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Preface

A matrix product A is called homogeneous since only one matrix occurs as
a factor. More generally, a matrix product Ay --- A; or A; --- Ay is called
a nonhomogeneous matrix product.

This book puts together much of the basic work on nonhomogeneous
matrix products. Such products arise in areas such as nonhomogeneous
Markov chains, Markov Set-Chains, demographics, probabilistic automata,
production and manpower systems, tomography, fractals, and designing
curves. Thus, researchers from various disciplines are involved with this
kind of work.

For theoretical researchers, it is hoped that the reading of this book
will generate ideas for further work in this area. For applied fields, this
book provides two chapters: Graphics and Systems, which show how ma-
trix products can be used in those areas. Hopefully, these chapters will
stimulate further use of this material.

An outline of the organization of the book follows.

The first chapter provides some background remarks. Chapter 2 covers
basic functionals used to study convergence of infinite products of matrices.
Chapter 3 introduces the notion of a limiting set, the set containing all limit
points of Ay, AgAy,... formed from a matrix set ¥. Various properties of
this set are also studied.
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Chapter 4 concerns two special semigroups that are used in studies of
infinite products of matrices. One of these studies, ergodicity, is covered in
Chapter 5. Ergodicity concerns sequences of products Ay, A2 A,,..., which
appear more like rank 1 matrices as k¥ — oo.

Chapters 6, 7, and 8 provide material on when infinite products of ma-
trices converge. Various kinds of convergence are also discussed.

Chapters 9 and 10 consider a matrix set ¥ and discuss the convergence
of %,¥2,... in the Hausdorff sense. Chapter 11 shows applications of
this work in the areas of graphing curves and fractals. Pictures of curves
and fractals are done with MATLAB*. Code is added at the end of this
chapter.

Chapter 12 provides results on sequences A; z, As A1z, . .. of matrix prod-
ucts that vary slowly. Estimates of a product in terms of the current matrix
are discussed. Chapter 13, shows how the work in previous chapters can
be used to study systems. MATLAB is used to show pictures and to make
calculations. Code is again given at the end of the chapter.

Finally, in the Appendix, a few results used in the book are given. This
is done for the convenience of the reader.

In conclusion, I would like to thank my wife, Faye Hartfiel, for typing this
book and for her patience in the numerous rewritings, and thus retypings,
of it. In addition, I would also like to thank E. H. Chionh and World
Scientific Publishing Co. Pte. Ltd. for their patience and kindness while I
wrote this book.

Darald J. Hartfiel

*MATLAB is a registered trademark of The MathWorks, Inc. For product infor-
mation, please contact:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098

Tel: 508 647-7000

Fax: 508-647-7001

E-mail: info@mathworks.com
Web: www.mathworks.com


mailto:info@mathworks.com
http://www.mathworks.com
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1

Introduction

Let F denote either the set R of real numbers or the set C of complex
numbers. Then F™ will denote the n-dimensional vector space of n-tuples
over the field F.

Vector norms [|-{| in this book use the standard notation, [|-f, denotes
the p-norm. Correspondingly induced matrix norms use the same notation.
Recall, for any n x n matrix A, ||A|| can be defined as

l4ll = max JlzA]| or [|A]] = max [l Az].

So, if the vector z is on the left

n n
14l = maxy "lasl, [|4]lo = max ) lax
k=1 k=1

while if x is on the right,

n n
1Al = max 3" k], [14ll, = meox S fasel.
k=1 k=1

In measuring distances, we will use norms, except in the case where we
use the projective metric. The projective metric occurs in positive vector
and nonnegative matrix work.



2 1. Introduction

Let M,, denote the set of n X n matrices with entries from F. By a
matriz norm ||-|| on M, we will mean any norm on M, that also satisfies

ABI < [|A]l|B]|

for all A, B € M,,. Of course, all induced matrix norms are matrix norms.

This book is about products, called nonhomogeneous products, formed
from M,. An infinite product of matrices taken from M, is an expressed
product

o A1 Ag - Ay (1.1)

where each A; € M,,. More compactly, we write

oo
11 4=
k=1

This infinite product of matrices converges, with respect to some norm, if
the sequence of products

Ay, AsAy, A3Ag Ay, ...

converges. Since norms on M, are equivalent, convergence does not depend
on the norm used.

If we want to make it clear that products are formed by multiplying on
the left, as in (1.1), we can call this a left infinite product of matrices. A
right infinite product is an expression

Ay Ay -

which can also be written compactly as H,?f__l Ag. Unless stated otherwise,
we will work with left infinite products.

In applications, the matrices used to form products are usually taken
from a specified set. In working with these sets, we use that if X is a set
of m x k matrices and Y a set of k X n matrices, then

XY={AB: A€ X and BEY}.

And, as is customary, if X or Y is a singleton, we use the matrix, rather
than the set, to indicate the product. So, if X = {A} or Y = {B}, we
write

AY or XB,

respectively.
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Any subset ¥ of M, is called a matriz set. Such a set is bounded if there
is a positive constant 3 such that for some matrix norm ||-|j, ||4|| < 8 for
all A€ Z. The set ¥ is product bounded if there is a positive constant
B where ||Ag--- Ay]| < B for all k and all Ay,...,Ar € X. Since matrix
norms on M, are all equivalent, if ¥ is bounded or product bounded for
one matrix norm, the same is true for all matrix norms.

All basic background information used on matrices can be found in Horn
and Johnson (1996). The Perron-Frobenius theory, as used in this book,
is given in Gantmacher (1964). The basic result of the Perron-Frobenius
theory is provided in the Appendix.
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2

Functionals

Much of the work on infinite products of matrices uses one functional or
another. In this chapter we introduce these functionals and show some of
their basic properties.

2.1 Projective and Hausdorff Metrics

The projective and Hausdorff metrics are two rather dated metrics. How-
ever, they are not well known, and there are some newer results. So we
will give a brief introduction to them.

2.1.1 Projective Metric

Let z € R® where ¢ = (y,... ,2,)". If
1. z; > 0 for all ¢, then z is nonnegative, while if
2. x; > 0 for all 7, then z is positive.
If £ and y are in R™, we write

1. z >y if z; > y; for all ¢, and
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2. x>y if ; > y; for all 7.

The same terminology will be used for matrices.

The positive orthant, denoted by(R”)+, is the set of all positive vectors
in R™. The projective metric p introduced by David Hilbert (1895), defines
a scaled distance between any two vectors in (R™)*. As we will see, if z
and y are positive vectors in R™, then

p(z,y) = p(az, By)

for any positive constants « and 8. Thus, the projective metric does not
depend on the length of the vectors involved and so, as seen in Figure 2.1,
p(z,y) can be calculated by projecting the vectors to any desired position.

FIGURE 2.1. Various scalings of z and y.

The projective metric is defined below.

Definition 2.1 Let x and y be positive vectors in R*. Then

ma.x%’i
gy i
p(xsy) =In mmz’-

i Y

Other expressions for p(z,y) follow.

1. p(z,y) = In max %1, the natural log of the largest cross product
i,j Tavi
1 n
ratio in [z y] = 1;2 vz

Tn  Yn
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2. p(z,y)=In (max%?maxyi).
3 ® 2

Zi

In working with p (z,y), for notational simplicity, we define

and

(m> . xJ
m | — | =min—.
Y I Y

Some basic properties of the projective metric follow.

Theorem 2.1 For all positive vectors x, y, and z in R", we have the
following:

1. p(z,y) > 0.

2. p(z,y) =0 iff z = ay for some positive constant c.

3. p(z,y) =p(y, 7).

4. p(z,y) <p(z,2) +p(29).

5. p(az,By) = p(z,y) for any positive constants & and (.
Proof. We prove the parts which don’t follow directly from the definition
of p.

Part (2). We prove that if p (z,y) = 0, then z = ay for some constant
a. For this, if p (z,y) =0,

80

Since
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for all k,

Zk :M(z)
Y Yy

for all k. Thus, setting o« = M (%), we have that
z = ay.

Part (4). We show that if z, y, and 2 are positive vectors in R", then
p(z,y) < p(x,z) +p(2,y). To do this, observe that

s (Den (@) (3)s

Thus,
% <m (D) m (z)
Yj z y
for all j and so
M (5> <M (f) M (f)
y) z Y
Similarly,

Putting together,

3

—~

8

@

~—

I

=
|~~~ TN\
<@ 8
N’

RIB [ 28 @8

<@ |
N’

IN

5
3R 3
~ |~

S|’

3|

TN~

=In

w8 ey
V\_/
—_
=]
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This inequality provides (4). m
From property (2) of the theorem, it is clear that p is not a metric. As
a consequence, it is usually called a pseudo-metric. Actually, if for each
positive vector x, we define
ray (z) = {az : a > 0}
then p determines a metric on these rays.
For a geometrical view of p, let z and y be positive vectors in R™. Let
« be the smallest positive constant such that
azx 2 y.
Then o« = M ( %) Now let 8 be the smallest positive constant such that

az < By.

Thus, B=M (—"‘f) . (See Figure 2.2.) Calculation yields

FIGURE 2.2. Geometrical view of p(z,y).

SO

p(z,y) =Ing.
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Thus, as a few sketches in R? can show, if z and y are close to horizontal or
vertical, p(z,y) can be large even when z and y are close in the Euclidean
distance.

Another geometrical view can be seen by considering the curve C =

{[ ;01 : T35 = 1 ¢ in the positive orthant of R2. Here, p(z,y) is two
2
times the area shaded in Figure 2.3. Observe that as x and y are rotated

/'W\_’

FIGURE 2.3. Another geometrical view of p(z, y).

toward the z-axis or y-axis, the projective distance increases.
In the last two theorems in this section, we provide numerical results
showing something of what we described geometrically above.

Theorem 2.2 Let x and y be positive vectors in R™.

1. If p(z,y) <€, =min %, andm; = wr"—_r-, then we have that m; <
i

e —1 and z=r(y + My) where the matric M = diag(my,... ,my).

2. Suppose x =r (y + My), M = diag(mq,... ,mp) >0 andr > 0. If
m; < e —1 for all i, then p(z,y) <e.

Proof. We prove both parts.
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Part (1). Using the definitions of » and M, we show that m; < e€ —1 and
that z = r (y + My). For the first part, suppose that p (z,y) <e. Then

7 s
In max i/Yi
Wi T;/Y;

<e€

so we have
max ZilYi < ge
Wi @jfYj
Thus, for any 4,
xi/yi < e
minz;/y; ~
J

and so by subtracting 1,

z;/y; — minx;/y;
J <e¢ -1

minz;/y;
or
m; <e€ —1.
Now note for the second part that
zi/yi — min;/y;

1+mi =1+ - _ - .
min 7 /i minz; /Y;

Since r = min %-7:—, we have
3 7

$0
r(1+m)y; ==

or r(y + My) = z.
Part (2). Note by using the hypothesis, that

p(z,y) =p(ry+rMy,y) =py+ My,y)

Yitmiys
- TR
_rrz;g:xln PR
Yj
1+my
= maxlIn * <maxIn(l4m;) <Ilne = ¢
o 1+my i
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the desired result. =

Observe in the theorem, taking » and M as in (1), we have that z =
r(y + My). Then, r is the largest positive constant such that

1
—z—y2>0.
r
And
1z -y
m; = ——
Yi

for all . Thus, viewing Figure 2.4, we estimate that me = 1, so, by (2),
p(z,y) = In2. Turning y toward x yields a smaller projective distance.

FIGURE 2.4. A view of m1 and mao.

In the following theorem we assume that the positive vectors =z and y
have been scaled so that ||z||; = ||ly|l; = 1. Any nonnegative vector z
in R™ such that ||z||; = 1 is called a stochastic vector. We also use that
e=(1,1,... ,l)t, the vector of 1’s in R™.

Theorem 2.3 Let x and y be positive stochastic vectors in R*. We have
the following:

L Jlz =yl < eF@¥) —1.

2. p(z,y) < %”:7—%%1 provided that m (£) > 2 ||z — y||,.
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Proof. We argue both parts.
Part (1). For any given i, if z; > y;, then, since %’s <M (%) and

m(5)<t
oz (5)un ()

And if y; > @:, then since M (g) >1and % >m ( )

Thus,

It follows that

<o 1
Part (2). Note that
z Ti— Y llz —ylly
M{-)= 1 + <1+ —75. 2.1
() =mepemg s e g e
And, if m (%) > 2||z — yl|;, similarly we can get

z llz - ylly
m|—}>1-—=>0. 2.2
(y) Ry ) (22)

Now using (2.1) and (2.2), we have
n(g) 1+t




14 2. Functionals

And, using calculus

p(z,y) <In (1+”::n—"(3§)”_1) —In (1_ an—élll)

8 ||z —yll
< 37‘(?1,

which is what we need. m

This theorem shows that if we scale positive vectors £ and y to ﬁf and
]—L and min ﬂﬂh— is not too small, then z is close to y in the projected
lull,? + L
sense iff Wﬂ: is close to m}’m— in the 1-norm. See Figure 2.5.

FIGURE 2.5. Projected vectors in R2.

2.1.2 Hausdorff Metric

The Hausdorff metric gives the distance between two compact sets. It can
be defined in a rather general setting. To see this, let (X, d) be a complete
metric space where X is a subset of F™ or M,, and d a metric on X.

If K is a compact subset of X and | € X, we can take a sequence
ki,ko,... in K such that d(l,k1),d(l,ks),... converges to kig{d(l,k).

And, take a subsequence k;,,ki,,... that converges to, say ke K as de-
picted in Figure 2.6. Then,

inf d(Lk) =d (lk) .
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Hence, we can define

FIGURE 2.6. A view of [ and k.

d(,K) = mind (k).
Note that if d(I, K) <e, then

le K+e

where K+¢ = {z:d(z,k) < € for some k € K} as shown in Figure 2.7.
We can also show that if L is a compact subset of X, then supd(l,K) =
leL

d (f , K ) for some [ € L. Using these observations, we define
LK) = d(l,K
§(L, K) =maxd(l, K)

=maxmind (I, k)
IeL keK

—d (i, k) .
If 6 (L, K) =€, then observe, as in Figure 2.8, that L C K+¢.

The Hausdorff metric h defines the distance between two compact sets,
say L and K, of X as

h(L,K) = max {6 (L, K),6 (K, L)}.
Soif h(L,K) <e, then
LCK+eand KCL+ €
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K+¢g

FIGURE 2.7. A sketch for d (I, K).

and vice versa.

In the following we use that H (X) is the set of all compact subsets of
X.

Theorem 2.4 Using that (X,d) is a complete metric space, we have that
(H (X),h) is a complete metric space.

Proof. To show that A is a metric is somewhat straightforward. Thus, we
will only show the triangular inequality. For this, let R, S, and T be in
H(X). Then for anyr € Rand te T,

d(r,S) = Ispejgd(r, s)
< ggg (d(r,t)+d(t,s))
=d(rt)+ Iggigd(t, s)
=d(r,t)+d(t,S).
Since this holds for any t € T,

d(r,8)y <d{r,t) +d(t,8S)
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FIGURE 2.8. A sketch showing 6 (L,K) < e.
where d (r,f) = Itréqu}d (r,t) =d(r,T). Finally,

§(R,9) = I:lea}%cd (r,9)
< maxd (r,t) + maxd(t,S)
rER teT
=maxd(r,T) + maxd (¢, S)
r€ER teT
=6(R,T)+6(T,S).
Putting together, we have

h(R,S) =max{§(R,S),6(S,R)}
< max {§ (R, T) + 6 (T,S),6(S,T) +6 (T, R)}
<max {§(R,T),6(T,R)} + max {§(T,S),6(S,T)}
=h(R,T) +h(T,5).

The proof that (H (X),h) is a complete metric space is somewhat intri-
cate as well as long. Eggleston (1969) is a source for this argument. m
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To conclude this section, we link the projective metric p and the Haus-
dorff metric. To do this, let S* denote the set of all positive stochastic
vectors in R™. As shown below, p restricted to St is a metric.

Theorem 2.5 (St,p) is a complete metric space.
Proof. To show that p is a metric, we need only to show that if x and y are

in 87 and p(z,y) =0, then z = y. This follows since if p(z,y) = 0, then
y = ax for some scalar a. And since z,y € ST, their components satisfy

i+t Yy =a(@ +-+ ).
Soa=1. Thus, z=y.
Finally, to show that (S, p) is complete, observe that if (zx) is a Cauchy
sequence from S, then the components of the z’s are bounded away from
0. Then, apply Theorem 2.3. =

As a consequence, we have the following.

Corollary 2.1 Using that (S*,p) is the complete metric space, we have
that (H (St*),h) is a complete metric space.

2.2 Contraction Coeflicients
Let > be a matrix set and
A=ZUX?U-.-.

A nonnegative function 7

T:A—R
is called a contraction coefficient for ¥ if

T7(AB) < 7(A)T(B)
for all A,Be€ A.
Contraction coefficients are used to show that a sequence of vectors or a

sequence of matrices converges in some sense. In this section, we look at
two kinds of contraction coefficients. And we do this in subsections.
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2.2.1 Birkhoff Contraction Coefficient

The contraction coefficient for the projective metric, introduced by G.
Birkhoff (1967), is defined on the special nonnegative matrices described
below.

Definition 2.2 An m x n nonnegative matriz A is row allowable if it has
a positive entry in each of its rows.

Note that if A is row allowable and x and y are positive vectors, then Az
and Ay are positive vectors. Thus we can compare p(Az, Ay) and p (z,y).
To do this, we use the gquotient bound result that if r1,... ,7, and s1,... , 8,
are positive constants, then

min 2t < E T o T (2.3)
i 8 $1+ -+ 8y i 8
This result is easily shown by induction or by using calculus.
Lemma 2.1 Let A be an m x n row allowable matriz and x and y positive
vectors. Then

p(Az, Ay) < p(z,y).
Proof. Let £ = Az and §§ = Ay. Then
Z; _ GiZ1 + -+ Ginn
% Gayi+---+ GinYn

Thus using (2.3),

for all i. So
Z; Tk
m?x —'!7: mk Yk
% ~ minZk
mzln ¥j k Yk
and thus,
p(2,9) <p(z,y)
or

p(Az, Ay) < p(z,y),
which yields the lemma. &

For slightly different matrices, we can show a strict inequality result.
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Lemma 2.2 Let A be a nonnegative matriz with a positive column. If x
and y are positive vectors, and p (z,y) > 0, then

p(Az, Ay) <p(z,y).

Proof. Set £ = Az and §j = Ay. Define r; = %: and 7; = %: for all i.
Further, define M = max#;, /= min#;, M = maxr;, and m = minr;.
T ? 7 T
Now

n

2 4T g
A J=1 _ AiY; Zj
Ti=—F—" = |5,

Set a; = 4%~ > 0. Then
ng QijYi

’F,; = aijrj, (24)

a convex suim.
Suppose

n n
M= E oyp;ry and M = E 0giTj +
j=1 Jj=1

Using that these are convex sums, M < M and % > m. Without loss
of generality, assume the first column of A is positive. If M = M and
™ = m, then since a;; > 0 for all i, by (2.4), r; = M = m, which means
p(z,y) = 0, denying the hypothesis. Thus, suppose one of M < M or
M > m holds. Then

M—-1m<M-m

and so

It follows that

p(Az, Ay) < p(z,y),
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the desired result. =

Lemma 2.1 shows that ray (Az) and ray (Ay) are no farther apart than
ray (z) and ray (y) as depicted in Figure 2.9. And, if A has a positive
column, ray {(Az) and ray (Ay) are actually closer than ray (z) and ray (y).

X Ax
Ay

FIGURE 2.9. A ray view of p (Az, Ay) < p(z,y) -
Define the projective coefficient, called the Birkhoff contraction coeffi-

cient, of an n x n row allowable matrix A as

— sup 24T, A4Y)
TB (A) - p p (17, y)

where the sup is taken over all positive vectors in R™. Thus,
p(Az, Ay) < 75 (A)p(z,y)
for all positive x,y. And, it follows by Lemma 2.1 that
T(A)<1.

Note that 7p indicates how much ray (z) and ray (y) are drawn together
when multiplying by A. A picture of this, using the area view of p (z,y),
is shown in Figure 2.10.

Actually, there is a formula for computing 75 (A) in terms of the entries
of A. To provide this formula, we need a few preliminary remarks.

Let A be an n X n positive matrix with n > 1. For any 2 x 2 submatrix

of A, say
Gpq  Aps
arq Grs

Gpqlrs Qpslrg

the constants

b
ApsQrq QGpqQrs



22 2. Functionals

FIGURE 2.10. An area view of 75 (A4) = 3.

are cross ratios. Define
. GpgQ
¢ (A) = min 224%r8
OrgQps
where the minimum is over all cross ratios of A. For example, if 4 =

1 2 .
{3 4],then¢>(A):mm{%,?1 =%.

If A is row allowable and contains a 0 entry, define ¢ (A) = 0. Thus for
any row allowable matrix A,

$(4) < 1.

The formula for 7p (A) can now be given. Its proof, rather intricate, can
be found in Seneta (1981).

Theorem 2.6 Let A be an n X n row allowable matriz. Then

o) = LoV
B 1+/3A)

Note that this theorem implies that 7 (A) < 1 when A is positive and
T(A) = 1if A is row allowable and has at least one 0 entry. And that

p(Az, Ay) < 75 (A)p(z,y)
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for all row allowable matrices A and positive vectors = and y.

Using our previous example, where A = ; i , we have
1-
B (A) = = .10
1+,/2

so for any positive vectors z and y, ray (Az) and ray (Ay) are closer than
ray (z) and ray (y).

This theorem also assures that if A is a positive n x n matrix and D;, Do,
n X n diagonal matrices with positive main diagonals, then 7p (D1AD;) =
78 (A). Thus, scaling the rows and columns of A does not change the
contraction coefficient.

It is interesting to see what 7p (A) = 0 means about A.

Theorem 2.7 Let A be a positive n x n matriz. If g (A) =0, then A is
rank1.

Proof. Suppose 75 (A) = 0. We will show that the i-th row of A is a
scalar multiple of the 1-st row of A.

Define o = 2&. Then, since 7 (4) =0, ¢ (A4) = 1 which assures that
all cross ratios of A are 1. Thus,

a11@:5; 1
a;1a1;5

for all j. Thus, =% =1 or a;; = aayj. Since this holds for all j, the i-th

' aar;
row of A is a scalar multiple of the first row of A. Since i was arbitrary, A
isrankl. m

Probably the most useful property of 75 follows.
Theorem 2.8 Let A and B be n X n row allowable matrices. Then
T8(AB) <75 (A)TB(B).

Proof. Let z and y be positive vectors in R™. Then Bz and By are also
positive vectors in R®. Thus

p(ABz,ABy) < 75 (A) 75 (B)p(z,y).
And, since this inequality holds for all positive vectors  and y in R”,

78 (AB) <15 (A) 75 (B)



24 2. Functionals
as desired. m

We use this property as we use induced matrix norms.

Corollary 2.2 If A is an nxn row allowable matriz and y a positive eigen-
vector for A, then for any positive vector z, p (A*z,y) <7p (A)*p(z,v).

Proof. Note that
p (AFz,y) = p (AFz, Ary)
<78(4)*p(z,)

for all positive integers k. ®

This corollary assures that for a positive matrix A,
Jim p(4*z,y) =0,

so ray (A*z) gets closer to ray (y) as k increases.

We will conclude this section by extending our work to compact subsets.
To do this, recall that (S*,p) is a complete metric space. Define the
Hausdorff metric on the compact subsets (closed subsets in the 1-norm) of
S by using the metric p. That is,

6(U,V) = max (minp (u, v))

ueU \veV

and
h(U,V) =max{6(U,V),6(V,U)}

where U and V are any two compact subsets of ST.
Let ¥ be any compact subset of n x n row allowable matrices. For each
A€ X, define the projective map

wa: 8t -8t

by wa (z) = u—,ﬁﬁﬂ’ as shown in Figure 2.11. Define the projective set for
¥ by

EPZ{’LUA: AGE}.
Then for any compact subset of U of S¥,

2 U ={wa(r): wg€XypandzeU}.
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wy(x)

FIGURE 2.11. A view of wa.

Thus, $,U is the projection of LU onto S*. Since X and U are compact,
so is XU. And thus, £,U is compact.
Now using the metric p on S*, define

h(Z,U,5,V)
E — pY sy ~p
7(Z) vy h(T,V)
_ o hEUEY)
B AI0AD

where the sup is over all compact subsets U and V of S+.
Using the notation described above, we have the following.

. < .
Theorem 2.9 7(%) < Wax 75 (A)
Proof. Let U and V be compact subsets of ST. Then
6(Z,U,5,V) = Jmax p (Au,XV)
—p (Aﬁ, z:v)
for some Adie SU. So

6 (S0, 5,V) < p (A, 49)
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where © satisfies p (4,9) = p (@, V). Thus,
5(5U, V) < 75 (4) p(3,)
=TgB (A) p(@, V)
<rs(4)6(,v).
Similarly,
§(5,V,5,U) < 78 (A) §(V,U)

for some A€ ¥. Thus,
<
h(Z,U,5,V) < Wax 75 (A) (U, V)
and so
<
7 (%) s max7p(4),
which is what we need to show. m

Equality, in the theorem, need not hold. To see this, let
Y= {A:Ais a column stochastic 2 x 2

matrix with % <ay < %
for all ¢,5}.

Ifr € Stand A€ T, then § < (Az), < Zforalli, and so A = [Az Az] € 5.
Thus, for y € §1, Az = fly, which can be used to show 7(X) = 0. Yet

_ 1 2 _
A= [2 3 }eEand'rB(A)>O.
Wed%ﬁng
75 (X) =WaxX Tp (A).

And, we have a corollary parallel to Corollary 2.2.

Corollary 2.3 If V is a compact subset of ST, where £,V =V, then for
any compact subset U of ST,

h(ZEU, V) < T (D) R (U, V).
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This corollary shows that if we project the sequence
LU, £%U, 29, ..
into S* to obtain
%U, 22U, 53U, ...

then if 75 (X) < 1, this sequence converges to V' in the Hausdorff metric.

2.2.2 Subspace Contraction Coefficient

We now develop a contraction coefficient for a subspace of F*. When this
setting arises in applications, row vectors rather than column vectors are
usually used. Thus, in this subsection F™ will denote row vectors.

To develop this contraction coeflicient, we let A be an n x n matrix and
E an n x k full column rank matrix. Further, we suppose that there is a
k x k matrix M such that

AE=FEM.

Now extend the columns of E to a basis and use this basis to form

P=[EG].
Partition
1| H
=[]
where H is k X n. Then we have
AP =A[E G|
M C
=[EG][O N] (2.5)
where
C1_ p
[ N ] =P AG.
Now set

W={zeF":2E=0}.
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Then W is a subspace and if z € W, zA € W as well. Thus, for any vector
norm |-, we can define

rw(4) = max o]
ll=||=1

fl=Af

zew |lz))

Notice that from the definition,
lzAll < 7w (4) |||
for all z& W. Thus, if 7w (4) = %, then A contracts the subspace W by

at least % So, a circle of radius r ends up in a circle of radius %r, or less,
as shown in Figure 2.12.

FIGURE 2.12. A view of Tw (A) = 3.

If B is an n X n matrix such that BE = EM for some k x k matrix M,
then for any z € W,

lzAB|| < Tw (B) |zA| < Tw (A) 7w (B) ||z -
Thus,
Tw (AB) < tw (4) Tw (B) .
We now link 7y (A) to N given in (2.5). To do this, define on F»—*
lzll, = lzJ1.

It is easily seen that |-||, is a norm.
We now show that 7y (4) is actually | N|,.

Theorem 2.10 Using the partition in (2.5), Tw (A) = ||N||,.
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Proof. We first show that 7w (A) < ||[N]|;. For this, let = be a vector
such that zE = 0. Then

lzAl| = [EG’l[ H ]H
- o=cr [§ S]] 5]

[pon 2]
= =G|
= ||lzGN||,;
< Gl V1) 2.6
Now
lecl, = e = [0a61 | 4 ||

H
J
= [l -
Thus, plugging into (2.6) yields
leAll < 1NVl el -
And, since this holds for all z€ W,
Tw (4) <IN, -

We now show that ||N||; < 7w (A4). To do this, let z€ F"* be such
that [l2], = 1 and |V, = [20V] .
Now,
NIy = 12N,
— loN ]

“lool ¥ ][5 ]]

= [l2JA|l

< l2dlirw (4)
< llly Tw (4)
=Tw (4),
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which gives the theorem. m

A converse of this theorem follows.

Theorem 2.11 Let A be an n X n matriz and P an n X n matriz such that

M C

—1 _

PmAP= [ 0 N ] :

where M is k x k. Let ||-|| be any norm on F™"~*. Then there is a norm

Il on F™ and thus on W, such that Tw (A) = ||N|.

Proof. We assume P and P~! are partitioned as in (2.5) and use the
notation given there. We first find a norm on

W ={z:2E =0}.
For this, if z € W, define
lzlle = ll=G]|.

To see that ||-||; is a norm, let ||z||; = 0. Then [|«G|| =0, so zG = 0.
Since x € W, P = 0 and so z = 0. The remaining properties assuring
that ||-||; is a norm are easily established.

Now, extend ||-||; to a norm, say ||-||;, on F™. We show the contraction
coefficient 7w, determined from this norm, is such that Tw (4) = ||NV|.
Using the norm and part of the proof of the previous theorem, recall that
if z€ Fn—k,

lzll; = l2Jllg = l2JGIl = ll=I]| = |||} -
Thus, || N||; = ||N|| and hence
Tw (4) = ||V,

as required. m

Formulas for computing T (A) depend on the vector norm used as well
as on E. We restrict our work now to R™ so that we can use convex
polytopes. If the vector norm, say |||, has a unit ball which is a convex
polytope, that is

K={z€eR':zE=0and |z| <1}

is a convex polytope, then a formula, in terms of the vertices of this convex
polytope, can be found. Using this notation, we have the following.
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Theorem 2.12 Let A be an n X n matriz and ||-|| a vector norm on R™

that produces a unit ball which is a convez polytope K in W. If{v1,...,vs}
are the vertices of K, then

rw (4) = max oz All}
Proof. Let z € K where |jz|| = 1. Write

T=a1v1 + -+ Qs

a convex combination of vy,... ,vs;. Then it follows that

Zaw,
<3 i
=1

< masx {JuiAll}

Al =

Thus,
rw (4) < max (A}

That equality holds can be seen by noting that no vertex can be interior

to the unit ball. Thus, ||v;]| = 1 for all £, so max |zA] is achieved at a
Nali=1
vertex. W

We will give several examples of computing Tw (A), for various W, in
Chapter 11. For now, we look at a classical result.

