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Preface 

A matrix product Ak is called homogeneous since only one matrix occurs as 
a factor. More generally, a matrix product Ak • • • Ai or Ai • • • Ak is called 
a nonhomogeneous matrix product. 

This book puts together much of the basic work on nonhomogeneous 
matrix products. Such products arise in areas such as nonhomogeneous 
Markov chains, Markov Set-Chains, demographics, probabilistic automata, 
production and manpower systems, tomography, fractals, and designing 
curves. Thus, researchers from various disciplines are involved with this 
kind of work. 

For theoretical researchers, it is hoped that the reading of this book 
will generate ideas for further work in this area. For applied fields, this 
book provides two chapters: Graphics and Systems, which show how ma­
trix products can be used in those areas. Hopefully, these chapters will 
stimulate further use of this material. 

An outline of the organization of the book follows. 
The first chapter provides some background remarks. Chapter 2 covers 

basic functional used to study convergence of infinite products of matrices. 
Chapter 3 introduces the notion of a limiting set, the set containing all limit 
points of A\, A2A1,. . . formed from a matrix set S. Various properties of 
this set are also studied. 
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Chapter 4 concerns two special semigroups that are used in studies of 
infinite products of matrices. One of these studies, ergodicity, is covered in 
Chapter 5. Ergodicity concerns sequences of products A\, A?,A\,..., which 
appear more like rank 1 matrices as k —> oo. 

Chapters 6, 7, and 8 provide material on when infinite products of ma­
trices converge. Various kinds of convergence are also discussed. 

Chapters 9 and 10 consider a matrix set S and discuss the convergence 
of E, E 2 , . . . in the HausdorfF sense. Chapter 11 shows applications of 
this work in the areas of graphing curves and fractals. Pictures of curves 
and fractals are done with MATLAB*. Code is added at the end of this 
chapter. 

Chapter 12 provides results on sequences Aix, A2A1X,... of matrix prod­
ucts that vary slowly. Estimates of a product in terms of the current matrix 
are discussed. Chapter 13, shows how the work in previous chapters can 
be used to study systems. MATLAB is used to show pictures and to make 
calculations. Code is again given at the end of the chapter. 

Finally, in the Appendix, a few results used in the book are given. This 
is done for the convenience of the reader. 

In conclusion, I would like to thank my wife, Faye Hartfiel, for typing this 
book and for her patience in the numerous rewritings, and thus retypings, 
of it. In addition, I would also like to thank E. H. Chionh and World 
Scientific Publishing Co. Pte. Ltd. for their patience and kindness while I 
wrote this book. 

Darald J. Hartfiel 

*MATLAB is a registered trademark of The MathWorks, Inc. For product infor­
mation, please contact: 

The MathWorks, Inc. 
3 Apple Hill Drive 
Natick, MA 01760-2098 
Tel: 508 647-7000 
Fax: 508-647-7001 
E-mail: info@mathworks.com 
Web: www.mathworks.com 

mailto:info@mathworks.com
http://www.mathworks.com
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1 
Introduction 

Let F denote either the set R of real numbers or the set C of complex 
numbers. Then Fn will denote the n-dimensional vector space of n-tuples 
over the field F. 

Vector norms ||-|| in this book use the standard notation, ||-|| denotes 
the p-norm. Correspondingly induced matrix norms use the same notation. 
Recall, for any nxn matrix A, \\A\\ can be denned as 

||A|| = max \\xA\\ or ||A|| = max | |Ac||. 
Il=ll=i ll=ll=i 

So, if the vector x is on the left 

n n 

P l l i = m a x ^ | a i f c | , WAW^ = m a x ^ | a f c i | 
fc=i l fc=i 

while if x is on the right, 

n n 

\\A\\X = mflxJZ | a w | , WAW^ = m a x ^ |a ife|. 
fe=i * fc=i 

In measuring distances, we wiU use norms, except in the case where we 
use the projective metric. The projective metric occurs in positive vector 
and nonnegative matrix work. 
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Let Mn denote the set of n x n matrices with entries from F. By a 
matrix norm ||-|| on Mn, we will mean any norm on Mn that also satisfies 

ll^ll < U\\ \\B\\ 

for all A, B € M n . Of course, all induced matrix norms are matrix norms. 
This book is about products, called nonhomogeneous products, formed 

from Mn. An infinite product of matrices taken from Mn is an expressed 
product 

•••Ak+iAk-'-At (1.1) 

where each Ai 6 Mn. More compactly, we write 

oo 

fc=i 

This infinite product of matrices converges, with respect to some norm, if 
the sequence of products 

Ai,A2A1,A3A2A1,... 

converges. Since norms on Mn are equivalent, convergence does not depend 
on the norm used. 

If we want to make it clear that products are formed by multiplying on 
the left, as in (1.1), we can call this a left infinite product of matrices. A 
right infinite product is an expression 

AXA2 • • • 

which can also be written compactly as YllcLi -̂ fc- Unless stated otherwise, 
we will work with left infinite products. 

In applications, the matrices used to form products are usually taken 
from a specified set. In working with these sets, we use that if X is a set 
of rn x A; matrices and Y a set of k x n matrices, then 

1 7 - {AB -.AeXanABeY}. 

And, as is customary, if X or Y is a singleton, we use the matrix, rather 
than the set, to indicate the product. So, if X = {A} or 7 = {B}, we 
write 

AY or XB, 

respectively. 
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Any subset E of Mn is called a matrix set. Such a set is bounded if there 
is a positive constant /? such that for some matrix norm ||-||, ||A|| < (3 for 
all A € E. The set E is product bounded if there is a positive constant 
/3 where \\Ak • • • A\\\ < /3 for all k and all Ax,... ,Ak€ E. Since matrix 
norms on Mn are all equivalent, if E is bounded or product bounded for 
one matrix norm, the same is true for all matrix norms. 

All basic background information used on matrices can be found in Horn 
and Johnson (1996). The Perron-Probenius theory, as used in this book, 
is given in Gantmacher (1964). The basic result of the Perron-Probenius 
theory is provided in the Appendix. 





2 
Functionals 

Much of the work on infinite products of matrices uses one functional or 
another. In this chapter we introduce these functionals and show some of 
their basic properties. 

2.1 Projective and Hausdorff Metrics 

The projective and Hausdorff metrics are two rather dated metrics. How­
ever, they are not well known, and there are some newer results. So we 
will give a brief introduction to them. 

2.1.1 Projective Metric 

Let x £ Rn where x = (x\,... , xn)*. If 

1. Xi > 0 for all i, then x is nonnegative, while if 

2. Xi > 0 for all i, then x is positive. 

If x and y are in Rn, we write 

1. x > y if Xi > yi for all i, and 
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2. x > y if Xi > yi for all i. 

The same terminology will be used for matrices. 
The positive orthant, denoted by(Rn) , is the set of all positive vectors 

in Rn. The projective metric p introduced by David Hilbert (1895), defines 
a scaled distance between any two vectors in (Rn)+. As we will see, if x 
and y are positive vectors in Rn, then 

P (x, y)=p (ax, Py) 

for any positive constants a and /3. Thus, the projective metric does not 
depend on the length of the vectors involved and so, as seen in Figure 2.1, 
p (x, y) can be calculated by projecting the vectors to any desired position. 

FIGURE 2.1. Various scalings of x and y. 

The projective metric is defined below. 

Definition 2.1 Let x and y be positive vectors in Rn. Then 

p(x,y) =ln \ ' . 
mm-2-

3 Vi 

Other expressions for p (x, y) follow. 

1. p(x,y) = In maxf1^-, the natural log of the largest cross product 

ratio in [x y] = 

xi 2/i 

%2 2/2 

•^n y-n 
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2. p (x, y) = In (max |* max ^ J . 

In working with p(x,y), for notational simplicity, we define 

M ( - | = max — 

and 

m l - = min — 
, j /y J yj 

Some basic properties of the projective metric follow. 

Theorem 2.1 For all positive vectors x, y, and z in Rn, we have the 
following: 

1- P(x,y) > 0. 

2. p (x,y) — 0 iff x = ay for some positive constant a. 

3. p{x,y) =p(y,x). 

4- p(x,y) <p(x,z)+p(z,y). 

5. p (ax, (3y) = p (x, y) for any positive constants a and (3. 

Proof. We prove the parts which don't follow directly from the definition 
of p. 

Part (2). We prove that if p (x,y) = 0, then x = ay for some constant 
a. For this, if p (x, y) = 0, 

M ( f ) _ . 
- ( J ) " 

so 

Since 

M(*)>«L>m(Z) 
\yj Vk \v) 



8 2. Functional 

for all k, 

X-± = M(X-
Vk \y 

for all k. Thus, setting a = M (| J, we have that 

x = ay. 

Part (4). We show that if x, y, and z are positive vectors in Rn, then 
P (#> y) <p (x, z) + p (z, y). To do this, observe that 

x< M 
( i ) • * " ( ; ) " ( ; ) ' • 

Thus, 

for all j and so 

Similarly, 

Putting together, 

^-<M 
Vj (fKi) 

" ( ; ) * " ( ! ) " ( ; ) • 

a; 
m 

,y ^ m ( f ) m ( j ) -

, , , M(f) p(x,j/) = l n — ^ ^ 

< l n 

™(§) 
M(f)M_(f) 
m I (f)-(f) 

= l n — ^ i + l n — ^ f m(f) m(f) 
= p(a : , z )+p(z , j / ) . 
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This inequality provides (4). • 

From property (2) of the theorem, it is clear that p is not a metric. As 
a consequence, it is usually called a pseudo-metric. Actually, if for each 
positive vector x, we define 

ray (x) = {ax : a > 0} 

then p determines a metric on these rays. 
For a geometrical view of p, let x and y be positive vectors in Rn. Let 

a be the smallest positive constant such that 

ax > y. 

Then a = M (^). Now let (3 be the smallest positive constant such that 

ax < Py. 

Thus, (3 = M \2f\. (See Figure 2.2.) Calculation yields 

FIGURE 2.2. Geometrical view of p{x,y). 

so 

p{x,y) = ln /3 . 
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Thus, as a few sketches in R2 can show, if x and y are close to horizontal or 
vertical, p(x, y) can be large even when x and y are close in the Euclidean 
distance. 

Another geometrical view can be seen by considering the curve C = 

< l : x\x<i = 1 \ in the positive orthant of R2. Here, p (x, y) is two 

times the area shaded in Figure 2.3. Observe that as x and y are rotated 

\ 

/ 

£ 
) 

l^ 
( ^ 
iV ^^ 

- > ^ < ^ 
^ ^ - — 

FIGURE 2.3. Another geometrical view of p(x,y). 

toward the a;-axis or y-axis, the projective distance increases. 
In the last two theorems in this section, we provide numerical results 

showing something of what we described geometrically above. 

Theorem 2.2 Let x and y be positive vectors in Rn. 

1. Ifp (x, y) < e, r = min ^ , and mi = Xi'Vi~r, then we have that mi < 

ee — 1 andx—r (y + My) where the matrix M = d iag(mi , . . . , m n ) . 

2. Suppose x = r(y + My), M = diag ( m i , . . . , m n ) > 0 and r > 0. / / 
rrii < e£ — 1 for all i, then p(x,y) < e . 

Proof. We prove both parts. 
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Part (1). Using the definitions of r and M, we show that rrii < ee — 1 and 
that x = r (y + My). For the first part, suppose that p (x, y) < e. Then 

In max —-.— < e 
i,j Xj/yj 

so we have 

Thus, for any i, 

max —-.— < e 
i,j Xj/yj 

xilVi <et 
min Xj/yj 

j 

and so by subtracting 1, 

Xi/yi - minxj/yj 

min Xj/yj 
i 

<ee - 1 

or 

rrii <ee — 1. 

Now note for the second part that 
Xi/yi-mmxj/yj , 

i i i i i x% y% 

l + rrii = H : ; = . ' . 
rain Xj/yj mmx , /yj 

j j 

Since r = min ^, we have 
j Vi ' 

l + rrii — , 
ryi 

so 

r (1 + mi) yi — xt 

or r (y + My) = x. 
Part (2). Note by using the hypothesis, that 

p(x,y) =p(ry + rMy,y) =p(y + My,y) 
Vi+miVj 

= max In , ,v* . 
i,j Vi+miV.i 

Vi 

= maxln- < max ln( l + rrii) < lne £ = e 
i,j 1 + rrij i 
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the desired result. • 

Observe in the theorem, taking r and M as in (1), we have that x = 
r(y + My). Then, r is the largest positive constant such that 

—x — y > 0. 
r 

And 

m * 4 

mi — 

for all i. Thus, viewing Figure 2.4, we estimate that 7712 « 1, so, by (2), 
p (a;, ?/) « In 2. Turning ?/ toward x yields a smaller projective distance. 

FIGURE 2.4. A view of mi and m2. 

In the following theorem we assume that the positive vectors x and y 
have been scaled so that \\x^ = HJ/HJ = 1. Any nonnegative vector z 
in Rn such that \\z\[x — 1 is called a stochastic vector. We also use that 
e = ( 1 , 1 , . . . , 1)', the vector of l 's in Rn. 

Theorem 2.3 Let x and y be positive stochastic vectors in Rn. We have 
the following: 

1. Hx-yl l j < e P ( x ^ ) - l . 

2. p(x,y) < l ^ ^ r f l 1 provided that m (I) > 2 ||x - y\\v 
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Proof. We argue both parts. 

Part (1). For any given i, if Xi > yi, then, since ^ < ^ M f ) 

m ( f ) < l , 

Xi-yi<M (-jyi-ml-jyi. 

And if yi > xit then since M ( | J > 1 and f£ > m f | J, 

yi-Xi<M(^Jyi~m(^jyi. 

Thus, 

It follows that 

\xi - yi\ < M [ - \ yi - m I- ) yt. 

l k - y | l ! < M ^ - x 
m | -

2/ 
M 

m ( " ) $-)-e) 
Part (2). Note that 

M ^ U m a x j l + i ^ U l + fc^. 

And, if m (^) > 2 ||a; — y||15 similarly we can get 

m £ >i-J!£zMi>o. 
W m(f) 

Now using (2.1) and (2.2), we have 

(§) x - ^ r m ( i | i _ J l £ ^ i 
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And, using calculus 

p(x,y) <ln 1 \\*-v\\i 
™(f) 

- I n 1 -

"3 - ( f ) ' 
which is what we need. 

I|g-I/Ili 

m (!) 

This theorem shows that if we scale positive vectors x and y to TAT- and 

-n-̂Tj—, and min JT%- is not too small, then x is close to y in the projected 

sense iff -d^- is close to j \ - in the 1-norm. See Figure 2.5. 

FIGURE 2.5. Projected vectors in R2 

2.1.2 Hausdorff Metric 

The Hausdorff metric gives the distance between two compact sets. It can 
be defined in a rather general setting. To see this, let (X, d) be a complete 
metric space where X is a subset of Fn or Mn and d a metric on X. 

If K is a compact subset of X and I € X, we can take a sequence 

h,k2,. in K such that d (/, fci), d(I, k2),... converges to inf d (I, k). 

And, take a subsequence k^, A»2,. 
picted in Figure 2.6. Then, 

that converges to, say k G K as de-

inf d (/,*) = d(i,jfe). 
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Hence, we can define 

FIGURE 2.6. A view of I and k. 

d(l,K)=mmdQ,k). 
k€K 

Note that if d(l,K)<e, then 

lEK + e 

where K+e = {x : d(x,k) < e for some k € K} as shown in Figure 2.7. 
We can also show that if L is a compact subset of X, then supd (/, K) = 

d (l, K\ for some / e L. Using these observations, we define 
l€L 

6(L,K)=maxd(l,K) 

= maxmind(l,k) 
l£L k€K 

= d (t, k) 

If 6(L,K) = e, then observe, as in Figure 2.8, that L C K+ e. 
The Haiisdorff metric h defines the distance between two compact sets, 

say L and K, of X as 

h (L, K) = max {6 (L, K), 6 (K, L)} . 

So if h(L,K)<e, then 

LQK+ e andK CL+ e 
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FIGURE 2.7. A sketch for d(l,K). 

and vice versa. 
In the following we use that H (X) is the set of all compact subsets of 

X. 

Theorem 2.4 Using that (X,d) is a complete metric space, we have that 
(H (X) ,h) is a complete metric space. 

Proof. To show that h is a metric is somewhat straightforward. Thus, we 
will only show the triangular inequality. For this, let R, S, and T be in 
H (X). Then for any r e R and t e T, 

d (r, S) = min d (r, s) 

<mm(d(r,t)+d(t,s)) 

= d (r, t) + mind (t, s) 

= d(r,t)+d(t,S). 

Since this holds for any t € T, 

d(r,S)<d(r,t)+d(i,S) 



2.1 Projective and Hausdorff Metrics 17 

FIGURE 2.8. A sketch showing 6 (L, K) < e. 

where d (r, t) = min d (r, t) — d (r, T). Finally, 
Sfci 

6{R,S) = max d(r,S) 

< max d (r, i) + max d(t,S) 

= maxd(r,T) +max.d(t,S) 

6(R,T) + S(T,S). 

Putting together, we have 

h (R, S) = max {8 (R, S), 6 (S, R)} 

< max{6(R,T) + 8(T,S),S(S,T) + 6(T,R)} 

< max {8 (R, T), 8 (T, R)} + max {8 (T, S), 8 (S, T)} 

= h(R,T) + h(T,S). 

The proof that (H (X), h) is a complete metric space is somewhat intri­
cate as well as long. Eggleston (1969) is a source for this argument. • 
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To conclude this section, we link the projective metric p and the Haus-
dorff metric. To do this, let S+ denote the set of all positive stochastic 
vectors in Rn. As shown below, p restricted to S+ is a metric. 

Theorem 2.5 (S+,p) is a complete metric space. 

Proof. To show that p is a metric, we need only to show that if x and y are 
in S+ and p (x, y) = 0, then x — y. This follows since if p (x, y) = 0, then 
y = ax for some scalar a. And since x, y 6 S+, their components satisfy 

2/i H t- yn = OL (xi H h xn). 

So a — 1. Thus, x ~ y. 
Finally, to show that (S+,p) is complete, observe that if (xk) is a Cauchy 

sequence from S+, then the components of the Xk's are bounded away from 
0. Then, apply Theorem 2.3. • 

As a consequence, we have the following. 

Corollary 2.1 Using that (S+,p) is the complete metric space, we have 
that (H (S+) ,h) is a complete metric space. 

2.2 Contraction Coefficients 

Let Yl be a matrix set and 

A = E U S 2 U • • • . 

A nonnegative function T 

T : A —i? 

is called a contraction coefficient for E if 

T(AB)<T(A)T(B) 

for all A, B 6 A. 
Contraction coefficients are used to show that a sequence of vectors or a 

sequence of matrices converges in some sense. In this section, we look at 
two kinds of contraction coefficients. And we do this in subsections. 
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2.2.1 Birkhoff Contraction Coefficient 

The contraction coefficient for the projective metric, introduced by G. 
Birkhoff (1967), is defined on the special nonnegative matrices described 
below. 

Definition 2.2 An mxn nonnegative matrix A is row allowable if it has 
a positive entry in each of its rows. 

Note that if A is row allowable and x and y are positive vectors, then Ax 
and Ay are positive vectors. Thus we can compare p(Ax, Ay) and p (x, y). 
To do this, we use the quotient bound result that if r\,... , rn and s\,... , sn 

are positive constants, then 

T"i T"i + • • • T Tn ^ 1"i /n o\ 
mm — < < max —. (z.o) 

i Si Si-] + Sn i Si 
This result is easily shown by induction or by using calculus. 

Lemma 2.1 Let A be an mxn row allowable matrix and x and y positive 
vectors. Then 

p(Ax,Ay) <p(x,y). 

Proof. Let x = Ax and y = Ay. Then 

x% ai\X\ ~r • • • "T" ainXji 

Thus using (2.3), 

for all i. So 

and thus, 

or 

m anyi H h ainVn 

nun — < — < max — 
fe Vk y% k y k 

m a x ? max 2-i. 
Vi u Vk 

< ^ n i ^ HnXt 

P (x, y)<p (x, y) 

p {Ax, Ay) < p (x, y), 

which yields the lemma. • 

For slightly different matrices, we can show a strict inequality result. 
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Lemma 2.2 Let A be a nonnegative matrix with a positive column. If x 
and y are positive vectors, and p(x,y) > 0, then 

p(Ax,Ay) <p(x,y). 

Proof. Set x = Ax and y = Ay. Define n = ^ and fi = ^ for all i. 
yi yi 

Further, define M = maxf^, m = minr^, M — maxr^, and m = minr^. 
i i i i 

Now 

l^i aijxj n I 

' » — n ~ Z_^ n 
E aijVj i=1 \ £ aijVj 

3=1 \j=l 

Set ai3- = "'W > 0. Then 

3 = 1 

Vj 

fi = Y^aiJrh (2-4) 

a convex sum. 
Suppose 

M — 2_,<XV3r3 ^d ^ = y j a 9 J r i • 
3=1 3=1 

Using that these are convex sums, M < M and m > m. Without loss 
of generahty, assume the first column of A is positive. If M — M and 
m = TO, then since an > 0 for all i, by (2.4), r\ — M — m, which means 
p(x,y) — 0, denying the hypothesis. Thus, suppose one of M < M or 
rh> m holds. Then 

M -rh< M -m 

and so 

M , M „ __ _ 1 < i. 
m m 

It follows that 

p (Ax, Ay) < p (x, y), 
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the desired result. • 

Lemma 2.1 shows that ray (Ax) and ray (Ay) are no farther apart than 
ray (a;) and ray (y) as depicted in Figure 2.9. And, if A has a positive 
column, ray (Ax) and ray (Ay) are actually closer than ray (x) and ray (y). 

FIGURE 2.9. A ray view of p(Ax, Ay) <p(x,y). 

Define the projective coefficient, called the Birkhoff contraction coeffi­
cient, of an n x n row allowable matrix A as 

TB (A) = sup 
p (Ax, Ay) 

p(x,y) 

where the sup is taken over all positive vectors in Rn. Thus, 

p (Ax, Ay) < TB (A) p (x, y) 

for all positive x,y. And, it follows by Lemma 2.1 that 

TB (A) < 1. 

Note that TB indicates how much ray (x) and ray (y) are drawn together 
when multiplying by A. A picture of this, using the area view of p (x, y), 
is shown in Figure 2.10. 

Actually, there is a formula for computing TB (A) in terms of the entries 
of A. To provide this formula, we need a few preliminary remarks. 

Let A be an n x n positive matrix with n > 1. For any 2 x 2 submatrix 
of A, say 

j,rq 

the constants 
<Xpq<Xrs dpSQ,rq 

QpSQ,rq Ojpqdrs 
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FIGURE 2.10. An area view of TB (A) = \. 

are cross ratios. Define 

4> (A) = min QpqO'rs 

where the minimum is over all cross ratios of A. For example, if A — 

I I , then d>{A) = m i n { | , f i } = §. 

If A is row allowable and contains a 0 entry, define <j> (A) — 0. Thus for 
any row allowable matrix A, 

cf>(A)<l. 

The formula for TB (A) can now be given. Its proof, rather intricate, can 
be found in Seneta (1981). 

Theorem 2.6 Let A be ann x n row allowable matrix. Then 

1 - 7 ^ 4 ) 
TB{A) = 

i + y^W 
Note that this theorem implies that r (A) < 1 when A is positive and 

r (A) = 1 if A is row allowable and has at least one 0 entry. And that 

p (Ax, Ay) < TB (A) p (x, y) 
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for all row allowable matrices A and positive vectors x and y. 
T 1 2 1 

Using our previous example, where A = „ . , we have 

rB(A) = —^«.10 

so for any positive vectors x and y, ray (Ax) and ray (Ay) are closer than 
ray (x) and ray (y). 

This theorem also assures that if A is a positive nxn matrix and D\, £>2, 
nxn diagonal matrices with positive main diagonals, then TB (D1AD2) = 
TB (A). Thus, scaling the rows and columns of A does not change the 
contraction coefficient. 

It is interesting to see what TB (A) = 0 means about A. 

Theorem 2.7 Let A be a positive nxn matrix. If TB (A) = 0, then A is 
rankl . 

Proof. Suppose TB (A) = 0. We will show that the i-th row of A is a 
scalar multiple of the 1-st row of A. 

Define a — ^"-. Then, since TB (A) = 0, 4>(A) — 1 which assures that 
all cross ratios of A are 1. Thus, 

ana, i] 

anaij 

for all j . Thus, -^- = 1 or a -̂ = aaij. Since this holds for all j , the i-th 
row of A is a scalar multiple of the first row of A. Since i was arbitrary, A 
is rank 1. • 

Probably the most useful property of TB follows. 

Theorem 2.8 Let A and B be nxn row allowable matrices. Then 

TB{AB)<TB(A)TB(B). 

Proof. Let x and y be positive vectors in Rn. Then Bx and By are also 
positive vectors in Rn. Thus 

p(ABx, ABy) < rB (A) TB (B)p(x,y). 

And, since this inequality holds for all positive vectors x and y in Rn, 

TB(AB)<TB(A)TB(B) 
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as desired. • 

We use this property as we use induced matrix norms. 

Corollary 2.2 If A is annxn row allowable matrix andy a positive eigen­
vector for A, then for any positive vector x, p [Akx, y) < TQ (A) p (x, y). 

Proof. Note that 

p(Akx,y)=p(Akx,Aky) 

<TB(A)kp(x,y) 

for all positive integers k. m 

This corollary assures that for a positive matrix A, 

lim p (Akx, y) = 0, 
k—too 

so ray (Akx) gets closer to ray (y) as k increases. 
We will conclude this section by extending our work to compact subsets. 

To do this, recall that (S+,p) is a complete metric space. Define the 
Hausdorff metric on the compact subsets (closed subsets in the 1-norm) of 
S+ by using the metric p. That is, 

S (U, V) = max (minp (u, v)) 

and 

h {U, V) = max {6 (U, V), 6 {V, U)} 

where U and V are any two compact subsets of S+. 
Let E be any compact subset of n x n row allowable matrices. For each 

A € E, define the projective map 

wA : S+ -» S+ 

by WA (X) = I, ̂ i , as shown in Figure 2.11. Define the projective set for 
E b y 

Zp = {wA: AeT,}. 

Then for any compact subset of U of S+, 

T,PU = {WA. (X) :WA€HP and x e U} . 
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FIGURE 2.11. A view of wA. 

Thus, EPC/ is the projection of EC/ onto S+. Since E and U are compact, 
so is EC/. And thus, EPC/ is compact. 

Now using the metric p on S+, define 

fa(Sff,sy) 
^ /i(c/,y) 

= sup 

where the sup is over all compact subsets U and V of 5 + . 
Using the notation described above, we have the following. 

Theo rem 2.9 r (E) < maxTB (A). 

Proof. Let U and V be compact subsets of S+. Then 

= max p(Au 
Au€ZU v 

= p (Aii, E v ) 

6(J1PU,EPV)= max pfylu.EV) 
Au€'EU 

for some Att e EC/. So 

<5 (EpC/, EPV) < p (Au, AV) 
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where v satisfies p (u, v) = p (u, V). Thus, 

6 (SpC/, HPV) < TB ( i ) p (U, V) 

= TB(A)P{U,V) 

<TB(A")6(U,V). 

Similarly, 

6 (EpV, Ep[/) < TB ( i ) S {V, U) 

for some A G E. Thus, 

and so 

h (Ep[/, EPV) < max TB (A) h (U, V) 

r ( E ) < m a x r B ( A ) . 

which is what we need to show. • 

Equality, in the theorem, need not hold. To see this, let 

E = {A : A is a column stochastic 2 x 2 
matrix witl 
for all i,j}. 
matrix with | < a«j < § 

If x € S+ and A e E, then ^ < (Ax)i < § for all i, and so A = [Ax Ax] G E. 
Thus, for y G S+,Ax = Ay, which can be used to show r ( E ) = 0. Yet 

" 1 2 "1 
A= | I G E and TB (A) > 0. 

L 3 3 J 
We define 

TB (E) = max r B (A). 

And, we have a corollary parallel to Corollary 2.2. 

Corollary 2.3 If V is a compact subset of S+, where T,pV = V, then for 
any compact subset U of S+, 

h{T!;U,V)<TB{T.)kh{U,V). 
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This corollary shows that if we project the sequence 

T,U, T,2U, S 3 [ / , . . . 

into S+ to obtain 

XpU,??pU, ?.%... 

then if rjg (S) < 1, this sequence converges to V in the Hausdorff metric. 

2.2.2 Subspace Contraction Coefficient 
We now develop a contraction coefficient for a subspace of Fn. When this 
setting arises in apphcations, row vectors rather than column vectors are 
usually used. Thus, in this subsection Fn will denote row vectors. 

To develop this contraction coefficient, we let A be an n x n matrix and 
E an n x k full column rank matrix. Further, we suppose that there is a 
k x k matrix M such that 

AE = EM. 

Now extend the columns of E to a basis and use this basis to form 

P=[EG}. 

Partition 

p - i = 
H 
J 

where H is fc x n. Then we have 

AP = A [E G\ 

= [EG] ' M C 
0 N 

where 

' C ' 
N 

P-1A G. 

(2.5) 

Now set 

W = {x£Fn:xE = 0}, 
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Then W is a subspace and if x e W, xA € W as well. Thus, for any vector 
norm ||-||, we can define 

TW(A) max llxAII 

\\xA\\ 
max ",, ..". 
V% INI 

Notice that from the definition, 

\\XA\\<TW(A)\\X\\ 

for all a; 6 W. Thus, if Tw (A) — ^, then A contracts the subspace W by 
at least | . So, a circle of radius r ends up in a circle of radius | r , or less, 
as shown in Figure 2.12. 

FIGURE 2.12. A view of TW (A) = f. 

If B is an n x n matrix such that BE = EM for some k x k matrix M, 
then for any x € W, 

\\xAB\\ < rw (B) \\xA\\ < rw (A) TW (B) \\x\\. 

Thus, 

rw (AB) < TW (A) TW (B). 

We now link Tw (A) to N given in (2.5). To do this, define on Fn~k 

\\4j = \\zJ\\. 

It is easily seen that \\-\\j is a norm. 
We now show that TW (A) is actually \\N\\j. 

Theorem 2.10 Using the partition in (2.5), Tw (A) = \\N\\j. 
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Proof. We first show that T\y (A) < \\N\\j. For this, let x be a vector 
such that xE = 0. Then 

Now 

A|| = 

= 

= 

X [EG] 

[OxG] 

[0 xGN] 

M C 
0 N 

M C 
0 N 

H 1 
J 

[ H ' 
L J 

\ H 

L J 

= ||a*3WJ|| 
= \\xGN\\j 

^WXGWJWNWJ. 

XG\\J = \\xGJ\\ = 

= x[EG] 

[OxG 

H 1 J J 
['] 

(2.6) 

Thus, plugging into (2.6) yields 

MHiMUWi. 
And, since this holds for all a; € W, 

TW(A)<\\N\\J. 

We now show that \\N\\j < TW (A). To do this, let z(E Fn~k be such 
that \\z\\j = 1 and ||JV||3 = |kiV||^. 

Now, 

HJVIIj = l l ^ l l j 

= ll^ll 

M 
M C 
0 N 

H 
J 

= \\*JM 
<\\zJ\\rw(A) 

<\\z\\jTW(A) 

= TW (A), 
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which gives the theorem. • 

A converse of this theorem follows. 

Theorem 2.11 Let A be annxn matrix and P annxn matrix such that 

P~lAP = 
M C 
0 N 

where M is k x k. Let ||-|| be any norm on Fn k. Then there is a norm 
\\-\\G on Fn and thus on W, such that TW (A) = ||iV||. 

Proof. We assume P and P^1 are partitioned as in (2.5) and use the 
notation given there. We first find a norm on 

W = {x : xE = 0} . 

For this, if x G W, define 

IHIG = ll*G|| • 

To see that ||-||G is a norm, let ||a;||G = 0. Then \\xG\\ = 0, so xG — 0. 
Since x G W, xP — 0 and so x = 0. The remaining properties assuring 
that ||-||G is a norm are easily established. 

Now, extend ||-||G to a norm, say ||-||G, on Fn. We show the contraction 
coefficient Ty/i determined from this norm, is such that Tw (A) — ||iV||. 
Using the norm and part of the proof of the previous theorem, recall that 
if zeFn~k, 

Thus, \\N\\j 

as required. 

I I * 

= \\m\ 

• 

IIJ = \\*J\\G 

and hence 

TW 

= \\zJG\\ = 

(A) = \\N\\ 

Formulas for computing Tw (A) depend on the vector norm used as well 
as on E. We restrict our work now to Rn so that we can use convex 
polytopes. If the vector norm, say ||-||, has a unit ball which is a convex 
polytope, that is 

K = {x e Rn : xE = 0 and ||z|| < 1} 

is a convex polytope, then a formula, in terms of the vertices of this convex 
polytope, can be found. Using this notation, we have the following. 
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Theorem 2.12 Let A be an n x n matrix and \\-\\ a vector norm on Rn 

that produces a unit ball which is a convex polytope K in W. If {vi,... ,vs} 
are the vertices of K, then 

Tw(A)=max{ | |u i A| |} . 

Proof. Let x e K where ||x|| = 1. Write 

x = a\vx H h asvs 

a convex combination of vi,... ,vs. Then it follows that 

Mil = y~^ ctiViA 
i=l 

Thus, 

<5>*IMII 
i=l 

<max{||t;i-A||}. 

