2=0is2.

Thus, we have shown that the polynomials z® + 22 and 32 have two
common zeros, one of multiplicity 4 and the other of multiplicity 2. When
the total number of zeros is counted with multiplicity, we obtain 6, in
agreement with the fact that the dimension of the quotient ring of k|x, 3]
by the ideal generated by these polynomials is 6.

2

Exercise 2.

a. Find all points in V(2% — 22 + 32,22 — 42 + 4y*) C C? and compute
the multiplicity of each as above.

b. Verify that the sum of the multiplicities is equal to

dim Clz, y]/(x? — 22 + y?, 2? — 4z + 4y*).

c. What is the geometric explanation for the solution of multiplicity > 1
in this example?
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Before turning to the question of computing the dimension of a quotient
of a local ring in more complicated examples, we will verify that the total
number of solutions of a system f; = - -+ = fs = 0, counted with multiplic-
ity, is the dimension of k[z1, ..., x,]|/I when k is algebraically closed and
I ={f1,...,fs) is zero-dimensional. In a sense, this is confirmation that
our definition of multiplicity behaves as we would wish. In the following
discussion, if {p1,...,pm} is a finite subset of k™, and M; = I({p;}) is the
maximal ideal of k[z1, ..., x,] corresponding to p;, we will write

klzy, ... xnla, = {f/g : 9(pi) # 0} = O;

for simplicity of notation.

(2.2) Theorem. Let I be a zero-dimensional ideal in klz1,...,z,] (k
algebraically closed) and let V(I) = {p1,...,pm}. Then, there is an
isomorphism between k[xy,...,x,]/I and the direct product of the rings

A; = O;/I0O;, fori=1,...,m.
Proor. For each i, ¢ = 1,...,m, there are ring homomorphisms
it k[r, .. @] — A4
f= 1

where [f]; is the coset of f in the quotient ring O;/I0;. Hence we get a
ring homomorphism

o klry, ..., xp) — A X - X Ay
fe= (f - [flm)-

Since f € I implies [f]; = 0 € A; for all i, we have I C ker(p).
So to prove the theorem, we need to show first that I = ker(y) (by
the fundamental theorem on ring homomorphisms, this will imply that
im(y) & klz1,...,z,]/I), and second that ¢ is onto.

To prepare for this, we need to establish three basic facts. We use the
notation f = g mod I to mean f — g € I.

(2.3) Lemma. Let M; = I({p;}) in k[z1, ..., Tn].

a. There exists an integer d > 1 such that (N7, M;)® C I.

b. There are polynomials e; € klxy,...,x,], ¢ = 1,...,m, such that
>, ei = 1lmodl, eje; = Omod I if i # j, and € = e; mod I.
Furthermore, e; € 10; if i # j and e; — 1 € 10; for all i.

c. If g € k[z1,...,xn) \ M, then there exists h € k[, ..., x,] such that
hg = e; mod I.

PROOF OF THE LEMMA. Part a is an easy consequence of the Nullstel-
lensatz. We leave the details to the reader as Exercise 7 below.

Turning to part b, Lemma (2.9) of Chapter 2 implies the existence of
polynomials g; € k[z1, ..., z,] such that g;(p;) = 0ifi # j, and g;(p;) = 1
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for each 7. Let
(2.4) e =1—(1—g)),

where d is as in part a. Expanding the right-hand side of (2.4) with the
binomial theorem and canceling the 1s, we see that e; € M¢ for j # 4. On
the other hand, (2.4) implies e; — 1 € M¢ for all i. Hence for each i,

Z€j71:6i71+26j
J

J7#i
is an element of M. Since this is true for all i, 37, e; — 1 € N~ M.
Because the M; are distinct maximal ideals, M; + M; = klz1,...,z,)

whenever i # j. It follows that N, MZ¢ = (N, M;)? (see Exercise 8
below). Hence 37 e; — 1 € (N, M;)¢ C 1. Similarly, e;e; € N7y ME =
(N, M;)* C I whenever i # j, and the congruence e¢? = e; mod I now
follows easily (see Exercise 9 below). This implies e;(e; — 1) € IO; for all
i,j. If i # j, then e; — 1 is a unit in O, since e;(p;) = 0. Thus e; € 10;.
The proof that e; — 1 € 10; follows similarly using e;(p;) = 1.

For part ¢, by multiplying by a constant, we may assume g(p;) = 1.
Then 1 — g € M;, and hence taking h = (1+ (1 —g) +---+ (1 —g)9 Ve,

hg=h(1-(1-g) =01~ (1-g)e=e—(1-g)

Since (1 — g) € M and e; € de for all j # i, as shown above, we have
(1 — g)%; € I by part a, and the lemma is established.

We can now complete the proof of Theorem (2.2). Let f € ker(yp), and
note that that kernel is characterized as follows:

ker(p) = {f € k[z1,...,2n] : [f]: = 0 for all i}

={f:felO, foralli}

= {f : there exists g; ¢ M; with g;f € I}.
For each of the g;, by part ¢ of the lemma, there exists some h; such that
higi = e; mod I. As aresult, f-> " higi = > vy hi(g; f) is an element of
I, since each g;f € I. But on the other hand, f- > /" higi = -, e; =
f mod I by part b of the lemma. Combining these two observations, we see
that f € I. Hence ker(p) C I. Since we proved earlier that I C ker(y), we
have I = ker(y).

To conclude the proof, we need to show that ¢ is onto. So let

([n1/d1], - .., [nm/dm]) be an arbitrary element of Ay x --- x A,,, where
n;, d; € klxy,...,x,], di ¢ M;, and the brackets denote the coset in A;.
By part ¢ of the lemma again, there are h, € k[z1,...,z,] such that

hid; = e; mod I. Now let F' = """, hine; € k[z1,...,x,). It is easy to
see that ;(F) = [n,;/d;] for each i sincee; € 1O, fori # jande;,—1 € I0;
by part b of the lemma. Hence ¢ is onto.

An immediate corollary of this theorem is the result we want.
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(2.5) Corollary. Let k be algebraically closed, and let I be a zero-
dimensional ideal in k[z1, ..., x,]. Then dim k[xy, . .., x,]/1 is the number
of points of V(I) counted with multiplicity. Explicitly, if p1, ..., pm are the
distinct points of V(I) and O; is the ring of rational functions defined at
pi, then

dim k[z1, ..., z,)/T = Y0, dim O;/I0; = 1" m(p;).

PROOF. The corollary follows immediately from the theorem by taking
dimensions as vector spaces over k.

A second corollary tells us when a zero-dimensional ideal is radical.

(2.6) Corollary. Let k be algebraically closed, and let I be a zero-
dimensional ideal in k[z1,...,x,). Then I is radical if and only if every
p € V(I) has multiplicity m(p) = 1.

Proor. If V(I) = {p1,...,Pm}, then Theorem (2.10) of Chapter 2 shows
that dim k[xy, ..., 2z,]/I > m, with equality if and only if I is radical.
By Corollary (2.5), this inequality can be written > ", m(p;) > m. Since
m(p;) is always > 1, it follows that Y .- m(p;) > m is an equality if and
only if all m(p;) = 1.

We next discuss how to compute multiplicities. Given a zero-dimensional
ideal I C k[z1,...,z,] and a polynomial f € k[z1,...,z,], let my be
multiplication by f on k[z1, ..., x,]/I. Then the characteristic polynomial
det(my — wl) is determined by the points in V(I) and their multiplicities.
More precisely, we have the following result.

(2.7) Proposition. Let k be an algebraically closed field and let I be a

zero-dimensional ideal in klxy, ..., x,]. If f € klx1, ..., zy], then
det(my —ul) = (=1)* [ (u— f)™®,
peEV(I)
where d = dim k[z1, ..., x,]/I and my is the map given by multiplication

by f on klxy, ..., xn]/1.
ProOF. Let V(I) = {p1, ..., Pm} Using Theorem (2.2), we get a diagram:
k[(El,...,{L‘n]/I = A1><--'><Am

| L

k[l‘l,...,l’n]/[ = A1X"'XAm

where my : Ay x---x Ay, — Ay X - -+ x Ap, is multiplication by f on each
factor. This diagram commutes in the same sense as the diagram (5.19) of
Chapter 3.
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Hence we can work with my : A1 x -+ x A, — Ay X -+ X Ay, If
we restrict to my : A; — A,;, it suffices to show that det(my — ul) =
(=1)™P)(y — f(p;))™P), Equivalently, we must show that f(p;) is the
only eigenvalue of my on A;.

To prove this, consider the map ¢; : k[xy,...,2z,] — A; defined in the
proof of Theorem (2.2), and let Q; = ker(y;). In Exercise 11 below, you
will study the ideal @Q);, which is part of the primary decomposition of I. In
particular, you will show that V(Q;) = {p;} and that k[x1, ..., z,]/Q; =
A;. Consequently, the eigenvalues of m; on A; equal the eigenvalues of my
on k[x1, ..., xy]/Q:, which by Theorem (4.5) of Chapter 2 are the values
of f on V(Q;) = {pi}. It follows that f(p;) is the only eigenvalue, as
desired.

The ideas used in the proof of Proposition (2.7) make it easy to determine
the generalized eigenvectors of my. See Exercise 12 below for the details.

If we know the points p1, ..., pm of V(I) (for example, we could find
them using the methods of Chapters 2 or 3), then it is a simple matter to
compute their multiplicities using Proposition (2.7). First pick f so that
f(p1), -, f(pm) are distinct, and then compute the matrix of m relative
to a monomial basis of k[z1,...,x,]/I as in Chapters 2 or 3. In typical
cases, the polynomials generating I have coefficients in Q, which means
that the characteristic polynomial det(my — wl) is in Q[u]. Then factor
det(my — ul) over Q, which can easily be done by computer (the Maple
command is factor). This gives

det(my — ul) = h{™ --- b,

where hi, ..., h, are distinct irreducible polynomials over Q. For each
pi € V(I), f(p;) is a root of a unique h;, and the corresponding exponent
m; is the multiplicity m(p;). This follows from Proposition (2.7) and the
properties of irreducible polynomials (see Exercise 13). One consequence is
that those points of V(I) corresponding to the same irreducible factor of
det(my — ul) all have the same multiplicity.

We can also extend some of the results proved in Chapter 3 about resul-
tants. For example, the techniques used to prove Theorem (2.2) give the
following generalization of Proposition (5.8) of Chapter 3 (see Exercise 14
below for the details).

(2.8) Proposition. Let fi,...,fn € kl[x1,...,z,] (k algebraically
closed) have total degrees at most di,...,d, and no solutions at co. If
fo =up +urxy + - + upx,, where ug, ..., u, are independent variables,
then there is a nonzero constant C' such that

Resl,dhm,dn (fov sy fn) =C H (uO +war + -+ unan)m(p)v
pev(fl7"'7fn)

where a point p € V(f1,..., fn) is written p = (a1, ..., an).
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This tells us that the u-resultant of Chapter 3, §5, computes not only
the points of V(f1, ..., fn) but also their multiplicities. In Chapter 3, we
also studied the hidden variable method, where we set x,, = u in the equa-
tions f; = .-+ = f, = 0 and regard u as a constant. After homogemzmg
with respect to g, we get the resultant Resg, . s, _ 1(Fl, ..., Fy) from
Proposition (5.9) in Chapter 3, which tells us about the - coordlnates of
the solutions. In Chapter 3, we needed to assume that the x,-coordinates
were distinct. Now, using Proposition (2.8), it is easy to show that when
f1,..., fn have no solutions at oo,

Resl,dl ..... dn, (u — T, fla ey fn) = Resmo,...,zn_l(ﬁlv LI 7F\n)

(2.9) _ I (- a)™

PEV(f1,--5fn)

where p € V(f1,..., fn) is written p = (a1,...,a,). See Exercise 14 for
the proof.

The formulas given in (2.9) and Proposition (2.8) indicate a deep relation
between multiplicities using resultants. In fact, in the case of two equations
in two unknowns, one can use resultants to define multiplicities. This is
done, for example, in Chapter 8 of [CLO] and Chapter 3 of [Kir].

Exercise 3. Consider the equations

f=y2-3=0
fa =6y —2* + 9z,

and let I = (f1, f2) C K[z, y].

a. Show that these equations have four solutions with distinct z coordi-
nates.

b. Draw the graphs of f; = 0 and f; = 0. Use your picture to explain
geometrically why two of the points should have multiplicity > 1.

c. Show that the characteristic polynomial of m,, on C[z, y]/I is u® —18u*+
81u? — 108 = (u? — 3)%(u? — 12).

d. Use part ¢ and Proposition (2.7) to compute the multiplicities of the
four solution points.

e. Explain how you would compute the multiplicities using Res(f1, f2,y)
and Proposition (2.8). This is the hidden variable method for com-
puting multiplicities. Also explain the meaning of the exponent 3 in

Res(f1, f2,2) = (y* — 3)°.

Besides resultants and multiplicities, Theorem (2.2) has other interest-
ing consequences. For instance, suppose that a collection of n polynomials
fi,--., fn has a single zero in k™, which we may take to be the origin. Let
I={f1,...,fn). Then the theorem implies

(2.10) k[z1,...,zn)/] = k[zq, ... ,xn]@lw’mm/lk[xl, . ,ajn]@hm@”.
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This is very satisfying, but there is more to the story. With the above
hypotheses on fi, ..., f,, one can show that most small perturbations of
fi,..., fnresult in a system of equations with distinct zeroes, each of which
has multiplicity one, and that the number of such zeroes is precisely equal to
the multiplicity of the origin as a solution of f; = --- = f,, = 0. Moreover,
the ring k[z1,...,x,]/I turns out to be a limit, in a rather precise sense,
of the set of functions on these distinct zeroes. Here is a simple example.

Exercise 4. Let k = C so that we can take limits in an elementary sense.

Consider the ideals I; = (y — x2, 2> — t) where t € C is a parameter.

a. What are the points in V(I;) for ¢ # 07 Show that each point has
multiplicity 1, so A; = k for each i.

b. Now let t — 0. What is V(Ip) and its multiplicity?

c. Using the proof of Theorem (2.2), work out an explicit isomorphism
between C[z, y]/I;, and the product of the A; for ¢ # 0.

d. What happens as t — 07 Identify the image of a general f in C[z, y]/Iy,
and relate to the image of f in the product of A; for ¢ # 0.

Local rings give us the ability to discuss what’s happening near a
particular solution of a zero-dimensional ideal. This leads to some rich
mathematics, including the following.

® As explained in Exercise 11, the isomorphism A = A; x - - - x A,, of The-
orem (2.2) is related to primary decomposition. A method for computing
this decomposition using the characteristic polynomial of a multiplication
map is discussed in [Mon] and [YNT].

® The local ring A; can be described in terms of the vanishing of certain
linear combinations of partial derivatives. This is explained in [MMM1],
[MMM2], [Md]], and [M&S], among others.

® When the number of equations equals the number of unknowns as in
Chapter 3, the ring A is a complete intersection. Some of the very deep al-
gebra related to this situation, including Gorenstein duality, is discussed
in [EIM2].

The book [Stu5] gives a nice introduction to the first two bullets. The
reader should also consult [YNT] for many other aspects of the ring A
and [Rou] for an interesting method of representing the solutions and their
multiplicities.

We also remark that we can compute multiplicities by passing to the for-
mal power series ring or, in the cases £k = R or C, to the ring of convergent
power series. More precisely, the following holds.
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(2.11) Proposition. Let I C k[z1,...,z,] be a zero-dimensional ideal
such that the origin is a point of V(I) of multiplicity m. Then

m = dimk[zy, ..., Tl o) /TR o Tl (ey 2
= dim k[[z1, . . ., x,))/TE[[x1, . . ., 24]].

If, moreover, k = R or C, so that we can talk about whether a power series
converges, then

m = dim k{z1, ...,z }/Ik{z1, ..., zn}

as well.

To see the idea behind why this is so, consider the example we looked at
in Exercise 1 above. We showed that dim k[z, y] .,y /(2* + 23,4y%) = 4 by
noting that in k[z, y] (.., we have

(@ +2°,y%) = (2%, 9%)

because 1/(1 + x) € k[, Yz, As in §1, we can represent 1/(1 + x) as
the formal power series 1 — z + 22 — 2% 4+ 2% — - -+ € k[[z, y]] and then

(421 -z +2® -2+ 2t —-) =27

in k[[x, y]]. This shows that, in k[[z, y]], (z% + 23, y?) = (22, y?). It follows
that

dim k([z, y]] /(2®, y*) = 4

(as before, the four monomials 1, z,y, zy form a vector space basis of
K[z, y]]/(z?, 4?)). If k = C, the power series 1 — x + 2% — 23 + 2% — - .-
is convergent for x with |z| < 1, and precisely the same reasoning shows
that (22 + 23, y?) = (22, 9?) in k{z, y} as well. Therefore,

dim k{z, y}/(2?, y*) k{z, y} = 4.

It is possible to prove the proposition by generalizing these observations,
but it will be more convenient to defer it to §5, so that we can make use of
some additional computational tools for local rings.

We will conclude this section by introducing an important invariant in
singularity theory—the Milnor number of a singularity. See [Mil] for the
topological meaning of this integer. One says that an analytic function
f(z1,...,x,) on an open set U C C™ has a singularity at a point p € U
if the n first-order partial derivatives of f have a common zero at p. We
say that the singular point p is isolated if there is some neighborhood of
p containing no other singular points of f. As usual, when considering a
given singular point p, one translates p to the origin. If we do this, then
the assertion that the origin is isolated is enough to guarantee that

dim C{z1,...,x,}/{0f/Ox1,...,0f/0x,) < oo.
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Here, we are using the fact that in a neighborhood of the origin, any analytic
function can be represented by a convergent power series. Thus f and its
partial derivatives can be regarded as elements of C{x1, ..., x,}.

(2.12) Definition. Let f € C{x1,...,z,} have an isolated singularity
at the origin. The Milnor number of the singular point, denoted p, is given
by

p=dimC{zy,...,z,}/(Of)0x1,...,0f/0xs).

In view of Proposition (2.11), if the function f is a polynomial, the Milnor
number of a singular point p of f is just the multiplicity of the common
zero p of the partials of f.

Exercise 5. FEach of the following f(z,y) € C[z,y] has an isolated
singular point at (0,0). For each, determine the Milnor number by
computing

p = dim Cl[z, y]]/(0f/0x, O f | 9y).

a. f(z,y) = y* —2* —a®.
b. f(z,y) = y* — 2>
c. fla,y) =y* —aP.

In intuitive terms, the larger the Milnor number is, the more complicated
the structure of the singular point is. To conclude this section, we mention
that there is a closely related invariant of singularities called the Tjurina
number, which is defined by

7 = dimk[[zy, . .., x,]]/{f, Of /Ox1,...,0f/O0xy).

Over any field k, the Tjurina number is finite precisely when f has an
isolated singular point.

ApDITIONAL EXERCISES FOR §2

Exercise 6. If p € V(I) and M = I({p}) is the maximal ideal of p, then

prove that k[zq, ..., xu|ar/Tk[21, ..., zp]ar 18 a local ring. Also show that
the dimension of this ring, which is the multiplicity m(p), is > 1. Hint: Show
that the map k[x1, ..., xn]am/Tk[z1, ..., zx]a — k given by evaluating a

coset at p is a well-defined linear map which is onto.
Exercise 7. Using the Nullstellensatz, prove part a of Lemma (2.3).
Exercise 8. Let I and J be any two ideals in a ring R such that I+J = R

(we sometimes say I and J are comazimal).
a. Show that IJ =1nNJ.
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b. From part a, deduce that if d > 1, then I¢ N J¢ = (I N J)%
c. Generalize part b to any number of ideals Iy,..., I, if [, + I; = R
whenever i # j.

Exercise 9. Show that if e; are the polynomials constructed in (2.4) for
part b of Lemma (2.3), then e? = e; mod I. Hint: Use the other two
statements in part b.

Exercise 10. In this exercise, we will use Theorem (2.2) to give a new

proof of Theorem (4.5) of Chapter 2. Let A; be the local ring O,;/IO; as

in the proof of Theorem (2.2). For f € k[z1,...,xy], let my : A; — A; be

multiplication by f. Also, the coset of f in A; will be denoted [f];.

a. Prove that my is a vector space isomorphism if and only if [f]; € A; is
invertible; i.e., there is [g]; € A; such that [f];[g]; = [1];.

b. Explain why [f]; is in the maximal ideal of A; if and only if f(p;) = 0.

c. Explain why each of the following equivalences is true for a polynomial
f € klzr,...,z,] and A € C: X is an eigenvalue of my < my_, is not
invertible & [f — A]; € A; is not invertible < [f — A]; is in the maximal
ideal of A; & f(p) = A. Hint: Use parts a and b of this exercise and
part b of Exercise 1 from §1.

d. Combine part ¢ with the isomorphism k[zq, ..., 2,]/T =2 A3 X -+ - X Ay,
and the commutative diagram from Proposition (2.7) to give a new proof
of Theorem (4.5) of Chapter 2.

Exercise 11. (Primary Decomposition) Let I be a zero-dimensional ideal
with V(I) = {p1,...,pm}. This exercise will explore the relation be-
tween the isomorphism A = k[zy,...,2,]/] &2 A3 X -+ x A, and the
primary decomposition of I. More details on primary decomposition can
be found in [CLO], Chapter 4, §7. We begin with the homomorphism
i kl[r1,...,zy] — A; defined by ¢(f) = [f]; € A; (this is the nota-
tion used in the proof of Theorem (2.2)). Consider the ideal @); defined
by

Q; = ker(p;) ={f € klx1,...,zn] : [f]: = [0]; in A;}.

We will show that the ideals @1, ..., @, give the primary decomposition
of I. Let M; = I({p;}).
a. Show that I C Q; and that Q; = {f € k[x1, ..., z,] : there exists u in

klx1,...,2,] \ M; such that w - f € I}.

b. If g1, ..., gm are as in the proof of Theorem (2.2), show that for j # i,
some power of g; lies in @);. Hint: Use part a and the Nullstellensatz.

c. Show that V(Q;) = {p;} and conclude that \/@Q; = M;. Hint: Use part
b and the Nullstellensatz.

d. Show that Q; is a primary ideal, which means that if fg € @Q;, then
either f € @; or some power of ¢ is in @;. Hint: Use part c¢. Also, A; is
a local ring.
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e. Prove that I = Q1 N --- N Q.. This is the primary decomposition of I
(see Theorem 7 of [CLOJ, Chapter 4, §7).

f. Show that k[x1,...,x,]/Q; = A;. Hint: Show that ¢; is onto using the
proof of Theorem (2.2).

Exercise 12. (Generalized Eigenspaces) Given a linear map T : V — V|
where V is a finite-dimensional vector space, a generalized eigenvector of
A € k is a nonzero vector v € V such that (T — AI)™(v) = 0 for some
m > 1. The generalized eigenspace of X\ is the space of the generalized
eigenvectors for A\. When £ is algebraically closed, V' is the direct sum of its
generalized eigenspaces (see Section 7.1 of [FIS]). We will apply this theory
to the linear map mys : A — A to see how the generalized eigenspaces of
my relate to the isomorphism A = A; x --- x A,, of Theorem (2.2).
a. In the proof of Proposition (2.7), we proved that f(p;) is the only eigen-
value of my : A; — A;. Use this to show that the generalized eigenspace
of my is all of A;.
b. If f(p1),..., f(pm) are distinct, prove that the decomposition of A =
klz1,...,z,]/I into a direct sum of generalized eigenspaces for my is
precisely the isomorphism A 2 Ay X - -+ X A, of Theorem (2.2).

Exercise 13.

a. If h € Q[u] is irreducible, prove that all roots of A have multiplicity one.
Hint: Compute h;eq.

b. Let h € Q[u] be irreducible and let A € C be a root of h. If g € Q[u]
and g(A) = 0, prove that h divides g. Hint: If GCD(h, g) = 1, there are
polynomials A, B € Q[u] such that Ah + Bg = 1.

c. If hy and hy are distinet irreducible polynomials in Q[u], prove that hy
and hs have no common roots.

d. Use parts a and c to justify the method for computing multiplicities
given in the discussion following Proposition (2.7).

Exercise 14. Prove Proposition (2.8) and the formulas given in (2.9).
Hint: Use Exercise 12 and Proposition (5.8) of Chapter 3.

Exercise 15.

a. Let ¢1,..., £, be homogeneous linear polynomials in k[z1, ..., z,] with
V(t,...,0,) ={(0,...,0)}. Compute the multiplicity of the origin as
a solution of ¢ = --- =¥, = 0.

b. Now let fi,..., f, generate a zero-dimensional ideal in k[z1, ..., 2],
and suppose that the origin is in V(f1, ..., f») and the Jacobian matrix

J = (0f:)0x;)

has nonzero determinant at the origin. Compute the multiplicity of the
origin as a solution of f; = --- = f,, = 0. Hint: Use part a.
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Exercise 16. We say f € C[zy,...,x,] has an ordinary double point at
the origin 0 in C" if f(0) = 9f/0x;(0) = 0 for all 4, but the matrix of
second-order partial derivatives is invertible at 0:

det(@zf/éa:iaxj)](zhwmn):(ow’o) 7’5 0.

Find the Milnor number of an ordinary double point. Hint: Use Exercise 15.

Exercise 17. Let I be a zero-dimensional ideal in k[zq, ..., z,] and let

p = (a1,...,a,) € V(). Let Xq,...,X, be a new set of variables,

and consider the set I C k[Xy,...,X,] consisting of all f(X; + aq,..

X, + ap) where f € 1.

a. Show that I is an ideal in k[X4, ..., X,], and that the origin is a point
in V(I).

b. Show that the multiplicity of p as a point in V(I) is the same as the
multiplicity of the origin as a point in V(I). Hint: One approach is to
show that

*

(pik[.]?l,...,l‘n] —>k[X1,,Xn]
f(xla"'vxn)’_)f(Xl"_alv'",Xn"_an)

defines an isomorphism of rings.

§3 Term Orders and Division in Local Rings

When working with an ideal I C k[z1,...,x,], for some purposes
we can replace I with its ideal of leading terms (Lr([I)). For example,
if I is zero-dimensional, we can compute the dimension of the quo-
tient ring klxi,...,2,]/I by using the fact that dim k[zq,...,2,]/T =
dim k[z1, . .., x,]/{LT(I)). The latter dimension is easy to compute since
(tr(I)) is a monomial ideal—the dimension is just the number of monomi-
als not in the ideal). The heart of the matter is to compute (LT(I)), which
is done by computing a Grobner basis of I.

A natural question to ask is whether something similar might work in a
local ring. An instructive example occurred in the last section, where we
considered the ideal I = (2 + 2°,y?). For R = k[z, y] (s, or k[[z,y]] or
k{z,y}, we computed dim R/IR by replacing I by the monomial ideal

I = (z24%).
Note that I is generated by the lowest degree terms in the generators
of I. This is in contrast to the situation in the polynomial ring, where
dim k[z, y]/I was computed from (Lr(I)) = (23, y?) using the lex leading
terms.

To be able to pick out terms of lowest degree in polynomials as leading

terms, it will be necessary to extend the class of orders on monomials we
can use. For instance, to make the leading term of a polynomial or a power
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series be one of the terms of minimal total degree, we could consider what
are known as degree-anticompatible (or anti-graded) orders. By definition
these are orders that satisfy

(3.1) la| < |B] = = > 2P,

We still insist that our orders be total orderings and be compatible with
multiplication. As in Definition (2.1) of Chapter 1, being a total ordering
means that for any o, 8 € Z%,), exactly one of the following is true:

z® > 2P, 2% = 2P, or ¥ < aP.

Compatibility with multiplication means that for any v € Z%, if 2% > P,
then %7 > 2A%7. Notice that property (3.1) implies that 1 > =; for all
i, 1 < i < n. Here is a first example.

Exercise 1. Consider terms in k[z].

a. Show that the only degree-anticompatible order is the antidegree order:
I>z>a?>a%> ...

b. Explain why the antidegree order is not a well-ordering.

Any total ordering that is compatible with multiplication and that
satisfies 1 > x; for all ¢, 1 < ¢ < n is called a local order. A degree-
anticompatible order is a local order (but not conversely—see Exercise 2
below).

Perhaps the simplest example of a local order in n variables is degree-
anticompatible lexicographic order, abbreviated alex, which first sorts by

total degree, lower degree terms preceding higher degree terms, and which
sorts monomials of the same total degree lexicographically.

(3.2) Definition (Antigraded Lex Order). Let a, 3 € Z%,. We say
% >gep P if -

n n
ol => i < 18] =Y B,
i=1 i=1
or if

la| = 6] and 2 >0, 2°.

Thus, for example, in k[x, y], with > y, we have
2 2 3
1 >alex T Zalex Y Zalex T~ Zalex TY Zalex Y~ >alex T° >alex " * -

Similarly one defines degree-anticompatible reverse lexicographic, or
arevlex, order as follows.
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(3.3) Definition (Antigraded Revlex Order). Let o, 3 € Z%,. We
say % >arevlen TP if

So, for example, we have

2
1 >areviex T Zareviexr Y “areviex Z “areviex L arevlew
2 2
TY Zareviex Y~ Zarevier LZ areviex Y2 areviex 2~ Zareviexr ' °

Degree-anticompatible and local orders lack one of the key properties
of the monomial orders that we have used up to this point. Namely, the
third property in Definition (2.1) from Chapter 1, which requires that a
monomial order be a well-ordering relation, does not hold. Local orders
are not well-orderings. This can be seen even in the one-variable case in
Exercise 1 above.

In §4 of this chapter, we will need to make use of even more general
orders than degree-anticompatible or local orders. Moreover, and somewhat
surprisingly, the whole theory can be simplified somewhat by generalizing
at once to consider the whole class of semigroup orders as in the following
definition.

(3.4) Definition. An order > on ZZ%, or, equivalently, on the set of
monomials % « € Z%, in k[z1,...,x,] or any of the local rings
Ky, . @)y ey k{21, an}, or Efzy, ..., z,]], is sald to be a
semigroup order if it satisfies:

a. > is a total ordering on ZZ ;

b. > is compatible with multiplication of monomials.

Semigroup orders include the monomial orders, which have the additional
well-ordering property, as well as local orders and other orders which do
not. Since the property of being a well-ordering is often used to assert that
algorithms terminate, we will need to be especially careful in checking that
procedures using semigroup orders terminate.

Recall that in §2 of Chapter 1 we discussed how monomial orders can be

specified by matrices. If M is an m X n real matrix with rows wy, ..., Wy,
then we define & >y 2 if there is an ¢ < m such that o - w; = 8- w;
fori=1,...,¢0 —1, but - wy > - wy. Every semigroup order can be

described by giving a suitable matrix M. The following exercise describes
the necessary properties of M and gives some examples.

Exercise 2.

a. Show that >j; is compatible with multiplication for every matrix M as
above.

b. Show that > is a total ordering if and only if ker(M) N Z%, =

{(0,...,0)}.
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c. Show that the lex monomial order with 7 > zo > --- > x, is the
order >7, where I is the n X n identity matrix.
d. Show that the alez order is the order >,; defined by the matrix

1 -1 ... _1
0 —1 - -1
M = : Do :
0 0 - -1

e. Show that the arevlex order is the order >,; for

-1 -1 - -1 -1
0o 0 -~ 0 -1
M= o o - -1 o0
0 -1 --- 0 0

f. Find a local order that is not degree-anticompatible. Hint: What is it
about the corresponding matrices that makes alex and arevier degree-
anticompatible, resp. local?

If f =3, cax* € klri,...,2,] is a polynomial and > is a semi-
group order, we define the multidegree, the leading coefficient, the leading
monomial, and the leading term of f exactly as we did for a monomial
order:

multideg(f) = max{a € Z%; : co # 0}
LC(f) Cmultideg(f)
LM(f) multldeg(f)
Lr(f) = Lo(f) - m(f).
In addition, each semigroup order > defines a particular ring of fractions
in k(x1,...,2,) as in Exercise 9 of §1 of this chapter. Namely, given >, we

consider the set
S={l+ge€klry,...,zy) : g =0, ortr>(g) < 1}.

S is closed under multiplication since if LT (g) < 1 and 1~ (¢') < 1, then
1+g9)1+g¢)=14+g+g +gg,and Lr(g + ¢ + gg') < 1 as well by the
definition of a semigroup order.

(3.5) Definition. Let > be a semigroup order on monomials in the ring
kElx1,...,2n] and let S = {1 + g : rr(9) < 1}. The localization of
klz1, ..., x,] with respect to > is the ring

Locs (k[z1, ..., w,)) = S k[zy, ... 20] = {f/(1 +9g) : 14+ g € S}
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For example, if > is a monomial order, then there are no nonzero mono-
mials smaller than 1 so S = {1} and Locs (k[z1, ..., z,]) = k[z1,. .., 2]
On the other hand, if > is a local order, then since 1 > z; for all i,

{g:9=0, orirs(g) < 1} = (x1,...,2p).

Hence, for a local order, we have that S is contained in the set of units in

Elz1, .o Tnlia,.. m,) 50 Locs (K[z1, .., 2n]) C k21,0 (e, 2, But
in fact, by adjusting constants between the numerator and the denominator
in a general f/h € k[ri,...,%n](z,, 2., it is easy to see that f/h =

/(1 + g) for some 1 + g € S. Hence if > is a local order, then

Locs (k[x1, ... @p]) = k[T1, oo Tnl ey, o)

The next two exercises give some additional, more general, and also
quite suggestive examples of semigroup orders and their associated rings of
fractions.

Exercise 3. Using >4, On the r-terms, and >leq ON the y-terms, define

a mized order >mized by 2%Y? > ived T y if either ¥ >jcs yﬁ/, or

yﬁ = yﬂ and % >ge0 ¢

a. Show that >,;zeq is @ semigroup order and find a matrix M such that
>mized = > M-

b. Show that >,,izeq is neither a well-ordering, nor degree-anticompatible.

c. Let g € k[z1,...,%n, Y1, .-, Ym). Show that 1 >, ipeq LT> . . (g) if
and only if g depends only on z1,...,z,, and is in (x1,...,2,) C
klxy,. .., 25l

d. Let R = k[z1,...,Zn,¥1,.-.,Ym]|. Deduce that Locs . . (R) is the
ring k[21,. .., Znl(er,. o) Y1, - - > Ym], Whose elements can be written
as polynomials in the y;, with coefficients that are rational functions of
the z; in ]{}[l‘l, RN ’xn](Il,m@n)'

Exercise 4. If we proceed as in Exercise 3 but compare the - -terms first,

we get a new order defined by >izedr by T yﬂ > mized T yﬁ if e1ther

>glex T, or T = ¢ o and Y’ >z 98

a. Show that > mized’ 1S & semigroup order and find a matrix U such that
>mized =>U-

b. Show that >,,;zeq’ is neither a well-ordering, nor degree-anticompatible.

c. Which elements f € k[z1,...,Zn,Y1,-..,Yn] satisfy 1 >pizea

LT o iear (f)?
d. What is Locs . (k[z1,..., Zn Y1, -5 Um])?

Note that the order >,,;zcq from Exercise 3 has the following elimination
property: if % > ized :r”‘/yﬁl, then 3 = 0. Equivalently, any monomial
containing one of the y; is greater than all monomials containing only
the x;. It follows that if the >,;.eq leading term of a polynomial depends
only on the z;, then the polynomial does not depend on any of the ;.
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We will return to this comment in §4 after developing analogs of the divi-
sion algorithm and Grobner bases for general term orders, because this is
precisely the property we need for elimination theory.

Given any semigroup order > on monomials in k[xy, ..., z,], there is a
natural extension of > to Locs (k[x1, ..., xy]), which we will also denote
by >. Namely, if 1 + g € S as in Definition (3.5), the rational function
1/(1+g) is a unit in Locs (k[z1, . . ., T4]), so it shouldn’t matter in defining
the leading term of f/(1 + g). For any h € Locs (k[z1, . .., x,]), we write
h = f/(1+ g) and define

multideg(h) = multideg(f)
Lo(h) = 1e(f)
wa(h) = 1i(f)
vr(h) = ur(f).

Exercise 5. Write A = k[z1,...,z,] and let h € A.

a. Show that multideg(h), Lc(h), Lm(h), LT(h) are well-defined in Locs, (A)
in the sense that if h = f/(14+g) = f'/(1+¢’), then multideg(h), Lc(h),
LM(h), Lr(h) will be the same whether f or f’ is used to compute them.

b. Let r € R be defined by the equation

h = ur(h) + .
Show that either r = 0 or LT(r) < Lr(h).

In Exercise 8, you will show that if > is a local order, then ev-
ery nonempty subset has a maximal element. This allows us to define
multideg(h), vc(h), LMm(h), LT(h) when h € k[[z1,...,2z,]] (or B €
k{x1,...,z,} if kK = R or C). Moreover, in this case, the multidegree and
leading term of h = f/(1 + g) € k[z1,...,%n](z,,... 2,) agree with what
one obtains upon viewing h as a power series (via the series expansion of
1/(1+ g)).

The goal of this section is to use general semigroup orders to develop
an extension of the division algorithm in k[z1,...,x,] which will yield
information about ideals in R = Locs (k[z1, ..., #,]). The key step in the
division algorithm for polynomials is the reduction of a polynomial f by a
polynomial g. If LT(f) = m - L1(g), for some term m = cx®, we define

Red (f,g) = f —mg,

and say that we have reduced f by g. The polynomial Red (f, g) is just what
is left after the first step in dividing f by g—it is the first partial dividend.
In general, the division algorithm divides a polynomial by a set of other
polynomials by repeatedly reducing the polynomial by members of the set
and adding leading terms to the remainder when no reductions are possible.
This terminates in the case of polynomials because successive leading terms
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form a strictly decreasing sequence, and such sequences always terminate
because a monomial order is always a well-ordering.

In the case of a local order on a power series ring, one can define Red (f, g)
exactly as above. However, a sequence of successive reductions need no
longer terminate. For example, suppose f = x and we decide to divide f
by ¢ = = — 2, so that we successively reduce by = — x2. This gives the
reductions:

fi =Red(f,g) = 2°
fo = Red (f1,9) = 2°

fn = Red (fn—lvg) = xn+17

and so on, which clearly does not terminate. The difficulty, of course, is
that under the antidegree order in k[z],y or E[[z]], we have the infinite
strictly decreasing sequence of terms z > 22 > z2 > - - -

We can evade this difficulty with a splendid idea of Mora’s. When divid-
ing f; by g, for instance, we allow ourselves to reduce not just by g, but
also by the result of any previous reduction. That is, we allow reductions
by f itself (which we can regard as the “zeroth” reduction), or by any of
fi,-- ., fi—1. More generally, when dividing a set of polynomials or power
series, we allow ourselves to reduce by the original set together with the
results of any previous reduction. So, in our example, where we are divid-
ing f = x by g = v — 2, the first reduction is f; = Red (f, g) = 2. For
the next reduction, we allow ourselves to reduce fi by f as well as g. One
checks that

Red (f1, f) = Red (2, 2) = 0,

so that we halt. Moreover, this reduction being zero implies 2 = zf.