An n X n nonnegative matrix A is stochastic if each of its rows is stochas-
tic. Note that in this case

Ae =e,
where e = (1,1,...,1)*, so we can set E = e. Then using the 1-norm,
K={xeR":xe=0and ||z|; <1}.

The vertices of this set are those vectors having precisely two nonzero
entries, namely % and —%. Thus,

1 1
ax||-a; aj

TW(A)= 21_§J

1



32 2. Functionals

where a; denotes the k-th row of A. Written in the classical way,
T1(4) =3 mix llai - ajll; »

is called the coefficient of ergodicity for stochastic matrices.

To conclude this subsection, we show how to describe subspace coeffi-
cients on the compact subsets. To do this we suppose that X is a compact
matrix set and that if A € X, then A has partitioned form as given in (2.5).
Let § C F™ such that if z,y € S, then x — y € W (a subset of a translate
of W). We define

o P(RE,TE)

() = RIS T h (R,T)

where the maximum is over all compact subsets R and T in S.
A bound on 7 (%) follows.

. < .

Theorem 2.13 7(X) < Wax Ty (4)

Proof. The proof is as in Theorem 2.9. =
We now define

Tw () = ma.x Tw (4).

2.2.8 Blocking

In applications of products of matrices, we need the required contraction
coefficient to be less than 1. However, we often find a larger coefficient.
How this is usually resolved is to use products of matrices of a specified
length, called blocks. For any matrix set X, an r-block is defined as any
product 7 in X7.

We now prove a rather general, and useful, theorem.

Theorem 2.14 Let T be a contraction coefficient (either g or T ) for a
matriz set 3. Suppose T (1) < Ty for some constant T, < 1 and all r-blocks
7 of &, and that 7 (X) < 8 for some constant 3.

When all products are taken from X, we have the following. If T = 1p,
then 7(A1),7 (A241),7(A3A241),... converges to 0. If T =Ty, then
7 (A1), T(AlAlz),T(AlAzAg) ,... converges to 0. And, both have rate of

convergence T .
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Proof. We prove the result for 5. Let A;, AsA;, A3zAgA,... be a
sequence of products taken from ¥. Partition, as possible, each product
Ak ... Ay in the sequence into r-blocks,

Tg---mAe- - AL
where k= sr +t,t <r,and 7,... ,m, are r-blocks. Then
7'(773"'71'1At"'A1)
S7(me) -7 (m) 7 (Ar)- -7 (A1)
< Tif.
Thus 7 (Ag--+A;) = 0 as k — oo.
Concerning the geometric rate, note that for 7, > 0,

|
e

ﬂ
N ®
i
s‘

e

IA
3
S I VN
-
[
-

-3
-

IA
..‘

it
-
3
-
~
3
[
S’
a

Thus,

T(Alc"'Al) ST:l (Tf)k,

which shows that the rate is geometric. m

2.3 Measures of Irreducibility and Full
Indecomposability

Measures give an indication of how the nonzero entries in a matrix are dis-
tributed within that matrix. In this section, we look at two such measures.
For the first measure, let A be an n X n nonnegative matrix. We say that

A is reducible if there is a O-submatrix, say in rows numbered r1, ... ,r, and
columns numbered ¢y, ... ,¢,—s, where r1,... ,75,¢1,... ,Cn_s are distinct.
(Thus, a 1 x 1 matrix A is reducible iff a;; =0.) For example

1

21
A= 4 0
0 2
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FIGURE 2.13. The graph of A.

is reducible since in row 2 and columns 1 and 3, there is a O-submatrix.
If P is a permutation matrix that movesrows rq,... ,rs intorows1,...,s,
then

A 0
¢t _ | A
PAP = [ Aa1 A }

where Aj; is s X s. In the example above,

010
P=]1 00
0 01

An n x n nonnegative matrix A is irreducible, if it is not reducible.

As shown in Varga (1962), a directed graph can be associated with A by
using vertices vy, ... , v, and defining an arc from v; to v; if a;; > 0. Thus
for our example, we have Figure 2.13. And, A is irreducible if and only if
there is a path (directed), of positive length, from any v; to any v;. Note
that in our example, there is no path from vy to v3, so A is reducible.

A measure, called a measure of irreducibility, is defined on an n x n
nonnegative matrix A, n > 1, as

u(d4) = m}%n (rfle&}t;caij>

JER!

where R is a nonempty proper subset of {1,... ,n} and R’ its compliment.
This measure tells how far A is from being reducible.

For the second measure, we say that an n x n nonnegative matrix A
is partly decomposable if there is a O-submatrix, say in rows numbered
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r1,...,7s and columns numbered cy,... ,¢p—s. (Thus a1l x 1 matrix A is
partly decomposable iff a;; =0.) For example,

1
A=14
2

(e il )
- O

is partly decomposable since there is a 0-submatrix in rows 2 and 3, and
column 2.
If we let P and @) be n X n permutation matrices such that P permutes

TOWS 71,...,Ts into rows 1,...,s and Q permutes columns ¢j,... ,Cn_s
into columns s + 1,... ,n, then
A11 0
PAQ =
© [ A A ]

where Aj; is s X s.

An n X n nonnegative matrix A is fully indecomposable if it is not partly
decomposable. Thus, A is fully indecomposable iff whenever A contains a
p X g O-submatrix, then p+ g <n-—1.

There is a link between irreducible matrices and fully indecomposable
matrices. As shown in Brualdi and Ryser (1991), A is irreducible iff A+ I
is fully indecomposable.

A measure of full indecomposability can be defined as

U (A) = min ( max aij>
S, T S,T
i€S5,jET

where S = {r,...,rs} and T = {cy,... ,Cn—s} are nonempty proper sub-
sets of {1,...,n}.
We now show a few basic results about fully indecomposable matrices.

Theorem 2.15 Let A and B be n x n nonnegative fully indecomposable

matrices. Suppose that the largest 0-submatrices in A and B are sp X ta
and sp X tg, respectively. If

sat+ta=n—ku
sp+tg=n-—kp,

then the largest 0-submatriz, say a p X q submatriz, in AB satisfies

pt+qg<n—ks—kp.
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Proof. Suppose P and ) are n X n permutations such that

Cu Cho ]

P(AB)Q = [ Car Cx

where Co is p X g and the largest 0-submatrix in AB.
Let R be an n x n permutation matrix such that

A11 0 ]

PAR= [ Asi Ax

where A;; is p X s and has no 0 columns.
Partition

By B
tB — 11 12
RBQ [ Bi2 By

where Bj; is s X (n — ¢). Thus, we have
[Au 0 ][Bn Bl‘Z:l:l:Cll 0 ]
Agr Az Bs1 Bz Cn Cx
Now,
A Bz =0

and since Aj;; has no 0 columns

B2 =0.
Thus, s+ g <n—kpg. And, using 4, p+ (n —s) <n — kg4, so

p+qg<(s—ka)+(n—kp—s)
Sn_kA-kBy

the desired result. m

Several corollaries are immediate.

Corollary 2.4 Let A and B be n xn fully indecomposable matrices. Then
AB is fully indecomposable.

Proof. If AB contains a p x ¢ O-submatrix, then by the theorem, p + ¢ <
n—1—~1=mn-2. Thus, AB is fully indecomposable, as was to be shown. &
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Corollary 2.5 Let Aq,...,A,—1 be n X n fully indecomposable matrices.
Then Ay --- Ap_1 is positive.

Proof. Note that k4, 4, > ka, +ka,. And
kAl"'An—l > kAl + -+ kAn.—l

>1+-+1
=n-1

Thus, if 4y --- Ap—1 has a p x ¢ 0-submatrix, then

Ptq<n—ka 4.,

<n-—{(n-1)
=1.

This inequality cannot hold, hence A; - - - A,,_1 can contain no 0-submatrix.
The result follows. m

The measure of full indecomposability can also be seen as giving some
information about the distribution of the sizes of the entries in a product
of matrices.

Theorem 2.16 Let A and B be nxn fully indecomposable matrices. Then
U(AB)>U(A)U(B).
Proof. Construct A = [a;;] where
Gis = Oifa¢j<U(A)
“ 71 aij otherwise.
Construct B in the same way. Then both A and B are fully indecompos-
able. Thus AB is fully indecomposable, and so we have that U (AB) > 0.

If (AB)” > 0, then (AB)ij > U (A)U (B). Hence,

ij
U(AB)>2U(A)U(B),
the indicated result. m

An immediate corollary follows.

Corollary 2.6 If A1,...,Ap_1 are n X n fully indecomposable matrices,
then

(A1 An-1)y; 2 U (A1) U (An-1)
for alli and j.
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2.4 Spectral Radius

Recall that for an n x n matrix A, the spectral radius p(A) of A is

p(A)= rn):\ax{|)\| : A is an eigenvalue of A} .

It is easily seen that

1
p(A) = (p(4%))* 2.7)
and that for any matrix norm |||
1
p(4)= lim 1A ||* . (2.8)

In this section, we use both (2.7) and (2.8) to generalize the notion of
spectral radius to a bounded matrix set 3.
To generalize (2.7), let

k
pr (X) = sup {p (HA’) :A; € X for all z}
i=1

The generalized spectral radius of X is

1
k

p (%) = lim sup (p; (X))* .

To generalize (2.8), let ||| a matrix norm and define

k

g

=1

Pre (5 1I+11) =Sup{

:AieEforalli}.

The joint spectral radius is
. . R 1
P, IHI) = Jim sup {, (5,11}

Note that if ||-||, is another matrix norm, then since norms are equivalent,
there are positive constants « and 8 such that

allAll, < 1Al < B1lAll,

for all n x n matrices A. Thus,

k
<

a

1
13

k

14

=1

k

[T4

i=1

-

1
Qak

<p
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and so

P Ha) =2 D -

Hence, the value p (%, ||||) does not depend on the matrix norm used, and
we can write p(X) for p(Z, ||-||)- In addition, if the set 3 used in p(X) is
clear from context, we simply write p for p (X).

We can also show that if P is an n x n nonsingular matrix and we define

PLP™' = {PAP': Acx}
then
p(PTP™1) =p(T).
Further, for any matrix norm ||-||, ||Allp = ||[PAP7!|| is a matrix norm.
Thus p (PEP~!) = p(Z). So both p and p are invariant under similarity
transformations.

Our first result links the generalized spectral radius and the joint spectral
radius.

Lemma 2.3 For any matriz norm, on a bounded matriz set &,
1 . R 1
P (B)* <p(B) < p(Z) < pp(D)F.
Proof. To prove the first inequality, note that for any positive integer m,
P (B)™ < Py ().
Thus, taking the mk-th roots,
1 1
Pk (B)* < g (B)™F
Now computing lim sup, as m — oo, of the right side, we have the first
inequality.
The second inequality follows by observing that
p(A’ik e 'Ai1) < ”Aik e ‘Ai1||

for any matrices 4;,,... ,A;,.
For the third inequality, let ! be a positive integer and write

l=Fkq+r
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where 0 < r < k. Note that for any product of ! matrices from X,

IAr- - Ay|| < || Akgir - - Abgr1Arg - Au|
SﬂT”Akq"'A(k—l)q+1"'Aq"'AIH
B b (29)
where £ is a bound on the matrices in X. Thus,

o 1 LN g

pr(Z) < BTp (B)
=Bt pe (D) iy
= (2. (7F)

Now, computing lim sup as | — co, we have

(D) < b (D)

==

)

&
$ . 1
P (Z)* .

as required. =

Using this lemma, we have simpler expressions for p (X) and 5 (%).

Theorem 2.17 If ¥ is a bounded matriz set, then we have that p(X) =

lim py (2)* and p(Z) = lim py, (5)*.
k—oo k—o0
Proof. We prove the second inequality. By the lemma, we have

. . 1
p(Z) < pp (B)*
for all k. Thus, for any &,
1 1
¥, < 1 D Kl D. 7
p(%) < inf p; (®)7 < Sup p; ()
from which it follows that
p(Z) < lim inf p, (£)* < lim supp, (%)% = ().
So,
Jlim p (2)F =p (D),

the desired result. m
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Berger and Wang (1995), in a rather long argument, showed that for
bounded sets &, p (X) = p(X). However, we will not develop this relation-
ship since we use the traditional p, over p, in our work.

We now give a few results on the size of p. A rather obvious such bound
follows.

Theorem 2.18 If & is a bounded set of n X n matrices, then p(X) <

sup [|A].
A€z

For the remaining result, we observe that if ¥ is a product bounded
matrix set, then a vector norm ||-||, can be defined from any vector norm

II-ll by
“‘T“v = sup {HA.” e A,IIIJ” : Ai, . Ail € E}
120
(when I = 0, |4y, ... As z|]| = ||z|}). Using this vector norm, we can see
that if A€ X, then
Azl < i,
for all z. Thus we have the following.

Lemma 2.4 If 3 is a product bounded matrix set, then there is a vector
norm ||-||, such that for the induced matriz norm,

lAll, <1.
This lemma provides a last result involving an expression for p (X).

Theorem 2.19 If ¥ is a bounded matriz set,

p(S) = inf sup [|A]|.
Il aes

Proof. Let € > 0 and define

2={A1 A:AGE}‘
pte

Then ¥ is product bounded since, if B € f)k,

Bl < P
1Bl < T

Note that (;z+—1e)k"bk — 0as k — oo.
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Thus, by Lemma 2.4, there is a norm ||-||, such that

ICl, <1
for all C € 5.
Now,if A€ X, -1-A €3, s0
Pre
lAll, <p+e.
Thus,

inf sup [|[A]| < p+ €,
I Aex

and since € was arbitrary,

1”11f sup |l Af < p.

Finally by Theorem 2.18,

1||n|f sup 1Al = 2.

The result follows from the last two inequalities. ®

2.5 Research Notes

Some material on the projective metric can be found in Bushell (1973), Gol-
ubinsky, Keller and Rothchild (1975) and in the book by Seneta (1981). Ge-
ometric discussions can be found in Bushell (1973) and Golubinsky, Keller
and Rothchild. Artzrouni (1996) gave the inequalities that appeared in
Theorem 2.2.

A source for basic work on the Hausdorff metric is a book by Eggleston
(1969).

Birkhoff (1967) developed the expression for 75. A proof can also be
found in Seneta (1981). Arzrouni and Li (1995) provided a ‘simple’ proof

for this result. Bushell (1973) showed that ((R")+ nU, p), where U is
the unit sphere, was a complete metric space. Altham (1970) discussed
measurements in general.

Much of the work on 7w in subsection 2 is based on Hartfiel and Roth-
blum (1998). However, special such topics have been studied by numerous
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authors. Seneta (1981) as well as Rothblum and Tan (1985) showed that
for a positive stochastic matrix A, 75 (A4) > 71 (A4) where 71 (A4) is the
subspace contractive coefficient with £ = (1,1,... ,l)t. More recently,
Rhodius (2000) considered contraction coefficients for infinite stochastic
matrices. It should be noted that these authors call contraction coeffi-
cients, coefficients of ergodicity.

General work on measures for irreducibility and full indecomposability
were given by Hartfiel (1975). Christian (1979) also contributed to that
area. Hartfiel (1973) used measures to compute bounds on eigenvalues and
eigenvectors.

Rota and Strang (1960) introduced the joint spectral radius p, while
Daubechies and Lagaries (1992) gave the generalized spectral radius p.
Lemma 2.3 was also done by those authors. Berger and Wang (1992)
proved that p(X) = p(X), as long as ¥ is bounded. This theorem was also
proved by Elsner (1995) by different techniques. Beyn and Elsner (1997)
proved Lemma 2.4 and Theorem 2.19. Some of this work is implicit in the
paper by Rota and Strang.
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3

Semigroups of Matrices

Let ¥ be a product bounded matrix set. A matriz sequence of the se-

quence (X*) is a sequence my,7z,... of products taken from £,¥?,...,

respectively. A matriz subsequence is a subsequence of a matriz sequence.
The limiting set, 3°°, of the sequence (E’“) is defined as

¥ = {A: A is the limit of a matrix subsequence of (X¥)}.
Two examples may help with understanding these notions.

0
1

o 10
However, ¥ —{[0 1 ,[

Example 3.2 Let ¥ = {

= ([ {10 ]}

As we will see in Chapter 11, limiting sets can be much more complicated.

Example 3.1 LetX =

—= 0 O

0 11°
]} Then lim [1 Oj| does not exist.
1
0

1.

—
[ ST
[ S T

] } Then we can show that

e
| e |
N ot
= O

D=0 =
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3.1 Limiting Sets

This section describes various properties of limiting sets.

3.1.1 Algebraic Properties

Some algebraic properties of a limiting set £°° are given below.
Theorem 3.1 If ¥ is product bounded, then ¥°° is a compact semigroup.

Proof. To show that X is a semigroup, let A, B € £°°. Then there are
matrix subsequences of (X*), say

Ty s Migyeen
Tjys 7l'j2 yooe
that converge to A and B, respectively. The sequence
Wilfrjl,ﬂizfrjz, e

is a matrix subsequence of (£¥) which converges to AB. Thus, AB € £°°
and since A and B were arbitrary, ¥*° is a semigroup.

The proof that 3°° is topologically closed is a standard proof, and since
¥, is product bounded, ¥ is bounded. Thus, $*° is a compact set. ®

A product result about £°° follows.
Theorem 3.2 If ¥ is product bounded, then L°X° = 3°°,

Proof. Since X is a semigroup, £°°X*° C X*°. To show equality holds,
let A € X*° and 7y, 7e,... a matrix subsequence of <Ek) that converges to
A. If wy has I, factors, k > 1, factor

T = BkC’k

where By, contains the first [l /2] factors of 7 and Cy, the remaining factors.

Since ¥ is product bounded, the sequence Bj, Ba,... has a conver-
gent matrix subsequence B;,, B;,,... which converges to, say, B. Since
Ci,, Ciy, . .. is bounded, it has a convergent subsequence, say, C;,,Cj,, . ..
which converges to, say, C. Thus 7j,,7j,,... converges to BC. Since B
and C are in £*° and A = BC, it follows that £®° C T>®°X®, and so
3OV =3, n

Actually, multiplying £°° by X doesn’t change that set.
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Theorem 3.3 If X is product bounded and compact, it follows that Z3° =
Yo = POy,

Proof. We only show that £°° C ¥¥°. To do this, let B € £°*°. Since
B € ¥°°, there is a matrix subsequence 7;,,m;,,... that converges to B.
Factor, for k > 1,

i = Ay Ciy
where A;,, Aiy,... arein X. Now, since ¥ is compact, this sequence has a
subsequence, say

Ajyy Ajay e
which converges to, say, A. And, likewise Cj,,C},,... has a subsequence,
say

Ckz) Ck37 e

which converges to, say, C. Thus Ag,Ch,, AgysCks, ... converges to AC.
Noting that A € ¥, C € X* and that

AC = B,

we have that °° C XX and the result follows. =

When ¥ = {A}, multiplying ¥°° by any matrix in $*° doesn’t change
that set.

Theorem 3.4 If & = {A} is product bounded, then for any B € £*°,
BY® =3 =¥*B,

Proof. We prove that BX*® = ¥*°.
Since ¥ is a semigroup, BX*® C ¥°°. Thus, we need only show that
equality holds. For this, let C € £*°. Then we have by Theorem 3.3

Akzoo = 3
for all k. Thus, there is a sequence Cy,Cs,..., in X°° such that
AFCr=C

for all k.
Now suppose the sequence

k1 gk
At AR
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converges to B. Since X* is bounded, there is a subsequence of C, ,Cy,, .- .,
say

le, Cj27 “e
that converges to, say, C. Thus
BC=cC.
And, as a consequence 3°° C BY*°. m

Using this theorem, we can show that, for ¥ = {A}, £ is actually a
group.

Theorem 3.5 If & = {A} and ¥ is product bounded, then £*° is a com-
mutative group.

Proof. We know that X is a semigroup. Thus, we need only prove the
additional properties that show 2:*° is a commutative group.

To show that ¥°° is commutative, let B and C be in X°°. Suppose the
sequence

i Ad
AR A,

A A2
converge to B and C, respectively. Then
BC = lim A% lim A%+

k—o00 k—oo

= lim A%tix
k—o0

= lim A% lim A%
k-—o00 k—oo

= CB.

Thus, £°° is commutative.
To show ¥°° has an identity, let B € ¥*°. Then by using Theorem 3.4,

we have that

CB=B

for some C' in ¥°. We show that C is the identity in $°°.
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For this, let D € ¥°°. Then by using Theorem 3.4, we can write

D=BT
for some T € £°°. Now
CD=CBT
=BT
=D.

And, by commutivity, DC = D. Thus, C is the identity in X°°.
For inverses, let H € ¥°°. Then, by Theorem 3.4, there is a E € ¥,
such that

HE =C,

so E=H"1,
The parts above show that ¥ is a group. m

3.1.2 Convergence Properties

In this subsection, we lock at the convergence properties of
22

where ¥ is a product bounded matrix set. Recall that in this case, by
Theorem 3.1, X*° is a compact set.
Concerning the long run behavior of products, we have the following.

Theorem 3.6 Suppose X is product bounded and € > 0. Then, there is a
constant N such that if k > N and 7y € &, then

d(7rk,2°°) < €.

Proof. The proof is by contradiction. Thus, suppose for some € > 0, there
is a matrix subsequence from the sequence (£¥), no term of which is in
3% 4+ €. Since X is product bounded, these products have a subsequence
that converges to, say, A, A € ¥®°. This implies that d(4,X®°) > ¢, a
contradiction. m

Note that this theorem provides the following corollary.
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Corollary 3.1 Using the hypothesis of the theorem, for some constant N,
SO Y™ e
for all k >N.

In the next result we show that if the sequence (X¥) converges in the
Hausdorff sense, then it converges to 3.

Theorem 3.7 Let ¥ be a product bounded compact set. IfS: is a compact
subset of M,, and h (Ek, i) — 0, then 33 = £°.

Proof. By the previous corollary, we can see that 3 C ¥,
Now, suppose )y # 3°; then there is an A € X°° such that A ¢ ¥. Thus,

d (A, f)) =€,

where € is a positive constant.
Let 7k, , T, ... be a matrix subsequence of (%*) that converges to A.
Then there is a positive constant N such that for i > N,

- €
d (m,z) >z
Thus,
ki ¢ €
§ (2 ,2) >3
for all i > N. This contradicts that A (Z"*,f}) — 0 as i — oo. Thus
D=3 =

In many applications of products of matrices, the matrices are actually
multiplied by subsets of F”. Thus, if

W C F™,
we have the sequence
W, SW,2%W,... .

In this sequence, we use the words vector sequence, vector subsequence,
and limiting set W, with the obvious meanings.
A way to calculate W, in terms of X, follows.
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Theorem 3.8 If X is a product bounded set and W a compact set, then
Weo = Z°W.

Proof. Let wyg € W,. Then wyq is the limit of a vector subsequence, say,
T1wy, MWy, ... of (E¥W). Since W is compact and ¥ product bounded,

we can find a subsequence m;, w;, , T, w;,,... of our sequence such that
w;, , Wiy, . . . converges to, say, w and m;, , Ts,,... converges to, say, m € .
Thus

wp = TW

and we can conclude that W, C X°°W.

Now let mowg € ¥°W, where wg € W and wy € £¥°°. Then there is a
matrix subsequence 7;,,T;,,... that converges to mp. And we have that
T4, Wo, TizWo, ... 18 & vector subsequence of (S*W), which converges to
mowp. Thus, mowg € W, and s0 Z°W C W, m

Theorem 3.9 If ¥ is a product bounded compact set, W a compact set,
and h (¥, £%°) — 0 as k — oo, then h (Z*W, W) — 0 as k — oo.

Proof. By Theorem 3.8, we have that W, = ¥X°°W, and so we will show
that h (E’“VV, E°°W) — 0 as k — oo.

Since W is compact, it is bounded by, say, 3. We now show that, for all
k,

h (ZFW,=°W) < Bh (SF,£°°) (3.1)

from which the theorem follows.
To do this, let mrwg € X*W where wg € W and 7 € BF. Let 7 € £
be such that d (mg, ) < b (ZF,5°). Then

d (mrwo, Two) < Bd (Tk, )
< Bh (zF,£%).
And since mwg was arbitrary,
§ (ZFW, W) < Bh (ZF,£%°).
Similarly,
§ (W, Z*W) < Bh (EF, £%)
from which (3.1) follows. =

A result, which occurs in applications rather often, follows.
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Corollary 3.2 Suppose ¥ is a product bounded compact set and W a com-
pact set. If SW C W, then h (E*W,Wo) — 0 as k — 0.

Proof. It is clear that TF W C SFW, so Weo € W for all k. Thus, we
need only show that if ¢ > 0, there is a constant N such that for all k > NV

SRW C Weo + €.
This follows as in the proof of Theorem 3.6. =
We conclude this subsection by showing a few results for the case when
3. is finite.
If ¥ = {A1,...,Am} is product bounded and W compact, then since
TE® = 3,
Woo = EWeo = AiWoo U - U AL W

For m = 3, this is somewhat depicted in Figure 3.1. Thus, although each A;

FIGURE 3.1. A view of TW.

may contract W, into W, the union of those contractions reconstructs
Woo-
When ¥ = {A}, we can give something of an e-view of how A*W tends
to Woo. We need a lemma.
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Lemma 3.1 Suppose { A} is product bounded and W a compact set. Given
an € > 0 and any B € ¥, there is a constant N such that

d (ANw, Bw) <e
fordlweW.

The theorem follows.

Theorem 3.10 Using the hypothesis of the lemma, suppose that L (z) =
Az is nonezpansive. Given € > 0 and B € X*°, there is a constant N such
that for k > 1,

h (ANTEW, AFBW) < e.
Proof. By the lemma, there is a constant N such that
d (AN w, Bw) <€
for all w € W. Since L is nonexpansive,
d (AN+kw, A"’B'w) <€
for all w € W and k£ > 1. From this inequality, the theorem follows. m

Since £°W = Wy, BW C Wg,. Thus this theorem says that AN+
stays within € of A*BW C W, for all k.

We now show that on W, L(z) = Az is an isometry, so there can be
no more collapsing of W,.

Theorem 3.11 Let 3 = { A} be product bounded and W a compact set. If
L(z) = Az is nonexpansive, then L (x) = Az is an isometry on W.

Proof. We first give a preliminary resuit. For it, recall that W, = Z°W
and that ©°° is a group. Let B € £* and A%, A%, ... a matrix subse-
quence of (*) that converges to B.

Let Z,5 € £°W. Then, since L (z) = Az is nonexpansive, we have

0 < d(A*z, A*f) — d (AA* T, AA™Y)
< d(A%z, A%g) — d (A%+z, Ahy).

Taking the limit at k£ — oo, we get

0 < d(Bz, By) — d(ABZ, ABj) =0
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or
d(Bz, Bj) = d (ABz, ABj) . (3.2)

Now let 2,9 € Weo. Since Woo =Z°W =XCLOW =XW,, = = B1Z
and y = Baj where Z,7 € W and By, By € £*°. Using (3.2), and that
3% is a group,

d(z,y) = d(B1Z, B2Y)
= d (B:1z, B1By ' Ba¥)
= d (AB:1Z, AB; (B 'Baj))
= d(Az, Ay),

the desired result. m

3.2 Bounded Semigroups

In this section, we give a few results about product bounded matrix sets
3.

Theorem 3.12 Let ¥ be product bounded matriz set. Then there is a
norm, say ||-||, such that ||Al] <1 for all A€ X.

Proof. Let A =X UX2?U---. Define a vector norm on F" by
lz|| = sup {|{z|ly, |7z, : 7 € A}.
Thenif A€ X,
e = sup{l| Azl , | Ac]l, : 7 € A},
and since A, mA € A,

< sup{llly, lrzll, : m € A}

= |||
Since this inequality holds for all x,
14l <1,

which is what we need. m

A special such result follows.
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Theorem 3.13 Suppose that ¥ is a bounded matriz set. Suppose further
that each matriz M € 3 has partition form

A B]_2 313 v Blk
0 Ci B -+ B
M=)10 0 Cy --- Bsg
0 O 0 .-+ Cg

where all matrices on the block main diagonal are square. If there are
vector norms |||l lIlc, -+ » Ill,, such that

[Alle <1 and |G|, e <1
for all M € 3, there is a vector norm ||-|| such that |M|| <1 for all M € .

Proof. We prove the result for k = 1. For this, we drop subscripts, using

M= [ A B . The general proof then follows by induction.

0 C

x1

For all x € F™, partition z = compatible with M. Now, for any

constant K > 0, we can define a vector norm ||-{| by
lzll = llz1lla + K |2l -
Then we have, for any M € %,

|Mz|| = ||Az1 + Bas|l, + K [|Cz2l|,
< [[Az1]lg + || Bzzll, + K [|C2|.
< llzallg + 1Bl Hlz2ll, + K ([C22l,

where

|| Bz2ll,

z27#0 ”$2”c .
Thus,

10421] < llal, + (1B + K [CI) ool
B
=l + (L 1) & feal.

Since ¥ is bounded, {| B}, over all choices of M, is bounded by, say, 3. So
we can choose K such that

-Iﬂ?+a<1.
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Then,

Mz < llell, + K flz2ll,

= |||l
This shows that | M|| < 1, and since M was arbitrary
M|l <1

foralMeX. =

In the same way we can prove the following.

Corollary 3.3 If ||A||, < 1 is changed to ||A|, < «, then for any §,
a < 6 <1, there is a norm ||-|| such that || M|| < § for all M € X.

Our last result shows that convergence and product bounded are con-
nected. To do this, we need the Uniform Boundedness Lemma.

Lemma 3.2 Suppose X is a subspace of F™ and
sup ||rz|| < o0

where the sup is over all ™ in A = ZUX2U--- and the inequality holds for
any x € X, where ||z|| =1. Then X is product bounded on X.

Proof. We prove the result for the 2-norm. We let {z,...,z,} be an
orthonormal basis for X. Then, if z € X and ||z||, =1,

=0Ty + -+ 0T,

where | |® + - + |a, P = 1.
Now let 3 be such that

sup [z, < 8
fori=1,...,rand all 7 € A. It follows that if 7 € A and ||z||, = 1, then

Irzlly < laa| flrzally + - - + lar| |lrze
< ng.