Tw(A) <max{\\viA\\} 

That equality holds can be seen by noting that no vertex can be interior 
to the unit ball. Thus, \\vi\\ — 1 for all i, so max ||a;.A|| is achieved at a 

vertex. • 
11*11=1 

We will give several examples of computing TW (A), for various W, in 
Chapter 11. For now, we look at a classical result. 

An nxn nonnegative matrix A is stochastic if each of its rows is stochas­
tic. Note that in this case 

Ae = e, 

where e = ( 1 , 1 , . . . ,1) , so we can set E = e. Then using the 1-norm, 

K = {x G Rn : xe = 0 and Ux^ < 1} . 

The vertices of this set are those vectors having precisely two nonzero 
entries, namely | and — | . Thus, 

Tw (A) = max 
2Gj 
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where ak denotes the A;-th row of A. Written in the classical way, 

1 
2'iTi 

Tl(A) = H^Bx\\ai-aj\\l> 

is called the coefficient of ergodicity for stochastic matrices. 
To conclude this subsection, we show how to describe subspace coeffi­

cients on the compact subsets. To do this we suppose that E is a compact 
matrix set and that if A € E, then A has partitioned form as given in (2.5). 
Let S C Fn such that if x, y 6 S, then x — y € W (a subset of a translate 
ofW). We define 

T ( E ) = %gf h(R,T) 

where the maximum is over all compact subsets R and T in S. 
A bound on r (E) follows. 

T h e o r e m 2.13 r (E) < m a x r ^ (A). 
Aen 

Proof. The proof is as in Theorem 2.9. • 

We now define 

TW (S) = maxTw (A). 

2.2.3 Blocking 
In applications of products of matrices, we need the required contraction 
coefficient to be less than 1. However, we often find a larger coefficient. 
How this is usually resolved is to use products of matrices of a specified 
length, called blocks. For any matrix set E, an r-block is defined as any 
product 7T in E7". 

We now prove a rather general, and useful, theorem. 

Theorem 2.14 Let r be a contraction coefficient (either TB or TW) for a 
matrix set E. Suppose r (n) < rr for some constant rT < 1 and all r-blocks 
7r of E, and that r (E) < /3 for some constant j3. 

When all products are taken from E, we have the following. If T — TB, 
then r (Ai), r (A^Ai), r (A3A2A1),... converges to 0. If T = TW, then 
r (Ai), T (A1A2), r (Ai A2.A3),... converges to 0. And, both have rate of 

1 
convergence rf • 
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Proof. We prove the result for TB- Let A\, A2A1, A3A2A1,... be a 
sequence of products taken from S. Partition, as possible, each product 
Ak • • • A\ in the sequence into r-blocks, 

7TS • • • 7TlAt •••Al 

where k — sr + t,t < r, and TTI, ... ,TTS are r-blocks. Then 

r (7r s - - -7TiAf-Ai) 

< r (TTS) • • • T (TTI) T (At) • • • T (Ai) 

Thus T (Ak • • • Ai) —> 0 as k —> 00. 
Concerning the geometric rate, note that for r r > 0, 

< TfTr
r 

- 1 

Thus, 

T(Ak---A1)<T-1(riy, 

which shows that the rate is geometric. • 

2.3 Measures of Irreducibility and Full 
Indecomposability 

Measures give an indication of how the nonzero entries in a matrix are dis­
tributed within that matrix. In this section, we look at two such measures. 

For the first measure, let A be an n x n nonnegative matrix. We say that 
A is reducible if there is a 0-submatrix, say in rows numbered r i , . . . ,rg and 
columns numbered c\,... , c„_ s , where r\,... , rs, c i , . . . , c„_ s are distinct. 
(Thus, a 1 x 1 matrix A is reducible iff a n =0 . ) For example 

A = 
1 2 1 
0 4 0 
3 0 2 
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FIGURE 2.13. The graph of A. 

is reducible since in row 2 and columns 1 and 3, there is a O-submatrix. 
If P is a permutation matrix that moves rows ri,... ,rs into rows 1 , . . . , s, 

then 

PAP* = 
An 0 
A21 A21 

where An is s x s. In the example above, 

P = 
0 1 0 
1 0 0 
0 0 1 

An n x n nonnegative matrix A is irreducible, if it is not reducible. 
As shown in Varga (1962), a directed graph can be associated with A by 

using vertices vi,... ,vn and defining an arc from Vi to Vj if a^ > 0. Thus 
for our example, we have Figure 2.13. And, A is irreducible if and only if 
there is a path (directed), of positive length, from any Vi to any Vj. Note 
that in our example, there is no path from v% to V3, so A is reducible. 

A measure, called a measure of irreducibility, is defined on an n x n 
nonnegative matrix A, n > 1, as 

u (A) — min I maxa^ 1 

where R is a nonempty proper subset of { 1 , . . . , n} and R! its compliment. 
This measure tells how far A is from being reducible. 

For the second measure, we say that an n x n nonnegative matrix A 
is partly decomposable if there is a O-submatrix, say in rows numbered 
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r x , . . . , rs and columns numbered c\,... , cn^s. (Thus a l x l matrix A is 
partly decomposable iff a n = 0.) For example, 

A = 
1 2 0 
4 0 3 
2 0 1 

is partly decomposable since there is a 0-submatrix in rows 2 and 3, and 
column 2. 

If we let P and Q be n x n permutation matrices such that P permutes 
rows n , . . . , rs into rows 1 , . . . , s and Q permutes columns c\,... , cn-a 

into columns s + 1 , . . . , n, then 

PAQ = 
An 0 
A21 A22 

where An is s x s. 
An nxn nonnegative matrix A is fully indecomposable if it is not partly 

decomposable. Thus, A is fully indecomposable iff whenever A contains a 
p x q 0-submatrix, then p + q < n — 1. 

There is a link between irreducible matrices and fully indecomposable 
matrices. As shown in Brualdi and Ryser (1991), A is irreducible iff A +1 
is fully indecomposable. 

A measure of full indecomposability can be defined as 

U (A) = min I max Cjj 
' \iesjeT J 

where S = {r^, . . . ,rs} and T = {cx,... , cn_ s} are nonempty proper sub­
sets of { 1 , . . . , n} . 

We now show a few basic results about fully indecomposable matrices. 

Theorem 2.15 Let A and B be n x n nonnegative fully indecomposable 
matrices. Suppose that the largest 0-submatrices in A and B are SA X tA 
and SB xtB, respectively. If 

SA + tA-n-kA 

sB+tB = n-kB, 

then the largest 0-submatrix, say a p x q submatrix, in AB satisfies 

p + q<n — kA — ks-

file:///iesjeT


36 2. Functional 

Proof. Suppose P and Q are n x n permutations such that 

P{AB)Q Cll C\2 
C21 C22 

where C12 is p X q and the largest O-submatrix in AB. 
Let R be an n x n permutation matrix such that 

PAR = 
An 0 
A21 A22 

where An is p x s and has no 0 columns. 
Partition 

RlBQ 
Bn B12 
B\2 B22 

where Bn is s x (n — q). Thus, we have 

Axl 0 
A21 A22 

Bn B\i 
B21 B22 

C11 
C21 

0 
C22 

Now, 

AnB12 = 0 

and since An has no 0 columns 

But = 0. 

Thus, s + q <n — ks- And, using A, p + (n — s) < n — A;̂ , so 

P + 9 < (* - kA) + (n - kB - s) 

<n — kA — kg, 

the desired result. • 

Several corollaries are immediate. 

Corollary 2.4 Let A and B benxn fully indecomposable matrices. Then 
AB is fully indecomposable. 

Proof. If AB contains a p x q 0-submatrix, then by the theorem, p + q < 
n — 1 — 1 = n — 2. Thus, AB is fully indecomposable, as was to be shown. • 
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Corollary 2.5 Let A\,... , An-\ be n x n fully indecomposable matrices. 
Then A\ • • • A„_i is positive. 

Proof. Note that kAxAi ^ kAl + kA2. And 

hAl...An_x >kAl+--- + kAn_t 

> 1 + --- + 1 

= n - l . 

Thus, if A\ • • • An-i has apxq O-submatrix, then 

p-\-q<n-kAl...An_x 

< n - (n - 1) 

= 1. 

This inequality cannot hold, hence A\ • • • An-\ can contain no O-submatrix. 
The result follows. • 

The measure of full indecomposability can also be seen as giving some 
information about the distribution of the sizes of the entries in a product 
of matrices. 

Theorem 2.16 Let A and B benxn fully indecomposable matrices. Then 

U(AB) >U{A)U(B). 

Proof. Construct A = [&ij] where 

0 if an < U (A) 
aij otherwise. 

Construct B in the same way. Then both A and B are fully indecompos­

able. Thus AB is fully indecomposable, and so we have that U \AB\ > 0. 

If (AB\ > 0, then (AB\ >U(A)U(B). Hence, 

U(AB)>U(A)U(B), 

the indicated result. • 

An immediate corollary follows. 

Corollary 2.6 If A\,... ,An~\ are n x n fully indecomposable matrices, 
then 

(A1---An_i)ij>U(A1)---U(An_1) 

for all i and j . 



38 2. Functional 

2.4 Spectral Radius 

Recall that for a n n x n matrix A, the spectral radius p (A) of A is 

p (A) = max {|A| : A is an eigenvalue of A} . 

It is easily seen that 

p{A) = (p{Ak)Y 

and that for any matrix norm ||-|| 

p{A)= lim | |A 
k—*oo 

k\\k 

(2.7) 

(2.8) 

In this section, we use both (2.7) and (2.8) to generalize the notion of 
spectral radius to a bounded matrix set E. 

To generalize (2.7), let 

Pk (E) = sup I p I f[ Ai j : Ai e E for a l i i I 

The generalized spectral radius of E is 

/>(E)= lim sup (ftt ( £ ) )* . 

k—>oo 

To generalize (2.8), let ||-|| a matrix norm and define 

k pfc(E, INI) = sup. Ai € E for all i 

The joint spectral radius is 

HSJHD-^sup^JS.II.II)*}. 

Note that if || • ||o is another matrix norm, then since norms are equivalent, 
there are positive constants a and /? such that 

aM||0<IHI</?| |A| |0 

for all n x n matrices A. Thus, 

a" 

k 
l 
k 

< 

a 

k 
1 

</?* 
fc 

i = l 
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and so 

P(E,|HI0) = P(E,IHD-

Hence, the value p (E, ||-||) does not depend on the matrix norm used, and 
we can write p (E) for p (E, ||-||). In addition, if the set E used in p (E) is 
clear from context, we simply write p for p (E). 

We can also show that if P is an n x n nonsingular matrix and we define 

P E P - 1 = {PAP'1 : A € E} 

then 

p(FZP-1)=p(X). 

Further, for any matrix norm ||-||, \\A\\P = | | P A P - 1 | | is a matrix norm. 
Thus p ( P E P - 1 ) = p (E). So both p and p are invariant under similarity 
transformations. 

Our first result links the generalized spectral radius and the joint spectral 
radius. 

Lemma 2.3 For any matrix norm, on a bounded matrix set E, 

/ 3 f e ( E ) * < / 5 ( E ) < p ( E ) < p f e ( E ) ^ . 

Proof. To prove the first inequality, note that for any positive integer m, 

pk{Y)m<Pmk(£). 

Thus, taking the mfc-th roots, 

pk(Z)l <pmk(Z)^. 

Now computing lim sup, as m —> oo, of the right side, we have the first 
inequality. 

The second inequality follows by observing that 

p(Aik---Ail)<\\Aik---Ail\\ 

for any matrices A^,... , Aik. 
For the third inequality, let I be a positive integer and write 

I = kq + r 
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where 0 < r < k. Note that for any product of / matrices from E, 

|| Ai- • • Ax || < || A k q + r • • • Akq+lAkq •••AxW 

< 0r \\Akg • • • A { k _ 1 ) q + 1 • • • A q • • • A x || 

<PrpkP<) 

where /3 is a bound on the matrices in E. Thus, 

ft(E)' < / ? T ^ ( E ) ' 

= pr'pk(E)^pk(^)i 

= [f3rpk(E)~^'pk(E)i. 

Now, computing lim sup as I —> oo, we have 

£ ( E ) < p f c ( E ) * 

as required. • 

Using this lemma, we have simpler expressions for p (E) and p (E). 

Theorem 2.17 If E is a bounded matrix set, then we have that p (E) = 

lim /9fe(E)* andpCE) = lim j&fc(E)*. 
k~->oo fc—»oo 

Proof. We prove the second inequality. By the lemma, we have 

p ( E ) < p f c ( E ) * 

for all k. Thus, for any k, 

p(Z)<m£Pj(Z)7 <supPj(Z)7 
J>k J j>k J 

from which it follows that 

p(E) < lim inf pk (E)* < lim suppfc (E)* = p ( E ) . 
re—+oo fc—*oo 

So, 

l i m f t ( E ) * = p ( E ) , 

the desired result. • 
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Berger and Wang (1995), in a rather long argument, showed that for 
bounded sets E, p (E) = p (E). However, we will not develop this relation­
ship since we use the traditional p, over p, in our work. 

We now give a few results on the size of p. A rather obvious such bound 
follows. 

Theorem 2.18 If E is a bounded set of n x n matrices, then p(T,) < 
sup ||A||. 

For the remaining result, we observe that if E is a product bounded 
matrix set, then a vector norm H-^ can be defined from any vector norm 

II-II b y 
||a;||„ = sup {\\Ait ... Aixx\\ : Ak... Ah e E} 

(when I = 0, ||Aj, . ...A^arU = ||x||). Using this vector norm, we can see 
that if A 6 E, then 

\\Ax\\v < |M|„ 

for all x. Thus we have the following. 

Lemma 2.4 If E is a product bounded matrix set, then there is a vector 
norm \\-\\v such that for the induced matrix norm, 

\\A\\V < 1. 

This lemma provides a last result involving an expression for /o(E). 

Theorem 2.19 If T, is a bounded matrix set, 

p ( E ) = i n f s u p | | A | | . 
INI yl€S 

Proof. Let e > 0 and define 

E = ( ^ — A: A e E l > . 
\p + e 

Then E is product bounded since, if B s Efe, 

(P + eY 

Note that ,. } .kph —> 0 as k —> oo. 
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Thus, by Lemma 2.4, there is a norm ||-||6 such that 

\\C\\b < 1 

fora l lCeE. 

Now, if A € S, j^A e £, so 

P|| fc<p+e. 

Thus, 
inf sup ||A|| < p + e, 
INI A€V 

and since e was arbitrary, 

Finally by Theorem 2.18, 

inf sup \\A\\ < p. 
lill AdT. 

inf sup ||i4|| > p. 
II'II A€E 

The result follows from the last two inequalities. 

2.5 Research Notes 

Some material on the projective metric can be found in Bushell (1973), Gol-
ubinsky, Keller and Rothchild (1975) and in the book by Seneta (1981). Ge­
ometric discussions can be found in Bushell (1973) and Golubinsky, Keller 
and Rothchild. Artzrouni (1996) gave the inequahties that appeared in 
Theorem 2.2. 

A source for basic work on the Hausdorff metric is a book by Eggleston 
(1969). 

Birkhoff (1967) developed the expression for TB- A proof can also be 
found in Seneta (1981). Arzrouni and Li (1995) provided a 'simple' proof 

for this result. Bushell (1973) showed that ((Rn)+ n U,p\ where U is 

the unit sphere, was a complete metric space. Altham (1970) discussed 
measurements in general. 

Much of the work on Tw hi subsection 2 is based on Hartfiel and Roth-
blum (1998). However, special such topics have been studied by numerous 
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authors. Seneta (1981) as well as Rothblum and Tan (1985) showed that 
for a positive stochastic matrix A, TB (A) > T\ (A) where n (A) is the 
subspace contractive coefficient with E = ( 1 , 1 , . . . ,1)*. More recently, 
Rhodius (2000) considered contraction coefficients for infinite stochastic 
matrices. It should be noted that these authors call contraction coeffi­
cients, coefficients of ergodicity. 

General work on measures for irreducibility and full indecomposability 
were given by Hartfiel (1975). Christian (1979) also contributed to that 
area. Hartfiel (1973) used measures to compute bounds on eigenvalues and 
eigenvectors. 

Rota and Strang (1960) introduced the joint spectral radius p, while 
Daubechies and Lagaries (1992) gave the generalized spectral radius p. 
Lemma 2.3 was also done by those authors. Berger and Wang (1992) 
proved that p (S) = p (S), as long as S is bounded. This theorem was also 
proved by Eisner (1995) by different techniques. Beyn and Eisner (1997) 
proved Lemma 2.4 and Theorem 2.19. Some of this work is implicit in the 
paper by Rota and Strang. 





Semigroups of Matrices 

Let S be a product bounded matrix set. A matrix sequence of the se­
quence (Sfe) is a sequence TTI, 7T2,... of products taken from S, S 2 , . . . , 
respectively. A matrix subsequence is a subsequence of a matrix sequence. 

The limiting set, S°°, of the sequence (Sfc) is defined as 

S°° = {A : A is the limit of a matrix subsequence of (E fe)}. 

Two examples may help with understanding these notions. 

Example 3.1 Let's 

However, S°° "{ 
-{U.i]}-. 
i o 
0 1 

0 1 
1 0 

0 1 
1 0 

Then lim 
fc—»oo 

}• 

0 1 
1 0 does not exist. 

Example 3.2 Let S = 

E°° 

I I 

I f 
L 2 2 

{[i lHi0 . ]} 

i o 
i i 
2 2 }' Then we can show that 

As we will see in Chapter 11, hmiting sets can be much more complicated. 
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3.1 Limiting Sets 

This section describes various properties of limiting sets. 

3.1.1 Algebraic Properties 

Some algebraic properties of a limiting set E°° are given below. 

Theorem 3.1 IfY, is product bounded, then E°° is a compact semigroup. 

Proof. To show that E°° is a semigroup, let A,B e E°°. Then there are 
matrix subsequences of (Efc), say 

" " t l > " " » 2 ) • • • 

njl ' nj2 ' ' - -

that converge to A and B, respectively. The sequence 

7rii'!rj1 i 7 r»27 rJ2 i • • • 

is a matrix subsequence of (Efe) which converges to AB. Thus, AB 6 E°° 
and since A and B were arbitrary, E°° is a semigroup. 

The proof that E°° is topologically closed is a standard proof, and since 
E is product bounded, E°° is bounded. Thus, E°° is a compact set. • 

A product result about E°° follows. 

Theorem 3.2 IfH is product bounded, then E ^ E 0 0 = E°°. 

Proof. Since E°° is a semigroup, E ^ E 0 0 C E°°. To show equality holds, 
let A £ E°° and iri, 7T2,... a matrix subsequence of (Efc) that converges to 
A. If 7Tfc has Ik factors, k > 1, factor 

Tfc = -BfcCfc 

where Bk contains the first [Zfc/2] factors of -Kk and Ck the remaining factors. 
Since E is product bounded, the sequence Bi,B2,... has a conver­

gent matrix subsequence Bix,Bi2,... which converges to, say, B. Since 
Cjj, d2,... is bounded, it has a convergent subsequence, say, Cjr, Cj2,... 
which converges to, say, C. Thus ir^,TCJ2>... converges to BC. Since B 
and C are in E°° and A = BC, it follows that E°° C E T 0 0 , and so 
voovoo = yioo _ 

Actually, multiplying E°° by E doesn't change that set. 
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Theorem 3.3 7/E is product bounded and compact, it follows that EE°° = 
E°° = E°°E. 

Proof. We only show that E°° C EE°°. To do this, let B € E°°. Since 
B € E°°, there is a matrix subsequence n^, 7Tj2,... that converges to B. 

Factor, for k > 1, 

where Ai2, Ai3,... are in E. Now, since E is compact, this sequence has a 
subsequence, say 

Aj21 Aj3,... 

which converges to, say, A. And, likewise Cj2, Cj3,... has a subsequence, 
say 

CTC2 ) Cfc3 , . . . 

which converges to, say, C. Thus Afc2Cfc2, Ak3Ck3, • • • converges to AC. 
Noting that A e E, C € E°° and that 

AC = B, 

we have that E°° C EE°° and the result follows. • 

When E = {A}, multiplying E°° by any matrix in E°° doesn't change 
that set. 

Theorem 3.4 If E = {A} is product bounded, then for any B € E°°, 
BE 0 0 = E°° = E°°B. 

Proof. We prove that BE 0 0 = E°°. 
Since E°° is a semigroup, BE°° C E°°. Thus, we need only show that 

equality holds. For this, let C 6 E°°. Then we have by Theorem 3.3 

AfeE°° = E°° 

for all k. Thus, there is a sequence C\, C%,..., in E°° such that 

AkCk = C 

for all k. 
Now suppose the sequence 
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converges to B. Since E°° is bounded, there is a subsequence of Ckt, Cfc2, • • •, 
say 

Wl> k j 2 , • • • 

that converges to, say, C. Thus 

BC = C. 

And, as a consequence E°° C .BE00. • 

Using this theorem, we can show that, for E = {A}, E°° is actually a 
group. 

Theorem 3.5 IfT, = {A} and E is product bounded, then E°° is a com­
mutative group. 

Proof. We know that E°° is a semigroup. Thus, we need only prove the 
additional properties that show E°° is a commutative group. 

To show that E°° is commutative, let B and C be in E°°. Suppose the 
sequence 

Ah,Ai2,... 

and 

Ajl,Ah,... 

converge to B and C, respectively. Then 

BC = lim Aik lim Ajk 

k—»oo k—*-oo 
= Mm Aik+jk 

k—*oo 

= lim Ajk lim Aik 

k—^oo fc—»oo 

= CB. 

Thus, E°° is commutative. 
To show E°° has an identity, let B e E°°. Then by using Theorem 3.4, 

we have that 

CB = B 

for some C in E°°. We show that C is the identity in E°°. 
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For this, let D e E°°. Then by using Theorem 3.4, we can write 

D = BT 

for some T € E°°. Now 

CD = CBT 

= BT 

= D. 

And, by commutivity, DC = D. Thus, C is the identity in E°°. 
For inverses, let H 6 E°°. Then, by Theorem 3.4, there is a E € E°°, 

such that 

HE = C, 

soE = H-1. 
The parts above show that E°° is a group. • 

3.1.2 Convergence Properties 

In this subsection, we look at the convergence properties of 

E , E 2 , . . . 

where E is a product bounded matrix set. Recall that in this case, by 
Theorem 3.1, E°° is a compact set. 

Concerning the long run behavior of products, we have the following. 

Theorem 3.6 Suppose E is product bounded and e > 0. Then, there is a 
constant N such that if k > N and itk € Efe, then 

d(7r f c ,E°°)<e. 

Proof. The proof is by contradiction. Thus, suppose for some e > 0, there 
is a matrix subsequence from the sequence (S fe), no term of which is in 
E°° + e. Since E is product bounded, these products have a subsequence 
that converges to, say, A, A G E°°. This implies that d{A,T,°°) > e, a 
contradiction. • 

Note that this theorem provides the following corollary. 
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Corollary 3.1 Using the hypothesis of the theorem, for some constant N, 

Efe C E°° + e 

for all k>N. 

In the next result we show that if the sequence (Efc) converges in the 
Hausdorff sense, then it converges to E°°. 

Theorem 3.7 Let E be a product bounded compact set. If E is a compact 

subset ofMn and h (?,k, t) -> 0, then E = E°°. 

Proof. By the previous corollary, we can see that E C £°°. 
Now, suppose E ^ £°°; then there is an A € E°° such that A <£ E. Thus, 

where e is a positive constant. 
Let irk1,irk2> • • • be a matrix subsequence of (Efe) that converges to A. 

Then there is a positive constant N such that for i > N, 

d^TTi.s) > | . 

Thus, 

£ ( E f c % E ) > ! 

for a l i i > N. This contradicts that h (E f e i ,E) —* 0 as i —> oo. Thus 

E = E°°. • 

In many applications of products of matrices, the matrices are actually 
multiplied by subsets of Fn. Thus, if 

WCFn, 

we have the sequence 

W, TW, £ 2 W , . . . . 

In this sequence, we use the words vector sequence, vector subsequence, 
and limiting set W^ with the obvious meanings. 

A way to calculate Woo, in terms of E°°, follows. 
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Theorem 3.8 If E is a product bounded set and W a compact set, then 
Woo = E°°W. 

Proof. Let wo G Woo- Then WQ is the limit of a vector subsequence, say, 
/KiWi,Tr2U>2,... of (E fcW). Since W is compact and £ product bounded, 
we can find a subsequence Tv^w^jir^w^,... of our sequence such that 
w^, Wi2,... converges to, say, w and ir^, 7Tj2,... converges to, say, IT G £°°. 
Thus 

WQ = vrio 

and we can conclude that Woo Q E°°W. 
Now let 7r0w>o G £°°W, where w0 G W and 7r0 G E°°. Then there is a 

matrix subsequence TT^,^^, ... that converges to 7To. And we have that 
•K^WQ^-K^WQ, ... is a vector subsequence of (EfcW), which converges to 
7T0u;o- Thus, 7r0«;o G Woo, and so £°°W C Woo- • 

Theorem 3.9 If T, is a product bounded compact set, W a compact set, 
and h (£fe, E°°) -> 0 as k - • oo, then h (EfcW, Woo) -> 0 as k -> oo. 

Proof. By Theorem 3.8, we have that Woo = E°°W, and so we will show 
that h (EfcW, £°°W) -> 0 as Jfe -> oo. 

Since W is compact, it is bounded by, say, 0. We now show that, for all 
k, 

h (£feW, S°°W) < (3h (£fc, E°°) (3.1) 

from which the theorem follows. 
To do this, let Trkw0 G EfeW where w0 G W and 7rfc G Efe. Let TT e E°° 

be such that d (irk, TT) < h (£fc, E°°). Then 

d (7TfcU>0, TTU>o) < /3d (7Tfc, 7r) 

<y0/i(E f e ,E°o) . 

And since 7Tfet«o was arbitrary, 

« (E*W, E°°W) < 0h (Efe, E°°) . 

Similarly, 

6 (E°°W, £fcW) < 0h (Efc, E°°) 

from which (3.1) follows. • 

A result, which occurs in applications rather often, follows. 
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Corollary 3.2 Suppose E is a product bounded compact set and W a com­
pact set. IfEW C W, then h (EfcW, Woo) - • 0 as k -> 0. 

Proof. It is clear that E fe+1W C EfeW, so Wx> C EfeW for all A;. Thus, we 
need only show that if e > 0, there is a constant N such that for all k > N 

EfeW C Woo + e. 

This follows as in the proof of Theorem 3.6. • 

We conclude this subsection by showing a few results for the case when 
E is finite. 

If E = {Ai,... ,Am} is product bounded and W compact, then since 
EE°° = E°°, 

Woo - EWoo = Ai Woo U • • • U AmWoo. 

For m = 3, this is somewhat depicted in Figure 3.1. Thus, although each Ai 

FIGURE 3.1. A view of EW*,. 

may contract Wx) into Woo, the union of those contractions reconstructs 
Woo-

When E = {A}, we can give something of an e-view of how AkW tends 
to Woo- We need a lemma. 
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Lemma 3.1 Suppose {A} is product bounded and W a compact set. Given 
an e > 0 and any B € E°°, there is a constant N such that 

d (ANw, Bw) < e 

for all w € W. 

The theorem follows. 

Theorem 3.10 Using the hypothesis of the lemma, suppose that L (x) = 
Ax is nonexpansive. Given e > 0 and B € E°°, there is a constant N such 
that for k>l, 

h(AN+kW,AkBW) <e. 

Proof. By the lemma, there is a constant N such that 

d(ANw,Bw) <e 

for all w E W. Since L is nonexpansive, 

d(AN+kw,AkBw) <e 

for all w € W and k > 1. Prom this inequality, the theorem follows. • 

Since E°°W = W^, BW C W^. Thus this theorem says that AN+kW 
stays within e of AkBW C Woo for all k. 

We now show that on Woo, L (x) = Ax is an isometry, so there can be 
no more collapsing of Woo-

Theorem 3.11 Let E = {A} be product bounded and W a compact set. If 
L (x) = Ax is nonexpansive, then L (x) = Ax is an isometry on W^. 

Proof. We first give a preliminary result. For it, recall that Woo = E°°W 
and that E°° is a group. Let B € E°° and A11, A%2,... a matrix subse­
quence of (Efc) that converges to B. 

Let x, y e E°°W. Then, since L (x) = Ax is nonexpansive, we have 

0 < d (Aikx, Aiky) - d (AAikx, AAiky) 

< d (Aikx, Aiky) - d (Aik+lx, Aik^y). 

Taking the limit at k —> oo, we get 

0 < d {Bx, By) - d (ABx, ABy) = 0 
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or 

d (Bx, By) = d (ABx, ABy). (3.2) 

Now let x,y£ W^. Since W0o = E 0 0W = E00EcxW = E°°Woo, x = Bxx 
and y = B2y where x,y E Woo and B\,B2 E E°°. Using (3.2), and that 
E°° is a group, 

d(x,y) =d{Bix,B2y) 

=:d(B1x,B1B^1B2y) 

= d(AB1x,AB1(B^1B2y)) 

= d(Ax,Ay), 

the desired result. • 

3.2 Bounded Semigroups 

In this section, we give a few results about product bounded matrix sets 
E. 

Theorem 3.12 Let E be product bounded matrix set. Then there is a 
norm, say \\-\\, such that \\A\\ < 1 for all A e E . 

Proof. Let A = E U E2 U • • •. Define a vector norm on Fn by 

| |a : | |=sup{| |a: | |2 , | |7rx | |2 :7reA}. 

Then if A E E, 

||Ar|| = sup {||Ar||2 , ||7rAc||2 : TT € A} , 

and since A, irA E A, 

< sup {||a;||2 , ||7ra;||2 : 7T 6 A} 

= w-
Since this inequality holds for all x, 

U\\ < 1, 
which is what we need. • 

A special such result follows. 
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Theorem 3.13 Suppose that E is a bounded matrix set. Suppose further 
that each matrix M € E has partition form 

M = 

A 
0 
0 

B\2 -B13 • 
C\ £?23 • 
0 C2 • 

• Bik 
• B2k 

• B^k 

0 0 0 cfe 

where all matrices on the block main diagonal are square. If there are 
vector norms \\a ' II l lc i > ' such that 

Xi 

X2 
compatible with M. Now, for any 

||A||0 < 1 and HCilU < a < 1 

for all M e S, there is a vector norm \\-\\ such that \\M\\ < 1 for all M € E. 

Proof. We prove the result for k = 1. For this, we drop subscripts, using 

r A B i 
M = _ „ . The general proof then follows by induction. 

For all x € Fn, partition x = 

constant K > 0, we can define a vector norm ||-|| by 

\\x\\ = \\x1\\a + K\\x2\\c. 

Then we have, for any M e S, 

l lMarl^HAri + BialU + KllCarall,, 

^ I I A n l L + llBaralL + JCIICialle 
< l k i | | a + | |B|| 11x211, +AT HC^H 

where 

Thus, 

IBII m a x ^ L . 
^ ^ o ||a;2 L 

I I ^ H I K t + dlBH + i f l lCy i lxa l 

IML + K 
+ HC||cUlN|c. 

Since E is bounded, ||J5||, over all choices of M, is bounded by, say, /3. So 
we can choose K such that 

K 
+ a< 1. 
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Then, 

IIMsHiisiL + tfiM,, 
= IWI-

This shows that ||M|| < 1, and since M was arbitrary 

HM|| < 1 

for all M G E. • 

In the same way we can prove the following. 

CoroUciry 3.3 / / ||A||0 < 1 is changed to \\A\\a < a, then for any 8, 
a < 6 < 1, there is a norm \\-\\ such that \\M\\ < 6 for all M G E. 

Our last result shows that convergence and product bounded are con­
nected. To do this, we need the Uniform Boundedness Lemma. 

Lemma 3.2 Suppose X is a subspace of Fn and 

sup ||7ra|| < oo 

where the sup is over allir in A = E U E2 U • • • and the inequality holds for 
any x G X, where ||a;|| = 1. Then E is product bounded on X. 

Proof. We prove the result for the 2-norm. We let {x\,... ,xr} be an 
orthonormal basis for X. Then, if x G X and ||a;||2 = 1, 

x = a i ^ i + • • • + arxr 

i i2 i i2 

where | a i | H + \ar\ = 1. 

Now let j3 be such that 

sup||7ra;i||2 < 0 

for i = 1 , . . . , r and all n G A. It follows that if w G A and ||x||2 = 1, then 

11Trrcj12 < | a i | ||7rai||2 H \- \ar\ ||vra;r||2 

<n/3. 
Thus, since x was arbitrary ||7r|| < n/3. Since IT was arbitrary, E is product 
bounded. • 
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T h e o r e m 3.14 If all infinite products from a matrix set E converge, then 
E is product bounded. 

Proof. Suppose all infinite products from E converge. Further let A = 
E U E2 U • • • and define 

X = {x eFn : Axis bounded}. 

Then X is a subspace and IT : X —• X for all n € A. By the Uniform 
Boundedness Lemma, there is a constant f3 such that 

IMI a sup \-f = P < oo, 

for all 7r G A. 
If X — Fn, then E is product bounded. Thus, we suppose X ^ Fn. We 

now show that given an x ^ X and e > 1, there are matrices A\,... , Ak G E 
such that 

| |A f e - - -Aix | |>c (3.3) 

and 

Ak---Axx <£. X. 

Since x fi X, there are matrices A\,... ,Ak G E, such that 

|| Afc - - - Aix|| > max (1, ̂  ||S||) c. (3.4) 

If Ak • • • A\x ^ X, we are through. Otherwise, there is a t, t < k, such 
that At • • • A\x <£ X, while At+i (At--- A\x) G X. Thus, we have 

IIAk • • • At+2 {At+i • • • Aix) || < P \\At+1 • • • AlX\\ 

</3\\n\\\At---A1x\\. 

