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Preface

The authors of the chapters in this volume hail from academic disciplines with markedly
different substantive concerns. Indeed, we suspect that not many books have been written
with contributions from political scientists, electrical engineers, economists, agricultural
economists, geographers, statisticians, applied statisticians, mathematicians, public health
researchers, biostatisticians, and computer scientists. Yet, while the substantive problems
pursued by the diverse disciplinary origins of these researchers vary enormously, they all
have a deep, if not widely recognized, methodological common ground. Although the style
and terminology often obscure this fact, they all use roughly the same theories of inference
and many of the same statistical methods. The subject of this book is ecological inference, the
problem of reconstructing individual behavior from group-level data, which indeed turns
out to be a key problem in all these fields, as well as a variety of others, which we were not able
to include. Not only is ecological inference required in a growing number of applications, it
has a large number of scholars working on the methods of ecological inference – now larger
than at any time in history.

Because our work seems to have had a particularly visible role in the renewed interest
in ecological inference, we found ourselves in a unique position of getting to know many
otherwise unconnected scholars from this vast array of scholarly fields. So that our new
scholarly acquaintances could get to know each other, begin to build on each other’s work,
and start to create a more densely connected scholarly network that spans everyone’s tra-
ditional discipline, substantive concerns, and methodological commonalities, we held an
intensive conference at Harvard University in June of 2002. The early version of the chapters
herein were first presented during lively discussions at that conference. We hope the publica-
tion of this book enables methodologists whom we were not able to invite to the conference,
or who find themselves working on similar issues, to now be able to join in the discussion.
Others interested in different statistical problems may also find this work of some interest.
The limited information available means that ecological inference is an especially difficult
area of statistical inference, and so we have found that studying it illuminates fundamen-
tal problems that do not surface as clearly when learning statistics in the context of other
applications.

We thank Kim Schader and Jaronica Fuller for their help in organizing a superb conference,
and we appreciate the outstanding help of Kim, Colleen McMahon, Cindy Munroe, and
Alison Ney in preparing this volume. Special thanks go to the Center for Basic Research in
the Social Sciences for providing financial and logistical support for the conference. Our
appreciation goes to the anonymous reviewers from Cambridge University Press for their
insightful comments on the project. We especially appreciate the patience and efforts of our
authors on whom we inflicted proposals, travel, presentations, discussants, and revisions

ix
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x Preface

and then called on them for subsequent rounds of review to provide written comments on
each other’s chapters. Finally, we are indebted to the crew at Cambridge University Press,
including Ed Parsons and Eleanor Umali, for everything they have done to facilitate the
entire publication process.

Gary King
Ori Rosen
Martin Tanner
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INTRODUCTION

Information in Ecological Inference: An Introduction

Gary King, Ori Rosen, and Martin A. Tanner

Researchers in a diverse variety of fields often need to know about individual-level behavior
and are not able to collect it directly. In these situations, where survey research or other
means of individual-level data collection are infeasible, ecological inference is the best and
often the only hope of making progress. Ecological inference is the process of extracting
clues about individual behavior from information reported at the group or aggregate level.

For example, sociologists and historians try to learn who voted for the Nazi party in
Weimar Germany, where thoughts of survey research are seven decades too late. Market-
ing researchers study the effects of advertising on the purchasing behavior of individuals,
where only zip-code-level purchasing and demographic information are available. Political
scientists and politicians study precinct-level electoral data and U.S. Census demographic
data to learn about the success of candidate appeals with different voter groups in numerous
small areal units where surveys have been infeasible (for cost or confidentiality reasons). To
determine whether the U.S. Voting Rights Act can be applied in redistricting cases, expert
witnesses, attorneys, judges, and government officials must infer whether African Ameri-
cans and other minority groups vote differently from whites, even though the secret ballot
hinders the process and surveys in racially polarized contexts are known to be of little
value.

In these and numerous other fields of inquiry, scholars have no choice but to make
ecological inferences. Fortunately for them, we have witnessed an explosion of statistical
research into this problem in the last five years – both in substantive applications and in
methodological innovations. In applications, the methods introduced by Duncan and Davis
(1953) and by Goodman (1953) accounted for almost every use of ecological inference in
any field for fifty years, but this stasis changed when King (1997) offered a model that
combined and extended the approaches taken in these earlier works. His method now seems
to dominate substantive research in academia, in private industry, and in voting rights
litigation, where it was used in most American states in the redistricting period that followed
the 2000 Census. The number and diversity of substantive application areas of ecological
inference has soared recently as well. The speed of development of statistical research on
ecological inference has paralleled the progress in applications, too, and in the last five years
we have seen numerous new models, innovative methods, and novel computation schemes.
This book offers a snapshot of some of the research at the cutting edge of this field in the
hope of spurring statistical researchers to push out the frontiers and applied researchers to
choose from a wider range of approaches.

Ecological inference is an especially difficult special case of statistical inference. The diffi-
culty comes because some information is generally lost in the process of aggregation, and that
information is sometimes systematically related to the quantities of interest. Thus, progress

1
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2 Gary King, Ori Rosen, and Martin A. Tanner

in this field has usually come from discovering new sources of information or inventing
better ways of harvesting existing information and using it to improve our inferences about
individual-level behavior. This book is organized around these sources of information and
methods for their extraction. We begin this overview chapter in Section 0.1 by very briefly
summarizing some relevant prior research, on which the authors in this volume build. This
section also serves to introduce the notation used, when convenient, in the rest of the book.
Section 0.2 then summarizes the subsequent chapters.

0.1 NOTATION AND BACKGROUND

0.1.1 The Ecological Inference Problem

For expository purposes, we discuss only an important but simple special case of ecological
inference, and adopt the running example and notation from King (1997: Chapter 2).
The basic problem has two observed variables (Ti and Xi ) and two unobserved quantities of
interest (βb

i and βw
i ) for each of p observations. Observations represent aggregate units, such

as geographical areas, and each individual-level variable within these units is dichotomous.
To be more specific, in Table 0.1, we observe for each electoral precinct i (i = 1, . . . , p) the

fractions of voting age people who turn out to vote (Ti ) and who are black (Xi ), along with
the number of voting age people (Ni ). The quantities of interest, which remain unobserved
because of the secret ballot, are the proportions of blacks who vote (βb

i ) and whites who vote
(βw

i ). The proportions βb
i and βw

i are not observed because Ti and Xi are from different
data sources (electoral results and census data, respectively) and record linkage is impossible
(and illegal), and so the cross-tabulation cannot be computed.

Also of interest are the district-wide fractions of blacks and whites who vote, which are
respectively

Bb =
∑p

i=1 Ni Xiβ
b
i∑p

i=1 Ni Xi
(0.1)

and

Bw =
∑p

i=1 Ni (1 − Xi )βw
i∑p

i=1 Ni (1 − Xi )
. (0.2)

These are weighted averages of the corresponding precinct-level quantities. Some methods
aim to estimate only Bb and Bw without giving estimates of βb

i and βw
i for all i .

0.1.2 Deterministic and Statistical Approaches

The ecological inference literature before King (1997) was bifurcated between supporters of
the method of bounds, originally proposed by Duncan and Davis (1953), and supporters of
statistical approaches, proposed even before Ogburn and Goltra (1919), but first formalized
into a coherent statistical model by Goodman (1953, 1959).1 Although Goodman and

1 For the historians of science among us: despite the fact that these two monumental articles were written by two
colleagues and friends in the same year and in the same department and university (the Department of Sociology
at the University of Chicago), the principals did not discuss their work prior to completion. Even judging by
today’s standards, nearly a half-century after their publication, the articles are models of clarity and creativity.
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Table 0.1 Notation for precinct i

Voting decision
Race of voting
age person Vote No vote

Black βb
i 1 − βb

i X i

White βw
i 1 − βw

i 1 − X i

Ti 1 − Ti

Note: The goal is to estimate the quantities of
interest, βb

i (the fraction of blacks who vote) and
βw

i (the fraction of whites who vote), from the
aggregate variables X i (the fraction of voting age
people who are black) and Ti (the fraction of people
who vote), along with N i (the known number of
voting age people).

Duncan and Davis moved on to other interests following their seminal contributions, most
of the ecological inference literature in the five decades since 1953 was an ongoing war
between supporters of these two key approaches, often without the usual academic decorum.

0.1.2.1 Extracting Deterministic Information: The Method of Bounds

The purpose of the method of bounds and its generalizations is to extract deterministic
information, known with certainty, about the quantities of interest.

The intuition behind these quantities is simple. For example, if a precinct contained 150
African-Americans and 87 people in the precinct voted, then how many of the 150 African-
Americans actually cast their ballot? We do not know exactly, but bounds on the answer are
easy to obtain: in this case, the answer must lie between 0 and 87. Indeed, conditional only on
the data being correct, [0, 87] is a 100% confidence interval. Intervals like this are sometimes
narrow enough to provide meaningful inferences, and sometimes they are too wide, but the
ability to provide (nontrivial) 100% confidence intervals in even some situations is quite
rare in any statistical field.

In general, before seeing any data, the unknown parameters βb
i and βw

i are each bounded
on the unit interval. Once we observe Ti and Xi , they are bounded more narrowly, as

βb
i ∈

[
max

(
0,

Ti − (1 − Xi )

Xi

)
, min

(
Ti

Xi
, 1

)]
,

βw
i ∈

[
max

(
0,

Ti − Xi

1 − Xi

)
, min

(
Ti

1 − Xi
, 1

)]
.

(0.3)

Deterministic bounds on the district-level quantities Bb and Bw are weighted averages of
these precinct-level bounds.

These expressions indicate that the parameters in each case fall within these deterministic
bounds with certainty, and in practice they are almost always narrower than [0, 1]. Whether
they are narrow enough in any one application depends on the nature of the data.
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0.1.2.2 Extracting Statistical Information: Goodman’s Regression

Leo Goodman’s (1953, 1959) approach is very different from Duncan and Davis’s. He looked
at the same data and focused on the statistical information. His approach examines variation
in the marginals (Xi and Ti ) over the precincts to attempt to reason back to the district-wide
fractions of blacks and whites who vote, Bb and Bw . The outlines of this approach, and the
problems with it, have been known at least since Ogburn and Goltra (1919). For example,
if in precincts with large proportions of black citizens we observe that many people do not
vote, then it may seem reasonable to infer that blacks turn out at rates lower than whites.
Indeed it often is reasonable, but not always. The problem is that it could instead be the
case that the whites who happen to live in heavily black precincts are the ones who vote
less frequently, yielding the opposite ecological inference with respect to the individual-level
truth.

What Goodman accomplished was to formalize the logic of the approach in a simple
regression model, and to give the conditions under which estimates from such a model are
unbiased. To see this, note first that the accounting identity

Ti = Xiβ
b
i + (1 − Xi )β

w
i (0.4)

holds exactly. Goodman showed that a regression of Ti on Xi and 1 − Xi with no constant
term could be used to estimate Bb and Bw , respectively. The key assumption necessary
for unbiasedness that Goodman identified is that the parameters and Xi are uncorrelated:
Cov(βb

i , Xi ) = Cov(βw
i , Xi ) = 0. In the example, the assumption is that blacks vote in the

same proportions in homogeneously black areas as in more integrated areas.2 Obviously,
this is true sometimes and it is false at other times.

As Goodman recognized, when this key assumption does not hold, estimates from the
model will be biased. Indeed, they can be very biased, outside the deterministic bounds,
and even outside the unit interval. Goodman’s technique has been used extensively in the
last half-century, and impossible estimates occur with considerable frequency (some say in
a majority of real applications; see Achen and Shively, 1995).

0.1.3 Extracting Both Deterministic and Statistical Information: King’s EI Approach

From 1953 until 1997, the only two approaches used widely in practice were the method of
bounds and Goodman’s regression. King’s (1997) idea was that the insights from these two
conflicting literatures in fact do not conflict with each other; the sources of information are
largely distinct and can be combined to improve inference overall and synergistically. The
idea is to combine the information from the bounds, applied to both quantities of interest
for each and every precinct, with a statistical approach for extracting information within
the bounds. The amount of information in the bounds depends on the data set, but for
many data sets it can be considerable. For example, if precincts are spread uniformly over
a scatterplot of Xi by Ti , the average bounds on βb

i and βw
i are narrowed from [0, 1] to

less than half of that range – hence eliminating half of the ecological inference problem
with certainty. This additional information also helps make the statistical portion of the
model far less sensitive to assumptions than previous statistical methods that exclude the
information from the bounds.

To illustrate these points, we first present all the information available without making any
assumptions, thus extending the bounds approach as far as possible. As a starting point, the

2 King (1997: Chapter 3) showed that Goodman’s assumption was necessary but not sufficient. To have unbiased-
ness, it must also be true that the parameters and Ni are uncorrelated.
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Ti 

Figure 0.1. Two views of the same data: (a) a scatterplot of the observables, Xi by Ti ; (b) this same
information as a tomography plot of the quantities of interest, βb

i by βw
i . Each precinct i that appears

as a point in (a) appears instead as a line (because of information lost due to aggregation) in (b). For
example, precinct 52 appears as the dot with a little square around it in (a), and as the dark line in (b).
The data are from King (1997: Figures 5.1, 5.5).

graph in Figure 0.1a provides a scatterplot of a sample data set as observed, Xi horizontally
by Ti vertically. Each point in this plot corresponds to one precinct, for which we would like
to estimate the two unknowns. We display the unknowns in part (b) of the same figure; any
point in that graph portrays values of the two unknowns, βb

i (plotted horizontally) and βw
i

(vertically). Ecological inference involves locating, for each precinct, the one point in this
unit square corresponding to the true values of βb

i and βw
i , since values outside the square

are logically impossible.
To map the knowns onto the unknowns, King began with Goodman’s accounting identity

from Equation 0.4. From this equation, which holds exactly, we solve for one unknown in
terms of the other:

βw
i =

(
Ti

1 − Xi

)
−

(
Xi

1 − Xi

)
βb

i , (0.5)

which shows that βw
i is a linear function of βb

i , where the intercept and slope are known
(since they are functions of the data, Xi and Ti ).

King then maps the knowns from Figure 0.1a onto Figure 0.1b by using the linear re-
lationship in Equation 0.5. A key point is that each dot in (a) can be expressed, without
assumptions or loss of information, as what King called a “tomography” line within the unit
square in (b).3 It is precisely the information lost due to aggregation that causes us to have
to plot an entire line (on which the true point must fall) rather than the goal of one point
for each precinct in Figure 0.1b. In fact, the information lost is equivalent to having a graph
of the (βb

i , βw
i ) points but having the ink smear, making the points into lines and partly but

not entirely obscuring the correct positions of the points.

3 King also showed that the ecological inference problem is mathematically equivalent to the ill-posed “tomog-
raphy” problem of many medical imaging procedures (such as CAT and PET scans), where one attempts to
reconstruct the inside of an object by passing X-rays through it and gathering information only from the out-
side. Because the line sketched out by an X-ray is closely analogous to Equation 0.5, King called the latter a
tomography line and the corresponding graph a tomography graph.
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What does a tomography line tell us? Before we know anything, we know that the true
(βb

i , βw
i ) point must lie somewhere within the unit square. After Xi and Ti are observed for a

precinct, we also know that the true point must fall on a specific line represented by Equation
0.5 and appearing in the tomography plot in Figure 0.1. In many cases narrowing the region
to be searched for the true point from the entire square to the one line in the square can
provide a significant amount of information. To see this, consider the point enclosed in a
box in Figure 0.1a, and the corresponding dark line in Figure 0.1b. This precinct, number 52,
has observed values of X52 = 0.88 and T52 = 0.19. As a result, substituting into Equation
0.5 gives βw

i = 1.58 − 7.33βb
i , which when plotted then appears as the dark line in (b).

This particular line tells us that in our search for the true (βb
52, βw

52) point in (b), we can
eliminate with certainty all area in the unit square except that on the line, which is clearly
an advance over not having the data. Translated into the quantities of interest, this line tells
us (by projecting it downward to the horizontal axis) that wherever the true point falls on
the line, βb

52 must fall in the relatively narrow bounds of [0.07, 0.21]. Unfortunately, in this
case, βw

i can only be bounded (by projecting to the left) to somewhere within the entire
unit interval. More generally, lines that are relatively steep, like this one, tell us a great deal
about βb

i and little about βw
i . Tomography lines that are relatively flat give narrow bounds

on βw
i and wide bounds on βb

i . Lines that cut off the bottom left (or top right) of the figure
give narrow bounds on both quantities of interest.

If the only information available to learn about the unknowns in precinct i is Xi and Ti ,
a tomography line like that in Figure 0.1 exhausts all this available information. This line
immediately tells us the known bounds on each of the parameters, along with the precise
relationship between the two unknowns, but it is not sufficient to narrow in on the right
answer any further. Fortunately, additional information exists in the other observations in
the same data set (X j and Tj for all i �= j ), which, under the right assumptions, can be used
to learn more about βb

i and βw
i in our precinct of interest.

In order to borrow statistical strength from all the precincts to learn about βb
i and βw

i in
precinct i , some assumptions are necessary. The simplest version (i.e., the one most useful
for expository purposes) of King’s model requires three assumptions, each of which can be
relaxed in different ways.

First, the set of (βb
i , βw

i ) points must fall in a single cluster within the unit square. The
cluster can fall anywhere within the square; it can be widely or narrowly dispersed or highly
variable in one unknown and narrow in the other; and the two unknowns can be positively,
negatively, or not at all correlated over i . An example that would violate this assumption
would be two or more distinct clusters of (βb

i , βw
i ) points, as might result from subsets of

observations with fundamentally different data generation processes (such as from markedly
different regions). The specific mathematical version of this one-cluster assumption is that
βb

i and βw
i follow a truncated bivariate normal density

TN(βb
i , βw

i |B̆, �̆) = N(βb
i , βw

i |B̆, �̆)
1(βb

i , βw
i )

R(B̆, �̆)
, (0.6)

where the kernel is the untruncated bivariate normal,

N(βb
i , βw

i |B̆, �̆) = (2π)−1|�̆|−1/2 exp

[
−1

2
(βi − B̆)′�̆−1(βi − B̆)

]
, (0.7)

and 1(βb
i , βw

i ) is an indicator function that equals one if βb
i ∈ [0, 1] and βw

i ∈ [0, 1] and
zero otherwise. The normalization factor in the denominator, R(B̆, �̆), is the volume under
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the untruncated normal distribution above the unit square:

R(B̆, �̆) =
∫ 1

0

∫ 1

0
N(βb , βw |B̆, �̆) dβbdβw . (0.8)

When divided into the untruncated normal, this factor keeps the volume under the truncated
distribution equal to one. The parameters of the truncated density, which we summarize as

ψ̆ = {B̆b , B̆
w , σ̆b , σ̆w , ρ̆} = {B̆, �̆}, (0.9)

are on the scale of the untruncated normal (and so, for example, B̆b and B̆w need not be
constrained to the unit interval even though βb

i and βw
i are constrained by this density).

The second assumption, which is necessary to form the likelihood function, is the absence
of spatial autocorrelation: conditional on Xi , Ti and Tj are mean-independent. Violations
of this assumption in empirically reasonable (and even some unreasonable) ways do not
seem to induce much bias.

The final, and by far the most critical, assumption is that Xi is independent of βb
i and

βw
i . The three assumptions together produce what has come to be known as the basic EI

model.4 King also generalizes this assumption, in what has come to be known as the extended
EI model, by allowing the truncated normal parameters to vary as functions of measured
covariates, Zb

i and Zw
i , giving

B̆
b
i = [

φ1(σ̆ 2
b + 0.25) + 0.5

] + (Zb
i − Z̄b)αb ,

B̆
w
i = [

φ2(σ̆ 2
w + 0.25) + 0.5

] + (Zw
i − Z̄w )αw ,

(0.10)

where αb and αw are parameter vectors to be estimated along with the original model
parameters and that have as many elements as Zb

i and Zw
i have columns. This relaxes the

mean independence assumptions to

E(βb
i |Xi , Zi ) = E(βb

i |Zi ),

E(βw
i |Xi , Zi ) = E(βw

i |Zi ).

Note that this extended model also relaxes the assumptions of truncated bivariate normality,
since there is now a separate density being assumed for each observation. Because the bounds,
which differ in width and information content for each i , generally provide substantial
information, even Xi can be used as a covariate in Zi . (The recommended default setting in
EI includes Xi as a covariate with a prior on its coefficient.) In contrast, under Goodman’s
regression, which does not include information in the bounds, including Xi leads to an
unidentified model (King, 1997: Section 3.2).

These three assumptions – one cluster, no spatial autocorrelation, and mean independence
between the regressor and the unknowns conditional on Xi and Zi – enable one to compute a
posterior (or sampling) distribution of the two unknowns in each precinct. A fundamentally
important component of EI is that the quantities of interest are not the parameters of the
likelihood, but instead come from conditioning on Ti and producing a posterior for βb

i
and βw

i in each precinct. Failing to condition on Ti and examining the parameters of the
truncated bivariate normal only makes sense if the model holds exactly and so is much more

4 The use of EI to name this method comes from the name of his software, available at http://GKing.
Harvard.edu.
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model-dependent than King’s approach. Since the most important problem in ecological
inference modeling is precisely model misspecification, failing to condition on T assumes
away the problem without justification. This point is widely regarded as a critical step in
applying the EI model (Adolph and King, with Herron and Shotts, 2003).

When bounds are narrow, EI model assumptions do not matter much. But for precincts
with wide bounds on a quantity of interest, inferences can become model-dependent. This
is especially the case in ecological inference problems, precisely because of the loss of infor-
mation due to aggregation. In fact, this loss of information can be expressed by noting that
the joint distribution of βb

i and βw
i cannot be fully identified from the data without some

untestable assumptions. To be precise, distributions with positive mass over any curve or
combination of curves that connects the bottom left point (βb

i = 0, βw
i = 0) to the top right

point (βb
i = 1, βw

i = 1) of a tomography plot cannot be rejected by the data (King, 1997:
191). Other features of the distribution are estimable. This fundamental indeterminacy is of
course a problem, because it prevents pinning down the quantities of interest with certainty;
but it can also be something of an opportunity, because different distributional assumptions
can lead to the same estimates, especially in that only those pieces of the distributions above
the tomography lines are used in the final analysis.

0.1.4 King, Rosen, and Tanner’s Hierarchical Model

In the continuing search for more information to bring to bear on ecological inferences, King,
Rosen, and Tanner (1999) extend King’s (1997) model another step. They incorporate King’s
main advance of combining deterministic and statistical information, but begin modeling
a step earlier, at the individuals who make up the counts. They also build a hierarchical
Bayesian model, using easily generalizable Markov chain Monte Carlo (MCMC) technology
(Tanner, 1996).

To define the model formally, let T ′
i denote the number of voting age people who turn out

to vote. At the top level of the hierarchy they assume that T ′
i follows a binomial distribution

with probability equal to θi = Xi β
b
i + (1 − Xi )βw

i and count Ni . Note that at this level it
is assumed that the expectation of T ′

i , rather than T ′
i itself, is equal to Xi β

b
i + (1 − Xi )βw

i .
In other words, King (1997) models Ti as a continuous proportion, whereas King, Rosen,
and Tanner (1996) recognize the inherently discrete nature of the counts of voters that go
into computing this proportion. The two models are connected, of course, since T ′

i /Ni

approaches θi as Ni gets large.
The connection with King’s tomography line can be seen in the contribution of the data

from precinct i to the likelihood, which is

(
Xiβ

b
i + (1 − Xi )β

w
i

)T ′
i
(
1 − Xi β

b
i − (1 − Xi )β

w
i

)Ni −T ′
i . (0.11)

By taking the logarithm of this contribution to the likelihood and differentiating with respect
to βb

i and βw
i , King, Rosen, and Tanner show that the maximum of Equation 0.11 is not a

unique point, but rather a line whose equation is given by the tomography line in Equation
0.5. Thus, the log likelihood for precinct i looks like two playing cards leaning against each
other. As long as Ti is fixed and bounded away from 0.5 (and Xi is a fixed known value
between 0 and 1), the derivative at this point is seen to increase with Ni , i.e., the pitch
of the playing cards increases with the sample size. In other words, for large Ni , the log
likelihood for precinct i degenerates from a surface defined over the unit square into a single
playing card standing perpendicular to the unit square and oriented along the corresponding
tomography line.
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At the second level of the hierarchical model, βb
i is distributed as a beta density with

parameters cb and db , and βw
i follows an independent beta with parameters cw and dw .

While βb
i and βw

i are assumed a priori independent, they are a posteriori dependent. At the
third and final level of the hierarchical model, the unknown parameters cb , db , cw , and dw

follow an exponential distribution with a large mean.
A key advantage of this model is that it generalizes immediately to arbitrarily large R × C

tables. This approach was pursued by Rosen, Jiang, King, and Tanner (2001), who also
provided a much faster method-of-moments-based estimator. For an application, see King,
Rosen, Tanner, and Wagner (2003).

0.2 NEW SOURCES OF INFORMATION IN ECOLOGICAL INFERENCE

We did not attempt to impose an ex ante structure on the authors as they were writing, and
do not pretend that all the chapters fit into neatly delineated categories. This book is only
intended to be a snapshot of a fast-growing field. If you are looking for a textbook, check
back in a few years when we have learned more!

Nevertheless, we did need to order the chapters in some way. Our choice was to sort them
according to the new sources of information they bring to bear on the ecological inference
problem. Thus, Part One offers some alternative baselines that help indicate how much
information is lost due to aggregation, and precisely what information is left. For example,
in Chapter 1, Jon Wakefield offers a “baseline model,” which attempts to make minimal
assumptions about individuals and then aggregate up. Remarkably, the likelihood for this
model is not flat over the tomography line, even without priors. Similarly, in Chapter
2, Steel, Beh, and Chambers provide a means of formally quantifying the information
lost in the aggregation process and thus precisely how much information is left in the
aggregate data. They do this through parametric models and hypothesis tests, such as a test
for the homogeneity of βb

i and βw
i across tables. The authors also show how the increase of

even a small amount of information in a standard ecological inference model can greatly
improve inferences, even if survey respondents cannot be grouped into precincts or relevant
geographic areas. They illustrate their ideas with data from the 1996 Australian census.
And finally, in Chapter 3, Stephen Voss shows how the most commonly used method, King’s
ecological inference model, provides a baseline for understanding and parsing out contextual
and compositional effects intertwined in aggregate data.

Part Two of this book is devoted to including sources of information through new models
and methods. In Chapter 4, Jeff Lewis finds information where no one had looked before,
by including two or more parallel and correlated ecological inference models in the same
analysis. His approach, which can be thought of as analogous to a Bayesian version of
a “seemingly unrelated regression model,” extends King’s model by incorporating a key
feature of numerous data sources.

In Chapter 5, Bernard Grofman and Samuel Merrill propose three relatively simple meth-
ods for ecological inference where the data consist of 2 × 2 tables. All three introduce new
assumptions justified by the authors in terms similar to local smoothing algorithms. The
idea is that precincts similar to other precincts on the basis of observables are likely to
be similar on unobservables too. The argument introduces a form of information that the au-
thors use to identify where on the tomography lines the point estimates probably lie. The first
method is based on minimizing the squared distances from the overall tomography line to
each of the precinct-level tomography lines. The other two methods are constrained variants
of Goodman regression. Specifically, the second method uses analogous distances to those
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used in the first method, but on transformed coordinates rather than the (βb
i , βw

i ) coordi-
nates. The last method combines Goodman regression with the Duncan–Davis method of
bounds. The proposed methods are shown to give answers similar to King’s model in several
real data sets.

Kevin Corder and Christina Wolbrecht, in Chapter 6, are concerned with estimating
newly enfranchised women’s turnout in the 1920 U.S. elections in three states. They use
the hierarchical Bayesian binomial–normal model proposed by Wakefield but employ in-
formative priors based on prior elections and census data. Their central contribution is to
recognize new forms of information in terms of detailed prior, nonsample knowledge of the
problem. For example, we know almost for certain that in this period, when women had just
gotten the vote, they cast their ballots less frequently than men. In statistical terms, we are
essentially certain that βb

i > βw
i for all i and so we can sample from only the portion of the

tomography line satisfying the constraint. This greatly increases the information content in
their analyses.

In Chapter 7, George Judge, Douglas Miller, and Wendy Tam Cho model the ecological
inference problem as an ill-posed inverse problem with a solution selected from the set of
feasible solutions – either via maximizing entropy, which implies one set of assumptions, or
using the Cressie–Read statistic, which allows for the choice among a variety of others. This
approach enables the authors to bring new information to the ecological inference problem
in the form of assumptions about individual behavior, often learned from prior survey and
other work. The model can be fitted to R × C tables and allows for explanatory variables
reflecting individual spatial or temporal heterogeneity.

In Chapter 8, Ben Pelzer, Rob Eisinga, and Philip Hans Franses propose a model for
estimating individual-level binary transitions based on repeated cross-sectional data. The
basic problem is equivalent to the classic ecological inference problem with 2 × 2 tables,
where the unknown transition probabilities play the role of the unknown cell probabilities.
They introduce assumptions in order to model important information available as lags
of some exogenous variables. Inference is performed via maximum likelihood, parametric
bootstrap and MCMC methods. The methodology is illustrated with data on personal
computer ownership in Dutch households.

Part Three is devoted to methods that attempt to include geographic or time series
information in models of ecological inference. In Chapter 10, Kevin Quinn develops Bayesian
hierarchical models for ecological inference in the presence of temporal dependence. He
builds on Wakefield’s approximation to a convolution of binomials and puts priors on the
approximate likelihood’s parameters reflecting temporal dependence. This class of models
may also be useful in some situations for spatial or simultaneous spatiotemporal dependence.
Inference is performed via MCMC methods. Quinn studies the methodology via simulated
data, as well as by analyzing real data on voting registration by race in Louisiana counties
over a 14-year period. Carol Gotway Crawford and Linda Young, in Chapter 10, give an
overview of the ecological inference problem from a spatial statistics perspective. These
authors point out that ecological inference is a special case of the change-of-support problem
in geostatistics, which refers to the geometric size, shape, and spatial orientation of the
regions associated with the observed measurements. Changing the support of a variable
thus creates a new variable. The problem of how the spatial variation in one variable relates
to that in the other is the change-of-support problem, a possible solution being spatial
smoothing. The authors illustrate these issues with a case study on low-birth-weight babies.

In Chapter 11, Ernesto Calvo and Marcelo Escolar consider ecological inference in the
presence of spatial heterogeneity, which may lead to underestimated standard errors or new
forms of bias on top of the aggregation bias inherent in ecological inference. In this chapter
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the authors allow for spatial heterogeneity by using geographically weighted regression in the
context of Goodman’s and King’s ecological inference models. Their idea is to incorporate a
nonparametric term reflecting spatial effects into these models, resulting in semiparametric
models. These models are explored via simulation and with Peronist voting data.

Chapter 12 introduces methods of ecological inference that draw on the extensive spatial
epidemiology literature. Therein Sebastien Haneuse and Jon Wakefield show how to model
spatial and nonspatial heterogeneity. They incorporate important new information into
ecological inference by modeling the fact that multiple diseases share common risk factors,
and these risk factors often exhibit spatial clustering. Modeling this clustering, they show,
can greatly improve ecological inferences.

Finally, in Part Four, we include comparisons of some existing ecological inference meth-
ods. Ruth Salway and Jon Wakefield contrast ecological inference in political science, which
tends to focus on descriptive quantities such as the fraction of African Americans voting
for the Democrats, and in epidemiology, in which interest is primarily in causal inferences
(Chapter 13). Of course, political scientists and most others are also interested in causal
inferences, and so the work here should be of general interest. The key problem in making
causal inference is confounding, and so Salway and Wakefield analyze the combined effects
of confounding bias along with aggregation bias. They show how sources of information
about confounding can help improve ecological inferences.

Kenneth Benoit, Michael Laver, and Daniela Giannetti in Chapter 14 discuss the use of
King’s model in the context of an extensive split-ticket voting application. In Chapter 15,
Rogério Silva de Mattos and Alvaro Veiga compare Goodman’s regression, King’s model,
and the hierarchical beta-binomial model (King, Rosen, and Tanner, 1999). To facilitate
the simulation-based comparison, the authors use their own version of the beta–binomial
model where estimation is performed via the ECM algorithm. The authors’ main conclusion
is that King’s model is superior to the other methods in predictive ability.

In Chapter 16, Micah Altman, Jeff Gill, and Michael McDonald compare the numerical
properties of implementations of Goodman regression, King’s model, and McCue’s method.
They look at sources of numerical inaccuracy such as floating point arithmetic, nonlinear
optimization, and pseudorandom numbers. The stability and accuracy of the algorithms are
tested by introducing random perturbations into the data. The authors’ recommendation
is to use data perturbations as a diagnostic test in addition to any other diagnostic tools
associated with these ecological inference methods.
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PART ONE

1 Prior and Likelihood Choices in the Analysis of Ecological Data

Jonathan Wakefield

ABSTRACT

A general statistical framework for ecological inference is presented, and a number of previously
proposed approaches are described and critiqued within this framework. In particular, the assumptions
that all approaches require to overcome the fundamental nonidentifiability problem of ecological
inference are clarified. We describe a number of three-stage Bayesian hierarchical models that are
flexible enough to incorporate substantive prior knowledge and additional data. We illustrate that
great care must be taken when specifying prior distributions, however. The choice of the likelihood
function for aggregate data is discussed, and it is argued that in the case of aggregate 2 × 2 data, a
choice that is consistent with a realistic sampling scheme is a convolution of binomial distributions,
which naturally incorporate the bounds on the unobserved cells of the constituent 2 × 2 tables. For
large marginal counts this choice is computationally daunting, and a simple normal approximation
previously described by Wakefield (2004) is discussed. Various computational schemes are described,
ranging from an auxiliary data scheme for tables with small counts, to Markov chain Monte Carlo
algorithms that are efficient for tables with larger marginal counts. We investigate prior, likelihood,
and computational choices with respect to simulated data, and also via registration–race data from
four southern U.S. states.

1.1 INTRODUCTION

Ecological inference problems, in which aggregate summaries rather than individual data
are observed, are common in many disciplines, including political science, sociology, and
epidemiology; see Achen and Shively (1995), Cleave, Brown, and Payne (1995), King (1997),
and other chapters in this volume for examples and references to specific applications. In
this chapter we consider the situation in which the association between two binary variables
is to be investigated. In the case in which the study area contains m areas, the data consist of
the observed margins in each of the m constituent 2 × 2 tables.

To motivate our discussion we introduce a specific example. The data concern voter
registration and racial background information for individuals from 275 counties in four
southern U.S. states: Florida, Louisiana, and North and South Carolina. The data we analyze
consist of the total voting age population, the total black population, and the number who
were registered to vote, in 1968. These data have previously been analyzed by King (1997) and
King, Rosen, and Tanner (1999). Figure 1.1 plots the proportion of registered voters against
the proportion black, in each of the 275 counties. Though the data from the three counties
in the bottom right (those with the lowest populations registered) appear influential, the
general trend is that the proportion registered decreases as the proportion in the county
who are black increases, the obvious explanation being that blacks are less likely to register.
Alternative explanations exist, however; in particular, the same pattern could be observed

13
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Figure 1.1. Registration–race data from four states: proportion registered, q̃ i , versus proportion black,
xi , i = 1, . . . , 275. The solid line shows the weighted least squares linear fit, and the dotted line the
weighted least squares quadratic fit.

if whites are less likely to register if in a predominantly black county, if blacks are more
likely to register in a predominantly white county, or if individual race is an unimportant
predictor of registration behavior, and instead an individual’s behavior, whether black or
white, is predicted by the proportion of blacks in the area. In each of these scenarios the
proportion black/white in an area is an example of a contextual variable, a variable reflecting
characteristics of individuals in a shared environment. Hence to infer from Figure 1.1 that
blacks are more likely to register than whites could be an example of what Selvin (1958),
following the influential article of Robinson (1950), called the ecological fallacy, an incorrect
inference concerning individual effects gleaned from aggregate data. In an extreme case, the
aggregate relationship could be the reverse of the true individual relationship, a phenomenon
closely related to Simpson’s paradox (Simpson, 1951); see Wakefield (2004) for further
discussion.

The outline of this chapter is as follows. In Section 1.2 we describe the fundamental diffi-
culty of ecological inference, and in Section 1.3 we describe a particular likelihood function
and compare it with alternatives that have been explicitly or implicitly used previously. In
Section 1.4 various prior distributions are considered, including hierarchical approaches.
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Table 1.1 Table summarizing data
in area i

Y = 0 Y = 1
x = 0 Y0i N 0i

x = 1 Y1i N 1i

N i − Yi Y i N i

Note: In an ecological study the margins
only are observed.

Section 1.5 describes how computation may be carried out for a number of the Bayesian
models discussed in the previous sections. A number of simulated examples are considered
in Section 1.6, and Section 1.7 provides an analysis of the race–registration data. Section 1.8
contains a concluding discussion. The hierarchical models described in this chapter may be
fitted using the freely availableWinBUGS software (Spiegelhalter, Thomas, and Best, 1998);
an appendix gives sample code.

1.2 THE FUNDAMENTAL DIFFICULTY OF ECOLOGICAL INFERENCE

For a generic individual, Y = 0 [1] will denote the event that an individual is unregistered
[registered] (the response), and X = 0 [1] the event that an individual is of black [white]
race (the predictor). Table 1.1 describes the notation that we will use throughout the paper.
In an aggregate situation we do not observe the internal counts Y0i , Y1i ; the fundamental
difficulty of ecological inference is that we are interested in these two quantities, but it is
their sum Yi only that we observe.

In the ecological inference literature the inference problem has often been treated as
the imputation of the missing data, Y0i , Y1i , and due to this perspective approaches have
often implicitly adopted a finite sampling view. In contrast to this approach, in this paper
we consider a hypothetical infinite population of exchangeable blacks and whites within
each area, and define the parameter p j i to be the fraction of race j in this hypothetically
infinite population of area i that register. Hence, as we illustrate below, p j i also represents
the probability that a randomly selected individual of race j in area i registers. Under
this viewpoint an estimate of this probability, p̂ j i , is not in general equal to the true (but
unobserved) fraction registered, Y j i /Nj i , which we denote by p̃ j i . In a finite sample view
we may simply consider the Nj i individuals as consisting of Y j i who register, and Nj i − Y j i

who are unregistered, without consideration of an infinite population. In this latter view,
if Y j i were observed then inference is complete since the population has been observed. In
contrast, in the infinite population view, even if Y j i is observed, uncertainty concerning p j i

will remain (though may be small if Nj i is large). To draw a link between the two views
suppose there are N∗

j i ≥ Nj i hypothetical individuals of race j in area i , and Y ∗
j i of these

are registered. We now draw a random sample of size Nj i of these individuals; the number
registered, Y j i , is then a central hypergeometric random variable with parameters Nj i , N∗

j i ,
Y ∗

j i , that is

Pr(Y j i = y|Nj i , N∗
j i , Y ∗

j i ) =

(
Y ∗

j i

y

) (
N∗

j i − Y ∗
j i

Nj i − y

)
(

N∗
j i

Nj i

) ,
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for y = max(0, Nj i − N∗
j i + Y ∗

j i ), . . . , min(Y ∗
j i , Nj i ) (see McCullagh and Nelder, 1989,

p. 256, for more details). Now suppose Y ∗
j i and N∗

j i approach infinity in such a way that
Y ∗

j i /N∗
j i → p j i . Then the number registered is a binomial random variable

Pr(Y j i = y|p j i , Nj i ) =
(

Nj i

y

)
py

j i (1 − p j i )
Nj i −y ,

for y = 0, . . . , Nj i , and this is the probability generating mechanism that we will assume
for the unobserved individual-level data, Y j i , in the hierarchical models we suggest later in
the paper.

To see the indeterminacy of ecological inference more clearly we write, for area i ,

Yi

Ni
= Y0i + Y1i

Ni
= Y0i

N0i
× N0i

Ni
+ Y1i

N1i
× N1i

Ni

which may be rewritten as

q̃ i = p̃0i × xi + p̃1i × (1 − xi ), (1.1)

where q̃ i is the fraction registered, p̃0i and p̃1i are the black and white fractions registered,
and xi and 1 – xi are the proportions black and white respectively; the latter are observed
while the registration fractions for blacks and whites are unobserved. From Equation 1.1
we see that many competing explanations are possible for the observed q̃ i ; that is there are
many true fractions p̃0i , p̃1i , that may lead to the observed q̃ i . Another way of expressing
this unidentifiability is that the overall fraction is a convex combination of p̃0i and p̃1i . In
terms of the underlying probabilities p j i , there is no constraint beyond 0 < p j i < 1. This
is a crucial difference between the finite sample and infinite sampling views.

We now describe two extreme explanations that are consistent with Equation 1.1. First,
following Goodman (1953, 1959), we may assume that p̃0i and p̃1i are such that

E [ p̃ j i |xi ] = p j , (1.2)

j = 0, 1, so that the fractions are uncorrelated with xi . The expectation here is with respect
to repeated sampling in areas with proportion of blacks xi . We then have

E [q̃ i |xi ] = p0 × xi + p1 × (1 − xi ) = a + bxi , (1.3)

where a = p1 and b = p0 – p1. Although it is only the expectations of the fractions that are
considered constant in Equation 1.2, the usual way of imputing the internal fractions is to
simply take

p̃ j i = p j ,

which is equivalent to a model in which the fractions themselves are constant. This model
has sometimes been described as Goodman regression, but we prefer the name ecological
regression, as Goodman did not encourage general use of the approach, and in particular
was aware that the “constancy assumption” (1.2) would often not be appropriate. The
assumption of constancy allows the mean to be derived, but to formulate an estimation
method it would be desirable to derive the variance and covariance of Yi = Ni q̃ i . In general
it has been assumed that counts in different areas are independent (see Chapter 12 of this book
for details of a hierarchical model that incorporates spatial dependence), and various forms
for the variance have been considered. As we will describe in detail in Section 1.3, a plausible
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likelihood leads to Yi following a convolution distribution with variance that depends on
p0i and p1i . Here for illustration we consider estimation under the assumption that the
variance is proportional to Ni and use weighted least squares for estimation. In Figure 1.1
the ecological regression line under weighted least squares, with weights proportional to Ni ,
is superimposed; the size of the residual variability about the line is evident.

A very simple model, termed the nonlinear neighborhood model (Freedman et al., 1991),
is to assume that p0i = p1i = qi , i.e. to assume that registration and individual race are in-
dependent. This allows the table to be collapsed, and inference is straightforward. Freedman
(2001) states that in this model, “. . . behavior is determined by geography not demography.”
The model acknowledges that the probabilities are heterogeneous across areas, but does not
appear reasonable in many instances, since it does not allow an individual effect due to race.
A specific version of the nonlinear neighborhood model, the linear neighborhood model,
was also described by Freedman et al. (1991) and makes the assumption that E [p0i |xi ] and
E [ p1i |xi ] are identical but depend on the proportion black via the linear form

E [p0i |xi ] = E [p1i |xi ] = E [qi |xi ] = a + bi , (1.4)

which is identical to Equation 1.3 though the interpretation and imputed internal cells
are drastically different under the two models. This was the reason Freedman et al. (1991)
introduced the model, to illustrate the fundamental unidentifiability of ecological inference.

Figure 1.2 gives the estimates of the black and white fractions registered under a variety
of models including ecological regression (a), the linear neighborhood model (b), and the
nonlinear neighborhood model (c). We see that the estimates under the three approaches
are very different (though the neighborhood models give identical population averaged
fractions under certain estimation techniques; see Freedman et al., 1991). In model 1.4, xi

is an example of a contextual effect; note that taking 1 – xi as the contextual effect, or assum-
ing that xi and 1 – xi are both contextual effects, leads to identical imputations. Ecological
regression gives estimates for whites that are considerably greater than for blacks.

It seems realistic in political science applications to believe that in many situations the
registration of an individual will be associated with both their own race and the race of those
around them (that is, we believe that registration will be a function of both demography and
geography), particularly if we allow race in both cases to be surrogates for other variables
such as income, education level, etc. A model that attempts to allow this possibility follows
from assuming that

E [ p̃ j i |xi ] = a j + b j xi ,

so that an individual’s registration probability depends both on their own race (through the
a j terms) and on the context (through a strength of association b j ). This model leads to

E [q̃ i |xi ] = (a0 + b0xi )xi + (a1 + b1xi )(1 − xi ) = α + βxi + γ x2
i ,

where α = a1, β = a0 + b1 − a1, and γ = b0 − b1. Hence we have four unknowns to es-
timate from just three parameters. This unidentifiability has typically been resolved by
assuming that one of b0, b1 is zero (preferably based on substantive background knowl-
edge; see for example Achen and Shively, 1995: Chapter 5). Hence two possible quadratic
models are produced, though there are an infinite number of possibilities, depending on
how we resolve the unidentifiability; for example, we could fix the ratio r = b0/b1 to give
b1 = γ /(r − 1).

The quadratic curve is drawn in Figure 1.1, and we see there is noticeable curvature;
the quadratic coefficient is −0.77 with standard error 0.34 (with the three outlying areas
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Figure 1.2. Registration–race data: estimates of black and white fractions registered, p̃0i and p̃1i ,
respectively, under various models, 
 for blacks and � for whites: (a) ecological regression, (b) linear
neighborhood model, (c) nonlinear neighborhood model, (d) quadratic model with contextual effect
for blacks only, (e) quadratic model with contextual effect for whites only, (f) quadratic model with
equal contextual effects of race for each individual, and the registration probability depending on the
contextual effect of the proportion in the same race.
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influencing this curvature). The two interpretations of the quadratic model with b0 = 0 and
b1 = 0 were taken with the registration–race data, and Figures 1.2d and e give the estimates
under these two scenarios; the predicted fractions registered for blacks and whites are very
different from the ecological regression estimates under each of the quadratic models. We
see in panel (d) that a contextual effect for blacks only gives black fractions greater than
white fractions and inadmissible values beyond approximately 0.3, casting considerable
doubt on this model. In panel (e), the assumption of contextual effects for whites only gives
white registration estimates below black ones for the majority of the x range (in contrast to
ecological regression).

We note that if we were to believe that the fraction registered for both blacks and whites
had the same contextual effect, i.e. b0 = b1 (in the spirit of the linear neighborhood model),
then this term would not be estimable under the quadratic model described above, since it
results in γ = 0. However, we note in passing that an identifiable model is obtained if we
take b0 = −b1, which is equivalent to

E [ p̃0i |xi ] = a0 + b0xi

and

E [ p̃1i |xi ] = a1 − b0 + (1 − xi )b0,

so that the proportions registered depend on the contextual effect of the proportions in
the same race in area i , with the effect sizes being equal. Under this model we obtain the
imputations

p̃0i = α̂ + β̂ + γ̂

2
+ γ̂

2
xi

and

p̃1i = α̂ − γ̂

2
xi .

For illustration we fitted this model, and it resulted in the imputed fractions displayed
in Figure 1.2f. We see that inadmissible estimates arise for the blacks for x greater than
approximately 0.5 (and the white fractions are lower than the black fractions for all areas).

Other regression-type approaches, with a nonparametric flavor, are described by Cham-
bers and Steel (2001). Gelman et al. (2001) describe diagnostics that may be used to assess
the assumptions underlying ecological regression.

As we will see, although the assumption that q̃ i is uncorrelated with xi may be a major
problem in some applications (examples are given by Freedman et al., 1998, 1999, and
Freedman, 2001), a further problem with ecological regression is the assumption that the
estimated fractions are not allowed to vary across areas, so that the between-area variability
is not acknowledged. Least squares procedures are known to provide consistent estimates of
regression parameters under a range of distributions of the errors, but are also known to be
very poor at providing predictions of observable quantities; for this, some knowledge of the
distribution of the error terms is required. The great benefit of the hierarchical approach that
was popularized by King (1997) is that between-area differences in fractions are assigned a
distribution, so allowing variability in the estimates of race-specific fractions across areas.
Lindley and Smith (1972) show that hierarchical models can show great benefits, in terms
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of mean squared error, of unit-specific (in this case area-specific) estimates, by borrowing
strength across units.

To conclude, in this section we have reviewed how two competing explanations with vastly
different interpretations and inferential implications lead to an identical mean function,
and shown that an extended quadratic model has unidentifiability problems of its own. To
overcome this unidentifiability and estimate 2m quantities from m observables, it is clear
that any approach that is considered must make assumptions (or incorporate additional
individual-level data). It is not immediately apparent, but also true, that the totality of
assumptions from any approach will be uncheckable from the aggregate data alone. In all
observational studies untestable assumptions such as “no unmeasured confounding” are
required for causal interpretations, but ecological studies provide a particularly vulnerable
study design in that the amount of information concerning quantities of interest is much
smaller than in typical individual-level observational studies.

1.3 LIKELIHOOD FUNCTION

In the previous section we simply derived the form of the marginal fraction registered
under various assumptions. In this section we derive a likelihood function under a plausible
sampling scheme, and compare this with various (often implicit) likelihoods that have been
used in the ecological literature. Recall that

p0i = Pr(Y = 1|x = 0, i) and p1i = Pr(Y = 1|x = 1, i) (1.5)

are the population probabilities. Returning to Table 1.1, we first note that if Y0i and Y1i were
observed, then if we were to assume that each of the N0i black individuals in area i have
independent Bernoulli responses with probability p0i , and each of the N1i white individuals
in area i have independent Bernoulli response with probability p1i (and the black and white
responses are independent), then

Y j i |p j i ∼ Binomial(Nj i , p j i ),

j = 0, 1, i = 1, . . . , m. Under this sampling scheme, if Y0i and Y1i are unobserved, then
the sum Yi follows a convolution of these binomial distributions:

P (Yi |p0i , p1i ) =
ui∑

y0i =li

(
N0i

y0i

) (
N1i

Yi − y0i

)
py0i

0i (1 − p0i )
N0i −y0i pYi −y0i

1i (1 − p1i )
N1i −Yi +y0i ,

(1.6)

where

li = max(0, Yi − N1i ), ui = min(N0i , Yi ). (1.7)

These values correspond to the admissible values that Yi can take, given the margins in
Table 1.1. McCullagh and Nelder (1989) consider this likelihood under the assumption that
p0i = p0 and p1i = p1; see also Achen and Shively (1995: 46).

For large tables this form is computationally intractable, but, as discussed by Wakefield
(2004), when each of the binomial distributions in each row of Table 1.1 is approximated
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by a normal, the resultant convolution is normal and is given by

P(Yi = yi |p0i , p1i ) ∝ (2πVi )
−1exp

{
− 1

2Vi
(yi − µi )

2

}
, (1.8)

where

µi = µi (p0i , p1i ) = Ni × qi = Ni {p0i xi + p1i (1 − xi )}

and

Vi = Vi (p0i , p1i ) = Ni {p0i (1 − p0i )xi + p1i (1 − p1i )(1 − xi )}.

In the ecological regression method described in the last section, with weighted least
squares used for estimation, the implicit likelihood is Equation 1.8 with µi = a + bxi and
σ 2

i = Ni σ
2. Similar equivalences hold for the quadratic models. Hence maximum likelihood

estimation with the ecological regression model would use Equation 1.8, though (since the
weights depend on p0, p1) an iterative procedure would be required to obtain estimates of
a and b. Such an approach is likely to provide little improvement over the simpler weighted
least squares procedure, since the major inaccuracies in ecological regression arise from
assuming no contextual effects and no between-area variability in the fractions. Brown and
Payne (1986) use similar approximations to Equation 1.8 in the context of their aggregated
compound multinomial model; see also Hawkes (1969). This normal approximation is
likely to be adequate in most situations in which the marginal counts are large and the
probabilities p0i , p1i are not very close to zero or one (in this case the normal approximation
to the binomial for one of the races may be poor), but other similar approximations may be
beneficial in some cases (see Barndorff-Neilsen and Cox, 1989: 97, for alternative normal-
type approximations to the binomial). We advocate the use of this approximation in the
context of hierarchical modeling, and so require an accurate approximation in those regions
of p0i , p1i space that are supported by the second-stage prior. We finally note that if we are in a
situation where all of the probabilities are close to zero – as in epidemiological applications –
or close to one, then a better approximation, which is computationally convenient, is to use
the Poisson approximation to the binomial (for details, see Wakefield, 2004).

We now describe a baseline model that allows direct examination of the information in the
data in the margin for each table alone, without assuming any commonality of parameters
across tables or reducing the dimensionality. Via this model we may examine the likelihood
in Equation 1.6 for each table with the assumption of a pair of distinct probabilities in each
table. Placing a fixed (that is, nonhierarchical) prior on (p0i , p1i ) allows the posterior surface
to be examined. We stress that this model is not intended to be used for formal analysis, but
rather as a means to provide insight into the hazards of ecological inference. In the limit as
Ni → ∞ with q̃ i and xi remaining constant, examination of the normal approximation to
the convolution reveals that the likelihood tends to a line given by q̃ i = p0i xi + p1i (1 − xi )
(and not a point, which would occur in a regular estimation problem). The likelihood,
though, is not flat along this line, but is a curved function in p0i and p1i (due to the
curved form of V(p0i , p1i ), with the maximum lying at one endpoint, and the minimum at
the point p0i = p1i , which is, independence of race and registration; see Wakefield (2004)
and Chapter 2 for more discussion. Again, this makes it clear that if we wish to retain 2m
parameters in our model, we have to make further assumptions; hierarchical models, such as
that described by King (1997) and refined by King, Rosen, and Tanner (1999) and Wakefield
(2004), are in this spirit.
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King, Rosen, and Tanner (1999) are among the few authors to explicitly state a likelihood
and use the binomial sampling model

Yi |p0i , p1i ∼ Binomial{Ni , p0i xi + p1i (1 − xi )} (1.9)

in the context of a hierarchical model (which we will describe fully in Section 1.4). This
model may be motivated from the formulation of Section 1.2 by supposing that rather than
having sampling without replacement from a population of N0i blacks and N1i whites, we
instead have sampling with replacement, so that we have Ni independent Bernoulli trials,
each with probability p0i xi + p1i (1 − xi ). This model is difficult to justify in the current
context, but its use rather than the convolution will usually make little difference in tables
with large margins (at least, given all of the other problems posed by ecological inference),
since in the limit it provides a likelihood that concentrates upon the same line upon which
the convolution likelihood concentrates, but is flat (as opposed to curved). Examples of this
likelihood for particular tables, along with the convolution and the normal approximation,
are provided in Section 1.6.

Duncan and Davis (1953) noted that the bounds

p̂ j i ∈
(

max

{
0,

yi + Nj i − Ni

Nj i

}
, . . . , min

{
1,

yi

Nj i

})
,

j = 0, 1, i = 1, . . . , m, could be placed on the fractions. The bounds for p0i follow directly
from dividing the bounds on Y0i in Equation 1.7 by N0i ; those for p1i follow analogously.
These bounds may be written in terms of q̃ i and xi ; specifically we have

max

{
0,

q̃ i − (1 − xi )

xi

}
≤ p̃0i ≤ min

{
1,

q̃ i

xi

}
, (1.10)

and similarly, for Y1i /N1i ,

max

{
0,

q̃ i − xi

1 − xi

}
≤ p̃1i ≤ min

{
1,

q̃ i

1 − xi

}
. (1.11)

The resulting four distinct cases allow an informal examination of the amount of information
in each table. The four cases in Figure 1.3 are as follows: case 1: non-unity upper bounds
on p0i and p1i ; case 2: nonzero lower bound and non-unity upper bound on p0i , and (0, 1)
bound for p1i ; case 3: (0, 1) bound for p0i , and nonzero lower bound and non-unity upper
bound on p1i ; case 4: nonzero lower bounds on p0i and p1i . See Wakefield (2004) for more
details.

Figure 1.3 shows the bounds on the fractions for the registration–race data. In panel (a)
we see that q̃ i is greater than xi in almost all areas, and so we are in cases 3 and 4. Case 3
leads to bounds on p̃0i of (0, 1) (because registration is close to 1 and the fractions black are
small, and so we cannot rule out the possibility that none or all of the blacks are registered).
A larger number of areas fall into case 4, since usually xi < 0.5 and so the lower bounds for
p1i are substantially above 0 for many areas, the latter because it would not be possible to
obtain the total number registered unless at least a fraction of the whites were registered.
The average width of the bounds is 0.67 for p̃0i and 0.26 for p̃1i . The plots in panels (b) and
(c) are routinely used in the examples of King (1997). Figure 1.3c shows that the bounds
on p̃1i become wider with increasing xi , as expected. Figure 1.3d gives the bounds on the
difference, and we see that these differences become more centered on zero as xi increases.
The method of bounds of Duncan and Davis (1953) has no explicit likelihood, though the
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Figure 1.3. (a) Information in bounds as a function of xi and q̃ i . Deterministic bounds on the fractions
registered (MLEs) of: (b) p̃0i , (c) p̃1i , (d) p̃1i − p̃0i , i = 1, . . . , 275, for the registration–race data.

baseline model described earlier in this section can be thought of as a stochastic version of
this method, and also reveals why examining the bounds alone can be deceptive. (See also
Wakefield, 2004, in which it is shown that with a flat prior and the convolution likelihood,
the predictive distribution of p̃0i , p̃1i is flat along the homography line.) A difficulty with
interpretation is that the width of the bounds depends explicitly on xi , and so examining
any plot of the bounds is difficult because there is an informative selection mechanism at
work in the construction of the plot. A very important observation is that the midpoint of
the bounds will not provide an unbiased estimate of the true fraction, even in the absence
of contextual effects, because their construction is crucially dependent on the proportion
black in the area, xi .

Whereas the convolution and binomial likelihoods were in terms of table–race-specific
probabilities of registration p j i , King (1997) models the fractions that register p̃ j i (see also
the footnote of Cho, 1998: 155), and implicitly assumes a “likelihood” of

L ( p̃0i , p̃1i ) =
{

1 if q̃ i = p̃0i × xi + p̃1i × (1 − xi ),
0 otherwise,
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Figure 1.4. Tomography lines p̃1i = q̃ i /(1 − xi ) − p̃0i × xi /(1 − xi ), i = 1, . . . , 275, for the regis-
tration–race data.

where q̃ i = yi/Ni ; see King (1997: Equation 7.1). In other words, the only way the data
enter into this “likelihood” is via the accounting equation, and the function is flat along this
line. We use quotes for “likelihood” here because it is more a statement about missing data
than a conventional likelihood function. Tomography lines, which are a rearrangement of
Equation 1.1 and are given by

p̃1i = q̃ i

1 − xi
− p̃0i

xi

1 − xi
,

are shown for the registration–race data in Figure 1.4. The bounds for p̃0i and p̃1i are the
projections of the tomography lines of Figure 1.4, which was the reason that King constructed
the likelihood in his method, and hence the discussion following the description of the
bounds is relevant here.

The nonidentifiability of the mean functions in ecological regression and the linear neigh-
borhood model, and the lack of identifiability of all of the parameters in the quadratic model,
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arise because the contextual effects are assumed linear in x . This model is not natural from a
statistical perspective, however, since it allows estimated probabilities to lie outside of their
permissible range of (0, 1). As discussed by Wakefield (2004), a general model that allows
registration probabilities to depend on both the race of the individual and the contextual
effects of race is given by

p j i = P(Y = 1|race j, area i) = g −1(α j i + β j xi ),

for a link function g (·). This choice leads to

qi = P(Y = 1|area i) = g −1(α0i + β0xi ) × xi + g −1(α1i + β1xi ) × (1 − xi ).

Ecological regression corresponds to this model with a linear link and with α0i = α0, α1i =
α1, and β0 = β1 = 0; the nonlinear neighborhood model has α0i = α1i = αi and β0 = β1 =
0; the linear neighborhood model has α0i = α1i = α and β0 = β1 = β with a linear link; and
the quadratic model has a linear link with α0i = α0 and α1i = α1. Hence it would appear that
it would be profitable to consider the general form with a nonlinear link, logistic and probit
forms being the obvious choices. In these cases the model with individual and contextual
effects has all parameters identifiable. Unfortunately, assuming nonlinearity theoretically
removes the nonidentifiability but in practice is totally dependent on the form chosen, and
parameter estimates will in general be highly unstable. This was pointed out by Achen and
Shively (1995: 117), who comment that since the contextual effects are not strong and the
range of x is often not (0, 1), it would be virtually impossible to discriminate between
nonlinear and linear forms (since any function that has a narrow range and does not change
greatly may be well approximated with a linear form, via a Taylor series expansion). This is
similar to criticisms of Heckman’s selection models (Heckman, 1979); see for example Little
(1985) and Copas and Li (1997).

1.4 PRIORS

Following King (1997), a number of authors have developed hierarchical approaches in
which, rather than reduce the dimensionality of the models as was described in the previous
section, the full 2m parameters are retained but the probabilities, or some transform, are
assumed to arise from a bivariate distribution.

At the second stage of the model, King (1997) assumed that the pair p̃0i , p̃1i , arise from a
truncated bivariate normal distribution, hence imposing identifiability. King (1997) views
the truncated bivariate normal distribution as the likelihood, whereas we have referred to
the tomography lines as providing the first stage of the model, and the truncated bivariate
normal the second stage. Inference is initially carried out via MLE for the five population
parameters, using numerical integration, and then simulation is used to make more refined
inference. Priors may be placed on the population parameters (which characterize the trun-
cated normal) to give a Bayesian model. In common with the majority of approaches, it is
assumed that the fractions form an independent sample from the second stage distribution
(here the truncated bivariate normal); see Chapter 12 for a hierarchical model with spatial
dependence between the probabilities. The model in its most basic form also assumes that
the fractions are uncorrelated with xi . The latter may be relaxed (see King, 1997: Chapter
9) via the introduction of contextual effects (in the Introduction to this book it is recom-
mended that such effects be included), but reliable estimation of both individual and con-
textual effects is crucially dependent on the existence of substantive prior information (see
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the example in Wakefield, 2004, for a further demonstration of this). The freely available EzI
software (Benoit and King, 1998) may be used to implement the truncated normal model
and its extensions.

At the second stage, King, Rosen, and Tanner (1999) assume that p0i and p1i are inde-
pendent with

p j i |a j , b j ∼ Beta(a j , b j ) (1.12)

and with exponential priors Exp(λ) on a j , b j , j = 0, 1, at the third stage, where λ−1 is the
mean of the exponential. Specifically, in the example considered it was assumed that these
exponential priors had mean 2 (λ = 0.5), a choice which is in general a poor one in that
it does not favor large values of the hyperparameters and (since a j + b j − 2 is acting like
a prior sample size for race j ) these are what is needed to add strong information to the
sparse marginal data. This choice also produces a prior for each probability which is very
strongly U-shaped (since beta priors with a j < 1, b j < 1 are themselves U-shaped, and
these values of the hyperparameters are assigned considerable prior weight), which is not
desirable in many instances. This is further commented upon in Section 1.7 and discussed
more fully in Wakefield (2004); in particular see Figure 7. Choosing much smaller values of
λ, for example, λ = 0.01, produces almost uniform priors on the probabilities, and allows
much larger values of the hyperparameters, though we would not universally recommend
a particular hyperprior. As the number of tables decreases and the x distribution becomes
more asymmetric, this problem becomes more and more acute. The ideal situation is for
substantive information to be available for prior specification. The strong dependence on
the third stage prior is in stark contrast to the usual generalized mixed model case, for which
there is far less dependence (except for priors on variance components, where again care
must taken with small numbers of units).

The model given by Equation 1.12 does not allow dependence between the two random
effects (note that this is distinct from the independence between pairs of random effects in
different areas, which is also assumed), though it is conjugate (giving a marginal distribution
for the data that is beta–binomial), which may offer some advantage in computation. The
model also allows area-level covariates to be added at the second stage.

Wakefield (2004) proposed as an alternative to the beta model a second stage in which
the logits of the registration probabilities arose from a bivariate normal distribution; this
model was introduced, for the analysis of a series of 2 × 2 tables when the internal cells were
observed by Skene and Wakefield (1990). Specifically, a reasonably general form is

θ0i = µ0 + β0zi + δ0i ,

θ1i = µ1 + β1zi + δ1i
(1.13)

with

δi ∼ N2(0, �),

where

δi =
[

δ0i

δ1i

]
and � =

[
�00 �01

�10 �11

]
, (1.14)

and where θ0i and θ1i denote the logits of the probabilities p0i and p1i in table i , i.e.
p j i = exp(θ j i )/{1 + exp(θ j i )}, j = 0, 1. In the specification 1.13, zi represent area-level
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Figure 1.5. Nesting of models. In the baseline model the parameters of f (·) are fixed, while in the
hierarchical model the common parameters are estimated from the totality of the data.

characteristics (and may include xi ), and β0, β1 are (ecological) log odds ratios associated
with these variables. A third-stage hyperprior adds priors onµ0,µ1, and� (andβ0,β1 if there
are covariates). In our limited experience it is difficult to gain information on the covariance
term �01 or on covariate relationships, without strong prior information. The difficulty
of estimating contextual effects and the dependence of the area-specific probabilities is a
further reinforcement of the lack of information in ecological data. Sensitivity analyses in
which �01 and/or β0, β1 are fixed a priori are straightforward under this model, however.

For the case of no covariates and �01 = 0, and without substantive information for the
registration–race data, we may choose logistic priors with location 0 and scale 1 for µ0

and µ1, since these induce uniform priors on exp(µ j )/{1 + exp(µ j )} (the median of the
registration probability for race j across the population of areas). For the precisions �−1

00 ,
�−1

11 we specify gamma distributions Ga(a , b) (where the parameterization is such that the
mean is given by a/b). In the application here we take a = 1 and b = 0.01 – these values
were chosen via an informal examination of simulations from the prior that it induced for
p0i , p1i , with different values of a and b. In the WinBUGS manual the priors Ga(0.001,
0.001) are often used for precisions within a hierarchical model. This choice is not to be
recommended in general (that is, for all applications); here it is a very poor one (and leads
to marginal priors for the probabilities that are highly U-shaped).

Figure 1.5 displays the nesting of a number of the models that we have described. The
most simplistic model, at the top, is one in which there is a single registration probability
for both races and for all areas. Taking the left fork gives the neighborhood models; taking
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the right fork gives ecological regression. Hierarchical models allow 2m parameters but tie
the pairs of probabilities together via the assumption of a common distribution from which
they are drawn (possibly allowing contextual effects also). At the bottom of the nesting the
baseline model is located. The latter is essentially a fixed effects model for each table retaining
the 2m parameters – as we discussed above, we do not advocate the use of this model, but
it is useful to identify the extreme saturated model for ecological data.

All of the above hierarchical models result in posterior distributions that are analyt-
ically intractable (as we describe in the next section), but Markov chain Monte Carlo
(MCMC) algorithms are relatively straightforward to implement (though convergence may
be a problem), and all of the models but the truncated normal have been implemented in the
WinBUGS software (Spiegelhalter, Thomas, and Best, 1998). The Appendix gives code for
the logistic normal with the normal approximation to the convolution at stage 1. In our fairly
limited experience we have found that the logit model is much more stable than the beta
model, at least when used within the WinBUGS software. In particular we found that this
software may crash with the beta model, because points very close to 0 and 1 are supported
by ecological data and when sampled lead to numerical problems.

In the next section we briefly review the Bayesian approach to inference and give an
overview of computation for the Bayesian models that have been described in the previous
section. The Bayesian approach is particularly appealing in the context of ecological data
because for such data modeling assumptions have to be made to enforce identifiability,
and the most rigorous way of including such assumptions is via the adoption of a prior
distribution.

1.5 COMPUTATION

1.5.1 Derivation of the Posterior Distribution

In the Bayesian approach, all unknown quantities are assigned prior distributions, and the
posterior distribution reflects both these distributions and the information in the data that
is contained in the likelihood. In the hierarchical models described in Section 1.4, two-
stage priors are specified, with the first stage of the prior assuming a common form for the
pairs of probabilities, and the second stage assigning hyperpriors to the parameters of this
form. Letting θi represent the pair of table-specific parameters (these may be, for example,
probabilities or logits), and φ a generic set of hyperparameters upon which the second stage
of the prior depends, we have

π(θ1, . . . , θm, φ|y1, . . . , ym) ∝ p(y1, . . . , ym|θ1, . . . , θm, φ) × π(θ1, . . . , θm, φ),

and we have

p(y1, . . . , yn|θ1, . . . , θm, φ) =
m∏

i=1

p(yi |θi ),

by conditional independence of counts in different tables, and

π(θ1, . . . , θm, φ) = π(θ1, . . . , θm|φ) × π(φ),

to give the two-stage prior. Under the assumption of independence of the table-specific
parameters (which would not be true if we assumed spatial dependence between these
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parameters), we may further write

π(θ1, . . . , θm|φ) =
m∏

i=1

π(θi |φ).

Hence, under these assumptions, we have the posterior distribution

π(θ1, . . . , θm, φ|yi , . . . , ym) ∝
m∏

i=1

p(yi |θi ) ×
m∏

i=1

π(θi |φ) × π(φ).

Inference follows via consideration of marginal posterior distributions and predictive
distributions. For example π(θi |y1, . . . , ym) is the marginal posterior distribution for the
pair of parameters from table i . We may also be interested in imputing the missing counts
in table i . This may be carried out via examination of the predictive distribution

P(Y0i , Y1i |yi , . . . , ym) =
∫

P(Y0i , Y1i |θi , N0i , N1i , Ni − yi , yi ) × π(θi |y1, . . . , yn) dθi .

If we can simulate from P(Y0i , Y1i |θi , N0i , N1i , Ni − yi , yi ), then it is straightforward to
simulate from the predictive distribution, once samples θ

(s )
i are available from π(θi |N0i ,

N1i , Ni − yi , yi ), via

1

S

S∑
s=1

P(Y0i , Y1i |θ (s )
i , N0i , N1i , Ni − yi , yi ).

Each of the distributions within this sum is the distribution of Y0i given the row and column
margins and the table probabilities, and is a noncentral (or extended) hypergeometric
distribution (e.g. McCullagh and Nelder, 1989). Suppose the odds ratio in the table is given
by ψi = p0i (1 − p1i )/p1i (1 − p0i ); then Y0i has a noncentral hypergeometric distribution
if its distribution is of the form

P r (Y0i = y0i |ψi , N0i , N1i , Ni − yi , yi )

=




(
N0i

y0i

) (
N1i

yi − y0i

)
ψ

y0i

i

∑ui

u=li

(
N0i

u

) (
N1i

yi − u

)
ψu

i

0

y0i = li , . . . , ui , otherwise,
(1.15)

where li = max(0, yi − N1i ) and ui = min(N0i , yi ). Hence the predictive distribution is an
overdispersed noncentral hypergeometric distribution. The distribution of Y1i is obtained
as Y1i = Yi − Y0i , and produces (y0i/N0i , y1i/N1i ) pairs that lie along the tomography line.

1.5.2 Markov Chain Monte Carlo Algorithms

Unfortunately, the integrals required to calculate the posterior and predictive distributions
just described are not analytically tractable, and so some form of approximation is required.
One such approximation, based on generating samples from the posterior distribution, is
particularly well suited to the hierarchical model that we have generically described. This
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approximation is based on constructing a Markov chain whose stationary distribution is the
required posterior distribution. Specifically, we exploit the conditional independences that
were used to derive the posterior distribution and simulate repeatedly from the distributions

p(θi |θ j , j �= i, φ , y1, . . . , ym) ∝ p(yi |θi ) × π(θi |φ), (1.16)

i = 1, . . . , m, and

p(φ|θ1, . . . , θm, y1, . . . , ym) ∝
m∏

i=1

π(θi |φ) × π(φ). (1.17)

This MCMC algorithm is used within the WinBUGS software; the manual (Spiegelhalter,
Thomas, and Best, 1998) gives details of specific algorithms and advice on assessing conver-
gence of the Markov chain. Due to the nonidentifiability of ecological models the Markov
chain typically has to be run for a large number of iterations (1–3 million iterations were
used for the examples of this paper). The sampled values also typically show extremely high
autocorrelations, and so a large number of samples are required for reliable inference. When
such samples are retained for all parameters, storage becomes an issue, and so instead the
Markov chain may be thinned (that is, samples are only stored every 1000th (say) itera-
tion). Great care must be taken when examination of posterior quantities is carried out
to gain some assurance that convergence has been attained – particularly for table-specific
parameters, for example, p0i , p1i .

1.5.3 Auxiliary Variables Scheme

An alternative MCMC scheme suggests itself when the event of interest is rare (which
is not typical in social science applications). The algorithm is based on introducing the
counts Y0i as auxiliary variables. Byers and Besag (2000) describe a Markov chain in such a
situation under a rare-event assumption (the latter allows the convolution to be replaced by
a Poisson distribution). With the introduction of auxiliary variables Y0i we have a posterior
distribution over not only the unknown parameters, but also the missing data:

π(θ1, . . . , θm, φ , y01, . . . , y0m|y1, . . . , ym) = p(y01, . . . , y0m|y1, . . . , ym, θ1, . . . , θm)

× p(θ1, . . . , θm, |yφ1, . . . , ym). (1.18)

This introduction seems unhelpful at first, since we have a more complex form than pre-
viously, but the benefit is that the conditional distributions for θi , which are required for
an MCMC algorithm, are now of standard form. Specifically, we may alternate between the
conditional distributions given by

p(y0i |yi , θi ), (1.19)

i = 1, . . . , m, and

π(θi |N0i , N1i , yi , y0i ), (1.20)

i = 1, . . . , m, with π(φ|θ1, . . . , θm, y1, . . . , ym, y01, . . . , y0m) as in Equation 1.17. This al-
gorithm is inefficient for nonrare outcomes; see Section 1.7 for a demonstration.
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1.5.4 Rejection Algorithm for Individual Tables

For examination of the likelihood–posterior surface for a single table only via the baseline
model, various schemes are possible. The auxiliary scheme just described may be imple-
mented, or we can implement a rejection algorithm. The advantage of the latter is that it
provides independent samples from the posterior distribution (as opposed to the dependent
samples produced by MCMC schemes, including the auxiliary vaiable algorithm).

Since we only have two unknown parameters and a finite range for both, a rejection
scheme is straightforward to implement. A generic rejection algorithm for sampling from a
density f (·), given a proposal density g (·), proceeds as follows. First find

M = sup
f (z)

g (z)
;

then:

1. Sample Z ∼ g (·) and, independently, U ∼ U (0, 1).
2. Accept Z if

U <
f (Z)

Mg (Z)
;

otherwise return to 1.

The rejection algorithm depends on M being finite, and the efficiency may be measured
through the number of samples that are accepted. The latter is a function of how closely
g mimics f . A specific rejection algorithm that is useful in Bayesian inference is to choose
g to be the prior distribution π(·). In this case M is the maximized likelihood (which we
know is finite in the ecological context). Letting L (·) denote the likelihood and M = L (Ẑ)
the maximized likelihood, the algorithm then becomes:

1. Sample Z ∼ π(·) and, independently, U ∼ U (0, 1).
2. Accept Z if

U <
L (Z)

M
;

otherwise return to 1.

Here Z = ( p0, p1).
For small tables, the above rejection algorithm of sampling from the prior and rejecting

according to the ratio of the convolution at the sampled point to that at the maximum
(which is evaluated once only) is feasible. The maximum lies at one of the endpoints of the
tomography line; see Wakefield (2004) and Chapter 2 for details.

As the table margins increase in size, the rejection algorithm may become very inefficient,
since the likelihood concentrates upon the tomography line and so hardly any points are
accepted. The computational expense is greatest for the convolution likelihood, due to the
need to evaluate a large number of terms in the summation over the missing data y0i . The
normal likelihood is computationally inexpensive, and in our experience provides a very
good approximation (examples follow in Sections 1.6 and 1.7).

For table i and for a beta prior, the details of the algorithm are as follows. Let Mi =
L ( p̂0i , p̂1i ) denote the supremum of the likelihood for p0i , p1i for either the convolution
of binomials or approximating normal likelihood. The rejection algorithm is as follows:
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1. Sample p j i ∼ Beta(a j , b j ), j = 0, 1, U ∼ U (0, 1), with all generations being inde-
pendent.

2. Accept p0i , p1i if

U <
L (p0i , p1i )

Mi
,

with L ( p0i , p1i ) given by Equation 1.6 (if the convolution is used); otherwise return
to 1.

To address the sensitivity to the prior, the accepted points may be reweighted via the ratio
of the new to the original prior, or by thinning the accepted points via another rejection
algorithm based on the supremum of the ratio of the priors. See Smith and Gelfand (1992)
for details.

Another possibility that we have used as a quick approximation when the size of the table
margins is large is to restrict the prior to sampling along the tomography line and then to
test using the convolution likelihood. For large margins the likelihood will fall away very
quickly to either side of the tomography line.

As we commented in Section 1.3, due to the nonidentifiability, as Ni → ∞ the likelihood
tends to a line, and not to a point as in the regular case. For large Ni , with uniform priors,
the posterior distribution may therefore be approximated by a uniform distribution on the
tomography line. In this situation the posterior medians p0i , p1i are therefore approximated
by the midpoint of the method of bounds, that is,

p̂0i = 0.5 ×
{

min

(
1,

yi

N0i

)
+ max

(
0,

yi − N1i

N0i

)}
,

p̂1i = 0.5 ×
{

min

(
1,

yi

N1i

)
+ max

(
0,

yi − N0i

N1i

)}
,

since these bounds define the tomography line. We note again that estimates defined in this
way will be biased, and the amount of bias depends on xi . Consequently, examining the
midpoints versus xi (say) will be deceptive. We again stress that examination of the data via
the baseline model is an initial exploratory step with inference following from hierarchical
modeling.

1.5.5 Discrete Approximation

If we wish to examine the likelihood surface for a single table, then we may simply evaluate
the surface over a grid of p0i , p1i values. If we wish to convert to a posterior surface, we may
then multiply the likelihood by the prior and then normalize by dividing the product by the
sum over all points in the grid. This approach is illustrated in the following sections.

1.6 A SIMPLE EXAMPLE

We begin by examining the data in Table 1.2 in order to illustrate a number of the issues
discussed previously, and the use of the baseline model. For these data the bounds on
the unobserved fractions are given by p̂0 ∈ (0.2, 0.6), p̂1 ∈ (0, 1). The MLEs are given by
p̂0 = 0.2, p̂1 = 1. We implemented the rejection algorithm described in Section 1.5.4 with
the convolution likelihood and independent uniform priors on p0 and p1; 2000 samples
were generated with acceptance rate 0.41. The posterior means are given by E[ p0|y] = 0.43
and E[ p1|y] = 0.50. Figure 1.6a displays the posterior for p0, p1 (with a uniform prior)
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Table 1.2 Simple table to
illustrate baseline model

Y = 0 Y = 1
x = 0 5
x = 1 2

4 3 7

constructed via the discrete approximation described in Section 1.5.5. The MLE is evident, as
is the ridge centered along the tomography line. For such small marginal counts the posterior
does not concentrate upon the line, emphasizing the difference between the unobserved
fractions p̃0, p̃1, which must lie along the tomography line, and the hypothetical probabilities
p0, p1. Figures 1.6b and c give respectively the normal approximation to the convolution
likelihood, which is seen to be relatively accurate even for the small counts of this example,
and the binomial likelihood of King, Rosen, and Tanner (1999), which is flat along the
tomography line. Figure 1.6d gives King’s “likelihood,” which is flat along the tomography
line and zero elsewhere (the gaps are artifacts of the plotting routine).

Figure 1.7 displays a number of summaries of both the posterior distribution of p0, p1 and
the predictive distribution of the number of counts under the baseline model using samples
obtained from the rejection algorithm. We see that we learn little about p1, but the posterior
distribution for p0 differs from the prior. Intuitively, the fact that Y0 cannot take the value
4 or 5 slightly reduces our beliefs in p0 being close to one. Note that Pr({p0 < 0.2} ∪ {p0 >

0.6}|y) = 0.37 �= 0, so that values of the hypothetical probabilities outside the bounds are
quite likely in this situation in which the margins are small. The sample-based analogue of
Figure 1.6a is given in Figure 1.7e, while the marginal distributions are given in Figures 1.7a
and c. The predictive distributions for the unobserved cells Y0 and Y1 are given in Figures
1.7b and d, and are seen to be flat along the admissible values (as proved in Wakefield, 2004).
Finally, the posterior distribution of the difference in the probabilities, p1 − p0, is given in
Figure 1.7f. We obtain Pr(p0 > p1|y) = 0.48, so there is a small amount of information to
distinguish between p0 and p1, but it depends crucially on the prior (particularly on the
prior for p1).

Individual table comparisons such as Pr(p0i > p1i |yi ) are seen to be extremely hazardous,
since only one (and perhaps neither) of the probabilities is well estimated, and so the
comparisons are wholly determined by the prior and by xi and 1 − xi , the proportions in
the two rows. Examination of those p0i in tables with xi close to 1, and p1i in tables with xi

close to 0, can be informative, if it is reasonable to assume some commonality across tables.
This is the basic assumption of a hierarchical model. If it is possible to obtain an informative
prior, then table-specific comparisons are more reasonable.

1.7 REGISTRATION–RACE EXAMPLE

In this section we return to the registration–race data. We first analyze in detail two counties
that were considered by King, Rosen, and Tanner (1999). The data from these counties are
given in Tables 1.3 and 1.4.

1.7.1 County 150

King, Rosen, and Tanner (1999) considered this county to demonstrate that their approach
can detect multimodalities in the posterior distribution. The bounds on the fractions
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Figure 1.6. Various likelihood surfaces for the data of Table 1.2: (a) convolution likelihood function,
(b) normal approximation to the convolution likelihood function, (c) binomial likelihood function
of King, Rosen, and Tanner (1999), (d) tomography line “likelihood” of King (1997).
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Figure 1.6. (continued)
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Table 1.3 Voter registration–race data for county 150
of King (1997)

Unregistered Registered
Y = 0 Y = 1

Black x = 0 4,001
White x = 1 11,199

6,800 8,400 15,200

registered for blacks and whites are (0, 1) and (0.39, 0.75), respectively, with p̃1 − p̃0 ∈
(−0.61, 0.75). The MLEs for the convolution likelihood in Equation 1.6 are p̃0 = 0, p̃1 =
0.75.

In Figure 1.8a we plot the convolution surface by evaluating the posterior (with inde-
pendent uniform priors) at a series of grid points as described in Section 1.5.5. For such
a large marginal total (15,700) we see that the likelihood is highly concentrated along the
tomography line, though the curvature along the line is evident. Figure 1.8b shows the
normal approximation, which is very accurate here; Figure 1.8c the binomial likelihood of
King, Rosen, and Tanner (1999), which is flat along the tomography line; and Figure 1.8d
the implicit “likelihood” of King (1997), which is a flat ridge.

Figure 1.9 shows posterior summaries for the baseline model based on the auxiliary
scheme of Section 1.5.3 with two separate chains set off from different points. Panels (a)–
(d) clearly show the slow mixing – (a) and (b) show the sample path for p0, and we see that
after 30,000 iterations the chains have not come together. This is due to the nonidentifiability
and the fact that the noncentral hypergeometric distribution has nonnegligible probability
on a relatively small number of values, hence slowing movement around the space. Recently
there has been interest in identifiability in Bayesian models, particularly from an MCMC
perspective; see for example Gelfand and Sahu (1999). On the basis of this example and
other analyses we have carried out, from this point onward for nonrare outcomes and for
individual tables with large counts, we use the rejection algorithm, though we note that
investigation of efficient computational schemes, including auxialiary variable schemes, is
an important area of future research.

We obtained 1000 independent samples from the posteriorπ(p0, p1|y) using the rejection
algorithm and sampling along the tomography line with the convolution likelihood of
Equation 1.6; the acceptance rate was 0.80. Using the rejection algorithm and sampling from
U (0, 1) × U (0, 1) with the convolution likelihood was very inefficient, and the accepted
points fell almost exactly on the tomography line, as can be seen from Figure 1.9o and p.

Figure 1.10 contains a number of graphical summaries; these may be compared with
Figure 4 of King, Rosen, and Tanner (1999). Panels (a), (c), and (e) give representations of
the univariate posteriors and bivariate posteriors of π(p0, p1|y), while panels (b) and (d)
give the predictive distributions for Y0 and Y1. The univariate posterior distributions are

Table 1.4 Voter-registration–race data for county 50 of
King (1997)

Unregistered Registered
Y = 0 Y = 1

Black x = 0 29,494
White x = 1 126,806

10,800 145,500 156,300
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Figure 1.8. Various likelihood surfaces for the data of Table 1.3: (a) convolution likelihood function,
(b) normal approximation to the convolution likelihood function, (c) binomial likelihood function
of King, Rosen, and Tanner (1999), (d) tomography line “likelihood” of King (1997).
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Figure 1.8. (continued)
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close to uniform on the bounds, with the slight U-shape reflecting the shape of the variance
Vi in Equation 1.8 along the tomography line. Panel (f) shows the scaled convolution and
approximating normal likelihoods along the tomography line, and shows that they are
virtually identical; the binomial likelihood is constant along this line and is also included
as a dashed line. We note that the bimodality reported for p0 by King, Rosen, and Tanner
(1999) has the same shape as that of the convolution likelihood in Figure 1.10f and is at first
sight surprising, since the binomial likelihood utilized by these authors is constant along the
tomography line. The explanation is that the bimodality arises because of the exponential
prior with mean 2 that was used for a0, b0, a1, b1. As discussed in more detail by Wakefield
(2004), this prior is highly U-shaped for p0 and p1, with spikes close to 0 and 1, and the
spike at 1 is evident in the posterior for p1 that is reported in the upper panel of King, Rosen,
and Tanner (1999: Figure 4). As we discuss in Section 1.7.3, with an MCMC approach, very
large samples are required for reliable reporting of individual county probabilities.

It may at first seem nonintuitive that the convolution likelihood is not flat along the
tomography line. However, whereas the tomography line of King (1997) is in terms of the
fractions p̃0i and p̃1i , the likelihood is in terms of the probabilities p0i and p1i . In this example
the nonconstancy of the likelihood is clear from examining the likelihood at the endpoints,
which are given by

l( p0 = 0, p1 = 0.75) = P(Y = 8400|p0 = 0, p1 = 0.75)

=
4001∑
y0=0

(
4001

y0

) (
11199

8400 − y0

)
0.758400−y0 0.252799+y0

and

l( p0 = 0, p1 = 0.39) = P(Y = 8400|p0 = 0, p1 = 0.39)

=
4001∑
y0=0

(
4001

y0

) (
11199

8400 − y0

)
0.398400−y0 0.612799+y0 ,

which are clearly different. Mathematically it is evident why the likelihood is not flat: the
likelihood must average across the unobserved cell, and the required summation will produce
different heights for different values of p0, p1.

1.7.2 County 50

We now examine county 50, which was also considered by King (1997). The rejection al-
gorithm was implemented using the normal approximation along the tomography line and
a uniform prior; the acceptance rate was 0.87. The bounds here are (0.63, 1) for p̃0 and
(0.75, 1) for p̃1, and the MLEs are p̂0 = 0.63 and p̂1 = 1. The posterior means were esti-
mated as 0.81, 0.96. The bound on p̂1 − p̂0 is (−0.09, 0.7), and the posterior probability
Pr(p1 − p0 > 0|y) = 0.18. Figure 1.11 contains a number of graphical summaries for
county 50; these summaries may be compared with Figure 3 of King, Rosen, and Tan-
ner (1999). The latter plot shows a large mode around 0.65 which, when compared with
Figure 1.11, would appear to be due to the hierarchical prior, showing how strongly infer-
ence for a particular table depends on the information from all of the tables. The bimodal
nature of the posteriors induced by the poor choice of prior is also evident in Figure 3 of
King, Rosen, and Tanner (1999). The normal approximation to the convolution likelihood
is again accurate along the tomography line (Figure 1.11d).
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Figure 1.11. Posterior plots for county 50 of the registration–race data: (a) π(p0|y), (b) π(p1|y), (c)
π(p0, p1|y) (d) normalized likelihoods along tomography line under convolution and approximate
normal likelihood (indistinguishable, solid line) and binomial likelihood (dashed line).

1.7.3 All Counties

We have already seen from examination of the bounds that there is far more informa-
tion concerning p1i here, because whites are in the majority in most of the areas. For the
registration–race data Figure 1.1 shows the weighted least squares line with weights Ni ; we
obtain estimates of p̂0 = 0.34, p̂1 = 0.89 from ecological regression. When the three out-
lying counties are removed, we obtain estimates for ( p̂0, p̂1) of (0.41, 0.87) with weighted
least squares. Hence we see some sensitivity, particularly for p0.

BASELINE MODELS
We investigated the sensitivity to the prior by assuming Beta(3, 2) and Beta(4, 1) priors in
addition to the (uniform) Beta(1, 1) prior. A Beta(3, 2) random variable has 2.5%, 50% and
97.5% points of 0.20, 0.61, 0.93; the equivalent quantities for a Beta(4, 1) random variable
are 0.40, 0.84, 0.99. The aim of these analyses is to illustrate the sensitivity of inference
to prior assumptions, and we used a very approximate rejection algorithm in which the
likelihood was assumed to be constant along the tomography line. The rejection step, as
described in Section 1.5.4, then consists in accepting a point based on the ratio of the density
of the prior at the point to the density at the supremum of the prior (which is available in
closed form).

Figure 1.12 shows the histograms of the empirical distribution of the posterior medians
of p0i , p1i under the three beta priors, and Table 1.5 provides numerical summaries. The
sensitivity in the distribution of the medians of p0i is evident. Under the Beta(4, 1) prior,
49% of the areas have Pr( p0i < p1i |y) > 0.5, showing that the registration rates for blacks
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Table 1.5 Summaries of distribution of posterior medians of (p0i , p1i )
over i = 1, . . . , 275 counties of registration–race data of King (1997)
under the baseline model and different prior specifications

Statistic Beta(1, 1) Beta(3, 2) Beta(4, 1)

p̄0 0.66 0.71 0.81
s.d.{p0} 0.16 0.13 0.10
2.5%, p0 0.46 0.47 0.57
50%, p0 0.63 0.70 0.83
97.5%, p0 0.98 0.98 0.99

p̄1 0.80 0.79 0.77
s.d.{p1} 0.16 0.17 0.17
2.5%, p1 0.39 0.41 0.37
50%, p1 0.84 0.82 0.78
97.5%, p1 1.0 1.0 0.99

and whites are virtually identical. The drop in p1 in Table 1.5 may be attributed to the
negative dependence between p0i and p1i in the likelihood.

For some areas, the rejection rater was very low under the nonuniform priors, in particular
for the outlying areas. This is not surprising when one recognizes that the prior predictive
Pr(yi ) = r × M, where M is the maximized prior in this implementation and is constant
for all i (Wakefield, 1996).

HIERARCHICAL MODELS
We first state summaries for the truncated normal model (from King, 1997). The posterior
means of the averages of the normal for blacks and whites were 0.62 and 0.83, respec-
tively. For the binomial–beta model of King, Rosen, and Tanner (1999), the means of the
beta distributions for blacks and whites were 0.60 and 0.85, respectively (this analysis had
exponential priors of mean 2 on the hyperparameters).

At the first stage of the hierarchical model we take the normal approximation to the
convolution. At the second stage we assume the model θ j i ∼ N(·|µ j , � j j ), j = 0, 1, with
θ j i being the logit of p j i , as in Equations 1.13 and 1.14 with �01 = 0 (so that the logits
are independent across tables). At the third stage of the model we assumed independent
logistic distributions with location 0 and scale 1 (as described in Section 1.4). The variances
are more difficult. We report two analyses, one with the naive choice of Ga(0.001, 0.001)
priors for �−1

j j , and the other with Ga(1, 0.01) priors. The models were fitted using the
WinBUGS (Spiegelhalter, Thomas, and Best, 1998); the code for the normal approximation
to the convolution model is given in the Appendix.

The individual probabilities display very poor mixing in an MCMC approach, and in-
ference for ( p0i , p1i ) or (Y0i , Y1i ) for a particular table would be more accurate using an
empirical Bayes approach in which the table of interest was treated as a new table and the
prior was taken as the posterior over the population parameters. For example, we could use
a rejection algorithm with samples θ

(s )
i from π(θi |φ(s )) with φ(s ) ∼ π(φ|y), s = 1, . . . , S,

being samples from the posterior on the hyperparameters. Given the large margins and large
number of tables, this will not be too poor an approximation unless the table has very large
margins and/or is outlying.

The population summary parameters in Table 1.6 were obtained from chains that dis-
played slow convergence. The Markov chain was more stable when the more informative
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Table 1.6 Posterior quantiles from hierarchical analyses of the
race–registration data of King (1997)

Ga(0.001, 0.001) Ga(1, 0.01)

Parameter 2.5% 50% 97.5% 2.5% 50% 97.5%

p̄0 0.53 0.57 0.62 0.53 0.58 0.63
p̄1 0.84 0.86 0.87 0.83 0.85 0.87
s.d.{p0i } 0.30 0.32 0.34 0.29 0.32 0.34
s.d.{p1i } 0.16 0.18 0.20 0.16 0.18 0.20

(and plausible) prior was used for inference. For all analyses we ran the chains for 500,000
iterations of burn-in (to give the chain an opportunity to reach the main mass of the poste-
rior and “forget” its starting position), and then samples from a further 2,500,000 iterations
were used for inference (this latter number was greater than was needed but was used for
safety). Figure 1.13 shows samples from the Markov chain for four population summary
parameters (the names of which are given in the Appendix), and shows strong dependence
across iteration.

From Table 1.6 we see that the results for p1 are relatively robust to the choice of second-
stage distribution, as we would expect from Figure 1.12 and the analyses of the previous
sections. The number of tables is large here, and so the impact of the prior is not so great.

We attempted to include a correlation parameter in the second-stage distributions, but the
resultant Markov chain displayed extremely slow mixing, indicating that there was close to
zero information in the data to estimate this parameter. Including xi as a covariate also pro-
duced a poorly mixing chain, corresponding to near-nonidentifiability. This phenomenon
is noted by Rosen, Jiang, King, and Tanner (2001: Section 4.2).

In this example we have seen that the white registration probabilities are well estimated in
many areas, while there is far more uncertainty associated with the registration probabilities
for blacks. We conclude that under the assumption of no contextual effects there is evidence to
suggest that, over all, areas the black probabilities are smaller than the white probabilities on
average, but the extent of the difference cannot be precisely estimated without an informative
prior distribution, or surveys from within a sample of areas. We emphasize that this analysis
has not addressed the contextual aspect of the ecological fallacy.

1.8 DISCUSSION

In this chapter we have described and contrasted various models for ecological inference.
Examination of the bounds is an important exploratory step, but for inference the use of
an appropriate statistical model that naturally incorporates the bounds in a formal man-
ner is required. There is a fundamental indeterminacy that must be acknowledged when
ecological data are analyzed; the “solution” to the ecological inference problem is to supple-
ment the aggregate data with accurate individual-level information, or with context-specific
prior information, with the former being the preferred source of information. Wakefield
(2004) illustrates that such information need only be available on a small subset of indi-
viduals. In fact, data on a small subset of the minority group only can provide accurate
inference.

The Bayesian hierarchical models described here offer the flexibility to formally ac-
commodate substantive information and/or additional data. An excellent example of the
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Figure 1.13. Behavior of the Markov chain for the hierarchical model with a normal second-stage
distribution with Ga(0.001, 0.001) priors on the precisions. The first 500,000 iterations are treated
as a burn-in and are not plotted; the remaining iterations, up to 3,000,000, are plotted. The four
parameters qoi[1], qoi[2], qoi[3], qoi[4] are, respectively, p1, p2, s.d. (p0), and s.d. (p1),
and every 1,000th sample is plotted. The dependence in the chain is apparent, showing that large
numbers of samples are required for accurate inference. Inferential summaries are given in Table 1.6.

incorporation of both of these aspects, within the hierarchical structure described here, is
given in Chapter 6. We recommend that a number of models, reflecting a range of prior
assumptions (including the inclusion of contextual effects), be fitted, and the sensitivity to
assumptions, in particular contextual effects, be examined. Again the hierarchical models
described here provide a flexible class for this comparison.
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There are always competing explanations for data in an observational setting, and ecolog-
ical inference provides an extreme example in that vital influential information is missing
due to the design. All analyses should be as context-specific as possible. When combined
with other information, ecological data can be used to build a plausible inferential story. A
constructive strategy is to start with a plausible individual-level model and then aggregate
to find the ecological form (as we did when motivating the convolution likelihood). This
approach also clarifies, and allows consideration of, the assumptions that are required by all
methods.

APPENDIX

Below we give the WinBUGS code to implement the hierarchical model with the normal
approximation to the convolution likelihood at the first stage and independent normal dis-
tributions on the logits of the registration probabilities at the second stage. At the third stage
we have logistic priors on the means of the normal distributions, and inverse gamma distri-
butions on the variances of the normal distributions. The latter is equivalent to gamma priors
on the precisions – note that within WinBUGS the normal distribution is parameterized in
terms of the mean and the precision (the reciprocal of the variance).

## p[i, 1] = P( Y=1 | X=0, area i ) - Prob of reg given black in area i

## p[i, 2] = P( Y=1 | X=1, area i ) - Prob of reg given white in area i

## Margins

## N0[i] - total blacks

## N1[i] - total whites

## y[i] - total republicans

model

{
for (i in 1 : m) {

## Likelihood is the normal approximation to the convolution.

tildeq[i] ∼ dnorm( mu[i], W[i] )

mu[i] <- x[i] * p[i, 1] + (1 - x[i]) * p[i, 2]

W[i] <- N[i] /((p[i, 1] * (1 - p[i, 1]) * x[i]) + (p[i, 2]

* (1 - p[i, 2]) * (1 - x[i])))

N[i] <- N0[i] + N1[i]

tildeq[i] <- y[i] / N[i]

x[i] <- N0[i] / N[i]

## Second stage prior is normal on the logits.

p[i, 1] <- exp( theta[i, 1] ) / (1 + exp( theta[1, 1] ))

p[i, 2] <- exp( theta[i, 2] ) / (1 + exp( theta[1, 2] ))

theta[i, 1] ∼ dnorm(mean0, tau0)

theta[i, 2] ∼ dnorm(mean1, tau1)

temp1[i] <- p[i, 1] * N0[i]

temp2[i] <- p[i, 2] * (N[i] - N0[i])

}
sum1 <- sum(N0[])

sum2 <- sum(N[]) - sum(N0[])

t1 <- sum(temp1[]) / sum1

t2 <- sum(temp2[]) / sum2
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## Third stage priors are logistic and gamma.

mean0 ∼ dlogis(0, 1)

mean1 ∼ dlogis(0, 1)

tau0 ∼ dgamma(1, .01)

tau1 ∼ dgamma(1, .01)

## Quantities of interest to calculate.

qoi[1] <- exp(mean0) / (1 + exp(mean0)) # Posterior median of p0

qoi[2] <- exp(mean1) / (1 + exp(mean1)) # Posterior median of p1

qoi[3] <- t1 # Population-weighted average for p0

qoi[4] <- t2 # Population-weighted average for p1

qoi[5] <- mean0 # Mean of logit of p0

qoi[6] <- mean1 # Mean of logit of p1

qoi[7] <- tau0 # Precision of logit of p0

qoi[8] <- tau1 # Precision of logit of p1

qoi[9] <- mean(p[, 1]) # Empirical mean of p0

qoi[10] <- mean(p[, 2]) # Empirical mean of p1

qoi[11] <- sd(p[, 1]) # Empirical sd of p0

qoi[12] <- sd(p[, 2]) # Empirical sd of p1

}
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2 The Information in Aggregate Data∗

David G. Steel, Eric J. Beh, and Ray L. Chambers

ABSTRACT

Ecological inference attempts to draw conclusions concerning individual-level relationships using
data in the form of aggregates for groups in the population. The groups are often geographically
defined. A fundamental statistical issue is how much information aggregate data contain concerning
the relationships and parameters that we are trying to estimate. The information affects the standard
errors of estimates as well as the power of any tests of hypothesis. It also affects the ability to tell, from
the aggregate data, which different models under consideration are supported by the data.

In this chapter likelihood-based methods are considered. We show in general how aggregation affects
the information matrix associated with the maximum likelihood estimates compared with the case
when individual-level data are available. Hypothesis testing using aggregate data is also considered.

We apply this general approach to ecological inference in the case of several 2 by 2 tables and
show how the information is affected by aggregation. Tests of the hypothesis that the parameters are
constant across the groups are developed using aggregate data. We also consider how the addition of
a small number of individual-level data obtained from a sample, ignoring the groups, increases the
information concerning the parameters. The theory is illustrated through an example.

2.1 INTRODUCTION

The method of ecological analysis involves using aggregate data for a set of groups to make
inferences concerning individual-level relationships. Typically the data available for analysis
consist of the means or totals of variables of interest for geographical areas such as precincts,
although the groups can be organizations such as schools or hospitals. Attention has focused
on developing methods of estimating the parameters characterizing the individual-level
relationships across the whole population, but also in some cases the relationships for each
of the groups.

Applying standard methods used to analyze individual-level data, such as linear or logis-
tic regression or contingency table analysis, to aggregate data will usually produce biased
estimates of individual-level relationships. Thus much of the effort in ecological analysis
has concentrated on developing methods of analyzing aggregate data that can produce un-
biased, or less biased, parameter estimates. There has been less work done on inference
procedures, such as constructing confidence intervals and hypothesis testing. Fundamental
to these inferential issues is the question of how much information is contained in aggre-
gate data and what evidence such data can provide concerning important assumptions and
hypotheses.

∗ This research was supported by grants from the Australian Research Council. We would also like to thank John
Rayner for some useful discussions.
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In Section 2.2 we describe a general approach to determining the information in aggregate
data and how it compares with the information in individual-level data for likelihood-based
inference, including hypothesis testing. In Section 2.3 we illustrate how the approach applies
in the case of data from several 2 × 2 tables. We also consider, in Section 2.4, the information
contributed by aggregate and individual information when both are available. Section 2.5
gives empirical results based on some real data, illustrating the loss of information due to
aggregation and how hypothesis testing and analysis of residuals can be done using aggregate
data. Section 2.6 provides a brief discussion.

2.2 INFORMATION LOST BY AGGREGATION

Suppose that we have individual-level data d (1), which have associated probability function
f (1)(d (1); φ). The vector φ contains the parameters of the distribution of the individual-level
data. Likelihood inference about the parameter vector φ would be based on the likelihood
L (1)(φ; d (1)) = f (1)(d (1); φ) or the associated log likelihood

l (1)
(
φ; d (1)

) = log L (1)
(
φ; d (1)

)
.

The score function for φ based on d (1) is

sc(1)
(
φ; d (1)

) = ∂

∂φ
l (1)

(
φ; d (1)

)
. (2.1)

Maximum likelihood estimates (MLEs) would usually be obtained by solving

sc(1)
(
φ; d (1)

) = 0, (2.2)

resulting in the MLE φ̂.
For inference based on the MLEs we would also be interested in the (observed) information

matrix

info(1)
(
φ; d (1)

) = − ∂

∂φ
sc(1)

(
φ; d (1)

)

= − ∂2

∂φ ∂φT
l (1)

(
φ; d (1)

)
. (2.3)

The expected information is

Info(1)
(
φ; d (1)

) = E
[
info(1)

(
φ; d (1)

)]
. (2.4)

The expectation is over the distribution of d (1). Under several regularity conditions the
variance matrix of the asymptotic distribution of φ̂ is [Info(1)]−1 (see for example Cox and
Hinkley, 1974, Chapter 9).

Suppose we are interested in testing the hypothesis H0. Let φ̂0 be the MLE of φ under H0.
There are three common approaches to testing H0:

1. The likelihood ratio test (LRT) is based on the likelihood ratio

R(1) = L (1)
(
φ̂0; d (1)

)
L (1)

(
φ̂; d (1)

) ,
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and

−2 log R(1) = 2
[
l (1)

(
φ̂; d (1)

) − l (1)
(
φ̂0; d (1)

)]
is tested against the χ2

q distribution with q = dim{φ} − dim{φ0}.
2. The Wald test is based on

W(1) = (
φ̂ − φ̂0

)T [
Info(1)

(
φ̂; d (1)

)] (
φ̂ − φ̂0

)
.

3. The score test is based on

ST(1) = sc(1)
(
φ̂0; d (1)

)T [
Info(1)

(
φ̂0; d (1)

)]−1
sc(1)

(
φ̂0; d (1)

)
.

The score test does not require the calculation of φ̂, only φ̂0, which in some situations will
be an advantage over the Wald test. However, the Wald test does not require inversion of the
information matrix. All these tests may be used to produce confidence regions for φ. Efron
and Hinkley (1978) argue that it is preferable to use the observed rather than the expected
information matrix for inference. We will follow this approach.

Instead of individual-level data, we have available the aggregate data d (2). Let f (2)(d (2); φ)
denote the associated probability function. Likelihood-based inference can then be under-
taken using f (2). In general, deriving f (2) from f (1) may be difficult. Since f (2) is derived
from f (1), it will depend on the same parameters as f (1). However, not all these parameters
may be identifiable using aggregate data.

We assume that the individual-level data set comprises n individuals divided into p
groups. In general, the n individuals are obtained from a sample of individuals, S(1), and
the sample of p groups is S(2). The sample of individuals in group i is Si . An important
special case is when the samples are the entire finite population, i.e., S(1) = U (1), S(2) = U (2),
and Si = Ui . We will assume that any sampling involved is ignorable (for example, simple
random sampling).

Breckling, Chambers, Dorfman, Tam, and Welsh (1994) described an approach for max-
imum likelihood inference using sample data. Sampling is a process by which data are
unobserved or reduced, and aggregation is also a process that leads to the observed data
being reduced. The basic results of Breckling et al. (1994) can then be applied to examine
the effect of using aggregate data.