Thus, since  was arbitrary ||7|| < nf. Since 7 was arbitrary, ¥ is product
bounded. m
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Theorem 3.14 If all infinite products from a matriz set ¥ converge, then
Y is product bounded.

Proof. Suppose all infinite products from ¥ converge. Further let A =
L UX?2U--- and define

X ={z € F": Az is bounded} .

Then X is a subspace and 7 : X — X for all 7 € A. By the Uniform
Boundedness Lemma, there is a constant 8 such that

Imsl _ g oo
zeX ”(L‘“
for all m € A.

If X = F"™, then ¥ is product bounded. Thus, we suppose X # F™. We
now show that given an = ¢ X and ¢ > 1, there are matrices A;,... ,Ay € T
such that

|Ak - - A1zl > ¢ (3.3)
and
Ak o Alx ¢ X.
Since x ¢ X, there are matrices Ay, ..., Ax € X, such that
|l Ag - - - Arz|| > max (1, B{|Z[}) . (34)

If Agp---Ajz ¢ X, we are through. Otherwise, there is a t, ¢ < k, such
that A;--- Ajx ¢ X, while Airg (A --- Ajz) € X. Thus, we have

Az - - Aty2 (Apyr - Arz)|| < Bl At - - Asz|
< BIZI A --- Arz|].

Thus, by (3.4),
Cc S ”At te Al.’L‘“

which gives (3.3).
Now, applying result (3.3), suppose ¢ X. Then there are w1, 72,... in
A such that
|miz|| > 1 and myz ¢ X
|momiz|| > 2 and momiz ¢ X
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Thus,
T=...T... M

is not convergent. This contradicts the hypothesis, and so it follows that
X = F™. And, T is product bounded. m

Putting Theorem 3.12 and Theorem 3.14 together, we obtain the follow-
ing norm-convergence result.

Corollary 3.4 If oll infinite products from a matriz set 2. converge, then
there is a vector norm ||| such that ||A]| <1 for all A € 3.

3.3 Research Notes

Section 1 was developed from Hartfiel (1981, 1991, 2000). Limiting sets,
under different names, such as attactors, have been studied elsewhere.

Theorem 3.12 appears in Elsner (1993). Also see Beyn and Elsner (1997).
Theorem 3.14 was proved by G. Schechtman and published in Berger and
Wang (1992).
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Patterned Matrices

In this chapter we look at matrix sets ¥ of nonnegative matrices in Mp.
We find conditions on ¥ that assure that contraction coefficients 75 and
Tw are less than 1 on r-blocks, for some r, of X.

4.1 Scrambling Matrices

The contraction coefficient 75 is less than 1 on any positive matrix in M,,.
The first result provides a set ¥ in which (n — 1)-blocks are all positive.
In Corollary 2.5, we saw the following.

Theorem 4.1 If each matriz in ¥ is fully indecomposable, then every
(n — 1)-block from ¥ is positive.

For another such result, we describe a matrix which is somewhat like a
fully indecomposable matrix. An n X n nonnegative matrix A is primitive
if A* > 0 for some positive integer k.

Instead of computing powers, a matrix can sometimes be checked for
primitivity by inspecting its graph. As shown in Varga (1962), if the graph
of A is connected (There is a path of positive length from any vertex i to
any vertex j.) and
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ki = gcd of the lengths of all
paths from vertex ¢ to
itself,

then A is primitive if and only if k; = 1. (Actually, k; can be replaced by

any k,)
For example, the Leslie matrix

A=

O o
m O N
o O

has the graph shown in Figure 4.1 and is thus primitive.

FIGURE 4.1. The graph of A.

A rather well known result on matrix sets and primitive matrices follows.
To give it, we need the following notion. For a given matrix A4, define
A* = [a;-"j], called the signum matriz, by

ot = 1 if aij > 0
7 7 1 0 otherwise

Theorem 4.2 Let 3 be a matriz set. Suppose that for all k =1,2,...,
each k-block taken from ¥ is primitive. Then there is a positive integer r
such that each r-block from X is positive.

Proof. Let

p = number of (0,1)-primitive n X n matrices



4.1 Scrambling Matrices 61

and

g = the smallest exponent k such that A* > 0 for all
(0,1) -primitive matrices A.

Let r=p+1 and A;,,...,A;, matrices in ¥. Then, by hypothesis
Ai A Aiy, .. As, -+ Ay s a sequence of primitive matrices. Since there
are r such matrices, the sequence A} ,(A4;,4:,)",... (4. -+ A;,)" has a
duplication, say

(A.is .. 'A’il)* = (Azt .. .Ail)*
where s > t. Thus
(Ais o 'Ai¢+1)* (A'lt v 'A.,;l)* = (Ait . 'Ail)*

where the matrix arithmetic is Boolean.
Set

B = (4, "Ait+1)* and A = (4, -+ Ai,)".
So we have
BA = A.
From this it follows that since B¢ > 0,
BIA=A>0;

thus, A;, - A;, >0, and so A4;, --- A;, > 0, the result we wanted. m

A final result of this type uses the following notion. If Bisann xn
(0,1)-matrix and A* > B, then we say that A has pattern B.

Theorem 4.3 Let B be a primitive n x n (0,1)-matriz. If each matriz in
3’ has pattern B, then for some r, every r-block from X is positive.

Proof. Since B is primitive, B" > 0 for some positive integer. Thus, since
(4, ---Ai))* > (B7)", the result follows. m

In the remaining work in this chapter, we will not be interested in -
blocks that are positive but in r-blocks that have at least one positive
column. Recall that if A has a positive column, then

p(Az, Ay) < p(z,y)
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for any positive vectors x and y. Thus, there is some contraction. We can
obtain various results of this type by looking at the graph of a matrix.
Let A be an n X n nonnegative matrix. Then the 7j-th entry of A® is

E :a’iklahkz c Qg g

where the sum is over all ky,...,ks—1. This entry is positive iff in the
graph of A, there is a path, say v;, vk, , Vs, ... , Uk,_,,v; from v; to v;.
In terms of graphs, we have the following.

Theorem 4.4 Let A be an n X n nonnegative matriz in the partilioned
form

A:[IBJ 00} (4.1)

where P is an m X m primitive mairiz.

If, in the graph of A, there is a path from each vertex from C to some
vertex from P, then there is a positive integer s such that A® has its first
m columns positive.

Proof. Since P is primitive, there is a positive integer k such that P*t* > 0
for all £ > 0. Thus, there is a path from any vertex of P to any vertex of
P having length k& +¢.

Let t; denote the length of a path from v;, a vertex from C, to a vertex
of P. Let ¢t = maxt;. Then, using the remarks in the previous paragraph,
if v; is a vertex of C, then there is a path of length k + ¢ to any vertex in
P. Thus, A%, where s = k + ¢, has its first m columns positive. ®

An immediate consequence follows.

Corollary 4.1 Let A be an n x n nonnegative matric as given in (4.1). If
each matriz in 3 has pattern A, then for some r, every r-block from ¥ has
a positive column.

We extend the theorem, a bit, as follows. Let A be an n X n nonnegative
matrix. As shown in Gantmacher (1964), there is an n X n permutation
matrix P such that

papi=|An Az - 0 (4.2)

Asl AsZ As
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where each Ay is either an ng x ny irreducible matrix or it isa 1 x 1 0-
matrix. Here, the partitioned form in (4.2) is called the canonical form of
A. If for some k, Ap1,...,Axk—1 are all O-matrices, then Ay is called an
isolated block in the canonical form.

If A® has a positive column for some k, then A; must be primitive since
if A; is not primitive, as shown in Gantmacher (1964), its index of im-
primitivity is at least 2. This assures that A¥, and hence A¥, never has a
positive column for any k.

Corollary 4.2 Let A be an n X n nonnegative matriz. Suppose the canon-
ical form (4.2) of A satisfies the following:

1. A; is a primitive m X m matriz.
2. The canonical form for A has no isolated blocks.

Then there is a positive integer s such that A° has its first m columns
positive.

Proof. Observe in the canonical form that since there are no isolated
blocks, each vertex of a block has a path to a vertex of a block having
a lower subscript. This implies that each vertex has a path to any vertex
in A;. The result now follows from the theorem. m

A different kind of condition that can be placed on the matrices in 3 to
assure r-blocks have a positive column, is that of scrambling. Ann xn
nonnegative matrix A is scrambling if AA* > 0. This means, of course,
that for any row indices 7 and 7, there is a column index k such that a;;x > 0
and Ak > 0.

A consequence of the previous corollary follows.

Corollary 4.3 If an n x n nonnegative matriz is scrambling, then A® has
a positive column for some positive integer s.

Proof. Suppose the canonical form for A is as in (4.2). Since A is scram-
bling, so is its canonical form, so this form can have no isolated blocks.
And, A; must be primitive since, if this were not true, A; would have in-
dex of imprimitivity at least 2. And this would imply that A;, and thus
A, is not scrambling. m

It is easily shown that the product of two n X n scrambling matrices is
itself a scrambling matrix. Thus, we have the following.

Theorem 4.5 The set of n x n scrambling matrices is a semigroup.
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If & contains only scrambling matrices, ZUX2U- - - contains only scram-
bling matrices. We use this to show that for some r, every r-block from
such a ¥ has a positive column.

Theorem 4.6 Suppose every matriz in ¥ is scrambling. Then there is an
r such that every r-block from X has a positive column.

Proof. Consider any product of r = 27" +1 matrices from Y, say An--- Aj.
Let 0 (A) = A*, the signum matrix of the matrix A. Note that there are at
most 27 distinct n x n signum matrices. Thus,

o(As---Ay) =0 (As--- Ay)
for some s and ¢ with, say, r > s > . It follows that
0(As - App1)o(Ar--- A1) =0 (Ar--- A1)

when Boolean arithmetic is applied. Thus, using Boolean arithmetic, for
any k > 0,

U'(As"'At+1)k0'(At"'A1)ZU(At"‘Al)-

We know by Corollary 4.3 that for some k, o (4s--- At+1)k has a column
of 1’s. And, by the definition of ¥, o (A - - A1) has no row of 0’s. Thus,
o (A:--- A1) has a positive column, and consequently so does A; - -- Aj.

From this it follows that since » > ¢, any r-block from X has a positive
column. m

4.2 Sarymsakov Matrices

To describe a Sarymsakov matrix, we need a few preliminary remarks.
Let A be an n x n nonnegative matrix. For all § C {1,...,n}, define
the consequent function F', belonging to A, as

F(S)={j:ai > 0forsomeieS}.

Thus, F (S) gives the set of all consequent indices of the indices in S. For
example, if

b=t = O
O
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then F ({2}) ={1,2} and F ({1,2}) ={1,2,3}.

Let B be an n xn nonnegative matrix and F, F, the consequent functions
belonging to A, B, respectively. Let Fjs be consequent function belonging
to AB.

Lemma 4.1 F, (F;(S)) = F12(S) for all subsets S.

Proof. Let j € Fy (F; (S)). Then there is a k € F; (S) such that by; >0
and an ¢ € S such that a; > 0. Since the 7j-th entry of AB is

i airb”- (43)
r=1

that entry is positive. Thus, j € Fy2 (S). Since j was arbitrary, it follows
that F (F1(9)) C F12(S5).

Now, let j € Fi2(S). Then by (4.3), there is an ¢ € S and a k such that
ajr > 0 and bg; > 0. Thus, k € Fy (S) and j € Fy ({k}) C By (F1 (S))
And, as j was arbitrary, we have that Fys (S) C Fy (F; (9)).

Put together, this yields the result. m

The corollary can be extended to the following.

Theorem 4.7 Let A,,...,Ax be nxn nonnegative matrices and Fy,. .. , Fy,
consequent functions belonging to them, respectively. Let Fy..., be the con-
sequent function belonging to Ay --- Ax. Then

Fe (- (F1(9) = F1..k ()
for all subsets S C {1,... ,n}.

We now define the Sarymsakov matrix. Let A by an n x n nonnegative
matrix and F its consequent function. Suppose that for any two disjoint
nonempty subsets 9,5 either

1. F(S)NF(S") #0 or
2. F(S)NF(S') =0 and |[F(S)UF(S')] > [SUS|.

Then A is a Sarymsakov matriz.

A diagram depicting a choice for S and S’ for both (1) and (2) is given
in Figure 4.2,

Note that if A is a Sarymsakov matrix, then A can have no row of 0’s
since, if A had a row of 0’s, say the i-th row, then S = {i} and S’ =
{1,...,n} — S would deny (2).

The set K of all n x n Sarymsakov matrices is called the Sarymsakov
class of n X n matrices. A major property of Sarymsakov matrices follows.
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F(S) F(S")

(_J\__\‘ ‘ _ F(©S) F(S")

S X X 0 S X 0 0

§' 0 X X or

FIGURE 4.2. A diagram for Sarymsakov matrices.

Theorem 4.8 Let Aq,...,A,—1 be n X n Sarymsakov matrices. Then
Ay -+ An_q s scrambling.

Proof. Let Fi,...,F,_1 be the consequent functions for the matrices
Aj,..., Ap_1, respectively. Let Fj.., be the consequent functions for the
products A; --- Ay, respectively, for all k.

Now let ¢ and j be distinct row indices. In the following, we use that if

Fro({iHhnF.e ({4} #0
for some k < n, then
Frn-1 ({i}) N Fron—1 ({7}) # 0. (4.4)

Using the definition, either Fy ({¢}) N F1 ({j}) # 0, in which case (4.4)
holds or

[ (i) U B ({g})] > 2.

In the latter case, either Fi2 ({¢}) N Fi2 ({}) # @, so (4.4) holds or
[F12 ({i}) U Fiz2 ({7})] > 3.

And continuing, we see that either (4.4) holds or

[F1..n—1 ({i}) U Froccn1 ({3})] > 7.

The latter condition cannot hold, so (4.4) holds. And since this is true for
all i and j, A;--- Ap—1 is scrambling. =

A different description of Sarymsakov matrices follows.



4.2 Sarymsakov Matrices 67

Lemma 4.2 Let A be an n X n nonnegative matriz and F the consequent
function belonging to A. The two statements, which are given below, are
equivalent.

1. A is a Sarymsakov matriz.

2. If C is a nonempty subset of row indices of A satisfying |F (C)| < |C|,
then

F(B)YNF(C—-B)#40
for any proper nonempty subset B of C.

Proof. Assuming (1), let B and C be as described in (2). Set S = B and
S’ = C — B. Since S and S’ are disjoint nonempty subsets, by definition,
FS)NF(S)#Por F(SYNF(S) =0 and |[F(S)UF(S)| >|SuUS|.
In the latter case, we would have |F (C)| > |C|, which contradicts the
hypothesis. Thus the first condition holds and, using that B=5,C—~B =
S’, we have F(B) N F(C — B) # 0. This yields (2).

Now assume (2) and let S and S’ be nonempty disjoint subsets of indices.
Set C' = SUS’. We need to consider two cases.

Case 1. Suppose |F (C)] € |C|. Then, setting S = B, we have F (5) N
F(S") # 0, thus satisfying the first part of the definition of a Sarymsakov
matrix.

Case 2. Suppose |F (C)| > |C|. Then we have |F (S)U F (S')| > |SU §|,
so the second part of the definition of a Sarymsokov matrix is satisfied.

Thus, A is a Sarymsakov matrix, and so (2) implies (1), and the lemma
is proved. m

We conclude by showing that the set of all n x n Sarymsakov matrices
is a semigroup.

Theorem 4.9 Let Ay and Ay be in K. Then AjAg is in K.

Proof. We show that A; A; satisfies (2) of the previous lemma. We use that
Fy, F,, and Fys are consequent functions for Ay, Az, and A; Ao, respectively.
Let C be a nonempty subset of row indices, satisfying this inequality
|F12 (C)| < |C|, and B a proper nonempty subset of C. We now argue two
cases.
Case 1. Suppose |F; (C)| < |C|. Then since 4; € K, it follows that
F1 (B) N F1 (C - B) 7é (b Thus,

0 + Fy (Fy (B)) N Fy (F, (C ~ B))
= F12 (B) ﬂF12 (C— B) .
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Case 2. Suppose |F; (C)| > |C|. Then, using our assumption on C,
|F12 (C)| £ |C| < |F1(C)|- Thus,
|F2 (FL(O)] < |F1(C)].
Now, using that Ay € K and the previous lemma, if D is any proper
nonempty subset of Fy (C), then
E(D)nF (R (C)-D) # 0. (4.5)

Now, we look at two subcases.

Subcase a: Suppose Fy (B) N F; (C — B) = 0. Then F; (B) is a proper
subset of Fy (C) and Fi (C — B) = F, (C) — Fy (B). Thus, applying (4.5),
with D = F (B), we have

0 # B (Fi (B))NF (F1(C) — Fi(B))
=P (F(B))NF (F1(C - B))
= F12(B)N F2(C - B),
satisfying the conclusion of (2) in the lemma.

Subcase b: Suppose Fy (B)NF; (C — B) # 0. Then we have F5 (Fy (B))N
Fy (F1 (C — B)) # 0 or Fy2(B) N Fi2 (C — B) # 0, again the conclusion of
(2) in the lemma.

Thus, AjAs € K.

The obvious corollary follows.

Corollary 4.4 The set K is a semigroup.

To conclude this section, we show that every scrambling matrix is a
Sarymsakov matrix.

Theorem 4.10 Every scrambling matriz is a Sarymsakov matriz.

Proof. Let A be an n x n scrambling matrix. Using (2) of Lemma 4.2, let
C and B be as the sets described there. If 7 and j are row indices in B
and C — B, respectively, then since A is scrambling F ({i}) N F ({j}) # 0.
Thus F (B) N F (C — B) # 0 and the result follows. m

4.3 Research Notes

As shown in Brualdi and Ryser (1991), if A is primitive, then A=1%-1 5
0. This, of course, provides a test for primitivity. Other such results are
also given there.
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The proof of Theorem 4.2 is due to Wolfowitz (1963). The bulk of
Section 2 was formed from Sarymsakov (1961) and Hartfiel and Seneta
(1990). Rhodius (1989) described a class of ‘almost scrambling’ matrices
and showed this class to be a subset of K. More work in this area can be
found in Seneta (1981).

Pullman (1967) described the columns that can occur in infinite products
of Boolean matrices. Also see the references there.
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D
Ergodicity

This chapter begins a sequence of chapters concerned with various types of
convergence of infinite products of matrices. In this chapter we consider
row allowable matrices. If Ay, Ag,... is a sequence of n x n row allowable
matrices, we let

Pk=Ak...A1

for all k. We look for conditions that assure the columns of P, approach
being proportional. In general ‘ergodic’ refers to this kind of behavior.

5.1 Birkhoff Coefficient Results

In this section, we use the Birkhoff contraction coeflicient to obtain several
results assuring ergodicity in an infinite product of row allowable matrices.
The preliminary results show what 75 (P;) — 0 as k — co means about
the entries of Py as k — co. The first of these results uses the notion that
@
the sequence (Py) tends to column proportionality if for all r, s, -gz%, B,
is Pis
converges to some constant o, regardless of . (So, the r-th and the s-th
columns are nearly proportional, and become even more so as k — 00.)
An example follows.
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Example 5.1 Let

11
k[% %] if k is odd,
2 2
Ax =
11
k[§ 3] if k 1s even.
3 3
Then
11
k![% Zf] if k is odd,
2 2
P, =

] if k is even.

[C] (Ul g
[\

|

Note that Py, tends to column proportionality, but Py doesn’t converge. Here

Q190 = 1.

(k) plk] k) and p[ I are column vectors, a picture

Ifwelet P, = [P1 Dy ] where p;
of how column proportional might appear is given in Figure 5.1.

k+l
(k) l( W
(k+2)

p (k+l)
b,
(k) (k+2)
Pz

FIGURE 5.1. A view of column proportionality.

Lemma 5.1 If A;, Aa,... is a sequence of n X n positive matrices and

P, =A,--- Ay for all k, then klim 75 {(Ps) — 0 as k — oo iff Py tends to

column proportionality.

Proof. Suppose that Py tends to column proportionality. Then
(k) (k)

— r Yjs
hm qS(Pk) hm min zk) ®

k—o0 1,1,T,8 p]r pzs

=1.

Thus,
¢ (Pk)
hm T = __ VAV RE
F (Pk) 1 oy (1 k)
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Conversely, suppose that klim 75 (Pk) =0. Define
—00

P Y

m{®) = min Z¥_, M) = max 2,
s i (k) e i k)
Dis Pis

The idea of the proof is made clearer by letting = and y denote the r-th
and s-th columns of Pj_1, respectively. Then

k P(k)
) = min” G
Pis
n
k
Z:l agj)x,
= min 2
S oy,
=Y
n
k .
) a’q(:j )yj %’:‘
. j=1
R RN
Z ai; Yj
Jj=1

n ()
. a;."Yi i
Since Y, —n—”# 7% is a convex sum of £,..., 22, we have
j=1 'El @i Yi ’ "
=

. Ly
mg;) > mjm j— = m&’;_l).
i

Similarly,
M < M,

and it follows that lim mg;) = m,s, as well as klim MTU:) = M,s, exist.
— 00 — OQ
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Finally, since lim 75 (FPy) =0, lim ¢(P;) =1, so
k—00 k—o0

k) (k
P
k—o0 1,,7,T,8 Dis pjr
o mi
= lim min —
k—oo 1,8 Mﬁ":)
_ Mpq
Mpq

for some p and g. And thus mpg = Mpg. Since 1 > = > %?:Z- for all 7
and s, it follows that m,; = M,s. Thus,

P

: r —_

klgr;o p_(k) = My
18

for all i and Py, P,,... tend to column proportionality. =

Formally the sequence Py, Ps,... is ergodic if there exists a sequence of
positive rank one matrices S, 5%, ... such that
k
i P — 1 (5.1)
koo (k) :

for all ¢ and j. To give some meaning to this, we can think of the matrices
P, and Sy, as n? x 1 vectors. Then
(k) (k)
bi;" s
P (P, Sk) = In max Ti)'z_tk)
4,3,7 Sij Prt
where p is the projective metric.
Now by (5.1),

kllf{.loP(Pk,Sk) =0

and so

1 1
kool \TPellp ™ TSkllp "

where ||-|| - is the Frobenius norm (the 2-norm on the n? x 1 vectors).
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Let

S={R:Risann xnrank 1

nonnegative matrix where

IRl p = 1}.

Recalling that

1 .
d (m;Pk,S> = glelgp(Pk,R),

we see that

1
d P,S)—»Oask—»oo.
(um!F ’

Thus, IT::H}.:P’“ tends to S. So, in a projective sense, the P,’s tend to the
rank one matrices.

The result linking ergodic and 7p follows.

Theorem 5.1 The sequence Py, Ps,... is ergodic iff klim 78 (Px) =0
— 00

Proof. If P, P;,... is ergodic, there are rank 1 positive n X n matrices
51,859, ... satisfying (5.1). Thus, using that Sj is rank one,

¢ (P;) = min
,3,78 pis p]r

(k) (k) oW (k)

pzr 13 Sis

= min ==~ %
B0 0 O

)
klim ¢ (P) =1.
Hence,

: V& (Pk)
Jm 75 (P) = klﬁoo1+\/¢(—pk



76 5. Ergodicity

Conversely, suppose klirn 78(P:) =0. Fore=(1,1,... ,l)t, define

S, = Pkeeth
k= ethe
le(k) E P
- n n )
Drs
rgl sZ=:

an n X n rank one positive matrix. Then

P p® 3 Z ¥
Py

r=1 8=1

(k) U2
i e 3 p®
r=1 s=1
Z—:l g p£] )pgs)
=R e
) X_jlpir)pﬂ,)

Using the quotient bound result (2.3), we have that

(k)

Py 1
¢(Pk) (k) = (Pk).
And since klim ¢ (Py) =1, we have
(%)
lim 2 =1,
k—o0 S( )

Thus, the sequence P;, P;,... is ergodic. ®

We now give some conditions on matrices 4;, As,... that assure the
sequence Py, P,,... is ergodic. Basically, these conditions assure that
(¢ (Ax)) doesn’t converge to 0 too fast.

Theorem 5.2 Let A, Ao, ... be a sequence of n x n row allowable matri-
o0

ces. If 3 \/w(Ar) = o, then Py, Py, ... is ergodic.
k=1
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Proof. Since § Ve (Ag) = oo, it follows by Theorem 51 (See Hyslop
k=1

(o]
(1959) or the Appendix.) that [] (1 + /e (Ak)) = o0o. Thus, since
k=1

7B (Pe) < 7B (Ak)--- 7B (A1)

(1-ve@))  (1-ve@)

(V@) (14 Vo)

1

e ve@) - (Vo)

klim T8(Pe)=0. m
A corollary, more easily applied than the theorem, follows.

Corollary 5.1 Let my and My be the smallest and largest entries in Ag,
0

respectively. If 3 (%ﬁ) =00, then Py, Py, ... is ergodic.
k=1

Proof. Since
m
_A4_k S VA2 (Ak)v
k
the corollary follows. m

A final such result follows.

Theorem 5.3 Let Ay, Ag,... be a sequence of row allowable matrices.
Suppose that for some positive integer r and for some v > 0, we have
that ¢ (A(k+1yr -~ Akr41) =7 for all k. Then

75 (Ax -~ A1) < (E—z)[g].

Proof. Write

k=rqg+swhere0<s<r.

Block Ag--- Ay into lengths r forming

Ak Argr1ByBgo1 - By
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Then
75 (A" A1) <7 (Ak - Arg41) 7B (Bg) - - - 7B (B1)

)

which yields the result. m

A lower bound for 7, using m = mf 0% and M = sup a;j, where the
aij>

inf and sup are over all matrices Ay, A2, , can be found by noting that
inf (B);; > m",sup (B);; < n"~ 1M for all r-blocks B= Ak Ark—1)+1-

Thus
m’ 2
¢(B) 2 (n"_—lﬁ;)

m'I‘
nr—iMT )
Furthermore, types of matrices which produce positive r-blocks, for some
r, were given in Chapter 4.

and so 7 can be taken as

’Y:

5.2 Direct Results

In this section, we look at matrix sets % such that if Ay, Ag,... is a sequence
taken from 3 and z, y positive vectors, then

P (Piz, Pry) — 0 as k — oo.

Note that this implies that Wl%%lf and ]I%:Z_[’ as vectors, get closer. So we
will call such sets ergodic sets. As we will see, the results in this section

apply to very special matrices. However, as we will point out later, these
matrices arise in applications.
A preliminary such result follows.

Theorem 5.4 Let ¥ be a set of n X n row-allowable matrices M of the

form
A0
=15 0]
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where A is nq X ny. If T is a positive constant, T <1, and T (A) < T for
all matrices M in X, then ¥ is an ergodic set. And the rate of convergence
is geometric.

Proof. Let M1, M, ... be matrices in ¥ where

Ayg 0]

M’“:[Bk 0

and Ay is n; X nq for all k. Then

Mk'--M1=[ A Ay 0].

BpAg_1---A1 O

Now, let z and y be positive vectors where

=2 ]o=[%]

partitioned compatibly to M. Then

o [A 0 Aj-r--A1 0
M- Ml“"[Bk OHBk_lAk_T--Al 0]"”

A
= | B | Aur iz
and
A
My My = [ BZ ]Ak—l"'AlyA-
| Thus,

p (M- Myz, My, -- - Myy)

A A
=P([ BZ ]Ak—l"'AlwA,[B: ]Ak—l"'AlyA)

and by Lemma 2.1, we continue to get
<p(Ag—1---A1za, Ap_1--- Arya)
<1 (Ak-1)---7B (A1) p(a,y4)
<7 1p(z4,y4).

Thus, as k — oo, p(My,--- Myz, My --- Myy) — 0. =
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A special set 3 of row allowable matrices M = [ g g, ] , where A is

ny X ny, occurring in practice has mp, 1, > 0 and C lower triangular
with 0 main diagonal. For example, Leslie matrices have this property. A
corollary now follows.

Corollary 5.2 Suppose for some integer r, S satisfies the hypothesis of
the theorem. Then Y is an ergodic set and the convergence rate of products
is geometric.

The next result uses that T is a set of n x n row allowable matrices with
form

2
B C (5.2)
where A is ny X n1, B is row allowable, and C is ny x ny. Let X 4 be the set
of all matrices A which occur as an upper left n; x n; submatrix of some

M € X. Concerning the submatrices A, B, C of any M € 3, we assume
an, br, cn, a1, by, c1, are positive constants such that

(i 2]

maxa;; < ap, maxb;; < by, maxcy; < cp,

min a;; > ag, Imn sz > by, m1n Cij 2> Cg.
ai; >0 by i5 >0

The major theorem of this section follows.
Theorem 5.5 Let ¥ be described as above and suppose that 75 (X7) <

T < 1 for some positive integer r. Further, suppose that there exists a
constant K; where

C
noKq1 <1 and ch < Kj,
ag

and that a constant K3 satisfies
bn
bz <K2, — <K2,— <K2,— <K,.
be

Let x and y be positive vectors. Suppose

ma.x— < K3 and ma.xy— < K.
5, y] ,J 1‘]

Then there is a positive constant T, T < 1, such that
p(Pwz, Py) < KT*

where K is a constant. Thus X is an ergodic set. (This K depends on z
and y.)
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Proof. Let
P(l,k) = My--- My, P(t,k) = My --- M,

where each M; € ¥ and 1 <t < k. Partition these matrices as in (5.2),

Pi(k) 0
P (1”“)=[P§i(k) Pzz(k)]’

Py (t,k 0
P(t,k) = [ P; Et,kg Py (t, k) ] '

Note that
Pll (k) =Ak"'A1

k
Py (k)= Ci---CipaBjA;_1-- A

=1
where Cy---Cjpy=Iifj=kand A;_;---Ay=Tifj=1,
ng(k):Ck”'C].

Thus, for ¥ > r, Pj; (k) > 0 and since By is row allowable, for £ > r,
Py; (k) > 0. Further, by rearrangement, for any ¢, 1 <t <k,

Py (1, k) = Pyq (t + 1, k) Py (1,t) + Py (t + 1, k) Py (1,t) .