Thus, by (3.4), 

c<\\Af-AlX\\ 

which gives (3.3). 
Now, applying result (3.3), suppose x £ X. Then there are 7Ti, 7T2,... in 

A such that 

||7Tix|| > 1 and itix £ X 

II^TTI^H > 2 and ^n^x fi X 
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Thus, 

7T = . . . 7Tfc . . . 7Ti 

is not convergent. This contradicts the hypothesis, and so it follows that 
X — Fn. And, E is product bounded. • 

Putting Theorem 3.12 and Theorem 3.14 together, we obtain the follow­
ing norm-convergence result. 

Corollary 3.4 If all infinite products from a matrix set S converge, then 
there is a vector norm ||-|| such that \\A\\ < 1 for all A s E . 

3.3 Research Notes 

Section 1 was developed from Hartfiel (1981, 1991, 2000). Limiting sets, 
under different names, such as attactors, have been studied elsewhere. 

Theorem 3.12 appears in Eisner (1993). Also see Beyn and Eisner (1997). 
Theorem 3.14 was proved by G. Schechtman and published in Berger and 
Wang (1992). 



4 
Patterned Matrices 

In this chapter we look at matrix sets E of nonnegative matrices in M„. 
We find conditions on E that assure that contraction coefficients TB and 
Tw axe less than 1 on r-blocks, for some r, of E. 

4.1 Scrambling Matrices 

The contraction coefficient TB is less than 1 on any positive matrix in Mn. 
The first result provides a set E in which (n — l)-blocks are all positive. 

In Corollary 2.5, we saw the following. 

Theo rem 4.1 / / each matrix in E is fully indecomposable, then every 
(n — l)-block from E is positive. 

For another such result, we describe a matrix which is somewhat like a 
fully indecomposable matrix. An nxn nonnegative matrix A is primitive 
if Ak > 0 for some positive integer k. 

Instead of computing powers, a matrix can sometimes be checked for 
primitivity by inspecting its graph. As shown in Varga (1962), if the graph 
of A is connected (There is a path of positive length from any vertex i to 
any vertex j.) and 
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ki = gcd of the lengths of all 
paths from vertex i to 
itself, 

then A is primitive if and only if ki = 1. (Actually, ki can be replaced by 
any kt.) 

For example, the Leslie matrix 

A = 
1 2 1 
.3 0 0 
0 .4 0 

has the graph shown in Figure 4.1 and is thus primitive. 

FIGURE 4.1. The graph of A. 

A rather well known result on matrix sets and primitive matrices follows. 
To give it, we need the following notion. For a given matrix A, define 
A* = \a*j\, called the signum matrix, by 

« _ f 1 if atj > 0 
4J' ~ \ 0 otherwise 

Theorem 4.2 Let E be a matrix set. Suppose that for all k = 1,2,... , 
each k-block taken from E is primitive. Then there is a positive integer r 
such that each r-block from E is positive. 

Proof. Let 

p = number of (0,1) -primitive n x n matrices 
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and 

q = the smallest exponent k such that Ak > 0 for all 

(0,1) -primitive matrices A. 

Let r — p + 1 and A j x , . . . , Air matrices in S. Then, by hypothesis 
Aix, Ai2Aix,... , Air • • • Ait is a sequence of primitive matrices. Since there 
are r such matrices, the sequence A*x, (A^A^)* , . . . , (Air • • • AjJ* has a 
duplication, say 

(Aia • • • Aix) — {Ait • • • Aix) 

where s > t. Thus 

(Aie • •• Ait+1) {Ait---Ai1) = (Ait • • • Aij 

where the matrix arithmetic is Boolean. 
Set 

B = (Aia • • • Ait+1)* and A = (Ait •••Ail)*. 

So we have 

BA = A. 

Prom this it follows that since B9 > 0, 

B"A = A > 0; 

thus, Ait • • • Ai± > 0, and so Air • • • Aix > 0, the result we wanted. • 

A final result of this type uses the following notion. If B is an n x n 
(0, l)-matrix and A* > B, then we say that A has pattern B. 

Theorem 4.3 Let B be a primitive n x n (0, l)-matrix. If each matrix in 
S has pattern B, then for some r, every r-block from E is positive. 

Proof. Since B is primitive, Br > 0 for some positive integer. Thus, since 
(Air •••Ai1)* > (JET)*, the result follows. • 

In the remaining work in this chapter, we will not be interested in r-
blocks that are positive but in r-blocks that have at least one positive 
column. Recall that if A has a positive column, then 

p (Ax, Ay) < p (x, y) 
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for any positive vectors x and y. Thus, there is some contraction. We can 
obtain various results of this type by looking at the graph of a matrix. 

Let A be an n x n nonnegative matrix. Then the ij-th. entry of As is 

^^ai^a^ki •••°fc„-ij 

where the sum is over all k\,... ,ks-\. This entry is positive iff in the 
graph of A, there is a path, say Vi, v^, Vk2,... , ^fc„_!, Vj from Vi to Vj. 

In terms of graphs, we have the following. 

Theorem 4.4 Let A be an n x n nonnegative matrix in the partitioned 
form 

A = P 
B 

0 
C 

(4.1) 

where P is an m x m primitive matrix. 
If, in the graph of A, there is a path from each vertex from C to some 

vertex from P, then there is a positive integer s such that As has its first 
m columns positive. 

Proof. Since P is primitive, there is a positive integer k such that pfe+* > 0 
for all t > 0. Thus, there is a path from any vertex of P to any vertex of 
P having length k + t. 

Let U denote the length of a path from Vi, a vertex from C, to a vertex 
of P . Lett = iaaxti. Then, using the remarks in the previous paragraph, 
if Vi is a vertex of C, then there is a path of length k + t to any vertex in 
P. Thus, A3, where s — k + t, has its first m columns positive. • 

An immediate consequence follows. 

Corollary 4.1 Let A be annxn nonnegative matrix as given in (4-1)- If 
each matrix in E has pattern A, then for some r, every r -block from E has 
a positive column. 

We extend the theorem, a bit, as follows. Let A be an n x n nonnegative 
matrix. As shown in Gantmacher (1964), there is an n x n permutation 
matrix P such that 

PAP1 = 

Ax 0 
A2i A2 

Ul A. s2 

(4.2) 
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where each Ak is either an rife x n^ irreducible matrix or it is a 1 x 1 0-
matrix. Here, the partitioned form in (4.2) is called the canonical form of 
A. If for some k, Aki, • • • , Akk-i are all 0-matrices, then Ak is called an 
isolated block in the canonical form. 

If Ak has a positive column for some fc, then A\ must be primitive since 
if Ai is not primitive, as shown in Gantmacher (1964), its index of im-
primitivity is at least 2. This assures that A\, and hence Ak, never has a 
positive column for any k. 

Corollary 4.2 Let Abe annxn nonnegative matrix. Suppose the canon­
ical form (4-2) of A satisfies the following: 

1. A\ is a primitive mxm matrix. 

2. The canonical form for A has no isolated blocks. 

Then there is a positive integer s such that As has its first m columns 
positive. 

Proof. Observe in the canonical form that since there are no isolated 
blocks, each vertex of a block has a path to a vertex of a block having 
a lower subscript. This implies that each vertex has a path to any vertex 
in A\. The result now follows from the theorem. • 

A different kind of condition that can be placed on the matrices in S to 
assure r-blocks have a positive column, is that of scrambling. An n x n 
nonnegative matrix A is scrambling if AAl > 0. This means, of course, 
that for any row indices i and j , there is a column index k such that a^ > 0 
and ajk > 0. 

A consequence of the previous corollary follows. 

Corollary 4.3 If annxn nonnegative matrix is scrambling, then As has 
a positive column for some positive integer s. 

Proof. Suppose the canonical form for A is as in (4.2). Since A is scram­
bling, so is its canonical form, so this form can have no isolated blocks. 
And, A\ must be primitive since, if this were not true, A\ would have in­
dex of imprimitivity at least 2. And this would imply that A\, and thus 
A, is not scrambling. • 

It is easily shown that the product of two nxn scrambling matrices is 
itself a scrambling matrix. Thus, we have the following. 

Theorem 4.5 The set of nxn scrambling matrices is a semigroup. 



64 4. Patterned Matrices 

If E contains only scrambling matrices, E U E2 U • • • contains only scram­
bling matrices. We use this to show that for some r, every r-block from 
such a E has a positive column. 

Theorem 4.6 Suppose every matrix in E is scrambling. Then there is an 
r such that every r-block from E has a positive column. 

Proof. Consider any product of r = 2n + 1 matrices from E, say Ar • • • A\. 
Let a (A) = A*, the signum matrix of the matrix A. Note that there are at 
most 2" distinct n xn signum matrices. Thus, 

a(Aa- • • Ax) = a(At- • • Ai) 

for some s and t with, say, r > s > t. It follows that 

a (As • • • At+i) a(Af-Ai)=cr(Af- Ax) 

when Boolean arithmetic is apphed. Thus, using Boolean arithmetic, for 
any k > 0, 

a(A.--- At+X)k o(Af-Ax)=<T(Af- Ax) . 

We know by Corollary 4.3 that for some k, a (As • • • At+i) has a column 
of l's. And, by the definition of E, a (At • • • A\) has no row of 0's. Thus, 
<7(At • •• Ai) has a positive column, and consequently so does At • • • Ax. 

Prom this it follows that since r > t, any r-block from E has a positive 
column. • 

4.2 Sarymsakov Matrices 

To describe a Sarymsakov matrix, we need a few preliminary remarks. 
Let A be an n x n nonnegative matrix. For all S C { 1 , . . . , n} , define 

the consequent function F, belonging to A, as 

F (S) = {j • aij > 0 for some i € S}. 

Thus, F (S) gives the set of all consequent indices of the indices in S. For 
example, if 

1 0 1 
A= 1 1 0 

0 1 1 
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then F ({2}) = {1,2} and F ({1,2}) = {1,2,3}. 
Let B be an n xn nonnegative matrix and F\, F2 the consequent functions 

belonging to A, B, respectively. Let F12 be consequent function belonging 
to AB. 

Lemma 4.1 F2 (Fx (5)) = F x 2 (5) /or all subsets S. 

Proof. Let j e F2 (Fi (5)). Then there is a fc € Fi (5) such that bkj > 0 
and a n i e S such that aik > 0. Since the ij-th. entry of AB is 

(4.3) 
r - = l 

that entry is positive. Thus, j € F12 (S). Since j was arbitrary, it follows 
that F2 (Fi (S)) C F 1 2 (5). 

Now, let j 6 F12 (5). Then by (4.3), there is an i € S and a k such that 
aifc > 0 and bkj > 0. Thus, k € Fx (5) and j e F2 ({fc}) C F2 (Fx (5)). 
And, as j was arbitrary, we have that F12 (S) C F2 (Fi (5)). 

Put together, this yields the result. • 

The corollary can be extended to the following. 

Theorem 4.7 Let Ai,... ,Ak benxn nonnegative matrices and F i , . . . , Fk 

consequent functions belonging to them, respectively. Let Fi...fc be the con­
sequent function belonging to A\ • • • Ak • Then 

for all subsets S C { 1 , . . . , n}. 

We now define the Sarymsakov matrix. Let A by an n X n nonnegative 
matrix and F its consequent function. Suppose that for any two disjoint 
nonempty subsets S, S' either 

1. F ( 5 ) n F ( 5 ' ) ^ 0 o r 

2. F ( 5 ) n F ( 5 ' ) = 0 a n d | F ( 5 ) U F ( 5 ' ) | > | 5 U 5 ' | . 

Then A is a Sarymsakov matrix. 
A diagram depicting a choice for S and S' for both (1) and (2) is given 

in Figure 4.2. 
Note that if A is a Sarymsakov matrix, then A can have no row of 0's 

since, if A had a row of 0's, say the i-th row, then 5 = {i} and S" = 
{ 1 , . . . ,n} — S would deny (2). 

The set K of all n x n Sarymsakov matrices is called the Sarymsakov 
class of n x n matrices. A major property of Sarymsakov matrices follows. 
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s 
S' 

F(S) 

X 

0 

-

F(S') 
^ 

r ^ 
X 

X 

0 

X 
or 

S 

S' 

F(S) 

X 

0 

F(S') 

0 

X 

0 

0 

-1 

FIGURE 4.2. A diagram for Sarymsakov matrices. 

Theorem 4.8 Let A\,... ,An-\ be n x n Sarymsakov matrices. Then 
A\ • • • An-i is scrambling. 

Proof. Let i*\,... ,Fn-\ be the consequent functions for the matrices 
Ai,..., .A„_i, respectively. Let Fi...k be the consequent functions for the 
products Ai- • • Ak, respectively, for all k. 

Now let i and j be distinct row indices. In the following, we use that if 

i W W ) n *!...* ({j})#0 
for some k <n, then 

Fi...n-i ({<}) n F1...n^1 ({j}) ± 0. (4.4) 

Using the definition, either F\ ({i}) n Fi ({j}) ^ 0, in which case (4.4) 
holds or 

\F1({i})UF1({j})\>2. 

In the latter case, either F12 ({*}) D F12 ({j}) ^ 0, so (4.4) holds or 

l * i2 ({ i} )UF 1 2 ( t f} ) l>3 . 

And continuing, we see that either (4.4) holds or 

|Fi . . .n_1({i})UF1 . . .n_1({i}) |>fl . 

The latter condition cannot hold, so (4.4) holds. And since this is true for 
all i and j , A\ • • • An_i is scrambling. • 

A different description of Sarymsakov matrices follows. 
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Lemma 4.2 Let A be ann xn nonnegative matrix and F the consequent 
function belonging to A. The two statements, which are given below, are 
equivalent. 

1. A is a Sarymsakov matrix. 

2. If C is a nonempty subset of row indices of A satisfying \F (C)\ <\C\, 
then 

F(B)nF(C-B)^H> 

for any proper nonempty subset B of C. 

Proof. Assuming (1), let B and C be as described in (2). Set S = B and 
S' = C — B. Since S and S" are disjoint nonempty subsets, by definition, 
F(S)nF(S') ^ 0 o r F{S)nF(S') = 0 and \F(S) U F(S')\ > \S\JS'\. 
In the latter case, we would have |i^ (C)| > \C\, which contradicts the 
hypothesis. Thus the first condition holds and, using that B = S,C — B — 
S', we have F(B)nF(C-B)^ 0. This yields (2). 

Now assume (2) and let 5 and S' be nonempty disjoint subsets of indices. 
Set C = SU S'. We need to consider two cases. 

Case 1. Suppose \F(C)\ < \C\. Then, setting S = B, we have F(S) H 
F (S") ^ 0, thus satisfying the first part of the definition of a Sarymsakov 
matrix. 

Case 2. Suppose \F (C)| > \C\. Then we have \F (S) U F (S')\ > \S U S'|, 
so the second part of the definition of a Sarymsokov matrix is satisfied. 

Thus, A is a Sarymsakov matrix, and so (2) implies (1), and the lemma 
is proved. • 

We conclude by showing that the set of all n x n Sarymsakov matrices 
is a semigroup. 

Theorem 4.9 Let Ai and A2 be in K. Then A\A<i is in K. 

Proof. We show that A\ Ai satisfies (2) of the previous lemma. We use that 
Fi, F2, and _F12 are consequent functions for A\, A2, and A1A2, respectively. 

Let C be a nonempty subset of row indices, satisfying this inequality 
I-F12 (C)| < \C\, and B a proper nonempty subset of C. We now argue two 
cases. 

Case 1. Suppose \FX (C)\ < \C\. Then since Ax € K, it follows that 
F i ( B ) n F i ( C - B ) ^ 0 . Thus, 

®^F2(F1(B))nF2(F1(C-B)) 

= F12(B)nF12(C~B). 
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Case 2. Suppose \Fi (C)| > \C\. Then, using our assumption on C, 
|F 1 2 (C7) |< |C |< |Fi (C7) | . Thus, 

\F2(F1(C))\<\F1(C)\. 

Now, using that A2 6 K and the previous lemma, if D is any proper 
nonempty subset of F% (C), then 

F2 (D) n F2 (Fi (C) - D) ^ 0. (4.5) 

Now, we look at two subcases. 
Subcase a: Suppose Fx (5) n Fx (C - B) = 0. Then FL (5) is a proper 

subset of Fi (C) and Fi (C - B) = Fi (C) - Fj (B). Thus, applying (4.5), 
with D — F\ (B), we have 

0 # F2 (Fj (B)) n F2 (Fj (C) - Fj (B)) 

= f , 2 ( F i ( 5 ) ) n f 2 ( i ; i ( C , - f l ) ) 

= F 1 2 ( B ) n F 1 2 ( C - B ) , 

satisfying the conclusion of (2) in the lemma. 
Subcase b: Suppose Fi (B)nFi (C - B) ^ 0. Then we have F2 (Fi (JB))n 

F2 (Fi (C - B)) ^ 0 or F i 2 (B) D F i 2 (C - B) ^ 0, again the conclusion of 
(2) in the lemma. 

Thus, AiA2 GK. m 

The obvious corollary follows. 

Corollary 4.4 The set K is a semigroup. 

To conclude this section, we show that every scrambling matrix is a 
Sarymsakov matrix. 

Theorem 4.10 Every scrambling matrix is a Sarymsakov matrix. 

Proof. Let A be an n x n scrambling matrix. Using (2) of Lemma 4.2, let 
C and B be as the sets described there. If i and j are row indices in B 
and C - B, respectively, then since A is scrambling F ({i}) n F ({j}) ^ 0. 
Thus F (B) n F (C - B) # 0 and the result follows. • 

4.3 Research Notes 

As shown in Brualdi and Ryser (1991), if A is primitive, then ^4(«-i)2-i > 
0. This, of course, provides a test for primitivity. Other such results are 
also given there. 
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The proof of Theorem 4.2 is due to Wolfowitz (1963). The bulk of 
Section 2 was formed from Sarymsakov (1961) and Haitfiel and Seneta 
(1990). Rhodius (1989) described a class of 'almost scrambling' matrices 
and showed this class to be a subset of K. More work in this area can be 
found in Seneta (1981). 

Pullman (1967) described the columns that can occur in infinite products 
of Boolean matrices. Also see the references there. 





5 
Ergodicity 

This chapter begins a sequence of chapters concerned with various types of 
convergence of infinite products of matrices. In this chapter we consider 
row allowable matrices. If A\, A2, •.. is a sequence o f u x n row allowable 
matrices, we let 

Pk = Ak...Ai 

for all k. We look for conditions that assure the columns of Pk approach 
being proportional. In general 'ergodic' refers to this kind of behavior. 

5.1 Birkhoff Coefficient Results 

In this section, we use the Birkhoff contraction coefficient to obtain several 
results assuring ergodicity in an infinite product of row allowable matrices. 

The preliminary results show what TB {Pk) —» 0 as fc —» 00 means about 
the entries of Pk as k —> 00. The first of these results uses the notion that 

the sequence (Pk) tends to column proportionality if for all r, s, %y, % y , . . . 
Pis Pis 

converges to some constant ars, regardless of i. (So, the r-th and the s-th 
columns are nearly proportional, and become even more so as k —* 00.) 

An example follows. 
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Example 5.1 Let 

Ak= < 

f 

ft 
r l l "I 

? \ 
. 2 2 . 

k 
K 

" 1 I T 
3 3 

. 3 3 J 

Then 

if k is odd, 

if k is even. 

if k is odd, 

if k is even. 

Note that Pk tends to column proportionality, but Pk doesn't converge. Here 
a12 = 1. 

Pk = < 

fc! 

fc! 
t 

" 1 1 " 

! ? 
L 2 2 J 

• 1 1 " 

. 3 3 . 

(fc) [fc] where p\ ' and p% are column vectors, a picture IfweletP f e = 

of how column proportional might appear is given in Figure 5.1 

FIGURE 5.1. A view of column proportionality. 

Lemma 5.1 If A\,A2, • • • is a sequence of n x n positive matrices and 
Pk — Ak • • • A\ for all k, then lim TB (Pk) —* 0 as ft —* oo iff Pk tends to 

fc—*oo 

column proportionality. 

Proof. Suppose that Pk tends to column proportionality. Then 

v(k) P{k) 

]im <f>(Pk) = lim m i n ^ y ^ 
fc—»oo fc—»oo i,3,r,s yS"'! n\

K) 
yjr Vis 

= 1. 

Thus, 

hm TB (Pk) = hm v . , ' — 
fc-oo k^^l + ^(Pk) 

= 0. 
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Conversely, suppose that hm TB (-Pfe) = 0. Define 
k—*oo 

(fc) (fe) 
m W = m i n ^ , M « = m a x % . 

Pis Pis 

The idea of the proof is made clearer by letting x and y denote the r-th 
and s-th columns of Pk-i, respectively. Then 

mW=min-^y 
' Pis 

= nun-

A (fe) 
E aijX3 

j = l 

E ai?yj 

= mm-

L. aij Vo Vj 
J = I 

A (fc) 
E a-ijVj 

j=i 

= miny^ 
A (fe) Vo 

,«,„ 
Since E „°ij yj I r* is a convex sum of r1-, • • • , T°- , we have 

W = l 

liV > mrsJ ^ m m ~ = m ™ • 
o Vj 

Similarly, 

M ' ^ M ^ - 1 ) , 

,(*) r(fc) and it follows that lim well as lim Mrs = Mrsy exist. 
k—*-oo fc—•(» 
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Finally, since lim TB (Pk) = 0, lim 4>(Pk) = 1, so 
k—*oo fc—*oo 

1 = hm m m ' 
fc—•ooj,,j,r,s rr 'rr ' 

"is "jr 
(k) 

= hm mm 
k->oo r , s j ^ f (fc) 

Mpq 

for some p and q. And thus mpg = Mpq. Since 1 > ^ p - > ^f3- for all r 
and s, it follows that mrs = Mrs. Thus, 

lim -fjr = m r s 
fc—>00 n W 

for all i and Pi, P^, • • • tend to column proportionality. • 

Formally the sequence Pi, P2, . . . is ergodic if there exists a sequence of 
positive rank one matrices Si, 5 2 , . . . such that 

(fc) 
Urn \ = 1 (5.1) 

fc—oo «,(*) v ' 

for all i and j . To give some meaning to this, we can think of the matrices 
Pfc and Sfc as n2 x 1 vectors. Then 

V (Pk, Sk) = hi max -fa -fa 

where p is the projective metric. 
Now by (5.1), 

lim p (Pfc, Sfe) = 0 
fc—^00 

and so 

^p(jpkPk>m;Sk)=0 

where ||-||F is the Frobenius norm (the 2-norm on the n2 x 1 vectors). 
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Let 

Recalling that 

S = {R : R is an n x n rank 1 

nonnegative matrix where 

\\R\\F = ! } • 

-Ph,S) = mm p(Pk,R), 

we see that 

||-Pfe||F J « e s 

—-r— Pfe, S ) —• 0 as k —» oo. 

Thus, iip1!! Pfc tends to 5. So, in a projective sense, the P^'s tend to the 
rank one matrices. 

The result Unking ergodic and TB follows. 

Theorem 5.1 The sequence Pi , P2,... is ergodic iff lim TB {Pk) = 0. 
fe—»oo 

Proof. If P i , P 2 , . . . is ergodic, there are rank 1 positive n x n matrices 
Si,S2, • • • satisfying (5.1). Thus, using that Sk is rank one, 

so 

v{k) V{k) 

0 ( P f e ) = m i n ^ T ^ y 

v{k) p(*) (fc) s(.
fe) 

ijZ Jk) „(fe)
 s(

fc) s(A:)' 
"is rjr °ir js 

lim </>(Pfe) = l. 
fc—i-OO 

Hence, 

l i m TB (Pfe) = iim * - > W g ) = 0. 
fc^oo fc-~l + ^ A ) 
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Conversely, suppose lim TB (Pk) — 0. For e = ( 1 , 1 , . . . ,1) , define 
fc—+oo 

Sk 
PkeJPk 

e*Pfce 

„(fc) (fc) 
2—i Pir ' 2~t Psj 
r = l 5=1 

n n ,. x 

an n x n rank one positive matrix. Then 

(fc) A A (fc) 
(*) Pij E T,Prs 

r=l s=l r%2 
n (fc) 

'« E Pir E Kj 
r = l 5=1 

r = l a= l 

r = l s = l 

Using the quotient bound result (2.3), we have that 

(fc) 

And since lim 4>{Pk) = 1, we have 
fc—>oo 

p(fc) 

lim 3£r = 1. 
fc—»oo e W 

Thus, the sequence P\, P<i,... is ergodic. 

We now give some conditions on matrices Ai,Az,... that assure the 
sequence P\,P2,... is ergodic. Basically, these conditions assure that 
(4)(Ak)) doesn't converge to 0 too fast. 

Theo rem 5.2 Let Ai,Az,... be a sequence ofnxn row allowable matri-
oo 

ces. If Y2 \A?(Ak) = oo, then P\,P2,... is ergodic. 
fc=i 
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Proof. Since ^ y V (Ak) — oo, it follows by Theorem 51 (See Hyslop 
fc=i 

(1959) or the Appendix.) that [ ] (1 + y/ip (Ak)] — oo. Thus, since 
fe=i v ' 

TB{Pk) <TB(Ak)- • -TB{AI) 

~ (I + v^W) (i + V^TO) 
i 

< 
(i + VOT)).--(i + V£TO)' 

Um rB (ft) = 0. 
fc—*oo 

A corollary, more easily applied than the theorem, follows. 

Corollary 5.1 Let mk and Mk be the smallest and largest entries in Ak, 

respectively. 7/ JT (]§M = oo, then P\, P2,... is ergodic. 
fc=i ^ * ' 

Proof. Since 

mk 
Mh<yfcW, 

the corollary follows. • 

A final such result follows. 

Theorem 5.3 Let A\,A2,... be a sequence of row allowable matrices. 
Suppose that for some positive integer r and for some 7 > 0, we have 
that (j> (A(fc+1)r • • • Akr+i) > 72 for all k. Then 

Proof. Write 

k = rq-\- s where 0 < s < r. 

Block Ak • • • A\ into lengths r forming 

Ak-- • Arg+iBqBg-i • • • B\. 
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Then 

TB (Ak--- Ai) <TB{Ak--- Arq+1) TB (Bq) •••TB (BI) 

' 1 + 7 

1 - 7 

. 1 + 7 

which yields the result. • 

A lower bound for 7, using m = inf aij and M = sup ay, where the 

inf and sup are over all matrices A\, A2,..., can be found by noting that 
inf (B)^ > mr, sup ( B ) y < nr~1Mr for aU r-blocks B = Ark • • • Ar{k-i)+i-
Thus 

and so 7 can be taken as 

mr 

1 nr-1Mr' 
Furthermore, types of matrices which produce positive r-blocks, for some 
r, were given in Chapter 4. 

5.2 Direct Results 

In this section, we look at matrix sets S such that if A\, A2, •. • is a sequence 
taken from E and x, y positive vectors, then 

p (Pkx, Pky) —> 0 as k —> 00. 

Note that this implies that Tr^fir and i i p ^ , as vectors, get closer. So we 
will call such sets ergodic sets. As we will see, the results in this section 
apply to very special matrices. However, as we will point out later, these 
matrices arise in applications. 

A preliminary such result follows. 

T h e o r e m 5.4 Let E be a set of n x n row-allowable matrices M of the 
form 

M=\A °" 
B 0 
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where A is n\ x n\. If T is a positive constant, r < 1, and TB (A) < r for 
all matrices M in S , then S is an ergodic set. And the rate of convergence 
is geometric. 

Ak 0 
Bk 0 

Ak---Al 0 
BfcAfc-x-.Ai 0 

Proof. Let ML, M2, . . . be matrices in S where 

Mfc = 

and Afe is n\ x ni for all k. Then 

Mfc • • • Mi = 

Now, let x and y be positive vectors where 

xA x = ,y 

parti t ioned compatibly to M . Then 

Mfc • • • Mia; 

VA 
yc 

and 

Thus, 

Ak 0 
Bk 0 

Afc 

Sfc 

Mfc • • • Muz = 

Afc_i---i4i 0 
Bfc_iAfc_2 • • • Ai 0 

•Afc-l ••• A I ^ A 

Afe 

Sfc 
Afc. •^i2M-

p (Mfc • • • Mxa;, Mfc • • • Miy) 

= P 
Afc 

Sfc ife-l •MXA, 
Ak 

Bk 
Ak- •AiyA\ 

and by Lemma 2.1, we continue to get 

< p (Afc_i • • • AixA, A fc_i • • • AiyA) 

< TB (Ak-i) •••TB(Ai)p{XA,VA) 

<Tk-lp(xA,yA)-

Thus, as k —> 00, p (Mfc • • • Mia;, Mk • • • Miy) —• 0. • 
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A 0 
B C 

where A is A special set E of row allowable matrices M 

ni x ni , occurring in practice has ra„1+ij7M > 0 and C lower triangular 
with 0 main diagonal. For example, Leslie matrices have this property. A 
corollary now follows. 

Corollary 5.2 Suppose for some integer r, Ersatisfies the hypothesis of 
the theorem. Then E is an ergodic set and the convergence rate of products 
is geometric. 

The next result uses that E is a set of n x n row allowable matrices with 
form 

" A 0 
B C 

M (5.2) 

where A is n\ x n\, B is row allowable, and C is n2 x n2. Let S^ be the set 
of all matrices A which occur as an upper left n\ x n\ submatrix of some 
M e E . Concerning the submatrices A, B, C of any M G E, we assume 
o-h, bh, Ch, ai, bi, ci, are positive constants such that 

maxa;j < ah, raaxbij < bh, maxcjj < c/j, 

min aij > ae, min bij > be, min c^ > ce. 
a,ij>0 bij>0 Cfj>0 

The major theorem of this section follows. 

Theorem 5.5 Let E be described as above and suppose that TB (2^) < 
r < 1 for some positive integer r. Farther, suppose that there exists a 
constant K\ where 

n2Kx < 1 and — < Kx, 
ae 

and that a constant Ki satisfies 

Ch < K bh ^ K ah ^ if ah s v 
oi ai be ai 

Let x and y be positive vectors. Suppose 

max — < K2 and max — < K2. 
%<i Vj i,i XJ 

Then there is a positive constant T,T < 1, such that 

p{Pkx,Pky)<KTk 

where K is a constant. Thus E is an ergodic set. (This K depends on x 
and y.) 
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Proof. Let 

P(l,k)=Mk---M1,P(t,k)=Mk---Mt 

where each Mi € X and 1 < t < k. Partition these matrices as in (5.2), 

P(l,k) = 

P(t,k) = 

Pu (k) 0 
Pii{k) P22(k) 

Pu(t,k) 0 
P2i(t,k) P22{t,k) 

Note that 

Pu(k)=Ak---A1 

k 

P2i(fc) = ^ C f c - - - C i + 1 ^ A j _ 1 •Ax 

where Ck • • Cj+i = I if j = k and Aj-i • • • A\ = I if j — 1, 

P22(k) = Ck---C1. 

Thus, for k > r, Pu (fc) > 0 and since Bk is row allowable, for k > r, 
P21 {k) > 0. Further, by rearrangement, for any t, 1 <t < k, 

P21 (1, k) = P22 (t + 1, k) P21 (1, t) + P2i (t + 1, k) Pu (1, t). 

Now, using that P»i (t + l,k) = 
Pn(t + l,k) 
P2i(t + l,k) 

, partitioning x = 
XA 

V = 
VA 
yc 

as is M, and applying the triangle inequality, we get 

p(P(l,k)x,P(l,k)y)< 

p (P (1, k) x, P , ! (t + 1, k) P u (1, t) xA) 

+ p(P*i(t + l,k)P11(l,t)xA,P*1(t + l,k)P11(l,t)yA) 

+ p(P*i(t + l,k)P11(l,t)yA,P(l,k)y). 

We now find bounds on each of these terms. To keep our notation compact 
when necessary, we use P = P (t + 1, k) and P = P (1, t). 

1. p (P (1, /a) a;, P*i (t + 1, A;) P u (1, t) XA). TO bound this term, we need 
to consider the expressions 

[P,l(t + l,fc)J*Ll(l,t)xA] i 
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By definition, it is clear that rt > 1 for all i with equality assured 
when i <n\. So, 

m i n r j 
= maxrj. 

Since 

P(l,fc) = 
Pn 0 
P21 -P22 

Pu 0 
•P21 -P22 

j P i i P i i _ ^ 0_ 

•Fbl-Pll + -^22^21 -P22-P22 

P21P11XA + P22P21XA + P22P22XC 

= 1 + 

P21P11XA 

P22P21XA + P22P22XC 

P21P11XA 

We will define several numbers, the importance of which will be seen 
later. Set Q = naif2 (TI2-K1) a n <i let / D e sufficiently large that 
Q < 1 and £ 

/ + i 
. (We assume k > f + 1.) Then using that 

P21 (* + 1, A) -P11 (1, i) I A > BkAk-i • • • AtxA, we get 

n<i + 

CA, • • • Ct+i XI C« " ' Cj+iBjAj-\ • • • A\ XA 

[BfeJ4fe_i---Aia;il]i 

+ 
[^•••Cixc], 

[BkA fc-i •• • ^ i ^ ] i 

We now bound this expression by one involving K\ and if2. Let 
xi = minxj and Xh — maxxj. Then 

k-~t ^^^ £—7'—1 7 t—ji 7—1 cft E "2 " i ch
 Jbha

J
h xh k k 

Ti < 1 + J = l 

fyaf lxi + 
n2chXh 

bia^xi' 
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Thus, 

U-l 

3=1 

\fc-l 

3=1 

= (nalfx)*-* K2 (n2K{f £ ( ^ f ^ + n2K\ {n2Kx)
k~x. 