Let sc(2)(φ; d (2)) and info(2)(φ; d (2)) be the score function and observed information
matrix based on d (2). The key results of Breckling et al. (1994) are

sc(2)
(
φ; d (2)

) = E
[
sc(1)

(
φ; d (1)

) | d (2)
]

, (2.5)

info(2)
(
φ; d (2)

) = E
[
info(1)

(
φ; d (1)

) | d (2)
] − Var

[
sc(1)

(
φ; d (1)

) | d (2)
]
. (2.6)

The expectations in Equations 2.5 and 2.6 are over the distribution of d (1) conditional on
d (2), that is, the individual-level data given the aggregate data. Hypothesis testing can also
be done using this score function and information matrix as well as the likelihood based
on d (2).

In some cases using Equation 2.5 to obtain the score function may be more convenient
than direct differentiation of l (2) = log f (2). The result 2.6 is the key to determining the
information loss due to the use of aggregate data. The variance–covariance matrix of the
individual-level score function conditional on d (2) can be interpreted as the loss of informa-
tion due to aggregation. In Section 2.3 we will illustrate this approach for the case of p 2 × 2
tables, but the result can be applied in general.
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Table 2.1 Individual-level data for group i

Y = 1 Y = 0 Total
X = 1 n11i n12i n1•i

X = 0 n21i n22i n2•i

Total n•1i n•2i n i

2.3 SEVERAL 2 × 2 TABLES

2.3.1 Data Available

Suppose that the individual-level data consist of p 2 × 2 tables giving the frequencies
associated with two dichotomous variables, Y and X . Table 2.1 illustrates the data for
group i .

It is assumed that the marginal frequencies for X are fixed, or conditioned upon, and that
the values of Y are independent given X . Hence, for group i ,

n11i ∼ Bin (n1•i , π1i ) , n21i ∼ Bin (n2•i , π2i ) ,

whereπ1i = Prob(Y = 1|X = 1) andπ2i = Prob(Y = 1|X = 0) for group i . The associated
odds ratio is

θi = π1i

1 − π1i

1 − π2i

π2i
.

Let d (1)
i = {n11i , n1•i , n•1i , ni } be the individual-level data for group i , and d (1) =

{d (1)
i , i ∈ S(2)} be the entire individual-level data set. In ecological inference the individual-

level data are not available, so the values of n11i are not available either. However, the
marginal frequencies and ni are available, giving the aggregate data d (2)

i = {n1•i , n•1i , ni } for
group i and d (2) = {d (2)

i , i ∈ S(2)} for the p groups.

2.3.2 Analysis Using Individual-Level Data

Let ψi = (π1i , π2i )T and φ = [ψT
1 , . . . , ψT

p ]T . If no assumptions are made concerning
the parameters ψi , each table could be analyzed separately with individual-level data. The
likelihood for ψi based on d (1)

i is denoted L (1)
i (ψi ; d (1)

i ), and the log likelihood is

l (1)
i

(
ψi ; d (1)

i

)
= n11i log π1i + n12i log (1 − π1i ) + n21i log π2i + n22i log (1 − π2i ) .

The individual-level score function for ψi is

sc(1)
(
ψi ; d (1)

i

)
=




n11i − n1•i π1i

π1i (1 − π1i )
n•1i − n11i − n2•iπ2i

π2i (1 − π2i )


 . (2.7)
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The resulting MLEs are

ψ̂i = (π̂1i , π̂2i )
T =

(
n11i

n1•i
,

n•1i − n11i

n2•i

)T

.

The observed information matrix is

info(1)
(
ψi ; d (1)

i

)
=




n11i (1 − 2π1i ) + n1•i π
2
1i

π2
1i (1 − π1i )

2

0

0

(n•1i − n11i ) (1 − 2π2i ) + n2•i π
2
2i

π2
2i (1 − π2i )

2


 ,

(2.8)

and the expected information matrix is

Info(1)
(
ψi ; d (1)

i

)
=




n1•i

π1i (1 − π1i )

0

0

n2•i

π2i (1 − π2i )


 . (2.9)

It may be of interest to test whether there is evidence that the tables are homogeneous
with respect to the conditional probabilities, i.e., π1i = π1, π2i = π2 for i ∈ S(2), which can
be written as ψi = ψ = (π1, π2)T for all i ∈ S(2). This hypothesis may be of substantive
interest, or it may be convenient for further analysis and interpretation. For example, if we
have a sample of groups, then assuming group-specific parameters means that no inferences
can be made concerning groups that are not in the sample. Even if all groups in the population
of interest are included in S(2), the large number of groups may make interpretation of the
analysis difficult if each group is assumed to have different parameter values. One approach
to this issue is to allow for variation in ψi by including random effects, but for nonlinear
models, this introduces considerable complexities in the analysis.

If ψi = ψ , then the log likelihood for ψ based on d (1) is

l (1)
(
ψ ; d (1)

) =
∑

i∈S(2)

l (1)
i

(
ψ ; d (1)

i

)

= n11• log π1 + n12• log (1 − π1) + n21• log π2 + n22• log (1 − π2) .

Hence the tables can be collapsed, and the analysis can be based on the 2 × 2 table for
the entire sample, S(1). The MLEs, score and information functions are as in Equations 2.7,
2.8, and 2.9 with the i for the elements of d (1) replaced with the summation subscript •.
That is,

sc(1)
(
ψ ; d (1)

) =




n11• − n1••π1

π1 (1 − π1)
n•1• − n11• − n2••π2

π2 (1 − π2)


 (2.10)
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and

info(1)
11

(
ψ ; d (1)

) = n11• (1 − 2π1) + n1••π2
1

π2
1 (1 − π1)2 ,

info(1)
21

(
ψ ; d (1)

) = 0,

info(1)
22

(
ψ ; d (1)

) = (n•1• − n11•) (1 − 2π2) + n2••π2
2

π2
2 (1 − π2)2 .

(2.11)

The resulting MLEs are ψ̂ = ( n11•
n1••

, n•1•−n11•
n2••

)T .

The hypothesisψi = ψ can be tested using the likelihood ratio, Wald, or score test. The last
two can be based on the observed or expected information matrix. Also the likelihood can
be directly examined to see what evidence it provides (see Royall, 1997). For example, when
the tables are homogeneous, φ0 = [ψT , . . . , ψT ]T and the score test using the observed
information matrix is

ST(1) =
∑
i∈S(2)

sc(1)
(
ψ̂ ; d (1)

i

)T [
info(1)

(
ψ̂ ; d (1)

i

)]−1
sc(1)

(
ψ̂ ; d (1)

i

)

=
∑
i∈S(2)

ST(1)
i .

The likelihood ratio is

R(1) =
∏

i∈S(2)

L (1)
i

(
ψ̂ ; d (1)

i

)

L (1)
i

(
ψ̂i ; d (1)

i

) =
∏

i∈S(2)

R(1)
i .

2.3.3 Analysis Using Aggregate Data

In ecological inference the data available from each table are d (2)
i , so that n11i is not available.

We could attempt an analysis without making any assumptions concerningψi . This amounts
to analyzing each group separately. Applying Equation 2.5 to Equation 2.7 immediately gives

sc(2)
(
ψi ; d (2)

i

)
=




E
(

n11i | d (2)
i

)
− n1•i π1i

π1i (1 − π1i )

n•1i − E
(

n11i | d (2)
i

)
− n2•iπ2i

π2i (1 − π2i )




.

Conditional on d (2)
i , n11i has a noncentral hypergeometric distribution (see for example

McCullagh and Nelder, 1989: 257–259), and

E
(

n11i |d (2)
i

)
=

P1

(
θi ; d (2)

i

)

P0

(
θi ; d (2)

i

) ,
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where

Pr

(
θi ; d (2)

i

)
=

bi∑
j=ai

(
n1•i

j

) (
n2•i

n•1i − j

)
j r θ

j
i .

The limits of the sum are the lower and upper bounds on n11i given d (2)
i , and are ai =

max(0, n•1i − n2•i ) and bi = min(n1•i , n•1i ). Denote E(n11i |d (2)
i ) by κ1(θi ; d (2)

i ). Also

Var
(

n11i |d (2)
i

)
=

P2

(
θi ; d (2)

i

)

P0

(
θi ; d (2)

i

) − κ1

(
θi ; d (2)

i

)2

which will be denoted by κ2(θi ; d (2)
i ).

From Equation 2.7,

Var
(

sc(1)
(
ψi ; d (1)

i

)
|d (2)

i

)

= κ2

(
θi ; d (2)

i

)



1

π2
1i (1 − π1i )

2

−1

π1i π2i (1 − π1i ) (1 − π2i )

−1

π1i π2i (1 − π1i ) (1 − π2i )

1

π2
2i (1 − π2i )

2


 .

Applying Equation 2.6 with 2.7 and 2.8 gives

info(2)
11

(
ψi ; d (2)

i

)
=

κ1

(
θi ; d (2)

i

)
(1 − 2π1i ) + n1•i π

2
1i − κ2

(
θi ; d (2)

i

)
π2

1i (1 − π1i )
2 ,

info(2)
21

(
ψi ; d (2)

i

)
=

κ2

(
θi ; d (2)

i

)
π1iπ2i (1 − π1i ) (1 − π2i )

,

info(2)
22

(
ψi ; d (2)

i

)
=

(
n•1i − κ1

(
θi ; d (2)

i

))
(1 − 2π2i ) + n2•i π

2
2i − κ2

(
θi ; d (2)

i

)
π2

2i (1 − π2i )
2 .

Setting sc(2)(ψi ; d (2)
i ) = 0 yields the relationship

π1i n1•i + π2i n2•i = n•1i

or

π2i = n•1i

n2•i
− n1•i

n2•i
π1i , (2.12)

which corresponds to the tomography line for group i discussed in King (1997: 80) .
The aggregation of the data has resulted in each element of the information matrix being

modified by a term proportional to κ2(θi ; d (2)
i ) arising from the conditional variance of
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the individual-level score function. Also, n11i is replaced by its expectation conditional
on d (2)

i .
For each group there is only one observed random variable n•1i , and two parameters,

unless some further assumptions are made. For p groups there are p observations n•1i , i ∈
S(2), but 2 p parameters. Hence standard asymptotic properties of likelihood-based methods
cannot be relied upon. Beh, Steel, and Booth (2002) consider the likelihood associated with
aggregate data for a single group. This is given by McCullagh and Nelder (1989: 353)

L (2)
i

(
ψi ; d (2)

i

)
= (1 − π1i )

n1•i π
n•1i
2i (1 − π2i )

n2•i −n•1i P0

(
θi ; d (2)

i

)
. (2.13)

Wakefield (2001) uses the same likelihood, but presents it in the form of a convolution
likelihood of two binomials.

Beh, Steel, and Booth (2002) show that the likelihood surface has a ridge along the
tomography line 2.12. Along the tomography line the likelihood is minimized when π1i =
π2i , i.e. at independence, and the maximum occurs at one of the ends of the tomography
line. They also show that, except for cases when n•1i is very close to n1•i or n2•i , the likelihood
surface is not able to provide useful evidence concerning the values of π1i and π2i other
than that they should be on the tomography line. Notice that the score and information
function in this case can also be obtained directly from the likelihood L (2)

i given by Equa-
tion 2.13.

Beh, Steel, and Booth (2002) obtain the exact values of ψ̂i = (π̂1i , π̂2i )T that maximize the
likelihood. Wakefield (2001) also obtains these values using an approximation. The resulting
maximum of the likelihood L (2)

i (ψ̂i ; d (2)
i ) can also be obtained. Notice ψ̂i is unique, except

when n1•i = n2•i , in which case the likelihood is maximized at (0, 1)T and (1, 0)T .
The inferential problem that arises from wishing to estimate 2 p parameters from p

observations can be tackled if we assume ψi = ψ for all i ∈ S(2). Of course, this is a very
strong assumption, and it is more realistic to assume that ψi varies in some way across the
p groups. The variation may be related to group-level covariates zi and random effects.
However, analysis is relatively straightforward if the homogeneity assumption holds. More
importantly, the question arises whether, in practice, it is possible from aggregate data
alone to assess whether the homogeneity assumption is reasonable before attempting to use
methods that allow for variation in ψi .

When ψi = ψ , we can obtain the score and information functions based on the aggregate
data for the p groups in the sample by applying Equations 2.5 and 2.6 to 2.10 and 2.11 or by
summing the score and information functions arising from each group with ψi = ψ . This
gives

sc(2)
(
ψ ; d (2)

) =




∑
i κ1

(
θ ; d (2)

i

)
− n1••π1

π1 (1 − π1)

n•1• − ∑
i κ1

(
θ ; d (2)

i

)
− n2••π2

π2 (1 − π2)




,
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info(2)
11

(
ψ ; d (2)

) =
∑

i κ1

(
θ ; d (2)

i

)
(1 − 2π1) + n1••π2

1 − ∑
i κ2

(
θ ; d (2)

i

)
π2

1 (1 − π1)2 ,

info(2)
12

(
ψ ; d (2)

) =
∑

i κ2

(
θ ; d (2)

i

)
π1π2 (1 − π1) (1 − π2)

,

info(2)
22

(
ψ ; d (2)

) =
(

n•1• − ∑
i κ1

(
θ ; d (2)

i

))
(1 − 2π2) + n2••π2

2 − ∑
i κ2

(
θ ; d (2)

i

)
π2

2 (1 − π2)2 .

Setting sc(2)(ψ ; d (2)) = 0 gives the overall sample-level tomography line

π1n1•• + π2n2•• = n•1•.

The correlation between the two elements of the individual-level score function condi-
tional on d (2), obtained from Var[sc(1)(ψ ; d (1))|d (2)], is−1 and corresponds to the constraint
arising from the tomography line.

Comparing info(2) with info(1), we see that in addition to the reduction in the diagonal
elements, a positive term appears in the off-diagonal elements. This suggests that inferences
concerning π1 − π2 will be particularly badly affected.

The same score function can be obtained directly from the likelihood of the aggregate
data,

L (2)
(
ψ ; d (2)

) =
∏

i∈S(2)

L (2)
i

(
ψ ; d (2)

i

)
.

McCullagh and Nelder (1989: 353) obtain an equivalent score function for a different pa-
rameterization.

The equations sc(2)(ψ ; d (2)) = 0 can be solved to obtain the estimates ψ̂ = (π̂1, π̂2)T

under the hypothesis of homogeneity. This can be done in several ways, as reviewed by Beh
and Steel (2002). Here we obtain the estimate of ψ using the Newton–Raphson iterative
procedure

ψ ( j+1) = ψ ( j ) − α A−1

(
∂l

∂ψ

)∣∣∣∣
ψ=ψ ( j )

with the secant approximation of the hessian matrix A to accelerate convergence. Reddien
(1986) comments that the use of this approximation is often preferred to the standard
Newton–Raphson procedure and that its rate of convergence is both satisfactory and stable.
The value of α is chosen such that 0 ≤ α ≤ 1 and dictates the step length taken on iteration
of the procedure (see McCulloch and Searle, 2001: 269).

Once an estimate of the common probabilities, ψ̂ , is obtained, we can produce estimates of
the group-specific proportions βb

i = n11i /n1•i and βw
i = n21i/n2•i by evaluating the expec-

tation E[n11i | d (2)] = κ1(θ̂ ; d (2)
i ) where θ̂ is the odds ratio calculated from ψ̂ . This gives the

estimates β̂b
i = κ1(θ̂ ; d (2)

i )/n1•i and β̂w
i = (n•1i − κ1(θ̂ ; d (2)

i ))/n2•i . For each group these
estimates of the proportions are obtained by projecting the estimates of the common prob-
abilities, ψ̂ , onto the tomography line (Equation 2.12) for that group, using the expectation
of the noncentral hypergeometric distribution κ1(θ̂ ; d (2)

i ).
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The likelihood ratio for testing the hypothesis ψi = ψ is

R(2) =
∏

i∈S(2)

L (2)
i

(
ψ̂ ; d (2)

i

)

L (2)
i

(
ψ̂i ; d (2)

i

) =
∏

i∈S(2)

R(2)
i .

We will not use the Wald test, as info(2) is not defined at the ψ̂i values. The score test based
on the observed information matrix is

ST(2) =
∑

i∈S(2)

sc(2)
(
ψ̂ ; d (2)

i

)T [
info(2)

(
ψ̂ ; d (2)

i

)]−1
sc(2)

(
ψ̂ ; d (2)

i

)
=

∑
i∈S(2)

ST(2)
i .

2.4 USING AGGREGATE AND UNIT-LEVEL DATA

In some situations it may be feasible to obtain both individual-level and aggregate data. For
example, we may have a reasonably large number of groups and could consider choosing a
small sample of individuals to supplement the aggregate data. Alternatively, we could have a
reasonable size sample of individuals and consider supplementing it by some aggregate data.
The latter case could be useful in producing estimates of group-specific quantities. This leads
to the general issue of what is the relative value of the two types of data. This can help us
decide at what sample size the information in the aggregate data has little additional value.

Suppose that we have a simple random sample, S(0) of n0 individuals selected from the
population of interest. We assume that the sampling fraction is small so that we can treat
the data in S(0) as independent of that in S(2). The sample S(0) produces the data d (0). The
aggregate and individual-level data can be combined, giving d (c) = {d (2), d (0)}. Because of
the independence of the data sets, the score function and information matrices can be added,
giving

sc(c)
(
φ; d (c)

) = sc(2)
(
φ; d (2)

) + sc(0)
(
φ; d (0)

)
,

info(c)
(
φ; d (c)

) = info(2)
(
φ; d (2)

) + info(0)
(
φ; d (0)

)
.

Consider the case of p 2 × 2 tables. Suppose that the group that each individual comes
from is not known. This could be for reasons of confidentiality or because the sample
was selected in a way that did not make recording the groups convenient. Then d (0) =
{n(0)

11 , n(0)
1• , n(0)

•1 , n(0)}.
Assuming ψi = ψ , the information associated with d (0) is

info(0)
11

(
ψ ; d (0)

) = n(0)
11 (1 − 2π1) + n(0)

1• π2
1

π2
1 (1 − π1)2 ,

info(0)
21

(
ψ ; d (0)

) = 0,

info(0)
22

(
ψ ; d (0)

) =
(

n(0)
•1 − n(0)

11

)
(1 − 2π2) + n(0)

2• π2
2

π2
2 (1 − π2)2 .

The addition of the unit-level data increases the diagonal elements of the information matrix
and leaves the off-diagonal elements unchanged. Besides reducing the asymptotic variance
of the estimates of π1 and π2, this will also dampen the correlation of the estimates, resulting
in additional benefits for the estimation of π1 − π2 .
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i versus βb

i .

2.5 EXAMPLE

To illustrate the application of these results we will consider a simple example using data
from the 1996 Australian census. The data corresponds to the census district (CD) level data
for the city of Brisbane in Australia, where the individual level classifications are known.
There are a total of 1541 CDs, but for simplicity we will focus our discussion on a random
sample of 50 CDs.

For comparison, King’s method is also applied to these data using the EzI package (Benoit
and King, 1998) with its default global parameters.

Consider the data with variables income and age, so that for CD i the classification of
individuals is

X = 1 if a person is aged between 15 and 24 years,

X = 0 if a person is aged at least 25 years,

Y = 1 if a person’s weekly income is between $AU0 and $AU159,

Y = 0 if a person’s weekly income is at least $AU160.

For the 50 CDs considered there are 22,323 individuals classified, with 4238 individuals
aged between 15 and 24 years, and 5674 with a weekly income between $AU0 and $AU159.
These values correspond to the marginal frequencies n•, n1••, and n•1•, respectively. The
proportion of people aged between 15 and 24 was 0.1898 and varied from 0.1053 to 0.2861
with a coefficient of variation 0.1970. A plot of the values of the group specific proportions
βb

i and βw
i is given in Figure 2.1 and shows a considerable amount of variation.

Based on the individual-level data, we obtain π̂
(1)
1 = 0.5054 and π̂

(1)
2 = 0.1953, which

have estimated standard errors of 0.0077 and 0.0029, respectively.
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Figure 2.2. Plots of (a) β̂b
i versus βb

i and (b) β̂w
i versus βw

i , using κ1(θ̂ (2); d (2)
i ).

Based only on the aggregate-level data, the maximum likelihood estimates assuming
homogeneous parameters and using the accelerated Newton–Raphson iterative procedure
give π̂

(2)
1 = 0.5184 and π̂

(2)
2 = 0.1922 and estimated standard errors of 0.0353 and 0.0085,

respectively. The initial values of π1 and π2 were set at 0.6 and 0.1966 so that the overall
tomography line is satisfied. Instability of the convergence was experienced with α = 1, so
smaller steps were carried out throughout the iterative procedure with α = 0.4. Using King’s
(1997) method via EzI produced estimates π̃

(2)
1 = 0.4769 and π̃

(2)
2 = 0.2020 with estimated

standard errors of 0.1606 and 0.0376 respectively. The point estimates obtained from the two
methods are quite similar, although there is a large difference between the estimated standard
errors. This may be due to the random effects incorporated into the King method, whereas
our approach does not include any random variation in the group-specific parameters.

The estimates of the group-specific proportions βb
i and βw

i using King’s approach and
assuming homogeneity of the associated probabilities are very similar. In the latter approach,
even though the probabilities π1i and π2i are assumed to be constant across the groups, the
associated proportions, βb

i and βw
i , are not assumed to be constant across the groups.

Figure 2.2 compares the individual-level proportions βw
i and βb

i with the estimates β̂b
i and

β̂w
i obtained by considering the expectation E[n11i | d (2)

i ] using the parameter values π̂
(2)
1 and

π̂
(2)
2 , that is, κ1(θ̂ (2); d (2)

i ). These values are very similar to those produced when estimating
βb

i and βw
i using King’s approach, and these are produced in Figure 2.3. Chambers and Steel

(2001) considered using the relative root-mean-square errors

V1 = 1

π̂
(1)
1

√
p−1

∑
i

(
β̂b

i − βb
i

)2
, V2 = 1

π̂
(1)
2

√
p−1

∑
i

(
β̂w

i − βw
i

)2

to assess how well these estimates reproduce the true values. For the method assuming
homogeneity between the groups, we have V1 = 0.1993 and V2 = 0.1204, while King’s
method produces the similar values V1 = 0.2066 and V2 = 0.1317. This indicates that for
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Figure 2.3. Plot of (a) β̂b
i versus βb

i and (b) β̂w
i versus βw

i , using King’s methodology.

these CDs there is no advantage in allowing for group heterogeneity in the conditional
probabilities.

Based on the individual-level parameter estimates π̂
(1)
1 and π̂

(1)
2 , the information matrix

and its inverse are

info(1) =
(

16953.96
0

0
115075.3

)
,

[
info(1)

]−1 =
(

0.00005898323
0

0
0.00000868996

)
.

This gives the estimated standard errors ŜE
(1)

(π̂ (1)
1 |d (1)) = 0.0077 and ŜE

(1)
(π̂ (1)

2 |d (1)) =
0.0029.

The conditional expectation of this information matrix can be evaluated by replacing n11i

by its conditional expectation evaluated at θ̂ (2). Doing so yields

E
[
info(1)|d (2)

] =
(

16991.07
0

0
117205.8

)
,

which is very close to info(1).
Using π̂

(2)
1 , π̂ (2)

2 , and θ̂ (2) from the Newton-Raphson procedure, we obtain

Var
[
sc(1)|d (2)

] =
(

11927.53
−19179.83

−19179.83
30841.74

)
,

which has an associated correlation of −1. Applying Equation 2.6, the resulting information
matrix based only on the aggregate level data is

info(2) =
(

5063.538
19179.83

19179.83
86364.03

)
,
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Table 2.2 Effect of aggregation on variance estimates:
income by age

Ind. sample Ind. sample
Parameter V̂ar

(2)
/V̂ar

(1)
equiv. to 50 CDs equiv. per CD

π1 21.2 1053 21
π2 8.6 2596 52
π1 − π2 27.8 803 16

so that

[
info(2)

]−1 =
(

0.0012436897 −0.00027620009
−0.00027620009 0.00007291774

)
;

therefore the estimated standard errors are ŜE
(2)

(π̂ (2)
1 |d (2)) = 0.0353 and ŜE

(2)
(π̂ (2)

2 |d (2)) =
0.0085.

The difference in the probabilities, π1 − π2, will often be of particular interest. From
info(1) we obtain

V̂ar
(1)

[
π̂

(1)
1 − π̂

(1)
2 |d (1)

]
= V̂ar

(1)
(
π̂

(1)
1 |d (1)

)
+ V̂ar

(1)
(
π̂

(1)
2 |d (1)

)

−2Ĉov
(1)

(
π̂

(1)
1 , π̂

(1)
2 |d (1)

)

= 0.00005879863 + 0.000008480757 − 2 × 0
= 0.00006727939.

Hence

ŜE
(1)

[
π̂

(1)
1 − π̂

(1)
2 |d (1)

]
= 0.008202401.

From info(2),

V̂ar
(2)

[
π̂

(2)
1 − π̂

(2)
2 |d (2)

]
= V̂ar

(2)
(
π̂

(2)
1 |d (2)

)
+ V̂ar

(2)
(
π̂

(2)
2 |d (2)

)

−2Ĉov
(2)

(
π̂

(2)
1 , π̂

(2)
2 |d (2)

)

= 0.0012436897 + 0.00007291774 + 2 × 0.00027620009
= 0.001869008,

giving

ŜE
(2)

[
π̂

(2)
1 − π̂

(2)
2 |d (2)

]
= 0.04323203.

The estimated correlation between π̂
(2)
1 and π̂

(2)
2 obtained from info(2) is −0.917.

The effect of aggregation can be examined by looking at the ratio of the estimated variances
obtained from info(1) and info(2). These are given in Table 2.2. Here the estimation of π1 is
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Table 2.3 Comparison of Var(π1 − π2) for the analysis
of aggregate data and samples of individual-level data of
various sizes

n0 Var(c)(π1 − π2) Var(0)(π1 − π2)

0 0.001869 –
1 0.001866 1.501876

10 0.001845 0.150188
50 0.001756 0.030037

100 0.001656 0.015019
500 0.001138 0.003004

1000 0.000818 0.001502
5000 0.000253 0.000300

more affected by aggregation than that of π2, possibly because π1 is larger and βb
i varies more

across the CDs. The increase in the asymptotic variance of the parameters π1 and π2 is more
than the increase in the diagonal elements of the information matrix, i.e. more than 3.3 and
1.3 respectively. This is due to the large covariance term introduced by the aggregation. The
estimation of π1 − π2 is affected even more than that of π1, due to the effect of aggregation
on the correlation of the estimates. In looking at these ratios, it must be remembered that
the individual-level data consist of 22,323 people, whereas the aggregate data relate to 50
CDs, a ratio of 446. There are 4238 people who are 15–24 years old and who contribute
to the estimation of π1, an average of 84.8 people per CD. While there is clearly a loss of
information through the use of aggregate data, it does not correspond to each CD being
equivalent to an individual. In Table 2.2 we show the individual-level sample size required
to obtain the same variance, and therefore standard error, as using these aggregate data for
50 CDs. For example, the sample of 50 CDs gives the same variance for the estimation of
π1 − π2 as 803 individuals. Dividing by 50 gives an indication of the information per CD
compared with the information per individual. For this example, on average, each CD is
as useful as 16 individuals with regard to estimating π1 − π2. These results depend on the
variation in the proportion of 15–24-year-olds across the CDs.

Using the results in Section 2.4 we can also examine the likely impact of supplementing
aggregate data with individual-level survey data. This is shown in Table 2.3, which gives the
variance Var(c) of the estimate of π1 − π2 based on aggregate data for 50 CDs plus an inde-
pendent sample of n0 individuals for n0 = 0, 1, 10, 50, 100, 500, 1000. For comparison,
we also give the variance for these sample sizes when there is no aggregate data, Var(0).

The results in Table 2.3 are consistent with the aggregate data being equivalent to 803
individuals.

We can also compare the use of individual and aggregate data in testing for homogeneity,
using the likelihood ratio and score test as described at the end of Section 2.3. Both tests
should be compared with χ2

98, for which the critical value for a 5% test is 122.
For the likelihood ratio test the results are

−2 log R(1) = 502.7287, − 2 log R(2) = 339.2903.

Both these values suggest that the null hypothesis of ψi = ψ be rejected. The test statistic
calculated from the individual-level data is larger, which is consistent with it having more
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Figure 2.4. Plot of −2 log R(2)
i versus Xi and versus −2 log R(1)

i .

power. Each of these test statistics can be decomposed into a term for each group, i.e.,

−2 log R(1) =
∑

i

(
−2 log R(1)

i

)
, − 2 log R(2) =

∑
i

(
−2 log R(2)

i

)
.

Figure 2.4a gives a plot of −2 log R(2)
i versus Xi = n1•i /ni , the proportion of people aged

15–24 years, for each CD. This plot may be useful as a diagnostic in identifying groups with
large values which indicate that they are particularly affecting the statistical significance of
the test. It will suggest those groups having parameters π1i and π2i which are statistically
significantly different from the overall parameters values. It may also be useful in suggesting
any trends in departures from homogeneity that may be related to Xi .

In examining these values we suggest comparing them with the 1% critical value of χ2
2 ,

i.e. 9.210. The horizontal and vertical lines on the figures correspond to this value.
Figure 2.4b gives a plot of −2 log R(2)

i versus −2 log R(1)
i . Of the 17 cases that would be

identified as statistically significant using individual-level data, 9 are also identified using
the group-level data. Also, no cases that are identified as statistically nonsignificant using
−2 log R(1)

i are identified as statistically significant using −2 log R(2)
i . Hence, while there is,

as expected, a loss of power in using the aggregate data, it is still possible to undertake a
useful analysis of residuals.

Both the analyses of −2 log R(1)
i and −2 log R(2)

i identify one particular CD as having a
large influence on the hypothesis test. This CD was investigated and found to have more
than twice the usual population size, low values of βb

i and βw
i , and a reasonably high value

of Xi . This is probably a CD in a newly developed area of the city.
A similar approach can be used with the score test, giving

ST(1) = 496.8291, ST(2) = 359.9741.

Figure 2.5 gives a plot of ST(2)
i versus Xi and ST(1)

i .
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Again these results both lead to the rejection of the null hypothesis. However, we en-
countered a problem with the score test. For 24 of the 50 CDs, info(2)(ψ̂ ; d (2)

i ) was not
positive definite, leading to a negative ST(2)

i value. In our analysis we set such cases to zero.
Numerically this situation arises because the subtraction of the estimate of the conditional
variance of the score function for the CD reduces the diagonal elements and increases the
off-diagonal elements too much. We are investigating modifications to the score test to over-
come this difficulty. Even so, using ST(2)

i identifies 10 of the 15 cases that ST(1)
i would identify

as having parameters statistically significantly different from the overall values. However, it
also identified one case as statistically significant that was not so identified using ST(1)

i .
Signed residuals can also be determined and examined.

2.6 DISCUSSION

We have described a general approach to clearly identify the loss of information in using
aggregate rather than individual-level data. Let Yk denote the value of the response variable
for individual k. In many situations determining the score function and information loss
through aggregation will involve determining E(Yk |d (2)

i ), Var(Yk |d (2)
i ), and Cov(Yk , Yk′ |d (2)

i )
for k, k′ ∈ i .

In the example of homogeneous 2 × 2 tables, this approach is not much simpler than
direct use of the likelihood based on the aggregate data d (2). However, Equation 2.6 clearly
shows the information loss. Much of the effect of aggregation in this case arises from the
change to the off-diagonal elements of the information matrix.

The example considered in this chapter shows how we can test the hypothesis of the
parameters of interest being constant across groups from aggregate data alone. Decomposing
the resulting test statistics into contributions from each group enables an analysis of the
impact that each group has on the hypothesis test. This can be useful in identifying groups
with parameter values very different from the overall parameters.
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The example suggests that residuals obtained from the likelihood ratio test using aggregate
data are preferable to those obtained from the score test.

We are currently considering how the general approach applies in the more complex
models, especially those including random effects to allow for the variation in group-specific
parameters.
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3 Using Ecological Inference for Contextual Research

When Aggregation Bias Is the Solution as Well as the Problem

D. Stephen Voss

ABSTRACT

Gary King’s ecological inference method represents a major breakthrough for analysts working with
aggregate data because it is sensitive to contextual behavior patterns that previous methods had to
assume away. King’s critics underestimate the value of his method because they apply it to patently
uninformative data, do not look for the contextual patterns that would improve estimation, and do
not take advantage of the contextual knowledge that substantive experts would bring to an analysis.
This chapter offers new diagnostic trials for the estimates from King’s EI software, applied to data that
have emerged from a genuine research agenda but for which the true values are known. Not only does
the method do a superb job with typical precinct-level voting data, it even manages to produce solid
estimates with inedequate county-level data once the analyst takes into account insights provided by
the relevant scholarly literature. King’s approach can and should be improved, but the imperfections
provide no justification for using older methods of aggregate-data analysis or for relying solely on
survey data such as exit polls.

INTRODUCTION

Debate over Gary King’s proposed solution to the ecological inference problem (King, 1997)
has begun to emerge in journals oriented toward statistics and political methodology. For
the most part, this debate has operated at a theoretical level – evaluating properties of
the estimators generated by King’s method (as well as his supplementary software, EI and
EzI). The tone of the debate has often been critical (Herron and Shotts, 2003; McCue,
2001; Rivers, 1998; Anselin and Cho, 2002; Cho, 1998; Freedman et al., 1998). At the same
time, substantive applications using King’s method have begun to appear in social-science
journals (e.g., Burden and Kimball, 1998; Gay, 2001; Gimpel and Schuknecht, 2002; Liu,
2001; Lublin and Voss, 2002; Voss and Miller, 2001). Not only have these manuscripts
successfully cleared the peer-review process for numerous respectable outlets, the authors
also report concrete diagnostic checks that indicate the relative success of EI at solving
difficult estimation problems.

Disagreement between theoretical critiques and substantive applications is not unique to
aggregate-data analysis. Critics generally compare a method against ideal statistical prop-
erties, so the incentive is to identify data that illustrate methodological problems. Analysts,
by contrast, generally compare a method against convenient alternatives; the incentive is to
defend whichever statistical tools they select. Unfortunately, the pressures that drive apart
theory and practice worsen in the instance of ecological inference. Success depends heav-
ily upon the amount of information lost in the aggregation process and the contextual
knowledge that an analyst exploits when trying to recapture lost information. Critics face
little difficulty identifying data that will lead methods of ecological inference astray, whereas

69
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knowledgeable analysts can tweak performance out of a statistical tool that it would not ex-
hibit if applied naively. The result is a dissonance that can only confuse practitioners waiting
for the methodological literature’s final verdict on a statistical innovation.

My purpose in this chapter is to lay out, in relatively accessible terms, why King’s so-
lution to the ecological inference problem represents a path-breaking development that
should fundamentally change scholarly standards for what is acceptable in aggregate-data
analysis. However, I do not simply summarize, in less-technical vocabulary, the various
statistical virtues that King already has documented on behalf of his approach (1997, 1999,
2000, 2002). Rather, I focus on EI as a substantive resource for conducting what social
scientists customarily call “contextual research.” King’s approach helps the analyst probe
theoretically important contextual effects that undermined previous methods of ecological
inference because these methods had to assume them away. Unlike the conventional forms
of aggregate-data analysis that preceded it, King’s approach holds out some possibility for
pulling apart compositional and contextual patterns – that is, for determining the extent
to which aggregate behavior varies from place to place because of changes in the balance
of social groups composing each locale, and the extent to which aggregate behavior varies
because of how each social group reacts to the context in which it operates.1

Pursuing this argument requires four distinct steps. The body of the chapter begins by
embedding ecological inference within the needs of contextual research to show why they
are inextricably linked. The aggregation bias that spoils conventional ecological inference
derives in large part from the very same contextual effects central to social theories of human
behavior. The second section reviews why King’s method is sensitive to aggregation bias,
which in turn means that it provides leverage for capturing otherwise elusive contextual
effects. The third section explains why previous diagnostic tests do not give a good picture
of EI’s value for contextual research. The existing critiques analyze patently uninformative
data and neglect to incorporate the sort of substantive insights that normally would be
available to an analyst applying the method.2

The final section therefore exhibits King’s approach in action to show how it is especially
valuable for contextual research by analysts armed with informative data or with a significant
background in the substance of their topics. In particular, it applies King’s innovations to real
data collected to address actual research questions in racial voting behavior, and it illustrates
the unprecedented success of his statistical tools. Techniques of ecological inference still have
far to go, and numerous enhancements still await practical implementation (as illustrated
by the many essays in this volume). But all of the sound and fury generated by this scholarly
ferment – which will give numerous reminders why EI is imperfect – should not distract
practitioners from the simple fact that King’s method is far superior to the tools upon which
both scholars and policy makers previously relied. The criticism of King should not serve
as an excuse to continue using those older methods.

HOW ECOLOGICAL ANALYSIS KILLED ECOLOGICAL INFERENCE

Contextual theories of political behavior generally characterize how individuals respond to
their social environment. They recognize that individuals view political life through different

1 Note that there is a third possibility, which is that behavior varies because of selection effects among the
group members who gravitate to different locales. For purposes of this discussion, I conflate the two sorts of
contextual patterns – the push vs. the pull of the environment – under the umbrella label of “contextual research.”
Distinguishing them is difficult to impossible with cross-sectional data, although greater insight might be gained
from a dynamic approach to inference that incorporated variation across time (see Chapter 9 of this book).

2 In other words, they do not even use informally the sort of prior knowledge that Bayesian innovations in ecological
inference allow researchers to incorporate formally (see, for example, Chapters 1 and 6).
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lenses depending upon the communities they inhabit. People experience different pressures
and face different incentives because of where they happen to reside. Different memories and
different symbols shape their political lives, and the schema that structure this emotion-laden
raw material may be shared narratives that have emerged from a geographically bounded
stream of communication (Couto, 1993). This complex, socially embedded perspective
motivated many early empiricists in political science, including the “quintessential political
scientist,” V. O. Key, Jr. (Lucker, 2001; Natchez, 1985: 74, 94–99). It eventually faded in favor
of highly individualistic approaches to political behavior grounded in social psychology, as
epitomized by the Michigan model of voting behavior.3

Surveys encourage individualistic approaches to politics. They sample random people in
isolation and ask for their subjective perceptions. Secondary analysis often explains opinion
with opinion and preference with preference; the burden seldom falls on researchers to trace
raw opinions back to any tangible source (Natchez, 1985: 64–67). In particular, analysts
rarely consider the strongest community attachments that individuals might have – family,
friends, church, school, neighborhood, county, newspaper – because they are localized.4

Secondary analysts may not even possess the contextual information needed to allow such
nuance. In work developed from such a data source, political actors inherently appear
as disembodied souls. By contrast, aggregate statistics summarize the social environment
shaping political behavior. They portray many of the external incentives and pressures that
operate on political actors, especially those bounded by geography. With reliable methods
of aggregate-data analysis, deeper insights about the social nature of politics would be
possible – so the line between contextual analysis and aggregate-data analysis is hazy, and
to some extent their fates have always been intertwined.

Sociologists recognized long ago the intimate connection between aggregation and at-
tempts to contextualize human behavior. Indeed, the language we still use to discuss
aggregate-data analysis reflects their awareness. They used biological metaphors to dis-
cuss how humans related to the pressures of a social environment, implicitly or explicitly
comparing the process to a species interacting with its ecology. Ecological analysis, when
applied to human behavior, meant studying contextual effects on how people acted and
what they believed. Therefore, when aggregate-data analysis suffered a series of high-profile
attacks that undermined confidence in available methods (e.g., Goodman, 1953; Robinson,
1950), the natural result was a decline in contextual studies.

Few early critics discussed the ironic tension between ecological inference and ecological
analysis – the focus tended to be on fallacious conclusions rather than their substantive
origin – yet it was precisely the importance of human ecology that made aggregate-data
techniques for ecological inference so unreliable (Hauser, 1970). Contextual behavior un-
dermined the very data conventionally available to study political context. For this reason,
the two most common approaches to aggregate-data analysis assume that contextual effects
do not exist. They require analysts to believe that members of demographic groups act the
same way everywhere; demographic variation in their communities bears no relation to
how people behave. “Homogeneous unit analysis,” for example, requires the researcher to
assume that places where a group is numerically dominant will be representative of how the
group acts in more diverse places (MacManus, 1995: 45n). Linear “ecological regression,”

3 Key wrote, in a letter recommending Gabriel Almond’s promotion to full professor, “I’m enough of a reactionary
myself to become annoyed when a political scientist picks up a smattering of social psychology . . . and proceeds
to construct a system out of thin air” (Lucker, 2001: 204).

4 The most obvious exception is the extensive, and valuable, body of work produced by R. Robert Huckfeldt
(1986), including his work with coauthors such as Carol Kohfeld (1989) and John Sprague (1995).
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meanwhile, explicitly assumes that all systematic behavioral variation is compositional, none
is contextual (see the Introduction to this book).5

A quick formal exploration illustrates why linear ecological regression is almost useless
in the presence of contextual effects.6 Analysts regress an aggregate political outcome on the
population density of each demographic group, and interpret the resulting coefficients as
rates of behavior. Take the case of black (Xi ) and white (1 − Xi ) voting for the left-wing
candidate in an election (V L

i ). The assumed linear relationship, across multiple areal units
i , would take on the following form: 7

V L
i = βb Xi + βw (1 − Xi ) + ui ,

where ui is a complex residual to capture how voting differs from that predicted by the two
coefficients.8 This form of the regression lacks an intercept, but transforming the model to
a bivariate version with a constant term is simple:

V L
i = βb Xi + βw − βw Xi + ui

= βw + (βb − βw )Xi + ui .

Both political outcomes (V L
i ) and racial densities (Xi ) usually appear in aggregate data.

One generally lacks the frequencies that would appear in a cross-tabulation, though: the
proportion of blacks (βb) and whites (βw ) who supported the left-wing candidate.

The lack of an index for either parameter illustrates the common assumption that ethnic
rates of behavior are constant across areal units, which is what makes a least-squares method
of estimation so convenient. When this assumption is false – when members of an ethnic
group do not, on average, behave the same way everywhere – the data may contain significant
aggregation bias. Estimates from this simple model can fall quite far from the truth because
they attribute contextual variation in one group’s behavior to the other group.

Consider a simple contextual effect, in which whites support the left-wing candidate at a
higher rate when they live in heavily minority areas (Voss and Lublin, 2001). The formula for
left-wing support now contains a shifting parameter, βw

i , which might be a linear function
of racial density:

V L
i = βb Xi + βw

i (1 − Xi ) + ui

= βw
i + (βb − βw

i )Xi + ui , where βw
i = γ 0 + γ 1 Xi .

Naive ecological regression, performed on data of this sort, will not estimate the desired
quantities (i.e., βb and the weighted average of βw

i , presuming all other assumptions of the

5 A rival method, seldom used by analysts, rejects these assumptions. Called the “neighborhood model” (Freedman
et al., 1991), it does not escape from the conundrum posed by data containing both compositional and contextual
patterns. It simple reverses the error, assuming that all systematic variation in behavior is contextual, none
compositional. Different demographic groups all would have to behave the same way in a given community.

6 Some scholars call ecological regression “Goodman’s method” after the man who popularized the idea (Good-
man, 1953, 1959). However, most applications of the method violate the conditions for which he prescribed it,
so I avoid the label. Note, incidentally, that my comments apply to ecological correlations as well.

7 Areal units may be any geographically defined spaces important to analysts or policy makers. Examples include
regions, provinces, states, counties, precincts, and legislative districts.

8 This notation resembles Equation 0.4 in the Introduction, but it includes a catchall error term because that
is what practitioners using the method customarily assume. Note, however, that this is not the well-behaved
ordinary least squares error term, because it has to capture the effect of varying parameters (Zax, 2002).
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model were correct). Instead, it would turn up the following:

V L
i = βb Xi + βw

i (1 − Xi ) + ui

= βb Xi + (γ 0 + γ 1 Xi )(1 − Xi ) + ui

= βb Xi + γ 0(1 − Xi ) + γ 1 Xi (1 − Xi ) + ui

= [βb + γ 1(1 − Xi )]Xi + γ 0(1 − Xi ) + ui .

The estimated white support for the left-wing candidate, therefore, will beγ 0 only – too low if
γ 1 is positive. The estimated black support, meanwhile, will be too high. This is why analysts
often estimate that Democratic support among blacks exceeds 100% (see King, 1997: 16).

Of course, one can adjust the model for this simple case of parameter variation. Applying
the distributive property and then regrouping provides

= βb Xi + γ 1 Xi − γ 1 X2
i + γ 0 − γ 0 Xi + ui

= γ 0 + (βb + γ 1 − γ 0)Xi − γ 1 X2
i + ui .

One can compute the three parameters of interest after running that regression. However,
if white and black vote choices both vary with the racial density of the locale, either directly
or indirectly, then linear ecological regression is impossible because the parameters are
underidentified. We would need not βb but the weighted average of βb

i :

= βb
i Xi + γ 1 Xi − γ 1 X2

i + γ 0 − γ 0 Xi + ui (where βb
i = ρ0 + ρ1 Xi )

= (ρ0 + ρ1 Xi )Xi + γ 1 Xi − γ 1 X2
i + γ 0 − γ 0 Xi + ui

= γ 0 + (ρ0 + γ 1 − γ 0)Xi + (ρ1 − γ 1)X2
i + ui .

It is impossible to compute the four parameters of interest that are now necessary.
The failure of conventional forms of ecological inference therefore amounts to more

than just the danger of getting wrong answers, of committing an “ecological fallacy.” For
contextual analysis, they never provide any answers at all.

ENTER THE METHOD OF BOUNDS

King’s (1997) approach offers some hope of capturing systematic geographical variation
through a method of statistical inference. This is not the place to summarize King’s proposed
solution to the ecological-inference problem; a review appears in the Introduction to this
book. However, the critical wrinkle for contextual analysis is King’s use of the deterministic
method of bounds (Duncan and Davis, 1953). The basic insight is fairly simple. Consider
a locale in which the Democratic candidate wins 50% of the vote and 25% of the voters
are black. Even if every black voted Democratic, whites would have to account for the
remaining 25 percentage points of the Democratic candidate’s votes. At least a third of whites
mathematically must have voted that way (although more may have, if some blacks voted
Republican). So the possible white vote in this hypothetical example does not extend from
0% to 100%; the minimum is 33%. Add up all the constraints on what is possible, maxima
and minima, from areal unit to areal unit, and you may have quite a lot of information about
larger electoral districts.

As the Introduction explains, EI identifies from the outset the complete set of possible
rates of racial voting behavior – not for an electoral district as a whole, but for each areal
unit it contains. Furthermore, EI goes beyond the simple method of bounds by considering
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Figure 3.1. Tomography plot illustrates all known information about the vote for U.S. Rep. Sanford
Bishop in Georgia’s 1996 2nd congressional district. Horizontal line segments represent all-white
precincts; segments have greater black density as they become more vertical. The downward-cascading
pattern shows that Bishop’s white vote contained contextual effects: whites gave more support to the
black Democrat when their locality contained greater black populations.

the two rates of group behavior simultaneously. It takes into account the linear relationship
between how one group could have behaved and how the other could have in order to
produce the final vote totals (see Equation 0.5 in the Introduction). EI therefore constrains
estimates of joint behavior, reducing the range of estimates for each areal unit to a series of
exclusive pairs.

By exploiting the deterministic information in the data so thoroughly, EI has the potential
to detect and adjust for contextual patterns. This is best understood using the tomography
plot, a graphical representation of the line segments for each areal unit in an analysis (see
Figure 0.1 in the Introduction and its accompanying explanation). Figure 3.1 presents a
plot containing line segments for a random selection of 25% of 1996 precincts in Georgia’s
second congressional district (see Voss and Lublin, 2001).9 Horizontal lines correspond to
precincts that are almost entirely white. They contain so few blacks that we know quite
precisely how whites behaved but almost nothing about the blacks, which is why the slant
of such a line only allows a small range of possible values on the Y -axis but any value on the
X-axis. A segment becomes more vertical, however, as black voters increase proportionally.
We are less sure how many whites supported the Democrat in these mixed counties, because
the aggregate data also include a large black population.

9 I should note that, strictly speaking, this plot does not simply contain deterministic information. I conducted a
previous stage of EI to estimate the proportion of voters who were black. No assumptions about party preference
by race were required to produce the figure.
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Figure 3.2. Basic EI results strongly indicate the presence of contextual effects (or aggregation bias)
in the 1996 white vote for the Democratic incumbent Rep. Sanford Bishop. Whites sharing a mixed-
race environment found the black moderate much more appealing than did those in heavily white
precincts.

The narrow bounds that can appear for areal units often will push estimates from a basic
EI analysis into a contextual pattern. This pattern alerts the analyst that the data contain
aggregation bias. Figure 3.1 illustrates how the bounds inform ecological inference. The
slanted lines often run up against the right edge of the unit square at a very high level of
white support for the black Democrat, Sanford Bishop. The line segments cascade downward
as they straighten out, though. All-white precincts are less likely to strike a high value on
the right edge of the unit square. Their bounds indicate lower levels of white support for
Bishop. White voters clearly supported the black Democrat at higher rates when they lived
in a racially mixed context, and even the simplest versions of EI will capture this pattern by
requiring each precinct estimate to be possible. Figure 3.2 shows how simple EI estimates
run on these data follow a contextual pattern.

Not all examples of aggregation bias will be as obvious as the one I have selected here – but
EI can pick up patterns in a large sample that are too subtle for the naked eye to detect. This is
especially true when researchers approach an analysis with theoretical reasons to anticipate
the contextual effect. In instances when researchers can hypothesize why voting rates might
correlate with racial density, an extended version of King’s model allows the introduction
of covariates to explain systematic variation in group behavior (see Equation 0.10 in the
Introduction). The model picks up contextual variation in the bounds and projects that
pattern onto the remaining areal units whose bounds were not as informative. Bounding
the estimates for each areal unit, and building up estimates for a larger electoral district based
on those bounds, therefore allows EI to function even if both racial groups exhibit some
degree of contextual behavior. It is not underidentified the way linear regression would be.

Of course, being able to produce estimates does not guarantee they will be good ones.
Their quality depends upon how much information the bounds provide. Critics point
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out that King’s method may underestimate the strength of contextual patterns, which are
suppressed by the aggregation process (Anselin and Cho, 2002; Cho, 1998; Rivers, 1998).
They worry about variation in estimates powered by residuals from a statistical analysis
(Herron and Shotts, 2003; McCue, 2001). These are valid concerns. Researchers should
understand the severity of the limits; methodologists should search for ways to alleviate
the dangers. Nevertheless, the ability to detect even a healthy portion of that contextual
variation takes King’s method far beyond what practitioners were using for the five decades
between first awareness of this problem (Robinson, 1950) and King’s attempted solution
(1997).

“IF IT IS SO USEFUL, THEN WHY ALL THE CRITICISM?”10

King’s critics have complained that he was not explicit enough about when EI will be
reliable and when it will be unreliable (Freedman et al., 1998: 1520). For the most part,
these insights long precede King’s book. An extensive literature has explored when data
aggregation will throw away more or less information. King (1997: 88–89) also presented
“scattercross graphs,” as described by Leo Goodman (1959: 617–618), that provide a visual
means of determining when the method of bounds will help make up for the limitations
of ecological regression. Briefly, here are the rules of thumb that practitioners apparently
need. Ecological inference will work better when:

1. The group of interest either constitutes a large majority of the overall population or is
relatively segregated across areal units (which is more likely when areal units are very
small).

2. Outcomes of interest approach unanimity in particular areal units, especially the ones
with highly mixed populations.

3. Data contain numerous observations to insulate the estimation from errors due to
chance.

4. The grouping of interest identifies a politically distinct population with internally
similar behavior that differs from the behavior of other groups – that is, across-group
variation outweighs within-group variation.

5. Within-group variation across areal units is effectively random, resulting from innu-
merable small sources rather than a few large but unmeasured influences.

6. Any systematic variation in a group’s behavior across areal units does not respond to
the balance among groups in each place, nor does it respond to other variables that
are correlated with group density.

7. The researcher possesses sufficient knowledge of the subject matter to inform the
estimation about possible sources of systematic within-group variation and to detect
fallacious conclusions.

King’s solution does not alter any of these generalizations. It still performs better with
detailed data. It is still hindered by contextual patterns when bounds are uninformative.
It still does not provide a panacea for analysts lacking substantive familiarity with their
data.

10 The heading quotes a question I was asked while presenting King’s method at a conference workshop. I think
it encapsulates how practitioners initially evaluate the startup costs necessary to learn a method. They may not
weigh the methodological critiques themselves, assuming that “where there’s smoke, there’s fire.”
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Why King’s Method Performs Better with Poor Data

The similarities between King’s approach and ecological regression leads Douglas Rivers
(1998: 442) to warn readers against thinking “that King has somehow relaxed the assump-
tions of ecological regression.” He dismisses EI’s “fanfare” and “notoriety” as undeserved
because King’s approach relies on assumptions that “include all those required for Good-
man’s estimator and then some.” This critique is misleading at best. It implies that ecological
regression is somehow a generalized form of King’s approach, requiring fewer assumptions –
which would make King’s method more susceptible to faulty application. In fact, the re-
verse is the case. King’s method is less vulnerable to faulty assumptions – not because the
assumptions have become completely irrelevant, but because the method of bounds helps
avoid analytical dependence on them.

Furthermore, some assumptions of ecological regression do not appear in King’s method
and therefore have been “relaxed” even in the sense that methodologists usually use the
word (i.e., dropped). For example, EI does not assume that parameters are fixed. It does
not assume that errors in prediction always have the same variance (i.e., homoskedasticity).
By aggregating across areal units, EI computes direct estimates for the quantities of inter-
est; it does not assume that the average aggregate behavioral pattern represents the average
individual-level behavior pattern (Palmquist, 2002). Nor, thanks to King’s use of the trun-
cated bivariate normal distribution and the method of bounds, does EI assume linearity
across the full range of data.11

Finally, it is worth noting that practitioners using EI are less vulnerable to faulty assump-
tions in another way – which is that the software includes both graphical and statistical
diagnostics that often will indicate when assumptions are wrong. Indeed, not only do these
diagnostics help experts check some of their basic ideas about the data-generation process,
but the graphical and statistical tools sometimes have an independent substantive value;
presenting them can help clarify the results of an analysis.12 By contrast, aside from prior
knowledge, about the only defense against faulty inference in ecological regression is ob-
served nonlinearity in the relationship between racial density and outcome.13 Also, linear
methods of ecological inference, from correlations to multiple regressions, all lack mean-
ingful standard errors that researchers regularly consult and that indicate the uncertainty
contained within estimates (Zax, 2002).

A disadvantageous distribution of voters will inflate any specification error contained
in the aggregate analysis many times over (Palmquist and Voss, 1996). Take one terrible
case for ecological inference: when an analyst wishes to probe gender differences in behav-
ior. Gender differences are especially resistant to aggregate-data analysis, unless one can
incorporate outside information (see Chapter 6). Men and women usually live together –
aside from places containing prisons, military bases, or other institutions that might skew
the normal gender balance – so their populations are almost evenly divided. Furthermore,
the fluctuations in gender that do occur across electoral units are almost completely irrele-
vant to politics; they are small, mostly random noise. Yet practitioners may not notice the

11 Of course, GLS estimators for ecological regression could address some of these concerns, too (McCue, 2001:
109).

12 For example, my analysis of 1996 congressional campaigns containing black candidates in white districts il-
lustrated contextual effects in turnout and vote choice using the statistical and graphical diagnostics that King
intended as tests for aggregation bias. (Voss and Lublin, 2001).

13 Work by Brad Palmquist, summarized in Palmquist and Voss (1996), provides a method of gauging how much
aggregation bias will foil linear ecological inferences, but his developments have not been sufficiently integrated
by practitioners.
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uselessness of naive ecological inferences based on data such as gender aggregates. Ecological
correlations give a false sense of security, whereas King’s software provides no such cover;
standard errors advertise when an analyst tries to get milk from a stone.14

Why King’s Method Performed Poorly with Horrible Data

Gary King’s book (1997) already tests his method on real data. These examples illustrate
the method’s effectiveness, or at least its ability to warn analysts when something has gone
wrong, although they are limited in quantity (Freedman et al., 1998: 1520). By contrast,
critics have subjected King’s approach to other diagnostic tests that point toward severe
limitations (Anselin and Cho, 2002; Cho, 1998; Freedman et al., 1998, 1999). It may seem
superfluous, at this point, to continue providing examples of the method in action – since
success in a few data sets “does not prove anything” (Rivers, 1998: 443) and his model “works
on some datasets but not others” (Freedman et al., 1998: 1520).

Nevertheless, the available slate of trials contain certain drawbacks that seem to call for
a reconsideration. The initial trials were not representative of how King’s method would
work in most situations – let alone how it would perform in particularly useful situations.
Leaving aside simulated data, King’s method has been tested against:

• Aggregate data produced from a survey conducted during the 1984 California general
election, in which the analyst attempted to estimate racial differences in education across
30 precincts (Cho, 1998: 153–160).

• Aggregate data produced from a survey conducted during a San Francisco city council
race, in which the analyst attempted to estimate differences between Chinese and non-
Chinese voters in their support for candidate Thomas Hsieh across 37 precincts (Cho,
1998: 160–161).

• Aggregate data produced from an exit poll conducted in Stockton during the 1988 presi-
dential primary, in which the analyst attempted to estimate Jesse Jackson’s support among
Hispanics and non-Hispanics across 39 sample precincts (Freedman et al., 1998).

• Census-tract data from Los Angeles that contained 1980 demographics, in which the
analyst attempted to estimate education, income, and home ownership for Hispanics and
non-Hispanics across 1,409 tracts (Freedman et al., 1998).

• Census-tract data from Los Angeles that contained 1988 election statistics, in which the
analyst attempted to estimate party registration for Hispanic and non-Hispanic registered
voters (Freedman et al., 1998).

• County data from Texas that contained incidents of strokes, in which the analysts at-
tempted to estimate stroke rates by gender (Anselin and Cho, 2002: 287–288).

How do these trials stack up against the conditions under which an analyst should expect
optimal performance from an aggregate-data analysis technique? The data are notable, as
a group, for the extent to which they deviate from conditions under which one ought to
try ecological inference – and generally the few diagnostics they report from EI indicate as
much.

Consider the following comparison of these data against the enumeration of optimal
circumstances listed earlier. As far as a reader can judge, these trials apply King’s method to
data with very few homogeneous units. Blacks never exceed a third of the precinct population

14 One pair of researchers at a recent conference concluded erroneously that EI was less successful than ecological
correlations because EI had returned huge standard errors for gender-vote estimates (Peterson and Koloen,
2002). Essentially, they criticized EI because it was the bearer of bad news that they needed to hear.
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in Cho’s first example (see the giant standard errors in her initial analysis). The Chinese only
exceed majority status in a handful of her precincts in the second example (see the slope
of lines in the tomography plot as well as the large standard errors). The stroke analysis
uses gender as its demographic category, probably the toughest case in ecological inference
because of sharply limited compositional variation. Most of Freedman’s examples use census
tracts, long known for how seldom they approach homogeneity (Myers, 1954). With his
exit-poll data, the standard error for Hispanics is more than four times as large as the one for
non-Hispanics, suggesting that the data provided limited information about the minority
group.15

Three of the examples include only a few dozen observations each. In some of these cases,
it is unlikely that a researcher would have had to stop with so little data. For example, even if
one were interested only in Jesse Jackson’s Hispanic support in Stockton, the analysis would
be stronger if it could borrow strength from related cases of Hispanic voting behavior nearby.
Cho’s education example not only includes few cases, it obviously requires covariates, which
will tax the data more than usual.

Most of the trials attempt to predict socioeconomic data, which are known to vary widely
within groups. Black education rates in Cho’s first example jump from 1% to 90% across
precincts! More importantly, socioeconomic status strongly shapes people’s localized resi-
dential choices (see, e.g., Biggar and Martin, 1976), so minorities who reside in mixed-race
or mixed-ethnicity settings are likely to have much higher status than those in all-minority
ghettoes. The stroke data, meanwhile, were selected precisely because they exhibited signifi-
cant spatial autocorrelation.16 These examples were certain to be characterized by systematic
variation within groups and by community-based similarities across them.

All of the political trials look at urban areas and yet make no reference to blacks – who
stand apart for their heavy Democratic party support. Blacks simply fall into the non-
Hispanic or non-Chinese categories, along with white Anglos. Anyone knowledgeable about
racial politics should realize that combining whites and blacks into one group violates King’s
distributional assumptions, and probably introduces severe within-group variance while
suppressing across-group variance.

None of the examples uses King’s extended model to capture the contextual effect of group
density directly. Only one uses the extended model at all: Cho introduces two covariates,
income and age, while predicting racial education rates. Income helps, age hurts – which
leads her to conclude that an analyst has no idea when a covariate might improve the situa-
tion. Yet EI’s diagnostics clearly show that the income covariate was the right thing to use. In
both the basic EI model and the version with an age covariate, standard errors from EI were
so large that they swamped the estimates themselves. After Cho added the income covari-
ate, though, the model suddenly behaved: it revised the estimate of black education rates
upward by 50% and returned much smaller standard errors. One suspects that likelihood
scores from the maximum-likelihood estimates also indicated the desirability of an income
covariate.

15 Freedman et al. (1999: 355) do not seem to understand the meaning of EI’s standard errors. After King (1999)
suggested that their data contain more information about non-Hispanics, they wrote: “It is not clear what sort
of additional information would be available to King for non-Hispanics. . . . Any error on the Hispanic side
must be balanced by an error of the same size but the opposite sign on the non-Hispanic side.” Yet their own
table reveals that EI has reported much smaller standard errors for non-Hispanics than the program did for
Hispanics (Freedman et al., 1998: 1519). The software reported errors proportional to the information available,
and therefore to the true error, something the critics missed.

16 They also might contain aggregation bias because of unaddressed simultaneity problems. Ceteris paribus, places
where men die from strokes at high rates might tend to contain fewer men over the long term.
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People who study subjects empirically should not reinvent the wheel. A scholarly liter-
ature usually provides enough descriptive information that one can assess in advance the
likely success of any particular inference, as I have done retrospectively with the existing
trials. I severely doubt that scholars familiar both with ecological inference and with race
and ethnicity would have been surprised by EI’s poor performance in these hostile tests.
Furthermore, a knowledgeable scholar would have balked at most of the biggest estimation
errors even without the truth to guide choices: 91% of Hispanics as Democratic registrants,
which will happen rarely across the country; standard errors so huge that the estimates are
not substantively interesting; an estimate that whites with a college degree outnumbered
blacks 4 to 1 when in fact blacks were more likely to have graduated from college. Even if it
were true that theory and previous research provide “no clear way of distinguishing good
models from bad models,” they provide a lot more guidance than these particular trials
brought to bear.

APPLYING EI WITH INFORMATIVE DATA OR CONTEXTUAL KNOWLEDGE

To illustrate how King’s approach outperforms conventional methods of ecological inference
by incorporating and then summarizing contextual information, I will apply his parametric
model to the study of racial voting behavior in the U.S. south. In each case the goal is to fill
in cross-tabulations between aggregate race data and aggregate political outcomes, thereby
producing accurate estimates of voting behavior by race – exactly the sort of estimates
ecological inference commonly would be called upon to produce in real voting or policy
research. Before presenting the application, though, I should explain why racial voting
behavior is a critical case for ecological inference, as well as why southern data are particularly
helpful for assessing a method’s contribution.

Why is race a good choice? First, racial categories are advantageous because they are
highly segregated at low levels of aggregation but not terribly segregated at higher ones.
They allow a test of King’s method in a variety of situations. Second, racial behavior tends
to be contextual, and in theoretically important ways. The nature of these contextual effects
links specific substantive concerns of political scientists, sociologists, social psychologists,
quantitative historians, constitutional-law scholars, and anthropologists, among others (e.g.,
Kousser, 1974; Pettigrew, 1985; Taylor, 1998; Voss, 2001). Third, voting-rights specialists
depend upon ecological estimation. The U.S. Supreme Court declared racial bloc voting to
be one component of a justiciable “vote dilution” claim in Thornburgh v. Gingles (478 U.S.
30-108), and litigants simply do not have state or local survey data available to establish
or ward off constitutional claims. Analysts require some workable method of ecological
inference to recapture data lost due to the secret ballot.

Of course, one could argue that selecting race stacks the deck in King’s favor. Racial
groups are more polarized in their partisan behavior than just about any other demographic
category. Nevertheless, racial polarization is a fourth reason why race is a critical case for
ecological inference. The survey-research revolution has not liberated those who study racial
politics in the same way it has freed up work in other subfields. Politically sensitive topics
resist objective measurement (Kuklinski, Cobb, and Gilens, 1997; Traugott and Price, 1992),
so aggregate data naturally play a significant role in the study of race. Anyway, party choice
is not the only form of racial voting behavior; registration and turnout do not polarize the
races nearly as much. Race is a good choice for assessing the success of King’s method.

Why southern data? First, the south makes sense because, among places with a substantial
black population, that region has less residential segregation than the rest of the country
(Massey and Denton, 1993). Estimation will be harder than usual. Second, my own research
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tends to focus on southern politics (e.g., Lublin and Voss, 2000a, 2000b, 2003; Voss, 1996),
so I need not apply King’s method blindly. Third, not only did southern states fuel the
contextual study of racial voting (Heard, 1952; Key, 1949; Matthews and Prothro, 1966),
they are the site of most redistricting litigation and thus typify the conditions under which
King’s method would shape public policy. Finally, and most importantly, a string of voting-
rights cases have convinced the south’s public officials that they need to invest in precise
data collection. Sometimes the data reach such high quality that they include answers to
questions that, in other locales, would require some form of statistical inference to probe.

County-Level Racial Voting Behavior

George Wallace’s 1968 presidential campaign may have dealt the death blow to aggregate-
data studies of voting behavior. White support for Wallace was so contextual, with support
high in exactly the places where blacks were most numerous, that it completely skewed the
techniques of ecological inference available at the time. Furthermore, the Wallace vote was
only available to researchers at relatively high levels of aggregation, so aggregate data were
(and are) quite poor.

An analysis by Schoenberger and Segal (1971: 585), for example, implied that Wallace
received heavy black support in his 1968 presidential bid. The authors did not embrace this
absurd conclusion, correctly attributing the findings to Wallace’s heavy white support in
the Black Belt, but lacked any statistical basis for their interpretation or any real estimates
of white behavior. Not even additional methodological refinements, intended to counteract
the “ecological fallacy,” could remove their reliance on prior knowledge, or provide reliable
estimates of how each race actually voted (Wasserman and Segal, 1973: 179). The complete
inadequacy of aggregate-data analysis for contributing to this important topic of interest
helped illustrate why the discipline needed to move toward surveys in the short term. The
Wallace vote has even stumped researchers using more modern methods, including King’s
solution (Palmquist, 2002). It is therefore about as tough a real-life test as King’s method
could face.

Louisiana reports parish-level (i.e., county-level) voter registration broken down by race.
If we consider the vote as a three-stage process – the decision to register, the decision to
vote, the vote choice – the first stage of that process does not require estimation in this
rare instance. Louisiana data are particularly useful for two other reasons. First, the state’s
registration data contained lots of idiosyncratic variation in 1968, all of which violates EI’s
assumptions. Some parishes purged their voter rolls of dead weight more frequently than
others.17 Some hosted federal election examiners eager to expand the voting rolls.18 Second,
all evidence indicates that very few blacks voted for Wallace. This strong prior on what the
black estimate ought to be means that I can check King’s method using multiple forms of
racial behavior. It is precisely the combination of difficult data with known answers that
makes the Louisiana case worthwhile as a test of King’s method.

For my initial run, I did not take advantage of EI’s more advanced features, such as
modeling parameters of the truncated bivariate normal to vary with other relevant quantities.
I want to compare the estimates from this simple EI analysis both with the real numbers

17 In fact, eight parishes report more registered whites than they contained voting-age white adults (using 1970 cen-
sus figures), and two similarly reported black registration exceeding possible levels. In those instances, I adjusted
registration downward to 100% to keep it within possible bounds, but otherwise tolerated the measurement
error contained in the numbers.

18 Nine Louisiana parishes contained a federal examiner in 1966, according to the Matthews-Prothro data set
maintained by Jim Alt (1994: 372–373).
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Table 3.1 1968 registration estimates for Louisiana

Registration

Source White Black Total

Truth 77.3 53.6 71.1
State data:

Lower bound 60.9 0.0
Upper bound 96.3 100.0
Midpoint 78.6 50.0 71.2

Parish data:
Lower bound 61.1 15.6
Upper bound 90.7 99.3
Midpoint 75.9 57.5 71.1

Naive ER 86.0 (4.0) 57.0 (9.6) 78.5
Weighted ER 77.9 (4.0) 60.0 (10.6) 73.2
Neighborhood 71.5 70.2 71.2
Homogeneous 85.4
EI (simple) 76.7 (6.1) 55.2 (17.2) 71.1
EI (final) 77.1 (5.7) 54.0 (16.0) 71.1

Note: Methodological details of each estimation appear in the text. Parenthetical
numbers are standard errors. No estimate of black behavior appears for homoge-
neous unit analysis because Louisiana contains no homogeneous black parishes.

and with estimates produced by other methods of aggregate-data analysis. The first row of
Table 3.1 therefore reports the real racial registration rates: 53.6% of blacks and 77.3% of
whites. I then report what an analyst lacking the truth would know to be true: the bounds for
the state computed from state-level marginals, and the bounds for the state computed from
parish-level marginals. The state bounds alone do not constrain black registration estimates
at all, and only pinch possible white registration rates to a span of roughly 35 percentage
points. The bounds based upon parish-level limitations squeeze the range of valid estimates
for whites even more, and rule out the more extreme levels of black registration as well. The
truth in this case clearly falls near to the midpoints between the bounds: 75.9% for whites
and 57.5% for blacks.

Naive linear ecological regression produces quite impossible estimates: 86% registration
for whites (more than two large standard deviations from the truth), and 57% registration
for blacks. For the entire state, this implies a faulty 78.5% statewide registration rate. Faced
by obviously incorrect implications, an analyst would know that ecological regression had
failed. One solution would be to use a weighted analysis (Palmquist and Voss, 1997: 13).
Therefore I repeated the ecological regression using weighted least squares. The white reg-
istration estimate then comes quite close – within a percentage point of the truth – but the
black registration rate rises to more than six percentage points away. The overall estimates
are still impossible, since they represent a 73.2% statewide registration rate.

Ecological regression does not produce parish-level estimates −77.9% of whites and 60%
of blacks presumably registered in each parish – but we can evaluate these figures as surrogate
parish estimates by comparing them with the parish bounds that an analyst would know
even without Louisiana’s racial data. Together the estimates are impossible in all but, at
best, two or three parishes (as indicated by how few of the tomography lines would cross
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that point). Even looking one race at a time, the white registration rate is impossible for
33 parishes: too low for 27 and too high for 6. The black registration rate is impossible
for 14 parishes. That the bounds are so active signifies more than just the failure of linear
regression; it also suggests that contextual effects may be biasing the estimates.

Another common method of analysis is to look at all-black units to determine black
behavior and all-white units to determine white behavior. Unfortunately, only four of the 59
parishes used in my EI estimation contain more than a 90% white voting-age population,
and none are more than 90% black.19 The limits of this homogeneous unit approach are
therefore obvious. The registration rate in the four white parishes, computed as a weighted
average, comes to 85.4% percent – far higher than the true statewide rate. All-white parishes
were not representative. The neighborhood model, which assumes that all races behave the
same way in particular electoral units but differ across them, is similarly unimpressive. It
estimates almost equal registration rates for blacks and whites when the true results are
much more polarized.

Even a simple EI estimation clearly outperforms every method except weighted ecological
regression. It estimates that 76.7% of whites registered, within a percentage point of the truth,
and that 55.2% of blacks registered, within 2 percentage points of the truth. Given the wide
variation from one parish to the next, these estimates are remarkable. The one drawback is
that standard errors are very large. This is a reassuring drawback, though, since it means EI’s
standard errors reflect the high degree of uncertainty much better than those from naive
ecological regression.

This simple EI run also predicts the true white registration rates in each parish amazingly
well. Figure 3.3 presents a scatterplot of the EI estimates against the true white registration
rates (a circle’s radius indicates the size of the parish’s white population). The solid slanted
line, flanked by an 80% confidence interval, represents where cases would fall when estimates
were exactly correct. Circles to the left of the line mean estimates were too low, those to the
right that estimates were too high. As the graph shows, the bulk of parishes fall right on or
around the solid line, indicating an excellent fit with the real answers. The exception is a
handful of very small parishes with white voting estimates that are too low. In these rural
parishes, black registration was below 25%, a known legacy of Jim Crow that no simple EI
analysis captures because it violates the model’s assumptions so severely.

EI partially adapts to the presence of aggregation bias, even when the researcher makes no
overt attempt to model that bias, because requiring estimates to be possible will force them
to follow contextual behavior in informative data. These data are far from informative.
Nevertheless, consistent with previous research (Matthews and Prothro, 1966), the black
registration estimates on average decrease 2.4 percentage points with a 10-percentage-point
shift in black density. The basic version of EI therefore picked up some, but not all, of the
true contextual pattern of aggregation bias. As the black density increased 10 percentage
points, the real black registration rates decreased 4.1 percentage points, and the white rate
climbed 1.4 percentage points.

I tried several refinements to the estimation – drawn from my knowledge of the southern
politics literature, not from my knowledge of the true numbers. Two corrections to the
basic model did appear useful – judging, for example, from how much they improved the
log-likelihood score. I allowed parameters to react to the black density of the population, in
keeping with previous literature. I also included a dummy variable for two areas historically
known for their racial sensitivity: the Mississippi Delta parishes in the state’s northeast

19 There’s no consensus on what constitutes a “homogeneous” place. I’ve used a 90% threshold. Lower levels
might bring in more white places, but no Louisiana parish exceeded even a 70% black voting-age population,
so estimating black behavior this way was impossible.
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Figure 3.3. Parish-level estimates for Louisiana’s 1968 white rate of voter registration are surprisingly
accurate given the terrible quality of the data. The 45-degree angle represents perfect estimates. Those
slightly above the line guessed too low for white registration; those below the line guessed too high.
A few small delta counties violated the assumptions of King’s EI, but while they probably inflated the
standard error, they did not throw off the statewide estimate very much.

corner, and segregationist Judge Leander Perez’s Plaquemines Parish. These refinements
improved estimates, although the uncertainty remained high. Estimates for both races were
within half a percentage point of the truth in this final model, and better reflected the
aggregation bias in the true data. The black registration estimates decrease 3 percentage
points, on average, with a 10-percentage-point increase in black density, and the white
estimates inch upward (whereas in the simple analysis they remained static).

In sum, my EI estimation of Louisiana’s 1968 parish registration rates is imperfect. Stan-
dard errors are quite conservative, given the amazing precision of the estimates, and a few
intransigent parishes that violate the model assumptions do stump the program. Yet the
main lesson of this exploration is that EI is resilient even in the most troublesome cases
one is likely to face in real racial voting data – especially when one is armed with substan-
tive knowledge. Nor, when faced by a tough case, does EI necessarily underestimate the
uncertainty contained in its best estimates.

Normally the next stage would be to estimate turnout, using the racial registration esti-
mates as a base (King, 1997: Chapter 15). However, since I possess the right answers for the
initial estimation stage, I will use those instead. Estimating turnout, therefore, follows an
identical procedure to that used in estimating registration in the previous test case. I know
how many registered whites and blacks appear in each parish, and how many people voted,
but I don’t know how many of each voted. For this analysis, I allowed white turnout to
increase as black density increased, since Wallace’s antisegregation message played very well
among Black Belt whites. I estimate that 79.5% of registered whites voted in the presidential
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election, whereas 59.2% of registered blacks did so. The findings resemble the 50–60%
turnout rates estimated for Louisiana’s registered blacks in 1966 (Campbell and Feagin,
1975: 136).

Of course, at this point most researchers might be willing to assume, say, a 1.5% rate of
support for Wallace among black voters; turnout was the real source of uncertainty. But
I’ll carry it through for purposes of testing King’s method, since it is exactly this stage of
analysis that foiled old inference techniques soon after Wallace’s campaign; they all returned
estimates of black support for Wallace much too high to be realistic. The procedure is almost
identical to the previous stage. We know the distribution of votes, and we possess estimates
of turnout for each race (from the last stage), but we don’t know the voting preferences.20

A simple EI analysis, with no embellishments, produces rather disheartening results:
approximately one-quarter of black voters allegedly supported George Wallace (analysis not
shown). Even this analysis is better than other ecological studies of the Wallace vote, which
often implied greater support from blacks than from whites. Furthermore, this is a case in
which prior knowledge can inform estimation without assuming the answers outright. EI
can estimate aggregation bias informed by the contextual hypothesis that whites in parishes
threatened by desegregation would be more supportive of Wallace.21 This simple refinement
removes the absurd numbers, as no previous statistical analysis of the aggregate Wallace vote
has ever been able to do. Now 1.8% of blacks apparently backed Wallace, either by intent
or not (which is surprisingly realistic given the large standard error of 6.2). And we have by
far the best available estimate of Wallace’s white support from each Louisiana parish, which
comes to 57.1% at the state level.22

Precinct-Level Racial Voting Behavior

Precinct-level race and election data are widely available, especially from southern states
that collect such information to document their compliance with the Voting Rights Act. For
most states, the racial data come from aggregating Census voting-age population figures to
the level of electoral units, as Lublin and Voss (2001) did in the Federal Election Project for
2000. Other states, such as North Carolina and Alabama, actually collect racial registration
data, asking registrants to declare their racial category and aggregating those figures. A few
states even keep track of turnout by race.

The availability of precinct-level data is the key to why King’s method will work so
consistently with modern racial voting studies. Residential segregation is still the norm
in American society. A third of blacks live around few whites (Massey and Denton, 1993:
75–77), and many whites live in neighborhoods with only token black presence. The aggre-
gation process discards relatively little information about these segregated voters, as far as
producing racial estimates is concerned, limiting the scope of ecological inference necessary
to produce accurate estimates. This sort of segregation is less severe in the south, where
interracial contact has always been more common than in hypersegregated northern cities,
yet still appears when data are measured at low levels.

Take Louisiana’s racial registration figures for 1992. Out of 3,998 usable precincts, 11.6%
are entirely uniform: 440 without a single black registered to vote, 25 with nothing but blacks.
So we know the exact racial characteristics of 150,000 voters; no estimation is necessary and

20 EI uses “multiple imputation” to account for the additional uncertainty that comes from using estimated turnout
rates.

21 EI options: _Eeta=2 and _EalphaW=0.5∼0.1.
22 The standard error for this estimate is 1.4. It is, of course, possible that an analysis of Wallace’s vote that drew

strength from voting in other states would improve these estimates.
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no uncertainty present.23 A third of the state’s precincts contained almost no blacks (i.e.,
fewer than 5% of registered voters), so that more than half of the white population resides in
“homogeneous precincts.” Another 260 precincts were almost exclusively black, containing
more than a quarter of the black population. Using a lower standard, in which only 90% of
the population must be uniform, means that 58% of Louisiana voters appeared in segregated
locales where we have little doubt about what one racial category is doing.

The result of all this segregation is that, in many precincts, we know roughly how the
dominant race behaved – a certainty that greatly informs statewide estimates as well. Leaving
aside the uniform precincts, where we have no doubt at all, the range of possible white turnout
is less than 10 percentage points in 1,829 precincts. The range of possible black turnout is
equally narrow in 343 more. Thanks to the bounds imposed by racial registration rates
in these informative precincts, white turnout for the state must have been between 75%
and 88.9%, and black turnout between 51.5% and 87.9%. But results near these extremes
would entail rather implausible behavior, the sort of thing a researcher with substantive
expertise would know about, so it would be a safe bet estimates were somewhere within an
even narrower range (Flanigan and Zingale, 1985).24 The bounds work similarly for voting
choices. Thanks to bounds imposed by racial turnout rates in each precinct, the white vote
for Clinton must have been between 29.5% and 44%, the black vote between 54.3% and
97.7%, with the plausible results falling within even narrower ranges. The neighborhood
model cannot be correct.

Segregation is one condition common to racial data that assists King’s method. Another
condition that adds to the certainty is extreme behavior.25 When the phenomenon being
studied approaches consensual levels, such as 0% or 100% of residents engaging in a partic-
ular activity, then we know with fair certainty how people of all races behaved there. Racial
voting behavior frequently runs up against this sort of boundary, since variance in voter
choice can be quite high, with 9 in 10 black voters backing the Democratic party and rural
whites heavily backing Republicans. In the Louisiana case, we see such extreme behavior
with turnout as well, because most registered voters go to the polls.

The implications should be clear. Embedding the ecological inferences within known
bounds on voting behavior does much of the work required to produce decent racial voting
estimates. King’s method therefore milks both the quality of contemporary data and the
segregated nature of American society for the information they make available. His approach
to ecological inference does add to the precision, especially when coupled with whatever
substantive knowledge the researcher brings to bear, and the method’s assumptions do not
drive the results as much as King’s critics suggest.

Nevertheless, it is worth observing how well King’s method performs with such highly
informative data. In particular, I will show how successful EI is at predicting racial turnout
in Louisiana, the sort of thing a researcher normally must estimate (e.g., it is the first stage
of double regression). Naturally Louisiana is a unique place, so one may be hesitant to
extrapolate from there to other states. However, for purposes of gauging the success of
King’s method, there’s no reason to think it poses a particularly easy trial. Segregation is not
exceptionally high in Louisiana’s cities, and turnout rates are not extraordinary. It also may
seem unreliable to assume that, if EI works well predicting turnout, it will perform equally

23 I am talking about estimation error here, not measurement error, which may be present to some degree.
24 The real answers, which we know because Louisiana reports racial turnout, in fact were near the center of each

range: 81.4% for whites and 71% for blacks.
25 Note, however, that extreme behavior can have substantive costs as well (King, 2002). The low incidence of

strokes in Texas means that Anselin and Cho (2002) are able to provide precise estimates of mortality rates – off
by roughly 0.025 – but the low-event nature of their data may have complicated cross-gender comparisons.
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Table 3.2 1991 turnout estimates for Louisiana

Turnout

Source White Black Total

Truth 74.7 65.2 72.1
State data:

Lower bound 61.6 0.0
Upper bound 100.0 100.0
Midpoint 80.8 50.0 72.4

Parish data:
Lower bound 67.6 44.7
Upper bound 82.4 83.9
Midpoint 75.0 64.3 72.2

Naive ER 75.9 (0.2) 63.7 (0.3) 72.7
Weighted ER 75.3 (0.1) 63.5 (0.3) 72.2
Neighborhood 73.8 67.4 72.1
Homogeneous:

Average 76.3 63.4 72.9
Weighted average 75.6 62.4 72.2

EI (simple) 75.4 (0.1) 63.3 (0.2) 72.2
EI (final) 74.9 (0.1) 64.5 (0.1) 72.2

Note: Methodological details of each estimation appear in the text. Numbers in
parentheses are standard errors.

well predicting vote choices for which the truth cannot be known. Here too, however, my
trial is more representative than one might assume. The main reason EI thrives is racial
segregation, and that operates equivalently on both turnout and vote data.26 Furthermore,
voting behavior is more extreme than turnout in the contemporary period, so EI should get
more purchase with votes.

I will use turnout from the 1991 Louisiana gubernatorial open primary; results are quite
similar with other elections from the period.27 The actual statewide turnout rates were
65.2% for blacks and 74.7% for everyone else, underscoring the faultiness of using a one-
stage analysis (i.e., from population straight to vote choice without estimating turnout as
an intermediate step). The state-level bounds are not particularly informative; we have no
idea what the black turnout rate would be, and the white rate could be anything greater
than 61.6% (all figures appear in Table 3.2). If we impose the absolute bounds individually
on each precinct and add them up to statewide totals, however, we find that white turnout
must be between 67.6% and 82.4%, while black turnout must be between 44.7% and 83.9%.
The midpoints of these bounds would indicate white turnout of roughly 75%, and black
turnout of 64.3%. The former is off the truth by only 0.3%, and the latter by just under a
percentage point, so once again the bounds are pointing us in the right direction. There’s

26 Brad Palmquist breaks aggregation bias into two components, a specification shift representing the information
lost by collecting areal data, and an inflation factor that can magnify the initial error severely. The inflation factor
essentially represents traits of the areal units used in an analysis, and therefore would be similar for estimating
turnout and for estimating vote choice. For race, the inflation factor tends to be quite low. See Palmquist and
Voss (1996) for a summary.

27 King’s book (1997: 23) briefly used my 1990 Louisiana data, so I decided to explore the 1991 figures. They come
after the rapid mobilization of voters during former Klansman David Duke’s 1991 gubernatorial candidacy.



P1: FZZ/FZZ P2: FZZ

CB658-03 CB654-KING-Sample CB658-KING-Sample.cls May 25, 2004 21:25

88 D. Stephen Voss

no guarantee of success in shooting from the hip this way, but it does reinforce Flanigan
and Zingale’s point (1985: 82–83) that the plausible bounds are usually narrower than the
absolute bounds.28

The attractive precinct-level data permit most methods to approximate the truth. The
neighborhood model, for example, estimates that white turnout was 73.8%, black turnout
67.4%. Naive ecological regression places those figures at 75.9% and 63.7% respectively. The
white turnout estimate is 1.2 percentage points (or almost 19,000 voters) from the truth,
one of the worst provided by any method, despite the highly informative data on whites.
The estimates also imply a statewide turnout rate that was impossibly high. The worst of
the simple methods is homogeneous precinct analysis. I tried it two ways this time: once
with a simple precinct average, the other weighting that average by the number of registered
voters in each precinct. Both are faulty, because white turnout is notably high in all-white
precincts, and black turnout notably low in all-black precincts.

Weighted ecological regression does a nice job. It estimates that 75.3% of whites turned
out, off by less than a percentage point. The black estimate is more disappointing, since
it falls almost 2 percentage points from the truth, but given the less informative data for
blacks, such an estimate still seems fairly strong. Furthermore, this time the joint estimates
do not imply impossible statewide turnout rates. A simple EI run produces roughly the same
estimates as weighted ecological regression: 75.4% of whites and 63.3% of blacks. The basic
results do not indicate any aggregation bias: estimates of white and black turnout do not
correlate with racial density. This is a case in which the EI diagnostics by themselves might
leave an uninformed researcher satisfied.

However, I have a theoretical reason to expect that white turnout should decline in heavily
black areas. Whites in integrated settings tend to have lower socioeconomic status than their
segregated counterparts, and socioeconomic resources are an important determinant of
political activity (Verba, Schlozman, and Brady, 1995: 513, 527). I therefore ended with a
more complex EI analysis, allowing white turnout to vary as black density varied, without
specifying the likely direction of the relationship.29 Once again, EI did not detect all of the
aggregation bias. As black population density increases 10 percentage points, white turnout
declines 1.5 percentage points, on average. The estimated contextual effect is only a third
as large, and therefore too low. Nevertheless, what bias EI did detect helped improve the
estimates relative to the alternatives. The resulting estimates were 74.9% turnout for whites,
64.5% for blacks. In both cases, these estimates are closer to the truth than those from any
other method used. The white estimate was only off by a fifth of a percentage point, and the
black estimate by less than a percentage point as well.30

The hypothesis that white mobilization rates change with racial density emerges from
a real-life research agenda. One theory suggests that whites mobilize when faced with a
large black population in their locale (see Voss, 2000, for a literature review). By contrast,
some scholars have noted a decline in white Anglo turnout in minority-dominated electoral
districts (Gay, 2001; Barreto, Segura, and Woods, 2002). They interpret this decline as some
sort of white demoralization caused by their minority status in elections. This is a clear

28 For true behavior to approach one of the bounds would require consistently extreme behavior of a sort that
should be familiar to a researcher with substantive expertise – such as with the well-known black vote for
Democrats.

29 The exact EI prior was _EalphaW=(0∼0.3). Other priors returned similar results, though.
30 About the only sign of trouble was the small measures of uncertainty. I cannot rule out the criticism from

King’s critics that they are too low. King (2002) seems to acknowledge this problem himself. The measures of
uncertainty are still helpful, though, because they appear to vary with the estimation error. Other diagnostics,
such as checking that the true values did not fall consistently at the extremes of their posterior distributions
(King, 1997: 213), looked adequate.
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case of competing contextual theories. The evidence from Louisiana suggests that ecological
inferences, such as those reported by Gay (2001), should be compatible with testing relatively
strong contextual hypotheses. EI picked up enough of the true pattern that a test for ecological
effects would have been strong and statistically significant in the correct direction. On the
other hand, the results from Louisiana – along with my analysis of Georgia and Florida
(Voss and Lublin, 2001) – reveal that those studying the effect of minority-dominated
electoral districts need to rethink their interpretations. White turnout declines in heavily
minority precincts regardless of whether the larger electoral environment is dominated
by whites or blacks. EI’s sensitivity to contextual effects therefore has contributed to an
important substantive debate, debunking the white backlash idea yet calling into question
the conventional wisdom on why white turnout declines in majority-minority districts.

The preceding analysis shows that precinct-level data are extremely useful for determining
statewide behavior. Even fairly simple estimation methods come within a percentage point of
true white behavior, and within two percentage points of true black behavior. The Louisiana
data allow another test of EI’s performance, however, which is to check the quality of
precinct-level estimates it produces. EI might use the precinct data to generate excellent
statewide estimates, but still be way off for individual areal units.31 As it turns out, however,
EI’s estimates are amazingly accurate even at the precinct level. The estimates correlate
heavily with the true white turnout rates: a coefficient of .93 when weighted by the number
of registered whites, and .98 when weighted by the reciprocal of EI’s reported precinct
standard error (see Burden and Kimball, 1998: 539). The figures for blacks are naturally
slightly lower, given the more limited information on black behavior, but still impressive:
.87 when weighted by the number of registered blacks, and .94 when weighted by EI’s
reported level of confidence. It is worth noting that the cost of any survey with this level of
local precision across an entire state would be astronomical, even if respondents could be
trusted to report their turnout properly.

The EI estimation I ran took no notice of which precincts fell in which parishes. Although
EI certainly would allow the researcher to adjust estimates according to county traits, none
of my estimations took advantage of this option. Indeed, the estimation routine did not in
any way attempt to optimize fit with parish behavior. It is worth investigating, therefore,
how well the EI precinct estimates aggregate up to parish values. I created parish-level white
(black) turnout estimates by averaging the figures for all precincts in a parish, weighted
by the number of whites (blacks) contained in each.32 The parish-level estimates end up
almost as accurate as the statewide estimate, correlating with the truth at .99 for whites, .97
for blacks. The largest error for any parish’s white turnout estimate is 2.3 percentage points,
the largest error among blacks 3.6 percentage points. The average parish error is, of course,
much smaller – under half a percentage point for both races (see Figure 3.4). Again, this
level of success is astounding when considered in light of what surveys of similar precision
would require.

One major concern with King’s EI is that, like other methods of ecological inference, it
may not pick up enough of the information missing in aggregate data to represent contextual
effects accurately. Cho’s critique (1998), for example, creates a hypothetical aggregate data
set from survey data, and shows that King’s method does not pick up the aggregation bias
contained in her particular sample. Is his method equally limited for racial voting studies?
This application indicates that, because of the virtues of precinct-level voting data, King’s

31 Accurate estimates still may not be useful for second-stage regressions if they introduce some kind of bias into
the assessment of contextual effects (Herron and Shotts, 2003).

32 The weighting is necessary to indicate the turnout level EI has estimated for the average person, rather than the
average precinct (which is not particularly meaningful). See Voss (1996).
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Figure 3.4. Parish-level predictive accuracy using precinct data. Each dot represents a Louisiana
parish. The true turnout rates were provided by the state of Louisiana. The estimated numbers come
from Gary King’s EI, computed as a weighted average from precinct-level figures. The 45-degree line
indicates where a parish would fall if the estimation were exactly correct. Dots above the line represent
estimates that are too low; dots below it, too high.

method performs quite well. For example, I regressed EI’s parish-level estimates on the
parish black density, controlling for the true turnout. If EI falls prey to aggregation bias,
errors in predicting the white voting rate should change with the black density and vice versa.
However, the results do not indicate a statistically significant connection between the parish
error and the racial demographics (analysis not shown); there is no evidence aggregation
bias has made much difference to the parish-level figures.

Moving Beyond Aggregate Data

Some of King’s critics reject ecological inference altogether, preferring the use of surveys.
Of course, surveys have serious problems, going beyond sampling error to include refusals,
deception, and questionnaire confusion. They are plagued with numerous sorts of bias (see,
e.g., Burden, 2000: 390; Palmer and Duch, 2001), including an inability to measure racial
attitudes reliably without taking special precautions (Kuklinski, Cobb, and Gilens, 1997;
Traugott and Price, 1992). Almost all of the variables measured by a survey are contempo-
raneous, and separating out the causal order between two variables is difficult at best (see
Hetherington and Globetti, 2002, for one recent attempt). However, it is worth considering
how EI might stand up against survey analysis for the contextual study of voting behavior.

Most surveys either ask how people will vote in advance or ask how they voted afterward.
Respondents asked this question after the fact misreport their voting at notably high levels,
and those asked before the fact misreport whether they will really vote at all. Presumably
the best survey of how people voted is an exit poll, since it only captures those who have
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voted and it catches them at a time when they have made the final decision but have not
been contaminated by knowledge of the election results. Certainly it is common for journal
reviewers, when faced with an aggregate-data analysis, to resist the conclusions unless they
come accompanied by exit-poll analysis. Political scientists frequently use exit polls as a data
source in studies of voting behavior, sometimes even using the data to assess contextual
patterns (Carsey, 1995; Highton, 2002). Are exit polls a serious rival to ecological inference?

Below the presidential level, this is doubtful. Exit polls are rare except in particularly
high-profile campaigns. More importantly, exit polls resemble other surveys in that they
provide little leverage for testing behavior below the state level because they collect few
observations in any one subdivision. They typically sample precincts to optimize overall
estimates; nothing in their method should produce representative data at a lower level of
aggregation. Even areal units as large as congressional districts may contain few respondents.
For example, only 34 people from one precinct appeared in the 1996 Voter News Service data
for Georgia’s 2nd congressional district. The 11th district received slightly more coverage:
four precincts with a total of 151 people. These numbers are not sufficient to test contextual
theories. Nor is the sampling frame used in an exit poll likely to produce reliable estimates of
behavior for demographic groups. Indeed, data weighted to maximize state-level accuracy
may produce group-level estimates worse than what unweighted data would offer.

Compare the two methods as applied to 1996 congressional voting in Georgia. Because
precinct-level data are available, aggregate-data analysis using King’s method has a great
deal of information with which to work. Out of 2,641 usable precincts, not a single black
adult registered to vote in 109. Roughly 43% of Georgia’s white adults and its 15.5% of
its black adults are registered in precincts where their race predominates (i.e., more than
95% of population). Lower the threshold to 90%, and 61.4% of whites and 23.3% of blacks
inhabit homogeneous precincts. The bounds are therefore helpful. Statewide racial turnout
for the 1992 presidential contest must have fallen between 53.8% and 71.5% among whites,
and between 24.1% and 79.3% among black. With 1992 congressional voting, similarly,
the bounds on white turnout were tiny in four of Georgia’s 11 districts (i.e., the range of
possible white turnout was less than 10 percentage points). And the range only exceeded 20
percentage points in the three heavily black districts.

The Georgia VNS exit poll, by contrast, is completely unreliable below the state level.
It does a wonderful job predicting the statewide presidential vote once data are weighted:
45.7% Clinton, 46.9% Dole, 6.3% Perot. When estimates are broken up by congressional
district and by race, though, they are quite poor. It becomes clear that some combination
of the sampling frame used by VNS and response bias among those polled results in invalid
estimates of racial voting behavior by congressional district. Table 3.3 allows a district-by-
district comparison between the VNS exit-poll results and the lower bound on white support
for Clinton.33 Of the eleven district-level estimates of white behavior, six are impossibly low.
All but one of those errors exceeds five percentage points.

These errors are consistent, not random, and therefore extremely unlikely to result from
sampling error. Clinton simply could not have won as many votes as he did in these districts
if so few nonblacks had supported him, and the errors tend to be worst in the districts where
we have the most aggregate information – that is, in the whiter districts. In Representative
Newt Gingrich’s 6th, for example, the exit-poll sample of 143 whites (when weighted)
reported giving 23.3% of the vote to Clinton. However, looking at the precinct distribution
of whites and votes, at least 29.1% of white voters must have done so. In the lily-white 9th,

33 Producing the lower bounds required estimating white and black turnout first. But the need for turnout estimates
cannot be the primary reason why I get disappointing results for exit-poll data. The polls perform especially
badly in districts for which ecological inference must get very good estimates of white behavior.
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Table 3.3 Presidential voting among Georgia whites, 1996

Exit-poll estimates
% black

Congressional among EI Lower 3-party% Minimum
district voters bound for Clinton Impossible? error

1 23.5 31.26 34.3 No
2 26.8 30.95 39.2 No
3 13.2 31.12 22.4 Yes 8.7
4 39.6 42.46 41.4 Yes 1.1
5 N/A 45.11 45.3 No
6 3.2 29.11 23.3 Yes 5.8
7 8.9 33.16 37.6 No
8 24.3 28.91 21.1 Yes 7.8
9 2.3 33.51 23.2 Yes 10.3

10 26.4 28.37 21.6 Yes 6.8
11 5.2 32.84 34.0 No

Note: Exit-poll estimates were taken from the 1996 Voter News Service data provided to the ICPSR
(archive 6989). The ecological inference estimates were produced using EI (Gary King’s ecological
inference software), with precinct-level racial registration data and election returns provided by the
state of Georgia. “% black” represents the racial demographics estimated for those who turned out.
The “EI lower bound” represents the minimum possible white three-party percentage for Clinton given
estimated racial turnout rates.

the exit-poll estimate drawn from 99 whites is 23.2% for Clinton, whereas the actual white
vote clearly was within half a percentage point of 34%. Exit polls are far off from what was
possible, let alone from the truth. Polls containing this kind of error below the state level
cannot assist with contextual analysis. Ecological estimates, while imperfect, surely seem
better than any alternative for analyzing turnout or party choice at the ballot box. EI offers
a critical corrective to political science’s dependence on surveys.

CONCLUSION

Gary King’s proposed solution to the ecological inference problem possesses all the virtues
of methods previously used to analyze aggregate data. It takes advantage of the tangible in-
formation found in segregated locales, as homogeneous unit analysis does, since it precludes
impossible results and borrows strength from the homogeneous places to estimate behavior
in the mixed ones (King, 1997: 106–112). Similarly, it allows two-stage analysis much as
ecological regression will, with the additional virtue of producing measures of uncertainty
proportional to the real errors in estimation. Like the neighborhood model, the extended
version does not require an analyst to ignore contextual patterns found in aggregate data.
But it combines all of these traits into a unified model that constrains estimates according
to the method of bounds and therefore is sensitive to both compositional and contextual
patterns in the data. It produces low-level estimates with far more precision than surveys
typically make available. EI is thus an important advance in the ability of researchers to
conduct contextual analysis.

King’s critics have ignored the vast improvement EI offers to scholars interested in con-
textualizing social behavior. Their applications did not give a fair representation of how EI
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usually performs. In particular, the applications presented in this chapter indicate that EI has
taken us far enough to study voting behavior on exactly the sorts of questions – turnout and
racial behavior – for which survey questions are unreliable and survey data limited in their
contextual information. I tested King’s EI using two Louisiana data sets in which the racial
behavior was known. One was a 1968 parish-level data set where I knew racial rates of voter
registration among black and white adults and also held a strong prior about racial voting
preferences. The other was a 1991 precinct-level data set where I knew the racial turnout rates
among those registered. These cases indicated that King’s EI performs admirably, whether
the comparison is (1) with other methods of aggregate-data analysis, (2) with the truth in
data sets for which estimates can be evaluated, or (3) with the likely assistance that surveys
might provide. King’s EI run on precinct-level data produced estimates that were extremely
close to the truth at the statewide, parish, and precinct levels. It also picked up some, but not
all, of the contextual pattern contained in these data. The parish-level analysis, while clearly
based on poor data, not only resulted in fairly precise estimates of voter registration, it also
avoided the error committed by just about every aggregate-data analysis of the Wallace vote:
the tendency to estimate high black support for the segregationist. Therefore, despite the
criticism King’s approach has faced and the limits it shows when applied to concocted data
sets, it is unparalleled when applied to the actual sort of data needed for analyzing important
social issues such as racial voting patterns.

As I have illustrated, the quality of EI estimates responds to an analyst’s ability to anticipate
contextual patterns and inform the software of these expectations – for example, by including
covariates that capture the contextual effect directly (see Herron and Shotts, 2003, and the
exchange that has followed). Of course, estimates shaped by a practitioner’s instincts, field re-
search, or theoretical arguments may face a greater burden of proof than estimates generated
by a plug-and-chug equation that externalizes judgment. But developments within Bayesian
statistics have created, even among quantitative researchers, a growing sense that analysts
should not approach empirical inference under the pretense that they know nothing about
the subjects they study. King’s solution to the ecological inference problem fits comfortably
within this trend of developing methods that succeed when analysts can incorporate what
they have learned, a Bayesian approach that has received even greater development since
the publication of his book (see Chapter 1 of this volume). My applications, guided by the
relevant substantive literature, suggest that King’s approach outperforms every commonly
used alternative for ecological inference, incorporating the advantages of all of them while
escaping the pitfalls of each. There is no reason, aside from ease of use, that would justify
rejecting King’s ecological-inference method in favor of the conventional competition.
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PART TWO

4 Extending King’s Ecological Inference Model to Multiple
Elections Using Markov Chain Monte Carlo

Jeffrey B. Lewis

ABSTRACT

King’s EI estimator has become a widely used procedure for tackling so-called ecological inference
problems. The canonical ecological inference problem involves inferring the rate of voter turnout
among two racial groups in a set of electoral precincts from observations on the racial composition
and total voter turnout in each precinct. As a Bayesian hierarchical model, EI links information about
the turnout by race in each precinct to information on turnout by race in other precincts through
the assumption that turnout rates are independently drawn from a common distribution. In this way,
strength is borrowed from other precincts in estimating the turnout rates by race within each precinct.
Commonly, marginal turnout rates and racial compositions are observed for multiple elections within
the same set of aggregate units. This chapter extends King’s estimator to this case, allowing strength
to be borrowed not only across precincts within the same election, but also across elections within
precincts. The model is estimated via an MCMC algorithm, validated using simulated data, and applied
to estimating voter turnout by race in Virginia during the 1980s.

4.1 INTRODUCTION

King’s (1997) EI estimator has become a widely used procedure for tackling so-called eco-
logical inference problems. The canonical ecological inference problem involves inferring
the rate of voter turnout among two racial groups in a set of electoral precincts from obser-
vations on the racial composition and total voter turnout in each precinct.1 As a Bayesian
hierarchical model, EI links information about the turnout by race in each precinct to in-
formation on turnout by race in other precincts through the assumption that turnout rates
are independently drawn from a common distribution. In this way, strength is borrowed
from all precincts in estimating the turnout rates by race within each precinct. Commonly,
marginal turnout rates and racial compositions are observed for multiple elections within
the same set of precincts. This chapter extends King’s estimator to this case, allowing strength
to be borrowed not only across precincts within the same election, but also across elections
within precincts.

One common use of EI is estimating turnout by race or estimating support for particular
candidates by race. For example, EI has been used to assess claims about “racial block” voting
that are often central to court cases involving legislative redistricting. The central question is
whether voters of a particular racial or ethnic group in a state or locality habitually vote the
same candidates. In these cases, election returns from various contests and across a number

1 Here “precincts” may be electoral precincts or any other aggregate groupings of votes for which the racial
composition is known.
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of election cycles are typically available. While it is reasonable to assume that turnout rates
or voting patterns in a given set of precincts are correlated across elections or contests,
this additional source of information has not been exploited by previous estimators (one
exception is Quinn, in this book, Chapter 9).

Given the difficulty of ecological inference and particularly the difficulty of estimating
precinct quantities of interest, building a model that capitalizes on the commonalities that
might exist across contests or elections at the precinct level is potentially fruitful. As demon-
strated below, by borrowing strength across elections as well as across precincts, the mean
square error of the precinct level predictions can be substantially improved. The model
builds directly on King’s EI. Turnout rates among whites and nonwhites across precincts
are assumed to be drawn from a truncated bivariate normal distribution (TBVN). Whereas
King’s EI models the parameters of the truncated bivariate normal as election-specific, in
the multielection model the parameters of the truncated bivariate normal distribution are
determined by both precinct-specific and election-specific effects. In this way, the estima-
tion of turnout rates by racial group are tied not only across precincts within elections as in
King’s model, but also across elections within precincts. The resulting seemingly unrelated
ecological inference (SUEI) model is presented in detail below.2

The increased complexity introduced by the precinct-specific determinants of the under-
lying truncated bivariate normal that describes the distribution of the precinct-level turnout
by race makes estimation by the standard maximization approach employed by King In-
feasible. Instead, the model is estimated by Markov chain Monte Carlo (MCMC). King’s EI
and the SUEI are members of a general class of hierarchical and mixture models that are
known to be amenable to estimation by MCMC methods.

The estimator is applied to sets of simulated data and to electoral data from Virginia.
Because the “true” values of the precinct quantities are known for the simulated data,
the advantage of SUEI over King’s EI can be directly assessed. For the Virginia data, the
true values are not known. However, the estimates generated by each method can still be
compared and the strength of the cross-election precinct effects assessed. Overall, SUEI and
EI yield quite similar estimates of the aggregate quantities of interest, but in some cases the
two models find quite different estimates of the precinct quantities. By borrowing strength
across elections, SUEI is able to reduce the mean square error (MSE) of the precinct-level
estimates in the simulated data by as much 40 to 50 percent. In the Virginia data sizeable
cross-election dependencies are found and precinct-level estimates differ substantially from
EI to SUEI.