If we combine this with the equation f = 1 - g 4+ z? which gives f; =
Red (f, g) = 2, we obtain the relation f = g + af, or (1 — x)f = g. This
last equation tells us that in k[z] ), we have

1
f= 1—=2
In other words, the remainder on division of f by ¢ is zero since x and
x — 2? = x(1 — x) generate the same ideal in k[z] . or k[[z]].

Looking at the above example, one might ask whether it would always
suffice to first reduce by g, then subsequently reduce by f. Sadly, this
is not the case: it is easy to construct examples where the sequence of
reductions does not terminate. Suppose, for example, that we wish to divide

f=x4+22byg=ux+ 2>+ 25

g.

Exercise 6. Show that in this case too, f and g generate the same ideal
in k[[z]] or k[x](g).
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Reducing f by g and then subsequently reducing the results by fo = f
gives the sequence
fi = Red (f,g) = 2% — a® — 2°
fo = Red (f1, f) = =22 — 2°

f3 = Red (fa, f) = 22* — 2°
fi = Red (fs, f) = —3a”
f5 = Red (f4, f) = 31‘6

and so on, which again clearly does not terminate. However, we get
something which does terminate by reducing fs by fi:

f5 = Red (f4, f) = 31‘6
}6 = Red (fs, f4) = 0

From this, we can easily give an expression for f:
f=1-g+ (x—2224+22%-32%) - f+ f5.
However, we also have

+ z? 32°
J5 v v v 1+ 1+ f
Backsubstituting this into the previous equation for f and multiplying by

1 + x, we obtain
(14+z)f=0+2z)g+ 1 +2)(x— 22 + 223 — 32%)f + 32°f.
Then moving z f to the right-hand side gives an equation of the form
f = (unit) - g + (polynomial vanishing at 0) - f.

This, of course, is what we want according to Exercise 6; upon transposing
and solving for f, we have f = (unit) - g.

Our presentation will now follow the recent book [GrP], which describes
the algorithms underlying the latest version of the computer algebra sys-
tem Singular. We will introduce this system in the next section. Since we
deal with orders that are not well-orderings, the difficult part is to give a
division process that is guaranteed to terminate. The algorithm and termi-
nation proof from [GrP] use a clever synthesis of ideas due to Lazard and
Mora, but the proof is (rather amazingly) both simpler and more general
than Mora’s original one. Using reductions by results of previous reduc-
tions as above, Mora developed a division process for polynomials based
on a local order. His proof used a notion called the écart of a polynomial, a
measurement of the failure of the polynomial to be homogeneous, and the
strategy in the division process was to perform reductions that decrease
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the écart. This is described, for instance, in [MPT]. Also see Exercise 11
below for the basics of this approach. Lazard had shown how to do the
same sort of division by homogenizing the polynomials and using an ap-
propriate monomial order defined using the local order. In implementing
Singular, the authors of [GrP] found that Mora’s algorithm could be made
to work for any semigroup order. The same result was found independently
by Gréabe (see [Gral]). Theorem (3.10) below gives the precise statement.

To prepare, we need to describe Lazard’s idea mentioned above. We will
specify the algorithm by using the homogenizations of f and the f; with
respect to a new variable ¢. If ¢ € k[zq,...,2,] is any polynomial, we
will write ¢” for the homogenization of g with respect to t. That is, if
g =, Cax® and d is the total degree of g, then

gh _ antdila‘za.
@

(3.6) Definition. Each semigroup order > on monomials in the z; extends
to a semigroup order >’ on monomials in ¢, x1, ..., z, in the following way.
We define t¢z® >’ tP2P if either a + || > b+ |8, or a + |a| = b+ |B] and
% > 2P,

In Exercise 12 below, you will show that >’ is actually a monomial order
on klt,x1,...,xn).
By the definition of >, it follows that if t* > ¢% 2 for some a, a’, 3 with

a = a' + ||, then 1 > . Hence, writing R = Locs (k[z1, . .., 2,]),
(3.7) t* > 2% and a = o’ 4+ |B] = 1 + 27 is a unit in R.
It is also easy to see from the definition that if g € k[z1, ..., x,], then

homogenization takes the >-leading term of g to the >’-leading term of g"—
that is, LT/ (g") = t%L1~ (g), where a = d — |multideg. (g)|. Conversely, if

G is homogeneous in k[t, z1, . . ., Z,], then dehomogenizing (setting ¢t = 1)
takes the leading term LT/ (G) to LT (g), where g = Gli—1.

Given polynomials f, f1,..., fs and a semigroup order >, we want to
show that there is an algorithm (called Mora’s normal form algorithm) for
producing polynomials h, u,a1,...,as € k[z1,...,x,], where u = 1+ ¢
and LT(g) < 1 (so u is a unit in Locs (k[z1, .. ., Zs])), such that
(38) u’f:a1f1+"'+asfs+ha

where 11(a;)LT(f;) < vr(f) for all 4, and either h = 0, or vT(h) < rT(f)
and LT(h) is not divisible by any of LT(f1), ..., 1T(fs).

Several comments are in order here. First, note that the inputs
f, fi,..., fs, the remainder h, the unit u, and the quotients a, ..., as in
(3.8) are all polynomials. The equation (3.8) holds in k[x1, ..., ,], and as
we will see, all the computations necessary to produce it also take place in a
polynomial ring. We get a corresponding statement in Locs (k[z1, . . ., Zy])
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by multiplying both sides by 1/u:
f=(a/u)fi + -+ (as/u) fs + (R/u).

By Exercise 11 of §1, restricting to ideals generated by polynomials entails
no loss of generality when we are studying ideals in k[z1, ..., Zn](z,,.. 2,y =
Locs (k[z1, ..., xy,]) for a local order >. But the major reason for re-
stricting the inputs to be polynomials is that that allows us to specify
a completely algorithmic (i.e., finite) division process. In k[[x1, ..., zy]]
or k{z1,...,2,}, even a single reduction—computing Red (f, g)—would
take infinitely many computational steps if f or g were power series with
infinitely many non-zero terms.

Second, when dividing f by f1,..., fs as in (3.8), we get a “remainder”
h whose leading term is not divisible by any of the T(f;). In contrast, if
we divide using the division algorithm of Chapter 1, §2, we get a remainder
containing no terms divisible by any of the rr(f;). Conceptually, there
would be no problem with removing a term not divisible by any of the
LT(f;) and continuing to divide. But as in the first comment, this process
may not be finite.

On the surface, these differences make the results of the Mora normal
form algorithm seem weaker than those of the division algorithm. Even so,
we will see in the next section that the Mora algorithm is strong enough
for many purposes, including local versions of Buchberger’s criterion and
Buchberger’s algorithm.

Instead of working with the f, f;, h, a;, and u directly, our statement of
the algorithm will work with their homogenizations, and with the order >’
from Definition (3.6). Let F' = f"* and F; = f} fori = 1,...,s. We first
show that there are homogeneous polynomials U, A1, ..., A, such that

(3.9) U-F=AF+ -+ AF;+H,
where LT(U) = t* for some a,
a + deg(F) = deg(A;) + deg(F;) = deg(H)

whenever A;, H # 0. Note that since U is homogeneous, if LT(U) = t%,
then by (3.7) when we set ¢ = 1, the dehomogenization v is a unit in
Locs (k[z1, . . ., x,)). The other conditions satisfied by U, A4, . .., A, H are
described in the following theorem.

(3.10) Theorem (Homogeneous Mora Normal Form Algorithm).
Given nonzero homogeneous polynomials F, Fy, ..., Fs in k[t, x1, ..., 2]
and the monomial order >' extending the semigroup order > on monomials
in the x;, there is an algorithm for producing homogeneous polynomials
U, Ay, ..., As, H € k[t x4, ..., x,] satisfying

U-F=AF + -+ AF, + H,
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where LT(U) = t* for some a,
a + deg(F) = deg(4;) + deg(F;) = deg(H)

whenever A;, H # 0, t°ur(F) >’ vr(A)Lr(F;), and no vr(F;) divides
tur(H) for any b > 0.

PrROOF. We give below the algorithm for computing the remainder H.
(The computation of the A; and U is described in the correctness argument
below.) An important component of the algorithm is a set L consisting of
possible divisors for reduction steps. As the algorithm proceeds, this set
records the results of previous reductions for later use, according to Mora’s
idea.

Input: F, Fy,..., Fs € k[t,x1, . .., z,] homogeneous and nonzero
Output: H as in the statement of Theorem (3.10)

H:=F;L:={F,...,Fs}; M := {G € L : v1(Q)|Lr(t*H) for some a}
WHILE (H # 0 AND M # () DO
SELECT G € M with a minimal
IF ¢ > 0 THEN
L:=LU{H}
H = Red(t°H, G)
IF H # 0 THEN
M :={G € L : vr(G)|tr(¢t*H) for some a}

We claim that the algorithm terminates on all inputs and correctly
computes H as described in the statement of the theorem.
To prove termination, let M; denote the monomial ideal

(Lr(L)) = (Lr(G) : G € L) C klt,x1,. .., xy]

after the jth pass through the WHILE loop (j > 0). The loop either leaves
L unchanged or adds the polynomial H. Thus

Mj C ./\/lj+1.

Notice that when H is added to L, LT(H) does not lie in M, for if it did,
then we would have

LT(G)|ur(H)

for some G € L. Thus Lr(G)[Lr(t°H), which would contradict our choice
of H since a was chosen to be minimal, yet adding H to L requires a > 0.
It follows that M; C M, is a strict inclusion when a new element is
added to L during the jth pass.

Since the polynomial ring k[t, 21, ..., z,] satisfies the ascending chain
condition on ideals, there is some N such that My = Mpy41 = ---.
By what we just proved, it follows that no new elements are added to L
after the Nth pass through the WHILE loop. Thus, from this point on,
the algorithm continues with a fixed set of divisors L, and at each step a
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reduction takes place decreasing the >’-leading term of H. Since >’ is a
monomial order on k[t, z1, ..., x,], the process must terminate as in the
proof of the usual division algorithm.

To prove correctness, observe that the algorithm terminates when H = 0
or M = (. In the latter case, {F1, ..., Fs} C L tells us that LT(F;) doesn’t
divide LT(t*H) = t’vr(H) for any 1 < i < s and b > 0. Thus H has the
correct divisibility properties when it is nonzero.

It remains to show that H satisfies an identity of the form (3.9) with
LT(U) = t* We will count passes through the WHILE loop starting at
j = 0 and let H; be the value of H at the beginning of the jth pass
through the loop (so Hy = F at the start of the Oth pass). We will prove
by induction on j > 0 that we have identities of the form

(3.11) UpF' = Ay pFr + -+ Ag 1 Fs + Hy, 0< k<,
where Uy and A; , are homogeneous with
LT(Uy) = t%
such that a;+deg(F) = deg(A; x)+deg(F;) = deg(Hy) and, for 0 < k < 7,
(3.12) ag—1 < ap and t**ur(Hi_1) > t*ur(Hy).

Since Hy = F, setting Uy = 1 and A; o = 0 for all [ shows that ev-
erything works for j = 0. Now assume j > 0. We need to prove that the
polynomial H;,; produced by the jth pass through the loop satisfies the
above conditions.

If no Lr(G) divides tur(H;) for any b > 0 and G € L, then the algorithm
terminates with H; and we are done. Otherwise some G € L satisfies
LT(G)|LT(t*H;) with @ minimal. Hence there is a term M such that

LT(t*H;) = M1L1(G).
There are two possibilities to consider: either G = F; for some i, or G = Hy
for some ¢ < j.

If G = F, for some i, and a is chosen as above, then H;;; =

Red(t*H;, F;) means that

taHj =MF;, + Hjy.
If we multiply the equation (3.11) with £ = j by t* and substitute, then
we obtain

U F = t"Ay jFy + - - + 1" A, jFs + t°H;
= taAl,jFl + -4 taAsijS + MF; + Hj+1.

Taking U; 11 = t*U; and

A Ay if 1 # i
BIFL =\ 1A + M il =4,
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we get an expression of the form (3.11) with & = j 4+ 1. Also note that
LT(Uj+1) = taJraj.

On the other hand, if G is a result Hy of a previous reduction, then
Hji1 = Red(t*H;, Hy) means that

t“H; = M Hy + Hj 4.

Now take (3.11) with & = j (resp. kK = ¢) and multiply by t* (resp. M).
Subtracting gives the equation

(t*U; = MUF = (t°Ay; — M Ay ) Fy + -+ (1°Aq; — M Ag ) Fo + Hj 1.

Setting Uj 41 = t*U;—M Uy and A; ;11 = t*A; ; —M A; 4, we see that (3.11)
holds for k = j + 1. As for LT(U,+1), note that (3.12) implies ¢t* LT(H;) >’
t*vr(H;) since £ < j. Thus

t*T N (Hy) = t“t%ur(He) > t*t*ur(Hy) = t™ur(t*Hy) = t*“Mur(Hy),
which gives t*t% >’ t*M. Using L1(U;) = t% and L1(U;) = t*, we obtain
Lr(Uj11) = vr(t®U; — MUyp) = %1%,

Finally, note that Lr(Uj41) = t*t% in both cases, so that a;41 = a +
a; > aj. Also
Lr(t®Hj) >' vr(Hjqq)
since H 41 is a reduction of t* H;. From here, it is straightforward to show
that (3.12) holds for & = j + 1. This completes the induction and shows

that H has the required properties.
To finish the proof, we need to show that

a + deg(F) = deg(4;) + deg(F;) and t*ur(F) >' ur(A;)ur(F;)
when A; # 0. You will do this in Exercise 13.
Next, we claim that after homogenizing, applying the homogeneous Mora

normal form algorithm, and dehomogenizing, we obtain an expression (3.8)
satisfying the required conditions. Here is the precise result.

(3.13) Corollary (Mora Normal Form Algorithm). Suppose that

fofise oy fs € K[z, ..., x,] are nonzero and > is a semigroup order on
monomials in the x;. Then there is an algorithm for producing polynomials
Uy A1y ..., 05, h € k[T1,...,Ty] such that

uf =ai1fi1 +---+asfs + h,

where LT(u) = 1 (so u is a unit in Locs (k[z1, ..., x,])), vT(a;)ur(f;) <
Lr(f) for all i with a; # 0, and either h = 0, or Lr(h) is not divisible by
any LT(f;).

PROOF. See Exercise 14.
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Exercise 7. Carry out the Mora normal form algorithm dividing f =
22 +y? by fi = x — ay, fo = y* + 23 using the alez order in k[z, y].

In Locs (k[z1, ..., x,]), we get a version of the Mora algorithm that
doesn’t require f to be a polynomial. Recall from Exercise 5 that rT(f)
makes sense for any nonzero f € Locs (k[z1, ..., 24)).

(3.14) Corollary. Let > be a semigroup order on monomials in the
ring klzi,...,x,] and let R = Locs(k[z1,...,2,]). Let f € R and
fisoo oy fs € K[x1,...,x,] be nonzero. Then there is an algorithm for
computing h,a1,...,as € R such that

f:a1f1+"'+asfs+h»

where LT(a;)LT(f;) < vr(f) for all i with a; # 0, and either h = 0, or
Lr(h) < vr(f) and ur(h) is not divisible by any of LT(f1), ..., ur(fs).

PROOF. If we write f in the form f’/u’ where f' v’ € k[z1,...,x,] and
v’ is a unit in R, then dividing f’ by f1,..., fs via Corollary (3.13) gives

u- f'=ajfi+ - +agfs + 1

where u, b/, a}, ..., a) are as in the corollary. Also observe that LT(h') <
L1 (h) follows from L1 (a})Lr(f;) < LT(f’). Since the leading term of a unit is
a nonzero constant (see Exercise 2), dividing a polynomial by a unit doesn’t
affect the leading term (up to multiplication by a nonzero constant). Thus,
dividing the above equation by the unit v u’ gives

f=aifi+ - +asfs +h,

where a; = a}/(uv’), h = h'/(uu’) clearly have the required properties.

In the next section, we will use the Mora normal form algorithm to extend
Buchberger’s algorithm for Grébner bases to ideals in local rings.

ADDITIONAL EXERCISES FOR §3

Exercise 8. Let > be a local order on monomials in k[x1, ..., Tn(z,,... 2.)

and k[[z1, ..., z,]].

a. Show that every nonempty set of monomials has a maximal element
under >. Hint: Define >, by 2* >, zf if and only if 2® < 2. Use
Corollary 6 of Chapter 2, §4 of [CLO] to prove that >, is a well-ordering.

b. Use part a to define multideg(h) and vr(h) for h € k[[z1, ..., z,]].

c. Let i : klz1,...,%0)(z,,.. 2y — K[[z1,...,2,]] denote the inclusion
obtained by writing each h € k[x1, ..., Zp|(z, ... 2, in the form f/(14g)
and then expanding 1/(1 4+ h) in a formal geometric series. Show that
multideg(h) = multideg(i(h)).
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d. Deduce that
LM (h) = 1Ms (i(h)), Les(h) = Les(i(h)), and LT (h) = Lrs(i(h)).

Exercise 9. In the homogeneous Mora normal form algorithm (3.10),
suppose that h = 0 after dehomogenizing. Show that f belongs to the
ideal generated by fi,..., fs in the ring R = Locs (k[z1, ..., 2y,]). Is the
converse always true?

Exercise 10. How should the homogeneous Mora normal form algorithm
(3.10) be extended to return the quotients A; and the unit U as well as the
polynomial H? Hint: Use the proof of correctness.

Exercise 11. This exercise describes the way Mora based the original
version of the normal form algorithm (for local orders) on the écart of a
polynomial. Let g # 0 € k[z1,...,x,], and write g as a finite sum of
homogeneous nonzero polynomials of distinct total degrees:
k
g= Z gi, ¢gi; homogeneous,

i=1
with deg(g1) < -+ - < deg(gx). The order of g, denoted ord(g), is the total
degree of g1. The total degree of g, denoted deg(g) is the total degree of gy.
The écart of g, denoted E(g), is the difference of the degree of g and the
order of g:

E(g) = deg(g) — ord(g).

By convention, we set E(0) = —1. Thus E(g) > —1 for all g. (The word

écart is French for “difference” or “separation”—clearly a good description

of the meaning of F(g)!)

a. Let > be a local order and let f and g be two nonzero polynomials such
that tT(g) divides LT(f). Then show that

E(Red (f,9)) < max(E(f), E(9))-

b. In the one-variable case, part a gives a strategy that guarantees termi-
nation of division. Namely, at each stage, among all the polynomials by
which we can reduce, we reduce by the polynomial whose écart is least.
Show that this will ensure that the écarts of the sequence of partial
dividends decreases to zero, at which point we have a monomial which
can be used to reduce any subsequent partial dividend to 0.

c. Apply this strategy, reducing by the polynomial with the smallest pos-
sible écart at each step, to show that g divides f in k[z], in each of
the following cases.

1. g =x+22+23, f = 22 +22". Note that there is no way to produce
a sequence of partial dividends with strictly decreasing écarts in this
case.
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2. g=x+22+23 f =2+ 2%+ 2° + 2 Note that after producing
a monomial with the first reduction, the écart must increase.

Exercise 12. Let > be a semigroup order on monomials in k[z1, ..., 2]
and extend to >’ on monomials in ¢, x1,...,%, as in the text: define
tox® >’ P28 if either a + |a] > b+ |B] or a + |a| = b+ |3|, but 2 > xP.
a. Show that >’ is actually a monomial order on k[t,z1,. .., x,).

b. Show that if > = >); for an m x n matrix M, then >’ is the order >/
where M’ is the (m + 1) X (n + 1) matrix

Exercise 13. Prove that at every stage of the homogeneous Mora normal
form algorithm from Theorem (3.10), the polynomials U, A4, ..., As, H are
homogeneous and satisfy the conditions

a + deg(F) = deg(A;) + deg(F;) = deg(H)
t*vr(F) >' tr(A;)ur(F;)
whenever A;, H # 0.
Exercise 14. Prove Corollary (3.13) using the homogeneous polynomials

produced by the homogeneous Mora normal form algorithm described in
the proof of Theorem (3.10). Hint: See the paragraph following (3.7).

Exercise 15. In [GrP], Mora’s original notion of écart (described in
Exercise 11) is modified to create a version of the Mora normal form algo-

rithm which works directly with the polynomial ring k[z1, . . ., 2,] and the
semigroup order >. Define the écart of f € k[z1,...,x,] to be

ecart(f) = deg(f) — deg(rr(f)).
Given nonzero polynomials f, f1,..., fs € k[z1,...,xy], prove that the

remainder h from Corollary (3.13) is produced by the following algorithm.

hi=fiL:={fi,..., fs}i M :={g € L:rr(g)|tr(h)}
WHILE (h # 0 AND M # §) DO
SELECT g € M with ecart(g) minimal
IF ecart(g) > ecart(h) THEN
L:=LU{h}
h := Red(h, g)
IF h # 0 THEN
M = {g € L :vr(g)ltr(h)}
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84 Standard Bases in Local Rings

In this section, we want to develop analogs of Grobner bases for ideals in
any one of our local rings R = k[x1, ..., Zn](z,,...2,), B = k{z1,... 20},
or R = k[[z1,...,2,]]. Just as for well-orderings, given an ideal I in R,
we define the set of leading terms of I, denoted LT(I), to be the set of all
leading terms of elements of I with respect to >. Also, we define the ideal
of leading terms of I, denoted (LT(I)), to be the ideal generated by the set
LT(I) in R. Also just as for ideals in polynomial rings, it can happen that
I = {(f1,...,fs) but (tv(I)) # (Lr(f1),...,L7(fs)) for an ideal I C R.
By analogy with the notion of a Grobner basis, we make the following
definition.

(4.1) Definition. Let > be a semigroup order and let R be the ring of
fractions Locs (k[z1,...,2,]) as in Definition (3.5), or let > be a local
order and let R = k[[z1,...,2,]] or k{z1,...,2,}. Let I C R be an
ideal. A standard basis of I is a set {g1,...,g:} C I such that (Lr(I)) =

(1r(g1), - -+, 11(ge))-

In the literature, the term “standard basis” is more common than
“Grobner basis” when working with local orders and the local rings
R =klz1,...,%n)(zy,... 20y Kl[T1, ..., 20]], or k{x1, ..., 2, } so we use that
terminology here.

Every nonzero ideal in these local rings has standard bases. As a result,
there is an analog of the Hilbert Basis Theorem for these rings: every ideal
has a finite generating set. The proof is the same as for polynomials (see
Exercise 2 of Chapter 1, §3 and Exercise 2 below). Moreover, the Mora
normal form algorithm—Corollary (3.13)—is well behaved when dividing
by a standard basis. In particular, we obtain a zero remainder if and only
if f is in the ideal generated by the standard basis (see Exercise 2).

However, in order to construct algorithms for computing standard bases,
we will restrict our attention once more to ideals that are generated in
these rings by collections of polynomials. Most of the ideals of interest
in questions from algebraic geometry have this form. This will give us
algorithmic control over such ideals. For example, we obtain a solution of
the ideal membership problem for ideals generated by polynomials in the
local rings under consideration.

Given polynomial generators for an ideal, how can we compute a stan-
dard basis for the ideal? For the polynomial ring k[z1, . . ., ] and Grébner
bases, the key elements were the division algorithm and Buchberger’s algo-
rithm. Since we have the Mora algorithm, we now need to see if we can carry
Buchberger’s algorithm over to the case of local or other semigroup orders.
That is, given a collection f1, ..., fs of polynomials, we would like to find
a standard basis with respect to some local order of the ideal (f1,..., fs)
they generate in a local ring R. More generally, one could also look for
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algorithms for computing standard bases of ideals in Locs (k[z1, ..., x4])
for any semigroup order.

It is a pleasant surprise that the ingredients fall into place with no dif-
ficulty. First, the definition of S-polynomials in this new setting is exactly
the same as in k[z1, ..., z,] (see Definition (3.2) of Chapter 1), but here
we use the leading terms with respect to our chosen semigroup order.

Next, recall that Buchberger’s algorithm consists essentially of forming
S-polynomials of all elements in the input set F' = {f1,..., fs} of poly-
nomials, finding remainders upon division by F', adding to F' any nonzero
remainders, and iterating this process (see §3 of Chapter 1). Since we have
the Mora normal form algorithm, whose output is a sort of remainder on
division, we can certainly carry out the same steps as in Buchberger’s algo-
rithm. As with any algorithm, though, we have to establish its correctness
(that is, that it gives us what we want) and that it terminates.

In the case of well-orders, correctness of Buchberger’s algorithm is guar-
anteed by Buchberger’s criterion, which states that a finite set G is a
Grobner basis if and only if the remainder upon division by G of every
S-polynomial formed from pairs of elements of G is 0 (see Chapter 1, §3).

The following theorem gives analogs of Buchberger’s criterion and
Buchberger’s algorithm for the ring of a semigroup order.

(4.2) Theorem. Let S C klxy,...,xz,] be finite, let > be any semigroup

order, and let I be the ideal in R = Locs (k[x1, ..., xy]) generated by S.

a. (Analog of Buchberger’s Criterion) S = {g1,...,g:} is a standard basis
for I if and only if applying the Mora normal form algorithm given in
Corollary (3.13) to every S-polynomial formed from elements of the set
S yields a zero remainder.

b. (Analog of Buchberger’s Algorithm) Buchberger’s algorithm, using the
Mora normal form algorithm in place of the usual polynomial division
algorithm, computes a polynomial standard basis for the ideal generated
by S, and terminates after finitely many steps.

PROOF. Let fS7MOra be the remainder h computed by Corollary (3.13) on

division of f by S. If S is a standard basis of I, then since S(g;, g;) € I for

S,M .o
all 4, j, Exercise 2 implies that S(g;, g;) =0 for all i, 7.

S,M .o
Conversely, we need to show that S(g;,g;) = 0 for all 1,7

implies that S is a standard basis, or equivalently that (Lr(I)) =
(tr(g1), . .., LT(g+)), using the order >. We will give the proof in the special
case when > is degree-anticompatible, meaning that |a| > |8] = z® < 2.
Examples are the orders >ge, O >grepier from Definitions (3.2) and (3.3).
Given f € I = {(g1,...,g:), we prove that LT(f) € (L1(g1),...,LT(g:)) as
follows. Consider the nonempty set

Sy = {max{rr(a;g;)} : a1,...,as € Rsatisfy f = S'_ aigi}.
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For a general semigroup order, we can’t claim that Sy has a minimal
element, even though S; is bounded below by rr(f). However, in Exer-
cise 3, you will show that this is true for degree-anticompatible orders.
Hence we can let 6 = min Sy. From here, the rest of the argument that
Lr(f) € (Tr(g1),...,L1(g:)) is a straightforward adaptation of the proof
of Theorem 6 of Chapter 2, §6 of [CLO] (you will verify this in Exercise 4).
This proves Buchberger’s criterion for degree-anticompatible orders. The
general case requires an analysis of the syzygy module of gi,...,gs (see
Theorem 2.5.9 of [GrP] for the details).

For part b, observe that the usual proof that Buchberger’s algorithm
terminates and yields a Grébner basis depends only on the ascending chain
condition for polynomial ideals (applied to the chain of monomial ideals
generated by the leading terms of the “partial bases” constructed as the
algorithm proceeds—see the proof of Theorem 2 of [CLO], Chapter 2, §2).
It does not require that the order used for the division process be a well-
order. It follows that, replacing each ordinary remainder computation by a
computation of the remainder from Mora’s algorithm, we get an algorithm
that terminates after a finite number of steps. Moreover, on termination,
the result gives a standard basis for I by part a.

The Mora normal form algorithm and standard basis algorithms using lo-
cal orders or more general semigroup orders > are not implemented directly
in the Grobner basis packages in Maple or Mathematica. They could be
programmed directly in those systems, however, using the homogenization
process and the order >’ from Definition (3.6). Alternatively, according to
Lazard’s original idea, the standard Buchberger algorithm could be applied
to the homogenizations of a generating set for I. This approach is sketched
in Exercise 5 below and can be carried out in any Grébner basis implemen-
tation. Experience seems to indicate that standard basis computation with
Mora’s normal form algorithm is more efficient than computation using
Lazard’s approach, however. The CALI package for REDUCE does con-
tain an implementation of Buchberger’s algorithm using semigroup orders
including local orders.

There is also a powerful package called Singular described in [GrP] and
available via the World Wide Web from the University of Kaiserslautern
(see the Singular homepage at http://www.singular.uni-k1.de/) that
carries out these and many other calculations. In particular, Singular is
set up so that local orders, monomial orders (well-orderings), and mixed
orders can be specified in a unified way as >j; orders for integer matrices
M. This means that it can be used for both Grébner and standard basis
computations. Here is a very simple Singular session computing a standard
basis of the ideal generated by

a2 — b 27wy + P+ 23 a2
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in R = k[z,y, 2](z,y,-) using the alez order, and computing the multiplicity
of the origin as a solution of the corresponding system of equations.

> ring r = 32003, (x,y,z), Ds;

> ideal i = xb-xy6+z7, xy+y3+z3, x2+y2-z2;
> ideal j=std(i);
4(2)s5.8-s(2)s9..s(3).10.---sH(11)
product criterion:8 chain criterion:7
>3

j[1]=x2+y2-122

j[2]=xy+y3+z3

j[3]1=y3-1yz2-1xy3-1xz3

j [4]=x2z4-1y6+2y4z2-1y3z3+2yz5-1xy6+27

j [5]1=y2z4-1z6+xy6-2xy4z2+xy323-2xyz5+x2y6-1x27
jl6l=yz7

j7]1=29

> Vdim(j);

24

Singular can work either with a finite field of coefficients or with k£ = Q
or a finite extension of Q. The first line here defines the characteristic of the
field, the ring variables, and the monomial order. The Ds is an abbreviation
for the alex order, which could also be specified by a matrix as follows

> ring r = 32003, (x,y,z), ((-1,-1,-1),(0,-1,-1),(0,0,-1));

as in Exercise 2 of §3. The ideal I is defined by the three polynomials above,
J contains the standard basis (seven polynomials in all), and the vdim
command computes the dimension of dim R/(rt(.J)). For more information
about this very flexible package, we refer the interested reader to [GrP].

We've already commented on how standard bases enable one to solve
the ideal membership problem in local rings, just as Grobner bases solve
the corresponding problem in polynomial rings. Another important use of
Grobner bases is the computation of dim k[z1, . .., x,]/I when this dimen-
sion is finite. For the local version of this result, we will use the following
terminology: given a local order > and an ideal I in one of the local
rings k[z1, ..., Tnl(z,,. 20y KllT1, .o, za]] or k{21, ..., 2.}, we say that
a monomial x® is standard if

a® ¢ (ur(l)).

Then we have the following result about standard monomials.

(4.3) Theorem. Let R be one of the local rings k[x1, ..., Tn](zy, . 20}
Ellz1, ..., zn]] or k{z1,...,2n}. If I C R is an ideal and > is a local
order, then the following are equivalent.

a. dim R/I is finite.
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b. dim R/(vr(1)) is finite.
c. There are only finitely many standard monomials.

Furthermore, when any of these conditions is satisfied, we have
dim R/I = dim R/{(rtr(I)) = number of standard monomials

and every f € R can be written uniquely as a sum

f=9+m

where g € I and r is a linear combination of standard monomials. In
addition, this decomposition can be computed algorithmically when R =
k[xlv <. 71‘"](11,“‘79%)'

PRrROOF. We first prove a = c. Suppose that z*™1) | ... 2%(™) are standard
monomials with m > dim R/I. Tt follows easily that there is a nontrivial
linear combination

¢
f= Zcixa(i) el, ¢ €k.
i=1

Then r(f) € (ur(I)) implies that some 2 € (1r(I)), which is im-
possible since z%® is standard. This shows that the number of standard
monomials is bounded above by dim R/I.

For ¢ = a, suppose that R = k[z1,...,Zn](z,,.. 2,). Then Exercise 11
of §1 implies that I is generated by polynomials, which means that we can
compute a polynomial standard basis G of I. Now take f € R and divide
f by G using Corollary (3.14) to obtain

f=g1+hy,

where g; € I and either hy = 0 or L1(h;) ¢ (LT(G)) = (L1(I)) (since G is
a standard basis) and LT(f) > vT(h1). Note that we are using the extension
of LT to R studied in Exercise 5 of §3.

If hy # 0, let Lr(hy) = c12°M, ¢; € k, ¢; # 0. Thus 2*() is standard
and, by Exercise 5 of §3, hy = c12®M) 47y, where 1 = 0 or z2) > LT(ry).
If 1 # 0, then applying the above process gives

ri = g2+ hy = g2 + 22" 41y
with go € I, 2% standard, and ro = 0 or 2%?) > r1(ry). If we combine
this with the formula for f, we obtain
f=g+h =g +az®®+r = (g + )+ ar®® + @ +ry,

where g1 + g2 € I, 20 2% standard, and 20 > 23 > 1r(ry) if
r9 # 0. We can continue this process as long as we have nonzero terms to
work with. However, since there are only finitely many standard monomials,
this process must eventually terminate, which shows that f has the form
g + r described in the statement of the theorem. We will leave it for the
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reader to prove uniqueness and describe an algorithm that carries out this
process (see Exercise 6 below). It follows that the cosets of the standard
monomials give a basis of R/I, proving

dim R/I = number of standard monomials

when R = k[z1,. .., Zn)(er,.z0) -

When R = k{z1,...,2,} or R = k[[z1,...,2,]], if we assume that we
can perform the Mora Normal Form Algorithm on inputs from R, then the
above argument applies for any f € R. The details of how this works will
be discussed in Exercise 2 below. This completes the proof of ¢ = a and
the final assertions of the theorem.

It remains to prove b < c¢. This follows immediately from what we have
already proved since I and (LT(])) have the same standard monomials.

When R = k[[z1,...,2,])] or R = k{z1,...,z,}, there are more pow-
erful versions of Theorem (4.3) that don’t assume that dim R/(rr(I)) is
finite. In these situations, the remainder r is an infinite series, none of
whose terms are in (LT(I)). See, for example, [Hir] or [MPT]. However, for
R = k[z1,...,2Zn)(z,,....2,), it is possible to find ideals I C R where nice
remainders don’t exist (see [AMR], Example 2).

ADDITIONAL EXERCISES FOR §4

Exercise 1. In this exercise and the next, we will show that every ideal

I in one of our local rings R has standard bases, and derive consequences

about the structure of R. Let > be any local order on R.

a. Explain why (L1(I)) has a finite set of generators.

b. For each 29, i = 1,...,t, in a finite set of generators of (LT(I)), let
gi € I be an element with L(g;) = 2*). Deduce that G = {g1,...,g:}
is a standard basis for I.

Exercise 2. If we ignore the fact that infinitely many computational steps

are needed to perform reductions on power series in k[[z1,...,xy]] or

k{x1,...,zy,}, then the Mora Normal Form Algorithm can be performed

with inputs that are not polynomials. Hence we can assume that the Mora

algorithm works for R, where R is either k[[z1,...,z,]] or k{z1,...,2,}.

a. Let G be a standard basis for an ideal I C R. Show that we obtain a
zero remainder on division of f by G if and only if f € I.

b. Using part a, deduce that every ideal I C R has a finite basis. (This is
the analog of the Hilbert Basis Theorem for k[z1, ..., z,].)

c. Deduce that the ascending chain condition holds for ideals in R. Hint:
See Exercise 13 of §2 of Chapter 5.

Exercise 3. Let > be a degree-anticompatible order on one of our local
rings R. Show that any nonempty set of monomials S that is bounded
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below (meaning that there exists a monomial % such that z° > x® for all
2P € S) has a smallest element.

Exercise 4. Carry out the proof of the analog of Buchberger’s Criterion
for degree-anticompatible orders, using Exercise 3 and the discussion before
the statement of Theorem (4.2).

Exercise 5. This exercise discusses an alternative method due to Lazard
for computing in local rings. Let > be the order in k[t, 21, ..., z,] from
Definition (3.6). Given polynomials fi,..., fs, let fl',..., f* be their
homogenizations in k[t,x1,...,z,], and let G be a Grobner basis for
(ff, ..., f4) with respect to the > consisting of homogeneous polynomi-
als (such Grobner bases always exist—see Theorem 2 in Chapter 8, §3 of
[CLO], for instance). Show that the dehomogenizations of the elements of
G (that is, the polynomials in k[x1, . . ., 2,] obtained from the elements of
G by setting ¢t = 1) are a standard basis for the ideal generated by F in
the local ring R with respect to the semigroup order >.

Exercise 6. Let I C R = k[x1,...,%n](z,,...2,) be an ideal such that
dim R/(vr(I)) is finite for some local order on R. Describe an algorithm
which for the input f € R computes the remainder r from Theorem (4.3).

§5 Applications of Standard Bases

We will consider some applications of standard bases in this section. The
multiplicity, and Milnor and Tjurina number computations we introduced
in §2 can be carried out in an algorithmic fashion using standard bases. We
begin by using Theorem (4.3) to prove Proposition (2.11), which asserts
that if I is a zero-dimensional ideal of k[z1, ..., x,] such that 0 € V(I),
then the multiplicity of 0 is

dim k[z1, .., Tnlizy, ey TR o 0] (e )
(5.1) = dim k[[z1, . .., x,]]/Tk][x1, . . ., T0]]
= dim k{x1, ...,z }/Tk{2z1, ..., 2},

where the last equality assumes k& = R or C. The proof begins with the
observation that by Theorem (2.2), we know that

dim k[zq, . .. ,mn}<x17___7xn>/1k[x1, o ,l'n]@:h“_,xn) < 00.

By Theorem (4.3), it follows that this dimension is the number of standard
monomials for a standard basis S for I C k[z1,...,Zn](,,... 2, ). However,
S is also a standard basis for ITk[[x1, ..., z,]] and Tk{z1,...,z,} by Buch-
berger’s criterion. Thus, for a fixed local order, the standard monomials are
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the same no matter which of the local rings R we are considering. Then
(5.1) follows immediately from Theorem (4.3).

This gives an algorithm for computing multiplicities. Exercises 2 and 3
below give some nice examples. In the same way, we can compute the Milnor
and Tjurina numbers defined in §2 (see Exercise 4).