For simphcity, set f3 = ^ L ^ i . Since n\K2 > 1, r^ifi < 1, 

j 0 * - l 
ri - 1 < (n2ifi)K tf2/3 ( % Z Y j + " ^ ( n 2^ i ) . 

\k-l 

k TS a & , _ r^2 / _ 7^ \ f c - l r-i - 1 < (nalfi)* K2/3j^ + n2Ki {n2Kx) 

For the first term of this expression, 

( " 2 * 1 ) ' ,n2tfJJ 

< Q 7 

Continuing, 

n - 1 < /ifo 
'0 

- («*y 

3 l ( Q 7 * 1 ) " + n 2 K ! ( n 2 t f i ) 
fc-i 

file:///fc-l
file:///fc-l
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and thus, 

p (P (1, k) x, P,x (« + 1, fc) Pu (1, t) xA) 

< maxlnrj 

- K2J=\ (Q7h)k + n2K* {-n2KlS>k~X • 

Let Ti = max JQTTT , n2-ftTi}, so T < 1. Then by setting # 3 = | £ f + 
if2 

-^- and continuing 

p (P (1, fc) x, P.x (t + 1, fc) P u (1,«) a*) < K3Tf. 

Similarly we can show 

p(P»i (t + l,k) P n (1 ,*)yA )P (1, fc)») < tf42f 

for some constant K4. 

2. p(P*i(< + l ,fc)Pn(l ,<)a;A,i ' . i(* + l,*:)-Pii(l.*)Wyi) 

< p ( P i i ( 1 , 4 ) ^ , ^ 1 ( 1 , * ) ^ ) 
m 

<r^V(^ ,2 /y i ) 

< r^p(a;A,2/vi) 

< ( T " ) / + 1
 P(XA,VA) 

< ^rKTTTjj p(a;A ,yA) 

= K5T* 

where T2 = THTTTj a n d iiT5 = p (xA, j / A ) . 

Putting (1) and (2) together, 

p(P (1, k) x,P(l, k) y) < K3T? + K4Tt
k + K5T* 

<KTk 

where T = max {Ti, T2} and K = K3 + K4 + K5, the desired result. • 

The condition | £ < Kt, K\ < ^ , which we need to assure T < 1, may 
seem a bit restrictive; however, in applications we would expect that for 

" Ak • • • At 0 

P2i(k) Cfc---Ci 

Ak---A1>Ck---C1 

large k and Pfe 
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and so the theorem can be applied to blocks from S. For blocks we would 
use the previous theorem together with the following one. 

Theorem 5.6 Let £ be a row proper matrix set and x,y positive vectors. 
Suppose K,T, with T < 1, are constants such that 

p{Bq---BlX, Bg---Biy)<KT> 

for all r-blocks B\,... ,Bq from S. Then 

p(Mfc • • • Mix, Mfc • • • Miy) < KT\$\ 

for any matrices M\,... , Mk in S. 

Proof. Write Mk • • • Mi = Mk • • • Mrq+iBq • •• Bi where the subscripts sat­
isfy k = rq +1,0 < t < r. Then 

p{Mk---Mxx, Mk-'-Mw) <p(Bg---S xa; , Bq---Biy) 

<KTq 

the desired result. • 

5.3 Research Notes 

The results in Section 1 were based on Hajnal (1976), while those in Section 
2 were formed from Cohen (1979). 

In a related paper, Cohn and Nerman (1990) showed results, such as 
those in this chapter, by linking nonnegative matrix products and nonho-
mogeneous Markov chains. Cohen (1979) discussed how ergodic theorems 
apply to demographics. And Geramita and Pullman (1984) provided nu­
merous examples of demographic problems in the study of biology. 





6 
Convergence 

In this chapter we look at some basic convergence results on infinite prod­
ucts of matrices. Some of these results are somewhat old, but perhaps not 
well known. Other results in this chapter are rather new. 

6.1 Reduced Matrices 

An n x n matrix M that has partitioned form 

M = 
A B 
0 C 

where A is square, is reduced. In this section we show when infinite prod­
ucts of such matrices converge. To obtain such a result requires a few 
preliminaries. 

If ||-||0 and ||-||c are vector norms on Fni and F™2, respectively, we can 
define a norm on the n\ x n^ matrices B using 

For products, this norm behaves as follows. 
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Lemma 6.1 Let B be an n\ x ri2 matrix. 

1. If A is an rii x n\ matrix, then 

||A5||6<P||0||5||6. 

2. If C is an ri2 x n% matrix, then 

\\BC\\b<\\B\\b\\C\\c. 

Proof. We will show the proof of (2). For it, note that 

\\Bx\\a<\\B\\b\\x\\c 

for all n% x 1 vectors x. Thus, 

I IBCXII^IISIIJICSII^IIBIIJICIIJHI,. 

Thus, 

||BC||6<||B|U|C||C, 

which is what we need. • 

Using this lemma, we will show the convergence of a special infinite series 
which we need later. 

Lemma 6.2 In the infinite series 

L2B1 + L3B2C1 H 1- Lfc-Bfe-iCfe-2 • • • C\ H 

the matrices L2, L3,... are n± x t i j , the matrices B\, B2, • • • are n\ x n<i, 
and the matrices C\, C2, • • • are ri2 x 712. The series converges if, for all k, 

1- ||£fc||0 < K\ for some vector norm ||-|| and constant K\, 

2- \\Ck\\c < 7 for some vector norm ||-||c and constant 7, 7 < 1, and 

3- ||-Bfc||fc < (3 for some constant f3. 

Proof. We show that the series, given in the theorem, converges by show­
ing the sequence (£2-61 + • • • + LkBk—iCk—2 • • • Ci) is Cauchy. To see this, 
observe that if i > j , the difference between the i-th. and j-th. terms of the 
sequence is 

Dij = Lj+iBjCj-i • • • C\ + • • • + LiBi-iCi-2 • • • C\. 
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Thus, \\Dijl = 

H ^ + i l U I ^ I I J Q - r • .CJI.-T- • - + ||Li||0 | |Bi-i | |6 WCM • • • d | | c 

Prom this it is clear that the sequence is Cauchy, and thus converges. 

The theorem about convergence of infinite products of reduced matrices 
follows. 

Theorem 6.1 Suppose each n x n matrix in the sequence (Mk) has the 
form 

Mk = 

AW R(fc) R(*0 

0 C[k) B$ 
'lr 

2r 

a 
(fc) 

where the are ni x n\, Cj; 's are n<i x n 2 , . . . , and the Cr 's are 
nr+i x n r + i . We suppose there are vector norms \\-\\a on Fni and ||-||c. on 
F " ^ 1 such that 

1. C 
(fe) < 7 /or some constant 7 < 1 and aH i, k. 

2. As given in (6.1), there is a positive constant K3, such that 

j ( * ) <K3 

for all i, j , and k. 

Finally, we suppose that for all s, the sequence (Ak • • • As) converges to 
a matrix Ls and that 

3- \\Ls\\a < Ki for all s and \\LS — Ak • • • ^4s||a < K\a.k~s+X for some 
constants K\ and a < 1. 

Then the sequence (Mk • • • M\) converges. 

Proof. We prove this result for r = 1. The general case is argued using 
Corollary 3.3. We use the notation 

Mk 
Ak Bk 

0 Ck 

file:////Dijl
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Then Mk---M1 = 

Ak---A1 Ak--- A2B1+Ak • • • A3B2d+- • -+BkCk-i • • • Ci 
0 Cfc- . -d 

By hypotheses, the sequence {Ak • • • As) converges to L3, and the sequence 
(Ck • • • C\) converges to 0. We finish by showing that the sequence with 
fc-th term 

Ak--- A2BX + Ak--- A3B2d + • • • + BkCk-i • • • Ci (6.2) 

converges to 

L2B1 + L3B2CX + ••• + Lk+iBkCk-! • • • Ci + • • • . (6.3) 

Now letting Dk denote the difference between (6.3) and (6.2), and using 
Lemma 6.1, ||£>fe||6l2 = 

11 (L2 - Ak • • • A2) Bi + iLa-Ak--- A3) B2CX + ••• 

+ (Xfe+i — I) BkCk-i • • • C\ + Lk+2Bk+iCk • • • C\ -\ ||b12 

< (K^^Ks + KKX^KSJ + ••• + KxK3l
k-x) 

+ K2K3j
k + ••• + K2K3l

k+1 + ••• 

< (idKslP-1 + ••• + K^p-1) + K2K3(3
kj^ 

where 0 — max {a, 7}. So 

\\Dk\\bl2 < mKzlp-i+KiKapjl-p < Kk/3 fc-i 

where K = KiK3 + K2K3j^a. Thus, as k —• 00, Dk —• 0 and so the 
sequence from (6.2) converges to the sum in (6.3). • 

Corollary 6.1 Let Mk = be annxn matrix with I the mxm 
I Bk 

0 Ck 

identity matrix. Suppose for some norm \\-\\b, as defined in (6.1), and 
constants f3 and 7, 7 < 1, and a positive integer r 

1- \\Bk\\b<P 

2. \\Ck\\c < 1 and \\Ck+r • • • Ck+i\\c < 7 for all k. 

Then (Mk • • • M\) converges at a geometrical rate. 
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Proof. Note that 

Affc • • • Mi = 
I Bi + BiCx + ••• + BkCk-i • • • Ci 
0 C f c "-Ci 

By (2) of the theorem, \\Ck • • • Ci|| < 7 ^ and by (1) of the theorem, 

U-Bfc+iCfc • • • Ci + 5fc+2Cfc+i • • • C\ -\ ||6 

< rfijW + r^i-\+1 + ••• 

- 1 - 7 ' 

Thus, (Mk • • • Mi) converges to 

J Bx + B2CX + B3C2Ci + • • • 
0 0 

and at a geometric rate. • 

A special case of the theorem follows by applying (6.3). 

Corollary 6.2 Assume the hypothesis of the theorem and that each Ls = 0. 
Then the sequence (Mk) converges to 0. 

6.2 Convergence to 0 

There are not many theorems on infinite products of matrices that converge 
to 0. In the last section, we saw one such result, namely Corollary 6.2. In 
the next section, we will see a few others. In this section, we show three 
direct results about convergence to 0. 

The first result concerns nonnegative matrices and uses the measure U 
of full indecomposability as described in Chapter 2. In addition, we use 
that 

n(A) = y^aik, 
fc=i 

the i-th row sum of an n x n nonnegative matrix A. 

Theorem 6.2 Suppose that each matrix in the sequence (Ak) of n x n 
nonnegative matrices satisfies the following properties: 
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1. maxrj (Ak) < r. 
i 

2. U(Ak) >u>0. 

3. There is a number 8 such that minr^ (Ak) < S. 

i 

4. ( r " - 1 - un~x) r7--1 + w"-1 (6rn-2) = I < 1. 

CO 

Then ]J Ak = 0. 
fe=i 

Proof. We first make a few observations. 
Using properties of the measure of full indecomposability, Corollary 2.5, 

if for s = l , 2 , . . . 
(s+l)(n-l) 

Bs = Y[ Ak 
k=s(n-l)+l 

then the smallest entry in Bs, 

mmby? > « n - x . 

And, 

Then, 

maxr-i (Bs) < r71'1, miiirj (Bs) < 6rn~2. 

ri(Bs+iBs) = Y:Eb(iS
k

+1)b% 
j=l k=l 

fe=i 

kjtka 

where we assume rk0 (Bs) is the smallest row sum. So 

U (BS+1BS) < ( r"" 1 - un~l) r "" 1 + u71'1 (Srn~2) 
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Thus, since 

2m 

fc=i 
\ l (B2sB2s-l) 

< J ] 11(̂ 2.52.-1)11! 
s=l 

<r 
it follows that F] Ak converges to 0. • 

fc=i 

This corollary is especially useful for substochastic matrices since in this 
case, we can take r = 1 and simplify (4). 

The next result uses norms together with infinite series. To see this 
result, for any matrix norm ||-||, we let 

||A||+ = max{| |A| | , l} and 

| | A | | _ = m i n { | | A | | , l } . 

And, we state two conditions that an infinite sequence (Ak) oinxn matrices 
might have. 

!• E (ll^fcll+ - !) converges. 
fe=i 

oo 

2. £ ( 1 - | |Ak | |_) diverges. 
fe=i 

We now need a preliminary lemma. 

Lemma 6.3 Let A\, Ai, •.. be a sequence ofnxn matrices and ||-|| a ma­
trix norm. If this sequence satisfies (1) and A^, Ai2,... is any rearrange­
ment of it, then \\Ah | |+ , \\Ai21|+ | |A i l | |+ , . . . and \\Ah \\, \\Ai2Ah | | , . . . are 
bounded. 

Proof. First note that 

\\Aik--.Ail\\<\\Aik\\+...\\Ail\\+ 

for all k. Now, using that 

£(ii^n+-i) 
*;=! 



94 6. Convergence 

converges, by Hyslop's Theorem 51 (See the Appendix.), 

oo 

n HAJ+ 

converges. But this implies that \\Aix \\+ , \\Ai2 \\+ | |A^ \\+ , . . . is bounded. • 

The following theorem says that if (||Afc||+) converges to 1 fast enough 
(condition 1) and (||Afc||_) doesn't approach 1 or, if it does, it does so 

oo 

slowly (condition 2), then f ] -^u = 0-
fc=i 

Theorem 6.3 Let A\, A2,... be a sequence of n x n matrices and ||-|| a 
matrix norm. If the sequence satisfies (1) and (2) and A^, Ai2,... is any 

0 0 

rearrangement of the sequence, then we have J\ Aik = 0. 
fc=i 

Proof. Using that ||Ai,|| = ||A;,||_ | | ^ . | | + 

| | ^ - - i 4 i 1 | | < | | A < J | _ . . - | | ^ 1 | | _ M , 

where M i s a bound on the sequence (||-<4jJ|+ • • • ||-^*ill+)- Since (2) is 
0 0 

satisfied, by Hyslop's Theorem 52 (given in the Appendix), JJ ll-^ull-
fc=i 

converges to 0 or does not converge to any number. Since the sequence 
||-^iill_ > 11-̂ 12 II- ll-^nll- >'"' i s decreasing, it must converge. Thus, this 
sequence converges to 0, and so 

converge to 0. • 

The final result involves the generalized spectral radius p discussed in 
Chapter 2. 

Theorem 6.4 Let E be a compact matrix set. Then every infinite product, 
taken from E, converges to 0 iffp(E) < 1. 

Proof. If p(E) < 1, then by the characterization of p(E), Theorem 2.19, 
there is a norm ||-|| such that ||A|| < 7,7 < 1, for all A e E. Thus for a 
product Aik ... Aix, from E, we have 

ll-̂ tfc • • • Ail || < 7fe -> 0 as k —> 00. 
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Hence, all infinite products from E converge to 0. 
Conversely, suppose that all infinite products taken from E converge to 

0. Then by the norm-convergent result, Corollary 3.4, there is a norm ||-|| 
such that 

\\M\ < 1 

for all Ai € E. We will prove that p (E) < 1 by contradiction. 
Suppose /?(E) > 1. Then p(E) = 1. Since pk is decreasing here, there 

exists a sequence C\, Ci, • • • where Cfe is a fc-block taken from E, such that 
||Cfc|| > 1 for aH k. Thus, ||Cfc|| = 1 for all k. We use these Cfc's to form 
an infinite product which does not converge to 0. 

To do this, it is helpful to write 

Cx = AX1 

Ci = A22 A21 
C3 = ^33 A32 A31 ,g . 

Cfc = AkA Ak3 Ak2 Aki 

where the A^j's are taken from S. Now we know that E is product 
bounded, and so the sequence A\t\, ^ 2 , 1 , . . . has a subsequence Aix,i, Ai2,i,.. 
that converges to, say B\ and ||Bi|| = 1. Thus, there is a constant L such 
that if k > L, 

l l^ , i - -Bi l l < ^ -

Set si (1) = lL,si (2) = IL+I,. .. so ||ASl(fe)jl - Bi | | < \ for aU k. Now, 
consider the subsequence ASl(1)>2, J4SI(2),2; As before, we can find a 
subsequence of this sequence, say A32^)t2, AS2(2),2, • • •, which converge to 
B2 and 

| |^ ( fc) ,2- -B 2 | | < — for all fc. 

Continuing, we have 

l l A ^ ( f e ) , j - 5 j | | < 2i+2 

for all k. Using (6.4), a schematic showing how the sequences are chosen 
is given in Figure 6.1. We now construct the desired product by using 
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i 

* i * 

• • • 

t • > 

v v y 

FIGURE 6.1. A diagram of the sequences. 

7Ti = 4 j , 7T2 = ^ i ^ m ! , • • • where 

Ami = J4S I(I) , I 

4̂m2 =
 Aa2{l),2 

An* = J4Sfc(l),fc 

which can be called a diagonal process. 
We now make three important observations. Let i > 1 be given. 

1. If j < * , 

U -̂m-- -̂ -.s | ^ S j ( i ) , j -> l a i ( i ) , i | | < 
l 

(Note here that Sj (fc) is a subsequence of SJ (k).) 

2. Using (6.4), 

1 = \\C'i(.i)\\ 

= \\ASi{i),Si(i) • • • Ast(i),l\\ 

^ \\ASi(i)Mi) ' ' ' ASi(i),i+l || ||4»*(*),i * • • A8i(.i),l | 

< H^W.i-'-^iW.lll-
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FIGURE 6.2. Diagonal product view. 

3. Using a collapsing sum expression, 

?Ti - ASi(i)tiASi(i)ti-.i • • • ASi(i)ti = 

Arm ' ' ' Ami \Am,i ~~ -^-Si(i),l) + 

Arm ' ' ' Am3 [Am2 ~ •4s i(i),2j -^Si(i),l + " " " + 

[Arm ~ -^-ai(»),») -Asi(i),i-1 " " " -<4.si(i),l 

and taking the norm of both sides, we have from (1), 

||l"i - As ; ( i ) , i^s»( i ) , i -1 • • • -Asi(i),l || 

_ 1 

~ 2' 
Putting together, by (2), H ^ ^ ^ . ^ , ^ ! • • • AS l ( i ) i l | | > 1 and by (3), 

IITT* - As^^Ag^^i • • • A j ^ i H < \. Thus ||7Tj|| > | for all i, which pro­
vides an infinite product from E that does not converge to 0. (See Figure 
6.2.) This is a contradiction. So we have p(E) < 1. • 

Concerning convergence rate, we have the following. 

Corollary 6.3 If' E is a compact matrix set and p (E) < 1, then all se­
quences Ait, Ai2Aix, Ai3Ai3Ai1,... converge uniformly to 0. And this con­
vergence is at a geometric rate. 
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Proof. By the characterization of p, Theorem 2.19, there is a matrix norm 
||-|| such that H-Afcll < 7 where 7 is a constant and 7 < 1. Thus 

| K - - . A i l - 0 | | = | |^ . . -A i l | | 
<\\Aik\\---\\Ail\\ 

< 7
f c . 

Thus, any sequence Ai1,AiaAil,... converges to 0 at a geometric rate. 
And, since this rate is independent of the sequence chosen, the convergence 
is uniform. • 

Putting together two previous theorems, we obtain the following norm-
convergence to 0 result. 

Corollary 6.4 Let E be a compact matrix set. Then every infinite product, 
taken from E, converges to 0 iff there is a norm ||-|| such that \\A\\ < 7 ,7 < 
1, for all A 6 E. 

Proof. If every infinite product taken from E converge to 0, then by the 
theorem, p(E) < 1. Thus by Theorem 2.19, there is a norm ||-|| such that 
\\A\\ < 7, 7 < 1, for all A G E. The converse is obvious. • 

6.3 Results on II (Uk + Ak) 

In this section, we look at convergence results for products of matrices 
of the form Uk + Ak- In this work, we will use that if ai, 02 • • • , flfc are 
nonnegative numbers, then 

(1 + ai) • • • (1 + afc) < e 0 l + - + 0 * . (6.5) 

Wedderburn (1964) provides a result, given below, where each Uk = I-

00 

Theorem 6.5 Let Ai,A2,... be a sequence ofnxn matrices. If ^ \\Ak\\ 
fe=i 

0 0 

converges, then Yl ll-̂  + ^fcll converges. 
fc=i 

Proof. Let 

Pj, = (I + Ak)---(I + A1) 

= I + S APi + Yl APiAP2 + • • • + Ak • • • M-
Pl>P2 
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We show that the sequence Pi,P2, • •. is Cauchy. For this, note that if 
t > s, then 

Pt - P.W = Y^ \i + E APlAP2 + ... + At---A1 
Pl>S PI > s 

P1>P2 

<EH4*n+ E I I 4 J I M U + - - - + I K I I - - - I I ^ I 
P l > S P I >*> 

P1>P2 

<IIA s+ l l i + E i i ^ n + Ai=12r + 
i = l 

+ IIA «+2| 

£114 
i+Eii^n+ o, J + 

V 
i = l 

+ • 

and using the power series expansion of ex, 

/ II ,. II £ l |Ai" , IU II £ l|Ail1 , 

. ^ ,, . ,, 2 11*11 

k=s+l 

oo 
Now, given e > 0, since ^ ||-Afc|| converges, there is an N such that if 

fe=i 
s>iV, 

^ l u II ^ l | A i l 1 

fc=s+l 

Thus, Pi , P2, •.. is Cauchy and hence converges. • 

While Wedderburn's result dealt with products of the form I + Ak, Os-
trowski (1973) considers products using U + Ak-

Theorem 6.6 Let U + A\, U + A2,... be a sequence of n x n matrices. 
Given e > 0, there is a 6 such that if \\Ak\\ < 5 for all k, then 

\\(U + Ak)---(U + A1)\\<a(p+e)k 



100 6. Convergence 

for some constant o and p — p (U). 

Proof. Using the upper triangular Jordan form, factor 

U = PEP'1 

where K is the Jordan form with a super diagonal of O's and -J- 's. Thus, 

||#Hi < P + -§- W r i t e (U + Ak)---(U + i4i) 

= (PKP-1 + Ak) • • • (PKP-1 + Ai) 

= P(K + p-xAkP) •••(K + P~lAxP) P-1. 

Let S = 2 | | J > | | i | 1 J J - 1 | | i SO that 

HP-^PII, < up-1!!, \n iiAfciK < \\p-\ in s = \ . 

Then, 

\\(U + Ak).-.(U + A1)\\1 < n \\P-\ ({p + y ) + -j)" 

= \\P\\1\\P-%(p + e)k. 

Setting a = \P\^ \\P_1 \\v
 a n d noting that norms are equivalent, yields the 

theorem. • 

This theorem assures that if p (U) < 1 and 

ll^fclli < 
s i lPIUli3-1!!! ' 

where p + e < 1, then J ] (U + Ak) = 0. So, slight perturbations of the 

entries of U, indicated by Ai,A%,. • •, will not change convergence to 0 of 
the infinite product. 

oo oo 

We now consider infinite products ]T (Uk + -̂ fe) a n d 11 f̂c- How far 
fc=i fc=i 

these products can differ is shown below. 

Theo rem 6.7 Suppose \\Uk\\ < 1 for k — 1 , . . . , r . Then 

£ IKII 
\\(Ur + Ar)--- (C/i + A1)-Ur---U1\\< efc=1 - 1. 
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Proof. Observe that by (6.5), 

\\(Ur + Ar)---(Ul+Ai)-Ur---Ul\\ 

< E IMI+E IÎ II 11*11+• • •+H*II • • • 11*11 
i i>j 

£ IK II 
= (l + | |A r | | ) . . - ( l + | | J 4 1 | | ) - l < e f c = 1 - 1 

the required inequahty. • 

As a consequence, we have the following. 
oo 

Corollary 6.5 Suppose \\Uk\\ <1 fork = 1,2,... and that Yl 11-411 < °°-
k=\ 

Given e > 0, there is a constant N such that if r > N and t > r, then 

|| (Ut + At) ••• (Ur + 4 ) - Ut ---Ur || < € . 

From these results, we might expect the following one. 

Theorem 6.8 Suppose \\Uk\\ < 1 for all k. Then the following are equiv­
alent. 

oo 

1. r j Uk converges for all r. 
k=r 

oo oo 
2. n (̂ fc + * ) converges for all sequences (Ak) when ^ \\Ak\\ < oo. 

fc=i fe=i 

Proof. That (2) implies (1) follows by using A\ = —Ui +1, then Ai = 
-U2 + / , . . . , Ar-x = -Ur-i +1 and Ar = • • • = 0. 

0 0 0 0 

Suppose (1), that FJ Uk converges for all r and J2 \\Ak\\ < 00. Define, 
k=r fc=l 

for t > r, 

Pt = (Ut + At)---(Ui + A1) 

Pt.r = Uf- Ur+1 (Ur + 4 0 • " • (Ul + Ax) . 

We show Pt converges by showing the sequence is Cauchy. For this, let 
e > 0 be given. 

Using the triangular inequality, for s, t > r, 

\\Pt ~ P.H < ||Pt - Pt,r\\ + \\Pt,r ~ Ps,r\\ + \\P.,r ~ P.\\ • (6-6) 

We now bound each of the three terms. We use (6.5) to observe that 
oo 

\\Pr\\<0, where /3 = e ^ * " . 
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1. Using the previous corollary, there is an Ni such that if r = Ni, then 

\Pt ~ Pt,r\\ < y a n d ll^.r P,\\ < y 

2- | |P* , r - IV 

\\Ut •••Ur+1-Us--- Ur+i\\ \\(Ur + Ar)--- (Ux + Ai)\\. 

oo 

Since ]1 Uk converges, there is an N2,N2 > r, such that if s,t > 
k=r+\ 

N2, then 

IIP*. , . -P, . - IK-!- . 

Putting (1) and (2) together in (6.6) yields that 

\\Pt~P.\\< c 

for alH, s > iV .̂ Thus, Pt is Cauchy and the theorem is established. 

Prom Theorems 6.7 and 6.8, we have something of a continuity result 
oo 

for infinite products of matrices. To see this, define ||(j4fe)|| = £Z ll-̂ fcll 
fc=i 

oo 

for (Ak) such that ||(Afc)|| < oo. If f| Uk converges for all r, so does 
k=r 

oo 

r ] (Uk + Ak) and given e > 0, there is a 6 > 0 such that if ||(Afc)|| < 6, 

then 
f[Uk-f[(Uk + Ak) 
A s = l fc=l 

< e. 

Another corollary follows. 

Corollary 6.6 Let \\Uk\\ < 1 for k = 1,2,... and let (Ak) be such that 
oo oo oo 

£ \\Ak\\ < oo. / / J ] Uk = 0 for all r, then J[ (Uk + Ak) = 0. 
fe=l k=r fe=l 

oo 
Proof. Theorem 6.8 assures us that [} iPk + Ak) converges. Thus, using 

fe=i 
Corollary 6.5, given e > 0, there is an JVi such that for r > N\ and any 
t>r, 

\\Ut • • • Ur+i (Ur+Ar) • • • (Ui+AJ-iUt+At) • • • (tfi+Ai)| | < y . 
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Since f ] Uk=0, there is an N2 such that for t > N2 > r, 

k>r+l 

\\Ut • • • Ur+1 (Ur + Ar)--- {Ui + Ax) - 0|| < y . 

Thus, by the triangular inequality, 
\\(Ut + At)---(U1 + A1)-0\\< 
\\(Ut + At)--- (Ut +Al)-Uf- Ur+1 (Ur + Ar) • • • (Ui + AJW 

+ \\Uf-Ur+1{Ur + Ar)---(U1 + A1)-0\\<~ + ~-= e. 

OO 

Hence, f l (Uk + Ak) = 0. • 
fc=i 

6.4 Joint Eigenspaces 

In this section we consider a set E of n x n matrices for which all left 
00 

infinite products, say, Yl ^fei converge. Such sets S are said to have the 
fe=i 

left convergence property (LCP). 
The eigenvalue properties of products taken from an LCP-set follows. 

Lemma 6.4 Let S be an LCP-set. If Ai,... ,AS € S and A is an eigen­
value of B = Aa- • • A\, then 

1. |A| < 1 or 

2. A = 1 and this eigenvalue is simple. 

Proof. Note that since S is an LCP-set, hm Bk exists. Thus if A is an 
fe—>oo 

eigenvalue of B, |A| < 1 and if |A| = 1, then A = 1. Finally, that A = 1 
must be simple (on l x l Jordan blocks) is a consequence of the Jordan 
form of B. • 

For an eigenvector result, we need the following notation: Let A be an 
nx n matrix. The 1-eigenspace of A is 

E (A) ={x:Ax = x). 

Using this notion, we have the following. 



104 6. Convergence 

oo 
Theorem 6.9 Let B = ]J Ai be taken from an LCP-set S. If A & Y, 

fe=i 
oo 

occurs infinitely often in the product f\ A-i, then every column of B is in 
fc=i 

E{A). 
oo 

Proof. Since A occurs infinitely often in the product ]1 -<4fc> there is a 
fc=i 

subsequence of A\, AiA\,... with leftmost factor A, say, 

ABUAB2,.., 

where the Bj's are products of Ak's. Since A\, A^Ai,... converges to B, 
so does ABi, AB2,. •. and £?i, £2, Thus, 

AB = lim ABk 
fe—»oo 

= lim Bk 
fe—>oo 

= B. 

Hence, the columns of B are in E (A), u 

0 0 

As a consequence of this theorem, we see that for B = fj Ak 
fc=i 

columns of B C C\E (Ai) 

where the intersection is over all matrices A, that occur infinitely often in 
0 0 

Y\ Ak- Thus, we have the following. 
fe=i 

0 0 

Corollary 6.7 If f\ Ak is convergent and HE (At) — {0}, where the in-
fc=i 

0 0 

tersection is over all E (Ai) where Ai occurs infinitely often, then Y[ Ak = 

The sets E(B),B= ]J Ak, and E(Aj)'s are also related. 
fe=i 

0 0 

Corollary 6.8 If B = ]J Ak is convergent, then E (B) C HE (Ai) where 
fe=i 

00 

the intersection is over all Ai that occur in ]J Ak infinitely often. 
fc=i 



6.5 Research Notes 105 

In the next theorem we use the definition 

E(Ti)=nE(Ai) 

where the intersection is over all Ai € E. 

Theorem 6.10 Let E be an LCP-set. If E (AJ = E (E) for all At 6 E, 
then there is a nonsingular matrix P such that for all A € E, 

P-^AP-
I B 
0 C 

where I is s x s and p (C) < 1. 

0 

J 
0 

c 

B 
C 

Proof. Let ply... ,ps be a basis for E (E). If A 6 E, Lemma 6.4 assures 
that A has precisely s eigenvalues A, where A = 1, and all other eigenvalues 
A satisfy |A| < 1. Extend p i , . . . ,ps to pi,... ,pn, a basis for Fn, and set 
P = [pi , . . . ,Pn\- Then, 

AP = P 

for some matrices B and C. Thus, 

P _ 1 A P = 

Finally, since p (A) <l,p (C) < 1. If p (C) = 1, then A has s + 1 eigen­
values equal to 1, a contradiction. Thus, we have p(C) < 1. • 

It is easily seen that E is an LCP-set if and only if 

E P = {B : B = P~lAP where A e E} 

is an LCP-set. Thus to obtain conditions that assure E is an LCP-set, we 
need only obtain such conditions on Ep. In case E satisfies the hypothesis, 
Corollary 6.1 can be of help. 

6.5 Research Notes 

In Section 2, Theorem 6.2 is due to Hartfiel (1974), Theorem 6.3 due to 
Neumann and Schneider (1999), and Theorem 6.4 due to Daubechies and 
Lagarias (1992). Also see Daubechies and Lagarias (2001) to get a view of 
the impact of this paper. 
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The results given in Section 3 are those of Wedderburn (1964) and Os-
trowski (1973), as indicated there. Section 4 contains results given in 
Daubechies and Lagarias (1992). 

In related work, Trench (1985 & 1999) provided results on when an infi-
oo 

nite product, say f] Ak, is invertible. Holtz (2000) gave conditions for an 
fc=i 

°° \ I Bk 1 
infinite right product, of the product form TT _ „ , to converge. 

fcJi [0 Ck \ 
Stanford and Urbano (1994) discussed matrix sets S, such that for a given 

oo 
vector x, matrices Ai,A2... can be chosen from E that assure JT AkX = 0. 

fc=i 
oo 

Artzrouni (1986a) considered fu (A) = ]J (Uk + Ak), where he defined 
fe=i 

U — (Ui, U2, • • •) and A = (Ai, A2,...). He gave conditions that assure 
the functions form an equicontinuous family. He then applied this to per­
turbation in matrix products. 



7 
Continuous Convergence 

In this chapter we look at LCP-sets in which the initial products essen­
tially determine the infinite product; that is, whatever matrices are used, 
beyond some initial product, has little effect on the infinite product. This 
continuous convergence is a type of convergence seen in the construction of 
curves and fractals as we will see in Chapter 11. 

7.1 Sequence Spaces and Convergence 

Let E = {Ao,.. . , Am-i}, an LCP-set. The associated sequence space is 

D = {d:d=(d1,d2,...)} 

where each dj 6 {0, . . . , m — 1}. On D, define 

d(d,d\ =m~k 

where fc is the first index such that dk ^ dk- (So d and dk agree on the 
first fc — 1 entries.) This d is a metric on D. 

Given d = (d\, d%, • • •), define the sequence 

A.dl i •A-d2Aci1, Ad3Ad2Adi i • • • • 
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1 
1 
0 
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| 
1 
1 

^ - i -
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«F(0) 

•«F(1) 

FIGURE 7.1. A view of *. 