4.2 KING’S EI MODEL

As presented in King (1997) and extensively discussed elsewhere, the basic EI model has as
its foundation an identity, an independence assumption, and a distributional assumption
that together form a simple mixture model. The identity says that in each precinct the total
turnout rate must be the sum of the fraction of nonwhites that vote, and the fraction of whites
that vote weighted by the fraction that each group comprises in the voting-age population
of the precinct (see Introduction, Equation 4). Formally, let T = (T1, T2, . . . , Tp) be the
voter turnout rates in a set of p precincts, and X = (X1, X2, . . . , X p) be the fractions of the

2 The notion of “seemingly unrelated” EI follows by analogy from the seemingly unrelated regression (Zellner,
1962) model in which linear regression models are connected only through correlations among their stochastic
components. Here EI models that would otherwise be estimated separately are linked through a common
precinct-specific stochastic component.
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populations in each of the same set of precincts that is nonwhite. Then

Ti = βb
i Xi + βw

i (1 − Xi ) for i = 1, . . . , p, (4.1)

where βb = (βb
1 , βb

2 , . . . , βb
p) and βw = (βw

1 , βw
2 , . . . , βw

p ) are unobserved turnout rates
among blacks and whites in the precincts. T and X are known from election returns and
census data, while βb and βw are unknown quantities to be estimated. Because there are
twice as many unknown quantities to be estimated as observations, additional assumptions
must be made to identify the model. The (βb , βw ) pairs for each precinct are assumed to
be drawn independently from a common joint density. In particular, the (βb , βw ) pairs are
assumed to be drawn from a truncated bivariate normal distribution with parameters ψ̆ =
(B̆b , B̆w , σ̆b , σ̆w , ρ̆).3 The truncation is on the unit square, reflecting the logical bounds of
βb and βw , which, as fractions of populations, must fall between zero and one.

Suppressing the precinct subscripts and noting that T is a linear function of the random
quantities βb and βw , standard change-of-variables techniques yield the joint distribution of
βb and T .4 As shown in Lewis (2002), the joint distribution of βb and T is bivariate truncated
normal with region of support {(βb , T) s.t. 0 ≤ βb ≤ 1 & βb X ≤ T ≤ βb X + (1 − X)}.
Given that βb and T are truncated bivariate normal, it is easy to show that βb|T is truncated
normal (see King, 1997, or Lewis, 2002). Let f be the joint density of βb and βw , and g be
the joint density of βb and T . For simplicity, I will parameterize g by ψ̆ and X .5

In order to estimate the posterior distribution of ψ̆, King marginalizes the joint distribu-
tion of βb and T with respect to βb to find

g (T |X, ψ̆) =
∫ 1

0
g (βb , T |X, ψ̆)dβb .

Given the assumption of independent sampling, the likelihood of the observed data can be
written as

L (T|X, ψ̆) =
∏

i

g (Ti |Xi , ψ̆).

3 This notation matches King (1997). King considers both the expectations and covariances of the distribution of
βb and βw and the parameters of the truncated bivariate normal which describes the means and variances of
the “corresponding untruncated variables” (p. 102). The later quantities are what constitute ψ̆. Also, see King’s
introduction (Equation 6 and surrounding text).

4 X is taken to be a fixed quantity.
5 The joint distribution of T and βb is

g (βb , T ; ψ̆) = φ2(βb , T ; M(ψ̆))∫ 1
0

∫ 1
0 φ2(βb , βw ; ψ̆)dβbdβw

,

where φ2 is the bivariate normal density function and M transforms the parameters of the joint distribution of
βb and βw into the parameters of the joint distribution of βb and T .

M :
(
B̆b , B̆w , σ̆b , σ̆w , ρ̆

) −→

B̆b , B̆b X + B̆w (1 − X), σ̆b ,

√
σ̆ 2

b X2 + σ̆ 2
w (1 − X)2 + 2ρ̆σ̆b σ̆w X(1 − X),

σ̆b X + σ̆w ρ(1 − X)√
σ̆ 2

b X2 + σ̆ 2
w (1 − X)2 + 2ρ̆σ̆b σ̆w X(1 − X)


.

These expressions hold for 0 ≤ X < 1. If X = 1, then T = βb and the joint distribution of T and βb is simply
the marginal distribution of βb . In what follows, I avoid this technical nuisance by replacing X with X − ε in
the data if X = 1.
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Formulas for L are given in King (1997, Appendix D) and are not repeated here. The posterior
distribution of ψ̆ given the data is

P(ψ̆|T, X) ∝ L (T|X, ψ̆)p(ψ̆), (4.2)

where p is the joint prior distribution over ψ̆.
Default options for King’s computer implementation of EI place flat (improper) priors

over B̆b and B̆w , diffuse half-normal priors over σ̆ b and ˘σ w , and an informative normal
prior over the Fischer’s Z transformation of ρ̆. The informative prior on ρ̆ effectively
bounds estimates of its posterior mode away from 1 and −1. As noted by King, there is little
information in the data about ρ̆, and at extreme values of ρ̆ the calculation of L becomes
unreliable.6 The prior distributions of each element of ψ̆ are taken to be independent.

King’s estimates the posterior distribution of ψ̆ using numerical maximization of P to find
the posterior modes and then uses normal asymptotic theory augmented with importance
resampling to simulate draws from P.7

Given the posterior distribution of ψ̆, the posterior distribution of each βb
i (or βw

i ) given
T and X can be formed as

P
(
βb

i |T, X
) =

∫
g
(
βb

i |Ti , Xi , ψ̆
)
P
(
ψ̆|T, X

)
dψ̆. (4.3)

While the integral in Equation 4.3 is difficult to evaluate directly, it is easy to draw samples
from this density using Gibbs sampling. Suppressing the X and T from the notation, ψ̆

∗
is

drawn from P(ψ̆) using asymptotic normality and importance resampling, and then a draw
is made from g (βb

i |Ti , Xi , ψ̆
∗
) conditional on ψ̆

∗
. Because βb|T is distributed truncated

normal, g (βb
i |Ti , Xi , ψ̆

∗
) can be sampled from using inverse CDF sampling. Samples from

the posterior distribution of βb
i |Ti made in this way can be used to draw histograms or to

calculate a posteriori expectations of these precinct-level quantities of interest.
Equation 4.3 reveals that through the assumption that all βb andβw pairs are drawn from a

common distribution, EI “borrows strength” from data for other precincts in estimating the
value of βb in each precinct even though the draws for each precinct are a priori independent.
By the accounting identity, given Ti , βb and βw are linearly dependent:8

βw
i = Ti

1 − Xi
− Xi

1 − Xi
βb

i .

Thus, the posterior distribution of βw
i can be estimated using samples drawn from the

distribution of βb
i . King uses samples from the posterior distribution of the precinct β’s

to calculate other quantities of interest, such as the election-wide rates of turnout among
blacks and whites.

4.2.1 MCMC Estimation of EI

As an alternative to King’s procedure, I have implemented an MCMC estimator for the
probability model described above. The estimator has the typical advantages of MCMC

6 L requires the calculation of the bivariate normal integral over the unit square. This calculation can become
noisy at extreme values of ρ̆ or, more generally, whenever the area over the unit square is very small.

7 In order to improve the normal approximation to the posterior distribution and to decrease the posterior
correlations among the parameters, King first reparameterizes the posterior distribution, maximizing over the
logs of σ̆b and σ̆w , the Fischer’s z transformation of ρ̆, and (B̆b − 0.5)/(0.25 + σ̆b) and (B̆w − 0.5)/(0.25 + σ̆w )
rather than B̆b and B̆w .

8 See (This volume) Introduction, p. 4, Equation 5 and surrounding text.
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over King’s procedure: it yields draws from the exact posterior distributions and is (in
principle) more robust to numerical inaccuracies. It also has the typical disadvantages: lack
of speed, difficulty in determining convergence, and so forth.

Rather than marginalizing βb in forming the posterior distribution of ψ̆ as described
above, in the MCMC approach the complete joint posterior distribution of (ψ̆, βb) is re-
covered. In this way, the joint distribution of the precinct quantities of interest are obtained
directly from the estimation. Implementing MCMC using Gibbs sampling is straightfor-
ward. First, provisional values for ψ̆ are set. Next, values forβb

i conditional on the provisional
ψ̆, Ti , and Xi are drawn for i = 1, 2, . . . , p. Then values of each element of ψ̆ are drawn
conditional on the sampled values of the βb , the values of the other elements of ψ̆, and the
data. This process is then repeated. In the limit, the distribution of the sampled values will
follow the joint posterior distribution of βb and ψ̆ (see Gamerman, 1997).

As noted above, g (βb|T, X, ψ̆) is truncated normal and can be sampled from using
inverse CDF sampling. The more difficult distribution from which to sample is

P
(
ψ̆|βb , T, X

) ∝
(∏

i

g
(
Ti , βb

i |ψ̆))
p(ψ̆).

I use adaptive rejection Metropolis sampling (ARMS; Gilks, Best, and Tan, 1995) to draw
from the conditional distribution of each element of ψ̆ conditional on the prior values of the
other elements.9 As shown by Gilks et al., ARMS allows sampling from arbitrary distributions
that are known only up to a constant of proportionality. Suppressing the data and other
parameters from the notation, we have, by the definition of conditional probability,

P
(
ψ̆k |ψ̆−k) ∝ P(ψ̆).

Thus, the joint posterior (or a function proportional to it) can be used as the unnormalized
density of the conditional posterior distributions of each element of ψ̆ conditional on the
others.

The complete MCMC routine is:

1. Choose initial values ψ̆ for the parameters of the underlying TBVN distribution of βb

and βw .
2. Draw values from the posterior distributions of βb conditional on the current values

of ψ̆, and the data, using inverse CDF sampling from these TN distributions.
3. Draw new values for each element of ψ̆ conditional on the previous values of the

others, βb , and the data, using ARMS.
4. Repeat from step 3.

4.2.2 Ecological Inference in Several Elections at Once

I now extend King’s EI and the MCMC procedure to the case in which multiple elections
are observed for the same set of geographic units (precincts).10 In this extended model,
precinct-level estimates of βb and βw for each of a series of elections are improved through
the borrowing of strength, not only across precincts within elections, but also across elections
within the same precinct.

9 Computer routines implementing ARMS from user-written density functions are provided by Gilks et al. at
http://www.mrc-bsu.cam.ac.uk/pub/methodology/adaptive_rejection/.

10 Computer programs for estimating King’s basic EI model using MCMC are available from the author.
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Consider as set of elections j = 1, 2, . . . , J held in set of precincts i = 1, 2, . . . , p. All of
the general features of the EI model described above are maintained. In particular, the joint
distribution of βb

i j and βw
i j is assumed to be bivariate truncated normal and independent of

the Xi j . The identity

Ti j = Xi j β
b
i j + (1 − Xi j )β

w
i j

holds. The parameters describing the joint distribution of βb
i j and βw

i j (ψ̆i j ) are the following:

B̆b
i j = B̄b

j + µb
i ,

B̆b
i j = B̄w

j + µw
i ,

σ̆ b
i j = σ̆ b

j ,

σ̆ w
i j = σ̆ w

j ,

ρ̆i j = ρ̆ j .

The location of the TBVN distribution is a function of fixed precinct-specific and election-
specific components. The dispersion parameters and correlation parameter have only
election-specific components.11 In order to separately identify the precinct and election
location parameters, the expectations of the precinct location effects are assumed to be 0.
In particular, I assume

(
µb

i , µw
i

) ∼ BVN(0, Σ)

for i = 2, 3, . . . , p, where12

Σ =
[
ω2

b 0
0 ω2

w

]
.

The hyperparameters describing the variances of the precinct effects, ω2
b and ω2

w , are given
inverse chi-square priors.

The basic MCMC procedure described above is maintained, except that additional steps
to allow Gibbs sampling from the conditional distributions of the additional parameters are
added. The expanded procedure is:

1. Choose initial values ψ̆ j for j = 1, 2, . . . , J for the parameters of the underlying
TBVN distribution of βb and βw .

2. Choose initial values for µb
i and µw

i for i = 1, 2, . . . , p.
3. Draw values from the posterior distribution of βb

j conditional on ψ̆ j for j =
1, 2, . . . , J , µb

i and µw
i for i = 1, 2, . . . , p, and the data, using inverse CDF sam-

pling from these TN distributions.
4. Draw new values for each element of ψ̆j , for j = 1, 2, . . . , J conditional on the

previous values of the others, the current values of βb , µb
i and µw

i for i = 1, 2, . . . , p,
and the data, using ARMS.

11 Precinct-specific dispersion and correlation parameters are feasible, though using them adds substantial com-
putational burden. Because the number of elections is typically small, the posterior distributions of the precinct
variances and correlation components are unlikely to be very informative. If, on the other hand, one observed
many elections in a small number of precincts the i and j , subscripts might reasonably be interchanged.

12 The precinct effects are assumed to be independently drawn across precincts.
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5. Draw new values for each element of µb and µw conditional on the other parameters
and the current values of βb

j for j = 1, 2, . . . , J and the data, using ARMS.
6. Draw new values for ωb and ωw conditional on µb

i and µw
i for i = 1, 2, . . . , p from

the appropriate inverse chi-square distribution.
7. Repeat from step 3.

As noted by King (1997), there is relatively little information in the data about the pa-
rameters ρ j for j = 1, 2, . . . , J that describe the correlation between βb

i j and βw
i j . In what

follows, I restrict ρ = 0. The assumption that βb
i j and βw

i j are a priori independent is widely
assumed in the literature (see, for example, King, Tanner, and Rosen, 1999, Introduction,
p. 8; or Wakefield, 2001). This restriction greatly reduces the computational burden and
numerical problems associated with the estimation.

Because the posterior distribution of the elements of ψ̆ are highly correlated (particu-
larly if the degree of truncation is large), the MCMC routine converges slowly. Additionally,
numerical failure of the bivariate normal density call can occur if the degree of truncation
becomes too large.13 To avoid these problems the values of B̄b

j and B̄w
j are assumed to

lie in the interval [−0.5, 1.5]. This restriction is applied through a uniform prior on the
[−0.5, 1.5] interval for these parameters. Such a large restriction on the possible values of
these theoretically unbounded parameters needs to be justified. In the next section, I demon-
strate that truncated normal distributions with location parameters outside [−0.5, 1.5] can
be very closely approximated by truncated normal distributions with location parameters
in that interval.

4.3 ESTIMATING THE TRUNCATED BIVARIATE NORMAL PARAMETERS WHEN THE DEGREE
OF TRUNCATION IS LARGE

One of the main technical difficulties in implementing King’s EI revolves around the esti-
mation of the parameters of the truncated bivariate normal distribution when one or both
of the location parameters are not in the interval (0, 1). Figure 4.1 illustrates this problem
in the simple case where the ρ = 0 and thus βb and βw follow univariate truncated normal
distributions. The solid lines in the figure show the density over the unit interval when the
location (µ) of the TN distribution is 2 and the dispersion (σ ) is 0.25, 0.5, and 1.0. The
dashed lines show the most similar TN distributions with location parameters equal to 5.
The dotted lines show the most similar TN distributions with location parameters equal to
1.25. Note that in each case, the solid line is closely approximated by the dashed and dotted
lines despite the disparity in the location parameters of the underlying distributions. Even if
a large number of direct observations on βb were available, it would be very difficult to infer
the exact location and spread parameters of the underlying distribution. In the EI model,
βb is not directly observed. Uncovering the differences in the densities shown in Figure 4.1
through EI involves detecting small differences in latent distributions.

In and of itself, the fact that the likelihood will be locally very flat and skewed away
from the unit interval when the true location parameter is not in the unit interval does not
present a problem. However, in this case calculations of the likelihood becomes increasingly
inaccurate as the estimated location parameter is moved off the unit interval. Thus, both
the maximization procedures used by King and the MCMC techniques presented here can
become unstable if the location parameters are allowed to stray too far from the unit interval.

13 When ρ = 0 is imposed, the bivariate normal call becomes the product of univariate cumulative normal calls,
greatly reducing the numerical inaccuracies.
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Figure 4.1. Discerning between truncated normal distributions. Truncated normal distributions with
location parameters that lie beyond the support of the distribution can be closely approximated by
other TN distributions. The solid line in each figure shows a TN density with location parameter
equal to 2. The dashed line shows the closest TN density with location parameter equal to 5, and the
dotted line shows the closest TN density with location parameter equal to 1.25.

On the other hand, the fact that TN distributions with very different parameterizations
yield very similar densities implies not only that these parameters are difficult to estimate,
but also that their exact values are not required to calculate the ultimate quantities of
interest. These quantities of interest, such as the fraction of blacks that vote in each precinct
or district-wide, are determined by densities that can be accurately estimated even if the
parameters of the TN distribution cannot.

In what follows the values of the location parameters are restricted to fall between−0.5 and
1.5. This effectively avoids the numerical inaccuracies that arise when more extreme regions
of the posterior density of the TBVN distribution are investigated, without appreciably
affecting the posterior distributions of the precinct-level parameters of interest. Figure 4.2
shows how closely TN distributions with location parameters at 1.5 can approximate TN
normal distributions with various location and dispersion parameters. The distance between
distributions is measured by the Kullback–Liebler distances (Kullback and Liebler, 1951).
The Kullback–Liebler distance between the true density f and the approximate density g is

I ( f, g ) =
∫

ln

(
f (x)

g (x)

)
f (x) dx.

The distance I is commonly interpreted as the expected value of a likelihood-ratio test which
attempts to discriminate between f and g using a single observation. The distances shown
in Figure 4.2 are typically about 10−3, often smaller, and in no case greater than 10−2. By way
of comparison, Figure 4.2 also shows the distances between the same set of TN distributions
and truncated Student’s t distributions with 80 degrees of freedom.14 The truncated Stu-
dent’s t distribution with 80 degrees of freedom is chosen as a basis of comparison because
its very close similarity to the normal is well known.15 While the quality of the truncated
Student’s t approximation to the TN distributions is more variable, the overall quality of the

14 Truncated Student’s t distributions with the same location and dispersion parameters as the corresponding TN
distributions are used for these comparisons.

15 This comparison may be somewhat misleading because the region of truncation is often in the extreme tails
where the Student’s t and normal distribution differ most greatly. However, other similar heuristic comparisons
yields similar results. For example, untruncated normal distributions with unit variance and means that differ
by 0.045 have I = 1 × 10−4.
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Figure 4.2. Level plots of Kullback–Liebler distances between truncated normal distributions on
the interval (0, 1) with the given parameters and (a) the closest truncated normal distribution with
µ = 1.5, (b) the corresponding Student’s t distributions with 80 degrees of freedom. The scales of
Kullback–Liebler distances are the order of magnitude (log10).

approximation is similar to that found when the TN with location parameter at 1.5 is
used to approximate TN distributions with larger location parameters. Similar values for
I are given by Aitchison and Shen (1980) for logistic normal approximations to Dirichlet
distributions and are taken as evidence that logistic normal models can very closely
approximate Dirichlet data.

4.4 APPLYING SUEI TO SIMULATED DATA

In this section, I report the results of the application of the SUEI estimator to simulated data
that follow the probability models described above. These simulations reveal how the gains
from SUEI vary as a function of: (1) the number of observed elections, (2) the correlation
in X with precincts over time, and (3) when the conditions for aggregation bias are present
in the data.

4.4.1 Validating the SUEI Model

I first consider simulated data that include five elections and 250 precincts. The main
parameters of the TVBN distributions are Bb = (1.00, 0.30, 0.60, 0.70, −0.10), Bw =
(0.40, 0.70, 0.40, 0.00, 0.30), σb = (0.15, 0.07, 0.10, 0.05, 0.10), and σw = (0.05, 0.07,
0.04, 0.12, 0.04).16 The values of X are drawn from a uniform distribution on the interval
[0, 1/2] and are fixed across the elections within precincts, as would typically be the case
with data on racial composition by precinct. The precinct effects are distributed normally
across the precincts with a mean of 0 and standard deviations equal to 0.15 for µb and 0.10
for µw .

The posterior distributions of the estimated main truncated biviariate normal distribu-
tions are shown in Figure 4.3.17 The “true” values of these parameters are shown as dots on

16 The ρ parameters are all set equal to zero.
17 These plots and other results presented are based on 500,000 MCMC iterations, of which the first 100,000 are

discarded.
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Figure 4.3. Estimates of model parameters from simulated data. The plots show histograms of the
estimated posterior probabilities of of the model parameters. The dots on the axis of each graph
indicate the “true” values of each parameter in the simulated data.

the axis of each histogram. In most cases, they fall near the bulk of the posterior mass. In few
cases, they fall fairly far from the mass – in particular, in the case of Bb for elections 1 and
5, where the true Bb ’s are 1 and 0 respectively. In both cases, the posterior distributions lie
mainly to the extreme side of the true value. Given the strong negative collinearity between
Bb and the corresponding σ b when Bb lies off (or, in this case, on the boundary) of the
unit interval, the fact that the true σ b ’s fall on the left edge of the posterior distributions
associated with elections 1 and 5 comes as little surprise. However, it should be noted that
for Bw

4 , whose true value is 0, the posterior mass is much closer to true value. Here again
the distribution is severely skewed away from the unit interval. As expected, the data are
able to place low posterior probability on the values of Bw

4 that lie in the unit interval, but
place relatively more weight on extreme values out of the unit interval.18 While not shown in

18 A key question is whether these posteriors are evidence that the MCMC estimator has not converged. However,
there is little evidence that this is the case. Using a variety of starting values and rerunning the estimator
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Figure 4.4. Estimated versus actual precinct effects: plots of the posterior mean estimates of the
precinct effects against their “true” values in the simulated data: (a) nonwhite, (b) white.

Figure 4.3, the MCMC estimator is very effective at recovering the variation in the precinct
effects, estimating ωb to be 0.153 with a 95 percent credible interval of (0.134, 0.172), and
ωw to be 0.095 with a credible interval of (0.088, 0.112).

The expected a posteriori (EAP) precinct effects for each precinct in the simulated data
are plotted against the true values in Figure 4.4. Both the true and estimated precinct effects
for the nonwhite precinct populations exceed those from the white groups, as follows from
the data, in which ωb = 0.15 and ωw = 0.10. The estimates of the µw generally correspond
more closely to the true value. This is because the white group is considerably larger than
the nonwhite group in most precincts, and thus the logical bounds on the precinct fractions
of white turnout are typically tighter than those for nonwhite turnout.

The more important – and indeed central – question addressed by the simulation is
how much improvement in the estimation of the ultimate quantities of interest result from
the incorporation of precinct effects. Table 4.1 addresses this question. Here results of the
SUEI model are compared with results of using King’s EI estimator on each of the five sets
of election data separately. This is not a perfect comparison, because the assumptions of
SUEI and King’s basic EI are not nested unless there are no precinct effects (ωb = ωw = 0).
If truncation on the unit square is negligible, the two models are nearly nested. That is,
the distribution βb and βw in each precinct will be a normal mixture (determined by the
unobserved and in King’s EI unidentified precinct effects) of nearly normal variables (the
β’s themselves). Because normal mixtures of normal variables are also normally distributed,
without truncation King’s EI and SUEI will be nested and the distributional assumptions
of both models will simultaneously be satisfied. With truncation, however, this is no longer
the case. The normal mixture of truncated normals that is the assumed distribution of βb

and βw in SUEI is not the truncated normal distribution required for King’s EI.19 However,
if the degree of truncation is relatively small or if the variance in the mixture that arises
from the precinct effects is small relative to the election specific variation, the degree to
which data generated under the SUEI assumptions differ from data generated under the
standard EI assumptions will be relatively small. In these data, deviations of the simulated

consistently yielded similar posteriors. Applying King’s estimator to the simulated data for a single election
sometimes yields point estimates closer to the true modes; however, using the MCMC estimator on one election
produces results similar to King’s EI, suggesting that the difference results from the introduction of the precinct
effects and not the MCMC procedure itself.

19 This is because normal mixtures of truncated normals are not truncated normals.
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Table 4.1 Estimated quantities of interest for the simulated data

Precinct-level
District-wide std. dev./MSE

Election B b B w βb βw

1 Truth 0.86 0.40 0.11 0.10
Basic EI 0.86 0.40 0.099 0.043
SUEI 0.87 0.40 0.088 0.033

2 Truth 0.31 0.70 0.16 0.12
Basic EI 0.33 0.69 0.148 0.061
SUEI 0.34 0.69 0.127 0.050

3 Truth 0.60 0.40 0.18 0.10
Basic EI 0.62 0.39 0.150 0.059
SUEI 0.62 0.39 0.122 0.043

4 Truth 0.70 0.10 0.15 0.09
Basic EI 0.70 0.10 0.120 0.043
SUEI 0.69 0.10 0.111 0.037

5 Truth 0.07 0.30 0.07 0.10
Basic EI 0.06 0.30 0.071 0.030
SUEI 0.08 0.29 0.070 0.030

Note: “Truth” rows give actual district-wide quantities and the actual standard
deviation of the precinct-level quantities. The other rows give expected a posteriori
estimates or mean square errors of those estimates across precincts.

data from the TBVN are sufficiently small that any observed differences between the EI and
SUEI estimates do not follow from the fact that the simulated data were generated in a way
that is not strictly consistent with the assumptions of King’s EI.

Table 4.1 reveals that MSEs of the EAP estimates of the precinct quantities of interest are
consistently smaller for SUEI than for King’s EI. That is, as one would expect, borrowing
strength improves the predictions of the precinct quantities. The gains are, however, modest.
MSEs for βw point estimates from the SUEI model are on average 11 percent smaller than
the basic EI estimates; they are never larger, and at best are 19 percent smaller. For βw the
percentage improvements in the MSE of SUEI over basic EI are somewhat larger than for
βw , averaging 16 percent smaller, never larger, and at best 27 percent smaller. While these
improvements are not huge, they are nonnegligible.

4.4.2 Investigating SUEI Efficiency Gains

I investigated how SUEI performed versus EI in three simulated data experiments. In the
first experiment, I varied the number of observed elections. In the second experiment, I
varied the correlation in X within precincts across elections. In the third experiment, I
investigated the robustness of SUEI to aggregation bias. In all of these experiments, the
same set of TBVN parameters was used for every election; ψ̆ = (0.8, 0.4, 0.1, 0.1, 0.0). The
percent white (X) is assumed to be uniformly distributed over the interval (0, 1) across
precincts in each election. The number of precincts p, is set to 150. The standard deviation
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Figure 4.5. The average precinct-level mean squared error of (a) the βb estimate and (b) the βw

estimate, as a function of the number of observed elections across 14 simulated data sets as described
in the text.

of the precinct effects was set to 0.2 for both the white and nonwhite groups in each case.
Large gains from SUEI would in some cases be possible if the TBVN parameters varied from
election to election, but if we use the same probability model to generate each election in a
given experimental trial, the results are easy to compare across methods and experiments.20

In particular, because the marginal distribution of X and the parameters of the TBVN are
the same in every election considered in all of these three experiments, the EI estimates
should only vary as a function of sampling. On the other hand, as the number of elections is
increased or as the correlation in X across elections decreases, the efficiency of SUEI should
increase.

I begin by constructing a series of simulated data sets with the given parameter values.
The first data set contains two elections, the second three elections, and so forth, up to the
largest data set, which contains 15 elections. In contrast to the simulated data set presented
in the previous subsection, here the values of X are independently drawn across elections,
which (as shown below) increases the efficiency of SUEI estimates relative to the case in
which X is fixed across elections.

Figure 4.5 shows the average MSE of the precinct-level quantities of interest across all
precincts and elections for each of the data sets. The open circles show the MSE for standard
EI estimates; the solid circles, for the SUEI estimates. The dashed line plots the trend in
average MSE of the EI precinct-level estimates as the number of elections in the data is
varied. The solid line plots the trend in the MSE of the SUEI estimates as the number
elections is varied. Notice the dashed line is flat, reflecting the fact that EI does not borrow
strength across elections. However, the quality of the SUEI estimates increases as more
elections are observed and more information is pooled. Even when only two elections are
observed, SUEI yields MSEs that are about 15 to 20 percent smaller than those produced
by EI. With 15 observed elections the reduction in MSE approaches 50 percent. The graphs
reveal diminishing returns to each additional observed election. Given the variances of the
election-specific and precinct-specific components and leaving aside the truncations, the
upper bound of the reduction in the precinct level MSE is approximately 55 percent.21

20 The SUEI estimates are based on 100,000 iterations of the MCMC routine (the first 5,000 iterations are discarded).
21 Leaving aside truncation, the MSE of the precinct quantities in EI would be

√
0.22 + 0.12 = 0.23, as opposed

to 0.10 if the precinct effects were known. Due to truncation, the MSEs are lower (about 0.13 for EI and 0.07
for SUEI with 15 elections).
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Figure 4.6. The average precinct-level mean squared error of (a) the βb estimate and (b) the βw

estimate as functions of the correlation in X across elections as described in the text.

In the previous experiment, X was drawn independently across elections. Allowing X to
vary within precincts across elections increases our ability to infer the values of the precinct-
level effects and in part explains why I find larger gains in efficiency using SUEI in the this
experiment than I did in the first simulated data set presented in the previous section. To see
how the advantage of SUEI over EI varies as a function of the variation in X across elections,
I created 11 simulated data sets. Each of the data sets includes eight elections generated by
the same parameter values as the previous experiment, with one exception. In each of the
data sets, the 150 × 8 matrix X is constructed by drawing from the distribution

X∗
i ∼ MVN(0, S) for i = 1, . . . , p

for each precinct independently, where the 8 × 8 variance matrix S has ones along the main
diagonal and r ∈ [0, 1] in each of the off-diagonal entries. Thus, the pairwise correlation
between any two columns of X∗ isr . I then create X by taking the standard normal CDF of each
element of X∗. Across the 11 data sets, r is varied from zero (X is drawn independently across
elections) to one (X is constant across elections). By construction, the marginal distribution
of X in every election across the 11 data sets is uniform on the interval [0, 1] . Thus, as
in the previous experiment, the (marginal) probability model generating each election is
identical, and EI, which does not pool information across elections, should generate similar
estimates for each election, regardless of the correlation in X across elections.

Figure 4.6 plots the MSEs of the estimates of precinct quantities of interest across the 11
simulated data sets. The dotted line representing the trend in the EI MSEs remains flat as the
correlation in X across elections is increased. The advantage of SUEI over EI is greatest when
X is drawn independently across elections, and least when X is identical across elections.
This result follows from the fact that precinct effects can be more precisely estimated when
there is variation in X across elections. Without variation in X (and without variation in
the main parameters of TBVN across elections), SUEI can still recover some information
about the precinct effects, in cases in which T is consistently higher or lower than average
across elections; without variation in X , however, there is little information in the data to
separate the overall pattern in turnout into nonwhite (µb) and white (µw ) components.
Nevertheless, the experiment reveals efficiency gains of 5 percent even when X and the
parameters of the TBVN are constant across elections (the least favorable conditions for
borrowing strength across elections).
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Figure 4.7. Average bias and MSE of precinct-level estimates as a function of the number of observed
elections.

In a last set of experiments, I consider whether SUEI is more robust to data that violate the
independence assumption, which is critical to avoiding bias in EI or ecological regression.
In these experiments, I created data sets containing between two and nine elections which
followed the same probability model as the previous experiments except that the cross-
election correlation in X was fixed at 0.7, and B̆b

i j = 0.8 + 0.4(Xi j − 0.5). Figure 4.7 shows
the average bias and MSE of the EI and SUEI as a function of the number of elections. The
top two panels reveal that SUEI was no more robust to aggregation bias than EI. When B̆b

(and, thus, βb) is a function of X , estimates of βb and βw are biased. Increasing the number
of elections does not reduce the bias in the SUEI estimates. However, the lower two panels
reveal that even in the presence of bias, SUEI still reduces the MSE of the precinct-level
prediction versus EI, and that advantage increases with the number of observed elections.

In other experiments, I ran SUEI and EI on data sets which included some elections in
which the conditions for aggregation were present as well as some in which those conditions
were not present. In those experiments, SUEI did somewhat decrease in the bias of the
precinct-level estimates relative to EI, though the differences were not dramatic. The larger
advantage of SUEI over EI when the independence assumption is violated may be found if
the SUEI model is extended to allow the B̆b and B̆w to depend on X as in the extended EI
model. I leave this extension to be investigated in future work.

While the results of these simulations are not definitive, they do yield some important
observations. As the number of elections considered increases, the advantage (in terms
of MSE) of SUEI over EI grows (to as much as 45 to 50 percent). Similarly as the racial
compositions of the districts becomes more variable across elections, the advantage of SUEI
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grows, although some advantage is found even if X is fixed across elections. On the the other
hand, I would have found smaller reductions in MSE from SUEI if the estimated precinct
effects had been smaller relative to the election-specific effects.22

4.5 TURNOUT BY RACE IN VIRGINIA ELECTIONS

Virginia presents a good example of a setting in which ecological inference might be improved
through consideration of several elections at once. Because Virginia elects its governors to
four-year terms in odd-numbered years and its entire State senate in the odd-numbered years
which do not have gubernatorial elections, whereas federal elections are in even-numbered
years, important state or federal contests are held in Virginia every year. Thus, in a short
period of years – over which precinct-level effects might safely be assumed to be stable –
a sizable number of significant elections are held. I consider an example drawing on data
from the 1984 through 1990 Virginia elections.23 The object of inference is the rate of turnout
among whites and nonwhites, which will be estimated for each of the seven elections. It is
not possible to obtain direct measures of turnout by racial group.24 However, there exist
previous estimates and expert opinions which can be used as points of comparison.

The question of turnout by race in Virginia elections in the 1980s is of particular inter-
est (see, for example, Hertzhog, 1994; Sabato, 1987, 1991; Strickland and Whicker, 1992;
Traugott and Price 1992; Schexnider 1990; Morris and Bradley, 1994). The 1980s saw the
emergence of African-American candidates for statewide office in Virginia and the nation. In
1985, Virginians elected an African-American, L. Douglas Wilder, lieutenant governor, and
in 1989 they elected him governor. In 1988, the Republicans nominated Maurice Dawkins,
an African-American, for the U.S. Senate. In 1984, Jesse Jackson won the Democratic caucus
vote in Virginia (though he ran second to Mondale in national conventional delegates), and
in 1988, Jackson captured a plurality (45 percent) of the Democratic primary vote. Thus,
Virginia in the 1980s offers an interesting testing ground for theories about the electoral
significance of race and, in particular, the effect of minority candidates on minority-voter
mobilization.

An established literature presents theoretical foundations and empirical tests of the asser-
tion that the race of candidates or office holders affects the political mobilization of racial
minority and majority groups. For example, Tate claims that black participation is generally
higher when black candidates are on the ballot, though her survey evidence suggests that
most blacks disagree with the assertion that “blacks should always vote for black candidates
when they run” (1994, p. 105). Nevertheless, Tate argues that high black turnout rates are
often associated with precedent-setting candidacies (such as Wilder’s). Bobo and Gilliam
(1990) show that black political engagement is greater in cities with black mayors. Gay (2001)
shows that white voter turnout is depressed and black voter turnout (sometimes) increased
in districts held by black members of Congress. Kleppner (1985) reports that historically
high black voter turnout was critical to Harold Washington’s mayoral victory in Chicago in
1983. Similarly, high black voter turnout in states like Virginia is seen by some as critical to
the success of black candidates (Strickland and Whicker, 1992).

The existing estimates of turnout by race in these elections come from Sabato (1991) and
are based on turnout in 44 selected predominantly black precincts. The rate of turnout in

22 Similarly, larger advantages would have been found if the precinct effects had accounted for a larger share of the
variability in βb and βw .

23 The data are from the ROAD data project (King et al., 1997).
24 Indeed, Virginia does not collect information about the race of voters when they register.
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Figure 4.8. Estimates of black and white
voter turnout from Sabato (1991). The
dotted line shows white turnout, and the
dashed line shows black turnout, in each
case as a fraction of voter registration.
The solid line shows total turnout as a
fraction of the voting age population.

these precincts is taken as an estimate of black turnout statewide. Unfortunately, these esti-
mates are for the percentage of registered voters that turn out to vote and not percentages of
the total voting age populations. Because population data for the precincts are not available,
the turnout rates as a fraction of voting age population cannot be estimated in a comparable
way.25 Turnout rates for blacks reported by Sabato are shown in Figure 4.8.26 Interestingly,
Sabato’s results suggest that black turnout was higher than white turnout in the 1985 and
1989 races, in which Wilder was a candidate for lieutenant governor and governor. Black
turnout was estimated to be lower than white turnout in 1986, when the black Republican
Dawkins was a candidate for U.S. Senate, and in all of the other years in the eighties except
1981. By these estimates black turnout never exceeds white turnout by more than about
7.5 percentage points, though in some elections white turnout exceeds black turnout by as
much as 17 percentage points.

In order to analyze turnout rates among whites and nonwhites using the ecological infer-
ence estimators developed above, I require election returns and racial composition data for
a set of geographic units. Practically, this requires aggregating electoral returns to a level that
corresponds to geographical units recognized by the Census Bureau. In the ROAD project,
King et al. (1997) published electoral data for Virginia elections from 1984 to 1990 that are
aggregated to the minor civil division (MCD) group level. In the main these are simply the
Census Bureau’s MCDs (for example, Alexandria, Berryville, or Quantico) except in cases
where one or more electoral precincts (the lowest level of electoral aggregation) were shared
across two or more MCDs. In these cases, the MCDs sharing precincts are grouped so that
no electoral precinct is split across groupings. In total there are 257 MCD groups in the
Virginia data, ranging widely in size from 506 to 183,000 voting age residents. The median
Virginia MCD group has 7,363 voting age residents. Nonwhites make up 22 percent of the
voting age residents statewide. The distribution of the nonwhite population across the MCD
groups is shown in Figure 4.9. While many of the MCD groups have very small nonwhite
populations, a small number of them are majority-minority.

25 Similarly, because registration-by-race data are not available, ecological analysis of the sort developed here cannot
be undertaken on the precinct-level data.

26 Sabato does not give turnout rates for whites. In the figure, the white turnout rate is imputed from the total
turnout rate and Sabato’s black turnout rate under the assumption that 18 percent of the registered voters in
Virginia were black during this period.
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Figure 4.9. Virginia Ecological Election Data, 1984–1990: (a) racial composition, (b) turnout rates.
Here (a) shows the distribution of nonwhite voters across Virginia minor civil division groups (MCD
groups; see text for definition), and (b) shows boxplots for the turnout rates in each of the seven
elections considered (as a percentage of voting age populations). Each gray line in (b) represents an
MCD group.

The distribution of voter turnout across the elections is also shown in Figure 4.9.27

The figure reveals cross-election and cross-precinct variation in overall voter turnout at the
MCD-group level. As one would expect, voter turnout was highest in the presidential election
years 1984 and 1988. Interestingly, the midterm elections of 1986 and 1990 had the lowest
rate of turnout, even lower than the 1987 election in which no federal or statewide offices
were contested. Closer inspection reveals that the 1987 election included a hotly contested
statewide proposition that established the Virginia lottery, whereas the 1986 election did not
involve a U.S. Senate contest, and Senator John Warner faced no Democratic opposition in his
1990 reelection campaign (Sabato, 1991). The gray lines in Figure 4.9 trace the turnout rates
within each precinct over time. Notice that there appear to be many high- and low-turnout
precincts. For example, the high and low outliers tend to be the same MCD groups over
time. While not sufficient to demonstrate MCD-group effects in turnout by race, persistent
differences in total turnout are consistent with the existence of those effects.

Table 4.2 presents estimates of the main truncated bivariate normal parameters as es-
timated by King’s EI and SUEI. In all but one election, the 1986 midterm, the estimated
parameters are very similar. The 1984 presidential election presents a good case of what we
expect to find if the data are well conditioned and the degree of truncation in the assumed
TBVN distributions is small.28 The election-specific estimated location parameters, Bb and
Bw , are identical, and the estimated election-specific standard deviations are larger for
King’s EI than for SUEI. This is because some of the precinct-level variation in turnout that
is captured by these parameters in King’s EI is attributed to the precinct effect in SUEI. Table
4.3 shows the estimated standard deviations of the precinct effects. The standard deviation
of the precinct effects for both whites and nonwhites is estimated to be about 0.09. Thus,
in the 1984 presidential election, the estimates are consistent with the notion that the esti-
mated σ b from King’s EI is decomposed to into election- and precinct-specific components

27 Presentation of the turnout data in this way was suggested to me by James DeNardo.
28 This should not be taken as implying that the data are in fact well conditioned. In particular, the these results

are not informative about the existence of aggregation bias in the results.



P1: FZZ/FZZ P2: FZZ

CB658-04drv CB654-KING-Sample CB658-KING-Sample.cls May 25, 2004 21:29

Extending King’s Ecological Inference Model to Multiple Elections Using Markov Chain Monte Carlo 115

Table 4.2 Estimates of truncated bivariate normal parameters for Virginia elections
data: turnout by race, 1984–1990

King EI Precinct-effects EI

Parameter Mean Std. Dev. 95% CI Mean Std. Dev. 95% CI

1984 Presidential
B̄b 0.55 0.02 (0.52, 0.59) 0.55 0.03 (0.49, 0.60)
B̄w 0.46 0.01 (0.44, 0.47) 0.46 0.01 (0.47, 0.48)
σ̆ b 0.12 0.02 (0.08, 0.16) 0.07 0.02 (0.04, 0.10)
σ̆ w 0.12 0.005 (0.11, 0.13) 0.06 0.004 (0.06, 0.07)

1985 Gubernatorial
B̄b 0.47 0.01 (0.45, 0.50) 0.46 0.04 (0.42, 0.51)
B̄w 0.27 0.01 (0.27, 0.29) 0.29 0.01 (0.27, 0.30)
σ̆ b 0.03 0.02 (0.01, 0.07) 0.05 0.01 (0.03, 0.07)
σ̆ w 0.10 0.003 (0.10, 0.11) 0.05 0.003 (0.04, 0.05)

1986 Midterm
B̄b 0.25 0.02 (0.21, 0.27) −0.04 0.22 (−0.44, 0.27)
B̄w 0.18 0.01 (0.16, 0.19) 0.19 0.01 (0.18, 0.22)
σ̆ b 0.09 0.02 (0.05, 0.13) 0.35 0.11 (0.19, 0.53)
σ̆ w 0.14 0.01 (0.13, 0.16) 0.10 0.01 (0.08, 0.11)

1987 State legislative
B̄b 0.25 0.03 (0.21, 0.30) 0.20 0.07 (0.09, 0.29)
B̄w 0.36 0.01 (0.35, 0.37) 0.37 0.01 (0.35, 0.39)
σ̆ b 0.10 0.02 (0.04, 0.14) 0.13 0.04 (0.08, 0.20)
σ̆ w 0.12 0.005 (0.12, 0.13) 0.08 0.01 (0.07, 0.09)

1988 Presidential
B̄b 0.48 0.02 (0.45, 0.51) 0.48 0.03 (0.43, 0.53)
B̄w 0.48 0.01 (0.47, 0.48) 0.48 0.01 (0.47, 0.50)
σ̆ b 0.10 0.02 (0.07, 0.13) 0.03 0.01 (0.02, 0.06)
σ̆ w 0.09 0.003 (0.09, 0.10) 0.03 0.003 (0.03, 0.04)

1989 Gubernatorial
B̄b 0.55 0.02 (0.52, 0.57) 0.55 0.03 (0.50, 0.60)
B̄w 0.39 0.01 (0.38, 0.40) 0.39 0.01 (0.37, 0.40)
σ̆ b 0.08 0.02 (0.05, 0.12) 0.06 0.02 (0.04, 0.09)
σ̆ w 0.10 0.003 (0.10, 0.11) 0.04 0.003 (0.03, 0.04)

1990 Midterm
B̄b −0.13 0.24 (−0.56, 0.16) −0.10 0.23 (−0.46, 0.25)
B̄w 0.27 0.01 (0.26, 0.28) 0.27 0.02 (0.27, 0.29)
σ̆ b 0.29 0.07 (0.19, 0.42) 0.29 0.09 (0.15, 0.43)
σ̆ w 0.10 0.003 (0.09, 0.11) 0.11 0.01 (0.10, 0.12)

Note: Posterior means, standard deviations, and credible intervals were calculated using King’s
computer procedures and the MCMC estimator described in the text.
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Table 4.3 Estimated standard deviations of the precinct-specific effects
on turnout by race across the seven elections, Virginia, 1984–1990

Parameter Mean Std. Dev. 95% CI

ωb 0.09 0.04 (0.01, 0.14)
ωw 0.09 0.01 (0.08, 0.10)

in SUEI. For example, the total nonwhite precinct-level variance is estimated in King’s EI to
be 0.12, and by SUEI to be

√
0.072 + 0.092 ≈ 0.11. As mentioned above, when the degree of

truncation is negligible, both King’s EI and SUEI imply that the precinct parameters follow
bivariate normal distributions (both conditional and unconditional on the precinct effect).
In such cases, precinct-level variance in King’s EI will be decomposed into election- and
precinct specific components as it is in the 1984 presidential election. Similar, results are
obtained for the 1988 presidential election and the 1989 gubernatorial election.

In the remaining elections, differences in the estimated election-specific variance com-
ponents between the two models cannot be directly attributed to the sort of decomposition
described above. In these elections, the estimated election-specific variance components
are larger in SUEI than in King’s EI for at least one of the two racial groups. In the 1985
gubernatorial election, the EI estimated election-specific variance of βb is not even larger
than the precinct-specific variation found using SUEI. In most cases, the differences can be
attributed to greater degrees of truncation combined with differences in the ways the two
models respond to violations in the their distributional assumptions.

Despite differences in the estimated parameters of the underlying TBVN distributions,
estimates of the aggregate quantities of interest are quite similar, as seen in Table 4.4. The
maximum difference between the EI estimates and SUEI estimates are 5 percentage points
for nonwhites and 1 percentage point for whites.29 Interestingly, despite the additional
efficiency that should be obtained from SUEI, the estimated posterior uncertainties in the
EI estimates is generally smaller than those found for SUEI. This finding results in part
from an understatement of posterior uncertainty from King’s use of importance resampling
and normal theory to construct estimates of the posterior uncertainty. The larger posterior
uncertainties in SUEI also result from differing reactions of the two models to violations of
their distributional assumptions.

The results presented in Table 4.4 support the notion that black turnout was elevated
relative to white turnout in the two elections involving Douglas Wilder. In the 1985 and
1989 elections black turnout is estimated to have exceeded white turnout by about 15 to 25
percentage points. By comparison, in the 1987 state election, white turnout was estimated
to exceeded nonwhite turnout by about 5 to 15 percentage points. In the two midterm
elections, black and white turnout is estimated to have been quite similar. Although black
turnout is estimated to have exceeded white turnout in 1986 and white turnout to have
exceeded black turnout in 1990, in neither case is the difference within the 95 percent
credible interval. The most anomalous case is the 1984 presidential election, in which black
turnout is estimated to have exceeded white turnout by about 15 to 25 percent. While Jesse
Jackson ran a strong campaign in the 1984 presidential primary, winning the Virginia caucus
vote, it is not obvious that the effect of his campaign would extend to the general election
six months later.

29 That the maximum difference between EI and SUEI for whites is about 5 times smaller than for nonwhites
follows directly from the fact that nonwhites comprise about 1/5 of the population.
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Table 4.4 Estimates of the statewide quantities of interest: fractions of whites and
nonwhites voting statewide

King EI Precinct-effects EI

Parameter Mean Std. Dev. 95% CI Mean Std. Dev. 95% CI

1984 Presidential
B b 0.54 0.03 (0.50, 0.58) 0.53 0.04 (0.46, 0.59)
B w 0.41 0.01 (0.40, 0.42) 0.42 0.01 (0.39, 0.44)

1985 Gubernatorial
B b 0.47 0.02 (0.44, 0.50) 0.44 0.04 (0.38, 0.50)
B w 0.23 0.004 (0.22, 0.24) 0.24 0.01 (0.22, 0.26)

1986 Midterm
B b 0.25 0.02 (0.21, 0.27) 0.30 0.05 (0.22, 0.39)
B w 0.21 0.01 (0.20, 0.22) 0.20 0.01 (0.17, 0.22)

1987 State legislative
B b 0.25 0.03 (0.20, 0.30) 0.22 0.04 (0.16, 0.28)
B w 0.31 0.01 (0.29, 0.32) 0.32 0.01 (0.29, 0.33)

1988 Presidential
B b 0.46 0.02 (0.42, 0.43) 0.46 0.04 (0.40, 0.52)
B w 0.45 0.01 (0.44, 0.46) 0.45 0.01 (0.43, 0.47)

1989 Gubernatorial
B b 0.53 0.02 (0.49, 0.56) 0.52 0.04 (0.46, 0.58)
B w 0.34 0.01 (0.32, 0.36) 0.35 0.01 (0.33, 0.36)

1990 Midterm
B b 0.17 0.03 (0.14, 0.22) 0.22 0.04 (0.15, 0.30)
B w 0.27 0.01 (0.25, 0.28) 0.26 0.01 (0.23, 0.28)

Overall, these estimates suggest that black voter turnout is systematically higher relative
to white voter turnout than Sabato’s estimates suggest. Several factors might account for
these differences. The 44 predominantly black precincts use by Sabato could be atypical
of turnout patterns statewide. Also, Sabato assumes that nonwhite and white behavior in
these precincts is the same.30 On the other hand, it is also quite possible that there is
a relationship between voter turnout and racial composition. Key’s (1949) racial threat
hypothesis asserts that whites will be most motivated to vote against blacks in areas where
blacks are most prevalent. Consistent with Key’s hypothesis, Hertzog (1994) argues that
“the single most significant factor in determining how white Virginians would vote in the
1980s was the percentage of black people living the voter’s locality” (p. 163). If this is true,
it is quite possible that for elections in which blacks are particularly mobilized, whites in
predominantly black areas will be mobilized to vote as well (for the opposing candidate).
In that case, the ecological inference models considered here, which assume that racial
composition and turnout by each racial group are independent, will fail in such a way that
the additional white turnout in areas with large black populations will be attributed to black
voters. This effect is opposite to the usual aggregation bias result, in which voting rates
in predominantly black areas are lower for both blacks and whites than in predominantly

30 Without knowing the racial composition of these precincts, the influence of white turnout on Sabato’s estimates
cannot be assessed.
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Figure 4.10. MCD group level tomography plots and estimates from King’s EI and the precinct-effects
EI model estimated by MCMC. The left panels show tomography plots of feasible values of βb and
βw for each MCD group. The ellipses show probability contours of the TBVN parameters estimated
by King’s EI. The center and right panels show the EAP estimates of βb and βw respectively for each
MCD group.
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Figure 4.10. (continued )

white areas, leading the estimated black turnout to be lower relative to white turnout than
is the true black turnout. Interestingly, Sabato’s estimates indicates that black turnout is
lower than the SUEI or EI estimates, not only in elections that involve black candidates, but
in other elections as well, which undermines the idea that the differences between the two
sets of estimates are due to aggregation bias resulting from racial threat. Further, the fact
that Sabato’s estimates which result in lower estimates of black turnout are based on the
behavior of blacks (and whites) in the most heavily black precincts, makes less plausible the
notion that there is a positive correlation between black or white turnout rates in an area and
the fraction of blacks in that area. Overall, the EI and SUEI results regarding the aggregate
quantities of interest are quite similar. Further, consistent with Sabato, the EI and SUEI
results show higher black turnout relative to white turnout when Wilder was on the ballot.

As seen in the simulation, the real advantage in the SUEI estimator is in the improvement
to the precinct-level (MCD-group-level) predictions. Figure 4.10 shows the MCD group
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turnout rates for whites and nonwhites as estimated by EI and SUEI along with King’s
so-called tomography plot for each election. In the tomography plot, each line represents
the feasible values of black and white turnout given the total turnout rate and the racial
composition in a particular MCD group. The ellipses show contour lines of the truncated
normal distributions that are assumed to govern the joint distribution of white and nonwhite
turnout (as estimated by EI). Notice that many of the precinct lines are very flat, indicating
the feasible range of white turnout rates (plotted on the y-axis) is typically small and the
range of feasible black turnout rates is very large (often the entire interval [0, 1]). Thus,
inferring white turnout rates is a considerably easier task than inferring black turnout rates
in these data. Consequently, EI- and SUEI-estimated white turnout rates in each precinct
and election are quite similar, as indicated by the fact that most of the points in the white
turnout (βw ) panels fall near the 45 degree lines. In the case of white turnout, borrowing
strength across elections had very little effect on the estimated quantities of interest. Not
that the precinct effects are not present; rather the additional information that they yield
with respect to estimating white turnout rates is small. On the other hand, in several of the
elections, the inclusion of precinct effects greatly increases the variation in the estimated
turnout rates among blacks. That is, the posterior estimates are greatly effected by the
borrowing of strength across elections. Particularly in 1985 and 1986, and to a lesser extent
in 1987 and 1989, SUEI finds much greater variation in black turnout than does EI. In the
1984 and 1988 elections, variation in estimated black turnout rates made by EI and SUEI
are similar, and in the 1990 election the EI estimates exhibit somewhat more variation than
the SUEI estimates.

Overall, when the variation in black turnout rates is estimated to be large relative to
the variation in white turnout rates (when the ellipses in the tomography plots are wide),
the precinct effects add relatively less, and when the variation in black turnout rates is
estimated to be small relative to the variation in white turnout rates (when the ellipses in
the tomography plots are tall) the precinct effects add relatively more. Also, as noted above,
when the degree of truncation is large (as in 1986 or 1990), the relationship between the EI
and SUEI estimates becomes more complex due to the asymmetric effect that positive and
negative precinct effects have on the precinct-level prediction in cases in which the election
specific effect (Bb or Bw ) is estimated to lie near the boundary of or off the unit square.

Of course, without knowledge of the true turnout by whites and nonwhites in each MCD
group it is not possible to ascertain the degree to which the additional variation in the
SUEI estimates versus the EI estimates comports with “true” cross-MCD group variation in
turnout rates. However, the estimates do suggest the existence of persistent cross-election
variation in turnout rates, and those difference are reflected in the SUEI MCD group-level
data predictions. Thus, the results presented here demonstrate how the analysis of several
elections at once can be used to gain leverage on the behavior of voters within each precinct
(MCD group).

4.6 DISCUSSION

The SUEI model maintains the central assumption found in Goodman (1959) and King
(1997) of independence between the turnout rates within each racial group and the racial
composition of the precincts. The violation of this assumption leads to aggregation bias
(Robinson, 1950) when regression-like techniques (such as Goodman’s ecological regres-
sion or King’s EI) are applied. While the degree to which EI is more “robust” to violations
of this assumption has been debated, it is important to note the centrality of the assump-
tion and that its violation will lead to bias. King presents extensions to his model in which
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violations of this assumption are addressed, and those same extensions could be incorpo-
rated in the model presented here. Indeed, the MCMC estimator developed above can more
easily and flexibly allow for dependences between the racial composition of the precincts
and the turnout rates within each group. However, there is often little information in the
data to estimate such dependences (Rivers, 2000). In this regard an extended SUEI which
allows for nonindependence between the precinct quantities of interest and the racial com-
position of the district (as King’s “extended” EI) holds some promise. If the structure of
nonindependence is constant across elections, then borrowing strength across elections may
help to estimate that structure. This extension remains for future work.

In both the simulated data and the empirical example, the district and state-wide estimates
produced by King’s basic EI model and the SUEI model are very similar. The advantage of the
SUEI model is in the estimates of the precinct-level quantities of interest. In the simulated
data, SUEI provides improvements in mean square error of 5 to 40 percent. Because the
true precinct-level quantities are not known for the Virginia election data set, the degree of
improvement cannot be directly assessed. However, the estimates suggest that a considerable
amount of information about precinct-level turnout by race in any given election can be
gleaned from other elections.

Substantively, the estimates support the widely held, but relatively unsubstantiated, claim
that nonwhite turnout exceeded white turnout in several Virginia elections in the 1980s and
particularly outpaced white turnout in the 1985 and 1989 elections, in which a African-
American candidate, Douglas Wilder, was on the statewide ballot. While the results may
be exaggerated by an ecological fallacy if whites in areas with large nonwhite populations
turned out in disproportionately large numbers to vote against Wilder (as suggested by Key’s
(1949) racial threat hypothesis), the general finding appears clear.

This chapter demonstrates how King’s EI model can be estimated using MCMC techniques
and how cross-election precinct-level dependences can be estimated and used to improve
precinct-level predictions. More generally, the MCMC approach laid out in this chapter
can be applied of other extensions of King’s model, including perhaps ways in which the
assumption of independence between the racial composition of the district and turnout
rates for each group might be relaxed. Using MCMC, the posterior distributions of these
tenuously identified quantities might be more accurately assessed and reliably recovered
than is possible using the asymptotic normal theory and importance resampling approach
described by King (1997).
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5 Ecological Regression and Ecological Inference∗

Bernard Grofman and Samuel Merrill

ABSTRACT

We propose three methods of ecological inference that guarantee feasible solutions but are simpler
to implement than the method of King (1997). Each procedure provides estimates at the level of the
ecological unit as well as a more aggregated level. The first method uses a simple squared distance
minimization algorithm on the tomographic line segments. The second also generates a distance
minimization, but in a space keyed to the slopes and intercepts of possible regression lines. The third
determines the regression line that minimizes the sum of the areas between it and pairs of constraint
line segments that are generated by a variant of the Duncan–Davis method of bounds. The procedures
are implemented on an Excel spreadsheet and are available over the Internet. We present empirical
applications, for which the first and third methods yield results that are quite similar to those produced
by King’s algorithm.

5.1 INTRODUCTION

In ecological inference we seek to make use of data that is aggregated at the level of ecological
units to make inferences about the behavior of individuals. The ecological fallacy (Robinson,
1950) occurs when relationships between variables that obtain at the aggregate level are not
found at the individual level. In this chapter three methods of ecological inference are
proposed that are simpler than the sophisticated statistical models offered by King and his
colleagues.

King estimates the unknown parameters of interest using maximum likelihood estima-
tion (MLE) methods on a truncated bivariate normal or Beta distribution overlaid on the
tomographic lines in (βb , βw ) space. The first of our three methods uses a simple squared
distance minimization algorithm on the tomographic lines. The district level solution is that
point on the district tomographic segment that minimizes the (weighted) sum of the squared
distances to the feasible tomographic line segments for the ecological units. For each unit the
estimates for the parameters of interest are the coordinates of the nearest point on the unit
tomographic line segment to the district solution. The analytic solution we obtain from this
method is very similar to that of the Goodman regression model, but – unlike regression –
our approach guarantees feasible solutions at both the precinct and the district level.

The second and third methods we propose can each be thought of as forms of
constrained Goodman ecological regression. The first of these latter methods generates a

∗ A previous version of this work was presented at the Ecological Inference Conference, June 17–18, 2002, at
Harvard University, Cambridge, MA. The listing of authors is alphabetical. The first-named author is indebted
for helpful conversations with John DiNardo and Anthony Salvanto, and for comments on a much earlier draft
of this paper by Gary King. Errors remaining are solely the responsibility of the authors.
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distance minimization in (m, b) space (where m and b are the slope and intercept of possi-
ble regression lines) rather than in (βb , βw ) space. The last method operates in the original
(X , T) space and finds the regression line that minimizes the sum of the areas between it
and pairs of constraint line segments that are generated by a variant of the Duncan–Davis
method of bounds.

These methods demonstrate that the contrast between ecological regression in the form
proposed by Goodman (1953, 1959) and ecological inference of the sort described in King
(1997) is too easily exaggerated. Each uses either King’s extension of the Duncan–Davis
(1953) method of bounds or a simple variant thereof. Each operates without any assumptions
about the distribution of parameters, but bootstrap standard errors can be obtained to assess
the results.

We compare the results of our methods with that of King for several artificial and
real data sets. Our methods are implemented in Excel spreadsheets, which are available
on the websites http://www.cbrss.harvard.edu/events/eic/book.htm and
http://course.wilkes.edu/Merrill/. Two of the three methods produce results
that are, in general, very close to those produced by King’s algorithms.

5.1.1 Background

Since the critiques of scholars such as Robinson (1950), the use of ecological methods to
attempt to specify individual level behavior from data that is available only at the level of
ecological units has been both uncommon in the social sciences and highly suspect. It is now
well known that ecological methods can sometimes yield quite misleading estimates, even
of apparently simple statistics such as correlations. There have been a variety of attempts
to resuscitate the use of ecological methods, such as the efforts of Goodman (1953, 1959)
and Duncan and Davis (1953) to provide ecological estimates a solid statistical footing. In
particular, these methods have been adopted for use in the analysis of racial bloc voting data
in legal challenges to districting plans brought under the Voting Rights Act or the Fourteenth
Amendment (Grofman, 2000).1 But it is only following publication of Gary King’s (1997)
seminal work on ecological inference that the use of aggregate data on ecological units
for purposes of directly inferring (mean levels of) individual behavior among individuals
(entities) sorted into dichotomous or polychotomous categories has been undergoing a
renaissance in political science research.

King (1997) argues that his approach to ecological inference is superior to Goodman’s
classic form of ecological regression for a number of reasons. Most notably, it makes use of
all the information available about the data and the bounds on feasible parameter values,
and guarantees that all estimates of unobservable individual parameters will be consistent
with the feasible values for those parameters at the level of the ecological units used for
analysis. While it is widely accepted that King (1997) represents a major advance on earlier
methods such as Goodman’s bivariate approach to ecological regression, King’s approach to
ecological inference has also been subject to strong attacks by scholars in both political science

1 In voting rights challenges to districting plans (brought under Section 2 or Section 5 of the Voting Rights Act of
1965 as amended in 1982, or brought directly under the Fourteenth Amendment), analysis of voting by race was
a legally mandated component of any litigation. Because survey data on local (or even state) elections is rarely
available, analyses of the relationship between aggregate level voting patterns in the elections (usually measured
at the precinct level) and the racial characteristics of these aggregate units has been used to make inferences
about how members of each race are voting (Grofman and Migalski, 1988; Grofman, 1992). Despite the general
disrepute of ecological methods over the past three decades, one area where ecological methods have been used
by necessity is in the analysis of patterns of racial voting.
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(Cho, 1998, 2001; Cho and Yoon, 2001; Anselin and Cho, 2002) and statistics (Freedman,
Klein, Sachs, Smyth, and Everett, 1991; Freedman, Ostland, Roberts, and Klein, 1999). These
authors argue that there are circumstances where his methods will be either inconclusive
or wrong and that errors in inference may go undetected by his diagnostics. Others have
argued that King overstates the distinctness of his approach from that of more traditional
estimation techniques (McCue, 2001).

5.1.2 Proposed Methods

Our primary focus in this paper is not on critiques of ecological inference methods, but on
offering three new methods of ecological inference that are easy to explain and very easy to
calculate, e.g., using just an Excel spreadsheet. We suggest that each of these methods, which
uses either King’s extension of the Duncan–Davis method of bounds or a simple variant
thereof, has many of the same nice properties as the methods proposed by King (1997) and
King, Rosen, and Tanner (1999).2 We will demonstrate that the contrast between Goodman-
style ecological regression and ecological inference in the style of King is not so great as may
appear.3

For simplicity of exposition, we will only look at bivariate analyses of the sort that can
be done using the basic version of King’s EZI computer program. We illustrate ecological
methods as they might be applied to ascertain patterns of voting behavior in biracial con-
tests involving at least one white candidate and one black candidate, using aggregate data
(gathered, let us say, at the precinct level).4 Here, we wish to understand what proportion of
each group’s votes go to a candidate identified with their own group.5 Of course, our results
have a much broader applicability than to the specific context of racial bloc voting.

We establish notation similar to that specified in Chapter 1:
For the i th precinct, let

Xi = proportion of the voters that are black,
Ti = proportion of the vote that goes to the black candidate,
βb

i = proportion of black voters who vote for the black candidate,
βw

i = proportion of white voters who vote for the black candidate.

For the entire district, let

X = proportion of the voters that are black,
T = proportion of the vote that goes to the black candidate,

2 For more on this point see Grofman and Merrill (2002) and Silva de Mattos and Veiga (this volume,
Chapter 15).

3 Although this stark contrast is not King’s own view (personal communication, 2001), we believe that, in large
part because of the way the contrasts are emphasized in King (1997), most who have read this book have viewed
King’s method of ecological inference and Goodman’s approach to ecological regression as almost completely
opposite in nature.

4 We will assume for convenience that we are only dealing with two groups of voters and that these two groups are
mutually exclusive and exhaustive. As noted earlier, we refer to them as “black” and “nonblack,” with “white”
as a synonym for “nonblack.” We also present our analyses for situations in which there is only one minority
candidate, but extensions to situations with more than one minority candidate are straightforward.

5 Analysis of racial bloc voting patterns is a context where it has been argued that the likely problems of ecological
inference are minimized (Grofman, 1991, 1993, 2000). In that context, empirically, most methods yield very
similar estimates, and methods such as standard ecological regression, when correctly applied and interpreted,
have withstood legal challenges as well as challenges by expert witnesses skeptical of their accuracy.
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Bb = proportion of black voters who vote for the black candidate,
Bw = proportion of white voters who vote for the black candidate.

The organization of this chapter is as follows.
We illustrate the direct link between the Goodman approach to ecological regression and

the Duncan–Davis method of bounds, and we provide a theorem that allows us to derive a
condition under which the results of the King (1997) approach and the answer obtained by
ecological regression will be identical.

Next, we specify three “new” methods of ecological inference that use straightforward
minimization algorithms that can be solved simply, e.g., using the Solver function in an
Excel spreadsheet. For certain special cases, we can provide closed-form analytic solu-
tions for these methods. Each of these methods draws, either directly or in transformed
form, on King’s (1997) seminal idea of using the Duncan–Davis (1953) method of bounds
to construct line segments on which all feasible values of the unknown parameters must
lie.

The first of these new methods operates in the same (βb , βw ) space as that of King
(1997). Rather than using MLE methods involving a truncated normal distribution or
the Beta (see King, Rosen, and Tanner, 1999) or some other distribution, we solve a simple
distance minimization problem to obtain the best-fitting joint prediction of the mean values
of Bb and Bw . We then look at the projections from that point to the precinct-specific
constraint boundaries (line segments) in (βb , βw ) space to determine the best estimates of
the individual βb

i and βw
i values.

The last two of our new methods can be viewed as variants of the Goodman ecological
regression approach. They first produce a best estimate of the overall best-fitting bivariate
regression, which yields feasible district values of Bb and Bw , and then use proximity to
that line to generate precinct-specific estimates of the slopes mi and intercepts bi for the
best-fitting overall regression lines for each precinct, from which the βb

i and βw
i values can

be inferred. Empirically, we compare the results of our methods with the results of King’s
methods for artificial and real data sets.

5.2 ANALYZING THE LINK BETWEEN INDIVIDUAL BEHAVIOR AND BEHAVIOR RECORDED AT
THE AGGREGATE LEVEL

We first illustrate the Duncan–Davis method and the simplest form of King’s (1997) eco-
logical inference model with an eleven-precinct set of hypothetical data (see Table 5.1) for
which all methods will give essentially the same answer.

In each precinct, by the accounting identity,

Ti = βb
i Xi + βw

i (1 − Xi ), (5.1)

and similarly, for the district as a whole,

T = βb X + βw (1 − X). (5.2)

While X and T are observable, the parameters of real interest, namely, the proportion
of blacks who support the black candidate and the proportion of whites who support the
black candidate, which we denote using β’s, are unobservable. The problem is to get from
the values we do know to those that we want to know about. By using the identity given
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Table 5.1 Hypothetical illustrative eleven-precinct data set

X i Ti min βb
i max βb

i min βw
i max βw

i

Prop. black Black cand. Min. black Max. black Min. white Max. white
among vote vote for black vote for vote for vote for

Precinct voters share cand. black cand. black cand. black cand.

1 0.05 0.225 0.00 1.00 0.18 0.24
2 0.1 0.25 0.00 1.00 0.17 0.28
3 0.2 0.30 0.00 1.00 0.13 0.38
4 0.3 0.35 0.00 1.00 0.07 0.50
5 0.4 0.40 0.00 1.00 0.00 0.67
6 0.5 0.45 0.00 0.90 0.00 0.90
7 0.6 0.50 0.17 0.83 0.00 1.00
8 0.7 0.55 0.36 0.79 0.00 1.00
9 0.8 0.60 0.50 0.75 0.00 1.00

10 0.9 0.65 0.61 0.72 0.00 1.00
11 0.95 0.675 0.66 0.72 0.00 1.00

OVERALL MEAN 0.5 0.45 0.00 0.90 0.00 0.90
PRECINCT MEAN 0.5 0.45 0.18 0.89 0.04 0.75
GROUP POP 0.5 0.45 0.35 0.82 0.09 0.55

in Equation 5.1 above, which links Ti and Xi , with βb
i andβw

i , and combining it with our
knowledge that vote proportions must lie between 0 and 1 (no ifs, ands, buts, or maybes), it
is easy to show that any given pair of precinct values (Xi , Ti ) gives rise to linear constraints
on the feasible values of the βb

i and βw
i values for that precinct.

To see how this works, consider a simple example. Let us look at the data from Precinct 7
in Table 5.1. In that precinct, we have Xi = 0.6 and Ti = 0.5. Now, since 60% of the voters
in the precinct are black and the black candidate got only 50% of the vote, at most five-sixths
of the black voters (= 50%/60%) voted for the black candidate. On the other hand, even if
all the white voters voted for the black candidate, since only 40% of the voters are white, at
least one-sixth [= (50% − 40%)/60%] of the black voters must have supported the black
candidate. Similarly, it is mathematically possible that every single white voter voted for
the black candidate, and it is also possible that none of the white voters did so. By using
data only from this precinct, the bounds we get on feasible patterns of black voting in the
precinct do tell us that (given the actual Xi and Ti values) we must have between one-sixth
and five-sixths of the black voters in that precinct supporting the black candidate, but the
proportion of white voters who supported the black candidate could be anywhere between
0% and 100%.

The Duncan–Davis (1953) method can be used to get tight bounds either in precincts that
are racially homogeneous or in precincts that vote lopsidedly for a candidate of one race.
We have shown in Table 5.1 the maximum and minimum values of βb

i and βw
i for each of the

eleven precincts. It is apparent that, for Precinct 1, the most heavily white precinct, although
the bounds on the black vote are not at all informative, we can pin down the proportion
of white voters supporting the black candidate as falling between 18% and 24%. Similarly,
for Precinct 11, the most heavily black precinct, although the bounds on the white vote are
not at all informative, we can pin down the proportion of black voters supporting the black
candidate as falling between 66% and 72%.
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Figure 5.1. Tomographic plot for data in
Table 5.1.

5.2.1 Tomographic Plots

When Xi = 0.6 and Ti = 0.5, not only is it true that ( 1
6 , 1) and ( 5

6 , 0) are feasible outcomes,
but it is easy to see that all points on the line segment between the points ( 1

6 , 1) and ( 5
6 , 0)

are also feasible, and are given by the equation

βw
i = −3

2
βb

i + 5

4

The only portion of this line that is of interest is the line segment containing the feasible
values, i.e., the values on this line that lie at or between the points ( 1

6 , 1) and ( 5
6 , 0). We show

in Figure 5.1 the precinct-based constraints on the joint (βb
i , βw

i ) pairs for the data in Table
5.1. This type of joint constraint diagram, known as a tomographic plot, with values plotted
in (βb , βw )space, was first introduced into the social sciences by King (1997) on p. 81 of his
book, and used repeatedly thereafter.

Understanding what such a diagram shows is absolutely critical to understanding King’s
approach to the problem of reliable ecological inference and our own similar approaches.
It is also critical to understanding alternative approaches such as the neighborhood model
of Freedman et al. (1991).

Note that all the feasibility constraint lines in Figure 5.1 intersect at a single point
(.70, .20). The parameter values at this intersection point correspond to the estimate for the
mean value of the unobserved parameters we get from Goodman’s ecological regression for
the same data set. King’s EZI algorithm also yields these same mean values for this data set,
as it usually does when the tomographic segments meet at a point.

We now offer a simple result linking the values in the tomographic plots generated as
the basis for King’s method of ecological inference and the results of the classic Goodman
ecological regression for the special case of the feasibility constraint lines intersecting at a
single point.

Theorem 1. If the tomographic line segments used as the basis for King’s ecological inference
have a unique intersection,this intersection will be at a point, (B̂ b , B̂w ), which corresponds
to the (Bb , Bw ) values derived from Goodman’s method of bivariate ecological regression.

Proof. See Appendix 1.
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Unfortunately, even when there is a unique intersection point of the tomographic plot
lines, that intersection need not be within the unit square, i.e., need not be a feasible value.6

Indeed, we might anticipate that, even in the absence of a unique intersection of the line
segment bounds in the tomographic plot, when Goodman’s ecological regression method
yields a feasible estimate of mean (Bb , Bw ) values, it is likely that the results of Goodman’s
approach and that of King’s approach to ecological inference will not be far apart. The
differences between the two approaches appear likely to arise when Goodman’s ecological
regression yields out-of-bounds estimates for one or more of the mean (or precinct spe-
cific) parameters. We will return to this issue, i.e., the circumstances under which different
methods are likely to give rise to different answers, later in the chapter.

5.3 A SIMPLE DISTANCE MINIMIZATION ALGORITHM FOR ECOLOGICAL
INFERENCE: METHOD I

It follows from equations (1) and (2) that

βw
i = −Xi

1 − Xi
βb

i + Ti

1 − Xi
(5.3)

and

Bw = −X

1 − X
Bb + T

1 − X
. (5.4)

In the example specified in Table 5.1, Bw = −Bb + 0.9, and similar equations hold for
each precinct. Any pair of (Bb , Bw ) values that lie on the district line segment specified in
Equation 5.4 is compatible with the overall pattern of racial bloc voting in this data. But
which point on this line segment is the most plausible estimate of this pair of values?

A simple approach is to look to see how far the various points on this line are from the
other line segments in the tomographic plot. If, for example, there is a unique intersection
of all the other line segments with each other, then the aggregate line-segment bound must
also pass through that intersection. In this special case, it would seem that a very compelling
case can be made for choosing the intersection point as our “best” estimate of the (Bb , Bw )
values, at least if that point consists of jointly feasible values. In general, we can find the
squared distance from each point on the aggregate line segment to each of the precinct line
segments, and find the point that minimizes the (weighted) sum of those distances. Such
distances will be interpreted later.

Our plan is to compute numerically – for each point on the overall tomographic constraint
line defined by Equation (4) – the sum of the squared distances from that point to each
of the precinct-level tomographic line segments. If the perpendiculars to the precinct-level
tomographic lines intersect these lines at points in the feasible region, then a closed form
solution for (Bb , Bw ) can be derived (see Equations 5.13a and 5.13b below). If, instead,
a perpendicular to a precinct-level tomographic line falls outside the feasible region, the
shortest distance from a given point on the district line to the precinct-level segment must

6 If, for example, the (X, T) values are (.3, .2), (.5, .5), and (.7, .8), the tomographic lines intersect at βb = 1.25
and βw = −0.25, which represent a point outside the unit square.
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be computed to the nearer endpoint of the segment. The specifications of these endpoints
P1and P2 follow simple rules:7

If Ti ≤ 1 − Xi then P1 =
(

0,
Ti

1 − Xi

)
;

otherwise P1 =
(

Ti − (1 − Xi )

Xi
, 1

)
. (5.6a)

If Ti ≥ Xi then P2 =
(

1,
Ti − Xi

1 − Xi

)
;

otherwise P2 =
(

Ti

Xi
, 0

)
. (5.6b)

To implement this plan, it remains only to determine formulas for the points of intersection
(to be used when they lie in the feasible region). As noted above, we have

βw
i = −Xi

1 − Xi
βb

i + Ti

1 − Xi
(5.7)

as the equation for each precinct constraint line. If (Bb , Bw ) lies on the aggregate constraint
line, the line through this point and perpendicular to a precinct constraint line given by
Equation 5.7 is given by

βw
i = 1 − Xi

Xi
βb

i + Bw − 1 − Xi

Xi
Bb . (5.8)

The point of intersection of the precinct constraint line and this perpendicular is given by

βb
i = Xi Ti − Bw Xi (1 − Xi ) + Bb(1 − Xi )2

X2
i + (1 − Xi )2

(5.9)

and βw
i can then be obtained from Equation 5.8.

In general, what we want to do is find the point on the district-level tomographic line
that minimizes the sum of the squared distances from that point to all the line segments
that define the precinct-specific joint bounds on the βb

i and βw
i values. First note that, from

Equation 5.8,

βw
i − Bw = 1 − Xi

Xi

(
βb

i − Bb
)

,

7 Note that the conditions on Ti in Equations 5.6a and 5.6b need not be complementary; it is the two conditions
within 5.6a and within 5.6b that are complementary. In the degenerate case for which Xi = 1, if Ti ≤ 1 −
Xi then P1 = (0, 1); if Ti ≥ Xi then P2 = (1, 0).



P1: JYD/... P2: FZZ

CB658-05DVR CB654-KING-Sample CB658-KING-Sample.cls May 20, 2004 8:35

Ecological Regression and Ecological Inference 131

so that the square of the distance from (Bb , Bw ) to the precinct constraint line, i.e., to the
point of intersection given by Equation 5.9, is

d2
i = (

βb
i − Bb

)2 + (
βw

i − Bw
)2

= (
βb

i − Bb
)2 X2

i + (1 − Xi )2

X2
i

. (5.10)

However, using Equation 5.9, we obtain

βb
i − Bb = Xi Ti − Bw Xi (1 − Xi ) − X2

i Bb

X2
i + (1 − Xi )2

.

Together with Equation 5.10, this implies that

d2
i =

[
Ti − Xi Bb − (1 − Xi )Bw

]2

X2
i + (1 − Xi )2

= w 2
i

[
Ti − Xi Bb − (1 − Xi )Bw

]2
, (5.11)

where the weights wi are given by

wi = 1√
X2

i + (1 − Xi )2
.

Note that the distance di can be interpreted as the weighted difference between the
proportion of voters for the black candidate in the i th precinct and what that proportion
would be if the proportions voting for the black candidate broken down by race were given by
Bband Bw , that is, the same as in the district as a whole. Hence, it makes sense to seek values
of Bband Bw that would minimize the squares of these differences. In fact, the numerator
in Equation 5.11 is (Ti − T̂ i )2, where T̂ i is the i th fitted value under Goodman regression.

If all points of intersection are in the feasible region, we simply minimize
∑

i d2
i sub-

ject to the constraint that Bb and Bw are feasible (lie on the district constraint line), i.e., that

X Bb + (1 − X)Bw = T. (5.12)

Solving this constrained optimization problem by Lagrange multipliers, we obtain two linear
equations in Bband Bw :

Bb
∑

i

w 2
i Xi (Xi − X) + Bw

∑
i

w 2
i (1 − Xi )(Xi − X) =

∑
i

w 2
i Ti (Xi − X),

Bb X + Bw (1 − X) = T,
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which yield the solutions

Bb =
∑

i
w 2

i (Xi − X) [(1 − X)Ti − (1 − Xi )T]

∑
i

w 2
i (Xi − X)2

, (5.13a)

Bw =
∑

i
w 2

i (Xi − X) [Xi T − XTi ]

∑
i

w 2
i (Xi − X)2

. (5.13b)

Thus, in the special case in which all intersection points are in the feasible region, we
have obtained closed-form solutions for Bband Bw . These solutions are simple to compute
on a spreadsheet and closely resemble the form of solutions to an ordinary least squares
regression problem.8 However, in solving our optimization problem, we are only interested
in points of intersection (βb

i , βw
i ) that specify feasible values for the respective precincts.

Accordingly, if the point of intersection is outside the feasible region, we modify d2
i to be

the squared distance to the nearer endpoint of the precinct line segment where it intersects
the boundary of the feasible region. We then choose those values of Bband Bw that lie
on the district tomographic line and that minimize

∑
i d2

i .
Standard errors and confidence intervals can be computed by a bootstrap method. This

is done by repeated sampling with replacement from the data set, recomputing the param-
eter estimates, and determining the standard deviation of these estimates (see Efron and
Tibshirani, 1993).

Each precinct-level estimate is the pair (βb
i , βw

i ) that minimizes the expression (βb
i −

Bb)2 + (βw
i − Bw )2. It is the intersection point of the perpendicular to the precinct tomo-

graphic line if this value is feasible, and otherwise is the nearest endpoint of the precinct
tomographic line segment to the district solution point (Bb , Bw ). These computations can
be implemented in an Excel spreadsheet and are available on the websites http://www.
cbrss.harvard.edu/events/eic/book.htm and http://course.wilkes.

edu/Merrill/ through Internet Explorer.
District parameter estimates for Method I are presented later for several artificial and real

data sets in Tables 2–4; precinct-level estimates are given for one real data set in Table 3.
These results are discussed in Section 5.5.

If not all precincts are of equal size, we weight the d2
i by the number Ni of voters in

precinct i , i.e., we minimize
∑

Ni d2
i . Equations 5.13a and 5.13b are replaced by

Bb =

∑
i

w 2
i Ni (Xi − X) [(1 − X)Ti − (1 − Xi )T]

∑
i

w 2
i Ni (Xi − X)2

, (5.14a)

Bw =
∑

i
w 2

i Ni (Xi − X) [Xi T − XTi ]

∑
i

w 2
i Ni (Xi − X)2

. (5.14b)

8 In this special case, the solution would be identical to the ordinary least squares solution if the weights wi in
Equation 5.13 were all identical.
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5.4 EXTENDING THE DUNCAN–DAVIS METHOD OF BOUNDS TO DEVELOP TWO NEW FORMS
OF GOODMAN’S ECOLOGICAL REGRESSION APPROACH: METHODS II AND III

King’s ecological inference approach makes use of tomographic plots that constrain the
values of unobservable individual-level parameters (βb

i and βw
i ) to lie within feasible bounds

for each of the ecological units. Ecological inference uses maximum likelihood methods
to derive overall estimates of these unobservable parameters. We show that Goodman’s
approach to ecological regression can be adapted to make use of distance minimization
methods that constrain the values of slope and intercept parameters so that the estimates of
the unobservable individual-level parameters (βb

i and βw
i ), and the mean values for those

parameters, remain within feasible bounds. Indeed, we provide two different methods for
doing so.

5.4.1 Adapting our Previous Distance Minimization Algorithm for Use in (m, b) Space
Rather than (βb, βw) Space: Method II

Our first proposed integration of ecological inference and ecological regression uses a math-
ematical device to shift from the usual (X, T) space to a new space defined in terms of m and
b, the slope and intercept parameters of the bivariate ecologicalregression. We derive the
defining values for the line segments in that space from the Duncan–Davis (1953) method
of bounds. Because

m = βb − βw

and

b = βw ,

we have

m =
(

b − T

1 − X

) (
1 − X

−X

)
− b = −b

X
+ T

X
.

This expression may be rewritten as

T = mX + b.

For our example for which (X, T) = (.5, .45), the expression for the feasible overall line in
(m, b) space is

m = −2b + 0.9.

Similar equations hold for each precinct.
Once we have constructed this set of equations, we apply the same methods as in the Sec-

tion 5.3 to find the point on the line in the equation above that minimizes the (constrained)
sum of squares to the various precinct-specific line segments. Only, now we are operating
in (m, b) space rather than in (βb , βw ) space.

The feasible region in (m, b) space is a diamond with corners at (0, 0), (0, 1), (−1, 1),
and (0, 1). The squared distance from a point (m0, b0) on the district feasible line segment
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Figure 5.2. Quadrants for defining bounding
lines for cones (dashed lines), with example
of a pair of bounding lines through the point
(X, T ) (solid lines).

to a precinct feasible line segment is given by

d2
i = X4

i

(1 + X2
i )3

(b0 + Ti − m0 Xi )
2

if the foot of the perpendicular to the precinct line lies in the diamond, and otherwise
by the distance to the nearest endpoint on that line segment. Because the transformation
from the feasible square of (βb , βw ) space to the diamond of (m, b) space alters distances,
the minimization problems in Methods I and II are not identical. Simple examples show
that precincts with symmetric patterns are treated symmetrically in (βb , βw )space, but not
in (m, b) space.9 As expected, Method II yields estimates for (Bb , Bw ) that may be quite
different from those obtained by King (1997) or by our Method I (or by our Method III
below).

5.4.2 Operating Directly in (X, T ) Space on the Set of Feasible Regression lines: Method III

Here we seek to build into the Goodman ecological regression approach the constraints on
feasible values generated by the Duncan–Davis (1953) method of bounds. We now specify
a pair of regression lines in the original (X, T) space that give bounds, for each ecological
unit, for the jointly feasible values of mi and bi derived from the set of constraints on jointly
feasible βb

i and βw
i values.

5.4.3 Defining the Cone of Feasible Values

Consider a point (Xi , Ti ) that is an observed value for a given ecological unit (such as a
precinct). If an ecological regression line passing through that point is to yield values of m
and b that are feasible, it must be the case that the regression line intersects the line X = 0
somewhere between T = 0 and T = 1 and that it also intersects the line X = 1 somewhere

9 For example, consider a district with three precincts with (Xi , Ti ) = (.3, .1), (.5, .5), and (.7, .9). The first and
third precincts are symmetric in all respects and are equidistant from (and symmetric to) the district tomographic
line segment in (βb , βw ) space. In (m, b) space, however, the optimizing point on the district line is closest to
an interior point on the feasible segment for precinct 1 but to an endpoint for the feasible segment for precinct
3. The distances involved are not the same.
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Figure 5.3. Bounding lines for cones of feasible values for 11 precincts for data from (a) Table 1, (b)
Carter.

between T = 0 and T = 1. To see how these constraints apply, divide the unit square in
standard (X, T) space into quadrants, as shown in Figure 5.2.

In quadrant 1, define a cone of feasible values passing through a point (Xi , Ti ) by requiring
that one defining (extremal) line of the cone pass through the point (1, 0) and the other
defining line pass through (1, 1). Similarly, for points in quadrant 2, the defining lines of the
cone must pass through (0, 1) and (1, 1); for points in quadrant 3 they must pass through
(0, 0) and (0, 1); for points in quadrant 4 they must pass through (0, 0) and (1, 0). For
points in quadrant 1, one of the two defining lines of the cone [that which passes through
the point (1, 0)] must be a line whose m value is equal to −Ti/(1 − Xi ) and whose b value is
equal to Ti /(1 − Xi ), while the other defining line [that which passes through the point (1,
1)] must be a line whose m value is equal to (1 − Ti )/(1 − Xi ) and whose b value is equal
to (Ti − Xi )/(1 − Xi ).

In like manner, the cone of feasible regression lines for points in quadrant 2 is characterized
by a bounding line with m value equal to (1 − Ti )/(−Xi ) and b value equal to 1, and
a second bounding line with m value equal to (1 − Ti )/(1 − Xi ) and b value equal to
(Ti − Xi )/(1 − Xi ). The cone for quadrant 3 is characterized by a bounding line with m
value equal to Ti/Xi and b value equal to 0, and a second bounding line with m value equal
to (1 − Ti )/(−Xi ) and b value equal to 1. Finally, the cone for quadrant 4 is characterized by
a bounding line with m value equal to Ti /Xi and b value equal to 0, and a second bounding
line with m value equal to −Ti/(1 − Xi ) and b value equal to (Ti )/(1 − Xi ). We can illustrate
these boundary lines for the set of data in Table 5.1 (Figure 5.3a), and for an 11-precinct
data set drawn from a real-world biracial legislative contest in the Deep South in the 1990s
(Figure 5.3b; see also Section 5.5).

Our plan is to choose values of m and b that satisfy the district-wide constraint

T = mX + b,

i.e.,

m = (T − b)/X,
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and minimize the sum of the areas between this line segment and the bounding line segments
of the cones associated with the precinct values Xi and Ti . These areas are restricted to feasible
values of Xi , i.e., Xi ∈ [0, 1]. The detailed calculations are given in Appendix 2.

An Excel spreadsheet to implement these calculations for Method III is available on
the websites http://www.cbrss.harvard.edu/events/eic/book.htm and
http://course.wilkes.edu/merrill/. Standard errors and confidence intervals
can be constructed by bootstrap methods.

We can plot the (m, b) values for each pair of lines that constitute the extremal lines of the
boundary cones as points in (m, b) space. For example, if (Xi , Ti ) is in quadrant 1, then the
two points are (−Ti/(1 − Xi ), Ti/(1 − Xi )) and ((1 − Ti )/(1 − Xi ), (Ti − Xi )/(1 − Xi )).
The line connecting these two points has equation b = −Xi m + Ti . In fact, the correspond-
ing line for each of the other cones has exactly the same equation.

5.5 COMPARING THE KING ECOLOGICAL INFERENCE ESTIMATES AND THOSE OF OUR
SIMPLIFIED APPROACHES

Aggregate parameter estimates produced by the basic version of King’s (1997) MLE program
and the estimates generated by our distance- or area-minimizing algorithms are typically
similar to one another, but need not be identical. We show this in Table 5.2 for three
hypothetical data sets (data sets A, B, and C).

The circumstances in which King’s basic method and our least squares and area-
minimizing approaches can be expected to give more divergent results occur when heav-
ily truncated tomographic line segments pull the solution away from a more plausible

Table 5.2 Parameter estimates for B b and B w by alternative methods for artificial data sets

Value

Data set Parameter King’s method Method I Method II Method III Regression

A B b .838 (.005) .830 (.023) .839 .828 (.022) .833 (.020)
B w .282 (.005) .290 (.017) .281 .292 (.015) .287 (.020)

B B b .713 (.053) .748 (.066) .580 .656 (.069) 1.500 (.000)
B w .287 (.053) .252 (.077) .420 .344 (.086) −.500 (.000)

C B b .917 (.024) .829 (.083) .672 .937 (.135) 1.007 (.035)
B w .083 (.024) .171 (.098) .328 .063 (.166) −.007 (.035)

Data set A :

X 0.10 0.18 0.26 0.34 0.42 0.50 0.58 0.66 0.74 0.82 0.90
T 0.34 0.37 0.44 0.50 0.53 0.52 0.64 0.59 0.69 0.75 0.79

Data set B :

X 0.30 0.34 0.38 0.42 0.46 0.50 0.54 0.58 0.62 0.66 0.70
T 0.10 0.18 0.26 0.34 0.42 0.50 0.58 0.66 0.74 0.82 0.90

Data set C :

X 0.10 0.15 0.20 0.80 0.85 0.90
T 0.05 0.15 0.25 0.75 0.85 0.95

Note: Bootstrap standard errors are given in parentheses.
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Figure5.4. Tomographic plot for data set C. (Bold
line is the district tomographic line.)

convergence of other, less-truncated tomographic line segments. A case in point is data set
C (see Table 5.2 and Figure 5.4). Here the endpoints (.5, 0) and (1, .5) on tomographic line
segments 1 and 6 have what appear to be inordinate effects on the parameter estimates for
Method I. For this data set, Method III and King’s method provide a more polarized but
more plausible solution than Method I. The facts that not more than 50% of the blacks vote
for the black candidates in Precinct 1 (in our example scenario) and not less than 50% of
the whites vote for the black candidate in Precinct 6 may seem inconsistent with the rest of
the district. Yet, given the small number of blacks in Precinct 1 and small number of whites
in Precinct 6, such statistics may commonly occur due to random variation.

5.5.1 Weighting by Informativeness

Precincts that are mostly black are most informative in estimating Bb , whereas those that
are mostly white are most informative in estimating Bw . Accordingly, we define a version of
Method I weighted by informativeness by replacing the raw distance between (Bb , Bw ) and
a precinct tomographic line segment with a metric in which the coordinates are weighted
by the proportions of blacks and whites. Thus, we define weighted squared distance

Ni

[
Xi

(
βb

i − Bb
)2 + (1 − Xi )

(
βw

i − Bw
)2

]
,

where Ni is the number of voters in precinct i , and where we recall that Xi and 1 − Xi are
the proportions of blacks and whites, respectively, in the electorate. Given this weighting,
if all minimizing points (βb

i , βw
i ) do lie in the feasible region, the solution for (Bb , Bw ) is

identical with that of ecological regression.
For data set C, weighting the coordinates by the proportions of blacks and whites makes

a substantial difference. The weighted estimates (see Table 5.4) for (Bb , Bw ) are (.957,
.043), in contrast to unweighted estimates of (.829, .171). King’s estimates (.917, .083) are
intermediate, and closer to our weighted estimates.

In practice, when we are looking at data from U.S. elections involving candidates of more
than one race (especially data from the South), most methods are apt to yield values of at
least the aggregate parameters Bb and Bw that are reasonably close to one another.10 To

10 In the specific context of racial bloc voting analyses, they are also likely to be not very different from the estimates
generated by ecological regression, at least when those estimates are within (0,1) bounds (Grofman, 2000).
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Table 5.3 Comparison of parameter estimates from methods I–III and King’s method for the Carter 11-
precinct data set

(a) District-level estimates for B b and B w

Value

Data set Parameter King’s method Method I Method II Method III Regression

Carter 11- B b .978 (.005) .974 (.043) .940 .964 (.059) .974 (.026)
precinct
sample B b .136 (.005) .138 (.016) .155 .144 (.016) .138 (.017)

Carter data:

X 0.13 0.67 0.16 0.04 0.33 0.02 0.04 0.02 0.31 0.99 0.95
T 0.27 0.69 0.20 0.14 0.39 0.23 0.16 0.16 0.43 0.96 0.95

Note: Bootstrap standard errors are given in parentheses.

(b) Precinct-specific estimates of βb
i and βw

i for the Carter data set

βb
i βw

i

Precinct King Method I Method II Method III King Method I Method II Method III

1 0.9580 0.9783 0.9540 0.9556 0.1672 0.1642 0.1678 0.1675
2 0.9683 0.9643 0.9503 0.9588 0.1250 0.1331 0.1616 0.1443
3 0.9383 0.9587 0.8484 0.9927 0.0591 0.0555 0.0765 0.0490
4 0.9500 0.9730 0.8914 0.9786 0.1063 0.1053 0.1087 0.1051
5 0.9546 0.9602 0.9108 0.9701 0.1119 0.1092 0.1335 0.1043
6 0.9592 0.9760 1.0000 0.9346 0.2151 0.2148 0.2143 0.2156
7 0.9474 0.9739 0.9121 0.9703 0.1272 0.1261 0.1287 0.1262
8 0.9562 0.9745 0.9286 0.9635 0.1438 0.1434 0.1443 0.1436
9 0.9700 0.9921 0.9775 0.9542 0.1874 0.1775 0.1840 0.1945

10 0.9683 0.9683 0.9680 0.9683 0.1428 0.1380 0.1695 0.1416
11 0.9924 0.9927 0.9905 0.9930 0.1448 0.1391 0.1813 0.1322

Note: Estimates of βb
i for majority black precincts and of βw

i for majority white districts are indicated in bold.

see this consistency, we turn to working through two real-world examples: an 11-precinct
sample of data (Carter data set) from a biracial legislative contest in a Deep South state in
the 1980s, and a 284-precinct sample from the 1995 gubernatorial race in Louisiana, which
included a prominent black candidate, Cleo Fields.11 Our first data set was chosen to have a
small number of precincts so as to demonstrate that even for small data sets, if patterns are
clear enough, it is relatively easy to see what is happening.

For the Carter data set, King’s EZI gets a mean value of (Bb , Bw ) of (.978, .136) (see Table
5.3a). Our three estimates for the district parameters are (.974, .138), (.940, .155), and (.964,
.144) for Methods I, II, and III, respectively. Note that, even though Method II has the poten-
tial to give results quite different from Methods I and III or from King’s basic EZI program, in
this real-world data set the three methods give results that are not very different. Furthermore,

11 Cleo Fields was a state senator and former U.S. representative from majority black districts (see Voss, 1999, for
further background).
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Table 5.4 Comparison of Method I estimates, unweighted and weighted for
informativeness

Value

Method I Method I King’s
Data set Parameter unweighted weighted method

Data set C B b .829 .957 .917
B w .171 .043 .083

Carter 11- B b .974 .972 .978
Precinct set B w .138 .139 .136

Cleo Fields B b .874 .900 .901
284-precinct B w .025 .015 .014
set

for the Carter data set (see Table 5.4) the Method I estimates weighted for informativeness
are (.972, .139), almost identical with the unweighted Method I estimates (.974, .138).

We can also compare precinct-specific values of βb
i and βw

i . We show those estimates for
our three methods, along with the corresponding values from King’s truncated normal MLE
method, in Table 5.3b. Again there is very high consistency in the estimates, particularly –
as expected – for estimates of βb

i for majority black precincts and of βw
i for majority white

districts. These precincts are identified in bold in Table 5.3b. Indeed, the maximum difference
between our Method I and King’s method in estimating theβb

i and βw
i values for the majority

race is 0.004, while the maximum difference for the corresponding estimates for the minority
race is 0.027. These results are summarized in Figure 5.5, which plots the precinct-level
estimates βb

i (Figure 5.5a) and βw
i (Figure 5.5b) for each of our three methods and King’s

method versus the black proportion of the population. It is apparent that – except for
Method II – the estimates of βb

i are almost identical to each other for heavily black precincts
and that the estimates of βw

i are almost identical to each other for heavily white precincts.
The Cleo Fields data set involves 284 precincts, many of which were heavily white or

heavily black. We would expect these to be most informative about the voting behavior of
the respective majority races. Table 5.4 compares the parameter estimates for Method I –
weighted and unweighted – with those of King, for both the Carter and Cleo Fields data sets
as well as for data set C. Unlike the Carter data set, the Cleo Fields data set shows significant
differences when weighting is used; the weighted estimates of Method I are almost identical
with those of King.

5.6 DISCUSSION

Since the least-squares and area minimization approaches we have offered are less general
than King’s method,12 why might anyone care about results derived from them? There
are several reasons. First, each generates closed-form solutions that are trivial to calculate,
albeit the distribution of precinct specific values each generates cannot be characterized as
a particular standard type (e.g., a truncated bivariate normal). In particular, because of the
simplicity of the numerical calculations needed for our methods, it is practical to extend

12 For example, to be comparable to the more advanced versions of King’s program we would need to develop
some explicit way of building in covariates.
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Figure 5.5. Precinct-level Estimates of (a) βb
i and (b) βw

i by King’s method and our three methods
for Carter data.

them from 2 × 2 to m × n tables, as has been shown by De Sio (2003). Second, each has a
very simple mathematical exposition,13 and can be described in reasonably intuitive terms.14

Third, each offers either an indirect or a direct analogue to the OLS approach to ecological
regression, but with the advantage that parameter results are constrained to feasible values.
Fourth, although the following question needs considerable more investigation, based on
our explorations so far, it appears likely that two of these simple methods (Methods I and III)
will closely approximate the results generated by the basic MLE approach in King’s (bivariate)
EZI program. Finally, a comparison of the simple optimization aspects of our methods with
the MLE approach of King, and comparisons among the three methods we introduce, shed
some light on how ecological inference works and when it might be expected to fail.

APPENDIX 1. PROOF OF THEOREM 1

Theorem 1. If the tomographic line segment bounds used as the basis for King’s ecological
inference have a unique intersection, this intersection will be at a point, (B̂ b , B̂w ), which
corresponds to the (Bb , Bw ) values derived from Goodman’s method of bivariate ecological
regression.

13 The Monte Carlo nature of the MLE estimation procedure, combined with the complexities of estimating a
truncated normal distribution, renders King’s procedures much more complex than those we propose.

14 Grofman and Merrill (2002) discuss criteria for a good solution to the problem of ecological inference, and Silva
de Mattos and Veiga (this volume, Chapter 15) assess the predictive ability of several methods, including those
of Goodman and King.
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Proof. If (B̂ b , B̂w ) lies on all the constraint lines of a tomographic plot, the coordinates B̂ b

and B̂w must satisfy

Ti = B̂ b Xi + (1 − Xi )B̂w

for all i . Thus, after averaging, we have

T = B̂ b X + (1 − X)B̂w

as well, where X and T are the (weighted) averages for the entire district. But the slope
coefficient of ecological regression is given by

m̂ =
∑

(Xi − X)Ti∑
(Xi − X)2

,

where

∑
(Xi − X)Ti =

∑
(Xi − X)

[
B̂ b Xi + (1 − Xi )B̂w

]

=
∑

Xi − X)
[

Xi (B̂ b − B̂w ) + B̂w
]

=
∑

(Xi − X)
[
(Xi − X)(B̂ b − B̂w )

] +
∑

(Xi − X)B̂w

=
∑

(Xi − X)2
[

B̂ b − B̂w
]

,

and where we have twice used the fact that
∑

(Xi − X) = 0.
It follows that

m̂ = B̂ b − B̂w .

But then the intercept of ecological regression is given by

b̂ = T − m̂X = (B̂ b X + (1 − X)B̂w ) − (B̂ b X − B̂w X)

= B̂w ,

so that B̂ b and B̂w are equal to the parameter estimates of ecological regression. q .e.d.

APPENDIX 2. AREA CALCULATIONS FOR METHOD III

Before we tackle the general problem of minimizing the areas between the line m = (T −
b)/X and the bounding line segments of the cones associated with the precinct values Xi and
Ti , we begin by specifying the area between any two lines contained in the range X ∈ [0, 1].
Let one line be T(1) = m1 X + b1, and the other be T(2) = m2 X + b2. These lines intersect
at Xc = −(b2 − b1)/(m2 − m1) = −�b/�m, where �b = b2 − b1 and �m = m2 − m1.

There are two cases, depending on whether Xc ∈ [0, 1], i.e., whether 0 ≤ −�b/�m ≤ 1.
We summarize cases and results in the table below:



P1: JYD/... P2: FZZ

CB658-05DVR CB654-KING-Sample CB658-KING-Sample.cls May 20, 2004 8:35

142 Bernard Grofman and Samuel Merrill

Case Intersection Area between two lines

I Outside Xc ∈ [0, 1]

∣∣∣∣�m

2
+ �b

∣∣∣∣
II Within Xc ∈ [0, 1]

∣∣∣∣ (�b)2

�m
+ �m

2
+ �b

∣∣∣∣
To verify the results given in the table, we look at the relevant integrals. For case I, the area
between the two lines is given by the absolute value of

∫ 1

0

[
T(2) − T(1)

]
d X =

∫ 1

0
[m2 X + b2 − m1 X − b1] d X = 1

2
�m + �b.

Similarly, for case II, if b1 < b2, the areas between the two lines are given by

∫ −�b/�m

0

[
T(2) − T(1)

]
d X +

∫ 1

−�b/�m

[
T(1) − T(2)

]
d X

=
∫ −�b/�m

0
[m2 X + b2 − m1 X − b1] d X +

∫ 1

−�b/�m
[m1 X + b1 − m2 X − b2] d X

=
∫ −�b/�m

0
[(�m)X + �b] d X −

∫ 1

−�b/�m
[(�m)X + �b] d X

= 1

2

(�b)2

�m
− (�b)2

�m
+ 1

2

(�b)2

�m
− (�b)2

�m
− 1

2
�m − �b

= − (�b)2

�m
− 1

2
�m − �b.

If, instead, b1 ≥ b2, the same result is obtained without the negative signs. In each case, the
area is positive and hence is the absolute value of the expression. q.e.d.

Now, we can solve the general problem by finding the line whose b value minimizes the
sum of the appropriate areas for each pairing between that line and the other lines in the
set, subject to the constraint that the m and b values of that line must satisfy the equation
T = mX + b.

REFERENCES

Anselin, Luc and Wendy Tam Cho. 2002. “Spatial Effects and Ecological Inference.” Political Analysis,
10: 276–297.

Cho, Wendy Tam. 1998. “Iff the Assumption Fits . . . : A Comment on the King Ecological Inference
Solution.” Political Analysis, 7: 143–163.

Cho, Wendy Tam. 2001. “Latent Groups and Cross-Level Inferences.” Electoral Studies, 20, 2: 243–263.
Cho, Wendy Tam and Albert H. Yoon. 2001. “Strange Bedfellows: Politics, Courts, and Statistics:

Statistical Expert Testimony in Voting Rights Cases.” Cornell Journal of Law and Public Policy 10, 2:
237–264.

De Sio, Lorenzo. 2003. “A Proposal for Extending King’s EI Method to m × n Tables.” Transcript:
University of Florence.



P1: JYD/... P2: FZZ

CB658-05DVR CB654-KING-Sample CB658-KING-Sample.cls May 20, 2004 8:35

Ecological Regression and Ecological Inference 143

Duncan, Dudley and Beverley Davis. 1953. “An Alternative to Ecological Correlation.” American
Sociological Review, 18: 665–666.

Efron, Bradley and Robert Tibshirani. 1993. An Introduction to the Bootstrap. London: Chapman and
Hall.

Freedman, David, S.P. Klein, J. Sacks, C.A. Smyth and C.G. Everett. 1991. “Ecological Regression and
Voting Rights.” Evaluation Review, 15, 6: 673–711.

Freedman, David, M. Ostland, M.R. Roberts, and S.P. Klein. 1999. “The Future of Ecological Inference
Research: A Comment on Freedman et al. – Response to King’s Comment. Journal of the American
Statistical Association, 94, 445: 355–357.

Goodman, Leo. 1953. “Ecological Regression and the Behavior of Individuals.” American Sociological
Review, 18, 6: 663–664.

Goodman, Leo. 1959. “Some Alternatives to Ecological Correlation.” American Journal of Sociology,
64: 610–625.

Grofman, Bernard. l991. “Statistics without Substance: A Critique of Freedman et al. and of Clark and
Morrison.” Evaluation Review, 125, 6: 746–769.