Standard bases in local rings have other geometric applications as well.
For instance, suppose that V' C k™ is a variety and that p = (a1,...,a,)
is a point of V. Then the tangent cone to V' at p, denoted Cp,(V'), is defined
to be the variety

Cp(V) = V(fpmin : [ € I(V)),

where f}, min is the homogeneous component of lowest degree in the poly-
nomial f(x; 4+ as,...,x, + a,) obtained by translating p to the origin (see
part b of Exercise 17 of §2). A careful discussion of tangent cones, including
a Grobner basis method for computing them, can be found in Chapter 9,
§7 of [CLO]. However, standard bases give a more direct way to compute
tangent cones than the Grébner basis method. See Exercise 5 below for an
outline of the main ideas.

Here is another sort of application, where localization is used to con-
centrate attention on one irreducible component of a reducible variety. To
illustrate the idea, we will use an example from Chapter 6, §4 of [CLO]. In
that section, we showed that the hypotheses and the conclusions of a large
class of theorems in Euclidean plane geometry can be expressed as polyno-
mial equations on the coordinates of points specified in the construction of
the geometric figures involved in their statements. For instance, consider
the theorem which states that the diagonals of a parallelogram ABCD in
the plane intersect at a point that bisects both diagonals (Example 1 of
[CLOJ, Chapter 6, §4). We place the vertices A, B, C, D of the parallelogram
as follows:

A= (an)a B = (uv O)a C= (U»w)v D = (a’ b),

and write the intersection point of the diagonals AD and BC as N = (¢, d).
We think of the coordinates u, v, w as arbitrary; their values determine the
values of a, b, ¢, d. The conditions that ABCD is a parallelogram and N is
the intersection of the diagonals can be written as the following polynomial
equations:

hi=b—w=0

he =(a—uww—bw=0

hg =ad —cw =0

hy =d(v —u) — (¢ —u)w = 0,

as can the conclusions of the theorem (the equalities between the lengths
AN = DN and BN = CN)
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g1 =a’®—2ac—2bd +b>* =0
go = 2cu — 2cv — 2dw — u? + v? + w? = 0.

Since the geometric theorem is true, we might naively expect that the
conclusions g1 = g2 = 0 are satisfied whenever the hypothesis equations
h1 = he = hs = hy = 0 are satisfied. If we work over the algebraically
closed field C, then the Strong Nullstellensatz shows that our naive hope
is equivalent to

gi € I(V(h1, ha, hs, ha)) = \/(h1, ha, ha, ha).

However, as the following exercise illustrates, this is unfortunately not true.

Exercise 1. Use the radical membership test from [CLO], Chapter 4, §2
to show that

91,92 ¢ \/(hl,h27h3,h4> C Clu, v, w, a,b, ¢, d].

Thus neither conclusion g;, go follows directly from the hypothesis equa-
tions.

In fact, in [CLO], Chapter 6, §4 we saw that the reason for this was
that the variety V(hy, ha, h3, hy) C C7 defined by the hypotheses is ac-
tually reducible, and the conclusion equations g; = 0 are not identically
satisfied on several of the irreducible components of H. The points on the
“bad” components correspond to degenerate special cases of the configu-
ration A, B, C, D, N such as “parallelograms” in which two of the vertices
A, B, C, D coincide. In [CLO], Chapter 6, §4 we analyzed this situation very
carefully and found the “good” component of H, on which the conclusions
g1 = g2 = 0 do hold. Our purpose here is to point out that what we did
in [CLO] can also be accomplished more easily by localizing appropriately.

Note that taking (u,v,w) = (1,1,1) gives an “honest” parallelogram.
If we now translate (1,1,1) to the origin as in Exercise 17 of §2, and
write the translated coordinates as (U, V, W, a, b, ¢, d), the hypotheses and
conclusions become

hi=b—-—W-1=0

ho=(a—U—-1)(W4+1)=bV +1) =0

hs =ad —c(W+1)=0

hy =d(V —U) = (c—U —1)(W + 1)

g1 = a® —2ac — 2cd +b* =0

go = 2c(U +1) = 2¢(V + 1) = 2d(W + 1) — (U 4+ 1)?
+(V+1)2+(W+1)2=0.

Using Singular, we can compute a standard basis for the ideal generated
by the h; in the localization R = Q[U, V, W],v,w)la, b, ¢, d] as follows.
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>ringr =0, (a,b,c,d,U,V,W), (Dp(4),Ds(3));

> ideal i = b-W-1, (a-U-1)*(W+1)-bx(V+1), ad-c*x(W+1), dx(V-U)-
(c-U-1)*(W+1);

> ideal j = std(i);

> j;
j[1]=a+aW-1b-1bV-1-1U-1W-1UW
J[Q] =b-1-1W

j [3]=c+cW+dU-1dV-1-1U-1W-1UW
j [4]1=2d+2dU+2dW+2dUW-1-1U-2W-2UW-1W2-1UW2

The first line sets up the ring R by specifying the coefficient field k = Q
and a mixed order on the variables as in Exercise 3 of §3 of this chapter, with
alex on the variables U, V, W ordinary lex on a, b, ¢, d, and all monomials
containing a, b, ¢, d greater than any monomial in U, V, W alone. If we now
apply the Mora algorithm from Corollary (3.13), which is provided in the
Singular command reduce, we find that both conclusions are actually in
the ideal generated by hq, ho, h3, hy in R.

> poly g=a2-2ac-2bd+b2;

> poly h=reduce(g,j);

> h;

0

> polym=2c*(U+1)-2c* (V+1) -2d* (W+1) - (U+1) "2+ (V+1) "2+ (W+1) "2;
> poly n = reduce(m, j) ;

>n;

0

This shows that locally near the point with (u,v,w) = (1,1,1) on the
variety V(hy, ha, hs, hy), the conclusions do follow from the hypotheses.
Using the mixed order in the Mora algorithm, we have an equation

u- gy = arhy + -+ ashs,

where v € Q[U, V, W]is a unit in Q[U, V, W]y,v,w), and a similar equation
for go. In particular, this shows that Proposition 8 of Chapter 6, §4 of [CLO]
applies and the conclusions g1, g2 follow generically from the hypotheses
h;i, as defined there.

Along the same lines we have the following general statement, showing
that localizing at a point p in a variety V implies that we ignore components
of V that do not contain p.

(5.2) Proposition. Let I C k[z1,...,xz,] and suppose that the origin in
k™ is contained in an irreducible component W of V(I). Let f1,..., fs €
klx1, ..., 2] be a standard basis for I with respect to a local order, and let
g € klx1,...,xz,]. If the remainder of g on division by F = (f1,..., fs)
using the Mora algorithm from Corollary (5.13) is zero, then g € I(W)
(but not necessarily in I).
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PROOF. If the remainder is zero, the Mora algorithm yields an equation

u'g:a1f1+"'+asfsa

where u € k[xy,...,2,] is a unit in kfz1, ..., 2]z, ,). Since W C
V(I), u- g is an element of I(W). But W is irreducible, so I(W) is a prime
ideal, and hence u € I(W) or g € I(W). The first alternative is not possible
since u(0) # 0. Hence g € I(W).

It is natural to ask if we can carry out operations on ideals in local rings
algorithmically in ways similar to the Grobner basis methods reviewed
in Chapter 1 for ideals in polynomial rings. In the final part of this sec-
tion, we will show that the answer is yes when R = k[z1, ..., Zn](z,,...2,)-
Since many of the proofs in the polynomial case use elimination, we first
need to study elimination in the local context. The essential point will
be to work the new ring k[x1, ..., %n](z,,....2,)[t], whose elements can be
thought of first as polynomials in ¢ whose coefficients are elements of
k‘[l‘l, cee 7xn](z1,...,mn)'

In this situation, if we have an ideal I C kf[z1,...,2n) (4,
basic problem is to find the intersection

.....

Ih=1nN k[l‘l, S axn](ml,“.,xn%

Note that Iy is analogous to an elimination ideal of a polynomial ideal. This
elimination problem can be solved using a local order > on the local ring
to construct a suitable semigroup order on S = k[1,. .., Tn](z,,. .0, [t] @5
follows (see [AMR] and [Gré] for the details).

(5.3) Definition. An elimination order on S is any semigroup order >¢jim
on the monomials on S defined in the following way. Let > be a local order
in k[z1,...,%0](z,,....0,)- Then define

R 2 > im tla?

for k,1 € Z>o, and o, 8 € Z%, if and only if & > [, or K = [ and
a > (3. In other words, an elimination order is a product order combin-
ing the degree order on powers of ¢t and the given local order > on z® in
k[xl, . 7zn]<w1,...,m”)~

Elimination orders on S are neither local nor well-orders. Hence, the
full strength of the Mora algorithm for general semigroup orders is needed
here. We have the following analog of the Elimination Theorem stated in
Chapter 2, §1.

(5.4) Theorem (Local Elimination). Fiz an elimination order >qiim
on S = k[ri,...,Znl(zy,..xnt]. Let I C S be an ideal, and let G be a
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polynomial standard basis for I with respect to >epim. Then
GNEklxy,...,z,] = {g € G :1r(g) does not contain t}
and this is a standard basis of Iy = I N k[x1, ..., Tp)(z,

PRrROOF. Let G = {gi,...,g:} be a standard basis of I and Gg = {g € G :
LT(g) does not contain t}. By the definition of >¢jm, the condition that
LT(g) does not contain ¢ implies that g does not contain ¢. Since Go C Iy,
we need only show that if f € Ip N k[xy,...,z,], then f can be written as
a combination of elements in G with coefficients in k[z1,. .., 2n](zy . 2,
Since f € I and {gi,...,¢:} is a standard basis of I, the Mora algorithm
gives an expression

f=aig1+ -+ ag

(see Exercise 2 of §4), where LT(f) > rT(a;g;) for all a; # 0. By our
choice of order, we have a; = 0 for g; ¢ Go and g; € k21, ..., Tn(z,,... 2.)
otherwise, since ¢t does not appear in LT(f).

With this out of the way, we can immediately prove the following.

(5.5) Theorem. LetI,J C klx1,...,Zn)(z,,.. 2, and f € k[z1, ..., Ty].
a. INJ = (t I+ (1 — t) . J) n k[l‘l, . axn](xl,...,rn)'

b. I:(f) = § - (IN{(f)).

c. I:f> = (/I + (1= f-t)NExy, . Tl w) -

d. feVIifandonlyifl € I+ (1 — f-t) in k[zy,.. S Tl (e (]

PROOF. The proofs are the same as for polynomial ideals. (See Chapter 1
of this book, §2 and §3 of Chapter 4 of [CLO], and [AL] or [BW].)

We remind the reader that the stable quotient of I with respect to f,
denoted I: f*°, is defined to be the ideal

I:f* ={g € R: there exists n > 1 for which f"g € I}.

The stable quotient is frequently useful in applications of local algebra. We
also remark that the division in part b, where one divides the common
factor f out from all generators of I N (f) in klz1,. .., %n](z,, ... .2,), USeES
the Mora algorithm.

Just as the ability to do computations in polynomial rings extends to
allow one to do computations in quotients (i.e., homomorphic images of
polynomial rings), so, too, the ability to do computations in local rings
extends to allow one to do computations in quotients of local rings. Sup-
pose that J C k[x1, ..., Zn(z,,.. 2,y and let R = K[z, ..., Tp]iz,, 20/ J.
Then one can do computations algorithmically in R due to the following
elementary proposition.
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(5.6) Proposition. Let I1, I C R be ideals, and let I, Iz denote their
preimages in k[z1,. .., Tnlio,,. 2. Let f € kw1, .. 2]z, 0,y and
[f] € R be its coset. Then:

a. Il ﬂ]z = (I1 OIQ)/J,

b. Ii:[f] = (Li: f)/J;

C. Ili [f]oo = (Ilfoo)/J

Using a standard basis of J allows one to determine whether f,g € R
represent the same element in R (that is, whether [f] = [¢].) One can also
compute Hilbert functions and syzygies over R.

The techniques we have outlined above also extend to rings that are fi-
nite algebraic extensions of k[x1, ..., %n](z, ... 2,y i k[[21,...,2,]]. This
allows us to handle computations involving algebraic power series in
E[[z1, ..., zy]] algorithmically. See [AMR] for details. There are still many
open questions in this area, however. Basically, one would hope to handle
any operations on ideals whose generators are defined in some suitably al-
gebraic fashion (not just ideals generated by polynomials), but there are
many instances where no algorithms are known.

AppDIiTIONAL EXERCISES FOR §5

Exercise 2.

a. Let fi,...,fn € k[r1,...,z,] be homogeneous polynomials of de-
grees di,...,d,, respectively. Assume that I = (fi,..., fn) is
zero-dimensional, and that the origin is the only point in V(7). Show
that the multiplicity is also the dimension of

k[l’l,. . .,(En]/<f1,.. .,fn>,

and then prove that the multiplicity of 0 as a solution of f; = .-+ =

fn=0isdy ---d,. Hint: Regard fi1, ..., f,, as homogeneous polynomi-
als in xg, x1, ..., xs, where xg is a new variable. Using xg, x1,..., 2,
as homogeneous coordinates for P", show that f; = --- = f, = 0 have

no nontrivial solutions when xg = 0, so that there are no solutions at
oo in the sense of Chapter 3. Then use Bézout’s Theorem as stated in
Chapter 3.

b. Let f(x1,...,x,) be a homogeneous polynomial of degree d with an
isolated singularity at the origin. Show that the Milnor number of f at
the origin is (d — 1)™.

Exercise 3. Determine the multiplicity of the solution at the origin for
each of the following systems of polynomial equations.

a. 22 + 22yt — 2 =2y —y> = 0.

b. 22 +2y? —y — 2z = 2% — 8y? + 10z = 2? — Tyz = 0.

c. 2+l +2 2w = —yr—x=x—-—y+22=0.
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Exercise 4. Compute the Milnor and Tjurina numbers at the origin of

the following polynomials (all of which have an isolated singularity at 0).

a. f(x,y) = (2% + y*)® — 42%y%. The curve V(f) C R? is the four-leaved
rose—see Exercise 11 of [CLO], Chapter 3, §5.

b. f(z,y) = y*> — 2™, n > 2. Express the Milnor number as a function of
the integer n.

c. flx,y,2)=zyz+a* +yt+ 2%

Exercise 5. (Tangent Cones) For each f € (x1,...,z,), let fiin be the
homogeneous component of lowest degree in f. Let V = V(f1,..., fs) C
k™ be a variety containing the origin.

a. Let G = {g1,...,9:} be a standard basis for

I = <f17 e ey fs>k[l’1, ey In]<$1)m7w”>

with respect to a degree-anticompatible order >. Explain why v (g;)
is one of the terms in g; i for each <.
b. Show that V(g1,min, - - - s Gt,min) is the tangent cone of V' at the origin.
c. Consider the variety V = V(23 — yz — z,9? + 223) in k3. Using the
>alex Order on k[, y, 2](z.y. 2y, With & >y > 2, show that the two given
polynomials in the definition of V" are a standard basis for the ideal they
generate, and compute the tangent cone of V' at the origin using part b.

Exercise 6. For an r-dimensional linear subspace L C C™, a polynomial

f € Clxy, ..., x,] restricts to a polynomial function f, on L.

a. Show that if f has an isolated singularity at the origin in C™, then for al-
most all r-dimensional subspaces L C C", f, has an isolated singularity
at the origin in L.

b. One can show, in fact, that there is an open dense set A of all r-
dimensional subspaces of C™ such that the Milnor number u(f1) of fr,
at the origin does not depend on the choice of L in A. This number
is denoted p"(f). Show that p'(f) = mult(f) — 1 where mult(f) (the
multiplicity of f) is the degree of the lowest degree term of f that occurs
with nonzero coefficient.

c. Compute p2(f) and p3(f) if
1 f=a%+y*+27;

2. f =z 4+ 9% + 25 4+ zyz;

3. f =%+ a2yl + oz + 215

4. f =25 +y"z + 215,

Note that if n is the number of variables, then p™(f) = p(f), so that
w3(f) is just the usual Milnor number for these examples. To com-
pute these numbers, use the milnor package in Singular and note that
planes of the form z = ax 4 by are an open set in the set of all planes
in C3. One could also compute these Milnor numbers by hand. Note
that examples 1, 3, and 4 are weighted homogeneous polynomials. For
further background, the reader may wish to consult [Dim] or [AGV].
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d. A family {f; € C[x1,...,z,]} of polynomials with an isolated singular-
ity at the origin for ¢ near 0 is p-constant if u(fo) = u(f:) for ¢ near 0.
Show that f; = 2° + y* + 27 + ta8y? and f; = 2° + tay® + y72 + 21°
are p-constant families but f; = 2% 4+ 3® + 26 + tayz is not.

e. If f € Cxy, ..., z,] has an isolated singularity at the origin, the n-tuple
of integers (ut(f),...,u"(f)) is called the Teissier u*-invariant of f.
One says that a family {f;} is u*-constant if p*(fo) = p*(f+). Show that
fi = 2® +twyS + 472 + 29 is p-constant, but not p* constant. This is a
famous example due to Briangon and Speder—there are very few known
examples of p-constant families that are not p*-constant. At the time of
writing, it is not known whether there exist p-constant families in which
u' is not constant. The attempt to find such examples was one of the
issues that motivated the development of early versions of Singular.



Chapter 5

Modules

Modules are to rings what vector spaces are to fields: elements of a given
module over a ring can be added to one another and multiplied by elements
of the ring. Modules arise in algebraic geometry and its applications be-
cause a geometric structure on a variety often corresponds algebraically to
a module or an element of a module over the coordinate ring of the variety.
Examples of geometric structures on a variety that correspond to modules
in this way include subvarieties, various sets of functions, and vector fields
and differential forms on a variety. In this chapter, we will introduce mod-
ules over polynomial rings (and other related rings) and explore some of
their algebra, including a generalization of the theory of Grébner bases for
ideals.

§1 Modules over Rings

Formally, if R is a commutative ring with identity, an R-module is defined
as follows.

(1.1) Definition. A module over a ring R (or R-module) is a set M
together with a binary operation, usually written as addition, and an op-
eration of R on M, called (scalar) multiplication, satisfying the following
properties.

a. M is an abelian group under addition. That is, addition in M is associa-
tive and commutative, there is an additive identity element 0 € M, and
each element f € M has an additive inverse — f satisfying f+ (—f) = 0.
Foralla € Rand all f,g € M, a(f + g) = af + ag.

For all a,b € Rand all f € M, (a +b)f = af + bf.

For all a,b € Rand all f € M, (ab)f = a(bf).

If 1 is the multiplicative identity in R, 1f = f for all f € M.

o0 T

The properties in the definition of a module may be summarized by
saying that the scalar multiplication by elements of R interacts as nicely

189



190 Chapter 5. Modules

as possible with the addition operation in M. The simplest modules are
those consisting of all m x 1 columns of elements of R with componentwise
addition and scalar multiplication:

ai by a1 + by ai caq
a9 by as + by a2 cas
+ = . ) c = )
am b Am + b, am Clpm,
for any a1,...,am,b1,...,bm,c € R. We call any such column a wvector

and the set of all such R™.

One obtains other examples of R-modules by considering submodules of
R™, that is, subsets of R™ which are closed under addition and scalar
multiplication by elements of R and which are, therefore, modules in their
own right.

We might, for example, choose a finite set of vectors fy, ..., f; and con-
sider the set of all column vectors which can be written as an R-linear
combination of these vectors:

{a1f1 + - - - + asfs € R™, where ay,...,as € R}.

We denote this set (fy, ..., fs) and leave it to you to show that this is an
R-module.

Alternatively, consider an [ X m matrix A with entries in the ring R. If
we define matrix multplication in the usual way, then for any f € R™, the
product Af is a vector in R!. We claim (and leave it to you to show) that
the set

ker A = {f € R™ : Af = 0}

where 0 denotes the vector in R all of whose entries are 0 is an R-module.

Exercise 1. Let R be any ring, and R™ the m x 1 column vectors with

entries in R.

a. Show that the set (fy,...,fs) of R-linear combinations of any finite set
fi,..., f; of elements of R™ is a submodule of R™.

b. If Aisanl X m matrix with entries in R, show that ker A is a submodule
of R™.

c. Let A be as above. Show that the set

imA = {g € R' : g = Af, for some f € R™}

is a submodule of R!. In fact, show that it is the submodule consisting
of all R-linear combinations of the columns of A considered as elements
of R!.

d. Compare parts a and ¢, and conclude that (fy, ..., fs) = im F where F'
is the m X s matrix whose columns are the vectors fy, ... f;.
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The modules R™ are close analogues of vector spaces. In fact, if R = k is
a field, then the properties in Definition (1.1) are exactly the same as those
defining a vector space over k, and it is a basic fact of linear algebra that
the vector spaces k™ exhaust the collection of (finite-dimensional) k-vector
spaces. (More precisely, any finite dimensional k-vector space is isomorphic
to k™ for some m.) However, submodules of R™ when R is a polynomial
ring can exhibit behavior very different from vector spaces, as the following
exercise shows.

Exercise 2. Let R = k[z,y, z].
a. Let M C R3 be the module (f;, f5, f3) where

Y z 0
f1 == —X 5 fQ == 0 5 f3 == z
0 —x —y

Show that M = ker A where A is the 1 x 3 matrix (z y 2).

b. Show that the set {fi, f2, f3} is minimal in the sense that M # (f;, f;),
1<i<yj <3

c. Show that the set {f1, £, f3} is R-linearly dependent. That is, show that
there exist ai,as,as € R = k[z,y, 2], not all zero, such that a;f; +
asfy + asf; = 0, where 0 is the zero vector in R3.

d. Note that the preceding two parts give an example of a submodule of
k[z,y, 2]® in which there is a minimal generating set which is not linearly
independent. This phenomenon cannot occur in any vector space.

e. In fact more is true. Show that there is no linearly independent set
of vectors which generate the module M. Hint: First show that any
linearly independent set could have at most two elements. A fairly brutal
computation will then give the result.

On the other hand, some of the familiar properties of vector spaces carry
over to the module setting.

Exercise 3. Let M be a module over a ring R.

a. Show that the additive identity 0 € M is unique.

b. Show that each f € M has a unique additive inverse.

c. Show that 0f = 0 where 0 € R on the left hand side is the zero element
of R and 0 € M on the right hand side is the identity element in M.

Before moving on, we remark that up to this point in this book, we
have used the letters f, g, h most often for single polynomials (or elements
of the ring R = k[, ..., x,]). In discussing modules, however, it will be
convenient to reserve the letters e, f, g, h to mean elements of modules over
some ring R, most often in fact over R = k[z1,...,z,]. In addition, we
will use boldface letters e, f, g, h for column vectors (that is, elements of
the module R™). This is not logically necessary, and may strike you as
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slightly schizophrenic, but we feel that it makes the text easier to read.
For single ring elements, we will use letters such as a, b, c. Occasionally, for
typographical reasons, we will need to write vectors as rows. In these cases,
we use the notation (ag, ..., a,)T to indicate the column vector which is
the transpose of the row vector (ay ... am).

Many of the algebraic structures studied in Chapters 1 through 4 of this
text may also be incorporated into the general context of modules as the
exercise below shows. Part of what makes the concept of a module so useful
is that it simultaneously generalizes the notion of ideal and quotient ring.

Exercise 4.

a. Show that an ideal I C R is an R-module, using the sum and product
operations from R.

b. Conversely, show that if a subset M C R is a module over R, then M
is an ideal in R.

c. Let I be an ideal in R. Show that the quotient ring M = R/I is an
R-module under the quotient ring sum operation, and the scalar mul-
tiplication defined for cosets [g] € R/I, and f € R by flg] = [fg] €
R/I.

d. (For readers of Chapter 4) Show that the localization M = Rp of R at
a prime ideal P C R is a module over R, where the sum is the ring sum
operation from Rp, and the scalar product of b/c € Rp by a € R is
defined as a - b/c = ab/c € Rp.

e. Let M, N be two R-modules. The direct sum M @& N is the set of all
ordered pairs (f,g) with f € M, and ¢ € N. Show that M & N is
an R-module under the component-wise sum and scalar multiplication
operations. Show that we can think of R™ as the direct sum

R"=R&R&...4R

of R with itself m times.

We have already encountered examples of submodules of R™. More gen-
erally, a subset of any R-module M which is itself an R-module (that is,
which is closed under addition and multiplication by elements of R) is called
a submodule of M. These are the analogues of vector subspaces of a vector
space.

Exercise 5. Let FF C M be a subset and let N C M be the collection of
all f € M which can be written in the form

f:a1f1+"'+anfna
with a; € R and f; € F for all i. Show that N is a submodule of M.

The submodule N constructed in this exercise is called the submodule
of M generated by F. Since these submodules are natural generalizations
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of the ideals generated by given subsets of the ring R, we will use the
same notation—the submodule generated by a set F' is denoted by (F). If
(F) = M, we say that F spans (or generates) M. If there is a finite set
that generates M, then we say that M is finitely generated.

Exercise 6.

a. Let R be aring. Show that M = R™ is finitely generated for all m. Hint:
Think of the standard basis for the vector space k™ and generalize.

b. Show that M = k[z,y] is a module over R = k[z] using the ring sum
operation from k[z, y] and the scalar multiplication given by polynomial
multiplication of general elements of M by elements in R. However, show
that M is not finitely generated as an R-module.

If N is a submodule of M, then the set of equivalence classes of elements
of M where f € M is deemed equivalent to g € M ifandonlyif f—g € N
forms an R-module with the operations induced from M (we ask you to
check this below). It is called the quotient of M by N and denoted by
M/N.

Exercise 7. As above, let M, N be R-modules with N C M, let [f] =
{g € M : g— f € N} be the set of all elements of M equivalent to f,
and denote the set of all sets of equivalent elements by M/N. These sets
of equivalent elements are called equivalence classes or cosets. Note that
we can write [f] = f + N. Show that M/N is an R-module if we define
addition by [f] + [g] = [f + g] and the scalar multiplication by a[f] = [af]
by a € R. Hint: You need to show that these are well-defined. Also show
that the zero element is the set [0] = N.

The quotient module construction takes a little getting used to, but is
extremely powerful. Several other constructions of modules and operations
on modules are studied in the additional exercises.

After defining any algebraic structure, one usually defines maps that
preserve that structure. Accordingly, we consider module homomorphisms,
the analogues of linear mappings between vector spaces.

(1.2) Definition. An R-module homomorphism between two R-modules
M and N is an R-linear map between M and N. Thatis,amap ¢ : M — N
is an R-module homomorphism if for all @ € R and all f,g € M, we have

plaf +g) = ap(f) + ¢(9)-

This definition implies, of course, that o(f + g) = ©(f) + ¢(g) and
olaf) = ap(f) for alla € R and all f,g € M.

When M and N are free modules, we can describe module homomor-
phisms in the same way that we specify linear mappings between vector
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spaces. For example, letting M = N = R, every R-module homomorphism
¢ : R — R is given by multiplication by a fixed f € R—if g € R, then
©(g) = fg. To see this, given ¢, let f = ¢(1). Then for any a € R,

pla) =pla-1) =a-p(1) =af = fa.

Conversely, by the distributive law in R, multiplication by any f defines
an R-module homomorphism from R to itself.

More generally ¢ is a module homomorphism from R! to R™ if and only
if there exist [ elements f, ..., f; € R™ such that

o((ar,...,a)") = arfi + -+ + a/fy

for all (a1,...,a;)T € R' Given ¢, and letting e, es,...,e; be the
standard basis vectors in R! (that is e; is the column vector with a 1
in the i*" row and a 0 in all other rows), we can see this as follows.
For each i, let f; = (e;). Each (a1,...,a;)T can be written uniquely
as (a1,...,a)7 = aje; + -+ + are;. But then, since ¢ is a homomor-
phism, knowing ¢(e;) = f; determines the value of p((ay,...,a;)T) for all
(a1,...,a)T € R!. Then expanding each f; in terms of the standard basis
in R™, we see that ¢ may be represented as multiplication by a fixed m x [
matrix A = (a,;) with coefficients in R. The entries in the jth column give
the coefficients in the expansion of f; = ¢(e;) in terms of the standard
basis in R™. We record the result of this discussion as follows (the second
part of the proposition is a result of Exercise 1).

(1.3) Proposition. Given any R-module homomorphism ¢ : R™ — R,
there exists an | X m matriz A with coefficients in R such that o(f) = Af
for all £ € R™. Conversely, multiplication by any | X m matriz defines an
R-module homomorphism from R™ to R'.

The discussion above actually shows that an R-module homomorphism
¢ : M — N between two R-modules is always determined once one knows
the action of ¢ on a set of generators of M. However, unlike the situation in
which M = R™, one cannot define a homomorphism ¢ on M by specifying
@ arbitrarily on a set of generators of M. The problem is that there may be
relations among the generators, so that one must be careful to choose values
of ¢ on the generators so that ¢ is well-defined. The following exercise
should illustrate this point.

Exercise 8. Let R = k[z, y].

a. Is there any R-module homomorphism ¢ from M = (22 33) C R to R
satisfying ¢(2?) = y and (y*) = 2? Why or why not?

b. Describe all k[z, y]-homomorphisms of (z2, 4®) into k[z, y].

As in the case of vector spaces, one can develop a theory of how the same
homomorphism can be represented by matrices with respect to different sets
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of generators. We carry out some of this development in the exercises. We
have already defined the kernel and image of matrix multiplication. The
same definitions carry over to arbitrary homomorphisms.

(1.4) Definition. If ¢ : M — N is an R-module homomorphism between
two R-modules M and N, define the kernel of ¢, denoted ker(¢p), to be the
set

ker(p) = {f € M : ¢(f) = 0},
and the image of ¢, denoted im(yp), to be the set
im(p) = {g € N : there exists f € M with ¢(f) = g}.

The homomorphism ¢ is said to be an isomorphism if it is both one-to-one
and onto, and two R-modules M, N are called isomorphic, written M = N
if there is some isomorphism ¢ : M — N.

The proofs of the following statements are the same as those of the
corresponding statements for linear mappings between vector spaces, and
they are left as exercises for the reader.

(1.5) Proposition. Let ¢ : M — N be an R-module homomorphism
between two R-modules M and N. Then

a. p(0) = 0.

b. ker(p) is a submodule of M.

c. im(yp) is a submodule of N.

d. ¢ is one-to-one (injective) if and only if ker(y) = {0}.

PRrROOF. See Exercise 16.

When we introduce the notions of linear combinations and linear inde-

pendence and R is not a field (for example when R = k[z1, ..., z,]), the
theory of modules begins to develop a significantly different flavor from that
of vector spaces. As in linear algebra, we say that a subset F = {f1,..., fn}

of a module M is linearly independent over R (or R-linearly independent)
if the only linear combination a1 f; + - -+ + an fn, with a; € R and f; € F
which equals 0 € M is the trivial one in which a; = -+ = a, = 0. A set
F C M which is R-linearly independent and which spans M is said to be
a basis for M.

Recall from linear algebra that every vector space over a field has a basis.
In Exercise 2, we saw that not every module has a basis. An even simpler
example is supplied by the ideal M = (22, y3) C R studied in Exercise 8
(which is the same as the R-module generated by x? and 3® in R). The
set {x2,y3} is not a basis for M as a module because 22 and y* are not
R-linearly independent. For example, there is a linear dependence relation
y3z? — 22y3 = 0, but the coefficients y> and —x2 are certainly not 0. On
the other hand, because {z?, y>} spans M, it is a basis for M as an ideal.
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More generally, any ideal M in R = k[zq,...,x,] which requires more
than a single polynomial to generate it cannot be generated by an R-linearly
independent set. This is true because any pair of polynomials f1, fo € R
that might appear in a generating set (an ideal basis) satisfies a non-trivial
linear dependence relation fsf1 — f1fo = 0 with coefficients in R. Thus the
meaning of the word “basis” depends heavily on the context, and we will
strive to make it clear to the reader which meaning is intended by using the
phrases “ideal basis” or “module basis” to distinguish between the alter-
natives when there is a possibility of confusion. The following proposition
gives a characterization of module bases.

(1.6) Proposition. Let M be a module over a ring R. A set F C M is a
module basis for M if and only if every f € M can be written in one and
only one way as a linear combination

f:a1f1+"‘+anfna
where a; € R, and f; € F.

PROOF. The proof is the same as the corresponding statement for bases
of vector spaces.

The examples above show that, unlike vector spaces, modules need not
have any generating set which is linearly independent. Those that do are
given a special name.

(1.7) Definition. Let M be a module over a ring R. M is said to be a free
module if M has a module basis (that is, a generating set that is R-linearly
independent).

For instance, the R-module M = R™ is a free module. The standard
basis elements

1 0 0
0 1 0

€ = 0 , €2 = 0 ; y €m = 0 ;
0 0 1

form one basis for M as an R-module. There are many others as well. See
Exercise 19 below.

We remark that just because a module has a single generator, it need
not be free. As an example, let R be any polynomial ring and f € R
a nonzero polynomial. Then M = R/(f) is generated by the set [1] of
elements equivalent to 1. But [1] is not a basis because f - [1] = [f] = [0] =
0e M.
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In the following exercise we will consider another very important class of
modules whose construction parallels one construction of vector subspaces
in k™, and we will see a rather less trivial example of free modules.

Exercise 9. Let a1,...,a,, € R, and consider the set M of all solutions
(X1,...,X;n)T € R™ of the linear equation

a1X1+-~-+ame:O.

a. Show that M is a submodule of R™. (In fact, this follows from Exercise 1
because M = ker A where A is the row matrix A = (a1 ... ap).)

b. Take R = k[xz,y], and consider the following special case of the linear
equation above:

X1+ JJQXQ + (y — 2)X3 = 0.

Show that f; = (—22,1,0)7, and f; = (—y + 2,0, 1) form a basis for
M as an R-module in this case.

c. Generalizing the previous part, show that if R = k[z1, ..., x,], and one
of the coefficients a; in a1 X1 + - - - + @, X;, = 0 is a non-zero constant,
then the module M of solutions is a free R-module.

It can be difficult to determine whether a submodule of R™ is free. For
example, the following, seemingly innocuous, generalization of Exercise 9
follows from the solution in 1976 by Quillen [Qui] and Suslin [Sus] of a
famous problem raised by Serre [Ser| in 1954. We will have more to say
about this problem in the Exercises 25-27 and later in this chapter.

(1.8) Theorem (Quillen-Suslin). Let R = klz1,...,z,] and sup-

pose that ai,...,a, € R are polynomials that generate all of R (that
is (a1,...,am) = (1) = R). Then the module M of all solutions
(X1,..., Xm)T € R™ of the linear equation

a1X1—|—---—|—ame:0

18 free.

In 1992, Logar and Sturmfels [LS] gave an algorithmic proof of the
Quillen-Suslin result, and in 1994 Park and Woodburn [PW] gave an al-
gorithmic procedure that allows one to compute a basis of ker A where
A is an explicitly given unimodular row. The procedure depends on
some algorithms that we will outline later in this chapter (and is quite
complicated).

Exercise 10.

a. Let aq,...,a, € R. Show that the homomorphism R™ — R given by
matrix multiplication f — Af by the row matrix A = (a1 -+ am)
is onto if and only if (a1, ..., an) = R. Hint: A is onto if and only if
1 € im(A). Such a matrix is often called a unimodular row.
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b. Show that Theorem (1.8) generalizes Exercise 9c.
c. Let R = k[z,y] and consider the equation

I4+2)X1+ (1 —y)Xe+ (z+2y) X5 =0.

That is, consider ker A in the special case A = (a1 ag a3z) =
(l1+x 1—y x+=zy). Show 1 € (a1, ag, as).

d. Theorem (1.8) guarantees that one can find a basis for M = ker A in
the special case of part c. Try to find one. Hint: This is hard to do
directly—feel free to give up after trying and to look at Exercise 25.

e. In Exercise 25, we will show that the “trivial” relations,

a2 as 0
h) = | —a1 | ,hy = 0 yhy = | a3
0 —aq —a9

generate ker A. Assuming this, show that {hy, ha, hs} is not linearly in-
dependent and no proper subset generates ker A. This gives an example
of a minimal set of generators of a free module that does not contain a
basis.

The fact that some modules do not have bases (and the fact that even
when they do, one may not be able to find them) raises the question of
how one explicitly handles computations in modules. The first thing to
note is that one not only needs a generating set, but also the set of all
relations satisfied by the generators—otherwise, we have no way of knowing
in general whether two elements expressed in terms of the generators are
equal or not.

For instance, suppose you know that M is a Q[z, y]-module and that
f1, f2, f3 is a generating set. If someone asks you whether 4f; 4+ 5fs + 6 f3
and f; + 3fo + 4f3 represent the same element, then you cannot tell unless
you know whether the difference, 3f; + 2fs + 2f3, equals zero in M. To
continue the example, if you knew that every relation on the fi, fo, f3 was
a Q[z, y]-linear combination of the relations 3f1 + (1 + z)f2 = 0, f1 +
(2 4+ 3)f2 + 4yfs = 0, and (2 — 2z)f2 + 4f3 = 0, then you could settle
the problem provided that you could decide whether 3f1 + 2fs + 2f3 =0
is a Q[z, y]-linear combination of the given relations (which it is).

Exercise 11. Verify that (no matter what f; are), if every linear relation
on the fi, fa, f3 is a Q[z, y]-linear combination of the relations 3f; + (1 +
x)fo = 0,f1 + 22 + 3)fo + dyfs = 0 and (2 — 2z)fo + 4f3 = 0, then
3f1 + 2f2 + 2f3 = 0 is a Q[z, y]-linear combination of the given relations.

It is worthwhile to say a few more words about relations at this point.
Suppose that F' = (f1,..., f:) is an ordered t-tuple of elements of some
R-module M, so that fy,..., ft € M. Then a relation on F'is an R-linear
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combination of the f; which is equal to 0:
a1f1+"'+af,ft =0¢€e M.

We think of a relation on F' as a t-tuple (aq,...,a;) of elements of R.
Equivalently. we think of a relation as an element of R?. Such relations are
also called syzygies from the Greek word cv{vyia meaning “yoke” (and
“copulation”). In fact we have the following statement.

(1.9) Proposition. Let (f1,..., f:) be an ordered t-tuple of elements f; €
M. The set of all (a1, ...,a;)T € R' such that a1fi + -+ + arfy = 0 is
an R-submodule of R, called the (first) syzygy module of (fi, ..., ft), and
denoted Syz(fi,. .., ft)-

PRrROOF. Let (ay,...,a:)T, (b1,...,b)T be elements of Syz(fi,...,f),
and let ¢ € R. Then

arfi+--+afe =0
bifi+--+bfir =0

in M. Multiplying the first equation on both sides by ¢ € R, adding to the
second equation and using the distributivity properties from the definition
of a module, we obtain

(car 4+ b1)fi + - (cay + by) fr = 0.