Since S is an LCP-set, this sequence converges, i.e. 

A 

for some matrix A. 
Define ip : D -> M„ by 

<p(d) = A. 

If this function is continuous using the metric d on D and any norm on 
Mn, we say that E is a continuous LCP-set. 

Continuity of ip can also be described as follows: tp is continuous at 
d € D if given any e > 0 there is an integer K such that if k > K, 

then <p(d) — tp (d)\\ < e for all d that differ from d after the A;-th digit. 

(The infinite product will not change much regardless of the choices of 

Not all LCP-sets are continuous. For example, if 

E = { / , P } , P : 

then tp is not continuous at (0 ,0 , . . . ) . 
Now we use <p to define a function \P : [0,1] —> Mn. (See Figure 7.1.) As 

we will see in Chapter 11, such functions can be used to describe special 
curves in R2. 

If £ € [0,1], we can write 

r l 
2 

I 2 

1 1 

? 
2 J 

dim + d^m + • 
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the p-adic expansion of x. Recall that if 0 < j < m, then 

dim'1 H h dsm~s + jm-3"1 

+ 0m-s-2 + Om'3-3 + • 

• dim 1 + h dsm
 3 + (j — 1) m~ s-l 

+ (m - 1) m-*-' + (m - 1) m'3'6 + ••• 

give the same x 6 [0,1]. Thus, to define 

¥ : [ 0 , l ] - > M n 

by ty (x) = <p (d), we would need that 

<p(di,... ,ds,j,0,...) = ip(di,... ,da,j -l,m-l,...). 

When this occurs, we say that the continuous LCP-set S is real definable. 
A theorem that describes when £ is real definable follows. 

Theorem 7.1 A continuous LCP-set £ = {Ao,.. • , Am-x\ is real defin­
able iff 

A°° A • — A°° A • , 

for j = l , . . . m - l . 

Proof. If AffAj = A™_iAj_i, then 

ip(di,... ,ds,j,0,...) =<p(di,... ,ds,j -l,m-l,m-l...) 

for any s > 1 and all d\,... ,ds. Thus, £ is real definable. 
Now suppose £ is real definable. Then 

VO',0,0, . . . ) =<p(j-l,m- l , m - l . . . ) 

for all j > 1. Thus, 

A°° A • — A°° A • -, 

as given in the theorem. • 

An example may help. 

Example 7.1 Let 

Ao 
1 0 0 
.5 .5 0 
.25 .5 .25 

,Ai 
.25 .5 .25 
0 .5 .5 
0 0 1 
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and E = {Ao,Ai}. In Chapter 11 we will show that E is a continuous 
LCP-set. For now, note that 

" 1 0 0 ' 
1 0 0 
1 0 0 

A°° — 
" 0 0 1 " 

0 0 1 
0 0 1 

Since 

A^A1 = A?A0, 

E is real definable. 

7.2 Canonical Forms 

In this section we provide a canonical form for a continuous LCP-set E = 
{AQ, ... , Am-\). We again use the definition 

m— 1 

E(E)= f]E(Ai) 
«=o 

where E {Ai) is the 1-eigenspace of Ai, for all i. We need a lemma. 

L e m m a 7.1 If T, is a continuous LCP-set, then E(T,) — E(Ai) for all i. 

Proof. Since E (E) C E (Ai) for all i, it is clear that we only need to show 
that E(Ai) C £ ( E ) , for all i. 

For this, let y e E (Ai). Then y = Afy. For any j , define 

d ( f e ) -* ( i , . . . ,i,j,j,...) 

where i occurs k times. Then 

d^ —> (i, i,...) as k —> oo. 

Since E is continuous 

ip (d^A —> ip((i,i,...)) as k —• oo, 

so 

AfAki -> Af as k -» oo. 
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Hence 

Urn AfAly = Afy 
fe—»oo J 

or 

Afy = y. 

By considering the Jordan form of Aj, we see that A,y = y also. Hence, 
ro—1 

y e E (Aj) from which it follows that E (E) = f| £ (Aj) as required. • 
i=0 

The canonical form follows. 

T h e o r e m 7.2 Let E = {Ao,. . . , A m _ i } . Then His a continuous LCP-set 
iff there is a matrix P such that 

" 1 E P = | 
I Bi 
0 d 

I Bi 
0 Ci 

-lAiP} 

where p (Ec) < 1, E c = {Co,.. . , Cm-i} . 

Proof. Suppose E is a continuous LCP-set. Let P = \p\.. .p3ps+i • • -Pn], 
a nonsingular matrix where p\,... ,ps are in E (E) and dim E (E) = s. 
Then for any Aj G E, 

AiP = P 
I Bi 
0 d 

for some Bi and d where I is the s x s identity matrix. 
Now, since E is a continuous LCP-set, so is Ec. Thus for any infinite 

oo 
product fj Ck from Ec , by Theorem 6.9, its nonzero columns must be 

fe=i 
eigenvectors, belonging to 1, of every d that occurs infinitely often in the 
product. Since 1 is not an eigenvalue of any d, Lemma 7.1, the columns 

oo 

of n Ck must be 0. Thus, by Theorem 6.4, p (Ec) < 1. 
fc=i 
Conversely, suppose P _ 1 E P is as described in the theorem with p (Ec) < 

1. Since p (Ec) < 1 by the definition of p (Ec), there is a positive integer r 
and a positive constant 7 < 1 such that 11̂ 1̂  < 7 for all r-blocks •K from 
S c . 

Now by Corollary 6.1, F _ 1 E P is an LCP-set, and thus so is E. Hence, 
by Theorem 3.14, E is a product bounded set. We let (3 denote such a 
bound. 
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Let d = (di, d%,...) be a sequence in D and e > 0. Let TV be a positive 
number such that 

2 /3 | |P | | 1 | | J p- 1 | | 1 7 J V < e . 

Let d = [di,d,2,---j be a sequence such that S(d,dj <m~rN. Then 

< 
rN 

n **>- n Ai, n ^ 
\k=rN+l k=rN+l ) k=l 

I 5X 

0 0 
P'1 -P I 5 2 

0 0 
3 - 1 / 5 3 

0 7T 

where 

n A**=p 

k=rN+l 

rN 

and H Adk = P 
fe=i 

" 7 
0 

" 7 
0 

5i ' 
0 

53 ' 
7T 

^ n ^=-p 
fc=riV+l 

7 5 2 

0 0 

3 - 1 

Continuing the calculation, 

P 

< 

0 S!-S2 

0 0 

0 5 i - 5 2 

0 0 

/ Si 
0 0 

p-lp 

p-lp 

I 5 3 

0 7T 

0 0 
0 7T 

7 5 2 

0 0 

p - i 

p - i 

p - i WiMil|i'-1lli 
<2/3 | | 7 r | | 1 | |P | | 1 | | p - 1 | | 1 

< 2 / 3 7
J V | | P | | 1 | | P - 1 | | 1 < 6 . 

Thus, S is a continuous LCP-set. • 

As pointed out in the proof of the theorem, we have the following. 

Corollary 7.1 If £ = {A0,... , Am—1} *s fl continuous LCP-set, then 
there is a nonsingular matrix P, such that for any sequence (di,da,...), 
there is a matrix S where 

n^ 
i = l 

7 5 
0 0 

3 - 1 
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J the s x s identity matrix and s = dim E (S). 

Also, we have the following. 

Corollary 7.2 7 /S = {Ao,... , j4m_i} is a continuous LCP-set, then in­
finite products from S converge uniformly and at a geometric rate. 

Proof. Note that in the proof of the theorem, /3 and 7 do not depend on 
the infinite products considered. • 

As a final corollary, we show when the function \P, introduced in Section 
1, is continuous. 

Corollary 7.3 Let E = {Ao,.. . ,Am-i} be a continuous LCP-set and 
suppose S is real definable. Then ^ is continuous. 

Proof. We will only prove that ^ is right side continuous at x, x € [0,1). 
Left side continuous is handled in the same way. 

Write 

x = dim-1 + d2m~2 -] . 

We will assume that this expansion does not terminate with repeated m — 
Vs. (Recall that any such expansion can be replaced by one with repeated 
0's.) 

Let e > 0. Using Corollary 7.2, choosing N, where we have djv+i 7̂  m—1, 
and such that if any two infinite products, say B and B have their first k 
factors identical, k> N, then 

" < e. (7.1) 

Let y 6 (0,1) where y > x and y — x < m~N~x. Thus, say, 

y - dim"1 H h dNm~N + SN+im'1*'1 + 6N+2m~N~2 H . 

Now, let 

0 0 

A = Y[ Adk and A = • • • ASN+2 ASN+1 AdN •••Adl. 

fe=i 

Then, using (7.1), 

|*(s)-tffo) || A-A <e 

which shows that \I> is right continuous at x. 
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7.3 Coefficients and Continuous Convergence 

Again, in this section, we use a finite set E = {Ao,... ,v4m_i} of n x n 
matrices. We will show how subspace contraction coefficients can be used 
to show that E is a continuous LCP-set. 

To do this, we will assume that E is T-proper, that is 

E(£) = E(Ai) 

for all i. If pi,... ,pa is a basis for that eigenspace and pi,... ,pn a basis 
for Fn, then P = \p\,... ,pn] is nonsingular. Further, 

Ak = F 

where I is s x s, for all Ak € £. 
Let 

/ Bk 

0 Ck 

3 - 1 

E = \plt... ,ps] 

and 

W = {x : xE = 0} . 

Recall from Chapter 2 that 

Mil 
TW (A) = max 

v ' xE=0 

is a subspace contraction coefficient. And, if Ak € S and we have Ak — 
" I Bk~ 

0 Ck 
P~x, then 

r{Ak) = \\Ck\\ 

where the norm ||-||j is defined there. Recall that subspace contraction 
coefficients are all equivalent, so to prove convergence, it doesn't matter 
which norm is used. 

Theorem 7.3 Let E = {A0,... , Am-i} be T-proper. The set E is a con­
tinuous LCP-set iff there is a subspace contraction coefficient TW and a 
positive integer r such that Tw (T ) < lfor all r-blocks n from E. 

Proof. If E is a continuous LCP-set, using any norm, a subspace con­
traction coefficient TW can be defined. Since by Theorem 7.2, using the 
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FIGURE 7.2. Convergence view of Corollary 7.4. 

notation there, j&(Ec) < 1, there is a positive integer r such that | |C| | j < 1 

for all r-blocks C from E c . Thus, since TW ( f ] Adk ) = UCdk 
fc=i 

it 

follows that Tw M < 1 for all r-blocks from E. 
Conversely, suppose Tw is a contraction coefficient such that Tw M < 1 

for all r-blocks -K from E. Thus, ||7r|| J < 1 for all r-blocks fr from Ec . So, 
pr (Ec) < 1 which shows that p(E c) < 1. This shows, by using Theorem 
7.2, that E is a continuous LCP-set. • 

We can also prove the following. 

Corollary 7.4 If H is a T-proper compact matrix set and we have TW (n) < 
r < 1 for all r-blocks n in E, then E is an LCP-set. 

A view of the convergence here can be seen by observing that 

I B 
0 C 

where is partitioned compatibly to 

x + By 
Cy 

I B 
0 C 

So the y vector con­

tracts toward 0 while the x vector is changed by some (bounded) matrix 
constant of y, namely By. A picture is given in Figure 7.2. 

We conclude with the following observation. In the definition 

Tw (-4) = max ||a;j4||, 

matrix multiplication is on the right. And, we showed that TW (-^1^2) < 
Tw {Ax) TW (-̂ 2)5 so we are talking about right products. Yet, Tw denned 
in this way establishes LCP-sets. 
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Example 7.2 Let £ = [ i l l » [ i l l I]}- SetE = 

Tw (S) = 0 and £ is an LCP-set. But, S is no* an RCP-set. 

Then 

7.4 Research Notes 

The sequence space and continuity results of Section 1 and the canonical 
form work in Section 2 are, basically, as in Daubechies and Lagarias (1992a). 
Section 3 used the subspace contraction coefficients results of Hartfiel and 
Rothblum (1998). 

Applications and further results, especially concerning differentiability of 
* , rather than continuity, can be found in Daubechies and Lagarias (1992b) 
and Micchelli and Prautzsch (1989). 



8 
Paracontracting 

An nxn matrix A is paracontracting or PC with respect to a vector norm 

11-11, if 

||Ax|| < ||x|| whenever Ax ^ x 

for all vectors x. Note that this implies that ||A|| < 1. We can view 
paracontracting by noting that L (x) = Ax is the identity on E (A) but 
contracts all other vectors. This is depicted, somewhat, in Figure 8.1. 

If there is a positive constant 7 such that 

\\Ax\\<\\x\\-'y\\Ax-x\\ 

FIGURE 8.1. A view of paracontracting. 
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for all x, then A is called j-paracontractingoi 7PC. It is clear that 7PC 
implies PC. Paracontracting and 7-paracontracting sets axe sets containing 
those kinds of matrices. 

In this chapter we show that for a finite set Eof n x nmatrices, paracon­
tracting and 7-paracontracting are the same. In addition, both paracon­
tracting and 7-paracontracting sets are LCP-sets. 

8.1 Convergence 

For any matrix set Sand any vector x\, the sequence 

x2 = Ahxx 

x3 = Ai2x2 

where each Aik E E, is called a trajectory of E. Any finite sequence, 
called an initial piece of the trajectory. 

Trajectories are linked to infinite products of matrices by the following 
lemma. 

Lemma 8.1 A matrix set E is an LCP-set iff all trajectories o/E converge. 

Proof. The proof follows by noting that if xi = e ,̂ e* the (0, l)-vector with 
a 1 only in the i-th position, then Aik • • • A^et = i-tb. column of Aik • • • A^. 
So convergence of trajectories implies column convergence of the infinite 
products and vice versa. And from this, the lemma follows. • 

Using this lemma, we show that for finite E, paracontracting sets are 
LCP-sets. The converse of this result will be given in Section 2. 

Theorem 8.1 IfY, = {A\,... ,Am} is a paracontracting set with respect 
to ||-||, then E is an LCP-set. 

Proof. Let x\ be a vector and set 

x2 = Aixxi, x3 = Ai2Ailx1,.... 

Since \\Ay\\ < \\y\\ for all y and all A e E, the sequence is bounded. Actually, 
iip>q, then ||xp|| < | | i g | | . 

Suppose, reindexing if necessary, that Ax,... , As occur as factors in-
0 0 

finitely often in fl Mk- Let 2/1,2/2, •• • be the subsequence of xi,x2,... 
k=i 
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such that Aiyx,Aiy2,... are in the sequence. And from this, take a con­
vergent subsequence, say, yji, yJ2 , . . . - > y. Thus, A^y^, AiyJ2 ,...—> A\y. 

Since y is the limit of yjl,yj2,..., 

\\y\\<\\Aiyjk\\ 

for all A; so in the limit 

IMI<l |Aiy| | . 

Thus, since A is paracontracting, \\y\\ = \\Aiy\\ and so A\y = y. 
We show that Aiy = y for i = 1 , . . . , s. For this, suppose Ai,... , Aw 

satisfies Aiy = y for some w, 1 < w < s. Consider a sequence, say with­
out loss of generality Aw+\-K\yjx, Aw+in2yj2, • • • where the matrices in the 
products 7Tfc are from {Ai,... ,AW}. The sequence converges to Aw+\y 
and thus, 

\\y\\<\\Aw+1y\\. 

So \\y\\ = \\Aw+iy\\ and consequently Aw+iy = y. From this, it follows 
that 

for all i < s. 
Finally, 

Aiy = y 

F f c - J / = Ffc f̂c -y\ 

where 7TfcZfc = Xk, 7Tfe a product of A\,... , As and Zk the vector in y^, yj2,... 
that immediately proceeds Xfe. (Here k is large enough that no As+i,... , j4m 

reappears as a factor.) Then, 

lFfc-y|| = IbrfcZfe - fl-kj/H 

< Ikfc-j/ll-

/ fe \ 
So \\xk — y\\ —* 0 as k —> oo. It follows that ( FJ A^^i ) converges, and 

V=i / 
thus by the lemma, the result follows. • 

The example below shows that this result can be false when S is infinite. 

Example 8.1 Let 

2fe - 1 1 0 0 
0 0 ak 

0 ak 0 
: ak = 2k f°T k = 2 ' 3 ' 
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Using the vector 2-norm, it is clear that E is a paracontracting set. Now, 
let a > 0. Then 

1_ 
22 a-ia = [ 1 

1 
a— -a 

4 

azoi^a = as 
a-\a) = (i-h 
1 1 

> a— -a — -a 
4 8 

a.\a.<sOL2a > cz\ I a 
1 1 

^ 

> a- -a 
4 

a - \ a -

1 1 
8 a ~ I B " 

4̂nrf, in general 

1 1 
a^ • • • «2a > a - ^ a - p a • 

= a 

1 

2*' 

77ms, i/ie sequence {ctk • 
entries, the sequence 

1 
0 

• a-\) does not converge to 0. Hence, by observing 

0 
0 

0 ak 

OLk 

0 

1 
0 
0 

0 
0 

<*2 

0 
Oil 

0 
does not converge, and so E is not an LCP-set. 

In the next section, we will show that for finite sets, paracontracting sets, 
7-paracontracting sets, and LCP-sets are equivalent. 

Concerning continuous LCP-sets, we have the following. 

Theorem 8.2 Let E = {A\,... , Am}. Then E is a continuous LCP-set 
iffH is a paracontracting set and E (E) = E (Ai) for all i. 

Proof. Suppose E is a continuous LCP-set. By Lemma 7.1, E (E) = E (Ai) 
for all i. Theorem 7.2 assures a P such that 

AL = P~lAiP = / Bi 
0 d (8.1) 



8.1 Convergence 121 

for all i, where p(E c) < 1. Thus by a characterization of p(E), Theorem 
2.19, there is an induced norm II-II and an a < 1 such that 

for all i. 

Now, partitioning x = 

vector norm 

Xi 

X2 

X2 

\\d\\<a 

compatible to A\, define, for e > 0, a 

= e Hullo+ 11x211. 

Thus, 

K*lle 
xx + BiX2 

Qx2 

= e||a;1+JB ix2 | |2 + ||Cia;2|| 

<e \\xx\\2 + (e\\Bi\\b + a) \\x2\-

where 

Take e such that 

for all i. 
Then 

\B, • t | | & 

I13»*2|| 
: max —r.—n" 

^27^0 \\x2\\ 

7 = e||Sj|L +a < 1 

I l ^ i a : | | £ < c | | a : i | l 2 + 7 W 
<e\\xx\\2 + \\x2\\ 

= H e-
And equahty holds iff ||a;2|| = 0, i.e. x2 = 0. Thus, 

H4*lle < Me 
with equahty iff A'tx = x. And it follows that E' = {Ai , . . . , A'r}, and thus 
E, is a paracontracting set. (Use ||x|| = | |P_1o;| | .) 

Conversely, suppose E is a paracontracting set, which satisfies E (E) = 
E (Ai) for all i. Then there is a matrix P such that A\ = P~xAiP has form 
given in (8.1). Since E (Ci) = {0} for all i and since E is an LCP-set, by 

CO 

Theorem 6.9, ]T C^ = 0 for any sequence (dx, d2,...). Thus, by Theorem 

6.4, p(Ec) < 1. Hence, by Theorem 7.2, E is a continuous LCP-set. • 
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8.2 Types of Trajectories 

We describe three kinds of matrix sets E in terms of the behaviors of the 
trajectories determined by them. 

Definition 8.1 Let E be a matrix set. 

1. The set E is bounded variation stable (BVS) if 

oo 

]P| | :Ei+ i -Xi\\ < oo 
» = 1 

oo 

for all trajectories X\,X2,... o /E. Here, J^ \\xi+i — xi\\ is called the 
i=l 

variation of the trajectory xi,X2,.... 

2. The set E is uniformly bounded variation stable (uniformly BVS) if 
there is a constant L such that 

oo 

]P | | a : j + i -Xi\\ < L\\xi\\ 
»=i 

for all trajectories X\, x<z,... of E. 

3. The set E has vanishing steps (VS) if 

lim ||a:j+1 -Xi\\ = 0 
fc—>oo 

for all trajectories X\,X2, • •. of E. 

An immediate consequence of BV follows. 

oo 

Lemma 8.2 If ]T | |xi+1 — Xi\\ converges, then (xi) converges. 

Proof. Note that (xi) is a Cauchy sequence, and thus it must converge. • 

It should be noticed that deciding if E has one of the properties, 1 through 
3, does not depend on the norm used (due to the equivalence of norms). 
And, in addition, if E has one of these properties, so does P - 1 E P for any 
nonsingular matrix P. 

What we will show in this section is that, if E is finite, then all of prop­
erties, 1 through 3, are equivalent. And for finite E, we will show that 
LCP-sets, paracontracting sets, and 7-paracontracting sets are equivalent 
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to properties 1 through 3. To do this, notationally, throughout this section, 
we will assume that 

1J = \Ai,... , Am) . 

We need a few preliminary results. The first of these allows us to trade 
our given problem for one with a special feature. Since 

E (E) = {x : Atx = x for all At e E } , 

there is a nonsingular matrix P such that, for all i, 

A' = p-lAiP 
0 d 

(8.2) 

where I is s x s, s = dimi? (E). We let E ' = {A\ : Ai G E} and prove our 
first result for E'. 

Lemma 8.3 Suppose E ' is VS. Then there exist positive constants a and 

(3 such that if x = , partitioned as in (8.2), 

a\\Ciq-q\\<\\A\x-x\\<nCiq-q\\ 

for all i. 

Proof. By equivalence of norms, we can prove this result for 
this, note that 

112- For 

A'x = 

so 

WA'iX - x\\2 = 

If C;3 = q and Biq ^ 0, then 

P + Biq 

ciq 

Biq 

Qq-q 

p+Biq p+2Biq p+Wiq 
q y [ q y [ q 

is a trajectory of E'. This trajectory is not V.S. Thus, we must have that 
Biq = 0. This implies that the null space of Q — I is a subset of the null 
space of Bi. And thus there is a matrix Di such that Di (C» — I) = -B;. 

From this we have that 
Biq 

Ciq-q 
= (\\Biq\\t + \\(Ci-I)q\\iy 

< (\\Di\\l \\(Ci-I)q\\l + UCi-I)q\\iy 

< ( | | A | l l + l ) 4 | | ( C i g - g ) | | 2 . 
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Setting (3 = max s (||-DjHj + 1) > yields the upper bound. A lower bound 

is obviously seen as a — 1. • 

Since paracontracting, 7-paracontracting, LCP, BVS, and uniformly BVS 
all imply VS, this lemma allows us to change our problem of showing the 
equivalence of the properties, 1 through 3, to the set E" = {Ci , . . . , C m } . 

A useful tool in actually showing the equivalence results follows. 

Lemma 8.4 Suppose E" is a uniformly BVS-set. Then there is an e > 0 
such that 

P - I 

max \\xi+i -Xi\\ > e V^ ||^i+i -tf«|| (8.3) 
Ki<p—1 z — ' 

i=l 

for all initial pieces x\, X2,... , xp of trajectories X\, X2, • •. of E. 

Proof. We prove the theorem using that E(E") = {0}. We precede by 
induction on r, the number of matrices in £". If r = 1, by Lemma 8.2, 
p{C\) < 1. Thus, there is a vector norm ||-|| such that ||Ci|| < 1. From 
this, we have 

p—X p—1 

i = l i=\ 

-lqblf11^1"*111' 
Setting e = 1 — ||Ci|| yields the result. 

Now suppose the theorem holds for all E" having r — 1 matrices. Let 
E" be such that it has r matrices. Since E" is a uniformly BVS-set, all 
trajectories converge, and thus, by Corollary 3.4, there is a vector norm ||-|| 
such that ||C»|| < 1 for all i. We now use this norm. 

Note that (8.3) is true iff it is true for initial pieces of trajectories 
x\,X2,.-- ,xp such that max ||a!i+i — Xi\\ < 1. (This is a matter of 

l<i<p—1 
scaling.) Thus we show that there is a number K such that 

P - I 

K> ^2\\xi+1 -Xi\\ 
i = i 

where max ||a:j+i — xA\ < 1. 
l<i<p—1 
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We argue by contradiction. Thus suppose there is a sequence of initial 
pieces x{, x\, • • • ,x^. where j = 1,2,... and such that 

E|K-i-^ oo 

= 00. as j —» oo. By the uniformly BVS property, lim 
j—>oo 

Now let E'fc' = £" — {Ck} for fc = 1 , . . . ,r. Each S'fc' satisfies the induction 
hypothesis so there is a number Mk such that 

p - i 

Mk > ^ | | x i + 1 - a ; i | | 
i = l 

for initial pieces of trajectories of H'L with max | |XJ+ I —a;j|| < 1 for all i. 
l<i<p—1 

Let 

M > maxMfc. 
fe 

Now 
P j - 1 

since Y] 
i=\ 

Pj-1 

£ Xi+l ^i 

H+l -x! oo as j —• oo, the initial pieces where 

> M must use all matrices in £" . Take all of these ini­

tial pieces x3
x,x\,... ,xp. and from them take initial pieces x j , x\,... ,x^. 

(rij < pj) such that 

and 

Note that 

E "»+i 

£ |k+i - xi 
i = i 

<M 

> M. 

EIK 
i=l 

i+1 <M + 1. (8.4) 

Now let 
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and h the limit of a subsequence, say y\1, j / f 2 , We show that h is an 
eigenvector, belonging to the eigenvalue 1, of each matrix in E". 

Rewriting (8.4) yields 

< Af + 1 E l I K •} Kin 

\\yi+i-Vi 
1 = 1 

so we have 
rlj 

l i m ^ L * ^ - ^ =0. (8.5) 
j->oo-f—•'II ^ 

«=1 

Suppose Ci (reindexing if necessary) occurs as the leftmost matrix in 
yl2,yl2, Then from (8.5), h is an eigenvector of C\. Now, of those 
products y[x, yl£,... ; y1?, y2

2,... ;. •., take the largest initial products that 
contain d, say y ^ , yl&2,.... (So y ^ = Cx • • • Cxy

lJ, yl£2 = Cx • • • G^, 
etc.) and such that C% (reindexing if necessary) occurs as the first factor 
in each of the iterates J/„1+1,Vm2+i, Then by (8.5), h is an eigen­
vector of C2. Continuing this procedure, we see that h is an eigenvector, 
belonging to the eigenvalue 1, of all matrices in £", a contradiction. Thus, 
the lemma is true for S" and the induction concluded. The result follows. • 

We now establish the main result in this section. 

Theorem 8.3 IfE" is VS, then E" is uniformly BVS. 

Proof. We prove the theorem by induction on r, the number of matrices 
in 2" . 

If E" contains exactly one matrix, then p{C\) < 1. Thus, there is a 
vector norm ||-|| such that ||Ci|| < 1 and so 

Y^\\xi+i -xx\\ ^x^ii^iir ^ N - z i i 
»=1 i = l 

-T^W^1-71111*111-
So, using L — 1_||Ci | | ||Ci - J||, we see that E" is uniformly BVS. 

Suppose the theorem is true for all E" containing r — 1 matrices. Now 
suppose E" has r matrices. Then, since every proper subset of E" is VS, we 
have by the induction hypothesis that these proper subsets are uniformly 
BVS. 

We now argue several needed smaller results. 
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:J 7 \ 
X 

FIGURE 8.2. Sketch for e,S view. 

1. We show that if e > 0, then there is a 8 such that if ||x|| > e and 
\\y — x\\ < 8, then \\dy — y\\ > 8e for some Cj. (d depends on x.) 
Note that if this is false, then taking 8 — -|, there is an ||a;fc|| > e 
and a yk, \\yk - xk\ 

Figure 8.2.) Thus 

< ^ such that 

°'11**11 

CjVk - Vk\\ < \ e for all j . (See 

•jr îi < ^. Now there is a subsequence 

• o f uftf' pflf' • • • t h a t converges to, say x. Hence, 

. converges to a; as well. Thus, since 

Ci 
Vik 

Xi„ 4 
we have that CjX = x for all j . This implies E (£") ^ {0}, a contra­
diction. 

2. Let X be a trajectory of £". We show that variations of segments 
determined by a partition on X converge to 0. 

We first need an observation. Let S be the set of all finite sequences 
from trajectories, determined from proper subsets of £". Lemma 8.4 
assures that there is a constant L such that if z\,... ,zt is any such 
sequence, then 

t - i 

y ^ l k + i - Z i H <L max. \\zi+i-Zi\\. 
i = l 

Now partition X in segments XiltSl,Xi2tS2, ... where 

(8.6) 

X, *fc,«fc IS Xik, . . . , XSk, lk — Sk—l + 1 
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and each XikjSk is determined by a proper subset of E" but Xikiik+l 

is not. However, using (8.6), the variation S(XiktSk), of XiktSk, con­
verges to 0 as k —> oo. And using that E" is VS on the last term of 
the expression, it follows that the variation S (-Xifc,ifc+1) converges to 
0 as k —» oo as well. 

3. We show that X, as given in (2), converges to 0. We do this by 
contradiction; thus suppose X does not converge to 0. Then there 
is an e > 0 (We can take e < 1.) and a subsequence XjiyXj2,... of 
X such that \\xjk\\ > e for all k. But now, by (1), there is a 6 > 0 
such that if \\y — Xjk || < 6, then \\Cjy — y\\ > 6e for some j . Since 
by (2) S (Xiktik+1) —> 0 as k —» oo, we can take N sufficiently large 
so that if k > N, S (Xik,ik+1) < 6. Now take an interval ik,ik+i 
where k > N and ik < jk < ik+i- Then, every doccurs in the 
trajectory xik ,dkxik,... , Cik+1 • • • Cikxik, and \\xt - Xjk \\ < 6 for all 
t, ik < t < ik+i- Since all matrices in E" are involved in Xikiik+1, 
there is a t, ik < t < ifc+i such that CjXt = xt+i, and this Cj is 
as described in (1). But, \\CjXt — xt\\ > 6e, which contradicts that 
X is VS. Hence, X must converge to 0. Since X was arbitrary, all 
trajectories converge to 0. Thus, there is a vector norm ||-|| such that 
||Cj|| < 1 for all i (Corollary 6.4). Since all norms are equivalent, we 
can complete the proof using this norm, which we will do. Further, 
we use 

g = max||C,|| 
i 

in the remaining work. 

Now, we show that E" is uniformly BVS. Since each proper subset of 
E" is uniformly BVS, there are individual L's, as given in the definition 
for these sets. We let L denote the largest of these numbers, and let 
C = max \\Cj — I\\. Take any trajectory X of E" and write X in terms of 

5 
segments as in (2). Then using Xil>i2 

12 — 1 %2~ 2 

Y^ Iki+l - Si|| = J2 \\xi+i - Xi\\ + \\Xi2 - Xi2_!|| 

< L | K | | + C | K | | 
^LiM + c i M 
= (L + C)\\x1\) 

file:////Cjy
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since ||Cj|| < 1 for all i assures that ||a;fc+i|| < ||xfc|| for all k. And using 

^M2,«3 

i3 — 1 12—2 

^T \\xi+i - Xi\\ = ^ ||a;i+i - Xi\\ + \\xi3 - a=*3_x|| 

<L||a:S2 | | + C||a; ia|| 

<{L + C)q\\x^\\. 

Continuing, we get 

jfc+i—i 

Finally, putting together 

5 2 113:*+! - 07*11 = -r-— ( i + C) HanH 

Thus 2 " is uniformly BVS. • 

Theorem 8.4 The properties yPC and uniformly BVS are equivalent. 

Proof. Suppose 2 is 7PC. Then 2 is PC, and so 2 is an LCP-set. By 
the definition of 7PC, there is a norm ||-|| and a 7 > 0 such that 

WAxWKWxW-iWAx-xW 

for all A € 2 and all x. Then, for any vector x\, the trajectory x\,X2,... 
satisfies 

0 0 _• k 

y^\\xi+1 -Xi\\ < - Km y v i w i - iixi+iti) 
^—' "7 fe—»oo *—' 
i = l ' »=1 

= i l i m d M - K + x l l ) 
7 fc—>oo 

<^(2|MI) 

Hence, 2 is uniformly BVS. 
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Now suppose E is uniformly BVS. Since any trajectory of bounded 
variation converges, E is an LCP-set. Thus, by Corollary 3.4, there is a 
vector norm ||-||, such that ||A|| < 1 for all A € E. Set 

oo 

||a;i||s = s u p ^ | | : r j + i - Xi\\ 
i= l 

where the sup is over all trajectories starting at xi. This sup is finite 
since E is uniformly BVS. Furthermore, for any vectors y and z, we have 
\\y + z\\s < \\y\\s + lkl|E, and for every scalar a, ||m/||E < \a\ | | j / | | E . Using 
the definition, 

limits < WE-11^ - x l l 
for any A 6 E. 

Now define a norm by 

11*116= 2 "a;" + "X"s' 

Then, for any A GT, 

\\Ax\\b = \ \\Ax\\ + HAc||E 

<l\\x\\ + (\\x\\E-\\Ax-x\\) 

= \\x\\b ~ \\Ax ~ x\\ 

— \\x\\b ~ 7 WAx ~ x\\b 

using the equivalence of norms to determine 7. Thus, E is an 7PC-set, as 
required. • 

Implications between the various properties of E are given in Figure 8.3. 
The unlabeled implications are obvious. 

1. This follows from Theorem 8.1. 

2. This follows by Theorem 8.3. 

3. This follows by Theorem 8.4. 

8.3 Research Notes 

The notion of paracontracting, as given in Section 1, appeared in Nelson 
and Neumann (1987) although Halperin (1962) and Amemiya and Ando 
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FIGURE 8.3. Relationships among the various properties. 