Grofman, Bernard. 1992. “Expert Witness Testimony and the Evolution of Voting Rights Case Law.”
In Bernard Grofman and Chandler Davidson (eds.), Controversies in Minority Voting: The Voting
Rights Act in Perspective. Washington, DC Brookings Institution.

Grofman, Bernard. 1993. “Voting Rights in a Multi-ethnic World.” Chicano-Latino Law Review, 13,
15: 15–37.

Grofman, Bernard. 2000. “A Primer of Racial Bloc Voting.” In Nathaniel Persily (ed.), The Real Y2K
Problem: Census 2000 Data and Redistricting Technology. Brennan Center for Law and Justice, New
York University, pp. 44–67.

Grofman, Bernard and Samuel Merrill, III. 2002. “What Does It Mean to Offer a ‘Solution’ to the
Problem of Ecological Inference?” Typescript: University of California–Irvine.

Grofman, Bernard and Michael Migalski. l988. “Estimating the Extent of Racially Polarized Voting in
Multicandidate Elections.” Sociological Methods and Research, 16, 4: 427–454.

King, Gary. 1997. A Solution to the Ecological Inference Problem. Princeton, NJ: Princeton University
Press.

King, Gary, Ori Rosen, and Martin Tanner. 1999. “Binomial-Beta Hierarchical Models for Ecological
Inference.” Sociological Methods and Research, 28, 1: 61–90.

McCue, Kenneth. 2001. “The Statistical Foundations of the EI Method.” American Statistician, 55, 2:
106–110.

Voss, D. Stephen. 1999. “Racial Redistricting and the Quest for Legislative Diversity.” Extensions of
Remarks. APSA Legislative Studies Section Newsletter 22, July:11–14.



P1: FZZ/FZZ P2: FZZ

CB658-06drv CB654-KING-Sample CB658-KING-Sample.cls May 20, 2004 8:48

6 Using Prior Information to Aid Ecological Inference:
A Bayesian Approach

J. Kevin Corder and Christina Wolbrecht∗

ABSTRACT

This research concerns a long-standing historical question: How did previously disenfranchised women
employ the ballot after suffrage extension in the United States? The absence of reliable survey data
from the 1920s and the ecological fallacy have frustrated efforts to learn about the voting behavior
of women in this period. The ecological inference problem is particularly difficult in the case of sex
differences. In contrast to many other politically interesting groups (e.g., racial and ethnic minorities),
women are generally not characterized by particular residential patterns; as a result, there is minimal
variation in the percent female across units. We address this challenge, and the ecological inference
problem generally, by (1) introducing new, highly disaggregated election returns and census data; (2)
adding nonsample information from the historical context to inform our estimates (specifically, the
previous electoral behavior of men and the easily defensible assumption that male turnout exceeds
female turnout); and (3) taking advantage of the existence of one state, Illinois, where male and female
ballots were tabulated separately in 1916 and 1920. We adopt and investigate the performance of a
hierarchical binomial–normal model developed by Wakefield (2001). The results suggest that, while
estimates can be highly contingent on investigator assumptions, a hierarchical strategy coupled with a
limited number of uncontroversial assumptions can generate plausible estimates of turnout by gender.

6.1 INTRODUCTION

This research concerns a set of puzzles: (1) how did previously disenfranchised women
employ the ballot after suffrage extension, and (2) how can individual-level relationships be
inferred from aggregate data? These two questions have long been intertwined. The earliest
political science article to identify what would become known as the ecological inference
problem was a study of how newly enfranchised women cast their votes in a 1914 election
(see King, 1997). Ogburn and Goltra (1919) were addressing a question of considerable
scholarly and political interest: Did women employ the ballot – in this case, for substantive
ballot initiatives – in some way distinct from that of long-enfranchised men? With the
final struggle for ratification of the Nineteenth Amendment underway when the article was
published, this was not merely a question for social scientists, but one of great concern to
candidates, parties, and political observers.

The question of how American women employed their new right remains largely unan-
swered some eighty years later. The reason is a familiar one to students of ecological inference:
As put simply by Ogburn and Goltra, “women’s ballots are not distinguished from those of

∗ We gratefully acknowledge the support of the Faculty Research Program at the University of Notre Dame, the
Research Development Award Program at Western Michigan University, and the National Science Foundation
(SES-9905843 and 9905307).
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men but are deposited in the same ballot box” (1919, p. 413). That is, we lack individual-
level observations of electoral behavior and associated demographics, such as sex. Although
Ogburn and Goltra report the results of a multivariate analysis of aggregate (precinct-level)
female turnout and vote choice data, they were correct to be concerned about the reliability
of their findings. An inability to overcome the ecological fallacy, combined with a lack of
survey data from the 1920s, has meant that scholars have been unable to adequately examine
the way in which a full half of the population was incorporated into the electorate.

Estimates of women’s turnout after suffrage can allow us to investigate a number of im-
portant substantive puzzles concerning the political capabilities and preferences of women,
the way in which any new voters adapt to their new right, and the stability of the electoral
system. The first challenge, however, is to produce reliable estimates of female turnout. That
task is the focus of this paper. The ecological inference problem is particularly difficult in the
case of sex differences. In contrast to many other politically interesting groups (e.g., racial
and ethnic minorities, immigrants, social classes), women are generally not characterized
by particular residential patterns; as a result, there is minimal variation in the percent female
across units.

We address this challenge, and the ecological inference problem generally, in three ways.
First, we increase the variation in percent female and increase the number of observations
by employing data at the lowest available level of aggregation. In a number of states, we
are able to supplement available county-level data with previously untapped election and
census records at the level of the Minor Civil Division (MCD), the primary geopolitical
subdivisions of counties, and the urban ward. Second, we add nonsample information from
the historical context to inform our estimation. Specifically, previous research and available
records allow us to confidently assume that female turnout did not exceed male turnout in
1920. We also exploit the existence of an immediately prior election in which men’s turnout
is known: True male turnout in 1916 is used to inform our estimation of male and female
turnout in 1920. Finally, we take advantage of the existence of one state, Illinois, where male
and female ballots were tabulated separately in 1916 (Illinois granted women presidential
suffrage in 1913) and 1920. True values from Illinois are used to verify assumptions and
evaluate the estimates.

Building on the work of King (1997) and Wakefield (2001; this book, Chapter 1), we use
a Bayesian approach to ecological inference to estimate the turnout of women in the 1920
presidential election. Specifically, we investigate the performance of a hierarchical binomial
normal model developed in Wakefield (2001) and based on similar Bayesian approaches
described in King, Rosen, and Tanner (1999). We identify the effects of various state-level
priors on MCD-level estimates of male and female turnout. We summarize the effects of
adding information via priors with a simple visual technique – comparing plots of estimated
female turnout as a function of estimated male turnout across different settings of the priors.

The results suggest that, while estimates can be highly contingent on investigator assump-
tions, a hierarchical strategy coupled with a limited number of uncontroversial assumptions
can generate plausible estimates of turnout by gender. The estimation strategy recovers the
observed turnout of men and women in 1920 Illinois and demonstrates the utility of adding
a limited amount of information, via assumption and hierarchy, to a complex estimation
problem with limited information in the sample data.

6.2 DATA

In this Chapter, we estimate female turnout in three states: Illinois, Connecticut, and Mas-
sachusetts. We make no claim that this small selection of states is representative of the broader
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Table 6.1 Sample States for Analysis

ICPSRa Party Electoral College
State region competitionb vote share

Connecticut New England One-party Republican 1.3
Illinois East North Central One-party Republican 5.5
Massachusetts New England One-party Republican 3.4

a Inter-University Consortium for Political and Social Research.
b For each state, Burnham (1981) calculates the difference between the two parties’ median shares

of seats in the lower house of the state legislature over a particular period of electoral history. He
terms this difference the “partisan lead.” As Burnham (1981: p. 176) writes, “a median lead of 40
percent or more for either party . . . is indicative of one-party hegemony at the grass roots level.” We
consider states in that category to be one-party states. During the 1914–1930 period, 33 of the 48
states (69 percent) are one-party states.

American electorate in 1920. Instead, we select these three states to highlight the problems
and prospects of Bayesian approaches to ecological inference. Illinois is particularly useful
in that true values for the parameters of interest are observed. Connecticut is added to the
sample because it is possible to fully merge census and election returns at the level of the
MCD (and, for Hartford, the urban ward). The total number of observations is roughly
equal to that in the Illinois data, suggesting that the influence of priors and data on posterior
estimates should be comparable for these states. We also investigate Massachusetts, also fully
merged at the MCD and ward level, but summing to a much larger number of observations
(nearly 450). In the broader project that motivated this paper, we examine a larger sample of
states that provides variation in substantive conditions, such as region, party competition,
and date of female enfranchisement. Table 6.1 displays the states examined in this analysis
and their relevant characteristics.

Our goal is to employ election returns and census information at the lowest available
level of aggregation in each state. This data collection strategy provides several important
advantages. Smaller areal units provide greater variation in the various electoral behaviors
and demographic characteristics of interest. A major advantage of aggregate-level analysis
is the ability to locate behavior within its social and political context. By using the lowest
available level of aggregation, we are able to be quite specific about the environments in
which men and women participated in elections in the 1920s. We also increase the number
of observations; in Connecticut alone, we move from 8 counties to 177 MCDs and urban
wards. (The most important improvement over county-level data, which we do not exploit
in this paper, is the ability to discriminate between rural and urban areas.)

Aggregate-level election returns, particularly at the level below the county, have not been
systematically located and preserved (for a recent exception, see King and Palmquist, 1997).
Fortunately, in both Connecticut and Massachusetts, MCD-level election returns are avail-
able from state publications.1 In Illinois, however, MCD-level returns are not centrally
published or archived. A county-by-county search located original MCD-level records for

1 Specifically: Connecticut Statement of Vote (various years) and Massachusetts Public Document No. 43 (vari-
ous years). In Connecticut, these data are supplemented by newspaper reports of the ward-level returns. For
further information on the data, consult the overview and state-specific documentation on the project website
(http://catt.friedmann.wmich.edu).
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Table 6.2 Geographic units of sample states

Number of Average voting
State Aggregation type observations age population

Connecticut Minor Civil Division 167 4,526
Urban ward 10 8,279

Illinois County 95 20,141
City 1 21,550
County less urban wards 1 29,440
Ward 35 8,660
Minor Civil Division 102 2,712

Massachusetts Minor Civil Division 372 5,980
MCD grouping 6 16,700
Ward 109 10,850

8 of 102 counties covering 51 percent of the 1920 population (including Cook county and
Chicago wards).2 Election returns are merged with available demographic data published
by the U.S. Census. Before 1930, the Census only reported MCD population totals. Begin-
ning in 1930, other demographic characteristics, including sex, race, nativity, and age, are
reported at the MCD level. We use a combination of census data from the county and MCD
levels in 1920 and 1930 to estimate the number of voting age males and females in each
MCD. Where redistricting and annexing led to changes in MCD boundaries, we aggregate
several MCDs together into MCD groupings.3 The geographic units used in the analysis are
described in Table 6.2.

6.3 USING ECOLOGICAL INFERENCE TO ESTIMATE MALE AND FEMALE TURNOUT

Ecological inference relying on the marginal distribution of gender is particularly challeng-
ing. At high levels of aggregation the proportion female varies only slightly – from .49 to .54
across fourteen Massachusetts counties, for instance. At lower levels of aggregation, such as
the urban ward, the proportion of women varies from .40 to .60. But extreme concentrations
of men and women are observed only very rarely and represent distinct social anomalies.
Women only make up 20 percent of the population in 1920 Dannemora, NY, for example,
but most of the males are incarcerated in the town’s state prison. Since the proportion of
women varies only nominally, the information in the data, represented by the logical bound-
aries for male and female turnout, is more limited than for ecological inference problems
involving demographic characteristics such as race or nativity. Tomography plots, a visual
summary of the logically possible combinations of male and female turnout in each MCD,
are reproduced for the states of Illinois and Connecticut as Figure 6.1. There are a few MCDs
where the logical boundaries are highly informative – areas where turnout is very high or
very low – but the logical boundaries for most MCDs are quite wide.

A second complication of the gender and vote data is aggregation bias. The Illinois data
reveal severe aggregation bias in 1920. Since the State of Illinois recorded ballots of men and

2 Source: Blue Book of the State of Illinois (various years), Chicago Daily News Almanac and Year-Book (various
years), and original Statements of Vote held by county offices.

3 For more information on the process of merging census and election data or for information on the estimation
of MCD level census data, consult the project website (http://catt.friedmann.wmich.edu)
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Figure 6.1. Tomography plots, 1920: (a) Connecticut; (b) Illinois (true values displayed).

women separately, we can observe true female turnout at the MCD, ward, or county level.
Figure 6.2 summarizes the true relationship between female turnout and male turnout in
Illinois. Each point identifies an MCD (or county) pair of observed male and female turnout.
Since every point is below the main diagonal, there were no observed MCDs or urban wards
or counties where female turnout exceeded male turnout in Illinois. In fact, male turnout
exceeded female turnout by an average of over 25 percent. The ecological relationship be-
tween MCD proportion women and MCD aggregate turnout in Illinois and Massachusetts
appears in Figure 6.3. As the proportion of women increases, aggregate turnout increases.
The (mistaken) ecological inference is that women vote at higher levels than men. To over-
come these problems of aggregation bias and wide logical bounds, we introduce nonsample
information, in the form of historical data and uncontroversial substantive assumptions, to
the problem.
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Figure 6.2. Female turnout by male turnout, Illinois, 1920.
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Figure 6.3. Aggregate turnout as a function of proportion female, 1920: (a) Massachusetts; (b) Illinois.

6.4 NONSAMPLE INFORMATION AND ECOLOGICAL INFERENCE

Approaches to ecological inference that rely exclusively on the logical boundaries implied
by the MCD marginals or rely on strong assumptions about the absence of aggregation bias
will fail in applications that are grounded in exploring gender differences. There is sub-
stantial aggregation bias, and the logical boundaries are quite wide. An alternative strategy
is to locate and exploit nonsample information to improve estimates of female turnout. If
there is a single claim that is common to proponents of the variety of approaches to eco-
logical inference, it is that information outside of the sample data should inform estimates
of parameters of interest. King (1997) and Achen and Shively (1995) directly describe the
problem of ecological inference as an effort to narrow logical bounds by adding information.
King, Rosen, and Tanner (1999) introduce a Bayesian modeling approach that relies on a
hierarchical structure to introduce information from the aggregate to the estimates of quan-
tities at lower levels of aggregation. Wakefield (2001) describes a more general hierarchical
modeling strategy with the goal of understanding how elementary hierarchical structure and
assumptions influence estimates. We adopt the Bayesian approach introduced by Wakefield
to investigate the voting behavior of women. We extend the model by introducing two types
of nonsample information.

Historical data on electoral behavior present a number of different types of information
that a Bayesian modeling strategy could exploit. First, since only men were allowed to vote
for some time, estimation of male and female turnout in 1920 offers a unique opportunity
to incorporate out-of-sample information. Male turnout in the most recent previous pres-
idential election (1916) is observed in Illinois (where male and female ballots are counted
separately) and in other sample states (where the franchise was limited to males in 1916).
These data can be collected and observed at the same level of aggregation that we use to
estimate parameters in 1920. For this paper, we rely on priors for the state-level turnout of
males to improve model performance at lower levels of aggregation.

Historical experience can also be applied to the problem in the form an uncontroversial
assumption or constraint. Based on a variety of newspaper reports, election returns (from
Illinois), and an extensive scholarly literature, male turnout is expected to be higher than
female turnout. Newer, inexperienced voters are expected to be at least somewhat less active
in exercising the right to vote and overcoming hurdles of procedure and information that
affect levels of participation. New female voters were particularly hampered by strong social
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norms against female political activity. The assumption of lower female turnout holds at
both high levels of aggregation (the state level) and lower levels of aggregation (such as the
MCD). This assumption, coupled with the logical boundaries implied by the table marginals,
suggests much narrower bounds for MCD-level outcomes than the unconstrained logical
bounds would imply. In Section 6.7, we introduce a rejection sampling approach to constrain
estimates to satisfy the assumption that male turnout exceeds female turnout at the MCD
level.

6.5 INTRODUCING PRIOR INFORMATION

We use a hierarchical binomial normal model to estimate male and female turnout at the
MCD level. Each observation (ward or MCD) is treated as a separate 2 × 2 table with
known marginals (numbers of men and women and numbers of voters and nonvoters) and
unknown interior cells (number of women voters). The model, elaborated by Wakefield
(2001; this book, Chapter 1), describes the observed total number of votes cast in the MCD
as a draw from a binomial distribution with parameters zi and ni . The probability that an
individual votes (zi ) is the weighted sum of two independent probabilities: the probability
of a vote by a female (pi1) and the probability of a vote by a male ( pi2). (This step also
introduces an accounting identity, the logical boundaries that are implied by the data.)
Only three pieces of information from the MCD enter the likelihood: the number of votes
cast (V), the number of males (M), and the number of females (F ). The gender-specific
probability of turnout in each MCD (pi1, pi2) is approximated normally via transformation
to the logistic (θi1, θi2). The formal representation is uncomplicated:

Vi ∼ bin(zi , ni ),

zi = xi pi1 + (1 − xi )pi2,

xi = Fi

Mi + Fi

ni = Fi + Mi ,

pi1 = exp(θi1)

1 + exp(θi1)
,

pi2 = exp(θi2)

1 + exp(θi2)
.

The primary assumptions of the modeling process are that the transformed probability
of male turnout for each MCD observation (θi2) is drawn from a single underlying normal
distribution and that the transformed probability of female turnout in each MCD is drawn
from a separate underlying normal distribution. There are a number of alternative distri-
butional assumptions to this binomial–normal model, depending on the approximation
used for the total votes observed (binomial count or normal proportion) and the assump-
tions about how the unobserved and separate male and female probabilities are distributed
(normal, Student’s t, beta).

The hierarchy is introduced by specifying the normal distribution that describes the MCD
logits. A highly aggregated (in this case, state-level) prior describes the location and preci-
sion of the normal distribution. Four pairs of hyperparameters (Ak ,Bk) (Ck ,Dk) introduce
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Table 6.3 Summary statistics for male turnout: mean and precision in the scale of
estimation, simple proportion, and population-weighted (actual) state turnout

Mean Precision Turnout Turnout
Year State n (logit) (logit) (unweighted) (actual)

1916 Connecticut 177 0.42 3.55 0.601 0.515
1916 Illinois 234 1.29 1.21 0.760 0.681
1920 Illinois 234 0.95 2.11 0.707 0.643
1916 Massachusetts 477 0.18 3.44 0.540 0.505

information into the model:

θi1 ∼ norm(µ1, τ1),

θi2 ∼ norm(µ2, τ2),

µ1 ∼ norm(A1, B1),

µ2 ∼ norm(A2, B2),

τ1 ∼ gamma(C1, D1),

τ2 ∼ gamma(C2, D2).

At the second stage, each MCD-level probability is treated as a draw from a normal
distribution with mean µ and precision τ .4 The state-level mean is drawn from a normal
distribution, and the precision from a gamma distribution. In most applications, this state-
level mean and precision would be specified in a way that added little information to the
model. A uniform distribution or nearly flat normal distribution centered around zero
would be appropriate for the mean (implying values of 0.00 for Ak and 0.0001 for Bk). A
similarly uninformative prior would be introduced for the gamma distribution. Our strategy
is to instead introduce and exploit prior information about the mean and the precision of
this state-level distribution – introducing information about both the normal distribution
of the state-level mean and the gamma distribution for the state-level precision – to improve
model estimates.

Data on male turnout in the 1916 election suggest a number of characteristics that should
also describe the 1920 elections and that can be introduced as priors. Using data from the
1910 and 1920 census and 1916 election returns, we estimate turnout at the MCD level
for the 1916 election. The logit for estimated male turnout in each state in 1916 and, as
observed, in 1920 Illinois are reported in Table 6.3. The observed summary statistics for
male behavior in 1916 are the state-level priors that we exploit to estimate 1920 turnout at
the MCD level.5 These data can also verify the adequacy of the distributional assumptions
of the model. The distribution of the logit of male turnout in 1916 Illinois is displayed in
Figure 6.4. The normal distribution would appear to provide a reasonable approximation
for the observed distribution of male turnout.

4 In Bayesian modeling contexts, the dispersion parameter of the normal distribution is typically designated not
as the standard deviation or variance (σ 2), (but as the precision (τ = 1/σ 2).

5 The expected value for gamma(Ck , Dk ) is Ck/Dk . Here Ck and Dk should be selected to return an expected
value equal to the observed precision in 1916.
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Figure 6.4. Distribution of male turn-
out, 1916 Illinois (with normal overlay).

The implications of adding prior information in this context are not well understood. As
noted in Chapters 1 and 2 in this volume, hierarchical modeling strategies for ecological
inference are special in that the addition of more first-stage (MCD) observations does
not result in more influence of the data on the posterior estimates. Even in very large
samples, there is a limited amount of information about the parameters of interest. As a
consequence, second- and third-stage assumptions, about both the form and the parameters
of the distribution that generates the data, will always exert a substantial influence on
posterior estimates. Further, the use of informed priors of any sort is not common practice
in published political science work using Bayesian approaches (particularly Markov Chain
Monte Carlo (MCMC) methods).

6.6 FINDINGS

Our strategy is to estimate a series of models, first varying the priors for the state mean (Ak),
then the precision of the prior for the state mean (Bk), and finally the parameters of the
gamma distribution (Ck , Dk) that are used to estimate the state-level variance of male and
female turnout. The parameters of each model are estimated via MCMC as implemented
in WINBUGS. The complete code for the binomial normal model (exclusive of the data) is
included as an appendix to this chapter. To reduce the influence of starting points on the
estimated parameters, we run five chains (each representing an independent simulation)
with widely dispersed starting points for each model. A total of 350,000 simulations are
performed for each model, with the first 100,000 observations discarded. The monitored
chains are thinned to 2,500 observations for each node, and the mean of these observations
serves as the point estimate. We do not report convergence diagnostics for each chain in
each model, but convergence was monitored for both state-level and MCD-level parameters
for each of the 30 models estimated. An elementary convergence diagnostic, Gelman and
Rubin’s R, indicates that the chains converge (see Gelman and Rubin, 1992). Within-chain
autocorrelation, however, does remain large for a small number of MCD nodes. Experimen-
tation with longer chain lengths, of 1,000,000 iterations or more, did not indicate a higher
degree of convergence or result in substantively different posterior estimates.

Each model is summarized with a plot of female turnout as a function of male turnout. This
graphical strategy reveals how the mean and variance of male and female turnout changes as
priors are updated and permits direct comparison with the observed relationship in Illinois
(reproduced as Figure 6.2 above). Each estimated pair of male and female turnout will fall
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along the tomography lines represented in Figure 6.1. In Section 6.7, we investigate the
effects of an auxiliary MCD-level assumption, that the male turnout ( pi2) exceeds female
turnout (pi1).

6.6.1 Implications of Changes in the Expected Mean of Male Turnout

We assume that the true state-level male turnout is located between the level slightly above
male turnout observed in 1916 and total observed turnout of men and women in 1920.
This assumption implies two substantive claims: Male state-level turnout was higher than
female turnout in 1920, and male turnout declined or only modestly increased after 1916.
The justification for the former assumption (male turnout exceeds female turnout) is de-
scribed above. There are several reasons to expect that male turnout declined after 1916.
The 1920 election occurred during a period of generally declining turnout following the
1896 realignment. With the return to normalcy, the 1920 election itself was widely regarded
as uninteresting and noncompetitive; Harding was elected president with over 61 percent
of the vote, the largest landslide thus far in American history (Degler, 1964). Between 1916
and 1920, male turnout in presidential elections in Illinois, for instance, fell from 67.5% to
64.3%. The expectation that turnout generally was on the decline during this period has
been noted often by scholars as a factor confounding attempts to disentangle the effects of
female enfranchisement (Kleppner, 1982). On the other hand, the attention given to and
the novelty of women’s voting may have spurred men to vote at higher rates than they had
in 1916; a number of newspaper reports, for example, suggested heightened participation
by men due to women’s entrance in to the electorate. In Illinois, men’s turnout increased by
nearly 5 percentage points, from 62.8 to 67.5 percent, between 1912 and the first Presidential
election that included women voters in 1916. We therefore test the effect of alternative priors
that imply that men’s turnout either increased marginally after 1920 due to the introduction
of women as voters or decreased substantially due to the lack of competition.

To measure the effect of choosing the prior (A2), we select (1) a value that implies male
turnout was just above female turnout (within 1 percentage point), (2) a value that implies
male turnout was somewhat higher than in 1916, and (3) the midpoint between (1) and (2).
The influence of priors is summarized in Figures 6.5, 6.6, and 6.7. Each figure represents
estimates for one state. Each panel represents one set of priors. Precisions and other prior
information (the parameters of the gamma distribution) are held constant for each state.

The effects of decision about priors are not the same across the sample states. In Illinois,
the posterior point estimates for the hierarchical model with diffuse priors (a naive model)
are very similar to the posterior point estimates for the models with more precise priors.
Introduction of a hierarchy alone, without informed priors, generated estimates consistent
with expectations and close to true values. In Connecticut, a diffuse prior resulted in wildly
implausible estimates, with female turnout exceeding male turnout by large margins in some
MCDs. Figure 6.6 suggests that modest differences in priors result in nontrivial changes in
the estimates (estimated mean male turnout increases from to 52 to 60 percent as the location
parameter is increased from 0.18 to 0.42). The introduction of an informative prior that
implies male turnout remained at or near 1916 levels results in posterior point estimates
that also conform to the MCD-level expectation that male turnout should exceed female
turnout. There are no MCD observations above the main diagonal in the lower panels
of Figure 6.6. But, in Massachusetts, a number of observations remain above the main
diagonal, even with precise priors that result in mean male turnout remaining at 1916 levels.
These observations, which are mostly urban wards in Boston, are areas where published
registration figures indicate female turnout is quite low. These observations both violate the
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Figure 6.5. Influence of the location of state-level priors (Illinois): (a) diffuse prior; (b) µ1 ∼
norm(0.40, 20.00); (c) µ1 ∼ norm(0.76, 20.00); (d) µ1 ∼ norm(1.17, 20.00).

MCD-level assumption and are directly inconsistent with the historical record. We address
this problem in Section 6.7, below.

6.6.2 Implications of Changes in the Precision of the Expected Mean Male Turnout

The locations of priors for the mean of male and female turnout are accompanied by preci-
sions (Bk). High levels of precision imply estimates will lie close to the prior location. Lower
levels of precision do not introduce as much information into the estimation procedure.
The observed influence of the prior is a function of both the precision and the number of
observations in the data set, so the appropriate level for the precision will be dependent on
the number of observations. Applications that rely on noninformed priors typically use very
low precisions (0.001) to permit a wide variance for the simulation of state-level parameters.
We experiment with higher levels of precision (from 0.01 to 50.00) to learn how precisions
of this magnitude affect estimates from data sets of varying size (from 177 observations in
Connecticut to 447 observations in Massachusetts).6

6 Precisions lower than 0.50 often result in numerical problems with the MCMC simulations. Low precisions
permit draws of extremely high and low values for θk to be introduced, which imply turnout probabilities
approaching zero and one. The logistic distribution is relatively compact, with most observed values between
−3 and +3), so precisions on the order of 0.50, which loosely bound the logit, are reasonable starting points to
test the effects of adding information.
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Figure 6.6. Influence of the location of state-level priors (Connecticut): (a) diffuse prior; (b) µ1 ∼
norm(−0.03, 5.00); (c) µ1 ∼ norm(0.18, 5.00); (d) µ1 ∼ norm(0.42, 5.00).

As with the location parameter, the effects of increasing precision vary across the sample
states. At low levels of precision (Bk=1.00), the posterior estimates are also quite imprecise.
But the precision also affects the estimated mean turnout, and the magnitude of the effect is,
as expected, related to the number of observations. Using the Connecticut data, a precision
of 1.00 introduced sufficient information to generate a posterior estimate quite different
from the posterior generated with a diffuse prior. A precision of 20.00 or more was required
to produce similar effects with the Massachusetts data. Figure 6.8 displays the effects of high
precisions on the Connecticut estimates; Figure 6.9 displays the effects of identical precisions
on the Massachusetts estimates.

6.6.3 Implications of Changes in the Parameters of the Gamma Distribution

Historical data on turnout also provide information about the expected value of the variance
of MCD observations about the state mean. The state-level precision is drawn from a
gamma distribution that can be centered around observed 1916 values for males. Unlike the
parameters for the mean, changes in the parameters of the gamma distribution have fairly
modest effects on the turnout estimates. For each simulation, the parameters of the gamma
distribution are set at the same values for men and women, implying similar variances at
the MCD level. The Illinois data indicate that this assumption is reasonable. Connecticut
MCD estimates for three very different settings of the gamma distribution are summarized
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Figure 6.7. Influence of the location of state-level priors (Massachusetts): (a) diffuse prior; (b) µ1 ∼
norm(−0.09, 50.00); (c) µ1 ∼ norm(0.04, 50.00); (d) µ1 ∼ norm(0.14, 50.00).

in Figure 6.10. The mean for each pair of hyperparameters is the same, but the standard
deviation varies across the panels. The top left panel introduces the least information;
the lower right panel introduces the most information. The estimated mean male turnout
increases from 0.50 to 0.53 as the level of information in the gamma prior is increased.

6.7 USING MCD-LEVEL ASSUMPTIONS TO IMPROVE ESTIMATES

The Bayesian approach recovers observed values in the state of Illinois and generates plausible
estimates for a number of MCDs in Connecticut and Massachusetts. There are important
exceptions – estimates for a limited number of MCDs and wards in Illinois suggest female
turnout exceeds male turnout, and we know that this is not the case. The same result is
observed in Massachusetts and persists even when high levels of precision are introduced.
One way to address the problem observations is to sample from the distribution that describes
the MCD-level parameters of interest and truncate the sample to satisfy the assumption that
male turnout exceeds female turnout at the level of the MCD (pi2 > pi1 or, in the notation
of the introduction to this book, βb

i > βw
i ).

The point estimates for female turnout at the MCD level summarize a chain of observed
output from the MCMC simulations. Given the mean and the standard deviation of each
chain, we use a simple rejection algorithm to draw 2500 values from the target distribution
that satisfy two additional constraints: female turnout is less than average turnout, and
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Figure 6.8. Influence of the precision of state-level priors (Connecticut): (a) diffuse prior; (b) µ1 ∼
norm(0.18, 1.00); (c) µ1 ∼ norm(0.18, 10.00); (d) µ1 ∼ norm(0.18, 50.00).
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Figure 6.9. Influence of the precision of state-level priors (Massachusetts): (a) diffuse prior; (b) µ1 ∼
norm(0.04, 1.00); (c) µ1 ∼ norm(0.04, 10.00); (d) µ1 ∼ norm(0.04, 50.00).
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Figure 6.10. Influence of prior for the gamma distribution (Connecticut): (a) diffuse prior; (b) τi ∼
gamma(0.035, 0.01); (c) τi ∼ gamma(0.35, 0.10); (d) τi ∼ norm(3.55, 1.00). Here µ1 ∼ (0.18, 5.00)
for all panels.

female turnout is greater than zero. Male turnout is then calculated via the accounting
identity (described in Section 6.5). Each pair of estimated male and female turnout thus
falls along the tomography line, lies below the main diagonal, and is drawn from the target
distribution estimated via MCMC. The mean of the draws from the truncated distribution
serves as a new point estimate.

The point estimates for 1920 turnout in three sample states, and the Illinois true values, are
reported in Table 6.4. The estimated difference between male and female turnout in Illinois

Table 6.4 Estimated turnout, 1920

State Male turnout Female turnout Priors

Connecticut 0.614 0.248 µ2 ∼ norm(0.42, 2.00)
τi ∼ gamma(1.75, 0.50)

Illinois 0.698 0.355 µ2 ∼ norm(1.29, 5.00)
τi ∼ gamma(0.60, 0.50)

Illinois (actual) 0.643 0.411 [n/a]
Massachusetts 0.519 0.341 µ2 ∼ norm(0.18, 20.00)

τi ∼ gamma(1.70, 0.50)
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Figure 6.11. Estimated and observed female turnout, 1920 Illinois: (a) diffuse prior; (b) µ1 ∼
norm(1.18, 20.00); (c) µ1 ∼ norm(1.18, 5.00); with truncation (pi1 < pi2).
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is somewhat higher than the observed difference, but the population-weighted correlation
between observed and actual male turnout in Illinois is 0.95. Figure 6.11 compares the
estimated and actual values for female turnout for three alternative modeling strategies:
the hierarchical model with diffuse priors, a hierarchical model with a precise prior, and
a hierarchical model with a moderately precise prior after rejection sampling. The lower
panel indicates that the final model somewhat overpredicts female turnout at the tails and
somewhat underpredicts it at the center of the distribution. Overall, female turnout is
slightly underpredicted. These results confirm a modest improvement over the naive model
in Illinois and suggest a substantial improvement over the naive model in Connecticut and
Massachusetts.

6.8 CONCLUSION

In research situations where observed or true behavior of one group of interest is known
and this observation is related either temporally or spatially to unobserved sample behavior,
information can be incorporated into Bayesian approaches to ecological inference at very
high levels of aggregation. In some cases, past behavior may provide a very narrow range
of plausible values for one group and permit precise priors to limit the search for estimates
along the tomography line at the MCD level. This modeling strategy could exploit highly ag-
gregated survey data, when available, to generate priors that condition MCD-level estimates
on known quantities.

We identify a crucial model parameter that determines the influence of the prior informa-
tion on posterior estimates – the location of the assumed mean of male turnout at the state
level. If survey data are available to describe this mean behavior, then the crucial parameter
can be specified with some confidence. Under certain conditions (the Illinois data), this
prior information can produce plausible estimates when introduced with very little preci-
sion. In other cases (Massachusetts), this type of prior information is of limited use for a
number of observations. To further improve estimation, we introduce an uncontroversial
assumption at the MCD level. This second piece of information permits us to generate
plausible estimates for all observations and, in the case of Illinois, estimates that correspond
with observed behavior.

Estimates produced by the procedure used in this chapter are highly contingent on inves-
tigator assumptions (or the quality of prior information) about the level of male turnout.
In the case of Illinois, the elementary hierarchical structure, independent of priors, was
sufficient to generate estimates both close to true values and somewhat robust to changing
priors. A precise prior at the highest level of aggregation (the state) permitted generation of
estimates at very low levels of aggregation (the MCD) in Connecticut and Massachusetts.
But, depending on the location of the prior, female turnout in Connecticut, for instance, ei-
ther lagged a full 28 points behind male turnout or was somewhat higher than male turnout.
Incorporation of additional information in the form of an MCD-level assumption imposed
via rejection sampling reduced this dependence on state-level priors, with female turnout
lagging male turnout by at least 17 points and at most 37 points across the various settings
of the priors.

Full disclosure of assumptions and explicit consideration of the implications of changing
these assumptions helps to communicate the level of uncertainty associated with each set of
estimates in this application. Incorporation of more specific MCD-level priors for a limited
number of observations (e.g., use of registration data from Boston wards) or consideration
of spatial structure may permit estimation of parameters of interest without placing such a
premium on assumptions about state-level outcomes.
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APPENDIX. WINBUGS CODE

model for (i in 1:ntab)

# MCD Likelihood

V1920[i] ∼ dbin(z[i], n[i])

z[i] ← (x[i] * p1[i]) + ((1 - x[i]) * p2[i])

x[i] ← F1920[i] / (M1920[i]+F1920[i])

n[i] ← F1920[i] + M1920[i]

p1[i] ← exp(theta[i, 1]) / (1 + exp(theta[i, 1]))

p2[i] ← exp(theta[i, 2]) / (1 + exp(theta[i, 2]))

# Second stage

theta[i,1] ∼ dnorm(mu[1], tau[1])

theta[i,2] ∼ dnorm(mu[2], tau[2])

# Third stage priors

mu[1] ∼ dnorm(-0.44, 20.00)

mu[2] ∼ dnorm(1.17, 20.00)

tau[1] ∼ dgamma(0.50, 0.50)

tau[2] ∼ dgamma(0.50, 0.50)

# Stste-level parameters of interest

mean[1]← mean(p1[])

mean[2]← mean(p2[])

# initial conditions

list(mu = c(-0.44, 1.17), tau = c(0.50, 2.0))
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7 An Information Theoretic Approach to Ecological Estimation
and Inference∗

George G. Judge, Douglas J. Miller, and Wendy K. Tam Cho

ABSTRACT

The purpose of this chapter is to formulate and demonstrate information theoretic, moment-based
approaches to processing and recovering information from aggregate voter data. In the context of
the ecological inference problem, we focus on the recovery of unknown conditional vote counts for a
precinct or district, given the observed number of votes for each candidate and the number of voters in
demographic categories. The unknown and unobservable vote counts are interpreted as conditional
probabilities of micro voting decisions. The problem of recovering the unknown probabilities from the
macro data is initially formulated as an ill-posed or underdetermined inverse problem. The solution
procedures are based on the Cressie–Read power-divergence criterion, and examples from the recent
ecological inference literature are used to illustrate the characteristics of the estimators. In the second
part of the chapter, we cast the information recovery problem in terms of a moment-based estimation
problem and suggest solutions for recovering the unknown response parameters and corresponding
marginal probabilities.

7.1 INTRODUCTION

In the social sciences, many of the data used for estimation and inference are available only in
the form of averages or aggregate outcomes. Given this type of data restriction, researchers
often use probabilities to represent information concerning the unknown and unobservable
parameters of the underlying decision process. As a case in point, political scientists often
face the question of how to process and recover information concerning voter behavior
from precinct- or district-level data. These data are in many cases limited to aggregate vote
counts, and individual-specific information about voters in a precinct is seldom available.

Efforts to recover micro information from aggregate data generally result in ill-posed
inverse problems which yield a multitude of feasible “solutions” due to the lack of sufficient
information. In other words, ill-posed problems are fundamentally indeterminate because
there are more unknowns than data points. Consequently, there is not enough information
available from the data to uniquely solve the problem using traditional rules of logic. Seminal
developments for coping with this long-standing methodological challenge include Robin-
son (1950), Goodman (1953, 1959), Duncan and Davis (1953), Freedman, Klein, Sacks,
Smyth, and Everett (1991), Achen and Shively (1995), and King (1997). Ill-posed inverse
problems are not unique to political science, and the literature is littered with possible

∗
The authors gratefully acknowledge the many generous comments and suggestions provided by Bruce Cain,
David Freedman, Marian Grendar, Gary King, T. C. Lee, Jeffrey Lewis, Ken McCue, Art Owen, and Rogério Silva
de Mattos, without implying their agreement with the full content of the paper.
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solutions to related estimation and inference problems in economics and other fields (see
for example Golan, Judge, and Miller, 1996).

Given the importance of ecological estimation and inference problems in political science,
we propose information theoretic procedures to recover estimates of the unknown condi-
tional probabilities used as a basis for understanding voter behavior. In these problems, it is
often possible to select feasible solutions or estimates that conform to the observed data, but
the question lurking in the background is “what do these estimates mean, or what question
are they answering?”

Because the information theoretic and other formulations are based entirely on aggregate
data that are limited, partial, and incomplete, the recovered conditional probabilities may
not be appropriate for answering a range of important voter behavior questions. Hence, to
make efficient use of aggregate election data, we must find some way to introduce additional
structure into the modeling and information recovery process. One way to proceed is to
specify a conceptual framework that provides a plausible basis for the underlying data gener-
ation process. Toward this end, in the second part of this chapter, we suggest moment-based
formulations that exploit the theoretical underpinnings of voter behavior and introduce
important behavior parameters that facilitate the presentation and interpretation of the
results. One purpose for adding this information or model structure is to provide a basis
for converting a fundamentally ill-posed inverse problem into a well-posed problem. By
reformulating the problem, we recover information at the appropriate level of aggregation
on important voter response parameters along with the unknown conditional probabilities.
The resulting formulations are semiparametric in the sense that the joint distribution of the
underlying data is unspecified, apart from a finite set of moment conditions. These compo-
nents form the basis for recovering the unknown response parameters and corresponding
conditional probabilities and are used as standard operational tools in econometric infor-
mation processing and recovery problems (Mittelhammer, Judge, and Miller, 2000). There
certainly are many possible ways to approach ill-posed problems, so we emphasize that one
must proceed cautiously when considering the significance of the estimates.

This chapter proceeds as follows: In Section 7.2, we develop notation consistent with
the basic problem and develop a corresponding basis for modeling the aggregate data that
focuses on the unknown conditional probabilities. In Section 7.3, we model the data as both
a pure and a noisy inverse problem, suggest a solution, and interpret the recovered condi-
tional probabilities. In Section 7.4, we suggest moment-based formulations that exploit the
theoretical underpinnings of voter behavior and introduce important behavior parameters
that facilitate the presentation and interpretation of the results. In Section 7.5, we discuss the
implications of the models and the proposed solutions as a basis for learning about voter
behavior. Some examples based on real and synthetic data are presented in the Appendix.

7.2 NOTATION AND BASIC INVERSE MODEL

To develop a model that will reflect the characteristics of voter response, consider the ob-
served outcomes for a particular election across i = 1, . . . , m electoral units (e.g., precincts
or districts). Each unit has j = 1, . . . , g types of individual voters and k = 1, . . . , c vote
choices (e.g., candidates for office or propositions, including perhaps an abstention or no-
vote category). For convenience and without loss of generality, we will adopt a framework
where the election units are precincts and the vote choice is a set of candidates. For each
precinct, the observed data are the number of votes for each candidate, Ni ·k = ∑g

j=1 Ni j k ,
and the number of voters in each group, Ni j · = ∑c

k=1 Ni j k . The total number of ballots cast
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Table 7.1 Known and unknown components of the voter
problem

Candidate

Group 1 2 3 4 Count

1 β11 N 1· β12 N 1· β13 N 1· β14 N 1· N 1·
2 β21 N 2· β22 N 2· β23 N 2· β24 N 2· N 2·
3 β31 N 3· β32 N 3· β33 N 3· β34 N 3· N 3·

N ·1 N ·2 N ·3 N ·4 N

in the precinct is Ni = ∑g
j=1

∑c
k=1 Ni j k . For any secret ballot, the total number of votes cast

by each group for particular candidates in the election is unknown and unobserved. Given
the observed data, our initial objective is to formulate an inverse model that will permit us
to estimate Ni j k , the unobserved number of votes cast in precinct i by voters of type j for
candidate k, from the sample of voters who voted in the election.

For the purposes of formulating the basic inverse model, the data may be stated in
terms of the observed row or column proportions, i.e., for precinct i , ni ·k = Ni ·k/Ni or
ni j · = Ni j ·/Ni . The inverse problem may be equivalently stated in terms of the proportion
of voters in each category, βi j k = Ni j k/Ni j · = ni j k/ni j ·, where

∑c
k=1 βi j k = 1 for each i

and j . In this context, βi j k may be interpreted as the conditional probability that voters
in precinct i and group j voted for candidate k, where the conditioning indices are i and
j . For example, in a study of split-ticket voting, the index j may represent votes for each
of g national candidates from different parties, and the index k may represent the local
candidates. The objective in this case would be to estimate the conditional probability that
voters selected candidate k in the local election given that they voted for candidate j in the
national election. In another application such as a study of polarized voting, the conditioning
index j may represent characteristics of the electorate such as race or gender.

7.2.1 Modeling Voting Behavior as an Inverse Problem

The components of this information recovery problem for a particular precinct (i sup-
pressed) are summarized in Table 7.1. The observed numbers of ballots cast by registered
voters in the groups (Nj ·) are the row sums, and the observed numbers of votes received by
the candidates (N·k) are the column sums. What we do not know and cannot observe is the
number of votes cast by each group, Nj k , or the proportion of votes cast by each group for
each candidate, n j k . If the conditional probabilities β j k were known, we could derive the
unknown number of voters as Nj k = β j k Nj ·. However, the conditional probabilities are un-
observed and not accessible by direct measurement. Thus, we are faced with the cross-level
inference problem, an inverse problem where we must use indirect, partial, and incomplete
macro measurements as a basis for recovering the unknown conditional probabilities. The
probability space interpretation gives the problem some minimal structure and provides a
basis for learning from the data in a highly ambiguous situation.

The symbols in Table 7.1 and the corresponding data provide a limited basis for un-
derstanding voter behavior. If we are to improve our basis for recovering voter response
information from partial incomplete data, we must introduce some structure into the
modeling process. One bit of structure comes from the realization that the conditional
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probabilities β j k must satisfy the row sum and column sum conditions,
∑c

k=1 β j k = 1 and∑g
j=1 β j k Nj · = N·k . Some additional structure may be imposed, based on a substantive

theory about the particular behavior being examined and the elicitation of prior nonsample
information, and we can exploit this model structure to facilitate presentation and inter-
pretation.

If we make use of the column sum conditions, we have the relationship

ni ·k =
g∑

j=1

ni j ·βi j k (7.1)

for i = 1, . . . , m and k = 1, . . . , c . To formalize our notation, we let x(i) =
(ni1· ni2· · · · nig ·)′ represent the g × 1 vector of proportions for each of the groups j =
1, . . . , g in precinct i , and let y(i) = (ni ·1 ni ·2 · · · ni ·c )′ represent the c × 1 sample outcome
vector of vote proportions for each candidate k = 1, . . . , c in precinct i . Then, the rela-
tionship among the observed marginal proportions and unknown conditional probabilities
may be written as

y′(i) = x′(i)B(i) . (7.2)

The component B(i) = (βi1 βi2 · · ·βi c ) is an unknown and unobservable g × c matrix of
conditional probabilities, and βik = (βi1k βi2k · · · βig k)′ is the g × 1 vector of conditional
probabilities associated with precinct i and candidate k. If we rewrite B(i) in gc × 1 vectorized
form as β(i) = vec(B(i)) = (β′

i1 β
′
i2 · · ·β′

i c )′, then we may rewrite Equation 7.2 as




y1(i)
y2(i)

...
yc (i)


 =




x′(i) 0 · · · 0
0 x′(i) · · · 0
...

...
. . .

...
0 0 · · · x′(i)






βi1

βi2...
βi c


 , (7.3)

or more compactly as y(i) = (Ic ⊗ x′(i))β(i) = X(i)β(i), where X(i) = (Ic ⊗ x′(i)) and
⊗ denotes the Kronecker product. We may extend the formulation to include observations
for m ≥ 2 precincts by stacking the vectors y(i) and β(i) to form




y(1)
y(2)

...
y(m)


 =




X(1) 0 · · · 0
0 X(2) · · · 0
...

...
. . .

...
0 0 · · · X(m)






β(1)

β(2)
...

β(m)


 , (7.4)

or y = Xβ.
Given the relationships 7.2 to 7.4 as a way of modeling the underlying data process, we

view each election as an experiment. The sample data underlying Table 7.1 are viewed as
the outcome of an election experiment. Consequently, we represent these sample data as
having a systematic component (Equation 7.2) and a random component εik , and write the
statistical model expressing the data sampling process as

ni ·k =
g∑

j=1

ni j ·βi j k + εik , (7.5)
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or

y = Xβ + ε , (7.6)

where the noise vector ε is supported on a nonempty and bounded set and is assumed to have
mean E [ε] = 0 and finite covariance matrix Σ. The errors represent sampling variation in
the observed column (ni ·k) relative to the true but unobserved marginal probability that
voters in precinct i vote for candidate k.

Using this weak model specification, we initially solve the problem by using the observed
data outcomes y = Xβ to represent the population moments, E [y] = E [Xβ + ε]. Under
this form, the absence of sampling errors and other stochastic noise components in Equa-
tions 7.2–7.4 implies that the problem of recoveringβ from observed y and X is a pure inverse
problem. For each precinct-specific problem 7.3, note that the matrix X(i) has dimension
c × gc and is underdetermined and generally not invertible. Thus, under traditional math-
ematical inversion procedures, the voter pure inverse (VPI) problem is said to be ill posed,
and the solution space for the problem contains arbitrary parameters. The question we now
face is whether or not there is a plausible basis for reasoning in situations like this where the
information we possess specifies only a feasible set of functions. Moving in the direction of
a plausible solution basis, we note that the unknown conditional probabilities must satisfy
some additional conditions such as additivity and nonnegativity, and the solution to the
pure inverse problem 7.2 must satisfy the estimating functions y = Xβ.

7.3 SOME INFORMATION THEORETIC SOLUTIONS

7.3.1 Choosing the Criterion Function

Given the inverse model specified in Section 7.2.1, the long journey in defining a solution
begins with the selection of a goodness-of-fit criterion. If we recognize and maintain the
distinction that the unknown elements βi j k are conditional probabilities rather than joint
probabilities, then our pure voting inverse model is similar to allocating values to each of
the cells in a contingency table. Consequently, the Cressie–Read power-divergence (CRPD)
statistic (Cressie and Read, 1984; Read and Cressie, 1988; Baggerly, 1998) is a pseudodistance
measure that may be used to compare elements in the set of feasible conditional probabilities
implied by the available data. For a discrete probability distribution w defined with respect
to i = 1, . . . , n possible outcomes, the CRPD statistic

I (w, q , λ) = 2

λ(1 + λ)

∑
i

wi

[(
wi

qi

)λ

− 1

]
, (7.7)

measures the pseudodistance between w (i.e., conditional probabilities in the VPI problem)
and a set of reference weights q . The reference weights may be based on additional or prior
information that the researcher may want to bring to bear upon the estimation. The discrete
weights must satisfy (wi , qi ) ∈ (0, 1) × (0, 1) ∀i and

∑
i wi = ∑

i qi = 1. Read and Cressie
note that Equation 7.7 encompasses a family of empirical likelihood estimation objective
functions that includes:
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1. The Kullback–Leibler directed divergence or discrimination information statistic
(Kullback, 1959; Gokhale and Kullback, 1978)

I (w, q , λ → 0) ∝
n∑

i=1

wi ln

(
wi

qi

)
(7.8)

and

I (w, q , λ → −1) ∝
n∑

i=1

qi ln

(
qi

wi

)
. (7.9)

Note that I (w, q , λ → 0) + I (w, q , λ → −1) is a symmetric distance function.
2. Pearson’s chi-square statistic (Pearson, 1900)

I (w, q , λ = 1) =
n∑

i=1

(wi − qi )
2

qi
. (7.10)

3. The modified chi-square statistic (Neyman, 1949)

I (w, q , λ = −2) =
n∑

i=1

(qi − wi )
2

wi
. (7.11)

4. The squared Matusita or Hellinger distance

I (w, q , λ = −1/2) ∝
n∑

i=1

(√
wi − √

qi

)2
. (7.12)

Read and Cressie note that the CRPD statistic is strictly convex in its arguments and may
be used as a criterion function for minimum-distance estimation. Given uniform refer-
ence weights qi = n−1 ∀i , the negative of Equation 7.7 also encompasses other prominent
statistics:

1. The empirical likelihood statistic (Owen, 1988, 1990)

−I (w, q , λ → −1) ∝
n∑

i=1

ln wi . (7.13)

2. Shannon’s entropy (Shannon, 1948) or the exponential empirical likelihood (DiCicco
and Romano, 1990; Corcoran, 2000) statistic

−I (w, q , λ → 0) ∝ −
n∑

i=1

wi ln wi . (7.14)

3. The Simpson or Gini statistic

−I (w, q , λ = 1) = 1 −
n∑

i=1

w 2
i . (7.15)

In these cases, the minimum-distance estimation problem is solved by maximizing the
criterion function with respect to w.
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7.3.2 Solution to a Pure Inverse Problem

Under the minimum CRPD estimation criterion, an estimator for the VPI problem may be
derived by minimizing the estimation criterion (Equation 7.7) for this problem,

2

λ(1 + λ)

m∑
i=1

g∑
j=1

c∑
k=1

βi j k

[(
βi j k

qi j k

)λ

− 1

]
(7.16)

(given some λ), subject to the column-sum condition 7.1 and the row-sum (additivity)
condition

c∑
k=1

βi j k = 1 ∀ i, j . (7.17)

The Lagrange expression for this constrained minimization problem is

L (β, α, γ) = 2

λ(1 + λ)

m∑
i=1

g∑
j=1

c∑
k=1

βi j k

[(
βi j k

qi j k

)λ

− 1

]

+
m∑

i=1

c∑
k=1

αik

(
ni ·k −

g∑
j=1

ni j ·βi j k

)
+

m∑
i=1

g∑
j=1

γi j

(
1 −

c∑
k=1

βi j k

)
, (7.18)

where αik and γi j are Lagrange multipliers for the constraints 7.1 and 7.17, respectively. The
necessary condition for β̂ i j k is

∂L

∂βi j k
= 2

λ

(
β̂ i j k

qi j k

)λ

− 2

λ(1 + λ)
− α̂ikni j · − γ̂i j = 0 , (7.19)

and the solution for the conditional probabilities is

β̂ i j k = qi j k

[
1

1 + λ
+ λ

2

(̂
αikni j · + γ̂i j

)]1/λ

. (7.20)

In general, the solution does not have a closed-form expression and must be stated in
intermediate form as a function of the optimal Lagrange multipliers, α̂ik and γ̂i j . Conse-
quently, the optimal values of the Lagrange multipliers must be determined numerically.
We note that as λ → 0 in Equation 7.16, the estimating criterion is

m∑
i=1

g∑
j=1

c∑
k=1

βi j k ln

(
βi j k

qi j k

)
, (7.21)

and the intermediate solution for the constrained optimal βi j k is

β̂ i j k = qi j k exp
(̂
αikni j ·

)
∑c

k=1 qi j k exp
(̂
αikni j ·

) . (7.22)

The elements α̂ik are the optimal values of the Lagrange multipliers on the constraint 7.1.
Under uniform reference weights (qi j k = c−1 ∀i, j ), the negative criterion is proportional



P1: FZZ/FZZ P2: FZZ

CB658A-07 CB654-KING-Sample CB658-KING-Sample.cls May 25, 2004 23:54

An Information Theoretic Approach to Ecological Estimation and Inference 169

to

−
m∑

i=1

g∑
j=1

c∑
k=1

βi j k ln βi j k , (7.23)

and the minimum CRPD problem is known in the information theory literature as the
method of maximum entropy (Jaynes, 1957a, 1957b) for pure inverse problems. Illustrative
examples using real and synthetic data are given in the Appendix.

7.3.3 Incorporating Bounds on the Conditional Probabilities

Given the high degree of ambiguity resulting from the aggregate data, we can follow Duncan
and Davis (1953) and use Equation 7.1 to refine the constraint set on the conditional proba-
bilities by placing upper and lower bounds on eachβi j k . As indicated by King (1997), the con-
straint 7.1 implies that the lower bound on βi j k is Zi j k1 = max(0, (ni ·k − (1 − ni j ·))/ni j ·),
and the upper bound is Zi j k2 = min(1, ni ·k/ni j ·). Given the bounds, βi j k may be expressed
as a convex combination βi j k = ∑2

h=1 ϕi j kh Zi j kh for ϕi j kh ≥ 0 such that ϕi j k1 + ϕi j k2 = 1.
In this case, we may specify reference weights qi j kh on each of the upper and lower bounds
such that β0

i j k = ∑2
h=1 qi j kh Zi j kh is a presample estimate of the unknown βi j k .

After incorporating the bounding information, the reformulated VPI problem may now
be solved by minimizing

2

λ(1 + λ)

m∑
i=1

g∑
j=1

c∑
k=1

2∑
h=1

ϕi j kh

[(
ϕi j kh

qi j kh

)λ

− 1

]
, (7.24)

subject to reparameterized versions of Equations 7.1 and 7.17:

ni ·k =
g∑

j=1

ni j ·
2∑

h=1

ϕi j kh Zi j kh , (7.25)

1 =
c∑

k=1

2∑
h=1

ϕi j kh Zi j kh , (7.26)

plus the additivity constraint on the new weights,

ϕi j k1 + ϕi j k2 = 1 . (7.27)

Setting up and solving the first-order conditions leads to the solution

ϕ̂i j kh = qi j kh

[
1

1 + λ
+ λ

2

(̂
αikni j · Zi j kh + γ̂i j Zi j kh + ρ̂i j k

)]1/λ

, (7.28)

where the point estimator of the bounded conditional probability is

β̂ i j k =
2∑

h=1

ϕ̂i j kh Zi j kh . (7.29)
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If we let λ → 0 in the criterion function 7.16, we are led to the constrained minimization
problem

m∑
i=1

g∑
j=1

c∑
k=1

2∑
h=1

ϕi j kh ln

(
ϕi j kh

qi j kh

)
, (7.30)

subject to the constraints 7.25 to 7.27. The intermediate solution for the constrained optimal
ϕi j kh may be expressed as

ϕ̂i j kh = qi j kh exp
(̂
αikni j · Zi j kh + γ̂i j Zi j kh

)
∑2

h=1 qi j kh exp
(̂
αikni j · Zi j kh + γ̂i j Zi j kh

) , (7.31)

and the estimator of the conditional probabilities is Equation 7.29. Illustrative examples for
these formulations using real and synthetic data are given in the Appendix.

7.3.4 The Noisy Voter Inverse Problem

The pure voter inverse problem of Sections 7.3.2 and 7.3.3 is one plausible way to model
information recovery from aggregate election data. However, if we view each election as an
experiment, then Table 7.1 represents the outcome of an election experiment. Because it
may be unrealistic to assume that the vote counts and the shares (proportions) are perfectly
observed, in the spirit of much of the research in the ecological inference area, we turn
to the following sampling model that has both systematic and stochastic components that
represent the sampling process as in Equation 7.5:

ni ·k =
g∑

j=1

ni j ·βi j k + εik , (7.32)

or in the form of a linear statistical model

y = Xβ + ε . (7.33)

The random mgc × 1 noise vector ε is assumed to have mean E [ε] = 0 and finite covariance
matrix Σ. At this point, we assume that the X’s are measured without error. We refer to the
resulting estimation problem as the voter noisy inverse (VNI) problem.

7.3.4.1 Incorporating Bounds on the Characteristics of the Noise

The properties of εik ∈ [0, 1] may be derived from the known properties of ni ·k in Equation
7.5 or 7.32. First, we may be able to refine the plausible subset of the error space for a given
sample by using the method of bounds to determine the plausible upper and lower bounds
on εik . The largest possible positive difference between ni ·k and the systematic component
occurs if the conditional probabilities assigned to each group j in column k are zero (i.e.,
βi j k = 0), and the upper bound is simply ni ·k . Accordingly, the largest possible negative
difference occurs if βi j k = 1 for each j in column k, and the lower bound is ni ·k − 1.

Second, we may refine the bounds to reflect the statistical properties of ε. Under the
standard sampling conditions commonly assumed for the problem, ε is a mean-zero pro-
cess with finite covariance Σ. Further, ni ·k is a

√
Ni -consistent estimator of the marginal

probability βi ·k such that ni ·k
p→ βi ·k and is asymptotically normal as

√
Ni (ni ·k − βi ·k)

d→
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N (0, βi ·k(1 − βi ·k)). Consequently, we know the bounds should be centered about zero.
Let Vik1 = δik (ni ·k − 1) /

√
Ni be the lower bound and Vik2 = δikni ·k/

√
Ni be the upper

bound for each error term (where δik > 0 may be distinct for each i and k). To directly
impose the mean-zero property of ε, we may specify symmetric (about zero) bounds,
Vik1 = −δik max (ni ·k , 1 − ni ·k) /

√
Ni and Vik2 = −Vik1.

Given the error bounds, each εik may be expressed as a convex combination

εik = wik1Vik1 + wik2Vik2 , (7.34)

where wikr > 0 for r = 1, 2 and wik1 + wik2 = 1. Then Equation 7.32 may be reformulated
as

ni ·k =
g∑

j=1

ni j ·
2∑

h=1

Zi j khϕi j kh +
2∑

r=1

Vikr wikr . (7.35)

By construction, there exist simplex-valued weights {ϕi j kh} and {wikr } such that Equation
7.35 holds for the observed sample. Through Equation 7.35, the VNI problem may now be
based on the linear statistical model 7.33 plus the bounding information on βi j k and εik .
Thus, the VNI problem may be solved by formulating it as a minimum-distance estimation
problem and determining an appropriate set of weights for the unknown conditional prob-
abilities and error components. As before, the problem specification allows for reference
weights on the unknown parameters, qi j kh for ϕi j kh and q w

ikr for wikr .

7.3.4.2 The Solution

As in Sections 7.3.2 and 7.3.3, we solve the extended VNI problem by minimizing the CRPD
criterion subject to the complete set of constraints. In particular, we minimize

m∑
i=1

g∑
j=1

c∑
k=1

2∑
h=1

ϕi j kh ln

(
ϕi j kh

qi j kh

)
+

m∑
i=1

c∑
k=1

2∑
r=1

wikr ln

(
wikr

q w
ikr

)
, (7.36)

subject to Equation 7.35 plus

c∑
k=1

2∑
h=1

ϕi j kh Zi j kh = 1 , (7.37)

ϕi j k1 + ϕi j k2 = 1 , (7.38)

wik1 + wik2 = 1 . (7.39)

The necessary conditions yield the intermediate solutions for the weights

ϕ̂i j kh = qi j kh exp
(̂
αikni j · Zi j kh + γ̂i j Zi j kh

)
∑2

h=1 qi j kh exp
(̂
αikni j · Zi j kh + γ̂i j Zi j kh

) , (7.40)

ŵikr = q w
ikr exp (̂αik Vikr )

q w
ik1 exp (̂αik Vik1) + q w

ik2 exp (̂αik Vik2)
. (7.41)

After the optimal Lagrange multipliers α̂ik and γ̂i j are numerically determined, the estimates
β̂ i j k are computed as in Equation 7.29. In the Appendix, a data set is used to illustrate the
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noisy inverse formulation and compare it with the pure inverse formulation. In general, the
introduction of the noise components weakens the constraints and moves the estimate in
the direction of the initial unbounded pure outcome.

The ill-posed and underdetermined character of the pure and noisy inverse problems
implies that a unique solution does not exist. Each “solution” is merely an algorithm for
inferring a function (conditional probabilities) that is consistent with the available informa-
tion (constraints) and the estimation criterion. Accordingly, we have developed a feasible
solution method based on information theoretic and empirical likelihood concepts and
tools. Under the noisy inverse formulation, it is possible to demonstrate that under standard
regularity conditions on ni ·k (stated in Section 7.3.4.1) β̂i j k is a

√
Ni -consistent and asymp-

totically normal estimator. The large-sample properties of the estimator present a basis for
inference about the minimum CRPD model of voting behavior.

7.3.5 Remarks

One of the great questions of political science revolves around the ideal of representation.
Do our political institutions promote or inhibit fair representation of the masses? This is
a difficult question to answer, and there are few mechanisms through which we can gain
insight into it. One mechanism, however, is the election process. Elections can be seen as
natural experiments where we are able to observe repeatedly the behavior of the citizenry
and its response to political institutions over time. Although it is difficult to make large-
scale changes in our political structures, policies and platforms certainly change in response
to each election, and this process is ongoing. To gain maximal insight, we would ideally
like to know how preferences map to choices in a variety of contextual settings. Surveys
usually cannot capture these varieties of settings, whereas aggregate returns can. Moreover,
an analysis of aggregate data allows us to study those rarer instances in which institutions
do shift and we want to see how that change in structure alters the mapping of preferences
to choice.

The formulations in this section allow us to tap into these types of questions on a macro
level. We can observe how a macro unit such as a precinct behaves across elections and
through time. We can moreover, through the information theoretic formulations, observe
how this behavior changes as a function of precinct characteristics such as urban–rural or
minority composition or the strengths of major party affiliations.

These formulations are based on aggregate data, and so the results necessarily apply di-
rectly to the aggregate units only. The connection to individual-level behavior is clearly
indirect. Nonetheless, if one needs to provide an interpretation of individual behavior based
on aggregate data, the estimated conditional probabilities from the information theoretic
approach are a plausible basis. These conditional probability estimates are admittedly only
one way to summarize the aggregate data, but using this trajectory to arrive at a “solution” is
attractive in several ways. First, the information theoretic procedure provides a solution to
the ill-posed inverse problem that is consistent with the possible underlying data-generating
process. Second, this procedure provides an especially appealing solution in that the out-
comes represent voter counts that could have occurred in the greatest number of ways given
the data constraints (see Section 2.2 in Golan, Judge, and Miller, 1996, for details). Third,
political science theories rarely provide an adequate basis for specifying the random mecha-
nism by which the observed data are generated. As previously noted, the proposed approach
is semiparametric and does not require a fully specified likelihood function. Fourth, the in-
formation theoretic procedures allow one to stay within the general framework while using
additional nonsample information to condition the solution.
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7.4 RECOVERING INFORMATION ON INDIVIDUAL BEHAVIOR

In the approach to information recovery for the inverse problems in Section 7.3, we only use
the observed macro data relating to voter groups and candidates. Since one uses aggregate
data as an input, one gets information relevant at the aggregate level as output. For many
voter behavior questions, these aggregated estimates may not provide an adequate basis for
inference in either a positive or a normative sense. Ultimately, we are interested in micro
(individual voter) behavior, and this is the topic to which we now turn.

Viewing each election as an experiment, we use Equations 7.32 and 7.33 as a basis for
modeling the sampling process. We noted that it may be unrealistic to assume that the vote
counts and voter group shares (i.e., the ni j ·’s or the x’s) are measured without error. If we let
x∗ be the observed voter group shares from Equation 7.33 and x be the true unobservable
voter shares, then we may model x∗ as

x∗ = x + u , (7.42)

where u is an unobserved noise vector. Therefore, the underlying statistical model is

y = xβ + ε , (7.43)

but the observable version of Equation 7.33 is

y = x∗β + ε∗ , (7.44)

where

ε∗ = ε− uβ . (7.45)

If the measurement errors in x are independent of ε and mutually uncorrelated, then ε∗ is a
mean-zero noise vector with covariance Σ + ββ′σ 2

u I = Ω. In the statistical model based on
the observable data, x∗ is correlated with the random matrix ε∗. Thus, the usual linear model
condition that the right-hand-side explanatory variables are orthogonal in expectation to
the error process is violated. Further, traditional estimation rules based on E

[
x∗′ε∗] = 0

will have questionable statistical properties when this condition does not hold.
To mitigate the effect of the measurement errors, we use additional information that we

identify in the form of instrumental variables. This source of information makes use of
the fact that precincts may vary in their individual demographic characteristics and that
this variation may be related to the corresponding unknown and unobservable voter group
shares and conditional probabilities. Given the economic, political, and social differences
between precincts, it seems likely that the group shares and conditional probabilities βi j k

may vary over individuals, precincts, and/or time. To reflect this potential heterogeneity
in the micro behavior, we assume that the βi j k ’s are conditional on a set of explanatory
instrumental variables, and that these covariates reflect the individual, spatial, or temporal
differences in voter decisions. Thus, the instrumental variable (IV) approach provides a
method for estimating causal effects in a measurement error or simultaneous equation model
framework. The covariates may include measures of economic performance such as the
local level of unemployment, political characteristics such as incumbency, or demographic
variables such as the average age of the electorate. Using this information, along with the
observed macro data discussed in Section 7.3, it is possible to form a set of estimating
equations as a basis for recovering the unknown conditional probabilities and identifying
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the effect of the explanatory variables on the corresponding conditional probabilities. The
ultimate success of the moment-based specification depends on a plausible theory of micro
voter behavior that helps to identify the important behavior-conditioning factors.

Returning to the statistical model 7.42 where the observed x∗’s are now stochastic ex-
planatory variables that are correlated with the noise vector ε∗, one useful way to model the
data sampling process is to consider y and x∗ as endogenous, jointly determined random
variables. In this context, the statistical model becomes a system of relations

y = x∗β + ε∗ (7.46)

and

x∗ = Aπ + u , (7.47)

where A is a set of instrumental variables that are correlated with x∗ but uncorrelated with
ε∗ and u. Under this formulation, the simultaneous or structural equation statistical model
results, and traditional estimation and inference procedures apply directly to the model (see
Chapter 17 in Mittelhammer, Judge, and Miller, 2000, for more details).

In practice, the source of measurement error is varied and specific to the application
being considered. In general, we expect that some measurement error will be evident in the X
variable. For example, in the voting rights context, errors in the X variable are commonplace,
since the variable of interest, racial turnout proportions, is rarely accessible. Instead, one
must rely on a proxy variable such as racial registration proportions or racial population
proportions. Using a proxy variable leads to the type of measurement error mentioned
above.

7.4.1 Moment-Based Model Formulation

To link the βi j k to the explanatory instrumental variables, we rewrite the noisy inverse
statistical model 7.33 as

A′ y = A′Xβ + A′ε . (7.48)

The explanatory variables A are assumed to be uncorrelated with the noise components.
Consequently, we can form the following set of estimating equations:

E
[
A′ (Y − Xβ)

] = 0 (7.49)

and the sample analog

T−1A′ (Y − Xβ)
p→ 0 as T → ∞ . (7.50)

The individual components of the moment conditions may be stated in scalar form as

T−1
T∑

t=1

A′
ti

[
nti ·k −

g∑
j=1

nti j ·βti j k

]
= 0 (7.51)

for each i and k. To allow for heteroskedasticity across precincts and possible temporal
correlation, we assume regularity conditions on ε such that Equation 7.51 holds under an
appropriate weak law.
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The moment condition (7.51) may be extended to include the reparameterized conditional
probabilities βti j k and noise components εtik as in Section 7.3. The voter inverse problem
with noise and time-varying conditional probabilities may be solved by minimizing the
CRPD objective function

I (ϕ, w, λ) = 2

λ(1 + λ)

T∑
t=1

m∑
i=1

g∑
j=1

c∑
k=1

2∑
h=1

ϕti j kh

[(
ϕti j kh

qti j kh

)λ

− 1

]

+ 2

λ(1 + λ)

T∑
t=1

m∑
i=1

c∑
k=1

2∑
r=1

wtikr

[(
wtikr

utikr

)λ

− 1

]
(7.52)

subject to the estimating equations

T∑
t=1

A′
ti

[
nti ·k −

g∑
j=1

nti j ·
2∑

h=1

Zti j khϕti j kh −
2∑

r=1

Vtikr wtikr

]
= 0 (7.53)

plus the additivity conditions

c∑
k=1

2∑
h=1

ϕti j kh Zti j kh = 1 , (7.54)

ϕti j k1 + ϕti j k2 = 1 , (7.55)

wtik1 + wtik2 = 1 . (7.56)

The intermediate solution may be stated in terms of the Lagrange multipliers

ϕ̂ti j kh = qti j kh exp
(
α̂′

ik Ati Zti j khnti j + γ̂ti j Zti j kh

)
∑2

h=1 qti j kh exp
(
α̂′

ik Ati Zti j khnti j + γ̂ti j Zti j kh

) . (7.57)

The minimum-CRPD estimator of the time-varying conditional probability is

β̂ ti j k =
2∑

h=1

ϕ̂ti j kh Zti j kh . (7.58)

The Lagrange multiplier α̂ik provides a basis for evaluating the effect of the instrumental
variables on the solution.

In general, the estimators for the moment-based model formulation will also be con-
sistent and asymptotically normal under standard regularity conditions. For example, the
consistency result stated in Equation 7.50 and a related assumption regarding the asymp-
totic normality of T−1/2A′(Y − Xβ) may be used to establish the asymptotic properties. To
illustrate the basic statistical properties of the moment-based formulation, we conduct a
series of Monte Carlo simulation exercises for a cross-sectional version of the model with
m = 20 and m = 50 precincts or districts. Overall, the replicated estimates of the model pa-
rameters exhibit smaller sample bias and variance as the number of precincts, m, increases.
We discuss further details regarding the composition of the replicated sampling process and
the simulation results in the Appendix.
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7.4.1.1 Remarks

Applications of the ecological inference problem are often in areas where the estimates are
highly consequential. For instance, in the voting rights arena, the decision of a judge to grant
or deny relief under the Voting Rights Act turns entirely on an ecological inference. How
the system of representation plays out in our democracy is closely tied to how this type of
legislation is enforced. Hence, not allowing for measurement error in this context especially
could have great ramifications. Moreover, this is a circumstance where measurement error is
known to pose a problem. In particular, the voter group shares are often based on registration
rates (which can be obtained for a small set of localities) or population figures (which are
easily obtainable), but the variable of interest is racial turnout rates (which are very difficult
to obtain). Using one as a proxy for the other may be necessary, but also clearly problematic.

Some scholars have suggested a “double regression” approach to alleviate this problem
(Kousser, 1973; Grofman, Handley, and Niemi, 1992). This method embodies the same idea
as the minimum-CRPD method, but does not take any additional information into account.
The proposed instrumental variables approach allows one to incorporate the large literature
on voter turnout to help mitigate the effect of the undisputed measurement error. Although
the success of this formulation is dependent on a plausible theory of micro-level behavior, the
uncertainty can be assuaged by reliance on solid empirical studies in an extensive substantive
literature. While the formulations proposed here are at the macro level, they incorporate
information that has been empirically verified at the micro level.

7.4.2 The Discrete Choice Voter Response Model

In this section, we focus on obtaining and using micro data about individual voters in a
precinct. Our objective is to use these micro data to estimate the effects of political, social,
economic, and demographic variables on voter behavior and to recover the corresponding
marginal (conditional) probabilities. We envision a situation where detailed survey data
are collected on variables that characterize the voters in the precinct and indicate how
each person voted in a particular contest. Given micro data that reflect the individual
characteristics of a sample of voters, we model voter response as a discrete binary choice
problem.

To develop this model, we use the unordered multinomial statistical response model.
In this context, consider an unordered multinomial discrete choice problem with an ex-
periment (survey) consisting of N trials (voters in a precinct), in which binary random
variables y1 j , y2 j , . . . , yN j are observed. The binary outcomes {yi j } are observed for voters
i = 1, . . . , N and candidates j = 1, 2, . . . , J in a given precinct. The candidate indices
may be reordered without loss of generality so that the candidates represent J unordered
categories. The observed outcome is yi j = 1 if and only if voter i casts a vote for candidate
j , and yi j = 0 otherwise.

Let the probability that voter i casts a vote for candidate j be pi j , and assume that the
voting decision is related to a set of explanatory variables ai through the model

pi j (β) ≡ P
(

yi j = 1 | ai , β j

) = G
(

a′
iβ j

)
> 0 (7.59)

for each i and j . In particular, a′
i = (ai1, ai2, . . . , ai K ), β j is a K × 1 vector of unknown

response parameters, and G(·) is a function that links the probabilities pi j with the linear
combination a′

iβ j such that G(a′
iβ j ) ∈ [0, 1] and

∑J
j=1 G(a′

iβ j ) = 1.
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Suppose the observed outcomes of yi j are noisy, so that the underlying binary random
variables may be modeled as

Yi j = G
(

a′
iβ j

) + εi j = pi j + εi j , (7.60)

where the εi j are noise components. The binary response model may be written in matrix
form as

Y = p + ε , (7.61)

where each component is an N J × 1 vector. We assume E [ε] = 0 and that cov (ε) is a finite
positive semidefinite matrix. Note that this matrix is rank-deficient due to the additivity
property of the choice probabilities,

∑J
j=1 pi j = 1.

If we follow McFadden (1974), Manski and McFadden (1982), or Maddala (1983), we
may solve the problem with the traditional maximum likelihood approach. Under the log-
likelihood function

ln L (β; a) =
N∑

i=1

J∑
j=1

yi j ln G
(

a′
iβ j

)
, (7.62)

the solution is the multinomial logit estimator if G is the logistic CDF, and the multinomial
probit estimator if G is the multivariate normal (Gaussian) CDF.

Rather than adopt a fully parametric specification, we extend the ideas outlined in Section
7.4.1 and use a moment-based approach for estimation and inference. In this context, we
use the observed outcomes of y and the N × K matrix of explanatory variables a to recover
information about the unknown and unobservable model components p and β. For the
multinomial choice problem, this information may be written as an inverse problem with
noise that is linear in p:

(
IJ ⊗ a′) y = (

IJ ⊗ a′) p + (
IJ ⊗ a′) ε . (7.63)

The inverse problem has K J moment relations and N J unknown conditional probabilities.
Assuming the orthogonality condition E[(IJ ⊗ a′) ε] = 0 holds, we can form an unbiased
estimating function

E
[(

IJ ⊗ a′) (Y − p)
] = 0 , (7.64)

with sample analog

N−1
(

IJ ⊗ a′) (Y − p) = 0 . (7.65)

If N > K (as is often the case), the inverse problem based on this set of estimating equations
is ill posed.

One way to solve the ill-posed inverse problem and recover information about the un-
known model components is to use the CRPD criterion introduced in Section 7.3. For
expository simplicity, we focus on the special case of CRPD that results in Shannon’s en-
tropy functional. Under this information criterion, we can solve the following extremum
problem:

max
p

−p′ ln p , (7.66)
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subject to the moment constraints

(
IJ ⊗ a′) y = (

IJ ⊗ a′) p (7.67)

and the additivity constraints

[IN IN · · · IN] p = 1 , (7.68)

where the matrix on the left-hand side is N × N J , and 1 is an N × 1 vector of 1’s.
The information theoretic solution to the inverse problem may be derived from the

necessary conditions for this inverse problem. The intermediate form of the solution is

p̂i j = exp
(−a′

i λ̂ j

)
�i

(
λ̂

) = exp
(

a′
i β̂ j

)
�i

(
β̂

) , (7.69)

where λ̂ j is the K × 1 vector of optimal Lagrange multipliers for the j th moment constraint.
The expression represents only an intermediate solution to the inverse problem, because
p̂i j is a function of λ̂ j , which must be numerically determined. As indicated, the inverse
problem may also be stated in terms of the response parameters β̂ j = −λ̂ j . Finally, the
denominator component or partition function takes the form

�i

(
β̂

) =
J∑

j=1

exp
(

a′
i β̂ j

)
. (7.70)

Thus, by making use of the micro data in this multinomial context, we can recover estimates
of the response parameters β j and the corresponding marginal probabilities. Further, the
solution to the inverse problem has the same mathematical form as the logistic multinomial
probability model (Mittelhammer, Judge, and Miller, 2000, Chapter 20).

The intermediate solution may be substituted back into the Lagrange expression to form
a concentrated objective function

M(λ) = y′ (IJ ⊗ a)λ+
N∑

i=1

ln �i (λ) , (7.71)

which is identical to the log-likelihood function for the multinomial logit problem (Maddala,
1983: 36). Consequently, the asymptotic properties of the multinomial logit estimator also
apply to the information theoretic solution in this inverse problem, and the sampling results
may be used to form inferences regarding voter response to changes in the explanatory
variables. The solution to the inverse problem will not coincide with the multinomial logit
case if we use other members of the CRPD criterion family as the objective function. However,
related large-sample properties may be derived under comparable regularity conditions.

7.4.2.1 Remarks

Precincts represent an aggregate unit, which moreover is aggregated at an arbitrary level.
Precinct behavior is interesting in some contexts, but another challenge is reconstructing
individual-level behavior. Knowing how people vote is instrumental to understanding the
dynamics and consequences of our political structures. Surveys provide one means of ac-
complishing this task. However, surveys have clear weaknesses that could be overcome with
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aggregate data. The discrete choice formulations developed here provide a method for uti-
lizing survey information in conjunction with the aggregate data, and thus allow one to
draw from the strengths of both levels of data. For a discussion of this type of model in an
epidemiology context, see Wakefield and Salway (2001).

The discrete choice formulations provide but one way to bridge the chasm between the
macro and micro estimates. They enable us to condition on a set of covariates to make this
link from the macro to the micro. There have been many studies seeking to link covariates
to voter choice at the micro level. We look to these studies to guide the choice of explanatory
variables for the discrete choice formulations in Section 7.4. In particular, many of these
studies have established a clear empirical link between voter preferences and socioeconomic
variables such as age, income, and education. In addition, the socioeconomic variables can
be used to design a survey that would elicit information on individual attitudes and how
these characteristics map to attitudes. Indeed, we are more generally interested in mapping
attitudes to characteristics rather than the more narrow question of how attitudes map
to vote preferences. The former mapping is much more general and would allow us to
engage in a wider range of prediction. Campaign strategists, after all, are most interested
in forming effective targeting strategies based on individual characteristics, not individual
vote preferences per se.

Although there are many ways to transform this problem into a well-posed inverse prob-
lem, our formulation here is attractive because it has many of the same nice features as
the one discussed in Section 7.3. In particular, the procedure has a base in information
theory and empirical likelihood theory that permits semiparametric inference and allows
the incorporation of nonsample information when available.

7.5 IMPLICATIONS

Ecological inference problems provide an interesting challenge for polimetricians. The secret
ballot is designed to maintain a wall of secrecy around individual vote preferences, and it
has done so very successfully. As a result, the data generated from any election are partial
and incomplete. Consequently, the corresponding estimation and inference models present
themselves as underdetermined and ill-posed inverse problems. While our goal is to obtain
information in terms of conditional probabilities as a basis for expressing the micro processes
underlying the macro outcome data, these conditional probabilities are unobserved and
unobservable. This means few, if any, bets on the values of the unknowns will ever be
collected.

Although many theories about voting behavior exist, there does not appear to be one
overarching micro theory that encompasses all of the empirical and theoretical research
on the topic. Few have even discussed, or even seem willing to discuss, the prospects of
constructing a micro foundation for aggregate outcomes. This lack of model structure
creates presentational and interpretational problem and results in insufficient information
on which to specify a data sampling process that might be consistent with the observed data
outcomes. Hence, traditional estimation and inference procedures appear to be ill suited to
deal with ecological data. The use of creative assumptions to achieve tractability and well-
posed mathematical and statistical models leads in many cases to erroneous interpretations
and conclusions. No one ever said ecological inference was easy.

Building on the productive efforts of many polimetricians, in an effort to make some
progress on these interesting problems and challenges, we have considered nontraditional
methods of thinking about this problem. This approach recognizes that the problem of
sorting out voter behavior that is modeled in terms of unknown probabilities while making
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use of only aggregate data constraints results in an ill-posed inverse problem. In seeking a
basis for reasoning in this logically indeterminate situation, we have modeled the ecological
inference problem as a pure and a noisy inverse problem. In this context, to choose a
“solution” from the set of feasible solutions, the Cressie–Read statistic was used to identify a
family of goodness-of-fit or pseudodistance measures. This solution provides a useful way
to summarize a micro system that is consistent with the observed macro counterpart.

This formulation is also attractive in that it provides a straightforward way to include
prior nonsample information, is amenable to a multiplicity of precincts, can easily include
spatial and intertemporal aspects, and is easy to implement. Furthermore, it allows one to
alleviate problems such as measurement error by incorporating an instrumental variables
framework that may be employed along with the moment conditions to provide a basis for
recovering estimates of response parameters and the corresponding marginal probabilities
related to voter preferences. Finally, in order to bridge these estimates to the micro level, we
view the ecological inference problem as a discrete choice problem. This permits the recovery
of response parameters related to voter characteristics, and again recovery of corresponding
marginal (conditional) probabilities.

It is worth noting that the application of maximum entropy methods has been explored
in the ecological inference context (Johnston and Pattie, 2002). However, extensions of
the method which we explore (e.g., cross-entropy) and the introduction of information
theoretic techniques are novel in the study of ecological inference.

Under the instrumental variables and discrete choice formations, estimation and inference
proceed in the context of sampling theory and provide a sampling basis for evaluating
performance. To a large extent, the information-processing and recovery rules described are
nontraditional and do not assume information about the underlying sampling distributions,
which is unknown. These nonparametric or semiparametric formations permit one to stay
within the realm of sampling theory but allow one to avoid the rigidity of likelihood functions
and proceed on the basis of a finite set of moment conditions.

In looking ahead toward ways to think about ecological inference problems, semiparamet-
ric and nonparametric formulations of the random coefficient models seem to be promising
avenues. In this framework, one may replace unknown functions with reasonable non-
parametric estimators rather than the maximum likelihood estimator that constrains the
parametric setting. One possibility in this connection is sieve empirical likelihood estima-
tion and testing procedures. Alternatively, the Bayesian method of moments offers a basis
for recovering conditional probabilities without the usual Bayesian likelihood and prior
distributions.

The writing of this chapter, which led to a trek into the world of ecological inference,
has been a very rewarding experience. It has reminded us that aggregate analyses that lead
to invalid micro inferences also have implications and consequences other than statistical
ones. It is also refreshing for economists to be reminded that the problem of recovering
micro-level effects from an aggregate counterpart is not unique to economic data.

APPENDIX. ILLUSTRATIVE EXAMPLES

Information-Theoretic Formulation

To illustrate the properties of the information theoretic approach, we consider a special
case of the VPI problem based on an election with k = 4 candidates in some precinct.
Suppose that N votes were cast for the candidates, and that we record the individual votes as
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xi = k for i = 1, . . . , N and k = 1, . . . , 4. Because of the secret ballot, individual records
are unknown, and thus we only have the average vote outcome from the election, x . Further,
suppose we believe that the candidates are equally likely to win the election ex ante. The
objective of our VPI problem is to estimate the proportion βk of votes that each candidate
received, based on this very limited information. Within the context of Section 7.3, we solve
the problem by maximizing the CRPD objective function with uniform reference weights
and λ → 0,

−
4∑

k=1

βk ln βk , (7.72)

subject to

4∑
k=1

βkk = x , (7.73)

4∑
k=1

βk = 1 , (7.74)

by choice of βk ≥ 0. The intermediate solution to the VPI problem is

β̂k = exp (−α̂k)∑4
k=1 exp (−α̂k)

, (7.75)

where α̂ is the optimal Lagrange multiplier for the constraint 7.73.
Although the problem is stated as a constrained maximization, the computational burden

may be reduced by concentrating the estimation problem. Following the discussion of Equa-
tion 7.71 for the discrete choice problem in Section 7.4.2, we can substitute the intermediate
solution 7.75 back into the Lagrange equation for the problem defined by Equations 7.72 to
7.74. The resulting concentrated objective function

M(α) = αx + ln

[
4∑

k=1

exp (−αk)

]
(7.76)

is strictly convex in α, and the optimal value of the Lagrange multiplier may be computed by
minimizing M(α). We can then evaluate Equation 7.75 at α̂ to determine the estimated vote
shares. Thus, the estimates for the VPI problem may be computed with any software package
that solves unconstrained optimization problems (e.g., maximum likelihood or nonlinear
least squares estimation). In general, we can form concentrated objective functions for any
of the minimum-CRPD problems stated in this chapter, and we provide additional examples
in the following subsection.

The simple VPI problem is very similar to Jaynes’s famous dice problem in which we must
assign probabilities to the six faces of a die based on the observed average outcome of N rolls.
In our case, we have four unknown probabilities βk and only two pieces of available infor-
mation. To demonstrate the solution to our simple VPI problem, we report the conditional
probabilities for five different values of x in Table 7.2. Note that all of the minimum CRPD
solutions to this problem based on uniform reference weights are discrete uniform when
x = 2.5. Otherwise, the estimated conditional probabilities are monotonically increasing if
x > 2.5 and monotonically decreasing if x < 2.5.
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Table 7.2 Solutions to the simple VPI
problem

Candidate

x̄ 1 2 3 4

1.5 0.648 0.235 0.086 0.031
2.0 0.421 0.277 0.182 0.120
2.5 0.250 0.250 0.250 0.250
3.0 0.120 0.182 0.277 0.421
3.5 0.031 0.086 0.235 0.648

Variants of King’s Ohio Voter Problem

To further demonstrate the minimum CRPD procedure, we consider the simple problem
presented by King (1997) in his Table 1.2. For a particular Ohio precinct, King reports the
number of votes for the two major parties plus the number of nonvoters (c = 3) in the
1990 Ohio for the state House of Representatives election. King also reports the number of
registered black and white voters in the Ohio precinct (g = 2). The data provided by King
are the row and column sums in Table 7.3. For example, there are 221 black registered voters
in the precinct, and 92 votes were cast for the Republican candidate. The associated VPI
problem is to estimate the number of votes cast for each party (including no-vote tallies)
conditional on the race of the voter. In effect, we have g (c − 1) = 4 unknown probabilities
and g − 1 = 2 pieces of information (after normalization), and King’s problem is clearly
underdetermined.

The problem is solved using the minimum-CRPD estimator with uniform reference
weights and λ → 0. The objective function is Equation 7.23, and the intermediate solution
for the constrained optimal βi j k is a special case of Equation 7.22:

β̂ j k = exp
(−α̂kn j ·

)
∑3

k=1 exp
(−α̂kn j ·

) . (7.77)

To compute the optimal Lagrange multipliers α̂k , we minimize the concentrated objective
function

M(α) =
3∑

k=1

n·kαk +
2∑

j=1

ln

[
3∑

k=1

exp
(−αkn j ·

)]
. (7.78)

The predicted vote counts appear in the individual cells in the table, and the estimated
conditional probabilities are reported in parentheses. Without access to the individual bal-
lots, we cannot know the true values of the elements βi j k in this example. However, we
do know that the solution is consistent with a reasonable set of regularity conditions and
with what is known about the set of feasible conditional probabilities βi j k . Further, the
estimated voter counts have maximum multiplicity under the Shannon entropy criterion.
That is, the conditional distribution that maximizes Equation 7.23 is coincident with the
set of cell-specific vote outcomes that may be realized in the largest number of ways given
the row and column sum constraints (see Section 2.2 in Golan, Judge, and Miller, 1996, for
more details).
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Table 7.3 Estimates for the Ohio voter problem

Candidate

Group Democrat Republican No Vote Count

VPI problem
Black 56.8 46.0 118.2 221

(0.2570) (0.2080) (0.5350)

White 73.2 46.0 364.8 484
(0.1512) (0.0951) (0.7536)

130 92 483 705

VPI problem with bounded probabilities
Black 67.0 47.0 107.0 221

(0.3030) (0.2130) (0.4840)
[0, 0.588] [0, 0.416] [0, 1]

White 63.0 45.0 376.0 484
(0.1300) (0.0930) (0.7770)
[0, 0.269] [0, 0.190] [0.541, 0.998]

130 92 483 705

VNI problem with bounded probabilities and errors
Black 64.9 45.9 110.2 221

(0.2940) (0.2080) (0.4990)
[0, 0.588] [0, 0.416] [0, 1]

White 65.1 46.1 372.8
(0.1350) (0.0950) (0.7700) 484
[0, 0.269] [0, 0.190] [0.541, 0.998]

130 92 483 705
[−0.031, 0.031] [−0.033, 0.033] [−0.026, 0.026]

To demonstrate the effect of the bounds on βi j k , we solve the bounded VPI problem and
present the results in Table 7.3. For this version of the VPI problem stated in Section 7.3.3,
the weights on the bounds are special cases of Equation 7.31:

ϕ̂ j kh = exp
(−α̂kn j · Z j kh − γ̂ j Z j kh

)
∑2

h=1 exp
(−α̂kn j · Z j kh − γ̂ j Z j kh

) . (7.79)

The concentrated objective function for this problem,

M(α, γ) =
3∑

k=1

αkn·k +
g∑

j=1

γ j +
2∑

j=1

3∑
k=1

ln

[
2∑

h=1

exp
(−αkn j · Z j kh − γ j Z j kh

)]
, (7.80)

is derived by substituting the intermediate solution back into the Lagrange equation, and
the optimal Lagrange multipliers α̂k and γ̂ j are computed by unconstrained minimization
of M(α, γ). The solution values of βi j k are computed from the optimal weights ϕ̂ j kh as in
Equation 7.29, and the estimates appear in parentheses below the estimated vote counts. The
associated Duncan–Davis bounds appear below in brackets. In five of six cells, the upper
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or lower bounds narrow the feasible set to a proper subset of [0, 1]. Also, the estimated
conditional probabilities are near (but not exactly at) the center of the bounded intervals.
Relative to the unbounded results, note that the bounding information has effectively shifted
votes from the no-vote category to the Democrat columns for black voters. For whites, the
shift is from the Democrat category to the no-vote column. Of course, we do not know
that this solution is better than the unbounded pure solution, because the cell values are
unobservable.

To illustrate the case with bounds and λ → 0 from Section 7.3.4.2, we solve the Ohio
voting example in terms of the extended VNI problem with bounds on βi j k and εik . We
use the bounds on βi j k stated in Table 7.3, and the upper and lower bounds appear below
the estimates in the table. The error bounds are selected to be symmetric about zero with
δik = 1. The upper and lower error bounds are stated below the column counts at the bottom
of Table 7.3. The intermediate solution for ϕ j kh takes the same form as in the bounded VPI
problem, but the optimal values of α and γ for this problem will be different due to the
presence of the noise term. The concentrated objective function is

M∗(α, γ) = M(α, γ) +
3∑

k=1

ln [exp (−αk Vk1) + exp (−αk Vk2)] , (7.81)

and the term added to M(α, γ) represents the presence of the noise terms.
Relative to the two preceding demonstrations, note that the estimates for the bounded VNI

problem represents an intermediate case—some of the mass shifted to form the bounded VPI
estimates has reverted to the unbounded VPI case. In effect, the noise components weaken
the constraints for the VNI problem, and the solution can move closer to the unbounded
outcome. Although the column sums are not strictly required to match the observed values,
note that they do in this solution. Further, the use of wider error bounds reduces the
tendency for the column sums to be satisfied by the estimated conditional probabilities.

This is a fairly simplistic example that could be extended easily in several ways. For instance,
under the usual scenarios, candidates are far from equally likely to win the election ex ante.
The equally likely assumption can be weakened so that we can incorporate our fairly accurate
ability to predict election outcomes long before they occur. In an actual application of this
approach, we will be able to capitalize on the information provided by a larger number of
precincts. This example supplies estimates for just one precinct. Presumably, the numerous
precincts that would constitute a data set would supply additional information. We could
perhaps take advantage of information underlying some manifested spatial autocorrelation
among the precincts (for work in this area, see Anselin and Cho, 2002; Calvo and Escolar,
2002; Gotway and Young, 2002; and Haneuse and Wakefield, 2002).

Given the large uncertainty that surrounds these estimates, it is difficult to choose among
these three demonstrations. One might be inclined to the VNI formulation with bounds
simply because the bounds are deterministic information that one would like to incorporate
and the errors certainly seem to be important and plausible features as well. Interestingly,
however, none of these demonstrations produces substantively different results. And even
without explicitly incorporating the bounds, the estimates for the VPI problem are within
the bounds. This lack of variation in the estimates is especially true for the Republican
candidate, for whom the range of vote counts is minuscule (45–47), as is the range of vote
proportions. The range for the Democratic candidate is larger, but still not large enough
to be interesting. The bounds in this case are relatively narrow, so it is surprising that they
would not have a greater effect.

Lastly, we note that the estimates in these cases, especially when the bounds are incorpo-
rated, appear to tend toward the center of the possible range of values, and that the estimates
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Table 7.4 Simulation results for the moment-based formulation

m = 20 m = 50
True

Parameter value Average Std. dev. Average Std. dev.

α11 0.1 0.1288 0.94 0.1378 1.13
α12 0.2 0.1559 1.49 0.1890 1.64
α13 0.3 0.2795 1.87 0.3002 0.25
α21 0.4 0.4296 0.95 0.4385 1.12
α22 0.5 0.4580 1.49 0.4886 1.63
α23 0.6 0.5998 1.87 0.5997 0.24
α31 0.7 0.7276 0.94 0.7381 1.13
α32 0.8 0.7570 1.49 0.7890 1.64
α33 0.9 0.8826 1.87 0.9001 0.26
α41 1.0 1.0303 0.95 1.0394 1.13
α42 1.1 1.0578 1.50 1.0856 1.62
α43 1.2 1.1795 1.86 1.1988 0.23

for the white group and the black group tend to be similar. This is not particularly sur-
prising, as one might initially guess that the estimated voter counts would have maximum
multiplicity toward the center rather than toward either end of the range of possibilities.
In this sense, one might believe that this estimator would produce estimates consistent
with the conclusion that different groups of voters tend to act similarly. The implications
for using this estimator in a voting rights case, then, can be quite consequential, since the
charge in those cases is to determine whether there is polarized voting among the groups
in the electorate and the inclination of the estimator is to provide group estimates that are
similar.

Moment-Based Formulation

We now demonstrate the sampling properties of the estimator for the moment-based model
formulation in Section 7.4.1. In particular, we consider a cross-sectional version of the model
based on m = 20 and m = 50 precincts with g = 3 voter types and c = 4 candidates. Three
instrumental variables Ai are used for each precinct, and these include a constant (i.e.,
vector of ones) and two nonconstant instruments generated as pseudorandom standard
normal variables (fixed in repeated samples). We also simplify the formulation stated in
Section 7.4.1 by using uniform reference weights for the conditional probabilities and by
ignoring the bounds on the conditional probabilities. Following the notation in Equation
7.57, we denote the associated Lagrange multipliers for this version of the model as αkh ,
where k = 1, . . . , 4 and h = 1, . . . , 3. The row-sum values are the same for each precinct:
ni1· = 0.3, ni2· = 0.25, and ni3· = 0.45. The mean values of the column-sum values ni ·k
are derived from Equation 7.1 based on a set of “true” conditional probabilities that are
functions of the observed instrumental variables Ai and the true values of the Lagrange
multipliers αkh (see Table 7.4 for the true values). To represent sampling variability in the
candidate shares as in Equation 7.5, we add Gaussian noise components with mean zero and
variance 0.0001 to the mean values of ni ·k for k = 1, 2, 3. The noisy value of ni ·4 is recovered
by normalization: ni ·4 = 1 − ni ·1 − ni ·2 − ni ·3.

The sampling process is replicated for m = 20 and m = 50 precincts over 500 Monte Carlo
trials. The estimated Lagrange multipliers are saved from each trial, and the sample mean and
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standard deviation of the estimates for each αkh are reported with the true parameter values
in Table 7.4. Given that this is a cross-sectional sample (T = 1), the regularity conditions
stated in Section 7.4.1 do not directly apply to this case. However, we find that the sample
means of the α̂kh ’s are close to the true parameter values and that the simulated standard
deviations are stable. The sampling results are especially encouraging in that we are not
relying on time series observations (T = 1) and the largest value of m is small relative to
typical numbers of precincts. Further, the efficiency of the moment-based estimator may be
improved by allowing for spatial correlation among the precincts.
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8 Ecological Panel Inference from Repeated Cross Sections∗

Ben Pelzer, Rob Eisinga, and Philip Hans Franses

ABSTRACT

This chapter presents a Markov chain model for the estimation of individual-level binary transitions
from a time series of independent repeated cross-sectional (RCS) samples. Although RCS samples
lack direct information on individual turnover, it is demonstrated here that it is possible with these
data to draw meaningful conclusions on individual state-to-state transitions. We discuss estimation
and inference using maximum likelihood, parametric bootstrap, and Markov chain Monte Carlo
approaches. The model is illustrated by an application to the rise in ownership of computers in Dutch
households since 1986, using a 13-wave annual panel data set. These data encompass more information
than we need to estimate the model, and this additional information allows us to assess the validity
of the parameter estimates. We examine the determinants of the transitions from have-not to have
(and back again) using well-known socioeconomic and demographic covariates of the digital divide.
Parametric bootstrap and Bayesian simulation are used to evaluate the accuracy and the precision of
the ML estimates, and the results are also compared with those of a first-order dynamic panel model.
To mimic genuine repeated cross-sectional data, we additionally analyze samples of independent
observations randomly drawn from the panel. Software implementing the model is available.

8.1 INTRODUCTION

It has sometimes been argued that King’s ecological inference model can be adapted and
fruitfully applied to independent repeated cross-sectional (RCS) samples (see, e.g., Penubarti
and Schuessler, 1998; King, Rosen, and Tanner, 1999). To date, however, surprisingly little
research has been devoted to the development of cross-level inference models that draw
panel conclusions from nonpanel data.1 Moreover, the existing approaches to ecological
panel inference are implicitly or explicitly grouping methods, which suffer from small-
sample-size restrictions. The individual observations are typically grouped into a limited
number of observed covariate patterns, based on time-invariant characteristics (e.g., sex,
race). For each covariate pattern, the margins of a transition table are obtained by aggregating

∗ The data for the Socio-Economic Panel used in this paper were collected by Statistics Netherlands and were
made available by the Scientific Statistical Agency of the Netherlands Organization for Scientific Research. Our
program CrossMark implements all the simulations and estimations reported here. It is programmed in Delphi
but distributed as a standalone program running under Windows. The program (including documentation) is
free software and available from the first author 〈b.pelzer@maw.kun.nl〉.

1 Studies that are related to this topic include Franklin (1989), Moffitt (1990, 1993), Sigelman (1991), Mebane
and Wand (1997), Penubarti and Schuessler (1998). The model presented by Quinn in Chapter 9 of this volume
is also of relevance. The framework discussed here has, in its basic form, been proposed by Moffitt (1990, 1993).
Pelzer, Eisinga, and Franses (2002) discuss the (dis)similarities between this model and the ecological panel
inference (EPI) method of Penubarti and Schuessler (1998) and the two-stage auxiliary instrumental variables
(2SAIV) approach of Franklin (1989).

188
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within the groupings, and this aggregate information is subsequently used to track changes
in the dependent variable of interest. Obviously, such grouping methods are likely to face
difficulties (such as sparse-data problems) if the number of covariates and/or the number
of repeated cross sections become large.

In this chapter we consider a transition inference model for RCS data with a more dynamic
and more flexible structure. In the model proposed here, the micro observations need not
be divided into (fixed) groups to obtain sample aggregates. In fact, the variation in the
individual covariates is utilized as part of the estimation procedure. The model therefore
takes full advantage of the individual survey data and provides full information on the effects
of covariates entering the model.

There are several reasons for investigating dynamic models for RCS data. One is the
lack of genuine panel data. Panel designs are, rightfully, highly regarded for the oppor-
tunity they offer to measure transitions of state or value from repeated observations on
the same sample units. For many research issues, however, adequate panel data are rather
hard to come by or simply unavailable. Another major difficulty is that panel data are po-
tentially subject to nonsampling biases. An important such bias is sample attrition that
results from the progressive loss of (often selective groups of) respondents willing to par-
ticipate in the data collection. While nonresponse is also a limitation for cross-sectional
surveys, it is a more serious problem for panel data because nonresponse often accumu-
lates over time. A related limitation is that it is often difficult to ensure that changes in
the target population are reflected in the panel. While panels are typically designed to be
representative of the population at the beginning of the study, the panel ages over time, and
few panels are, in addition to providing longitudinal data, also designed to permanently
provide fully representative information of the population by continuous renewal of the
sample.

A large number of cross-sectional surveys conducted by public and private organizations
are repeated at regular time intervals. These repeated cross-sectional surveys do not suffer
from panel mortality and reflect changes in the universe that cannot be taken into account
by a panel study. Estimating individual transitions from such data has an air of performing
an impossible task, of obtaining information from nowhere. Indeed, it is often argued that
panel data are absolutely needed to study individual-level change (e.g., Kish, 1987: 167).
While individual change is obviously only visible in panel data, we will show that this
argument is not correct and that data from successive, separately drawn samples can be used
to validly estimate transitions using a model that is no more magical than the use of “plug-in”
estimates and bridging assumptions in other areas of statistical modeling.

The outline of this chapter is as follows. Section 8.2 presents a Markov transition model
for repeated cross sections designed to deal specifically with binary responses. The model
has its origins in the work of Moffitt (1990, 1993). We briefly review its main features and
discuss maximum likelihood (ML), parametric bootstrap, and Markov chain Monte Carlo
(MCMC) approaches to estimation and inference. Section 8.3 considers an application of
the model to the rise in computer penetration rates in Dutch households from 1986 to
1998, using annual panel data from the Socio-Economic Panel (SEP) survey of Statistics
Netherlands. We examine the determinants of the transitions from “have-not” to “have”
(and back again) using well-known socioeconomic and demographic covariates of the digital
divide. Parametric bootstrap and Bayesian simulation are used to evaluate the accuracy and
the precision of the RCS Markov ML estimates, and the results are also compared with those
of a first-order dynamic panel model. To mimic genuine RCS data, we additionally analyze
samples of independent observations randomly drawn from the panel. The summary in
Section 8.4 concludes the chapter.
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8.2 ESTIMATING TRANSITIONS FROM RCS DATA

8.2.1 Binary Transition Model

Obviously, the estimation of dynamic models with repeated cross-sectional data is hampered
by the lack of information about lagged variables. Let yit denote the observed response for
the binary random variable y of unit i at time period t. The crucial characteristic of RCS data
is that yit is observed, but yi t−1 is not. Consequently, no estimate of the serial covariance
of successive yit is available in RCS data. This does not imply that dynamic models cannot
be estimated with repeated cross sections. However, it does imply that estimation of the
unobserved transitions is possible only by putting certain constraints on the transitions for
unit i and/or time period t.

Consider a 2×2 transition table in which the internal cell values sum to unity across
rows. If we define pit = P (yit = 1), µi t = P (yit = 1 | yi t−1 = 0), and λi t = P (yit = 0 |
yi t−1 = 1), then we have the well-known accounting equation

E (yit ) = pit = µi t (1 − pi t−1) + (1 − λi t )pi t−1, (8.1)

which is recognized as the equivalent of Equation 0.4 presented in the Introduction to this
book. This identity is the critical equation that needs to be solved in estimating dynamic
models with repeated cross sections, as it relates the marginal probabilities ( pit and pi t−1)
to the entry (µi t ) and exit (λi t ) transition probabilities. A more concise form for the same
equation is pit = µi t + ηi t pi t−1, so that ηi t = 1 − λi t − µi t . It is also sometimes conve-
nient to define κi t = 1 − λi t = P (yit = 1 | yi t−1 = 1). If we recursively substitute for pit

in Equation 8.1 and derive its reduced form in terms of past µi t and λi t , then we get

pit = µi t +
t−1∑
τ=1

[
µiτ

t∏
s=τ+1

ηi s

]
+ pi0

t∏
τ=1

ηiτ . (8.2)

This is the model equation that will be used in this chapter. It is obviously not uniquely
solvable with RCS data without identifying constraints. Several types of restrictions may be
used in this context.