Now, using that Py (t + 1,k) = [ 21 8 i i’ ’]g ],Partitioning T = [ :2 ] ,

y= [ zg ] as is M, and applying the triangle inequality, we get

p(P(L,k)z, P(l,k)y) <

p(P(L,k)z, P (t+1,k) P11 (1,t) T4)

+p(Pa (t+1,k) Pii (1,t) x4, Pua (t+1,k) P11 (1,8) ya)
+p(Pa (t+1,k) P11 (1,t)ya, P(1L, k) y).

We now find bounds on each of these terms. To keep our notation compact
when necessary, we use P = P (¢ + 1,k) and P = P(1,t).

1. p(P(1,k)z, Pua (t+ 1,k) P11 (1,£) 24). To bound this term, we need
to consider the expressions
P(,k)z];
[P*l (t +1, k) P (1, t) IL‘A]i )

Ty =
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By definition, it is clear that r; > 1 for all ¢ with equality assured
when i < nj;. So,

maxr;

minr;

Since

PPy + PPy PPy
[13211511$A + PoPrza+ 15221322370] ;
[13211_’1196AL
[1322132133,4 + 13221_’22180] ;

[}52113111:,4:\1,

[ PPy 0 ]

Ty =

We will define several numbers} the importance of which will be seen
later. Set @ = n1K2 (noK;)’ and let f be sufficiently large that

Q<landt = [f—_’f_l-] (We assume k > f +1.) Then using that
Poy (t +1, k) Py (1,t) T4 > BrAg_1--- A1z 4, we get

[Ck - Cep1 (Z Ci--Cj11BAj_1- A1> iEA]
; <1 bi
st [BrAk-1--- A1z4);

[C-- Cizc);
[BrAk—1--- A1z a];

We now bound this expression by one involving K; and Kj;. Let
z; = minz; and zp = maxx;. Then

~t t—j—1_j
Z ny I nd & Ibpal ok
. 2CpLh
r; <14 P + =5
1) T bia; " "y
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Thus,
i — 1
Kf=tnk= Zn ] KITIKST kKUK
t

S (’I‘L2K1)k-t Kz Z (ngKl)t—j ’n‘;K% + nng (’nzKl)k_l
j=1

= (n2K1)* ™" Kz (n2 K1)’ Z(nIKZ

For simplicity, set § = %;I—I% Since n1 K9 > 1, ng K7 < 1,

—-1<L (’I’LgKl) Ky (gﬂ——;) + Tl2K2 (TL2K1)k 1 ,
k B
i — 1 < (n2Kh) Kzﬂﬁ_ 1

+ szKg (ngKl)k—l .

For the first term of this expression,

(2K 8 = (oK)’ (";I’ij)[k]

k
Ko\ 7+1
< (noK1)* (Z:Kf)

= [(n2K1)f+1 (Z;gf)] i

- [(ngKl)f (n1K2)] 7
< Q7
= Qﬁ)k

Continuing,

k
?1 (QT“I‘—I) +npK3 (ngKy)*!

Ti—ISKzﬂ

) +ng K2 (ngKy)F 7t
1
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and thus,
Yy (P (1) k) z, Pa (t =+ 1, k) Pll (l,t) "I"A)
< maxInr;
1\ 2 k—1
< K2,3 1 (Qm) + na K3 (neKi) .
Let 77 = max {Qﬁ,ngKl}, so T' < 1. Then by setting K3 = —ﬂ—/%

TI? and continuing
p(P(1,k)z, P (t +1,k) Py (1,t) 74) < K3TY.
Similarly we can show
p(Pa (t+1,k) Pir (1,t) ya, P (1, k) y) < K4TF
for some constant Kj4.
2. p(Pa (t+1,k) P (L,t) x4, P (t + 1K) Pr1 (1,t) ya)
<p(Pi1(1,8)za, P (1,t)ya)
TJ[B%]P (za,y4)
<77p(za,ya)

< ()™ paa

< (T‘ﬁﬁ) p(za,y4)
= KsT¥
where Ty = T7%0  and Ky =p(z4,y4)-
Putting (1) and (2) together,
p(P(1,k)z, P(1,k)y) < K3TF + K TF + KsTF
< KT*
where T = max {T},T2} and K = K3 + K4 + K3, the desired result. m

The condition ﬁ-f: <Ki, Ky < ;Ll;, which we need to assure 7' < 1, may
seem a bit restrictive; however, in applications we would expect that for

ke Ay 0
Pu(k)y Cp---C1 |’

Ak"‘A1>Ck"‘Cl

large k and P, =
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and so the theorem can be applied to blocks from 3. For blocks we would
use the previous theorem together with the following one.

Theorem 5.6 Let 3 be a row proper matriz set and x,y positive vectors.
Suppose K, T, with T < 1, are constants such that

p(Bq"-BliL', Bquy)SKTq

for all r-blocks By, ... ,Bq from ¥. Then

p(My -+ Myz, My--- Myy) < KTl
for any matrices M., ... ,M; in X.

Proof. Write My, --- My = M, - - - Myq41 By - - - By where the subscripts sat-
isfy k=rq+1¢0<t<r. Then

I)(M":...Mla;7 Mk"'Mly) Sp(Bq...le, Bq...Bly)
< KT?

= KTl¥]

the desired result. m

5.3 Research Notes

The results in Section 1 were based on Hajnal (1976), while those in Section
2 were formed from Cohen (1979).

In a related paper, Cohn and Nerman (1990) showed results, such as
those in this chapter, by linking nonnegative matrix products and nonho-
mogeneous Markov chains. Cohen (1979) discussed how ergodic theorems
apply to demographics. And Geramita and Pullman (1984) provided nu-
merous examples of demographic problems in the study of biology.



This page is intentionally left blank



6

Convergence

In this chapter we look at some basic convergence results on infinite prod-
ucts of matrices. Some of these results are somewhat old, but perhaps not
well known. Other results in this chapter are rather new.

6.1 Reduced Matrices

An n X n matrix M that has partitioned form

w-[2 8],

0 C
where A is square, is reduced. In this section we show when infinite prod-

ucts of such matrices converge. To obtain such a result requires a few
preliminaries.

If ||-{|, and ||-]|, are vector norms on F™ and F™, respectively, we can
define a norm on the n; X ny matrices B using

| Bzll,
lllle ~

For products, this norm behaves as follows.

[1Bl], = max

(6.1)
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Lemma 6.1 Let B be an n; X ng matrizx.
1. If A is an ny X ny matriz, then

|AB|l, < Al 1Bl -

2. If C is an ng X ng matriz, then

IBCl, < 1B, ICI. -

Proof. We will show the proof of (2). For it, note that
1B, < [1Bll, llll.
for all ng x 1 vectors x. Thus,
I1BCz|, < 11Bll, [|C=ll, < I1Bll, ICI Nl -
Thus,
IBCl, < I1Bll, ICH.

which is what we need. =

Using this lemma, we will show the convergence of a special infinite series
which we need later.

Lemma 6.2 In the infinite series
LyBy 4+ L3BoCy + -+« + LgBp1Cr -+ - Cy + -+

the matrices Lo, L3, ... are ny X n1, the mairices B1,Bs,... are ny X ng,
and the matrices Cy,Ca,... are ng X ny. The series converges if, for all k,

1. ||Lg|l, £ Ky for some vector norm ||-||, and constant K,
2. ||Ckll, < v for some vector norm ||-||, and constant v, ¥ < 1, and
3. ||Brlly < B for some constant 3.

Proof. We show that the series, given in the theorem, converges by show-
ing the sequence (L2B; + -+ - + LgBg—1Ck—2 - - - C1) is Cauchy. To see this,
observe that if ¢ > j, the difference between the i-th and j-th terms of the
sequence is

Dij = Lj1BjCj_1---Cr1+ -+ LiB;_1Ci_o - -- Ch.
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Thus, || Dy, =
I Ljtall I Bill I C—1- - -Call o - -+ Lill g | Bi—1llp [Ci—2 - - - Cil,,
<K By 4+ KiBy2

From this it is clear that the sequence is Cauchy, and thus converges. ®

The theorem about convergence of infinite products of reduced matrices
follows.

Theorem 6.1 Suppose each n x n matriz in the sequence (My) has the
form

k k k k

40 By By oy

My = 0 C;7 By -+ Bj,
0 0 o

where the Agk) ’s are ny X nq, Cyc) 's are ng X ng,..., and the Cﬁk) ’s are
Nrt1 X Nipy1. We suppose there are vector norms ||-||, on F™ and ““q on
Fm™i+1 gych that

L ||e®

<« for some constant v < 1 and all 3, k.
.

4

2. As given in (6.1), there is a positive constant K3, such that

B®

ij S KB

ij
for alli, 7, and k.

Finally, we suppose that for all s, the sequence (A --- As) converges to
a matriz Ly and that

8. ||Ls|l, < Kz for all s and |Ls — Ak --- Agll, < K1a¥~1 for some
constants K1 and a < 1.

Then the sequence {My, --- My) converges.

Proof. We prove this result for » = 1. The general case is argued using
Corollary 3.3. We use the notation
| Ax B

Mi = [ e B ] .
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Then My ---M; =

Ap-- Ay Ak"'A2Bl+Ak"'AsB2cl+"'+Bka—1"'Cl
0 Cp--C4 )

By hypotheses, the sequence (A - - - A;) converges to L,, and the sequence
(Ck - -+ C1) converges to 0. We finish by showing that the sequence with
k-th term

Ak'--AzBl+Ak'-'A332C1+---+Bka_1---C1 (62)
converges to
LoBy 4+ L3ByCy +-+- + Lk+1Bka_1 - Cr+-0 (63)

Now letting D;, denote the difference between (6.3) and (6.2), and using
Lemma 6.1, || Dgll,,, =
[|(Lg — Ak -+ A2) B1 + (L3 — Ak --- A3) B2C1 + -+
+ (Lk+1 - I) ByCr_y---Ch +Lk+2Bk+ICk G ”b12
< (Km,k—lK3 + Ki0* 2Ky + -+ + K1K3«yk‘1)
+ KaKayb 4+ KoKy 4o

< (KiKap* 4o+ KiKaf* ) + Ko Kaf*

1
1-8
where § = max {a,7}. So

- 1 -
IDilly,, < kK13 + KaKaB" 75 < KkF*

where K = K1K3 + KgKgl—iB-. Thus, as k — 0o, Dy — 0 and so the
sequence from (6.2) converges to the sum in (6.3). m

Corollary 6.1 Let My = é g: be an n X n matriz with I the m xm

identity matriz. Suppose for some norm ||-||,, as defined in (6.1), and
constants 3 and v, v < 1, and a positive integer r

1 ||Bill, <8
2. |Ckll. £1 and ||Crr -+ - Ciqrll, < v for all k.

Then (M, - -- M) converges at a geometrical rate.
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Proof. Note that

My---M; = [ I By+BoCi+---+ ByCg-1--C1 ]

0 Cr---C1
By (2) of the theorem, ||C --- C1}| < 'y[%] and by (1) of the theorem,

|Be+1Ck - -+ C1 + Bi2Chr - Cr+ -+ [ly
< ’r‘ﬁ'y[é] 4 rﬂfy[lrc']‘*'l P

< 'rﬁfy[%]
S

Thus, (M --- My) converges to

I Bj+ BaCp+ B3CoCr 4+ -+ ]
0 0

and at a geometric rate. m

A special case of the theorem follows by applying (6.3).

Corollary 6.2 Assume the hypothesis of the theorem and that each Ly = 0.
Then the sequence (M) converges to 0.

6.2 Convergence to 0

There are not many theorems on infinite products of matrices that converge
to 0. In the last section, we saw one such result, namely Corollary 6.2. In
the next section, we will see a few others. In this section, we show three
direct results about convergence to 0.

The first result concerns nonnegative matrices and uses the measure U
of full indecomposability as described in Chapter 2. In addition, we use
that

ri(A) = ai,
k=1

the i-th row sum of an n x n nonnegative matrix A.

Theorem 6.2 Suppose that each matriz in the sequence (A;) of n x n
nonnegative matrices satisfies the following properties:
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1. maxr; (Ag) <r
2. U(Ag) >u>0.
3. There is a number § such that minr; (Ag) < 6.
4o (Tt —wr ) et w72 =1 < 1
Then [] Ax =0.
k=1

Proof. We first make a few observations.

Using properties of the measure of full indecomposability, Corollary 2.5,
iffors=1,2,...

(s+1)(n—1)

B, = H Ay

k=s(n—1)+1
then the smallest entry in Bs,
mind) > !
And,
maxr; (B,) <r™1, miinri (B;) < 6r™ 2,

Then,

n n

7; (Bs4+1Bs) Z Z b£s+1)b(s)

j=1 k=1

.
30

b Vre (Bs)
k=1

< Z bgzﬂ)rk (Bs) + bg::l) (51""_2)
Kk

where we assume 7y, (B;) is the smallest row sum. So

s (Bs+1Bs) < (,rn—l _ un—l) 7‘"'_1 + un—l (67,11.—2)
=l<1
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Thus, since

B2s—1)

1

< H |(Bas B2s—1)ll;

s=1

<im

oo
it follows that [] Ax converges to 0. m
k=1

This corollary is especiaily useful for substochastic matrices since in this
case, we can take r = 1 and simplify (4).

The next result uses norms together with infinite series. To see this
result, for any matrix norm ||-||, we let

4]l = max {}|4]|,1} and
4]l - = min {||A]], 1} .

And, we state two conditions that an infinite sequence (A) of nxn matrices
might have.

1.

D’J8

(IlA&ll, — 1) converges.

£y
|l
hA

2. (1 — || Ak||_) diverges.

gk

‘We now need a preliminary lemma.

Lemma 6.3 Let A1, Ag,... be a sequence of n x n matrices and ||-|| a ma-
triz norm. If this sequence satisfies (1) and A;,, Ai,, ... is any rearrange-
ment of it, then ||Ai ||, | Ai |l I|Ai ]l - and ||As |, | AsAs, ], ... are
bounded.
Proof. First note that

Ay -~ Aull < A |l - [1Aa L

for all k. Now, using that

oo
>4l -
k=1
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converges, by Hyslop’s Theorem 51 (See the Appendix.),

IT A,
k=1

converges. But this implies that || A;, ||, , [|4s, 4 [[4i]l4 5. .. is bounded. m

The following theorem says that if (|| Ak||,) converges to 1 fast enough
(condition 1) and (||Ak||_) doesn’t approach 1 or, if it does, it does so

(o]
slowly (condition 2), then [] A;, =0.
k=1

Theorem 6.3 Let Ay, As,... be a sequence of n X n matrices and ||-|| a
matriz norm. If the sequence satisfies (1) and (2) and A;,, Ai,, ... s any
o0
rearrangement of the sequence, then we have [] A;, =0.
k=1
Proof. Using that ||Aij“ = “Aij”_ “Aij |I+
”Aik e Ail” < ”Azk“— T “Ail “— M,

where M is a bound on the sequence (||4s, ||, ---[|4s]l.)- Since (2) is
oo

satisfied, by Hyslop’s Theorem 52 (given in the Appendix), [] [|A:.ll_
k=1

converges to 0 or does not converge to any number. Since the sequence
|4l A ll_ ||As ]l -+ is decreasing, it must converge. Thus, this
sequence converges to 0, and so

A A A,
converge to 0. m

The final result involves the generalized spectral radius p discussed in
Chapter 2.

Theorem 6.4 Let Y be a compact matriz set. Then every infinite product,
taken from ¥, converges to 0 iff p () < 1.

Proof. If p(X) < 1, then by the characterization of p (X), Theorem 2.19,
there is a norm ||-|| such that ||A|| < 74,7 < 1, for all A€ X. Thus for a
product A;, ... A;,, from ¥, we have

A ... Ai | <9* — 0 as k — oo
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Hence, all infinite products from ¥ converge to 0.

Conversely, suppose that all infinite products taken from ¥ converge to
0. Then by the norm-convergent result, Corollary 3.4, there is a norm ||-||
such that

lA:]l <1

for all A; € 3. We will prove that p(X) < 1 by contradiction.

Suppose p(X) > 1. Then p(X) = 1. Since p is decreasing here, there
exists a sequence Cy,Cy,... where Cy is a k-block taken from %, such that
|Cx|| > 1 for all k. Thus, ||Ck|| =1 for all k. We use these Ci’s to form
an infinite product which does not converge to 0.

To do this, it is helpful to write

C = An
Co = A An
Cs = A3z Az Az (6.4)
Ci= Ara Arz Are An

where the A;;’s are taken from ¥. Now we know that ¥ is product
bounded, and so the sequence A, 1, Ao 1, ... has asubsequence A;, 1, A, 1,. ..
that converges to, say B; and ||B;|| = 1. Thus, there is a constant L such
thatif k > L,

lis — Bill < 3.
Set 81 (1) = lL,Sl (2) = lL+1,. .. 80 “Asl(k),l - 31” < % for all k. NOW,
consider the subsequence Ag (1)2, As,(2),2,---- As before, we can find a
subsequence of this sequence, say A,,1)2, 4s,(2),2,- - -, Which converge to
Bs and

1
||A32(k),2 - By < I for all k.

Continuing, we have

1

14,095 = Bill < 353

for all k. Using (6.4), a schematic showing how the sequences are chosen
is given in Figure 6.1. We now construct the desired product by using
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’ ’
Y Y

FIGURE 6.1. A diagram of the sequences.
T = Am,, T2 = Am; Am,, ... where

Am1 = Asl(l),l
Amg = Asz(l),2

Ami = As,).k

which can be called a diagonal process.
We now make three important observations. Let ¢ > 1 be given.

1. Ifj <4,

1
[ Am; = Asii sl = 1 Aoy 005 = Asicirall < 577
(Note here that s; (k) is a subsequence of s; (k).)
2. Using (6.4),
L=||Couiol
= [[Asiroctiy -+ Asiral

< Msi@rsty - Asyiva |l |Asiii - Asial
< “Asi(i),i o Asi(":)rl ” ’
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“an =1 “Bzu =1 IIBIU =1

FIGURE 6.2. Diagonal product view.

3. Using a collapsing sum expression,

T — Agi(4),iAsi(8),i—1" " Asi(i),1 =

Am; - Amy (Am, — A1) +

A, - Amg (Am2 - As,<(i),2) Asi(’i),l +--- 4+
(Am: — Asy(i),i) Asii),im1* Asii) 1

and taking the norm of both sides, we have from (1),
l|7s = Asi),iAs,(iyi1 - - Asi(iy |

1 1
< _2_2_+§+...

I

ol

Putting together, by (2), nAsi(i),iAs,-(i),i—l . -vAsi(,-),ln > 1 and by (3),
s = Asi(i),iAss(iyiot - - Asiiya]| < 3 Thus ||m;)| > 3 for all i, which pro-
vides an infinite product from ¥ that does not converge to 0. (See Figure
6.2.) This is a contradiction. So we have p(X) < 1. m

Concerning convergence rate, we have the following.
Corollary 6.3 If & is a compact matriz set and p(X) < 1, then all se-

quences A;,, Ay, A;,, AigAi Aiy, . .. converge uniformly to 0. And this con-
vergence is at a geometric rate.
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Proof. By the characterization of p, Theorem 2.19, there is a matrix norm
|l such that ||Ag|| < « where « is a constant and v < 1. Thus

|4z, - Aiy = Ol = || 4sy, --- Ay, ||

< Aall--- 1Aall
<9
Thus, any sequence 4;,, A;, A;,,... converges to 0 at a geometric rate.

And, since this rate is independent of the sequence chosen, the convergence
is uniform. =

Putting together two previous theorems, we obtain the following norm-
convergence to 0 result.

Corollary 6.4 Let Y be a compact matriz set. Then every infinite product,
taken from &, converges to 0 iff there is a norm ||-|| such that ||Al| < 7,7 <
1, forallAecX.

Proof. If every infinite product taken from ¥ converge to 0, then by the
theorem, p (X) < 1. Thus by Theorem 2.19, there is a norm ||-|| such that
|lAll €9, v <1, for all A€ X. The converse is obvious. m

6.3 Results on IT (Uy + Ag)

In this section, we look at convergence results for products of matrices
of the form U + Ak. In this work, we will use that if ay,as...,ar are
nonnegative numbers, then

(1+a1)---(1+az) < enrttok, (6.5)
Wedderburn (1964) provides a result, given below, where each Uy = I.

(=]
Theorem 6.5 Let A1, Az,... be a sequence of nxn matrices. If Y ||Axll
k=1

o0
converges, then [] ||I + Ax|| converges.
k=1
Proof. Let
Pe=I+A)--(I+A4)
=I+> Ap + > ApAp -+ Ap-e Ay

P1>p2
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We show that the sequence Py,Ps,... is Cauchy. For this, note that if
t > s, then

| P — Pl = ZAP1+ Z Ap Ap, +-- + A Ay

p1>8 Py >8

PL>P2
<D 1Aplt+ D0 IAn I lAp I+ + | Ael - 1 Aal]
= S

: (& 1)
SHAsrall | 14D Al + ===+
i=1

o (Zaa)
+ || A2l 1+Z||A,-”+_’*_é'___+... +oee
i=1 : /

and using the power series expansion of e,

2 1A Z A z"
< ”As+1” es=1 + “As+2“ ei=1
Z Il A ll
< E | Axll €=

k=s+1

oo
Now, given € > 0, since ) ||Ax|| converges, there is an N such that if
k=1
s> N,

Z ||Ak||eZ" zll

k=s+1

Thus, P, Ps,... is Cauchy and hence converges. m

‘While Wedderburn’s result dealt with products of the form I + A, Os-
trowski (1973) considers products using U + Ay.

Theorem 6.6 Let U + Ay,U + Asg,... be a sequence of n X n matrices.
Given € > 0, there is a § such that if || Ax|| < 6 for all k, then

(U +Ag) - (U+ A <o (p+ ¢
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for some constant o and p = p (U).

Proof. Using the upper triangular Jordan form, factor
U=PKP!

where K is the Jordan form with a super diagonal of 0’s and 5-’s. Thus,
IK|l, < p+ 5. Write (U + Ag)--- (U + Ay)

= (PKP™ '+ A)--- (PKP™! + A))
=P(K+ P 'AP) - (K+P "4 P) P

_ €
Let 6 = sppyjp=ry; so that

€
1P 4xPl, < [P 1P Al < P, 1P 6 = <

Then,

I+ 4@+ Al < IR P, (o 5 ) + )

=PI, [Pl (o +e)".

Setting o = || P||, ||P~*||,, and noting that norms are equivalent, yields the
theorem. ®m

This theorem assures that if p(U) < 1 and

Al € =i
Il < SrEET,

where p + € < 1, then [] (U + Ax) = 0. So, slight perturbations of the

k=1
entries of U, indicated by A;, Ag,..., will not change convergence to 0 of
the infinite product.
o0

We now consider infinite products [] (U + Ax) and [] Ug. How far
k=1

k=1
these products can differ is shown below.

Theorem 6.7 Suppose |[Ui|| <1 fork=1,...,r. Then

Z Nl
(Ur+Ar)--- (U4 AL) = U, ---Up|| < e -1
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Proof. Observe that by (6.5),
|(Ur + Ap) -+ (U1 + A1) = Uy - Un|
< ZHA I+ HA AN+ -+ A - (A

>3

"Ak I

=@+ A A+ Al -1<e™ 0~

the required inequality. =
As a consequence, we have the following.

Corollary 6.5 Suppose |Uy|| <1 fork =1,2,... and that Z | Akl| < oo.
Given € > 0, there is a constant N such that if r > N and t > r, then
(U 4+ As) -+ (Upr + Ar) = Uz Up|| < €.
From these results, we might expect the following one.

Theorem 6.8 Suppose ||Ug|| < 1 for all k. Then the following are equiv-
alent.

o0
1. T] Ux converges for allr.
k=r

2. T] (Uk + Ai) converges for all sequences (Ax) when Y ||Ax]| < oo.
k=1 k=1

Proof. That (2) implies (1) follows by using Ay = —U;p + I, then Ay =

U +1,... Ar_.l_——Ur_1+IandA -=0.
Suppose (1), that H Uy, converges for all r and Z ||Ax|| < co. Define,
k=r
fort > r,

= (Ut +Ae)--- (U1 + A1)
Pip=Us--Uppa (Ur + 4Ap)--- (U + A1)
We show P, converges by showing the sequence is Cauchy. For this, let

€ > 0 be given.
Using the triangular inequality, for s,t > r,

”Pt - PS” < ”Pt - Pt,r“ + ”Pt,r - Psn‘“ + ”PS,T - PSH . (6-6)

We now bound each of the three terms. We use (6.5) to observe that

A
1| < 6, where § = o
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1. Using the previous corolléry, there is an N7 such that if » = Ny, then
1P = Pisll < 5 and [|Poy ~ Pall < -
2. || Py — Pyl <
U+ Upgr = Us -+ - Ura | |(Ur + A7) - -~ (Ur + A1)

Since H Uy converges, there is an Np, N2 > r, such that if s,¢ >

k=r+1
Ny, then
€
”Pt,r - Ps,r” < EN
Putting (1) and (2) together in (6.6) yields that
“Pt — P3” < €

for all t,s > N3. Thus, F; is Cauchy and the theorem is established. m

From Theorems 6.7 and 6.8, we have something of a continuity result
o0

for infinite products of matrices. To see this, define ||[(Ag)|| = > || A&l
k=1

o
for (Ax) such that ||[(Ax)|| < oco. If [] Ux converges for all r, so does

=7

H (Ux + Ai) and given € > 0, there is a § > 0 such that if ||(Ag)] < 6,
k=1
then

HUk"‘H(Uk+Ak)

k=1

Another corollary follows.

Corollary 6.6 Let ||Ux|| < 1 for k = 1,2,... and let (A;) be such that
oo o0 o0

> k|l < oo. If TI Ux =0 for all v, then [] (Uy + Ag) = 0.

k=1 k=r k=1

Proof. Theorem 6.8 assures us that H (Ux + Ax) converges. Thus, using

Corollary 6.5, given € > 0, there is an Njp such that for » > Ny and any
t>r,

1UsUri Ur+Ar) -+ (Ua+Ar) = Ui+ A)) - Ur+Ar) | < 5
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Since [] Uk =0, there is an Ny such that for ¢ > No > r,
k>r+1

€
W Upya (Up + Ar) -+ (Ur + A1) = Off < >
Thus, by the triangular inequality,

|(Us + As) -+ (Ur + A1) = 0] <
Uit A O+ A~ Vs s U+ Ar) (O + A0

€ €
+||Ut"'Ur+1(Ur+Ar)'--(U1+A1)—0||3—2—4——2—: €

Hence, ﬁ Uk + Ag) =
k=1

6.4 Joint Eigenspaces

In this section we consider a set X of n x n matrices for which all left
oo

infinite products, say, [] Ak, converge. Such sets T are said to have the
k=1

left convergence propertg? (LCP).
The eigenvalue properties of products taken from an LCP-set follows.

Lemma 6.4 Let ¥ be an LCP-set. If A1,...,As € X and )\ is an eigen-
value of B = Ag--- Ay, then

1. A <1or
2. A =1 and this eigenvalue is simple.

Proof. Note that since ¥ is an LCP-set, hm B* exists. Thus if ) is an

eigenvalue of B, |A| < 1 and if |\ = 1, then A =1 Finally, that A = 1
must be simple (on 1 x 1 Jordan blocks) is a consequence of the Jordan
form of B. m

For an eigenvector result, we need the following notation: Let A be an
n X n matrix. The I-eigenspace of A is

E(A)={z: Az ==z}.

Using this notion, we have the following,.
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Theorem 6.9 Let B = 10_0[ A; be taken from an LCP-set ¥. IfA € ¥
k=1

o0
occurs infinitely often in the product [] Ai, then every column of B is in
k=1
E(A).
o0
Proof. Since A occurs infinitely often in the product [] Ag, there is a
k=1
subsequence of Ay, AgA;,... with leftmost factor A, say,
ABy,ABs,. .-

where the B;’s are products of Ay’s. Since A;, A2A;,... converges to B,
so does AB;,ABs,... and By, Bs,.... Thus,

AB = lim ABjy
k—oo
= jim B,

= B.

Hence, the columns of B are in E(A). =

o0
As a consequence of this theorem, we see that for B = [] A
k=1

columns of B C NE (4;)

where the intersection is over all matrices A; that occur infinitely often in
(o]
[] Ax. Thus, we have the following.
k=1
o0
Corollary 6.7 If T] Ak is convergent and NE (A;) = {0}, where the in-
k=1

o0
tersection is over all E (A;) where A; occurs infinitely often, then [] Ak =
k=1
0.

The sets E (B),B = [] Ak, and E (4;)’s are also related.
k=1

00
Corollary 6.8 If B = [] Ax is convergent, then E (B) C NE (A;) where
k=1

o
the intersection is over all A; that occur in [] Ay infinitely often.
k=1



6.5 Research Notes 105

In the next theorem we use the definition
E(Z) =NE(4)
where the intersection is over all A; € X.

Theorem 6.10 Let X be an LCP-set. If E(A;) = E(X) for all A; € X,
then there is a nonsingular matriz P such that for all A € 33,
0 C

PlAP = [ I B ]

where I is s x s and p(C) < 1.

Proof. Let py,...,ps be a basis for E(X). If A € X, Lemma 6.4 assures
that A has precisely s eigenvalues A, where A = 1, and all other eigenvalues
A satisfy |A] < 1. Extend py,...,ps to p1,...,Pn, a basis for F*, and set
P =[p1,...,pn). Then,

I B
aar[] 2]
for some matrices B and C. Thus,
—1 | I B
P AP = [ 0 C } .

-

Finally, since p(A) <1, p(C) < 1. If p(C) =1, then A has s+ 1 eigen-
values equal to 1, a contradiction. Thus, we have p(C) < 1. m

It is easily seen that X is an LCP-set if and only if
Yp={B:B=P 'AP where A € £}

is an LCP-set. Thus to obtain conditions that assure ¥ is an LCP-set, we
need only obtain such conditions on X p. In case X satisfies the hypothesis,
Corollary 6.1 can be of help.

6.5 Research Notes

In Section 2, Theorem 6.2 is due to Hartfiel (1974), Theorem 6.3 due to
Neumann and Schneider (1999), and Theorem 6.4 due to Daubechies and
Lagarias (1992). Also see Daubechies and Lagarias (2001) to get a view of
the impact of this paper.
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The results given in Section 3 are those of Wedderburn (1964) and Os-
trowski (1973), as indicated there. Section 4 contains results given in
Daubechies and Lagarias (1992).