(1965) used similar such notions in their work. Theorem 1 was given in 
Eisner, Koltracht, and Neumann (1990) while Theorem 2 was shown by 
Beyn and Eisner (1997). Beyn and Eisner also introduced the definition of 
7-paracontracting. 

The results of Section 2 occurred in Vladimirov, Eisner, and Beyn (2000). 
Gurvits (1995) provided similar such work. 





9 
Set Convergence 

In this chapter we look at convergence, in the Hausdorff metric, of sequences 
of sets obtained from considering all possible outcomes in matrix products. 

9.1 Bounded Semigroups 

Recall, from Chapter 3, that if £ is a product bounded subset o f n x f i 
matrices, then the limiting set for (Sfe) is 

Y,°° = [A : A is the limit of a matrix subsequence of (S fc)} • 

In this section, we give several results about how (Efe) —» S°° in the Haus­
dorff metric. A first such result, obtained by a standard argument, follows. 

Theorem 9.1 Let S be a compact subset of n x n matrices. If S 2 C E, 
oo 

then (Sfe) converges to f] T,k in the Hausdorff metric. 
fc=i 

Now let 

S°° = {A € Mn : A is the limit of a matrix sequence of (S fe)} . 

If E°° = S°°, we call S°° the strong limiting set of (Efc). When S°° is a 
strong limiting set is given below. 
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Theorem 9.2 Let £ be a compact product bounded subset of Mn. Then 
£°° is the strong limiting set of (£ fc) iff (Efc) converges to £°° in the 
Hausdorff metric. 

Proof. For the direct implication suppose that £°° is the strong limiting set 
for (£ fe). We prove that (£fc) converges to E°° in the Hausdorff metric by 
contradiction. Thus, suppose there is an e > 0 such that h (Efc,E°°) > e 
for infinitely many k's. We look at cases. 

Case 1. Suppose <9(Efe,£°°) > e for infinitely many k's. From these 
£fe's, we can find matrix products n^, 7Tfc2,... such that 

d(7r f c i ,E°°)>e 

for all i. Since E is product bound, there is a subsequence TTJ1, TTJ2 ,... of 
'Kk1^k2 th&t converges, say to n. But by definition, ir e E°°, and yet we 
have that 

<i(7r,E°°) > e , 

a contradiction. 
Case 2. Suppose <9(£°°,Efc) > e for infinitely many fc's. In this case 

the Efe's yield a sequence TT^ , irk2,... in E°° such that d (irki > Efei) > e for 
all i. Since E°° is bounded, TT^ , itk2, • • • has subsequence which converges 
to, say, 7T. Thus d (jr, Efci) > | for all i sufficiently large. But this means 
that 7r is not the limit of a matrix sequence of (Efe), a contradiction. 

Since both of these cases lead to contradictions, it follows that Efc con­
verges to E°° in the Hausdorff metric. 

Conversely, suppose that Efc converges to E°° in the Hausdorff metric. 
We need to show that E°° is the strong limiting set of (£ f c). 

Let 7r S E°°. Since h (Efc, E°°) —» 0 as k —» oo, we can find a sequence 
7Ti, 7T2,..., taken from E1, E 2 , . . . , such that (irk) converges to TT. Thus, 
IT is the limit of a matrix sequence of (Efe) and thus n e E°°. Hence, 
E°° C E°°. 

Finally, it is clear that £°° C E°° and thus E°° = E°°. It foUows that 
E°° is the strong hmiting set of (Efc). • 

For a stronger result, we define, for an LCP-set E, the set L which is the 
closure of all of its infinite products, that is, 

L = 1 I I Ai" : Ai* € S for aU k 

U=i 



9.1 Bounded Semigroups 135 
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FIGURE 9.1. A possible tree graph of G. 

Theorem 9.3 Let S = {Ai,... , Am} be an LCP-set. Then 

S ° ° = L . 

Proof. By definition, L C £°°. To show E°° C L, we argue by contradic­
tion. 

Suppose 7r G S°° where d (7r, L) > e, e > 0. Define a graph G with ver­
tices all products Aik • • • Ai1 such that there are matrices Ait,... , Aik+1, t > 
k, satisfying 

d(Ait...Aik...Ail,iT)<e. 

Since -K 6 S°°, there are infinitely many such Aik • • • Aix. 
If Aik+l---A{1 is in G, then so is A,fc---J4i1, and we define an arc 

(Aik... Ait, Aik+1 ... Ai±) from Aik ... Aix to Aik+1 ...A^. This defines 
a tree, e.g., Figure 9.1. Thus, Sk = {Aik ...Ail:Aik... Ah G G} is the 
k-th strata of G. Since this tree satisfies the hypothesis of Kdnig's infin-

oo 

ity lemma (See the Appendix.), there is a product Yl M* such that each 
k=i 

Aik... Ah e G for all k. Thus, 

d\f[Aik,n\ <e 

which contradicts that 

d (ir, L)> e 

and from this, the theorem follows. • 
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Corollary 9.1 If E is a finite subset of Mn and E is an LCP-set, then 
(Efc) converges to E°° in the Hausdorff metric. 

Proof. Note that since L C E°° C E°°, and by the theorem L = E°°, we 
have that E°° = E°°, from which the result follows from Theorem 3.14 and 
Theorem 9.2. • 

9.2 Contraction Coefficient Results 

We break this section into two subsections. 

9.2.1 Birkhoff Coefficient Results 

Let E denote a set of n x n row allowable matrices. Let U be a subset of 
n x 1 positive vectors. In this section, we see when the sequence (T,kU) 
converges, at least in the projective sense. 

To do this, recall from Chapter 2 that S+ denotes the set of n x 1 positive 
stochastic vectors. And for each A € E, recall that WA(X) = ir^nr, 
E p = {wA : A e E}, and for any U C S+ 

T,PU = {U>A {x) : WA G Ep and x £ U}. 

We intend to look at the convergence of these projected sets. If U and 
E are compact, then so is EPC/. Thus, since p is a metric on S+, we can 
use it to define the Hausdorff metric h, and thus measure the difference 
between two sets, say EPJ7 and T,PV of S+. 

A lemma in this regard follows. 

Lemma 9.1 Let E be a compact set of row allowable n x n matrices. If 
U and V are nonempty compact subsets of S+, then 

/ i ( E p t / , E p F ) < r B ( E ) / i ( t / , F ) . 

Proof. As in Theorem 2.9. • 

For the remaining work, we will assume the following. 

1. E is a compact set of row allowable matrices. 

2. There is a positive number m such that for any A € E 

m < min an < max an < 1. 
ay>0 J J ~ 
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(Scaling A will not affect projected distances.) 

3. There is a positive integer r such that all r-blocks from E are positive. 

By (3) it is clear that each matrix in E has nonzero columns. Thus for 
any A € E, WA is denned on S. And 

E P S C S 

E2
pS C E S C S . 

Thus, we can define 

oo 

L = n xk
ps 

k=\ 

a compact set of positive stochastic vectors. The following is a rather stan­
dard argument. 

Lemma 9.2 The sequence (EpS) converges to L in the Hausdorff metric. 

Using this lemma, we have the following. 

Lemma 9.3 h (EpL, L) = 0. 

Proof. Using Lemma 9.1, for any k > 1 we get 

h (EpL, L)<h (EPL, E£S) + h (E^S, L) 

<h(L,'Ek
p-

1S) + h(Zk
pS,L). 

Thus, by the previous lemma, taking the limit as k —> oo, we have the 
equation 

h(£pL,L) = 0, 

the desired result. • 

Theorem 9.4 Let U be a compact subset of S and E, as described in 1 
through 3. If TB (TT) < Tr for all r-blocks n o /E, then 

h(XkU,L) <ri^h(U,L). 

Thus, if rr < 1, Ep(7 —> L with geometric rate. 
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Proof. Using Lemma 9.1 and Lemma 9.3, 

h(V$U,L)=h(X*U,1%L) 

= h(Y,l(Y,kp-
rU),Y.p(Y.kp-

rL)) 

<T r / i (E£- rE/,E£- r
JL) 

<Afih(U,L). 

This proves the theorem. • 

9.2.2 Subspace Coefficient Results 
Let E be a compact, r-proper product bounded set of n x n matrices. Since 
E is product bounded by Theorem 3.12, there is a vector norm ||-|| such that 
\\A\\ < 1 for all A GH. Let TW be the corresponding subspace contractive 
coefficient. 

Let x0 e Fn and G = x0E. Then 

x0 + W = {xeFn:xE = G}. 

We suppose S C XQ + W such that 

5 E C 5 . 

(For example, S = {x : \\x\\ < 1}.) Then 

SE2 CSECS 

and we define 

L = D5Efe. 

Then mimicking the results of the previous section, we end with the fol­
lowing. 

Theorem 9.5 Let U be a compact subset of S. If TW C71") < Tr for all 
r-blocks 7r o /E and Tr < 1, then UHk —> L at a geometric rate. 

A common situation in which this theorem arises is when we have E = e, 
E the set of stochastic matrices, and S the set of stochastic vectors. 

We conclude this section with a result which is a bit stronger than the 
previous one. 
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Theorem 9.6 / / Tw (E r) < 1 for some integer r, then Efc —* E°° at a 
geometric rate. 

Proof. Define W = {B (= Mn : BE = 0} and let 

S = {B€I + W:\\B\\<1}. 

Then SE C S and L follows. Now use the 1-norm so that 

\\BAW, < TW (A) HBll! 

for all B € S, and mimic the previous results. Finally, use U = {1} and 
the equivalence of norms. • 

9.3 Convexity in Convergence 

To compute HkU and S£[7, it is helpful to know when these sets are convex. 
In these cases, we can compute the sets by computing their vertices. Thus 
in this section, we discuss when T,kU and T^U are convex. 

A matrix set E is column convex if whenever A,B s E, the matrix 
[aiai + [31bii... , anan + /3nbn] of convex sums of corresponding columns, 
is in E. Column convex sets can map convex sets to convex sets. 

Theorem 9.7 Let E be a column convex matrix set of row allowable ma­
trices. If U is a convex set of nonnegative vectors, then EC/ is a convex 
set of nonnegative vectors. 

Proof. Let Ax, By € EU where A,B € E and x,y e U. We show the 
convex sum aAx + (3By G EL/. 

Define 

K = (aAX + PBY) (aX + /3F)+ + R 

where X = diag {xu... , xn), Y = diag (y1}... , yn), (aX + (3Y)+ the 
generalized inverse of aX + (3Y, and R such that 

r f 0 if axj + pyj > 0 
%3 \ aij otherwise. 

Using that aj, bj denote the j - t h columns of A and B, respectively, the 
j - t h column of K is 

aajxj + Pbjyj _ axj ^ (3Vj & 

axj + (3yj axj + Pyj 3 axj + /3yj 3 

file:////BAW
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if axj + 0yj > 0 and aj if axj + fyj = 0. Thus, K 6 E. Furthermore, for 
e = ( l , l , . . . , l ) ' , 

K {ax + f3y)=K (aX + pY) e 

= (aAX + (3BY) e 

— a Ax + pBy 

which is in TXJ. From this, the result follows. • 

Applying the theorem more than once yields the following corollary. 

Corollary 9.2 Using the hypotheses of the theorem, T,kU is convex for all 
k>\. 

The companion result for S p uses the following lemma. 

Lemma 9.4 If U is a convex subset of nonnegative vectors, none of which 

are zero, then Up = \ w^r : u &U> is a convex subset of stochastic vectors. 

Proof. Let n p , TT\- 6 Up where x, y G U. Then any convex sum ax+Py € 
i i i 

U. Thus, ^ ^ e U p and 

ax + Py _ a\\x\\x x P\\y\\i V 
Wax + PyW, | | a s + 0J/H! 11*11! \\ax + py^ \\y\l, 

is a convex sum of -w3r, j3r € Up. And when a — 0, the vector is TAT, 
while when P = 0, it is TTTT- Thus, we see that all vectors between n r 

ii^Hi n^iii 

and TT̂ jr- are in Up. So Up is convex. • 

As a consequence, we have the following theorem. 

Theorem 9.8 Let E be a column convex matrix set of row allowable ma­
trices. If i 
convex set. 
trices. If U is a convex set of positive stochastic vectors, then TJiU is a 

Proof. Using the previous corollary and lemma and that T^U is the pro­
jection of EkU to norm 1 vectors, since Y,kU is convex, so is Y,kU. m 

It is known (Eggleston, 1969) and easily shown, that the limit of convex 
sets, assuming the limit exists, is itself convex. Thus, the previous two 
theorems can be extended to show ££°£/ is convex. 

Actually, we would like to know about the vertices of these sets. The 
following theorem is easily shown. 

file:////y/l
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x l 
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x2 
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x3 

• • • 

FIGURE 9.2. A view of T.U. 

Theorem 9.9 7/E = convex {A\,... ,AS} is a column convex matrix set 
of nonnegative matrices and U = convex {x\,... , xt] a set of nonnegative 
vectors, then 

EC = convex {A^Xj :l<i<s, 1 < j < t} . 

Not all vectors AtXj need be vertices of E{7. The appearance may be 
as it appears in Figure 9.2. The more intricate theorem to prove uses the 
following lemma. 

Lemma 9.5 Let U be a subset of nonnegative, nonzero, vectors. If 

U = convex {xi,... , xt} 

then 

xi xt 
Up = convex v} Fi l l i IF*I 

Proof. Let x = a\X\ H \- atxt be a convex sum. Then 

J2 akxk 
fe=i 

E 
fe=i 

n 
<*fc ll^fclli 

Iklli 
Xk 

\\xk\\i 

Since ^ ( n f ^ p 1 ) = pf"" = 1 ' h f o l l o w s t h a t J^[ i s a convex sum of 

vectors listed in Up. That Uv is convex follows from Lemma 9.4. • 

The theorem follows. 
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FIGURE 9.3. A projected symplex. 

Theorem 9.10 Let £ = convex {A\ , . . . ,AS}, a column convex matrix set 
of row allowable matrices, and U — convex {a;i,... , Xt), containing positive 
vectors. Then 

( E^= c oM^ : i-*- s , l- i 54 
Proof. The proof is an application of the previous theorem and lemma. • 

We give a view of this theorem in Figure 9.3. 

9.4 Research Notes 

Section 1 extends the work of Chapter 3 to sets. Section 2 is basically con­
tained in Seneta (1984) which, in turn, used previously developed material 
from Seneta and Sheridan (1981). 

Computing, or estimating, the limiting set can be a problem. In Chap­
ters 11 and 13, we show how, in some cases, this can be done. In Hartfiel 
(1995,1996), iterative techniques for finding component bounds on the vec­
tors in the limiting set are given. Both papers, however, are for special 
matrix sets. There is no known method for finding component bounds in 
general. 

Much of the work in Section 4 generalizes that of Hartfiel (1998). 
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Perturbations in Matrix Sets 

Let £ and £ be compact subsets of Mn. In this chapter we show conditions 
assuring that when E and £ are close, so are XE°° and Yt,°°. 

10.1 Subspace Coefficient Results 

Let E and £ be product bounded compact subsets of Mn. We suppose that 

£ and £ are r-proper, -E(E) — E ( £ ) , and that TW is a corresponding 

contraction coefficient as described in Section 7.3. Also, we suppose that 
S QFn such that 

1. S C XQ + W for some vector XQ, 

2. 5E CS,SEC S. 

Our perturbation result of this section uses the following lemma. 

Lemma 10.1 Let Ai,A%,... and B\,B2, • • • be sequences of matrices taken 
from E and E, respectively. Suppose TW (-<4fc) < T and \\Ak — -Bfc|| < e for 
all k. Then 

M i •••Ak-yB1---Bk\\< rk\\x - y\\ + ( r ^ 1 + • • • + l) (3e 
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where x,y 6 S and j3 = sup \\yBi •• • Bi\\. 
i 

Proof. The proof is done by induction on k. 
If Jfc = l, 

I M i - yBi || < \\xA! - yAi || + ||yAi - yBx || 

<TW{Ax)\\x-V\\ + \\y\\\\A^-Bx\\ 

< T\\X -y\\ + f3e. 

Assume the result holds for k — 1 matrices. Then 

\\xAx • • • Ak-yBx • • • Bk\\ < \\xAx • • • Ak-iAk-yBx • • • Bk-iAk\\ 

+ \\yBx • • • Bk_xAk-yBx • • • Bk_xBk\\ 

< TW (Ak) \\xAx • • • Ak-i-yBi • • • Bk-i\\ 

+ \\yB1---Bk-1\\\\Ak-Bk\\ 

< T \\xAi • - • Ak-i-yBi • • • Bk-iW+Pe, 

and by the induction hypothesis, this leads to 

< r ( r*- 1 \\X - y\\ + (r fe-2 + • • • + l ) (3e) + f3e 

= Tk\\x-y\\ + (Tk-1 + --- + l)0e. 

The perturbation result follows. • 

Theorem 10.1 Suppose TW (£) < r and TW ( E l < T. Let X and Y be 
compact subsets of Fn such that X, Y C S. Then 

1. / i (XE f c ,FE f e) < Tkh(X,Y) + (T
k-1 + ••• + 1) h(^,t)(3, where 

0 = max (sup \\xAi • • • Ai\\, sup \\yBi • • • Bi\\) and the sup is over all 
x eX,y eY, and all Ai,... , Ai € E and Blr...,Bi € E. 

If T < 1, then 

2. h (XY,°°, Yt°°~\ < j^h ( E , E ) (3. 

Proof. To prove (1), let At • • • Ak e Efc and x e X. Take yeY such that 

\\x -y\\<h (X, Y). Take Bu... ,Bkmt such that U^ - Bt\\ < h ( s , E ) 

for all i. Then, by the previous lemma, 

\\xAx • • • Ak-vBi • • • Bk\\<Tk \\x - y\\+{Tk-1+ • • • +1) h ( E , E ) /?. 

file:////yBi
file:////xAx
file:////xAi
file:////xAi
file:////yBi
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So, 

6(xsfe,YEfc) <Tkh{x,Y) + (r*-1 + • • • +1) ^ (E,E) /?. 

Similarly, 

6 (V £fe, XE fc) < rkh (Y, X) + (r*-1 + • • • + l) h ( s , t) (3. 

Thus, 

h (xEfc,ysfc) < rkh(x,Y) + (r*-1 + • • • +1) h (s, E) p, 

which yields (1). 
For (2), Theorem 9.6 assures that S°° and E°° exist. Thus, (2) is ob­

tained from (1) by calculating the limit as k —» oo. • 

For r-blocks, we have the following. 

Corollary 10.1 Suppose TW (E r) < r r and TW ( S r J < rr. Let X and 

Y be compact subsets of Fn such that X, Y C S. Then 

h (X£ f c , y£ f c ) < TI^MXY + (rl^'1 + • • • + l\ h ( 5 7 , E r ) 13, 

where M\Y = m a x hiXY.KYY?) and 3 as given in the theorem. 

0<t<r \ J 
Proof. The proof mimics that of the theorem where we block the products. 
The blocking of the products can be done as in the example 

A1---Ak = A1---AsBx --Bq 

where k = rq + s. • 

A consequence of this theorem is that we can approximate E°° by a E°°, 
where £ is finite. And, in doing this our finite results can be used on E. 

10.2 Birkhoff Coefficient Results 

Let E be a matrix set of row allowable matrices. In this section, we develop 
some perturbation results for Ep . Before doing this, we show several basic 
results about projection maps. 

Equality of two projective maps is given in the following lemma. 
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Lemma 10.2 For projective maps, WA = WB iff P (Ax, Bx) = 0 for all 
xeS+. 

Proof. Suppose 

WA (x) = wB (x) 

for all xeS+. Then 

Ax _ Bx 

\\M\i ~ ll-B l̂li 
and 

p(Ax,Bx) = 0 

for all x 6 S+. 

Conversely, suppose p (Ax, Bx) = 0 for all x G S+. Then 

Ax = c (x) Bx 

where c (x) is a constant for each x. Thus 

Ax . . H-BzHj Bx 

SlnCe I I A x l a n d ||#4 

e 

where e = ( 1 , 1 , . . . , 1) 

It follows that 

or 

Hence WA — WB- • 

An example follows. 

\\Ax\\ l "^WMiWBxW,-

are stochastic vectors, 

Ax 
\\Ax\\ 

, or 

_ c c f x l l l^ l l i Bx 

i-c(x) WBx\\i 

Ax Bx 

\\Ax\\i ll^lli 

wA (x) = wB (x). 

file:////M/i
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Example 10.1 We can show by direct calculation, if A — 

B 
1 2 
1 2 

then WA — WB , while if A = 

then WA j=- WB • 

1 1 
1 2 

and B = 

1 1 
1 1 

1 2 
1 4 

and 

Let S be a compact set of row allowable n x n matrices such that if 
A,BGH, then for corresponding signum matrices we have A*=B*, i.e. A 
and B have the same 0-pattern. Define 

Sp = {wA : A e £} . 

If WA, WB € £ p , then 

wB O WA (X) = 
B[ «*\) \\\Ax\\x 

IBATIII' 

a projective map. And in general, 

wA o • • • o wAl (a;) = 
* ' * -A-i^X 

\\Aik • •• A-i^lli 

We define a metric on Ep as follows. If WA, WB & S p , then 

P(WA,WB) — sup p(Ax,Bx). 
x£S+ 

A formula for p in terms of the entries of A and B follows. 

Theorem 10.2 For projective maps WA and WB, we have thatp (WA, WB) — 
max In t'rJ"^l"Jr > where the quotient contains only positive entries. 

Proof. By definition, 

p (wA, WB) = supp (Ax, Bx) 
x>0 

= sup max In J— 
x>o i-i bix ajX 
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where a^, bk are the A:-th rows of A, B, respectively. Now 

ctiX bjX __ anxi H h ajn^n bj\X\ -j \- bjnxn 

biX djX buxi -\ h binxn aj\X\ -\ \~ djnxn 

/ j \0>irOjs ~r CLisVjr) XrX^ 

r,s 

— m a x z — — A — ' 

That equality holds is seen from this inequahty by letting Xf — X g = t and 
Xi — j for i ^ r, s and letting i —> oo. • 

For intervals of matrices in E, p (WA,WB) can be bounded as follows. 

Corollary 10.2 If 

A-eA<B<A + eA 

for some e > 0 and A—eA,A+eA E E, then 

p(wA,wB) < l n ^-—. 

Proof. By the theorem, 

/ \ . airDjs -j- UisOjr 
P (WA, wB) = max In -—-———J— 

i,3,r,s Oirajs + t>isajr 

< m a x In a ^ (1 + e) aJ* + a™ i1 + e) aJ> 
~ i,j,r,s (1 — e) airajs + (1 — e) ajsaj r 

l n ( l - 6 ) ' 

the desired result. • 

Actually, (Ep,p) is a complete metric space which is also compact. 

Theorem 10.3 The metric space (12p,p) is complete and compact. 

Proof. To show that Ep is complete, let wAl, wA2,... be a Cauchy sequence 
in Ep . Since A1,A2,... are in E, and E is compact, there is a subsequence 
•<4»i i Ai21 • • • °f this sequence that converges to, say A € E. So by Theorem 
10.2, p (wAik,wA) —> 0 as fc —> oo. 



10.2 Birkhoff Coefficient Results 149 

We now show that p{wAi,wA) —» 0 as i —> oo, thus showing (T,p,p) is 
complete. For this, let e > 0. Then there is an N > 0, such that if i, j > N, 

p(wAi,wAj) <e. 

Thus, if ik > N, 

p(wAik,wAjJ <e, 

and so, letting k —> oo, yields 

p(wA,wAj) < e. 

But, this says that wAj —» u u as j —> oo which is what we want to show. 
To show that Ep is also compact is done in the same way. • 

We now give the perturbation result of this section. Mimicking the proof 
of Theorem 10.1, we can prove the following perturbation results. 

Theo rem 10.4 Let E and E be compact subsets of positive matrices in 

Mn. Suppose TB (E) < T and TB ( S ) < r. Let X and Y be compact 

subsets of positive stochastic vectors. Then, using p as the metric for h, 

1. h (E£X, £ £ Y ) < rkh (X, Y) + ( r*- 1 + • • • + 1) h ( S p , E p ) . 

And if T < 1, 

2. h(L,L) < j~h (Ep,Ep) and by definition L= lim T^X and L = 

lim ±lY. 
fc—»oo 

Converting to an r-block result, we have the following. 

Corollary 10.3 Let E and E be compact subsets of row allowable ma­

trices in Mn. Suppose TB (E r) < rr, TB ( E r ) < rT. Let X and Y be 

compact subsets of stochastic vectors. Then, h (EpX, EpYJ < TV MXY+ 

^ T [ * ] - I H h l ) /i ( E £ , E ; ) where MXY = m a x h ( E * X , E * y ) . 

Computing TB (Sfe), especially when k is large, can be a problem. If 
there is a B G E such that the matrices in E have pattern B and 

B< A 
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for all A e E, then some bound on TB (E^) can be found somewhat easily. 
To see this, let 

RE = max —-̂  -
by >0 l3 

the largest relative error in the entries of B and the A's in E. Then we 
have the following. 

Theorem 10.5 If Bk > 0, then 

TB{Aik---Ail)< . 

Proof. Note that 

£ < Ai < 5 + (i?£) B 

for all i, and 

Bk<Aik---Ail<(l + RE)kBk 

for a l l» ! , . . . ,tfe. Then if A = Aik •••Ail and <p(A) = f ^ , 

W? 1 
^ ~ (l + i ^ ) 2 ^ % > - ( 1 + i l E ) 2 * ^ " 

So, 

M i + v ^ - i + ̂ ^y^O ' 

the desired result. 

10.3 Research Notes 

The work in this chapter is new. To some extent, the chapter contains 
theoretical results which parallel those in Hartfiel (1998). 



11 
Graphics 

This chapter shows how to use infinite products of matrices to draw curves 
and construct fractals. Before looking at some graphics, we provide a 
section developing the techniques we use. 

11.1 Maps 

In this section, we outhne the general methods we use to obtain the graphics 
in this chapter. 

Mathematically, we take an n x k matrix X (corresponding to points in 
i?2) and a finite set E of n x n matrices. To obtain the graphic, we need to 
compute Y,°°X and plot the corresponding points in R2. 

We will use the subspace coefficient TW to show that the sequence (Efe) 
converges in the Hausdorff metric. To compute the hmiting set, T,°°X, it 
will be sufficient to compute T,SX for a 'reasonable' s. 

To compute ESX, we could proceed directly, computing EX, then E (EX), 
and E (E2X) E ( E ^ X ) . However, EkX can contain |E|fc \X\ matri­
ces, and this number can become very large rapidly. Keeping a record of 
these matrices thus becomes a serious computational problem. 
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To overcome this problem, we need a method for computing 51SX which 
doesn't require our keeping track of lots of matrices. A method for doing 
this is a Monte Carlo method, which we will describe below. 

Monte-Carlo Method 

1. Randomly (uniform distribution) choose a matrix in X, say Xj. 

2. Randomly (uniform distribution) choose a matrix in £, say Ai. Com­
pute AiXj. 

3. If Ait--- Aix Xj has been computed, randomly (uniform distribution) 
choose a matrix, say Ait+1 in £. Compute Ait+1Ait • • • A^Xj. 

4. Continue until Ais • • • A^Xj is found. Plot in R2. 

5. Return to (1) for the next run. Repeat sufficiently many times. (This 
may require some experimenting.) 

11.2 Graphing Curves 

In this section, we look at two examples of graphing curves. 

Example 11.1 We look at constructing a curve generated by a corner cut­
ting method. This method replaces a corner as in Figure 11.1 by less sharp 
corners as shown in Figure 11.2. This is equivalent to replacing A ABC 

FIGURE 11.1. A corner. 

with AADE and AEFC. This corner cutting can then be continued on 
polygonal lines (or triangles) ADE and EFC. In the limit, we have some 
curve as in Figure 11.3. 
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FIGURE 11.2. A corner cut into two corners. 

FIGURE 11.3. A curve generated by corner cutting. 

Mathematically, this amounts to taking points A(xi,yi), B(x2,y2), o,nd 
C (#3,2/3) and generating 

A = A 

D = .5A + .55 

E = .25A + .55 + .25C 

and 

E = .25A + .55 + .25(7 

F=.5B + .5C 

C = C. 

This can be achieved by matrix multiplication 

Ax 

x\ 2/1 

X2 2/2 

X3 2/3 

where 

Ax = 
1 0 0 
.5 .5 0 
.25 .5 .25 

x\ 2/1 
X2 2/2 

X3 2/3 . 

" .25 .1 
0 .1 
0 C 

) .25 
) .5 

1 
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And, continuing we have 

A1A1P, A2AiP, AXA2P, A2A2P (11.1) 

where P 
' Xi 

X2 

. X3 

2/1 " 
2/2 
2/3 _ 

, etc. The products Y[ AikP are plotted to give the 
fc=i 

points on the curve. 
Calculating, we can see that S = {Ai, A2} is a r-proper set with 

E 

The corresponding subspace contraction coefficient satisfies 

Tw (-^1) = -75 and TW (^2) = -75, 

Given a corner P — 
" 0 

1 
2 

0 " 
1 
0 

, we apply the corner cutting technique 10 

using the 1-norm. Thus by Theorem 9.6, (E fcP) converges. 
0 
1 
0 

times. Thus, we compute E 1 0 P by Monte-Carlo where the number of runs 
(Step 5) is 5,000. The graph shown in Figure 11.4 was the result. 

Example 11.2 In this example, we look at replacing a segment with a 
polygonal line introducing corners. If the segment is AB, as shown in 
Figure 11.5 we partition it into three equal parts and replace the center 
segment by a corner labeled CDE, with sides congruent to the replaced 
segment. See Figure 11.6. 

Given A{x\,y\) and B(x2,y2), we see that 

„f*A 1 „ \ „(2 1 2 1 
c{3A+3B)=c{ri+r»3yi+3y> 

Thus, listing coordinates columnwise, if 

A1 

then 

Ai = 

A ' 
B 

1 
0 
2 
3 
0 

0 
1 
0 
2 
3 

' A ' 
C 

0 0 
0 0 

* ? 
0 3" 
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-0.2 

Curve from comer cutting 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
x axis 

FIGURE 11.4. Curve from corner cutting. 

B 

FIGURE 11.5. A segment. 

To find CD, we use a vector approach to get 

D = A+±(B-A) + ±(B-A) 
• s i n | cos-| j 

r , / 1 V3 1 
= D\2Xl + -Q-yi + 2X2 

V3 V3 V3 
6-V2,—x1 + -y1 + T x a + -y2 

Thus, 

where 

A2 

A2 = 

A 
B 

o 1 
1 i 

6 
1 

c 
D 

I 
3 
0 
1 

0 
I 

6 
1 
2 
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FIGURE 11.6. A corner induced by the segment. 

Continuing, 

for 

and 

for 

A3 
A 
B 

D 
E 

A3 = 

1 

Vs 
,6 
1 
3 
0 

Y^ 
6 
1 
2 
0 
1 
3 

1 

h 
3 
0 

V3 
6 

1 
2 
0 
2 
3 

A 
B 

E 
B 

A4 = 

- 1 
3 
0 
0 
0 

0 
1 
3 
0 
0 

2 
3 
0 
1 
0 

0 
2 
3 
0 
1 

The set E = {A\, A%, A3, A4} is a T-proper set and 

E = 

' 1 
0 
1 
0 

0 1 
1 
0 
1 

Thus, 

W = span{ui,U2} 
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where ui — (1 ,0 , -1 ,0) and u2 — (0 ,1 ,0 , -1) . The unit sphere in the 
1-norm is 

convex {4u i >4u 2} 
Hence, using Theorem 2.12, 

TW (A) = max • ±-UlA 

W 
±-u2A 

= max ^ - ||ai - 0 3 ^ , - ||o2 - a3 <•} 
where a& is the k-th row of A. 

Applying our formula to E, we get 

TW (£) = - . 

Thus, by Theorem 9.6, T,°°P exists. To compute and graph this set, we 
1 

use S S P where P = , and we take s = 6. The result of applying the 

Monte-Carlo techniques, with 3,000 runs, is shown in Figure 11.7. 
Of course, other polygonal lines can be used to replace a segment, e.g., 

see Figure 11.8. 

11.3 Graphing Fractals 

In this section, we use products of matrices to produce fractals. We look 
at two examples. 

Example 11.3 To construct a Cantor set, we can note that if 

interval on the real line, then for 
is an 

A! 
1 0 
2 1 
3 3 

, A1 
a 

gives the first i of the interval and for 

Ao = 
1 2 
3 3 
0 1 , A2 

i „ 1 2 , 

b 
i a + | 6 
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Curw from comer inducing 

*J*W VJ*U. 

1 1.5 
x axis 

FIGURE 11.7. Curve from corner inducing. 

FIGURE 11.8. Square induced by segment. 

gives the second third of the interval. See Figure 11.9. Thus, graphing all 

products S c gives the A Cantor set. 

Calculation shows £ = {Ax, A2) is a T-proper set where, 

So 

I A\ A II II 
Tw {A) — — max b — a,- , 

2 i,j 
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FIGURE 11.9. One third of segment removed. 

where afc is the k-th row of A. Thus 

T H r ( S ) = j , 

and so S°° exists. 

To see a picture, we computed S 8 

we obtained the graph in Figure 11.10. 

where s = 4. With 1,000 runs, 

0.6 

0.4 

0.2 

S o 

-

-0.2 [ 

-0.4 

-0.6 -

-0.5 0 

Cantor set 

0.5 1 
x axis 

1.5 

FIGURE 11.10. The beginning of the Cantor set. 