One is to impose some direct restraint on the patterns of the unobserved µi t and λi t . For
example, the parameters in Equation 8.2 are clearly identifiable with RCS data if we take the
transition probabilities to be homogeneous with respect to both units i and time periods t.
With the assumption that µi t = µ and λi t = λ for all i and t, the long-run value of pit in
Equation 8.2 reduces to pit = µ/(µ + λ) (see, e.g., Ross, 1993: 152–153). Models with this
type of homogeneity have been studied extensively in the statistical literature, and they have
been applied in various economic, social, and political science studies (see Pelzer, Eisinga,
and Franses, 2002, for additional references).

The model proposed here uses a different type of restriction. This restriction may be
imposed if the cross-sectional data include covariates xi t that are measurable in the past
(by “backcasting”), and if the current and the lagged xi t affect µi t and λi t . In that case, the
covariates xi t , xi t−1, . . . , xi1 can be employed to obtain current and backward predictions
of the entry (µi t , µi t−1, . . . , µi1) and exit ( λi t , λi t−1, . . . , λi2) transition probabilities, by
specifying

µi t = F (xi tβ) and λ i t = 1 − F (xi tβ
∗). (8.3)
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In these equations β and β∗ are two different sets of k-dimensional parameters associated
with two potentially different sets of (time-invariant or time-varying) k-dimensional co-
variates xi t , and F is the – in this paper logistic – link function. Estimates of the model
parameters are obtained by substituting Equation 8.3 into 8.2.

The critical identifying restriction used here is that the regression parameters are taken
to be constant over time, but this constancy assumption may easily be relaxed if we have a
sufficient number of repeated cross sections. We may use a semiparametric approach that
assumes the parameters to be constant within but different across discrete time periods,
or we can model the parameters as a function of time using polynomials or splines. For
example, in our empirical illustration below, we introduce time variation into the model
by allowing the baseline entry rates (i.e., the constant parameter) to become a first-degree
polynomial in time. This is accomplished simply by including the variable time in the model.
It is important to note that the underlying Markov chain is not assumed to be homogeneous
in the model proposed here, implying that the entry and exit transition probabilities may
vary across both units i and time periods t. Also note that to obtain pit , we actually integrate
(sum) over all possible unobserved state-to-state transition paths for each individual unit i ,
starting at t = 1 and ending at the cross-sectional observation period t. This implies that the
probabilities are estimated as a function of all the available cross-sectional samples, rather
than simply the observations from the current time period.

Other, perhaps more implicit assumptions underlying the application of the model are
that pi0 = 0, that all the covariates xi t included in the model should have known values
in the past, and that the estimation of the entry and exit transitions depend exclusively
on variations in the covariates observed. With respect to the first assumption, it should
be noted that pi1 is the first observed outcome and pi0 the value of the state prior to the
first outcome. It is generally difficult to incorporate the prior state into the model, and we
could invoke the restriction that pi1 = 0, the consequence of which would be that pi1 = µi1.
However, because in many applications the latter assumption is untenable, we prefer to use
a separate logistic function for the cross section at t = 1, i.e., P (yi1 = 1) = F (xi tδ). The
δ-parameters are estimated simultaneously with the entry and exit parameters of interest at
t = 2, . . . , T , and they are estimated as a function of all cross-sectional data, rather than
simply the observations at t = 1.

If some of the covariates are “nonbackcastable” (i.e., if their past history is unknown),
the model may be modified by estimating two different sets of parameters for both µi t

and λi t : one for the current transition probability estimates and a separate one for the
preceding estimates. If we denote the time-dependent covariate with unknown past history
by vi t and the associated parameter vector representing the effect on µi t by ζ , then we have
logit(µi t ) = xi tβ

∗∗ + vi tζ for cross section t, and logit(µi t ) = xi tβ for the cross sections
1, . . . , t − 1. This specification allows one to express the current transition probability
estimates as a logistic function of both backcastable and nonbackcastable variables. A similar
model may be specified for λi t . It should be noted here that in our application below we
assume that β∗∗ = β.

If the assumption that all relevant variables are included in the model is not a realistic
one, it may be useful to include an individual-specific random error term εi in the linear
predictor of the transition probabilities to allow for omitted variables, at least insofar as these
variables are time-invariant for each individual. In this logistic–normal mixture model
we have logit(µi t ) = xi tβ + γ0εi and logit(1 − λi t ) = xi tβ

∗ + γ1εi , where γ0 and γ1 are
coefficients of the random variable εi having zero mean and unit variance. To estimate the
parameters, the (marginal) likelihood of this model may be integrated with respect to the
distribution of εi using the Gauss–Hermite quadrature approximation. While likelihood
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inference about the parameters is possible, it is worth noting that accurate estimation of γ0

and γ1 from the data themselves is difficult, unless the number of observations is large. As
unobserved heterogeneity is not examined in the empirical application below, we will not
elaborate on this topic here. Pelzer, Eisinga, and Franses (2002) provide further details.

Finally, it may be useful to outline the commonalities and differences between the eco-
logical analysis of aggregate data and the Markov model for repeated cross-sectional data
proposed here. As noted by Sigelman (1991) and Penubarti and Schuessler (1998), drawing
panel inferences at the micro level from repeated cross sections constitutes an ecological
inference problem. To demonstrate this point, consider the following partially observed
transition table for a population in which there is an absence of both recruitment (immi-
gration or birth) and losses (emigration or death):

Yt = 0 Yt = 1
Yt−1 = 0 N0

t−1

Yt−1 = 1 N1
t−1

N0
t N1

t N

In this closed population the marginal distributions are known and fixed, and the ecological
inference problem arises because the aggregate measures of change are observed, but the
interior cells are not. The two margins provide (at least some) information on the cells,
and the accounting identity ensures that the Duncan and Davis (1953) bounds (also termed
Fréchet bounds in the statistical literature) will obtain. If we have available a sufficiently
large number of transition tables for consecutive time points, an ecological inference model
such as that presented by Quinn in Chapter 9 of this volume may be applied to the data.

The situation is somewhat different if the data are drawn from a time series of independent
samples of the population of interest. In that case, the marginal values are estimates of the
true population parameters and thus themselves subject to error (Tam Cho, 1998). And this
implies that the bounds too will be known only up to sampling error. If the sample sizes are
large, one may be willing to take the margins as fixed and error-free and use the samples to
obtain the marginal proportions of the transition table, as presented in the left panel below:

Yt = 0 Yt = 1 Yt = 0 Yt = 1
Yt−1 = 0 p0

t−1 Yt−1 = 0

Yt−1 = 1 p1
t−1 Yt−1 = 1

p0
t p1

t 1 p0
i t p1

i t 1

If the data are limited to yit , we could apply the inference model proposed here, using a
Markov model with constant terms only. If we additionally observe covariates, we could also
aggregate the micro data into covariate patterns, as in Penubarti and Schuessler (1998), to
obtain the marginal distributions of the transition table for each pattern and thus ranges of
feasible entries that are consistent with the margins. King’s EI could then be used to exploit
the information provided by the bounds (using covariate patterns as equivalents to precincts
in the analysis of voting). The number of patterns obviously should not be too large relative
to the sample size, to obtain reasonably reliable aggregates. Hence the method is likely to
suffer from small-sample-size restrictions.

Also note that in using this grouping method, inferences are at the level of individuals
sharing the same values of the observed covariates, that is, at the level of the covariate
patterns, rather than at the level of individuals. This allows one to trace fixed groups over
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time rather than individuals, whose covariate values might change. Thus, the method is
applicable only if we have a sufficient number of observations for every covariate value
and if, in addition, the covariates are time-invariant (so that the sample population can be
divided into groups with fixed membership). It faces difficulties in cases of time-varying or
nonbackcastable covariates, and these difficulties increase if the number of repeated cross
sections becomes large.

The empirical application discussed in Section 8.3 may be used to illustrate the issue. The
covariates used in that example include education, age, number of household members,
income, and time. The number of covariate patterns observed is 10,510, and the average
number of observations per pattern is 2.5. Even if we were to categorize the variable age
into three different age categories, as is done in the estimation procedure, the number of
covariate patterns would still be large (1,053) and, accordingly, the number of observations
per group low (about 25 on average). That is, the group sizes in this example are simply too
small for us to ignore the presence of sampling error. And this implies that the data at hand
cannot be used to fruitfully compare the performance of our model with the EI grouping
method. That is a very interesting and important topic, but one left for future research with
other data.

As indicated, what is special for the current model is that the information available in the
repeated cross sections is fully exploited. In the model proposed here, there is no grouping of
the data, and in the extreme case each individual unit may have its own covariate pattern. This
means, as illustrated in the right panel above, that in our procedure only one of the margins
(yit ) is available for inference, and the other one (yi t−1) is not. And this in turn implies
that in our model the repeated cross sections themselves cannot provide any deterministic,
informative restrictions on the entries. Consequently, the inference problem in the model
proposed here is greater (in the sense of having a larger number of unknowns) than in the
applications where the margins are (assumed to be) known. The approach proposed here
is to completely express the marginal probabilities pit in terms of µi t and κi t , recursively,
so that estimating the latter automatically renders the former. Also, Equation 8.1 may be
rearranged into µi t = pit/(1 − pi t−1) − pi t−1/(1 − pi t−1)κi t , where κi t = 1 − λi t . This
expression resembles the equation that King (1997) termed the “tomography line” (i.e.,
Equation 0.5 in the Introduction to this book). Since the estimated marginal probabilities
pit and pi t−1 are guaranteed to lie in the (0, 1) range, bounds are enforced on the maximum
likelihood estimators of µi t and κi t . These upper and lower limits are not informative as in
the Duncan and Davis (1953) methods of bounds, however, but rather logical limits implied
by the model.

8.2.2 Estimation and Simulation

8.2.2.1 Maximum Likelihood Estimation

The method of maximum likelihood may be used to estimate the parameters in Equa-
tion 8.3 – plugged into 8.2 – along with their (co)variances. For a sample of n statistically
independent observations – where each observation is treated as a single draw from a
Bernoulli distribution – with success probability pit , the model 8.2 has the log likelihood
function

�� =
T∑

t=1

nt∑
i=1

��i t =
T∑

t=1

nt∑
i=1

[yit log( pit ) + (1 − yit ) log(1 − pit )],
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where T is the number of cross sections and nt the number of units of the cross-sectional
sample at time period t. Maximization of this function has to be performed iteratively and
requires the derivatives of the log likelihood with respect to the (vector of) parameters, θ ,
say. If we suppress subscript i to ease notation, the first derivatives with respect to θ are

∂��t

∂θ
= yt − pt

pt (1 − pt )
· ∂pt

∂θ
,

where

∂pt

∂θ
= ∂µt

∂θ
+ ∂pt−1

∂θ
ηt + pt−1

∂ηt

∂θ
.

If θ is used to estimate µt , then ∂µt/∂θ = xtµt (1 − µt ) and ∂ηt/∂θ = −∂µt/∂θ . If it
is used for λt , then ∂µt/∂θ = 0 and ∂ηt/∂θ = xtλt (1 − λt ). The values for ∂pt/∂θ can
be obtained by recursive substitution, setting p0 = 0 and ∂p0/∂θ = 0, and starting from
∂p1/∂θ = ∂µ1/∂θ = x1µ1(1 − µ1). The second derivatives are

∂2��t

∂θ ∂θ ′ = − (yt − pt )2

p2
t (1 − pt )2

· ∂pt

∂θ
· ∂pt

∂θ ′ + yt − pt

pt (1 − pt )
· ∂2 pt

∂θ ∂θ ′ ,

where

∂2 pt

∂θ ∂θ ′ = ∂2 pt−1

∂θ ∂θ ′ · ηt + ∂pt−1

∂θ ′ · ∂ηt

∂θ
+ ∂2µt

∂θ ∂θ ′ · (1 − pt−1) − ∂µt

∂θ ′ · ∂pt−1

∂θ
,

with ∂2µt/∂θ ∂θ ′ = x′
t xtµt (1 − µt )(1 − 2µt ). Again, if we set ∂2 p0/∂θ ∂θ ′ = ∂p0/∂θ =

∂p0/∂θ ′ = 0, the values for ∂2 pt/∂θ ∂θ ′ can be obtained recursively, starting from ∂2 p1/

∂θ ∂θ ′ = ∂2µ1/∂θ ∂θ ′.
The parameter estimates may be obtained by Newton’s method, which uses the Hessian

matrix of the actual second derivatives. To speed up computation, we may avoid calculating
the exact Hessian by approximating it instead by the expected second derivatives, and use
Fisher’s method of scoring. Here we will follow the latter approach. In addition to providing
parameter estimates, the Fisher optimization algorithm produces as a by-product an estimate
of the asymptotic variance–covariance matrix of the model parameters, given by the inverse
of the estimated information matrix evaluated at the converged values of the estimates.
Each element of the inverse of the information matrix is a minimum variance bound for
the corresponding parameter, and the positive square roots of the diagonal elements of this
matrix (i.e., the standard errors of the estimated coefficients) may be used for significance
tests and to construct confidence intervals.

According to asymptotic theory, ML estimators become progressively more unbiased and
more normally distributed, and achieve the minimum possible variance more closely, as the
sample size increases (see, e.g., King, 1989). However, these asymptotic assumptions may be
violated in our complex Markov chain model. Moreover, the estimators in our model have
essentially unknown properties for small to moderate sample sizes, and we cannot present
any guidelines as to when a sample is sufficiently large for the asymptotic properties to be
closely approximated. It is therefore important to investigate the behavior of the estimators
of the parameters in Equation 8.2 by examining their finite-sampling distribution. The
bootstrap and MCMC simulations provide useful tools in this situation.
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8.2.2.2 Parametric Bootstrap Simulation

The bootstrap uses Monte Carlo simulation to empirically approximate the probability dis-
tribution of the parameter estimates and other statistics, rather than relying on assumptions
about its shape that may only be asymptotically correct. The technique used here is the
model-based parametric bootstrap (Davison and Hinkley, 1997). For the parametric boot-
strap, resamples are taken from the original data via a fitted parametric model to create
replicate data sets, from which the variability of the quantities of interest can be assessed. In
the repeated simulations, it is assumed that both the form of the deterministic component
of the model and the nature of the stochastic component are known. Bootstrap samples
are generated using the same fixed covariates as in the original sample and a set of pre-
determined values for the parameters, allowing only the stochastic component to change
randomly from sample to sample. By this means, many bootstrap samples are generated,
each of which provides a set of estimates of the parameters that may then be examined
for their bias, variance, and other distributional properties and used for bootstrap confi-
dence intervals and hypothesis testing. The parametric bootstrap resampling procedure is
implemented here according to the following algorithm:

1. Estimate the unknown parameter θ according to the model 8.2, using the original
sample {xit , yit}, i = 1, . . . , nt , t = 1, . . . , T , with the estimate denoted as θ̂ , and
obtain the fitted values p̂i t of the probability that the binary dependent variable yit = 1.

2. For each xit in the original sample {xit , yit}, generate a value of the bootstrap dependent
variable y∗

i t by random sampling from a Bernoulli distribution with success probability
given by p̂i t .

3. Use the bootstrap sample {xit , y∗
i t} to fit the parameter estimate θ∗.

4. Repeat Steps 2 and 3 R times, yielding the bootstrap replications denoted as θ̂∗
1 , . . . , θ̂∗

R .
The empirical distribution of these replications is used to approximate the finite-
sample distribution of θ̂ .

In this study we look at the density of the values of θ̂∗ under resampling of the fitted
model to examine the bias and variance and to see if it is multimodal, skewed, or otherwise
nonnormal. To obtain an accurate empirical approximation, we use R = 5,000 replications
of the original data set. While the bootstrap estimates of bias and variance under the fit-
ted model are important in their own right, parametric resampling may also be useful
in testing problems when standard approximations do not apply or when the accuracy
of the approximation is suspect. The key to applying the bootstrap for hypothesis testing
is to transform the data so that the null hypothesis is true in the bootstrap population.
That is, we simulate data under the null hypothesis, so that bootstrap resampling resem-
bles sampling from a population for which the null hypothesis holds (Hall and Wilson,
1991). The bootstrap hypothesis test compares the observed value in the original sample
with the R values θ̂∗

1 , . . . , θ̂∗
R , which are obtained from samples independently generated

under the null model that satisfies H0. The bootstrap P -value may then be obtained by
p∗(θ̂) = P (θ̂∗ ≥ θ̂ | H0) = R−1

∑R
i=1 I (θ∗ ≥ θ̂), where the indicator I (·) equals one if

the inequality is satisfied and zero if not (Davison and Hinkley, 1997). We reject the null
hypothesis if the selected significance level exceeds p∗(θ̂).

8.2.2.3 Markov Chain Monte Carlo Simulation

Another powerful tool next to MLE and parametric bootstrap is Bayesian simulation, which
is easily implemented using Markov chain Monte Carlo (MCMC) methods. Bayesian data
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analysis is not concerned with finding the parameter values for which the likelihood reaches
the global maximum. It is primarily concerned with generating samples from the posterior
distribution of the parameters given the data and a prior density, and this distribution may
be asymmetric and/or multimodal. Other advantages of the Bayesian approach include the
possible incorporation of any available prior information and the ability to make inferences
on arbitrary functions of the parameters or predictions concerning specific individual units
in the sample (see Pelzer and Eisinga, 2002). A popular method for MCMC simulation
is Metropolis sampling (Tanner, 1996). The Metropolis sampler obtains a chain of draws
from the posterior multivariate distribution π(θ | y) of the parameter θ . In sampling from
the unknown target distribution, the algorithm uses a known auxiliary density A – e.g.,
a (multivariate) uniform or normal distribution – to select candidate parameters θ c . The
Metropolis algorithm proceeds as follows:

1. Choose a starting value for the parameter (e.g., the ML estimates).
2. Randomly draw the parameter θ c from A, a symmetric proposal distribution with

mean equal to the previous draw θ and an arbitrary variance.
3. If π(θ c | y) ≥ π(θ | y), add the candidate θ c to the chain of draws. If π(θ c | y) <

π(θ | y), calculate the ratio r = π(θ c | y)/π(θ | y), and add θ c with probability r to
the chain of draws.

4. If the candidate θ c is not added to the accepted draws in Step 3, add θ , so that two
successive elements of the chain have the same parameter value θ . Else proceed with
the next step.

5. Repeat Steps 2–4 K times, yielding a sample from the posterior distribution of θ .

In the Markov chain sampling used here, we assumed a priori that we are ignorant of the
values of the parameters (i.e., have a vague prior belief). This implies that π(θ | y) equals
the likelihood of θ . Once stationarity has been achieved, a value from a chain of draws from
the Metropolis algorithm is supposed to have the same distribution as the target density.
We ran the Metropolis algorithm K = 100,000 times, excluding an initial burn-in of 10,000
samples, and subsequently obtained the mean, standard deviation, and limits of the 95%
credibility interval of θ .

8.3 APPLICATION

8.3.1 PC Penetration in Dutch Households

The major concern of this section is how the RCS Markov model performs in practice.
The empirical application is concerned with modeling the rise in computer penetration
rates in Dutch households in the 1986–1998 period using data from the Socio-Economic
Panel (SEP) collected by Statistics Netherlands. The reason for using this 13-wave annual
household panel study is that it offers the opportunity to check the estimation results against
the panel findings. However, it is important to note that in the RCS Markov analysis below the
panel data are treated as if they were observations of a temporal sequence of 13 independent
cross-sectional samples. That is, no use is made of information about lagged values of yit .

The binary dependent variable yit is defined to equal one if the household owns a personal
computer and zero if not. Table 8.1 reports the proportions of Dutch households with a
PC in 1986–1998 along with the observed entry and exit transition rates. As can be seen,
there is a marked upward time trend in PC ownership, from 12% in 1986 to 57% in 1998.
While the entry rates (i.e., ȳt | yt−1 = 0) also show an increase over time, the exit rates (i.e.,
(1 − ȳt ) | yt−1 = 1) show erratic change.
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Table 8.1 Proportions of PC ownership in Dutch households over time,
2208 cases

Year ȳt ȳt | yt−1 = 0 (1 − ȳt ) | yt−1 = 1

1986 .12
1987 .15 .05 .10
1988 .20 .08 .12
1989 .24 .08 .13
1990 .28 .08 .08
1991 .31 .09 .09
1992 .36 .11 .09
1993 .38 .10 .13
1994 .41 .10 .09
1995 .44 .13 .11
1996 .48 .13 .07
1997 .51 .14 .09
1998 .57 .19 .07

It is clear from previous studies which structural determinants explain systematic variation
in the presence of a PC in homes. The most important covariates – in the Netherlands as
elsewhere – are educational attainment, age, the size of the household, and household income
(see, e.g., OECD, 2001). These variables are included in the SEP household study, but they
would generally also be available in a repeated cross-sectional survey. The time-varying
variable age of head of household (hereafter age) is categorized into three different age
categories (18–34, 35–54, and 55+ years). The time-varying variable number of household
members is constructed from cross-sectional information about the number and the ages of
the children in the household and the presence of a spouse. It is assumed that a family with
children has two adults. The variable highest completed education of head of household
(hereafter education) is taken to be fixed over time. In addition to these backcastable variables,
the analysis also includes the temporary, nonbackcastable covariate household income.
The variable used here is the standardized (i.e., corrected for size and type of household)
disposable household income, categorized into quintiles.

8.3.2 RCS Markov Model

8.3.2.1 Maximum Likelihood

The first model fitted was a time-stationary Markov chain with constant terms only. This
model produces the parameters β(µt ) = −2.543 and β∗(λt ) = −3.310 and a log-likelihood
value LL = −15,895.214. These estimates imply constant transition probabilities µ = .073
and λ = .035, and hence predicted rates that underestimate the observed sample frequencies
reported in Table 8.1. The model was subsequently modified to a nonstationary, heteroge-
neous Markov model by adding the covariates reported above. In analyzing the data with
this model, it became apparent that the covariates have a substantial effect on the transi-
tion from have-not to have, but that they contribute little to the explanation of the reverse
transition. We therefore decided to model the exit transitions using a constant term only.
Further, it turned out that the inclusion of a linear time trend in the prediction of obtaining
a computer appreciably improves the fit. We therefore included the variable time in the
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Table 8.2 ML, parametric bootstrap, and MCMC estimates of RCS Markov model and ML estimates of
first-order panel model, observations 26,364

RCS Markov Panel
MLa Bootstrapb MCMCb MLa

δ(pt=1)
Constant −3.713 (.202) −3.718 (.205) −3.754 (.232) −3.606 (.276)

[4.137 −3.318] [−4.225 −3.327]
Education 0.382 (.054) 0.381 (.055) 0.393 (.056) 0.364 (.072)

[0.271 .489] [0.288 .504]
Age 35–54 −0.058 (.119) −0.057 (.121) −0.037 (.120) 0.092 (.170)

[−0.294 .181] [−0.284 .197]
Age 55 and over −0.852 (.162) −0.859 (.165) −0.842 (.178) −0.782 (.252)

[−1.201 −.551] [−1.207 −.513]
No. of household 0.331 (.042) 0.332 ( .043) 0.327 (.038) 0.310 (.061)

members [0.248 .417] [0.249 .397]

β (µt=2, ... ,13)
Constant −6.336 (.121) −6.344 (.124) −6.339 (.130) −5.116 (.138)

[−6.586 −6.110] [−6.605 −6.105]
Education 0.368 (.023) 0.369 (.023) 0.365 (.026) 0.245 (.029)

[0.323 .413] [0.310 .414]
Age 35–54 0.137 (.049) 0.137 (.050) 0.129 (.049) −0.098 (.067)

[0.042 .238] [0.037 .224]
Age 55 and over −1.364 (.066) −1.365 (.065) −1.362 (.067) −1.270 (.089)

[−1.494 −1.240] [−1.499 −1.226]
No. of household 0.421 (.018) 0.422 (.018) 0.425 (.020) 0.375 (.023)

members [0.387 .457] [0.389 .470]
Income 0.438 (.015) 0.438 (.015) 0.438 (.016) 0.230 (.022)

[0.408 .468] [0.403 .467]
Time 0.218 (.009) 0.218 (.009) 0.219 (.010) 0.171 (.008)

[0.201 .236] [0.198 .240]

β∗(λt=2, ... ,13)
Constant −2.292 (.132) −2.300 (.133) −2.307 (.198) −2.284 (.039)

[−2.576 −2.058] [−2.779 −1.938]
�� −12,895.106 −7,766.304

a Standard errors in parentheses.
b The mean is reported as the point estimate, the standard deviation in parentheses, and the 95th percentile interval

in brackets. The parametric bootstrap results are based on R = 5,000 bootstrap samples from the original data,
and the MCMC findings on K = 100,000 Metropolis sampler posterior estimates.

model. This inclusion implies, as indicated in Section 8.2.1, that we drop the assumption of
a time-constant intercept and allow the baseline entry rates to increase linearly over time.
The results are reported in the second column of Table 8.2.

The top part of the table gives the estimated effects on the marginal probabilities pi1. The
table indicates that both education and the number of household members positively affect
the presence of a PC in homes. While there is no significant difference in PC ownership
between the 18–34-year age group and those aged 35–54, ownership is significantly more
widespread among the younger age group than among those aged 55 and over. The middle
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part of Table 8.2 presents the effects on the transition from have-not to have with respect
to PC ownership. The results show that educational attainment of head of household,
household size, household income, and time have a positive effect on obtaining a computer.
This finding confirms the conclusion of cross-sectional studies that computer ownership has
spread most rapidly among affluent, well-educated families with children (OECD, 2001).
The coefficients of the age terms again imply similar entry rates among the younger and
middle age groups. The older age group has considerably lower access rates. The parameter
estimate of the constant term for λi t is shown in the bottom part of the table. An intercept
of −2.292 implies a time-constant exit transition probability of λ = .092 (i.e., κ = .908),
which perfectly matches the observed mean frequency of .092.

8.3.2.2 Parametric Bootstrap

As indicated, the benefit of parametric simulation is that the bootstrap estimates give empir-
ical evidence that likelihood theory can be trusted, while providing alternative methods for
calculating measures of uncertainty if that theory is unreliable. To examine the sampling dis-
tribution of the parameter estimates, we generated R = 5,000 bootstrap samples according
to the algorithm given in Section 8.2.2.2. Table 8.2 provides for each parameter the mean and
the sample standard deviation of the bootstrap estimates. In some applications of likelihood
methods the variability of likelihood quantities may be grossly over- or underestimated. As
the table shows, however, the misestimation is small enough to be unimportant here. The
bootstrap mean values are close to the ML estimates, and the sample standard deviations are
similar to the likelihood-based standard errors. The bootstrap estimates of bias and other
distributional properties are given in Table 8.3.

The ML estimates of the model parameters appear to be only slightly biased, the largest
absolute bias being 0.0086. When the estimated bias is expressed as a percentage of the
parameter estimate (not reported in Table 8.3), the largest differences between standard
theory and the bootstrap results are found for the parameter δ(pi1) of the age 35–54 dummy,
for which the percentage bias is 1.85%. All other parameters have percentage biases less than
1%. The parameters also tend to have a small bias compared to the magnitude of their
standard deviation. A frequently applied rule of thumb is that a good estimator should be
biased by less than 25% of its standard deviation (Efron and Tibshirani, 1993). As can be
seen in Table 8.3, the ratios of estimated bias to standard deviation are all much smaller
than 0.25. Small values are also found for the root mean square error, which takes into
account both standard deviation and bias. The bootstrap sample variance may be compared
with the estimated ML variance using a chi-square test to examine whether the sample
variance from the bootstrap is significantly larger than the variance from ML (Ratkowsky,
1983). For none of the parameters is the bootstrap variance significantly in excess of the
ML variance. The largest value was again found for the δ(pi1) parameter of the age 35–54
dummy. The statistic χ2 = (N − 1)(σ̂ 2

bootstrap/σ̂
2
ML) is distributed as chi-square with 4,999

degrees of freedom (df), a transform of which may be closely approximated by the standard
normal distribution, yielding, for this dummy variable, z =

√
2χ2 − √

2 df − 1 = 1.857.
Table 8.3 also reports the skewness, the excess kurtosis, and the Jarque–Bera (1980)

statistic, which may be used to test whether the estimators are normally distributed. The null
hypothesis of normality is only rejected for the constant and the age 55+ parameter of δ(pi1),
and for the constant term parameter of β∗(λ). The distribution of the latter is somewhat
peaked, and all three estimates have an extended tail to the left. The normal approximation
is least accurate for the β∗(λ) constant. However, even for this estimate the deviation from
normality is negligible. The same goes for the distribution of κ [= (1 + exp(β∗(λ)))−1],
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Table 8.3 Parametric bootstrap estimates, based on R = 5000 bootstrap samples

Excess Jarque–
Bias × 102 Bias÷sd rmse Skewness kurtosis Bera

δ(pt=1)
Constant −.493 −.024 .205 −.098∗ .094 9.812∗

Education −.089 −.016 .055 −.008 .061 0.796
Age 35–54 .107 .009 .121 .032 −.026 1.008
Age 55 and over −.729 −.044 .165 −.179∗ .104 28.954∗

No. of household members .128 .030 .043 .028 −.078 1.985

β (µt=2, ... ,13)
Constant −.862 −.070 .124 −.033 −.012 0.931
Education .066 .029 .023 −.050 −.037 2.405
Age 35–54 .040 .008 .050 .070 −.067 5.225
Age 55 and over −.059 −.009 .065 −.052 .000 2.285
No. of household members .084 .047 .018 .010 −.025 0.224
Income .065 .043 .015 −.032 .044 1.260
Time .022 .025 .009 .008 −.104 2.338

β∗(λt=2, ... ,13)
Constant −.789 −.059 .133 −.293∗ .296∗ 89.691∗

Note: The bootstrap estimate of bias (= θ̄bootstrap − θML) is multiplied by 100, and rmse =
√

sd2 + bias2.
The standard errors of skewness and excess kurtosis are 0.035 and 0.069, respectively. The Jarque–Bera
(1980) test statistic for normality has an asymptotic χ2

2 distribution; the 5% critical value is 5.991.
∗ Significant at the .05 level.

shown in Figure 8.1a. The histogram shows no visible departure of the κ estimates from
those expected for a normally distributed random variable.

8.3.2.3 Markov Chain Monte Carlo

The Metropolis sampler posterior estimates for each parameter are reported in Table 8.2.
The findings are based on K = 100,000 samples, excluding 10,000 samples for initial settling.
Inspection of the posterior means reveals that there are no gross discrepancies in magnitude
with the ML estimates. The MCMC standard deviations and the ML standard errors are also
similar to one another. The same goes for the 95th percentile intervals of the parametric
bootstrap estimates and the Bayesian credibility intervals. Thus Bayesian and frequentist
methods for obtaining estimates produce roughly similar results.

In sum, according to both parametric bootstrap and MCMC simulations, the maximum
likelihood estimators in this application are almost unbiased, with a variance close to the
minimum variance bound, and a distribution close to normal. This implies that the ML
point estimates of the parameters are accurate and that the inverse of the Fisher information
matrix may be used as a good estimate of the covariance matrix of the parameter estimates.

8.3.3 Dynamic Panel Model

It is compelling to compare the RCS Markov ML estimates with the corresponding parameter
estimates of a dynamic panel model that allows for first-order dependence. Most directly
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Figure 8.1. Histogram of ML estimates of κ (a) for 5000 bootstrap samples from the original full data,
with normal curve superimposed, and (b) for 5000 cross-sectional samples of 2208 observations, one
observation per household.

related to the RCS Markov model is a panel model that specifies a separate logistic regression
for P (yit = 1 | yi t−1 = 0, 1), and includes yi t−1 as an additional predictor. This model can
conveniently be written in a single equation as logit P (yit = 1 | yi t−1 = 0, 1) = xi tβ +
yi t−1xi tα, where α = β∗ − β (see Amemiya, 1985; Diggle, Liang, and Zeger, 1994; Beck,
Epstein, Jackman, and O’Halloran, 2001).

The results of applying this logistic model to the binary panel data are shown in the
rightmost columns of Table 8.2. A comparison of the RCS Markov and panel estimates
indicates that most of the findings are insensitive to the choice of model. The point estimates
of all parameters, except perhaps the coefficients for age 35–54 and those for income, are
rather similar, and the standard errors also correspond.

Note that the standard errors of the entry parameters are somewhat smaller for the RCS
Markov model than for the panel data analysis. This may seem to be counterintuitive, as
it would appear to show that more efficient estimates are produced when lagged yit -values
are unknown than when they are known. It should be noted, however, that the two models
differ in the number of observations per parameter. The RCS Markov model uses 24,336
observations (excluding the observations at t = 1) to estimate seven β (µt ) and one β∗(λ)
parameter, hence 3,042 observations per parameter. In the panel model we have 16,431
observations to estimate seven β (µt ) parameters – i.e., 2,347 observations per parameter –
and 7,905 observations to estimate β∗(λ). This explains, at least intuitively, the somewhat
smaller (larger) standard errors of the entry (exit) parameters in the RCS Markov model.
The differences are modest, however, and inferences about the parameters do not change
appreciably with the choice of model. Moreover, the two models predict equal transition
probabilities µi t and λi t for all individual cases (not reported), and the accuracy of the two
models as judged by a ROC curve analysis is almost identical (the area under the ROC curve
for the (yt | yt−1 = 0) observations is 0.763 for the RCS Markov model and 0.768 for the
panel model).

Only with respect to the likelihood is the RCS Markov model clearly inferior to
the panel model. However, the two models differ in the computation of pit and thus



P1: JYD/... P2: FZZ

CB658-08DVR CB654-KING-Sample CB658-KING-Sample.cls April 9, 2004 19:26

202 Ben Pelzer, Rob Eisinga, and Philip Hans Franses

Table 8.4 Mean and standard deviation (÷√
13) of the RCS Markov ML estimates for

5,000 samples of 2,208 observations, one for each household

δ(pt=1) β (µt=2, ... ,13) β∗(λt=2, ... ,13) a

Constant −3.845 (.199) −6.426 (.120) −2.389 (0.260)
Education 0.403 (.046) 0.366 (.027)
Age 35–54 −0.045 (.118) 0.147 (.045)
Age 55 and over −0.785 (.160) −1.423 (.063)
No. of household members 0.343 (.032) 0.431 (.018)
Income 0.447 (.015)
Time 0.223 (.010)

Note: Each sample is drawn without replacement and consists of 13 sets – one for each time period –
of size 156. The standard deviation, divided by

√
13, is reported in parentheses.

a Excluding 440 samples with β∗(λt ) ≤ −8 (i.e., κ > .9996).

also of the likelihood. In binary panel data, the marginal probability pit is either µi t

or 1 − λi t , conditional on yi t−1, and the likelihood contribution can be written as
�i t = µ

yit (1−yi t−1)
i t (1 − λi t )yit yi t−1 (1 − µi t )(1−yit )(1−yi t−1)λ

(1−yit )yi t−1

i t . In the RCS Markov
model, however, the marginal probability pit is always a weighted sum of two prob-
abilities – µi t and λi t – weighted by pit , and the likelihood is given by �i t =
[µi t (1 − pi t−1) + (1 − λi t )pi t−1]yit [(1 − µi t )(1 − pi t−1) + λi t pi t−1]1−yit . This implies
that even if panel and RCS data produce identical transition probabilities µi t and λi t , the
two likelihood functions may differ because of pi t−1. The likelihood values are identical
only if pi t−1 is equal to yi t−1; that is, if the lagged covariates perfectly predict the previous
response.

8.3.4 Samples of Independent Observations

As indicated, in the RCS Markov model the panel data are treated as independent cross
sections, implying that there is no information on autocov(yit , yi t−1) available in the data
file used for analysis. Nevertheless, the best way to make sure that the results are not ar-
tifacts is to analyze independent observations. To do so, we randomly draw (without re-
placement) samples of 2,028 different households from the (2,028×13 =) 26,364 panel
observations, where each sample consists of 13 separate sets – one for each time period –
of 156 households. Hence each household is selected only once in the “cross-sectional” sam-
ple. The total number of possible “cross-sectional” samples in our application is approx-
imately 102,242 [≈ ∏12

s=0 (2,028 − s × 156)!/156!(2,028 − 156 − s × 156)!]. We randomly
drew 5,000 samples and analyzed each data set separately, using maximum likelihood esti-
mation.

Table 8.4 reports the average values of the parameters across the samples along with the
standard deviation divided by

√
13. A comparison of Tables 8.2 and 8.4 suggests that for

almost all parameters the mean values are close to the MLE obtained for the original full
sample size. The only noticeable difference is in the constant term parameter of β∗(λ). This
mismatch can be explained by referring to the distribution for κ , shown in Figure 8.1b. For
several “extreme”, small samples the true maximum of the likelihood function is attained
when κ takes the boundary value κ = 1. This implies that the true MLE of β∗(λ) is minus
infinity and the Fisher optimization algorithm thus fails to converge.
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Since the resample size is much smaller than the original sample size, it is not surprising
that there is a large drop in efficiency relative to the estimates from the original full sample.
However, dividing the standard deviations by

√
26,364/2,208 = √

13 scales them back to
the standard errors of the parameters in the original sample. As can be seen, the standard
deviations in Table 8.4 agree well with the ML standard errors reported in Table 8.2, the
exception again being the constant parameter of β∗(λ).

8.3.5 Parametric Bootstrap Test

Under parametric bootstrap, hypothesis testing is remarkably easy. We simply need to fit
the hypothesized null model, generate bootstrap replications under the assumptions of this
model, and calculate the measure we wish to test, both for the real data and for the R sets
of bootstrap data. If the value from the real data is among the 5% most extreme values in
the combined set of R + 1 values, the hypothesis is rejected at the .05 level of significance.
For illustrative purposes, we selected a single sample from the “cross sections” of size 2,028,
with ML estimates close to those reported in Table 8.2. The estimated value for κ in this
sample was .916. Now consider testing the hypothesis H0 : κ ≥ .999 against the one-sided
alternative H1 : κ < .999 (H0 : κ = 1 would be a theoretically implausible hypothesis to
test for all cases). In R = 4,999 bootstrap resamples from H0, we found 51 values less then
or equal to .916, so the p∗-value is 51/5,000 = .0102. This finding leads us to reject the null
hypothesis for this particular sample.

8.4 SUMMARY

Repeated cross-sectional surveys have become an important data source for research over the
past decades. The accumulation of these surveys offers researchers from various disciplines
a growing opportunity to analyze longitudinal change. Dynamic models for the analysis of
repeated cross sections are, however, relatively rare, and one may even argue that there is an
increasing lag between the availability of data and models to analyze them.

The results presented here illustrate the usefulness of exploiting repeated cross-sectional
surveys to identify and to estimate 0–1 transition probabilities, which are generally thought
to be nonestimable from RCS data. The bootstrap and MCMC findings for the PC owner-
ship example suggest that the maximum likelihood RCS Markov model produces reliable
estimates in large samples. It also turns out that, in our empirical application at least, the
RCS Markov model performs almost as well as a first-order dynamic panel model. To rule
out artificial results, samples of independent observations from the panel data were also
analyzed, with similar results to those for the full sample.

This paper has made some necessary first steps in exploring a largely unknown area, and
many relevant topics could not be covered here. For example, in some contexts (e.g., the
empirical illustration discussed here) it is pretty clear from previous studies or theory which
covariates are likely to be important and how they are related, at least qualitatively, to the
dependent variable of interest. In other cases, especially in complex data from an unfamiliar
field, covariate selection may be far from obvious. An important part of the analysis is then
a preliminary analysis to search for a suitable model. This involves not just inspecting the
adequacy of the initial model, but doing so in a way that will suggest an improvement of the
model and bring to light possibly unsuspected features of the data.

A difficult problem in model specification is that it is not always possible from the data
themselves to obtain a clear indication of how to improve the model (and how important it
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is to do so). It may also happen that different models fit the data roughly equally well and
that any choice between them has to be made on grounds external to the data.

Further, it is obvious that estimating the “nonestimable” is possible only by making
assumptions. The validity of the assumptions, however, cannot be assessed from the data
under study. Consequently, findings are always conditional on the appropriateness of the
assumed model, which in a fundamental sense is not testable. An appropriate statistical
framework then is to consider how sensitive the results are to model assumptions. An
important subject for future work is therefore to develop sensitivity analysis tools (such
as influence diagnostics) and to study the stability of the results under different model
specifications and small modifications or perturbations of the data.

Topics to be studied by further Monte Carlo work are the distributional properties of the
estimators in different model specifications and the sensitivity of inference procedures to
varying sample sizes. In addition to the parametric bootstrap, nonparametric resampling
could be used to examine the robustness of specification. Nonparametric simulation requires
generating artificial data without assuming that the original data have some particular
parametric distribution. Finally, although the impetus behind developing the methodology
presented here came from the intent to dynamically model RCS data, it would be of interest
to apply the model to panel data with missing observations for yt−1. The Markov chain
model could then be used, in conjunction with a first-order panel model for observations
with nonmissing yt−1, to obtain model-based imputations for the missing data.
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PART THREE

9 Ecological Inference in the Presence of Temporal Dependence∗

Kevin M. Quinn

ABSTRACT

Researchers have realized for some time that the quality of ecological inferences depends critically on
the quality of the prior assumptions one makes. In many applications, the most uncontroversial piece
of background knowledge is that the interior cell probabilities of interest exhibit substantial stability
over time. Seen this way, temporal dependence is not a nuisance to be statistically accounted for, but
rather an important piece of background knowledge that can be used by researchers to form more
accurate prior distributions for the interior cell probabilities of interest. In this manuscript we develop
a class of Bayesian hierarchical models that can be used for ecological inference where there is a priori
reason to believe temporal dependence is present. A version of the model is applied to simulated data
as well as data on voting registration by race in Louisiana counties over a 14-year period. Within the
context of these data, the proposed dynamic model performs reasonably well.

9.1 INTRODUCTION

Researchers have realized for some time that the quality of ecological inferences depends
critically on the quality of the prior assumptions one makes. This is true regardless of whether
the prior assumptions are explicitly stated, as in a Bayesian analysis, or are left implicit. The
key to making reasonable ecological inferences then is seen to be, to a large extent, dependent
upon one’s ability to formulate reasonable prior beliefs about the process under study.

In many applications, the most uncontroversial piece of background knowledge is that
the interior cell probabilities of interest exhibit substantial stability over time. Seen this
way, temporal dependence is not a nuisance to be statistically accounted for, but rather an
important piece of background knowledge that can be used by researchers to form more
accurate prior distributions for the interior cell probabilities of interest.

In this chapter we develop a class of Bayesian hierarchical models that can be used for
ecological inference where there is a priori reason to believe temporal dependence is present.
These models are based on the ecological inference model of Wakefield (2001) along with
the work of Besag et al. (1991, 1995) and West and Harrison (1997) on Markov random
field priors. While these models are somewhat more complicated than other approaches for
directly incorporating prior information into models for ecological inference, they have the
advantage that the prior distribution they employ is oftentimes easier to specify confidently,
given what we know about many social processes.

A model of this kind is applied to data on voting registration by race in Louisiana counties
over a 14-year period. The advantage of using these data is that the interior cell counts are

∗ This research was supported under NSF grant SES 01-36679 as well as by the Center for Statistics and the Social
Sciences with funds from the University Initiatives Fund at the University of Washington.
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actually observed, which allows one to examine the performance of the model under study.
Within the context of these data, the proposed dynamic model performs reasonably well.
Nonetheless, it should be emphasized that it is possible to construct examples where the
model will perform poorly.

This chapter is organized as follows. Section 9.2 details the proposed dynamic model
and places it within the context of previous work on ecological inference and temporal
dependence. Section 9.3 discusses the Markov chain Monte Carlo (MCMC) algorithm used
to fit the model, and briefly comments on other possible approaches. Section 9.4 looks at
the performance of the model in some simulated data examples. In Section 9.5 we turn
attention to the application of voting registration by race in Louisiana from 1975 to 1988.
Section 9.6 concludes.

9.2 A MODEL FOR ECOLOGICAL INFERENCE IN THE PRESENCE OF TEMPORAL DEPENDENCE

Consider the following partially observed contingency table for time period t:

Yt = 0 Yt = 1
Xt = 0 Y0t r0t

Xt = 1 Y1t r1t

c0t c1t Nt

.

In many social science applications, X may represent a background characteristic such as
race, sex, or educational background, while Y may represent a social action such as voting,
registering to vote, or committing a crime. Throughout the chapter we assume that our data
consists of a sequence of such partially observed tables indexed by time t = 1, . . . , T .

Although the table margins (c0t , c1t , r0t , and r1t ) are observed, the need for ecological
inference arises because the interior cell counts (y0t and y1t ) are unobserved. The goal
of ecological inference is to estimate the interior cell counts, or equivalently, to estimate
P(Yt = 0|Xt = 0) and P(Yt = 0|Xt = 1). In what follows we will use the notation β j t =
P(Yt = 0|Xt = j ) for j = 0, 1.

9.2.1 Likelihood

Following Wakefield (2001), we can write the likelihood function for T tables as the product
of a convolution of binomial mass functions

L (β0, β1) =
T∏

t=1

u1t∑
y0t=u0t

(
r0t

y0t

)(
r1t

c0t − y0t

)
β

y0t

0t (1 − β0t )
r0t−y0t β

c0t−y0t

1t (1 − β1t )
r1t−c0t+y0t ,

(9.1)

where β j denotes the vector of T conditional probabilities β j 1, . . . , β j T for j = 0, 1, u0t =
max(0, c0t − r1t ), and u1t = min(r0t , c0t ). This model results from the assumption that
Y j t |r j t ∼ Binomial(r j t , β j t ) for j = 0, 1 and that, conditional onβ0 andβ1, the cell counts
are independent across tables. In what follows, we maintain this conditional independence
assumption and model temporal dependence through the prior distributions forβ0 andβ1.

Working with this likelihood directly will generally prove to be infeasible. When Nt is
large (as it will typically be in social science applications) it will be reasonable to employ
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Wakefield’s (2001) asymptotic approximation to Equation 9.1 given by the following:

L̃ (β0, β1) =
T∏

t=1

1√
r0tβ0t (1 − β0t ) + r1tβ1t (1 − β1t )

× exp

[
− (c0t − r0tβ0t − r1tβ1t )2

2(r0tβ0t (1 − β0t ) + r1tβ1t (1 − β1t ))

]
. (9.2)

9.2.2 Prior Specification

A defining aspect of ecological inference is that the posterior distribution depends crucially
on the prior distribution even as the sample size goes to infinity. This suggests at least two
approaches to inference. The first, embodied by Wakefield’s (2001) baseline model and less
formally by Duncan and Davis’s (1953) method of bounds, focuses solely on the information
in the likelihood through the use of uniform priors on (β0 β1). A second approach, exempli-
fied by the work of King (1997) and King, Rosen, and Tanner (1999) and by the hierarchical
models proposed by Wakefield (2001), seeks to construct reasonable prior distributions by
pooling information across tables via various hierarchical prior specifications.

The first approach is useful in that it provides a solid baseline against which to compare
the results from other model specifications. Nonetheless, in most cases, the bounds on the
model parameters may be so wide that the results from the baseline model are of limited
practical use.

The second approach remedies this problem, but it does so at a price. The specification
of an informative prior distribution results in a more sharply peaked posterior distribution,
which leads to more certain inference. However, because of the lack of information in the
likelihood function, one’s inferences are determined, to a large extent, by the choice of prior
specification.

The current chapter is closely allied with the second approach above in that it presents ways
to formulate reasonable, informative prior distributions for tables observed over time. The
major difference is that it is often easier to specify the prior distributions described below
because researchers often have reasonably good information about how much temporal
stability the interior cell probabilities exhibit even if they don’t have good information
about the overall level of the cell probabilities. For other approaches to ecological inference
with temporally dependent data see Pelzer, Eisinga, and Franses (Chapter 8 of this volume)
and Lewis (Chapter 4).

We begin by reparameterizing so that the transformed parameters are unbounded. Let

θ j t ≡ log

(
β j t

1 − β j t

)
, j = 0, 1, t = 1, . . . , T.

The starting point for our prior specification is the assumption that a priori θ j t follows a
simple random walk in time. Formally,

θ j t = θ j (t−1) + ε j t , j = 0, 1, t = 2, . . . , T,

where

ε j t ∼ N
(
0, σ 2

j

)
.
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It can be shown1 that this random walk prior corresponds to the following (improper) joint
density for θ j , j = 0, 1:

p(θ j |σ 2
j ) ∝ σ−T

j exp

(
− 1

2σ 2
j

θ′
j Wθ j

)
, (9.3)

where W is the T × T matrix with typical off-diagonal element

wts =
{

−1 if t and s are neighboring time periods,

0 otherwise

and typical diagonal element wtt = ∑
s �=t |wts |. In other words, W has the form

W =




1 −1
−1 2 −1 0

−1 2 −1
. . .

. . .

0 −1 2 −1
−1 1




.

Note that W does not have full rank, and consequently p(θ j |σ 2
j ) is not a proper density. As

result, this prior does not specify the overall level of θ j – an arbitrary constant can be added
to θ j without changing the value of the right hand side of Equation 9.3.

It is informative to look at the implied prior distribution for θ j t given the elements of θ j

other than θ j t . Let ∂t denote the set of time periods directly adjacent to time period t, and
θ j (−t) the vector composed of the elements of θ j other than θ j t . Besag et al. (1991, 1995)
show that

θ j t |θ j (−t), σ 2
j ∼ N

(∑
s∈∂t

−wts θ j s

wtt
,

σ 2
j

wtt

)
. (9.4)

In words, the conditional prior mean of θ j t is a weighted average of the neighboring values
of θ j , and the conditional prior variance is inversely proportional to the sum of the weights
from neighboring time periods.

Attempts at estimating a covariance between θ0 and θ1 resulted in models that were
extremely weakly identified. Rather than trying to estimate such a covariance parameter, we
simply assume that θ0 is a priori independent of θ1. Of course, as we will see later, this does
not preclude the possibility that θ0 is a posteriori dependent on θ1.

We complete the prior specification by adopting a conjugate prior distribution for σ 2
0 and

σ 2
1 . More specifically, we assume that σ 2

j follows an inverse gamma distribution with shape
ν j /2 and scale δ j /2 for j = 0, 1. The posterior density for (β0, β1) is then proportional to
the likelihood in Equation 9.1 times the densities p(θ0|σ 2

0 ) and p(θ1|σ 2
1 ) given in Equation

9.3 times the inverse gamma priors for σ 2
0 and σ 2

1 .

1 For instance, see Clayton (1996). See also Besag et al. (1991, 1995) and West and Harrison (1997).
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One of the major benefits of this class of prior distributions is that the level of θ j t is left
unspecified. Since θ j t is defined to be the log odds of Yt = 0 given Xt = j , the researcher is
simply required to specify beliefs for the odds ratio exp(θ j t − θ j (t−1)), which corresponds to
e raised to the power of the increment of the random walk. For instance, suppose we believe
that the expected values of the endpoints for the 95% prior credible interval for the odds ratio
above will be 1.25 and 0.8. This implies that the endpoints for the log odds ratio (θ j t − θ j (t−1))
will be log(1.25) = 0.223 and log(0.8) = −0.223. Given that the increments of the random
walk are assumed to be Gaussian, these endpoints correspond to approximately 2σ j . This
means that we should set ν j and δ j so that E [σ j ] = 0.5 log(1.25).

It should be noted that more complicated dynamics can be modeled using the same frame-
work. For instance, suppose one is willing to assume that the logit of the cell probabilities
evolves according to

θ j t = 2θ j (t−1) − θ j (t−2) + ε j t , j = 0, 1, t = 3, . . . , T,

where

ε j t ∼ N
(
0, σ 2

j

)
.

Such a model corresponds to the assumption that the expected value of the current value
of θ j is the linear extrapolation of the two preceding values of θ j (Clayton, 1996). However,
as a word of warning, such a prior specification produced wildly misleading results when
applied to the Louisiana voter registration data analyzed later in this chapter.

It is also worth mentioning that this same setup can be used to model spatial and spa-
tiotemporal dependence. The only difference is that the neighborhood structure would now
be based on both spatial and temporal proximity. See Haneuse and Wakefield (Chapter 12
of this volume) for details.

It is straightforward to extend this model to include the effects of measured covariates on
the cell probabilities. For instance, it is possible to assume that θ j t is given by the following:

θ j t = z j tα j + η j t + ε j t , j = 0, 1, t = 1, . . . , T,

where z j t is the vector of covariates specific to row j and time t, and η j t is now assumed to
follow a random walk in time. Model fitting via Markov chain Monte Carlo is straightforward
(see Besag et al., 1991, 1995 for a similar setup in a nonecological inference framework).

9.3 MODEL FITTING

Bayesian inference for the model discussed above centers on the posterior distribution for
(β0, β1, σ 2

0 , σ 2
1 ). We use MCMC methods to construct an approximate sample from this

posterior distribution. The MCMC strategy employed is the following.
To begin one scan of the MCMC algorithm we sample [β0t , β1t |β0(−t), β1(−t), σ 2

0 , σ 2
1 ]

using a Metropolis–Hastings step for t = 1, . . . , T . The posterior full conditional distri-
bution here is simply proportional to the contribution of the tth table to the likelihood
in Equation 9.1 times the prior for θ0t in Equation 9.4 times the prior for θ1t in Equation
9.4. As a practical matter we use the approximate likelihood in Equation 9.2 in place of the
exact likelihood. Candidate values of (β0t , β1t ) are generated from a uniform distribution
defined on the extended tomography line for table t times a univariate normal distribution
that is perpendicular to the tomography line. The length of the tomography line on which
the uniform distribution is defined is extended so that at the endpoints of the extended



P1: KFL/... P2: FZZ

CB658-09DRV CB654-KING-Sample CB658-KING-Sample.cls April 7, 2004 12:26

212 Kevin M. Quinn

tomography line ± 2 standard deviations of the perpendicular normal density are outside
the square [0, 1]2. Through simulation experiments it was found that setting the standard
deviation of the perpendicular normal density equal to 2.6528

√
Nt resulted in a somewhat

overdispersed candidate generating distribution. The advantage to this candidate generating
distribution is that it closely approximates the underlying likelihood surface (although not
necessarily the posterior surface, which will be more concentrated on one section of the
tomography line) and it is proportional to a univariate normal density, making it easy to
evaluate and sample from. Both of these facts make the Metropolis–Hastings sampling of
the cell probabilities fairly quick.

The next step after sampling the cell probabilities for the T tables is to sample
[σ 2

0 , σ 2
1 |β0, β1]. Because of the model’s conditional independence assumptions, we have

p(σ 2
0 , σ 2

1 |β0, β1) = p(σ 2
0 |β0)p(σ 2

1 |β1), which allows us to sample these parameters in two
separate steps. Once again because of the model’s conditional independence assumptions,
p(σ 2

j |β j ) is proportional to the density p(θ j |σ 2
j ) given in Equation 9.3 times the inverse

gamma prior density for σ 2
j . Multiplication of these densities reveals that p(σ 2

j |β j ) is an
inverse gamma density with shape (ν j + T)/2 and scale (δ j + θ′

j Wθ j )/2. A simple Gibbs
step can thus be used to sample [σ 2

j |β j ] for j = 0, 1.
Other MCMC approaches are certainly possible. In particular, some gains in simulation

efficiency might be had by sampling from the joint full conditional for [β0, β1|σ 2
0 , σ 2

1 ]
rather than from the univariate full conditionals. The problem here is finding a reasonably
good candidate generating density so that the acceptance rate of the Metropolis–Hasting
sampling isn’t extremely low.

The raw C++ code to fit these models, along with an R interface to the C++ code, is
available at http://scythe.wustl.edu/mcmcpack.html.

9.4 SIMULATED DATA EXAMPLES

In order to get some sense of how the dynamic model developed above performs, we present
results from three simulated data sets. In each case we compare the performance of the dy-
namic model, using three different prior specifications, with the performance of Wakefield’s
basic hierarchical model, also using three different prior specifications. In each simulated
data set there are 20 time periods. The row sums are fixed at r0t = 3500 and r1t = 1500 for
all t. The interior cell probabilities are then varied, and the interior cell counts are generated
from the appropriate binomial distributions.

The first simulated example assumes that θ0t = 0.921 + 0.0789t and θ1t = −0.1053 +
0.1053t for t = 1, . . . , 20. Figure 9.1 presents a tomography plot of these data in which the
tomography lines have been color-coded according to their temporal position. Here we see
that the linear dependence on the logit scale is clearly visible on the color-coded tomography
plot.

Figures 9.2 and 9.3 present the results from the dynamic model and Wakefield’s hier-
archical model respectively. In each case, three prior specifications were employed: one in
which δ0 = δ1 = 0.05 and ν0 = ν1 = 1, another in which δ0 = δ1 = 0.5 and ν0 = ν1 = 1,
and a third in which δ0 = δ1 = 3 and ν0 = ν1 = 1. Looking at these figures, we see that the
dynamic model tends to perform somewhat better than the basic hierarchical model in that
its point estimates are generally closer to the true values. As we would expect, Figure 9.3
shows that the hierarchical model tends to shrink all of the point estimates to the average
level across the tables, while the dynamic model allows for more local variability. The true
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Figure 9.1. Dynamic tomography plot from first simulated data set. The tomography lines are color-
coded according to their temporal location.

values of β0t and β1t are inside the 95% credible intervals regardless of which model is fitted.
In short, both models do reasonably well on this data set, with the dynamic model doing
slightly better.

The second simulated example assumes that θ0t = ((t − 10)/8)2 and θ1t = ((t − 9)/10)2

for t = 1, . . . , 20. Figure 9.4 presents a tomography plot of these data in which the tomog-
raphy lines have been color-coded according to their temporal position. Here we see the
the U-shaped trajectories of the cell probabilities expressed by the fact that the tomography
lines from first time periods tend to cluster with the tomography lines from the later periods.
Note also that almost no information about the level of β1 is conveyed in the bounds.

Figures 9.5 and 9.6 present the results from the dynamic model and Wakefield’s hierarchi-
cal model respectively. In each case, three prior specifications were employed: one in which
δ0 = δ1 = 0.05 and ν0 = ν1 = 1, another in which δ0 = δ1 = 0.5 and ν0 = ν1 = 1, and a
third in which δ0 = δ1 = 3 and ν0 = ν1 = 1. Regardless of prior specification, each of the
models does a reasonably good job of estimating β0. This is due, to a very large extent, to
the amount of information available in the bounds. On the other hand, neither model does
a great job of estimating β1. This is due to a lack of information in the bounds for these
parameters. In summary, the two models (under all of the prior specifications) perform
about equally well on this simulated data set.

The third simulated example assumes that θ0t = ((t − 10)/8)2 and θ1t = 0.947 + 0.053t
for t = 1, . . . , 20. Figure 9.7 presents a tomography plot of these data in which the tomog-
raphy lines have been color-coded according to their temporal position. Here the temporal
pattern is more difficult to see in the tomography plot. We can see that in the later time
periods there are semi-informative bounds on β1t and there are always fairly informative
bounds on β0t .

Figures 9.8 and 9.9 present the results from the dynamic model and Wakefield’s hier-
archical model respectively. In each case, three prior specifications were employed: one in
which δ0 = δ1 = 0.05 and ν0 = ν1 = 1, another in which δ0 = δ1 = 0.5 and ν0 = ν1 = 1,
and a third in which δ0 = δ1 = 3 and ν0 = ν1 = 1. Once again, both models do a reasonable
job of estimating β0, with the slight caveat that the dynamic models’ estimates seem to be
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Figure 9.2. Summary of results from dynamic models fitted to the first simulated data set. The
solid circles correspond to the true values of β0t and β1t that generated the data, the solid lines
correspond to the estimated posterior means of these parameters, and the dashed lines correspond to
the 2.5th and 97.5th posterior percentiles for these parameters. (a) δ0 = δ1 = 0.05 and ν0 = ν1 = 1;
(b) δ0 = δ1 = 0.5 and ν0 = ν1 = 1; (c) δ0 = δ1 = 3 and ν0 = ν1 = 1.
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Figure 9.3. Summary of results from hierarchical models fitted to the first simulated data set. The
solid circles correspond to the true values of β0t and β1t that generated the data, the solid lines
correspond to the estimated posterior means of these parameters, and the dashed lines correspond to
the 2.5th and 97.5th posterior percentiles for these parameters. (a) δ0 = δ1 = 0.05 and ν0 = ν1 = 1;
(b) δ0 = δ1 = 0.5 and ν0 = ν1 = 1; (c) δ0 = δ1 = 3 and ν0 = ν1 = 1.
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Figure 9.4. Dynamic tomography plot from second simulated data set. The tomography lines are
color-coded according to their temporal location.

somewhat falsely precise. Neither model does a very good job of estimatingβ1; this is partly
due to the lack of information in the bounds and also partly because both models implictly
use information in the bounds on β0 to estimate β1. Since β0t and β1t are following differ-
ent paths through time, this biases the estimates of β1 (the cell probabilities with the least
informative bounds).

In summary, the dynamic model slightly outperformed the hierarchical model when the
cell probabilities exhibited fairly strong linear trends. In the other simulated data examples
the two models performed about equally well. Perhaps the most important point to take from
these examples is the role of the exact priors used on the variance parameters in these models
may not be important as long as they are not too informative. The three prior specifications
used in these examples had prior modes for the variance parameters at 0.01667, 0.1667,
and 1.000. On a logit scale these are fairly large differences in prior beliefs. Nonetheless, the
posterior results changed only minimally across prior specifications. In large part this was
because the priors used were all fairly diffuse with ν j set equal to 1 for j = 0, 1.

9.5 APPLICATION: VOTER REGISTRATION IN LOUISIANA, 1975–1988

To see how the model discussed above performs on real data, we look to data relating race
and voter registration in 52 Louisiana counties from 1975 to 1988.2 These data are available
at the Record of American Democracy (King et al., 1997) project website (http://hdc-
www.harvard.edu/ROAD/) and have been previously analyzed by King (1997) and King
et al. (1999). Also see Haneuse and Wakefield (Chapter 12 of this volume). These data are
well suited to our present purposes in that they are fairly typical of the types of data political
scientists wish to use to make ecological inferences, they have a moderate time dimension,

2 The original data set contained data from 64 counties over 1975–1990. Of these, 12 were removed because of
what appeared to be bad outliers and/or coding inconsistencies. Similarly, 1989 and 1990 were removed because
of data problems in the 1989 data.
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Figure 9.5. Summary of results from dynamic models fitted to the second simulated data set. The
solid circles correspond to the true values of β0t and β1t that generated the data, the solid lines
correspond to the estimated posterior means of these parameters, and the dashed lines correspond to
the 2.5th and 97.5th posterior percentiles for these parameters. (a) δ0 = δ1 = 0.05 and ν0 = ν1 = 1;
(b) δ0 = δ1 = 0.5 and ν0 = ν1 = 1; (c) δ0 = δ1 = 3 and ν0 = ν1 = 1.

and, most importantly, the actual interior cell counts are known, so that we can assess how
well our model performs.

We are interested in how voter registration (coded as registered and not registered) varies
by race (coded as black and white). The inference problem can be summarized in the table:
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Figure 9.6. Summary of results from hierarchical models fitted to the second simulated data set.
The solid circles correspond to the true values of β0t and β1t that generated the data, the solid lines
correspond to the estimated posterior means of these parameters, and the dashed lines correspond to
the 2.5th and 97.5th posterior percentiles for these parameters. (a) δ0 = δ1 = 0.05 and ν0 = ν1 = 1;
(b) δ0 = δ1 = 0.5 and ν0 = ν1 = 1; (c) δ0 = δ1 = 3 and ν0 = ν1 = 1.
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Figure 9.7. Dynamic tomography plot from third simulated data set. The tomography lines are color-
coded according to their temporal location.

Regist. Not regist.
Yt = 0 Yt = 1

White Xt = 0 Y0t r0t

Black Xt = 1 Y1t r1t

c0t c1t Nt

for time period t in a particular county. In what follows we make the (unrealistic, but
conservative) assumption that the logits of the cell probabilities are independent across
counties and thus that each county-specific time series of tables can be analyzed separately.
Within a particular county, inference focuses onβ0t (the conditional probability that a citizen
is registered to vote at time t given that s/he is white) and β1t (the conditional probability
that a citizen is registered to vote at time t given that s/he is black).

The dynamic model with a simple random walk prior on (θ0, θ1) was fitted to these data.
Here ν j was set equal to 1 and δ j was set equal to 0.03 for j = 0, 1. This corresponds to a
vague prior belief that σ j is 0.1, which implies exp(θ j t − θ j (t−1)) should generally be roughly
between 0.82 and 1.22. On a probability scale, this implies that if β j (t−1) = 0.75, then our
best guess is that β j t will be between 0.71 and 0.79 about 95% of the time.

Wakefield’s (2001) baseline model with Beta(1, 1) priors was also fitted to these data as a
point of comparison.

Figure 9.10 displays the posterior mean values of β0t and β1t from the dynamic model and
the baseline model together with the observed fractions of registered whites and registered
blacks in each county–year. From the figure we see that the point estimates for probabilities
that whites are registered are very similar for the dynamic model and for the baseline model.
This is to be expected, as the bounds on these probabilities are generally quite informative
for most county–years. On the other hand, we see that the dynamic model point estimates
forβ1 are generally closer to the observed fraction of registered blacks than are the estimates
from the baseline model. The bottom panels in Figure 9.10 show that the dynamic model’s
point estimates of β0 tend to be slightly lower than the baseline model’s estimates, and the
dynamic model’s estimates of β1 tend to be noticeably higher than the baseline model’s
estimates.
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Figure 9.8. Summary of results from dynamic models fitted to the third simulated data set. The
solid circles correspond to the true values of β0t and β1t that generated the data, the solid lines
correspond to the estimated posterior means of these parameters, and the dashed lines correspond to
the 2.5th and 97.5th posterior percentiles for these parameters. (a) δ0 = δ1 = 0.05 and ν0 = ν1 = 1;
(b) δ0 = δ1 = 0.5 and ν0 = ν1 = 1; (c) δ0 = δ1 = 3 and ν0 = ν1 = 1.
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Figure 9.9. Summary of results from hierarchical models fitted to the third simulated data set. The
solid circles correspond to the true values of β0t and β1t that generated the data, the solid lines
correspond to the estimated posterior means of these parameters, and the dashed lines correspond to
the 2.5th and 97.5th posterior percentiles for these parameters. (a) δ0 = δ1 = 0.05 and ν0 = ν1 = 1;
(b) δ0 = δ1 = 0.5 and ν0 = ν1 = 1; (c) δ0 = δ1 = 3 and ν0 = ν1 = 1.
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Figure 9.10. Summary of Bayesian point estimates of cell probabilities for all counties and time
periods.
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Table 9.1 Performance of the dynamic model relative to the baseline mode

Avg. difference between
point estimate and Empirical Empirical

Parameter MSE obs. fraction 90% coverage 50% coverage

β0 (dynamic) 0.0059 0.0272 0.8365 0.4299
β0 (baseline) 0.0139 0.0356 0.9973 0.8159
β0 (hierarch.) 0.0060 0.0286 0.8777 0.4615
β1 (dynamic) 0.0212 0.0802 0.8352 0.4286
β1 (baseline) 0.0809 0.1170 0.9973 0.8173
β0 (hierarch.) 0.0281 0.0876 0.8695 0.4629

Table 9.1 presents some measures of the performance of the dynamic model relative to
the baseline model. The first column contains the posterior mean squared error between β j t

and the observed fraction of registered voters in race j in year t. As we would expect given the
much smaller posterior variance of β j t in the dynamic model, the posterior distribution of
the cell probabilities is much closer to the true fractions under the dynamic model than under
the baseline model. This is true for both β0 and β1. The posterior mean square difference
between β0t and the observed fraction of registered whites is about 2.4 times larger in the
baseline model than in the dynamic model, while for β1t the ratio is about 3.8.

To check whether these differences between the baseline model and the dynamic model
were solely due to the lower posterior variability of β j t under the dynamic model than under
the baseline model, we computed the mean distance between the posterior mean of β j t and
the observed fraction of registered voters in race j in year t. This information is presented
in the second column of Table 9.1. Here we see that this distance is about 1.3 times larger
in the baseline model than in the dynamic model for the white registration probabilities,
and about 1.5 times larger in the baseline model than in the dynamic model for the black
registration probabilities.

Finally, to get a sense of overall model adequacy, we calculated the empirical fraction
of the time that the observed fraction of registered voters in race j fell within the central
90% and 50% Bayesian credible interval. Here we would expect that a correct model would
have empirical coverage probabilities close to the nominal values of 0.90 and 0.50. This
information is presented in the third and fourth columns of Table 9.1. Here we see that
(not unexpectedly) the baseline model is overly conservative while the dynamic model is
somewhat falsely precise.

While all of these summary measures are interesting in this example, it should be em-
phasized that in actual applications where ecological inference is necessary these quantities
can’t be calculated, since the interior cell counts are not observed.

Finally, we turn our attention to the results from 6 counties that are roughly typical of
the results from all 52 counties. Looking at the results from county 1 in Figure 9.11, we see
that the estimates from the dynamic model are more in line with the observed fractions of
registered blacks and whites than the baseline estimates are. Here we see that the dynamic
model makes use of the information from the few years in which there are informative
bounds on β1t to shrink the estimates of β1t in years where the bounds are uninformative.

Looking at the results from county 57 in Figure 9.12, we see a case in which the bounds
on β1t are never informative. As we would expect given the tight bounds on β0t , both the
baseline model and the dynamic model do an accurate job of estimating β0t . However,
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neither model does a great job of estimating β1t , although the dynamic model estimates
are always closer to the observed fraction of registered blacks. Two things are particularly
interesting to note in this case. First, the key for the dynamic model to work reasonably
well is to have some information in the bounds for at least a few time points. Second, the
dynamic model estimates are not simply a smoothed version of the baseline posterior means
as one might expect. Instead, as we can see in Figure 9.12, the dynamic model estimates of
β1t are uniformly greater than the baseline estimates for all time periods. What appears to
be happening here is that the ridgelike likelihood function together with the random walk
prior is shrinking β1t towards β0t . Likewise, β0t is shrinking toward β1t . Quick inspection
of the results from all of the counties shows that this seems to be always the case.

The results from county 59, which are presented in Figure 9.13, demonstrate that even a few
informative bounds can greatly improve the estimates over the baseline model. Here, there
are only two years (1975 and 1988) in which the bounds on β1t are informative. Nonetheless,
this small amount of information greatly improves the estimates of β1t . Indeed, if we look at
the posterior modes of β1t instead of the posterior means, the results are even more accurate.
Again, it is also worth noting that the posterior means of β1t are being pulled closer to β0t

despite the assumption of a priori independence.
The results in Figure 9.14 for county 99 show a situation in which there are tight bounds

on both β0t and β1t . Here the dynamic model performs extremely well. Note the slight
bimodality in the posterior distribution of β0(1980) and β1(1980) from the dynamic model.
The reason for this is that the tomography lines separate into two clusters, as can be seen in
Figure 9.14a.

The results from county 105 in Figure 9.15 show a situation in which the dynamic model
performs well even though the bounds on β1t are only minimally informative. Again, note
that β0t and β1t are being shrunk towards each other despite the assumption of prior
independence.

Finally, the results from county 115 presented in Figure 9.16 show a situation where
things go badly wrong. Here the bounds are not informative for β1t , and the true fraction
of registered blacks is far away from 0.5. The dynamic model shrinks the values of β1t , and
to a lesser extent β0t , towards 0.5. Here the dynamic model produces misleading estimates
for both β0t and β1t .

9.6 DISCUSSION

A key feature of ecological inference is that the results are noticeably dependent upon
the researcher’s choice of prior distributions even as the sample size goes to infinity. This
forces researchers to carefully consider the prior specifications employed in any analysis of
ecological data. A primary goal to help ease this task should be the development of classes
of prior distributions that (a) can be easily elicited from substantive experts, (b) accord well
with the substantive phenomena under study, and (c) lead to reasonable inferences with
actual (nonsimulated) ecological data.

This chapter is an initial attempt to specify a class of prior distributions that meet these
criteria. It makes use of an intrinsic autoregressive prior for the logits of the cell probabilities.
Such a prior distribution has previously been used in spatial statistics and image processing
(Besag et al., 1991, 1995) and in time series modeling (West and Harrison, 1997). In the
present context we have looked only at temporal dependence, although it is in principle
straightforward to model spatial or spatiotemporal dependence with such prior distribu-
tions as well (see Haneuse and Wakefield, Chapter 12 of this volume). Proper specification
of this prior distribution requires the researcher to consider the size of the odds ratio given
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Figure 9.11. Results from county 1. (a) The tomography lines along which the posterior density is
concentrated. (b) The observed fraction of registered voters (dots), and the posterior means of β j t

from the dynamic model (solid lines) and the baseline model (dashed lines), for blacks (black lines
and dots) and whites (light blue lines and dots). The remaining graphs are histograms of β0 and β1

for 1980 from (c) the baseline model and (d) the dynamic model, along with the observed fraction
registered (the vertical black lines).
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Figure 9.12. Results from county 57. (a) The tomography lines along which the posterior density is
concentrated. (b) The observed fraction of registered voters (dots), and the posterior means of β j t

from the dynamic model (solid lines) and the baseline model (dashed lines), for blacks (black lines
and dots) and whites (light blue lines and dots). The remaining graphs are histograms of β0 and β1

for 1980 from (c) the baseline model and (d) the dynamic model, along with the observed fraction
registered (the vertical black lines).
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Figure 9.13. Results from county 59. (a) The tomography lines along which the posterior density is
concentrated. (b) The observed fraction of registered voters (dots), and the posterior means of β j t

from the dynamic model (solid lines) and the baseline model (dashed lines), for blacks (black lines
and dots) and whites (light blue lines and dots). The remaining graphs are histograms of β0 and β1

for 1980 from (c) the baseline model and (d) the dynamic model, along with the observed fraction
registered (the vertical black lines).
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Figure 9.14. Results from county 99. (a) The tomography lines along which the posterior density is
concentrated. (b) The observed fraction of registered voters (dots), and the posterior means of β j t

from the dynamic model (solid lines) and the baseline model (dashed lines), for blacks (black lines
and dots) and whites (light blue lines and dots). The remaining graphs are histograms of β0 and β1

for 1980 from (c) the baseline model and (d) the dynamic model, along with the observed fraction
registered (the vertical black lines).
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Figure 9.15. Results from county 105. (a) The tomography lines along which the posterior density
is concentrated. (b) The observed fraction of registered voters (dots), and the posterior means of β j t

from the dynamic model (solid lines) and the baseline model (dashed lines), for blacks (black lines
and dots) and whites (light blue lines and dots). The remaining graphs are histograms of β0 and β1

for 1980 from (c) the baseline model and (d) the dynamic model, along with the observed fraction
registered (the vertical black lines).
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Figure 9.16. Results from county 115. (a) The tomography lines along which the posterior density
is concentrated. (b) The observed fraction of registered voters (dots), and the posterior means of β j t

from the dynamic model (solid lines) and the baseline model (dashed lines), for blacks (black lines
and dots) and whites (light blue lines and dots). The remaining graphs are histograms of β0 and β1

for 1980 from (c) the baseline model and (d) the dynamic model, along with the observed fraction
registered (the vertical black lines).



P1: KFL/... P2: FZZ

CB658-09DRV CB654-KING-Sample CB658-KING-Sample.cls April 7, 2004 12:26

Ecological Inference in the Presence of Temporal Dependence 231

by exp(θ j t − θ j (t−1)) and is thus reasonably easy. The dynamics postulated by this prior
distribution are also reasonable for many social science applications where the underlying
temporal process is reasonably smooth. Finally, an analysis of the data on race and registra-
tion from Louisiana counties shows that a model that employs this prior distribution yields
reasonable results.

In principle, the models discussed in this paper for 2 × 2 tables can be extended to deal
with the general r × c table case (see Section 5 of Wakefield, 2001, as well as King et al.
1999). Nonetheless, the lack of information in generic r × c tables with r and c greater
than 2 suggests that efficient model fitting may be quite complicated – perhaps requiring
modified MCMC algorithms and/or additional identifying assumptions.

Nonetheless, there is still much work to be done – both within the context of ecologi-
cal inference models for temporally dependent data and within the context of ecological
inference models more generally. First, more thought needs to be given to methods for
accurately eliciting prior beliefs from substantive experts. Prior distributions are necessary
for ecological inference. Consequently, accurate prior distributions are required to obtain
accurate measures of posterior uncertainty about model parameters.

Second, still more work needs to be done on model checking and sensitivity analysis.
What happens to the posterior distribution if a uniform prior is used for the cell probability
with the most informative bounds (the probability that a white citizen is registered, in
the Louisiana example) while an intrinsic autoregressive prior is used for the other cell
probability (the probability that a black citizen is registered, in the Louisiana example)?
What happens if an informative prior is specified for the overall level of θ j ? What happens if
the increments of the random walk process are assumed to be Student-t random variables
rather than Gaussian random variables? Can we reject certain types of dynamic processes
as reasonable data-generating processes based solely on the information in the margins of
the table? All of these questions are unanswered.

Finally, developing models that explicitly model spatiotemporal dependence rather than
just spatial or temporal dependence is clearly of interest. In many applications, we expect
the interior cell probabilities to exhibit both temporal and spatial dependence. While this
might seem to be a major nuisance from a classical econometric perspective, it is actually a
tremendous source of background information that can be used to improve one’s inferences
through the specification of informative prior distributions. Of course, as is often the case
in ecological inference, incorrect specification of the prior distribution can lead to incorrect
posterior inference even in very large samples. For this reason, more complicated prior
distributions require more thorough sensitivity analysis and accurate elicitation of real
subjective prior beliefs.
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10 A Spatial View of the Ecological Inference Problem∗

Carol A. Gotway Crawford and Linda J. Young

ABSTRACT

The ecological fallacy that often results from ecological inference has long been a contentious issue
in sociology, geography, epidemiology, and statistics. Several different solutions to the ecological
inference problem have been proposed in these different disciplines. When grouped data are created
by spatial aggregation, as is typically the case with Census data, the ecological inference problem can
be considered as a special case of what is known in the field of geostatistics as the change-of-support
problem (COSP). In this chapter, we give a brief overview of the causes of the ecological inference
problem as it arises in geographical correlation studies. We relate the aggregation and specification
biases resulting from the ecological fallacy to the scale and aggregation effects underlying the modifiable
areal unit problem (MAUP) in geography. We introduce the COSP in spatial statistics, and show that the
ecological inference problem and the MAUP, as well as the map overlay operations conducted within
geographical information systems (GISs), are all special cases of the COSP. Geostatistical solutions
to simple COSPs indicate a general solution strategy for these problems. We review some of these
solutions and discuss some of the most recent statistical solutions to COSPs.

10.1 INTRODUCTION

Much of the literature on the ecological inference problem focuses on inferring internal
cell counts of an r × c contingency table (often a 2 × 2 table) from the marginal totals.
Individuals are divided into areal regions (e.g., census tracts, voting districts) and then cross-
classified by other variables (e.g., sex, race). In this context, Klein and Freedman (1993),
Cleave, Browne, and Payne (1995), and King (1997) provide comprehensive discussions of
the ecological inference problem and various solutions to it. An overview of these is given
in the Introduction by King, Rosen, and Tanner. In much of this discussion, the spatial
aspects of the aggregation into areal regions are not explicitly considered. Often, however,
the cause of specification bias in ecological inference is the failure to incorporate relevant
spatial information about individuals (Klein and Freedman, 1993).

The chapters by Calvo and Escolar (Chapter 11) and Haneuse and Wakefield (Chapter
12) present new methods that use spatial information to improve traditional solutions to
the ecological inference problem. In this chapter, we help to set the stage for their develop-
ment by focusing on some of the issues that arise in obtaining spatial information about
individuals from geographically aggregated data. In this context, we summarize the causes
of the ecological inference problem from the viewpoint of spatial statistics. We relate the
aggregation and specification biases resulting from the ecological fallacy to the scale and

∗ We appreciate the assistance of J. Felix Rogers, National Center for Environmental Health, who allowed us to
impose our statistical curiosity on his study.
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Figure 10.1. Aggregation and zoning issues in the
MAUP. (Adapted from Wong, 1996.)

grouping effects underlying the modifiable areal unit problem (MAUP) in geography. We
introduce the change-of-support problem (COSP) in spatial statistics and show that the
ecological inference problem and the MAUP are both special cases of the COSP. Geostatis-
tical solutions to simple COSPs indicate a general solution strategy for these problems. We
review some of these solutions and discuss some of the most recent statistical solutions to
COSPs.

10.2 THE MODIFIABLE AREAL UNIT PROBLEM

The modifiable areal unit problem (MAUP) is a geographic manifestation of the ecological
fallacy where inference based on data aggregated to a particular set of geographical regions
may change if the same data are aggregated to a different set of geographical regions. For
example, Openshaw and Taylor (1979) considered 99 counties in Iowa and constructed all
possible groupings of these counties into larger districts. When considering the correlation
between the percentage of Republican voters and the percentage of elderly voters, 12 districts
could be contrived to produce correlations ranging from −0.97 to +0.99. Moreover, there
seemed to be no obvious relation between the spatial characteristics of the districts and the
variation in the resulting correlation coefficients.

The MAUP is actually two interrelated problems. The first problem is that different results
and inferences are obtained when data are grouped into increasingly larger areal units. This
is often referred to as the scale effect or aggregation effect. It is analogous to the aggregation
bias in ecological inference resulting from the grouping of individuals. Another problem
occurs that is analogous to the specification bias in ecological inference that results from
the differential distribution of confounding variables created by grouping (Morgenstern,
1982). This second problem, often termed the grouping effect or the zoning effect in spatial
analysis, reflects the variability in results due to alternative formations of the areal units
leading to differences in unit shape at the same or similar scales (Openshaw and Taylor,
1979; Openshaw, 1984; Wong, 1996). These problems are illustrated in Figure 10.1.

The decades of research on the MAUP and the ecological inference problem have clearly
identified the source of these problems. The smoothing effect that results from averaging is
the underlying cause of both the scale problem in MAUP and aggregation bias in ecolog-
ical studies. As heterogeneity among units decreases through aggregation, the uniqueness
of each unit and the dissimilarity among units are reduced. As Openshaw (1984) noted,
“whether the ecological fallacy problem exists or not depends on the nature of the aggre-
gation. A completely homogeneous grouping system would be free of this problem.” There
is, however, another mitigating factor: spatial autocorrelation. The decrease in variability
is moderated by the positive autocorrelation among the original observations and exacer-
bated by negative autocorrelation (Arbia, 1986, and Cressie, 1993, both illustrate the effect of
autocorrelation on the variance of the sample mean). When areal units are similar to begin
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Table 10.1 Examples of the univariate change-of-support problem

The nature of But we observe or
the process is analyze instead Examples in spatial analysis

Points Points Point kriging; prediction of undersampled variables
Points Areal Ecological inference; geographical correlation studies
Areal Points Use of areal centroids; spatial smoothing; block kriging
Areal Areal The MAUP; areal interpolation; incompatible/misaligned zones
Surfaces Points Trend surface analysis; environmental monitoring; exposure

assessment
Surfaces Areal Remote sensing; multiresolution images; image analysis

Source: Modified from Arbia (1989).

with, the aggregation process results in much less information loss than it does with highly
dissimilar units. To further compound the problem, the aggregation process itself induces
positive spatial autocorrelation, particularly if the aggregation process allows overlapping
units (e.g., moving averages).

The smoothing effect and resulting alterations in the spatial autocorrelation of the units are
not just the sources of the scale effect in the MAUP, but are sources of the zoning effect as well.
The MAUP does not exist, or at least its effects are much less pronounced, when areal units are
aggregated in a noncontiguous or spatially random fashion (Gehlke and Biehl, 1934; Blalock,
1964). Only when contiguous units are combined, altering the spatial autocorrelation among
the units, is the zoning effect of MAUP most apparent. Because the variation among the
original areal units is not uniform over the entire region, merging smaller units is analogous
to smoothing different combinations of spatial neighbors. Depending on the similarity of
the neighbors, different zoning rules can lead to different analytical results.

10.3 SPATIAL STATISTICS AND THE CHANGE-OF-SUPPORT PROBLEM

With the recent advances in geographical information systems (GISs), the scale and zon-
ing problems in the MAUP and the ecological inference problem are now almost routinely
encountered in analyses that use spatial data. They can occur naturally or be artificially
induced by the measurement process or analytical considerations. Frequently, the spatial
process of interest is inherently of one form, but the data we observe are of another form. For
example, sometimes the data are just not available at the desired scale of interest. Meteoro-
logical processes occur over a continuum, but we can record only point observations on that
surface. At times, individual-level inference is desired, but to ensure data confidentiality,
only aggregate data are available. These situations are special cases of the change-of-support
problem (COSP) in geostatistics. The term support refers to the geometrical size, shape, and
spatial orientation of the regions associated with the measurements (see, e.g., Olea, 1991).
Changing the support of a variable (typically by averaging or aggregation) creates a new
variable. This new variable is related to the original one, but has different statistical and
spatial properties. The problem of how the spatial variation in one variable relates to that of
the other variable is the COSP. The COSP often results from the different forms of spatial
data: points, lines, areas, and surfaces. Thus, both the ecological inference problem and
the MAUP are COSPs. Table 10.1, modified from Arbia (1989), delineates some common
COSPs.
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Figure 10.2. The bivariate COSP. ZIP codes
and locations of air pollution monitors in
the Atlanta metropolitan area (From Tolbert
et al., 2000.)

In the spatial sense, these are all univariate problems in that there is just one spatial
response variable of interest. The bivariate COSP, where there are two spatial variables
of differing supports, has received limited attention in the literature (Cressie, 1996). The
bivariate COSP brings with it additional issues best conveyed with an example. Consider
the study, described in Tolbert et al. (2000), designed to measure the effect of air quality
on asthma exacerbation in metropolitan Atlanta. Perhaps for data confidentiality reasons
or for practical reasons of time and cost involved in geocoding address information, the
numbers of asthma cases and controls were reported by ZIP code. Air quality, quantified by
various indices such as ozone concentration, was measured at several monitoring stations
throughout metro Atlanta (Figure 10.2). In terms of the health outcome of interest (asthma),
this is an ecological inference problem, because inferences about people are to be made from
aggregated data at the ZIP-code level. However, another COSP problem arises in linking the
exposure and health outcome information together, because the two variables of interest
have inherently different scales: disease pertains to individuals, but air quality varies over
a continuous surface. This latter issue is slightly different from those discussed previously.
The restriction of air quality to the individual results from a desire to draw inferences
about the “cause” of the disease. The inability to measure the “air quality of an individual”
(without extreme inconvenience to the individuals in the study), and not aggregation, causes
the COSP problem. Inferential issues for these problems have been discussed in Cressie
(1996).

The COSP has been studied in many different disciplines, although the term COSP has
rarely been used except within the field of geostatistics. In addition to the MAUP and the
ecological inference problem, numerous other terms have been introduced to describe one or
more facets of the COSP as well as various “solutions” to it: spatial data transformations; the
scaling problem; inference between incompatible zonal systems; pycnophylactic geographic
interpolation; block kriging; the polygonal overlay problem; areal interpolation; inference
with spatially misaligned data; contour reaggregation; and multiscale and hierarchically
scaled modeling. We choose to use the term “change of support” to describe the problems
inherent in all of these approaches because it provides a unifying framework and offers many
insights into possible solutions.
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10.4 SOLUTIONS TO THE CHANGE-OF-SUPPORT PROBLEM

Many solutions have been proposed to different COSPs. Of course there is no unique solution
to any COSP, since any proposed solution must make untestable assumptions about the
information lost in aggregation. Thus, the solutions inherently differ with respect to the
assumptions made, the validity of these assumptions, and the nature of any extra information
used to reconstruct the missing individual-level statistics. One source of extra information
readily available in all spatial problems is the support of the geographical regions. Some
solutions to COSPs take explicit account of the shapes and orientations of the spatial units
and not just their size. Many solutions, however, are incomplete, taking account only of
the relative sizes between the units. In a previous paper, we provided an overview of the
many different solutions to COSPs, emphasizing current statistical approaches (Gotway
and Young, 2002). From our critical review, we found that most solutions to COSPs had a
common theme: they all build a model from point support data (even if no observations were
taken at this level of support) and then develop methods to optimally estimate important
parameters. In the following sections, we focus on one particular set of solutions, spatial
smoothing methods, that provide one solution to the ecological inference problem in spatial
statistics.

10.4.1 Spatial Smoothing of Aggregated Data

Much of the spatial data we work with today is geographically aggregated and standardized
to produce rates for each geographic region. The rates are often displayed on a chloropleth
map, and the map is then used to compare regions and make inference about individuals.
However, the rates have different variances, and this variation also changes across the map.
Spatial smoothing has often been suggested to reduce this problem, and many smoothers
are available. Most of these delineate each region by its centroid and then use some sort of
interpolation between centroids to compute smoothed estimates. In doing so, the supports
of the data are ignored (in most applications, even the areas of the regions are ignored). In
this section, we describe some approaches that take explicit account of the different supports
in obtaining smoothed estimates.

Let X(A1), . . . , X(An) denote the aggregated data (counts or totals) observed in regions
Ai within a domain D ⊂ �2, and let the area of region i be denoted by |Ai |. Tobler (1979)
suggested one of the earliest smoothers of aggregated data. He assumed the existence of
an underlying intensity function, λ(x , y), which is nonnegative and has a value for every
location s = (x , y) ∈ D. Thus, the underlying population is assumed to be distributed
according to a spatial density function proportional to λ(s), and the number of people in
any region A is X(A) = ∫

A λ(s) ds. Tobler suggested that such an intensity function should
be smooth and that adjacent regions should influence each other in the estimation process.
Thus, he suggested choosing λ(x , y) to minimize

∫ ∫ [(
∂2λ

∂x2

)2

+
(

∂2λ

∂y2

)2
]

dx dy, (10.1)

subject to the constraints λ(s) ≥ 0 and

∫
Ai

λ(s) ds = X(Ai ) for i = 1, . . . , n. (10.2)



P1: FZZ/FZZ P2: FZZ

CB658A-10 CB654-KING-Sample CB658-KING-Sample.cls April 7, 2004 13:26

238 Carol A. Gotway Crawford and Linda J. Young

When applied to point data, the intensity surface that minimizes Equation 10.1 is the sur-
face of minimum curvature. The minimum curvature method produces smooth surfaces
from irregularly spaced data that are visually pleasing and constrained to have maxima and
minima only at data locations. In the case of areal data, with the additional constraint of
Equation 10.2, the surface is constrained to preserve volume: the intensity process integrates
to the observed data for each region. Tobler (1979) called this constraint the pycnophylac-
tic property (or volume-preserving property). Both Tobler (1979) and Dyn, Wahba, and
Wong (1979) have proven the existence and uniqueness of the solution to this constrained
minimization problem.

The solution requires specification of boundary conditions, and Tobler suggested forcing
either the intensity surface or its gradient to be zero at the boundary of the domain. The
boundary conditions will affect the smoothness properties of the surface, particularly near
the edges of the domain. Dyn, Wahba, and Wong (1979) suggested an alternative smoothness
criterion,

∫ ∫ (
∂2λ

∂x2
+ 2

∂2λ

∂x ∂y
+ ∂2λ

∂y2

)
dx dy,

which allows the solution and its gradient to be free and determined by the data.
Brillinger (1990, 1994) considered a different optimization criterion based on a locally

weighted analysis. In this approach, the problem is to estimate the value of λ(x , y) based
on a linear combination of aggregate data values, i.e., λ̂(s) = ∑n

i=1 w i X(Ai ). Each weight,
wi (x , y), determines the effect of region Ai on location (x , y). In geostatistics, this is an
adaptation of what is called the block kriging predictor (see Cressie, 1993, 1996). The weights
are chosen to minimize the prediction mean squared error and are given by

�w = σ.

The elements of � are the covariances among the aggregated data,

cov(X(Ai ), X(A j )) =
∫

A j

∫
Ai

C(u, v) du dv; (10.3)

the elements of σ are the covariances between the areal data and “data” at point s,

cov(X(s), X(Ai )) =
∫

Ai

C (u, v) du dv;

and C(u, v) is the underlying, point-to-point covariance function
C (u, v) = cov(X(u), X(v)), for u, v ∈ D.

The covariance function C(u, v) cannot be estimated directly from aggregate data. Cressie
(1993) suggested a practical approach to building a point-level model in which a parametric
form for C(u, v) is assumed and the theoretical covariance on the right hand side of Equation
10.3 is equated to the empirical covariance function of X(A), estimated and modeled from
available data. Gelfand, Zhu, and Carlin (2001) eloquently implement this idea with Gaussian
data using Bayesian hierarchical models and Gibbs sampling. Because λ(x , y) is an intensity
function of a spatial point pattern (and not an underlying random field as is assumed in
geostatistics), Brillinger (1990, 1994) used C (u, v) = K (u − v), where K (·) is a kernel
function integrating to 1. Thus, the weights are approximately (because the Ai are disjoint,
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so � is approximately diagonal) equal to

wi (x , y) = 1

|Ai |
∫ ∫

Ai

K (x − u, y − v) du dv .

Given the weight function, a locally weighted estimate of the underlying intensity can be
obtained by maximizing the weighted log likelihood of the data. Thus, for smoothing rates,
X(Ai )/Ni , with X(Ai ) ∼ Poisson(Niλ(s)), the locally weighted estimate of λ at (x , y) is

λ̂(x , y) =
∑

i wi (x , y)X(Ai )

Ni
∑

i wi (x , y)
.

Müller, Stadtmüller, and Tabnak (1997) adapted Brillinger’s ideas to the estimation of the
intensity function of disease incidence, where the total number of disease cases and the total
population at risk are available for each region. They developed a modified version of locally
weighted least squares where the squared differences between observations and local fits are
integrated over the regions.

These approaches all force the intensity estimates to allow for the differing supports of the
regions Ai . Thus, these smoothing methods are one solution to the area–point COSP (the
ecological inference problem). Integrating the intensity estimates over different domains is
a solution to the area–area COSP (the MAUP).

10.4.2 Case Study: Georgia Health Care District 9

Rogers et al. (2000) presented the results of a case–control study of the risk of having a very
low birth weight (VLBW) baby, one weighing less than 1,500 grams at birth. The data were
obtained from the National Center for Environmental Health, Centers for Disease Control
and Prevention. The study area comprised contiguous counties in southeastern Georgia,
constituting Georgia Health Care District 9 (GHCD9) (Figure 10.3). Cases were identi-
fied from all live-born, singleton infants born between April 1, 1986 and March 30, 1988.
Controls, babies born in the same area during the same period weighing more than 2,499
grams at birth, were identified from birth registries. Further details of the case identification
and control selection procedures, as well as other variables recorded during the study, are
described in Rogers et al. (2000). The methods used in this paper are based on a total of 230
cases and 550 controls.

Of interest in this paper is the use of aggregated data (here, the number of cases and
controls per county) to obtain a smoothed map of the relative risk of observing a case rather
than a control at location s in GHCD9. We assume that the original, but unobserved, point
case and control data result from spatial point processes with underlying intensity functions
λ1(s) and λ2(s), respectively. Each intensity function is proportional to the corresponding
spatial density function associated with the probability of observing a case or a control at any
particular location in the study area. Comparison of the two estimated intensity functions
provides a way to estimate the spatial variation in the risk for a VLBW baby in GHCD9.
Thus, r (s) = λ1(s)/λ2(s) is the relative risk of VLBW at location s.

If the individual-level case and control data were available, density estimation methods
could be used to estimate the intensity functions (e.g., Bithell, 1990; Kelsall and Diggle,
1995, 1998). With aggregate data, these density estimation methods cannot be used to
estimate the individual-level risks. The methods developed by Brillinger (1990, 1994) and
Müller et al. (1997) described in Section 10.4.1 could be used with rates of VLBW, but the
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Figure 10.3. Counties of Georgia Health Care District 9.

underlying intensity functions are not guaranteed to be nonnegative and are not constrained
to preserve volume (cf. Equation 10.2). Thus, we adapt Tobler’s (1979) method, described
in Section 10.4.1, to the constrained estimation of relative risk. The intensity of each process
is estimated separately from the case and control counts associated with each county. Each
intensity surface is constrained to satisfy the volume-preserving property. The estimated
relative risk surface is then λ̂1(s)/λ̂2(s) and is shown in Figure 10.4.

To provide some evaluation of this approach, we also obtained the original case and
control data. The address information was geocoded to provide point spatial data projected
onto the Universal Transverse Mercator (UTM) grid system. Density estimation methods
developed by Bithell (1990), Kelsall and Diggle (1995), and Kelsall and Diggle (1998) were
then used to estimate the spatial variation in risk from the point-level case–control data
(Figure 10.5).
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Figure 10.4. Estimated risk of VLBW based on Tobler’s (1979) method using aggregated data.

Comparing the two maps, one obvious conclusion is that the risk map computed using
Tobler’s method is not as smooth as the risk map estimated from the point case–control data.
This is expected, both because some information lost in aggregation can never be recovered
and because of the volume-preserving constraints. The effects of these constraints will be
most pronounced when two regions close together have very different risks. The risk map
based on the point case–control data tends to smooth out these differences. This is evident in
the northern part of the maps: The small, oval county in the north-central part of GHCD9,
Evans County, had no VLBW babies. Tobler’s method constrains the risk surface to zero
here; the density estimation method applied to the case–control point data smooths over
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Figure 10.5. Estimated risk of VLBW based on density estimation methods (Bithell, 1990; Kelsall and
Diggle, 1995, 1998) using point data.

this small area. Although in areas like these the maps clearly differ, consistent patterns
also exist between the maps. Both maps indicate that the westernmost part of GHCD9,
comprising Atkinson, Coffee, and Jeff Davis, seems to have a higher risk, overall, while the
swath composed of parts of the southern counties (parts of central and eastern Ware, eastern
Charlton, south Bradley, and Glynn) appears to have an overall lower risk for VLBW babies.

This case study has illustrated one method for inferring individual-level behavior (disease
risk, population density, crime intensity) from geographically aggregated data that explicitly
uses the support of the areal regions. Obtaining individual-level inference is easy; assessing
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the quality of such inferences, particularly in a spatial setting, is not. Comparison with
the relative risk map produced from individual-level case–control data, both visually (as
described here) and quantitatively by comparing population estimates over different Census
units, indicates this type of approach gives reasonable results. In this example, the geocoded
case–control point data (and Census population data) were available for comparison. In
most studies, this type of data will not be available, and it will be difficult to ascertain
how well this approach works in any given application. More thorough investigation, with
different types of point data and through simulation, will allow evaluation of the general
method and comparison with other approaches described earlier and reviewed in Gotway
and Young (2002).

10.5 SUMMARY

In this chapter, we have given an overview of the COSP in spatial statistics, as it relates to the
ecological inference problem that arises when aggregate data are used to make inferences.
We have demonstrated how spatial smoothing methods that explicitly allow for the changes
in support can be used to disaggregate spatial data and allow inferences about individuals.

A number of issues still need to be resolved with the use of these methods. Constraining
the intensity functions so they satisfy volume-preserving properties seems like a reasonable
requirement; intuitively we should not be able to have more cases or controls than we
started with, nor less. These constraints do affect the intensity estimates and the resulting
risk surface. Neither risk map is the true map (both are based on estimates and assumptions),
and it is difficult to say which map is closer to reality. Thus, we have to wonder whether the
features introduced by the constrained smoothing are realistic, and we have to entertain the
possibility that unconstrained risk maps, even those constructed from point case–control
data, are too smooth. As all of these methods are relatively new, little is known about the
properties of spatial intensity estimation methods even with point-level data. Finding an
objective way to evaluate these approaches (and others with the same goals) is important,
although such a study seems difficult.

Both Brillinger (1990, 1994) and Müller et al. (1997) derived standard errors for the
estimates produced from their approaches to spatial smoothing of aggregate data. Brillinger
(1990, 1994) also adapted his method to include relevant covariate information. Locally
weighted least squares regression is often used for multivariate regression, so adapting the
method of Müller et al. (1997) to include covariates seems straightforward. For some reason,
statisticians have not embraced Tobler’s (1979) method, so these derivations have not been
done (at least to the best of our knowledge). Volume-preserving constraints will certainly
make such derivations more complex. All of these methods assume independent data and
thus ignore any spatial correlations among the aggregate data.

Spatial support should be an important component of spatial data analysis; a circle is
inherently different from a rectangle, even if they have the same area. However, explicitly
allowing for support in statistical methods adds a great deal of complexity to already complex
problems. The practical implications of ignoring support are difficult to measure. The first
step is the development of viable approaches for solving COSPs. Interest in these problems
is now considerable, and good progress is being made.
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11 Places and Relationships in Ecological Inference

Uncovering Contextual Effects through a Geographically Weighted
Autoregressive Model∗

Ernesto Calvo and Marcelo Escolar

ABSTRACT

One of the most salient but less studied features of ecological inference is the presence of spatial
structure inducing aggregation bias in the observed data. This lack of attention is due to the fact that in
most ecological inference models aggregation bias and spatial aggregation bias have been confounded.
In this article we take advantage of a geographically weighted auto-regressive approach (GW-AR) to
ecological inference that incorporates information about the underlying sources of spatial aggregation
bias in ecological inference. We then show how this spatial information can be incorporated into most
ecological inference methods as a covariate. Finally, we use Monte Carlo simulations to study the
performance of the adjusted EI and Goodman models in the presence of spatial effects.

11.1 INTRODUCTION

One of the most salient but less studied features of ecological inference is the presence of
spatial structure inducing aggregation bias in the observed data. This lack of attention is due
to the fact that in most ecological inference models aggregation bias1 and spatial aggregation
bias2 have been confounded into one and the same thing. However, provided that we know
the location of the observable ecological units, there exists considerable more information
about spatial aggregation bias than about most other nonspatial sources of bias.

In this chapter we take advantage of a geographically weighted auto regressive ap-
proach (GW-AR) to ecological inference that incorporates information about the underlying
sources of spatial aggregation bias in ecological data. This spatial information can be then
incorporated into most ecological inference methods, although we will focus on spatial auto
regressive controls for the Goodman regression and King’s EI. In doing so, we will also shed
light on the different performance of the standard Goodman and EI models in the presence
of spatial effects (Anselin and Tam Cho, 2002; King, 2002; Calvo and Escolar, 2003) and
their different local estimates (Herron and Shotts, 2003; Adolph and King, 2003).

There are a number of different procedures that can be used to explore spatial aggrega-
tion bias in ecological data. Geographically weighted regression (GWR) provides a theoreti-
cally sound and computationally simple alternative within the classical framework. We also

∗ We thank Charles Brunsdon, Noah Kaplan, Gary King, Sebastien Haneuse, Keith Poole, Jon Wakefield, and
an anonymous reader for their comments and suggestions. In particular, we thank Sebastien Haneuse and Jon
Wakefield for their advice in programming the distance-weighted WinBugs alternative provided in the Appendix.

1 The “grouping-induced correlation between Xi and ei -error term” (King, 1997: 55).
2 The correlation between Xi and a spatially nonstationary error term, the result of the data being explained by

different spatial regimes. See also “Extreme Spatial Heterogeneity” in Anselin (1988).
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provide a distance weighted MCMC alternative in the Apendix, in the spirit of that presented
by Haneuse and Wakefield in Chapter 12 of this volume.

The order of presentation of this article is as follows: first, in Sections 11.2 and 11.3, we
introduce a common statistical perspective to discuss local contexts and global relationships.
We then describe the GW-AR approach to control for spatial effects in ecological inference. In
Section 11.6 we provide Monte Carlo evidence on the performance of the GW-Goodman and
GW-EI models. The results converge with previous literature showing that in the presence
of spatial effects EI may provide estimates that are both biased and closer to the true βb

i
than Goodman’s βb

i (Voss, Chapter 3 in this volume; Anselin and Tam Cho, 2002; Herron
and Shotts, 2003). Finally, in Section 11.7, we exemplify the method with an analysis of the
relationship between the Peronist vote and turnout in Argentina.

11.2 CONTEXTUAL EFFECTS AND GLOBAL RELATIONSHIPS

Maps can be read in many ways. They provide information about the shortest route to
our destination, but they also provide information about social structures and processes.
Poverty maps are meaningful because wealth is not randomly distributed in cities; southern
and northern Democrats have geographically distinctive political agendas; and city areas
like Chinatown, the Magnificent Mile, or Cabrini Green in Chicago all express different
social structures and relationships that construct these locations as meaningful places. Yet,
is it only recently that we have started to explore the statistical implications of this diversity
in political science rather than just searching for a solution to its problematic effects (Ward
and Gleditsh, 2002; Kohfeld and Sprague, 2002; Anselin and Tam Cho, 2002).

In a strictly statistical sense location matters, just as places matter in a much more sub-
stantive way. People with similar incomes choose different neighborhoods to live in for
reasons that shape their school choices, and select schools for reasons that affect their vote,
and decide their vote for reasons that are not unrelated to their housing and neighbor pref-
erences. Similarly, party machines can register voters more successfully in some counties,
close races for local candidates can drive voters to turn out in larger numbers in one state
but not in others, and even differences in the average age of citizens across different Florida
counties may have a significant impact on the state level of their political participation or
their vote.