In related work, Trench (1985 & 1999) provided results on when an infi-

o0

nite product, say [] Ay, is invertible. Holtz (2000) gave conditions for an

k=1
I B

0 Ck

Stanford and Urbano (1994) discussed matrlx sets 3, such that for a given

infinite right product, of the product form H [ , to converge.

x>
vector x, matrices A;, Ay ... can be chosen from ¥ that assure [] Axz =0.
k=1

Artzrouni (1986a) considered fy (4) = H (Uk + Ag), where he defined
U= (U1,U,...) and A = (A1, As,...). He gave conditions that assure

the functions form an equicontinuous family. He then applied this to per-
turbation in matrix products.
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Continuous Convergence

In this chapter we look at LCP-sets in which the initial products essen-
tially determine the infinite product; that is, whatever matrices are used,
beyond some initial product, has little effect on the infinite product. This
continuous convergence is a type of convergence seen in the construction of
curves and fractals as we will see in Chapter 11.

7.1 Sequence Spaces and Convergence

Let ¥ = {Ap,... ,Am—1}, an LCP-set. The associated sequence space is
D={d:d=(dy,ds,...)}
where each d; € {0,... ,m —1}. On D, define
0 (d, J) =m™*

where k is the first index such that di # di. (So d and dj, agree on the
first k — 1 entries.) This 9 is a metric on D.
Given d = (dy,ds, . ..), define the sequence

Ad1 ’ AdzAdl H AdaAdzAdla e
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¥(1)

| : —> x > Y(0)

FIGURE 7.1. A view of .

Since ¥ is an LCP-set, this sequence converges, i.e.

o
[[A44 =4
i=1

for some matrix A.
Define ¢ : D — M,, by

p(d) = A.

If this function is continuous using the metric 8 on D and any norm on
M,,, we say that X is a continuous LCP-set.

Continuity of ¢ can also be described as follows: ¢ is continuous at
d € D if given any ¢ > 0 there is an integer K such that if ¥ > K,

then Ilgo d) - (J) ” <e for all d that differ from d after the k-th digit.

(The infinite product will not change much regardless of the choices of
A; LAg  e.-l)

k+1 k+2

Not all LCP-sets are continuous. For example, if

then ¢ is not continuous at (0,0,...).

Now we use ¢ to define a function ¥ : [0,1] — M,,. (See Figure 7.1.) As
we will see in Chapter 11, such functions can be used to describe special
curves in R2.

If z € [0,1], we can write

S ={I,P},P= [

[N I
N0

z=dm 1 +dym 2+ ..
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the p-adic expansion of 2. Recall that if 0 < j < m, then
dym™t + -+ dsm™ + jm5!
+0m 24 0m 3
=dim 4 +dem ™+ (j - 1)m~5?
+(m-1)m* 24 (m-1)m*3+...
give the same z € [0,1]. Thus, to define
U:[0,1] — M,
by ¥ (z) = ¢ (d), we would need that
w(dy,...,ds,5,0,...) =¢(d1,... ,ds,7—1,m—1,...).

When this occurs, we say that the continuous LCP-set ¥ is real definable.
A theorem that describes when ¥ is real definable follows.

Theorem 7.1 A continuous LCP-set ¥ = {Ay,... ,Am—1} s real defin-
able iff

AP Aj = Ap 1A
forj=1,...m-—1.
Proof. If Ag°A; = A% 1A;_q, then
o(dy...,ds,5,0,...) =p(ds,... ,ds,j~1,m—1,m—1...)

for any s > 1 and all d;,... ,d;. Thus, ¥ is real definable.
Now suppose Y. is real definable. Then

©{70,0,...)=p(F—-1m—-1m-—1...)
for all 4 > 1. Thus,
AP A = A Ay,
as given in the theorem. m

An example may help.

Example 7.1 Let
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and ¥ = {Ao,A1}. In Chapter 11 we will show that ¥ is a continuous
LCP-set. For now, note that

Since

¥ is real definable.

7.2 Canonical Forms

In this section we provide a canonical form for a continuous LCP-set X =
{Ao,... ,Am—1}. We again use the definition

m~—1
E(®) =) E(4)

i=0
where F (A;) is the 1-eigenspace of A;, for all i. We need a lemma.
Lemma 7.1 If ¥ is a continuous LCP-set, then E (X) = E (A;) for all <.
Proof. Since E (X) C E (4;) for all ¢, it is clear that we only need to show
that E (4;) C E(X), for all 4.

For this, let y € E(A;). Then y = A%®y. For any j, define
d® = (4,...,4,4,7,...)
where ¢ occurs & times. Then
d®) — (4,%,...) as k — oo.
Since ¥ is continuous
@ (49) = @ ((i,i,...)) as k= oo,

SO

APAF — AP as k — oo.
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Hence
Jim A4ty = A7y
or
APy =y.
By considering the Jordan form of A;, we see that A;y = y also. Hence,

m—1
y € E(A;) from which it follows that E (X) = [} E(A;) as required. m
i=0

The canonical form follows.

Theorem 7.2 LetE = {Aq,... ,Am-1}. Then X is a continuous LCP-set
iff there is a matriz P such that

-1 _ I Bv,: . I Bi _ —1 4.
PEP—{[O C’i]'[O i]—P A,P}

where p(Z.) < 1, £, = {Cy,... ,Crn-1}.

Proof. Suppose X is a continuous LCP-set. Let P = [py...DsPst1 .- - Pnl,
a nonsingular matrix where p1,...,ps are in E(X) and dimE () = s.
Then for any A; € %,

I B;
ap=r|] 2]
for some B; and C; where I is the s X s identity matrix.

Now, since ¥ is a continuous LCP-set, so is ¥.. Thus for any infinite
o

product [] Cx from ., by Theorem 6.9, its nonzero columns must be
k=1

eigenvectors, belonging to 1, of every C; that occurs infinitely often in the

product. Since 1 is not an eigenvalue of any C;, Lemma 7.1, the columns

of [T Ck must be 0. Thus, by Theorem 6.4, p (%) < 1.
k=1

Conversely, suppose P~ P is as described in the theorem with p (Z,) <
1. Since p(Z;) < 1 by the definition of p (X.), there is a positive integer
and a positive constant y < 1 such that |||, < v for all r-blocks 7 from
Ye.

Now by Corollary 6.1, P~'XP is an LCP-set, and thus so is ¥. Hence,
by Theorem 3.14, ¥ is a product bounded set. We let 8 denote such a
bound.
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Let d = (d;,ds,...) be a sequence in D and € > 0. Let N be a positive
number such that

2611P), [|[P7H, 7™ <.

Letd = (cil, do,.. ) be a sequence such that § (d, cf) <m~"N. Then

oo (),
(L, 2o 1 22) T

k=rN+1 k=rN+1

el 5 1m-eld )Yl 2]

where
bl [ I Sl —~1 = . I S2 —1
Il 4a=P|, O]P 1 Adk—P[O o | P
k=rN+1 - k=rN+1
rN r
and ] A4, =P é ff ]P”l.
k=1 -

Continuing the calculation,

_ 0 S51—52 -1 I S; —1
=I¥lo o }P Plo = [P,
a0 S1-81po1p[0 07 oos
e sl 2
[T S _ I S _ _

< 28|l=|, | Pl |P~2l;
<28yN | Pl [P, <«

Thus, ¥ is a continuous LCP-set. m

As pointed out in the proof of the theorem, we have the following.

Corollary 7.1 If ¥ = {Ao,... ,Am-1} is a continuous LCP-set, then
there is a nonsingular matriz P, such that for any sequence (dy,da,...),
there is a matriz S where

ks I S,
fr[s )
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I the s x s identity matriz and s = dim E ().
Also, we have the following.

Corollary 7.2 If ¥ = {Ao,... ,Am—-1} 18 a continuous LCP-set, then in-
finite products from ¥ converge uniformly and ot a geometric rate.

Proof. Note that in the proof of the theorem, # and « do not depend on
the infinite products considered. ®

As a final corollary, we show when the function ¥, introduced in Section
1, is continuous.

Corollary 7.3 Let ¥ = {Ayg,...,Am-1} be a continuous LCP-set and
suppose % is real definable. Then V¥ is conlinuous.

Proof. We will only prove that ¥ is right side continuous at z, = € [0,1).
Left side continuous is handled in the same way.
Write

c=dm 4dm 4.

We will assume that this expansion does not terminate with repeated m —
1’s. (Recall that any such expansion can be replaced by one with repeated
0’s.)

Let € > 0. Using Corollary 7.2, choosing N, where we have dy+1 # m—1,
and such that if any two infinite products, say B and B have their first k
factors identical, & > N, then

“B - B“ <e (7.1)
Let y € (0,1) where y > z and y — z < m~™~1. Thus, say,
y=dm - +dym™N + Snerm N1 4 §N+2m_N_2 R
Now, let

o0
A = H Adk and A =-- 'A6N+2A5N+1AdN o ‘Ad
k=1

Then, using (7.1),

1

1% @) -2 @)l =4~ 4] <e

which shows that ¥ is right continuous at . m
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7.3 Coefficients and Continuous Convergence

Again, in this section, we use a finite set ¥ = {Ag,... ,Ap-1} of n X 1
matrices. We will show how subspace contraction coeflicients can be used
to show that ¥ is a continuous LCP-set.

To do this, we will assume that ¥ is 7-proper, that is

E(S) = E(4)

for all i. If py,...,ps is a basis for that eigenspace and p1,... ,p, a basis
for F™, then P = [p1,...,pn] is nonsingular. Further,

_ I B -1
nmr[1 2]

where I is s x s, for all A; € .
Let

E=[p1,...,ps
and
W ={z:2F =0}.
Recall from Chapter 2 that

4]
7w (A) = max
w (&) = e

is a subspace contraction coefficient. And, if Ay € ¥ and we have Ax =
I Bk —1
P[ 0 G :'P , then
7 (Ax) = [|Ckll;

where the norm ||-{|; is defined there. Recall that subspace contraction
coefficients are all equivalent, so to prove convergence, it doesn’t matter
which norm is used.

Theorem 7.3 Let ¥ = {Ag,... ,Am—1} be T-proper. The set ¥ is a con-
tinuous LCP-set iff there is a subspace contraction coefficient Tw and a
positive integer v such that Tw (7) < 1 for all r-blocks w from X.

Proof., If ¥ is a continuous LCP-set, using any norm, a subspace con-
traction coefficient Ty can be defined. Since by Theorem 7.2, using the
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x+ By
O

N,
>

FIGURE 7.2. Convergence view of Corollary 7.4.

notation there, 5 (X.) < 1, there is a positive integer » such that ||C||; < 1
T T
for all r-blocks C from X,. Thus, since Ty (H Adk> = || [T Ca,
k=1 k=1

follows that 7w (1) < 1 for all r-blocks from X.

Conversely, suppose Tw is a contraction coefficient such that 7w (7) < 1
for all r-blocks 7 from X. Thus, ||7||; < 1 for all r-blocks # from ¥,. So,
Py (£c) < 1 which shows that p(X.;) < 1. This shows, by using Theorem -
7.2, that ¥ is a continuous LCP-set. =

, 1t

J

We can also prove the following.

Corollary 7.4 If¥ is a T-proper compact matriz set and we have Tw (1) <
T < 1 for all r-blocks m in X, then ¥ is an LCP-set.

A view of the convergence here can be seen by observing that
I B z| | z+By
0 C y |~ Cy ’
x|, i . I B
where y is partitioned compatibly to 0o C I So the y vector con-

tracts toward O while the = vector is changed by some (bounded) matrix
constant of y, namely By. A picture is given in Figure 7.2.
We conclude with the following observation. In the definition

Tw (4) = s Al
z||=1

matrix multiplication is on the right. And, we showed that 7y (A142) <
Tw (A1) Tw (A2), so we are talking about right products. Yet, 7y defined
in this way establishes LCP-sets.
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1 1 1 2
Example 7.2 Let T ={ | § } ][ 13|} setE= [ . ] Then
2 2 3.3

Tw (X) =0 and ¥ is an LCP-set. But, ¥ is not an RCP-set.

7.4 Research Notes

The sequence space and continuity results of Section 1 and the canonical
form work in Section 2 are, basically, as in Daubechies and Lagarias (1992a).
Section 3 used the subspace contraction coefficients results of Hartfiel and
Rothblum (1998).

Applications and further results, especially concerning differentiability of
W, rather than continuity, can be found in Daubechies and Lagarias (1992b)
and Micchelli and Prautzsch (1989).
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Paracontracting

An n X n matrix A is paracontracting or PC with respect to a vector norm

{-l, if
||Az|| < ||z|| whenever Az # x

for all vectors . Note that this implies that ||A|| < 1. We can view
paracontracting by noting that L () = Az is the identity on E (A) but
contracts all other vectors. This is depicted, somewhat, in Figure 8.1.

If there is a positive constant «y such that

| Az]| < |zl — 7 || Az — =]

B(A) A)

L(x)=

FIGURE 8.1. A view of paracontracting.
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for all x, then A is called y-paracontractingor yPC. It is clear that YPC
implies PC. Paracontracting and y-paracontracting sets are sets containing
those kinds of matrices.

In this chapter we show that for a finite set Yof n X nmatrices, paracon-
tracting and ~y-paracontracting are the same. In addition, both paracon-
tracting and 7y-paracontracting sets are LCP-sets.

8.1 Convergence

For any matrix set Yand any vector x1, the sequence

x2 = Ay T

I3 = Ai2 )]

where each A;, € I, is called a trajectory of £. Any finite sequence,
Z1,...,Tpis called an initial piece of the trajectory.

Trajectories are linked to infinite products of matrices by the following
lemma.

Lemma 8.1 A matriz set ¥ is an LCP-set iff all trajectories of ¥ converge.

Proof. The proof follows by noting that if z; = e;, e; the (0, 1)-vector with
a 1 only in the i-th position, then A;, - - A; e; = i-th column of 4;, --- A;,.
So convergence of trajectories implies column convergence of the infinite
products and vice versa. And from this, the lemma follows. =

Using this lemma, we show that for finite ¥, paracontracting sets are
LCP-sets. The converse of this result will be given in Section 2.

Theorem 8.1 If ¥ = {A),... ,An} is a paracontracting set with respect
to ||-||, then ¥ is an LCP-set.

Proof. Let z; be a vector and set
o = Ailxl, g = AizAilxl, cee .

Since ||Ay|| < ||| for ally and all A € %, the sequence is bounded. Actually,
if p > g, then ||z,|| < |jzg]].
Suppose, reindexing if necessary, that A,,..., A, occur as factors in-
oQ

finitely often in [] A;.. Let y1,y2,... be the subsequence of z;,z,,...
k=1
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such that A,y1,A1ys2,... are in the sequence. And from this, take a con-
vergent subsequence, say, yj ,¥j,, - — ¥ Thus, ArYj, A1y, ... — Ary.
Since y is the limit of y;, ,¥j,,.- .,

lyll < 1l Axyse |
for all k so in the limit

lyll < | Azl -

Thus, since A is paracontracting, ||y|| = ||A1y|| and so A;y =y.
We show that A;y =y for i = 1,...,s. For this, suppose A;,...,Aw
satisfies A;y = y for some w, 1 < w < s. Consider a sequence, say with-

out loss of generality A,+171Yj,, Awt+172Yj,, - . . Where the matrices in the
products 7y are from {A;,...,Ay}. The sequence converges to A1y
and thus,
lyll < [[Awtayll-
So ||ly]l = ||Aw+1yl|| and consequently A, .1y = y. From this, it follows
that
Aiy=y
for all 7 < s.
Finally,
lzk — yll = Imi2k — yl|
where 732, = Tk, T a product of Ay, ... , A, and 2z, the vector in y;,, ¥4, - - .
that immediately proceeds zj. (Here k is large enough thatno Asy1,... ,4m
reappears as a factor.) Then,
llze — yll = lIme2e — eyl
< llze —yll-

k
So ||zx —y|| — 0 as k — oco. It follows that <H A,-jx1> converges, and
=1

thus by the lemma, the result follows. =

The example below shows that this result can be false when X is infinite.

Example 8.1 Let

1 0 0 ok _1
Y= 0 0 o :ak=——§k——fork=2,3,...
0 ap O
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Using the vector 2-norm, it is clear that ¥ is a paracontracting set. Now,
leta>0. Then

1 1
asa = 1——2—2- a=a—Za

_ 1Y _ (12 _1
Q3020 = Q3 a—Za = — 3 a 4a

1

>a—Za—§a
1 1
Q3o > Olg (a—za—ga)
() (k)
24 4 8
1 1 1
>a—Za—§a—1—6a
And, in general
1 1
ay aa > a 22& ﬁ-a ---—2ka
()
4\1-3
1
-—50/.

Thus, the sequence {ay, - - - 1) does not converge to 0. Hence, by observing
entries, the sequence

1 0 O 1 0 0
< 0 0 ap j---]0 0 ao >

0 o O 0 a0 O
does not converge, and so X is not an LCP-set.

In the next section, we will show that for finite sets, paracontracting sets,
~-paracontracting sets, and LCP-sets are equivalent.
Concerning continuous LCP-sets, we have the following,.

Theorem 8.2 Let ¥ = {A1,...,An}. Then X is a continuous LCP-set
iff ¥ is a paracontracting set and E () = E (A;) for all i.

Proof. Suppose ¥ is a continuous LCP-set. By Lemma 7.1, E (2) = E (4;)
for all 4. Theorem 7.2 assures a P such that

_ I B;
Al=PlAP= [ 0 C. ] (8.1)
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for all i, where p(Z.) < 1. Thus by a characterization of p(X), Theorem
2.19, there is an induced norm ||-|| and an a < 1 such that

Gl < a
for all <.
Now, partitioning = = [ il ] compatible to Aj, define, for ¢ > 0, a
2

5]

vector norm

ol = |

= €[|z1ly + [lz2fl -
Thus,
i | z1+ Biza
et = || = G |
= €|z + Bixally + [|Ciza|
< ellzlly + (|l Bally + o) [|22]]
where
|| Biz2ll2
B;l|;, = max ———=
“ “b Ta#0 “372”
Take ¢ such that
y=¢|Bill, ta<1
for all i.
Then
Aizlle < ellzilly + v [zl
< ellzlly + [l
= |z -
And equality holds iff ||zg|| = 0, i.e. zo = 0. Thus,
lAizll, < il
with equality iff Az = z. And it follows that ¥’ = {4}, ..., A}, and thus
%, is a paracontracting set. (Use ||z|| = ||[P~ «||,.)

Conversely, suppose ¥ is a paracontracting set, which satisfies E (X) =
E (A;) for all i. Then there is a matrix P such that A, = P~ 4;P has form
given in (8.1). Since E (C;) = {0} for all ¢ and since ¥ is an LCP-set, by

)

Theorem 6.9, [] Cq, = 0 for any sequence (dy,ds,...). Thus, by Theorem
i=1
6.4, p(X.) < 1. Hence, by Theorem 7.2, ¥ is a continuous LCP-set. m
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8.2 Types of Trajectories

We describe three kinds of matrix sets ¥ in terms of the behaviors of the
trajectories determined by them.

Definition 8.1 Let ¥ be a matriz set.

1. The set ¥ is bounded variation stable (BVS) if

oo
> i — @] < o0
i=1

oo
for all trajectories x1,x2,... of ¥. Here, Y ||z;y1 — ;|| is called the
=1

variation of the trajectory zp,z9,....

2. The set ¥ is uniformly bounded variation stable (uniformly BVS) if
there is a constant L such that

0o
D llwisa —@ill < Llal)
i=1

for all trajectories z1,z2,... of .

3. The set 3. has vanishing steps (V) if
lim “-Ti+1 - .’1,‘,” =0
k—o0
for all trajectories x1,x2,... of X.

An immediate consequence of BV follows.

o0
Lemma 8.2 If 3 |lwit1 — x:]| converges, then (x;) converges.
i=1

Proof. Note that (z;) is a Cauchy sequence, and thus it must converge. m

It should be noticed that deciding if 3 has one of the properties, 1 through
3, does not depend on the norm used (due to the equivalence of norms).
And, in addition, if 3 has one of these properties, so does P~1%P for any
nonsingular matrix P.

What we will show in this section is that, if ¥ is finite, then all of prop-
erties, 1 through 3, are equivalent. And for finite ¥, we will show that
LCP-sets, paracontracting sets, and y-paracontracting sets are equivalent
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to properties 1 through 3. To do this, notationally, throughout this section,
we will assume that

Y ={A1,...,An}.
We need a few preliminary results. The first of these allows us to trade
our given problem for one with a special feature. Since
E(X)={z:Aix==zforall 4; € X},
there is a nonsingular matrix P such that, for all ¢,

I B
0 C; } (8.2)
where [ is s X 5, s =dim E (). We let ¥’/ = {4} : A; € X} and prove our
first result for 3'.

A; = P—IA,'P = [

Lemma 8.3 Suppose ¥’ is VS. Then there exist positive constants o and

B such that if ¢ = [ fl) ], partitioned as in (8.2),

a||Cig — q|| < || Ajz — 2| < B[|Cig gl
for all i.

Proof. By equivalence of norms, we can prove this result for ||-||,. For
this, note that

80

s =all, = H[ Cig—aq ]

If Cjq = q and Big # 0, then [ pf’iq ] [ p+2B"q ] [ p+?;Biq ]
is a trajectory of ¥’. This trajectory is not V.S. Thus, we must have that

B;q = 0. This implies that the null space of C; — I is a subset of the null
space of B;. And thus there is a matrix D; such that D; (C; — I) = B;
From this we have that

”[ Ciq - q”‘ HBiQHS"‘H(Cz’—I)q“g)%
< (ID:Z (s = D all3 + 1C: - Dal})

< (123+1)* G - )l

=
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1
Setting 3 = max { (HD¢|I3 + 1) ’ } yields the upper bound. A lower bound

is obviously seen as o =1. =

Since paracontracting, v-paracontracting, LCP, BVS, and uniformly BVS
all imply VS, this lemma allows us to change our problem of showing the
equivalence of the properties, 1 through 3, to the set ¥’ = {C1,... ,Cn}.

A useful tool in actually showing the equivalence results follows.

Lemma 8.4 Suppose X" is a uniformly BVS-set. Then there is an € > 0
such that

r—1
(Jnax i — il 2 € ; Nzirs — il (8.3)
for all initial pieces x1,xa,... ,xp of trajectories x1,xa,... of 1.

Proof. We prove the theorem using that E (3”) = {0}. We precede by
induction on 7, the number of matrices in ¥”. If r = 1, by Lemma 8.2,
p(C1) < 1. Thus, there is a vector norm ||-|| such that ||C;]] < 1. From
this, we have

r—1 p—1
> |Cle - Ci || < DG Gz — |
=1 i=1
< [[Cia1 —
=71 ||C]” 1T1 |-

Setting € =1 — ||C]| yields the result.

Now suppose the theorem holds for all " having r — 1 matrices. Let
Y” be such that it has r matrices. Since %" is a uniformly BVS-set, all
trajectories converge, and thus, by Corollary 3.4, there is a vector norm ||-]|
such that ||C;|| <1 for all . We now use this norm.

Note that (8.3) is true iff it is true for initial pieces of trajectories
Z1,Z2,...,Zp such that 1<r{1<a;c_1 |zi+1 — 2i]| < 1. (This is a matter of

scaling.) Thus we show that there is a number K such that

p—1
K2 |z — o
i=1

where | Jax | lspr —2sf) < 1.
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We argue by contradiction. Thus suppose there is a sequence of initial
pieces 21,23,... , 2}, where j = 1,2,... and such that

i~} . .
2 [t =l

as j — 00. By the uniformly BVS property, lim I‘:z:’lu = 00.
j—o0

Now let ) = X" —{C} for k =1,... ,r. Each X satisfies the induction
hypothesis so there is a number My such that

— 0

p~-1
M2 |lziv — il

i=1
for initial pieces of trajectories of X} with | Jnax 1||a:,-+1—x,-|| <1 for all 4.
<igp—
Let
M > m’?x M.

pi~1
Now since ).
i=1

z! 1= x‘ZI — 00 a8 j — 00, the initial pieces where

pi—1
>

i=1 X X . . . .
tial pieces z7, 23, . .. ,z3. and from them take initial pieces 1,23, ... Ny
(n; < p;) such that

B

‘ > M must use all matrices in ¥”. Take all of these ini-

nj—l
Z |332+1 -zl <M
=1
and
n,- )
Z xl -] ‘ > M.
=1
Note that
7
> lledg —al|l <M +1. (8.4)
i=1
Now let
) z
n=
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and h the limit of a subsequence, say yfl,y{”, .... We show that h is an
eigenvector, belonging to the eigenvalue 1, of each matrix in 3".
Rewriting (8.4) yields

nj

k; k; M+1
> vt — w7 < %
i=1 Hxl l

so we have

i
. ks k;
1 L — .Jl = (. .
Jim ; Vit — 4’| =0 (8.5)
Suppose C; (reindexing if necessary) occurs as the leftmost matrix in
yél,ylf, .... Then from (8.5), h is an eigenvector of C;. Now, of those
products ylll,ylzl oo ;ylf,ylzz, ...3..., take the largest initial products that
contain Cy, say y ,y2.,.... (Soyl, = Ci---Ciyi,yl2, = Cr---Cry?2,
etc.) and such that Cy (reindexing if necessary) occurs as the first factor
in each of the iterates y£,1“+1,y£,2,2+1, .... Then by (8.5), h is an eigen-
vector of Cy. Continuing this procedure, we see that h is an eigenvector,
belonging to the eigenvalue 1, of all matrices in X7, a contradiction. Thus,
the lemma is true for ¥ and the induction concluded. The result follows. =

We now establish the main result in this section.
Theorem 8.3 If X" is VS, then ¥ is uniformly BVS.

Proof. We prove the theorem by induction on r, the number of matrices
in ©.

If " contains exactly one matrix, then p(Cy) < 1. Thus, there is a
vector norm ||-|| such that ||C;|| < 1 and so

oo oo )
D ollwarr =il < DG oz — 2|
i=1 i=1

1

< =[] |C1 = I} flz| -
So, using L = m ||Cy — I|l, we see that ¥ is uniformly BVS.

Suppose the theorem is true for all ¥” containing r — 1 matrices. Now
suppose X" has 7 matrices. Then, since every proper subset of 3" is VS, we
have by the induction hypothesis that these proper subsets are uniformly
BVS.

We now argue several needed smaller results.
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FIGURE 8.2. Sketch for ¢, § view.

1. We show that if € > 0, then there is a § such that if ||z|| > € and
lly — || <6, then ||Ciy — y|| > € for some C;. (C; depends on z.)
Note that if this is false, then taking 6 = %, there is an ||zx| >€
and a yg, ||ye — k|| < 3 such that ||Cjyk —yi|| < £ € for all 5. (See

H Yk _ 1 i
Figure 8.2.) Thus, ”CJ o~ Toe H < %. Now there is a subsequence

Ti T, T T
m,m,... of ﬂ?fﬂ" —Z—szn,... that converges to, say z. Hence,
ﬁ’ ﬂﬂz—”, ... converges to z as well. Thus, since

Tiy Tig

Yir Yix

; — <
Meall Nzallll =

1
k)

we have that C;z = z for all j. This implies F (X") # {0}, a contra-
diction.

2. Let X be a trajectory of . We show that variations of segments
determined by a partition on X converge to 0.

We first need an observation. Let S be the set of all finite sequences
from trajectories, determined from proper subsets of ¥”. Lemma 8.4
assures that there is a constant L such that if zq,..., 2 is any such
sequence, then

t—1
; 241 — 2l < L max lziy1 =l (8.6)
=
Now partition X in segments X; ,,, X, s,,... where

Xik,sk is Tigso oo 1 Tspy i =8k-1+1
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and each X;, ,, is determined by a proper subset of £’ but X;, ;, .,
is not. However, using (8.6), the variation S (X;, s, ), of Xj, s, , con-
verges to 0 as k — co. And using that ¥” is VS on the last term of
the expression, it follows that the variation S (Xi converges to
0 as k — oo as well.

k,ik+1)

We show that X, as given in (2), converges to 0. We do this by
contradiction; thus suppose X does not converge to 0. Then there
is an € > 0 (We can take ¢ < 1.) and a subsequence z;,,x;,,... of
X such that ||z ]| >€ for all k. But now, by (1), thereisa é > 0
such that if ||y — z;,|| < 6, then [|Cjy —y|| > 6€ for some j. Since
by (2) S (Xiyini) — 0 as k — oo, we can take N sufficiently large
so that if K > N, S (X, 5,,,) < 8. Now take an interval ig,ix41
where £ > N and i < jr < ik+1.- Then, every C;occurs in the
trajectory z,,Ci iy, .. 5 Cipyy -+ - Ci iy, and ||z — 5, || < 6 for all
t, ik <t < igy1. Since all matrices in X7 are involved in Xj, ;,.,,
there is a ¢, i < t < 41 such that Cjzy = x4q, and this Cj is
as described in (1). But, ||Cjzs — z¢|| > 6 €, which contradicts that
X is VS. Hence, X must converge to 0. Since X was arbitrary, all
trajectories converge to 0. Thus, there is a vector norm ||-|| such that
IIC;]] < 1 for all ¢ (Corollary 6.4). Since all norms are equivalent, we
can complete the proof using this norm, which we will do. Further,
we use

¢ =max||Cy|

in the remaining work.

Now, we show that X" is uniformly BVS. Since each proper subset of
¥’ is uniformly BVS, there are individual L’s, as given in the definition
for these sets. We let L denote the largest of these numbers, and let

segments as in (2). Then using X;

C =max||C; — I||. Take any trajectory X of " and write X in terms of
j

1,82

i2—1 i2—2

D Mzen —zill =3 lews — @ill + llai, — 2i-1l)

< Lz, || + C s, |
< Lzl + C [l |l
=(L+O) ||z
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since ||C;]| < 1 for all ¢ assures that ||zg41|| < ||lzk|| for all k. And using

12,43
ig—1 ip~2
D lmirn = zill = ) lwis — @l + lei, — zip—ll
=12 =i
< Ljws, || + Cllzs,
S(L+C)gllall.

Continuing, we get
ipr1—1
Y e — @l S (L+0) " |l
1:=’I:k
Finally, putting together
e 1
D llzigs — il = T Lt Ol

=1

Thus ¥” is uniformly BVS. =

Theorem 8.4 The properties vPC and uniformly BVS are equivalent.