This shows (caj + by, ..., ca; + by)T is also an element of Syz(f,. .., fi).
Hence Syz(f1, ..., fi) is a submodule of R!.

This proposition allows us to be precise about what it means to “know”
all relations on a fixed set of generators of a module. If there are ¢ genera-
tors, then the set of relations is just a submodule of R’. In Exercise 32 (and
in the next section), we will show that any submodule of R!, and hence
any syzygy module, is finitely generated as a module, provided only that
every ideal of R is finitely generated (i.e., provided that R is Noetherian).
Hence, we “know” all relations on a set of generators of a module if we can
find a set of generators for the first syzygy module.

Since we think of elements of R’ as column vectors, we can think of
a finite collection of syzygies as columns of a matrix. If M is a module

spanned by the t generators f1, ..., fi, then a presentation matriz for M is
any matrix whose columns generate Syz(f1, ..., fi) C R!. So, for example,
a presentation matrix A for the module of Exercise 11 would be
3 1 0
A=|142 2z+3 2-2z
0 4y 4

If A is a presentation matrix for a module M with respect to some gener-
ating set of M, then we shall say that A presents the module M. Note that
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the number of rows of A is equal to the number of generators in the gener-
ating set of M. The following proposition is easy to prove, but exceedingly
useful.

(1.10) Proposition. Suppose that A is an | x m matriz with entries in R,

and suppose that A is the presentation matriz for two different R-modules

M and N. Then

a. M and N are isomorphic as R-modules

b. M (and, hence, N) is isomorphic to R'/AR™ where AR™ denotes the
image im A of R™ under multiplication by A.

PROOF. Part b clearly implies part a, but it is more instructive to prove
part a directly. Since A is a presentation matrix for M, there is a set of

generators my, . . ., my such that the columns of A generate the module of
syzygies on my, ..., m;. Similarly, there is a set of generators ni,...,n;
of N such that the columns of A generate Syz(nq,...,n;). Define a ho-

momorphism ¢ : M — N by setting ¢(m;) = n; and extending linearly.
That is, for any c1,...,¢q € R, set o> cim;) = Y ¢in;. We leave it to
the reader to show that ¢ is well-defined (that is, if > ¢;m; = > dym; in
M for dy,...,d; € R, then (> ¢;m;) = ¢(>. dim;)) and one-one. It is
clearly onto.

To show part b, note that if A is an [ X m matrix, then AR™ is the sub-
module of R! generated by the columns of A. The quotient module R!/AR™
is generated by the cosets e; + AR™,...,e; + AR™ (where eq,..., €
denotes the standard basis of unit vectors in R!), and (cy,...,¢)T €
Syz(er + AR™,...,e; + AR™) if and ounly if (c1,...,¢)7 € AR™ if and
only if (cy, ..., ¢)T is in the span of the columns of A. This says that A is
a presentation matrix for R'/AR™. Now apply part a.

The presentation matrix of a module M is not unique. It depends on
the set of generators that one chooses for M, and the set of elements that
one chooses to span the module of syzygies on the chosen set of generators
of M. We could, for example, append the column (3, 2,2) to the matrix
A in the example preceding Proposition (1.10) above to get a 3 X 4 pre-
sentation matrix (see Exercise 11) of the same module. For a rather more
dramatic example, see Exercise 30 below. In the exercises, we shall give a
characterization of the different matrices that can present the same module.
The following exercise gives a few more examples of presentation matrices.

Exercise 12. Let R = k[z, y].

a. Show that the 2 x 1 matrix g
where k[y] is viewed as an R-module by defining multiplication by z to

be 0.

presents the R module kly] @ k[z, y]
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b. What module does the 1 x 2 matrix (x 0) present? Why does the
1 x 1 matrix (z) present the same module?

c. Find a matrix which presents the ideal M = (2%,%®) C R as an R-
module.

The importance of presentation matrices is that once we have a presen-
tation matrix A for a module M, we have a concrete set of generators and
relations for M (actually for an isomorphic copy of M), and so can work
concretely with M. As an example, we characterize the homomorphisms of
M into a free module.

(1.11) Proposition. If A is anlxm presentation matrixz for an R-module
M, then any R-module homomorphism ¢ : M — R' can be represented by
a t x | matriz B such that BA = 0, where 0 denotes the t X m zero matriz.
Conversely, if B is any t X | matriz with entries in R such that BA = 0,
then B defines a homomorphism from M to RY.

PROOF. To see this, note that for M to have an [ X m presentation matrix
means that M can be generated by [ elements fi, ..., f;, say. Hence, ¢ is
determined by ¢(f1), ..., @(f1), which we think of as columns of the ¢ x {
matrix B. We leave it as an exercise to show that ¢ is well-defined if and
only if BA = 0.

Conversely, if A is a presentation matrix of M with respect to a gener-
ating set {f1,..., fi}, and if B is any ¢ X [ matrix with entries in R such
that BA = 0, then B defines a homomorphism from M to R! by mapping
> e;m; to Be where e = (1 -+ ¢ )T € R!. Again, we leave the proof
that the homomorphism is well-defined if BA = 0 as an exercise.

ApDITIONAL EXERCISES FOR §1

Exercise 13. The ring k[z, y] can be viewed as a k-module, as a k[x]-

module, as a k[y]-module, or as a k[z, y]-module. Illustrate the differences

between these structures by providing a nontrivial example of a map from

k[x,y] to itself which is

a. a k-module homomorphism, but not a k[z]-module, k[y]-module, or
k[z, y]-module homomorphism,

b. a k[z]-module homomorphism, but not a k[y]-module, or k[z, y]-module
homomorphism,

c. a k[y]-module homomorphism, but not a k[z]-module, or k[z, y]-module
homomorphism,

d. a ring homomorphism, but not a k[z, y]-module homomorphism.

Exercise 14. Let Ny, Ny be submodules of an R-module M.
a. Show that Ny + Ny = {f1 + fo € M : f; € N;} is also a submodule
of M.
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b. Show that N; N Ny is a submodule of M.
c. If Ny and N are finitely generated, show that N7 4+ N5 is also finitely
generated.

Exercise 15. Show that every free module with a finite basis is isomorphic
to R™ for some m. One can actually show more: namely, that any finitely
generated free module is isomorphic to R™. See Exercise 19.

Exercise 16. Prove Proposition (1.5).

Exercise 17. Let R = k[, y, z] and let M C R? be the module described
in Exercise 2. Explicitly describe all homomorphisms M +— R!. Hint: The
set of relations on fy, fy, f3 is generated by a single element which you can
easily find.

Exercise 18. Complete the proof of Proposition (1.11).

Exercise 19. Let R = k[z1,...,xy).
a. Show that if A = (a;;) is any invertible s x s matrix with coefficients
in k, then the vectors

fi = aner + - + aises,

i=1,...,s also form a basis of the free module R?.

b. Show that a finitely generated module N over a ring R is free if and
only if N is isomorphic to M = R® as a module, for some s. (In view
of Exercise 15, the point is to show that if a module is free and has a
finite set of generators, then it has a finite basis.)

c. Show that A = (a;;) is an invertible s x s matrix with coeflicients in
R if and only if det A is a non-zero element of k. Repeat part a with A
invertible with coefficients in R. Hint: Consider the adjoint matrix of A
as defined in linear algebra.

Exercise 20. Let M and N be R-modules.

a. Show that the set hom(M, N) of all R-module homomorphisms from M
to N is an R-module with a suitable definition of addition and scalar
multiplication.

b. If M is presented by a matrix A, and N is presented by a matrix B, what
conditions must a matrix C representing a homomorphism ¢ : M — N
satisfy? Hint: Compare with Proposition (1.11).

c. Find a matrix D presenting hom(M, N).

Exercise 21. Suppose that M, N are R-modules and N C M.
a. Show that the mapping v : M — M/N defined by v(f) = [f] = f+ N
is an R-module homomorphism.
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b. Let ¢ : M — N. Show that there is an R-module isomorphism between
M/ ker(p) and im(p).

Exercise 22. Let N; and Ny be submodules of an R-module M, and
define

(N1:Nz3) ={a € R:af € Ny for all f € No}.

Show that (Ni:N3) is an ideal in R. The ideal (0: N) is also called the
annihilator of N, denoted ann(N).

Exercise 23.

a. Let M be an R-module, and let I C R be an ideal. Show that IM =
{af :a €I, f € M} is a submodule of M.

b. We know that M/IM is an R-module. Show that M/IM is also an
R/I-module.

Exercise 24.

a. Let L, M, N be R-modules with L C M C N. Describe the homomor-
phisms which relate the three quotient modules and show that N/M is
isomorphic to (N/L)/(M/L).

b. Let M, N be submodules of an R-module P. Show that (M + N)/N is
isomorphic to M/(M N N).

(Note: The result in part a is often called the Third Isomorphism The-
orem and that in part b the Second Isomorphism Theorem. The First
Isomorphism Theorem is the result established in part b of Exercise 21.)

Exercise 25. This is a continuation of Exercise 10. We let R = k[z, y]
and consider the equation

14+2)X1+(1—-y)Xe+ (x+2y)Xs =0.

That is, we consider ker A in the special case A = (a1 a2 a3z) =

(142 1—y x4 azy). Since 1 € (a1, a2,a3) (part ¢ of Exercise 10),

Theorem (1.8) guarantees that one can find a basis for M = ker A in the

special case of Exercise 10c. We find a basis for M as follows.

a. Find a triple of polynomials f = (f1, f2, f3)7 € R3 such that (1+z)f; +
(I-yfot @+ay)fs =1

b. By multiplying the relation Af = 1 in part a by 1 + = and transposing,
then by 1 — y and transposing, and finally by = 4+ zy and transposing,
find three vectors g1, 82,83 € ker A (these vectors are the columns of
the 3 x 3 matrix I — f - A, where [ is the 3 x 3 identity matrix). Show
these vectors span ker A. Hint: If Af = 0, then f = (I —f - A)f is a
linear combination of the colums of I — f - A.

c. Show that {g;, g2} is a basis.
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d. Use part b to show that the “trivial” relations

a2 as 0
hy =1 —a; |, hy = 0 |, hg=1{ a3
0 —aq —as

generate ker A. As pointed out in Exercise 10, they supply an example
of a minimal set of generators of a free module that does not contain a
basis.

Exercise 26. The goal of this exercise is to show how Theorem (1.8)
follows from the solution of the Serre problem. An R-module M is called
projective if it is a direct summand of a free module: that is, if there is an
R-module N such that M @ N is a finitely generated free module. In 1954,
Serre asked whether every projective R-module when R is a polynomial
ring is free and Quillen and Suslin independently proved that this was the
case in 1976.
a. Show that Z/6 = 7Z/3 ® Z/2, so that Z/3 is a projective Z/6-
module which is clearly not a free Z/6-module. (So, the answer to
Serre’s question is definitely negative if R is not a polynomial ring

k:[a:l, ... ,J}n])
b. Let R = k[x1,...,z,] and let A = (a; -+ a;) be a 1 x | matrix
such that 1 € (aj,...,qa;). Then multiplication by A defines an onto

map R' — R. Show that (ker A) @ R = R', so that ker A is projective.
Hint: Fix f € R! such that Af = 1. Given any h € R!, write h =
h; + hy (uniquely) with hy = (Ah)f and h; = h — (Ah)f € ker A. The
Quillen-Suslin result now implies Theorem (1.8).

Exercise 27. The purpose of this exercise is to generalize the methods
of Exercise 25 to further investigate the result of Theorem (1.8). Let R =

kElx1,...,2n) and let A = (a1 --- a;) be a 1 x | matrix such that

1€ {al,...,a).

a. Choose f € R! such that Af = 1. Generalize the result of Exercise 25b
to show that the columns of I — f - A are elements of Syz (a1, ..., a;)

that generate Syz (ai, ..., a;).

b. Show that one can extract a basis from the columns of I — f - A in the
case that one of the entries of f is a nonzero element of R.

c¢. The preceding part shows Theorem (1.8) in the special case that there
exists f € R! such that Af = 1 and some entry of f is a non-zero
element of k. Show that this includes the case examined in Exercise 9c.
Also show that if f is as above, then the set {h € R' : Ah = 1} =
f + Syz(as, ..., a).

d. There exist unimodular rows A with the property that no f € R! such
that Af = 1 has an entry which is a nonzero element of k. (In the
case R = klx,y], the matrix A = (1 + a2y +2* > +2—-1 ay—1)
provides such an example.)
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Exercise 28. Let ¢ : M — N be an R-module homomorphism. The
cokernel of ¢ is by definition the module coker(¢) = N/im(p). Show that
¢ is onto if and only if coker(¢) = {0}. (Note that in terms of this definition,
Proposition (1.10) says that if M is an R-module with an [ x m presentation
matrix A, show that M is isomorphic to the cokernel of the homomorphism
from R! to R™ given by multiplication by A.)

Exercise 29. We have just seen that a presentation matrix determines a

module up to isomorphism. The purpose of this exercise is to characterize

the operations on a matrix which do not change the module it presents.

a. Let A be the m x n matrix representing a homomorphism ¢ : R" —
R™ with respect to bases F' = (f1,..., fn) of R™ and bases G =
(91, -+, 9m) of R™. Let F' = (f{,..., f}) be another basis of R" and
P = (p;j) the n x n invertible matrix with p;; € R such that F = F'P.
Similarly, let G’ = (¢}, ..., g,,) be another basis of R™ and Q = (g;;)
the m x m invertible matrix with ¢;; € R such that G = G'Q. Show
that A’ = QAP~! represents ¢ with respect to the bases F’/ of R"
and G’ of R™. Hint: Adapt the proof of the analogous result for vector
spaces.

b. If A is an m X n presentation matrix for an R-module M, and if A’ =
QAP~! with P any n x n, and Q any m x m, invertible matrices with
coeflicients in R, show that A’ also presents M.

c. In particular if A’ is an m x n matrix obtained from A by adding c,
¢ € R, times the ith column of A to the jth column of A, or ¢ times
the ith row of A to the jth row of A, show that A’ and A present the
same module. Hint: If A’ is obtained from A by adding ¢ times the ith
column of A to the jth column of A then A’ = AP where P is the
m X m matrix with ones along the diagonal and all other entries zero
except the ¢jth, which equals c.

d. If A’ is obtained from A by deleting a column of zeroes (assume that A
is not a single column of zeroes), show that A and A’ present the same
module. Hint: A column of zeroes represents the trivial relation.

e. Suppose that A has at least two columns and that its jth column is e;
(the standard basis vector of R™ with 1 in the ith row and all other
entries zero). Let A’ be obtained from A by deleting the ith row and
jth column of A. Show that A and A’ present the same module. Hint:
To say that a column of A is e; is to say that the ith generator of the
module being presented is zero.

Exercise 30. Let R = k[z, y] and consider the R-module M presented by
the matrix

3 1 0
A=1|1+2 22+3 2-—2
0 4y 4
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(compare Exercise 6 and the discussion preceding Exercise 7). Use the 1
in row 1 and column 2 and elementary row operations to make the second
column e,. Use the operation in part e of the preceding exercise to reduce
to a 2 X 2 matrix. Make the entry in row 2 and column 2 a 1 and use row
operations to clear the entry in row 2 column 1, and repeat the operation in
part e. Conclude that the 1 x 1 matrix (—8 — 5a + 6y(z — 1)) also presents
M, whence M = k[z,y]/(—8 — bz + 6y(x — 1)).

Exercise 31. The purpose of this exercise is to show that two matrices

present the same module if and only if they can be transformed into one

another by the operations of Exercise 29.

a. Let A be a presentation matrix of the R-module M with respect to
a generating set f1,..., fi,. Suppose that ¢1,...,9s € M and write
gi = »_ bjif; with bj; € R. Let B = (b;;). Show that the block matrix

A -B
0 I
presents M with respect to the generators (fi,..., fm;g1,...,3ds)-
b. Suppose that g1, ..., gs also generate M and that A’ presents M with

respect to this set of generators. Write f; = > ¢j;g; and let C' = (¢y;).
Show that the block matrix

A -B I 0
b= < 0 I -C A )
presents M with respect to the generators (fi,..., fm;g1,. .., 3ds)-
c. Show that D can be reduced to both A and to A’ by repeatedly applying

the operations of Exercise 29. Hint: Show that row operations give the
block matrix

A 0 I-BC BA
0 I —C A

which reduces by part d of Exercise 29 to the matrix
(A I—-BC BA).

Show that the columns of I — BC and of BA’ are syzygies, hence spanned
by the columns of A.

d. Show that any presentation matrix of a module can be transformed
into any other by a sequence of operations from Exercise 29 and their
inverses.

Exercise 32.

a. Show that if every ideal I of R is finitely generated (that is, if R is
Noetherian), then any submodule M of R! is finitely generated. Hint:
Proceed by induction. If t = 1, M is an ideal, hence finitely generated.
If t > 1, show that the set of first components of vectors in M is an
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ideal in R , hence finitely generated. Suppose that r; € R, 1 < i < s
generate this ideal, and choose column vectors fi,...,fs € M with
first components 71, ..., rs respectively. Show that the submodule M’
of M consisting of vectors in M with first component 0 is finitely gen-
erated. Show that f1,..., fs together with any generating set of M’ is
a generating set of M.

b. Show that if R is Noetherian, any submodule of a finitely generated
R-module M is finitely generated. Hint: If M is generated by f1,..., fs
it is an image of R® under a surjective homomorphism.

Exercise 33. There is another way to view Exercise 31 which is frequently
useful, and which we outline here. If A and A’ are m x ¢t matrices such that
A’ = QAP~! for an invertible m x m matrix () and an invertible ¢ x  matrix
P, then we say that A’ and A are equivalent. Equivalent matrices present
the same modules (because we can view P € GL(¢, R) and @) € GL(m, R)
as a change of basis in R' and R™ respectively, where for any n, GL(n, R)
is the group of n x n invertible matrices with entries in R).
a. Let A be an m x t matrix and A’ an r X s matrix with coefficients in R.
Show that A and A’ present identical modules if and only if the matrices

A 0 00 and 0 0 I, O
0 I, 0 0 00 0 A
are equivalent. Hint: This is equivalent to Exercise 31.
b. In part a above, show that we can take P = I.

c. Two matrices A and A’ are called Fitting equivalent if there exist identity
and zero matrices such that

A 00 and I 0 0

0 I O 0 A 0
are equivalent. Show that A and A’ present the same module if and only
if A and A’ are Fitting equivalent.

§2 Monomial Orders and Grobner Bases for Modules

Throughout this section R will stand for a polynomial ring k[z1, . .., z,].
The goals of this section are to develop a theory of monomial orders in the
free modules R™ and to introduce Grobner bases for submodules M C R™,
in order to be able to solve the following problems by methods generalizing
the ones introduced in Chapter 1 for ideals in R.

(2.1) Problems.
a. (Submodule Membership) Given a submodule M C R™ and f € R™,
determine if £ € M.
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b. (Syzygies) Given an ordered s-tuple of elements (f1,...,fs) of R™ (for
example, an ordered set of generators), find a set of generators for the
module Syz(f1, ..., fs) C R® of syzygies.

One can restate problem 2.1b as that of finding a presentation matrix
for a submodule of R™. It is easy to see why Grobner bases might be
involved in solving the submodule membership problem. When m = 1,
a submodule of R™ is the same as an ideal in R (see Exercise 4b of §1).
Division with respect to a Grobner basis gives an algorithmic solution of the
ideal membership problem, so it is natural to hope that a parallel theory
for submodules of R™ might be available for general m. In the next section,
we shall see that Grobner bases are also intimately related to the problem
of computing syzygies.

As we will see, one rather pleasant surprise is the way that, once we
introduce the terminology needed to extend the notion of monomial orders
to the free modules R™, the module case follows the ideal case almost
exactly. (Also see Exercise 6 below for a way to encode a module as a
portion of an ideal and apply Grébner bases for ideals.)

Let us first agree that a monomial m in R™ is an element of the form
x%e; for some i. We say m contains the standard basis vector e;. Every
element f € R™ can be written in a unique way as a k-linear combination
of monomials m;

n
f = E cim;,
i=1

where ¢; € k,¢; # 0. Thus for example, in k[, y]?
S5ry? —y'¥ +3
f = 43 + 2y
162

ny ylo 1

=5 0 - 0 +310
0 0 0
+4l 23| +2(y ] +16(0
0 0 T

= 53:y2e1 — ywel + 3e; + 4:c3e2 + 2yes + 16zes,

which is a k-linear combination of monomials. The product ¢ - m of a
monomial m with an element ¢ € k is called a term and c is called its
coefficient. We say that the terms ¢;m;, ¢; # 0, in the expansion of f € R™
and the corresponding monomials m; belong to f.

If m, n are monomials in ™, m = z%e;, n = r’e;, then we say that
n divides m (or m is divisible by n) if and only if i = j and 2 divides
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2. If n divides m we define the quotient m/n to be z%/z” € R (that is,
m/n = 2% %). Note that the quotient is an element of the ring R, and if n
divides m, we have (m/n) - n = m, which we certainly want. If m and n
are monomials containing the same basis element e;, we define the greatest
common divisor, GCD(m, n), and least common multiple, LCM(m, n) to
be the greatest common divisor and least common multiple, respectively, of
z and z?, times e;. On the other hand, if m, n contain different standard
basis vectors, we define LCM(m, n) = 0.

We say that a submodule M C R™ is a monomial submodule if M can
be generated by a collection of monomials. As for monomial ideals, it is
easy to see that f is in a monomial submodule M if and only if every
term belonging to f is in M. Monomial submodules have properties closely
paralleling those of monomial ideals.

(2.3) Proposition.

a. Fvery monomial submodule of R™ 1is generated by a finite collection of
monomials.

b. FEvery infinite ascending chain My C Ms C - - - of monomial submodules
of R"™ stabilizes. That is, there exists N such that My = Myy1 = -+ =
Mpyyg=--- forall £ > 0.

c. Let {my, ..., m:} be a set of monomial generators for a monomial sub-
module of R™, and let €1, ..., ¢ denote the standard basis vectors in
R'. Let m;; = LCM(m;, m;). The syzygy module Syz(my,...,m;)
is generated by the syzygies o;; = (my;/m;)e; — (my;/my)e;, for all
1 <i<j<t (055 =0 unless m; and m; contain the same standard
basis vector in R™).

PROOF. For part a, let M be a monomial submodule of R™. For each ¢,
let M; = M N Re; be the subset of M consisting of elements whose jth
components are zero for all j # i. In Exercise 5 below, you will show that
M; is an R-submodule of M. Each element of M; has the form fe; for some
f € R. By Exercise 4 of §1 of this chapter, M; = I;e; for some ideal I; C R,
and it follows that I; must be a monomial ideal. By Dickson’s Lemma for
monomial ideals (see, for instance, [CLO], Theorem 5 of Chapter 2, §4),

it follows that I; has a finite set of generators z®('1), ... () But then
the
xo‘(n)el, . ,xo‘(ldl)el
l‘a(zl)eg, NN ,xa(2d2)e2
zme o gmdm)e

generate M.
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Part b follows from part a. See Exercise 5 below.
For part c, first observe that if (ay,...,as)7 is a syzygy on a collection
of monomials and we expand in terms of the standard basis in R™:

0=am; +---+am = freg + -+ fre,,

then fi = --- = f,, = 0, and the syzygy is a sum of syzygies on subsets
of the m; containing the same e;. Hence we can restrict to considering
collections of monomials containing the same e;:

m; = 2%%e;,...,ms; = x%e;.

Now, if (a1, ..., as)T is a syzygy in Syz(my, ..., my), we can collect terms
of the same multidegree in the expansion a;z®* + - - + asx® = 0. Each
sum of terms of the same multidegree in this expansion must also be zero,
and the only way this can happen is if the coefficients (in k) of those terms

sum to zero. Hence (a1, ... ,as)T can be written as a sum of syzygies of
the form

(crz® ... cqx®™ )T,
with ¢1,...,¢s € k satisfying ¢ + - -+ + ¢s = 0. Such a syzygy is called

a homogeneous syzygy, and we have just shown that all syzygies are sums
of homogeneous syzygies. (Compare with Lemma 7 of Chapter 2, §9 of
[CLOJ.)

When s = 3, for instance, we can write a syzygy

a—aq a—as a—a3)T

(Clx , C2 , C3%

with ¢; + ¢o + ¢3 = 0 as a sum:
a—a a—a T a—a a—az\T
(127 —c12%72,0)" + (0, (¢1 4 c2)z¥ ™92, g™ %)

where (cjz® %, —cizp@=)T = ¢y(x@= 1 —x2=22)T s a syzygy on
the pair of monomials 1, 2% and ((c1 + co)x® 2, gz~ 2)T =
—c3(z2 —p2~)T i5 a syzygy on the pair 292, x3.

In fact, for any s, every homogeneous syzygy can be written as a sum
of syzygies between pairs of monomials in a similar way (see Exercise 5
below). Also observe that given two monomials z* and x® and some 7
that is a multiple of each, then the syzygy (z7~%, —27~%)T is a monomial
times

o = (LCM (2%, 27) /z®, ~LCM (2, 2°) /2*)T .
From here, part ¢ of the proposition follows easily.
If M = (my,...,m;) and f is an arbitrary element of R™, then f € M

if and only if every term of f is divisible by some m;. Thus, it is easy to
solve the submodule membership problem for monomial submodules.
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Extending the theory of Grobner bases to modules will involve three
things: defining orders on the monomials of R™, constructing a division
algorithm on elements of R™, and extending the Buchberger algorithm to
R™. Let us consider each in turn.

The definition of a monomial order on R™ is the same as the definition in
R (see (2.1) from Chapter 1 of this book). Namely, we say that an ordering
relation > on the monomials of R™ is a monomial ordering if:

a. > is a total order,

b. for every pair of monomials m,n € R™ with m > n, we have z%m >
z%n for every monomial z® € R, and

c. > is a well-ordering.

Exercise 1. Show that condition ¢ is equivalent to z“m > m for all
monomials m € R™ and all monomials x* € R such that ® # 1.

Some of the most common and useful monomial orders on R™ come by
extending monomial orders on R itself. There are two especially natural
ways to do this, once we choose an ordering on the standard basis vectors.
We will always use the “downward” ordering on the entries in a column:

€] > €3 > - > €,

although any other ordering could be used as well. (Note that this is the
reverse of the numerical order on the subscripts.)

(2.4) Definition. Let > be any monomial order on R.

a. (TOP extension of >) We say z%e; >rop axﬁej if 2% > 28 orif z® = 2P
and i < j.

b. (POT extension of >) We say z%e; >por xﬁej ifi < j,orifi = j and
z* > 2P,

This terminology follows [AL], Definitions 3.5.2 and 3.5.3 (except for
the ordering on the e;). Following Adams and Loustaunau, TOP stands
for “term-over-position,” which is certainly appropriate since a TOP order
sorts monomials first by the term order on R, then breaks ties using the
position within the vector in R™. On the other hand, POT stands for
“position-over-term.”

Exercise 2. Verify that for any monomial order > on R, both >7rop and
> por define monomial orders on R™.

As a simple example, if we extend the lez order on k[x, y] with > y to
a TOP order on k[, y]> we get an order >; such that the terms in (2.2)
are ordered as follows.
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0 xy? 0 yl0 0 1
a3 >1 0 >1 0 >q 0 >1 Yy >q 0
0 0 T 0 0 0

If we extend the same lez order to a POT order on k[x, y]® we get an order
>5 such that

x> yto 1 0 0 0
0 >9 0 >9 0 >o9 x3 >0 Yy >9 0
0 0 0 0 0 x

In either case, we have e; > es.
Once we have an ordering > on monomials, we can write any element
f € R™ as a sum of terms

t

f = ch—mi

i=1
with ¢; # 0 and m; > ms > --- > my. We define the leading coefficient,
leading monomial, and leading term of f just as in the ring case:

Les(f) = a
LM (f) = my
LT (f) = cymy.
If, for example,
S5zy? — y'0 + 3

f = 423 + 2y € klz,y)?
16z

as in (2.2), and >pop is the TOP extension of the lex order on k[z,y]
(x > y), then

LC>rop (f) =4, LM>16p (f) = 13627 LT>r0p (f) = 4%362.
Similarly, if >por is the POT extension of the lex order, then
LC>por (f) =95, LMo (f) = xy2€1, LT> por (f) = 5xy2e1.

Once we have a monomial ordering in R we can divide by aset F¥ C R™
in exactly the same way we did in R.

(2.5) Theorem (Division Algorithm in R™). Fiz any monomial or-
dering on R™ and let F' = (f1, ..., fs) be an ordered s-tuple of elements of
R™. Then every f € R™ can be written as

f=a1f1 + -+ asfs +r,

where a; € R, r € R™, tr(a;f;) < ur(f) for all i, and eitherr = 0 orr is
a k-linear combination of monomials none of which is divisible by any of
wM(fy), ..., LM(fy). We call v the remainder on division by F.
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PRrROOF. To prove the existence of the a; € R and r € R™ it is sufficient
to give an algorithm for their construction. The algorithm is word-for-word
the same as that supplied in [CLO], Theorem 3 of Chapter 2, §3, or [AL],
Algorithm 1.5.1 in the ring case. (The module version appears in [AL] as
Algorithm 3.5.1). The proof of termination is also identical.

Instead of reproducing the formal statement of the algorithm, we describe
it in words. The key operation in carrying out the division process is the
reduction of the partial dividend p (p = f to start) by an f; such that
vr(f;) divides rr(p). If vr(p) = t - Lr(f;) for a term ¢ € R, we define

Red (p, f;) = p — tf;

and say that we have reduced p by f;. One divides f by F' by successively
reducing by the first f; in the list (that is, the element with the smallest
index ) for which reduction is possible, and keeping track of the quotients.
If at some point, reduction is not possible, then LT(p) is not divisible by
any of the LT(f;). In this case, we subtract the lead term of p, place it into
the remainder and again try to reduce with the f;. The process stops when
p is reduced to 0.

The following exercise gives a simple example of division in the module
setting. When calculating by hand, it is sometimes convenient to use a
format similar to the polynomial long division from [CLO] Chapter 2, but
we will not do that here.

Exercise 3. Let
f = (5ay? — y'° + 3,42° + 2y, 162)7 € k[z, y)?
as in (2.2), and let

fi = (zy + 42,0,9%)"
f, =0,y — 1,z —2)T.

Let > stand for the POT extension of the lex order on k[z,y] with z > y.

Then vr(f) = 5z?ye;, ur(f;) = zye;, and Lr(fy) = yes. Let p be the

intermediate dividend at each step of the algorithm—set p = f to start

and a1 = as = 0and r = 0.

a. Since vr(f;) divides LT(f), show that the first step in the division will
yield intermediate values a1 = 5y, as = 0,r = 0, and p = Red (f, f;) =
(—20xy — y'0 + 3,42 + 2y, 162 — 5y°)7.

b. vT(p) is still divisible by LT(f;), so we can reduce by f; again. Show that
this step yields intermediate values a; = 5y — 20, a; = 0, r = 0, and
p = (80z — y'0 + 3,423 + 2y, 162 — 5y + 20y2)7.

c. Show that in the next three steps in the division, the leading term of
p is in the first component, but is not divisible by the leading term of
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either of the divisors. Hence after three steps we obtain intermediate
values a; = 5y — 10, as = 0, r = (80z — ¢'* +3,0,0)7, and p =
(0, 423 + 2y, 162 — 5y + 20y2)T.

d. The leading term of p at this point is 4z3es, which is still not divisible
by the leading terms of either of the divisors. Hence the next step will
remove the term 4z3e; and place that into r as well.

e. Complete the division algorithm on this example.

f. Now use the TOP extension of the lex order and divide f by (f1, f2)
using this new order.

The division algorithm behaves best when the set of divisors has the
defining property of a Grobner basis.

(2.6) Definition. Let M be a submodule of R™, and let > be a monomial

order.

a. We will denote by (LT(M)) the monomial submodule generated by the
leading terms of all f € M with respect to >.

b. A finite collection G = {g1,...,8s} C M is called a Grobner basis for

M if (Lr(M)) = (vr(g1), - .., L1(8s))-

The good properties of ideal Grobner bases with respect to division
extend immediately to this new setting, and with the same proofs.

(2.7) Proposition. Let G be a Grébner basis for a submodule M C R™,
and let f € R™.

a. £ € M if and only if the remainder on division by G is zero.

b. A Grébner basis for M generates M as a module: M = (G).

Part a of this proposition gives a solution of the submodule membership
problem stated at the start of this section, provided that we have a Grébner
basis for the submodule M in question. For example, the divisors f;, f5 in
Exercise 3 do form a Grobner basis for the submodule M they generate,
with respect to the POT extension of the lex order. (This will follow from
Theorem (2.9) below, for instance.) Since the remainder on division of f is
not zero, f ¢ M.

Some care must be exercised in summarizing part b of the proposition
in words. It is not usually true that a Grobner basis is a basis for M as
an R-module—a Grébner basis is a set of generators for M, but it need
not be linearly independent over R. However, Grobner bases do exist for
all submodules of R™, by essentially the same argument as for ideals.

Exercise 4. By Proposition (2.3), (uv(M)) = (my,...,m;) for some
finite collection of monomials. Let f; € M be an element with vr(f;) = m;,.
a. Show that {fy,...,f;} is a Grébner basis for M.
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b. Use Proposition (2.7) to show that every submodule of R™ is finitely
generated.

Reduced and monic Grobner bases may be defined as for ideals, and there
is a unique monic (reduced) Grobner basis for each submodule in R™ once
we choose a monomial order.

Exercise 4 also shows that every submodule of R™ is finitely generated.
Using this, it is straightforward to show that submodules of R™ satisfy
the ascending chain condition (ACC), which asserts that every infinite
ascending chain My C M, C --- of submodules of R™ stabilizes; that
is, there is an N such that My = Myy1 = --- = Mpy4¢ = --- for all
¢ > 0. We proved this for monomial submodules in Proposition (2.3) and
you will prove it for arbitrary submodules of R™ in Exercise 13 below.

Now we turn to the extension of Buchberger’s Algorithm to the module
case.

(2.8) Definition. Fix a monomial order on R™, and let f,g € R™. The
S-vector of f and g, denoted S(f, g), is the following element of R™. Let
m = LCM(rr(f), 1r(g)) as defined above. Then

For example, if f = (zy — 2, 2% + )T and g = (2® + 292, 22 — y*)T in
K[z, y]*> and we use the POT extension of the lex order on R = k[z, y] with
x >y, then

S(f,g) = af —yg
= (=22 — 23 2t — 2%y + ay + 3T

The foundation for an algorithm for computing Grébner bases is the
following generalization of Buchberger’s Criterion.

(2.9) Theorem (Buchberger’s Criterion for Submodules). A set
G ={g1,...,8:} C R™ is a Grébner basis for the module it generates if
and only if the remainder on division by G of S(gi, g;) is 0 for all i, j.

PROOF. The proof is essentially the same as in the ideal case.

For example, G = {f1,f5} from Exercise 3 is a Grobner basis for the
submodule it generates in k[x, y]?, with respect to the POT extension of
the lex order. The reason is that the leading terms of the f; contain different
standard basis vectors, so their least common multiple is zero. As a result,
the S-vector satisfies S(fy, f2) = 0, and Buchberger’s Criterion implies that
G is a Grobner basis.
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For a less trivial example, if we define M to be the matrix

M= a2 4+b> a®—2bcd a—b
"\ —-d® bV+aed c+d)’

over R = kla, b, ¢, d] then a TOP grevlex Grobuer basis G for the submodule
generated by the columns of M has four elements:
g1 = (b?, —ac/2 — be/2 + 2 /2 — ad/2 — bd/2 — d*/2)7,
g = (a—bc+d)T
(2.10) g3 = (—2bcd, b® — abc/2 + b*c/2 — ac® + bc? /2 — abd/2 + b*d/2
+ acd + ad?® — bd*/2)"
g4 = (0,a%c + b?c — ac® + bc® + a’d + b*d + ad® — bd?)T.

Note that L1(g;) = b%e; and LT(gs) = ae; for the TOP extension of greviez
on kla, b, ¢, d]. Hence
S(g1,82) = ag1 — b2g2
= (b, —a*c/2 — abc/2 + ac?/2 — a*d/2 — abd/2 — ad?/2
— b2 — b2a)T

= bg1 — (1/2)gu,
so that S(gi, g2) reduces to 0 on division by G. It is easy to check that all
the other S-vectors reduce to 0 modulo G as well.

To compute Grobner bases, we need a version of Buchberger’s Algorithm.
Using Theorem (2.9), this extends immediately to the module case.

(2.11) Theorem (Buchberger’s Algorithm for Submodules). Let
F = (f1,...,f) where f; € R™, and fix a monomial order on R™. The
following algorithm computes a Gréobner basis G for M = (F) C R™, where

S(t, g)°

denotes the remainder on division by G', using Theorem (2.5):

Input: F = (f1,...,f;) C R™, an order >
Output: a Grébuer basis G for M = (F), with respect to >
g =F
REPEAT
G =g
FOR each pair f # g in G’ DO

g/
= S(f, g)

IF S # 0 THEN G := G U {S}
UNTIL G = G'.
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PROOF. Once again, the proof is the same as in the ideal case, using the
fact from Proposition (2.3) that the ascending chain condition holds for
monomial submodules to ensure termination.

Unfortunately, the Grébner basis packages in Maple and Mathematica
do not allow computation of Grobner bases for submodules of R™ for
m > 1 by the methods introduced above. The CALI package for REDUCE,
CoCoA, Singular and Macaulay 2 do have this capability however. For
instance, the Grobner basis in (2.10) was computed using the implementa-
tion of Buchberger’s Algorithm in the computer algebra system Macaulay 2
(though in this small example, the computations would also be feasible by
hand). In Exercise 8 below, you will see how the computation was done. In
Exercise 9, we re-do the computation using the computer algebra system
Singular. Exercises 10 and 11 explain how to trick Maple into doing mod-
ule computations, and Exercise 12 presents an additional application of the
techniques of this section—computation in the quotient modules R™ /M.

While the exercises below illustrate how to use Macaulay 2, Singular,
and Maple, we will not cover CoCoA. The interested reader should consult
[KR] for information about this capable system.