In most ecological inference methods these peculiarities are construed as noise, even
though this “noise” often displays a fairly systematic spatial structure.3 It usually expresses
contextual relationships that shape our variables of interest, affecting the estimation of global
parameters by the continuous intervention of a geographically located world. And, while
these spatial effects are usually the result of local omitted variables (King, 1996; Agnew,
1996a, 1996b), it is generally impossible to take account of all the contextual variables that
shape social phenomena over space. As is often observed in public opinion, preferences
among different groups of voters tend to display trends over time in response to significant
political events. For example, in panel data it is often observed that the support for a
candidate shifts up or down for all voters in a sample in response to a political scandal even
though different group preferences continue to be affected by other intervening variables
like wealth or education. Similarly, a candidate’s scandal in a local community can move
the average vote for party i down, holding other meaningful variables constant. As a result,
spatially structured data often displays large margin errors, heteroscedastacity, and highly
uninformative scatterplot distributions (Anselin, 1988).

3 See Haneuse and Wakefield (Chapter 12) and Voss (Chapter 3) for exceptions.
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Figure 11.1. Spatial dependence in the vote for party i .

The geographic extent to which these neighborhood effects (Johnston, 1986a, 1986b) de-
press voting, however, is much more than a factor to be corrected. It provides information
as to how communities are linked, what populations fall within the influence area of a par-
ticular territorial politics and how these contextual topographies are linked to other socially
relevant phenomena (Fotheringham and O’Kelly, 1989; Anselin, 1988; Sui and Hugill, 2002).
In other words, how much a place (contextual variables) explains social phenomena and
how global the relationships really are.

11.3 LINEAR RELATIONSHIPS AND NON-LINEAR SPACES

Imagine a three-dimensional Euclidean representation of the party A vote in the unrealis-
tically square city depicted in Figure 11.1.

The geography of this city is mapped by its east and north coordinates, and yi describes
the mean vote for party A in every coordinate i of its spatial surface. In the absence of
spatial effects, the average local vote yi in any particular east-north region of the city would
be similar to the city’s average (Guillorel and Levy, 1992). However, in the presence of
spatial effects, different regions of the city would be characterized by different expected
local means.4 For example, in the area represented by the coordinates [2, −2]5 of Figure
11.1a the mean expected vote for party A is around 35%. Meanwhile, in the area [0, 1] the
mean expected vote for party A is close to 65%.

4 Spatial non-stationarity, spatial regimes (quantitative geography), and random fields (statistics, image technol-
ogy) are growing research areas analyzing the properties of spatial structures.

5 The first number indicates the east coordinate, and the second number indicates the north coordinate.
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These differences could be explained by a number of global variables (e.g. the spatial dis-
tribution of wealthy voters in different regions of the city), local variables (e.g. the financial
scandal of local alderman Smith), or diffusion effects (the degree of integration of the City’s
media, transportation, etc.). Mean differences in yi could also be explained by the endoge-
nous properties of the covariates if the distribution of the white and black vote has a spatial
structure (see Haneuse and Wakefield, this book, Chapter 12) if racial polarization leads to
higher turnout in particular regions of the data (King, 1997; Voss, this book, Chapter 3).

Without introducing further variables to allow for spatial effects, the basic model pre-
sented in Figure 11.1a presumes that yi is to some degree explained by an underlying spatially
heterogeneous structure si .

yi = f (si ) + ui (11.1)

Because spatial non-stationarity means that nearby observations are clustered together, an
instrument for f (si ) in Equation 11.1 is provided by the more familiar spatial auto regressive
model in which Wy j , contiguous observations of yi , explain some of the variation in yi :

yi = ρWy j + ui , (11.2)

where W is a contiguity matrix whose elements are 1 if y j is next to yi and 0 otherwise, ρ

is a parameter indicating the magnitude of variation in yi as the mean value of contiguous
observations change, and ui is the stochastic error term.

Now assume that an exogenous variable Xi is both linearly related to y j and linearly
increasing from east to west, as shown in Figure 11.1b.6 If we were unaware of the spatial
structure in Figure 11.1b, we might run the basic Goodman regression and obtain OLS
estimates of the global parameters of interest by the equation:7

yi = βw + (βb − βw )Xi + ui . (11.3)

This model, however, provides a linear approximation to Figure 11.1c rather than to the
more appropriate data generation process described by Figure 11.1b. Therefore, the omitted
spatial structure of Figure 11.1a will lead to inefficient and often biased ecological estimates
of the parameters of interest.

There are currently a large number of tests that can be used to detect spatial effects8 but in
many cases a visual exploration of the relationship between the residuals and the east north
coordinates (Figure 11.2) will clearly show the presence of contextual effects in the data.9

Provided that the social process that generated yi corresponds to that depicted in Figure
11.1b, the basic Goodman identity should be corrected to allow for the presence of spatial
effects in the data:

yi = βw + (βb − βw )Xi + f (si ) + ui , (11.4)

6 We impose the east–west restriction so that we can represent more intuitively the linear relation between Xi and
yi on the city’s surface.

7 We use yi = βw + (βb − βw )Xi + ui instead of the more familiar yi = βb Xi + βw (1 − Xi ) + ui to be con-
sistent with Figure 11.1. See Grofman and Merrill, this book, Chapter 5.

8 Some popular alternatives include Moran’s I, which estimates the correlation between every observation yi and
its neighbors y j ; and Geti’s G, which provides local correlation estimates for every point in the map.

9 These two plots were obtained from the Monte Carlo simulations that will be presented in the next section.
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Figure 11.2. Spatial dependence in the residuals of the Goodman model (east and north coordinates
of the precinct centroids).

or,

yi = βb Xi + βw (1 − Xi ) + f (si ) + ui . (11.5)

To those familiar with the general additive model (GAM), Equations 11.4 and 11.5 should
ring familiar (Hastie and Tibshirani, 1990). Turnout is here explained as a linear function of
black and white turnout (standard Goodman model) while f (si ) estimates the non-linear
spatial structure in the data. The basic problem, however, is that we lack an appropriate
instrument to assess the non-linear structure of spatial (contextual) effects.

Luckily, quantitative geographers, regional scientists, and epidemiologists have developed
a number of models to deal with issues of spatial heterogeneity and auto-correlation in their
data. In the next section we will focus on a distance-weighted alternative and introduce
a geographically weighted auto regressive control (GW-AR) for ecological inference in the
presence of spatial effects. Using Brunsdon, Charlton, and Fotheringham’s (1997) geograph-
ically weighted regression, we show that it is possible to recover a spatial vector parameter
S that provides substantive information about the relative impact of context and its spatial
structure.

11.4 GEOGRAPHICALLY WEIGHTED REGRESSION AND ITS ALTERNATIVES

Controlling for spatial effects means modeling the assumption that values in adjacent geo-
graphic locations are likely to be linked to each other by some underlying spatial structure.
This spatial structure may be itself the result of other omitted local variables or some diffu-
sion mechanism that force yi to be spatially dependent on contiguous values.10

11.4.1 Contiguity

As we already showed in Equation 11.2, one way to take account of such spatial structure
would be to use an extra explanatory variable describing the mean value of the dependent

10 Note that spatial structure on the dependent variable yi always implies auto-correlation. However, spatial
structure may or may not result in aggregation bias (extreme spatial heterogeneity). Recovering the underlying
spatial structure present in a particular data set should both improve the efficiency of the estimates in cases of
auto-correlation and control for omitted spatial effects when spatial dependence leads to aggregation bias.
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variable for neighboring observations. Such a procedure would be equivalent to including a
time lag in time series analysis. In ecological data, a spatial matrix lag of mean yi values can
also be entered into the equation. However, in contrast with time series, the matrix lag is
multi dimensional and the lags modeled in the equation cannot be considered exogenous.11

The matrix of the lagged dependent variables can be written as Wy, where wi j describes an
observation in location j as adjacent to point i if wi j = 1 or not adjacent if wi j = 0. Notice
that if wi j = 1, then yi and y j are geographically located next to each other. Therefore, y j

will be entered as a lagged value of yi , and yi will also be entered as a lagged value of y j . The
extended model can be written as:

y = XB + ρWy + ε (11.6)

where ρ is the coefficient for the adjacent mean variable.12

As with standard time series auto regressive models, the number of auto regressive lags
can vary; e.g. a first-order spatial lag would include observations that are contiguous to
wi j , second-order spatial lags would be contiguous to the first-order lag of wi j , etc. In
contrast with time series, however, observations that are distant may still be related to wi j .
Therefore, it is important to model the entire spatial structure of the data into Wy. Such an
alternative is possible through kriging, through the expansion method (Casseti), or through
a geographically weighted regression of the residuals.

A common variation for the model just described is the auto-regressive error model, which
assumes that the error term is spatially dependent as described in the following equation:

y = XB + (I − ρW)−1ε (11.7)

As in standard time series analyses, Equation 11.7 can be estimated by decomposing the
spatially dependent error vector ε into a grid that describes the spatial trend ρ, and the usual
stochastic error ui -recovering the spatial structure in the error term.

11.4.2 Distance Weights: GWR

An alternative to contiguity matrices are distance-weighting schemes, modeling the assump-
tion that nearby observations y j have more influence in the estimation than observations
that are further away. Seven years ago Brunsdon, Fotheringham and Charlton (1996) created
GWR for exploring what they define as spatial nonstationarity: the condition by which “a
simple ‘global’ model cannot explain the relationship between sets of variables” (p. 1).

Similar to King’s EI (1996), GWR estimates local parameters for every observation i in a
data set but, unlike EI, it uses distance weights to reestimate the changing relationship among
variables within different spatial regimes. Such weights give declining salience to cases that
are further away geographically, as measured by the distances from each observation to all
others in the data set. The distances are usually computed from the geographical center

11 We use the notation of Brunsdon, Fotheringham and Charlton (2000) to describe the spatial auto regressive
model.

12 Taking Equation 11.6, subtracting ρWy from both sides and factoring we have that: (I − ρWy)y = XB +
ε. After transforming the X matrix (Brundsdon, Fotheringham, and Charlton, 2000), we obtain a spatial
auto-regressive model y = (I − ρW)−1 XB + (I − ρW)−1 ε, where the variance-covariance matrix Cov(y) =
σ 2[(I − ρW)−1]’ (I − ρW)−1. The last two equations are equivalent to those of the standard OLS, but with
an error term that is a linear transformation of the original spatially dependent vector ε. The main problem is,
therefore, finding an acceptable value of ρ to substitute into the ecological inference model to control for the
spatial structure present in the ecological data.
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of each observation (the centroid) entered in the estimation process by their east north
coordinates. Examples of different geographical centroids are the east north center of a
precinct, a circuito, or a state.

GWR implements one local regression model for every observation of the data set ac-
cording to the equation:

yi =
∑

k

βk(ei , ni )Xik + εi (11.8)

where yi is the expected local mean; βk are the estimated local parameters βo through βk ;
(ei , ni ) is a distance weighting function for the i observation by its east–north coordinates;
and Xik describes the explanatory variables which may include a vector of ones, Xio , if
there is a constant. The model assumes that data near to point i have more influence in the
estimation of βk(ei , ni ) than observations that are further away from i . In matrix notation,
GWR can be written as

B(ei,ni) = (
XT W(ei,ni)X

)−1
XT W(ei,ni) y (11.9)

where W is a matrix of weights whose off-diagonal elements are zero and whose diagonal
elements wi1, . . . , win provide a decay functions for points further away from i . Notice that
a number of different weights can be used to estimate this local regression. For example,
if all wi1 = 1 then no decay is represented by this matrix and the local regression model
will be identical to the global OLS. On the other hand, if wi1 = 1 for 50% of the sample
whose observations are closer to i , all local regressions in wi1 = 1 will be identical to the
OLS estimated for the full subsample.

The problem of how to find an optimum weight to describe the spatial structure of
the data requires assumptions about either the proper distance-decay function and/or the
proper subsample of points. As usual, under- and over-smoothing are some problems that
can arise from a poorly calibrated model. The most common choice for distance weights is
Gaussian, which gives declining weights to observations as

Wi1 = exp
( − d2

i1/h2
)

(11.10)

where d describes the distance from observation i to observation 1, and h describes a
smoothing bandwidth. As h increases, the level of smoothing increases; therefore, the local
regression parameter βki converges to the global parameter βk.

13 As h decreases, the local
estimates become more spiked and the parameter becomes more distinctly local.

As can be shown, a geographically weighted Goodman regression can be implemented
within this framework by specifying Equation 11.8 as

yi = βb
(ei,ni) Xi + βw

(ei,ni)(1 − Xi ) + εi . (11.11)

In general, however, we lack theoretical reasons to assume that the full model will vary over
space. More importantly, there are good reasons to think that changing the spatial scale of
support for the model (MAUP) will result in similar spatial aggregation problems over the
newly restricted subsample when estimating βb

i and βw
i . Rather, the alternative we present

below is to model the spatial structure of the error term directly to build a semiparametric
auto-regressive error model.

13 As noted by Beck and Jackman, “least square can be thought as an infinitely smooth scatterplot smoother” (1998:
p. 606).
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11.4.3 A Semiparametric Model Using the GWR

Now that the GWR has been presented, we can write again Equation 11.5 as

yi = f (ei , ni ) +
∑

k

βk Xik + εi (11.12)

where the dependent variable yi is explained by a set of linear predictors βk and a non-
parametric spatial structure f (ei , ni ) over the east–north coordinates. If we knew the error
term, εi , a spatial smoothing could be applied to estimate the full equation. However, as εi

is unknown, we have to both estimate f̂ (ei , ni ) and β̂ as a two stage model. First we have to
smooth the error term

f̂ (ei , ni ) =
∑

i

w(ei,ni)ui (11.13)

to find an instrument for the true spatial structure f(ei ,ni ). Then, we can use the esti-
mated f̂ (ei , ni ) to estimate β̂. As shown by Hastie and Tibshirani (1990) and by Brunsdon,
Fotheringham, and Charlton (2000); a semiparametric model with only one smoother can
be analytically derived.14 Therefore, it is not necessary to iterate between f̂ (ei , ni ) and β̂

for convergence.15

We can then use this semiparametric GWR procedure to estimate Equation 11.5.

11.5 THE PROCEDURE

The estimation procedure for a GWR Goodman or King model requires four relatively
simple steps.

1. First, we compute the naı̈ve Goodman regression model regressing X and 1 − X on y,
saving the predicted values and the residuals. Population weights may also be entered
in this stage if necessary, as shown in the Peronist example of Section 11.7.

2. Second, we map (using ArcView or an equivalent) the spatial structure of the residuals
and conduct tests of spatial auto correlation between our residuals and the predicted
turnout, i.e., we perform Moran’s I , GWR Monte Carlo testing. A scatterplot of the
residuals against the east and north coordinates of the data can also provide a simple
visual test for spatial aggregation bias.

3. In the presence of spatial auto-correlation we compute a geographically weighted
regression of the predicted ŷi on the first stage residuals and save the local parameter
Bi -technically equivalent to estimating an instrument for the spatial distribution of
the error in Equation 11.13. We can obtain the parameter Bs because GWR fits a
regression line for every observation of our data set. Because we are regressing the
predicted dependent variable of the original Goodman model on the residuals, Bs will
have mean 0 and a GW variance 1, describing the spatial structure of the error term
in the first stage.

4. Finally, for a GWR Goodman: (a) we regress the new model

yi = βb Xi + βw (1 − Xi ) + β3 Bs + ui (11.14)

14 Hastie and Tibshirani (1990): p. 118. Fotheringham, Brunsdom, and Charlton (2000): p. 180.
15 However, iteration as it will be described below can prevent oversmoothing in some applications, particularly

in the presence of local outliers.
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where βb describes blacks’ turnout, βw describes whites’ turnout, β3 describes the
direct effect of the spatial parameters Bs on the ecological inference estimate, and
ui describes the stochastic error. It is important to note that by using the parameter
Bs to predict the spatial structure of βb and βw , we can obtain both local estimates
and aggregate quantities of interest, as in King’s EI. GWR-Goodman will provide,
therefore, local estimates that will be much closer to King’s EI. If the non-linear spatial
parameter Bs explains no variation in the dependent variable yi , the results will be
similar to the standard Goodman regression. For iterating the procedure, we predict
a new dependent variable ŷi from the previous model and repeat steps 1, 3 and 4.
As in most semiparametric smoothing techniques, there are small efficiency gains
by iterating the procedure. However, more important than iterating the procedure is
properly choosing bandwidths and kernel functions.16 (b) We run the GWR EI model
by entering the Bs parameter estimated in (3) as a covariate Zbw and Zbb . No second
stage is required.

11.6 A SIMPLE MONTE CARLO TEST OF THE GW-AR APPROACH TO ECOLOGICAL INFERENCE

How well does GW-AR recover the underlying spatial structure observed in the data? In this
section we provide a preliminary answer to this question. In doing so, we also provide new
evidence on the relative performance the Goodman regression and King’s EI in the presence
of spatial effects (Anselin and Tam Cho, 2002; King, 2002).

Because the underlying spatial structure that generated the data is unknown, and omitted
local and global variables are at work, Monte Carlo experiments are particularly well suited
to test the performance of spatially heterogeneous ecological inference models. We can
(i) produce a dependent variable Y that is a function of X , (1 − X) and a known spatially
heterogeneous structure f (s); (ii) evaluate the performance of ecological inference methods
when this spatial structure is not entered into the model; and (iii) evaluate how close the
recovered GW-AR spatial parameters Bs are to the designed spatial structure.

There has been considerable debate as to the proper data generation process to test for
spatial heterogeneity and spatial auto correlation in ecological inference (Anselin and Tam
Cho, 2002; King, 2002; Adolph and King, 2002). Therefore, it seems appropriate to briefly
describe the Monte Carlo design used in this article.

Following King (2002), we generated the data using an untruncated random effects model
design with βb ∼ N(.4, .02), βw ∼ N(0.6, 0.02) and X ∼ N(0.6, 0.04). The true spatial
structure was created by imposing a wiggling functional form to the east-north coordinates
of a virtual city, as in Figure 1a. This wiggling spatial structure was Si = ((sin(east) +
(cos(north))/10 − 0.015; with east, north ∼ U (−5, 5). Using a uniform distribution on the
east and north coordinates provides an even squared grid, while the sin(east) and cos(north)
over the specified range [−5, 5] generates a wiggling spatial structure similar to Figure
11.1a.17 The range of variation of the spatial structure was thus reduced from [−2, 2] to
[−0.2, 0.2] and a remainder (0.015) was substracted to guarantee that the mean of the spatial
structure was 0. Notice that the spatial structure has mean 0 but no variance, to reduce the

16 It is worth noticing that this procedure describes a semiparametric auto-regressive error model. Therefore,
the Bs parameter is not entered as a weighting function of the original equation yi = βb

i + βw
i (1 − X) but

as an instrument for the underlying spatial structure in in the dependent variable yi . For further details see
“Semiparametric smoothing approaches” in Brunsdon, Charlton, and Fotheringham (2000) and Hastie and
Tibshirani (1990).

17 Many other distributions are possible by either shifting the scale of the east and north coordinates or using a
different functional form.
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Figure11.3. Scatterplot of the true spatial structure and the GWR parameter (Monte Carlo simulations
a, b, c, and d).

error-in-variables attenuation bias (Adolph and King, 2002). Normal error terms, on the
other hand, were introduced into the parameters βb

i and βw
i . The basic equation generated

was therefore

yi = βb
i X + βw

i (1 − Xi ) + Si . (11.15)

This model has certain nice features for testing spatial effects, including the fact that it will
generally stay within bounds but does not require explicit truncation or the presumption of
a truncated bivariate normal distribution. However, avoiding more extreme truncation data
sets will also result in a larger number of within bound Goodman estimates. This should be
taken into consideration when comparing the relative performances of the Goodman and
EI models (see Silva de Mattos and Veiga, this book, Chapter 15). The distance-weighted
grid imposed on the data also has many advantages over contiguity matrices. First, complex
spatial structures with different functional forms can be incorporated in this grid to analyze
the estimation problems that occur as a result of the observable units being further apart,
different in size, unevenly spread, etc. We gave similar population weights to every precinct
(N = 1 for every i) and no aggregation bias different from the noted spatial aggregation
bias was imposed on the data.

In Figure 11.3 we show that there is a good fit between true spatial structure Si and the
parameter Bs recovered from the residuals in the first Monte Carlo simulation. In fact, in all
simulations the r 2 between the true and the recovered spatial structure was above 0.9. The
quality of this fit, however, should in general vary as a function of the level of association
between the spatial structure Si and yi and the noise in the data, as in any GAM model.
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Table 11.1 Goodman, EI, GW-AR-Goodman and
GW-AR-EI

Model βb βw

EI .468 (.085) .5061 (.123)
Goodman .401 (.104) .608 (.155)
GWEI .405 (.042) .6011 (.03)
GW-Goodman .404 (.029) .603 (.041)

In Table 11.1 we provide comparative information of the global parameters βb and βw

estimated by EI, Goodman, GW-EI, and GW-Goodman regressions. The dispersion of the
global parameters βb and βw around the true (designed) values in the uncorrected models
is considerably higher than in corrected models.

More importantly, in only 36% of the naı̈ve Goodman and 67% of EI were the βb estimates
in the 0.35–0.45 interval including the true value of 0.4. Comparative kernels of the naı̈ve
Goodman and EI models with their GW-AR show the corrected models to provide a more
adequate fit to the data. In the corrected models, the percentage of global βb within the
0.35–0.45 interval was 89% for the GW Goodman and 90% for the GW EI.

Together with Table 11.1, the kernel graphs in Figure 11.4 provide some interesting
evidence of the impact of spatial effects on the standard Goodman and EI estimates. In

EI-BB

(a) (b)

(c) (d)

 Density: EIBB  Density: GWEIBB

.35 .45

0

12.6578

EI-BW

 Density: EIBW  Density: GWEBW

.55 .65

0

8.33332

Goodman-BB

 Density: GOOBB  Density: GWGOOBB

.35 .45

0

13.0587

Goodman-BB

 Density: GOOBW  Density: GWGOOBW

.55 .65
0

8.34906

Figure 11.4. Kernel density estimates for EI and GW.
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Figure 11.4a we see a kernel density graph of EI and GW-EI βb estimates. As we can see, the
uncorrected EI is biased to the right and shows two smaller modes away from the expected
mean of 4.

By contrast, the corrected GW-EI is centered on the expected value of βb = 0.4 and
displays a narrower variance. Figure 11.4b displays kernel estimates for the EI and GW-EI
βw with results comparable to those of Figure 4.1. We again observe bias to the left which
is corrected in the GW-EI model. In Figure 11.4c and 11.4d, the uncorrected Goodman
models are on average centered on the proper values βb = 0.4 and βw = 0.6. However, the
variance is extremely large, which would lead us to expect a rather large number of estimated
models with unreliable global estimates.

As noted by Voss, this book, Chapter 3, there is extensive debate as to the performance of
EI in recovering both local quantities of interest and more adequate global estimates than
those of the Goodman model. Extensive applied research displaying sensible results contrast
with Monte Carlo evidence showing EI to produce biased estimates in the presence of spatial
effects (Anselin and Tam Cho, 2002; Calvo and Escolar, 2003).

The Monte Carlo evidence presented in Figure 11.4a to 11.4d may explain some of these
conflicting accounts. The figure shows that the global EI estimates are closer to the true
expected values βb = 0.4 and βw = 0.6 and display smaller variances than Goodman’s esti-
mates. However, the global βb and βw estimates are biased.18 Moreover, the kernel density
estimates for the uncorrected EI show that in the presence of spatial effects EI may often flip
backwards, finding local maxima away from the true global βb and βw .19

The standard Goodman regression estimates, on the other hand, show wider variances
and display a large number of estimates further away from the true values of 0.4 and 0.6.
However, the average of these estimates remains unbiased. EI would then appear to produce
more sensible results for researchers, although there is little guarantee that those results are
in fact centered around the true mean. However, it is worth noticing that the use of a weakly
truncated Monte Carlo design overstates the number of reasonable estimates produced by
the Goodman regression. To conclude, in the GW corrected models, the GW-EI and GW-
Goodman global estimates are practically identical.

Analyzing two of the simulated data sets in more detail provides further insights into
the estimation of precinct-level quantities of interest in the presence of extreme spatial
heterogeneity.20 First, it is worth noticing that in the presence of spatial aggregation bias the
local quantities of interest can diverge dramatically from the true local values even when the
proper global estimates are computed.

For example, in Figure 11.5 we provide comparative estimates of local quantities of interest
for the first two Monte Carlo simulations produced by our Stata script (test 1 and test 2).
The plots in Figure 11.5 show that the global βb and βw estimates of test 1 in the uncorrected
model (a) are centered near the true design values of 0.4 and 0.6 respectively. The local βb

i
and βw

i , however, provide a poor fit to the true local parameters. In the case of test 2 we can

18 King (2002) suggested that the Monte Carlo evidence provided by Anselin and Tam Cho (2002) may be faulty, the
result of a poorly designed spatial experiment. He pointed out that truncation was imposed on the data, perhaps
leading to some sort of selection bias. We obtained similar results to Anselin and Tam Cho, however, implementing
King’s suggested Monte Carlo design. There was no truncation and no replacement in our simulated data
sets.

19 Sign reversals were also found by Anselin and Tam Cho (2002), Calvo and Escolar (2003) and Herron and Shotts
(2002).

20 In all simulations the r 2 between the true and the recovered spatial structure was above .9. The quality of
this fit, however, should in general vary as a function of the level of association between the spatial structure
and Y.
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observe that both the true global βb and βw lie outside of EI estimates (kernel plots). The
local estimates are also significantly different from their design values.

The fact that confidence intervals of test 1 are significantly narrower than those of test 2
does not conform to any substantive information about the performance of EI in finding
proper local estimates, raising doubts on the exact relationship between the global βb esti-
mates and the local precinct bounds. The information added by the GW-AR parameter Bs

does provides both EI and Goodman with information to fit different local mean values. In
general, the GW-Goodman and GW-EI local parameters are similar. However, given that EI
also fits βb

i and βw
i within the local bounds, some differences will surface particularly in the

presence of local outliers. To obtain similar results, the local Goodman estimates should be
adjusted by minimizing the distance from the point estimates to the bounds.21

In summary, compared with the standard Goodman regression, the uncorrected EI model
was closer to the true but biased estimates of the global βb and βw parameters, as noted
in previous research (Anselin and Tam Cho, 2002; Calvo and Escolar, 2003). These results
were obtained using the random effects model and the Monte Carlo procedure proposed by
King (2002) and adding a spatial structure shi . On the other hand, the GW-Goodman and
GW-EI models provided adequate, and similar, global and local parameters in our Monte
Carlo simulations.

In the next section we use the GW-AR procedure to control for spatial effects in the
estimation of the Peronist turnout in the city of Buenos Aires and revisit the problem of
obtaining proper local estimates of the quantities of interest.

11.7 AN ECOLOGICAL INFERENCE OF THE PERONIST TURNOUT IN 1999 IN THE CITY
OF BUENOS AIRES

Analyzing the Peronist vote in Argentina is in itself an important research agenda. However,
for reasons of space and presentation, we will restrict our analysis to the estimation problems
as they appear in the data.

In Figure 11.6 we map the spatial distribution of turnout (top) and of the Peronist vote
(middle) and precinct size (bottom) in the City of Buenos Aires. The figure shows significant
spatial structure in all three cases. Turnout is considerably lower in the northeast part of the
city. The Peronist vote is significantly higher in the south, where there are larger numbers
of registered voters. This would lead us to expect a spatially induced positive correlation
between the Peronist vote and the number of registered voters.

Estimating the Peronist turnout in the City of Buenos Aires provides an interesting and
challenging case for ecological inference, because it combines a number of different prob-
lems: (i) there is evidence of aggregation bias across precincts with different population sizes,
(ii) there is evidence of spatial aggregation bias across different locations, and (iii) there are
significant differences in the spatial structure and distribution of the ecological units. A
preliminary review of the first two problems may help to clarify some of the distinctions we
have shown in this article.

1. The nonspatial aggregation bias can be readily observed in the increasing proportion of
Peronist voters in more populated precincts. These precincts also have higher turnout
levels for all voters across the board. A preliminary observation of the naive Goodman
residuals against the number of voters shows that differently sized precincts have a

21 However, we do not have a theory to explain why the minimum distance from the predicted βb
i (or the posterior

βb
i ) to the local bounds provides an acceptable local estimate for our model (Herron and Shotts, 2002: p. 2). We

will revisit this problem in the next section using the example of the Peronist vote in the City of Buenos Aires.
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Figure 11.6. Turnout, registered voters, and Peronist vote in the City of Buenos Aires.

distinctive behavior that is also correlated with the Peronist vote (Figure 11.7c, bottom
left). This aggregation problem results in severely biased Goodman coefficients if the
model is run without population weights.

2. The spatial aggregation bias can be observed in the significant relation between the
residuals of the Goodman equation and the east–west dimension (Figure 11.7a). The
north–south dimension also displays significant heteroscedasticity, which should in-
crease the variance around the estimated mean (Figure 11.7b).

Since we do not have precinct-level true values for Peronist turnout but we do have voting
booth values, we decided to approach the estimation process as a modifiable areal unit
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Figure 11.7. Exploration of the Goodman residuals against N and the east–west coordinates.

problem (MAUP). We used our precinct-level data to recover the booth-level parameters of
Peronist and non-Peronist turnout rather than the individual voters’ parameters. In total,
6509 voting booths were used to estimate baseline models of Peronist turnout, which we
then compared with our precinct-level aggregates.

As shown in Table 11.2, both baseline models show the Peronist turnout to be above
the other parties’ turnout. However, we have little reason to believe that this is due to
a particularly higher mobilization capacity and expect this difference to be the result of
other variables at work (Calvo and Escolar, 2003). Substantive aggregation bias leads to
poor estimates for the naı̈ve Goodman model when population weights are not entered in
the model. On the other hand, the global estimates of the weighted Goodman model are

Table 11.2 Estimates of Peronist and non-Peronist turnout in the city of Buenos Aires, all models

Baseline Baseline Goodman w/o Goodman w
Goodman EI pop weights pop weights EI GW-Goodman GW-EI

B P J .889 .8961 .528∗∗∗ .88∗∗∗ .793∗∗∗ .859∗∗∗ .877∗∗∗

(.011) (.04) (.09) (.066) (.015) (.02) (.012)

B N P .801 .80 .822∗∗∗ .80∗∗∗ .811∗∗∗ .805∗∗∗ .802∗∗∗

(.001) (.001) (.009) (.007) (.0015) (.002) (.0012)

Rho – .0929 – – .720 – −.1077

Bs – – – – – .889∗∗∗

N 6509 6509 209 209 209 209 209
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Figure 11.8. Comparative kernel plots of EI (a) and GW-EI (b) Local Bb
i Estimates; (EZI 1.5 “Results”

plots).

particularly close to the baseline values, although there is a high variance around the mean
estimated B P J .

The EI estimates are considerably better than those of the unweighted Goodman regres-
sion, but worse than the weighted Goodman. The B P J estimates of EI are 8% below the
baseline estimates and below the reported non-Peronist turnout B N O P J . These results are
particularly problematic at the local level, where a rather large number of feasible (within
bounds) but unlikely local estimates were computed by EI (Figure 11.8).

Now we turn our attention to the geographically weighted models. The GW-EI estimates
are similar to the baseline estimates. Also, the kernel of the local B P J estimates displays
only one mode, compared with three in the uncorrected model (Figure 11.8). Therefore,
as expected, the spatial parameter Bs provides EI with information to produce narrower
precinct estimates. The GW-Goodman estimates, however, were 2% below the baseline esti-
mates, which is farther from the true values estimated by the weighted Goodman regression.
Still, the corrected model displays more adequate standard errors that include the baseline
estimates at p < 0.1 and provides local B P J estimates like those of EI.

One of the most appealing advantages of EI for many researchers is the possibility of
obtaining local estimates that can either provide rich descriptions of the geographic nature
of social relationships or new data to conduct further research. There has been, however, little
debate about what makes these local estimates good estimates. One of the most interesting
problems that emerge from comparing the local B P J

i from EI and GW-Goodman (Figure
11.9) is that while the spatial structure is clearly the same, the scale for the B P J

i estimate varies
substantively.22 That is, while the local estimates for EI B P J

i go from a minimum turnout of
0.06 to a maximum of 0.96, the range of the GW-Goodman goes from 0.70–0.894. However,
the high correlation between the two sets of estimates shows the same contextual effects
generating these different local estimates.

When we compare the GW-EI and the GW-Goodman estimates, the relation between
the two sets of local estimates fades because much of the local variation in EI’s B P J

i is now
explained by the covariate Z P J . However, the range of variation in B P J

i for the corrected
GW-EI is still significantly larger than that of the GW-Goodman model. These differences

22 It is worth noticing that the local B N O P J
i estimates of EI and GW-Goodman were almost identical, as a result of

tighter bounds for EI estimates. Less informative bounds, far away from the TBN core, were more problematic.
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Figure 11.9. Comparing local PJ turnout estimates of the Goodman vs. EI (a), and Goodman vs.
GW-EI (b) models.

are the result of different regions of the data not being explained by the original TBN in EI
but still forced within the local bounds.

While EI does provides researchers with tools that described these extreme observations
to be characterized by less informative bounds, researchers have usually reported these
estimates, and used them for second stage analysis, without acknowleading the different
information provided by these local estimates.

The problem is not less dramatic for the GW-Goodman model. Smoothing the spatial
surface of the ecological relationship to allow for local variations in the mean estimates
allows researchers to obtain local values that will not be forced within the observed bounds.
However, they generally will fall outside the unit square of the precinct bounds. An alternative
modification to the GW-Goodman model would be to minimize the distance between the
model’s local estimates and the precinct bounds, generating B P J

i similar to those of EI (see
Merrill and Grofman, Chapter 5 in this volume). We do not, however, have a theory that
provides a rational for such minimization strategy. After all, if the local B P J

i in region g
is poorly explained by the overall model, why would the closest point from the model’s
estimate to the bound be a better predictor of the true local quantity of interest than any
other point in the unit square?

11.8 CONCLUDING REMARKS

In this chapter we have described a simple distance-weighted auto-regressive model to con-
trol for spatial aggregation bias (extreme spatial heterogeneity) in ecological inference. Using
Monte Carlo simulations with a random effects untruncated design (King, 2002) we find
that EI produces biased estimates in the presence of spatial effects as previous literature has
shown (Anselin and Tam Cho, 2002; Calvo and Escolar, 2003). The geographically weighted
auto-regressive parameters Bs was able to restore the spatial independence properties of the
ecological data and produce more adequate global estimates, as shown both by the Monte
Carlo evidence and the analysis of the Peronist vote. The use of a geographically weighted
control also allowed us to compute local estimates within the classical Goodman frame-
work and compare them with EI’s local estimates. The results show EI to produce feasible,
but unlikely, local estimates with a wider range of variance than the estimates produced
by GW-Goodman. Such results are problematic both when local estimates are used for
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descriptive purposes and when they are used in second-stage inference (Herron and Shotts,
2002). In our view, considerably more research is needed to define statistically acceptable
local estimates that fall within the local bounds.

APPENDIX A. A DISTANCE-WEIGHTED WINBUGS MODEL FOR ECOLOGICAL INFERENCE
IN THE PRESENCE OF SPATIAL DEPENDENCE

We provide here a distance-weighted alternative to the intuitive model of Haneuse and
Wakefield (this book, Chapter 12). In our example, the distance-weighted model also esti-
mates separate spatial structures for whites and blacks. Unlike Haneuse and Wakefield, who
proposed estimating two separate binomial equations (one for blacks and one for whites), we
estimate a logistic general linear model with only one binomial equation, which facilitated
convergence for the two different spatial structures. The model derives directly from King’s
random error treatment of the Goodman identity. Following King (1997:96) we define the
local parameters βb

i and βw
i as functions of the global means, Bb and Bw and two spatially

dependent error terms, εb
i and εw

i :

βb
i = Bb + εb

i ,

βw
i = Bw + εw

i .

Substituting these parameters into the Goodman identity equation, we have yi = (Bb +
εb

i )Xi + (Bw + εw
i )(1 − Xi ) and replacing the εb

i and εw
i by Diggle, Tawn, and Moyeed’s

(1997) spatially correlated matrix of error terms we obtain

yi = Bb Xi + Bw (1 − Xi ) + Si

where

Si = σ 2
b

{
1 − ρ

(
u2

b

)}
Xi + σ 2

b

{
1 − ρ

(
u2

w

)}
(1 − Xi ).

Following Diggle, Tawn, and Moyeed (1998), similar to the GWR approach in our paper, we
presume a distribution function for the spatial auto correlation ρ as a zero-mean stationary
Gaussian process with variance σ 2

b and a correlation function

ρ
(
ub

i

) = exp
[ − (αd)k

]
.

Where α > 0 provides an estimate of the declining correlation with distance d , and 0 < k <

2 describes the level of smoothing over observations.

The Winbugs Model

Using the “spatial.exp” function in WinBugs, it is possible to estimate the model described.
The model is a close relative of universal kriging, with two zero-mean stationary Gaussian
spatial smoothers. Hierarchically centering the spatial structures both follows from the for-
mal model and facilitated convergence. We use x[i] and y[i] to describe the east and
north spatial coordinates,z[i] to describe the percent of black voters usually written as Xi ,
and t[i] for Ti . Finally, we take advantage of WinBugs flexibility to compute and
sample from the precinct level quantities of interest for blacks (qibbi[i]) and whites
(qibwi[i]).
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model

{ W[1:N] ∼ spatial.exp(mu[], x[], y[], w.tau, w.phi, 1)

M[1:N] ∼ spatial.exp(mu[], x[], y[], m.tau, m.phi, 1)

for (i in 1:N){
t[i] ∼ dnorm(g[i], taup[i])

taup[i] <- p[i] / (g[i] * (1 - g[i]))

logit(g[i]) <- betab * z[i] + betaw * (1 - z[i]) + space[i]

space[i] <- (M[i] * z[i]) + (W[i] * (1 - z[i]))

mu[i] <- 0

## quantities of interest

qibbi[i] <- exp(M[i] + betab) / (1 + (exp(M[i] + betab)))

qibwi[i] <- exp(W[i] + betaw) / (1 + (exp(W[i] + betaw)))

## un-transformed quantities of interest

qib[i] <- M[i] + betab

qiw[i] <- W[i] + betaw

}
betaw ∼ dnorm(.001,.001)

betab ∼ dnorm(.001,.001)

w.phi ∼ dunif(.001,5)

m.phi ∼ dunif(.001,5)

w.tau ∼ dgamma(.01,.01)

m.tau ∼ dgamma(.01,.01)

}

REFERENCES

Adolph, Christopher, Michael C. Herron, Gary King, and Kenneth W. Shotts. 2003. “A Consensus on
Second Stage Analyses in Ecological Inference Models,” Political Analysis, 11, 1: 86–94.

Agnew, J. 1996a. “Mapping Politics: How Context Counts in Electoral Geography,” Political Geography,
15, 2: 129–146.

Agnew, J. 1996b. Maps and Models in Political Studies: a Reply to Comments. Political Geography, 15,
2: 165–167.

Agnew, J. 1987. Place and Politics: The Geographical Mediation of State and Society. London: Allen and
Unwin.

Anselin, Luc. 1988. Spatial Econometrics: Methods and Models. London: Kluwer Academic.
Anselin, Luc and Wendy K. Tam Cho. 2002. “Spatial Effects and Ecological Inference,” Political Analysis,

10, 3: 276–297.
Beck, N. and S. Jackman. 1998. “Beyond Linearity By Default: Generalized Additive Models,” American

Journal of Political Science, 42, 1: 596–627.
Brunsdon, C., A. Stewart Fotheringham, and M. Charlton. 2000. Quantitative Geography: Perspectives

on Spatial Data Analysis. London. Sage Publications.
Brundson, C., A. Stewart Fotheringham, and M. Charlton. 1996. “Geographically Weighted Regression:

a Method for Exploring Spatial Nonstationarity,” Geographical Analysis, 28, 4: 281–298.
Calvo, Ernesto and Marcelo Escolar. 2003. “A Geographically Weighted Approach to Ecological Infer-

ence,” American Journal of Political Science, 47, 1: 188–209.
Flint, Collin. 1996. “Whither the Individual, Whither the Context,” Political Geography 15, 2: 147–151.
Fotheringham, A. and M. O’Kelly. 1989. Spatial Interaction Models: Formulations and Applications.

Amsterdam: Kluwer Academic.
Fotheringham, Stewart, M. E. Charlton, and C. Brunsdon. 1997. “Two Techniques for Exploring

Non-stationarity in Geographical Data” Geographical System, 4:59–82.
Guillorel H. and J. Levy. 1992. “Space and Electoral System”, Political Geography, 11, 2: 205–224.
Hastie, Trevor and R. J. Tibshirani. 1990. Generalized Additive Models. London: Chapman and Hall.



P1: FZZ

CB658-11 CB654-KING-Sample CB658-KING-Sample.cls August 5, 2004 18:55

Places and Relationships in Ecological Inference 265

Herron, Michael and Kenneth W. Shotts. “Using Ecological Inference Point Estimates as Dependent
Variables in Second-Stage Linear Regression,” Political Analysis, 11, 1: 44–64.

Johnston, R. J. 1986a. “A Space for Place (or a Place to Space) in a British Psychology,” Environment
and Planning A, 19: 599–618.

Johnston, R. J. 1986b. “The Neighborhood Effect Revisited: Spatial Science or Political Regionalism,”
Environment and Planning D, Society and Space 4: 41–55.

Kohfeld, Carol and John Sprague. 2002. “Race, Space, and Turnout,” Political Geography, 21, 2: 175–193.
King, G. 1996. “Why Context Should Not Count,” Political Geography, 15, 2: 159–164.
King, G. 1997. A Solution to the Ecological Inference Problem: Reconstructing Individual Behavior from

Aggregate Data. Princeton: Princeton University Press.
King, Gary. 2002. “Isolating Spatial Autocorrelation, Aggregation Bias, and Distributional Violations

in Ecological Inference,” Political Analysis, 10, 3: 298–300.
Sui, D. Z., and P. J. Hugill. 2002 “A GIS-Based Spatial Analysis on Neighborhood Effects and Voter

Turn-Out: a Case of Study in College Station, Texas,” Political Geography, 21: 159–173.
Ward, Michael D. and Kristian S. Gleditsh. 2002. “Location, location, location: an MCMC approach

to modeling spatial context with categorical variables,” Political Analysis, 10, 3: 244–260.



P1: FZZ/FZZ P2: FZZ

CB658A-12 CB654-KING-Sample CB658-KING-Sample.cls May 26, 2004 2:30

12 Ecological Inference Incorporating Spatial Dependence

Sebastien Haneuse and Jonathan Wakefield

ABSTRACT

Ecological inference for a series of 2 × 2 tables suffers from an inherent lack of identifiability. Any
attempt at a solution to this inferential problem must either (a) incorporate additional information
or (b) make assumptions. Without further information and given the data in the margins alone,
critical assumptions, such as that of no contextual effects, remain untestable. This suggests a strategy
of reporting a series of models based on a range of plausible assumptions, and thus performing a
sensitivity analysis with respect to the untestable assumptions. The work of this paper is motivated by
a voter-registration example from the U.S. state of Louisiana in 1990, where each 2 × 2 table represents
one of 64 parishes. When aggregation is on the basis of geography, as in our example, it is intuitive
that spatial effects may have a role in an ecological inference analysis. Thus far, such a role has received
little attention in the literature. In this paper, we draw on the spatial epidemiological and biostatistical
literature and consider the inclusion of a hierarchical spatial model into a sensitivity analysis for
ecological inference. We outline issues regarding specification, interpretation, and computation for
this particular model when applied to the Louisiana example. A small simulation study suggests that, in
the presence of spatial effects, traditional approaches to ecological inference may suffer from incorrect
estimation of variability, while models that explicitly allow for spatial effects have generally better
performance.

12.1 INTRODUCTION

At the most fundamental level the difficulties in ecological inference for 2 × 2 tables are
generated by a lack of identifiability of key quantities. We only observe the margins of a
series of 2 × 2 tables, while the quantities of interest are derived from the internal cells.
Any attempt at a “solution” to this problem must overcome this inherent nonidentifiability
by either (a) collecting additional information or (b) making assumptions. Additional in-
formation can be in the form of a sample of individuals for which the cross-classification
is available (Wakefield, 2004) or in the form of informative priors in a Bayesian analysis
(see Chapters 1 (Wakefield) and 6 (Corder and Wolbrecht) of this book). Assumptions
can be made directly about the quantities of interest or by imposing some structure on
the underlying model that is assumed to generate the data. For the latter case, biases arise
when these assumptions, which are generally untestable given the data in the margins
alone, are inappropriate. Thus a reasonable strategy, in the absence of individual-level data,
would be to report a series of models that are based on a range of plausible assumptions.
One can then proceed by examining consistencies and inconsistencies across the results,
performing a sensitivity analysis to untestable assumptions (see Chapter 13 (Salway and
Wakefield)).

266
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Although there is an extensive literature aimed at addressing biases that arise in approaches
to the ecological inference problem, the role of spatial effects has not been extensively inves-
tigated. In particular, the consequences of having spatial effects present and whether taking
account of them is beneficial for estimation have received little attention. In this paper, we
draw on the spatial epidemiological and biostatistical literature to investigate how one might
incorporate spatial effects into a model for ecological inference. This opens a new avenue
for plausible models that may be incorporated into a sensitivity analysis. One common ap-
proach to incorporating spatial effects is to adopt a random effects specification. In spatial
epidemiology such random effects models describe heterogeneity in disease rates across
areas, some of which is assumed to be spatially structured and the remainder unstructured.
In this paper, we adopt a random effects specification for an underlying model, which is
assumed to generate the (unobserved) internal cells of the 2 × 2 tables, within an overall
hierarchical spatial model for ecological inference.

The structure of the paper is as follows. Section 12.2. briefly outlines a motivating example
of voter registration in Louisiana from 1990, the notation used throughout the paper, and
the problem formulation. Spatial effects in ecological inference are discussed in Section 12.3,
as are some of the connections between political science and spatial epidemiology. In Section
12.4 we provide an outline of a spatial model commonly used in epidemiology, including
specification, interpretation, and computational issues. Section 12.5 describes and reports
on a series of simulations aimed at identifying the effect of spatial dependence and assessing
the success of the proposed spatial model. Section 12.6 returns to the voter registration data
taken from Louisiana in 1990. Finally, Section 12.7 provides some discussion and concluding
remarks.

12.2 NOTATION AND PROBLEM FORMULATION

The data that we use to motivate this paper is voter registration data from Louisiana in
1990 (also see Chapter 1 of this book). Specifically, the data consist of parish-level totals
of registration in three categories (Democrat, Republican, and independent) as well as
parish-level totals of race in three categories (black, white, and other). For the purposes of
this paper we concentrate on the problem of examining Democrat–Republican registration
versus black–white race in n = 64 parishes. Although there are currently 65 parishes in
the state of Louisiana, data for two parishes, St. Martins Parish North and St. Martins
Parish South, were collected as a combined total. Throughout this paper we use notation in
which race is indexed by j ( j = 0 denotes blacks and j = 1 denotes whites), and parishes
by i , i = 1, . . . , n. Thus, for parish i , we may write down a 2 × 2 table which provides a
cross-classification of race and registration, as in Table 12.1.

Let p̃ j i = Y j i/Nj i , denote the race–parish-specific registration probabilities for the Re-
publican party, had we observed the internal cells (Y0i and Y1i ) of Table 12.1. Further, consider

Table 12.1 2 × 2 table for parish i

Democrat Republican
Black Y0i N 0i

White Y1i N 1i

N i − Yi Y i N i
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the overall race-specific probabilities of registering Republican, p̄ j , defined as a weighted
average of the race–parish-specific probabilities, weighted by the size of the race-specific
population total in each parish:

p̄0 =

n∑
i=1

N0i p̃0i

n∑
i=1

N0i

, p̄1 =

n∑
i=1

N1i p̃1i

n∑
i=1

N1i

. (12.1)

It is these quantities that are often of interest in ecological inference. However, the in-
ternal cells of Table 12.1 are unobserved in an ecological study. Given the ecological data
(N0i , N1i , Yi ) alone, the p̃ j i cannot be directly computed and therefore neither can ( p̄0, p̄1).
For our purposes of methods comparison, we consider the goal of ecological inference to
compute ( p̄0, p̄1) using the ecological data alone, which requires the imputation of the
internal cells of Table 12.1. Using the observed marginal quantities, we may compute
the observed marginal probability of being black in parish i , denoted xi = N0i/Ni , and
the observed marginal probability of registering Republican, denoted q̃ i = Yi /Ni . Given the
fixed race margin, we can write down the basic accounting identity that relates the marginal
Republican registration probability, q̃ i , to the two unknown race-specific probabilities, p̃0i

and p̃1i , via the known marginal probability of being black, xi :

q̃ i = p̃0i xi + p̃1i (1 − xi ). (12.2)

The accounting identity 12.2 highlights the nonidentifiability issue, since there are an
infinite set of ( p̃0i , p̃1i ) that are consistent with (q̃ i , xi ). Thus, simplifying assumptions in
the model, from that of a saturated model involving 2n unknown quantities, are needed.
One of the strongest assumptions is that of the ecological regression model (Goodman,
1953), where race-specific probabilities are assumed to be constant in expectation across all
parishes. That is, E [ p̃0i |xi ] = p0 and E [ p̃1i |xi ] = p1. This assumes that the natural hetero-
geneity in the race-specific probabilities across parishes can be absorbed into a single linear
regression-type error term. Several approaches have been put forward to better accommo-
date this heterogeneity. These include the nonlinear neighborhood model (Freedman et al.,
1998), which assumes that there is heterogeneity across parishes but not across races within
a parish (i.e. p̃0i = p̃1i = q̃ i ); the extended Goodman model (Achen and Shively, 1995),
which specifies the probabilities as linear functions of race (i.e. adding quadratic terms into
Equation 12.2), and hierarchical modeling approaches. The latter include a model based on
a truncated bivariate normal distribution (King, 1997), and a beta-binomial hierarchical
model (King, Rosen, and Tanner, 1999). Each specification assumes that the heterogeneity
across the race-specific probabilities takes on a specific form – in particular, a form that has
no spatial structure (beyond that due to neighboring parishes having similar xi values).

The approach that we take in this paper is to postulate the existence of an underlying
model, which is assumed to generate the internal cells of Table 12.1. The underlying model
is specified in terms of a set of population-based parameters p j i = P (register Republican |
race j , parish i), which are interpreted as probabilities in a hypothetical infinite population.
These should be distinguished from the p̃ j i , which are single realizations from this data-
generating mechanism, and therefore not necessarily equal to the p j i . We can think of the
p j i as the underlying propensity to register Republican for race j in area i , whereas the
p̃ j i reflects the actual registration for the Republican party on a specific date. The p j i are
assumed to be unknown constants, while we might have observed a different sets of p̃ j i if
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the registration process were repeated. To solve the nonidentifiability problem, we adopt
a specific structure to this underlying model, parameterized in terms of the p j i , and in
particular a structure which allows explicitly for spatial effects. The models of King (1997)
and King, Rosen, and Tanner (1999) are alternative specifications of the underlying model.
Thus, under this paradigm the goal of the analysis shifts from one of imputation of the
p̃ j i to one of estimation of the p j i . However, since the totals Ni in Table 12.1 are large
(ranging from 4,421 to 218,000), we assume that p̃ j i and p j i are the same and therefore do
not distinguish between the two goals. Notice, however, that the hypothetical p j i need not
satisfy the accounting identity 12.2 with respect to the observed (q̃ i , xi ). Wakefield (2004)
provides the likelihood function for a single 2 × 2 table, which allocates mass to values of
(p0i , p1i ) which do not satisfy Equation 12.2.

The notation that we adopt differs slightly from that of the Introduction to this book.
Our notation (see also Chapters 1 (Wakefield) and 13 (Salway and Wakefield)) is consistent
with that found in the biostatistics–epidemiology literature and also aims to emphasize
the difference between the proportions p̃ j i and the parameters p j i . In our notation, the
observed data are (q̃ i , xi , Ni ) from n 2 × 2 tables, while in the notation of the Introduction
the observed data are (Ti , Xi , Ni ) from p 2 × 2 tables. There the unobserved race–parish-
specific proportions are denoted (βb

i , βw
i ), whereas we use ( p̃0i , p̃1i ). The race-specific

weighted averages are denoted (Bb , Bw ) in the Introduction, whereas we use ( p̄0, p̄1).

12.3 SPATIALLY STRUCTURED REGISTRATION PROBABILITIES

Achen and Shively (1995) examine the issue of aggregation bias, which is defined as the
failure of a model based solely on aggregated data to estimate parameters, extensively in an
individual-level model. They allude to the role of spatial effects via their intraconstituency
spatial autocorrelation, which is described as the “ . . . tendency of individuals in the same ge-
ographic unit to resemble each other in unmeasured ways” (p. 96). In fact, Achen and Shively
equate their intraconstituency spatial autocorrelation with aggregation bias in Goodman’s
ecological regression. They indicate that in order to avoid aggregation bias one would need
to adjust for variables that represent how individuals group themselves into geographical
units. Alternatively, if such variables are unmeasured, then unbiased estimation relies on the
assumption that they are unassociated with the regressor, which in our case is race xi . Their
spatial autocorrelation is closely related to the issue that we consider in this paper. Here,
we explicitly consider how the registration probabilities themselves exhibit spatial structure
across the geographical area. This spatial structure is likely due to unmeasured factors, such
as income, which have a spatial pattern and are predictive of the registration probabilities. In
the model we outline below, these unmeasured factors are incorporated via random effects,
which are assumed to be at the parish level and therefore common to all individuals within
the parish. Thus, they could be viewed as similar in nature to the intraconstituency spatial
autocorrelation. However, whereas Achen and Shively in their description of the spatial
component assume that it is area-specific, we in addition allow the spatial effects (i.e. the
strength of dependence of the p j i ’s on the spatially structured unmeasured factor) to differ
between the two races.

Anselin and Cho (2002) provide an excellent discussion of the links between spatial ef-
fects and ecological inference as well as describing a range of plausible spatial models. They
also present a Monte Carlo simulation study examining the impact of spatially structured
heterogeneity on the results of the Goodman model and the EI model (King, 1997) above
and beyond aggregation bias. They show that under their data-generating system both ap-
proaches produce unbiased estimates regardless of the strength of the spatial structure.
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However, they also show that the estimates from these two models experience higher vari-
ability across simulations when spatial effects are present. They do not, however, examine
the performance of the models by comparing the model-based variability (standard errors
reported by the procedures) with the “true” simulation-based variability (variability in es-
timates across simulations). Furthermore, although they consider various forms of spatial
structure, they do not propose how one might proceed in an applied setting, that is, how
one would model spatial patterns in the residuals.

In this paper we turn to the extensive spatial epidemiology literature on the analysis of
aggregated disease counts. The motivation for the research in this field comes from several
sources: readily available geographically indexed health and population data, and advances
in computing, geographical information systems, and statistical methodology. Applications
of spatial models include disease mapping, assessment of risk in relation to a point or line
source, cluster detection, and geographical correlation studies. The latter, which are also
referred to as ecological studies (Richardson and Monfort, 2000), aim to assess disease risk
associations between sets of variables measured on groups, and then relate these assessments
to risk at the level of the individual. Differences in risk estimates at the different levels of
inference are often referred to as ecological or cross-level bias. In ecological studies in spatial
epidemiology, the presence of residual spatial dependence is viewed as a nuisance. In the
context considered here, it is viewed as something that may be beneficial for the estimation
of race-specific probabilities. Chapter 13 (Salway and Wakefield) provides a comparison of
the approaches to ecological inference in epidemiology, political science, and sociology.

One of the main problems in many spatial epidemiology applications is the sparseness of
events, due to the statistical rarity of diseases (such as most forms of cancer). This leads to
highly variable estimates of risk. In addition, inference can be highly prone to enumeration
errors in the data, so that small changes (especially in the number of disease cases) can have a
great impact. To overcome these issues, and to provide a more robust method of estimation,
it is common to adopt a hierarchical model linking all the risk estimates across areas. This
results in a form of smoothing where the risk estimates are able to “borrow strength” from
each other via the structure of the model. Lindley and Smith (1972) showed that, in terms
of mean squared error, related hierarchical models tend to provide better estimates than
methods that use the data from a single area only. In the context of ecological inference in
political science, it would be of interest to examine whether the adoption of a hierarchical
model may help overcome the nonidentifiability problem by linking probabilities across
areas. This is generally not necessary in spatial epidemiology, since a constant exposure
effect is assumed across areas. In the political science context, this would be equivalent to
assuming that the difference between blacks and whites in the race-specific probabilities is
constant across areas.

To numerically quantify the extent of spatial dependence, as an initial data exploratory
step, we use three statistics: Moran’s I statistic (Moran, 1948), Geary’s c statistic (Geary,
1954), and a nonparametric rank-based statistic, which we denote by D (see the Appendix
for details of each of these statistics). Each bears a close resemblance to the conventional
correlation coefficient, with positive spatial dependence being indicated by large values of I
and small values of both c and D. These autocorrelation statistics, as well as other statistics
for detecting spatial dependence and clustering, are described in detail by Wakefield, Kelsall,
and Morris (2000). To obtain measures of statistical significance we employ a permutation
test (see for example Lehmann, 1986). In such a test, the sampling distribution of the test
statistic is computed by repeatedly permuting the data across the parishes (in our case
10,000 times) and evaluating the test statistic each time. A histogram of the resulting test
statistics provides an approximation to the sampling distribution. The significance level (for a
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one-sided test of no positive spatial dependence) can then be evaluated by counting the
number of test statistics whose value is more extreme (having larger I and smaller c and D)
than the test statistic observed for the original data.

These statistics have been used in spatial epidemiology, but, as pointed out by Besag and
Newell (1991), their use is dangerous when the summary measures (for example, probabil-
ities or rates) have nonconstant uncertainties that have spatial structure. For example, in
spatial epidemiology rural areas tend to have low populations and therefore highly variable
disease rates. Since these areas tend to be contiguous (since population size has spatial struc-
ture), it is likely that the high and low disease rates are contiguous, giving the impression
of spatial dependence. In the political science context the events are not rare and the pop-
ulations (parish sizes in our example) tend to be large, so that the problems of instability
are not great. However, the proportion black, xi , is likely to have strong spatial structure,
and if race is an important predictor of behavior, then spatial structure may be induced in
the overall probabilities q̃ j . In modeling, we are interested in the residual spatial variability
after allowing for the variability induced by the xi . Hence careful interpretation of the three
summary statistics is required. In general, we would not advocate their use beyond an initial
exploratory step, particularly with small sample sizes.

12.4 HIERARCHICAL SPATIAL MODEL

12.4.1 Specification and Interpretation

The model that we adopt is a three-stage hierarchical model for the hypothetical probabilities
{p j i }, j = 0, 1, i = 1, . . . , n, adapted from the spatial epidemiology literature. The basic
idea is to build plausible models for each set of race-specific probabilities, which are linked
to the observed data via the accounting identity 12.2 and through a likelihood function.

12.4.1.1 Stage 1

At the first stage, for the observed marginal probability of registering Republican we adopt
a normal approximation to the convolution likelihood. Chapter 1 of this book outlines the
convolution likelihood and examines the normal approximation in detail. Thus, for parish
i , we assume

Yi

Ni
∼ N

(
qi , σ 2

i

)
, (12.3)

where qi = p0i xi + p1i (1 − xi ) and σ 2
i = N−1

i {p0i (1 − p0i )xi + p1i (1 − p1i )(1 − xi )}.

12.4.1.2 Stage 2

The second stage adopts, for each race, a random effects specification for the logit trans-
formed race–parish-specific probabilities. In particular, for race j and parish i , we assume

logit( p j i ) = µ j + U j i + Vj i , (12.4)

where µ j is a race-specific mean (on the logit scale), 
U j = (U j 1, U j 2, . . . , U j n)T is the
race-specific vector of spatially structured random effects, and 
V j = (Vj 1, Vj 2, . . . , Vj n)T

is the race-specific vector of nonspatial random effects, j = 0,1. The model assumes that
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heterogeneity in the logit( p j i )’s across the geography (64 parishes) around the race-specific
mean µ j can be decomposed into two components, one exhibiting spatial structure and
the other exhibiting no structure. This specification of structured and unstructured random
effects was first suggested by Besag, York, and Mollie (1991) in the context of disease mapping.
The two sets of random effects may be interpreted in a variety of ways. Here we adopt an
interpretation in terms of allowing for unmeasured covariates and for potential errors in
the observed N1i and Yi (Wakefield, Best, and Waller, 2000). In particular, the vector 
U j

may represent unmeasured socioeconomic factors which vary smoothly across the state
of Louisiana. The vector 
Vj , in addition to unmeasured covariates that do not exhibit
spatial structure, may also represent enumeration anomalies which we may not expect to
have any structure. It is important to note that these random effects are introduced at the
parish level, and are consequently assumed to be constant for all individuals of race j within
parish i . Consequently, in terms of unmeasured covariates, the random effects are univariate
summaries of the combined effects of the joint distributions of these unmeasured covariates
within each parish.

Our approach is to adopt a fully Bayesian framework by not only making distributional
assumptions on both sets of random effects but also specifying prior distributions for the
resulting hyperparameters. Typically, normal distributions are used for the random effects,
although robust alternatives are possible (see the discussion of Besag, York, and Mollie, 1991).
For the nonspatial random effects we assume that, for race j , the Vj i are independently and
identically distributed according to a N (0, σ 2

v j ) distribution, where σ 2
v j > 0 reflects the

amount of unstructured race-specific between-parish heterogeneity. Specification of the
vector of spatially structured random effects, 
U j , requires more care. Initially, suppose we
adopt an n-dimensional normal distribution


U j ∼ N (
0, σ 2
uj � j ),

where σ 2
uj reflects the amount of overall variability in the U j i , and � j is a race-specific

positive definite correlation matrix. There are many frameworks that we may adopt for the
specification of the elements of � j to represent spatial dependence between U j i and U j k for
i �= k. Modeling could proceed by specifying an explicit joint model for these correlations,
for example specifying the (i, k) element of � j as � j, ik = exp[−φdik], where φ > 0 and
dik is the distance between the centroids of parishes i and k. For a fixed distance between
two parishes, smaller values of φ correspond to stronger correlation, and larger values
to weaker correlation. This specification has been implemented but is highly expensive
computationally (for details see Wakefield, Best, and Waller, 2000).

As an alternative to the joint specification, we may exploit standard properties of the
multivariate normal distribution to obtain a conditional specification. Let Q j = �−1

j be the
precision matrix, and Q j, ik denote the (i, k) element of the matrix Q j . As reviewed by Besag
and Kooperberg (1995), we may write down the set of n conditional distributions

U j i |U j k = u j k , k �= i, ∼ N
(

n∑
k=1

Wj, iku j k , σ 2
uj D j, i i

)
, (12.5)

where Wj, i i = 0, Wj, ik = −Q j, ik/Q j, i i , and D j, i i = Q−1
j, i i . The specification given by 12.5

indicates that, for i = 1, . . . , n, the distribution of the i th parish’s random effect, U j i ,
conditional on the set of random effects for all other parishes is normally distributed with
mean equal to a weighted average of those random effects and variance proportional to
the constant σ 2

uj . From this conditional specification we can retrieve the joint specification
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via the relationship Q j = D−1
j (I − Wj ), where D j is an n × n diagonal matrix containing

elements D j, i i for i = 1, . . . , n, I is an n × n identity matrix, and Wj is an n × n matrix
containing elements Wj, ik for i, k = 1, . . . , n. The specification 12.5 is often referred to as
a Gaussian autoregression.

A common model is the intrinsic Gaussian conditional autoregression (ICAR) considered
by Besag et al. (1991) and given by

U j i |U j k = u j k , k �= i, ∼ N
(

1

mi

∑
k∈δi

u j k ,
ω2

uj

mi

)
, i = 1, . . . , n, (12.6)

where δi is the set of indices for the neighbors of parish i , and mi is the number of neighbors
for parish i . This model is a special case of 12.5 with Wj, ik = 1 if parish i and parish k
are adjacent and 0 otherwise, and D j, i i = 1/mi . The model has intuitive appeal in that it
assumes that the spatially structured random effect for parish i , given all the other parishes,
has mean equal to the average of the random effects for the neighboring parishes and pre-
cision proportional to the number of neighboring parishes. This specification is also the
limiting form of a more general model where the conditional mean is multiplied by a scal-
ing factor λ ∈ (0, 1). The parameter λ, together with the weight matrix Wj , dictates the
degree of spatial dependence in the U j i . At one extreme λ = 0 corresponds to the case
where the conditional mean in 12.6 does not depend on neighboring values, thereby lim-
iting the amount of spatial dependence between the U j i . Spatial dependence may still be
induced via the mi , for example, if there is clustering of small (or large) parishes. At the
other extreme, λ = 1, which is the specification in 12.6, corresponds to the case where the
conditional mean is exactly the average of the neighboring values. This increases the poten-
tial for spatial dependence in the model by inducing fairly strong local smoothing across
the U j i .

In this paper we adopt 12.6 for the spatial component of the heterogeneity in the
logit( p j i )’s. By setting λ equal to 1 we explicitly assume that the spatial component of
the overall heterogeneity exhibits a high degree of spatial correlation. The freely varying
parameter ω2

uj dictates the magnitude of heterogeneity that is attributed to the spatial com-
ponent, with the remaining heterogeneity being captured by the unstructured component
and more specifically the parameter σ 2

v j . The extent to which the logit transformed proba-

bilities exhibit spatial dependence relies on an interplay between the magnitudes of ω2
uj and

σ 2
v j .

One feature of the conditional specification 12.6 is that, given our specific choices of
Wj and λ, the model does not yield a positive definite precision matrix Q j . Hence the
corresponding joint specification does not exist. A benefit of this, however, is that the model
is nonstationary and so may be able to reflect more spatially irregular behavior. On the
technical side, we may remedy the lack of a full joint specification by including a separate
intercept term (as we do with µ j ) and imposing the constraint that the u j i sum to zero. This
results in an identifiable model for the random effects. Instead of the sum-to-zero constraint,
one could alternatively constrain one of the U j i to equal zero or omit the overall mean µ j . It
is also important to note that the variance ω2

uj is interpreted as a conditional variance, which

is emphasized by the change in notation from σ 2
uj to ω2

uj in 12.6. A disadvantage, therefore,

of the specification 12.6 is that it is difficult to compare σ 2
v j and ω2

uj directly, since one is
interpreted marginally and the other conditionally. Even though the marginal variance for
the ICAR distribution does not exist, we compute the empirical marginal variance, denoted
here by V̂[U j i ], described in the next section, via simulation. We finally comment on the
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choice of the neighborhood, where we take as neighbors two areas that share a common
boundary, as is usual. This choice has its origins in applications with regular arrays, and
so the model is more reasonable for geographies that are not too irregular. Louisiana is
reasonable in this respect. Wakefield, Best, and Waller (2000) discuss a variety of other
issues pertaining to this model.

12.4.1.3 Stage 3

At the third stage we make a priori distributional assumptions regarding the hyperparameters
introduced at the second stage: (µ0, µ1, σ 2

v0, σ 2
v1, ω2

u0, ω2
u1). Since the range of values on the

logit scale is (−∞, ∞), the mean parameters µ j can take on any value, and therefore a fully
uninformative prior would be a flat prior on the entire real line. While uninformative on the
logit scale, this results in a prior distribution on the probability scale that puts nearly all of its
mass on two values: 0 and 1. In nonecological applications with regular models, the choice
of the third-stage distributions has less impact. As discussed by Wakefield (2004), this is not
the case in ecological studies. For our application, we chose to adopt logistic priors, with
location 0 and scale 1, for both µ0 and µ1, which results in a flat prior on the probability
scale which lies on the unit interval (0, 1).

For the variance components, a common choice for an uninformative prior has been a
Gamma(ε, ε) distribution for the inverse variance (precision), with ε small (Spiegelhalter,
Thomas, Best, and Lunn, 2000). Kelsall and Wakefield (1999) point out that this prior is not
consistent with very small amounts of variability, and for their specific data analysis they
suggest a Gamma(0.5, 0.0005) as an alternative. For our application, due to the multitude of
problems faced by ecological inference, the choice of the prior distribution for the (inverse)
variance components requires even more care. As discussed in Chapter 1 of this book, in
the context of ecological inference the lack of information in the margins indicates that an
uninformative prior is not a good choice. The approach that we take is geared specifically
to the Louisiana data.

Initially, before we describe the derivation of the variance priors, we empirically examine
the marginal variability for the ICAR model 12.6. Given a fixed value of ω2

u, we may draw

independent samples from an ICAR distribution, {U (d)
1 , . . . , U (d)

64 } for d = 1, . . . , D, where
D is the number of samples drawn. See the Appendix for details. For each draw we compute
the following empirical marginal variance:

V̂
[
U (d)

i

]
= 1

63

64∑
i=1

(
U (d)

i − Ū (d)
)2

,

where Ū (d) is the mean of the draw. Via simulation, for any value of ω2
u and for the specific

spatial structure of the Louisiana geography, we find that

Mean(V̂[Ui ])

ω2
u

≈ 0.49. (12.7)

That is, the conditional variance is larger, on average across simulations from Equation
12.6, than the empirical marginal variance by a factor of approximately 2. Now, consider the
total marginal variance (TMV) of the sum of the two random effects. When decomposing
variability into spatial and unstructured components, this total will remain fixed. Therefore,
the two variance components will be negatively related and, in particular, are unlikely to be
both large simultaneously. At one extreme the spatial component V̂[U j i ] would contribute all
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of the total marginal variability, while at the other extreme it would make zero contribution.
In reality, V̂[U j i ] will account for a portion of the total, with the remainder of the variability
being accounted for by σ 2

v j . Our approach is to derive a prior distribution for the total
marginal variability and then use it as a prior distribution for unstructured (marginal)
variance component. For the spatial (conditional) variance component, an adjustment is
made via the ratio in Equation 12.7. Although, as we point out above, there will likely be
negative dependence between the two variance components (in particular in the posterior),
we assume a priori independence.

Assume that the logit( p j i ) is normally distributed about some mean µ j . Using properties
of the normal distribution, we find that 95% of the centered logits will lie in the interval
(−θ , θ), where θ can be solved for via

TMV ≈
(

θ

1.96

)2

. (12.8)

Alternatively, we may postulate a value for θ and then solve for the TMV using Equation 12.8.
Suppose, a priori, we expect 95% of the race-specific registration probabilities, for either
race, to lie in the interval (0.01, 0.50), so that the corresponding logits lie in the interval
(−4.60, 0.00). Solving, we find that θ = 2.3, which results in a maximal point value for the
total marginal variability of 1.38. The strategy that we adopt is to pick a Gamma distribution
on the precision scale which assigns sufficient weight to a plausible range of values on the
(marginal) variance scale based on this point value. A numerical search was performed such
that the resulting Gamma distribution, after transformation back onto the variance scale,
had (0.05, 1.38) as its 5th and 95th percentiles respectively. The choice of the 5th percentile
was arbitrary but, it was felt, would allow for small enough amounts of variability. This
resulted in Gamma(1.50, 0.23) priors for the inverses of {σ 2

v0, σ 2
v1}. For the inverses of the

spatial (conditional) variance components we performed a similar search using (0.10, 2.82)
as the 5th and 95th percentiles. These percentiles were chosen on the basis of Equation 12.7.
This resulted in Gamma(1.52, 0.49) priors for the inverses of {ω2

u0, ω2
u1}.

As a final note, this procedure is sensitive to the smallest selected probability (i.e. 0.01
above). Small changes in this lower bound will likely result in large changes on the logit scale
and consequently the value of θ .

12.4.2 Simulation from the Prior

Before we implement the analysis, we examine realizations from the joint prior specification
for the model in order to examine graphically the effect of spatial dependence. In addition,
this allows us to evaluate the autocorrelation statistics described earlier in a setting in which
we know the extent of spatial dependence. This is done by simulating from the specified prior
distributions and examining the resulting probabilities. Assuming the hyperparameters are
independent a priori, we can simulate from each of the prior distributions using the Louisiana
geography data, where, for each realization, we fix the values of the xi to be equal to those
in the original data. In particular, it is instructive to examine single realizations of the joint
prior distribution for all 64 parish-specific probabilities, for various values of the underlying
second-stage hyperparameters. It is useful to examine various strength combinations of the
unstructured and spatially structured random effects and the resulting probabilities plotted
on the Louisiana geography. We do this by initially fixing the total marginal variance on the
logit scale for the parish-specific probabilities. The total marginal variability can be thought
of as a mixture of the two sources of (marginal) variability, and we control the mixture via
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the parameter γ ∈ (0, 1). For a fixed value of γ we specify the contributions from the two
sources of variability as follows:

σ 2
v = (1 − γ )TMV, V[Ui ] = γ TMV.

Thus, for γ = 0 all of the TMV is unstructured, while at the other extreme for γ = 1 all of it
is spatially structured. The empirical marginal variance for the spatially structured random
effects is controlled by simulating a realization from an ICAR distribution with ω2

u = 1.0
and appropriately rescaling the resulting Ui . The rescaling preserves the strength of spatial
structure in the Ui , since, as described in Section 4.1.2, the strength of the spatial structure
is governed by the weight matrix, Wj .

Figure 12.1 provides four realizations from the joint prior for the parish-specific proba-
bilities. For each realization, there are three sets of probabilities of registering Republican:

(a)

Figure 12.1. Simulated priors for Louisiana on the logit scale, where γ0 and γ1 denote the proportions
of the variability that is spatially structured. Darker regions represent parishes with higher probabilities
of registering Republican, and the cutoffs are common to all maps within a single row. Numbers
represent p-values for the test of no positive spatial dependence based on Moran’s I statistic. (a) Blacks
(γ0 = 0.05): 0.822. (b) Whites (γ1 = 0.05): 0.961. (c) Combined: 0.770. (d) Blacks (γ0 = 0.05): 0.892.
(e) Whites (γ1 = 0.95): <0.001. (f) Combined: <0.001. (g) Blacks (γ0 = 0.05): 0.806. (h) Whites
(γ1 = 0.95): < 0.001. (i) Combined: 0.007. (j) Blacks (γ0 = 0.95): 0.011. (k) Whites (γ1 = 0.05):
0.591. (l) Combined: 0.190.
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(b)

(c)

Figure 12.1. (continued)
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(d)

(e)

Figure 12.1. (continued)
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(f)

(g)

Figure 12.1. (continued)
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(h)

(i)

Figure 12.1. (continued)
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(j)

(k)

Figure 12.1. (continued)
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(l)

Figure 12.1. (continued)

race-specific probabilities for blacks ( p0i ), race-specific probabilities for whites ( p1i ), and
the combined probabilities (qi ). In each case, the race-specific probabilities are generated
via Equation 12.4, and the combined probabilities are computed via the accounting identity
12.2. The plots presented in Figure 12.1 are of the probabilities on the logit scale, with the
cutoffs for the six categories being computed by combining all three sets of logit-transformed
probabilities and splitting the resulting range into six equally spaced intervals. In each case,
darker regions represent parishes with higher probabilities of registering Republican. For
each realization the xi are taken to be those from the 1990 Louisiana data. In addition,
the mean parameter in Equation 12.4 is set to 0.5 for both races, and the total marginal
variability is set to 1.0 for both races.

Figure 12.1a–c present a realization where γ equals 0.05 for both blacks and whites, so
that only 5% of the variability for each race is spatially structured. The plots show little
indication of spatial structure, as we would expect. The resulting p-values for permutation
tests based on Moran’s I statistic (see Section 12.3) are 0.822, 0.961, and 0.770 respectively,
indicating that there is no statistical evidence (based on these tests) for positive spatial
dependence. Figure 12.1d–i present two realizations where γ is equal to 0.05 for blacks and
0.95 for whites. That is, for whites nearly all of the variability is spatially structured, which
is confirmed by the p-values based on Moran’s I statistic (< 0.001 for both Figure 12.1e
and 12.1h). We also see from Figure 12.1f and 12.1i that, since the whites are the majority
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race, spatial structure in the white probabilities induces spatial structure in the combined
probabilities ( p-values < 0.001 and 0.007 respectively).

Figure 12.1d–i also highlight a difficulty that is common when dealing with maps of this
kind: although spatial structure may be present, it may not be obvious (which is why we
include two realizations for this case). In particular, both Figure 12.1e and 12.1h represent
probabilities where there is a high degree of spatial dependence across the Louisiana ge-
ography. The spatial dependence is clear in Figure 12.1e but much less so in Figure 12.1h.
Consequently, it is important to not depend on assessing the degree of spatial dependence
solely by eye. In addition to plots such as Figure 12.1, it may be worthwhile to compute
autocorrelation statistics (and associated tests of significance) to quantify numerically the
degree of spatial dependence, as well as to fit spatial models such as those described here.

Finally, Figure 12.1j–l provide a realization where γ equals 0.95 for blacks and γ equals
0.05 for whites. We find that although there are spatial effects for the black probabilities ( p-
values = 0.011), they do not induce spatial effects in the combined probabilities ( p-value =
0.190).

12.4.3 Implementation

In the Bayesian paradigm, estimation and inference can proceed via direct evaluation of the
required integrals or via approximations, analytic or numerical. Given the complex structure
of the model and the large number of unknown parameters, we implement the model using
Markov chain Monte Carlo (MCMC) (see, for example, Gilks, Richardson, and Spiegelhalter,
1996). In particular, we use the Metropolis–Hastings sampling algorithm, which is imple-
mented in the freely available WinBUGS statistical software package (Spiegelhalter et al.,
2003). The Appendix provides sample WinBUGS code used for one of the hierarchical mod-
els of Section 12.6. The specific functions used to fit the ICAR spatial model are provided
in the GeoBugs add-on module (Thomas, Arnold, and Spiegelhalter, 2002).

One critical issue is the adequate monitoring of the resulting Markov chains to ensure
proper convergence. This is especially important in applications such as ecological inference,
where the nonidentifiability in the first-stage likelihood will result in a relatively flat posterior.
For all subsequent analyses that are based on the margins of Table 12.1, we ran three
Markov chains simultaneously from three different starting points. Furthermore, we ran
each chain for 1 million iterations, discarding the first quarter as a burn-in period (to
remove dependence on the initial points). To ensure the proper mixing of the chains and
subsequent convergence, we examine time series plots of the resulting samples for each of
the hyperparameters. Since the distribution of the variance components on their original
scale is asymmetric, assessment of convergence was performed after log transformation.

For some of the models, problems with convergence were encountered. In particular, it
was found that convergence was not achieved in any model that attempted to include a spatial
component for both races. Initially, the chains were run for a further 1 million iterations, but
this yielded no improvements. This problem persisted even in idealized situations, such as
the simulations described in the next section. The problems are due to a lack of information
in the likelihood, where the model is unable to distinguish all of the types of variability from
the data provided in the margins alone. We were able to solve these convergence problems by
incorporating a more informative prior at the third stage of the model. In particular, for the
analysis of the Louisiana data we used much stronger priors on the variance components for
the blacks, to impose low levels of variability. We also constrained the standard logistic prior
of the mean parameter for both races to lie on the interval (−∞, 0), which corresponds to
the interval (0, 0.5) on the probability scale. While this helped considerably in improving
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convergence, it may be an unrealistic approach, since we may not have access to such strong
prior information. Therefore we feel that attempting to fit these full models, where both
races have a spatial component, will not be feasible in most applied settings.

The convergence problems also motivated the use of a modified version of the model
which only allows one of the races to have a spatial component. That is, we consider models
where either ω2

0 or ω2
1 equal zero. In the limited range of examples that we consider in the

simulations of Section 12.5 and in the analysis of the Louisiana data of Section 12.6, running
these models was more successful and we did not experience convergence problems.

12.5 SIMULATIONS

Here we report three sets of simulations carried out to investigate the effect of spatial
dependence on ecological inference. Given the scope of the potential ways in which we
may specify spatial dependence, we do not view these as being in any way comprehensive.
The first two simulations examine traditional approaches to ecological inference; simple
ecological regression (ER) and King’s EI solution (implemented in the freely available EZI
software, Benoit and King, 2001). The third simulation examines the performance of the
hierarchical spatial model of Section 12.4. In each case, the simulations have been generated
under an idealized scenario where other problems encountered in ecological inference, such
as contextual effects and bias due to an asymmetric distribution for the xi ’s (see Wakefield,
2004, for discussion regarding this issue), have been minimized. Although this is somewhat
artificial, it enables the isolation of the effect of spatial dependence. Throughout, we adopt
the same geography as the Louisiana data.

Simulation of spatially dependent data using the ICAR specification is not trivial and
requires care. The approach that we adopt is to simulate race-specific registration proba-
bilities from Equation 12.4, setting (µ0, µ1) = (0, 0). This corresponds to medians on the
probability scale of 0.5 for both blacks and whites. In addition, we fix the total marginal
variability (on the logit scale) at 1.0 for both races. Throughout we assume that the vari-
ability for blacks is unstructured (i.e., σ 2

v0 = 1.0 and ω2
u0 = 0), while for whites we vary the

contribution of the spatial component to the total marginal variability, via the mixing pa-
rameter γ introduced in Section 12.4.2. We consider five cases, γ = 0.0, 0.2, 0.4, 0.6, 0.8, to
reflect increasing contributions of the spatial component for whites. In each case, simulated
data sets had race–specific registration probabilities, with roughly symmetric distributions
around 0.5 for both blacks and whites. Typically, the 75th and 95th percentiles were around
0.66 and 0.83. To ensure that our simulations reflect the direct impact of spatial depen-
dence, we simulate the xi ’s from a U(0,1) distribution. A single set of xi ’s was generated,
and the same set was used for all data sets. Using these xi and the simulated race–parish-
specific probabilities, we computed the marginal probabilities of registering Republican:
qi = p0i xi + p1i (1 − xi ). Contextual effects are not present, since p j i is independent of
xi in Equation 12.4. For each case a total of 5000 data sets were generated via the scheme
outlined above.

We evaluate the various ecological inference procedures via the comparison between
model-based and simulation-based variability (see Section 12.3) and with the use of two
summary measures. For the variability comparison, if the model-based standard error esti-
mates are appropriate (i.e., they take proper account of the underlying variability in the data),
then we would expect them to be equal to the simulation-based standard error estimates.

The first summary measure examines the performance of the procedure by comparing
the resulting estimate of p̄ j , the overall race-specific probability 12.1, with the actual value.
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Table 12.2 Simulation results for ecological regression (ER) and King’s EI model in the presence of
increasing spatial effects

Blacks Whites
Mixing
Parametera PBb Variability V[ p̄0] PBb Variability; V[ p̄1]

γ Mean SD Simulationc Modeld Mean SD Simulationc Modeld

ER
0.0 −0.21 5.31 2.13 1.66 0.01 6.05 2.42 2.06
0.2 −0.05 4.95 1.88 1.66 −0.13 5.74 2.18 2.06
0.4 0.02 4.92 1.77 1.66 −0.21 5.73 1.92 2.06
0.6 −0.26 5.13 2.01 1.67 0.11 5.94 1.82 2.07
0.8 −0.03 5.26 1.98 1.68 −0.17 6.06 1.77 2.08

EI
0.0 0.01 5.06 1.78 0.36 −0.21 5.77 2.40 0.48
0.2 0.54 5.17 1.75 0.33 −0.79 5.98 2.18 0.44
0.4 0.57 4.64 1.48 0.34 −0.99 5.63 1.96 0.45
0.6 −0.21 4.85 1.91 0.36 0.01 5.51 1.46 0.48
0.8 −0.51 5.13 2.09 0.36 0.34 5.92 1.94 0.47

a Degree of contribution by spatial component to total marginal variability for whites.
b Mean and standard deviation of the percentage bias Equation (12.9) over all simulated data sets.
c Variance of the reported point estimates × 1000.
d Average of the reported squared standard errors × 1000.

If we denote the actual value of p̄ j for simulated data set s by p̄s , j and the estimate by ˆ̄ps , j ,
then the percentage bias (PB) for data set s is computed as follows:

PBs , j = ˆ̄ps , j − p̄s , j

p̄s , j
× 100, j = 0, 1. (12.9)

We can think of Equation 12.9 as examining the overall performance of the procedure
towards the goal of estimating p̄ j , j = 0, 1.

The second summary measure examines the performance at the parish level. If we denote
the true race–parish-specific probabilities of registering Republican for simulated data set s
by ps , j i and their corresponding estimates by p̂s , j i , then we compute the following goodness
of fit (GoF) measure for data set s :

GoFs , j = 1

64

64∑
i=1

| p̂s , j i − ps , j i |
p̄s , j

, j = 0, 1. (12.10)

For each of the summary measures, values reported are averages and standard deviations
taken across the simulated data sets.

Table 12.2 summarizes the results of the simulations for ecological regression and King’s
EI model. The results for ecological regression are based on all 5000 data sets, while the results
for EI, due to its computational intensiveness, are based on the first 100 data sets for each
value of γ . From Table 12.2 we find that ecological regression performs very well in terms
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Table 12.3 Simulation results based on 25 repetitions examining ecological regression, EI, and four
variants of the hierarchical model of Section 12.4, in the presence of strong spatial effects (γ = 0.8).

Mean PBa Mean GoFb Rank of GoFc
1

Model Blacks Whites Blacks Whites 1st 2nd 3rd 4th 5th

ER 0.45 −0.74 3.41 3.57 0 0 0 0 25
EI 0.70 −1.01 2.12 2.47 1 9 11 4 0
Internal 0.02 0.01 0.02 0.02 – – – – –
Neither 0.51 −0.79 2.10 2.45 1 15 8 1 0
Whites only 0.32 −0.50 1.99 2.21 23 0 1 1 0
Blacks only 0.37 −0.59 2.20 2.53 0 1 5 19 0

a Mean percentage bias Equation 12.9 over the 25 simulated data sets.
b Mean goodness of fit measure Equation 12.10 over the 25 simulated data sets × 10.
c Ranking of GoF measure Equation 12.10 for whites across the 25 simulations.

of PB for both races, although there is quite a lot of variability in the PB across simulations.
In particular, we find that the extent of bias does not seem to depend on the level of spatial
dependence. We also find that for both races the measure of variability reported by ecological
regression does not depend on the amount of spatial structure in the white probabilities. For
the black probabilities the variability is consistently overestimated, although the extent of
the overestimation does not seem to depend on the value of γ . For the whites we find that the
true (simulation-based) variability decreases as the amount of spatial structure increases.
When there is no spatial structure, ecological regression underestimates the variability, and
when there is strong spatial structure it overestimates it. For the EI model we again find that
there is little indication of bias, and what bias we find does not seem to be associated with
the amount of spatial structure in the white probabilities. For both races, the estimates of
variability reported by EI are much too small, which would result in confidence intervals
(based on standard errors reported by EI) which would be too tight. Since these results are
only based on 100 data sets for each value of γ , it is not clear to what extent we can interpret
patterns in the simulation-based variability.

For the hierarchical spatial model of Section 12.4 the computational burden is very high,
and we therefore consider only 25 data sets, taken from the case where γ = 0.80. Table
12.3 provides a comparison of six models applied to these 25 data sets. The six models
include ecological regression, EI, and four variants of the hierarchical spatial model. The
first variant, termed “Internal,” uses the random effects specification of the hierarchical
model but assumes that the internal cells are known. That is, it models the two sets of race-
specific registration probabilities via (4) directly. The second variant, termed “Neither,”
assumes that all heterogeneity for both races is unstructured, while the third, “Whites only,”
incorporates a spatial component for whites but not blacks. The final model, “Blacks only,”
incorporates a spatial component for blacks but not whites.

From Table 12.3, we see that the “Whites only” model outperforms each of the other
models that are solely based on the ecological data. Ecological regression performs well
overall, but very poorly at the parish level. EI performs poorly overall, but quite well at the
parish level. However, the “Whites only” spatial model performs better, on average, at both
the state level and the parish level, and for both races, than each of the other ecological
models.
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Table 12.3 also provides the ranking of the GoF measure 12.10 for whites across the 25
simulations. We find that the “Whites only” model provides the best fit, in terms of this
particular measure, for 23 out of the 25 data sets. We find similar results for the GoF for
blacks. For the PB, although the “Whites Only” model performs better on average, the
rankings for either race show no preference for any of the models.

12.6 ANALYSIS OF LOUISIANA DATA

12.6.1 Analysis Based on Internal Data

Although in typical applications of this methodology one would not observe the internal
cells for the n 2 × 2 tables, in our example we do have access to them. We initially present a
brief analysis of the internal data, the results of which will become the basis of comparison
for subsequent analyses based solely on the margins.

Figure 12.2 presents three plots that examine the race–parish-specific registration prob-
abilities for the Louisiana data. Figure 12.2a shows that there is quite a lot of variation in
the probabilities for whites (ranging from 0.072 to 0.418), while there is very little variation
in the probabilities for blacks (ranging from 0.005 to 0.079). This is also clear from Figure
12.2b and 12.2c, which plot the parish-specific probabilities versus the observed probability
of being black, xi , for blacks and whites respectively. From these plots we see that in nearly
all of the 64 areas whites form the majority, with xi ranging from 0.042 to 0.588. Of the
64 parishes, only 5 have the majority of individuals black. Using the internal data, we are
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Figure 12.2. Race-specific registration probabilities, p̃ j i , based on the internal cells: (a) parish-specific
registration probabilities, black vs. white; (b) black parish-specific registration probabilities vs. pro-
portion black; (c) white parish-specific registration probabilities vs. proportion black.



P1: FZZ/FZZ P2: FZZ

CB658A-12 CB654-KING-Sample CB658-KING-Sample.cls May 26, 2004 2:30

288 Sebastien Haneuse and Jonathan Wakefield

Proportion black

p 0
 =

 P
(R

ep
ub

lic
an

 | 
bl

ac
k)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

Proportion black

p 1
 =

 P
(R

ep
ub

lic
an

 | 
w

hi
te

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c)

Figure 12.2. (continued)
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able to directly compute the main quantities of interest, p̄0 and p̄1. We find that the overall
weighted probability of registering Republican is 0.035 for blacks and 0.254 for whites (see
Table 12.5 below).

We can also use the internal data to examine the extent to which issues such as aggregation
bias due to contextual effects and spatial dependence will affect an analysis based solely on
the data provided in the margins. Figure 12.2b and 12.2c indicate the extent of any contextual
effects, where the behavior of individuals in a parish depend on the racial mixture. From
Figure 12.2b, the negative slope indicates that the tendency for blacks to register Republican
decreases as the proportion black in the area increases. Likewise, the positive slope in Figure
12.2c indicates that the tendency for whites to register Republican increases as the proportion
black in the area increases. However, it is unlikely that contextual effects play a large role
here. For blacks, the slope is −0.042, which is very close to zero. From this figure, we find
that a 10% increase in the proportion black is associated with a decrease of 0.0042 in the
expected probability of registering Republican. A 50% increase in the proportion black is
associated with a decrease of 0.02 in the expected probability of registering Republican. For
whites, the slope is 0.117, which is positive and somewhat larger in magnitude. Thus, a 50%

(a)

Figure 12.3. Registration probabilities, after transformation onto the logit scale, plotted on the
Louisiana geography. For each plot the cutoffs on the logit scale between the six levels are
{−4.48, −3.65, −2.82, −1.99, −1.16} (or equivalently, {0.011, 0.025, 0.056, 0.120, 0.238} on the
probability scale). (a) Blacks (logit) probabilities p̃0i ; (b) white (logit) probabilities p̃1i ; (c) combined
(logit) probabilities q̃ i .
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Figure 12.3. (continued)
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Table 12.4 Autocorrelation statistics for the 1990 voter registration data for Louisiana

Statistic (p-valuea )

Data Moran’s I Geary’s c Nonparametric D

N i 0.14 (0.025) 0.83 (0.136) 17.17 (0.000)
xi 0.15 (0.016) 0.73 (0.002) 17.70 (0.000)
p̃0i 0.15 (0.020) 0.89 (0.127) 20.83 (0.214)
p̃1i 0.20 (0.008) 0.79 (0.014) 18.68 (0.005)
q̃ i 0.15 (0.022) 0.85 (0.070) 19.17 (0.015)
logit( p̃0i ) 0.15 (0.021) 0.89 (0.138) 20.83 (0.209)
logit( p̃1i ) 0.23 (0.002) 0.77 (0.006) 18.68 (0.005)
logit(q̃ i ) 0.19 (0.006) 0.84 (0.043) 19.17 (0.015)

a p-values are based on a permutation test with 10,000 repetitions.

increase in the proportion black is associated with roughly a 0.06 increase in the expected
probability of registering Republican.

Figure 12.3 examines the registration probabilities, after transformation onto the logistic
scale, plotted on the Louisiana geography. The first two plots indicate the probabilities for
blacks and whites; the third presents the combined probabilities that we would observe from
the ecological data. For each of the plots the same six groupings are used, with darker shades
representing areas with higher (Republican) registration probabilities. The cutoffs between
the six groups are based on the combined (logit-transformed) probabilities and split the
range into six equally spaced intervals. From Figure 12.3a and 12.3b, since the colors hardly
overlap, it is clear that the white probabilities are higher than the black probabilities. In Figure
12.3a there does not seem to be any discernable pattern among the black probabilities; from
Figure 12.3b there may be an indication of a cluster of parishes in the south and southwest
where registration probabilities for whites are lower compared to the rest of Louisiana. This
may be indicative of spatial structure among whites, although interpretation is difficult.

Table 12.4 provides the autocorrelation statistics of Section 12.3 for the race-specific
probabilities as well as the combined probabilities. Overall, the results are consistent with
the observations from Figure 12.3. We do note, however, that there is a disparity between the
results for the black probabilities ( p̃0i ), where inference based on Moran’s I statistic would
indicate significant spatial dependence (at the 0.05 level). Inference based on either of the
other two statistics would not be significant. Although this disparity may be a result of the
very little variation in the black probabilities (see Figure 12.2b), this illustrates the caution
that is needed in interpretation of these autocorrelation statistics.

The first column of Table 12.6 below provides the results of applications of the spatial
model outlined in Section 12.4 to the internal Louisiana data. This model is termed the
“internal” model. However, two separate models are fitted, applying Equation 10.4 to each
race. For each parameter, posterior medians and 90% credibility intervals (CIs) are reported.
Since these results are based on the internal data, we consider them to be the gold standard
(in terms of the second-stage hyperparameters) when examining the performance of the
other models which are based on the margins alone. The variances in Table 12.6 correspond
to variability on the logit scale, and we see again that there is less overall marginal vari-
ability in the blacks (0.072 + 0.194 = 0.266) than in the whites (0.132 + 0.187 = 0.319). A
considerably larger proportion of the total marginal variability is attributable to the spatial
component for whites (41%) than for blacks (27%).
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12.6.2 Analysis Based Solely on Margins

Before we examine the use of the spatial model outlined in Section 12.4, we pause to analyze
the Louisiana data using a few traditional methods for ecological inference. In particular, we
examine the plot of tomography lines, the neighborhood model, two versions of ecological
regression, and King’s EI model. The two versions of ecological regression that we consider
are the simple model (labeled ER-OLS), and a weighted version where the regression is
weighted by the total population Ni (labeled ER-WLS).

Figure 12.4 presents graphical summaries, and Table 12.5 presents numerical results. In
particular, Table 12.5 provides the resulting point estimates of the overall probabilities for
each race, 90% confidence intervals, the PB Equation 12.9, and the GoF measure Equation
12.10. For EI, the analysis was carried out in the freely available EzI software (Benoit and
King, 2003).

Having the benefit of the internal data, it is clear from Table 12.5 that none of these models
are satisfactory. In a typical application, we would be unaware of this. One clue to potential
problems, however, is that the results are not consistent across the non-neighborhood mod-
els, especially for p̄0. Table 12.5 also provides the results of the application of the hierarchical
spatial model of Section 12.4 to the data provided in the margins alone. The first model, la-
beled “Neither,” only includes unstructured random effects and makes no attempt to model
the spatial structure fixing ω2

v j = 0 for j = 0, 1. The second model, labeled “Whites only,”

only incorporates spatial effects for the whites, holding ω2
v0 = 0, and the third model, labeled

“Blacks only,” holds ω2
v1 = 0. The final model incorporates spatial effects for both races, but

to ensure convergence stronger priors at the third stage are needed (see Section 12.4.2).
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Figure 12.4. Results of traditional analyses of the Louisiana 1990 voter registration data: (a) tomog-
raphy lines; (b) neighborhood model; (c) ecological regression (OLS and WLS).
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Figure 12.4. (continued)
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Table 12.5 Results for the 1990 Louisiana voter registration data

Overall probability (90% CI)a PB GoF

Model Black ( p̄0) White ( p̄1) Black White Black White

Internal 0.035 (0.034, 0.035) 0.254 (0.253, 0.254) 0.0 0.0 0.02 0.00
Neighborhood 0.181 (0.160, 0.203) 0.197 (0.180, 0.215) 422.6 −22.1 3.32 0.19
ER-OLS 0.073 (−0.004, 0.150) 0.175 (0.142, 0.207) 109.8 −31.2 1.21 0.28
ER-WLS 0.078 (−0.008, 0.164) 0.237 (0.201, 0.274) 124.0 −6.5 1.35 0.34
EI 0.089 (0.051, 0.127) 0.233 (0.218, 0.247) 157.5 −8.2 1.64 0.11
Neither 0.068 (0.016, 0.146) 0.241 (0.211, 0.261) 94.8 −5.0 0.69 0.05
Whites only 0.060 (0.011, 0.158) 0.244 (0.206, 0.263) 72.6 −3.8 0.48 0.03
Blacks only 0.085 (0.021, 0.178) 0.234 (0.199, 0.259) 144.5 −7.6 0.66 0.05
Bothb 0.059 (0.013, 0.125) 0.244 (0.219, 0.262) 72.1 −3.8 0.65 0.05

a Confidence interval for neighborhood, ER-OLS, ER-WLS, and EI; posterior credibility interval for Internal, Neither,
Whites only, Blacks only, Both.

b Strong prior (see Section 12.4.2).

Again, with the benefit of the internal data, we see that each of these models provide an
improvement over the traditional methods. In particular, the “Whites only” model and the
“Both” model provide similar results for the overall probabilities and the percentage bias.
This is not surprising, since the first model reflects the structure that we know to exist in
the internal data, while the second incorporates strong priors. We also see from the GoF
measures that the “Whites only” model is doing the best job of estimating the race-specific
parish-level registration probabilities.

If we exclude the “Both” model, in an applied setting our only recourse would be to
examine the range of results from all of the models in Table 12.5 that are based solely on
the data in the margins. From the results of both ecological regression models, EI, and
each hierarchical model there are strong indications that blacks and whites have different
registration practices. Both ecological regression models provide estimates of p̄0 that are
consistent with the other models, but the weighted version provides an estimate of p̄1 that
is consistent with each of the hierarchical models. For p̄0, however, both the resulting 90%
CIs contain zero, and the 90% OLS CI does not contain the true value. This problem persists
with the results from the EI model, where neither CI contains the true values. By contrast,
all of the Bayesian CIs contain the true values. Overall, however, without the benefit of the
true values it is difficult to distinguish between the hierarchical models.

We turn to Table 12.6 to provide a heuristic argument that allows us to distinguish between
the Bayesian hierarchical models. The table outlines posterior medians and 90% CI’s for
the second-stage hyperparameters in each of the hierarchical spatial models that we fit.
Ignoring the “Both” model, the three remaining models provide similar point estimates for
the mean parameters, for both races. Comparing these with the gold standard, we see that
the mean parameter for blacks, µ0, is consistently overestimated across all three models,
while the mean parameter for the whites, µ1, is consistently underestimated (this is to be
expected, given the constraints imposed by the accounting identity 12.2). For whites, the
90% CIs are comparable for the “Neither” and “Whites only” models, while the 90% CI for
µ0 in the “Blacks only” model is considerably wider. For µ1, we see that the 90% CIs are
similar across all models. Thus, it is difficult to distinguish between the models on the basis
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Table 12.6 Posterior medians and 90% credibility intervals for second-stage hyperparameters

Parameter Internal Neither Whites only Blacks only Botha

µ0 −3.55 −2.82 −3.00 −3.02 −2.85
(−3.64, −3.46) (−4.22, −2.12) (−4.76, −2.10) (−6.62, −2.15) (−4.42, −2.18)

σ 2
v 0 0.19 0.23 0.32 0.39 0.11

(0.10, 0.30) (0.06, 1.03) (0.08, 1.50) (0.08, 7.92) (0.07, 0.16)
ω2

u0 0.22 − − 0.55 0.10
(0.09, 0.65) (0.13, 8.81) (0.07, 0.15)

V̂[U 0i ] 0.07 − − 0.30 0.05
(0.03, 0.17) (0.06, 3.88) (0.02, 0.11)

µ1 −1.52 −1.63 −1.61 −1.65 −1.62
(−1.61, −1.43) (−1.86, −1.43) (−1.88, −1.44) (−1.88, −1.43) (−1.83, −1.45)

σ 2
v 1 0.19 0.36 0.21 0.34 0.24

(0.08, 0.30) (0.26, 0.52) (0.10, 0.37) (0.24, 0.49) (0.12, 0.40)
ω2

u1 0.31 − 0.35 − 0.32
(0.12, 0.84) (0.13, 0.87) (0.13, 0.81)

V̂[U 1i ] 0.13 − 0.14 − 0.13
(0.06, 0.26) (0.06, 0.28) (0.05, 0.26)

a Strong prior (see Section 12.4.3).

of the mean parameters. Looking at the results of the “Neither” model, we can interpret the
variance components σ 2

v j , j = 0, 1, as the overall marginal variability (on the logit scale)
for the blacks and whites respectively. We see for blacks that there is less overall marginal
variability than for whites (0.23 compared to 0.36). We also find that there is much less
posterior uncertainty in the estimate for σ 2

v1 than σ 2
v0 in this model.

We can examine the impact of incorporating spatial effects into the model by comparing
the “Whites only” model and the “Blacks only” model with the “Neither” model. For the
“Whites only” model we find that the point estimate of the variance component for the
blacks, σ 2

v0, increases from 0.23 to 0.32, and the 90% CI widens. Looking at the hyperpa-
rameters for whites, we see that in the “Whites only” model the total marginal variability
has been decomposed into marginal (spatially) structured variability and marginal unstruc-
tured variability. In fact, it seems that the model was able to decompose the variability quite
successfully (0.14 + 0.21 = 0.35 ≈ 0.36). In addition, the 90% CIs do not reflect exces-
sive increased posterior uncertainty after the introduction of spatial effects for whites. This
suggests that there does seem to be an important spatial component for whites across the
parishes.

Comparing the “Blacks only” model with the “Neither” model, we see that the point es-
timate for the total marginal variability in whites decreases from 0.36 to 0.34. For blacks, we
see that the decomposition of the total marginal variance has not been as successful. In par-
ticular, the total of the marginal spatially structured variance and the marginal unstructured
variance far exceeds the total provided in the “Neither” model (0.30 + 0.39 = 0.69 > 0.23).
In addition, we find that the 90% CIs for all of the hyperparameters for blacks are very wide,
indicating a much larger degree of posterior uncertainty. Thus, given the trouble that this
model is experiencing in estimating two separate variance components, and given that the
“Neither” model indicates little overall variability, one is inclined to ignore the possibility
of spatial effects for blacks.
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Based on this heuristic argument, it seems that the “Whites only” model is doing a better
job of explaining the variability in the data. Comparing this model with the model based on
the internal data (first column of Table 12.6), we see that there is very close correspondence
in the point estimates, as well as 90% CI’s for whites, and reasonable correspondence for
blacks.

12.7 DISCUSSION

It is clear that sources of bias in the ecological inference problem are numerous and complex.
As a result it seems no single model will capture all of the subtleties involved. In political
science, the biggest hurdle that one faces in ecological inference is the assumption of no
contextual effects. In our example, this translates into assuming that the registration behav-
ior of either race within a parish does not depend on the racial mixture within the parish.
Without further information, either in the form of detailed prior information (see Chap-
ter 6 of this book) or information directly regarding the internal cells, the validity of any
model rests on this untestable assumption. Conditional on the assumption of no contex-
tual effects, as Wakefield (2004) discusses, the most reasonable approach to the ecological
inference problem is to present the results from a broad range of analyses, performing, in a
sense, a sensitivity analysis. In epidemiology, sensitivity analyses are performed to examine
the (potential) effects of unmeasured covariates, and in particular unmeasured confounders
(see Chapter 13 of this book). In the context of this paper, a sensitivity analysis examines the
impact of different modeling assumptions required to overcome the problem of nonidentifi-
ability. With regard to choosing between the modeling assumptions, the issue becomes moot
if the results are consistent across all models. However, if the results are not consistent across
all models, then it becomes less clear how to proceed. Examination of these inconsistencies
may itself provide clues as to which direction to move in, although this is not guaranteed.
Sensitivity analysis in the context of modeling assumptions is an area of research which
needs further attention.

One gap in the range of approaches that are commonly used is the lack of exploitation of
spatial effects. In contexts where aggregation is determined by geography, as in the context
of this chapter, it seems intuitive that incorporating spatial effects could enhance our ability
to perform estimation and inference and perhaps even to control aggregation bias. In this
chapter we provide a preliminary examination of the role that spatial effects take on in this
problem as well as investigate the application of one particular hierarchical spatial model
that is commonly used in spatial epidemiology.