The 4 Canter set, etc. can also be obtained in this manner. 

Example 11.4 To obtain a Sierpenski triangle, we take three points which 
form a triangle. See Figure 11.11. 

We replace this triangle (See Figure 11.12.) with three smaller ones, 
AADF, ADBE, AFEC. 



160 11. Graphics 

FIGURE 11.11. A triangle. 

If A(xu,yu), B(XL,VL) > C(xR,yR,) are given, we obtain the coordi­
nates of A, D, F as 

A1 
r A i 

B 
C 

= 
r A i 

D 
F 

or numerically, 

1 
0 
l 
2 
0 
1 
2 

0 

0 0 0 0 0 
1 0 0 0 0 
0 ± 0 0 0 
i 0 i 
2 u 2 

0 0 
2- 0 

h o o o i 
0 0 0 

2/i 
XR 

. yR 

xu 
VU 

| j / a + hjL 
±Xu+}xR 

. 2vu + iv& 
And 

A9 = 

provides ADBE, while 

A,= 

- 1 
2 
0 
0 
0 
0 
0 

• 1 

2 
0 
0 
0 
0 
0 

0 
1 
2 
0 
0 
0 
0 

0 
1 
2 
0 
0 
0 
0 

1 
2 
0 
1 
0 
1 
2 
0 

0 
0 
1 
2 
0 
0 
0 

0 
1 
2 
0 
1 
0 
1 
2 

0 
0 
0 
1 
2 
0 
0 

0 
0 
0 
0 
1 
2 
0 

1 
9, 
0 
1 

0 
1 
0 

0 
0 
0 
0 
0 
i 
2 

0 
1 
2 
0 
1 
2 
0 
1 
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B 

n /%* 

J&^^B^^mt 

A 

ipglllvff^x 
/*ik 

llKs. v^^Hnul 

E 

" 

C 

FIGURE 11.12. One triangle removed. 

provides AFEC. 
The set S = {Ai, A2, A3} is a r-proper set with 

E = 

r 1 
0 
1 
0 
1 
0 

0 1 
1 
0 
1 
0 
1 

This yields that 

TW (A) = - max I l\a2 - a 4 | l i , | | a 2 - 0 6 
I i , | | a 3 - a 5 | l i 1 
l i . l k - a e l l i / 

Thus, 

TW(Ti) = - . 

This assures us that (E^P) converges. 
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Using P = 

1 

0 
0 
2 
0 

, s = 6, and 3,000 runs, we obtained the picture 

given in Figure 11.13. Other triangles or polygonal shapes can also be used 

Sierpenski triangle 
- 1 1 1 1 — 

FIGURE 11.13. Sierpenski triangle. 

in this setting. 

11.4 Research Notes 

The graphing method outlined in Section 1 is well known, although not 
particularly used in the past in this setting. Barnsley (1988) provided a 
different iterative method for graphing fractals; however, some of that work, 
on designing fractals, is patented. 

Additional work for Section 2 can be found in Micchelli and Prautzsch 
(1989) and Daubechies and Lagarias (1992). References there are also 
helpful. 

For Section 3, Diaconis and Shahshani (1986), and the references there, 
are useful. 
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11.5 MATLAB Codes 

Curve from Corner Cutting 

A l = [ l 0 0 ; . 5 . 5 0 ; . 2 5 . 5 . 2 5 ] ; 
A2=[.25 . 5 . 2 5 ; 0 .5 . 5 ; 0 0 1 ] ; 
a x i s e q u a l 
x l a b e K ' x a x i s ' ) 
y l a b e K ' y a x i s ' ) 
t i t l e ( ' C u r v e from c o r n e r c u t t i n g ' ) 
h o l d on 
f o r k = l : 5 0 0 0 

P = [ 0 , 0 ; l , s q r t ( 3 ) ; 2 , 0 ] ; 
f o r i = l : 1 0 

G=rand; 
i f G < = l / 2 

P=A1*P; 
e l s e 

P=A2*P; 
end 

end 

w = [ P ( l , l ) P ( 2 , l ) P ( 3 , l ) P ( l , l ) ] ; 
z = [ P ( l , 2 ) P ( 2 , 2 ) P ( 3 , 2 ) P ( l , 2 ) ] ; 
p l o t ( w . z ) 

end 

Contraction Coefficient 

A=[l 0 0 ; . 5 . 5 0 ; . 2 5 .5 . 2 5 ] ; 
T=0; 
f o r i = l : 3 

f o r j = l : 3 

M = . 5 * n o r m ( A ( i , : ) ' - A ( j , : ) ' , l ) ; 
T=max([T,M]); 

end 
end 
T 

Curve from Corner Inducing 

Al=[l 0 0 0;0 1 0 0 ;2 /3 0 1/3 0;0 2/3 0 1/3]; 
A2=[2/3 0 1/3 0;0 2/3 0 1/3;1/2 s q r t ( 3 ) / 6 1/2 
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- s q r t ( 3 ) / 6 ; - s q r t ( 3 ) / 6 1/2 s q r t ( 3 ) / 6 1 / 2 ] ; 
A 3 = [ l / 2 s q r t ( 3 ) / 6 1/2 - s q r t ( 3 ) / 6 ; - s q r t ( 3 ) / 6 1/2 

s q r t ( 3 ) / 6 1 / 2 ; 1 / 3 0 2 / 3 0 ; 0 1/3 0 2 / 3 ] ; 
A 4 = [ l / 3 0 2 / 3 0 ;0 1/3 0 2 / 3 ; 0 0 1 0 ;0 0 0 1] ; 
h o l d on 
a x i s [ .5 2 . 5 0 . 5 2 . 5 ] 
a x i s e q u a l 
x l a b e l ( ' x a x i s ' ) 
y l a b e l ( ' y a x i s ' ) 
t i t l e ( ' C u r v e from c o r n e r i n d u c i n g ' ) 
f o r k = l : 3 0 0 0 

P = [ l ; l ; 2 ; l ] ; 
f o r i = l : 1 0 

G=rand; 
i f G < l / 4 

P=A1*P; 
end 
i f G < = l / 4 & G < l / 2 

P=A2*P; 
end 
i f G>=3/4 

P=A3*P; 
end 
i f G>=3/4 

P=A4*P; 
end 

end 
p l o t ( P ( l ) , P ( 2 ) ) 
p l o t ( P ( 3 ) , P ( 4 ) ) 

end 

Cantor Set 

Al=[l 0;2/3 1/3]; 
A2=[l/3 2/3;0 1 ] ; 
ax is [-.5 1.5 - . 5 .5] 
axis equal 
x l a b e K ' x a x i s ' ) 
y l a b e l ( ' y a x i s ' ) 
t i t l e ( ' C a n t o r s e t ' ) 
hold on 
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for k=l:1000 
x = [ l ; 0 ] ; 
for i = l : 4 

G=rand; 
if G<.5 , B=A1; 
e l s e , B=A2; 
end 
x=B*x; 

end 
p l o t ( x ( l ) , 0 , ' . ' ) 
p l o t ( x ( 2 ) , 0 , ' . ' ) 

end 

Serpenski Triangle 

Al=[l 0 0 0 0 0;0 1 0 0 0 0 ; . 5 0 .5 0 0 0; 
0 .5 0 .5 0 0 ; .5 0 0 0 .5 0;0 .5 0 0 0 . 5 ] ; 

A2=[.5 0 .5 0 0 0;0 .5 0 .5 0 0;0 0 1 0 0 0; 
0 0 0 1 0 0;0 0 .5 0 .5 0;0 0 0 .5 0 . 5 ] ; 

A3=[.5 0 0 0 .5 0;0 .5 0 0 0 .5;0 0 .5 0 .5 0; 
0 0 0 . 5 0 .5;0 0 0 0 1 0;0 0 0 0 0 1 ] ; 

axis equal 
x l a b e l C x a x i s ' ) 
y l a b e K ' y a x i s ' ) 
t i t l e ( ' S e r p e n s k i t r i a n g l e ' ) 
hold on 
p l o t ( 0 , 0 ) 
p l o t ( l , s q r t ( 3 ) ) 
p l o t ( 2 , 0 ) 
for k=l:3000 

x = [ 0 ; 0 ; l ; s q r t ( 3 ) ; 2 ; 0 ] ; 
for i = l : 5 

G=rand; 
i f G<l /3 

x=Al*x; 
e l s e i f G>=l/3&G<2/3 

x=A2*x; 
e l se 

x=A3*x; 
end 

end 
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w = ( x ( l ) , x ( 3 ) , x ( 5 ) , x ( l ) ) ; 
z = ( x ( 2 ) , x ( 4 ) , x ( 6 ) , x ( 2 ) ) ; 
f i l K w . z . ' k ' ) 

end 



12 
Slowly Varying Products 

When finite products A\, A2A1,. . . , Ak • • • A2A1 vary slowly, some terms in 

the trajectory ( Yl ^-ix ) c a n sometimes be estimated by using the current 

matrix, or recently past matrices. This chapter provides results of this 
type. 

12.1 Convergence to 0 

In this section, we give conditions on matrices that assure slowly vary­
ing products converge to 0. The theorem will require several preliminary 
results. 

We consider the equation 

A*SA -S = -I, (12.1) 

where A is an n x n matrix and I the n x n identity matrix. 

L e m m a 12.1 If p(A) < 1, then a solution S to (12.1) exists. 

Proof. Define 

S = Y~. I (A* - z'1!)'1 (A - ziy1 z~xdz 
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where the integration is over the unit circle. 
To show that S satisfies (12.1), we use the identities 

(A-zI^A = I + ziA-zI)'1 

A*(A*-z~1iy1 = I + z-1(A*-z-1l)'1 

Then 

A*SA= ^-. I A* (A* - z~ll) 1 (A - zl)'1 Az~xdz 

2-KiJ 
I + z(A-zI) z ldz i+z-

1(A*-z-1iy 

= J^<f (z-1I+(A-zI)-1+(A*z- / ) _ 1 2 _ 1 ) dz + S 

= 1+-^-. i{A-zI)~l dz+-^-. <f (A*z-iy1 z-idz+S. 

Now, since / (A) = ^ § f (z) (Iz — A)~ dz for any analytic function / , 
taking / (z) = 1, we have 

±-J(A-zirdz = -I. 

Changing the variable z to z~x and replacing A by A* yields 

1 

2TH, 
I(A*z~I)~lz-1dz = -I. 

Plugging these in, we get 

or 

A*SA = S-I 

A*SA -S = -I, 

which proves the lemma. 

We now need a few bounds on the eigenvalues of S. To get these bounds, 
we note that for the parametrization 

Z = ei0, -7T < 9 < 7T, 

s = h f (A* ~ e~*IYl (A - ^ r 1 de 
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or setting G = A - ei6I, 

s=ijjG-ro-^, 
which is Hermitian. 

To show that 5 is also positive definite, note that (G _ 1) G~x is positive 

definite. Thus, if x ^ 0, a;* (G - 1 )* G~xx > 0 for all 6 and so 

*SX = Y I x* (G_1)* G~lxde > o. 

Hence, S is positive definite. 
The bounds are on the largest eigenvalue p (S) and the smallest eigen­

value a (S) of S follow. 

Lemma 12.2 If p {A) < 1, then 

1. p(S)<(\\A\\2 + l)2n-2/(l-p(A))2n 

2. a(S)>l. 

Proof. For (1), since G — A — eldI, then, using a singular value decompo­
sition of G, we see that ||G||2 is the largest singular value of G, | |G - 1 | | 2 is 
the reciprocal of the smallest singular value of G, and |det G\ is the product 
of the singular values. Thus, 

\\G 112-ldetGT 

And, since |det G\ = \\i - e%e\ • • • |A„ - ei6\, where Ai , . . . , An are the eigen­
values of A, 

| | G - | | 2 < | | A - e ^ | | r 1 / | A 1 - e ^ | . . . | A n - e ^ | 

<( | |A| |2 + l ) " - 1 / ( l - p ( A ) ) n . 

Since S is Hermitian, 

P(5) = | |5 | | 2 

< 
- 2TT hI>-'W> 

2n-2 
_ ( P i l 2 + l) 

(l-p(A))2n 
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For (2), we use Hermitian forms. Of course, 

a(S)x*x<x*Sx 

for all x. Setting x = Ay, we have 

a(S)y*A*Ay<y*A*SAy. 

Using that A*SA = S - I, we get 

a(S)a(A*A)y*y<y*Sy-y*y 

or 

(l + a(S)a(A*A))y*y<y*Sy. 

Since this inequality holds for all y, and thus for all y such that Sy = a (5) y, 

l+a(S)a(A*A)<a(S). 

Hence, 

1 < * ( S ) , 

the required inequality. • 

We now consider the system 

xk+i = Bkxk , (12-2) 

where 

1. \\Bk\\<K 

2. p ( B f e ) < / 3 < l 

for positive constants K, 0 and all k > 1. 

T h e o r e m 12.1 Using the system 12.2 and conditions (1) and (2), there 
is an e > 0 such that if 

ll-Bfc+i — -Bfcll < e 

/ o r aZZ fc, i/ien (xfc) —> 0 as k —* oo. 
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Proof. Let q > 1, q an integer to be determined. We consider the interval 
0 < k < 2q, 

Xk+i = BqXk + [Bk - Bq] Xk. 

Since | |5 s+i — I?s|| < e for all s, then 

||[Bfc - 23,] x f c | | < | g - f c | M l e. 

To shorten notation, let 

A = Bq 

f(k) = [Bk-Bq]xk. 

So we have 

Xk+i = Axk + f(k). 

By hypothesis p (A) < /3, so p (j3~xA) < 1. Thus, there is a positive definite 
Hermitian matrix S such that 

(p-1A)*S(p-lA)-S = -I 

or 

A*SA = f32S - (32I. 

Let V (xfc) = x*kSxk. Then 

V (xk+1) = x*kA*SAxk + f (k)* Sf (k) (12.3) 

+ x*kA*Sf(k) + f(k)*SAxk. 

Now we need a few bounds. For these, let a > 0. (A particular a will 
be chosen later.) Since 

(af {k)* - x*kA*) S (af (fc) - Axk) > 0, 

<*f {k)* Sf i^+a^x^SAx,, > f (k)* SAxk+x*kA*Sf (k). 

Plugging this into (12.3), we have 

V (xfc+i) < (1 + a) f (k)* Sf (k) + (1 + a" 1 ) x*kA*SAxk 

= (1 + a" 1 ) [af (k)* Sf (k) + xlA*SAxk] . 
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Continuing the calculation 

V (ifc+i) < (1 + a'1) [af (k)* Sf (k) + (32x*k (S - I) xk] 

= (1 + a"1) (af (fc)* Sf (k) + fiV (xfc) - /?2 ||xfe||
2) 

Now, 

f(k)*Sf(k)<p(S)\\f(k)f<p(S)(q-k)2e2\\xkf. 

So, by substitution, 

V (xfc+i) < (1 + a"1) [/32V (xfc)+ (ap (5) fa - fc)2 e2-/32) ||zfc||
2 

L e t a = p(S)£k)*e* t o § e t 

V f o + i J ^ l + a - 1 ) / ^ * * ) 

- ( / 3 2 + p (5) (g -^ ) 2 € 2 )7 (x f c ) . 

By Lemma 12.2, 

( P | | 2 + l ) 2 - 2 

Set 

HVJ ' - (l-P(A))2n 

^{K + I)2""2 

- (1-/3)2" 

(K +1)2"-2 

P~ (1-/3)2" 

By continuing the calculation 

Thus, 

and by iteration, 

V(xk+1)< 

V(x1) 

V(x2g) 

((32
 + p(q-k)2e< 

<((32 + pq2e2)V 

')v(xk). 

{x0), 

<(02 + pq2e2)2gV(xo). 
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Finally, we have 

^S)\\x2qf<p(f32+pq2e2)2q\\x0\\\ 

So, by Lemma 12.2 

\\x2q\\<^p{P2 + Pq2e2)2q\\x0\\. 

Now, choose e and q such that 

p(02 + pq^)2q<l 

and set 

T=^p{?+pq^)2q 

SO 

h*q\\<T\\x0\\. 

This inequahty can be achieved for the interval [2q, Aq] to obtain 

I N 4 , | | < r | | a : 2 j ; 

continuing, 

| |z2(m+l)<j| | < r l l ^ m q l l 

which shows that xmq —• 0 as m —• oo. 
Repeating the argument, for intervals [2mq + r, 2 (m + 1) q + r] yields 

| | a ; 2(m+l)9+r | | < r | | a ; 2 m q + r | | , 

so X2mq+r -> 0 as m —> oo. Thus, putting together Xk —> 0 as k —> oo. • 

Corollary 12.1 Using the hypotheses of the theorem 

lim Bk • • • 5 i = 0. 
k—>oo 

Proof. By the theorem 

lim Bk • • -B\X\ = 0 
k—>oo 

for all x\. Thus, 

lim Bk • • • Bx = 0, 
k—»-co 

the desired result. • 
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12.2 Estimates of Xk from Current Matrices 

Let .Ai, A2,... be n x n primitive nonnegative matrices and x\ an n x 1 
positive vector. Define the system 

Xk+i — Akxk. 

The Perron-Frobenius theory (Gantmacher, 1964) assures that each Ak has 
a simple positive eigenvalue Afc such that Afc > |A| for all other eigenvalues 
A of Afc. And there is a positive stochastic eigenvector vk belonging to Afc. 
If the stochastic eigenvectors vk, • • • ,vsoi the last few matrices, Ak, • • • ,AS 

vary slowly with k, then vk may be a good estimate of |u f cl"^'^| |- I n this 
section we show when this can happen. 

We make the following assumptions. 

1. There are positive constants m, and M such that 

m < inf aSJ 
.0 lj 

7(*) 

where inf and sup are over all i, j , and k. 

2. There is a positive constant r such that 

At+r • • • At+1 > 0 

for all positive integers t. 

These two conditions assure that 

mr<{At+r---At+l)i:j Kn^AT 

for all i, j , and t. Thus, 

<p(At+r---At+l) > 

-S?>>o %1 

M > s u p a v 

S e t ^ = [ n r " M r ] 2 and Tr = f ^ f < 1. We see that 

rB (S r) < rr. 

Theorem 12.2 Assuming conditions 1 and 2, 

p(xk+1)Vk) <T[rrip(x2,V1) + 22T\.rip(vk-.j,Vk_j+1). (12.4) 
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Proof. By the triangle inequality p(xk+i,Vk) < 

p (Ak • • • Aixi, Ak--- Aivx) +p(Ak--- A2A1vi,Ak • • • A2v2) 

H \-p (AkAk~ivk-i,AkVk) 

and using that Asvs = Xsvs for all s, 

= p(Ak--- A2AiXi ,Ak--- A2AxVi) + p(Ak--- A2vx ,Ak--- A2v2) 

H hp{Akvk-i,AkVk) 

f - 1 f ^ ^ l I1] 
< T[

r
rip(x2,V1) +T[

r
 r Jp (vu V2) + • • • + TV V (Vfc-l, Vk) 

which gives (12.4). • 

If 

6 = swpp(vj,vj+1), 
j 

then the theorem yields 

f-1 ^~^ m 
p(xk+i,vk) < T[

r
rip(x2,vi) + 22~rlri6. 

Thus, if in the recent past, starting the system at a recent vector so k is 
small, we see that if 6 and r r are small, Vk gives a good approximation of 
Zfc+l-

This gives us some insight into the behavior of a system. For example, 
suppose we have only the latest transition matrix, say A. We know 

Xk+i = Axk 

but don't know xk and thus neither do we know Xk+i- However, we need 
to estimate ,, Xfc+1n . 

Let v be the stochastic eigenvector of A belonging to p (A). The theorem 
tells us that if we feel that in recent past the eigenvectors, say vi,... ,Vk, 
didn't vary much and r r is small, then v is an estimate of \\*k+1u • (We 
might add here that some estimate, reasonably obtained, is often better 
than nothing at all.) 

Some numerical work is given in the following example. 

Example 12.1 Let 

A = 
.2 .4 .4 
.9 0 0 
0 .9 0 
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and let £ be the set of matrices C, such that 

A - .02A < C < A + .02A. 

Thus, we allow a 2% variation in the entries of A. Now, we start with 
0.3434 
0.3333 
0.3232 

and randomly generate A\ — ,U) where 

aif = bij + r a n d (-04) aij 

for all i, j , where rand is a randomly generated number between 0 and 1 
andB = A- .02A. Then, 

x2 = AiXi 

and 

x2 = 
X2 

llx2|| 

etc. We now apply this technique to demonstrate the theoretical bounds 
given in Theorem 12.2. 

Let Vk denote the stochastic eigenvector for A^; we obtain for a run of 
50 iterates the data in the table. 

k 

Xk+l 

Vk 

P(Xk+l,Vk) 
P(Vk,Vk-l) 

48 49 50 
0.3430 
0.3299 
0.3262 

0.3599 
0.3269 
0.3132 

0.3445 
0.3470 
0.3085 

" 0.3474 ' 
0.3330 
0.3196 

" 0.3541 " 
0.3330 
0.3129 

[ 0.3476 1 
0.3354 
0.3170 

0.0301 
0.0224 

0.0351 
0.0403 

0.0609 
0.0314 

Using Theorem 12.2 and three iterates, we have 

X49 = ^48^48 

X50 = A49X49 

#51 — ^50^50-

So 

P (xnuvno) < TB (S3)p(2:49, v4S) + rB (E2) p(v48, v49) 

+ TB(E)p(v49,v50). 
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And, using Theorem 10.5, TB (S3) < 0.5195, so 

p(x5i,v5o)< 0.0899. 

The actual calculation is p(#5i,W5o) = 0.0609, and the error is 

error — 0.029. 

To see that 6 is always finite, we can proceed as follows. Let 

Av = Xv 

where A = Ak,v = vk, X = Xk for some k. Suppose 

x„ = max Xk 
fe 

where v = (xi,... , xn) . Then, since v is stochastic, 

xq > - • 
n 

Now, since A is primitive, Ar > 0 for some r. Thus a\j > rrf for all 
i,j. Now 

{Arv)i 
Xi — % ll^lll 

n , , 
E aik xk 
fc=i 

n n . . » 

E E ask xk 
s = l fe=l 

and since there are no more than nr 1 distinct paths from any Vi to any 
Vj, of length r, 

(r) 
. aiqXq 

Xi > 

> 

n n 

E E"r-
s=l fe=l mrxg 

n2nr-xM'1 

mr 

4 M ' 

Xq 

'Xk 

n ?nr~lMr' 
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Since this inequality holds for all i, 

minx; > 9 „ t , , r > 0. 
i n2nr-1Mr 

And, from this it follows that p(vj,Vj+i) is bounded. 
We add to our assumptions. 

3. There are positive constants /3 and A such that 

' PfcH^ < /? and Afe < A 

for all k. And 7 > 0 is a lower bound on the entries of Vk for all k. 

An estimate of Afe can be obtained as follows. 

Theorem 12.3 Assuming the conditions 1 through 3, 

(xk+i)j 

(Xk)i 
Afc <(^+\\ep^Vk)p(xk,vk), 

Proof. Using Theorem 2.2, for fixed k, there is a positive constant r and a 
diagonal matrix M, with positive main diagonal, such that the vectors xk 

and Vk satisfy 

Thus, 

and so 

Xk=r (vk + Mvk) • 

%k+i = Akxk 

= r (AfeWfe + AkMvk). 

(gfc+i)i = r (Afê fc + AkMvk)i 

{xk)i r (vk + Mvk)i 
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Hence, 

(xk+i)i 

(xk)i 
Afc 

< 

(XkVk + AkMvk) • - Afc {vk + Mvk)i 

(vk + Mvk)i 

(AkMvk)i - Afc (Mvk) 

{vk + Mvk)i 

(AkMv^j - Afc (Mvk) 

Mi 
(AkMvk), 

- AfcTTli 

< 

< 

(Vk)i 

l l ^ l l o c l l ^ l l o o l K 

AfcTTli 

+ Afcmj 

<fflk+At,|M||t 
And since by Theorem 2.2, WM]]^ < e^*-"*) - 1, we get the bound 

< ( - + Afc ) (eP^'v^ 
, 7 

Now we can write 

eu - 1 < ueu 

for any u > 0, so we have 

(Xk+l) 

(xk)i 
- A f c < ^-fA^e^^VK^fc) 

for all 

Prom this theorem, we see tha t if the Vfc's and Xk's are near, then ^fc+!) ' 
\xk)i 

is an estimate of Afc. Of course, if the v^s vary slowly then the £ j+i ' s are 
close to the v^s and are thus themselves close, so the v^'s and close. 

12.3 State Estimates from Fluctuating Matrices 

Let A be an n x n primitive nonnegative matr ix and y\ an n x 1 positive 
vector. Define 

yk+\ =Ayk. 
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It can be shown that ( i d n r ) converges to n, the stochastic eigenvector 

belonging to the eigenvalue p (A) of A. 
Let A\, A2,... be fluctuations of A and consider the system 

xk+i = Akxk (12.5) 

where xi > 0. In this section, we see how well TT approximates ,. XK , 
especially for large k. 

It is helpful to divide this section into subsections. 

12.3.1 Fluctuations 

By a fluctuation of A, we mean a matrix A + E > 0 where the entries 
in E — [eij] are small compared with those of A. More particularly, we 
suppose the entries of E are bounded, say 

where 

\P..\ < f.. 

"'ij &ij -^ " 

when aij > 0 and £y = 0 when a^ = 0. Thus, 

A-£ <A + E<A + £. 

Define 

S = supp (Ax, (A + E) x) 

where the sup is over all positive vectors x and fluctuations A + E. To 
show 6 is finite, we use the notation, 

£•• 
RE = max — 

aij 

where the maximum is over all a^ > 0. 

T h e o r e m 12.4 Using that RE < 1, 

0 < In -, ^=; • 
~ I-RE 
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Proof. Let x > 0. For simplicity, set 

Then 

zk = (Ax)k 

ek = (Ex)k. 

{(Ex)^ \enXi-\ +einxn\ 
sup ; = sup E>o {Ax)i x>o diixx -\ 1- ainxn 

C%\X\ ~T • • ' ~T OinXn 

< sup 
x>0 Qjl^l + ' ' • + 0-inxn 

and by using the quotient bound result (2.3), 

< max —^ 
a i j > 0 Uij 

Furthermore, using that 

and that 

= RE. 

.7 "T" &j -, &j 
1 + ^ 

1 + 

we have 

(Ax), ((A + E)x)j _ Zi Zj + ej 

((A + E)x)i (Ax) j Zi+ei Zj 

< 
1 + RE 
I-RE' 

Thus, 

p(Ax,(A + E)x) <ln±±^, 

the inequality we need. 
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12.3.2 Normalized Trajectories 

Suppose the trajectory for (12.5) is x\,X2, We normalize to stochastic 
vectors and set 

Xk 
Xk = ij j j - -

We will assume that TB (Ar) = rr < 1. How far Xk is from it is given in 
the following theorem. 

Theorem 12.5 For all k and 0 < t < r, 

p (TT, Xkr+t) < rk
Tp (TT, Xl) + ( T * " 1 + • • • + Tr + l ) r<5 + (t - 1) 6. 

Proof. We first make two observations. 

1. For a positive vector x and a positive integer t, 

p(Atx,Af-A1x) 

< p (Alx, AAt-\ • • • Aix) + p (AAt-i • • • A\x, At--- Aix) 

< p (At~1x, At-i • • • Axx) + 6, 

and by continuing, 

<(t-l)6 + 6 = t6. 

2. For all k > 1, 

p (7T, xkr+1) = p (Arir, Arx{k_1)r+1) 

+ p (i4rX(fc_i)r+i, Akr • • • ^4(fc-l)r+l5(fe_i)r+i) 

< T rp(7r,5 ( fc_1)r+1) +r6 

and by continuing 

p(v,Xkr+i) < Tk
rp{-K,xx) + (T*-1 + --- + Tr + l)rS. 

Now, putting (1) and (2) together, we have for 0 < t < r, 

p (TT, Xkr+t) 

= p (A ~ TT, Akr+t-1 • • • Akr+lXkr+l) 

< p (At~1TT,At~1Xkr+i)+p (A*'1 Xkr+l, Akr+t-1 • • • Akr+lXkr+l) 

<p(TT,Xkr+l) + (t- 1)6 

< T*p (7T.il) + {Tk
r~

X + • • • + Tr + l ) r8 + (t - 1) 6, 

the desired inequality. • 

http://7T.il
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12.3.3 Fluctuation Set 
The vectors Xk need not converge to w. What we can expect, however, is 
that, in the long run, the Xk's fluctuate toward a set about ir. By using 
Theorem 12.5, we take this set as 

C= lxeS+ :p(x,ir) < -^— + ( r - l ) t f j . 

Using 

d (a;, C) = minp (a;, c), 
c£C 

we show that 

d(xk, C) —> 0 as k —• oo. 

We need a lemma. 

Lemma 12.3 If x & S+ and 0 < a < 1, then 

p (TT, X) = p (TT, OCK + (1 — a) x) + p (cnr + (1 — a) x, x). 

Proof. We assume without loss of generality (We can reindex.) that 

— > ..> — 

Thus, if i < j , then 

"Hi >1L 

or 

So 

CCKiTTj + (1 — a) TTiXj > aTTiTTj + (1 — a ) TTjXi 

and 

7T.- IT A 

> airi + (1 — a) Xi anj + (1 — a) Xj 
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Prom this, we have that 

p(n,x) 
n 
xi n, 
7Ti Xn 

. , n\ ann + (l-a)xr 

+ ln 

an1 + (l-a)xi nn 

ani + (l—a)xi xn 

xi ann+(l — a) 
Xn . 

— p (n, an + (1 — a) x) + p (an + (1 — a) x, x), 

as required. • 

The theorem follows. 

T h e o r e m 12.6 For any k and 0 <t <r, 
d (xkr+t, C) < Tk

rp (Si, n). 

Proof. If Xkr+t € C, the result is obvious. Suppose Xkr+t £ C Then 
choose a, 0 < a <1, such that 

x (a) = an + (1 - a) Xkr+t 

satisfies 

r6 
p (x (a), n) = h (r - 1) 6. 

1 — Tr 

Thus, x (a) e C. 
By the lemma 

p (xkr+t,n)=P [xkr+t,x(a))+p(x (a), n) 
T8 

= P (xkr+t,x (a)) + h (r - 1) 6. 
1 — Tr 

Now, by Theorem 12.5, we have 

,fc„ ' - — r 6 

p(xkr+t,n) < Trp(x1,n) + - h ( r - l ) < 5 , 
1 — Tr 

SO 

P (Xkr+t, X (a)) < Trp (X!,n) . 



12.3 State Estimates from Fluctuating Matrices 185 

Thus, 

d (Xkr+t, C) < Tk
rV (Xi, 7r) , 

which is what we need. • 

Using the notation in Chapter 9, we show how C is related to limiting 
sets. 

Corollary 12.2 If U is a compact subset of S+ and T^U —> L as k —» oo, 
then L C.C. 

Using this corollary, Theorem 12.4, and work of Chapter 10, we can 
compute a bound on L, even when L itself cannot be computed. 

We conclude this section by showing how a pair Xi, Xi+\ from a trajectory 
indicates the closeness of x^ to C. 

Theorem 12.7 If TT < I, then 

T 
d(xi,C) < p(xi,xi+i). 

1 — Tr 

Proof. Throughout the proof, i will be fixed. Generate a new sequence 

X\ , . . . , Xi, Ji-iXi, / i ^ Xi, . . . . 

Since Ai is primitive, using the Perron-Probenius theory 

the stochastic eigenvector for the eigenvalue p {Ai) of Ai. Thus, 

lim p(AiXi,Tri) = 0 . 
fc—>oo 

Hence, using the sequence 

-Ai, JT-2) • • • j Ai, Ai, Ai,... 

since Theorem 12.6 still holds, 

d{m,C)=0 

and so 7Tj G C. 
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Now, using the triangle inequality 

p (xi, A^r+txi+1) < p (xi, xi+i) + p (AiXi, AiXi+1) 

+ ..-+p{A^+txi,A^+txi+1) 

< rp (xi, xi+1) + TTrp (xi, xi+i) 

-\ \-rT$p(xi,xi+i) 
r _ . 

< z p{xi,xi+i). 
1 — Tr 

Now, letting k —> oo, 

and since 7Tj e C, 

as desired. 

7 
p(Si,7r») < p(xi,xi+1) 1 — Tr 

d (xi} C) < p (xi, xi+i), 
1 — Tr 

The intuition given by these theorems is that in fluctuating systems, the 
iterates need not converge. However, they do converge to a sphere about 
7r. See Figure 12.1 for a picture. 

FIGURE 12.1. A view of iterations toward C. 

An example providing numerical data follows. 

Example 12.2 Let 

A = 
.2 .4 .4 
.9 0 0 
0 .9 0 



12.4 Quotient Spaces 187 

Let S be the set of matrices C such that 

A - .02A < C < A + .02A, 

thus allowing for a 2% variation in the entries of A. 
0.3495 ' 

The stochastic eigenvector for A is n = 0.3331 
0.3174 

Starting with x\ = 

0.3434 
0.3333 
0.3232 

and randomly generating the Ak's, we get 

Xk+l 
Xk+i — AkXk and Xk+i = 

FM-il 

Iterations 48 to 50 are shown in the table. 

k 

p(xk+l,Tv) 

48 
0.3440 
0.3299 
0.3262 
0.0432 " 

49 
" 0.3599 
0.3269 
0.3132 
0.0483 

50 
0.3445 
0.3470 
0.3085 
0.0692 

Using three iterates, we have 

P (£51.n) < TB (A3) p(Tr,xi8) + 26 
= 0.1044. 