ApDITIONAL EXERCISES FOR §2

Exercise 5. This exercise will supply some of the details for the proof of

Proposition (2.3).

a. Show that if M is a submodule of R™ and M; = M N Re;, then M; is
a submodule of M.

b. Using part a of Proposition (2.3), show that monomial submodules of
R™ satisfy the ascending chain condition. That is, for every infinite
ascending chain M; C My C - - - of monomial submodules of R™, there
exists N such that My = Myy1 = -+ = Mpyy for all £ > 0. Hint:
Consider U2 ; M,,, which is also a monomial submodule.

Exercise 6. In this exercise, we will see how the theory of submodules of
R™ can be “emulated” via ideals in a larger polynomial ring obtained by
introducing additional variables X1, ..., X,, corresponding to the standard
basis vectors in R™. Write S = k[z1,...,zpn, X1,..., X,], and define a
mapping ¢ : R™ — S as follows. For each f € R™, expand f = Z;n:1 fiej,
where f; € R, and let F' = ¢(f) € S be the polynomial F = Z;"ZI fiX;.
a. Show that S can be viewed as an R-module, where the scalar mul-
tiplication by elements of R is the restriction of the ring product in
S.
b. Let S; C S denote the vector subspace of S consisting of polynomials
that are homogeneous linear in the X; (the k-span of the collection of
monomials of the form z“X). Show that Sy is an R-submodule of S.
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c. For each submodule M = ({f}, ..., f;) C R™, let F; = o(f;) € S. Show
that ¢(M) equals (Fi, ..., Fs)S NSy, where (Fi, ..., Fy)S denotes the
ideal generated by the F; in S.

d. Show that a Grdbner basis for the module M could be obtained by
applying a modified form of Buchberger’s Algorithm for ideals to I =
(Fy, ..., Fs)S. The modification would be to compute remainders only
for the S-polynomials S(F;, F;) that are contained in Sq, and ignore all
other S-pairs.

Exercise 7. Let R = k[z], the polynomial ring in one variable. Let M
be a submodule of R™ for some m > 1. Describe the form of the unique
monic reduced Grobner basis for M with respect to the POT extension of
the degree order on R. In particular, how many Groébner basis elements
are there whose leading terms contain each e;? What is true of the ¢th
components of the other basis elements if some leading term contains e;?

Using Macaulay 2 to Compute in Modules.

Since we have not used Macaulay 2 before in this book, and since
it is rather different in design from general computer algebra systems
such as Maple, a few words about its set-up are probably appropriate
at this point. For more information on this program, we refer the reader
to the Macaulay 2 website http://www.math.uiuc.edu/Macaulay?2/.
Macaulay 2 is a computer algebra system specifically designed for com-
putations in algebraic geometry and commutative algebra. Its basic
computational engine is a full implementation of Buchberger’s algorithm
for modules over polynomial rings. Built-in commands for manipulating
ideals and submodules in various ways, performing division as in The-
orem (2.5), computing Grobner bases, syzygies, Hilbert functions, free
resolutions (see Chapter 6 of this book), displaying results of computations,
etc. Introductions to Macaulay 2 may be found in [EGSS] and Appendix C
of [Vas].

Before working with a submodule of R™ in Macaulay 2, the base ring
R must be defined. In our examples, R is always a polynomial ring over a
field. In Macaulay 2, Q is written QQ, while a finite field such as Z/(31991)
is written ZZ/31991. Over the latter, polynomials in variables z,y, z are
entered via the command

R = 7Z/33191[x, v, Z]

b

at the Macaulay 2 prompt “in :”, where i stands for “input” and n is the
number of the input. The default is the greviexr order on the polynomial
ring, and a TOP extension to submodules in R™ with the standard basis
ordered e; < --- < e,,. This “upward” order is the opposite of what we
used in Definition (2.4). To change to our “downward” order, enter the
command
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R = ZZ/33191]x, y, z, MonomialOrder =>{Position => Down}|.

Exercise 8.
a. In these examples, we will work over R = k[a, b, ¢, d] with k = Q, so
enter

R = QQ[a..d]

at the prompt in a Macaulay 2 session.
b. To define the submodule generated by the columns of

M= a®>+ b a®—2bed a—b
“\E-d? VH+ad c+d)’

enter the command
M = matrix{{a"2 +b"2,a"3 —2*bx*xcxd,a— d},
{c"2—-4d"2,b"3+axcx*d,c+d}}.

c. The gb command computes the Grobner basis for the module generated
by the columns of a matrix. The result of this computation has the data
type “GroebnerBasis”. To get a matrix, one uses the command gens to
get the generators in matrix form. Thus you should issue the command
gens gb M. Compare with the Grébner basis given above in (2.10)—they
should be the same.

Using Singular to Compute in Modules.

We used Singular in the last chapter for computations in local rings.
This very powerful program is also very well-suited for computations in
modules over polynomial rings. We demonstrate by redoing Exercise 8 using
Singular.

Exercise 9.
a. We will work over R = k[a, b, ¢, d] with k = Q, so enter

ring R=0, (a,b,c,d), (dp,C);

at the > prompt in a Singular session. The first term “ring R=0" as-
serts that R will be a ring with characteristic 0 and the second that R
have indeterminates a, b, ¢, d. Had we wanted k¥ = 7Z/31991 and inde-
terminates z, y, z, we would have entered “ring R=31991, (x,y,z)” at
the prompt >. The third term specifies the ordering. Examples of possi-
ble well-orderings on R are lex, grevlex, and grlez, specified by 1p, dp
and Dp respectively. In our case, we chose grevlex. The letter C indicates
the “downward” order e; > ey > --- > e,, on the standard basis el-
ements of the free module R™. The lower-case ¢ indicates the reverse,
“upward” order e,, > --- > ey > ej on basis elements. The pair (dp,
C) indicates the TOP extension of dp to R™ using the downward order
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on standard basis elements. This is the ordering we used in Exercise
8. Had we wanted a POT extension, we would have written (C, dp).
A POT extension of a pure lex ordering on R to R™ with the upward
ordering e; < --- < e,, would be specified by entering (c, 1p).

b. To define the submodule M generated by the columns of the matrix M
in part b of Exercise 8 above, enter, for example,

> vector sl = [a2 + b2, c2 — d2];

> vector s2 = [a3 — 2bcd, b3 + acd];
> vector 83 = [a — b, c + dJ;

> module M = s1, s2, s3;

(We have shown the prompt > which you should not re-enter.) Note that
the command vector s1 = [a2+b2,c2-d2]; defines the vector s1 =
(a® + 0%, 2 —d*)T € R2

c. To define a module N generated by a Grobner basis of s, s2, s3, enter

module N = std(M);

after the prompt >.

d. To see the result, type N; after the prompt >. Verify that you get the
same result (up to multiplication by 2) as in (2.10).

e. In addition to the TOP, downward extension of graded reverse lex, ex-
periment with the following different extensions of the graded reverse
lex order on R to the free modules R™: POT and upward; TOP and
upward; POT and downward. For which of these does the Grébner ba-
sis of M = (s1, s2, s3) have the fewest number of elements? the least
degree?” What about different extensions of the lex order on R?

Using Maple to Compute in Modules.

It is also possible to use Maple to find Grobner bases of submodules
of R™. The basic idea is the observation from Exercise 6 that submodules
of R™ can be “emulated” in a larger polynomial ring. We first need to
study how this works with respect to monomial orders on modules.

Exercise 10. Let R = k[z1,...,z,] and S = klz1, ..., 20, X1, ..., X
We also have the map ¢ which sends f = ZT:1 fie; € R™ to F =
Z;”:l f;X;. In the notation of part b of Exercise 6, we have an isomorphism
@ R™ = S;. Now consider the following monomial orders >; and >3 on S:

22XP > 27X — ® >greviex T, or % = 7 and X8 >grevies X
22XP 55 27 X0 — XP > greviex X%, or X? = X? and 2 > grevier L

(These are examples of elimination orders.) Also let >rop and >por
denote the TOP and POT extensions to R™ of the grevlex order on R.
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a. Prove that the restriction of >; to S; agrees with >7op via the
isomorphism .
b. Similarly, prove that the restriction of >, to S; agrees with > por via .

By using the Ore algebra and Groebner packages of Maple, we can
compute Grobner bases as follows.

Exercise 11. We will compute the Grobner basis of (2.10) as follows. In
Maple, first issue the commands

with(Ore_algebra):

S := poly_algebra(a,b,c,d,el,e2);

F :=[(a"2+b"2) *el+(c"2-d"2) *e2,
(a”3-2xb*c*d) *el+ (b~ 3+a*xc*d) *e2, (a-b) *el+(c+d) *e2] ;
T := termorder(S,lexdeg([d,c,b,al, [el,e2]), [el,e2]);

to enter the TOP extension of grevlex. (The Maple command lexdeg im-
plements the orders >; and >5 of Exercise 10, depending on which set of
variables is put first, though due to a bug in the Groebner package, one
needs to reverse the variables in the first argument of lexdeg.) Then show
that the command

gbasis(F, T);
computes the Grobner basis (2.10). Hint: Use the command
collect(GB, {el, e2}, distributed);

to make the Grobner basis easier to read.

Exercise 12. In this exercise, we will show how Grobner bases can be
applied to perform calculations in the quotient modules R™/M for M C
R™.

a. Let G be a Grébner basis for M with respect to any monomial order on
R™. Use Theorem (2.5) to define a one-to-one correspondence between
the cosets in R™ /M and the remainders on division of f € R™ by G.

b. Deduce that the set of monomials in the complement of (LT(M)) forms
a vector space basis for R™ /M over k.

c. Let R = kfa, b, ¢, d]. Find a vector space basis for the quotient module
R? /M where M is generated by the columns of the matrix from Exercise
8, using the TOP grevlez Grébner basis from (2.10). (Note: R?/M is not
finite-dimensional in this case.)

d. Explain how to compute the sum and scalar multiplication operations in
R™ /M using part a. Hint: see Chapter 2, §2 of this book for a discussion
of the ideal case.

e. R = k[xy,...,z,]. State and prove a criterion for finite-dimensionality
of R™/M as a vector space over k generalizing the Finiteness Theorem
from Chapter 2, §2 of this book.
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Exercise 13. Prove that submodules of R™ satisfy the ACC. Hint: Given
M, C My C ---, show that M = M; UM, U - --is a submodule. Then use
part b of Exercise 4.

83 Computing Syzygies

In this section, we begin the study of syzygies on a set of elements of a
module, and we shall show how to solve Problem (2.1) b of the last section.
Once again R will stand for a polynomial ring k[x1, ..., z,]. Solving this
problem will allow us to find a matrix presenting any submodule of R™ for
which we know a set of generators.

Grobner bases play a central role here because of the following key ob-
servation. In computing a Grobner basis G = {g1,...,9s} for an ideal
I C R with respect to some fixed monomial ordering using Buchberger’s
algorithm, a slight modification of the algorithm would actually compute a
set of generators for the module of syzygies Syz(gi, ..., gs) as well as the
g; themselves. The main idea is that Buchberger’s S-polynomial criterion
for ideal Grobner bases is precisely the statement that a set of generators
is a Grobner basis if and only if every homogeneous syzygy on the leading
terms of the generators “lifts” to a syzygy on the generators, in the sense
described in the following theorem. The “lifting” is accomplished by the
division algorithm.

To prepare for the theorem, let S(g;, g;) be the S-polynomial of g; and

95
Vi xVii

$059) = 1ag) 9 1ty

* 95,

where 27 is the least common multiple of LM(g;) and Lm(g;) (see (2.2)
of Chapter 1 of this book). Since G is a Grobner basis, by Buchberger’s
Criterion from §3 of Chapter 1, the remainder of S(g;, g;) upon division by
G is 0, and the division algorithm gives an expression

s
5(9i595) = Zaijkgka
k=1

where a;j; € R, and LT(aijrgr) < LT(S(gi,9;)) for all 4, j, k.
Let a;; € R® denote the column vector
Q51
Q52 <
a;j = ajj1€1 + Gjj2€2 + -+ + Ggjs€s = . €R

Qijs
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and define s;; € R by setting

(3 1) xii Vi
. Si;i = e; — €e;, — a;;
Yoo(e) o r(gy) Y

in R°. Then we have the following theorem of Schreyer from [Schrel].

(3.2) Theorem. Let G = {g1,...,9s} be a Grébner basis of an ideal I in
R with respect to some fized monomial order, and let M = Syz(g1, ..., 9s)-
The collection {s;;,1 < i,j < s} from (3.1) generates M as an R-module.

Part of this statement is easy to verify from the definition of the s;;.

Exercise 1. Prove that s;; is an element of the syzygy module M for all
i,7.

The first two terms
xVii xii

e;, — e;
L1(g;) vr(g;)

in expression (3.1) for s;; form a column vector which is a syzygy on the
leading terms of the g; (that is, an element of Syz(LT(g1), ..., LT(gs))). The
“lifting” referred to above consists of adding the additional terms —a;; in
(3.1) to produce a syzygy on the g; themselves (that is, an element of
Syz(g1, - - -+ gs))-

A direct proof of this theorem can be obtained by a careful reconsid-
eration of the proof of Buchberger’s Criterion (see Theorem 6 of [CLO],
Chapter 2, §6). Schreyer’s proof, which is actually significantly simpler,
comes as a byproduct of the theory of Grobner bases for modules, and it
establishes quite a bit more in the process. So we will present it here.

First, let us note that we can parallel in the module case the observations
made above. Let G = {g1,...,8s} be a Grobner basis for any submodule
M C R™ with respect to some fixed monomial order >. Since G is a
Grobner basis, by Theorem (2.9) now, the remainder of S(g;, g;) on division
by G is 0, and the division algorithm gives an expression

s
S(gm g]) = Z ik 8k,
k=1

where a;;; € R, and LT(a;;,8r) < LT(S(gi,g;)) for all 4, j, k.
Write €1,...,€s for the standard basis vectors in R®. Let m;; =
LCM(ur(g;), LT(g;)), and let a;; € R® denote the column vector

S
a;; = Qij1€1 + Qij2€2 + - - - + a5€5 € R°.



224 Chapter 5. Modules

For the pairs (¢, j) such that m;; # 0, define s;; € R® by setting

m;, m;;
= J € — J €; — A4y

Sij i
T ur(g) Lr(g;)

in R*, and let s;; be zero otherwise. Since a Grobner basis for a module
generates the module by Proposition (2.7), the following theorem includes
Theorem (3.2) as a special case. Hence, by proving this more general result
we will establish Theorem (3.2) as well.

(3.3) Theorem (Schreyer’s Theorem). LetG C R™ be a Grobner basis
with respect to any monomial order > on R™. The s;; form a Gréobner basis
for the syzygy module M = Syz(g1, . .., gs) with respect to a monomial or-
der >g on R* defined as follows: x%€; >g xP¢; if L= (2%g;) > 11> (2Pg;)
in R™, or if urs (2%g;) = vrs (2°g;) and i < j.

PRrROOF. We leave it to the reader as Exercise 1 below to show that >g is a
monomial order on R*®. Since S(g;, g;) and S(g;, g;) differ only by a sign,
it suffices to consider the s;; for ¢ < j only. We claim first that if ¢ < j,
then

mij
3.4 LT ii) =
( ) >g (SZJ) LT(gi)

€;.

Since we take i < j, this term is larger than (m;; /LT(g;))e; in the >g order.
It is also larger than any of the terms in a;;, for the following reason. The
a;;, are obtained via the division algorithm, dividing S = S(g;, g;) with
respect to G. Hence LT~ (S) > LT (a;je8e) for all £ = 1,...,s (in R™).
However, by the definition of the S-vector,

LT> <L;r(llg]l) gi) > Lr>(8),
since the S-vector is guaranteed to produce a cancellation of leading terms.
Putting these two inequalities together establishes (3.4).

Now let £ = >7_, fie; be any element of the syzygy module M, let
LT (fi€i) = mye; for some term m; appearing in f;. Further, let L, (f) =
my€, for some v. With this v fixed, we set

s = E M€

uesS

where S = {u : my LT (g,) = MyLT> (8y)}-

One can show without difficulty that s is an element of Syz({LT>(g.) :
u € S}). By part ¢ of Proposition (2.3) of this chapter, it follows that s is
an element of the submodule of R® generated by the

My My
€y —
T (8u) LT (8uw)

Ouyw — w
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where u < w are elements of S. Then (3.4) implies that LTg(s) is divisible
by LTg(si;) for some i < j. So by definition the s;; form a Grébner basis
for M with respect to the >¢g order.

Exercise 2. Verify that the order >¢ introduced in the statement of the
theorem is a monomial order on R™.

Theorem (3.3) gives the outline for an algorithm for computing
Syz(gi, ..., 8s) for any Grobner basis G = {g1,...,8s} using the divi-
sion algorithm. Hence we have a solution of Problem (2.1) b in the special
case of computing syzygies for Grobner bases. Using this, we will see how
to compute the module of syzygies on any set of generators {fy, ..., f;} for
a submodule of R™.

So suppose that we are given fi,...,f; € R™, and that we compute a
Grobner basis G = {g1,...,8s} for M = (f1,...,f;) = (G). Let F =
(fi,...,f;) and G = (g1,...,8s) be the m x t and m X s matrices in
which the f;’s and g;’s are columns, respectively. Since the columns of F
and G generate the same module, there are a t x s matrix A and an s X t
matrix B, both with entries in R, such that G = FA and F = GB. The
matrix B can be computed by applying the division algorithm with respect
to G, expressing each f; in terms of the g;. The matrix A can be generated
as a byproduct of the computation of G. This is because each S-vector
remainder that is added to G in the basic Buchberger algorithm, Theorem
(2.11), comes with an expression in terms of the f;, computed by division
and substitution. However, the matrix A can also be computed in an ad
hoc way as in simple examples such as the following.

Suppose, for example, that m = 1, so that M is an ideal, say M =
(f1, f2) in R = k[, y], where

fi=zy +x, fo=9y"+ 1

Using the lex monomial order with x > y, the reduced Grébner basis for
M consists of

n=z  g=y+1L
Then it is easy to check that

fi=Ww+ g
g1 =—(1/2)(y — 1) f1 + (1/2)z f,

(3.5) G = (91,92) = (f1, f2) <—(yx—/21)/2 (1)) =FA
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and
(35 F= (i) = (V5 ) = on

If we express G in terms of F' using the equation G = F'A then substitute
F = GB on the right, we obtain an equation G = GBA. Similarly, F =
FAB. What we have done here is analogous to changing from one basis to
another in a vector space, then changing back to the first basis. However, in
the general R-module case, it is not necessarily true that AB and B A equal
identity matrices of the appropriate sizes. This is another manifestation of
the fact that a module need not have a basis over R. For instance, in the
example from (3.5) and (3.6) above, we have

ap= (W)

and

pan (7002 0.

In addition to connecting F' with G, the matrices A and B also connect
the syzygies on F' and G in the following ways.

(3.7) Lemma.

a. Let s € R® (a column vector) be an element of Syz(g,...,8s), then
the matriz product As is an element of Syz(fy, ..., f).

b. Similarly, if t € R' (also a column wvector) is an element of
Syz(fy, ..., 1), then Bt € R® is an element of Syz(gi, ..., 8s)-

c. Fach column of the matrizc I; — AB also defines an element of
Syz(fy, ..., ft).

PROOF. Take the matrix equation G = F'A and multiply on the right
by the column vector s € Syz(gi, ..., gs). Since matrix multiplication is
associative, we get the equation

0 = Gs = FAs = F(4s).

Hence As is an element of Syz(fy, . . ., f;). Part b is proved similarly, starting
from the equation F' = GB. Finally, F' = FAB implies

F(I;, —-AB)=F —-FAB=F—F =0,
and part ¢ follows immediately.
Our next result gives the promised solution to the problem of computing

syzygies for a general ordered t-tuple F = (f1,...,f;) of elements of R™
(not necessarily a Grobner basis).
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(3.8) Proposition. Let F' = (fy,...,f;) be an ordered t-tuple of elements
of R™, and let G = (g1, ..., 8s) be an ordered Grébner basis for M = (F)
with respect to any monomial order in R™. Let A and B be the matrices
introduced above, and let s;;, 1 < 1,4, < s be the basis for Syz(gi, ..., 8s)
given by Theorem (3.83) or (3.2). Finally, let Sy, ...,S; be the columns of
the t x t matrix I; — AB. Then

Syz(fla s 7ft) = <Asij7 Sla R St>

PROOF. (As;j,S1,...,S;) is a submodule of Syz(fi, ..., f;), so to prove
the proposition, we must show that every syzygy on F' can be expressed
as an R-linear combination of the As;; and the Sj. To see this, let t be
any element of Syz(fy, ..., f;). By part b of Lemma (3.7), Bt is an element
of Syz(gu, ..., gs). Since the s;; are a Grébner basis for that module, and
hence a generating set for Syz(gu, ..., gs), there are a;; € R such that

Bt = Z aijsij.
ij
But multiplying both sides by A on the left, this implies
ABt = ZaijAsij,
ij
so that
t = ((I; — AB) + AB)t
= (It — AB)t + Z aijAsij.
ij
The first term on the right in the last equation is an R-linear combination

of the columns S, ..., S; of (I; — AB), hence t € (4s;;, S1,...,S;). Since
this is true for all t, the proposition is proved.

Note that the hypothesis in Proposition (3.8) above that G is a Grobner
basis is needed only to ensure that the g; generate and that the s;; are
a basis for the module of syzygies. More generally, if we have any set of
generators for a module M, and a set of generators for the module of
syzygies of that set of generators, then we can find a generating set of
syzygies on any other generating set of M.

(3.9) Corollary. Let the notation be as above, but assume only that G =
(g1,---,8s) is a set of generators for M and that D is a matriz presenting
M, so the columns of D generate Syz(gi, .. .,8s). Then the block matriz

(AG I, — AB)

presents M with respect to the generating set f1, ... f;.
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PRrROOF. This follows immediately from the proof of Proposition (3.8)
above. We have also seen this result in part c of Exercise 31 in §1.

As an example of Proposition (3.8), we use the F, G, A, B from (3.5) and
(3.6) and proceed as follows. Since
S(g91,92) = ¥’91 — 292 = —x = —g1,
by Theorem (3.3) we have that

2
+1
S12 = (y_x )

generates Syz(gi, g2). Multiplying by A we get

_(~Ww-1/2 0\ (v +1
As12 = ( x/2 1 -z
(W =y +y—1)/2
(- )2 )
Exercise 3. Verify directly that Asio gives a syzygy on (f1, f2).

Continuing the example, the columns of I, — AB are

o= (). e ()

So by the proposition
Syz(f1, f2) = (As12,S1).

This example has another instructive feature as shown in the following
exercise.

Exercise 4. Show that As;, above is actually a multiple of S; by a non-
constant element of R. Deduce that S; alone generates Syz(f1, f2), yet Asio
does not. Compare to Exercise 12.

Hence, the As;; are alone not sufficient to generate the syzygies on F' in
some cases.

Let us now return to the situation where M is a submodule of R™ and
fi,...,f; and gi,...,gs are different sets of generators of M. At first
glance, Corollary (3.9) seems a little asymmetric in that it privileges the
g’s over the f’s (in Proposition (3.8), this issue does not arise, because
it seems sensible to privilege a Grobner basis over the set of generators
from which it was computed). Given presentations for Syz(fy, ..., f;) and
Syz(gi, - - -,8s), Exercise 31 of §1 provides a block matrix which presents
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M with respect the combined set of generators fi, ..., £, g1,...,8s (and
which reduces to the matrices F and G separately). It is worth pausing,
and phrasing a result that links the set of syzygies on any two generating
sets of the same module M.

(3.10) Proposition. Suppose that f1,...,f; and g1,...,8s are ordered
sets of elements of R™ which generate the same module M. Then, there
are free R-modules L and L' such that

Syz(fh . ,ft) ¢ L= SyZ(gh v 7g8) D L.

PROOF. We claim that N = Syz(fy,...,fi, g1,...,8s) is a direct sum of
a module isomorphic to Syz(fy, . .., f;) and a free module. In fact, N is the
set of vectors (ci,...,¢q,dy,...,ds)T € R such that

cfy + -+ ofy +digy + -+ dsgs = 0.

Now consider the submodule K C N obtained by taking those elements
with all d; = 0. Note that K is clearly isomorphic to Syz(fy, ..., f;). More-
over, since the f; generate M, we can write g; = > a;;f;. Then, each of
the t vectors ny, = (a1, ..., art, 0,...,0,—1,0,...,0)T with all terms in
the (t 4+ j)th place, 0 < j < s, equal to 0 except the (¢ + k)th term which
is —1, belongs to N. Moreover, the ng, 1 < k < ¢, are clearly linearly
independent, so they generate a free submodule of N, which we will call
L. Clearly K N L = (. To see that N = K + L, suppose that we have an
element (cy,...,¢,dp,...,ds)T € N. Then

O0=cfi + - +afi+digr + -+ dsgs
=afi+ - tafi+d Y agfy+ -+ do Y agf;

D e+ djagf,
J

%

so that
(c1,. . ceydy,. .. ds)T —i—Zdjnj

= (Cl +Zdjaj1,...,ct+Zdjajt,0,...,O)T,
J J

which belongs to K. This proves the claim. Similarly, we show that N is a
direct sum of Syz(gy, ..., gs) and the result follows.

Modules which become isomorphic after addition of free modules are
often called equivalent. The proposition shows that any two modules of
syzygies on any different sets of generators of the same module are equiv-
alent. We leave it as an exercise to show that any modules of syzygies on
equivalent modules are equivalent.
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As an application, we will develop a syzygy-based algorithm for com-
puting ideal and submodule intersections. For ideals, this method is more
efficient than the elimination-based algorithm given in Chapter 1, §3, Ex-
ercise 11. We start with the ideal case. The following statement gives
a connection between the intersection I N J and syzygies on a certain
collection of elements of R2.

(3.11) Proposition. Let I = (f1,..., ft) and J = {g1, ..., gs) be ideals
in R. A polynomial hg € R is an element of I NJ if and only if hy appears
as the first component in a syzygy

(hos bty hey hugts oo hygs)T € RETEFY
in the module

S = Syz(vo, Vi, .y Vi, Vigly e oo, Vsit)
where

e (o= () ()

vm—(o),...,vsﬂ—(o)
91 9s

in R?.

PROOF. Suppose that
0=hovo+hivi+ -+ v + hypiviepr + -0 R Vg
From the first components, we obtain an equation
O=ho+hifi+ - +hfi+0+-+0,

so hg € {f1,...,ft) = I. Similarly from the second components, hy €
(91,---,9s) = J. Hence hg € TN J.

On the other hand, in Exercise 7 below, you will show that every hg € IN
J appears as the first component in some syzygy on the vo, ..., vVsys.

Exercise 5. Show that Proposition (3.11) extends to submodules M, N C
R™ in the following way. Say M = (f;,...,f;), N = (g1,...,8s) where
now the f;, g; € R™. In R?™_ consider the vectors Vi, . .., Vom, Where vo;
is formed by concatenating two copies of the standard basis vector e; € R™
to make a vector in R?™. Then take vy,...,v;, where v; is formed by
appending m zeros after the components of f;, and vyy1,..., viqs, where
V¢4, is formed by appending m zeroes before the components of g;. Show
that the statement of Proposition (3.11) goes over to this setting in the
following way: (hgy, ..., ho,)T € M N N if and only if the hgy, ..., hg,,
appear as the first m components in a syzygy in the module
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SYZ(VO1s - - s VOms Vi -+« Vi, Viddy - -+ Vitt)

in RTErs,

Exercise 6.

a. Using Propositions (3.8) and (3.11) and the previous exercise, develop
an algorithm for computing a set of generators for M N N.

b. In the ideal case (m = 1), show that if a POT extension of a monomial
order > on R is used and G is a Grobner basis for the syzygy module S
from Proposition (3.11), then the first components of the vectors in G
give a Grobner basis for I N J with respect to >.

Macaulay 2 has a built-in command syz for computing the module of
syzygies on the columns of a matrix using the method developed here. For
instance, with the matrix

M= a®>+ b a®—2bed a-—b
T\ -d* V¥ tad c+d)’

from the examples in §2, we could use: syz M to compute syzygies. Note:
this produces a set of generators for the syzygies on the columns of the
original matrix M, not the Grobner basis for the module they generate.
Try it! Your output should be:

i7 : syz M

o7 = {2} | ~ab3+b4+a3c+a3d-a2cd+abcd-2bc2d-2bcd?2 |
{3} | ~a2c-b2c+ac2-bc2-a2d-b2d-ad2+bd2 |
{1} | a2b3+b5-a3c2+a3cd+ab2cd+2bc3d+a3d2-2bcd3 |

3 1
o7 : Matrix R <-—-R

One can also use Singular (or CoCoA or CALI) to compute modules of
syzygies. To do this in Singular define R and M as in Exercise 9 of §2, we
enter syz(M); at the prompt >. Depending on how wide your screen size is
set, your output will be:

>syz (M) ;
_[11=a2b3*gen(3) +b5*gen(3) +a3c2*gen(3) +a3cd*gen(3)+ab2cd
*gen (3)+2bc3d*gen(3)+a3d2*gen(3) -2bcd3*gen (3) ~ab3*gen (1)
+bd*gen(1)+a3c*xgen(1)+a3d*gen(1)-a2cd*gen(1)+abcd*gen(1)
—-2bc2d*gen (1) -2bcd2*gen (1) -a2c*gen(2) -b2c*gen(2) +ac2*gen
(2)-bc2*gen(2) -a2d*gen(2) -b2d*gen (2) —ad2*gen (2) +bd2*gen (
2)

Note that Singular uses the notation gen(1), gen(2), ... to refer to
the module elements eq, e, . . .. There are a range of options for formatting
output. To get output in a format closer to that given by Macaulay 2 above,
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change the ordering on the module to POT, upward. That is, define the
ring R using the command

ring R =0, (aa b, c, d)ﬂ (C7 dp);

Try it.

AppDiTiONAL EXERCISES FOR §3

Exercise 7. Complete the proof of Proposition (3.11) by showing that
every element of the intersection I N J appears as the first component hg
in some syzygy in

S = SyZ(VO7 Vige oo s Vi, Vg1 oo ey Vs+t)~

Exercise 8. Let [ = (F) = (zz — y,9* + z,yz + 2z) in k[z,y, 2].

a. Find the monic reduced lex Grébner basis G = (¢1,...,gs) for I and
the “change of basis” matrices A,B such that G = FA, FF = GB.

b. Find a set of generators for Syz(G) using Theorem (3.3).

c. Compute a set of generators for Syz(F') using Proposition (3.8).

Exercise 9. Let (my,...,m;) be any ordered ¢-tuple of elements of R™,
and let S = Syz(my,...,m;) C R'. Show that for any 1 < s < ¢, the
projection of S onto the first (that is, the top) s components (that is, the
collection N of (aj,...,as) € R® such that ay,...,as appear as the first

s elements in some element of S) forms a submodule of R®. Hint: N is not
the same as Syz(my, ..., my).

Exercise 10. In this exercise, you use syzygies to compute the ideal quo-
tient I:J. Recall from part b of Exercise 13 from Chapter 1, §1 of this book
that if I N (h) = (g1,...,9t), then I:(h) = (g1 /h, ..., g:/h).

a. Using Proposition (3.11) (not elimination), give an algorithm for
computing I:(h). Explain how the g¢;/h can be computed without
factoring.

b. Now generalize part a to compute I:J for any ideals I, J. Hint: If J =
(h1, ..., hs), then by [CLO], Chapter 4, §4, Proposition 10,

S
I:J = (T: (hy)).
j=1
Exercise 11. Show that a homogeneous syzygy (c1z®~ !, ..., csx® )T
on a collection of monomials ', ..., x% in R can be written as a sum
of homogeneous syzygies between pairs of the z*. (See the proof of
Proposition (2.3) part c.)
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Exercise 12. If f1, fo € R are nonzero, use unique factorization to show
that Syz(f1, f2) is generated by a single element. Compare with Exercise 4.

Exercise 13.

a. Show that the notion of equivalence defined after Proposition (3.10) is
an equivalence relation on R-modules. (That is, show that it is reflexive,
symmetric and transitive.)

b. Suppose that M and M’ are two R-modules which are equivalent in the
sense described after Proposition (3.10). That is, there are free modules
L and L' such that M ¢ L is isomorphic to M’ & L'. Show that any two
modules of syzygies on M and M’ are equivalent.

Exercise 14. Re-do Exercise 27, parts a and b, from §1 using Proposi-
tion (3.8). In fact, write out and prove Proposition (3.8) in the special
case that F' = (f1,..., ft) is an ordered set of elements of R such that
1€ (f1,..., ft) (in which case the Grobner basis G consists of the single
element {1}).

Exercise 15. This exercise will show that one Grobner basis computation

can accomplish multiple tasks simultaneously. Let R be a polynomial ring

with a monomial order >, and for any integer m > 1, let >,, denote the

POT extension of > to R™. Given fi,..., fs € R, our goal is to compute

the following:

e A Grobner basis G with respect to > for the ideal (fi,..., fs),

e For each g € G, polynomials hq, ..., hs such that g = >°7_, h; f;, and

e A Grobner basis G with respect to >, for the syzygy module
Syz(fla BRI fs)

To do this, we will work in the free module of R**! with standard basis
€p, €1, ...,e,. Then consider the submodule M C R*t! generated by

mi:fie0+ei:(fi,O,...,O,l,O,...,O), ZZL,S

In other words, m; has f; in the Oth component, 1 in the ith component,
and Os elsewhere. Let G” be a reduced Grobner basis of M with respect to

>s41-

a. Prove that M N ({0} x R®) = {0} x Syz(f1,..., fs)-

b. Prove that the set G = {g € R | g # 0 and there are hy,...,hs € R
with (g, h1,...,hs) € G"} is a reduced Grobner basis with respect to
> for the ideal (f1,..., fs).

c. If g € G and (g,h1,...,hs) € G” as in part b, then show that g =
hifi + -+ hsfs.
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d. Prove that the set G’ defined by {0} x G’ = G” N ({0} x R?) is a reduced
Grobner basis with respect to > for the syzygy module Syz(f1, ..., fs).
This exercise is based on an observation of T. Sederberg.

84 Modules over Local Rings

The last two sections have dealt with modules over polynomial rings. In
this section, we consider modules over local rings. It turns out that the
adaptation of Grobner basis techniques to local rings outlined in Chapter 4,
extends without difficulty to the case of modules over local rings. Moreover,
as we shall see, modules over local rings are simpler in many ways than
modules over a polynomial ring.

As in the preceding sections, R will denote the polynomial ring

klx1,...,2,] and we shall let ) denote any one of the local rings obtained
from R considered in Chapter 4. More precisely, corresponding to any point
p = (p1,...,Dpn) of affine n-space k™, we obtain the localization R, of R,

R,={f/g: f,g € Rand g(p) # 0}
= {rational functions defined at p}.

If kK = R or C, we can also consider the ring of convergent power series at
p, denoted k{z1 — p1,..., =y — pn}, and for general k, we can study the
ring of formal power series at p, denoted

kllzr = p1, .o @0 = pal]-

The notation @) will refer to any of these. By the local ring at the point
p, we will mean R,. Whenever convenient, we take the point p to be the
origin 0 € k™ in which case R, = Ro = k[z1,. .., Zn)(zy,....20)-

In Chapter 4, we restricted ourselves to ideals in @) generated by polyno-
mials. We make the analogous restriction in the case of modules. That is,
we shall only consider Q-modules which are either submodules of QQ° which
can be generated by polynomials (that is by vectors all of whose entries
are polynomials) or modules that have a presentation matrix all of whose
entries are in R.

Exercise 1. If Q = k[x1,...,%pn](z,,....2,), show that any submodule of
Q™ can be generated by generators which are finite k-linear combinations
of monomials.

Given any R-module M and any point p € k™, there is a natural R,-
module, denoted M, and called the localization of M at p, obtained by
allowing the elements of M to be multiplied by elements of R,,. If M is an
ideal I in R, then M, is just the ideal IR,. If M C R?® is generated by
vectors f1,...,f;, then M, is generated by fi, ..., f;, where the entries in
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the vectors f; are considered as rational functions and one allows multipli-
cation by elements of R,. If M is presented by the m x n matrix A, then
M, is also presented by A. We leave the proof as an exercise.

Exercise 2. Let M be an R-module, and A a presentation matrix for M.
If p € k™ is any point, show that A is a presentation matrix for the R,-
module M,. Hint: The columns of A continue to be syzygies over R, so
one only needs to observe that any R,-linear relation on the generators is
a multiple of an R-linear relation on the generators.

It is worth noting, however, that even though the presentation matrix
A of M is also a presentation matrix for M), the matrix A may simplify
much more drastically over R, than over R. For example, let R = k[z, 3]
and consider the matrix

2

x x
A=|(1+y o
Yy 0

This does not simplify substantially over R under the rules of Exercise 29
from §1. However, over Ry, we can divide the second row by 1 + y, which
is a unit in Ry, and use the resulting 1 in the first column, second row, to
clear out all other elements in the first column. We obtain the matrix on
the left which reduces further as shown

2 _ wy
0 =z 14y 2 wy2 ) oo
2 x 1 x4 — Yy
1 Yy — Iy | — 1ty
1+y3 —zy —a:y3
0 —xy 1+y

14y

2 2 _ 2
*)(x —|—yac3 a:y)
—zy

Thus, the matrix A presents an Rg-module isomorphic to the ideal (33, x +
2
Ty —y°).

Exercise 3. Let A be as above.

a. Consider the R-module M presented by the matrix A. Prove that M is
isomorphic to the ideal (y3, yx?, —y? + x + zy).

b. Show that in R the ideal (y3, yz?, —y?® + o + xy) is equal to the ideal
(V°, = + zy — y°).

To extend the algorithmic methods outlined in Chapter 4 to submod-
ules of @™, one first extends local orders on @) to orders on Q™. Just as
for well-orderings, there are many ways to extend a given local order. In
particular, given a local order on @) one has both TOP and POT exten-
sions to Q™. The local division algorithm (Theorem (3.10) of Chapter 4)
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extends to elements of k[zq, ... ,xn]@l I"f in exactly the same way as

the ordinary division algorithm extends to k[z1, ..., x,]™. One has to give
up the determinate remainder, and the proof of termination is delicate, but
exactly the same as the proof of the local division algorithm. One defines
Grobner (or standard) bases, and S-vectors exactly as in the polynomial
case and checks that Buchberger’s criterion continues to hold: that is, a set
{f1,..., £} of vectors in Q™ is a standard basis exactly when each S-vector
on any pair f;, f; € Q™ has remainder 0 when divided by {fi, ..., f;}, the
division being done using the extended local division algorithm. This imme-
diately provides an algorithm for extending a set of polynomial vectors in
Q™ to a standard basis of polynomial vectors (provided only that one can
show termination after a finite number of steps, which follows exactly as
in the case of Mora’s algorithm for elements of )). This algorithm is often
called Mora’s algorithm for modules, and is implemented on the computer
algebra programs CALI and Singular.