The simulations of Section 12.5 indicate that techniques such as ecological regression
and King’s EI solution are likely to yield substantially incorrect estimates of the variability
of their point estimates. This results in confidence intervals that have incorrect coverage.
Our simulations also indicate that a model that incorporates spatial effects, when they
exist, may also help in the estimation of quantities of interest, and therefore provide a
closer correspondence to results based on the internal data (see Table 12.3). The analysis of
Section 12.6.2 also indicates the potential for these models. Having access to the internal
data, we see that the hierarchical model of Section 12.4 provides estimates of the overall
probabilities that are closer to the truth (i.e., to those based on the internal data), and also
provide considerably better overall fit to the internal data across the 64 parishes. In practice,
however, one would not have the benefit of the internal data, and so, as pointed out above,
the only reasonable course of action is to fit a broad range of models and report the results
from each. For the Louisiana data, we were able to provide a heuristic argument for choosing
between the models. It is uncertain that such a heuristic approach will work for a typical
ecological inference analysis, where the internal cells are not available. The arguments do
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fit within those of an overall sensitivity analysis, however, and there may in fact be other
explanations for the observed results. For example, the failure of the “Blacks only” model to
recover estimates comparable to those of the “Internal” model may be a result of the sparsity
of information regarding blacks and not necessarily a lack of spatial variability. Finally, we
acknowledge the possibility of contextual effects in the Louisiana voter registration data of
1990. We again emphasize that, given the data in the margins alone, it is not possible to
consider contextual effects explicitly, and consequently a cautionary note should always be
added to any ecological inference analysis.

In this chapter, we have considered a single framework for a spatial model and for one
special case of it. The framework that is outlined in Section 12.4.1 is very flexible, and
many of the choices that we have made could be adjusted. For the spatial components
our choice of the weight matrices, Wj , assumes that spatial dependence is a function of
two parishes being adjacent. Other choices include assuming that spatial dependence is a
function of physical distance (say between centroids of the parishes). The model that we
adopted uses a conditional specification for the spatially structured random effects. This is
due to our experience in spatial epidemiology, where conditionally specified models are both
computationally tractable with MCMC and relatively simple. Finally, we have concentrated
on a situation where there is no further information other than that provided in the margins
of Table 12.1. In particular, we assume no information regarding other covariates, such as
income. Both ecological regression and EI are able to incorporate other covariates. However,
it is unclear how model selection might proceed, and, as Achen and Shively (1995) point
out, aggregation bias can be worsened by adjusting for inappropriate covariates. One benefit
of the model outlined in Section 12.4 is its ability to take account of unmeasured covariates
(both unstructured and spatially structured) via the random effects, although one cannot,
in general, adjust for unmeasured confounders via the inclusion of random effects. Since
the random effects are race-specific, the model allows the unmeasured covariates to be
race-specific. This would be important if, for example, income were different between the
races (within a parish), or perhaps if the effect of income on registration behavior were
different between the races. However, the model is flexible enough to allow race-independent
random effects (i.e. effects shared by both races within a parish), Vi and/or Ui , which could
replace terms in Equation 12.4 for both races. For example, we may consider a situation
where we believe, a priori, that the spatial variation is due to some external event that is
independent of race but varies across areas. In such a case we would replace Equation 12.4
with

logit( p j i ) = µ j + Ui + Vj i .

There are also several other frameworks that one could consider in an ecological inference
analysis. One such framework could be adopted from the work of Knorr-Held and Best
(2001). In the spatial epidemiology context, their shared-component model assumes that
the underlying risk surface is composed of K < n flat surfaces, within each of which the risk
is constant (Knorr-Held and Raber, 2000). This would translate into some natural grouping
of the parishes where the race-specific registration probabilities are constant across parishes
within the group, but vary across groups. One could interpret this as a “local” ecological
regression, where the assumptions of ecological regression are appropriate over each of
the K surfaces. Another framework is that of Calvo and Escolar, outlined in Chapter 11.
Their framework examines spatial variation in the residuals from an ecological regression.
They then use a geographically weighted regression approach, effectively estimating an extra
spatially varying covariate and adding it to the accounting identity 12.2. While their model
makes far fewer assumptions, which is certainly a desirable property, it does not allow
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heterogeneity, and in particular spatially structured heterogeneity, to be race-specific. This
would not be appropriate in the voter registration example of this chapter.

The results of this chapter are far from being conclusive, and there are a great many avenues
for further research. These include examining the variety of approaches outlined above. In
addition, to have a better understanding of when these models are appropriate or necessary,
it is important to thoroughly examine the effects of spatial dependence via more extensive
simulations. In Section 12.6.1, we used autocorrelation statistics to examine the extent of
spatial dependence in the p̂ j i . It would be extremely useful to develop a diagnostic measure
to determine the amount of spatial dependence based on the data in the margins alone. This
avenue will likely prove difficult, since spatial dependence in the race-specific probabilities
will not necessarily translate into spatial dependence in the marginal probabilities, and vice
versa. There may be scenarios, however, where this is the case. The question would then be
how reasonably (since, as with nearly all assumptions, necessary for ecological inference, it
would be untestable) these scenarios apply to any particular data set.

APPENDIX

12.A.1 Simulation from the Intrinsic Gaussian Conditional Autoregression

As pointed out in Section 12.4, the joint specification for the ICAR does not exist. Thus,
to generate a single realization we adopt an algorithm outlined in Besag and Kooperberg
(1995). Following their Corollary 3.2, we constrain the final random effect, U j,64, to equal
0. Again, let Q j be the corresponding precision matrix in the joint specification (which
will not be of full rank, and hence not invertible) for the ICAR. Then for i = 1, . . . , 63, let
Wj i = U j i − U j,64 = U j i . Further, let I denote the 63×63 identity matrix and

−→−1 the 63 × 1

vector of −1’s. Thus, we have 
W j = A 
U j , where A = (I |−→−1) is the concatenation of I and−→−1. Taking Ā = (I |
0)T to be the generalized inverse of A, and QW j = ĀT Q j Ā to be the
precision matrix for 
W j , then we find that � j = ĀQ−1

W j ĀT is a generalized inverse of Q j .

Hence one may generate random deviates from an ICAR(ω2
j ) distribution by simulating

from a multivariate normal distribution with a vector of zeros as the mean vector and
variance–covariance matrix � j . Again, this is subject to the constraint that the final random
effect is always equal to zero.

12.A.2 Autocorrelation Statistics

Here we briefly overview the autocorrelation statistics used in the paper. Let Wik denote
some measure of “closeness” between parish i and parish k. In our application we use
Wik = 1 if parishes i and k are adjacent, and Wik = 0 otherwise. This is not the only choice,
and another common choice is to base Wik on some distance measure (say between the
centroids) of parishes i and k. Let p̄ j denote the mean of p̂ j i , i = 1, . . . , n, and r j i denote the
ranks of p̂ j i , i = 1, . . . , n. Then the autocorrelation statistics of Section 12.3 are defined as
follows:

Moran’s I statistic:

I = n
∑

i

∑
k Wik( p̂ j i − ¯̂p j )( p̂ j k − p̄ j )

(
∑

i

∑
k Wik)

∑
l ( p̂ j l − p̄ j )2

.
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Geary’s c statistic:

c = (n − 1)
∑

i

∑
k Wik( p̂ j i − p̂ j k)2

(
∑

i

∑
k Wik)

∑
l ( p̂ j l − ¯̂p j )2

.

Nonparametric D statistic:

D =
∑

i

∑
k Wik |r j i − r j k |∑

i

∑
k Wik

.

12.A.3 WinBUGS Code

The following is sample WinBUGS code for the “Whites only” model of Section 12.6.2. In
this model, it is assumed that the black probabilities exhibit only unstructured variation,
while the white probabilities may exhibit both unstructured and spatial structured variation.
Note that in the WinBUGS formulation, variance components for both the normal and ICAR
distributions are specified in terms of precision parameters (i.e. inverse variances). In the
code below, q[i] represents the marginal probability of registering Republican (pi ) in
parish i .

model

{
for ( i in 1 : ntabs ) ## ntabs = 64

{
## 1st Stage Likelihood (for the observed data)

Z[i] ∼ dnorm( q[i], tau.q[i] )

Z[i] <- Y[i] / N[i]

tau.q[i] <- N[i] / ((p[i, 1] * (1 - p[i, 1]) * x[i]) + (p[i, 2]

* (1 - p[i, 2]) * (1 - x[i])))

prep[i] <- (p[i, 1] * x[i]) + (p[i, 2] * (1 - x[i]))

p[i, 1] <- exp( mu[1] + Vb[i]) / (1 + exp( mu[1] + Vb[i]))

p[i, 2] <- exp( mu[2] + Uw[i] + Vw[i]) / (1 + exp( mu[2] + Uw[i] + Vw[i]))

## Unstructured random effects

Vb[i] ∼ dnorm( 0, tau.v[1] )

Vw[i] ∼ dnorm( 0, tau.v[2] )

## Compute marginal quantities

x[i] <- N0[i] / N[i]

N[i] <- N0[i] + N1[i]

}

## ICAR distribution for spatially structured random effects

Uw[1:ntabs] ∼ car.normal( adj[], weights[], num[], tau.u )

for(k in 1:sumNumNeigh)

{
weights[k] <- 1

}

## Third stage priors

mu[1] ∼ dlogis(0, 1)
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mu[2] ∼ dlogis(0, 1)

tau.u ∼ dgamma(1.519157, 0.4943456)

tau.v[1] ∼ dgamma(1.4999566, 0.2269434)

tau.v[2] ∼ dgamma(1.4999566, 0.2269434)

## Quantities of interest to monitor

params[1] <- mu[1]

params[2] <- log( 1 / tau.v[1] )

params[3] <- mu[2]

params[4] <- log( 1 / tau.u )

params[5] <- log( pow( sd( Uw[1:ntabs] ), 2 ) )

params[6] <- log( 1 / tau.v[2] )

params[7] <- inprod( p[,1], N0[] ) / sum( N0[] )

params[8] <- inprod( p[,2], N1[] ) / sum( N1[] )

}
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PART FOUR

13 A Common Framework for Ecological Inference in
Epidemiology, Political Science, and Sociology

Ruth Salway and Jonathan Wakefield

ABSTRACT

Ecological studies arise within many different disciplines. This chapter describes common approaches
to ecological inference in an environmental epidemiology setting, and compares these with traditional
approaches in political science and sociology. These approaches vary considerably, both in their
use of terminology and notation, and in the relative importance of the various issues that make
ecological analyses problematic. The aims of this chapter are twofold. Firstly, we describe ecological
inference in an epidemiology setting, where the interest is in the relationship between disease status
and exposure to some potential risk factor. We concentrate on those issues which are of particular
concern in epidemiology, for example the presence of additional (possibly unmeasured) covariates,
termed confounders. Secondly, we seek to unite the current work in epidemiology, political science,
and sociology by clarifying differences in terminology, by describing commonly used approaches
within a common statistical framework, and by highlighting similarities and differences between these
approaches. Often different models can be attributed to different sets of underlying assumptions; we
emphasize that such assumptions are crucial in the conclusions drawn from ecological data, and their
appropriateness should be carefully considered in any specific situation. Combining approaches from
all three disciplines gives a broad range of possible assumptions and available techniques from which
to choose.

13.1 INTRODUCTION

Ecological studies arise within many different disciplines; in this chapter we consider ecolog-
ical inference from an epidemiology perspective and compare it with approaches in political
science and sociology. Although all three disciplines utilize ecological data, commonly used
approaches vary considerably, and there is very little communication between epidemiology,
on the one hand, and sociology and political science, on the other. Although methods in
one discipline may not always be applicable in another, in general many of the concerns
addressed are common to all.

When using ecological data to make inference about individuals, bias may occur due to ag-
gregating data within areas; this bias is known as aggregation bias (Achen and Shively, 1995)
in the social sciences, and as ecological bias (Richardson and Monfort, 2000) in epidemiol-
ogy. A more general term used in sociology is cross-level bias (Firebaugh, 1978), which refers
to bias that occurs when data are available at one level but inference is made at a different
level (so it can also refer to bias that arises from using individual data to make inference
about areas).

In Section 13.2 we describe how ecological studies arise in epidemiology. The common
problem is to make individual-level inference in the presence of possible ecological bias;
one of the ways in which epidemiological approaches differ is in explicitly concentrating

303
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on the underlying causes of bias. We follow such an approach throughout this chapter;
first, we identify the main sources of ecological bias, and then we consider the effect on
inference of each source separately. We introduce a general statistical model in Section 13.3
that allows us to explicitly model three of the main sources of bias. These are bias due to
unmeasured covariates, bias due to the presence of contextual effects, and bias due to the
model parameters varying between areas, and are discussed in Section 13.4. This model will
provide the framework for this chapter and will be used to link approaches to ecological
inference in the three disciplines.

Section 13.5 discusses some of the primary issues in ecological analysis in epidemiology.
We discuss the aims of ecological analyses, and describe the general approaches that are
used to tackle the sources of bias. Section 13.5.2 introduces the use of hierarchical models
to model overdispersion, and Sections 13.5.3 and 13.5.4 consider two ideas from general
epidemiology that may be applied to ecological analyses when the availability of data is
limited. The first is that of choosing between competing explanations, in the presence of little
information from the data themselves, on the basis of plausibility. The second demonstrates
the use of a sensitivity analysis to investigate the possible effects on inference of unobserved
confounding.

We compare and contrast the epidemiology and social science approaches to ecological
inference in Section 13.6. We focus on a scenario in which the data are discrete and consist of
one 2 × 2 table for each area; the links between this model and the more general framework
of Section 13.3 are highlighted in Section 13.6.1. One of the important differences between
epidemiology and political science is that in the latter it may be the unobserved individual
data that are of interest rather than underlying probabilities (which is essentially a difference
between prediction and causality); the differences are discussed in Section 13.6.2. Section
13.6.3 focuses on the situation in which the underlying probabilities vary between areas.
Section 13.7 considers some common models used in social science and relates them to
those used in epidemiology, and Section 13.8 provides a concluding discussion.

Throughout this chapter we will use terminology from epidemiology, so that the outcome
of interest is a disease indicator; an individual with the disease is known as a case, and a
disease-free individual a noncase. The covariate of interest, a potential risk factor for the
disease, is called the exposure variable, and we are specifically interested in the nature of
the relationship between the disease indicator and exposure to the risk factor, after control
for confounding variables. Roughly speaking, a confounder is a variable that is related to
both the response and the exposure, does not lie on the causal pathway between exposure
and response, and is not caused by the response (see Rothman and Greenland, 1998, for
more discussion). So, for example, the disease indicator may be whether an individual has
a respiratory disease, such as asthma. The exposure may be discrete, for example a genetic
trait, or it may be continuous, for example the sulfur dioxide concentration in ambient air
in the neighborhood of the individual. Similarly confounders may be discrete (for example
gender) or continuous (for example, dietary measures such as fat consumption). For both
confounders and exposures, continuous variables may be artificially discretized. Although
this reduces information, a large number of categories allows for flexible risk–exposure–
confounder relationships, and for interactions to be considered.

In a political science application, the response may correspond to voter turnout, with
a “case” being a voter and a “noncase” being a nonvoter. The “exposure” is race, which is
discrete for example, with two categories, black and white. A possible confounder in this
example might be income, which we might expect to be related to both voter turnout and
race. The problem of determining causality between exposure and disease in the presence of
confounding variables is central to epidemiology. The equivalent problem in political science
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might be to assess the causal relationship between race and voting behavior, controlling for
income.

13.2 ECOLOGICAL INFERENCE IN EPIDEMIOLOGY

Determining causality in any observational study is problematic, since exposures are not
randomly assigned to individuals. A major cause of bias in observational studies is that due to
confounding; consequently, many epidemiologic analytical techniques are concerned with
controlling for confounding factors. This general philosophy extends to ecological studies;
the aim is usually to make inference for individuals concerning the relationship between
disease and exposure in the presence of confounding. By many epidemiologists ecologi-
cal studies are viewed with skepticism. This view would seem too pessimistic, however.
Ecological studies are not only useful hypothesis-generating mechanisms, but can also add
to the totality of evidence when building a case for a disease risk–exposure relationship
(Morgenstern, 1998). The appeal of ecological studies is that they can utilize routinely avail-
able data (and so are relatively inexpensive to carry out) and can cover a broad geographical
area, thus taking advantage of large exposure contrasts and large populations; both of these
factors increase power.

Historically, epidemiologists have concentrated on methods developed for contingency
tables. A typical analysis with binary exposure and disease variables would initially examine
the marginal observed association (that is, collapsing across confounder stratum), before
examining the effects of stratification (confounder) variables such as age and sex, perhaps
following a test for heterogeneity of the association across stratifying variables, that is, a test
for effect modification. Chapter 3 of Breslow and Day (1987) and Chapter 4 of Breslow and
Day (1980) provide an excellent introduction to such approaches. More recently, a more
explicit model-based approach has grown in popularity (Clayton and Hills, 1993). The ad-
vantages of such an approach are that universal statistical principles can be followed in a
more general modeling setting, and problems of small cell counts can be avoided to some
extent by smoothing across cells. In addition the assumptions that lead to particular esti-
mators can be made explicit, which is particularly important in ecological studies. Stratified
analyses can often be viewed as a special case of the more general framework.

Hence the current focus in ecological models in epidemiology is on explicitly model-
ing the risk–exposure relationship and estimating effect parameters. The disease–exposure
relationship is often nonlinear. Diseases are usually rare in a statistical sense. Ecologi-
cal studies are particularly important in environmental epidemiology in examining the
effects of air pollution (Pope and Dockery, 1996) and water quality (see, for example,
Maheswaran et al., 1999). Often the scale is international; for example, Yasui et al. (2001)
examine the ecological association between incidence of breast cancer and incidence of non-
Hodgkins lymphoma, and Prentice and Sheppard (1990) describe an ecological approach
to studying the relationship between total dietary fat intake and incidence of breast cancer.
Numerous studies have also examined the ecological association between measures of so-
cioeconomic status and different health outcomes; see Singh and Siahpush (2002) and the
references contained therein. Richardson and Monfort (2000) and Wakefield (2003) provide
further examples of ecological studies.

In a model-based approach we are interested in the underlying individual parameters (and
derived probabilities) of disease. This is consistent with the search for causal relationships
and may be contrasted with a predictive approach in which it is not estimates of parameters
that are of concern, but rather imputation in which the missing cell entries are the target
of inference. The objective of most epidemiological studies is to estimate the change in
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disease risk attributable to a specific factor for a rare disease. This can be expressed on
various scales, for example, as a risk difference, or as a relative risk of disease for each area.
Typically a risk difference is used with a linear model and represents the additive difference
between the disease risk of, for example, an exposed individual and an unexposed individual.
Relative risks are more natural in a log-linear framework and represent the multiplicative
increase in disease risk in the exposed population relative to the unexposed population. No
exposure effect (that is, when the risk of an exposed and unexposed individual is the same)
corresponds to a risk difference of 0, or a relative risk of 1.

13.3 STATISTICAL MODEL

In this section we introduce notation that allows us to separate different sources of ecological
bias. We begin by describing an explicit model at the level of the individual (following
Richardson, Stucker, and Hémon, 1987; Prentice and Sheppard, 1995; and Wakefield and
Salway, 2001). We are interested in examining individual relationships; it is advantageous
to specify models in terms of individual parameters, as this links ecological inference to
individual inference. By stating an underlying model we are also better equipped to make
explicit the assumptions of any analysis and to identify the plausibility of such assumptions.
This approach is of particular benefit when attempting to identify causal relationships.

The notation in this chapter differs from that used in the Introduction to this book, for
the latter does not extend easily to an epidemiology context. However, it is consistent with
that used in Chapters 1 and 12.

Suppose we have a study area partitioned into a disjoint set of m areas, with area i
containing Ni individuals, i = 1, . . . , m. The response is a Bernoulli random variable Yi j

representing the disease outcome of individual j in area i , i = 1, . . . , m, j = 1, . . . , Ni ,
over a specific time period, with Yi j = 1 corresponding to a case and Yi j = 0 a noncase.
Similarly, we let Xi j represent the univariate exposure of individual j in area i . In our
general formulation, Xi j may be a discrete variable with two or more categories, or it may
be continuous. It is straightforward to extend this model to consider multiple exposures
(for example, three different air pollutants), but for notational simplicity we will assume it
is univariate. We begin with an individual risk–exposure model for a noninfectious disease
(so that outcomes on different individuals within an area may assumed to be independent,
after controlling for risk factors). The model takes the form

Yi j |qi j ∼ind Bernoulli(qi j ),

where

qi j = P(Yi j = 1|Xi j , Zi j , Xi , area i),

and

g (qi j ) = β0i + β1i (Xi j − Xi ) + β2 Xi + γ Zi j + δi , (13.1)

where “ind” is an abbreviation for independently distributed, and we have assumed linearity
on a scale determined by a link function g (·). Here Xi is the mean exposure in area i , and Zi j

is a univariate individual-level confounder (again the extension to multiple confounders is
straightforward).

The model 13.1 allows for the possibility of confounding, contextual effects, effect mod-
ification, and overdispersion, including spatial dependence:
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• The effect of an individual’s exposure relative to the area-level average exposure is given
by β1i ; this is the effect parameter of interest, and is an area-specific exposure effect, so
that we have effect modification (also known as interaction) by area.

• We also allow the baseline risk parameter β0i to vary between areas.
• The parameter β2 measures a contextual effect due to exposure, that is, an effect due

to the overall average exposure in the area beyond the effect of an individual’s personal
exposure. Contextual effects in the exposure will be present if β1i 	= β2.

• The presence of confounding is represented through the covariate Zi j and the associated
nuisance parameter γ . This may be a within-area confounder (a variable measured at the
level of the individual – for example, a behavioral variable), or a between-area confounder,
in which case Zi j = Zi (a characteristic of the area – for example, income disparity or
access to health services). The model does not allow confounder effects to vary by region,
or for a contextual effect in the confounder, but it is general enough to allow a number
of possible sources of bias to be illustrated.

• Finally, the random effect error term δi may or may not have spatial structure.

The model 13.1 incorporates a link function g (·), which allows for a nonlinear risk–exposure
relationship. Suitable link functions include a logit link, which constrains the probabilities
qi j to lie between 0 and 1, or a log link as an approximation when qi j is small (that is, the
disease is rare). The latter model is frequently used in epidemiology, where disease counts
in an area are small relative to the population size. This corresponds to a multiplicative
risk–exposure relationship, with

E [Yi j |Xi j , Xi , Zi j ] = exp
{
β0i + β1i (Xi j − Xi ) + β2 Xi + γ Zi j + δi

}
.

Great care is required to interpret the parameters of this model (since we cannot increase
an individual’s exposure and keep the average the same). If we increase the exposure for all
individuals in area i by one unit, then for each individual in area i we have

P [Yi j = 1|Xi j = x + 1, Xi = x̄ i + 1, Zi j ]

P [Yi j = 1|Xi j = x , Xi = x̄ i , Zi j ]
= exp(β1i + β2),

which gives an interpretation to the sum of the two effect parameters when Z is kept constant
for all individuals and the two individuals that are compared are in the same area (since we
need the parameters β0i to cancel).

We are concentrating upon a linear link function in this chapter, in which case, if we
increase the exposure for all individuals in area i by one unit, the risk difference is given by

P [Yi j = 1|Xi j = x + 1, Xi = x̄ i + 1, Zi j ] − P [Yi j = 1|Xi j = x , Xi = x̄ i , Zi j ]

= β1i + β2.

Again, under a causal interpretation we may consider two individuals j and j ′ in the same
area i whose exposures differ by one unit and who have the same value of Z, to obtain

P [Yi j = 1|Xi j = x + 1, Xi = x̄ i , Zi j = z] − P [Yi j ′ = 1|Xi j ′ = x , Xi = x̄ i , Zi j ′ = z]

= β1i .

Suppose that neither the baseline risk parameter β0i nor the effect parameter β1i depend on
i . Now, consider two areas i and i ′ whose mean exposures differ by one unit, and consider
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two individuals, j in area i , and j ′ in area i ′, who have the same value of Z but whose
exposures differ by one unit. Then

P [Yi j = 1|Xi j = x + 1, Xi = x̄ i + 1, Zi j = z] − P [Yi ′ j ′ = 1|Xi ′ j ′ = x , Xi = x̄ i , Zi j ′ = z]

= β2.

The above considerations illustrate the care that must be taken in parameter interpretation.
The linear model is somewhat unrealistic in that no constraints are placed on qi j , which

must be between 0 and 1, since it is a probability. In practice such a simplistic model will be
suitable in only a few situations, for example as an approximation for low levels of exposure
and small exposure effects. In general, fitting a linear model when the true relationship is
nonlinear can introduce serious bias (Greenland, 1992). However, nonlinearity introduces
additional problems of mathematical complexity which make the exposition less easy to
follow. Many of the results follow for a log-linear model, and where differences occur, they
are noted in the text.

In an ecological study only area-level data are available. Typically these data consist
of the area means Xi , Yi , and perhaps Zi . In epidemiology the ecological data usually
consist of counts of cases within each area, Yi+ = ∑

j Yi j ; since Yi = Yi+/Ni , these are
interchangeable, for the population sizes are known (at least in principle, although data
anomalies may be problematic; see Wakefield and Elliott, 1999). The disease counts Yi+ and
mean Yi correspond to T ′

i and Ti respectively in the notation of the Introduction.
Here we will formulate the ecological model in terms of disease counts, Yi+. We derive

the model induced at the ecological level in Equation 13.1 by aggregating over individuals
within each area. In general the form of this ecological model will depend on the joint
within-area distribution of Xi j , Zi j :

E [Yi+|Xi j , Zi j ] = Ni E Xi j , Zi j [qi j |Xi , Zi ],

where the expectation is with respect to the joint distribution of (Xi j , Zi j )|Xi , Zi . Here, we
assume that both exposure and covariate are discrete binary variables, with

Xi j |πxi ∼ind Bernoulli(πxi ),

and

Zi j |πzi ∼ind Bernoulli(πzi ),

so that, for example, the probability of an individual in area i being exposed is given by
P (Xi j = 1|πxi ) = πxi . Under these circumstances,

Yi+|πxi , πzi ∼ind Binomial{Ni , qi },

with

qi = β0i + β2πxi + γπzi . (13.2)

The term β1i (Xi j − Xi ) has disappeared, since E [Xi j − Xi ] = 0 when we average over
an area. Equation 13.2 depends only on the area-specific probabilities (πxi , πzi ) because
we have a linear relationship; in general, a nonlinear relationship will result in an ad-
ditional term involving the joint probability πxzi = P (Xi j = 1, Zi j = 1|πxzi ) (Lasserre,
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Guihenneuc-Jouyaux, and Richardson, 2000). Similarly, the joint distribution needs con-
sideration when we have effect modification by Z .

In the more general situation where exposures may be continuous and the link function
is nonlinear, the expression for the marginal risk qi will depend on higher moments of
the within-area exposure–confounder distribution, such as the variance–covariance matrix
(Richardson et al., 1987; Wakefield and Salway, 2001).

Typically we do not know the underlying population parameters πxi and πzi and must
use estimates, for example the means Xi and Zi . In this case, Xi j |Xi are not independent
and the binomial distribution is an approximation to the true distribution of disease counts
(although with large Ni this should not be a problem). We have

E [Yi |Xi , Zi ] = qi = β0i + β2 Xi + γ Zi , (13.3)

but the variance will be smaller than under a binomial model. The true distribution is a
convolution of binomials (Chapter 1).

The main difference between this model and that of the Introduction is that here we
have explicitly described the individual-level relationship. The focus is clearly on estimating
the individual-level parameters β0i , β1i (and hence the underlying individual probabilities),
rather than the unobserved cell proportions. The relationship between these two depends
on the form of the individual model (via the choice of link function and whether con-
founding, contextual effects or effect modification is present). This is discussed further in
Section 13.6.1.

The simplest case of the model 13.2 (which is unrealistic in practice) is when we have no
confounding (so γ = 0), no contextual effects (so β1i = β2), and nonvarying baseline risk
and effect estimates (so the parameters β0i , β1i do not vary between areas). Then Equation
13.3 becomes

E [Yi |Xi ] = β0 + β1 Xi , (13.4)

or, written in terms of the relative risk θ = p1/p0, where px = P (Yi j = 1|Xi j = x),

E [Yi |Xi ] = p0 + p0(θ − 1)Xi (13.5)

(also considered by Plummer and Clayton, 1996: 116). In this special case, the ecological
model takes the same form as the individual-level model, with the same parameters. It is
well documented (for example, Piantadosi, Byar, and Green, 1988) that in this case estimates
derived from the ecological model will be unbiased estimates of the underlying individual-
level parameters. This result requires a linear relationship between Xi j and Yi j ; with other
link functions, the ecological model will not in general take the same form (Richardson et al.,
1987), even in the absence of confounding, contextual effects, and effect modification, unless
there is no within-area variability in areas (in a political science context, an example would
be each area containing individuals of one race only). The distinction between linear and
nonlinear forms is important in epidemiology, since risk–exposure relationships are often
multiplicative. The bias that may arise in fitting an ecological model of the same form as the
individual-level model is known as pure specification bias (Greenland, 1992).

13.4 SOURCES OF ECOLOGICAL BIAS

We will now see how the ecological parameter estimates behave when the simple case of no
confounding, no contextual effects, and no effect modification, as in Equation 13.4, does
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Figure 13.1. Types of ecological bias for a linear model. In each case, the dotted lines represent the rela-
tionship within areas, and the dashed line represents the ecological relationship. (a) No ecological bias.
(b) Negative bias due to between-area confounding, within-area confounding, confounding by group,
or contextual effects. (c) Positive bias due to between-area confounding, within-area confounding,
confounding by group, or contextual effects. (d) Negative bias due to effect modification.

not hold. We will consider three situations: when unmeasured confounders are present,
when contextual effects are present, and when the parameters β0i , β1i vary between areas.
Throughout we assume a linear link.

Figure 13.1 illustrates the effect of different types of ecological bias for three areas, A, B ,
and C . In each case, the dotted lines represent the individual relationships between disease
and exposure within each area, and the dashed line represents the ecological relationship.
The figure is based on the individual model in Equation 13.1, with a linear link function;
that is,

E [Yi j |Xi j , Xi , Zi j ] = β0i + β1i (Xi j − Xi ) + β2 Xi + γ Zi j .

Figure 13.1a illustrates the straightforward case where there is no confounding or contextual
effect and the parameters do not vary between areas. In this case, the individual-level model
is

E [Yi j |Xi j ] = β0 + β1 Xi j ,

and the ecological model is

E [Yi |Xi ] = β0 + β1 Xi .
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In this case there is no bias, and the individual and ecological regression lines are equal.
Figure 13.1b and 13.1c illustrate two situations where there is bias. In both cases, the

individual effect parameter is the same for each area (so the dotted lines are parallel), but
the baseline risk (where each line crosses the Y axis) differs. As a result the ecological estimate
of the exposure effect is biased. In case (b) the relationship between disease and exposure
within areas is positive, but the ecological effect is negative (so that what is sometimes called
a protective effect has been induced). In case (c) both relationships are positive, but the
ecological effect is an overestimate of the individual effect.

These situations can arise for a linear model in one of four ways. Firstly, they can arise
when the baseline risk parameter β0i varies between areas, that is, the individual-level model
is

E [Yi j |Xi j ] = β0i + β1 Xi j .

The ecological-level model becomes

E [Yi j |Xi ] = E [β0i |Xi ] + β1 Xi ,

so bias is caused when there is correlation between Xi and β0i . For ease of explanation
suppose

E [β0i |Xi ] = a + b Xi ,

so that

E [Yi j |Xi ] = a + (b + β1)Xi .

If the true individual effect is positive (β1 > 0), a negative correlation (b < 0) will result in
underestimating the effect parameter; in extreme cases (b < −β1) this will cause a negative
ecological effect as in case (b). A positive correlation (b > 0) will cause the ecological effect
parameter to be greater than the individual effect, as in case (c). That the baseline risk
appears to vary by area could be due to data anomalies in the population or disease counts.

Secondly, such bias can be caused by an unmeasured confounder, acting either between
or within areas. For a between-area confounder the individual-level model is

E [Yi j |Xi j , Zi ] = β0 + β1 Xi j + γ Zi ,

and so we have

E [Yi j |Xi ] = β0 + β1 + γ E [Zi |Xi ],

leading to bias as with the previous example. If we write β0i = β0 + γ E [Zi |Xi ], then we
have

E [Yi j |Xi ] = β0i + β1 Xi ,

showing how the variation of baseline risk by area has been induced; thus β0i and Xi will
always be correlated (since Zi is a between-area confounder), and bias will result as described
above.
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Similarly, for a within-area confounder the individual-level model is

E [Yi j |Xi j , Zi j ] = β0 + β1 Xi j + γ Zi j

= β0i + β1 Xi j ,

with β0i = β0 + γ E [Zi j |Xi ]. In this case, there will again be bias, since Zi j and Xi j are
correlated, leading to β0i and Xi being correlated. It is possible for a within-area confounder
Zi j to be correlated with Xi j (since it is a within-area confounder) without the averages Zi

being correlated with Xi (that is, it need not also be a between-area confounder). Hence an
unmeasured within-area confounder may not cause ecological bias, although often Z will
be a confounder at both levels. If Zi j is both a within-area confounder and a between-area
confounder and if Zi is measured and Zi j unmeasured, then no bias will result with a
linear model. This is not the case for a nonlinear model, where omission of a within-area
confounder will lead to bias, even if the area-level confounder is measured.

Finally, this type of bias may be due to contextual effects, where the individual-level model
is

E [Yi j |Xi j , Xi ] = β0 + β1(Xi j − Xi ) + β2 Xi (13.6)

= β0i + β1 Xi j ,

with β0i = β0 + (β2 − β1)Xi , so that

E [Yi j |Xi ] = β0i + β1 Xi ,

with β0i depending on Xi . So a contextual effect acts in the same way as a between-area
confounder, since β0i and Xi will always be correlated and thus cause ecological bias. For
this model we end up with

E [Yi j |Xi ] = β0 + β2 Xi , (13.7)

so only the contextual effect can be estimated. If we rewrite Equation 13.6 in a form that is
more familiar in the social sciences,

E [Yi j |Xi j , Xi ] = β0 + β1 Xi j + β∗
2 Xi ,

then we obtain

E [Yi j |Xi ] = β0 + (β1 + β∗
2 )Xi ,

illustrating that we are estimating the combined effects of individual and contextual effects
in an ecological study.

Figure 13.1d illustrates a different source of bias, due to effect modification, that is, when
the effect parameter β1i is different in each area (dotted lines all have different slopes). Here
the individual model is

E [Yi j |Xi j ] = β0 + β1i Xi j .

An individual study would calculate separate estimates for each effect parameter, corre-
sponding to the slopes of the dotted lines; each of these effects is positive. However, an
ecological study estimates the dashed line, and concludes that there is a protective effect.
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This occurs because β1i is negatively related to Xi ; here we have decreasing slopes with
increasing exposure. In this example each area has the same baseline parameter β0, and so
all three dotted lines cross at the same point on the Y axis (at Y = β0).

If we have (say) β1i |Xi ∼ N(β1, σ 2) and a linear model, then an ecological analysis with
a constant effect parameter across areas would provide an unbiased estimator of β1.

We now describe in more detail each of unmeasured confounding, contextual effects, and
parameters that vary across areas.

13.4.1 Unmeasured Confounding

As described earlier, a confounder is a covariate that is related to both the outcome and the
exposure (and is not on the causal pathway, and is not affected by the response). Suppose we
have two populations in the age range 20–45, one that is exposed to air pollution and has a
high rate of asthma, and the second that is unexposed and has a low rate of asthma. Suppose
we also know that the exposed population contains more smokers than the unexposed
population, and that smoking is associated with asthma. In this situation we do not know
if there is a true association between air pollution and asthma or whether it is just due to
differences in smoking behavior; smoking is said to be a confounder. In ecological studies
confounders can act within areas, between areas, or both. In any observational study it
is always possible that an observed association is due to unmeasured confounding, and
(as already mentioned) much of analytical epidemiology is concerned with designs and
analysis strategies that attempt to minimize bias due to confounding.

Bias due to confounding arises from omitting either within-area or between-area con-
founders from the model. Greenland and Robins (1994) give examples that demonstrate
such biases; it is possible for the individual disease–exposure relationship to act in one di-
rection, while the ecological data indicate a relationship in the opposite direction (this is
illustrated in Figure 13.1b). A within-area confounder would also act as a confounder in
an individual study. In a linear model, the aggregated within-area confounder will appear
in the ecological model as an area-level confounder, unless the average exposure and the
average confounder are uncorrelated across areas. As discussed by Greenland and Robins
(1994), within-area confounding becomes more problematic when dealing with a nonlinear
risk–exposure relationship, since within-area variability in confounders means that includ-
ing a simple average value for an area is not sufficient to control for confounding. Instead
we need to control for the within-area confounder distribution (there is a further increase in
complexity when we have multiple confounders).

Between-area confounding is analogous to the usual confounding in an individual-level
study, since the area is the level of analysis. Between-area confounders include covariates
that represent characteristics of the area such as whether the area is urban or rural, or
the average income in the area. In both these cases the confounder is often acting as a
surrogate for the area average of important unmeasured individual-level characteristics.
However, identifying such confounders may not be straightforward. Often it is the case that
a variable is a confounder at both levels. If the variables are known, they may be included
as between-area confounders in the ecological model 13.3. The specific form of the model
should always be assessed, since, as always, there is no a priori reason why the effects should
be additive. Unfortunately, checking the form of the ecological risk model is impossible
when only ecological-level data are available (though a plausible form may be known from
individual-level studies, in animal or man).

It is of theoretical interest to examine the likely size and direction of bias due to omit-
ted confounders, and in practice methods for addressing the sensitivity to unmeasured
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confounding are of interest (see Section 13.5.4). For the remainder of this section, we will
assume that there are no contextual effects, and that parameters do not vary between areas.

In the model 13.1 confounding is introduced through the final term with γ 	= 0, and
with Zi j and Xi j correlated. From Equation 13.3 we can see that if the area averages for the
confounder, Zi , are known, they can be included in the model and the parameter estimates
will be unbiased. This is not the case for other link functions, where typically the ecological
model involves terms which are unobserved in practice (Wakefield, 2003). If the average
area-level confounder is not included in the model, then the estimates of the parameters
(β0, β1) will be biased. This bias will depend on the strength of the relationship between the
confounder and the outcome (γ ) and on the extent of dependence between the confounder
and the exposure as measured through E [Zi |Xi ].

The true individual model with no contextual effects or effect modification is

E [Yi j |Xi j , Zi j ] = β0 + β1 Xi j + γ Zi j . (13.8)

Omitting the confounder gives the “true” ecological model:

E [Yi |Xi ] = β0i + β1 Xi + γ E [Zi |Xi ],

where β1 is the effect parameter which is of interest. Suppose that the confounder, Zi j , is bi-
nary. Then we can write this model in terms of the probabilities qx = P (Zi j = 1|Xi j = x),
that is, the distribution of the confounder given the exposure variable, assuming for sim-
plicity that this relationship is constant across areas. So

E [Zi |Xi ] = q0 + (q1 − q0)Xi ,

and the ecological model becomes

E [Yi |Xi ] = (β0 + γ q0) + {β1 + γ (q1 − q0)} Xi . (13.9)

Suppose we fit the ecological model assuming that there is no confounding. So we obtain
estimates of the parameters, β∗, from

E [Yi |Xi ] = β∗
0 + β∗

1 Xi . (13.10)

Then from Equation 13.9,

β∗
0 = β0 + γ q0, (13.11)

β∗
1 = β1 + γ (q1 − q0). (13.12)

Note that if q1 = q0 (so that X and Z are independent) or if γ = 0 (so Zi j is not associated
with Yi j ), there is no bias in the effect parameter β∗

1 . Otherwise the effect parameter is biased
by a component that depends on γ , the relationship between disease and confounder, and
q0, q1, the relationship between exposure and confounder. If the confounder is positively
associated with both the disease and the exposure, then the bias will be positive and the
estimator β̂∗

1 will overestimate β1. If they are of opposite signs, then the bias in β̂∗
1 will

be negative; so if β1 is positive, then it is possible for E [β̂∗
1] to be negative. The larger the

true effect β1, the less likely this change of sign is to occur. Wakefield (2003) discusses the
above and more general situations with a log link risk model and continuous exposures and
confounders.
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13.4.2 Contextual Effects

Contextual effects are area-level summary variables, such as the average exposure in an
area, that affect the individual’s outcome in addition to the individual-level variable. For
example, an individual’s health might be affected both by their own level of poverty and
also by the general level of poverty in the area in which they live (sometimes such effects
are known as neighborhood effects). In epidemiology contextual effects are often surrogates
for combinations of unmeasured risk factors. In other disciplines contextual effects arise
unambiguously; for example, in education the class IQ as well as individual IQ may be
predictive of performance. In this example it is clear that the class IQ is a potentially relevant
variable. In epidemiology, the area or neighborhood over which the contextual variable
should be calculated is less clear.

Studies at the level of the individual can include a group average term in the analysis.
However, at an ecological level it is not possible to distinguish between the effect of the term
representing the aggregated individual variable and the contextual effect. This is illustrated
by the comparison of the ecological regression and linear neighborhood models; see for
example Chapter 1 and Equation 13.6, leading to Equation 13.7. This demonstrates that
even if the interest is in the contextual effect β2 − β1, this cannot be estimated from the
ecological data alone (Greenland, 2002).

As discussed above and illustrated in Figure 13.1, contextual effects can be considered as a
special case of a between-area confounder (writing Zi j = Xi ), and so much of the discussion
of between-area confounding above is applicable to contextual effects. The main difference is
that no matter how many ecological data are available, the individual and contextual effects
cannot be estimated separately. This is a fundamental difficulty of ecological inference, on
which the social sciences literature concentrates.

13.4.3 Parameters That Vary between Areas

If one or more of the parameters vary between areas, in an individual-level analysis we can
fit a separate model for each area or include area as a covariate in the model. However,
ecological data do not contain enough information to estimate separate effect parameters
for each area without imposing additional assumptions (King, 1997), since there are more
parameters to be estimated than there are data points. If the baseline risk β0i varies between
areas, then the underlying risk for an unexposed individual will depend on the area in which
the individual belongs. For example, unexposed individuals in different areas are at different
baseline risk of asthma, due both to differences in unmeasured individual-level risk factors,
and to true area effects such as different levels of health care in different areas. When the
effect parameter β1i varies between areas, the effect of being exposed is different for different
areas. So, for example, the effect of air pollution on an individual’s risk of asthma will depend
on where they live.

When the baseline risk β0i varies randomly (so that the coefficient is uncorrelated with
Xi ) due to unmeasured factors between areas, then it can be modeled as a random effect as
discussed in Section 13.5.2. Such variation can arise through unmeasured variables that have
no association with the exposure, or through data anomalies, again without association with
the exposure. When the parameter β0i varies systematically between areas, it is sometimes
referred to as confounding by group (Greenland and Morgenstern, 1989). This can then be
considered as a special case of an unmeasured between-area confounder, by writing β0i =
β0 + γ Zi . The inclusion of random effects cannot in general control for confounding.
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Effect modification occurs whenβ1i varies between areas. It may arise from a multiplicative
interaction term at the individual level. This could be due to the presence of an unmeasured
variable that changes across areas and has an interaction at the individual level, or to data
anomalies that are associated with exposure (Greenland, 1992). Hence effect modification is
distinct from confounding: a confounder is a nuisance variable which causes bias in the effect
estimate (and can theoretically be controlled for), while effect modification is a property of
the effect of interest.

In an ecological study, it might be thought that the ecological model would estimate
the average effect parameter across all areas, that is, β̄1 = E [β1i ]. However, if confounding
by group or effect modification which is dependent on Xi is present, this is not the case.
Greenland and Morgenstern (1989) partition the ecological estimate into components due
to confounding by group and to effect modification. Assuming no confounders and no
contextual effects in the model 13.1 for simplicity, we have

E [Yi j |Xi j ] = β0i + β1i Xi j .

If we then fit the ecological model E [Yi |Xi ] = β∗
0 + β∗

1 Xi , we have (Greenland and
Morgenstern, 1989)

β̂∗
1 = cov(Xi , Yi )

var(Xi )
= cov(Xi , β0i + β1i Xi )

var(Xi )

= E [β1i ] + cov(Xi , β0i )

var(Xi )
+ cov({Xi − E [Xi ]}Xi , β1i )

var(Xi )
, (13.13)

using the identity

cov(X Z , X) = E [Z]var(X) + cov(X{X − E [X]}, Z).

The first term in Equation 13.13 is the average parameter across areas; β̂∗
1 will be an

unbiased estimator for the average effect β̄1 if the remaining terms are zero. The second
and third terms can be viewed as bias components. The second term is attributable to
confounding by group; it will be zero if β0i = β0, that is, if the baseline risk does not vary
between areas, or if β0i is uncorrelated with Xi . The third term is due to effect modification,
and it will be zero if β1i = β1, or if β1i is uncorrelated with Xi . So in a linear model it is
when the area-specific parameters depend on the mean area exposure that problems arise.

It can be seen from this partition that the smaller the between-area variance in exposure
means, var(Xi ), the larger the bias in the estimate β̂∗

1, and so the bias is theoretically un-
bounded. Similar results can be obtained for other link functions, although in these cases
there is an additional term representing pure specification bias. This additional term arises
because of within-area variability in the exposure and is present even if parameters do not
vary between areas. In these cases, bias can also occur due to effect modification even when
β1i is uncorrelated with Xi .

13.5 ISSUES IN ECOLOGICAL INFERENCE IN EPIDEMIOLOGY

13.5.1 Ecological Bias in Epidemiology

It is worth reiterating that determining causality in any observational study is problematic,
since the existence of unmeasured variables (confounders) that induce bias in the observed
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association can never be disproved. The interpretation of ecological results in the presence
of unmeasured confounding is thus of central importance, and the approaches described in
subsequent sections reflect this.

The environmental epidemiology literature in general is less concerned with contex-
tual effects. Contextual effects in the exposure variable are less common in chronic dis-
ease epidemiology, in contrast to infectious disease epidemiology, in which an individual’s
risk of disease may depend both on personal immunity and on the immunity of those
around. In noninfectious-disease epidemiology, contextual effects are more likely to occur
in confounders (such as deprivation) than in environmental exposures. There is a large
literature in social epidemiology, especially on the effect of living in an area of low so-
cioeconomic status, beyond that of a person’s own socioeconomic status (see Smith, 2000;
Singh and Siahpush, 2002; and the references therein). Contextual effects are often a proxy
for other unmeasured variables, but, as illustrated, contextual effects and individual-level
effects cannot both be estimated if aggregate data only are available. In the example given
above, the socioeconomic status of an area is considered a surrogate for other characteristics
of the area or individuals within it. If all these characteristics were available, the contextual
effect would disappear. Sheppard (2003) discusses various issues relating to the estimation
of contextual effects in an environmental epidemiology context.

In epidemiology we would always expect effect modification to be present, but it is usual
to assume that the variability in effects is small. Sufficient data to estimate area-specific
effects are generally not available, since in a typical study diseases are rare.

A common assumption in environmental epidemiology is that the exposure effect is con-
stant across both area and confounders. Stratifying the analysis by one or more confounders
allows a separate effect for each confounder group. A major disadvantage is the unavailabil-
ity of ecological data at the levels necessary; for example, stratification by age would require
incidence rates and exposure variables for each age group in each area, and the latter are un-
likely to be available. This is closely related to the consideration of mutual standardization, in
which (for example) age-standardized disease rates must be regressed on age-standardized
exposures; otherwise bias will result (Rosenbaum and Rubin, 1984). It is usually assumed
that the exposure distributions are at least approximately constant across strata.

13.5.2 Overdispersion and Random Effects

Overdispersion occurs when the variance of the response exceeds that predicted from the
model. Model-based standard errors will be inappropriate if the model does not allow for
overdispersion. Overdispersion can arise for a variety of reasons, including the omission
of important variables, errors in the data (including the response, the population counts,
and exposures and confounders; see Wakefield and Elliott, 1999), and misspecifying the
functional form of the mean. Often the first explanation will be the main source, and if
overdispersion is found, it is an indication that variables associated with the outcome are
unmeasured; if these variables are confounders, then estimators will be biased. The level of
overdispersion can therefore be used as an informal indicator of the extent of unmeasured
confounding, and a large value for the overdispersion parameter suggests that caution should
be exercised when interpreting observed associations.

The introduction of random effects to represent the unexplained sources of variation
between areas can help to address the problem of overdispersion by giving more appropriate
standard errors, though it cannot control for unmeasured confounding. Wakefield (2004a)
gives a more detailed discussion of the role that random effects play in an ecological study.
Spatial as well as unstructured random effects may be included.
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Data anomalies are an example of features that may be accommodated for using nonspa-
tial random effects, and many unmeasured risk factors, such as environmental exposures,
will have spatial structure. Besag, York, and Mollie (1991) originally introduced a model
with both unstructured and spatial random effects, in the context of disease mapping, and
Clayton, Bernardinelli, and Montomoli (1993) included such effects in an ecological re-
gression setting. Following these authors, we write the residual relative risk (on the linear
predictor scale) as δi = Vi + Ui in the model 13.1. The component Vi represents unstruc-
tured effects which are independent and identically distributed from some distribution,
typically the normal. The component Ui represents spatially structured area-specific ran-
dom effects which display dependence between Ui and Ui ′ , i ′ 	= i . The choice of this model
is more difficult than for the independent random effects, and inference is much more likely
to be influenced by the specific choice made. One possibility is a conditional autoregressive
(CAR) model, with the limiting intrinsic form being a common choice. Richardson and
Monfort (2000) offer a review of the use of Bayesian hierarchical models in an ecological
setting, and include a description of this choice. Chapter 12 of this book describes their use
to allow for spatial dependence between areas in a political science context. Clayton et al.
(1993) state that the Ui terms are an attempt to control for “confounding by location.” The
estimated regression coefficient may change from those obtained from a model containing
nonspatial random effects only, and one never knows whether a genuine part of the ex-
posure effect has been erroneously removed. Both estimates may be reported, and it is a
judgment call whether the effect should be estimated from local or global exposure contrasts
(corresponding to the inclusion and exclusion of spatial random effects, respectively).

Suppose that in the linear model there is a single unmeasured variable, Z . To illustrate
how random effects might take account of unmeasured variables, suppose the ecological
model is

E [Yi |Xi ] = β0 + β1 Xi + γ E [Zi |Xi ].

If X and Z are independent (so Z is not a confounder), then there is no bias in estimation
of the effect parameter, and we have

E [Yi |Xi ] = β0 + β1 Xi + γ E [Zi ] (13.14)

and

Yi = E [Yi |Xi ] + δi ,

with δi = γ {Zi − E [Zi ]}. If Zi is a confounder, then there will be bias in the estimator of
the effect of X . Particular distributional assumptions for the random effects distribution
correspond to different assumptions about the distribution of Zi across areas.

An advantage of hierarchical models is that they allow strength to be borrowed from
other areas in a structured way, thus smoothing rates which in areas with low populations
may be highly unstable (Clayton and Kaldor, 1987). The assumption of constant baseline
probabilities across areas is also avoided. As for any Bayesian approach, the choice of priors
is important, particularly for the variance components in the random effects distributions
and for spatial dependence parameters. Ecological studies are particularly sensitive to prior
choice (Chapters 1 and 12 of this book). Since nonhierarchical models for ecological data
have shown themselves to be highly sensitive to the choice of model, it is no surprise that
hierarchical models behave similarly.
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13.5.3 Plausibility

Causality cannot be proved from observational studies, but conclusions can be reached on
the basis of plausibility. In epidemiology, rather than relying on a single study, evidence about
a potential relationship is collected from a variety of different studies, each with its own
strengths and weaknesses. Biological mechanisms and animal studies are also important.
Thus evidence is gradually built up, and is combined in the hope of providing a consistent
story. An obvious example is the causal relationship now known to exist between smoking
and lung cancer. No single observational study provides incontrovertible evidence of this
association, but many different observational studies in humans, and experimental studies
in animals, have shown associations. One of the important early arguments was given by
Cornfield et al. (1959) who used a sensitivity study to show that the strength of unmeasured
confounding required to explain away the observed association was highly implausible. For
a review of the health effects of smoking, see Doll (1998).

Another term for plausibility is coherence. See Rosenbaum (2002, Chapter 9), in which
the author states, “A coherent pattern of associations is one that is, at each of many points,
in harmony with existing knowledge of how the treatment should behave if it has an effect.”

One drawback of ecological studies is that if we do not obtain individual-level data, then
we have no way of checking the form of the individual-level model. Conclusions will depend
on this underlying model, but there is nothing in the ecological data to help us distinguish
between competing explanations. Often, however, it can be argued that one explanation
is more plausible than another. For example, ecological data cannot say whether a linear
or a log-linear model is more suitable. However, information from other sources might
suggest that the relationship is more likely to be multiplicative, and so a log link is the more
appropriate choice. One of the advantages of taking the approach advocated in this chapter,
of stating methods in terms of an explicit underlying individual-level model, is that it allows
the explicit statement and critique of required assumptions.

13.5.4 Sensitivity to an Unmeasured Confounder

In this section we describe a sensitivity analysis approach to address the problem of unmea-
sured confounding, illustrating the idea of plausibility discussed in the previous section.
Rothman and Greenland (1998) provide background on the use of sensitivity analyses in
general in epidemiology, and Wakefield (2003) specifically in the area of ecological studies.
The basic idea can also be applied to other situations, such as sensitivity to contextual effects,
pure specification bias, spatial dependence, classification errors, and selection bias. Unfor-
tunately, there is no information in the data about the extent of bias from these sources,
though external sources can provide invaluable information. For example, local knowledge
can inform us on the accuracy of population counts and of disease registries. If the ob-
served association is large, then, as we shall see, it is more difficult to explain it away with
unmeasured confounding.

Here we concentrate on sensitivity to an unmeasured confounder. The approach for
an ecological analysis is as follows. We start from the proposed individual-level model,
which includes the unmeasured confounder; for the purposes of the sensitivity analysis
we assume that this model is correct, and so includes the “true” parameter. We derive
the appropriate ecological level model and compare this with the fitted model to give an
expression for the estimated parameter in terms of the “true” parameter. We can then use this
expression with various assumptions about the unobserved confounder to give estimates of
the “true” parameter. Finally, we consider how plausible such assumptions are. For example,
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we may conclude that unmeasured confounding cannot plausibly explain a result (as with
the smoking–lung-cancer example).

Suppose we fit the simple model 13.10, assuming no confounding, contextual effects, or
effect modification:

E [Yi |Xi ] = β∗
0 + β∗

1 Xi ,

and obtain an observed effect estimate β̂∗
1. Suppose, however, that there is evidence of

overdispersion; this suggests that unmeasured confounding is present and the true individual
model is Equation 13.8:

E [Yi j |Xi j , Zi j ] = β0 + β1 Xi j + γ Zi j ,

with corresponding ecological model

E [Yi |Xi ] = β0i + β1 Xi + γ E [Zi |Xi ].

From Section 13.4.1 (Equation 13.12) we have

β∗
1 = β1 + γ (q1 − q0).

We know that β̂∗
1 is a potentially biased estimator of β1; we are interested in the extent to

which this is a real relationship rather than due to ecological bias. In particular:

• Is the association of sufficient size that it cannot be plausibly explained away by ecological
bias?

• Can we obtain an approximate adjusted estimate (or a range) of relative risk?

We use the expression for the bias given above to examine these questions.
We will consider a simple artificial example, comparing the incidence of respiratory

diseases in boys under five and the average air pollution (low or high) for a set of areas.
We let Yi j = 0 (1) denote respiratory-disease nonincidence (incidence), and Xi j = 0 (1)
represent unexposed (exposed), for the j th individual in area i . Hence Yi and Xi are the
average disease incidence and exposed, respectively, in area i . Across areas, the incidence
rates vary between 0% and 24%, and the proportion exposed to high air pollution varies
between 6% and 99%. This example should be viewed as merely illustrative, for studies such
as this are far more complicated (for example, involving more than two levels of the primary
exposure of specific interest and multiple secondary exposures).

We fit the basic ecological model 13.10 and obtain

E [Yi |Xi ] = 0.06 + 0.04Xi ,

so β̂∗
1 = 0.04. If we accept this result at face value, we have a risk difference of 0.04, or a rel-

ative risk of 1.6; so this evidence suggests that a child exposed to high air pollution has a 60%
greater risk of respiratory disease than an unexposed child. However, we do not believe here
the assumption of no confounding; there are many potentially important missing variables,
such as genetic components and child, parent, household, and lifestyle characteristics. An
obvious confounder that has been overlooked is poverty (which is a surrogate for lifestyle
and behavioral characteristics and is related to many diseases). We are interested in knowing
if air pollution really causes the observed increased incidence of asthma, or whether it is due
to the differing levels of poverty in the study.
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Table 13.1 Sensitivity analysis results

θ

1.1 1.2 1.5 2 4

0.1 – – – 0.40 0.13
γ 0.2 – – 0.40 0.20 0.07

0.5 0.80 0.40 0.16 0.08 0.03

Note: The strength of the linear relationship between
disease and confounder is represented by γ , and q0 and
q1 are the probabilities of poverty for unexposed and ex-
posed individuals, respectively, that is, qx = P (Z i j =
1|X i j = x ), x = 0, 1. For given γ and θ = q1/q0, the
table shows the necessary value of q0 for a confounder
to explain away the observed association. Inadmissible
qx , in which probabilities outside of (0, 1) are obtained,
are shown as dashes.

If the observed effect were entirely due to poverty and not to air pollution, then the true
effect would be β1 = 0. Substituting β1 = 0 and β∗

1 = 0.04 in Equation 13.12 gives

0.04 = γ (q1 − q0).

We will look at a range of possible values for γ , q0, and q1 which satisfy this expression. In
this example both γ and q1 − q0 must have the same sign (since we know their product is
positive). We will assume that they are both positive, so the confounder, poverty, is more
likely among those exposed to air pollution, and the confounder is positively associated
with respiratory disease risk (which, as just stated, is typical of a variable such as poverty).
We will also write q1 = θq0; so θ is the relative risk of poverty for exposed individuals
relative to unexposed, so that θ represents how much more prevalent the confounder is
among exposed than unexposed individuals. This reformulation aids interpretation of the
sensitivity analysis; however, it should be noted that θ must be constrained so that both q0

and q1 lie between 0 and 1.
For a range of values of γ and θ , Table 13.1 illustrates some possible values that q0

could take for us to observe a coefficient of 0.04, when the real coefficient is 0; inadmissible
solutions (where the probabilities qx are not between 0 and 1) are shown as dashes. Values
for γ represent a range of beliefs about the strength of the relationship between disease and
confounder on an additive scale.

This table gives some idea of the characteristics of a missing confounder that would be
wholly responsible for the observed effect. In this example, the observed risk difference of
0.04 is less likely to be caused solely by a relatively weak confounder (with γ = 0.1), since,
for example, this would require the probability of poverty for an unexposed individual to
be 0.13, and the probability for an exposed individual to be four times as likely, that is 0.52.
If a moderate unmeasured confounder (γ = 0.2) is responsible for the association between
respiratory disease and air pollution, it would need to be around 1.5–4 times more prevalent
among exposed children than among unexposed children. A stronger confounder (with γ =
0.5) would need very little difference in poverty between exposed and unexposed groups.

The final step is to interpret this in terms of the study and form a conclusion as to how
likely it is that such a confounder exists. We know from other studies that poverty has a
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reasonably strong effect on most diseases, at least compared to most environmental sources
of pollution (Carstairs, 2000). If we assume that respiratory diseases follow a similar pattern,
then it is likely that poverty is at least a moderate confounder. We then have to consider
how much more prevalent we would expect poverty to be among children exposed to high
air pollution than among those not exposed; this is measured by θ . It depends very much
on the study design. If, for example, the main sources of air pollution for the study area
were major locations of heavy industry, then we would expect poorer areas to be close to the
industry, and θ = 1.5 or higher would be reasonable. In this case we would conclude that
although our study suggests a link between pollution and asthma, it can easily be explained
by unmeasured confounding. If the source of air pollution in the study was pollution from
proximity to major roads, depending on the area in which the study is based, we may
expect less difference in poverty between exposed and unexposed areas. In this hypothetical
example we would conclude that the true effect is unlikely to be as great as was observed.

If, as is always the case in practice, there are multiple confounders, then it is far easier
to create plausible scenarios which explain away observed associations. Of course, if such
confounders are negatively associated with either disease or exposure, they could also be
masking a true association. Such issues lead naturally into the planning of a study that is
carefully designed to examine this relationship. If only small risk differences are envisaged in
an ecological study, then the study should not be carried out, since biases due to within-area
variability in exposures and confounders, and pure specification bias, are likely to dominate
the observed association.

Approaches to sensitivity in the same spirit have been considered in the social sciences,
but in a less formal manner. See for example, Flanigan and Zingale (1985) and Achen and
Shively (1995, Chapter 8).

13.6 ISSUES IN ECOLOGICAL INFERENCE IN SOCIOLOGY AND POLITICAL SCIENCE

In the previous section we have described a number of issues relating to ecological inference
in epidemiology, with an emphasis on spatial epidemiology and in particular on issues of
confounding. We have kept this discussion as general as possible; a link function enables a
range of choices for suitable models, and exposures and confounders may be either discrete
or continuous.

In this section, we look at how the issues in epidemiology discussed above fit in the wider
picture and compare the results with those in other disciplines. We consider some of the
specific concerns of sociology and political science and see how they relate to the model that
we have described, and we demonstrate the links between these approaches and those in
epidemiology. We also identify differences between the disciplines.

13.6.1 Ecological Inference for 2 × 2 Tables

In the social sciences data often consist of discrete outcome and predictor variables, and so
the ecological data consist of a series of cross-classified data that may be represented by a
set of 2 × 2, or more generally, r × c tables, as described in the Introduction to this book.
In this chapter we have used slightly different notation, concentrating on the underlying
probabilities rather than the unobserved cell entries. Table 13.2 establishes notation for the
data on the left, and for the underlying probability model on the right; the ecological data
consist of the margins of the left table only. The left-hand table may be compared to Table
0.1 in the Introduction; here we have represented the actual numbers in each cell, rather
than the proportions. The proportions βb

i and βw
i defined in the Introduction correspond

to the fractions n11i /{Ni Xi } and n01i /{Ni (1 − Xi )}, respectively, in our notation.
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Table 13.2 Cell counts for the individual data (left) and the underlying probabilities (right)
for a generic 2 × 2 table in area i

Y Y
0 1 0 1

0 n00i n01i N i (1 − X i ) 0 1 − p0i p0i 1 − πx iX
1 n10i n11i N i X i

X
1 1 − p1i p1i πx i

N i − Yi + Yi + N i 1 − qi qi 1

We now focus on the underlying marginal probabilities in the case of a binary expo-
sure P (Yi j = 1|Xi j = x) = pxi , where i indexes areas, i = 1, . . . , m; j indexes individuals
within areas, j = 1, . . . , Ni ; and x = 0, 1 (these probabilities are marginal because we have
averaged over contextual effects and confounders). The ecological model for the disease rate
Yi in terms of these probabilities is given by

E [Yi |Xi ] = P (Yi j = 1|Xi j = 0)P (Xi j = 0|Xi ) + P (Yi j = 1|Xi j = 0)P (Xi j = 0|Xi )

= p0i + (p1i − p0i )Xi ; (13.15)

that is, a linear ecological model with intercept p0i and slope p1i − p0i . The ecological
relationship between disease rates Yi and proportion exposed Xi will be linear regardless
of the form of the individual model, even if confounding or contextual effects are present.
In the latter case, although the model is still of this form, the difference is in interpretation
and imputed cell entries will depend greatly on whether contextual effects are assumed to
be present or absent.

The ecological model 13.15 is in terms of the probabilities ( p0i , p1i ), rather than the
regression parameters (β0i , β1i ) which we have focused upon in previous sections. However,
these parameters are related. In the case of a linear link function we have

p0i = β0i + (β2 − β1i )Xi + γ E [Zi j |Xi j = 0],

p1i = β0i + β1i + (β2 − β1i )Xi + γ E [Zi j |Xi j = 1].
(13.16)

In general the relationship between the probabilities and the regression parameters is not
straightforward, depending on contextual effects and on the relationship between the con-
founder and the predictor X . The interpretation of the probabilities is complicated when
confounding or contextual effects are present. For a linear link function, and in the absence
of additional variables, Z (so that γ = 0), and contextual effects (so that β2 = β1i ), the
probabilities and parameters are simply related by

p0i = β0i ,

p1i = β0i + β1i .
(13.17)

13.6.2 Fractions versus Probabilities

In this chapter we have so far concentrated on estimating the parameters of a hypothet-
ical model in which there is an infinite population within each area, in which case these
probabilities correspond to the proportion of category x whose response is Y = 1. Many
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methods in the political science literature – for example, the method of bounds
(Duncan and Davis, 1953) and King’s EI method (King, 1997) – are concerned with es-
timating (predicting) the unobserved cell entries (or equivalently, the fractions βb

i and βw
i as

defined in the Introduction). Which of these is of interest will depend upon the particular
application; it is important to distinguish between the two, however, since they are not inter-
changeable. We note, however, that building a causal model will generally aid in producing
a good predictive model. In an individual-level study where the proportions are observed,
they can be used as estimates of the underlying probabilities (p̂0i = βw

i and p̂1i = βb
i ), and

if the number of individuals in each group-by-area margin is large, these estimates will
be accurate, regardless of the existence of contextual effects and confounding. By contrast,
ecological estimates of the fractions will only be accurate under very strict conditions.

Estimating the unobserved proportions is a missing data or imputation problem. The
fractions are of interest when the actual numbers in the table are required – for example, in
court cases concerning voting rights of minorities (see, for example, Freedman et al., 1991),
or in a public health context where, for example, the actual numbers of elderly people with
a disease in an area might be required in order to determine allocation of health resources.
In these cases, the data in the table represent the entire population of interest; we are only
concerned with the individuals eligible to vote in that specific election, or with the diseased
individuals in that specific public health area. If the missing data were available, we would
report the numbers in the table, and would not typically be interested in further statistical
analysis.

The underlying probabilities are of interest when we are concerned with examining causal
relationships between variables. In this case, the data in the table represent samples, and
we wish to extrapolate to a wider population. For example, if a study of air pollution and
asthma is conducted in a particular study area, we will generally be interested in applying
the conclusions to a wider region. In this situation, if we had the individual data, we would
model the observed data as a function of exposure and confounders in order to obtain
estimates (with associated interval estimates) of the risk attributable to exposure.

Whether predictive or causal inference is required, the use of a causal model in which
variation is modeled in terms of the primary predictor X , confounders, and contextual
effects is likely to be advantageous. In many areas of political science the fractions have
traditionally been taken as the primary target of interest. In historical voting studies, such
as determining voting patterns for Hitler’s National Socialist German Worker’s Party in
1930 (Hamilton, 1982) we may want to know the probabilities in an underlying model for
political theory, to examine how different demographic, religious, and occupational groups
were voting. Usually, in epidemiology and sociology, underlying causal relationships are of
interest, and these may be addressed by estimating regression coefficients in a probabilistic
model. We reiterate that most applications would benefit from thinking in terms of an
individual-level model, since this allows one to think about variables that may be distorting
relationships that are of interest.

13.6.3 Probabilities That Vary between Areas

In social science applications the probabilities vary between areas, and this must be acknowl-
edged to obtain accurate area-level estimates. (When estimating average causal relationships,
however, we may not need to acknowledge such variability under certain assumptions, such
as a linear model with randomly varying coefficients; see Equation 13.13.) However, without
additional data or assumptions, it is not possible to estimate separate probabilities for each
area, since we have 2m quantities of interest and just m observed data points. In this section
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we see how nonconstant probabilities arise as a result of the sources of bias that we have
considered.

From Equation 13.16 we can see that there are three ways in which the probabilities
p0i , p1i may vary between areas:

• if one or both of the parameters (β0i , β1i ) vary between areas;
• if contextual effects are present;
• if there is unmeasured confounding.

The last two ways correspond to the conditions given by Firebaugh (1978) for cross-level
bias to be present. If contextual effects or confounding is present, this will result in the
probabilities being dependent on context; in general, we might expect probabilities to vary
as a result of all three causes.

Probabilities that depend on context have been modeled in sociology and political science
by

p0i = a0 + b0 Xi ,

p1i = a1 + b1 Xi .
(13.18)

We will show how this assumption corresponds to different assumptions about contextual
effects and confounding in the general individual model with a linear link function, that is,

E [Yi j |Xi j , Xi , Zi j ] = β0i + β1i (Xi j − Xi ) + β2 Xi + γ Zi j .

For this model, as derived previously, the marginal probabilities are given by

p0i = β0i + (β2 − β1i )Xi + γ E [Zi j |Xi j = 0],

p1i = β0i + β1i + (β2 − β1i )Xi + γ E [Zi j |Xi j = 1]

(from Equation 13.16).
Suppose that we have constant regression probabilities, so that β0i = β0 and β1i = β1

(and that the contextual effects of interest are β2 − β1). Then the marginal probabilities in
terms of the regression parameters are given by

p0i = β0 + (β2 − β1)Xi ,

p1i = β0 + β1 + (β2 − β1)Xi .

Here it is clear that if contextual effects are present, both probabilities will vary linearly with
Xi . This corresponds to the model 13.18 with

a0 = β0,
a1 = β0 + β1,
b0 = β2 − β1,
b1 = β2 − β1.

(13.19)

The extended ecological regression model given by Equation 13.18 is discussed extensively
by Achen and Shively (1995). At the ecological level its use leads to

qi = a1 + (a0 + b1 − a1)xi + (b0 − b1)x2
i ,
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and so an additional constraint must be imposed for identifiability. A common choice is
to set either b0 or b1 to zero. Here, we see that the model we have derived in terms of the
regression parameters (as summarized in Equation 13.19) corresponds to the alternative
constraint that b0 = b1, and to an assumption that the contextual effect is the same for both
exposure groups (and this parameter is not identifiable from the quadratic model).

The identifiability constraint should be chosen by consideration of what is appropriate for
the data in hand, rather than on tractability of the model. For example, in an epidemiology
context in which X represents poverty (with X = 0 and 1 representing poor and nonpoor),
the constraint b0 = 0 means that a poor individual’s risk does not depend on the average
poverty in the area, while b1 = 0 means that a nonpoor individual’s risk does not depend
on the average poverty in the area. Carrying out analyses with several values of b0 and b1

has the same flavor as the sensitivity analyses described in Section 13.5.4.
The marginal probabilities may also vary as a result of an unmeasured confounder. As-

suming that β0i = β0 and β1i = β1, we have

p0i = β0 + γ E [Zi j |Xi j = 0],

p1i = β0 + β1 + γ E [Zi j |Xi j = 1].

These probabilities will be correlated with Xi if the values of qx = E [Zi j |Xi j = x], x = 0, 1,
are correlated with Xi . For example, if q0, q1 are linearly related to the mean exposure Xi ,
then

E [Zi j |Xi j = 0] = c0 + d0 Xi ,

E [Zi j |Xi j = 1] = c1 + d1 Xi .

This gives Equation 13.18 with

a0 = β0 + γ c0,

b0 = γ d0,

a1 = β0 + β1 + γ c1,

b1 = γ d1.

Confounding is not often discussed explicitly in the sociology and political science lit-
erature. The general term specification bias is sometimes used in the sociology literature to
refer to incorrect specification of the individual model; an aggregate model which ignores
within-area confounding is a particular instance of this in which the model is incorrect be-
cause it omits important covariates. Between-area confounders may arise as a result of the
way groups are formed. Thus between-area confounders can be seen in terms of aggregation
bias in the sociology literature (for example, Langbein and Lichtman, 1978), in which the
allocation of people into areas may depend on the response, the exposure, or both, possibly
through the effect of other variables.

Although the sociology and political science literatures are much concerned with proba-
bilities that vary between areas, an investigation into this variation is not the usual approach.
Thus, although the underlying reasons for varying probabilities may differ, the method of
analysis will be the same. This is in contrast to the approach in epidemiology (for example,
Greenland and Morgenstern, 1989), where the source of variation is identified and influ-
ences the choice of approach. All three types of bias cause the probabilities to vary between
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areas, but the implications for analysis are different. For example, Section 13.4.3 showed that
effect modification cannot be removed by controlling for confounders. Hence it is beneficial
to identify the reasons for the variability in probabilities across areas.

13.7 RELATIONSHIP BETWEEN MODELS IN EPIDEMIOLOGY AND SOCIAL SCIENCE

A common approach to inference in the social sciences is ecological regression (Good-
man, 1953, 1959). We let p̃xi denote the fractions responding for X = x . If the fractions
are constant in expectation (E [ p̃0i |Xi ] = p̃0, E [ p̃1i |Xi ] = p̃1), which would arise if the
underlying probabilities were common across areas ( p0i = p0, p1i = p1), then

E [Yi |Xi ] = p̃0 + ( p̃1 − p̃0)Xi . (13.20)

This model now has only two parameters, and can be fitted with ecological data. This
is Equation 13.4 with β0 = p̃0 and β1 = p̃1 − p̃0; in the epidemiology literature the pa-
rameters may also be written in terms of the relative risk (as we did in Equation 13.5).
Goodman discussed fitting this model, conditional on many caveats, to obtain p̃0 = β̂0 and
p̃1 = β̂0 + β̂1; Achen and Shively (1995) give expressions for the standard errors of these
estimates.

A least squares approach to estimation in this model is often used, which implicitly
assumes that the variance is constant; as noted earlier in Section 13.3, the true variance
is nonconstant. While this has been considered, it is of secondary importance compared
to other assumptions such as the existence of contextual effects. Achen and Shively (1995)
argue that more sophisticated models allowing for nonconstant variance are not of practical
importance, since over the typical ranges for a political science application the variances of
X̄ i and Yi are similar and vary so little as not to be a problem. In epidemiology diseases
are typically rare and studies are based on small counts. In such cases, assuming a constant
variance will give very poor estimates of the standard errors. To remedy this the log disease
rate may be regressed on Xi , or (preferably) a Poisson log-linear model may be used (as
described in Chapter 1); see Richardson and Monfort (2000) for further details.

The most serious drawbacks of ecological regression are the assumptions of constant
probabilities across areas and of the absence of contextual effects. The former is unrealistic
in practice because for most applications we expect demographic and area characteristics to
modify the probabilities. In terms of the model 13.1, ecological regression means assuming
that there are no contextual effects, no unmeasured confounders, and no effect modification,
and these are again implausible assumptions in most situations. Goodman (1959) was aware
that the constancy assumption would not be valid in general, but suggested that the method
might be appropriate when the expected values of p̃0i and p̃1i are constant, and p̃0i and p̃1i

do not systematically vary with Xi (this will occur if the parameters β0i , β1i vary randomly
across areas), although predictions for particular areas may still be poor. This is consistent
with Section 13.4.3, where we demonstrated that we have an unbiased estimate of the average
E [β1i ] if the parametersβ0i andβ1i (and hence the probabilities p0i and p1i ) are uncorrelated
with Xi . In such a case we would be estimating the average marginal probabilities p0i , p1i

across areas. It is well known that least squares has robust estimation properties for regression
parameters but is poor for prediction (since the distribution of the error terms is needed
for this).

Freedman et al. (1991) proposed an alternative model, the (nonlinear) neighborhood
model with the assumption that there is no difference in the two probabilities of disease in
each area; that is, p0i = p1i = qi . This corresponds to an assumption of no exposure effect,
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that is, β1 = 0. The marginal probability qi may vary due to unmeasured characteristics,
summarized at the area level. A special case, the linear neighborhood model, allows this
common probability to vary between areas depending on the average exposure, that is, qi =
a + b Xi . The probability qi may vary due to contextual effects or between-area confounding
(with confounding by group being one potential explanation). The resulting ecological
model is

E [Yi |Xi ] = a + b Xi ,

which is indistinguishable from ecological regression (Equation 13.20), but the interpreta-
tion of the coefficients is very different. Freedman’s assumption corresponds to assuming
that there is no individual exposure effect, but that apparent differences in probabilities
between areas are due to Xi .

The linear neighborhood model is not generally used in practice, since its assumptions are
even more restrictive than Goodman’s regression; indeed, this model was initially proposed
to discredit Goodman regression by demonstrating that a different assumption (which
is uncheckable from the data alone) gives rise to a different conclusion, but an identical
ecological mean model. This further illustrates the fundamental difficulty in ecological
analyses: assumptions are crucial and can drastically affect the conclusions of a study, and
are often uncheckable from the ecological data alone. In Sections 13.5.3 and 13.5.4 we stressed
the importance of choosing assumptions based on context and checking their importance
via a sensitivity analysis.

In epidemiology, hierarchical models may be used to deal with spatial and residual varia-
tion, as described in Section 13.5.2. In the political science literature, King (1997) proposed
the ecological inference (EI) method, a particular form of hierarchical model that addresses the
problem of probabilities that vary between areas. Wakefield (2004b) and Chapter 1 of this
book describe the general use of hierarchical models. In the basic model it is assumed that
the disease probabilities p0i , p1i are independent of Xi , so there are no contextual effects or
unmeasured confounding, and probabilities vary only due to random effect modification
(that is, they do not depend on exposure). Expressed in terms of the three types of ecological
bias, it can be seen that this is a strong assumption, and substantial bias may arise if it is
violated (e.g. Cho, 1998).

King’s EI method is popular among political scientists because it provides estimation in
the presence of random effect modification, and user-friendly software is available. However,
it may produce poor estimates if confounding, contextual effects, or structured effect mod-
ification are present (Cho, 1998). The method can be extended to incorporate confounders
(King, 1997: Chapter 9; this book, Introduction); the fractions p̃0i , p̃1i are regressed on an
area-level variable Zi . One specific case often considered is when Zi = Xi ; that is, the prob-
abilities depend on the average exposure. However, strong prior information is required
for stable information whenever such regressions are carried out (Wakefield, 2004b). The
problem is also avoided if additional individual-level data are available.

An approach that has been taken (see for example, the references in Herron and Shotts,
2004), but is incorrect, is to obtain estimates of p0i , p1i and then to regress these on area-
level variables, in a two-stage approach. An analogous approach in epidemiology would
be to control for confounding variables, and then to regress area-level relative risks upon
area-level variables of interest. The problem is that the effect of the latter variables may
be distorted unless the stratification variables are independent of the variables of interest
(that is, are not confounders). For example, suppose we wish to investigate the effect of
an environmental exposure, and wish to control for the confounder, poverty (and for the
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sake of exposition we assume that individuals in areas of high poverty are more likely to
receive high exposure). If we control a priori for poverty using data from the study region
(via internal standardization), then we will have removed some of the effect of exposure,
and we then will overestimate the effect of poverty. In epidemiology external rates for the
stratification variables are often used to avoid this problem, or simultaneous estimation of
the exposures and confounders is carried out. This issue is closely related to that of mutual
standardization.

13.8 CONCLUSIONS

In this chapter we have summarized some of the issues that are relevant to ecological
inference in epidemiology, and shown how these relate to work in sociology and political
science. Although the motivations for ecological studies differ, the approaches have much in
common when one translates the different notations and languages used. The social sciences
literature does not generally state a model at the level of the individual. By specifying a
common framework, we have seen how different models actually correspond to different
sets of underlying assumptions, and have identified similarities between approaches.

We have identified three main sources of bias: parameters that vary between areas, the
presence of contextual effects, and the presence of confounding. Each discipline deals with
these considerations in different ways and with different emphasis and terminology; how-
ever, we have seen that there is substantial overlap. In particular, although confounding is
not explicitly considered in sociology and political science, we have seen how one of the
main concerns, probabilities varying between areas, can be naturally interpreted as due to
unmeasured confounding. We can thus borrow ideas from epidemiology to help deal with
nonconstant probabilities from this source, by attempting to control for confounders.

There are differences in the context and the form of the data in different disciplines. In epi-
demiology the rarity of diseases allows a log-linear model to be used, which is more tractable
than a logistic form. The sparsity of cases means that effect modification is rarely considered,
and hierarchical models are often used for stable estimation. Nonrare outcomes obviously
provide more information, but following the individual modeling approach described here
is more difficult when using the logistic model. Another important difference is the empha-
sis on causality in epidemiology. Prediction does not require an explicit causal model, and
in political science, when the interest is in the actual numbers of people voting, the problem
becomes one of imputation of missing values, rather than estimation of underlying param-
eters. However, a modeling approach will often be beneficial for prediction. The extensions
to continuous variables, which are more common in epidemiology, are not necessarily of
use for political science problems, although they may be of some interest in sociology.

In sociology and political science, the focus on the unobserved fractions may obscure con-
sideration of an underlying model, and does not explicitly allow identification of the reasons
for variation between areas. Nonconstant probabilities can be due to contextual effects or
to confounding or varying parameters. The main difference in the underlying approach
to ecological inference is that political science is concerned with capturing the variation
between areas, but is less interested in the actual source of the variation. On the other hand,
epidemiology attempts to model the actual source of variation; this is better for making pre-
dictions for individuals in unobserved areas with particular exposure distributions, which
is of more interest when the emphasis is on causality. There are other advantages to exam-
ining these different sources separately; for example, a method that reduces bias from con-
founding may not reduce bias from effect modification (Greenland and Morgenstern, 1989).
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Additionally, since a major concern in epidemiology is controlling for potential confounders,
it is important to be able to isolate bias from this source.

Assumptions in ecological inference are crucial. Often restrictive assumptions are neces-
sary to be able to carry out an analysis, and ecological inference is highly sensitive to such
assumptions. Since these assumptions cannot typically be checked from ecological data
alone, we emphasize the idea of drawing conclusions on the basis of consistency of results
across different modeling assumptions. In epidemiology, ecological inference is considered
more plausible if consistent across different studies (which may correspond to different
areas or different time periods) and if supported by biological mechanisms. In the social
sciences, having different study areas with different distributions across the grouping vari-
able is desirable, in particular where the proportions in each group, xi , are nearly uniformly
distributed across the interval (0, 1). When cell counts are of interest, studies in different
areas are still useful for consistency arguments. A related idea is that of a sensitivity analysis,
such as that described in Section 13.5.4, which enables us to see how sensitive results are to
different assumptions and provide some insight into the importance of possible biases and
the uncertainty of results.

In this chapter we have concentrated on highlighting areas in epidemiology that offer
benefits to sociology and political science, in particular the specification of explicit models.
However, there is much to be gained in the other direction. The study of contextual effects is
becoming of increasing interest in epidemiology, although as yet very little consideration has
been given to contextual effects in an ecological model in environmental epidemiology. This
is one area where epidemiology can benefit from the existing work in sociology. Another
such area is that of effect modification. Although rare diseases and small areas frequently
mean that effect modification cannot be studied, it may be possible in some studies with
nonrare diseases, such as asthma, to take advantage of the current work in this area. The
simplifications when dealing with a single binary exposure (for example, the ecological
regression model) are not widely exploited in epidemiology.

Hierarchical models have proved useful in all disciplines. They provide a flexible way
of incorporating assumptions and prior knowledge into the analysis, allow probabilities to
vary between areas (including the possibility of spatial variation), and can easily incorporate
the explicit modeling of observed confounders. In particular the choice of model can be
tailored to the particular study; the routine use of any single model in all situations is not a
good strategy.

Not all approaches in one discipline are suitable for use in another. However, the problems
are sufficiently similar that there is much to be gained by being aware of work in different
areas. Identifying links between one discipline and another is not straightforward; this
chapter has concentrated on making some of these links explicit through the use of a
common individual model.
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14 Multiparty Split-Ticket Voting Estimation as an Ecological
Inference Problem∗

Kenneth Benoit, Michael Laver, and Daniela Giannetti

ABSTRACT

The estimation of vote splitting in mixed-member electoral systems is a common problem in electoral
studies, where the goal of researchers is to estimate individual voter transitions between parties on two
different ballots cast simultaneously. Because the ballots are cast separately and secretly, however, voter
choice on the two ballots must be recreated from separately tabulated aggregate data. The problem is
therefore of one of making ecological inferences. Because of the multiparty contexts normally found
where mixed-member electoral rules are used, furthermore, the problem involves large-table (R × C )
ecological inference. In this chapter we show how vote-splitting problems in multiparty systems can
be formulated as ecological inference problems and adapted for use with King’s (1997) ecological
inference procedure. We demonstrate this process by estimating vote splitting in the 1996 Italian
legislative elections between voters casting party-based list ballots in proportional representation
districts and candidate-based plurality ballots in single-member districts. Our example illustrates the
pitfalls and payoffs of estimating vote splitting in multiparty contexts, and points to directions for
future research in multiparty voting contexts using R × C ecological inference.

INTRODUCTION

Split-ticket voting is a common focus of interest in the field of electoral studies. It is concerned
with identifying and analyzing patterns in the way that voters behave when faced with two
distinct voting choices that give them the option of dividing their vote between different
parties. Vote-splitting opportunities may be presented by institutional frameworks, such
as having two types of votes to cast simultaneously in a mixed-member system; having
a runoff election in systems where failure to reach a minimum vote percentage in a first
round of elections allows voters a second opportunity to vote in a runoff; or even having the
possibility of casting multiple votes for the same office (possibly preferential or transferable
votes). Other possibilities for observing vote splitting are presented by votes for separate
offices, whether simultaneously elected (as when congressional and presidential elections
coincide) or temporally separate (as in estimating voter transitions between two sequential
elections).

Faced with the possibility of dividing their vote between parties, voters may choose to
maintain a consistent ticket by casting two ballots for the same party, or to split their ticket
by voting for different parties on different ballots. The manner in which they split their vote
offers observable implications on a wide variety of theoretical explanations of voting behav-
ior, such as the investigation of strategic voting (Laver, 1987), instrumental or expressive

∗ Thanks to Raj Chari, John Haslett and David Jackson for comments, and to Gary King and Jeff Gill for help with
the estimation issues.
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voting (Benoit, Giannetti, and Laver, 2002), a voter’s desire to produce divided government
(Fiorina 1996), byproducts of ballot mechanisms (Beck, 1997), the efficacy of campaigning
(Burden and Kimball, 1998), or the approval or rejection of potential governments (Strøm,
Budge, and Laver, 1994) – making the estimation of split-ticket voting an issue of keen
interest to researchers in electoral studies.

The potential wealth of theoretically informative behavior yielded by ticket splitting has
been limited, however, by the difficulty of estimating the phenomenon. Because anony-
mously and separately cast ballots are not linked by any identifying information, the only
way to estimate split-ticket voting from actual election results is by using aggregate data.
Surveys offer an indirect alternative for measuring individual-level ticket splitting, but these
suffer from a variety of additional problems, such as overstating voter turnout and overstat-
ing support for winners (see Burden and Kimball, 1998: 534), as well as providing too few
cases at the district level to allow for reliable estimation of behavior in the context where the
behavior actually takes place. The only directly observable phenomena typically available to
researchers, therefore, are voting results aggregated at some unit of electoral geography, such
as precinct, district, state, or region. Each electoral unit can then be thought of as providing
a table whose rows and columns are defined by voters exercising categories of choice on
two separate ballots. The problem created by the anonymity of the voter and the absence
of any linking information between the two ballots is that the cell values are unknown. The
problem, therefore, is the well-known one of having to make ecological inferences about
individual behavior based on aggregate data, requiring statistical techniques appropriate to
this problem.

Our attention in this chapter focuses on using techniques of ecological inference to es-
timate split-ticket voting under mixed-member electoral systems. Used in various forms in
New Zealand, Italy, Germany, Russia, and Hungary – to name but a few examples – the
mixed-member electoral system provides two distinct political contexts for voting.1 One of
these is a proportional representation (PR) context in which choices are made in relation
to party lists in multimember constituencies. The other is a single-member district (SMD)
context in which choices are made in relation to individual candidates, typically using a
plurality rule. A popular compromise for countries seeking a balance between majoritarian
and proportional principles, mixed-member systems are now used in a substantial number
of post-Communist states as well (Moser, 1999; Shugart and Wattenberg, 2001b). Elections
held under mixed-member systems provide political scientists with fascinating natural lab-
oratories within which to analyze the behavior of the same set of voters in different strategic
settings under otherwise controlled conditions, confronting the same party system and the
same issue space at the same moment in time. Analyses of vote splitting in such systems
not only are descriptively interesting to scholars concerned with a particular political sys-
tem, but have also been used more generally to explore alternative theoretical accounts of
voting behavior. Vote splitting has been studied closely in New Zealand, for instance, since
its switch from first-past-the-post to that system in 1996 (e.g., Johnston and Pattie, 1999,
2000; Banducci, Karp, and Vowles, 1998). Italy also adopted the mixed-member system for
first use in its 1994 election, prompting numerous studies of its effects on voter choice (see
Benoit, Giannetti, and Laver, 2002); so did Japan (Reed and Thies, 2001).

The difficulty of estimating split-ticket voting under mixed-member rules, however, is
substantially greater than the same problem studied in the traditional U.S. or British con-
texts. This is because the mixed-member electoral system is almost always associated with
a multiparty system. The number of unknowns to be estimated is multiplied by having

1 For an excellent general discussion of mixed-member electoral systems, see Shugart and Wattenberg (2001a).
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more than two or three categories of vote choice on each dimension of the voter transition
table. In the language used elsewhere in this book (e.g., Judge, Miller, and Cho, Chapter 7),
the ill-posed inverse problem in multiparty split-voting studies is even more ill-posed than
in typical two-party applications. Our ability to estimate and analyze split-ticket voting in
multiparty contexts, therefore, is directly linked to advances in ecological inference that
make reliable and accurate estimates possible.

In what follows we demonstrate how split-ticket voting under mixed-member electoral
rules can be expressed as an ecological inference problem and estimated using an extension
of King’s (1997) ecological inference technique (referred to hereafter as EI) suited for 2×C
tables. Our data comes from the 1996 elections to the Italian Chamber of Deputies, where we
have observed both PR and plurality voting by party in a total of 475 single-member districts.
First, we frame the problem of vote splitting by partitioning voters according their political
preferences and voting behavior. Next, we partition the observable aggregate data into a
framework corresponding to the partition of voter types. We then adapt the EI procedure
to estimate at the district level the relative proportions of each type of individual voter
from the partitioned aggregate data, using the extended EI model incorporating additional
contextual information in the form of district-level covariates. In addition to reviewing
important diagnostic information from the EI estimations to provide a methodological
evaluation of our results, we also analyze and characterize these results in a substantive
empirical context. Finally, we offer suggestions for taking the Italian estimates further and
for extending our approach to other contexts.

VOTING IN THE ITALIAN MIXED-MEMBER ELECTORAL SYSTEM

Electoral Politics and Background

The Italian mixed-member electoral system involves 475 single-member districts, in which
candidates compete in plurality elections, as well as 26 multimember constituencies (cir-
coscrizioni), in which a total of 155 seats are allocated by PR, giving a total legislature of
630 seats.2 (For a brief but clear description, see D’Alimonte, 1998.) Though the new elec-
toral system was intended to bring about a reduction in the number of parties, what in
fact happened was that Italian political parties retained their separate identities, organizing
themselves into opposing “cartels” with preelection agreements that shared out the candi-
dacies in the single-member districts. Electoral politics in the 1996 elections had thus been
structured around two major electoral coalitions, the Polo della Libertà, on the right, and
the Ulivo, on the left.3

Since nearly every Italian party also establishes a list to contest the multimember con-
stituencies, almost every Italian voter may vote for his or her most preferred party in the PR
element of the election. When it comes to the plurality ballot, however, a voter’s first-choice
party may well not be contesting the single-member constituency in which the voter lives.
It may be replaced instead by another party from the same cartel to which the first-choice

2 The number of PR seats a party will eventually obtain is determined by subtracting the plurality vote share of
second-placed candidates in the districts where a party has won a seat from the PR vote share of that party at
the constituency level. This is a partial deduction, known as the scorporo.

3 In 1996, the Ulivo consisted of the Greens (Fed. Dei Verdi), the Prodi alliance (Pop–SVP–PRI–UD–Prodi), the
Democratic Party of the Left (PDS), the Dini List (PPI), and PS d’Az. Although not formally part of the Ulivo
cartel, the Refounded Communists (RC) is also included because of the nature of its exclusivity pacts in 1996,
which functioned like the formal cartel agreements. Polo consisted of CCD–CDU, Forza Italia (FI), and the
Alleanza Nationale (AN).
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party belongs. The different choices facing voters in single- and multimember constituencies
confront Italian voters with important strategic decisions.

A Model of Voting Behavior in Italy’s Mixed-Member System

Our focus in this paper is on substantive and procedural issues pertaining to the estimation of
vote-splitting between cartels, rather than the empirical confirmation of a theoretical model
of voting behavior. Nonethless, it is useful to distinguish between two broad categories of
voters. This is the distinction, introduced by Brennan and Lomaski (1993) and developed by
Schuessler (2000) and by Brennan and Hamlin (2000), between instrumental and expressive
voters. Essentially, the instrumental value of a vote “derives from the contribution the vote
makes to bringing about the desired electoral outcome” (Brennan and Lomaski, 1993: 23).
The expressive, or “intrinsic,” value of a vote, on the other hand, “is the value that the voter
places on expressing a preference for a, rather than b, in and of itself (i.e., independent of any
effect of the voting act on the electoral outcome” (Brennan and Lomaski, 1993: 23; emphasis
in original).

The PR element in a mixed-member election provides strong incentives for voters to vote
“sincerely” for their most-preferred parties. For most voters, their first-choice party is avail-
able on the ballot, giving their vote maximum value as an expression of political preference.
For instrumental voters, voting for the first-choice party increases the probability of this
party getting into government and changing policy outputs; it increases the party’s claim
on cabinet seats should it succeed in getting into government, thereby increasing its impact
on policy outputs; and it increases the allocation of SMD candidacies within the electoral
cartel in future elections, thereby increasing its chances of success in the future. For these
reasons, therefore, we assume that voters who have genuine (instrumental or expressive)
preferences for a specific political party will always vote for this party on their PR ballot.

The plurality element in the election, on the other hand, may or may not result in one of
the two big cartels offering a given voter his or her most-preferred party. If it does offer a
voter the most-preferred party, then we assume the voter will also cast his or her plurality
vote for this party’s candidate. For the same reasons outlined in the previous paragraph,
both instrumental and expressive voters are likely to cast their plurality ballot in a party-
loyal fashion. This will be true in all constituencies except those in which some third party is
predicted to have a serious chance of success. In such constituencies, some voters may face
a strategic decision. For some instrumental voters, it may possibly be the case that a voter
will do better by voting strategically, not for his or her most-preferred party, but for the
party best placed to defeat a less-preferred rival. Otherwise the instrumental voter should
still vote for his or her most-preferred party.

A much more common situation in the plurality election is that one of the two big cartels
does not offer a voter his or her most-preferred party, but a candidate from another party
in the same electoral cartel. We can think of such voters as being disappointed, or frustrated,
since their first-choice party is not on offer. The problem examined in this paper consists of
estimating the proportions of disappointed voters who behave in one of two possible ways.

One way that disappointed voters can behave is to vote for the candidate sponsored by
the cartel of their most-preferred party. For a variety of reasons, voters may choose to cast
their plurality vote in this cartel-loyal manner. For disappointed instrumental voters, voting
for another party in the same cartel increases the probability that their most-preferred party
will be a member of the winning cartel, will go into government, will receive cabinet seats,
and will thereby have some impact on public policy. Disappointed instrumental voters thus
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use their vote to have an effect on which cartel wins the election, and hence place their
most-preferred party in the strongest position. Disappointed expressive voters, in contrast,
are likely to switch their vote to the party on offer that is next highest in their expressive
ranking. Since, as we have seen, many matters other than policy may determine expressive
returns, this party may or may not be in the same cartel as their first-choice party, but it is
quite possible that it is indeed in the same cartel.

The other way that disappointed voters can behave is to switch their votes to a candidate
who is outside the cartel of their most-preferred party – in other words, in a cartel-disloyal
fashion. Cartel switching is something that might be quite logical for disappointed expressive
voters, since expressive returns can be derived from a wide range of matters that are quite
unrelated to cartel membership. We note that voting for a noncartel party (one that is not
Polo or Ulivo) offers an additional option for cartel disloyalists. For example, a disappointed
voter whose most preferred party is in the Polo cartel, upon finding that the Polo cartel
sponsored a candidate in her single-member district from a party different from her most
preferred, could be cartel-disloyal by voting either for the Ulivo candidate, or for a noncartel
candidate (from a party not sponsored by either Polo or Ulivo).

The bottom line is that the nature of Italian elections under the mixed-member electoral
system allows us to partition Italian voters into three exclusive and exhaustive sets. The first
set consists of people who vote for some party in the PR election and, finding the same
party available in the SMD election, vote for it again. We call these voters party loyalists.
The second set consists of voters who vote in the PR election for their most preferred party
and, finding this party unavailable in the SMD election, vote for a different party in the
same electoral cartel as their most preferred party. We term these voters cartel loyalists. The
third set comprises those who vote in the PR election for some party and, finding this party
unavailable in the SMD election, vote for a party that is not in the same electoral cartel as
their PR choice. We term this final category of voters cartel disloyalists. Having defined the
basic types of voter we consider, we now need to define some quantities that will allow us
to partition the observed aggregate data.

Formal Statement of the Model

For each SMD in Italy we define, and can observe, the following quantities:

N The total number of votes in the district.4

Pu The plurality vote for the candidate running under the Ulivo cartel label.
Pp The plurality vote for the candidate running under the Polo cartel label.
Po The sum of the plurality vote(s) for the candidate(s) running under other cartel

or noncartel party labels, defined as N − Pu − Pp .
L u The list votes (at the district level) for the party endorsing the candidate running

as Ulivo.
L p The list vote (at the district level) for the party endorsing the candidate running

as Polo.
L o The sum of the list votes (at the district level) for the parties endorsing the

candidates that are running as neither Ulivo nor Polo.

4 Because the number of valid votes differs for each ballot type in a single district, the total number of valid
candidate SMD votes seldom equals exactly the total number of valid list votes cast in that SMD. See below for
how we deal with this problem.
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Cu The sum of the list votes (at the district level) for all parties in the Ulivo cartel.
C p The sum of the list votes (at the district level) for all parties in the Polo cartel.
Co The sum of the list votes (at the district level) for all parties in neither Ulivo nor

Polo cartels, defined as N − Cu − C p .

Following the general argument in Section 14.2, we make the following assumptions
about voting behavior:

1. Party-based preference: Each voter has a first preference for one of the political parties
contesting the PR element of the election.

2. PR-list vote: Each voter’s PR-list vote is a sincere revelation of this preference.
3. SMD vote: Voters cast their candidate-based ballots in the following manner:

(a) Party-loyal voting: If the voter’s first-preference party has a candidate in the SMD,
then the voter votes for this candidate. This implies that Pi ≥ L i ∀i .5

(b) Cartel-loyal voting: If the voter’s first-preference party does not have a candidate
in the SMD, then a cartel-loyal voter supports the candidate sponsored by the cartel
to which the voter’s first-preference party belongs. We denote cartel-loyal voters
as yp , yu, and yo , for Polo-, Ulivo-, and other-cartel-loyal voters, respectively.

(c) Cartel-disloyal voting: If the voter’s first-preference party does not have a can-
didate in the SMD, then a cartel-disloyal voter supports a candidate other than
the one sponsored by the cartel to which his or her first-preference party belongs.
We denote by di j the fraction of the cartel-disloyal, frustrated voters whose most
preferred party is from cartel i who switched their SMD vote to a party from cartel
j (i�=j). Hence, of the cartel-disloyal voters who voted for a Polo candidate in the
PR election, dpu denotes the fraction switching to an Ulivo candidate, and dpo the
fraction switching to an other-cartel candidate. Proportions of other groups of
cartel-disloyal voters are denoted in a similar way.

We can thus completely partition the vote in a single-member district as in Table 14.1.
In each SMD the total number of votes, N, is partitioned both by the PR-list ballots for
cartel parties (Cp , Cu, and Co) and by the plurality ballots for cartel parties (Pp , Pu, and Po).
According to assumption 3(a), any intersection of (Ci , Pi ) in Table 14.1 will contain Li , since
all voters whose preferred party has a candidate will vote loyally for that candidate in the
SMD. The intersection (Ci , Pi ) will contain the cartel-loyal voters who, not having found a
candidate from their most preferred party in the SMD, voted for another party’s candidate
but from the same cartel as their most-preferred party. By definition, the other cells on this
row must be empty. The remainder of the plurality vote Pi will consist of cartel-disloyal
voters who, not having found a candidate from their most preferred party in the SMD, will
have voted for cartel i candidate instead; their proportions are denoted by d with a double
subscript indicating their most preferred party’s cartel and the cartel to which they switched
their vote.

Given the partition of voter types and our parameterization of the quantities to be esti-
mated, mapped to the partition of observed aggregate data, we now turn to the problem of
estimating the quantities y and d .

5 This is true in all cases for the two main cartels, although there are seven marginal exceptions for the residual
other-cartel category. Our treatment of the other category below makes this irrelevant, as explained in the next
section.
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Table 14.1 Composition of SMD vote P and list cartel vote C in a SMD

Cartel plurality vote

Cartel list vote Vote type P p Pu Po

C p Party-loyal L p 0 0
Cartel-loyal y p 0 0
Cartel-disloyal 0 d pu d po

C u Party-loyal 0 L u 0
Cartel-loyal 0 yu 0
Cartel-disloyal dup 0 duo

C o Party-loyal 0 0 L o

Cartel-loyal 0 0 yo

Cartel-disloyal dop dou 0

A FRAMEWORK FOR ESTIMATING VOTE-SPLITTING IN ITALY

Reexpressing the Estimation Problem

Because we observe the quantity Li in each district, and because it forms part of of both the
row and column totals, we can remove it from the vote partition described in Table 14.1 by
simply subtracting it from Ci and Pi . This emphasizes what we have called frustrated voters:
those whose most-preferred party had no candidate in the SMD. The new formulation also
highlights the two sources of votes received by each cartel i candidate from its assumed core of
party-loyal voters yi . First, each cartel i will lose some frustrated voters (represented by di j

and dik), who transfer their votes to the other two cartels j and k. Second, each cartel i
will also pick up some excess votes (represented by d j i and dki ) from frustrated, cartel-
disloyal voters from cartels j and k. Following this, we define the quantities as Fi and Ei as
follows:

F p = C p − L p , E p = Pp − L p ,
Fu = Cu − L u, E u = Pu − L u,
Fo = Co − L o , E o = Po − L o .

The F ’s represent frustrated voters whose most-preferred party has no candidate in the
single-member district and who therefore have transferred their vote to another party in
the SMD. The E ’s represent the excess votes received by a plurality candidate over his or her
loyal core of voters who cast a list ballot for that candidate’s party.

Since the vote total N now reflects the subtraction of Lp , Lu, and Lo , we denote by
NT the total transferred votes, so that NT = N − ∑

L. We use this designation to re-
flect the adjustment of the excess votes for the difference between invalid votes in the two
ballots.6

6 A common problem in estimating split-ticket voting is that the observed totals of valid votes for different ballot
types always differ slightly, mainly because of different rates of invalid ballots. As a remedy we took N and NT

in each district to be the midpoint between the two ballot totals, which we denote NT∗. No adjustment was
needed for the marginals, since we took the relevant input quantities required for input to EI simply as the
proportions of the respective ballot totals before averaging the two ballots. Our tests showed that there was no
systematic pattern to the differences between ballots, and that the mean of these differences was statistically
indistinguishable from zero.
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Table 14.2 Vote transfers in an SMD as a 3 × 3 table

E p E u E o

F p Y p d pu d po 17,609
F u dup yu duo 32,269
F o dop dou yo 4,386

17,075 32,238 4,146
N F = 54,264 N E = 53,459

N ∗ = 53,862

Note: The shaded region provides the 2 × 3 subtable which we estimate after
eliminating the third row by the simplifying assumption.

This reduces the partition of voting patterns for each district to the 3 × 3 matrix shown in
Table 14.2. The empirical question in which we are interested now becomes one of estimating
the differential levels of cartel-loyal versus cartel-disloyal voting, and in comparing these
by cartel. For frustrated voters whose most preferred party was a Polo cartel member, for
instance, how many voted for the Ulivo candidate (represented by dpu) and how many
voted for a candidate from neither cartel (represented by dpo)? Because we can observe only
the marginals of this table in voting data, the problem becomes one of making ecological
inferences about the unobserved cell quantities.

Reducing the Parameter Space

The problem expressed in the Table 14.2 is one of EI, since it characterizes individual-level
voting behavior where only aggregate vote quantities are observed. To estimate the cells at
the district level, we use a two-stage application of King’s (1997) EI algorithm. Because this
method does not work with 3 × 3 tables such as Table 14.3, however, we need an additional
assumption.

Simplifying Assumption: Voters preferring a party that is not in either the Polo or the
Ulivo cartel will always be considered expressive, since only Polo and Ulivo have a chance
of winning the election overall. Such voters thus do not have a strategic option that allows
them to transfer within a cartel that might win the election. This implies that among

Table 14.3 King’s 2 × 3 EI parameters to be estimated

Pr(E p ) Pr(E u ) Pr(E o )
Pr(F p ) λb

i 1 − λb
i βb

i 1 − βb
i [X i ]

Pr(F u ) λw
i 1 − λw

i βw
i 1 − βw

i [1 − X i ]
[V i ] [Ti ] [1 − Ti ]

Note: Pr(F p ) refers (e.g.) to the proportion of frustrated Polo supporters voting for
the Polo candidate, rather than the whole numbers. The quantities in brackets are
in King’s (1997: 30) notation: X i refers to the proportion of frustrated Polo voters,
Ti is the proportion of cartel (non-other) voters, and V i is the Polo proportion of
non-other-cartel voters.
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Table 14.4 Quantities to be estimated and transformations required from King’s parameterization

Pr(y p ) = E(λb
i ) E(βb

i ) Proportion of frustrated Polo voters who stayed with a Polo candidate
Pr(yu ) = E(1 − λw

i ) E(βw
i ) Proportion of frustrated Ulivo voters who stayed with a Ulivo candidate

Pr(dup ) = E(λw
i ) E(βw

i ) Proportion of frustrated Ulivo voters who voted for a Polo candidate
Pr(d pu ) = E(1 − λb

i ) E(βb
i ) Proportion of frustrated Polo voters who voted for a Ulivo candidate

Pr(duo ) = E(1 − βw
i ) Proportion of frustrated Ulivo voters voting for a candidate from the

other cartel
Pr(d po ) = E(1 − βb

i ) Proportion of frustrated Polo voters voting for a candidate from the
other cartel

noncartel voters, cartel loyalty or disloyalty – if it applies at all – is not expected to exhibit
any systematic pattern. We therefore assume that dop , dou, and yo are equal, and assign
them their expected values (rc)/n, or (Fi E j )/NT .