Proof. Suppose ¥ is yPC. Then ¥ is PC, and so X is an LCP-set. By
the definition of yPC, there is a norm ||-|| and a v > 0 such that

| Az[| < f|z]| ~ || Az — =]

for all A € ¥ and all z. Then, for any vector x;, the trajectory z1, o,...
satisfies

s k
1 ..
> le¢+1—wil|$—khm Y~ (lzill = lzisall)
=1 7V Emeei
= L tim (o1l — lzxeal)
=7 dim (l |Zg41l]
1
< - (2|lx
< ’7( llz1]l)
2
= — | .
7“ 1l

Hence, X is uniformly BVS.
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Now suppose ¥ is uniformly BVS. Since any trajectory of bounded
variation converges, ¥ is an LCP-set. Thus, by Corollary 3.4, there is a
vector norm ||-||, such that ||A|| <1 forall A € X. Set

oo
|z1llg = SUPZ i1 — 4|
i=1

where the sup is over all trajectories starting at z;. This sup is finite
since ¥ is uniformly BVS. Furthermore, for any vectors y and z, we have
lly + zllg < lylls + ll2]ls;, and for every scalar o, |lay|ly < |o|[|yllg. Using
the definition,

lAz]g < llzllg — [|Az — 2|
for any A € X.
Now define a norm by
1
lelly = 5 lell + 2]
Then, for any A € &

Az, = 5 llAzl] + | Asll

< 3 llell + (el = 1Az = o)

= [lzll, — | Az — =]
< lzlly = 1Az — 2f],

using the equivalence of norms to determine «. Thus, ¥ is an YPC-set, as
required. m

Implications between the various properties of X are given in Figure 8.3.
The unlabeled implications are obvious.

1. This follows from Theorem 8.1.

2. This follows by Theorem 8.3.

3. This follows by Theorem 8.4.

8.3 Research Notes

The notion of paracontracting, as given in Section 1, appeared in Nelson
and Neumann (1987) although Halperin (1962) and Amemiya and Ando
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uniformly BVS ——— 5, BVS

)

LCP =

\&

yPC———— 5 PC

@

FIGURE 8.3. Relationships among the various properties.

(1965) used similar such notions in their work. Theorem 1 was given in
Elsner, Koltracht, and Neumann (1990) while Theorem 2 was shown by
Beyn and Elsner (1997). Beyn and Elsner also introduced the definition of

vy-paracontracting.
The results of Section 2 occurred in Vladimirov, Elsner, and Beyn (2000).

Gurvits (1995) provided similar such work.
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9

Set Convergence

In this chapter we look at convergence, in the Hausdorff metric, of sequences
of sets obtained from considering all possible outcomes in matrix products.

9.1 Bounded Semigroups

Recall, from Chapter 3, that if ¥ is a product bounded subset of n x n
matrices, then the limiting set for (X¥) is
¥ = {A: A is the limit of a matrix subsequence of (£¥)}.

In this section, we give several results about how (Ek> — 3°° in the Haus-
dorff metric. A first such result, obtained by a standard argument, follows.

Theorem 9.1 Let & be a compact subset of n x n matrices. If X2 C %,
o0
then (X¥) converges to () ¥ in the Hausdorff metric.
k=1
Now let
3 = {A € M, : Ais the limit of a matrix sequence of (X*)}.

If = = 31°, we call £°° the strong limiting set of (X*¥). When X% is a
strong limiting set is given below.
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Theorem 9.2 Let X be a compact product bounded subset of M,,. Then
T is the strong limiting set of (£*) iff (X*¥) converges to £°° in the
Hausdor{ff metric.

Proof. For the direct implication suppose that 3 is the strong limiting set
for (X*). We prove that (X*) converges to £* in the Hausdorff metric by
contradiction. Thus, suppose there is an € > 0 such that A (Ek, E°°) >e€
for infinitely many k’s. We look at cases.

Case 1. Suppose 9 (£%,£%°) > ¢ for infinitely many &’s. From these
Y%’s, we can find matrix products g, ,Tk,,... such that

d(m, %) > ¢

for all 7. Since ¥ is product bound, there is a subsequence ;,,mj,,... of
Tk, Tk, that converges, say to m. But by definition, 7 € £°°, and yet we
have that

d (ﬂ" Eoo) > €,

a contradiction.

Case 2. Suppose J (E°°,Ek) > ¢ for infinitely many k’s. In this case
the ©F's yield a sequence g, , Tk,,... in ° such that d (g, Z%) > € for
all i. Since ¥*° is bounded, my,,T,,... has subsequence which converges
to, say, . Thus d (m,£*) > £ for all i sufficiently large. But this means
that  is not the limit of a matrix sequence of (¥¥), a contradiction.

Since both of these cases lead to contradictions, it follows that ©* con-
verges to £°° in the Hausdorff metric.

Conversely, suppose that ©* converges to ¥ in the Hausdorff metric.
We need to show that £ is the strong limiting set of (X¥).

Let m € £*. Since h (*,2%°) — 0 as k — oo, we can find a sequence
71,72, .., taken from X! X2 ..., such that (m) converges to m. Thus,
7 is the limit of a matrix sequence of (X*) and thus 7 € 3%, Hence,
n® C e,

Finally, it is clear that $° C £° and thus £ = $°. Tt follows that
T is the strong limiting set of (Z*). m

For a stronger result, we define, for an LCP-set X, the set L which is the
closure of all of its infinite products, that is,

k=1

(e ¢]
Lz{]_—_[Ai,c 1 A;, € X for all k}
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A Ay
A AgA, A,
Al A2 Al * © ¢

FIGURE 9.1. A possible tree graph of G.

Theorem 9.3 Let & = {A1,...,An} be an LCP-set. Then
y*® =1L

Proof. By definition, L C ¥*°. To show X*° C L, we argue by contradic-
tion.

Suppose 7 € £ where d (7, L) > €, € > 0. Define a graph G with ver-
tices all products A;, - - - A;, such that there are matrices 4;,,... , 4 t>
k, satisfying

Tht1

d(Ail LA ...Ail,ﬂ') <E€

Since 7 € 3°°, there are infinitely many such A;, --- A;,.

If A;,,, -+ A is in G, then so is A;, --- A;,, and we define an arc
(A . Aiy, Agy, - Ay from A, .. Ay to Ag,, ... A;. This defines
a tree, e.g., Figure 9.1. Thus, Sy = {4, ... 4;, : Ai. ... A, € G} is the
k-th strata of G. Since this tree satisfies the hypothesis of Konig’s infin-

o0

ity lemma, (See the Appendix.), there is a product [] A;, such that each
k=1
A, .. Ay € G for all k. Thus,

o0
d (H A, 7r> <e€
k=1
which contradicts that

d(m, L) > ¢

and from this, the theorem follows. =
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Corollary 9.1 If ¥ is a finite subset of M,, and ¥ i¢s an LCP-set, then
(=*) converges to £°° in the Hausdor{f metric.

Proof. Note that since L C B C >, and by the theorem L = X*°, we
have that 3°° = 3°°, from which the result follows from Theorem 3.14 and
Theorem 9.2. =

9.2 Contraction Coefficient Results

We break this section into two subsections.

9.2.1 Birkhoff Coefficient Results

Let ¥ denote a set of n X n row allowable matrices. Let U be a subset of
n x 1 positive vectors. In this section, we see when the sequence (Z*U)
converges, at least in the projective sense.

To do this, recall from Chapter 2 that ST denotes the set of n x 1 positive
stochastic vectors. And for each A € X, recall that wy (z) = Wlszlll’

Yp={wa: A€}, and for any U C S+
YU ={wa(z): ws € Xpand z € U}.

We intend to look at the convergence of these projected sets. If U and
Y are compact, then so is £,U. Thus, since p is a metric on S¥, we can
use it to define the Hausdorff metric h, and thus measure the difference
between two sets, say X,U and X,V of S7.

A lemma in this regard follows.

Lemma 9.1 Let T be a compact set of row allowable n x n matrices. If
U and V are nonempty compact subsets of S*, then

h(EZU, 5, V) <71 (X)R(U,V).
Proof. As in Theorem 2.9. =

For the remaining work, we will assume the following.
1. ¥ is a compact set of row allowable matrices.
2. There is a positive number m such that for any A € &

m < min a;; < maxa;; < 1.
ai; >0
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(Scaling A will not affect projected distances.)

3. There is a positive integer r such that all r-blocks from ¥ are positive.

By (3) it is clear that each matrix in ¥ has nonzero columns. Thus for
any A € %, wy is defined on S. And

T,5C S
T25CESCS.

Thus, we can define
L={()xks
k=1

a compact set of positive stochastic vectors. The following is a rather stan-
dard argument.

Lemma 9.2 The sequence ($£S) converges to L in the Hausdorff metric.
Using this lemma, we have the following.
Lemma 9.3 h(3,L,L)=0.
Proof. Using Lemma 9.1, for any k£ > 1 we get
h(SpL,L) < h (3,L,2ES) + h (2kS, L)
<h(L,ZE1S) +h(ZES, L).

Thus, by the previous lemma, taking the limit as k — oo, we have the
equation

h(SpL, L) =0,

the desired result. =

Theorem 9.4 Let U be a compact subset of S and X, as described in 1
through 8. If g (7) < 7, for all r-blocks w of T, then

L) < AW, I).

Thus, if T, < 1, E’;U — L with geometric rate.
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Proof. Using Lemma 9.1 and Lemma 9.3,

h(SkU,L) = h (50U, 55 L)
=h(Z, (5770), 5, (577L))
< 7.k (ZETU,SETL)

<rHr,L).

This proves the theorem. =

9.2.2 Subspace Coefficient Results

Let 3 be a compact, T-proper product bounded set of n x n matrices. Since
¥ is product bounded by Theorem 3.12, there is a vector norm ||-|| such that
|A|| €£1forall A€ 3. Let 7w be the corresponding subspace contractive
coeflicient.

Let zg € F™ and G = xgF. Then

zo+W={xe F":zE =G}.
We suppose S C g + W such that
S C 8.
(For example, S = {z : ||z|| < 1}.) Then
Ss?csscs
and we define
L=nszk.

Then mimicking the results of the previous section, we end with the fol-
lowing.

Theorem 9.5 Let U be a compact subset of S. If Tw (w) < 7, for all
r-blocks T of ¥ and 7, < 1, then USF — L at a geometric rate.

A common situation in which this theorem arises is when we have F = e,
3 the set of stochastic matrices, and S the set of stochastic vectors.

We conclude this section with a result which is a bit stronger than the
previous one.
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Theorem 9.6 If T (") < 1 for some integer r, then £*¥ — T at a
geometric rate.

Proof. Define W = {B € M,, : BE =0} and let
S={BeI+W:|B|<1}.
Then S C § and L follows. Now use the 1-norm so that
IBAll, < Tw (4) 1Bl

for all B € S, and mimic the previous results. Finally, use U = {I} and
the equivalence of norms. m

9.3 Convexity in Convergence

To compute *U and E;ﬁU , it is helpful to know when these sets are convex.
In these cases, we can compute the sets by computing their vertices. Thus
in this section, we discuss when L*U and 2’;U are convex.

A matrix set X is column convex if whenever A,B € X, the matrix
(@101 + Biby, ... yanan + B,by] of convex sums of corresponding columns,
isin ¥. Column convex sets can map convex sets to convex sets.

Theorem 9.7 Let ¥ be a column convex matriz set of row allowable ma-
trices. If U is a convex set of nonnegative vectors, then XU is a convex
set of nonnegative vectors.

Proof. Let Az, By € XU where A,B € ¥ and z,y € U. We show the
convex sum aAzxz + By € 2U.
Define

K = (aAX + BBY) (X + BY)" +R

where X = diag(z1,...,z,), Y = diag (y1,.--,¥n), (aX +8Y)" the
generalized inverse of X + 8Y, and R such that

oo — 4 0if az;+By; >0
7| a4 otherwise.

Using that a;, b; denote the j-th columns of A and B, respectively, the
j-th column of K is
aa;x; + ,Bbjyj _ ax; ,Byj

a; + b;
ox; + PBy; ax; + [Fy; J oz + By; 7
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if az; + By; > 0 and a; if az; + Py; =0. Thus, K € ¥. Furthermore, for
e=(1,1,...,1),

K(az+By)=K(aX +8Y)e
= (aAX +BBY)e
= aAz + BBy

which is in ZU. From this, the result follows. m

Applying the theorem more than once yields the following corollary.

Corollary 9.2 Using the hypotheses of the theorem, £*U is conver for all
kE>1.

The companion result for 3, uses the following lemma.

Lemma 9.4 IfU is a convex subset of nonnegative vectors, none of which
are zero, then Up = {W:T tu€ U} is a convex subset of stochastic vectors.
1

Proof. Let H;I-I’ m € Up where 2,y € U. Then any convex sum ax+0y €
1
aw—{-gy
U. Thus, o35, € Up and

az + By allzf, = Bligll, v

+
oz + Byll;  llax+ Byl llzll, * llez+ Byl vl
is a convex sum of ﬂfn-l—, m € Up. And when a = 0, the vector is ”—yym,

while when 8 = 0, it is ﬁ Thus, we see that all vectors between ﬁ
1 1
and ¥- are in U,. So U, is convex. m
My,

As a consequence, we have the following theorem.

Theorem 9.8 Let ¥ be a column convex matriz set of row allowable ma-
trices. If U is a convez set of positive stochastic vectors, then E’;U is a
convex set.

Proof. Using the previous corollary and lemma and that E’;U is the pro-
jection of X*U to norm 1 vectors, since TFU is convex, so is E’;U . u

It is known (Eggleston, 1969) and easily shown, that the limit of convex
sets, assuming the limit exists, is itself convex. Thus, the previous two
theorems can be extended to show %5°U is convex.

Actually, we would like to know about the vertices of these sets. The

following theorem is easily shown.
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Xy

X3

X3

FIGURE 9.2. A view of 2U.

Theorem 9.9 If ¥ = convex{Ai,...,As} is a column convex matriz set
of nonnegative matrices and U = convex {z1,... ,2:} a set of nonnegative
vectors, then

YU =convex {A;z; : 1 <i<s,1<j<t}.

Not all vectors A;x; need be vertices of XU. The appearance may be
as it appears in Figure 9.2. The more intricate theorem to prove uses the
following lemma.

Lemma 9.5 Let U be a subset of nonnegative, nonzero, vectors. If
U = convex {z1,... , 2}

then

U, —convex{ o1 Tt }
i lzally” ™ lleelly S

Proof. Let x = a1z + - -+ + a1 be a convex sum. Then

Zt: QT
T — k=1
llzlly lllly
_ ak l|lzell, | _zx
—;< il ) lleell,”

t

; > acleel, Y — =l — 1 z_
Since k=1( ER ) = =l = 1, it follows that ToT; is & convex sum of
vectors listed in U,. That Uy is convex follows from Lemma 9.4. m

The theorem follows.
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FIGURE 9.3. A projected symplex.

Theorem 9.10 Let 3 = convex {A4;,... ,As}, a column conver matriz set
of row allowable matrices, and U = convex {1, ... , L+ }, containing positive
vectors. Then

AiCL‘j

»U) =convex{———:1§i§s,1§j§t}.
=0, e,

Proof. The proof is an application of the previous theorem and lemma. =

We give a view of this theorem in Figure 9.3.

9.4 Research Notes

Section 1 extends the work of Chapter 3 to sets. Section 2 is basically con-
tained in Seneta (1984) which, in turn, used previously developed material
from Seneta and Sheridan (1981).

Computing, or estimating, the limiting set can be a problem. In Chap-
ters 11 and 13, we show how, in some cases, this can be done. In Hartfiel
(1995,1996), iterative techniques for finding component bounds on the vec-
tors in the limiting set are given. Both papers, however, are for special
matrix sets. There is no known method for finding component bounds in
general.

Much of the work in Section 4 generalizes that of Hartfiel (1998).



10

Perturbations in Matrix Sets

Let T and £ be compact subsets of Mp. In this chapter we show conditions
assuring that when ¥ and Y. are close, so are XX and YX*°.

10.1 Subspace Coefficient Results

Let 3 and 3 be product bounded compact subsets of M,,. We suppose that
¥ and 3 are -proper, E (Z)=F (f]), and that Ty is a corresponding
contraction coeflicient as described in Section 7.3. Also, we suppose that
S C F™ such that

1. § C z¢ + W for some vector zy,
2. S CS, 85 CS.
Our perturbation result of this section uses the following lemma.

Lemma 10.1 Let 4,, Ao, ... and By, By, ... be sequences of matrices taken
from T and ¥, respectively. Suppose Tw (Ax) <7 and ||Ax — Bg|| <€ for
all k. Then

lwAs - Ak —yBy - Bill < 7@ —yll+ (75 4o+ 1) Be
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where z,y € S and B =sup |lyB1 - - By
2

Proof. The proof is done by induction on k.
Ifk=1,

lzAr — yBi|l < |lzA; — y Al + [lyAL — yBi||
< 7w (A1) ||z =yl + Iyl | A1 — Bl
< 7llz -yl + Be.
Assume the result holds for k£ — 1 matrices. Then
|zAs--- Ay —yBi --- By|| <|lzA; - - Ag—1Ak—yBi -+ - Be—14k||
+ |lyBy - Br—1Ax—yB1 -+ - By_1Byl|
< 7w (Ag) ||zAr - Ak—1—yB1 - - Be—1]|
+lyBi - - - Be-1ll l|Ax — Bkl
< T|xAy--- Ag—1—yBi-- - Br—1||+Pe,

and by the induction hypothesis, this leads to
<t (o -yl + (P24 4+ 1) Be) + Be
= F g~ g+ (P 4+ 1) B

The perturbation result follows. =

Theorem 10.1 Suppose Tw (X) < 7 and Tw (f)) <7. Let X and Y be
compact subsets of F™ such that X,Y C S. Then

1oh(XSRYSF) < R(XY) + (T’c-1+---+1)h(2,2) B, where
B = max (sup ||zAs - - - A;|| ,sup |lyB1 - - - Bi||) and the sup is over all
ze€X,yeY, and all Ay,... |A;€X and Br;+r; B; €Y.

If T <1, then
2. h(XT=YE™) < fioh (z.%)8.
Proof. To prove (1), let A;--- Ay € ¥ and z € X. Take y € Y such that

lz —y|l < h(X,Y). Take By,... , By in 3 such that ||4; — B;|| < A (z, 2)
for all . Then, by the previous lemma,

|zAs - Ag—yBy - Byl|<t* ||z — ylH(r* 4 - 1) b (2, z) 8.
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So,

5 (sz,Yﬁ:k) <TER(X,Y) + (PF 4 4 D) R (22) 8.
Similarly,

6 (VS XTF) < R (Y, X) + (P71 4+ 1) 1 (5,5) B.
Thus,

B (X4, YSF) < R(X,Y) 4 (7 4+ 1) (z.2)8,

which yields (1). A
For (2), Theorem 9.6 assures that X and ¥*° exist. Thus, (2) is ob-
tained from (1) by calculating the limit as k — co. &

For r-blocks, we have the following.

Corollary 10.1 Suppose 7w (X7) < 7 and Tw 3r) < 7. Let X and
Y be compact subsets of F™ such that X,Y CS. Then

. E B .
h (XE’“,YZ’“) < Myy + (TLT] R 1) h (E’",E’) 8,
where Mxy = Jmax h (X ¥, Yf)t) and B as given in the theorem.

Proof. The proof mimics that of the theorem where we block the products.
The blocking of the products can be done as in the example

Ay---Ay=A;---AsB;--- B,

where k=rq+s. m

A consequence of this theorem is that we can approximate ¥ by a 2A°°,
where ¥ is finite. And, in doing this our finite results can be used on X.

10.2 Birkhoff Coefficient Results

Let X be a matrix set of row allowable matrices. In this section, we develop
some perturbation results for £,. Before doing this, we show several basic
results about projection maps.

Equality of two projective maps is given in the following lemma.
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Lemma 10.2 For projective maps, wa = wg iff p(Az, Bz) = 0 for all
ze ST,

Proof. Suppose
wa (z) = wp (v)

for all z € S*. Then

Az Bz

|Az|,  |B=|;
and

p(Az,Bz)=0

for all z € ST.
Conversely, suppose p (Az, Bx) =0 for all z € $*. Then

Az = ¢(z) Bz
where ¢ (z) is a constant for each . Thus

Az — (@) I

||A-’”||1

ool

z||l, Bz
Azl || Bell,”

Since A2 and 2% are stochastic vectors
Az, 1Bzl ’

o IBall
P=e@ g,
It follows that
Az _Ba
[Azll, ~ [IBzl,

or

wa (z) = wp (z).

Hence wg =wp. m

An example follows.


file:////M/i
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Example 10.1 We can show by direct calculation, if A = [ } }] and
1 2 . 11 1 2
Bz[l 2J,thenwA:wB,whzlezfA=[1 2]andB=[1 4],

then wa # wg.
Let ¥ be a compact set of row allowable n x n matrices such that if

A, B € X, then for corresponding signum matrices we have A*=B*, ie. 4
and B have the same O-pattern. Define

Y, ={ws: A€ X}.

If wa,wp € 3p, then

Ax
B (_’nAznl)

(],

wp o wy ()

_ BAx
|BAz||,’
a projective map. And in general,
A - A
wy, O---owy, (T) =777
g : (®) [ As, -~ A2l

We define a metric on X, as follows. If wa,wp € ¥p, then

p(wa,wp) = sup p(Az,Bz).
zes+

A formula for p in terms of the entries of A and B follows.

Theorem 10.2 For projective maps w4 and wg, we have that p (wa, wp) =
max hl airbz’s+aisb1‘r

max I g e where the quotient contains only positive entries.

Proof. By definition,

p(wa,wp) = supp (Az, Br)
x>0

a;x bz
= supmaxIn -
>0 ©J b,;x ajx
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where ag, by are the k-th rows of A, B, respectively. Now

a;x b anZ1+ - -+ Qin®n b1Z1 + - + binTn

bix a;x binxzi + -+ binTy @j12T1 + - + GjnTn
Z (airbjs + aisbj'r) TyrTs
T,5

El

- E (bi'rajs + bisajr) TrZs
7,8

airbis + aisbir
< max Zarrgs T s v
s birajs + bisajr

That equality holds is seen from this inequality by letting z, = s =t and
z; = } for i #r,s and letting t — co. m

For intervals of matrices in ¥, p (w4, wp) can be bounded as follows.
Corollary 10.2 If
A—eA<B<A+€A
for some € >0 and A—e A, A+eA €, then

1
p(wa,ws) Slnl-i_6

_6'

Proof. By the theorem,

p(wa,wp) = maxIn Birbjs + Qisbjr
wims  bir@js + bigjy
< maxIn air (14 €) ajs + ais (1 + €) ajr
4,7,7,8 (1 - 6) AirQjs + (1 - 6) A;5Qjr
(1+¢€)

=

(1-¢’

the desired result. m

Actually, (X,,p) is a complete metric space which is also compact.
Theorem 10.3 The metric space (Xp,p) is complete and compact.

Proof. To show that X, is complete, let w4, ,wa,,... be a Cauchy sequence
in ¥p. Since Ay, Ag,... arein ¥, and ¥ is compact, there is a subsequence
Ai,, Aiy, . .. of this sequence that converges to, say A € 3. So by Theorem

10.2, p (wAik,wA) — 0 as k— oo.
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We now show that p(w4,,ws) — 0 as ¢ — oo, thus showing (X,,p) is
complete. For this, let € > 0. Then there is an N > 0, such that if ¢, > N,

D ('LUA“'LUA]-) < E.

Thus, if i > N,

b (wAik)wAj> <E€,
and so, letting k& — o0, yields

p(wa,wa;) <e

But, this says that wa; — w4 as j — oo which is what we want to show.
To show that ¥, is also compact is done in the same way. m

We now give the perturbation result of this section. Mimicking the proof
of Theorem 10.1, we can prove the following perturbation results.

Theorem 10.4 Let & and 3 be compact subsets of positive matrices in
M,. Suppose Tp(X) < T and Tp (2) < 7. Let X and Y be compact
subsets of positive stochastic vectors. Then, using p as the metric for h,
L h(TEX,B5Y) S TRR(X,Y) + (150 e+ 1) B (T, 5 ).
And if T < 1,
2. h (L,Ji) <L ()3,,,2,,) and by definition L= lim X and L=
lim Sty
k—o0
Converting to an r-block result, we have the following.

Corollary 10.3 Let £ and ¥ be compact subsets of row allowable ma-
trices in Mp. Suppose T (X") < T, TB (2r) <7p. Let X and Y be

. k
compact subsets of stochastic vectors. Then, h (E’;X , EIEY) < TL’]M xy+

(T[f]—l +oe 1) h (E;, f};) where Mxy :Olgfgcrh (E;X, i)ﬁ,Y).

Computing 75 (XZF), especially when k is large, can be a problem. If
there is a B € ¥ such that the matrices in £ have pattern B and

B<A
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for all A € %, then some bound on 75 (£¥) can be found somewhat easily.
To see this, let

ai; — bij

RE = max =Y
A€z b;s
bi;>0 J

the largest relative error in the entries of B and the A’s in 3. Then we
have the following.

Theorem 10.5 If B* > 0, then

rp (i Ar) < 1_@ Al
1+ mﬂ/cp(Bk)
Proof. Note that
B<A;<B+(RE)B
for all ¢, and
B*< Ay ---A;, <(1+RE)"B*

for all 4y,...,ix. Thenif A= A;, --- A;, and @ (A) = 252

T arjaqs’?
(k) (k)
b .
1+ RE)*"p® = (1+ RE)

rj Yis

p(4) >

%P (Bk) .
So,

1- Vo) _ 1~ Grmep Ve (BY)

7-B(Jq): S )
1++/p(A) 1+<—1+—,;E)—k © (B¥)

the desired result. m

10.3 Research Notes

The work in this chapter is new. To some extent, the chapter contains
theoretical results which parallel those in Hartfiel (1998).
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Graphics

This chapter shows how to use infinite products of matrices to draw curves
and construct fractals. Before looking at some graphics, we provide a
section developing the techniques we use.

11.1 Maps

In this section, we outline the general methods we use to obtain the graphics
in this chapter.

Mathematically, we take an n x k matrix X (corresponding to points in
R?) and a finite set & of n X n matrices. To obtain the graphic, we need to
compute X and plot the corresponding points in R2.

We will use the subspace coefficient 7y to show that the sequence <E’°>
converges in the Hausdorff metric. To compute the limiting set, 3*° X, it
will be sufficient to compute ¥°X for a ‘reasonable’ s.

To compute ° X, we could proceed directly, computing XX, then ¥ (XX,
and ¥ (£2X),...,T (£°71X). However, %X can contain |S|* | X| matri-
ces, and this number can become very large rapidly. Keeping a record of
these matrices thus becomes a serious computational problem.
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To overcome this problem, we need a method for computing ¥°X which
doesn’t require our keeping track of lots of matrices. A method for doing
this is a Monte Carlo method, which we will describe below.

Monte-Carlo Method

1. Randomly (uniform distribution) choose a matrix in X, say Xj.

2. Randomly (uniform distribution) choose a matrix in %, say A;. Com-
pute A;Xj;.

3. If A;, - -+ A;, X; has been computed, randomly (uniform distribution)
choose a matrix, say A;,,, in . Compute A;,,, A;, -+ A;, X;.

4. Continue until A;, - - - A;, X; is found. Plot in R2.

5. Return to (1) for the next run. Repeat sufficiently many times. (This
may require some experimenting.)

11.2 Graphing Curves
In this section, we look at two examples of graphing curves.
Example 11.1 We look at constructing a curve generated by a corner cut-

ting method. This method replaces a corner as in Figure 11.1 by less sharp
corners as shoun in Figure 11.2. This is equivalent to replacing AABC

FIGURE 11.1. A corner.

with AADE and AEFC. This corner cutting can then be continued on
polygonal lines (or triangles) ADE and EFC. In the limit, we have some
curve as in Figure 11.5.
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OB

Qm

FIGURE 11.2. A corner cut into two corners.

A C

FIGURE 11.3. A curve generated by corner cutting.
Mathematically, this amounts to taking points A (z1,y1), B (x2,y2), and
C (zs,y3) and generating
A=A
D=5A+ 5B
E = 25A+ .5B+ .25C

and

E = .25A+ 5B + .25C
F=.5B+.5C
C=2C.

This can be achieved by matriz multiplication

1 N 1 W
Ay | 2 y2 |, A2 z2 w2
T3 Ys r3 Ys

where
1 0 O 25 .5 .25
A = bS5 5 0 , Ap= 0 5 .5
25 .5 .25 0 0 1



154 11. Graphics

And, continuing we have

A1A1P, Ay AP, A1 Ao P, Ax Ao P (11.1)
1 W 0
where P= | z2 2 |, etc. The products ] A, P are plotted to give the
k=1
3 Y3

points on the curve.
Calculating, we can see that 3 = {A1, A2} is a T-proper set with

1
E=1]1
1

The corresponding subspace contraction coefficient satisfies
TW (Al) =.75 and ™wW (A2) = .75,

using the 1-norm. Thus by Theorem 9.6, (ZIkP) converges.

00
Given a corner P= | 1 1 |, we apply the corner cutting technique 10
2 0

times. Thus, we compute L1°P by Monte-Carlo where the number of runs
(Step 5) is 5,000. The graph shown in Figure 11.4 was the result.

Example 11.2 In this example, we look at replacing a segment with a
polygonal line introducing corners. If the segment is AB, as shown in
Figure 11.5 we partition it into three equal parts and replace the center
segment by a corner labeled CDE, with sides congruent to the replaced
segment. See Figure 11.6.

Given A(z1,11) and B (x2,y2), we see that

2 1 2 1 2 1
c (EA + §B) =C (§w1 taTngit §y2> :

Thus, listing coordinates columnuwise, if

wl5]-[¢]

then

Ay

I
QWi O =
WO = O
Owi= O O
WO O O
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Curve from comer cutting
1.2{
1
0,3} . //ﬁ\
: e ™~
e
0.6+ e
/
w
% 04l
9 04 /
0.2~// \
of
0.2
0 0.2 04 0.6 08 1 1.2 14 16 1.8 2
X axis

FIGURE 11.4. Curve from corner cutting.

o

A

O
B

FIGURE 11.5. A segment,.