Once we have a method for getting standard bases, we immediately get
an algorithm for determining whether an element belongs to a submodule
of @™ generated by polynomial vectors. Likewise, everything we said about
syzygies in the last section continues to hold for modules over local rings.
In particular, a set of generators {fy,...,fs} for a submodule of @™ is a
standard basis precisely when every syzygy on the leading terms of the f;
lifts to a syzygy on the f;, Schreyer’s Theorem for computation of syzygies
given a standard basis carries over word for word, and the analogues of
Proposition (3.8) and Corollary (3.9) continue to hold without change.
Thus, we can compute syzygies on any set of polynomial vectors in Q™.

In the rest of this section, we shall detail a number of ways in which mod-
ules over local rings are different, and better behaved, than modules over
polynomial rings. This is important, because one can often establish facts
about modules over polynomial rings, by establishing the corresponding
facts for their localizations.

Minimal generating sets

Given a finitely generated module M over a ring, define the minimal number
of generators of the module M, often denoted u(M), to be the smallest
number of elements in any generating set of M. If the module M is free,
one can show that any basis has (M) elements (in particular, all bases
have the same number of elements). However, if M is not free (or if you
don’t know whether it is free), it can be quite difficult to compute p(M).
The reason is that an arbitrary set of generators for M will not, in general,
contain a subset of p(M) elements that generate. In fact, one can easily
find examples of sets of generators which are unshortenable in the sense
that no proper subset of them generates.
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Exercise 4. Let R be the ring k[x, y] and let M be the ideal generated by

{oy(y — 1), zy(z — 1), aly — (@ — )},

a. Show that this set is unshortenable. Hint: The least inspired way of
doing this is to compute Grébner bases, which can be done by hand.
A more elegant way is to argue geometrically. Each of the generators
defines a union of three lines and the variety corresponding to M is the
intersection of the three sets of three lines.

b. Show that M = (zy? — 2%y, 2% — z).

We should also mention that Exercise 10e of §1 gives an example of a
free module with an unshortenable set of u(M) + 1 generators.

For modules M over a local ring (), however, this problem does not arise.
Unshortenable sets of generators are minimal, and any set of generators
contains an unshortenable set.

Exercise 5. Let R = k[z,y] and M be as in Exercise 4. Let My be the

ideal in Ry obtained by localizing at the origin.

a. Since {zy(y — 1), zy(z — 1),z(y — 1)(z — 1)} generates M in R, it
generates My in Ry. Show that this set of generators is shortenable.
What is the shortest unshortenable subset of it that generates My?

b. Answer the same questions for the set (zy? — 22y, 22 — ).

c. With the notation of Exercise 10 of §1, let IV be the R-module generated
by {hi,hs,h3} C R and Ny C (Rp)? the Rp-module they generate.
Find an unshortenable subset of {hj, hy, h3} that generates Ny.

Moreover, it turns out to be easy to compute p(M) when M is a module
over a local ring @. The reason is the following extremely simple, and ex-
tremely useful, result and its corollaries which hold for all finitely-generated
modules over a local ring.

(4.1) Lemma (Nakayama’s Lemma). Let Q be a local ring with maz-
imal ideal m, and let M be a finitely generated Q-module. If mM = M,
then M = 0.

PRrROOF. Suppose that M # 0, and let fi1,...,fs be a minimal set of
generators of M. Then f, € mM. Thus, fs = a1f1 + -+ + asfs for some
ai,...,as € m. Hence,

(1 - as)fs =a1fi+ -+ as—1fs—1-

But 1 — a, is a unit because a; € m, so we have that fs is a Q-linear com-
bination of fi,..., fs—1. This contradicts the minimality of the generating
set.

As a corollary, we obtain the following (equivalent) statement.



238 Chapter 5. Modules

(4.2) Corollary. Let Q be a local ring with mazimal ideal m, let M be
a finitely generated Q-module, and let N be a submodule of M. If M =
mM + N, then M = N.

ProoOF. Note that m(M/N) = (mM + N)/N. Now apply Nakayama’s
lemma to M/N.

Recall from Exercise 23 of §1 of this chapter that if R is any ring, [
any ideal of R, and M an R-module, then M/IM is an R/I-module. If, in
addition, I is a maximal ideal, then R/I is a field, so M/IM is a vector
space over R/I (any module over a field k is a k-vector space). If M is
finitely generated, then M/IM is finite-dimensional. In fact, if fi,..., fs
generate M as an R-module, then the residue classes [fi],...,[fs] in
M/IM span M/IM as a vector space. If R is a local ring ) with maxi-
mal ideal m, then the converse is true: if [f1], ..., [fs] span M/mM, then
M = {f1,..., fs) + mM and Corollary (4.2) to Nakayama’s lemma implies
that M = (f1,..., fs). In fact, we can say more.

(4.3) Proposition. Let Q, m be a local ring, k = Q/m its residue field

(the underlying field of constants), and M any finitely generated Q-module.

a. f1,..., fs is a minimal generating set of M if and only if the cosets
[f1l, .- -, [fs] form a basis of the k-vector space M /mM.

b. Any generating set of M contains a minimal generating set. Any
unshortenable set of generators of M is a minimal set of generators.

c. One can extend the set fi,..., fi to a minimal generating set of M, if
and only if the cosets [f1], ..., [ft] are linearly independent over k.

PROOF. The first statement follows from the discussion preceding the
proposition. The second two statements follow as in linear algebra and
are left as exercises.

An example may make this clearer. Suppose that Q = k[[z, y]] and let
M = (fi, £2) C k[[z,y]]? be the @-module generated by

£ — x2—|—y2+xy £ — x
1= 23 , I = y2+x5 .

Then, mM = (x, y) M is generated by zfy, yf1, xfs, yfs. Anything in M is of
the form p(z, y)f1 +q(z, y)f2 where p, g are formal power series. Since we can
always write p(x, y) = p(0, 0) +xzp1 (z, y) + yp2(z, y) for some (non-unique)
choice of power series py, pe and, similarly, q(z, y) = ¢(0,0) + zq1 (z, y) +
yg2(x, y) we see that p(x, y)fi +q(z, y)f2 is congruent to p(0, 0)f; +¢(0, 0)f>
modulo (zfy, yfy, 2fs, yfa). The latter is a k-linear combination of [f;] and
[f2]. (The reader can also check that [f;] and [f] are k-linearly independent.)

If M is a module over a local ring, then Proposition (4.3) gives a method
to determine p (M) in principle. One might ask, however, if there is a way
to determine pu(M) from a presentation of M. Can one, perhaps, find a
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presentation matrix of M/mM. There is a very satisfying answer to this.
First we need a little lemma, which applies to any ring.

(4.4) Lemma. Let P be any ring (e.g. R, Q, R/J, ...), let I be an ideal
in P, let M be any finitely generated P-module, and let A be a presentation
matriz for M. If we let A denote the matriz obtained from A by interpreting
each entry in A as its residue class modulo I, then A presents M/IM.

PrOOF. To say an m x s matrix A presents M is to say that there are
generators fi1,..., f;, of M and that if a1 f1 + -+ + amfmn = 0 with
ai,...,a, € P is any relation, then the column vector (ai,...,an)"
is a P-linear combination of the columns of M. It is clear that the
images [fi],...,[fm] generate M/IM. So we need only show that the
columns of A span the set of all syzygies on the [f;]. So, suppose that
[r][f1] + - -+ [rm][fm] = 0in P/I (here r; € P and [r;] is the coset r; + I
it represents). Then r1 f1 + - + 7y frn € IM. Thus,

rfito At rmfm =bfi+ oS

for some b; € I, whence

(7"1 - bl)fl + -+ (Tm - bm)fm = 0.

By assumption, (r; — by, ..., 7m — by)T is a P-linear combination of the
columns of A. Hence ([r1 —b1], ..., [rm —bm])T is a P/I linear combination
of the columns of A. But [r; —b;] = [r;] because b; € I, foralli =1,...,m.
Thus the columns of A generate all syzygies on [fi],...,[fm], and this

completes the proof.
And, now, for the result we alluded to above.

(4.5) Proposition. Let M be an R-module, R = k[x1, ..., xz,], and sup-
pose that A is a matriz presenting M. If p € k™ is any point in affine
n-space, let A(p) be the matriz obtained by evaluating all the entries of
A (which are polynomials a;; € R) at p. Then A(p) presents M, /m,M,,
where m,, is the unique mazimal ideal (x1 — p1, ..., Ty — Pp) in Rp.

PRrOOF. Write A = (a;;). Since A presents M, it also presents the R,-
module M, by Exercise 2 above. By Lemma (4.4), [A] = (a;; mod m,)
presents M, /m,M,. But a;; = a;;(p) mod m, (exercise!).

(4.6) Corollary. Let M and A be as above. For any p € k™, p(Mp) =
m — rk(A(p)), where rk(A(p)) denotes the usual rank of a matriz over a
field k (that is, the number of linearly independent rows or columns).

PRrROOF. By Proposition (4.3), u(M,) = dim M, /m,M,. Suppose that A
is an m x s matrix. We know that A(p) presents M, /m,M,. Then, by
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Proposition (1.10), M,/m,M, is isomorphic to k™ /A(p)k® (where A(p)k®
is the image of A(p)), and the dimension of the latter is m — rk(A(p)).

Minimal presentations

As a result of the discussion above, we have have a privileged set of pre-
sentation matrices of any finitely generated module M over a local ring Q.
Namely, we choose a minimal set of generators of M. The set of syzygies
on this set is again a module over the local ring @), so we choose a minimal
generating set for this set of syzygies. As usual, we arrange the syzygies as
columns to obtain a matrix, which we call a minimal presentation matrix
of M. We claim that the dimensions of this matrix do not depend on the
choice of minimal generating set of M, and that any minimal presentation
matrix can be obtained from another by a change of generators.

(4.7) Proposition.

a. Minimal presentation matrices for finitely generated modules M over
a local Ting Q are essentially unique in the following sense. Let F =
(fi,--+y fm) and G = (g1, . .., gm) be two minimal generating sets for
M. Let A be an m X s minimal presentation matrix for M with respect
to F. Similarly, let B be an m x t minimal presentation matriz for M
with respect to G. Then s = t and B = CAD, where C is the m X m
change of basis matriz satisfying F = GC, and D is an invertible s X s
matriz with entries in Q.

b. If a presentation matriz A for M is a minimal presentation matriz then
all entries of A belong to the maximal ideal of Q.

PROOF. To prove part a, first note that we have F = GC and G = FC’
for some m x m matrices with entries in Q). By Proposition (4.3), reducing
mod m, the matrices C and C’ are invertible m x m matrices over k. By
Corollary (3.9) of this chapter, the columns of CA are in T' = Syz(G),
and by the preceding remarks, the cosets of those columns in 7'/mT must
be linearly independent over k. Hence, we must have s < ¢. Similarly, the
columns of C'B are in § = Syz(F), and the cosets of those columns in
S/mS must be linearly independent over k. Hence, ¢t < s. It follows that
s = t, so that by Proposition (4.3) the columns of C'A are a minimal
generating set for Syz(G). Hence, B = CAD for some invertible s x s
matrix D.

For part b, we claim that no entry of a minimal presentation matrix
A can be a unit of Q. Indeed, if the 4, j entry were a unit, then f; could
be expressed in terms of the other fj, contradicting the assertion that
{f1,.--, fm} is minimal.

If we are given an explicit set of generators for a submodule M of Q™,
then the last assertion of the lemma provides an algorithm for computing
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the minimal presentation of M. One prunes the given set of generators so
that it is minimal, computes a basis of the module of syzygies on the chosen
set, and discards any syzygies which involve units.

For example, the minimal presentation matrix of the ideal (x,y, z) C
k[[x, y, 2]] is the matrix with Koszul relations as columns

Y z 0
A= -z O z
0 —x —y

We have seen that free modules are the simplest modules. However, it is
sometimes difficult to actually determine whether a given module is free.
Given a presentation matrix of a module over a local ring, there is a criterion
which allows one to determine whether or not the module is free. To do
this, we introduce a sequence of ideals which are defined in terms of the
presentation matrix for a module, but which turn out to be independent of
the presentation.

Let M be a finitely generated R-module (R any ring) and let A be a
presentation matrix for M. Then the ideal of ith minors I;(A) is the ideal
generated by the ¢th minors of A (that is, by the determinants of i x ¢
submatrices of A). Here, we define the Oth minor of A to be 1 (so that
Iy(A) = R). More generally, if i < 0, we define I;,(A) = R. If i exceeds the
number of rows or number of columns of A, we define the ith minor to be
0, so that I;(A) = 0 for sufficiently large i. Although defined in terms of
a presentation matrix A, the ideals will turn out to yield invariants of the
module M.

(4.8) Lemma. Let M be an R-module, R any ring. If A and B are ma-
trices that both present M, and that have the same number of rows, then
I;(A) = L;(B) for alli.

PROOF. We leave the proof as an exercise—see Exercise 10.

The restriction that the presentation matrices have the same number of
1

-1
clearly present the same module (namely, the free module R). Note that
Iy(A) = R, I;(A) = (0), while Iy(B) = R, I,(B) = R. It turns out to be
more convenient to change the indexing of the ideals of minors.

rows is irksome, but necessary. The matrices A = (0) and B =

(4.9) Definition. If M is an R-module presented by A, the ith Fitting
invariant F;(M) is defined by setting F;(M) = I,,—;(A) where A has m
rows.

Notice that with this shift in index, the Fitting invariants of the free R-
module R are F;(R) = R for i > 0 and F;(R) = (0) for i < 0, no matter
whether we use the matrix A or B above to compute the Fj.
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(4.10) Proposition. The Fitting invariants of a module depend only on
the module, and not on the presentation. That is, isomorphic modules have
isomorphic Fitting invariants.

PrOOF. This is an immediate corollary of Lemma (4.8) and the definition
of the Fitting invariants. See Exercise 10.

For modules over local rings, it is easy to show that necessary and suffi-
cient conditions for a module to be free can be given in terms of the Fitting
invariants.

(4.11) Proposition. Let Q be a local ring, M a finitely generated Q-
module. Then M is free of rank v if and only if F;(M) = 0 for i < r and
F;(M) =R fori>r.

PRrROOF. By Proposition (4.10), F;(M) does not depend on the choice of
matrix A presenting M. If M is free of rank r, then we can take A to
be the m x 1 matrix all of whose entries are 0. Computing F; using this
presentation gives F;(M) = 0 for i < r and F;(M) = R for i > r.

Conversely, suppose that A is some m X s matrix presenting M, and
suppose that Ip(4) = (A) = -+ = I;,+(A) = Rand I,,_.1(A) = 0.
Since R is local, this means that some (m —r) x (m —r) minor of A is a unit
(an R-linear combination of elements of a local ring which is a unit must
be such that one of the elements is a unit). This minor is a sum of terms,
each a product of m — r terms of R. Again because R is local, one such
summand must be a unit, and, hence, the m — r terms that multiply to give
it must be units. By exchanging columns and rows of A, we may assume
that a11, a2, ..., @m—rm—r are units. By row and column operations we
may arrange that a;1 = a2 = -+ = am—rm—r = 1 and that all other
entries in the first m — r rows and first m — r columns are zero.

We claim that all other entries of A must be zero. To see this, suppose
that some other entry were nonzero, say f € A. We could arrange that
Gm—r4+1,m—r+1 = f by leaving the first m — r columns and rows fixed,
and exchanging other rows and columns as necessary. But then the (m —
r+ 1) X (m — r 4+ 1) minor obtained by taking the determinant of the
submatrix consisting of the first m — r + 1 rows and columns would equal
f and I,,—r4+1(A) could not equal zero.

Since A is m x s, we conclude that A presents a module with m genera-
tors, the first m — r of which are equal to zero and the last r of which only
satisfy the trivial relation. This says that M is free of rank r.

Projective modules

Besides free modules, there is another class of modules over any ring which
are almost as simple to deal with as free modules. These are the so-called
projective modules.
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(4.12) Definition. If Ris any ring, an R-module M is said to be projective
if there is an R-module N such that M & N is a free module.

That is, a projective module is a summand of a free module. Such a
notion arises when dealing with syzygies, as shown by the following exercise
(compare Exercise 26 of §1).

Exercise 6.

a. Suppose that a module M has generators g1, . . ., gs so that the module
of syzygies Syz (g1, . . ., gs) is free. Then let fi, ..., f; be another gener-
ating set of M. Use Proposition (3.10) of the preceding section to prove
that Syz (f1, ..., fi) is projective.

b. Let {f1,...,ft} C R, R any ring, be a set of elements such that
(fi,-.., ft) = R. Show that Syz(fi,..., fi) is projective. Hint: Use
part a.

Every free module is clearly a projective module, but not conversely. In
Exercise 26a of §1, we point out that Z/6 = Z/3 & Z/2, but Z/3 is clearly
not a free (Z/6)-module.

Over a local ring, however, it is easy to show that any projective module
is free.

(4.13) Theorem. IfQ is a local ring, and M a projective Q-module, then
M is free.

PRrROOF. By assumption, there is a module N such that M & N = Q°,
for some s. We may harmlessly view M as a submodule of Q°. Choose a
minimal generating set fi,...,f,;, of M. If we let m denote the maximal
ideal of @, then f; +mM, . .. f,,+mM are a basis of M/mM Since MNN =
{0}, f; + mM + mN,...,f,, + mM + mN are linearly independent in
M/(mM +mN) C (M + N)/m(M + N). Therefore, by the second part of
Proposition (4.3), fi, ..., £, extend to a minimal generating set of M & N,
which is a basis, hence linearly independent over @. But then, f, ... f,
must be linearly independent over @), and hence a basis of M. Thus, M is
free.

For a long time, it was an open question as to whether the above result
continues to hold for polynomial rings over a field. The assertion that such
is the case (that is, that every projective k[z1,...,zy]-module is free) is
known as Serre’s conjecture and was finally proved by Quillen and Suslin
independently in 1976 (see Theorem (1.8), and Exercises 26 and 27 of §1
for more information).

Since modules over local rings are so much simpler than modules over
a polynomial ring, one often tries to establish results about modules over
polynomial rings by establishing the result for the localizations of the mod-



244 Chapter 5. Modules

ules at all points. One then hopes that this will be enough to establish the
result for modules over the polynomial ring.

We give one example of this here, phrased to make its algorithmic
importance clear. We learned it from M. Artin’s Algebra [Art)].

(4.14) Theorem. Let M be a finitely generated module over a polynomial
ring R = k[z1,...,z,]) withk = C and let A be an m X s matriz presenting
M. Then M is a free module of rank r if and only if for every p € C™ the
matriz A(p) has rank m — r (as above, A(p) is the matriz with entries in
C obtained by evaluating the polynomial entries of A at the point p).

PROOF. We prove the easy direction, and make some comments about the
reverse direction. Suppose that A presents M. Choose a free basis ey, . . ., €,
and let A’ be the r x 1 matrix of zeros presenting M with respect to this
basis. It follows from Exercise 33 of §1 that the matrices

D = (61 2) and D’ = (Ién 2,)
are such that rank(D(p)) = rank(D’(p)) for all p € k™. (See Exercise 12)
However, D’ is a constant matrix of rank m. Thus, D(p) has rank m for
all p. It follows that A(p) has rank m — r for all p.

To get the converse, in the exercises we ask you to show that if
rank(A(q)) = m — r for all ¢ in some neighborhood of p (we assumed
that k& = C to make sense of this), then M, is free of rank m — r. We then
ask you to show that if M), is free of rank m — r for all p € C", then M is
projective of rank m — r. The Quillen-Suslin theorem then implies that M
is free.

ADDITIONAL EXERCISES FOR §4

Exercise 7.

a. Let M be a finitely generated free R-module. Show that any two bases
of M have the same number of elements.

b. Let M be any finitely generated R-module. Show that the maximal
number of R-linearly independent elements in any generating set of M
is the same. (This number is called the rank of M.)

Exercise 8. Prove the second and third parts of Proposition (4.3).

Exercise 9. Suppose that f € R = k[z1,...,2,] and p = (p1,...,pn) €
k™. Show that m, = (1 — p1,..., Ty — Pp) is the maximal ideal of R,.
Explain why f = f(p) mod m,. (Compare the proof of Proposition (4.5).)
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Exercise 10. Show that the Fitting ideals of M are an ascending sequence
of ideals which do not depend on the choice of presentation matrix of M
as follows.

a. Given a finite generating set fi,..., fs for M, let A = (a;;) be the
presentation matrix constructed by choosing one set of generators of
Syz(fi,..., fs) and let B = (b;;) a presentation matrix constructed by
choosing another set of syzygies which generate. Show that the Fitting
ideals constructed from the matrix A are the same as the Fitting ideals
constructed from the matrix B. Hint: The hypotheses imply that the
columns of B can be expressed in terms of the columns of A. It is then
clear that I1(A) D I;(B). To see that Io(A) D Iy(B) write out the two
by two minors of B in terms of the entries of A. Generalize to show that
I;(A) D I;(B). Expressing the columns of A in terms of those of B gives
the reverse containments.

b. Show that the Fitting ideals do not depend on the choice of generators
f1,..., fs of M. Hint: Compare the ideals generated by the ¢ X i minors

of a presentation matrix with respect to the generators fi,..., fs and
those generated by the ¢ x ¢ minors of a presentation matrix with respect
to the generators fi,. .., fs, f, where f is any element of M.

c. Show that 0 = Fy(M) C Fi(M) C --- C Fs41(M) = R where s is as
in part a.

Exercise 11. In the ring Z[\/—5], show that the ideal (2,1 + /—5) C
Z[\/-5] is a projective Z[y/—5]-module which is not free.

Exercise 12. Show directly from Exercise 31 of §1 (that is, do not use
Exercise 33) that the matrices

(A 0 ; (Lm0
D(O Ir) and D(O A/)
in the proof of Theorem (4.14) are such that rank(D(p)) = rank(D’(p)) for

all p € k™. Hint: Use the result of Exercise 31, and compare the result of
multiplying the matrix therein on the left by

I, B q I, O
o 1) ™ 0 A)
Exercise 13. Suppose that £ = C, that A presents M. Show that M,

is free of rank r if and only if rank(A(q)) = m — r, for all ¢ in some
neighborhood of p.

Exercise 14. Let R = k[zy,...,x,]. Show that M is a projective R-
module if and only if M, is a projective (hence free) R,-module for all
pE k™
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Exercise 15. Let R be a ring and let A = (a3 --- an) be a
1 X m unimodular matrix (in this situation, unimodular means that R =
(a1, ..., am)). Also note that ker A is the syzygy module Syz(ay, ..., am).
Prove that ker A is a free R-module if and only if there exists an invertible
m X m matrix B with coefficients in R whose first row is A. Thus, the
statement that the kernel of any unimodular row is free is equivalent to the
statement that any unimodular row with coefficients in k[z1, . . ., z,] is the
first row of a square matrix with polynomial coefficients and determinant 1.



Chapter 6

Free Resolutions

In Chapter 5, we saw that to work with an R-module M, we needed not
just the generators fq,..., ft of M, but the relations they satisfy. Yet
the set of relations Syz (f1, ..., fi) is an R-module in a natural way and,
hence, to understand it, we need not just its generators g1, . . ., gs, but the
set of relations Syz (g1, ...,¢gs) on these generators, the so-called second
syzygies. The second syzygies are again an R-module and to understand it,
we again need a set of generators and relations, the third syzygies, and so
on. We obtain a sequence, called a resolution, of generators and relations of
successive syzygy modules of M. In this chapter, we will study resolutions
and the information they encode about M. Throughout this chapter, R
will denote the polynomial ring k[z1, ..., z,] or one of its localizations.

§1 Presentations and Resolutions of Modules

Apart from the possible presence of nonzero elements in the module of
syzygies on a minimal set of generators, one of the important things that
distinguishes the theory of modules from the theory of vector spaces over
a field is that many properties of modules are frequently stated in terms of
homomorphisms and exact sequences. Although this is primarily cultural,
it is very common and very convenient. In this first section, we introduce
this language.
To begin with, we recall the definition of exact.

(1.1) Definition. Consider a sequence of R-modules and homomorphisms

Pitl ppo P
o My —— My —— My ——

a. We say the sequence is exact at M; if im(p;11) = ker(p;).
b. The entire sequence is said to be ezact if it is exact at each M; which
is not at the beginning or the end of the sequence.

247
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Many important properties of homomorphisms can be expressed by say-
ing that a certain sequence is exact. For example, we can phrase what it
means for an R-module homomorphism ¢ : M — N to be onto, injective,
or an isomorphism:

® o : M — N is onto (or surjective) if and only if the sequence
MEN -0

is exact, where N — 0 is the homomorphism sending every element of
N to 0. To prove this, recall that onto means im(p) = N. Then the
sequence is exact at N if and only if im(¢) = ker(N — 0) = N, as
claimed.

® o : M — N is one-to-one (or injective) if and only if the sequence

0—-MBZN

is exact, where 0 — M is the homomorphism sending 0 to the additive
identity of M. This is equally easy to prove.
® o : M — N is an isomorphism if and only if the sequence

0—-MZE2N-=0

is exact. This follows from the above since ¢ is an isomorphism if and
only if it is one-to-one and onto.

Exact sequences are ubiquitous. Given any R-module homomorphism or
any pair of modules, one a submodule of the other, we get an associated
exact sequence as follows.

(1.2) Proposition.
a. For any R-module homomorphism ¢ : M — N, we have an exact
sequence

0 — ker(p) — M % N — coker(p) — 0,

where ker(p) — M is the inclusion mapping and N — coker(p) =
N/im(p) is the natural homomorphism onto the quotient module, as in
Ezercise 12 from §1 of Chapter 5.

b. If Q@ C P is a submodule of an R-module P, then we have an exact
sequence

0—>Q—>Pl>P/Q—>O7

where Q — P is the inclusion mapping, and v is the natural
homomorphism onto the quotient module.

PRrROOF. Exactness of the sequence in part a at ker(yp) follows from the
above bullets, and exactness at M is the definition of the kernel of a ho-
momorphism. Similarly, exactness at N comes from the definition of the
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cokernel of a homomorphism (see Exercise 28 of Chapter 5, §1), and exact-
ness at coker(p) follows from the above bullets. In the exercises, you will
show that part b follows from part a.

Choosing elements of an R-module M is also conveniently described in
terms of homomorphisms.

(1.3) Proposition. Let M be an R-module.

a. Choosing an element of M is equivalent to choosing a homomorphism
R— M.

b. Choosing t elements of M is equivalent to choosing a homomorphism
Rt — M.

c. Choosing a set of t generators of M is equivalent to choosing a homo-
morphism R — M which is onto (i.e., an exact sequence Rt — M —
0).

d. If M is free, choosing a basis with t elements is equivalent to choosing
an isomorphism R* — M.

PROOF. To see part a, note that the identity 1 is the distinguished element
of a ring R. Choosing an element f of a module M is the same as choosing
the R-module homomorphism ¢ : R — M which satisfies ¢(1) = f. This
is true since ¢(1) determines the values of p on all g € R:

olg) =¢lg-1) =g (1) =gf

Thus, choosing t elements in M can be thought of as choosing ¢ R-module
homomorphisms from R to M or, equivalently, as choosing an R-module
homomorphism from R’ to M. This proves part b. More explicitly, if we
think of R! as the space of column vectors and denote the standard basis in
R! by eq, ea, ..., e, then choosing ¢ elements f1, ..., f; of M corresponds
to choosing the R-module homomorphism ¢ : Rt — M defined by set-
ting p(e;) = fi, for all ¢ = 1,...,t. The image of ¢ is the submodule
(f1,..., ft) C M. Hence, choosing a set of ¢ generators for M corresponds
to choosing an R-module homomorphism R* — M which is onto. By our
previous discussion, this is the same as choosing an exact sequence

Rt — M — 0.

This establishes part ¢, and part d follows immediately.

In the exercises, we will see that we can also phrase what it means to
be projective in terms of homomorphisms and exact sequences. Even more
useful for our purposes, will be the interpretation of presentation matrices
in terms of this language. The following terminology will be useful.

(1.4) Definition. Let M be an R-module. A presentation for M is a set
of generators fi,..., fi, together with a set of generators for the syzygy
module Syz (f1, ..., ft) of relations among f1, ..., fi.
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One obtains a presentation matrix for a module M by arranging the gen-
erators of Syz (f1,..., ft) as columns—being given a presentation matrix
is essentially equivalent to being given a presentation of M. To reinter-
pret Definition (1.4) in terms of exact sequences, note that the generators
fi,..., ft give a surjective homomorphism ¢ : R — M by part ¢ of
Proposition (1.3), which means an exact sequence

RS M — 0.

The map ¢ sends (gi,...,g:) € R to 25:1 gifi € M. It follows that a
syzygy on fi,..., f; is an element of the kernel of ¢, i.e.,

Syz (fi,..., f:) = ker(p : R — M).

By part ¢ of Proposition (1.3), choosing a set of generators for the syzygy
module corresponds to choosing a homomorphism ¢ of R® onto ker(p) =
Syz (f1, ..., ft). But ¥ being onto is equivalent to im(¢)) = ker(y), which
is just the condition for exactness at R? in the sequence

(1.5) RELR A Mo,

This proves that a presentation of M is equivalent to an exact sequence of
the form (1.5). Also note that the matrix of ¢ with respect to the standard
bases of R® and R! is a presentation matrix for M.

We next observe that every finitely generated R-module has a presenta-
tion.

(1.6) Proposition. Let M be a finitely generated R-module.

a. M has a presentation of the form given by (1.5).

b. M is a homomorphic image of a free R-module. In fact, if f1,..., f is
a set of generators of M, then M = R'/S where S is the submodule of
R! given by S = Syz(fi,..., fi). Alternatively, if we let the matriz A
represent ¥ in (1.5), then AR® = im(¢)) and M = R'/AR®.

PROOF. Let f1,..., f; be a finite generating set of M. Part a follows from
the fact noted in Chapter 5, §2 that every submodule of R?, in particular
Syz (f1, ..., ft) C R, is finitely generated. Hence we can choose a finite

generating set for the syzygy module, which gives the exact sequence (1.5)
as above.

Part b follows from part a and Proposition 1.10 of Chapter 5, §1.

Here is a simple example. Let I = (2% — 2, 2y,y* — y) in R = k[, y].
In geometric terms, I is the ideal of the variety V' = {(0, 0), (1,0), (0,1)}
in k2. We claim that I has a presentation given by the following exact
sequence:

(1.7) RRYER AT 0,
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where ¢ is the homomorphism defined by the 1 x 3 matrix
A= (2 -z ay y*—y)
and v is defined by the 3 x 2 matrix

Y 0
B=| -=2+4+1 y—-1
0 —x

The following exercise gives one proof that (1.7) is a presentation of I.

Exercise 1. Let S denote Syz(z? — z, 2y, y* — v).

a. Verify that the matrix product AB equals the 1 x 2 zero matrix, and ex-
plain why this shows that im(¢)) (the module generated by the columns
of the matrix B) is contained in S.

b. To show that S is generated by the columns of B, we can use Schreyer’s
Theorem—Theorem (3.3) from Chapter 5 of this book. Check that the
generators for I form a lex Grobner basis for 1.

c. Compute the syzygies s12, s13, S23 obtained from the S-polynomials on
the generators of I. By Schreyer’s Theorem, they generate S.

d. Explain how we could obtain a different presentation

RRUR 2T 0

of I using this computation, and find an explicit 3 x 3 matrix
representation of the homomorphism ¢)’.

e. How do the columns of B relate to the generators sis2, S13, so3 of S?
Why does B have only two columns? Hint: Show that s;3 € (s12, s23)
in R3.

We have seen that specifying any module requires knowing both gener-
ators and the relations between the generators. However, in presenting a
module M, we insisted only on having a set of generators for the module of
syzygies. Shouldn’t we have demanded a set of relations on the generators
of the syzygy module? These are the so-called second syzygies.

For example, in the presentation from part d of Exercise 1, there is a
relation between the generators s;; of Syz(x? — x, vy, y* — y), namely

(1.8) (y — 1)s12 — s13 + 823 = 0,

so (y — 1,—1,2)T € R?® would be a second syzygy.

Likewise, we would like to know not just a generating set for the second
syzygies, but the relations among those generators (the third syzygies), and
so on. As you might imagine, the connection between a module, its first
syzygies, its second syzygies, and so forth can also be phrased in terms of
an exact sequence of modules and homomorphisms. The idea is simple—we
just iterate the construction of the exact sequence giving a presentation. For
instance, starting from the sequence (1.6) corresponding to a presentation
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for M, if we want to know the second syzygies as well, we need another
step in the sequence:
AR LR AM - 0,

where now the image of A : R" — R® is equal to the kernel of ¢ (the
second syzygy module). Continuing in the same way to the third and higher
syzygies, we produce longer and longer exact sequences. We wind up with
a free resolution of M. The precise definition is as follows.

(1.9) Definition. Let M be an R-module. A free resolution of M is an
exact sequence of the form
S BREBREB B M0,

where for all 4, F; = R™ is a free R-module. If there is an ¢ such that
Fyy1 = Fypo = -+ = 0, but Fy # 0, then we say the resolution is finite,
of length ¢. In a finite resolution of length ¢, we will usually write the
resolution as

0—-F —F_ 41— —F—F—>M-—D0.

For an example, consider the presentation (1.7) for
I= <.’IJ2 - fL',ZL”y,yQ _y>
in R = klz,y]. If

Y 0 0
ai | —z+1 ] 4+a|ly—-1]=10],
0 —x 0

a; € R, is any syzygy on the columns of B with a; € R, then looking
at the first components, we see that ya; = 0, so a; = 0. Similarly from
the third components az = 0. Hence the kernel of ¢ in (1.7) is the zero
submodule. An equivalent way to say this is that the columns of B are a
basis for Syz(x? — z, 2y, y? — ), so the first syzygy module is a free module.
As a result, (1.7) extends to an exact sequence:

(1.10) 0-R2LS R AT 0.

According to Definition (1.9), this is a free resolution of length 1 for I.

Exercise 2. Show that I also has a free resolution of length 2 obtained
by extending the presentation given in part d of Exercise 1 above:

(1.11) 0-RAIRLR AT 0,

where the homomorphism A comes from the syzygy given in (1.8).
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Generalizing the observation about the matrix B above, we have the
following characterization of finite resolutions.

(1.12) Proposition. In a finite free resolution

0—>F€ﬂF€_lApe—_iF‘e_2—>--~—>Foﬂ)>M—>07
ker(pp_1) is a free module. Conversely, if M has a free resolution in which
ker(pp—_1) is a free module for some £, then M has a finite free resolution
of length .

PRrROOF. If we have a finite resolution of length ¢, then ¢, is one-to-one by
exactness at Fy, so its image is isomorphic to Fy, a free module. Also, ex-
actness at Fy_q implies ker(pg—1) = im(py), so ker(py—1) is a free module.
Conversely, if ker(pp_1) is a free module, then the partial resolution

Froy ™5 Frg = = R 8 M — 0
can be completed to a finite resolution of length ¢
0= F—F 1 "2 Fry— = B 8 M—0,

by taking Fy to be the free module ker(¢,—1) and letting the arrow Fp —
Fy_1 be the inclusion mapping.

Both (1.11) and the more economical resolution (1.10) came from the
computation of the syzygies s;; on the Grobner basis for I. By Schreyer’s
Theorem again, the same process can be applied to produce a free resolu-
tion of any submodule M of a free module over R. If G = {g1,...,9s} is
a Grobner basis for M with respect to any monomial order, then the s;;
are a Grobuner basis for the first syzygy module (with respect to the >g
order from Theorem (3.3) of Chapter 5). Since this is true, we can iterate
the process and produce Grobner bases for the modules of second, third,
and all higher syzygies. In other words, Schreyer’s Theorem forms the basis
for an algorithm for computing any finite number of terms in a free resolu-
tion. This algorithm is implemented in Singular, in CoCoA, in the CALI
package for REDUCE, and in the resolution command of Macaulay 2.

For example, consider the homogeneous ideal

2 2

M = (yz — zw,y® — 222, 22> — y*w, 23

- yu?)
in k[z,y, z, w]. This is the ideal of a rational quartic curve in P3. Here is a
Macaulay 2 session calculating and displaying a free resolution for M:

i1 : R=QQ[x,y,z,w]
ol =R

ol : PolynomialRing
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i2 : M = ideal (2" 3-y*w"2,y*z-x*wW,y " 3-Xx"2%z,x*z"2-y" 2*W)

3 2 3 2 2 2
02=1ideal (z - y*w , y¥Z - X*W, § — X Z, X*Z — y W)

02 : Ideal of R
i3 : MR = resolution M

1 4 4 1
03=R <--R <--R <—-R

0 1 2 3

03 : ChainComplex

i4 : MR.dd
1
o4=-1:0<-—-——- R :0
0
1 4
O:R <~—---"viiiio------——--—-—---—-------—-———— R :
{0} | yz—xw y3-x2z xz2-y2w z3-yw?2 |
4 4
1:R < R :2
{2} | -y2 -xz -yw -22 |
{3}z w 0 0O |
B y -2 v |
{3tfo 0o x y |
4 1
2:R < R :3
{4} [w |
{4} [ -z |
{4} | -v |
fa} x|

04 : ChainComplexMap
The output shows the matrices in a finite free resolution of the form

(1.13) 0—-R—R'—-R'— M —0,
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from the “front” of the resolution “back.” In particular, the first matrix
(1x4) gives the generators of M, the columns of the second matrix give gen-
erators for the first syzygies, and the third matrix (4 x 1) gives a generator
for the second syzygy module, which is free.

Exercise 3.

a. Verify by hand that at each step in the sequence (1.13), the image of the
mapping “coming in” is contained in the kernel of the mapping “going
out.”

b. Verify that the generators of M form a Grobner basis of M for the greviex
order with x > y > z > w, and compute the first syzygy module using
Schreyer’s theorem. Why is the first syzygy module generated by just 4
elements (the columns of the 4 x 4 matrix), and not 6 = (3) elements
S;j as one might expect?