This compares to the actual difference 

P (S5i,7r)= 0.0692. 

The error is 

error = 0.0352. 

12.4 Quotient Spaces 

The trajectory x\,X2,... determined from a n n x n matrix A, namely, 

Zfc+i = Axk 
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may tend to infinity. When this occurs, we can still discern something about 
the behavior of the trajectory. For example, if A and x\ are positive, then 
we can look at the projected vectors idfV-- In this section we develop an 
additional approach for studying such trajectories. We do this work in Rn 

so that formulas can be computed for the various norms. 
Let e be the n x 1 vector of l's. Using Rn, define 

W — span {e}. 

The quotient space Rn/W is the set 

{x + W : x e Rn} 

where addition and scalar multiplication are done the obvious way, that is, 
(x + W) + (y + W) = (x + y) + W, a (x + W) = ax + W. This arithmetic 
is well denned, and the quotient space is a vector space. 

12.4.1 NormonRn/W 

Let 

C = {c : c*tu = 0 for all w e W} 

and 

Ci = { c € C : | | c | | = l } . 

(Ci depends on the norm used.) Then for any x € Rn/W, 

\\x + W\\c=m^c\ctx\. 

It is easily seen that H-^ is well defined and a norm on Rn/W. 

Example 12.3 Let y-^ denote the 1-norm. It is known that, in this case, 
C\ is the convex set with vertices those vectors with precisely two nonzero 
entries, ^ and— | . Thus, 

Ik + w\\c = ̂  |CH . 
s 

and if c = ^ otkck> a convex sum of the vertices c i , . . . , cs of C\, then 
k=X 

\x + W\\c<maxJ2ak\ckx\ 
c € C l

f e = i 

= max cLx 

- 1 1 1 
2 P,q ' V q{ 
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Since this max is achieved for some Ck, it follows that equality holds. 

We conclude this subsection by showing how close a vector is to a coset. 
To do this, we define the distance from a vector y to a coset x + W by 

d(y, x + W) = min ||y - (x + w)^ . 
wEW 

We need a lemma. 

Lemma 12.4 Let c £ C where c = ( c i , . . . , cn). Then 

- max Ci - - m m c j > - c . . 
2 2 » n L 

Proof. Without loss of generality, suppose that 

c = (p i , . . . ,Pr,qi,--- ,qs) 

where r + s = n and 

Pi > • • • > Pr > 0 > qi > • • • > qs. 

r s 
Note that Yl Pk = - E f t ' 

fc=i jt=i 
Now, 

= 2r ^ + " ' +Pr' ~ 2s (qi + " ' + q"' 

1 / 1 , 
(Pi H +Pr) — (qi-\ h ga) r + s r + s 

1 
r + s 

the desired result. • 

Using the 1-norm to determine C\, we have the following. 

Theorem 12.8 Suppose \\(y + W) - (x + W)\\c <e. Then we have that 
d(y,x + W) <ne . 
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Proof. First suppose that y, x e C. Then, using the example and lemma, 
we have \\{y + W)-{x + W)\\c 

- max (yt - xt) - - min (yj - Xj) 

Now, let x,y e Rn. Write x = x + wi, y = y + W2 where x,y € C and 
w\, W2 € W. Then, using the first part of the proof, 

\\(y + W)-(x + W)\\c = \\(y + W)-(x + W)\\c 

>£l l» -* l l i 

= - \\(y - v>2) - (x - w ^ 

= -\\y-(x + w)\\1 

where w = W2 — w\. And, from this it follows that 

d(y,x + W) < ne, 

which was required. • 

124.2 Matrices in Rn/ W 

Let A be an n x n matrix such that 

A : W -> W. 

Thus Ae = pe for some real eigenvalue p. (In applications, we will have 
P = P(A).) 

Define 

A : Rn/W - • Rn/W 

by 

A(x + W) = Ax + W. 
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It can be observed that this is a coset map, not a set map. In terms of 
sets, A (x + W) C Ax + W with equality not necessarily holding. The map 
A : Rn/W —» Rn/W is well denned and linear on the vector space Rn/W. 

Inverses, when they exist, for maps can be found as follows. Using the 
Schur decomposition 

A = P 

where P is orthogonal and has 
set 

•Jn 

p y 
o B 

as its first column. If B is nonsingular, 

P V 
0 B'1 

(Other choices for A+ are also possible.) 

L e m m a 12.5 A+ is the inverse of A on Rn/W. 

Proof. To show that A+: W —> W , let w e W. Then w = ae for some 
scalar a. Thus, 

A+w = A+ (ae) 

= aP 

= aP 

P y 
0 B-1 

P y 
0 B-1 

P*e 

0 

= aP 

= ape G W. 

P-7~ 
0 

Now, 

If x e C, then 

AA+ = . 

AA+x = P 

= P 

P 
0 

py + yB 1 

P' 
0 

P2 

0 

py + yB x 

I Plx 

py -yB-1 

I 
0 

P2x 
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where P* = 
Pi 

= P 

= P 

where 0 — (py + yB 1 P2x, 

[py + yB jP2x 
Pix 

0 
P2x 

= 0-^= + x e x + W. 

Thus, AA+ (x + W) = x + W and since x was arbitrary AA+ is the iden­
tity on RP-/W. Similarly, so is A+ A. So A+ is the inverse of A on Rn/W. m 

When A : W —> W, we can define the norm on the matrix A : Rn/W —> 
Rn/W as 

mlc-?$ \\x + W\\c 
= „ JSff A\*c + W\\c. 

\\x+W\\c=l 
For special norms, expressions for norms on A can be found. An example 
for the 1-norm follows. 

Example 12.4 For the 1-norm on Rn: Define 

"° *tw | |i + W||c 

Now 

max \\Ax + W\\c. 
Ik+W|lc=1 

IIAE + WIL = max |c*Az 

which by Example 12.3, 

-max|aiX — a,jX\ 
2 i,j 

— max |(aj — a,j)x\ 
2 i,j 
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where ak is the k-th row of A. Since \\x + W\\c = 1, 

- maxlxj — xA = 1. 
2 i,j 

And, since x + ae 6 x + W for all a, we can assume that Xj is nonnegative 
for all i and 0 for some i. Thus, the largest entry X; in x is 2. It follows 
that 

max|(aj — aj)x\ 

over all x, 0 < Xj < 2 is achieved by setting xk =2 when the k-th entry in 
ai — aj is positive and 0 otherwise. Hence, 

max |(aj — aj)x\ = max||a; — a,j\\, . 

Thus, 

\\Ax + W\\c = -max | | a i - a ^ L 

Z i,j 

and so 

To obtain the usual notation, set 

r1(A) = \\A\\c. 

This gives the following result. 

Theorem 12.9 Using the 1-norm on Rn, 

\\A\\C = T1(A). 

12.4-3 Behavior of Trajectories 

To see how to use quotient spaces to analyze the behavior of trajectories, 
let 

xk+i = Axk + b 

where A : W —• W. In terms of quotient spaces, we convert the previous 
equation into 

xk+1+W = A(xk + W) + (b+W). (12.6) 
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To solve this system, we subtract the k-th equation from the (k + l)-st one. 
Thus, if we let 

then 

so 

Using norms, 

zk+i + W = (xk+1 +W)- (xk + W), 

zk+1+W = A(zk + W) 

zk+1 +W = Ak(z0 + W). 

Wzk+i + wWcKniAfWzt + wWc. (12.7) 

If n (A) < 1, then zk + W converges to W geometrically. 
As a consequence, (xk + W) is Cauchy and thus converges to say x + W. 

(It is known that the quotient space is complete.) So we have 

x + W = A(x + W) + {b + W). (12.8) 

Now, subtracting (12.8) from (12.6), we have 

xk+i - x + W = A (xk - x) + W. 

Thus, by (12.7), 

||zfe_i -x + W\\c < rx (A)k \\xi -x + W\\c . 

And, using that d(xk — x, W) = d(xk,x + W), as well as Theorem 12.8, 

d(xk,x + W) < riTi (A)k \\Xl -x + W\\c. (12.9) 

It follows that xk converges to x + W at a geometric rate. 

Example 12.5 Let A = .8 .3 
.3 .8 

and 

xk+i = Axk. 

Note that (Afe) tends componentwise to oo. The eigenvalues for A are 1.1 

and .5, with 1.1 having eigenvector e= . Let 

W = span {e} . 
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FIGURE 12.2. Iterates converging to W. 

Then, using (12.9) with x = 0, we have 

d(xk,W)<2T1(A)k\\x1 + W\\c. 

Then, since T\ (A) = .5, 

d(xk,W)<2(.5)k\\x1+W\\c. 

follows in the table below. By 

So, Xk converges to W at a geometric rate. 

A sample of iterates, letting x\ = 

direct calculation, \\xi + W\\c = .5. 
0 

k 

Xk 

d{xk,W) 

12 
(0.763,0.3700)' (1.073,1.069)' (1.569,1.569)' 
0.125 0.0078 0.0005 

After 12 iterations, no change was seen in the first four digits of the Xk 's. 
However, growth in the direction of e still occurred, as seen in Figure 12.2. 

Extending a bit, let 

Ax 
' .8 .3 " 

.3 .8 ,A2 = 
" .2 .5 ' 

.5 .2 ,A3 = 
' .7 .9 " 

.9 .7 

and 

E = {A1,A2,A3}. 
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Since W, for each matrix in E, is span {e}, where e • , and T\ (E) = 

maxr(.Aj) = .5, we have the same situation for the equation 
i 

xfc+i = Aikxk 

where (Aik) is any sequence from E. 

The following examples show various adjustments that can be made in 
applying the results given in this section. 

Example 12.6 Consider 

where 

Xk+i = Axk 

.604 .203 0 
2.02 0 0 

0 2.02 0 

Here the eigenvalues of A are 1.01, —.4060, and 0 with 

vector belonging to 1.01. Let D = diag (1,2,4). Then 

Dxk+1 = DAD^Dxk 

or 

Vk+i = Byk 

where yk — Dxk andB = DAD~1. Here 

B = 
.604 .406 0 
1.01 0 0 

0 1.01 0 

an eigen-

So we have W = span {e}. and an eigenvector of B for 1.01 is e — 

Now, r i (B) = 1.01; however, n (B3)~« .1664. Thus, from (12.9), 

d (yk, W) converges to 0 
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at a geometric rate, i Noting that 

d{D~lyk,D-1W) <m^\dJx\d{yk,W), 

it follows that 

d(^xk,D~1W) converges to 0 

at a geometric rate. 

Example 12.7 Consider 

xk+i = Axk + b 

where A = 
' .7 .4 ' 

.4 .7 and b — 
1 
2 

. Note that e = 
" 1 " 

1 is an eigen­

vector of A belonging to the eigenvalue 1.1 and so we have W — spanje}. 

Further, T\ (A) = .3. The corresponding quotient space equation is 

xk+i + W = A(xk + W) + (b + W). 

The sequence (xk + W) converges to, say, x + W. Thus, 

x + W = A (x + W) + (6 + W). 

Solving for x + W yields 

(I-A)(x + W)=b+W, 

so 

(x + W) = (I-A)+(b + W), 

where 

(I-A)+ = 

and thus 

(I-A)+b = 

It follows by (12.8) that 

.9 .2 

.2 .9 

1.3 
2 

xk + W 
1.3 
2 + W, 
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or using X\ 

d(xk,x + W)<2x.3k x ||a? + W| | c 

< 2 x .3fc x .35 < .7 x .3fe. 

A few iterates follow. 

k 2 8 

l(xk,x + W) 
(2.5, 3.8)1 

0.063 
(6.253, 7.70)1 

0.00567 
(16.44, 17.87)1 

0.000046 

12.5 Research Notes 

The results in Section 1, slowly varying products and convergence to 0, 
are basically due to Smith (1966a, 1966b). Some alterations were done to 
obtain a simpler result. Section 2 contains a result of Artzrouni (1996). For 
other such results, see Artznouni (1991). Apphcation work can be found 
in Artzrouni (1986a, 1986b). 

Section 3 is due to Hartfiel (2001) and Section 4, Hartfiel (1997). Rhodius 
(1998) also used material of this type. 

Often bound work is not exact, but when not exact, the work can still 
give some insight into a system's behavior. 

In related research, Johnson and Bru (1990) showed for slowly varying 
positive eigenvectors, p (Ai • • • Ak) « p {Ax) ••• p {Ak). Bounds are also 
provided there. 



13 
Systems 

This chapter looks at how infinite products of matrices can be used in 
studying the behavior of systems. To do this, we include a first section to 
outline techniques. 

13.1 Projective Maps 

Let S be a set of n x n row allowable matrices and X a set of positive n x 1 
vectors. In this section, we outline the general idea of finding bounds on 
the components of the vectors in a set, say SSX or S^X. Basically we use 
that for a convex polytope, smallest and largest component bounds occur 
at vertices as depicted in Figure 13.1. 

Let S also be a column convex and U a convex subset of positive vectors. 
If 

E = convex {A\,... , Ap} 

and 

U = convex {xi,... , xq} , 

then, as shown in 9.3, TJJ is a convex polytope of positive vectors, whose 
vertices are among the vectors in V = {AiXj : Ai and Xj are vertices in E 
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FIGURE 13.1. Component bounds for a convex polytope. 

and U, respectively}. Thus, if we want component bounds on ESX, we need 
only compute them on Aia • • • A^Xj over all choices of is,... ,ii, and j . For 
S p , component bounds are found by finding them on WAt o • • • o WAI (XJ) 
over all choices of is,... ,ix, and j . 

To compute component bounds on these vectors, we use the Monte-Carlo 
method. 

Component Bounds 

1. Randomly (uniform distribution) generating the vertex matrices in­
volved, compute 

x — AixXj or x = w^i (XJ) . 

2. Suppose x = Ait • • • A^Xj or x — WAt O • • • O WAt (XJ) have been 
found. If t < s, randomly (uniform distribution) generating the ver­
tex matrix involved, compute 

x = Ait+1 • • • Ai.xj or x = u>Ait+1 ° • • • ° wAil (XJ) . 

Continue until x = AiB • • • Ai±Xj or x = WAia ° • • • ° ^ i (XJ) is found. 

3. Set L1=H1= x. 
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4. Repeat (1) and (2). After the k + 1-st run, set 

Zf+1> = m i n { z f ) , 2 ; i } , / l f
+ 1 U m a x { / l f ) , a ; i } 

and form Lk+1 = ( / f + 1 ) ) , tffc+1 = (hf+1)). 

5. Continue for sufficiently many runs. (Some experimenting may be 
required here.) 

13.2 Demographic Problems 

This section provides two problems involving populations, partitioned into 
various categories, at discrete intervals of time. 

Taking a small problem, suppose a population is divided into three 
groups: l=young, 2=middle, and 3=old, where young is aged 0 to 5, middle 
5 to 10, and old 10 to 15. 

Let x^.' denote the population of group k for k — 1,2,3. After 5 years, 
suppose this population has changed to 

xf] = bux^ + b12x2
1] + b13xP 

X% = 521^1 

4 2 ) = s32^2
1) 

or 

X2 = Ax\ 

where xk= ix\' ,x2' ,x$'\ for k = 1,2, and 

A = 

The matrix A is called a Leslie matrix. 
Continuing, after 10 years, we have 

X3 — Ax2 = A2xi, 

^11 &12 &13 

821 0 0 
0 S32 0 

etc. 
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Data indicates that birth (the fry's) and survival (the Sij's) rates change 
during time periods, and thus we will consider the situation 

xk+i -Ak-'-AxXi 

where A\,... ,Ak are the Leslie matrices for time periods 1 , . . . , k. In this 
section, we look at component bounds on Xk+i-

Example 13.1 Let the Leslie matrix be 

A = 
.2 .4 .4 
.9 0 0 
0 .9 0 

Allowing for a 2% variation in the entries of A, we assume the transition 
matrices satisfy 

A - .02A < Ak < A + .02A 

for all k. Thus, £ is the convex polytope with vertices 

C = [aij ± .02ai:7-]. 

We start the system at x = 
0.3434 
0.3333 
0.3232 

, and estimate the component 

bounds on T,p°x, the 50-year distribution vectors of the system by Monte 
Carlo. We did this for 1000 to 200,000 runs to compare the results. The 
results are given in the table below. 

k 
1000 
5000 

10,000 
100,000 
200,000 

Lk Hk 

(0.3364,0.3242,0.2886) 
(0.3363,0.3232,0.2859) 
(0.3351,0.3209,0.2841) 
(0.3349,0.3201,0.2835) 
(0.3340,0.3195,0.2819) 

(0.3669,0.3608,0.3252) 
(0.3680,0.3632,0.3267) 
(0.3682,0.3635,0.3286) 
(0.3683,0.3641,0.3313) 
(0.3690,0.3658,0.3318) 

Of course, the accuracy of our results is not known. Still, using exper­
imental probability, we feel the distribution vector, after 50 years, will be 
bounded by our L and H, with high probability. 

A picture of the outcome of 1000 runs is shown in Figure 13.2. We used 

T = 
0 V2 ^ 

2 0 0 
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0.41 

0.405 

0.4 

0.395 

S 0.39 

>• 
0.385 

0 38 

0.375 

0.37 

Final vectors for 10 iterates. 

; . . 

•V.£^7fr.r/ 

•' . A " . >4"vJA"». --.- ' . 

• . * . • • • v 
• i f * 

0.67 0.68 0.69 0.7 0.71 
x axis 

0.72 

FIGURE 13.2. Final vectors of 10 iterates. 

to map S+ into R2. 
Recall that Sp°x is the convex hull of vertices. Yet as can be seen, many, 

many calculations Akl0 • • • A^x do not yield vertices ofY^x. In fact, they 
end up far in the interior of the convex hull. 

Taking some point in the interior, say the projection of the average of 
the lower and upper bounds after 200,000 runs, namely 

ave = (0.3514,0.3425,0.3062), 

we can empirically estimate the probability that the system is within some 
specified distance 6 of average. Letting c denote the number of times a run 
ends with a vector x, \\x — cive\\ < 6, we have the results shown in the 
table below. We used 10,000 runs. 

6 
.005 
.009 
.01 
.02 

c 
1873 
5614 
6373 
9902 

Interpreting 6 = .01, we see that in 6373 runs, out of 10,000 runs, the 
result x agreed with those of ave. to within .01. 
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Tan iterates of a trajectory. 
0.415 

0.41 

0.405 

0.4 

§ 0.395 

0.39 

0.385 

0.38 

0.375 

0.68 0.685 0.69 0.695 0.7 0.705 0.71 
xaxis 

FIGURE 13.3. Ten iterates of a trajectory. 

Finally, it may be of some interest to see the movement ofx\, x%, • • • , xio 
for some run. To see these vectors in R2, we again use the matrix 

T=\0 V2 f 
[ o o & 

and plotted Txi,Tx%,... , TX\Q. A picture of a trajectory is shown in Fig­
ure 13.3. 

In this figure, the starting vector is shown with a * and other vectors with 
a o. The vectors are linked sequentually by segments to show where vectors 
go in proceeding steps. 

13.3 Business, Man Power, Production Systems 

Three additional examples using infinite products of matrices are given in 
this section. 

Example 13.2 A taxi driver takes fares within and between two towns, 
say T\ and T% • When without a fare the driver can 

1. cruise for a fare, or 

2. go to a taxi stand. 
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The probabilities of the drivers' actions on (1) and (2) are given by the 
matrices 

A = 
.55 .45 
.6 .4 B = 

.5 .5 

.4 .6 

for each of the towns, as seen from the diagram in Figure 13.4-

.55 

0; ; > • 

.5 

0; jS 
.6 

FIGURE 13.4. Diagram of taxi options. 

We can get the possible probabilities of the cab driver being in (1) or (2) 

by finding S°° where E = {A, B}, a r-proper set. Here E — and the 

corresponding subspace coefficient is Tw (£) = .2. Three products should 
be enough for about 2 decimal place accuracy. Here, 

A3 = 

AB2 = 

BAB = 

BA2 = 

B3 = 

If 

0.5450 
0.5460 

" 0.4450 
0.4460 

' 0.4550 
0.4560 

" 0.5450 
0.5440 

' 0.4450 
0.4440 

0.4550 
0.4540 

0.5550 " 
0.5540 

0.5450 " 
0.5440 

0.4550 ' 
0.4560 

0.5550 n 

0.5560 j 

, A2B = 

, ABA = 

, B2A = 

, BA2 = 

0.4550 0.5450 
0.4540 0.5460 

' 0.5550 0.4450 ' 
0.5540 0.4460 

" 0.5550 0.4450 " 
L 0.5560 0.4440 

" 0.5450 0.4550 ' 
0.5440 0.4560 

Pij — probability that if the taxi driver 

is in i initially, he eventually (in the 

long run) ends in j , 
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then 

•44 < pu < .56 
•44 < P2i < .56 

•44 < pi2 < .56 
•44 < P22 < -56. 

Note the probabilities vary depending on the sequence ofA's and B 's. How­
ever, regardless of the sequence, the bounds above hold. 

In the next example, we estimate component bounds on a limiting set. 

Example 13.3 A two-phase production process has input (3 at phase 1. 
In both phase 1 and phase 2 there is a certain percentage of waste and 
a certain percentage of the product at phase 2 is returned to phase 1 for 
a repeat of that process. These percentages are shown in the diagram in 
Figure 13.5. 

^ 

Xo 5 

.10 

.95 

^ 

^ . 0 5 

.85 

> 

FIGURE 13.5. A two-phase production process. 

For the mathematical model, let 

aij = percentage of the product in 

process i that goes to process j . 

Then 

A = 
0 .95 

.10 0 

And if we assume there is a fluctuation of at most 5% in the entries of A 
at time k, then 

A - .05A < Ak < A + .05A. 

Thus, if Xk — \x\ ,x2 ) where 

x\ ' = amount of product at phase 1 

x2 = amount of product at phase 2, 
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then our model would be 

xk+i = xkAk + b 

where b= (0,0) and numerically, 

(13.1) 

0 0.9025 
0.095 0 <Ak< 

0 0.9975 
0.105 0 

If we put this into our matrix equation form, we have 

(l.Zfc+i) = (l,xk) 
1 b 
0 Ak 

(We can ignore the first entries in these vectors to obtain (13.1).) Then 
E is convex and has vertices 

Ax = 

A2 = 

A3 = 

A4 

1 
0 
0 

1 
0 
0 

1 
0 
0 

1 
0 
0 

0 
0 

.095 

0 
0 

.105 

0 
0 

.095 

0 
0 

.105 

0 
.9025 
0 

0 
.9025 
0 

0 
.9975 
0 

0 
.9975 
0 

As in the previous example, we estimate component bounds on yE1 0 . 
Using (3 — 1, y = (1,0.5,0.5), and doing 10,000 and 20,000 runs, we have 
the data in the table below. 

no. of runs 
10,000 
20,000 

H 
(1, 1.0938, 0.9871) (1, 1.1170, 1.1142) 
(1, 1.0938, 0.9871) (1, 1.1170, 1.1142) 

We can actually calculate exact component bounds on yT,°° by using 

L = yA\° = (l, 1.0938, 0.9871) 

H = yA\° = (1, 1.1170, 1.1142). 
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1.14 

1.12 

1.1 

1.08 

"1 1.06 

>• 
1.04 

1.02 

1 

0.98 
1 

I I I 

• • • 

#« • 

*<-
%* I 
« f • 

. 09 1.095 

Final vectors for 1000 runs 

I I I 9 * 1 

• • • 1 I • 

t « « « • fc 

• « • 1 » » 

••• • • » 
%• • * • • 

1.1 1.105 1.11 1.115 1.12 1.125 
x axis 

FIGURE 13.6. Final vectors for 1000 runs. 

Thus, our estimated bounds are correct. To see why, it may be helpful to 
plot the points obtained in these runs. Projected into the yz-plane (All x 
coordinates are 1.), we have the picture shown in Figure 13.6. Observe 
that in this picture, many of the points are near vertices. The picture, to 
some extent, tells why the estimates were exact. 

To estimate convergence rates to 2/S°°, note that S is r-proper where 

E = 

Thus, 

r w ( 5 ) = max{| |62 | |1 , | |63 | | i}, 

where bk is the k-th row of B e E . So, 

TW (E) = .9975. 

The value of TW (S) can be made smaller by simultaneously scaling rows 
and columns to get each row sum the same. To do this let 

D = 

1 0 
0 1 

0 0 

Then, using the norm 

I 0.525 
V 0.9975 

1 0 0 
0 1 0 
0 0 0.2294 

||(l,a:)||d = | |(l,a:)I>||1) 
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FIGURE 13.7. Management structure. 

we have \\B\\d = ||£> 1B£)| | for any 3 x 3 matrix B, and so 

TW (S) = 0.2294. 

By Theorem 9.5, 

h {yXk,yX°°) < TW (S)fc h (y,2/£°°) (13.2) 

which shows more rapid convergence. 

The last example concerns management structures. 

Example 13.4 We analyze the management structure of a business by 
partitioning all managing personal into categories: 1 = staff and 2 = exec­
utive. We also have 3 = loss (due to change of job, retirement, etc.) state. 
And, we assume that we hire a percentage of the number of people lost. 

Suppose the 1 year flow in the structure is as given in the diagram in 
Figure 13.7. 

If Pk — {xk,Vk,Zk) gives the number of employees in 1,2,3, respectively, 
at time k, then 1 year later we would have 

xk+i = .85xk + .10yk + .05zk 

Vk+i = +-95yk + .05zfe 

Zfc+i = .15xfe + .02yk + .83zfc 

or 

Pk+i - Apk 
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" .85 .10 .05 
where A= 0 .95 .05 

.15 .02 .83 
Of course, we would expect retirements, new jobs, etc. to fluctuate some, 

and thus we suppose that matrix A fluctuates, yielding 

Pk+i = AkPk-

For this example, we will suppose that each Ak has no more than 2% fluc­
tuation from A, so 

A - .02A < Ak < A + .Q2A 

for all k. Let £ denote the set of all of these matrices. 
1 " 

The set £ is r-proper with E = 1 . Then 
1 

1 ' 
- 1 

0 
» 

0 " 
1 

- 1 
W = span 

whose unit circle in the 1-norm is 

convex {ci, 02,03} 

where C\ = ±A 

Theorem 2.12 

1 
- 1 
0 

,c2 = ± i 
1 
0 

- 1 
,c 3 = ± 5 

0 
1 

- 1 
Thus, using 

TW {A) = max j - ||ai - 0 2 ^ , ̂  IK - «3|li, ^ Ha2 ~ a3lli 

where ak is the k-th row of A. Using the formula, we get 

TW (S) < 0.9166. 

So E°° exists; however, convergence may be very slow. Thus, we only show 
what can occur to this system in 10 years by finding component bounds 

300 " 
Using k runs, we find the following. T,wx for x — 50 

15 
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0.493 

0.4925 

0.492 

0.4915 

1 0.491 

0.4905 

0.49 

0.4895 

0.489 
O.S 

Final \ectors from 1,000 runs. 

• 

• • • • • 

99 0.6 0.601 0.602 0.603 0.604 
xaxis 

, 
0.605 

FIGURE 13.8. Final vectors of 1000 runs. 

H 
500 
1000 

10,000 

(122.54, 73.63, 130.90) (125.42, 75.33, 134.01) 
(122.16, 73.73, 130.87) (125.32, 75.33, 134.05) 
(121.98, 73.51, 130.53) (125.42, 75.47, 134.20) 

A picture, showing where the system might be, depending on the run, can 
be seen, for 1,000 runs, in Figure 13.8. 

The points occurring at the end of the runs were mapped into i?2 using 

~ o 72 4 ' 
the matrix T • 

0 0 

13.4 Research Notes 

The work in this chapter extends that in Chapter 11. The taxi problem 
can be found in Howard (1960). 

Hartfiel (1998) showed how to obtain precise component bounds for those 
E which are intervals of stochastic matrices. However, no general such 
technique is known. 

file:///ectors
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13.5 MATLAB Codes 

Component Bounds for Demographic Problem 

A=[.2 .4 . 4 ; .9 0 0; 0 .9 0] ; 
B=[.196 .392 .392; .882 0 0;0 .882 0] 
L=ones( l ,3) ; 
H=zeros( l ,3) ; 
for m=l:5000 

x=[.3434; .3333; .3232]; 
for k=l:10 

for i = l : 3 
for j = i : 3 

G=rand; 
i f G<=.5 

d=l; 
e l se 

d=0; 
end 

C( i , j )=B( i , j )+d* .04*A( i , j ) ; 
end 

end 
x=C*x/norm(C*x,1); 

end 
for i = l : 3 
L( i )=min([L( i ) , x ( i ) ] ) ; 
H(i)=max([H(i), x ( i ) ] ) ; 
end 

end 
L 
H 

Final Vectors Graph for Demographics Problem 

A=[.2 .4 .4 ; .9 0 0; 0 .9 0 ] ; 
B=[.196 .392 .392; .882 0 0;0 .882 0 ] ; 
T=[0 sq r t (2 ) l / s q r t ( 2 ) ; 0 0 s q r t ( 6 ) / 2 ] ; 
hold on 
axis equal 
x l a b e l ( ' x a x i s ' ) 
y l a b e l O y a x i s ' ) 
t i t l e ( ' F i n a l vectors for 10 i t e r a t e s ' ) 
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hold on 

for r=l:1000 

x=[.3434; .3333; .3232]; 

for k=l:10 

for i=l:3 

for j = l : 3 
G=rand; 
if G<=.5 

d=l; 
e l s e 

d=0; 
end 
C( i , j )=B( i , j )+d* .04*A( i , j ) ; 

end 
end 
x=C*x/norm(C*x,l); 

end 
y=T*x 
p l o t ( y ( l ) , y ( 2 ) ) 

end 

Trajectory for Demographics Problem 

A=[.2 .4 .4 ; .9 0 0; 0 .9 0 ] ; 
B=[.196 .392 .392; .882 0 0;0 .882 0 ] ; 
T=[0 sq r t (2 ) l / s q r t ( 2 ) ; 0 0 s q r t ( 6 ) / 2 ] ; 
y=[.3434, .3333, .3232]; 
z=T*y; 
x=[.3434; .3333; .3232]; 
x l a b e l ( ' x a x i s ' ) 
y l a b e l ( ' y a x i s ' ) 
title('Ten iterates of a trajectory') 
hold on 

plot(z(l),z(2),'k:*') 
for k=l:10 

for i=l:3 

for j=l:3 
G=rand; 

if G<=.5 
d=l; 

else 
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d=0; 
end 
C ( i , j ) = B ( i , j ) + ( d * . 0 4 ) * A ( i > j ) ; 

end 
end 
x=C*x/norm(C*x,1) ; 
p=T*x; 
q=T*y; 
p l o t ( p ( l ) , p ( 2 ) , ' o > ) 
p l o t ( [ p ( l ) , q ( l ) ] , [ p ( 2 ) , q ( 2 ) ] ) 
y=x 

end 



Appendix 

We give a few results used in the book. 

Perron-Frobenius Theory: 

Let A be an n x n nonnegative matrix. If Ak > 0 for some positive 
integer k, then A is primitive. If A isn't primitive, but is irreducible, there 
is an integer r called A's index of imprimitivity. For this r, there is a 
permutation matrix P such that 

PAPt = 

0 
0 

Ai 0 
0 A2 

0 0 

where the r main diagonal 0-blocks are square and r the largest integer 
producing this canonical form. 

If A is nonnegative, A has an eigenvalue p — p (A) where 

Ay = py 

and y is a nonnegative eigenvector. If A is primitive, it has exactly one 
eigenvalue p where 

p>\\\ 
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for all eigenvalues A ^ p of A. If A is irreducible, with index r, then A has 
eigenvalues 

.22L .iX. 

p,pelr ,pelr ,... 

all of multiplicity one with all other eigenvalues A satisfying 

|A| < p. 

For the eigenvalue p, when A is irreducible (includes primitive), A has a 
unique positive stochastic eigenvector y, so that 

Ay = py. 

Hyslop 's Theorems: 

We give two of these theorems. In the last two theorems, divergence 
includes convergence to 0. 

T h e o r e m 14, Hyslop Let ak > 0 for all positive integers k. Let a^ ,a,i2,... 
oo 

be a rearrangement of a1, a2,.... Then ^ a^ converges if and only if 
fc=i 

oo 
y^ aik converges. 
fc=i 

oo 

T h e o r e m 5 1 , Hyslop Let a^ > 0 for all positive integers k. Then ^ ak 
k=l 

oo 
and Y[ (1 + ak) converge or diverge together. 

k=i 
oo oo 

Theorem 52, Hyslop If - 1 < ak < 0, then J2 ak and f\ (1 + ak) 
k=i fe=i 

converge or diverge together. 

Konig 's Infinity Lemma: 

The statement of this lemma follows. 

L e m m a Let Si, 52> • • • be a sequence of finite nonempty sets and suppose 
that S = USfe is infinite. Let A C S x S be such that for each k, and 
each x e Sk+i, there is a y e Sk such that (y,x) € A. Then there exist 
elements xi,x2,-.- of S such that xk € Sk and (x^, Zfc+i) 6 A for all k. 
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Nonhomogeneous Matrix Products 
Infinite products of matrices are used in nonhomogeneous Markov 
chains, Markov set-chains, demographics, probabilistic automata, 
production and manpower systems, tomography, and fractals. More 
recent results have been obtained in computer design of curves and 
surfaces. 

This book puts together much of the basic work on infinite products of 
matrices, providing a primary source for such work. This will eliminate 
the rediscovery of known results in the area, and thus save considerable 
time for researchers who work with infinite products of matrices. In 
addition, two chapters are included to show how infinite products of 
matrices are used in graphics and in systems work. 
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