To find CD, we use a vector approach to get

D=A+x

=D<3

1
Thus,

—.’L‘1+\/:§

2 6

where

b
[X)

Il

(B—A)+

YL+ Se -

1

3

s
CO.S 3"
— Sin

sin ’?’r ]
3 Cos 3
V3 1

Y2, _‘E'wl + §y1 +

(B—A)[

1 V3

3
l/—_wz + Y2

2 6 2

6

o
o Q

b
[

Nl= Ol
N
[ W= O
%

= ofSpo ©
mi&wl»—* Owl=

) .

155
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D
A c E
FIGURE 11.6. A corner induced by the segment.
Continuing,
A D
w[5)=[ %]
for
1 ¥ 1 3
B 1 oA 7
Az = £ 2z g 2
s 0 35 O
1 2
0 3 0 3
and
A E
w|5]-15]
for
5020
A 0 1 0 2
1o 010
0 001

The set ¥ = {Aq, Az, As, Ay} is a T-proper set and

O el O =
O O

Thus,

W = span {ul, ’11.2}
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where u; = (1,0,—1,0) and ug = (0,1,0,—1). The unit sphere in the
1-norm is

1 1
convex {iiul’ :I:-2-u2} .
Hence, using Theorem 2.12,

i%'UQA

)

Tw (A) = max{“ﬂclulA
2 1

J

= max {% lla1 — asl|, ,% llag — ‘13”1}

where ay, s the k-th row of A.
Applying our formula to X, we get
_2
=3
Thus, by Theorem 9.6, °°P exists. To compute and graph this set, we
1

Tw (2)

use L°P where P = ; , and we take s = 6. The result of applying the

1
Monte-Carlo techniques, with 8,000 runs, is shown in Figure 11.7.
Of course, other polygonal lines can be used to replace a segment, e.g.,
see Figure 11.8.

11.3 Graphing Fractals

In this section, we use products of matrices to produce fractals. We look
at two examples.

Example 11.3 To construct a Cantor set, we can note that if [ Z ] is an

interval on the real line, then for

1 0] a | ] a
A: =
: [% 1 ’Al[b %a+lb]

gives the first % of the interval and for

’A2|:Z = %a+%b]

Owi—
= COIN

o
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Curve from comer inducing

1.5+
o
é m
>
1t o«
0.5 :
0.5 1 1.5 2 25

X axis

FIGURE 11.7. Curve from corner inducing.

FIGURE 11.8. Square induced by segment.

gives the second third of the interval. See Figure 11.9. Thus, graphing all

products X°° [ Z’ ] gives the % Cantor set.

Calculation shows ¥ = {A1, A} is a T-proper set where,
1
o [ ! ] .

1
Tw (A) = 3 Hggxllai —ajll;

So
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a ga-{-i la+2b

3 3 3 3

FIGURE 11.9. One third of segment removed.

where ay, is the k-th row of A. Thus
1
Tw (X) = 3

and so X [ Z ] erists.
1

To see a picture, we computed ¥° where s = 4.

0
we obtained the graph in Figure 11.10.

With 1,000 runs,

Cantor set

y axis
[~
2

0.5 0 0.5 1
X axis

15

FIGURE 11.10. The beginning of the Cantor set.

The i Canter set, etc. can also be obtained in this manner.

Example 11.4 To obtain a Sierpenski triangle, we take three points which

form a triangle. See Figure 11.11.

We replace this triangle (See Figure 11.12.) with three smaller ones,

AADF, ADBE, AFEC.
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FIGURE 11.11. A triangle.

If A(zy,yu), Blzr,yr), C(zRr,yr) are given, we obtain the coordi-

nates of A, D, F as
A A
A} B|l=|D
C F

or numerically,

1. 0 0 0 0 071 zv] [ 2y T
01 000O0|{w yu
031000 | _ %xu+le
0 30300 v | 7| syut gL
100010 TR 30U T 5%R
10 3 000 5]|lvr] | syu+syr ]
And
(10 1 0 0 0]
0204300
A 001000
*"looo100
0030430
(000 5 0 §]
provides ADBE, while
(200 0 % 0]
0 0001
0010310
= 2 2
As 0003 014
000010
(00000 1]
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B E C

FIGURE 11.12. One triangle removed.

provides AFEC.
The set ¥ = {41, Az, As} is a T-proper set with

O = O = O -
Ok OO

This yields that

1 llax — asll; ,lla1 — asl; , llas — as|
Tw (4) = = max v 1 Los.
w(4) =3 { laz = aaly , llaz — asll; » las — asll;

Thus,

Tw (X)) = %

This assures us that (Z"’P} converges.
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Using P = , 8§ =6, and 3,000 runs, we obtained the picture

owooar—t

given in Figure 11.13. Other triangles or polygonal shapes can also be used

Sierpenski triangle

0 02 04 06 0B 1 12 14 16 18 2
X axis

FIGURE 11.13. Sierpenski triangle.

in this setting.

11.4 Research Notes

The graphing method outlined in Section 1 is well known, although not
particularly used in the past in this setting. Barnsley (1988) provided a
different iterative method for graphing fractals; however, some of that work,
on designing fractals, is patented.

Additional work for Section 2 can be found in Micchelli and Prautzsch
(1989) and Daubechies and Lagarias (1992). References there are also
helpful.

For Section 3, Diaconis and Shahshani (1986), and the references there,
are useful.
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11.5 MATLAB Codes

Curve from Corner Cutting

Al=[1 0 0;.5 .5 0;.25 .5 .25];
A2=[.25 .5 .25;0 .5 .5;0 0 1];
axis equal
xlabel(’x axis’)
ylabel(’y axis’)
title(’Curve from corner cutting’)
hold on
for k=1:5000
P=[0,0;1,sqrt(3);2,0];
for i=1:10
G=rand;
if G<=1/2
P=A1%P;
else
P=A2%P;
end
end
w=[P(1,1) P(2,1) P(,1) P{,1];
z=[P(1,2) P(2,2) P(3,2) P(1,2)];
plot(w,z)
end

Contraction Coefficient

A=[1 0 0;.5 .5 0;.25 .5 .25];
T=0;
for i=1:3
for j=1:3
M=.5*norm(A(i,:)’~A(j,:)’,1);
T=max ((T,M]);
end
end
T

Curve from Corner Inducing

Ai=[1 0 00;0 1 003;2/3 0 1/3 0;0 2/3 0 1/3];
A2=[2/3 0 1/3 0;0 2/3 0 1/3;1/2 sqrt(3)/6 1/2
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~-sqrt(3)/6;-sqrt(3)/6 1/2 sqrt(3)/6 1/2]1;
A3=[1/2 sqrt(3)/6 1/2 -sqrt(3)/6;-sqrt(3)/6 1/2
sqrt(3)/6 1/2;1/3 0 2/3 0;0 1/3 0 2/3];
A4={1/3 0 2/3 0;0 1/3 02/3;0 0 1 0;00 0 1]1;
hold on
axis [.5 2.5 0.5 2.5]
axis equal
xlabel(’x axis’)
ylabel(’y axis’)
title(’Curve from corner inducing’)
for k=1:3000
P=[1;1;2;1];
for i=1:10
=rand;
if G<1/4
P=A1xP;
end
if G<=1/4&G<1/2
P=A2%P;
end
if G>=3/4
P=A3%*P;
end
if G>=3/4
P=A4x*P;
end
end
plot(P(1),P(2))
plot(P(3),P(4))
end

Cantor Set

Al=[1 0;2/3 1/3];
A2=[1/3 2/3;0 1];
axis [~.5 1.5 -.5 .5]
axis equal

xlabel(’x axis’)
ylabel(’y axis?’)
title(’Cantor set’)
hold on
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for k=1:1000
x=[1;0];
for i=1:4
G=rand;
if G<.5, B=Al;
else, B=A2;
end
x=B*x;
end
plot(x(1),0,°.?)
plot(x(2),0,°.?)
end

Serpenski Triangle

A1=[1 00000;010000;.50 .5000;
0.50.500;.5000 .50;0.5000.
A2=[.5 0 500 0;0.50.500;0010 O
00010 0;00 .50 .50;000 .50 .53;
A3=[.5000 .50;0 . 5000 .5;00 .50 .50
000 .50 .5;000010;00000 1];
axis equal
xlabel(°x axis’)
ylabel(’y axis’)
title(’Serpenski triangle’)
hold on
plot(0,0)
plot(1,sqrt(3))
plot(2,0)
for k=1:3000
x=[0;0;1;sqrt(3);2;0];
for i=1:5
G=rand;
if G<1/3
x=A1%x;
elseif G>=1/3%G<2/3
=A2%Xx;
else
x=A3%*x;

(]
—

0;

0
0

end
end
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w=(x(1),x(3),x(5),x(1));
z=(x(2),x(4),x(6),x(2));
fill(w,z,’k’)

end
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Slowly Varying Products

When finite products A1, A2A4,,... , Ak ... A2 A, vary slowly, some terms in
k

the trajectory < I Aiz> can sometimes be estimated by using the current
=1
matrix, or recently past matrices. This chapter provides results of this

type.

12.1 Convergence to 0

In this section, we give conditions on matrices that assure slowly vary-
ing products converge to 0. The theorem will require several preliminary
results.

We consider the equation

A*SA - S =-1I, (12.1)
where A is an n X n matrix and I the n x n identity matrix.
Lemma 12.1 If p(A) < 1, then a solution S to (12.1) ezists.

Proof. Define

S=o ¢ (47— 11)"

=5— (A—zD)"'z74dz
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where the integration is over the unit circle.
To show that S satisfies (12.1), we use the identities

(A-zD'A = I+z2(A-2D7"
1 1

A (A —27) = I+27' (A -27) .
Then
A*SA= % f A (A =2 )T (A - 2) T A e
- %f 1427 (4= )] [T+ 2(A-2D) 7] o1
- % f (D @z ) do 4 S
= I+2—:ﬁf(A—zI)‘1 dz+—2% f (A*z—I)"'z71dz+S.

Now, since f(A) = 5= ¢ f(2) (Iz— A)“1 dz for any analytic function f,
taking f(z) =1, we have

1 o,

Changing the variable z to 2~ and replacing A by A* yields

2—% (A*z2— D)l 27tz = -1
Plugging these in, we get
A*SA=5-1
or
A*SA—-§=-1I,

which proves the lemma. m

We now need a few bounds on the eigenvalues of S. To get these bounds,
we note that for the parametrization
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or setting G = A — €I,

_l " —~1\* -1
S=5-| (G77) G db,

-

which is Hermitian.
To show that S is also positive definite, note that (G~1)" G~ is positive
definite. Thus, if z # 0, z* (G™1)" G~'z > 0 for all § and so

* __i N * —1\* -1
xS’x—-Zw/_ﬂa: (G )G’ zdf > 0.

Hence, S is positive definite.

The bounds are on the largest eigenvalue p(S) and the smallest eigen-
value o (S) of S follow.

Lemma 12.2 If p(A) < 1, then
1. p(S) < (JAll, + ™72/ (1 = p(4)™
2.0(8)>1.

Proof. For (1), since G = A — €I, then, using a singular value decompo-
sition of G, we see that ||G||, is the largest singular value of G, ||G*1||2 is
the reciprocal of the smallest singular value of G, and |det G| is the product
of the singular values. Thus,

T el e
i, < A
And, since |det G| = | A1 — €?|]-- - |An — €|, where Ay,... , A, are the eigen-

values of A,

e, < 1A= 22,7 /d — ] [An = €|
< (Il + D)™/ (1 - p(A)".
Since S is Hermitian,
p(S) = |IS|l

1 ™ 12

<o [ e s

_ (Al + >
(1-p(A)™
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For (2), we use Hermitian forms. Of course,
o(S)z*z < z*Sz
for all . Setting x = Ay, we have
o (S)y*A*Ay < y*A*SAy.
Using that A*SA =S5 — I, we get
o (S)o(A"A)y"y <y"Sy—yy
or
(1+0(8)o(A"A)y*y <y*Sy.
Since this inequality holds for all y, and thus for all y such that Sy = ¢ (S) ¥,
1+0(S)o(A*A) <o (S).
Hence,
1<0(9),
the required inequality. m
‘We now consider the system
Zp+1 = Brzy, (12.2)
where
L ||Bell < K

2. p(Br) <B<1
for positive constants K, 8 and all £ > 1.

Theorem 12.1 Using the system 12.2 and conditions (1) and (2), there
ts an € > 0 such that if

| Bet1 — Bell < e

for all k, then (z) — 0 as k — oo.
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Proof. Let ¢ > 1, q an integer to be determined. We consider the interval
0< k<2,

Tk+1 = Bgrk + [Br — Bg| x.
Since ||Bsy1 — Bs|| <¢€ for all s, then
1Bk — Bg] z|| < lg — Kl l|zklle.
To shorten notation, let

A= B,
f (k) = [Be — Bg] zk-

So we have
T4l = Az, + f (k) .

By hypothesis p (4) < 8,50 p (67" A4) < 1. Thus, there is a positive definite
Hermitian matrix S such that

(B7rA)" S (BA) - S=~I
or
A*SA = (%5 - B°I.
Let V (zx) = x5 Sxx. Then

V (zk+1) = 2x A*S Az + f (k)" Sf (k) (12.3)
+ Tt A*SF (k) + f (k)" SAzy.

Now we need a few bounds. For these, let o > 0. (A particular o will
be chosen later.) Since

(af (k)" — zxA*) S (af (k) — Azi) > 0,
of (k)* Sf (k) +o el A*S Azy, > f (k)* SAzp+alA*SS (k).

Plugging this into (12.3), we have

V(zks1) < L+ @) f(R)"Sf (k) + (1 +a7) 25 A*SAzy
= (1+a7") [af (k)" Sf (k) + 2L A*SAzy] .
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Continuing the calculation

V (zre1) < (L+ 07 ) [af (k)" Sf (k) + B2z} (S — I) ]
= (1 o) (af (R SF () + B2V (@) — B2 flanl)

Now,

£ (&) Sf (B) < p(S) If (R)II” < p(S) (= k) Il

So, by substitution,
V (@ri1) < (1+a7?) [B2V @)+ (ap (8) (g = )° €67 flaw]]

2
Let aa = m{%ﬁﬁ to get

V (k1) < (1+a7) B2V (22)
(B +p(9)a-k1e) V (@0).

By Lemma 12.2,

(lAll + 1)
(L-p(A)™

(K+1)2n -2

Toa-p

p(S) <

Set
a-p
By continuing the calculation
V(@) < (62 +p(a— k) €) V(@)
Thus,
V (z1) < (6% + pa°€%) V (z0)

and by iteration,

V (w30) < (6% + pg?¢2) ™ V (x0).
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Finally, we have

2
o () |@aqll* < p (8% + pg®e®) ™ |lwoll” -
So, by Lemma 12.2

Iz2qll < Vo (8% + pa2e2)* ol

Now, choose € and q such that

o (,32 + pq262)2q <1

T = /p (6 + pg2e?) ™

@2l < T [|2ol} -

and set

SO

This inequality can be achieved for the interval [2g, 4q] to obtain
€aqll < T [|2q]l;
continuing,

[2m+1al < T llz2mall

which shows that z,,; — 0 as m — oco.
Repeating the argument, for intervals [2mg + 7,2 (m + 1) ¢ + 7] yields

”x2(m+1)q+7” <T ”w2mq+r” )

SO Tomg+r — 0 as m — co. Thus, putting together 1z - 0ask —oco. =

Corollary 12.1 Using the hypotheses of the theorem
leIIc}oBk---Bl =0.
Proof. By the theorem
lim By---Byx; =0

k—oo
for all ;. Thus,
lim By--- By =0,

k—o0

the desired result. =
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12.2 Estimates of z; from Current Matrices

Let A;, As,... be n X n primitive nonnegative matrices and z; an n x 1
positive vector. Define the system

Tl = AxTr.

The Perron-Frobenius theory (Gantmacher, 1964) assures that each Ay has
a simple positive eigenvalue A; such that Ay > || for all other eigenvalues
A of Ag. And there is a positive stochastic eigenvector v belonging to Ag.
If the stochastic eigenvectors v, . . . , v oOf the last few matrices, Ag,... , As
vary slowly with k, then vx may be a good estimate of "—%1’:%'—'—;:;”. In this
section we show when this can happen.

‘We make the following assumptions.

1. There are positive constants m, and M such that

m < inf ag“)
a{d>0

M > sup ag-c),
where inf and sup are over all ¢, 7, and k.
2. There is a positive constant r such that
Ay A1 >0
for all positive integers .
These two conditions assure that
m" < (Atgr - Ag1)y; < n"iM"

for all 4, 7, and ¢. Thus,

r 2
m
$(Aepr oo Arpr) 2 <nr—1MT) ’

Set ¢ = [n,—ﬂTW]Q and 7. = ﬁ < 1. We see that

TB (E )S Tr.

Theorem 12.2 Assuming conditions 1 and 2,

(4] s
P(@k+1,v6) < 777 p (22, 11) +ZT[ d P (Vk—j, Vk—j+1) - (12.4)

i=1
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Proof. By the triangle inequality p (zg41,vk) <
p(Ag--- A1z, Ay - Aror) + p(Ag - - - AgArvr, Ag - - - Agve)
+o 4+ p(ApAp_1Vk_1, ArV)

and using that A;v; = Azv; for all s,

=p (A A2 A121, Ag - AgArv1) + p (Ak - - - Aguy, Ag - - - Agva)
+-tp (Akvk_1, Akvk)

< Tlﬂp (z2,v1) + T[i:—l]p (vi,v2) + -+ + ,,Lﬂp (Vk—1,Vk)

which gives (12.4). =
If
6 = supp (vj,vj+1),
i

then the theorem yields

4] SAL
p(xk-l-la ’Uk) S TTT p (.’172,’01) + ZT"' 6.
=1

Thus, if in the recent past, starting the system at a recent vector so k is
small, we see that if § and 7, are small, v gives a good approximation of
Th+1-

This gives us some insight into the behavior of a system. For example,
suppose we have only the latest transition matrix, say A. We know

Tyl = ATy

but don’t know z; and thus neither do we know z;1. However, we need

to estimate &+l .
[EN

Let v be the stochastic eigenvector of A belonging to p (A). The theorem
tells us that if we feel that in recent past the eigenvectors, say vy,... , vk,
. Y . . . Tr41
didn’t vary much and 7, is small, then v is an estimate of m (We

might add here that some estimate, reasonably obtained, is often better
than nothing at all.)
Some numerical work is given in the following example.

Example 12.1 Let

© O
OO
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and let ¥ be the set of matrices C, such that
A-—.02A<C <A+ .02A.

Thus, we allow a 2% variation in the entries of A. Now, we start with

0.3434
z; = | 0.3333 | and randomly generate Ay = [agjl.)} where
0.3232

as;) = sz + rand (.04) [¢27]

for all i, j, where rand is a randomly generated number between 0 and 1
and B = A — .02A. Then,

T9 = Al.’l?l
and
= T2
T2 = 1
llz2lly

etc. We now apply this technique to demonstrate the theoretical bounds
given in Theorem 12.2.

Let vy, denote the stochastic eigenvector for Ay; we obtain for a run of
50 iterates the data in the table.

k 48 49 50
0.3430 0.3599 0.3445
Tt 0.3299 0.3269 0.3470
| 03262 | | 03132 | | 0.3085 |
[ 034747 [ 03541 ] [ 0.3476 ]
vk 0.3330 0.3330 0.3354
| 0.3196 | 0.3129 | 0.3170
D (Frg1, Vi) 0.0301 ©0.0351 ©0.0609
p (Vk, Ve—1) 0.0224 0.0403 0.0314

Using Theorem 12.2 and three iterates, we have
T49 = AqgTag
T50 = A49T49
z51 = As0Ts50-
So

P (251,950) < 7B (Z°) p (249, v48) + 75 (£2) p (vas, vag)
+ 78 (Z) p (v49, vs0) -
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And, using Theorem 10.5, Tp (£3) < 0.5195, so

p(z51,v50) < 0.0899.

The actual calculation is p (x51,vs0) = 0.0609, and the error is

error = 0.029.
To see that § is always finite, we can proceed as follows. Let
Av = v
where A = Ag,v = v, A = A for some k. Suppose

Tq = MAxX T

where v = (z1, ... ,xn)t. Then, since v is stochastic

Tq 2

1=

Now, since A is primitive, A" > 0 for some r. Thus a(r) > m" for all
1,7. Now

and since there are no more than n”~! distinct paths from any v; to any
vj, of length r,

(r)

a; T
X 1q 49
i 2 n N
5 35 w1
s=1 k=1
m'z,

n2nTI1Mrz,
m"'

n2nr-tMr
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Since this inequality holds for all 7,

mr
minz; > ———— > 0.
i T = n2n‘r—1M1‘

And, from this it follows that p (v;,v;41) is bounded.
‘We add to our assumptions.

3. There are positive constants 5 and A such that
| l[Aklloo < B and Ap <A
for all k. And < > 0 is a lower bound on the entries of v, for all &.
An estimate of Ay can be obtained as follows.

Theorem 12.3 Assuming the conditions 1 through 3,

Proof. Using Theorem 2.2, for fixed k, there is a positive constant r and a
diagonal matrix M, with positive main diagonal, such that the vectors z
and v, satisfy

g =71 (v + M) .
Thus,

Tpy1 = Apxp
=17 (Mvr + AxMuy),

and so

(xk'*‘l)i _ r (/\kvk; + Akak)'i
(k) 7 (v + Mug);
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Hence,

(@r+41); /\k~ _ | Owve + AeMug); — M (0 + M),
(mk); (vk + Mug),

(AkM'Uk),i t /\k (ka)i
('U]c + ka)i
(AkM’Uk)i - /\k (M’Uk)i

(vk);
_ (AMug); Ao
(Uk)i
< ————”Akak“w + A
(Uk)i
< 1Akl oo 1Moo okl
v

— =+ MM,

X+ Apem;
<P HM |

And since by Theorem 2.2, |IM||oo < eP(@rvx) — 1, we get the bound
T
T\

e* —1 < ue

Now we can write

for any u > 0, so we have

@(;:—)1) = /\k‘ < (g + /\) (=% ") p (2, vg)

foralli. m

From this theorem, we see that if the vi’s and z’s are near, then %)ﬁk
is an estimate of Ax. Of course, if the v;’s vary slowly then the x;,4’s are

close to the v;’s and are thus themselves close, so the v;’s and x;’s are close.

12.3 State Estimates from Fluctuating Matrices

Let A be an n x n primitive nonnegative matrix and y; an n x 1 positive
vector. Define

Yrt1 = Ayg.



180 12. Slowly Varying Products

It can be shown that <||_yy:|_|1> converges to 7, the stochastic eigenvector

belonging to the eigenvalue p (A) of A.
Let Ay, Ag,... be fluctuations of A and consider the system

Tpyr1 = ArTi (12.5)

where z; > 0. In this section, we see how well m approximates HTx:m’
especially for large k.
It is helpful to divide this section into subsections.

12.3.1 Fluctuations

By a fluctuation of A, we mean a matrix A + E > 0 where the entries
in E = [e;;] are small compared with those of A. More particularly, we
suppose the entries of E are bounded, say

les| < &
where
a;; —&i; >0
when a;; > 0 and &;; = 0 when a;; = 0. Thus,
A-—ESA+E<LA+E.
Define
6 =supp(Az,(A+ E)x)

where the sup is over all positive vectors & and fluctuations A + E. To
show 6 is finite, we use the notation,

E:s
RE = max —
aij
where the maximum is over all a;; > 0.

Theorem 12.4 Using that RE < 1,

1+ RE
< .
6_1n1_RE
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Proof. Let z > 0. For simplicity, set

z, = (Az),,
e = (Ex)k .
Then
l(E:L‘),Ll _ Iei1x1+"'+einmn|

sup =
2>0 (AT); >0 @iT1+ -+ inTp

g’ilxl + et ginmn
< sup
>0 451%1 + - + QinTp

and by using the quotient bound result (2.3),

< max =i
ai; >0 Qij
= RE.
Furthermore, using that
Gte 4%
Zj Zj
and that
43 _ 1
2;+e; 1 + %i‘ ’
we have
(A4z); ((A+E)z); 2 zi+e
(A+E)z); (Az); zit+e 9z
1+ 3
< 1+ RE'
~— 1-RE
Thus,
1+ RE

< —_
p(Az,(A+ E)z) _ml—RE’

the inequality we need. m
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12.3.2 Normalized Trajectories

Suppose the trajectory for (12.5) is 1, z2,.... We normalize to stochastic
vectors and set

I Tk
k=T
llzlly

We will assume that 75 (A™) = 7. < 1. How far Zj is from 7 is given in
the following theorem.

" Theorem 12.5 For allk and0<t<r,
P (M, Zhrge) < Thp (M, Z1) + (TE 4+ -+ T + 1) 16 + (£ — 1) 6.
Proof. We first make two observations.
1. For a positive vector x and a positive integer ¢,
p(Alz, Ay Arx)
<p (Atac, AAiq--- Alx) +p(AAs—1--- A1z, A; - - Arz)
<p (At_lx, Ay 'Alw) + 6,
and by continuing,
<(t—1)6+6=t6.
2. For all k > 1,
P (7, Tkrt1) = p (AT, A 1)r41)
+ P (A" Z (1)1, Akr - Al—1)r41F (k—1)r+1)
< 7o (T, B (k—1yr41) + 76
and by continuing
P (M, Zr1) S TEP(M,Z,) + (E7 -+ 7o + 1) 76
Now, putting (1) and (2) together, we have for 0 < ¢ < r,
P (T, Trit)
=p (A7, Akrgt—1- - Akr41Zkr41)
<p (A7, A 1) 40 (A E g1y Abrat—1 - Akrt18kr41)
<p(m Zkri1) + (E—-1)6
<TEp(mE) + (TF V4 + )b+ (8- 1)6,

the desired inequality. m
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12.8.8 Fluctuation Set

The vectors Ty need not converge to 7. What we can expect, however, is
that, in the long run, the Z’s fluctuate toward a set about ». By using
Theorem 12.5, we take this set as

)5} .

C= {m€S+ :p(z,m) <
Using
d(z,C) = mmp(z c),
we show that
d(Zg,C) — 0 as k — oo.

We need a lemma.

Lemma 12.3 Ifz € St and 0 < a <1, then
p(mz)=p(mar+(1—-a)z)+plar+(1—a)z,z).

Proof. We assume without loss of generality (We can reindex.) that

T 7r
L
T Tn
Thus, if ¢ < 7, then
iy i
T; Ty
or
x5 2 WL
So
am;w; + (1 — o) miz; > ommy + (1 — o) mjz;
and

i 7Tj
> .
am;+(1—a)z; = arj+ (1 —a)z;
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From this, we have that

p(m,x)

I T onp+(1-a)z,
T \am+(1-a)n; Tn

am +(l—a)z; T
+1n( 1 a7rn+(1—a)mn>
—p(mam+ (1 - a)2) + plam + (1 ) 3,2),

as required. ®
The theorem follows.
Theorem 12.6 For any k and 0 <t <r,
d(Tpr4t,C) < 76p (31, 7) .

Proof. If Zgr4+ € C, the result is obvious. Suppose Zgr+t ¢ C. Then
choose ¢, 0 < a < 1, such that

z(a) =om + (1 — a) Txrs

satisfies

p(z(a),7) = +(r—1)6.

1-71,

Thus, z (a) € C.
By the lemma

P Zkrtts ™) = p(Tr+t, 2 (@) +p(z () ,7)

1]
= p@rsr,2 (@) + T + (= 1)6.

Now, by Theorem 12.5, we have

rd
1-7,

P (Zhr4t, ™) < Thp (T1, ) + +(r—1)4,

SO

P (Zkrss, z () < 78p (1, 7).
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Thus,

d(Zgrye, C) < T,’fp (Z1,m),

which is what we need. m

Using the notation in Chapter 9, we show how C is related to limiting
sets.

Corollary 12.2 IfU is a compact subset of ST and Z”;U — L as k — oo,
then L C C.

Using this corollary, Theorem 12.4, and work of Chapter 10, we can
compute a bound on L, even when L itself cannot be computed.

We conclude this section by showing how a pair Z;, Z;+1 from a trajectory
indicates the closeness of Z; to C.

Theorem 12.7 If 7, < 1, then

r

d _ia S
(2:,C) 1—-71,

P (Zis Tit1) -
Proof. Throughout the proof, i will be fixed. Generate a new sequence
L1y ,:Ei,Ai:Ei,A%!L‘i, e

Since A; is primitive, using the Perron-Frobenius theory

the stochastic eigenvector for the eigenvalue p (A;) of A;. Thus,
kli_)nolop (Afa:i,m-) =0.
Hence, using the sequence
A1, Ag,. .. AL AL A,
since Theorem 12.6 still holds,
d(m;,C)=0

and sow; € C.
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Now, using the triangle inequality
p(Zi, A1) < p (%, Tign) + p (Aili, AiTiga)
+oo (AT E AT )
<rp (%, Tiv1) + r7ep (Tiy Titr)
+ o+ rTEp (Ziy Bigr)

S 7T TTP(@,@+1)~
Now, letting & — oo,
= T .
p(Zi,mi) < 7= Trp(mi;le)
and since 7; € C,
= T .
d(2i,C) < 7= (@i, Tin1),

as desired. =

The intuition given by these theorems is that in fluctuating systems, the
iterates need not converge. However, they do converge to a sphere about
7. See Figure 12.1 for a picture.

FIGURE 12.1. A view of iterations toward C.

An example providing numerical data follows.

Example 12.2 Let

s
I
S io v
© O i
O



Let 33 be the set of matrices C such that

A-02A<C<A+ 0

thus allowing for a 2% variation in the entries of A.

12.4 Quotient Spaces

24,

0.3495

0.3174

The stochastic eigenvector for A isw = [ 0.3331

0.3434
0.3232

Tpy1 = ArTr and Ty =

Iterations 48 to 50 are shown in the table.

k| 48 49

Tr41

0.3333 ] and randomly generating the Ay’s, we get

I|$k+1“1'

50

0.3440 0.3599

Fhr1 0.3299 0.3269
0.3262 0.3132

p(Fo,m) | 0.0432 0.0483

Using three iterates, we have

]

0.3445
0.3470
0.3085
0.0692

p(Zs1,m) < 75 (A®) p(m, Zas) + 26

= 0.1044.
This compares to the actual difference
p (Zs1,7) = 0.0692.
The error is

error = 0.0352.