The programs Singular and CALI can be used to compute resolutions of
ideals whose generators are not homogeneous (and, more generally, modules
which are not graded), as well as resolutions of modules over local rings.
Here, for example, is a Singular session computing a resolution of the ideal

(1.14) I={(23—yyz —x, 9> — 2%z, 22° — y?)

in k[z,y, z] (note that I is obtained by dehomogenizing the generators of
M above).

> ring r=0, (x,y,z), dp;
> ideal I=(z3-y,yz-x,y3-x2z,x22-y2);
>res(I,0);
[1]:
_[1]=z3-y
_[2]=yz-x
_[31=y3-x2=z
_[4]=xz2-y2
[2]:
_[1]=x*gen(1)-y*gen(2)-z*gen(4)
_[2]=z2*gen(2) -y*gen (1) +1xgen(4)
_[3]=xz*gen(2)-y*gen(4)-1xgen(3)
[3]:
_[11=0

The first line of the input specifies that the characteristic of the field is
0, the ring variables are z, y, z, and the monomial order is graded reverse
lex. The argument “0” in the res command says that the resolution should
have as many steps as variables (the reason for this choice will become
clear in the next section). Here, again, the output is a set of columns that
generate (gen(1), gen(2), gen(3), gen(4) refer to the standard basis
columns ey, e, €3, e4 of k[x, y, z]*).
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See the exercises below for some additional examples. Of course, this
raises the question whether finite resolutions always exist. Are we in a
situation of potential infinite regress or does this process always stop even-
tually, as in the examples above? See Exercise 11 below for an example
where the answer is no, but where R is not a polynomial ring. We shall
return to this question in the next section.

ADpDITIONAL EXERCISES FOR §1

Exercise 4.

a. Prove the second bullet, which asserts that ¢ : M — N is one-to-one if
and only if 0 — M — N is exact.

b. Explain how part b of Proposition (1.2) follows from part a.

Exercise 5. Let M, My be R-submodules of an R-module N. Let M; &

My be the direct sum as in Exercise 4 of Chapter 5, §1, and let M7 + My C

N be the sum as in Exercise 14 of Chapter 5, §1.

a. Lete : MyNMy — M; & M; be the mapping defined by e(m) = (m, m).
Show that ¢ is an R-module homomorphism.

b. Show that 6 : My & My — M; + M; defined by 6(mq, ma) = my — ma
is an R-module homomorphism.

c. Show that

0— MyNM S M, @ My, > M, + My — 0

is an exact sequence.

Exercise 6. Let M; and M5 be submodules of an R-module N.

a. Show that the mappings ¢; : M; — My + My (i = 1,2) defined by
P1(my) = my + 0 € My + My and ¢2(me) = 0 + mg € My + M, are
one-to-one module homomorphisms. Hence M; and M are submodules
of My + Ms.

b. Consider the homomorphism ¢ : My — (M; + Ms)/M; obtained by
composing the inclusion Ms — M; 4+ Ms and the natural homomor-
phism M; + My — (M; + Mz)/M;. Identify the kernel of ¢, and
deduce that there is an isomorphism of R-modules (My + My)/M; =
My /(My N Ms).

Exercise 7.
a. Let
on Pn—1 Pn—2 ®
00— M, = M, 1 == M,_o == ... 25 My —0

be a “long” exact sequence of R-modules and homomorphisms. Show
that there are “short” exact sequences

0 — ker(p;) — M; — ker(p;—1) — 0
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for each i = 1,...,n, where the arrow M; — ker(yp;—1) is given by the
homomorphism ;.
b. Conversely, given

0 — ker(p;) — M; FLN; =0

where N; = ker(p;—1) C M;_1, show that these short exact sequences

can be spliced together into a long exact sequence

0 — ker(pp—1) — My_1 fny M, _> i N Mlﬂ im(p1) — 0.
c. Explain how a resolution of a module is obtained by splicing together

presentations of successive syzygy modules.

Exercise 8. Let V;, i = 0,...,n be finite dimensional vector spaces over
a field k, and let
0=V, 2ny, 2y L, Ly 0

be an exact sequence of k-linear mappings. Show that the alternating sum
of the dimensions of the V; satisfies:
n
> (=1)* dimg (V) = 0.
£=0
Hint: Use Exercise 7 and the dimension theorem for a linear mapping ¢ :
V - W:

dimy (V) = dimyg (ker(¢)) + dimy (im(¢p)).

Exercise 9. Let
0—-F - —FK—-F—>F—-M-=0

be a finite free resolution of a submodule M C R"™. Show how to obtain
a finite free resolution of the quotient module R™/M from the resolution
for M. Hint: There is an exact sequence 0 — M — R"™ — R"/M — 0 by
Proposition (1.2). Use the idea of Exercise 7 part b to splice together the
two sequences.

Exercise 10. For each of the following modules, find a free resolution
either by hand or by using a computer algebra system.

a. M = (xy,xz,yz) C klz,y, 2].

b. M = {zy — w,zz — uv,yz — w) C klz,y, 2, u, v].

c. M = (xy—av,zz —yv,yz — zu) C klz,y, 2, u,v].

d. M the module generated by the columns of the matrix

M= a4+ b a®—2bed a—b
“\2—-d® V+acd c+d

in kla, b, c, d)?.
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= <3U27?/27227$y, Xz, yZ> C k[l‘?gﬁ Z]
= (23,4, 2%y, xy?) C klz,y, 2].

Exercise 11. If we work over other rings R besides polynomial rings, then

it is not difficult to find modules with no finite free resolutions. For example,

consider R = k[z]/(z?), and M = (z) C R.

a. What is the kernel of the mapping ¢ : R — M given by multiplication
by z?

b. Show that

CARERELM 0

is an infinite free resolution of M over R, where x denotes multiplication
by .

c. Show that every free resolution of M over R is infinite. Hint: One way
is to show that any free resolution of M must “contain” the resolution
from part b in a suitable sense.

Exercise 12. We say that an exact sequence of R-modules

splits if there is a homomorphism ¢ : P — N such that g o ¢ = id.

a. Show that the condition that the sequence above splits is equivalent
to the condition that N = M & P such that f becomes the inclusion
a — (a,0) and g becomes the projection (a, b) — b.

b. Show that the condition that the sequence splits is equivalent to the
existence of a homomorphism ¢ : N — M such that ¢ o f = id. Hint:
use part a.

c. Show that P is a projective module (that is, a direct summand of a free
module—see Definition (4.12) of Chapter 5) if and only if every exact
sequence of the form above splits.

d. Show that P is projective if and only if given every homomorphism
f : P — M; and any surjective homomorphism ¢ : Ms — M, there
exists a homomorphism h : P — My such that f = g o h.

§2 Hilbert’s Syzygy Theorem

In §1, we raised the question of whether every R-module has a finite free
resolution, and we saw in Exercise 11 that the answer is no if R is the finite-
dimensional algebra R = k[z]/(z?). However, when R = k[x1, ..., x,] the
situation is much better, and we will consider only polynomial rings in this
section. The main fact we will establish is the following famous result of
Hilbert.
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(2.1) Theorem (Hilbert Syzygy Theorem). Let R = k[z1,...,x,].
Then every finitely generated R-module has a finite free resolution of length
at most n.

A comment is in order. As we saw in the examples in §1, it is not true
that all finite free resolutions of a given module have the same length.
The Syzygy Theorem only asserts the existence of some free resolution of
length < n for every finitely-generated module over the polynomial ring in
n variables. Also, remember from Definition (1.9) that length < n implies
that an R-module M has a free resolution of the form

0—-F—- - —F —>Fy—>M (<n.

This has £ + 1 < n + 1 free modules, so that the Syzygy Theorem asserts
the existence of a free resolution with at most n + 1 free modules in it.
The proof we will present is due to Schreyer. It is based on the follow-
ing observation about resolutions produced by the Groébner basis method
described in §1, using Schreyer’s Theorem—Theorem (3.3) of Chapter 5.

(2.2) Lemma. Let G be a Grobner basis for a submodule M C R with re-
spect to an arbitrary monomial order, and arrange the elements of G to form
an ordered s-tuple G = (g1,...,gs) so that whenever L1(g;) and LT(g;)
contain the same standard basis vector ey and i < j, then 1M(g;)/€r >iex
LM(g;)/er, where > e, is the lex order on R withxy > --- > x,,. If the vari-
ablesz1, ..., Ty do not appear in the leading terms of G, then 1, ..., Tmy1
do not appear in the leading terms of the s;; € Syz(G) with respect to the
order >g used in Theorem (8.8) of Chapter 5.

PROOF OF THE LEMMA. By the first step in the proof of Theorem (3.3)
of Chapter 5,

(2.3) LTsg(8i5) = (mi; /(i) Es,

where m;; = LCM(rr(g;),LT(g;)), and E; is the standard basis vector
in R®. As always, it suffices to consider only the s;; such that r1(g;) and
LT(g;) contain the same standard basis vector ej in R, and such that ¢ < j.
By the hypothesis on the ordering of the components of G, LM(g;)/er >iex
LM(gj)/ek. Since x1, . . . , T, do not appear in the leading terms, this implies
that we can write

LM(gi)/er = Ty 1M
LM(g;)/ex = b,y 1n;,

where a > b, and n;, n; are monomials in R containing only Z,,12, ..., Tn.
But then lem(rr(g;), LT(g;)) contains x|, and by (2.3), LTs(s;;) does
not contain 21, ..., Tm, Tm41-

We are now ready for the proof of Theorem (2.1).
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PROOF OF THE THEOREM. Since we assume M is finitely generated as
an R-module, by (1.5) of this chapter, there is a presentation for M of the
form

(2.4) LB Fy—M-—0
corresponding to a choice of a generating set (fi,..., fr,) for M, and a

Grobner basis Go = {g1,...,9r, } for Syz(fi1, ..., fr,) = im(p1) C Fy =
R"™ with respect to any monomial order on Fy. Order the elements of G
as described in Lemma (2.2) to obtain a vector Gy, and apply Schreyer’s
Theorem to compute a Grébner basis G; for the module Syz(Gy) C Fy =
R™ (with respect to the >g, order). We may assume that G; is reduced.
By the lemma, at least x; will be missing from the leading terms of Gj.
Moreover if the Grébner basis contains ro elements, we obtain an exact
sequence

REBRBF >M-=0

with Fy = R™, and im(p2) = Syz(G1). Now iterate the process to obtain
;i : F; — F;_1, where im(p;) = Syz(G;_1) and G; C R" is a Grobner
basis for Syz(G;—1), where each time we order the Grébner basis G;_1 to
form the vector G;_1 so that the hypothesis of Lemma (2.2) is satisfied.

Since the number of variables present in the leading terms of the Grébner
basis elements decreases by at least one at each step, by an easy induction
argument, after some number ¢ < n of steps, the leading terms of the
reduced Grobner basis Gy do not contain any of the variables z1, ..., x,.
At this point, we will have extended (2.4) to an exact sequence

(2.5) FEF - >R 8F—>M-=0,

and the leading terms in G, will be non-zero constants times standard
basis vectors from Fy. In Exercise 8 below, you will show that this implies
Syz(Gy—1) is a free module, and G, is a module basis as well as a Grébner
basis. Hence by Proposition (1.12) we can extend (2.5) to another exact
sequence by adding a zero at the left, and as a result we have produced a
free resolution of length ¢ < n for M.

Here are some additional examples illustrating the Syzygy Theorem. In

the examples we saw in the text in §1, we always found resolutions of
length strictly less than the number of variables in R. But in some cases,
the shortest possible resolutions are of length exactly n.
Exercise 1. Consider the ideal I = (z? — z,zy,y?> — y) C klx,y] from
(1.7) of this chapter, and let M = k[z, y]/I, which is also a module over
R = k[z,y]. Using Exercise 9 from §1, show that M has a free resolution
of length 2, of the form

0—-R2>RP—>R—>M—O.
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In this case, it is also possible using localization (see Chapter 4) to show
that M has no free resolution of length < 1. See Exercise 9 below for a
sketch.

On the other hand, we might ask whether having an especially short finite
free resolution indicates something special about an ideal or a module. For
example, if M has a resolution 0 — R" — M — 0 of length 0, then M is
isomorphic to R” as an R-module. Hence M is free, and this is certainly a
special property! From Chapter 5, §1, we know this happens for ideals only
when M = (f) is principal. Similarly, we can ask what can be said about
free resolutions of length 1. The next examples indicate a special feature
of resolutions of length 1 for a certain class of ideals.

Exercise 2. Let I C k[x,y, z, w] denote the ideal of the twisted cubic in
P3, with the following generators:
I'=(g1,92,93) = (w2 — y*, 2w — yz,yw — 2%).

a. Show that the given generators form a grevlex Grobner basis for I.

b. Apply Schreyer’s Theorem to find a Grébner basis for the module of
first syzygies on the given generators for I.

c. Show that s15 and sg3 form a basis for Syz(zz — y?, zw — yz, yw — 22).

d. Use the above calculations to produce a finite free resolution of I, of the
form

0—-R2AR 10,
e. Show that the determinants of the 2 x 2 minors of A are just the g; (up

to signs).

Exercise 3. (For this exercise, you will probably want to use a computer
algebra system.) In k2 consider the points

b1 = (an)a b2 = (I’O)a b3 = (07 1)
Ps = (2a 1)7 bs = (172)3 be = (37 3)7

and let I; = I({p;}) for each i, so for instance I3 = (z,y — 1).
a. Find a grevlex Grébner basis for

']:I({pla'--vpfi}) =I1ﬂ-'-ﬂl6.
b. Compute a free resolution of J of the form
0—>R3£>R4—>J—>O’

where each entry of A is of total degree at most 1 in z and .
c. Show that the determinants of the 3 x 3 minors of A are the generators
of J (up to signs).

The examples in Exercises 2 and 3 are instances of the following general
result, which is a part of the Hilbert-Burch Theorem.
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(2.6) Proposition. Suppose that an ideal I in R = k[z1,...,zy,] has a
free resolution of the form

0-R™ A Rgm B

for some m. Then there erists a nonzero element g € R such that B =
(gfi .- gfm), where f; is the determinant of the (m — 1) x (m — 1)
submatriz of A obtained by deleting row i. If k is algebraically closed and
V(I) has dimension n — 2, then we may take g = 1.

PRrROOF. The proof is outlined in Exercise 11 below.

The full Hilbert-Burch Theorem also gives a sufficient condition for the
existence of a resolution of the form given in the proposition. For example,
such a resolution exists when the quotient ring R/I is Cohen-Macaulay of
codimension 2. This condition is satisfied, for instance, if I C k[x,y, 2] is
the ideal of a finite subset of P? (including the case where one or more
of the points has multiplicity > 1 as defined in Chapter 4). We will not
give the precise definition of the Cohen-Macaulay condition here. Instead
we refer the interested reader to [Eis], where this and many of the other
known results concerning the shapes of free resolutions for certain classes of
ideals in polynomial and local rings are discussed. In particular, the length
of the shortest finite free resolution of an R-module M is an important
invariant called the projective dimension of M.

ApDiTIONAL EXERCISES FOR §2

Exercise 4. Let I be the ideal in k[z, y] generated by the greviex Grébner
basis

{91, 92, 93} = {2® + 3/2zy + 1/2¢* — 3/22 — 3/2y, zy® — x,y* — y}

This ideal was considered in Chapter 2, §2 (with k& = C), and we saw there

that V(I) is a finite set containing 5 points in k2, each with multiplicity 1.

a. Applying Schreyer’s Theorem, show that Syz(g1, g2, g3) is generated by
the columns of the matrix

y? -1 0
A=| —z—-3y/2+3/2 y
—y/2+3/2 —x

b. Show that the columns of A form a module basis for Syz(gi, g2, g3), and
deduce that I has a finite free resolution of length 1:

0 RAR LT 0.

c. Show that the determinants of the 2 x 2 minors of A are just the g; (up
to signs).
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Exercise 5. Verify that the resolution from (1.8) of §1 has the form given
in Proposition (2.6). (In this case too, the module being resolved is the
ideal of a finite set of points in k2, each appearing with multiplicity 1.)

Exercise 6. Let
I = <23 — Y, Yz - I, 93 - JIQZ,.TZQ - y2>

be the ideal in k[, y, z] considered in §1 see (1.16).

a. Show that the generators of I are a Grobner basis with respect to the
grevlex order.

b. The sres command in Singular produces a resolution using Schreyer’s
algorithm. The Singular session is as follows.

> ring r=0, (x,y,z), (dp, C);
> ideal I=(z3-y,yz-x,y3-x2z,x22-y2);
> sres(I,0);
[1]:
_[1]=yz-x
_[2]=23-y
_[3]=xz2-y2
_[4]=y3-x2z
[2]:
_[11=-z2%gen (1) +y*gen(2) -1*gen(3)
_[2]=-xz*gen (1) +y*gen(3)+1*gen(4)
_[3]=-xxgen(2) +yxgen (1) +zxgen(3)
_[4]=-y2*gen (1) +x*gen(3) +z*gen (4)
[3]:
_[1]=x*gen(1)+y*gen(3)-z*gen(2) +1*gen(4)

Show that the displayed generators are Grobner bases with respect to
the orderings prescribed by Schreyer’s Theorem from Chapter 5, §3.

c. Explain why using Schreyer’s Theorem produces a longer resolution in
this case than that displayed in §1.

Exercise 7. Find a free resolution of length 1 of the form given in
Proposition (2.6) for the ideal

I = (2" — 2%y, 0%y — 2y, 2%y — 2y’ wy® — )
in R = k[z,y]. Identify the matrix A and the element g € R in this case
in Proposition (2.6). Why is g # 17

Exercise 8. Let G be a monic reduced Grobner basis for a submodule
M C R!, with respect to some monomial order. Assume that the leading
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terms of all the elements of G are constant multiples of standard basis

vectors in RY.

a. If e; is the leading term of some element of G, show that it is the leading
term of exactly one element of G.

b. Show that Syz(G) = {0} C R®.

c. Deduce that M is a free module.

Exercise 9. In this exercise, we will sketch one way to show that every
free resolution of the quotient R/I for

I = <x2—x,xy,y2—y> C R = k[z, y]

has length > 2. In other words, the resolution 0 — R?> — R® — R —

R/I — 0 from Exercise 1 is as short as possible. We will need to use some

ideas from Chapter 4 of this book.

a. Let M be an R-module, and let P be a maximal ideal in R. Generalizing
the construction of the local ring Rp, define the localization of M at P,
written Mp, to be the set of “fractions” m/f, where m € M, f ¢ P,
subject to the relation that m/f = m’/f’ whenever there is some g € R,
g ¢ P such that g(f'm — fm’) = 0 in M. Show that Mp has the
structure of a module over the local ring Rp. If M is a free R-module,
show that Mp is a free Rp-module.

b. Given a homomorphism ¢ : M — N of R-modules, show that there is
an induced homomorphism of the localized modules pp : Mp — Np
defined by wp(m/f) = p(m)/f for all m/f € Mp. Hint: First show
that this rule gives a well-defined mapping from Mp to Np.

c. Let

M, B My, B M,

be an exact sequence of R-modules. Show that the localized sequence

(M) p P (M) p P (M) p

is also exact.

d. We want to show that the shortest free resolution of M = R/I for
I = (2% —x, ry, y*> —y) has length 2. Aiming for a contradiction, suppose
that there is some resolution of length 1: 0 — F; — Fy — M — 0.
Explain why we may assume Fy = R.

e. By part c, after localizing at P = (x,y) D I, we obtain a resolu-
tion 0 — (F1)p — Rp — Mp — 0. Show that Mp is isomorphic to
Rp/(x,y)Rp = k as an Rp-module.

f. But then the image of (Fy)p — Rp must be (z, y). Show that we obtain
a contradiction because this is not a free Rp-module.

Exercise 10. In R = k[z1, ..., z,], consider the ideals
I, = (1,29, ..., Tm)

generated by subsets of the variables, for 1 < m < n.
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Find explicit resolutions for the ideals I, ..., I5 in k[z1, ..., zs5].
Show in general that I,, has a free resolution of length m — 1 of the
form

0— R0 = ... o RE) L R R 1 0,
where if we index the basis By of R(%) by k-element subsets of
{1,...,m}

Bi ={ei.ip 11 <y <ig < -+ <ip <m},

then the mapping ¢r : R(*) — R(:"1) in the resolution is defined by

k
ezl § xzjezl i1tk

Jj=1

where in the term with index j, 4, is omitted to yield a (k — 1)-element
subset. These resolutions are examples of Koszul complexes. See [Eis]
for more information about this topic.

Exercise 11. In this exercise, we will sketch a proof of Proposition (2.6).
The basic idea is to consider the linear mapping from K™~ ! to K™ defined
by the matrix A in a resolution

0 R1ARpn B o

where K = k(x1,...,x,) is the field of rational functions (the field of
fractions of R) and to use some linear algebra over K.

a.

Let V' be the space of solutions of the the homogeneous system of linear
equations XA = 0 where X € K™ is written as a row vector. Show

that the dimension over K of V is 1. Hint: The columns A4, ..., A,,_1
of A are linearly independent over R, hence over K.
Let B=(f1 ... fm)and note that exactness implies that BA = 0.

Let fi = (—1)"t1 det(A;), where A; is the (m — 1) x (m — 1) submatrix
of A obtained by deleting row i. Show that X = (f1,..., fm) is also an
element of the space V' of solutions of XA = 0. Hint: append any one of
the columns of A to A to form an m x m matrix A, and expand det(A)
by minors along the new column.

Deduce that there is some r € K such that rf; = f; foralli = 1,...,m
Write 7 = g/h where g, h € R and the fraction is in lowest terms, and
consider the equations gf; = hf;. We want to show that h must be a
nonzero constant, arguing by contradiction. If not, then let p be any
irreducible factor of h. Show that A1, ..., A,,—1 are linearly dependent
modulo (p), or in other words that there exist rq,...,r,_1 not all in
(py such that r1A; + -+ + ry_1A;m—1 = pB for some B € R™.
Continuing from part d, show that B € Syz(fi,..., fm) also, so that
B = 51A1 + -+ Sm—lAm—l for some S; € R.



266 Chapter 6. Free Resolutions

f. Continuing from part e, show that (r; —psi, ..., "m_1—psm_1)! would
be a syzygy on the columns of A. Since those columns are linearly in-
dependent over R, r; — ps; = 0 for all i. Deduce a contradiction to the
way we chose the r;.

g. Finally, in the case that V(I) has dimension n — 2, show that g must
be a nonzero constant also. Hence by multiplying each f; by a nonzero
constant, we could take g = 1 in Proposition (2.6).

83 Graded Resolutions

In algebraic geometry, free resolutions are often used to study the homo-
geneous ideals T = I(V) of projective varieties V' C P"™ and other modules
over k[xg, ..., z,]. The key fact we will use is that these resolutions have
an extra structure coming from the grading on the ring R = klxo, . . ., z,],
that is the direct sum decomposition

(3.1) R = PR,

s>0

into the additive subgroups (or k-vector subspaces) Rs = k[zo, ..., Zn]s,
consisting of the homogeneous polynomials of total degree s, together with
0. To begin this section we will introduce some convenient notation and
terminology for describing such resolutions.

(3.2) Definition. A graded module over R is a module M with a family
of subgroups {M; : ¢t € Z} of the additive group of M. The elements of M,
are called the homogeneous elements of degree t in the grading, and the
M, must satisfy the following properties.

a. As additive groups,
M =M,

teEZL

b. The decomposition of M in part a is compatible with the multiplication
by elements of R in the sense that RsM; C M., for all s > 0 and all
t e Z.

It is easy to see from the definition that each M; is a module over the
subring Ry = k C R, hence a k-vector subspace of M. If M is finitely-
generated, the M; are finite dimensional over k.

Homogeneous ideals I C R are the most basic examples of graded
modules. Recall that an ideal is homogeneous if whenever f € I, the ho-
mogeneous components of f are all in I as well (see for instance, [CLO],
Chapter 8, §3, Definition 1). Some of the other important properties of
these ideals are summarized in the following statement.
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® (Homogeneous Ideals) Let I C k[zg,...,z,] be an ideal. Then the
following are equivalent:
a. I is a homogeneous ideal.
b. I = {f1,..., fs) where f; are homogeneous polynomials.
c. A reduced Grébner basis for I (with respect to any monomial order)
consists of homogeneous polynomials.

(See for instance [CLO], Theorem 2 of Chapter 8, §3.)

To show that a homogeneous ideal I has a graded module structure, set
I, = INR;. For t > 0, this is the set of all homogeneous elements of total
degree t in I (together with 0), and I; = {0} for ¢ < 0. By the definition
of a homogeneous ideal, we have I = @®uezly, and Rsly C 44, is a direct
consequence of the definition of an ideal and the properties of polynomial
multiplication.

The free modules R™ are also graded modules over R provided we take
(R™); = (Ry)™. We will call this the standard graded module structure on
R™. Other examples of graded modules are given by submodules of the free
modules R™ with generating sets possessing suitable homogeneity proper-
ties, and we have statements analogous to those above for homogeneous
ideals.

(3.3) Proposition. Let M C R™ be submodule. Then the following are

equivalent.

a. The standard grading on R™ induces a graded module structure on M,
given by taking My = (R:)™ N M —the set of elements in M where each
component is a homogeneous polynomial of degree t (or 0).

b. M = (f1,...,fr) in R™ where each f; is a vector of homogeneous
polynomials of the same degree d;.

c. A reduced Grébner basis (for any monomial order on R™) consists of
vectors of homogeneous polynomials where all the components of each
vector have the same degree.

PROOF. The proof is left to the reader as Exercise 8 below.

Submodules, direct sums, and quotient modules extend to graded mod-
ules in the following ways. If M is a graded module and N is a submodule
of M, then we say N is a graded submodule if the additive subgroups
N; = M; NN for t € Z define a graded module structure on N. For exam-
ple, Proposition (3.3) says that the submodules M = (fy,..., f,) in R™
where each f; is a vector of homogeneous polynomials of the same degree
d; are graded submodules of R™.

Exercise 1.
a. Given a collection of graded modules M, ..., M,,, we can produce the
direct sum N = My ® - -- @ M,, as usual. In N, let
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Ny = (M) @ - @ (My)s.

Show that the N; define the structure of a graded module on N.

b. If N C M is a graded submodule of a graded module M, show that the
quotient module M/N also has a graded module structure, defined by
the collection of additive subgroups

(M/N); = M;/N, = My/(M; N N).

Given any graded R-module M, we can also produce modules that are
isomorphic to M as abstract R-modules, but with different gradings, by
the following trick of shifting the indexing of the family of submodules.

(3.4) Proposition. Let M be a graded R-module, and let d be an integer.
Let M(d) be the direct sum

M(d) = @ M(d),.
teEZ

where M(d)y = Mgyt. Then M(d) is also a graded R-module.

PrOOF. The proof is left to the reader as Exercise 9.

For instance, the modules (R™)(d) = R(d)™ are called shifted or twisted
graded free modules over R. The standard basis vectors e; still form a
module basis for R(d)™, but they are now homogeneous elements of degree
—d in the grading, since R(d)_4 = Ry. More generally, part a of Exercise 1
shows that we can consider graded free modules of the form

R(dy) © --- @© R(dpm)

for any integers dy, ..., d,,, where the basis vector e; is homogeneous of
degree —d; for each i.

Exercise 2. This exercise will generalize Proposition (3.3). Suppose that

we have integers dy, . . ., d,, and elements fi,..., fs € R™ such that
f’i = (fila sy flm)T
where the f;; are homogeneous and deg f;1 — di = -+ = deg fim — dm

for each . Then prove that M = (f1,..., fs) is a graded submodule of
F = R(dy) ® -+ ® R(dy,). Also show that every graded submodule of F
has a set of generators of this form.

As the examples given later in the section will show, the twisted free
modules we deal with are typically of the form

R(—dl) b D R(_dm)
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Here, the standard basis elements eq,...,e, have respective degrees
diy. .., dm-

Next we consider how homomorphisms interact with gradings on
modules.

(3.5) Definition. Let M, N be graded modules over R. A homomorphism
¢ : M — N issaid to a graded homomorphism of degree d if o(M;) C Nita
for all t € Z.

For instance, suppose that M is a graded R-module generated by homo-
geneous elements f1,..., f,, of degrees dy, ..., d;,. Then we get a graded
homomorphism

¢:R(—dy)® - ®R(—dy,) — M

which sends the standard basis element e; to f; € M. Note that ¢ is onto.
Also, since e; has degree d;, it follows that ¢ has degree zero.

Exercise 3. Suppose that M is a finitely generated R-module. As usual,

M; denotes the set of homogeneous elements of M of degree t.

a. Prove that M; is a finite dimensional vector space over the field k and
that M; = {0} for ¢ < 0. Hint: Use the surjective map ¢ constructed
above.

b. Let v : M — M be a graded homomorphism of degree zero. Prove that
1 is an isomorphism if and only if ¥ : M; — M; is onto for every t.
Conclude that 1 is an isomorphism if and only if it is onto.

Another example of a graded homomorphism is given by an m X p matrix
A all of whose entries are homogeneous polynomials of degree d in the
ring R. Then A defines a graded homomorphism ¢ of degree d by matrix
multiplication

p: RP — R™

f— Af.
If desired, we can also consider A as defining a graded homomorphism of
degree zero from the shifted module R(—d)? to R™. Similarly, if the entries
of the jth column are all homogeneous polynomials of degree d;, but the

degree varies with the column, then A defines a graded homomorphism of
degree zero

R(—di)®--- @ R(—dp) — R™.
Still more generally, a graded homomorphism of degree zero
R(—d1) @ - ® R(—dp) — R(—c1) ® -+ ® R(—cm)

is defined by an m x p matrix A where the ij entry a;; € R is homogeneous
of degree d; — ¢; for all 4, j. We will call a matrix A satisfying this condition
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for some collection d; of column degrees and some collection ¢; of row
degrees a graded matrixz over R.

The reason for discussing graded matrices in detail is that these matrices
appear in free resolutions of graded modules over R. For example, consider
the resolution of the homogeneous ideal

M = (23 —yw? yz — zw,y® — 222, 22 — y*w)

in R = k[z, y, z, w] from (1.13) of this chapter, computed using Macaulay 2.
The ideal itself is the image of a graded homomorphism of degree zero

R(-3) ® R(-2) ® R(-3)*> — R,

where the shifts are just the negatives of the degrees of the generators,
ordered as above. The next matrix in the resolution:

-y —xz —yw —22

A z w 0 0
x Y -z —w

0 0 T Y

(whose columns generate the module of syzygies on the generators of M)
defines a graded homomorphism of degree zero

R(—4)* & R(=2) ® R(-3)®.

In other words, d; = 4 for all j, and ca = ¢3 = c4 = 3,c1 = 2 in the
notation as above, so all entries on rows 2, 3, 4 of A are homogeneous of
degree 4 — 3 = 1, while those on row 1 have degree 4 — 2 = 2. The whole
resolution can be written in the form

(3.6) 0 — R(-5) — R(—4)* - R(-2) ® R(-3)®> = M — 0,

where all the arrows are graded homomorphisms of degree zero.
Here is the precise definition of a graded resolution.

(3.7) Definition. If M is a graded R-module, then a graded resolution of
M is a resolution of the form

P P P
—>F2—2>F1—1>F0—0>M—>0,

where each Fy is a twisted free graded module R(—d;) & - - - @ R(—d,) and
each homomorphism ¢y is a graded homomorphism of degree zero (so that
the @, are given by graded matrices as defined above).

The resolution given in (3.6) is clearly a graded resolution. What’s nice
is that every finitely generated graded R-module has a graded resolution
of finite length.



§3. Graded Resolutions 271

(3.8) Theorem (Graded Hilbert Syzygy Theorem). Let R =
klx1,...,2xn]. Then every finitely generated graded R-module has a finite
graded resolution of length at most n.

PRrROOF. This follows from the proof of Theorem (2.1) (the Syzygy The-
orem in the ungraded case) with minimal changes. The reason is that by
Proposition (3.3) and the generalization given in Exercise 2, if we apply
Schreyer’s theorem to find generators for the module of syzygies on a ho-
mogeneous ordered Grébner basis (g1, ..., gs) for a graded submodule of
R(—di) @ --- @ R(—dp), then the syzygies s;; are also homogeneous and
“live” in another graded submodule of the same form. We leave the details
of the proof as Exercise 5 below.

The resolution command in Macaulay 2 will compute a finite graded
resolution using the method outlined in the proof of Theorem (3.8).
However, the resolutions produced by Macaulay 2 are of a very special
sort.

(3.9) Definition. Suppose that
-—>Fzﬂ>F€71H--~—>FO—>M—>O

is a graded resolution of M. Then the resolution is minimal if for every
¢ > 1, the nonzero entries of the graded matrix of ¢, have positive degree.

For an example, the reader should note that the resolution (3.6) is a
minimal resolution. But not all resolutions are minimal, as shown by the
following example.

Exercise 4. Show that the resolution from (1.11) can be homogenized to
give a graded resolution, and explain why it is not minimal. Also show that
the resolution from (1.10) is minimal after we homogenize.

In Macaulay 2, resolution computes a minimal resolution.

We will soon see that minimal resolutions have many nice properties.
But first, let’s explain why they are called “minimal”. We say that a set
of generators of a module is minimal if no proper subset generates the
module. Now suppose that we have a graded resolution

s BB — > Fy— M —0.

Each ¢, gives a surjective map Fy — im(gy), so that ¢, takes the stan-
dard basis of Fy to a generating set of im(ypy). Then we can characterize
minimality as follows.
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(3.10) Proposition. The above resolution is minimal if and only if for
each £ > 0, @, takes the standard basis of Fy to a minimal generating set

of im(py).

ProOOF. We will prove one direction and leave the other as an exercise.
Suppose that for some ¢ > 1 the graded matrix A, of ¢, has entries of
positive degree. We will show that ,_; takes the standard basis of F;_; to
a minimal generating set of im(wp—_1). Let eq, . . ., e, be the standard basis
vectors of Fy_1. If ¢s_1(e1), ..., pr—1(em) is not a minimal generating set,
then some ¢;_1(e;) can be expressed in terms of the others. Reordering the
basis if necessary, we can assume that

m
proier) = Y awpra(e), ai € R.
=2

Then @y_1(e1 —ages — -+ - — amen) =0, 80 (1, —az, ..., —am,) € ker(ve—1).
By exactness, (1, —as, ..., —a,) € im(ypy). Since Ay is the matrix of ¢y,
the columns of A, generate im(py). We are assuming that the nonzero
components of these columns have positive degree. Since the first entry of
(1, —asg, ..., —am,) is a nonzero constant, it follows that this vector cannot
be an R-linear combination of the columns of Ay. This contradiction proves
that the ¢;—1(e;) give a minimal generating set of im(¢y—1).

The above proposition shows that minimal resolutions are very intuitive.
For example, suppose that we have built a graded resolution of an R-module
M out to stage £ — 1:

Fr 5 Fpg— o= Fy — M — 0.
We extend one more step by picking a generating set of ker(¢y—1) and
defining @y : Fy — ker(¢s—1) C Fy—1 by mapping the standard basis of
Fy to the chosen generating set. To be efficient, we should pick a minimal
generating set, and if we do this at every step of the construction, then
Proposition (3.10) guarantees that we get a minimal resolution.

Exercise 5. Give a careful proof of Theorem (3.8) (the Graded Syzygy
Theorem), and then modify the proof to show that every finitely generated
graded module over k[z1, ..., x,] has a minimal resolution of length < n.
Hint: Use Proposition (3.10).

We next discuss to what extent a minimal resolution is unique. The first
step is to define what it means for two resolutions to be the same.

(3.11) Definition. Two graded resolutions --- — Fy 23 M — 0 and

- — Gy M 0 are isomorphic if there are graded isomorphisms
ay : Fy — Gy of degree zero such that ¢y o ag = g and, for every £ > 1,



§3. Graded Resolutions 273

the diagram

F, 2% Fy
(3.12) o | L ag—

Gy e, Gt

commutes, meaning ay_1 0 g = 1y 0 Q.

We will now show that a finitely generated graded module M has a
unique minimal resolution up to isomorphism.

(3.13) Theorem. Any two minimal resolutions of M are isomorphic.

PRrROOF. We begin by defining o : Fy — Gp. If eq, . . ., e,, is the standard
basis of Fp, then we get po(e;) € M, and since Go — M is onto, we can
find g; € Gy such that 1(g;) = wo(e;). Then setting ag(e;) = g; defines a
graded homomorphism ag : Fy — Gy of degree zero, and it follows easily
that d)O oy = ¥Yo-

A similar argument gives Gy : Go — Fp, also a graded homomorphism
of degree zero, such that pg o By = 1. Thus [y o ag : Fy — Fp, and if
1g, @ Fo — Fj denotes the identity map, then

(3.14) oo (1g — Booan) = po — (¢o © Bo) o ap = @o — o 0 ag = 0.

We claim that (3.14) and minimality imply that Gy o g is an isomorphism.

To see why, first recall from the proof of Proposition (3.10) that the
columns of the matrix representing ¢; generate im(y;). By minimal-
ity, the nonzero entries in these columns have positive degree. If we let

(x1,...,xn)Fo denote the submodule of Fy generated by z;e; for all i, j,
it follows that im(p1) C (z1,...,2,)Fo.

However, (3.14) implies that im(15, — 8o © ag) C ker(pp) = im(p1). By
the previous paragraph, we see that v — By o ap(v) € (x1,...,2,)Fy for

all v € Fy. In Exercise 11 at the end of the section, you will show that this
implies that By o ag is an isomorphism. In particular, aq is one-to-one.

By a similar argument using the minimality of the graded resolution

- — Gy — M — 0, ag o By is also an isomorphism, which implies
that ag is onto. Hence aq is an isomorphism as claimed. Then Exercise
12 at the end of the section will show that oy induces an isomorphism
ag : ker(pg) — ker(to).

Now we can define ay. Since ¢1 : F1 — im(¢1) = ker(po) is onto, we
get a minimal resolution

R At ker(pg) — 0,

of ker(¢g) (see Exercise 7 of §1), and similarly

RN A ker(ig) — 0
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is a minimal resolution of ker(ty). Then, using the isomorphism &g
ker(po) — ker(to) just constructed, the above argument easily adapts
to give a graded isomorphism «; : Fi — G of degree zero such that
@ 0 1 = Y1 o ay. Since @y is the restriction of ap to im(y1), it follows
easily that (3.12) commutes (with £ = 1).

If we apply Exercise 12 again, we see that «; induces an isomorphism
aq : ker(p1) — ker(¢;). Repeating the above process, we can now define
ao with the required properties, and continuing for all ¢, the theorem now
follows easily.