12.4 Quotient Spaces

187

:I . Starting with x, =

The trajectory zi,z2,... determined from an n x n matrix A, namely,

- Ty = Az
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may tend to infinity. When this occurs, we can still discern something about

the behavior of the trajectory. For example, if A and z; are positive, then

we can look at the projected vectors ”—;f"— In this section we develop an
1

additional approach for studying such trajectories. We do this work in R™
so that formulas can be computed for the various norms.
Let e be the n x 1 vector of 1’s. Using R", define

W = span {e}.
The quotient space R™/W is the set
{z+W:z€R"}

where addition and scalar multiplication are done the obvious way, that is,
(z+W)+@y+W)=(z+y)+W, a(z+ W) =az+W. This arithmetic
is well defined, and the quotient space is a vector space.

12.4.1 Norm on R*/W
Let
C={c:fw=0forallwe W}
and
Cr={ceC:l|c||=1}.
(Cy depends on the norm used.) Then for any z € R"/W,
S ——]
It is easily seen that ||-||, is well defined and a norm on R™®/W.

Example 12.3 Let ||-||; denote the 1-norm. It is known that, in this case,
C, is the convex set with vertices those vectors with precisely two nonzero
entries, % and —%. Thus,

Wlo = ¢
le + Wili¢ = max|e‘a],

3
and if c= Y oy, a conver sum of the vertices cy,...,cs of Cy, then
k=1

8
i
lle+Wlig < ggglc;ak |cha]

= max |k
1

= 512’%)"3@_%,-
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Since this mazx is achieved for some c, it follows that equality holds.

We conclude this subsection by showing how close a vector is to a coset.
To do this, we define the distance from a vector y to a coset x + W by

d(y, 2+ W) = min Iy = (@ + w)]l

We need a lemma.
Lemma 12.4 Let ¢ € C where c = (c1,... ,¢n). Then

1 1 . 1
5 maxc; — 7 ming; 2~ licli, -

Proof. Without loss of generality, suppose that

c= (pla'-' yPryqly - .- ,Qs)
where r + s = n and

P> 2p, 2029 > > g,

8

-
Note that > pr=— > qx-
Now,

1 1 _Ifpit4p\ 1@+ +a
2y — =g, > (AL T8y 2
Pt~ g% = < r 2 s

1

(p1 +-4pr) = ——(cn 4 4qs)

1 1
<Z+£)(P1+"'+Pr)

N

>
_r+s(p1+ +pr)
1
T+S(P1+ '+pr)"T+s(QI+"‘+q.s)
= ——lell,

the desired result. m

Using the 1-norm to determine C;, we have the following.

Theorem 12.8 Suppose ||(y + W) — (z + W)||o <e. Then we have that
d(y,z+ W) <ne.
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Proof. First suppose that y,z € C. Then, using the example and lemma,
we have ||[(y + W) — (z + W)l

= (% max (yi — ) — %mjin (y; — rvj))

1 n
2| - i — T4
_<n;Iyz xl)

1

= n ”y'—mlll'

Now, let ¢,y € R*. Write z = £+ w1, y = § + wy where £,y € C and
wy,ws € W. Then, using the first part of the proof,

I+ W)= (@+W)lc=1G+W) - @+ W)l

> g4

Zn Yy 1
1

=~y —wz) = (& —w)];
1

= "y~ G@+w)l,

where w = wg — w;. And, from this it follows that
d(y,z + W) < ne,

which was required. m

12.4.2 Matrices in R*/ W

Let A be an n X n matrix such that

AW =W
Thus Ae = pe for some real eigenvalue p. (In applications, we will have
p=p(A).)
Define
A:R"/W — R"/W
by

Alz+ W)= Az +W.
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It can be observed that this is a coset map, not a set map. In terms of
sets, A (z + W) C Az +W with equality not necessarily holding. The map
A:R*/W — R™/W is well defined and linear on the vector space R"/W.

Inverses, when they exist, for maps can be found as follows. Using the
Schur decomposition

A:P[g g]Pt

where P is orthogonal and has 73-7—1 as its first column. If B is nonsingular,
set

ar=rplf L ]e

(Other choices for At are also possible.)
Lemma 12.5 At is the inverse of A on R*/W.

Proof. To show that AY:W — W , let w € W. Then w = ae for some
scalar «. Thus,

Atw = A (e)
_olr oy =
=P g B—l][ 0 }
_ .| P
_aPL 0 ]
=ape e W.
Now,
2 -1
AA+—P[% ”“;’B ]Pt
If x € C, then
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where P! = [ NZ },
P,

ZP[Pfx]

where 3 = (p’y + yB_l) Pz,

=B—— + PiPyu

\/_
\/_

Thus, AA* (x + W) = z + W and since = was arbitrary AAY is the iden-
tity on R™®/W. Similarly, sois AT A. So At is the inverse of Aon R*/W. m

=f—+zcc+W

When A : W — W, we can define the norm on the matrix A : R*/W —
R™/W as

c= ¢W lz + Wl
= Az +W
= e N le-

For special norms, expressions for norms on A can be found. An example
for the 1-norm follows.

Example 12.4 For the 1-norm on R™: Define

c= ¢W lz+Wlc

Az +W
= e I lc-

Now
t
= A
|Az + W/l max |c* Az
which by Fxample 12.3,
1
= 5 max|a;z — a;z|
24,

1
~ 5 max|(a; — ;)]
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where ay, is the k-th row of A. Since ||z + W||s =1,
1
5 max |z, — zj| = 1.
z’J

And, since z+ae € x+ W for all o, we can assume that z; is nonnegative
for all i and 0 for some i. Thus, the largest entry x; in x is 2. It follows
that

max |(a; — a;) z|
z)]

over all , 0 < x; < 2 is achieved by setting xy, = 2 when the k-th entry in
a; — a; s positive and 0 otherwise. Hence,

max |(a; — a;) | = max |la; — aj; .
2,7 7
Thus,
1
Az + W|c = 3 max llai — ajll;
and so
1
l4llc = 5 maxla; — ajl; -
To obtain the usual notation, set
m1(4) = |Allc.
This gives the following result.

Theorem 12.9 Using the 1-norm on R",
Al =11 (4).

12.4.8 Behavior of Trajectories

To see how to use quotient spaces to analyze the behavior of trajectories,
let

Tk+1 = A.’L'k -+ b

where A : W — W. In terms of quotient spaces, we convert the previous
equation into

Tpp1 +W=A(z, + W)+ (b+W). (12.6)
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To solve this system, we subtract the k-th equation from the (k + 1)-st one.
Thus, if we let

2kp1 + W = (zp41 + W) — (z + W),
then
21 +W=A(z + W)
S0
Zip1 + W = AF (20 + W).
Using norms,
loss + Wlle < 71 (Al + Wil (12.7)

If 71 (A) < 1, then z, + W converges to W geometrically.
As a consequence, (z, + W) is Cauchy and thus converges to say x + W.
(It is known that the quotient space is complete.) So we have

r+W=A@x+W)+(b+W). (12.8)
Now, subtracting (12.8) from (12.6), we have
Tpp1 — T+ W =A(zp — )+ W.
Thus, by (12.7),
|zk—1 — 2 + Wil < 71 (A)F flar — 2+ W]|g .

And, using that d(zy — z, W) = d(zx,z + W), as well as Theorem 12.8,

d(zg,z+ W) <nry (A)F |2y —z+ W), (12.9)
It follows that z; converges to = + W at a geometric rate.
8 3
Example 12.5 Let A = 3 8 and

Th4+1 = A:L‘k.
Note that ( A*) tends componentwise to co. The eigenvalues for A are 1.1

and .5, with 1.1 having eigenvector e = [ } ] Let

W = span {e}.
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w

FIGURE 12.2. Iterates converging to W.

Then, using (12.9) with z = 0, we have
d (zx, W) < 211 (A)* ||lz1 + W] .
Then, since 11 (4) = .5,
d(zx, W) < 2(5)" 21 + Wllo -
So, z1 converges to W at a geometric rate.

[ (1) }, follows in the table below. By

A sample of iterates, letting x1 =

direct calculation, ||z1 + W5 = 5.

k| 4 8 12
T (0.763,0.3700)°  (1.073,1.069)° (1.569,1.569)°
d(zg, W) | 0.125 0.0078 0.0005

After 12 iterations, no change was seen in the first four digits of the xy’s.
However, growth in the direction of e still occurred, as seen in Figure 12.2.
Ezxtending a bit, let

8 3 2 5 79
Al—[.3 .8]"42:[.5 .2]"43‘[.9 .7]

E = {Al,Az,A3} .

and
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Since W, for each matriz in 3, is span {e}, where e = ,and 11 (L) =

1
1
max 7 (A;) = .5, we have the same situation for the equation
1
Tp1 = Ay Tk

where (A;, ) is any sequence from X.

The following examples show various adjustments that can be made in
applying the results given in this section.

Example 12.6 Consider

Tpt1 = Az
where
604 203 0
A=1] 202 0 O
0 202 0
1
Here the eigenvalues of A are 1.01, —.4060, and 0 with | 2 | an eigen-
4
vector belonging to 1.01. Let D =diag(1,2,4). Then
Dxpyy = DA.D_ID.’L‘k
or
Ye+1 = By
where yr = Dz, and B = DAD'. Here
604 406 O
B=| 1.01 0 o
0 101 0
1
and an eigenvector of B for1.01 ise= | 1 |. So we have W = span {e}.
1

Now, 7, (B) = 1.01; however, 71 (B3) ~ .1664. Thus, from (12.9),

d (yx, W) converges to 0
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at a geometric rate. Noting that
d(D 'y, D7'W) < max Idi_1|d(yk,W),
it follows that
d (zk, D7'W) converges to 0
at a geometric rate.
Example 12.7 Consider
Tper = Az +b

7T 4 1 1] .
whereA—['4 '7] andb——[z}. Notethate—[1 is an eigen-

vector of A belonging to the eigenvalue 1.1 and so we have W = span {e}.
Further, 71 (A) = .3. The corresponding quotient space equation is

i1 +W=A(zx + W)+ (b+W).
The sequence {(zr, + W) converges to, say,  + W. Thus,
z+W=A@+W)+(b+W).
Solving for ¢ + W yields

(I-A)(@+W)=b+W,

SO
(x+W)=UT-ATb+W),
where
+ [9 2
(=4 —[.2 .9]’
and thus

1t follows by (12.8) that

1.3

xk-!—W—»[ 9

[+w.
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o=
or using Ty = | o |,

d(zg,z+W)<2x .3 x|z+ W,
<2x.3% x .35 < .7 x .3k

A few iterates follow.
k | 2 | 4 | 8
T (2.5, 3.8)° | (6.253, 7.70)" | (16.44, 17.87)°
d(zx,z+ W) | 0.063 0.00567 0.000046

12.5 Research Notes

The results in Section 1, slowly varying products and convergence to 0,
are basically due to Smith (1966a, 1966b). Some alterations were done to
obtain a simpler result. Section 2 contains a result of Artzrouni (1996). For
other such results, see Artznouni (1991). Application work can be found
in Artzrouni (1986a, 1986b).

Section 3 is due to Hartfiel (2001) and Section 4, Hartfiel (1997). Rhodius
(1998) also used material of this type.

Often bound work is not exact, but when not exact, the work can still
give some insight into a system’s behavior.

In related research, Johnson and Bru (1990) showed for slowly varying
positive eigenvectors, p(A;---Ag) = p(A1)---p(Ag). Bounds are also
provided there.
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Systems

This chapter looks at how infinite products of matrices can be used in
studying the behavior of systems. To do this, we include a first section to
outline techniques.

13.1 Projective Maps

Let X be a set of n x n row allowable matrices and X a set of positive n x 1
vectors. In this section, we outline the general idea of finding bounds on
the components of the vectors in a set, say 3°X or %7 X. Basically we use
that for a convex polytope, smallest and largest component bounds occur
at vertices as depicted in Figure 13.1.

Let ¥ also be a column convex and U a convex subset of positive vectors.

If

¥ = convex {A1,...,Ap}
and

U = convex {x1,... ,24},

then, as shown in 9.3, XU is a convex polytope of positive vectors, whose
vertices are among the vectors in V' = {A;z; : A; and x; are vertices in X



200 13. Systems

FIGURE 13.1. Component bounds for a convex polytope.

and U, respectively}. Thus, if we want component bounds on $*X, we need
only compute them on A;, - - A;, ; over all choices of 45, ... ,%1, and j. For
¥p, component bounds are found by finding them on wa,, o+ -owa, (z;)
over all choices of i,,... ,1, and j.

To compute component bounds on these vectors, we use the Monte-Carlo
method.

Component Bounds

1. Randomly (uniform distribution) generating the vertex matrices in-
volved, compute

T = A; i or = wy, (2;).

2. Suppose x = A;,--- A;,7; or T = wgu, o--- 0wy, (z;) have been
found. If ¢t < s, randomly (uniform distribution) generating the ver-
tex matrix involved, compute

T=Ai o Apzjor Tz =wga,, o---owg, (35).

Continue until ¢ = A;, - -- A;,x; or = wa,, o---owy, (z;) is found.

3. Set L1 =H1 =2x.
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4. Repeat (1) and (2). After the k + 1-st run, set
lgk"'l) = min {lék), 1:,-} ,hgkﬂ) = max {hgk), xi}

and form Lgyq = (l§k+1)) yHep1 = (h§k+1)).

5. Continue for sufficiently many runs. (Some experimenting may be
required here.)

13.2 Demographic Problems

This section provides two problems involving populations, partitioned into
various categories, at discrete intervals of time.

Taking a small problem, suppose a population is divided into three
groups: 1=young, 2-==middle, and 3=o0ld, where young is aged 0 to 5, middle
5 to 10, and old 10 to 15.

Let xS) denote the population of group k for £ = 1,2,3. After 5 years,
suppose this population has changed to

2 = by2{) + brazt!) + bygzl"

2@ = syl

.’[::(32) = 3321'51)
or
T9 = Ay
where z;, = (xgk),mgk),mgk)) for £ =1,2, and
b1 bz b3
A= 8921 0 0 .
0 832 0

The matrix A is called a Leslie matriz.
Continuing, after 10 years, we have

z3 = Aze = A%z,

etc.
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Data indicates that birth (the b;;’s) and survival (the s;;’s) rates change
during time periods, and thus we will consider the situation

Tpp1 = Ak A1y

where Aj,... , Ay are the Leslie matrices for time periods 1,... , k. In this
section, we look at component bounds on Zg41.

Example 13.1 Let the Leslie matriz be

2 4 4
A=19 0 0 ].
0 9 0

Allowing for a 2% variation in the entries of A, we assume the transition
matrices satisfy

A—-.02A< A, <A+ .024
for all k. Thus, X is the convex polytope with vertices
C= [aij + .02(1,’_1'] .

0.3434
We start the system at © = 0.3333 |, and estimate the component
0.3232
bounds on X0z, the 50-year distribution vectors of the system by Monte
Carlo. We did this for 1000 to 200,000 runs to compare the results. The
results are given in the table below.

k Li Hy
1000 | (0.3364,0.3242,0.2886)  (0.3669, 0.3608, 0.3252)
5000 | (0.3363,0.3232,0.2859) (0.3680, 0.3632, 0.3267)
10,000 | (0.3351,0.3209,0.2841)  (0.3682,0.3635,0.3286)
100,000 | (0.3349,0.3201,0.2835)  (0.3683,0.3641,0.3313)
200,000 | (0.3340,0.3195,0.2819) (0.3690, 0.3658, 0.3318)

Of course, the accuracy of our results is not known. Still, using exper-
imental probability, we feel the distribution vector, after 50 years, will be
bounded by our L and H, with high probability.

A picture of the outcome of 1000 runs is shown in Figure 13.2. We used

r_|0 v2 £
0 0 ¥
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Final vectors for 10 iterates.

041} « 2
0.405
0.4}

0.395}

y axis
[=]
)
©

0.3851-

0.38+

0.375}

0.37+

0.67 0.68 0.69 07 0.71 0.72

FIGURE 13.2. Final vectors of 10 iterates.

to map St into R2.

Recall that T, is the convex hull of vertices. Yet as can be seen, many,
many calculations Ak, - - - Ak, = do not yield vertices of S0z. In fact, they
end up far in the interior of the convex hull.

Taking some point in the interior, say the projection of the average of
the lower and upper bounds after 200,000 runs, namely

ave = (0.3514,0.3425, 0.3062) ,

we can empirically estimate the probability that the system is within some
specified distance 6 of average. Letting ¢ denote the number of times a run
ends with a vector z, ||z — ave||,, < 8, we have the results shown in the
table below. We used 10,000 runs.

Interpreting 6 = .01, we see that in 6373 runs, out of 10,000 runs, the
result x agreed with those of ave. to within .01.
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04151
0411
0.405}
0.4f

0.395+

y axis

Ten iterates of a trajectory.

N4

/ /Y
- 4K

SN

0.385 -7 i \

\%\& “

/ g )
0.38 U/ L'// /
&
0.3751 : : ' : : ,
0.68 0.685 0.69 0.685 07 0.705 0.7

X axis

FIGURE 13.3. Ten iterates of a trajectory.

Finally, it may be of some interest to see the movement of 1, x2,...
for some run. To see these vectors in R2, we again use the matriz

0 V2 f
T:[o 02 E]

2

y 10

and plotted Tx1,Txo, ..
ure 13.3.

In this figure, the starting vector is shown with a * and other vectors with
ao. The vectors are linked sequentually by segments to show where vectors
go in proceeding steps.

.,Tx19. A picture of a trajectory is shown in Fig-

13.3 Business, Man Power, Production Systems

Three additional examples using infinite products of matrices are given in
this section.

Example 13.2 A taxi driver takes fares within and between two towns,
say T and T5. When without a fare the driver can

1. cruise for a fare, or

2. go to a taxi stand.



13.3 Business, Man Power, Production Systems 205

The probabilities of the drivers’ actions on (1) and (2) are given by the
matrices
.05 .45 R R
A—[ 6 4 ] B—[.4 .6]

for each of the towns, as seen from the diagram in Figure 13.4.

.55
45 5 6
4
.6 u

FIGURE 13.4. Diagram of taxi options.

We can get the possible probabilities of the cab driver being in (1) or (2)
by finding ¥°° where X = {A, B}, a T-proper set. Here F = [ i and the
corresponding subspace coefficient is Tw (L) = .2. Three products should

be enough for about 2 decimal place accuracy. Here,

43— [ 0.5450 0.4550 ] 42p — | 04550 0.5450 1
| 0.5460 0.4540 |’ 0.4540 0.5460 |
A= 40 050 ], apa= [ 030 O]
[ 0.4550 0.5450 | 2 [0.5550 0.4450]
BAB = , B?A=
| 0.4560 0.5440 | 0.5560 0.4440
2 [ 05450 0.4550 ] o [ 0.5450 0.4550
BA"= [ 05440 04560 |* B4 = | 05440 0.4560

5o _ [ 04450 05550 ]
~ | 04440 05560 |-

If

pi; = probability that if the taxi driver
is in i initially, he eventually (in the

long run) ends in j,



206 13. Systems

then

Note the probabilities vary depending on the sequence of A’s and B’s. How-
ever, regardless of the sequence, the bounds above hold.

In the next example, we estimate component bounds on a limiting set.

Example 13.3 A two-phase production process has input 8 at phase 1.
In both phase 1 and phase 2 there is a certain percentage of waste and
a certain percentage of the product at phase 2 is returned to phase 1 for

a repeat of that process. These percentages are shown in the diagram in
Figure 13.5.

.10
B e N
—_— > —>»—
A\ s N .05

FIGURE 13.5. A two-phase production process.

For the mathematical model, let

a;; = percentage of the product in

process i that goes to process j.

| 0 95
A= [ 10 0 ] '
And if we assume there is a fluctuation of at most 5% in the entries of A
at time k, then

Then

A— 054 < Ay < A+ .05A.
Thus, if ¢, = (xgk),:vék)) where
(k)

xy’ = amount of product at phase 1

wgk) = amount of product at phase 2,
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then our model would be
Tp41 = TpAr + 0 (13.1)

where b= (3,0) and numerically,

0 0902 0 09975
[0.095 0 ]SAkS[o.los 0 ]

If we put this into our matriz equation form, we have
1 b
o) =) | o 4 |-

(We can ignore the first entries in these vectors to obtain (13.1).) Then
3 is conver and has vertices

(1 B 0 ]
Ai=0 0 9025 |,
| 0 095 0 |
1 g 0
A;=|0 0 9025 |,
| 0 105 0 |
[1 3 0
Az3={0 0 .9975 |,
| 0 095 0 |
1B 0
Ag=|0 0 .9975
| 0 105 0 |

As in the previous ezample, we estimate component bounds on yX1°.
Using 8 =1, y = (1,0.5,0.5), and doing 10,000 and 20,000 runs, we have
the data in the table below.

no. of runs | L H
10,000 (1, 1.0938, 0.9871) (1, 1.1170, 1.1142)
20,000 (1, 1.0938, 0.9871) (1, 1.1170, 1.1142)

We can actually calculate exact component bounds on yX>° by using

L =yAl® = (1, 1.0938, 0.9871)
H=yA® =(1, 1.1170, 1.1142).
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Final vectors for 1000 runs
1.14
112
" a8 e
1.1 e s anse
e (F X1 to N
1.084
»
X 1.06T
>
1.04
1.02
8- ses LN )
1 >> (1]} 88 LA N4
e soe e
oo
1.09 1.005 11 1.105 1.11 1115 1.12 1125
X axis

FIGURE 13.6. Final vectors for 1000 runs.

Thus, our estimated bounds are correct. To see why, it may be helpful to
plot the points obtained in these runs. Projected into the yz-plane (All x
coordinates are 1.), we have the picture shown in Figure 18.6. Observe
that in this picture, many of the points are near vertices. The picture, to
some extent, tells why the estimates were exract.

To estimate convergence rates to y¥°°, note that Y, is T-proper where

1
E=10
0

Thus,
Tw (B) = max {|[b2l, , [[bs]], },
where by, is the k-th row of B € X. So,
Tw (Z) = .9975.

The value of Tw () can be made smaller by simultaneously scaling rows
and columns to get each row sum the same. To do this let

10 0

10 0
p=(01 0 =101 0
00 /&= 0 0 0.2294

Then, using the norm

(L, 2)llg = [}(1,2) DI, ,
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loss 02
15 3
.05 05
1 2
\fﬁ/

FIGURE 13.7. Management structure.

we have ||Bl|; = ”D"lBD”1 for any 3 x 3 matriz B, and so
Tw (5) = 0.2204.
By Theorem 9.5,

h (y=F,y5°) < Tw (2)" h (3, y5%) (13.2)
which shows more rapid convergence.
The last example concerns management structures.

Example 13.4 We analyze the management structure of a business by
partitioning all managing personal into categories: 1 = staff and 2 = exec-
utive. We also have 3 = loss (due to change of job, retirement, etc.) state.
And, we assume that we hire a percentage of the number of people lost.

Suppose the 1 year flow in the structure is as given in the diagram in
Figure 13.7.

If p. = (K, Yk, 2:) gives the number of employees in 1,2,8, respectively,
at time k, then 1 year later we would have

Tp1 = -80zk + .10y, + .05z,
Yky1 = +.95y, + 052
Zky1 = 15z + .02y, + 832k

or

Pry1 = Apg
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.85 .10 .05
where A = 0 .95 .05
15 .02 .83

Of course, we would expect retirements, new jobs, etc. to fluctuate some,
and thus we suppose that matriz A fluctuates, yielding

Pit1 = Arpy.

For this example, we will suppose that each Ay has no more than 2% fluc-
tuation from A, so

A— 024 <A, <A+ .024

for all k. Let ¥ denote the set of all of these matrices.
1
The set ¥ is T-proper with E= | 1 |. Then
1

1 0
W = span -11, 1
0 -1

whose unit circle in the 1-norm is
convezx {c1, ¢z, 3}

1 1 0

wherecy =43 | =1 |,co=%3| 0 |,es==%3| 1 |. Thus, using
0 -1 -1

Theorem 2.12

i (A) = e 5 e = ol 5 s = aal 5 oz = sl }
where ay, is the k-th row of A. Using the formula, we get
Tw () < 0.9166.
So ¥°° exists; however, convergence may be very slow. Thus, we only show

what can occur to this system in 10 years by finding component bounds
300

Y0z forz=| 50 |. Using k runs, we find the following.
15
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Final vectors from 1,000 runs.
0.493
0.4925
0492+ .
0.4915|
% 0.491
0.4905 )
0.49? )
0.4895
0.489 . . . . - .
0.599 0.6 0.601 0.602 0.603 0.604 0.605
X axis
FIGURE 13.8. Final vectors of 1000 runs.
k I L H
500 (122.54, 73.63, 130.90) (125.42, 75.33, 134.01)
1000 (122.16, 73.73, 130.87)  (125.32, 75.33, 134.05)
10,000 | (121.98, 73.51, 130.53) (125.42, 75.47, 134.20)

A picture, showing where the system might be, depending on the run, can
be seen, for 1,000 runs, in Figure 13.8.

The points occurring at the end of the runs were mapped into R? using
0 V2 £
0 0 S|

2

the matriz T =

13.4 Research Notes

The work in this chapter extends that in Chapter 11. The taxi problem
can be found in Howard (1960).

Hartfiel (1998) showed how to obtain precise component bounds for those
3 which are intervals of stochastic matrices. However, no general such
technique is known.
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13.5 MATLAB Codes

Component Bounds for Demographic Problem

A=[.2 .4 .4; .9 0 0; 0 .9 0];
B=[.196 .392 .392; .882 0 0;0 .882 0]
L=ones(1,3);
H=zeros(1,3);
for m=1:5000
x=[.3434; .3333; .3232];
for k=1:10
for i=1:3
for j=1:3
G=rand;
if G<=.5
d=1;
else
d=0;
end
C(i,j)=B(4,j)+d*.04*A(i,]);
end
end
x=Cx*x/norm(C*x,1);
end
for i=1: 3
L{(D)=min([L{1), x(1)]);
H(i)=max([H(i), x(i)]);
end
end

Final Vectors Graph for Demographics Problem

A=[.2 4 .4; .9 0 0; O .9 0];
B=[.196 .392 .392; .882 0 0;0 .882 0];
T=[0 sqrt(2) 1/sqrt(2);0 0 sqrt(6)/2];
hold on

axis equal

xlabel(’x axis?)

ylabel(’y axis’)

title(’Final vectors for 10 iterates’)



13.5 MATLAB Codes

hold on
for r=1:1000
x=[.3434; .3333; .3232];
for k=1:10
for i=1:3
for j=1:3
G=rand;
if G<=.5
d=1;
else
d=0;
end
C(i,3)=B(i,j)+d*.04%A(1,7);
end
end
x=C*x/norm(C*x,1);
end
y=T*x
plot(y(1),y(2))

end

Trajectory for Demographics Problem

A=[.2 .4 .4; .9 0 0; O .9 0];
B=[.196 .392 .392; .882 0 0;0 .882 0];
T=[0 sqrt(2) 1/sqrt(2);0 0 sqrt(6)/2];
y=[.3434, .3333, .3232];
=T*y ;
x=[.3434; .3333; .3232];
xlabel(’x axis’)
ylabel(’y axis’)
title(’Ten iterates of a trajectory?’)
hold on
plot(z(1),z(2), k:*?)
for k=1:10
for i=1:3
for j=1:3
G=rand;
if Gg=.5
d=1;
else

213
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d=0;
end
C(i,j)=B(i,j)+(a*.04)*A(i,j);
end
end
x=C*x/norm(C*x,1) ;
p=T*x;
q=T*y;
plot(p(1),p(2),%0?%)
plot(Ip(1),q(1)], [p(2),q(2)]1)
y=x
end



Appendix

We give a few results used in the book.

Perron-Frobenius Theory:

Let A be an n x n nonnegative matrix. If A¥ > 0 for some positive
integer k, then A is primitive. If A isn’t primitive, but is irreducible, there
is an integer r called A’s index of imprimitivity. For this r, there is a
permutation matrix P such that

0 4 0 --- 0
PAPt — 0 0 A --- 0
A- 0 0 --- 0

where the r main diagonal 0-blocks are square and r the largest integer
producing this canonical form.

If A is nonnegative, A has an eigenvalue p = p (A) where

Ay = py

and y is a nonnegative eigenvector. If A is primitive, it has exactly one
eigenvalue p where

p> A
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for all eigenvalues A # p of A. If A is irreducible, with index 7, then A has
eigenvalues

2% Ax
i

prpet T L pe T,
all of multiplicity one with all other eigenvalues A satisfying
A < p.

For the eigenvalue p, when A is irreducible (includes primitive), A has a
unique positive stochastic eigenvector y, so that

Ay = py.
Hyslop’s Theorems:

We give two of these theorems. In the last two theorems, divergence
includes convergence to 0.

Theorem 14, Hyslop Let ax > 0 for all positive integers k. Let a;,,a;,,. ..
o0

be a rearrangement of a,,a,,.... Then Y ay converges if and only if
k=1

o0

> a;, converges.

k=1

Theorem 51, Hyslop Let ay, > 0 for all positive integers k. Then Y ay
k=1

o
and [] (1 + ax) converge or diverge together.
k=1

Theorem 52, Hyslop If ~1 < ax < 0, then > ax and [] (1+ ak)
k=1 k=1
converge or diverge together.

Koénig’s Infinity Lemma:

The statement of this lemma follows.

Lemma Let 51,53, ... be a sequence of finite nonempty sets and suppose
that S = US) is infinite. Let A C § x S be such that for each &, and
each 2 € Si41, there is a y € S such that (y,z) € A. Then there exist
elements x1, zg,... of S such that z; € Sy and (zy,zk41) € A for all k.
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Nonhomogeneous Matrix Products

Infinite products of matrices are used in nonhomogeneous Markov
chains, Markov set-chains, demographics, probabilistic automata,
production and manpower systems, tomography, and fractals. More
recent results have been obtained in computer design of curves and
surfaces.

This book puts together much of the basic work on infinite products of
matrices, providing a primary source for such work. This will eliminate
the rediscovery of known results in the area, and thus save considerable
time for researchers who work with infinite products of matrices. In
addition, two chapters are included to show how infinite products of
matrices are used in graphics and in systems work.
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