Since we know by Exercise 5 that a finitely generated R-module M has a
finite minimal resolution, it follows from Theorem (3.13) that all minimal
resolutions of M are finite. This fact plays a crucial role in the following
refinement of the Graded Syzygy Theorem.

(3.15) Theorem. If

o BB F 55 Fy— M —0,
is any graded resolution of M over k[x1, ..., x,)], then the kernel ker(¢,—1)

is free, and
0 — ker(pp-1) = Fpo1 — -+ > Fgp— M — 0
s a graded resolution of M.

PrOOF. We begin by showing how to simplify a given graded resolution

- — Fy — M — 0. Suppose that for some ¢ > 1, @y : Fy — Fp_q is
not minimal, i.e., the matrix A, of ¢, has a nonzero entry of degree zero.
If we order the standard bases {e1, ..., en} of Fy and {uy, ..., us} of Fyp_q
appropriately, we can assume that

(3.16) weler) = crug + coug + -+ - + cruy

where ¢; is a nonzero constant (note that (ci,...,c;)7 is the first column

of Ay). Then let Gy, C Fy and Gy—1; C Fy_q be the submodules generated

by {ea,...,em} and {us, ..., us} respectively, and define the maps
Foyq Ve GGy "5 F,

as follows:

® )p11 is the projection Fy — Gy (which sends aje; + azses + -+ - + amem
to ases + - -+ + amer,) composed with @gy1.

e If the first row of Ay is (c1,da, ..., dn), then 1, is defined by ,(e;) =
wele; — ‘el) fori = 2,...,m. Since py(e;) = djug + --- for i > 2, it
follows easﬂy from (3. 16) that Ye(e;) € Go—g.

® )y is the restriction of ¢y_; to the submodule Gy_1 C Fy_;.
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We claim that
Yot Yot1 Py PYr—1 Pe—2
= B = Fopn = G =Gy = Fpg —=Fp3— -

is still a resolution of M. To prove this, we need to check exactness at Fyy1,
Gy, Go—1 and Fy_o. (If we set M = F_; and Fj, = 0 for kK < —1, then the
above sequence makes sense for all £ > 1.)

We begin with Fy_s. Here, note that applying ¢,—1 to (3.16) gives

0 = crpe—1(ur) + cape—1(u2) + - - - + c20r—1(Um).

Since ¢; is a nonzero constant, ¢;—1(u1) is an R-linear combination of
wi—1(u;) fori = 2,...,m, and then im(py_1) = im(1py_1) follows from the
definition of ¥,_1. The desired exactness im(¢y_1) = ker(p¢—_2) is now an
easy consequence of the exactness of the original resolution.

Next consider Gy_1. First note that for i > 2, ¥p_1 o Py(e;) = p_q 0
we(e; — gl e1) = 0 since 1y_1 is just the restriction of pp_;1. This shows
that im(t¢) C ker(¢y—1). To prove the opposite inclusion, suppose that
Pe—1(v) = 0 for some v € Gy_1. Since 1py_1 is the restriction of @y_1,
exactness of the original resolution implies that v = @y(aie; +- - -+ amem)-
However, since u; does not appear in v € Gy_; and py(e;) = djug + - -,
one easily obtains

(317) aic1 +asds + -+ + amdy;, =0
by looking at the coefficients of u;. Then
Ye(azes + -+ + amem) = aghe(ez) + -+ - + amtbe(em)

= aspe(es — ‘Zf er) 4+ -+ amp(em —

= @o(arer + -+ amem) =0,

C?ln el)

where the last equality follows by (3.17). This completes the proof of
exactness at Gy_1.

The remaining proofs of exactness are straightforward and will be covered
in Exercise 13 at the end of the section.

Since the theorem we’re trying to prove is concerned with ker (¢, 1), we
need to understand how the kernels of the various maps change under the
above simplification process. If e; € Fy has degree d, then we claim that:

ker(pe—1) = R(—d) ® ker(tp—1)
(3.18) ker(pp) =2 ker (1)
ker(pey1) = ker(¥es1)

We will prove the first and leave the others for the reader (see Exer-
cise 13). Since 1)y_1 is the restriction of py_1, we certainly have ker(1y_1) C
ker(ps—1). Also, pe(e1) € ker(yps—1) gives the submodule Ry(e;) C
ker(pp—1), and the map sending @¢(e;) — 1 induces an isomorphism
Ryy(e1) =2 R(—d). To prove that we have a direct sum, note that (3.16)
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implies Ryy(e1)NGy—1 = {0} since Gy_1 is generated by ua, . . . , uy, and ¢;
is a nonzero constant. From this, we conclude Ryy(e1) Nker(¢,—1) = {0},
which implies

Repg(e1) + ker(ve—1) = Rpe(er) @ ker(ie—1).

To show that this equals all of ker(y;—1), let w € ker(y,—1) be arbitrary. If
w = ajuy +- - -+ asus, then set w = w— ‘;i we(e1). By (3.16), we have w €
Gy¢-1, and then @ € ker(yy—1) follows easily. Thus w = ' py(e1) +w €
Ryy(er) @ ker(ipe—1), which gives the desired direct sum decomposition.

Hence, we have proved that whenever we have a ¢, with a nonzero matrix
entry of degree zero, we create a resolution with smaller matrices whose
kernels satisfy (3.18). It follows that if the theorem holds for the smaller
resolution, then it automatically holds for the original resolution.

Now the theorem is easy to prove. By repeatedly applying the above pro-
cess whenever we find a nonzero matrix entry of degree zero in some v, we
can reduce to a minimal resolution. But minimal resolutions are isomorphic
by Theorem (3.13), and hence, by Exercise 5, the minimal resolution we get
has length < n. Then Proposition (1.12) shows that ker(p,_1) is free for
the minimal resolution, which, as observed above, implies that ker(y,—1)
is free for the original resolution as well.

The final assertion of the theorem, that

0 — ker(pp-1) = Fho1 —» -+ —>Fgp—> M — 0

is a free resolution, now follows immediately from Proposition (1.12).

The simplification process used in the proof of Theorem (3.15) can be
used to show that, in a suitable sense, every graded resolution of M is the
direct sum of a minimal resolution and a trivial resolution. This gives a
structure theorem which describes all graded resolutions of a given finitely

generated module over k[x1, . . ., z,]. Details can be found in Theorem 20.2
of [Eis].

Exercise 6. Show that the simplification process from the proof of Theo-
rem (3.15) transforms the homogenization of (1.11) into the homogenization
of (1.10) (see Exercise 4).

There is also a version of the theorem just proved which applies to partial
resolutions.

(3.19) Corollary. If
Fo 1 ™" Fg— > Fy— M —0
is a partial graded resolution over k[x1, . .., x|, then ker(p,_1) is free, and
0 — ker(pp-1) = Fpo1 — -+ —>Fyp—> M — 0

is a graded resolution of M.
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PROOF. Since any partial resolution can be extended to a resolution, this
follows immediately from Theorem (3.15).

One way to think about Corollary (3.19) is that over k[x1, ..., zy,], the
process of taking repeated syzygies leads to a free syzygy module after at
most n — 1 steps. This is essentially how Hilbert stated the Syzygy Theorem
in his classic paper [Hil], and sometimes Theorem (3.15) or Corollary (3.19)
are called the Syzygy Theorem. Modern treatments, however, focus on
the existence of a resolution of length < n, since Hilbert’s version follows
from existence (our Theorem (3.8)) together with the properties of minimal
resolutions.

As an application of these results, let’s study the syzygies of a
homogeneous ideal in two variables.

(3.20) Proposition. Suppose that fi1,..., fs € kl[x,y] are homogeneous
polynomials. Then the syzygy module Syz (f1,...,[fs) is a twisted free
module over k[x, y].

PROOF. Let I = (f1,..., fs) C k[x,y]. Then we get an exact sequence
0—-I—R—R/I—0

by Proposition (1.2). Also, the definition of the syzygy module gives an
exact sequence

0— Syz(f1,...,fs) = R(—-d1)® - ® R(—ds) - I —0

where d; = deg f;. Splicing these two sequences together as in Exercise 7
of §1, we get the exact sequence

0—Syz(fi,....fs) = R(—di) & - ® R(—ds) &> R— R/I — 0.
Since n = 2, Corollary (3.19) implies that ker(¢1) = Syz (f1,..., fs) is

free, and the proposition is proved.

In §4, we will use the Hilbert polynomial to describe the degrees of the
generators of Syz (f1, .. ., fs) in the special case when all of the f; have the
same degree.

ApDIiTIONAL EXERCISES FOR §3

Exercise 7. Assume that f1,..., fs € k[z,y] are homogeneous and not
all zero. We know that Syz (f1,..., fs) is free by Proposition (3.20), so
that if we ignore gradings, Syz (f1, ..., fs) = R™ for some m. This gives

an exact sequence

0—-R" —R°—1-—0.
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Prove that m = s — 1 and conclude that we are in the situation of
the Hilbert-Burch Theorem from §2. Hint: As in Exercise 11 of §2, let
K = E(xi1,...,z,) be the field of rational functions coming from R =
k[x1,...,z,]. Explain why the above sequence gives a sequence

0—-—K" - K —-K—0

and show that this new sequence is also exact. The result will then follow
from the dimension theorem of linear algebra (see Exercise 8 of §1). The
ideas used in Exercise 11 of §2 may be useful.

Exercise 8. Prove Proposition (3.3). Hint: Show a = ¢ = b = a.
Exercise 9. Prove Proposition (3.4).
Exercise 10. Complete the proof of Proposition (3.10).

Exercise 11. Suppose that M is a module over k[z1, ..., z,] generated
by fi,..., fm- Asin the proof of Theorem (3.13), let (x1, ..., x,)M be the
submodule generated by x; f; for all ¢, j. Also assume that ¢ : M — M is a
graded homomorphism of degree zero such that v — ¥(v) € (x1,...,2,)M
for all v € M. Then prove that ¢ is an isomorphism. Hint: By part b of
Exercise 3, it suffices to show that ¢ : My — M; is onto. Prove this by
induction on ¢, using part a of Exercise 3 to start the induction.

Exercise 12. Suppose that we have a diagram of R-modules and
homomorphisms

A % B

ol LB

c % D
which commutes in the sense of Definition (3.11). If in addition ¢, are
onto and «, # are isomorphisms, then prove that a restricted to ker(y)
induces an isomorphism & : ker(y) — ker(z)).

Exercise 13. This exercise is concerned with the proof of Theorem (3.15).
We will use the same notation as in that proof, including the sequence of
mappings

= Fry e G ¥ Go_1 Ve Frg—---.
a. Prove that ¢,(3°1", a;e;) = 0 if and only if ¥,(3°1", ase;) = 0 and
aicy + ZTLQ a;d; = 0.
b. Use part a to prove that the above sequence is exact at Gy.
c. Prove that the above sequence is exact at Fy11. Hint: Do you see why
it suffices to show that ker(¢sy1) = ker(¢y1)?
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d. Prove the second line of (3.18), i.e., that ker(y,;) = ker(¢). Hint: Use
part a.

e. Prove the third line of (3.18), i.e., that ker(pe+1) = ker(tpey1). Hint:
You did this in part c!

Exercise 14. In the proof of Theorem (3.15), we constructed a certain
homomorphism 1 : Gy — Gy_1. Suppose that A, is the matrix of ¢, :
F, — F,_; with respect to the bases ei,...,e, of Fp and uq,...,u; of
Fy_1. Write Ay in the form

Ago Aot )
A =
¢ <A10 Ay
where Agy = ¢ and Apy = (c2,...,¢) as in (3.16), and Ay =
(da, . ..,dn)T, where the d; are from the definition of ,. If we let B, be

the matrix of 1, with respect to the bases es, . .., e, of Gy and us, . .., u;
of Gy_1, then prove that

By = Ago — Api Agg Aro-

What’s remarkable is that this formula is identical to equation (6.5) in
Chapter 3. As happens often in mathematics, the same idea can appear in
very different contexts.

Exercise 15. In k[xo, ..., z,], n > 2, consider the homogeneous ideal I,,
defined by the determinants of the (g) 2 x 2 submatrices of the 2 x n matrix
M= (360 o Inl).

X1 T2 .o T
For instance, Iy = (zoze — x%) is the ideal of a conic section in P2. We have
already seen I3 in different notation (where?).

a. Show that I,, is the ideal of the rational normal curve of degree n in
P"*—the image of the mapping given in homogeneous coordinates by

@ : Pt — P
(5,1) = (8™, 8" M, ... st H 7).

b. Do explicit calculations to find the graded resolutions of the ideals Iy, I5.

c. Show that the first syzygy module of the generators for I, is generated
by the three-term syzygies obtained by appending a copy of the first
(resp. second) row of M to M, to make a 3 x n matrix M’ (resp. M),
then expanding the determinants of all 3 x 3 submatrices of M’ (resp.
M) along the new row.

d. Conjecture the general form of a graded resolution of I,,. (Proving this
conjecture requires advanced techniques like the Fagon-Northcott com-
plex. This and other interesting topics are discussed in Appendix A2.6
of [Eis].)
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64 Hilbert Polynomials and Geometric Applications

In this section, we will study Hilbert functions and Hilbert polynomials.
These are computed using the graded resolutions introduced in §3 and con-
tain some interesting geometric information. We will then give applications
to the ideal of three points in P?, parametric equations in the plane, and
invariants of finite group actions.

Hilbert Functions and Hilbert Polynomials

We begin by defining the Hilbert function of a graded module. Because we
will be dealing with projective space P", it is convenient to work over the
polynomial ring R = k[zg, ..., x,] in n + 1 variables.

If M is a finitely generated graded R-module, recall from Exercise 3 of
83 that for each ¢, the degree t homogeneous part M, is a finite dimensional
vector space over k. This leads naturally to the definition of the Hilbert
function.

(4.1) Definition. If M is a finitely generated graded module over R =
klxo, ..., y], then the Hilbert function Hps(t) is defined by

HM(t) = dimk Mt,

where as usual, dimj; means dimension as a vector space over k.

The most basic example of a graded module is R = k[zg, . . . , x,] itself.
Since R; is the vector space of homogeneous polynomials of degree ¢ in
n + 1 variables, Exercise 19 of Chapter 3, §4 implies that for ¢ > 0, we
have

Hg(t) = dimy, R, = (t fl ”)

a

If we adopt the convention that (}) = 0 if a < b, then the above formula
holds for all t. Similarly, the reader should check that the Hilbert function
of the twisted module R(d) is given by

t+d+n
(42) HR(d)(t) = ( n ), teZ.

An important observation is that for ¢ > 0 and n fixed, the binomial

coeflicient (t‘;") is a polynomial of degree n in t. This is because

t+n (t+ n)! t+n)t+n—-1)---(t+1)
(4:3) ( n ) ot n! '
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It follows that Hg(¢) is given by a polynomial for ¢ sufficiently large (¢ > 0
in this case). This will be important below when we define the Hilbert
polynomial.

Here are some exercises which give some simple properties of Hilbert
functions.

Exercise 1. If M is a finitely generated graded R-module and M (d) is
the twist defined in Proposition (3.4), then show that

Hyay(t) = Hu(t + d)

for all ¢. Note how this generalizes (4.2).

Exercise 2. Suppose that M, N and P are finitely generated graded R-

modules.

a. The direct sum M @ N was discussed in Exercise 1 of §3. Prove that
Hyrgn = Hpyr + Hy.

b. More generally, if we have an exact sequence

o-MEPEA NSO

where o« and 3 are graded homomorphisms of degree zero, then show
that Hp = HM + HN-

c. Explain how part b generalizes part a. Hint: What exact sequence do
we get from M @& N7

It follows from these exercises that we can compute the Hilbert func-
tion of any twisted free module. However, for more complicated modules,
computing the Hilbert function can be rather nontrivial. There are several
ways to study this problem. For example, if I C R = k[zg,...,x,] is a
homogeneous ideal, then the quotient ring R/I is a graded R-module, and
in Chapter 9, §3 of [CLO], it is shown than if (LT(I)) is the ideal of initial
terms for a monomial order on R, then the Hilbert functions Hp,; and
Hp)r(n) are equal. Using the techniques of Chapter 9, §2 of [CLO], it is
relatively easy to compute the Hilbert function of a monomial ideal. Thus,
once we compute a Grébner basis of I, we can find the Hilbert function of
R/I. (Note: The Hilbert function Hg/; is denoted HFy in [CLO].)

A second way to compute Hilbert functions is by means of graded
resolutions. Here is the basic result.

(4.4) Theorem. Let R = k[xg, ..., x| and let M be a graded R-module.
Then, for any graded resolution of M

0—-Fp,—-Fp1—---—F—M-—D0,
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we have
k k

HM(t) = dimk Mt = Z( )] dlmk Z jHF

=0 =0

PROOF. In a graded resolution, all the homomorphlsms are homogeneous
of degree zero, hence for each t, restricting all the homomorphisms to the
degree t homogeneous parts of the graded modules, we also have an exact
sequence of finite dimensional k-vector spaces

0— (Fk)t - (kal)t o (Fo)t — My — 0.

The alternating sum of the dimensions in such an exact sequence is 0, by
Exercise 8 of §1. Hence

k
dimy, M; = Z(—l)j dimy (F})+,
§=0

and the theorem follows by the definition of Hilbert function.

Since we know the Hilbert function of any twisted free module (by (4.2)
and Exercise 2), it follows that the Hilbert function of a graded module
M can be calculated easily from a graded resolution. For example, let’s

compute the Hilbert function of the homogeneous ideal I of the twisted
cubic in P3, namely

(4.5) I=(zz—y? ow—yzyw—2°) C R=klz,y, z,wl.

In Exercise 2 of §2 of this chapter, we found that I has a graded resolution
of the form

0 — R(—3)? = R(-2)> - T — 0.
As in the proof of Theorem (4.4), this resolution implies
dimy, I; = dimy R(—2)} — dimy R(—3)?
for all t. Applying Exercise 2 and (4.2), this can be rewritten as

t—2+4+3 t—3+3
H;(t) = -2
o=a("5) —2(5)
t
_ +1 9 t'
3 3
Using the exact sequence 0 — I — R — R/I — 0, Exercise 2 implies that

Hyy1(t) = Hp(t) — Hi(t) = (tQ?’) - 3<t 3 1) i 2@

for all ¢. For t = 0, 1, 2, one (or both) of the binomial coefficients from H;
is zero. However, computing Hp,;(t) separately for ¢ < 2 and doing some
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algebra, one can show that

for all t > 0.

In this example, the Hilbert function is a polynomial once ¢t is sufficiently
large (¢ > 0 in this case). This is a special case of the following general
result.

(4.7) Proposition. If M is a finitely generated R-module, then there is
a unique polynomial H Py; such that

Hy(t) = HPpy ()
for all t sufficiently large.
PRrROOF. The key point is that for a twisted free module of the form
F=R(—di)® - - @ R(—dn),
Exercise 2 and (4.2) imply that

HF(t):zm:C—cf;—&-n)

i=1

Furthermore, (4.3) shows that this is a polynomial in ¢ provided ¢ >
max(dy, . .., dm).

Now suppose that M is a finitely generated R-module. We can find a
finite graded resolution

0—Fp— -+ —Fyp—>M—Q0,
and Theorem (4.4) tells us that

14
Hy(t) =Y (=17 Hp, (1).

Jj=0

The above computation implies that Hp,(t) is a polynomial in t for ¢
sufficiently large, so that the same is true for Hps(t).

The polynomial H Py, given in Proposition (4.7) is called the Hilbert
polynomial of M. For example, if I is the ideal given by (4.5), then (4.6)
implies that

in this case.

The Hilbert polynomial contains some interesting geometric information.
For example, a homogeneous ideal I C k[zo, ..., x,] determines the pro-
jective variety V. = V(I) C P", and the Hilbert polynomial tells us the
following facts about V:
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® The degree of the Hilbert polynomial HPg,; is the dimension of the
variety V. For example, in Chapter 9 of [CLOJ, this is the definition of
the dimension of a projective variety.

e If the Hilbert polynomial HPg/; has degree d = dim V, then one can
show that its leading term is (D/d!) t? for some positive integer D. The
integer D is defined to be the degree of the variety V. One can also
prove that D equals the number of points where V' meets a generic (n —
d)-dimensional linear subspace of P".

For example, the Hilbert polynomial H Pg,;(t) = 3t+1 from (4.8) shows
that the twisted cubic has dimension 1 and degree 3. In the exercises at
the end of the section, you will compute additional examples of Hilbert
functions and Hilbert polynomials.

The Ideal of Three Points

Given a homogeneous ideal I C k[xo, . . ., z,], we get the projective variety
V = V(I). We've seen that a graded resolution enables us to compute the
Hilbert polynomial, which in turn determines geometric invariants of V'
such as the dimension and degree. However, the actual terms appearing in
a graded resolution of the ideal I encode additional geometric information
about the variety V. We will illustrate this by considering the form of the
resolution of the ideal of a collection of points in P2. For example, consider
varieties consisting of three distinct points, namely V = {p1, p2, p3} C P2
There are two cases here, depending on whether the p; are collinear or not.
We begin with a specific example.

Exercise 3. Suppose that V' = {p1, p2, p3} = {(0,0, 1), (1,0,
a. Show that I = I(V) is the ideal (2% — 2z, vy, y* —yz) C R
b. Show that we have a graded resolution

0— R(-3)? = R(-2)3—=T1T—0

1),(0,1,1)}.
= klz,y, z].

and explain how this relates to (1.10).
c. Compute that the Hilbert function of R/I is

t+2 t t—1
H = — 2
w0 =(157) =) ()
_J1 ift=0,
3 ift>1.
The Hilbert polynomial in Exercise 3 is the constant polynomial 3, so

the dimension is 0 and the degree is 3, as expected. There is also some nice
intuition lying behind the graded resolution

(4.9) 0— R(-3)> - R(-2)* -1 —0
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found in part b of the exercise. First, note that Iy = {0} since 0 is the
only constant vanishing on the points, and I; = {0} since the points of
V ={(0,0,1),(1,0,1), (0,1, 1)} are noncollinear. On the other hand, there
are quadratics which vanish on V. One way to see this is to let ¢;; be the
equation of the line vanishing on points p; and p;. Then f1 = £12013, fo =
l12023, f3 = f13f23 are three quadratics vanishing precisely on V. Hence
it makes sense that I is generated by three quadratics, which is what the
R(—2)3 in (4.9) says. Also, notice that f1, f2, f3 have obvious syzygies of
degree 1, for example, fo3f1 — f13fo = 0. It is less obvious that two of
these syzygies are free generators of the syzygy module, but this is what
the R(—3)? in (4.9) means.

From a more sophisticated point of view, the resolution (4.9) is fairly
obvious. This is because of the converse of the Hilbert-Burch Theorem
discussed at the end of §2, which applies here since V' C P? is a finite set
of points and hence is Cohen-Macaulay of dimension 2 — 2 = 0.

The example presented in Exercise 3 is more general than one might sus-
pect. This is because for three noncollinear points p1, p2, p3, there is a linear
change of coordinates on P? taking pi, p2, p3 to (0,0,1), (1,0,1),(0,1,1).
Using this, we see that if I is the ideal of any set of three noncollinear
points, then I has a free resolution of the form (4.9), so that the Hilbert
function of I is given by part ¢ of Exercise 3.

The next two exercises will study what happens when the three points
are collinear.

Exercise 4. Suppose that V = {(0,1,0), (0,0,1), (0, A\, 1)}, where A # 0.
These points lie on the line x = 0, so that V' is a collinear triple of points.
a. Show that I = I(V) has a graded resolution of the form

0 — R(—4) - R(=3) ® R(—-1) - I — 0.

Hint: Show that I = (x, yz(y — A\z2)).
b. Show that the Hilbert function of R/I is

1 ift =0,
3 ift>2.

Exercise 5. Suppose now that V' = {p1, p2, p3} is any triple of collinear
points in P2. Show that I = I(V) has a graded resolution of the form

(4.10) 0— R(—4) - R(-3)® R(-1) - I — 0,
and conclude that the Hilbert function of R/I is as in part b of Exercise 4.

Hint: Use a linear change of coordinates in P2,

The intuition behind (4.10) is that in the collinear case, V' is the intersec-
tion of a line and a cubic, and the only syzygy between these is the obvious
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one. In geometric terms, we say that V is a complete intersection in this
case since its dimension (= 0) is the dimension of the ambient space (=
2) minus the number of defining equations (= 2). Note that a noncollinear
triple isn’t a complete intersection since there are three defining equations.
This sequence of exercises shows that for triples of points in P2, their
corresponding ideals I all give the same Hilbert polynomial HPgr,; = 3.
But depending on whether the points are collinear or not, we get different
resolutions (4.10) and (4.9) and different Hilbert functions, as in part ¢ of
Exercise 3 and part b of Exercise 4. This is quite typical of what happens.
Here is a similar but more challenging example.

Exercise 6. Now consider varieties V' = {py, pa, p3, p4} in P2, and write

I =1I(V) C R = K[z, v, 2] as above.

a. First assume the points of V' are in general position in the sense that no
three are collinear. Show that I is 2-dimensional over k, and that I is
generated by any two linearly independent elements of I5. Deduce that
a graded resolution of I has the form

0 — R(—4) — R(-2)? - I — 0,

and use this to compute Hpg/;(t) for all t. Do you see how the R(—2)?
is consistent with Bézout’s Theorem?

b. Now assume that three of the points of V' lie on a line L C P? but the
fourth does not. Show that every element of I5 is reducible, containing
as a factor a linear polynomial vanishing on L. Show that I does not
generate I in this case, and deduce that a graded resolution of I has the
form

0 — R(—3)® R(—4) —» R(-2)> ® R(-3) - I — 0.

Use this to compute Hp/(t) for all t.
c. Finally, consider the case where all four of the points are collinear. Show
that in this case, the graded resolution has the form

0 — R(-5) —» R(-1)® R(—4) — I — 0,

and compute the Hilbert function of R/I for all ¢.
d. In which cases is V a complete intersection?

Understanding the geometric significance of the shape of the graded res-
olution of I = I(V) in more involved examples is an area of active research
in contemporary algebraic geometry. A conjecture of Mark Green concern-
ing the graded resolutions of the ideals of canonical curves has stimulated
many of the developments here. See [Schre2] and [EH] for some earlier work
on Green’s conjecture. Recent articles of Montserrat Teixidor ([Tei]) and
Claire Voisin ([Voi]) have proved Green’s conjecture for a large class of
curves. [EH] contains articles on other topics concerning resolutions. Sec-
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tion 15.12 of [Eis] has some interesting projects dealing with resolutions,
and some of the exercises in Section 15.11 are also relevant.

Parametric Plane Curves

Here, we will begin with a curve in k? parametrized by rational functions
(4.11) x = Yy =

where a, b, ¢ € k[t] are polynomials such that ¢ # 0 and GCD(a, b, ¢) = 1.
We also set n = max(deg a, deg b, deg c¢). Parametrizations of this form
play an important role in computer-aided geometric design, and a ques-
tion of particular interest is the implicitization problem, which asks how
the equation f(x,y) = 0 of the underlying curve is obtained from the
parametrization (4.11). An introduction to implicitization can be found in
Chapter 3 of [CLO].
A basic object in this theory is the ideal

(4.12) I = (e(t)a — alt), c(t)y — b(t)) C klz,y.1].

This ideal has the following interpretation. Let W C k be the roots of ¢(¢),
i.e., the solutions of ¢(t) = 0. Then we can regard (4.11) as the function
F :k—W — k? defined by

In Exercise 14 at the end of the section, you will show that the graph of
F, regarded as a subset of k®, is precisely the variety V(I). From here,
one can prove that the intersection Iy = I N k[z,y] is an ideal in k[z, y]
such that V(I;) C k? is the smallest variety containing the image of the
parametrization (4.11) (see Exercise 14). In the terminology of Chapter 2,
I; = 1IN kf[z,y] is an elimination ideal, which we can compute using a
Grobner basis with respect to a suitable monomial order.

It follows that the ideal I contains a lot of information about the curve
parametrized by (4.11). Recently, it was discovered (see [SSQK] and [SC])
that I provides other parametrizations of the curve, different from (4.11).
To see how this works, let I(1) denote the subset of I consisting of all
elements of I of total degee at most 1 in x and y. Thus

(4.13) I ={fel:f=A®bz+ Blty+CH)}

An element in A(t)x + B(t)y + C(t) € I(1) is called a mowving line since
for t fixed, the equation A(t)z + B(t)y + C(t) = 0 describes a line in the
plane, and as t moves, so does the line.
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Exercise 7. Given a moving line A(t)x + B(t)y + C(t) € I(1), suppose
that ¢ € k satisfies ¢(t) # 0. Then show that the point given by (4.11) lies
on the line A(t)z + B(t)y + C(t) = 0. Hint: Use I(1) C I.

Now suppose that we have moving lines f, g € I(1). Then, for a fixed ¢,
we get a pair of lines, which typically intersect in a point. By Exercise 7,
each of these lines contains (a(t)/c(t), b(t)/c(t)), so this must be the point
of intersection. Hence, as we vary ¢, the intersection of the moving lines
will trace out our curve.

Notice that our original parametrization (4.11) is given by moving lines,
since we have the vertical line x = a(t)/c(t) and the horizontal line y =
b(t)/c(t). However, by allowing more general moving lines, one can get
polynomials of smaller degree in ¢t. The following exercise gives an example
of how this can happen.

Exercise 8. Consider the parametrization

AP+ 4t+5 3Pt 44
T oesa+3’ YT erauts

a. Prove that p = (5t +5)x —y — (10t +7) and ¢ = (5t — 5)x — (t + 2)y +
(=Tt + 11) are moving lines, i.e., p,q € I, where I is as in (4.12).
b. Prove that p and ¢ generate I, i.e., I = (p, q).

In Exercise 8, the original parametrization had maximum degree 2 in t,
while the moving lines p and ¢ have maximum degree 1. This is typical
of what happens, for we will show below that in general, if n is the max-
imum degree of a, b, ¢, then there are moving lines p, ¢ € I such that p
has maximum degree u < |n/2| in ¢t and ¢ has maximum degree n — pu.
Furthermore, p and g are actually a basis of the ideal I. In the terminology
of [CSC], this is the mowving line basis or p-basis of the ideal.

Our goal here is to prove this result—the existence of a p-basis—and to
explain what this has to do with graded resolutions and Hilbert functions.
We begin by studying the subset I(1) C I defined in (4.13). It is closed
under addition, and more importantly, I(1) is closed under multiplication
by elements of k[t] (be sure you understand why). Hence I(1) has a natural
structure as a k[t]-module. In fact, I(1) is a syzygy module, which we will
now show.

(4.14) Lemma. Let a,b, c € k[t] satisfy ¢ # 0 and GCD(a, b, c) = 1, and
set I = (cx — a,cy — b). Then, for A, B,C € k[t],
Alt)r + B(t)y + C(t) € I <= A(t)a(t) + B(t)b(t) + C(t)c(t) = 0.

Thus the map A(t)x + B(t)y + C(t) — (A, B, C) defines an isomorphism
of k[t]-modules 1(1) = Syz (a, b, ¢).
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PROOF. To prove =, consider the ring homomorphism k[z,y,t] — k(t)

which sends z,y,t to ZEE; , igg ,t. Since the generators of I map to zero,

so does A(t)z + B(t)y + C(t) € I. Thus A(t) Z(g + B(t) ggg +C(t)=0
in k(t), and multiplying by ¢(t) gives the desired equation.

For the other implication, let S = k[t] and consider the sequence
(4.15) g3 2 g8 0

where O[(hl, hg, hg) = (Chl +bh3, Chg — ahg, 7ah1 - bhg) and /8(14, B7 C) =
Aa+ Bb+ Cc. One easily checks that Soa = 0, so that im(«) C ker(8). It
is less obvious that (4.15) is exact at the middle term, i.e., im(a)) = ker(3).
This will be proved in Exercise 15 below. The sequence (4.15) is the Koszul
complex determined by a, b, ¢ (see Exercise 10 of §2 for another example of
a Koszul complex). A Koszul complex is not always exact, but Exercise 15
will show that (4.15) is exact in our case because GCD(a, b, ¢) = 1.

Now suppose that Aa + Bb + Cc = 0. We need to show that Az +
By + C € I. This is now easy, since our assumption on A, B, C' implies
(A, B, C) € ker(8). By the exactness of (4.15), (A, B,C) € im(«), which
means we can find hq, ha, hg € k[t] such that

A = chy + bhs, B = chy — ahs, C = —ahy — bho.
Hence
Az + By + C = (chy + bhs)x + (che — ahs)y — ahy — bha
= (h1 + yhs)(cx — a) + (ha — zhs)(cy — b) € I,

as desired. The final assertion of the lemma now follows immediately.

(4.16) Definition. Given a parametrization (4.11), we get the ideal I =
(cx — a,cy — b) and the syzygy module I(1) from (4.13). Then we define y
to the minimal degree in ¢ of a nonzero element in I(1).

The following theorem shows the existence of a p-basis of the ideal I.

(4.17) Theorem. Given (4.11) where ¢ # 0 and GCD(a,b,c) = 1, set
n = max(deg a, degb,degc) and I = (cx — a,cy — b) as usual. If p is as
in Definition (4.16), then

p < [n/2],

and we can find p,q € I such that p has degree p in t, q has degree n —
int, and I = (p,q).

PrROOF. We will study the syzygy module Syz (a, b, ¢) using the methods of
§3. For this purpose, we need to homogenize a, b, c. Let ¢, u be homogeneous
variables and consider the ring R = k[t, u]. Then a(t,u) will denote the
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degree n homogenization of a(t), i.e.,
a(t,u) =u"a(!) e R

In this way, we get degree n homogeneous polynomials a, l~7, ¢ € R, and the
reader should check that GCD(a, b, ¢) = 1 and n = max(deg a, deg b, deg c)
imply that a, E, ¢ have no common zeros in P!. In other words, the only
solutionofd:5:~E:0ist:u:0.

Now let J = (a,b,¢) C R = k[t, u]. We first compute the Hilbert poly-
nomial H Py of J. The key point is that since @ = b = ¢ = 0 have only
one solution, no matter what the field is, the Finiteness Theorem from §2
of Chapter 2 implies that the quotient ring R/J = k[t, u]/J is a finite di-
mensional vector space over k. But J is a homogeneous ideal, which means
that R/J is a graded ring. In order for S/J to have finite dimension, we
must have dimy(R/J)s = 0 for all s sufficiently large (we use s instead of
t since t is now one of our variables). It follows that HPg/; is the zero
polynomial. Then the exact sequence

0—>J—=R—R/J—0

and Exercise 2 imply that

(4.18) HPy(s) = HPp(s) = (S : 1) — sl

since R = k[t, u]. For future reference, note also that by (4.2),

—d+1
HPp(_q)(s) = (S 1 ) =s—d+ 1

Now consider the exact sequence
0 — Syz(a,b,&) — R(—n)> = J — 0,

where a(A, B,C) = Aa + Bb + C¢. By Proposition (3.20), the syzygy
module Syz (a, b, ¢) is free, which means that we get a graded resolution

(4.19) 0= R(—d) @ - @ R(—dw) > R(—n)® % J -0

for some dy, ..., d,. By Exercise 2, the Hilbert polynomial of the middle
term is the sum of the other two Hilbert polynomials. Since we know H Py
from (4.18), we obtain

3s—n+1l)=(s—di+1)+ -+ (s—dn+1)+(s+1)
=m+Ds+m+1—dy —- —dp.

It follows that m = 2 and 3n = dy + d2. Thus (4.19) becomes
(4.20) 0 — R(—dy) ® R(—ds) > R(—n)® % J — 0.

The matrix L representing  is a 3 x 2 matrix
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P1 ¢
(421) L = P2 q2 s
p3 a3

and since § has degree zero, the first column of L consists of homogeneous
polynomials of degree u; = d; — n and the second column has degree
o = do — n. Then py + po = n follows from 3n = dy + do.

We may assume that gy < po. Since the first column (p1, p2, ps) of (4.21)
satisfies p1a + ng + p3c = 0, setting u = 1 gives

pi(t; Da(t) + p2(t, D)b(E) + ps(t, 1)e(t) = 0.

Thus p = p1(t, 1)z +pa(t, 1)y +ps(t,1) € I(1) by Lemma (4.14). Similarly,
the second column of (4.21) gives ¢ = q1(¢, 1)z + q2(¢, 1)y +q3(¢, 1) € I(1).
We will show that p and ¢ satisfy the conditions of the theorem.

First observe that the columns of L generate Syz (a, b, ¢) by exactness.
In Exercise 16, you will show this implies that p and ¢ generate I(1). Since
cx —a and cy — b are in I(1), we obtain I = (cx — a,cy — b) C (p, q). The
other inclusion is immediate from p,q € I(1) C I, and I = (p, ¢) follows.

The next step is to prove u; = p. We begin by showing that p has degree
w1 in t. This follows because pi (¢, u), p2(t, u), p3(t, u) are homogeneous of
degree 1. If the degree of all three were to drop when we set u = 1, then
each p; would be divisible by u. However, since p1, p2, p3 give a syzygy
on a,b,¢, so would p1/u, p2/u, p3/u. Hence we would have a syzygy of
degree < p1. But the columns of L generate the syzygy module, so this is
impossible since p; < po. Hence p has degree py in ¢, and then p < g
follows from the definition of u. However, if u < pp, then we would have
Az + By + C € I(1) of degree < pup. This gives a syzygy of a, b, ¢, and
homogenizing, we would get a syzygy of degree < p; among a, b,¢. As we
saw earlier in the paragraph, this is impossible.

We conclude that p has degree i in ¢, and then g1 + po = n implies that
¢ has degree ps = n— p in t. Finally, p < |n/2] follows from p = p1 < po,
and the proof of the theorem is complete.

As already mentioned, the basis p, ¢ constructed in Theorem (4.17) is
called a p-basis of I. One property of the u-basis is that it can be used to
find the implicit equation of the parametrization (4.11). Here is an example
of how this works.

Exercise 9. The parametrization studied in Exercise 8 gives the ideal
I={((t?+2t+3)z— (22 +4t+5), (> + 2t +3)y — (3> +t + 4)).

a. Use Grobner basis methods to find the intersection I Nklx, y]. This gives
the implicit equation of the curve.

b. Show that the resultant of the generators of I with respect to ¢ gives
the implicit equation.
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c. Verify that the polynomials p = (5t + 5)z — y — (10t + 7) and ¢ =
(5t —5)x — (t +2)y + (=7t + 11) are a p-basis for I. Thus u = 1, which
is the biggest possible value of p (since n = 2).

d. Show that the resultant of p and ¢ a