Subtracting the row containing dop , dou, and yo from the E marginals yields the 2 × 3
subtable in the shaded region, with a new table total and new totals for the column quantities
once the expected values of the third-row frequencies have been computed and subtracted
from the relevant column marginals. These new marginals produce the information for an
application of EI to the 2×3 table in a two-stage procedure, estimating the quantities shown
in Table 14.3. These four parameters can be estimated by using King’s EI software7 and the
second-stage EI2 procedure for the nested tables. Furthermore, because the precinct-level
quantities (here, the electoral unit of the single-member district) can be simulated from
the posterior distribution of the main model estimation, EI and EI2 will yield separate
estimates of each quantity in each precinct, with corresponding standard errors indicating
the uncertainty of each estimate.8

Because the parameters βb
i , βw

i , λb
i , and λw

i do not directly represent the row proportions
we are interested in estimating, they must be transformed into our quantities of loyal and
disloyal voting. Table 14.4 shows the simple algebraic transformation required to yield the
direct split-voting quantities of interest. From each stage of EI, we saved the 1,000 simulations
of each precinct’s simulated values of the quantities βb

i , βw
i , λb

i , and λw
i , transforming them

through multiplication of the simulated quantities saved from the output of the EI software.
This then yielded in the case of each transformed quantity a vector of 1,000 transformed
simulations whose means were used for the point estimates for the precinct-level estimates
of yp , dpu, dpo ,dup , yu, and duo(each transformed into column proportions).

Aggregation Bias and Covariates

Because there are numerous factors that we believe will affect the distribution of the param-
eter values, we also included covariates in our estimation of the EI quantities. Aggregation
bias, as discussed by King (1997) and Voss (this book, Chapter 3) is a problem that occurs
when parameter values in specific precincts differ from the general pattern aggregated to the
district level. In the Italian data and in studies of split-ticket voting generally, however, not

7 Or Benoit and King’s EzI software. See http://Gking.Harvard.Edu/software.shtml
8 When discussing King’s EI estimation, we use the term “precinct” to refer to our unit of observation, which is the

single-member district. In King’s (1997) terminology, the precinct is the minor unit where aggregate behavior is
recorded, and the district is the larger unit containing the precincts.
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only do we expect precinct-level parameters to vary substantially, but indeed it is precisely
this variation and the patterns within it that motivate the attempt to estimate the split voting.
When this variation can be mapped systematically to other variables, we can improve the EI
estimates considerably by including precinct-level covariates. For these reasons we employ
the extended EI model using covariates that we expect to explain systematic variation in
split-ticket voting at the precinct level.

Particularly in Italy, previous work has indicated that electoral choices can only be under-
stood at the level where they are exercised (Shin and Agnew, 2001). Although party campaign
strategies are broadly conducted at the national level, they are implemented at local level
and “are likely to be a response to the immediate settings, conditions, and circumstances
in which political parties operate” (Shin, 2001). More generally, many of the explanations
for vote splitting relate specifically to the local electoral unit where vote splitting may occur.
These include the existence of specific party candidates, the competitiveness of a precinct, or
the intensity of campaign in a precinct – we would expect these factors to cause precinct-level
parameters to vary. By including precinct-level measures of such influences as covariates,
therefore, we can improve the estimates of our quantities of interest by introducing addi-
tional information available to us from our knowledge of split-ticket voting and from the
specific Italian political context.

The covariates we include in the EI estimation of cartel-loyal and cartel-disloyal voting
are the following:

Intercartel competitiveness. This variable represents the closeness of the Ulivo and Polo
cartel list votes (Cu and Cp). It is calculated as the absolute difference of Cu and Cp , divided
by the total of list votes (

∑
C). Lower values indicate greater intercartel competitiveness,

with the distribution of votes between cartels being more even; likewise, higher values
indicate that one cartel had a greater lead over the other and that the district was less
competitive between cartels. Our expectation is that higher levels of competitiveness
(indicated by smaller values of this variable) will cause higher levels of cartel-loyal voting,
as the district is more intensely divided and the election outcome both more contested
and more uncertain.

Intracartel fragmentation. This variable, measured separately for both Ulivo and Polo,
measures the dispersion of the list PR votes among the parties in each cartel. It consists
of the ratio of the effective number of parties in the cartel to the actual number of parties.
The effective number of parties is measured as 1/

∑
v2

i each party i in the cartel. When
all of the cartel party’s votes are equal, the effective number of parties will equal the
actual number of parties. The intracartel fragmentation variable thus ranges from a
theoretical 0 to 1, with higher values indicating greater intracartel fragmentation. Our
expectation (generally following Tsebelis, 1988) is that greater levels of fragmentation
increase intracartel rivalry, decreasing cartel cohesion and cooperation and hence cartel-
loyal voting. This variable is measured at the level of the single-member district.

Dummy variables. In addition to the competitiveness variables, we also included a num-
ber of binary variables to represent qualities specific to each plurality district.

Northern district. When coded as 1, this indicated that the district was in the Northern
region.9

9 Other regions included Central, South, and Islands. We did not include any of these regions as covariates,
because neither our prior expectations nor subsequent testing gave us reason to believe that they should explain
differences in cartel-loyal and -disloyal voting.
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Table 14.5 Aggregate ecological inference estimates, 1996 Italian election data

Quantity Point Estimate S.E. Lower bound Upper bound

First-stage EI
βb 0.9261 0.0005 0.8878 0.9991
βw 0.9647 0.0004 0.9010 0.9980
N 465
Simulations 1,000
Log likelihood 1522.2528

Second-stage EI
λb 0.8748 0.0014 0.0885 0.9199
λw 0.0468 0.0012 0.0157 0.7052
N 465
Simulations 1,000
Log likelihood 1253.0066

Transformed model quantities of interest

Transformed
parameter Aggregate
(proportions) estimate S.E. 95% confidence interval

yu 0.9196 0.0012 0.9171 0.9219
y p 0.8102 0.0014 0.8075 0.8130
dup 0.0451 0.0012 0.0428 0.0474
d pu 0.1159 0.0013 0.1132 0.1185
duo 0.0353 0.0004 0.0345 0.0362
d po 0.0739 0.0005 0.0729 0.0749

Note: Estimations include covariates listed in Table 14.8. Transformed quantity estimates
are transformed as per Table 14.4, based on 1,000 simulations from the aggregate posterior
distribution.

Northern League candidate. A score of 1 on this variable indicated that a candidate of
Lega Nord competed in the plurality contest (as an “Other,” or noncartel, candidate). Such
candidacies occurred only in the Northern region.

Communist candidate. A score of 1 on this variable indicated that a candidate of the
Refounded Communist Party (Rif. Com.) competed in the plurality contest.

Neo-fascist candidate. A score of 1 on this variable indicated that a candidate of Mov. Soc.
competed in the plurality contest.

Incumbency variables. Coded for each cartel, the Polo, Ulivo, and noncartel incumbency
variables were scored 1 if a candidate competing in 1996 from the respective cartel had
won a plurality contest in the 1994 election.

RESULTS

The results from our estimation of the unobserved quantities of interest appear in Table
14.5. The upper panel of this table displays the aggregate-level EI parameters expressed in
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Figure 14.1. Comparing cartel switching and loyalty between Ulivo and Polo cartels.

the scale of estimation, along with information from the estimation procedure such as the
number of cases, simulations, and log likelihood.10 The lower panel displays the quantities in
which we are directly interested, the transformed model quantities of interest (expressed as
proportions). The first two quantities we estimate are the degree of cartel loyalty for plurality
voters from the Polo and Ulivo cartels (yp and yu respectively). Here we see strong evidence
that the Polo cartel voters were less cohesive than their Ulivo counterparts, with an estimated
aggregate proportion of .92 of the frustrated Ulivo voters choosing the Ulivo candidate
in the plurality election, compared to an aggregate proportion of .81 of the frustrated Polo
voters staying with the Polo-sponsored candidate. Because of of our covariates, furthermore,
the bounds on these point estimates are very small indeed, yielding very precise aggregate
estimates of cartel loyalty as indicated by the 95% confidence intervals.11

The aggregate rates of between-cartel defection reveal a similar pattern. The estimate of
dup , representing the proportion of frustrated Ulivo voters who voted for the Polo-sponsored
candidate in the plurality elections, was just 0.05. Yet the rate of cross-cartel voting for the
frustrated Polo-party-preferring voters – represented by dpu – was considerably higher at
0.12. Because these estimates also had very narrow bounds as indicated by the confidence
intervals, it can be confidently stated from these results that more than twice as much
cross-cartel voting took place among frustrated Polo supporters as among frustrated Ulivo
supporters.

The frustrated Ulivo voters also showed greater cohesion in avoiding defections to the
noncartel candidates. Our estimates show that at the aggregate level, the proportion of

10 We estimated the model without priors and did not set starting values for the covariates. The model tended to
have computational problems in the EI2 stage, requiring us to turn off the multiple imputation feature in the EI
software (version 1.5, 5/5/2002) for the EI2 procedure (by setting EI2 m = −1). The EI manual states that this
will result in somewhat smaller standard errors for the simulated parameters, but does not indicate the extent
of this effect.

11 The 95% confidence intervals were computed by taking the middle 95% of the sorted aggregate transformed
quantities, computed from the simulations of the aggregate quantities through algebraic transformation as
described in the previous section.
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Figure 14.2. Direct comparison of district-level estimates of cartel-loyal voting, Ulivo versus Polo.

frustrated Ulivo supporters voting for a noncartel (“other”) candidate was approximately
0.04, compared to an estimated aggregate proportion of 0.07 for Polo. Once again, the
proportion of frustrated cartel voters defecting to vote for a noncartel candidate was more
than twice as great for Polo as for Ulivo, with the 95% confidence intervals indicating these
estimates to be quite precise.

A graphic summary of the district-level results is provided in Figures 14.1 and 14.2. Figure
14.1 depicts all of the estimated precinct quantities in boxplots, pairing the analogous Ulivo
and Polo quantities for comparison. The boxes depict the interquartile range, with the
median value represented by the line in the middle of the box. The whiskers represent the
minima and maxima of the range of precinct-level point estimates. In Figure 14.1, the top
two bars compare the degree of cartel loyalty among frustrated Ulivo and Polo voters. The
results are consistent with the aggregate values reported in Table 14.5. The median for the
Polo cartel-loyal voters is clearly lower than the corresponding Ulivo value, also having a
dramatically wider range (measured by the interquartile range shown by the box). The
difference between the cross-cartel voters is even more dramatic. Far fewer frustrated Ulivo
supporters voted for a Polo candidate than vice versa. Furthermore, the degree of discipline
among frustrated Polo voters that did not vote with their cartel was much lower, indicated by
the much greater range of the district estimates for the frustrated Polo-voting Ulivo voters.
Finally, the number of frustrated Ulivo-voting others was also lower than in typical precinct
for Polo supporters, with a greater variance as well.

Figure 14.2 compares cartel loyalty directly at the precinct level among Polo and Ulivo cartel
voters. Each small circle in the scatterplot represents a precinct-level estimate of (Yp , Yu).
As can be seen, in the vast bulk of precincts, the level of cartel loyalty among Ulivo voters
was much higher, to the upper right of the 45-degree line. For the four districts with much
smaller levels of both Ulivo and Polo cartel loyalty, our examination of these in the data set
reveals that there were unusually popular noncartel candidates competing, three of the four
coming from a specific region. The fourth candidate was an extremely popular noncartel
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incumbent, depressing the rates of cartel loyalty on both sides but more so for Ulivo. It
is precisely these sorts of effects that in the absence of covariates would cause aggregation
bias, but that can largely be controlled by introducing independent information about the
partisanship and incumbency of specific noncartel candidates, as well some geographically
specific information.

Interpretation

Our overall finding is that the Ulivo cartel had a higher degree of general voter loyalty than
the Polo cartel – with Polo losing more far more voters to the Ulivo cartel than vice versa. This
is quite consistent with our knowledge of Italian politics in the 1990s. First and foremost, in
1994 the Italian political scene was dramatically changed by the entry of a new party, Forza
Italia (FI) and its controversial leader Silvio Berlusconi, a media tycoon who was able to
build a party in just a few months and gain spectacular success in the 1994 election. While
the strong leadership of Berlusconi was successful in assembling the coalition partners in the
Polo cartel at the elite level, we may conjecture that his charismatic appeal – being strongly
divisive – failed to capture many of the disappointed Polo supporters at the voter level.

Second, in 1996 the Polo cartel built a single nationwide alliance for the first time. In
1994 there had been two electoral alliances: one formed by FI and the Northern League in
the north, and one formed by FI and AN in the south. This could also have led to lower
cartel loyalty within the Polo coalition. On the other hand, the Ulivo coalition was composed
of more traditional parties and allies who would have been expected to have more capacity
of coordinating their voters on a more instrumental choice. In sum, the higher proportion of
expressive voters in the Polo cartel is very consistent with our initial expectations.

EI Diagnostics

We have discussed our results in general substantive terms, but it is also worthwhile to assess
these results by examining some of the characteristics of the data and some intermediate
results from the parametric EI procedure. Table 14.6 in the Appendix reports the maximum-
likelihood estimates for the covariates from both the EI and EI2 estimations. These values
themselves contain a great variety of substantively important information, but we leave the
task of interpreting them to future work, having intended primarily to use them to control
aggregation bias. But it is to our satisfaction that most are highly statistically significant,
indicating that did indeed explain variation in the precinct-level parameter estimates in our
data set.

Figures 14.3 and 14.4 show additional information about the data and allow us to assess
whether it conforms broadly to the checklist of characteristics recommended for successful
application of EI. The left panel of Figure 14.3 graphs Xi against Ti (in this case, the pro-
portion of frustrated Polo voters against the proportion of excess noncartel voters), with the
size of the circles proportional to the number of frustrated voters in the district. The results
show a fairly uniform distribution along X, and a tight clustering along the T dimension,
with a single mode, and only two discernable outliers. The right panel shows the tomog-
raphy plot for the two parameter values βb

i and βw
i , with the lines indicating where each

parameter must lie according to a well-known deterministic accounting identity. The two
ovals represent contour plots for mean posterior contours. For the estimation of βb

i and βw
i ,

there is clear evidence of some nonhomogenous precincts, indicated by the five stray lines,
although most tomography lines were tightly clustered in the upper range of the graph.
With covariates to control for the nonhomogenous precincts, the tomography plot reveals
no pattern substantially violating the assumptions required for estimation using EI.
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Table 14.6 Covariate parameter values in scale of estimation, from both EI and EI2 procedures

EI Estimation EI2 Estimation

Covariates βb βw λb λw

ZbCovariates
Constant 2.0713 0.2164 2.4320 0.2087
Ulivo competitiveness −0.7416 0.1308 −0.0887 0.2045
Polo competitiveness −0.4301 0.2776 −0.0729 0.2046
Ulivo–Polo competitiveness −0.1598 0.2657 0.0819 0.0139
Northern district (0/1) −0.0173 0.2219 −0.1612 0.0443
Northern League candidate (0/1) 0.2262 0.0449 0.1294 0.0570
Communist candidate (0/1) 0.3064 0.2955 −0.1266 0.0968
Neo-fascist candidate (0/1) −0.0212 0.2267 −0.0793 0.0102
Ulivo incumbent (0/1) −0.0692 0.2260 0.0662 0.2081
Polo incumbent (0/1) −0.0807 0.1285 −0.0097 0.2037
Other incumbent (0/1) −0.0906 0.0549 −0.1480 0.2933

Zw Covariates
Constant −2.0557 0.1159 2.6610 0.0909
Ulivo competitiveness −0.0125 0.0345 −0.0902 0.0924
Polo competitiveness −0.0391 0.1278 −0.0880 0.0531
Ulivo–Polo competitiveness 0.0565 0.0555 0.0690 0.0572
Northern district (0/1) 0.0271 0.2232 −0.1809 0.0365
Northern League candidate (0/1) −0.0481 0.0196 0.1854 0.0597
Communist candidate (0/1) 0.0989 0.0412 −0.1222 0.1663
Neo-fascist candidate (0/1) 0.0237 0.0583 −0.0096 0.0111
Ulivo incumbent (0/1) 0.0430 0.0460 0.0784 0.1000
Polo incumbent (0/1) 0.0129 0.1505 −0.0115 0.0060
Other incumbent (0/1) 0.0171 0.0465 −0.2050 0.0690

σ b −1.8847 0.1161 −2.3770 0.2609
σ w −2.9450 0.2701 −2.2720 0.2880
ρ −0.4115 0.2900 2.0000 0.3930

Figure 14.4 displays the same set of graphic diagnostics for the second-stage estimation
of λb

i and λw
i . Here the patterns are also quite well behaved, with the Xi − Ti graph showing

a clear linear pattern (here Xi is a plot of the estimated proportion of frustrated Polo voters
staying with a cartel candidate, with estimates come from the first-stage EI procedure,
against the proportion of excess cartel voters represented in EI notation as Ti ). Similarly, the
mean posterior contours from the tomography plot fall generally around the mode of the
intersecting tomography lines. There is nothing in these diagnostics to lead us to suspect
that EI would yield unreliable estimates.

DISCUSSION

Our estimation of vote splitting in Italy’s mixed-member electoral system provides a clear
example of how statistical techniques for ecological inference can be used in multiparty
contexts to estimate individual-level parameters when only aggregate data is observed. By
proceeding from a very general discussion to modeling the vote-splitting problem in a specific
context, and then formulating a specific parameterization for estimating vote splitting, we
have illustrated how such modeling is performed and what steps and choices are required to
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Figure 14.3. Graphs of fit for EI estimation of βb , βw .

yield the desired results. The Italian example is somewhat unusual in that its organization into
electoral cartels makes possible a significant reduction of the parameter space, something
required for the successful application of the EI method used here. But other systems also
feature political or institutional arrangements reducing the number of unknowns in split-
ticket voting problems to more tractable dimensions. Examples would be the reduction by
political brokering to just two candidates of the top-three runoff system in the Hungarian
electoral system (Benoit, 2001), or the reduction by institutional means to just two candidates
in more restrictive runoff systems, as used in the French and numerous other presidential
elections around the world.

More general applications of ecological inference to multiparty voter transition problems
will depend on methodological advances in the estimation of R × C tables (where R > 2,
C > 2). Interesting work on this problem has taken place recently on several fronts, including
the use of entropy-maximizing methods (Johnston and Pattie, 2000), information-theoretic

Figure 14.4. Graphs of fit for E12 estimation of λb , λw .
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approaches (Judge, Miller, and Cho, this book, Chapter 7), and parametric extensions of
EI using Markov-chain Monte Carlo methods (Rosen, Jiang, King, and Tanner, 2001).
These methods, however, remain either difficult to implement practically (e.g., the MCMC
method) or largely untested in well-known empirical contexts. Because each additional
dimension places greater demands on the data, modeling issues such as distributional as-
sumptions, priors, and covariates assume tremendous importance in the estimation of
R × C ecological inference problems. Greater understanding and experience is needed in
the application of R × C methods – both in a controlled context and in empirical settings
where a large amount of contextual information is known in advance by the researcher –
before genuine practical advances in split-ticket voting estimation in multiparty contexts
can be made.

Our examination here of split-ticket voting in the 1996 Italian elections has also yielded
some important substantive findings. First, we have demonstrated that the Ulivo cartel was
more successful in maintaining voter loyalty and cartel discipline between the list ballot
and the relatively recent institution of single-member district voting. Taking “frustrated”
to mean those voters whose most-preferred party was by cartel agreement not allowed to
field a single-member district candidate, we found that frustrated Ulivo supporters were
much more likely to vote instrumentally than their frustrated Polo counterparts. Frustrated
Polo supporters were also much more likely to vote for an Ulivo candidate than vice versa.
These findings were not only firmly in accord with our substantive political knowledge of
the Italian case, but also largely confirmed by the election result itself.

Finally, while we did not focus here on the results of the covariate estimations (see Ap-
pendix), we also found strong evidence that precinct-level voting varies systematically with a
number of precinct-level variables. First, cartel-disloyal voting decreases when competition
between cartels is more intense. Second, cartel-disloyal voting increases when competition
within a cartel is more intense and when the cartel is more evenly fragmented. Finally, the
presence of extreme left Communist candidates tended to drive voters away from the leftist
Ulivo cartel and increase the level of disloyal voting. Finally, the presence of incumbent
candidates, especially noncartel incumbents, tended to attract defectors from other cartels
and to increase within-cartel loyalty. We have left a fuller discussion of these results for our
future work, but the significance of simply having arrived at these estimates should not be
understated.

APPENDIX

Table 14.6 shows the covariate parameter values in scale of estimation.
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15 A Structured Comparison of the Goodman Regression, the
Truncated Normal, and the Binomial–Beta Hierarchical
Methods for Ecological Inference∗

Rogério Silva de Mattos and Álvaro Veiga

ABSTRACT

This chapter presents an extensive and structured Monte Carlo experiment to compare Goodman re-
gression, King’s truncated bivariate normal, and the binomial–beta hierarchical methods for ecological
inference. Our purpose was to assess the predictive performance of these methods and the degree to
which they match standard properties of statistical prediction theory. The experimental design was
based on differences between King’s and the binomial–beta hierarchical methods, which are major
contributions to the recent EI literature. The results obtained indicate that Goodman regression is
the weakest method, the BBH method has good predictive ability but is a biased point predictor, and
King’s method is the best among the three, doing well in predictive performance as well as in statistical
properties. In the concluding section, the methodological relevance of using Monte Carlo experiments
to evaluate and compare aggregation-consistent EI methods is highlighted.

15.1 INTRODUCTION

Although the ecological inference problem has challenged social scientists for more than a
century, few solution techniques have been proposed in the literature (e.g., Cleave, 1992;
Achen and Shively, 1995; King, 1997). Three of these techniques have received much attention
in recent years, particularly in political science studies. One is an old approach based on
a linear regression model and popularly known as Goodman regression, due to Goodman
(1953, 1959). The other two, proposed recently, are a model based on the truncated bivariate
normal (TBN) distribution, due to King (1997), and another based on the binomial–beta
hierarchical (BBH) distribution, due to King, Rosen, and Tanner (1999; see also Rosen, Jiang,
King, and Tanner, 2000). The last was the subject of a review and a proposed reformulation
by Mattos and Veiga (2002).

In this chapter, we present an extensive and structured comparison of basic forms of these
three EI methods by means of a Monte Carlo experiment. In the recent EI literature, King
(1997), Cho (1998), Freedman, Klein, Ostland, and Roberts (1999), and King (2000) used
Monte Carlo experiments to examine specific departures from the assumptions of King’s
TBN method on its estimation performance and as compared to Goodman regression.
Anselin and Cho (2002), with similar objectives, developed a more extensive experiment
to examine the consequences of spatial effects on predictive performance. Though having
some intersections with the latter, our study is different from these others in the number
and types of objectives we pursued.

∗ We acknowledge research support from the Coordenação de Aperfeioamento de Pessoal de Nı́vel Superior (CAPES),
an agency of the Brazilian Ministry of Education and Culture.
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First, we were strictly concerned with predictive (not estimation) properties of the EI
methods. Second, we studied these properties when the underlying model assumptions
are true; this case was not explored enough in the literature, but is relevant to assessing
whether EI predictors conform or not with standard properties of statistical prediction
theory, namely unbiasedness and minimum mean squared error (in small and large sam-
ples). And third, we also explored the predictive performance (ability to fit the disaggregate
data) of those methods, but in well-behaved, controlled situations that could inform us
better about implications of certain features of the disaggregate data generation process,
like the degrees of truncation and asymmetry and of correlation between the quantities of
interest. We included the examination of consequences of model construction, such as the
incorporation or not of precincts’ population sizes and the type of model characteristic
used as the vehicle of inference – features that could well produce differences in predictive
performance.

As a consequence of these concerns and objectives, our experiment was much more
extensive and detailed structured than those of other studies. The results we achieved may be
useful to methodologists and practitioners because the experiment has pointed, with much
supporting evidence, to strengths, weaknesses, and some new features of the EI methods
considered. For instance, King, Rosen, and Tanner (1999; hereafter KRT) argued that the
BBH method is generally superior to King’s TBN method, but we found that the TBN
method is generally better for making point predictions. In addition, under mild degrees of
truncation or asymmetry in the disaggregate data, the BBH method displays predictive bias.
Our research also led us to consider the role of Monte Carlo experiments for EI methodology
in a broader sense, especially its relevance in the evaluation and comparison of EI methods
possessing the aggregation consistency property.

In order to run the comparison, we had to resort to a faster device, developed by Mattos
and Veiga (2002), to implement the BBH method. Whereas KRT used computer-intensive
algorithms of the Markov chain Monte Carlo class that generally take hours to run even on a
single data set, the alternative device used in this paper is an instance of the ECM algorithm
proposed by Meng and Rubin (1993), which takes minutes of computer time with most
data sets. It was of major importance to reduce the computer burden of the Monte Carlo
experiment with the inclusion of the BBH method (and three variants of it), once the EI
methods had to be applied to nearly 1800 simulated data sets each.

For a proper presentation of our study and its results, we have organized the chapter as
follows. We introduce notation and features of the EI problem in Section 15.2. This provides
basic elements for the understanding of key aspects of the methods briefly reviewed in the
subsequent sections. Goodman regression is presented in Section 15.3, King’s TBN method
in Section 15.4, and the BBH method in Section 15.5. The type of Monte Carlo experiment
we used is considered in Section 15.6. The setting up of the experiment is presented in
Section 15.7, and the results of the experiment are graphically presented and discussed in
Section 15.8. Concluding comments are presented in Section 15.9. Three appendices present
additional details of the experiment design.

15.2 NOTATION AND PROBLEM FEATURES

In this section, we present some notation and basic concepts used throughout the chapter. In
the left part of Table 15.1, the variables NBi and NWi represent the unobservable disaggregate
frequencies, which might be, for instance, the numbers of black and white people, respec-
tively, who turn out to vote in the i th sampling unit or precinct. Likewise, the variables NTi ,
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Table 15.1 Alternative representations of the EI problem

Frequencies Proportions

Vote No vote Total Vote No vote Total

Blacks N Bi n X i − N Bi n X i B i 1 − Bi X i

Whites N W i ni − n X i − N W i ni − n X i W i 1 − W i 1 − X i

Total N Ti n i − nTi n i Ti 1 − T i 1

nXi , and ni represent the observable aggregate frequencies,1 and can be seen as the numbers
of people who turn out to vote, who are black, and who are of voting age, respectively, in the
i th precinct. Subscript i ranges from 1 to P , where P is the number of precincts or sampling
units. The goal of EI consists in predicting values for NBi and NWi given knowledge of the
values of NTi , nXi , and ni , for i = 1, . . . , P .

The right part of Table 15.1 displays the EI problem in an alternative fashion, with
variables represented as proportions and defined as

xi = nXi /ni , (15.1)

Ti = NTi /ni , (15.2)

Bi = NBi /nXi , (15.3)

Wi = NWi /(ni − nXi ). (15.4)

The EI problem2 in this case consists in predicting values of Bi and Wi given knowledge
of Ti and xi , for i = 1, . . . , P . The use of proportions instead of frequencies to represent
variables in the EI problem and models has been the most common approach followed in the
EI literature (see Achen and Shively, 1995; King, 1997). Though both ways of representing
the EI problem are considered in this chapter, only the representation in proportions was,
ultimately, used in the Monte Carlo experiment.

The use of the term “prediction” we have made above is not casual, because we assume
that the target of EI is to recover unobserved values of disaggregate response variables.
Some statistically based EI methods proposed in the literature regard the EI problem as an
estimation one, as, for instance, do the Goodman regression and the switching regression
method of Cho (2001). In these methods, the contents of tables’ cells are regarded as constant
parameters, either for the whole set of P tables or for some subgroups of them, and the
problem of inference is treated as an estimation problem. Instead, we follow in this chapter
the perspective that the contents of tables’ cells are unobservable realizations of some sort of
random process, and our goal is to infer the values of these realizations. From a statistical
perspective, the appropriate way to follow in such cases is to regard the EI problem as one
of prediction.3

1 Generally, throughout this chapter, uppercase symbols represent random variables and lowercase symbols ob-
served or known values. Note that the variables nXi and ni are written in lowercase because of an assumption
usually adopted in statistical EI methods that the row totals are given.

2 For a direct association with the notation presented in the Introduction to this book, set Bi = βb
i and Wi = βw

i .
3 In statistics, prediction refers to guessing the value of a random response variable, and estimation refers to

guessing the value of a parameter (a fixed constant) of a probability model. An instructive discussion on the
distinction between these concepts in classical statistics is available in Spanos (1986: Chapters 12, 14). For the
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The EI problem also displays some deterministic information embedded in what is known
as the accounting identity. For the variables in frequencies of Table 15.1, this identity consists
of

NTi = NBi + NWi , (15.5)

and for the variables in proportions,

Ti = Bi xi + Wi (1 − xi ). (15.6)

Whatever our choice of representing the accounting identity, its importance for EI modeling
is twofold: First, if predictions for the disaggregate variables generated with a particular EI
model respect the accounting identity, then the aggregation of those predictions using
Equation 15.5 or 15.6 will necessarily fit the observed values for the aggregate, left hand
variables (nTi or ti ). We call this property aggregation consistency and consider it, in principle,
as desirable.4 Second, the accounting identity places lower and upper bounds on the true
values taken by NBi and NWi , or by Bi and Wi , once the aggregate data have been observed,
a feature pointed out first by Duncan and Davis (1953). For instance, it means that Bi ∈
[�b

i , ub
i ] ⊆ [0, 1] and Wi ∈ [�w

i , uw
i ] ⊆ [0, 1], where �b

i , ub
i , �w

i , and uw
i are the Duncan–

Davis bounds (for a proof, see King, 1997: 301–303).
Note that if a prediction of the pair (Bi , Wi ) produced with a particular EI predictor

does not satisfy the accounting identity, then this prediction will not display aggregation
consistency. However, it may or may not respect the admissible intervals (implied by the
Duncan–Davis bounds). In this case, there are three possibilities:

a. the two intervals are respected;
b. only one interval is respected; or
c. no interval is respected.

Figure 15.1 illustrates the aggregation consistency property and these three possibilities
that depart from it. The figure shows, in the plane Bi × Wi , the unconditional sample space
for the pair (Bi , Wi ) represented by the unit square [0, 1] × [0, 1], and the conditional (after
a pair (ti , xi ) is observed) sample space for (Bi , Wi ) represented by the negatively sloped
line. This line is determined by the accounting identity in Equation 15.6; just rewrite that
expression as

Wi = ti

1 − xi
− xi

1 − xi
Bi (15.7)

with Ti replaced by the observed ti . The projection of the line on the horizontal axis gives
[�b

i , ub
i ], and on the vertical axis [�w

i , uw
i ]. The true realized pair (bi , wi ) of disaggregate

case of Bayesian statistics, see, for instance, Gelman, Carlin, Stern, and Rubin (1995: 8–9). Regarding the EI
literature, see McCue (2001) for a view that King’s (1997) EI method is essentially an application of statistical
prediction theory, and Herron and Shotts (2003) for a discussion of the inconsistencies of using King’s TBN
method in a two-stage EI procedure. The latter authors, however, refer in general to EI outcomes as “estimates”
when in a strict sense the word should be “predictions.” The distinction between prediction and estimation has
potential implications little explored in the recent EI literature, a major one being the fact that only predictive
distributions guarantee that EI outcomes will respect the accounting identity and the Duncan–Davis bounds
(see McCue, 2001: 107; Mattos and Veiga, 2002). Also, there may be no identification problem in EI when the
prediction perspective is taken, so that 2P unknowns can be predicted from a model estimated with only P
knowns.

4 Observe that a prediction which does not satisfy the aggregation consistency property will not satisfy the
accounting identity, because these two properties imply one another.



P1: FZZ/FZZ P2: FZZ

CB658-15drv CB654-KING-Sample CB658-KING-Sample.cls May 26, 2004 2:59

A Structured Comparison of the Goodman Regression 355

u i
w = 1

Wi

�i
w

�i
b

Bi

ui
b = 1

Figure 15.1. Accounting identity and properties of EI
predictions.

variables lies somewhere on the line, and predictions that also lie on this line respect the
accounting identity. As a consequence, such predictions will display aggregation consistency
and respect both intervals. Predictions not lying on the line are inconsistent in aggregation,
and the figure illustrates the three situations considered before:

a. predictions like the circles respect both admissible intervals, because they lie some-
where on the inner square [�b

i , ub
i ] × [�w

i , uw
i ];

b. predictions like the dark points respect only one interval; and
c. predictions like the × do not respect any interval.

In sum, a desirable property of an EI predictor is that it respects the accounting identity,
because the predictions it generates will necessarily display aggregation consistency and
respect both admissible intervals. A second best situation would be that the predictions at
least respect both intervals, as in case a considered before.5 As we shall see, among the EI
predictors considered here, only the ones derived from King’s TBN method and from Mattos
and Veigas’s version of the BBH method respect the accounting identity.6

15.3 GOODMAN REGRESSION

Goodman’s (1953, 1959) approach is quite simple: Starting from the accounting identity 15.6,
assume that all disaggregate data proportions are fixed across different tables or observa-
tions – say, that Bi = µB and Wi = µW , where µB and µW are constants through i =
1, . . . , P . Naturally, the differences between the left and right hand sides of Equation 15.6
should result from purely random effects εi , so that we may write Goodman’s model as

Ti = µB xi + µW(1 − xi ) + εi . (15.8)

This expression is a linear regression model without a constant and with linear coefficients
µB and µW , which, for a given sample of aggregate observations, may be estimated by the
method of ordinary least squares. The EI predictions in these cases are generated according

5 In this second best situation, a residual analysis could be possible and model adequacy tests could be developed.
See the test statistic proposed by Cho (2001: 250–253). However, the price one pays in using models that allow
residuals is that they are not guaranteed to respect the bounds (see Section 15.8.3).

6 Contrary to what is stated by KRT (p. 64), the EI predictor these authors derived from their version of the BHH
model may not satisfy the bounds, because it does not respect the accounting identity. See Section 15.6.2 below,
and Mattos and Veiga (2002).
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to
[

b̂i (t)
ŵi (t)

]
=

[
µ̂B (t)
µ̂W(t)

]
= (X ′ X)−1 X ′t, (15.9)

where X is a suitable P × 2 matrix built from the information on the (fixed) rows’ aggregate
observations x ′ = [x1, . . . , xP ], and t ′ = [t1, . . . , tP ] is the vector of columns’ aggregate
observations.

Although simple to apply and generalize, this EI method is known to have important
shortcomings: First, its constancy assumption is barely supported by empirical evidence
(e.g. King, 1997; Freedman et al., 1999; Cho, 1998, 2001). Second, no restriction is placed
on the values that the estimates µ̂B and µ̂W may take, what allows them to lie outside of the
bounds and to take values that are negative or above 100%. This feature naturally results
from the fact that the accounting identity is not respected (for every table).

15.4 KING’S TBN METHOD

King’s (1997) EI method was designed to overcome the limitations just mentioned of the
Goodman regression. We make here just a short outline of it for the purposes of this chapter.
For a full description, see King (1997).

The first feature of King’s method is the probability model used to describe the disaggre-
gate DGP. The pair (Bi , Wi ) of disaggregate data proportions of Table 15.1 is regarded as
a bivariate random vector following a truncated bivariate normal (TBN) distribution, as
follows:

(Bi , Wi |xi ) ∼ TBNA(ψ̆), (15.10)

where A = [0, 1] × [0, 1] is the domain of truncation and support of the distribution.
The vector ψ̆ ′ = [µ̆B , µ̆W , σ̆ 2

B , σ̆ 2
W , ρ̆] contains7 the parameters (means, variances, and

correlation coefficient) of the original, untruncated bivariate normal distribution. Note
that xi (i = 1, . . . , P ) is taken as fixed or given (and for simplicity, from now on we follow
King, 1997, and omit the conditioning on this variable). It is assumed in Equation 15.10
that (Bi , Wi ) is independent of (uncorrelated with) the xi variable – what is usually called
the assumption of no aggregation bias.

The second feature of the method is the strict adoption of the accounting identity in
Equation 15.6. King took it as an integral part of his model’s structure, so that this identity
establishes a link between the disaggregate and the aggregate DGPs. Together with an ad-
ditional assumption of spatial independence between the observations, this enabled King to
derive the distribution of Ti , say p(ti |ψ̆), and the likelihood function based on the aggregate
data:

L (ψ̆) = p(t|ψ̆) =
P∏

i=1

p(ti |ψ̆), (15.11)

where t is a vector of observed aggregate proportions, as defined before.
King was also enabled to derive the predictive distributions p(bi |ti , ψ̆) and p(wi |ti , ψ̆),

each being a univariate, doubly truncated normal with support in [�b
i , ub

i ] and [�w
i , uw

i ],
respectively (King, 1997: Appendix C). We call these classical predictive distributions, because,

7 For association with the notation in the Introduction to this book, set µ̆B = B̆b and µ̆W = B̆w .
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from a classical statistics perspective, the EI predictions derived with King’s TBN method
consist of the means of those two distributions with the parameters ψ̆ evaluated at their

maximum likelihood values ˆ̆ψ , as follows:

b̂i (t) = E (Bi |Ti = ti ;
ˆ̆ψ) =

∫ U b
i

L b
i

bi p(bi |ti ;
ˆ̆ψ) dbi , (15.12)

ŵi (t) = E (Wi |Ti = ti ;
ˆ̆ψ) =

∫ U w
i

L w
i

wi p(wi |ti ;
ˆ̆ψ) dwi

= ti

1 − xi
− xi

1 − xi
bi (t). (15.13)

Note that b̂i ( ) and ŵi ( ) are written as functions of the vector t because ˆ̆ψ = ˆ̆ψ(t).
Under a Bayesian statistics perspective, a prior distribution p(ψ̆) for the parameters can

be used and the predictive distributions in Equations 15.12 and 15.13 have to be replaced
by p(bi |t) and p(wi |t), respectively. We call the latter Bayesian predictive distributions, and
they are obtained by averaging the classical ones over the parameter space to allow for
the uncertainty in parameter values. The weighting function used in this averaging is the
posterior function p(ψ̆ |t) ∝ p(ψ̆)L (ψ̆).

Though considering these two possibilities of using his model, King at the end adopted a
Bayesian approach, which is implemented in his and Benoit’s programs EI and EzI (Benoit
and King, 1996, 1998). Note that, since King (1997) took the accounting identity as an
integral of his EI model, the EI predictions it generates display aggregation consistency and
respect the Duncan–Davis bounds, as is clear from Equations 15.12 and 15.13.

15.5 THE BINOMIAL–BETA HIERARCHICAL METHOD

KRT introduced another EI method, based on compounding the binomial and the beta prob-
ability distributions into a Bayesian, hierarchical structure. They termed it the binomial–beta
hierarchical model for EI, and claimed it is superior to King’s TBN method, being capable of
recovering a wider spectrum of disaggregate data. Though the reason for this presented by
the authors had to do with the flexibility of the BBH model to represent within precinct multi-
modality present in the subjective uncertainty of the analyst, they also used the method to
produce point and interval predictions of the disaggregate data via the mean of the marginal
posteriors for the binomial probabilities (KRT: 75–77, 84–86).

More recently, Mattos and Veiga (2002) developed a slightly different version of this model
that is amenable to a substantially faster implementation, although limited to producing
only point and interval predictions. In Section 15.5.1 we briefly describe their version, which
is the one we used in the Monte Carlo experiment, and in Section 15.5.2 we highlight its
major differences from KRT’s version.

15.5.1 Mattos and Veiga’s Version

Mattos and Veiga’s (2002) version of the BBH method features a hierarchical probability
model for the disaggregate DGP, coupled with the accounting identity 15.5.8 In the first

8 Thus, the model was structured as King (1997) did in the development of the TBN model.
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hierarchical stage, the disaggregate data variables NBi and NWi at the i th precinct are assumed
to follow independent binomial distributions with known counts ni and nXi , and binomial
probabilities βi and ωi . In view of the accounting identity in Equation 15.5, this means that
the aggregate data variable follows an aggregate binomial distribution. In the second stage,
the binomial probabilities βi and ωi are assumed to be sampled from beta distributions
with parameters (cb , db) and (cw , dw ), respectively, and these parameters are taken to be
constant across all precincts. In the third and last stage, the beta parameters are assumed to
follow noninformative priors. The formal description of the BBH model in this case is

NBi |βi ∼ Bin(nXi , βi ), (15.14)

NWi |ωi ∼ Bin(ni − nXi , ωi ), (15.15)

NTi |βi , ωi ∼ ABin(nXi , ni , βi , ωi ), (15.16)

βi |cb , db ∼ Beta(cb , db), (15.17)

ωi |cw , dw ∼ Beta(cw , dw ), (15.18)

cb ∼ n.i.p.d., (15.19)

db ∼ n.i.p.d., (15.20)

cw ∼ n.i.p.d., (15.21)

dw ∼ n.i.p.d. (15.22)

for i = 1, . . . , P . Abin(,) in Equation 15.16 stands for the aggregate binomial distribution,9

and n.i.p.d. for the non informative prior distribution.10

The vector of quantities of interest is given by α′ = [β ′, ω′, h′] , where β ′ = [β1, . . . , βP ],
ω′ = [ω1, . . . , ωP ], and h′ = [cb , db , cw , dw ]. Note that the size of the parameter vector α

is dependent on the number of observations, as it has 2P + 4 elements, in contrast with
the two EI methods presented before. By assuming independence between sampling units,
say, that (NBi , NWi ) is independent of (NB j , NWj ), which then implies NTi is independent
of NTj for i = j , we can build the aggregate posterior PA as

PA(α|nT ) ∝
P∏

i=1

Abin(nTi |nxi , ni , βi , ωi )Beta(βi |cb , db)Beta(ωi |cw , dw ). (15.23)

In order to implement the full Bayesian method for making inferences at precinct level,
we have to determine from Equation 15.23 the marginal bivariate posteriors p(βi , ωi |nT ),
i = 1, . . . , P , and then the marginal predictive posteriors:

p(nBi |nT ) =
∫ 1

0

∫ 1

0
p(nBi |nTi , βi , ωi )p(βi , ωi |nT ) dβi , dωi , (15.24)

p(nWi |nT ) =
∫ 1

0

∫ 1

0
p(nWi |nTi , βi , ωi )p(βi , ωi |nT ) dβi , dωi , (15.25)

9 The aggregate binomial distribution is obtained from a convolution of independent binomial distributions. See
Chapter 1 of this book.

10 KRT used exponential distributions with high means as priors. In the simulation experiment that we present in
this chapter, we used uniform priors defined in [0, 10].
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where n′
T = [nT1 , . . . , nTP ] is the vector of observed aggregate data. In the kernel of the

integrands in Equations 15.24 and 15.25, p(nBi |nTi , βi , ωi ) and p(nWi |nTi , βi , ωi ) are each
a noncentral hypergeometric density. These predictive posteriors are expected to reflect our
uncertainty with regard to the realized but unobserved values of the disaggregate variables
NBi and NWi .

We can make point predictions of the disaggregate frequencies by computing

n̂Bi (nT ) = E (NBi |NT = nT )

=
nU

Bi∑
nBi =nL

Bi

nBi p(nBi |nT ), (15.26)

n̂Wi (nT ) = E (NWi |NT = nT )

=
nU

Wi∑
nWi =nL

Wi

nWi p(nWi |nT )

= nTi − n̂Bi (nT ). (15.27)

In the Bayesian setting, these predictions minimize the quadratic loss function. Mattos and
Veiga (2002) developed a fast device to implement this method, based on the ECM algorithm
(Meng and Rubin, 1993). A limitation of this approach is that it produces only point and
interval predictions. We can use the same formulas 15.26 and 15.27 to make predictions for
the disaggregate data in proportions, as follows:

b̂i (t) = n̂Bi (n � t)

ni
, (15.28)

ŵi (t) = n̂Wi (n � t)

ni
, (15.29)

where n′ = [n1, . . . , nP ] is the vector of population sizes in the sample of precincts. Here
the symbol � stands for the elementwise product, such that n � t = nT .

Note that this version of the BBH model respects the accounting identity because the
derivation of the distribution of the aggregate frequency (see Equation 15.16) made implicit
use of Equation 15.5. As a consequence, predictions generated according to Equations 15.28
and 15.29 display aggregation consistency and respect the bounds.

15.5.2 KRT’s Version

Both Mattos and Veiga’s (2002) and KRT’s versions of the BBH model are developed hier-
archically in three stages. The central difference between them is in the first stage, in that
under KRT’s formulation the disaggregate DGP is not considered. The authors model the
aggregate DGP directly by assuming NTi follows a binomial distribution with a given count
ni and an “aggregate” binomial probability βi xi + ωi (1 − xi ). That is to say, under KRT’s
formulation, we have

NTi |βi , ωi ∼ Bin(ni , βi xi + ωi (1 − xi )) (15.30)

in place of Equations 15.14, 15.15, and 15.16 to represent the first stage of the BBH model.
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The only instances in which the binomial distribution in Equation 15.30 is consistent with
Mattos and Veiga’s assumptions for the disaggregate DGP in Equations 15.14 and 15.15 are
when βi = ωi or when each disaggregate binomial distribution has probability parameter
equal to βi xi + ωi (1 − xi ). In more general settings, the sum NTi = NBi + NWi necessarily
follows an aggregate binomial distribution (see Mattos and Veiga, 2002).

Another difference is that, instead of using the predictive posteriors in Equations 15.24
and 15.25, KRT undertook the inferences at precinct level using the marginal posteriors for
the binomial probabilities: p(βi |nT ) and p(ωi |nT ). The authors used these distributions in
full to summarize the uncertainty about the disaggregate data, and obtained them from the
joint posterior for the vectorα, which we denote here as P ∗

A. By considering p(h) ∝ constant,
this posterior is written

P ∗
A(α|nT ) ∝

P∏
i=1

Bin(nTi |ni , βi xi + ωi (1 − xi ))Beta(βi |cb , db)Beta(ωi |cw , dw ). (15.31)

The determination of p(βi |nT ) and p(ωi |nT ) involves complex, multidimensional inte-
grations of Equation 15.31. KRT used powerful Markov chain Monte Carlo algorithms to
simulate those marginal posteriors in full. Because of the computer-intensive nature of
those algorithms, we used Mattos and Veiga’s faster approach to the BBH model to run the
experiment described in the next sections.

As a consequence of using the binomial probabilities as the vehicle of inference, this
approach fails to respect the accounting identity (see Mattos and Veiga, 2002, for a detailed
discussion on this issue). Thus, KRT’s version of the BBH model for EI will not in general
display aggregation consistency and may not respect the Duncan–Davis bounds.

15.6 MONTE CARLO EXPERIMENTS

The purpose of this chapter is to present a comparison of the three EI methods described
earlier by means of a Monte Carlo simulation experiment. The Monte Carlo method is
widely used, though in different modalities, for the study of system behavior in a number of
research areas (e.g., Naylor, Balintfy, Burdick, and Chu, 1966; Watson and Blackstone, 1989).
In statistics, Monte Carlo simulations serve diverse purposes, mostly the approximation of
probability distributions and the computation of integrals (expectations). The technique is
useful when it is not possible to obtain in analytic form the probability distributions or the
functions to be integrated. Its usefulness here also comes from the analytical intractability
displayed by the distributions of estimators and predictors, which prevents the analytical
study of their statistical properties in small samples and, in certain cases, also in large samples
when asymptotic results are not available.

A statistical Monte Carlo experiment consists in general of two stages. In the first, a large
number of data sequences, now interpreted as samples of observations, are randomly gener-
ated from the probability distribution that characterizes the data generation process, under
predetermined assumptions for its parameter values. In the second, the samples are analyzed
with the estimation or prediction method being studied, producing numerical estimates or
predictions based on each sample, and also, when desired, performance statistics. The latter
might be, for instance, the coverage of prediction errors within a particular interval.

If the number of simulated samples is sufficiently large, it is possible to approximate the
full probability distributions of the estimators or predictors, and of the statistics of interest,
via their empirical distribution function. In certain contexts, an alternative approach which
is less demanding on the number of simulated samples can be used, for instance when we are
interested only in first and second moments of an estimator or predictor distribution, not in
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its overall shape. It was an experiment of the latter kind that we developed to compare the EI
methods based on the TBN and the BBH distributions. This choice of ours was important in
reducing the computer burden imposed by the detailed nature of the experimental design,
while allowing us to assess conformity with the standard statistical properties of EI predictors.

We remark that by performing a Monte Carlo experiment we are taking each EI method
as a predictor – say, as a rule of predictive inference in the context of repeated sampling.
This means that we consider every b̂i (T) and ŵi (T) described earlier (see Equations 15.9,
15.12, 15.13, 15.28, and 15.29) as functions of a random (independent11) sample T ′ =
[T1, . . . , TP ]. Thus, the experiment allowed us to explore properties, typical of classical
statistics, of the sampling distributions of the predictors considered, even though these
predictors were developed under a Bayesian approach. Though we are aware that Bayesian
statisticians may contest this way of proceeding as inconsistent with Bayesian inference (see,
for instance, O’Hagan, 1994: 82–83), we regard it as a valid, and often necessary, effort to
improve our understanding of operating characteristics that underlie EI methods.

Finally, it is well known that Monte Carlo experiments do not replace the analytical study
of the distributions and properties of estimators and predictors. When possible, the analytical
study can determine precisely the conditions under which those properties are valid and do
so at the highest level of generality, that is, considering the whole parameter space. The Monte
Carlo study is restricted to pointlike elements of this space and, by evaluating the behavior
of estimators and predictors under particular conditions, has more value in providing clues
for methodological improvements of them. This restriction forms the basis for the careful
design effort required for us to come to substantive conclusions.

15.7 EXPERIMENTAL DESIGN

We structured the Monte Carlo experiment motivated in large part by an interest in improv-
ing our understanding of operating features that characterize the TBN and BBH methods, as
these are major contributions made in the recent EI literature. We also included in the com-
parison the Goodman regression, because it has often been taken as a benchmark method
in other EI studies based on Monte Carlo experiments (Cho, 1998; Freedman et al., 1999;
Anselin and Cho, 2002).

Our development of the experiment was based on the following factors that seem relevant
for the evaluation and comparison of the recent EI methods:

a. intrinsic differences between the TBN and the BBH models;
b. potential (standardized) situations of the EI problem.

In this section and the appendices, we detail how we used these factors to design the ex-
periment. Note that we have not used features or assumptions of the Goodman regression
to generate or simulate the data used in the experiment. We only assessed this EI method’s
performance in situations assumed by the recent models.

15.7.1 Differences between the EI models

The TBN and the BBH models are alternative probabilistic models used to describe the
disaggregate DGP in EI problems. Though designed to characterize the same type of phe-
nomenon, they display substantive differences that we summarize in Table 15.2.

11 A random sample is defined in classical statistics as a set or vector of i.i.d. random variables, and an independent
sample as a set or vector of independent random variables which are not identically distributed (see, for instance,
Spanos, 1986: 216–217). The sample T ′ = [T1, . . . , TP ] lies in the second category according to King’s TBN
model and both versions of the BBH model, by construction.
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Table 15.2 Main differences between the TBN and the BBH models

TBN BBH

1. The model for the disaggregate DGP is a
TBN distribution.

1. The model for the disaggregate DGP is a bivariate BBH
distribution.

2. Response variables are proportions. 2. Response variables are frequencies.
3. Admits correlation in the disaggregate DGP. 3. Does not admit correlation in the disaggregate DGP.
4. Observations are weighted in an equal fashion. 4. Observations are weighted differently (but can be given

equal weights by means of a data normalization procedure).
5. Unique predictor. 5. Two predictors.

• posterior mode of the binomial probabilities;
• mean of the predictive posterior density.

From the first three differences, we determined how the various samples or data sequences
were simulated. Because of difference 1, the experiment was undertaken in two parts: In
the first, the EI methods were compared using samples simulated from a TBN distribution,
and in the second the samples were simulated from a bivariate BBH distribution. Our
purpose was to evaluate the relative performance of each EI method on data sets generated
from different distributions, of which one is the distribution assumed by the corresponding
method.12

Difference 2 is relevant to technical problems in the comparison of the methods. Since the
TBN model assumes the data are proportions, in principle the methods based on them could
not be used to analyze frequency data simulated in the second part of the experiment. In the
same way, the methods based on the BBH model could not be used to analyze proportion data
simulated in the first part of the experiment. Therefore, conversions between frequencies and
proportions had to be used, and the technical details are explained in Appendices 1 and 2.

From difference 3, it follows that the TBN model allows the disaggregate proportions Bi

and Wi to be correlated. Mattos and Veiga’s version of the BBH model, in contrast, does not
admit correlation between the corresponding disaggregate variables NBi and NWi because
they are assumed independent in the disaggregate DGP.

From difference 4, the BBH model admits different weights for the observations in the
posterior function 15.29. These weights are determined nonlinearly by the variable ni ,
the size of the i th sampling unit. Thus, predictors based on the BBH model use the available
information with greater efficiency. On the other hand, it is easy to make both models have
the same status using a data normalization procedure that gives all observations the same
weight. It is possible then to estimate the BBH model with varying or constant weights across
observations, obtaining two different predictors. Both approaches were considered in the
experiment for the evaluation of the BBH model, although the more appropriate one, from
a rigorous point of view, is the one with varying weights.13

In a similar way, difference 5 points to additional alternative ways of using the BBH model,
namely, the possibility of working with either of two predictors:

a. the posterior mode for the binomial probabilities, or
b. the mean of the predictive distribution for the disaggregate frequencies.

12 With the exception of the Goodman regression.
13 This twofold choice in using the BBH model is possible only when the variables of interest of the EI problem

are represented as proportions. In the case where these variables are represented as frequencies (as on the left
side of Table 15.1), the normalization procedure alters the scale of predictions vis-à-vis the scale of the observed
frequencies, inducing artificially large prediction errors.
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These two predictors14 were also considered in the experiment, though only the predictive
mean in predictor b is appropriate: first, because it is consistent with the view of the EI
problem as a prediction problem, and second, because it respects the accounting identity
and thus generates predictions with aggregation consistency and which stay within the
admissible intervals for the cells values. That does not happen with predictor a, based on
the posterior mode, as discussed before in Section 15.6.

15.7.2 Methods Compared

According to the discussion made at the end of the previous subsection, the BBH model can
be used or implemented in four ways:

a. estimation with raw data and prediction with the posterior mode for the binomial
probabilities;

b. estimation with raw data and prediction with the mean of the predictive distribution
for the frequencies;

c. estimation with normalized data and prediction with the posterior mode for the bino-
mial probabilities;

d. estimation with normalized data and prediction with the mean of the predictive dis-
tribution for the frequencies;

Raw data mean different weights (ni ), while normalized data mean equal weights given to
each observation in the likelihood or posterior function. The procedure for rescaling or
normalizing the data used in versions c and d is explained in Appendix 1. In a rigorous
sense, only procedure b above, which corresponds to Mattos and Veiga’s version of the
BBH method, is the correct one, and the others should be viewed as variants developed for
exploratory purposes only. In sum, the six alternative EI methods below were compared
within the experiment:

1. Goodman regression;
2. TBN (King’s method);
3. BBHa (version a), or Mattos and Veiga’s method;
4. BBHb (version b);
5. BBHc (version c);
6. BBHd (version d).

15.7.3 Potential Situations

We tried to evaluate and compare the six EI methods above in different situations for the EI
problem. Each situation considered reflects a particular form of realization of the underlying
disaggregate DGP. In the first part of the experiment, the situations were created so that the
disaggregate DGP displayed:

1. different degrees of truncation;
2. different degrees of prior correlation;
3. different sample sizes.

For each of these features, we considered three possibilities as presented in Table 15.3.

14 According to Bayesian estimation theory, the posterior mode in version a minimizes the expected absolute loss
function, while the predictive posterior mean in version b minimizes the expected quadratic loss. The latter
predictor is directly comparable with the predictor of King’s TBN model, which uses the mean of the predictive
posterior, and with the predictor of KRT’s version of the BBH model, which uses the posterior mean. In the
Monte Carlo experiment, we chose to include also the posterior mode in version a because it is a by-product
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Table 15.3 Alternative situations considered for simulation

P

Type of correlation Truncation: weak Intermediate Strong

Negative 20, 50, 100 20, 50, 100 20, 50, 100
Null 20, 50, 100 20, 50, 100 20, 50, 100
Positive 20, 50, 100 20, 50, 100 20, 50, 100

Each cell in Table 15.3 characterizes a situation: a combination of correlation and trunca-
tion. We simulated 150 samples per situation, grouped according to three sample sizes: 50
samples with P = 20 observations; 50 samples with P = 50 observations, and 50 samples
with P = 100 observations. This represents nine data sets (one per situation) with 150
samples each, for a total of 9 × 150 = 1, 350 samples simulated from a TBN distribution.

In the second part of the experiment, a similar procedure was adopted to simulate samples
from the BBH distribution. However, since this distribution assumes independence between
the disaggregate simulated variables, only the line corresponding to the null correlation
in Table 15.2 was considered. In place of the idea of truncation, we used the notion of
asymmetry, since the BBH distribution is not obtained by truncating another distribution.
Thus, we considered just three situations here: weak asymmetry, intermediate asymmetry,
and strong asymmetry. Each situation gave rise to the simulation of 150 samples in the same
way as the situations of Table 15.3, for a total of 3 × 150 = 450 samples simulated from a
bivariate BBH distribution.

15.7.4 Data Simulation

The procedures followed to simulate the disaggregate data samples in both parts are described
in this section.15

SIMULATING THE TBN DATA (FIRST PART)
For each column of Table 15.3, we considered a particular hypothesis for the parameter
vector ψ̆ ′ = [µ̆B , µ̆W , σ̆ 2

B , σ̆ 2
W , ρ̆] , as follows:

a. Weak truncation : ψ̆ ′ = [0.5, 0.5, 0.065, 0.065, ρ̆]
b. Strong truncation : ψ̆ ′ = [0.1, 0.9, 0.065, 0.065, ρ̆]
c. Intermediate truncation : ψ̆ ′ = [0.9, 0.5, 0.065, 0.065, ρ̆].

And for each item above (or row of Table 15.3), we considered three alternative hypotheses
of correlation:

d. Null correlation : ρ̆ = 0
e. Positive correlation : ρ̆ = 0.5
f. Negative correlation : ρ̆ = −0.5.

of the ECM algorithm used to implement Mattos and Veiga’s version of the BBH model and thus was readily
available for tests and comparisons with the other methods within the experiment.

15 In Chapter 16 of this book, some of the simulated data sets produced here were also used by Micah Altman, Jeff
Gill, and Michael McDonald to examine issues related to numerical properties of EI algorithms.
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Figure 15.2. Contours of the generating TBN distributions.

Figure 15.2 shows, for each situation, the contours of the generating TBN distribution.
As mentioned, these hypotheses set up situations well-behaved for the disaggregate DGP.
Note that the mode of the TBN distribution (represented by the dark points) was always
positioned inside the unit square, even in the situations of the strong truncation type. In
addition, the variances were made small to allow a certain concentration of probability in
some regions within the unit square.

We had also to generate the observations for the aggregate variables xi and Ti . These
variables were treated in different ways because xi is taken as given in the TBN model, while
Ti is assumed random. Thus, the variable xi was generated only once for each sample size
according to a uniform distribution defined on [0, 1], but the variable Ti was generated 50
times for each sample size by applying the accounting identity 15.6 over the 50 simulated
values of Bi and Wi and the single simulated value of xi . Further details are presented in
Appendix 1.16

SIMULATING THE BBH DATA (SECOND PART)
In the second part of the experiment we generated 450 samples from a bivariate binomial–
beta distribution. As mentioned before, it is not possible to consider correlation in the
disaggregate DGP according to the BBH model assumptions; thus, we only examined

16 As described in Appendix 1, the simulations of the TBN random values were made under all the assumptions of
King’s TBN model, including those of “no aggregation bias” and “no spatial autocorrelation” in the disaggregate
DGP. In general, since the simulated situations are relatively well behaved, this procedure also does not induce
violations of those assumptions in the samples, even for the situations with high degree of truncation, correlation
between the disaggregate proportions, and small number of observations. This is also the case for the BBH random
values simulated in the second part of the experiment.
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Figure 15.3. Contours of the generating BBH distributions.

differences in the degree of asymmetry. For each degree of asymmetry, we considered a
specific hypothesis for the parameter vector h′ = [cb , db , cw , dw ], as follows:

a. Symmetry : h′ = [3, 3, 3, 3]
b. Strong asymmetry : h′ = [1.32, 3.9, 3.9, 1.32]
c. Intermediate asymmetry : h′ = [3.9, 1.32, 3, 3].

Figure 15.3 presents the contours associated to the generating distributions for the pairs
(NBi , NWi ), according to each of the above situations. These distributions correspond to the
product of two binomial–beta distributions, say, p(nBi , nWi ) = p(nBi )p(nWi ), this being
the reason why the contours were drawn in the plane NBi × NWi . Note that we tried here
to recreate similar situations to those of the first part in the case without correlation by
positioning the modes of the distributions (dark points) in similar places.

In an analogous fashion to the case of simulations from the TBN distribution, the data
simulated from the BBH distribution in the form of frequencies had to be converted in
proportions to be analyzed by the TBN method and also by the Goodman regression, where
both assume the disaggregate data are in the form of proportions. Details of the procedures
followed are described in Appendix 2.

15.7.5 Evaluation and Comparison Indicators

In the two parts of the experiment, the predictive properties of the EI methods were evaluated,
and the methods compared, based on their average performance within each group of 50
simulated samples, as described in the previous sections. Four criteria (indicators) were
considered, in view of the objectives of the study:

a. 10% coverage interval for the prediction errors (proportion of prediction errors lying
within 10% of deviation from the true);

b. predictive bias (or mean of the prediction error);
c. standard deviation of the prediction error;
d. root mean square error of prediction.

The prediction error for the variable Bi is defined as e Bi ,m = b̂i,m − bi,m, and for variable Wi

as eWi ,m = ŵi,m − wi,m, where the variable with a hat is the prediction and the one without
the hat is the true, simulated value. The index m refers to the mth simulated sequence, and
the above statistics were first computed across all observations and then across all simulated
sequences. See the formulas used in Appendix 3.
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Item a was used for assessment of predictive performance, while items b, c, and d were
used for the evaluation of conformity with standard statistical properties.

15.8 RESULTS

The results of the experiment are presented through of a number of graphs displayed in
Figures 15.4–15.19. Figures 10.4–10.11 refer to the results for the first part of the experiment,
and Figures 10.12–10.19 to the results for the second part.

15.8.1 First Part

We start by observing the predictive performance shown by the 10% coverage intervals
(Figures 15.4 and 15.5). The Goodman regression did worse than all other methods in
practically all situations. Under weak truncation, a tie is observed in the performance of
the TBN method and the four BBH methods, for both variables. Moving to the situations
with intermediate and strong truncations, the TBN method improves over the others. The
degree of correlation seems not to affect, in general, the relative and absolute performance
of any method. When we consider each level of truncation in isolation, differences in the
degree of correlation tend to produce small effects.

Considering now the statistical properties, the first aspect to examine is the predictive bias
presented by the methods (Figures 15.6 and 15.7). Under weak truncation, all six methods are
practically unbiased, displaying bias levels between −0.015 and 0.015 for the small samples
of 20 observations, and between −0.05 and 0.05 for the large samples with 100 observations.
When we observe the corresponding standard deviations (Figures 15.8 and 15.9), we note

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

20 50 100 20 50 100 

20 50 100 

20 50 100 20 50 100 20 50 100 

20 50 100 20 50 100 

20 50 100 

Weak Trunc. Intermediate Trunc. Strong Trunc.

N
eg

at
iv

e 
C

or
r.

Po
si

ti
ve

 C
or

r.
N

ul
l C

or
r.

Goodman BBH A BBH B BBH C BBH DTBN

Figure 15.4. 10% coverage for the variable B.



P1: FZZ/FZZ P2: FZZ

CB658-15drv CB654-KING-Sample CB658-KING-Sample.cls May 26, 2004 2:59
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Figure 15.10. RMSE for the variable B.
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Figure 15.11. RMSE for the variable W.

these bias levels stay well below one standard deviation. However, moving to the situations
of intermediate and strong truncation, the methods cluster in two groups: one composed of
the Goodman regression and the TBN model, which remain unbiased in all situations; and
another composed of all BBH methods, which begin to display predictive biases in a quite
similar fashion. The biases of the latter methods do not seem to diminish with the increase
in sample size, as we observe from the graphs of Figures 15.6 and 15.7. Though for small
samples the biases of the BBH methods are less evident because the standard deviations in
these cases are larger, for the larger samples they surpass two standard deviations in all cases
of intermediate and strong truncation, for both variables.

Another aspect is the negative correlation between predictive biases for the variables
B and W, displayed by each BBH method. For instance, considering the situations with
intermediate truncation, for each BBH method its predictive bias for B is negative, while
for W it is positive. This also happens in the situations with strong truncation, though in
reverse order, with positive biases of each BBH method for B and negative ones for W.

The standard deviations of predictions of the various methods display similar behavior
(Figures 15.8 and 15.9) in all situations and for both variables: they diminish gradually with
the increase in sample size. Under weak truncation, the standard deviations of the BBH
methods are clearly smaller, for the three sample sizes, than the standard deviations of the
TBN method and the Goodman regression. When we augment the degree of truncation,
there is a tendency to reverse this situation, with the methods presenting standard deviations
much closer under strong truncation for both variables. Only in the case of strong truncation
with positive correlation, also for both variables, do we note an effective reversal, with the
Goodman regression and the BBH methods displaying smaller standard deviations.

The behavior of the RMSE (Figures 15.10 and 15.11) reflects the combined effects of
predictive biases and standard deviations. As all methods appeared to be unbiased in the
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weak truncation case, the graphs of the RMSEs for both variables are quite similar to
those of the corresponding standard deviations (Figures 15.8 and 15.9). Yet in the cases
with intermediate and strong truncation, such behavior occurs only for the Goodman
regression and the TBN method, which remain unbiased as we saw before. The graphs for
the BBH methods, also under intermediate and strong truncation, now reflect the increasing
predictive biases displayed by these methods, and thus their RMSEs are significantly higher
than those of the other two methods.

15.8.2 Second Part

Although in the second part we also had the objective of evaluating and comparing the EI
methods, another important motivation of ours was to verify whether the TBN method
would continue to present superior performance to the BBH ones when the data samples
were drawn from the generating distribution assumed by the latter. For this second part, the
results are presented in a number of graphs displayed in Figures 15.12–15.19. Because of the
implicit assumption of independence in all stages of the hierarchy of the BBH model, it is
not possible to consider prior correlation between the disaggregate variables. The simulated
samples differ only in their degree of asymmetry.17

With regard to the 10% coverage of errors (Figures 15.12 and 15.13), we observe the same
pattern of predictive performance as in the first part. The method of Goodman regression
was the worst in the three cases of asymmetry. Under weak asymmetry, a new tie occurs
between the TBN method and the various BBH methods for both variables. Moving to
the situations of intermediate and strong asymmetry, the TBN method gets progressively
better, both in absolute and in relative terms, than the BBH methods. Some absolute decay
in performance also happens here for the latter methods when we move from intermediate
to strong asymmetry.

The patterns of the first part also repeat for the statistical properties. Under weak asym-
metry, the predictive biases are practically null for all methods in both variables (Figures
15.14 and 15.15) and always correspond to less than one standard deviation (Figures 15.16
and 15.17). In the cases of intermediate and strong asymmetry, the Goodman regression
and the TBN method remain unbiased, but now there are predictive biases for all the BBH
methods. For the latter ones, their predictive biases in these cases are generally around two
standard deviations, and in the case of strong asymmetry achieve more than five standard
deviations for the samples with 100 observations of the variable B . There is also here a
negative correlation between the predictive biases for the variables B and W, either for weak
or for strong asymmetry.

The analysis of standard deviations (Figures 15.15 and 15.17) shows once again a similarity
in behavior, for all situations and both variables. In the three cases of asymmetry, the standard
deviations of all methods decrease along with the increase in sample size. Now, in the cases
of weak and intermediate asymmetry, the four BBH methods display for the three sample
sizes standard deviations similar to those of the Goodman regression and the TBN model.
All methods practically tie in the case of strong asymmetry for both variables.

Finally, the analysis of the RMSE (Figures 15.18 and 15.19) indicates that, in the case of
weak asymmetry, the behavior of all the methods reflects the respective behavior of standard
deviations, because all are unbiased in this case. Under intermediate and strong asymmetry,
the behavior repeats itself only for the Goodman regression and the TBN model, which

17 Remember that, as explained before, the disaggregate data variables generated from the BBH distribution were
converted to proportions for uniform comparison of the six methods.
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Figure 15.12. 10% coverage for the variable B.
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Figure 15.13. 10% coverage for the variable W.
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remain unbiased. The graphs for the BBH methods also reflect here the predictive biases
they displayed in these cases before.

15.8.3 Discussion

There are three important issues to highlight from the results just presented:

1. The Goodman regression showed the weakest predictive performance of the three
methods, though it presented good statistical properties.

2. The BBH methods behaved quite similarly as a group, showing good predictive perfor-
mance but poor statistical properties (predictive biases) when the degree of truncation
or asymmetry in the disaggregate DGP is significant.

3. The TBN method displayed the best overall performance, both in predictive terms and
in the statistical properties it presented.

Issue 1 reports a result expected because of the intrinsic limitations of the Goodman
regression, long recognized in the literature. We shall however note that the Goodman
regression did worst even in the well-behaved situations considered here, which points to
the need for researchers to consider the alternative, more recent methods in applications.
If we take this together with the best overall performance of King’s TBN method in issue 3,
additional support was provided by our experiment to the view that the latter is indeed a
significant advance over the Goodman regression.

Issue 2 deserves careful consideration. Our experiment was of an exploratory nature,
and its central merit lay in helping us to uncover properties of interest that characterize
the EI methods studied. However, to go further and unveil reasons for particular features
displayed by them, additional research may be necessary. With this in mind, we have two
comments on issue 2: First, there is the similar performance of the four BBH methods.
It suggests that their differences are of minor importance for explaining their predictive
performance in relative terms. The type of weighting (equal or different weights attributed to
aggregate observations) and the type of predictor (posterior mode for binomial probabilities
or predictive distribution mean) did not appear to be relevant factors.

With regard to the type of weighting, this result was somewhat unexpected, since different
sizes of the population across sampling units18 should, in principle, induce significant differ-
ences in predictors’ behavior. However, since the considered situations are well behaved, we
cannot ignore the fact that practical situations displaying higher variations in sampling unit
sizes come to produce significant differences in the performance of the BBH methods, in
absolute terms and as compared to the TBN one. The same well-behaved situations used can
also explain why the two types of predictors yielded a negligible difference in performance
of the BBH methods.

Second, and maybe more important, there is the pattern of predictive bias shown by the
BBH methods. Though these methods presented better predictive performance than the
Goodman regression, they displayed a significant degree of predictive bias in the situations
of intermediate and strong truncation or asymmetry. Because the expressions for generating
predictions with this EI method have turned out to be intractable analytically (both for the
posterior mode and for the mean of the predictive distribution), it is difficult to establish
the true sources of this biased behavior. Note that this pattern of predictive bias of the BBH
methods showed up even in the cases where the disaggregate data were generated according
to a BBH distribution. In view of the recent debate about EI, this shows the important fact that

18 Sizes varied between 50 and 450 in the experiment.
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even when the assumptions fit an EI model, its derived EI predictor can displays undesirable
statistical properties. This fact is not new in the general statistical literature, which displays
a number of examples of estimators and predictors that fail to display desirable properties
even when underlying assumptions for the probability DGP model being studied are true.

A factor which is likely, in our view, to be related to our two comments above and
which therefore we consider worthy of further investigations is the BBH model feature
that the number of parameters in the first hierarchical stage – the binomial probabilities –
increases with the sample size P . Aside from the inherent limitation of the BBH model
in incorporating correlation in the disaggregate DGP, that feature is its only difference
in methodological construction from King’s TBN model. A consequence it brings is the
breakdown of results that guarantee consistency and asymptotic normality of the Bayesian
posteriors 15.23 and 15.31, and also of the sampling distributions of the two types of BBH
predictors considered. More, it limits the “borrowing of strength” process (King, 1997: 95–
96) in ecological inferences at the precinct level, because for every new aggregate observation
made available, another pair of model parameters needs to be inferred, which makes it
difficult for common features of different precincts to be captured by the model. Anyway,
further simulation experiments like the one we used here, particularly designed to examine
this and other factors, should produce useful results.

To resume with issue 2, the fact that the four BBH methods displayed less than best
performance is not to be overemphasized, because the basic motivation of KRT in developing
the BBH model was to allow the analyst to catch within-precinct multimodality in marginal
posteriors, rather than to provide a new method to generate point predictions. When the
goal of an EI analysis is the former, Bayesian hierarchical models and other methods alike
may in general be more appropriate than the less flexible, single-peaked approach of King’s
TBN method.

With regard to issue 3, the best overall performance of the TBN method is associated with
its best predictive performance – both when its underlying distributional assumption is true
(disaggregate DGP following a TBN distribution) and in the alternative case (disaggregate
DGP following a bivariate BBH distribution) – as well as with its good statistical properties
in all situations. However, we cannot identify the true sources of this best performance. For
instance, it may indicate that the TBN distribution offers more flexibility of functional forms
to fit the disaggregate data than the bivariate BBH distribution does. Almost surely, it is not a
consequence of the particular ability of the TBN distribution to allow for correlation between
proportions in the disaggregate DGP, because in the first part of the experiment it was the
degree of truncation, not the degree of correlation, that induced differences of predictive
performance between the TBN and the BBH methods. As another possibility, that best
performance of the former may result from the pattern of predictive bias of the BBH methods
discussed above. One should naturally expect it to induce poor predictive performance of
the latter. Here also, the proper addressing of these issues deserves further study.

Another sort of issue, which we consider in brief, regards EI methodology in a broader
sense. As is well known, the impossibility of observing the disaggregate data in real EI situa-
tions prevents the use of some forms of diagnostic checking to evaluate EI methods. Although
King (1997) suggested diagnostic checking procedures to use in such cases, these seem to be
of restricted applicability (Cho, 1998; Freedman et al., 1999). Effectively, researchers have
dealt with this problem in the recent EI literature by using test sets of disaggregate data built
from real or simulated data to make ex ante evaluations of the EI methods, say, prior to their
use in real EI applications. However, some indirect evaluation of an EI method in a real EI
analysis would be possible if the method allowed aggregate residuals, or differences between
the aggregate observations and the fitted aggregate model (say, Ti − T̂i = 0 for some or all
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i = 1, . . . , P ). These residuals could allow us to make residual analysis and to compute
associated goodness of fit and test statistics, as used, for instance, in the context of standard
linear regression methodology to assess model adequacy and compare different models.
But EI methods that allow nonzero residuals, such as for instance Goodman regression and
KRT’s version of the BBH model, display the drawback of not respecting the accounting
identity and thus are also not guaranteed to respect the Duncan–Davis bounds.

On the other hand, EI methods that satisfy the accounting identity display aggregation
consistency and, as a consequence, do not produce aggregate residuals (say, Ti − T̂i = 0
for all i = 1, . . . , P ). In other words, when using this kind of method we have neither
the disaggregate data nor the aggregate residuals for making diagnostic checks in real EI
analyses. In these cases, the use of test data sets in evaluations of EI methods is unavoidable,
but these sets allow such evaluations only on an ex ante basis. We argue here that the kind
of experiment we have undertaken appears to be a suitable alternative for working with
such test data sets. At least, it should be useful in conjunction with empirical data sets.
Indeed, structured Monte Carlo experiments allow us to evaluate and compare EI methods
in a controlled fashion and in accordance with the problem in hand, via exploring either
the effects of different disaggregate DGPs or those of a number of different features of the
same disaggregate DGP on the predictive properties of the EI methods being investigated.
Therefore, Monte Carlo experiments should be seriously considered as an integral part of
an EI methodology for aggregation-consistent EI methods.

15.9 CONCLUSION

We have presented a Monte Carlo experiment by means of which we compared the Goodman
regression, the TBN, and the BBH methods for EI. The experiment was distinguished from
similar ones used in other studies by the degree of structure of its design and by its concern
with prediction instead of estimation. We made some assessment of the predictive ability
of those EI methods by exploring their predictive performance as well as their conformity
with standard properties of statistical prediction theory, in small and large samples. In
the situations considered, the experiment pointed out as basic results that (1) Goodman
regression is a limited method as compared to the more recent ones; (2) the BBH method
is generally biased as a point predictor, except in cases where the degree of truncation and
asymmetry in the disaggregate data is small; and (3) King’s TBN method is the best among
the three, doing well in predictive performance and conforming well with the statistical
properties.

Based on those results, we also discussed technical issues that deserve further study, in
particular the pattern of predictive bias of the BBH method. We also addressed an issue
of foremost importance for EI methodology, which is the fact that EI models displaying
the aggregation consistency property can only be evaluated and compared by means of test
data sets. We stressed the importance in these cases of using simulated data sets produced
with controlled simulation experiments of the kind we have undertaken. In addition to
allowing some assessment of predictive performance, this is a valuable research tool to
evaluate standard statistical properties (when analytic studies are impossible or difficult)
using structured, detailed designs developed from underlying assumptions and intrinsic
features of the investigated models.

For those methods which do not present the aggregation consistency property, a possibility
is open for the development of model adequacy tests that are based on residual analysis and
thus can be used in real EI studies. However, as these methods fail to respect the accounting
identity, they are not guaranteed to satisfy the Duncan–Davis bounds. It therefore points
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out to a great challenge for future EI research: that of developing EI methods that satisfy the
bounds and at the same time allow residual analysis, with the associated computations of
model adequacy tests and goodness-of-fit statistics.

APPENDIX 1. SIMULATING FROM A TBN DISTRIBUTION

In order to simulate an observation point (Bi , Wi ) from the truncated bivariate normal
distribution, we followed the procedure used by King (1997), which consists in simulating
from an untruncated bivariate normal distribution and accepting the point only if it lies in
the closed unit square A = [0, 1] × [0, 1] ∈ R2. Let (ZBi , ZWi ) ∼ BN(µ̆, �̆), with µ̆ and
�̆ defined as

µ̆ =
[

µ̆B

µ̆W

]
�̆ =

[
σ̆ 2

B ρ̆σ̆B σ̆W

ρ̆σ̆B σ̆W σ̆ 2
W

]
, (15.32)

and perform the following steps:

1. Simulate an observation pair z̃′
i = (z̃ Bi , z̃Wi ).

2. Compute ṽi = �̆1/2 z̃i + µ̆, where ṽ ′
i = (b̃i , w̃ i ).

3. Apply the rule: If (b̃i , w̃ i ) ∈ A, reject the observation; otherwise, accept it.
4. Repeat steps 1–3 until P pairs have been accepted.

To generate 50 samples with P = 20, we repeated steps 1–4 a total of 50 times; we did the
same for the cases P = 50 and P = 100.

For the aggregate variables xi and Ti , i = 1, . . . , P , the procedures adopted were the
following:

1. Each xi was simulated only once from a uniform distribution defined in (0, 1) for each
P = 20, 30, and 50.

2. Each Ti was computed from the simulated x̃ i ’s and (b̃i , w̃ i )’s through the account-
ing identity t̃ i = b̃i x̃ i + w̃ i (1 − x̃ i ); thus, 50 sequences of ti ’s (i = 1, . . . , P ) were
simulated for P = 20, 30, and 50.

Conversion to Frequencies

For the data simulated as above to be analyzed by the BBHa and BBHb methods, it was
necessary to make a conversion of the simulated proportions Bi , Wi , xi , and Ti to frequencies,
producing corresponding observations for the variables NBi , NWi , nXi , and NTi . Therefore, it
was necessary first to choose values for the variable ni , that represents the total population of
the i th precinct considered by the BBH model. The procedures adopted were the following:

1. Let z̃i be a value simulated from a Unif(0, 1). The simulated value for ni was obtained
by making ñi = a(400z̃i + 50), where a( ) represents rounding towards the nearest
integer. This was done only once for each value P = 20, 50, and 100. Note that we
forced each ñi to be simulated between the values 50 and 450, which gives a mean of
250. We kept above the minimum value in order to assure the asymptotic properties
and to reduce distortions from the rounding process, and kept below the maximum
value to avoid excessive computation time in the E stage of the ECM algorithm (see
Mattos and Veiga, 2002).
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2. Then compute, in the following order,

ñXi = a(x̃ i × ñi ), (15.33)

ñBi = a(b̃i × ñXi ), (15.34)

ñWi = a(w̃ i (ñi − ñXi )), (15.35)

ñTi = ñBi + ñWi (15.36)

for i = 1, . . . , P .

Normalization

We must remember that the BBHc and BBHd methods normalize the raw data before
estimation. Internally, the program routines used to implement these two methods execute
a quite simple procedure: from a common scaling factor F , which can be defined by the
user, the associated aggregate frequencies are computed as

˜̃nXi = a(F × x̃ i ), (15.37)

˜̃nTi = a(F × t̃ i ) (15.38)

and then used in place of the simulated raw data ñXi and ñTi . We used F = 250 in the
simulations.

APPENDIX 2. SIMULATING FROM A BIVARIATE BBH DISTRIBUTION

It was necessary first to simulate the aggregate variables ni and nXi , which, because they are
treated as given in the BBH model, were simulated only once for each sample size. By the
simulation of two random variables Zi and Xi from a Unif(0, 1), we computed

ñi = a(400z̃i + 50), (15.39)

ñXi = a(x̃ i × ñi ). (15.40)

The next step was the simulation of the pairs of disaggregate variables (NBi , NWi ), i =
1, . . . , P . As the BBH model assumes independence in all stages of the hierarchy, the ob-
servations for NBi were simulated independently from the observations for NWi to produce
the pair (NBi , NWi ). The procedure adopted followed Tanner (1996), and is as follows:

1. Given the parameters cb and db (see Section 15.8.4), simulate an observation β̃ i from
a Beta(cb , db).

2. Then use simulated value β̃ i to simulate an observation NBi from a Bin(ñXi , β̃ i ).
3. Repeat steps 1–2 until i = P .

The result of steps 1–2 is a pair (ñBi , β̃ i ), since those steps are the process of generating
observations from the joint density p(nBi , βi ) = p(nBi |βi )p(βi ). Note however that, taken
individually, NBi follows the marginal distribution p(nBi ), which is a binomial–beta distri-
bution with parameters ñXi , cb , and db . The observations simulated for NWi were obtained
independently but in analogous fashion through steps 1–3. The final results were samples
of ñWi simulated from a marginal binomial-beta distribution with parameters ñi − ñXi , cw ,
and dw . Finally, the other aggregate variable was generated by making ñTi = ñBi + ñWi .
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Conversion to Proportions

For the four BBH methods, the predictors in a strict sense are frequencies. For instance,
N̂Bi is the prediction generated by one of these methods for the true frequency NBi . For
all the methods to be compared in the same way, say, using the same statistics of predictive
performance, the predicted frequencies of the BBH methods, as well as the true frequencies
simulated from the BBH distribution, were converted to proportions as follows:

b̃i = ñBi /ñXi , (15.41)

ˆ̃bi = ˆ̃nBi /ñXi , (15.42)

w̃ i = ñWi /(ñi − ñXi ), (15.43)

ˆ̃w i = ˆ̃nWi /(ñi − ñXi ). (15.44)

Normalization

To normalize the data so that they could be used by the BBHc and BBHd methods, we did the
following: (a) for xi , we simply used their simulated values x̃ i as described in the beginning
of this appendix, and then applied Equation 15.37; (b) for ti , we computed t̃ i = ñTi /ñi and
then applied Equation 15.38.

APPENDIX 3

Suppose that m indexes the M = 50 samples of a situation group and that i indexes the P
simulated observations per sample. Define, for the variable B ,

b̃m =
P∑

i=1

b̃i,m/P , (15.45)

ˆ̃bm =
P∑

i=1

ˆ̃bi,m/P , (15.46)

µ̃B =
M∑

m=1

b̃m/M, (15.47)

ˆ̃µB =
M∑

m=1

ˆ̃bm/M, (15.48)

where

b̃i,m = true disaggregate proportion in sample m,
ˆ̃bi,m = prediction of the disaggregate proportion in sample m,
b̃m = mean of the disaggregate proportions in sample m,
ˆ̃bm = mean of the predictions for disaggregate proportions in sample m,
µ̃B = global mean of the true disaggregate proportions,
ˆ̃µB = global mean of the predictions for the disaggregate proportions.

Furthermore, define the prediction error as e Bi ,m = b̂i,m − bi,m and the prediction error
mean across observations as e B ,m = ∑P

i=1 e Bi ,m/P = ˆ̃bm − b̃m. The statistics of predictive
performance are then obtained by averaging across simulated sequences, as follows:
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Prediction bias:

e B =
M∑

m=1

e B ,m/M = ˆ̃µB − µ̃B . (15.49)

Standard deviation of the prediction error:

DP(e B ) =
√√√√ M∑

m=1

(e B ,m − e B )2/M. (15.50)

Root mean square error:

RMSEB =
√

DP2(e B ) + e2
B . (15.51)

10% coverage interval:

CI10B =
M∑

m=1

CI10B ,m/M

=
M∑

m=1

P∑
i=1

I (| ˆ̃bi,m − b̃i,m| ≤ 0.1)/M P , (15.52)

where

I (| ˆ̃bi,m − b̃i,m| ≤ 0.1) =
{

1, | ˆ̃bi,m − b̃i,m| ≤ 0.1,
0 otherwise.

For the variable W, the formulas are analogous and can be obtained by replacing B with W
and b with w .
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16 A Comparison of the Numerical Properties of EI Methods

Micah Altman, Jeff Gill, and Michael P. McDonald

ABSTRACT

The numerical accuracy of commonly used statistical software packages has been evaluated recently
by a number of authors. A primary concern among them is that different embedded numerical
methods produce vastly different solutions from the same data and model. In previous work we
examined the sensitivity of King’s EI procedure to implementation versions, computing platforms,
random number generators, and optimization options. In this chapter, we extend that work with
a comparison of the numerical properties of King’s EI with other solutions to the EI problem. We
analyze the performance of these separate approaches to the ecological inference problem, using
data perturbation and comparative reliability assessment. The data perturbation technique is used to
evaluate the pseudostability of these competing techniques across identical data sets. The results that
we provide illuminate the trade-offs among correctness, complexity, and numerical sensitivity.

16.1 INTRODUCTION

The numerical accuracy of commonly used statistical software packages has been evaluated
recently by a number of concerned authors (McCullough and Vinod, 1999; McCullough
1998, 1999a, 1999b; Altman and McDonald, 2001; Altman, Gill, and McDonald, 2003).
The primary concern among these authors is that different embedded numerical meth-
ods actually produce vastly different solutions from the same data and model. Clearly this is
alarming. Furthermore, there is great variation in the quality and thoroughness of program-
mers of statistical software and their sensitivity to purely statistical concerns (Knuth, 1997).
Specific cases of incorrect analyses due to these problems have recently been documented
in published research (Altman and McDonald, 2003), and others are sure to exist.

Methodologists in the social sciences are increasingly sophisticated in their use of statis-
tical software. Elaborate models are now commonly programmed into advanced statistical
packages. Such sophistication and power are not free; numerical issues remain important for
ensuring high quality results, yet are often ignored. Just as worrisome, many models are be-
coming increasingly fragile, purely due to the complexity of the specification (Achen, 2003).

Among the most complex model specifications in the social sciences are those proposed as
a solution to the ecological inference problem, inferences of individual behavior drawn from
analysis of aggregate data. As described in the Introduction of this volume, until recently, the
gold standard of statistical-based ecological inference solutions was a simple linear regres-
sion approach proposed by Goodman (1953). The numerical methods underpinning the
regression algorithm are elementary, and although poor implementations of the algorithm
still exist in some commercial software, it is generally understood how to implement it in a
numerically accurate way. In contrast, recent solutions to the ecological inference problem

383
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are much more complex. Achen and Shively (1995), King (1997), and McCue (2001) in
response to King, have proposed solutions to the ecological inference problem that purport
to produce more accurate (and realistic) estimates of the true individual values, but with a
considerable increase in algorithmic complexity.

King’s method, in particular, has drawn wide attention. Although much of the attention
has been positive, King’s solution has been criticized by a number of authors (Tam Cho,
1998; Ferree, 1999; Freedman, Ostland, Roberts, and Klein, 1999; Herron and Shotts, 2003,
2004). Recently, McCue (2001) has argued that King’s use of simulation and a constrained
maximum likelihood algorithm are unnecessary.1 McCue’s less statistically complex model
is still much more elaborate than Goodman’s regression, respecting many of the same
underlying assumptions as King.

Even though McCue (2001) argues for his proposed method primarily on computational
grounds, he offers no direct evidence that his computational alternative for estimating theEI
model is more accurate or reliable than the method he is attempting to displace. This is unfor-
tunate but not unusual – in social science, computational issues tend to be mentioned in pass-
ing. For example, although the software that King distributes to compute his EImodel con-
tains many numerically sophisticated features, King devotes only two out of the nearly three
hundred and fifty pages in his book to computational details (see King, 1997, Appendix F).

Whatever the final outcome of the controversy, attention paid to low-level computational
details is ultimately productive. And, critiques notwithstanding, since a speedy resolution of
the debate over ecological inferences does not seem forthcoming, it is therefore imperative
to subject the contending methods to numerical testing.

As scholars in social science work more frequently with sophisticated statistical models,
attention to computational details has begun to increase slightly. In this volume, three other
authors address computational issues – focusing particularly on computational efficiency:
Wakefield (Chapter 1) devotes a section to various strategies for efficiently computing
multistage Bayesian approaches to ecological inference; Grofman and Merrill (Chapter 5)
devote their attention to “quick and dirty” approaches to computing ecological inference
more quickly (although admittedly with less statistical sophistication), and Mattos and
Veiga (Chapter 15), as part of investigating the predictive correctness of alternative models,
develop a fast alternative to MCMC methods for computing the beta–binomial hierarchical
EI model.

Although we focus here on computation, we do not propose faster ways of computing EI
models. Instead, we probe the numerical properties of the proposed solutions. In previous
work (Altman, Gill, and McDonald, 2003: Chapter 7) we examined the sensitivity of King’s
EIprocedure with respect to implementation versions, computing platforms, random num-
ber generators, and optimization options. In this chapter, we extend previous work with a
comparison of the numerical properties of King’s EI with other leading solutions to the EI
problem. We analyze the performance of these separate approaches to “solving” the ecolog-
ical inference problem through data perturbation and comparative reliability assessment.
The data perturbation technique is used to evaluate the pseudostability of these competing
techniques across identical data sets. The results that we provide illuminate the tradeoffs
among correctness, complexity, and numerical sensitivity.

The chapter proceeds as follows: we describe potential sources of numerical inaccuracies
within various proposed solutions, to the ecological inference problem, provide ways to

1 McCue’s method has garnered critiques of its own, most notably an exchange between McCue and Lewis (2002)
in the letters-to-the-editor section of the American Statistician. Lewis defends King’s derivation of the conditional
probability P (βb |T) against McCue’s earlier criticism. Nevertheless, it is noteworthy that Lewis does not criticize
McCue’s computational strategy itself. If Lewis’s contested claim regarding the derivation of P (βb |T) is correct,
King’s EI method is bolstered, but McCue’s alternative computational strategy is not invalidated.
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test for the presence of such inaccuracies (not only in this context but in a broader context
as well), perform tests, and describe ways to ameliorate the inaccuracies we identify. The
primary purpose is to give an accurate picture of the extent to which numerical issues can
affect substantive conclusions in ecological inference models.

16.2 SOURCES OF NUMERICAL INACCURACY IN ECOLOGICAL INFERENCE

Computational problems may affect any statistical program. For ecological inference so-
lutions there are three potential areas of concern where computation may affect estimates
of the ecological inference problem: floating point error, the choice of optimization algo-
rithms, and imperfect random number generation. In this section we give a brief overview of
these sources of error – for an extensive discussion, see Altman, Gill, and McDonald (2003:
Chapter 2).

16.2.1 Floating Point Arithmetic

Most statistical programs, and all of the ecological inference techniques examined here, use
floating point arithmetic. Numerical inaccuracies are introduced because statistical pro-
grams use a fixed number of bits to store binary numbers and to perform calculations with
them. Accuracy is lost when numbers must be rounded to fit the limits of the binary rep-
resentation, when calculations underflow because the result is too small a number to be
represented, or when calculations overflow because the result is too large. When such nu-
merical errors accumulate within complex calculations, the effect can be deadly to statistical
computing procedures. Furthermore, different mathematically equivalent formulations of
a problem may have quite different numerical implications.

16.2.2 Nonlinear Optimization

Estimating a solution for a regression, such as Goodman’s approach, involves a straight-
forward series of closed-form calculations which may be found in any intermediate-level
statistics book. Methods such as King’s and McCue’s, which rely on maximum likelihood al-
gorithms, require completing a computationally more challenging task – finding the global
optimum of a nonlinear function. In particular, King’s programs use the Gauss imple-
mentation of a constrained maximum likelihood solver, cml, to fit the truncated bivariate
normal onto the unit square and estimate the parameters of its solution, while McCue ad-
vocates an estimation process using unconstrained optimization, with the Duncan–Davis
(1953) bounds built in. Both use forms of nonlinear optimization.

Standard techniques for the optimization of likelihood functions typically involve (1)
choosing a set of starting values for the parameters of the model, (2) using the numerically
calculated or analytic gradients of the likelihood function, given the current parameter val-
ues, to determine a direction for further optimization, (3) taking a step in that direction,
and (4) updating the parameters accordingly. Steps 2, 3, and 4 are then repeated until the
algorithm has converged to a stationary point, or some other stopping criterion (such as
a limit on the number of iterations) is reached. Unless the likelihood surface is well be-
haved and unimodal, no efficient optimization algorithm is guaranteed to converge to a
global optimum.2 As one eminent set of practitioners in the field wrote, “Finding a global

2 King speculates, but does not prove, that the likelihood mode for the Truncated Bivariate Normal (TBVN)
distribution is globally unique (King, 1997: Appendix D). We further discuss techniques for the identification
of global optima in Altman, Gill, and McDonald (2003).
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extremum is, in general, a very difficult problem” (Press, Teukolsky, Vetterling, and Flan-
nery, 2002: 398). Even in the absence of floating point inaccuracies, standard optimization
algorithms generally converge to the closest local optimum. If this local optimum does
not coincide with the global optimum, the resulting parameter estimates obtained will be
incorrect.

In addition, floating point errors can affect nonlinear optimization, even for unimodal
likelihood functions. Data that is ill-conditioned with respect to the EI optimization prob-
lem or implementations with numerical inaccuracies may inadvertently induce false optima.
This, in turn, can lead to bad parameter estimates.

16.2.3 Pseudorandom Number Generation

Goodman’s regression technique uses a deterministic algorithm (least squares) for finding
a solution. McCue’s method does not require random number generation, but since some
maximum likelihood algorithms use randomly chosen starting values (model parameters),
McCue’s method may rely on random number generation. King’s method, in addition,
makes explicit use of random number generation, since it relies on Monte Carlo simulation
to perform estimates of some of the parameters of interest.3

Such reliance on random numbers introduces another potential source of inaccuracy,
since the random numbers provided by computer algorithms are never genuinely random.
Instead, these numbers are produced by pseudorandom number generators (PRNGs), deter-
ministic processes that create a sequence that is statistically similar, in limited respects, to
random draws from a uniform distribution. Pseudorandom number generators start with
a single seed value and generate a repeating sequence with a certain fixed length, or period
( p). In order for simulation or sampling results to be accurate, a PRNG should satisfy three
criteria: long period, independence, and consistency in distribution. In addition, all require
a truly random seed to produce independent sequences (Ripley, 1987, 1988; Knuth, 1997;
Gentle, 1999).

Random number generation is an important, but understudied, aspect of applied sta-
tistical computing, at least on the high end of statistical package evaluation. Some authors
have shown the deleterious effects of poorly designed random number generation proce-
dures (Gentle, 1999; Morgan, 1984). And we know from a vast foundational literature that
serious problems can be caused by poorly written PRNG algorithms (see Altman, Gill, and
McDonald, 2003: Chapters 2 and 5, for a review).

Fortunately, even King’s solution, which makes more extensive use of random numbers
than any other, is fairly light in that use. Moreover, previous research suggests that the choice
of random number generators does not affect it (see Altman, Gill, and McDonald, 2003:
Chapter 7).

16.3 ASSESSING THE NUMERICAL ACCURACY OF STATISTICAL ESTIMATES

In this section we define accuracy, stability, and conditioning and discuss how data pertur-
bations can be used to probe for numerical problems.4

3 King claims that some of these quantities are not available as closed-form solutions, and thus require simulation
to compute.

4 This section has been condensed and adapted from a much more detailed discussion. For an extensive treatment,
including the mathematical details of perturbation effects, see Chapters 2, 3, and 4 of Altman, Gill, and McDonald
(2003).
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16.3.1 Defining Accuracy and Stability

Broadly defined, a statistical estimate is the mapping:

{data, model, priors, inference method} ⇒ {estimates} ,

or, symbolically

{X, M, π, Im} ⇒ e.

If, however, the estimate is too complex to calculate analytically using only “pencil and
paper,” we have to consider how computation may affect the results. In such a case, if the
output from the computer is not necessarily equivalent to e, it can be inaccurate. Moreover,
the output may be dependent upon the algorithm chosen to perform the estimation, the
parameters given to that algorithm, the accuracy and correctness of the implementation of
that algorithm, and implementation-specific parameters.5

Including these factors results in a more complex mapping:

{
X, M, π, Im, algorithm, algorithm parameters, implementation, implementation parameters

} ⇒ output.

The accuracy of the output actually presented to the user is thus the dissimilarity or
distance (using a well-behaved measure) between estimates and output6:

accuracy = Distance = ∇[e , output]. (16.2)

Accuracy alone is often not enough to ensure correct inferences, because of the possibility
of model misspecification, and the ubiquity of unmodeled measurement error in the data
and of rounding error in implementations. Where noise is present in the data or its storage
representation, and not explicitly modeled, correct inference requires the output to be stable.

Stability is simply the distance of the true estimate from output, in the presence of noise:
stability = ∇ (

e , output ′), where output ′|Y ′ ≡ Y + �Y . Note that instability could be due
to sensitivity in the algorithm, implementation, or model – regardless, if there is any error
in the data from any source, inferences will be incorrect if the output is not stable. (Less
formally, a stable algorithm gives, to quote Higham, 2002, “almost the right answer to almost
the same problem.”)

16.3.2 Measuring Accuracy and Stability

Ideally, we could compute formal bounds on the accuracy and stability of every EI estimate.
However, while such bounds are computable for individual computation in matrix algebra
and for some simple functions, the complexity of the competing EI models makes analytic
bound computation prohibitively difficult.7

5 By “algorithm” we intend to encompass choices made in creating output that are not part of the statistical
description of the model and that are independent of a particular computer program or language: This in-
cludes the choice of mathematical approximations for elements of the model (e.g., the use of Taylor series
expansion to approximate a distribution) and the method used to find estimates (e.g., a nonlinear optimization
algorithm). “Implementation” is meant to capture all remaining programming details, including bugs, and the
implementation of data storage and arithmetic operations (e.g., using floating point double precision).

6 Since “accurate” is often used loosely in other contexts, it is important to distinguish between computational
accuracy, as above, and correct inference. A perfectly accurate computer program can still lead one to incorrect
results if the model being estimated is misspecified.

7 To our knowledge, no one has attempted to derive formal bounds for any procedure close in complexity to King’s
EI model. Empirical bounding techniques like interval arithmetic might still be applicable, but the resulting
bounds are almost always uninformative.
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So, what can one do to assess or ensure the accuracy and stability of one’s estimation
procedure when formal bounds are not known and cannot be determined? There are several
general heuristics that can help to draw attention to potential computational problems:

1. Test benchmark cases. It is sometimes possible to devote extraordinary effort to com-
puting correct estimates exactly (or to a known level of accuracy) for a particular set
of test data and a particular model. This approach is useful, and should be a min-
imal requirement for any publicly distributed software, wherever feasible. However,
it has several significant drawbacks. First, benchmarks are often infeasible for com-
plex models, like EI.8 Second, most feasible benchmarks are not very realistic. Third,
benchmarks can detect some inaccuracies, but cannot prove that the program and
algorithm yield accurate results outside of the data tested.

2. Use independent information to confirm results. Substantive plausibility, known
analytic necessary conditions, and diagnostics (e.g. likelihood profile plots) should be
used wherever possible. However, such additional information is rarely sufficient to
confirm the accuracy of any given solution.

3. Use sensitivity analysis. One popular approach in statistical computation is to repli-
cate the analysis, keeping the data and model the same, but using multiple different
algorithms, algorithmic parameters (such as starting values), and implementations
(e.g. different PRNGs and/or different optimization software). If results disagree, one
should investigate (applying the other techniques) until one has determined the root
cause of the difference and understands which set of results should be discarded. A sec-
ond, complementary, approach is to replicate the analysis while perturbing the input
data, and to observe the sensitivity of the estimates to such perturbations. (Sensitivity,
or “pseudo-instability” is not a measure of true computational stability, since values
for the correct estimates are unknown.) This has the advantage of drawing attention
to results that cannot be supported confidently given the current data, model, and
algorithm/implementation; and unlike the first method, it is easy to implement.

These approaches cannot be used to prove the accuracy of a particular method, but are
useful in drawing attention to potential problems. Further experimentation and analysis may
be necessary to determine the specific cause of the problem. For example, if two software
packages disagree on the estimates for the same model and data, or if a particular technique
exhibits instability across data perturbations, the discrepancy or instability could be a result
of several factors:9

• Implementation issues. Either one or both programs have a bug, perform (some) cal-
culations less accurately, or give results conditioned on different implementation-level
parameters (e.g. a difference in a convergence tolerance setting).

• Algorithmic issues. One or both programs uses an algorithm with preconditions that are
violated by the particular model and data. Each algorithm may afford different levels of
approximation error. Or, the results are conditioned on different values for algorithm-
specific parameters (e.g. starting values for local optimization algorithms).

• Data and model issues. The problem is ill-conditioned. The most general definition
of conditioning is the sensitivity of the model to perturbations of the data (Higham, 2002:

8 Even when the true precinct-level parameters are known, we cannot use these true values as the correct answers
for our benchmarks, since correct application of an ecological inference model does not imply that the estimates
equal the true parameters, even if accurately calculated.

9 Note that the size and form of the noise are not what serve to differentiate numerical problems from model and
data problems – even simple uniform noise at the level of machine roundoff can affect analyses, purely because
of model and data problems. It is the combination of perturbations and varying implementations that allows
one to gain some insight into the sources of sensitivity.
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Sections 1.5–1.6). For example, if a scalar function f is twice differentiable, a useful way to
define the relative condition number of f is c(x) = ∣∣x f ′/ f (x)

∣∣. (Note that conditioning
is based on the purely mathematical properties of the function. A problem can be ill-
conditioned even in the absence of any numerical inaccuracies.) Although ill-conditioning
can easily exacerbate any numerical inaccuracies or limitations, social scientists should
not assume that all computational inaccuracies are simply a matter of conditioning.10

Moreover, the conditioning of the problem depends on the data, the model, the algorithm,
and the form of perturbation. In other words, there is no such thing as data that is well-
conditioned with respect to every model. Thus it is an open question how and whether
one can actually determine if one’s data is ill-conditioned with respect to an ecological
inference model, without performing a sensitivity analysis.11

Combining the two methods of sensitivity analysis is often useful. By running multiple
implementations and/or algorithms on the same sets of perturbed data, one can start to sep-
arate competing explanations for any instability. For example, if one implementation is more
stable than another, the difference in pseudostability must be a result of the implementation
and algorithm, since model and data are kept fixed.

Sensitivity analyses are invaluable because they can often be applied where benchmark
tests and independent confirmation are unavailable or inconclusive, and can be applied to
the actual data being analyzed. Sensitivity analysis cannot demonstrate that a particular set
of results is correct or incorrect, nor can they be used to improve estimates of “correct”
values. However, these analyses can serve to draw attention to potential problems in an
algorithm, implementation, or model.

16.3.2.1 Using Data Perturbations for Sensitivity Analysis

The definition of stability above suggests an exploratory test for a given model, set of data,
and implementation: introduce small random perturbations to the data, on the order of
the measurement error of the instruments used to collect it, and recalculate the estimate.
This technique is roughly analogous to bootstrapping. However, in bootstrapping the sample
selection is randomly perturbed but individual observations are not, whereas in our strategy
the sample selection is not perturbed but the individual observations are.

Data perturbations were first described as a sensitivity test by Beaton, Rubin, and Barone
(1976, 1977), who developed a stability index based on it. Similar methods have been
recommended by Gill, Murray, and Wright (1981), Pregibon (1981), and Cook (1986).12

To see how these perturbations affect the estimation process, consider two likelihood
functions: a standard form based on the observed data �(θ , x), and an identical specifica-
tion but with perturbed data �p(θ , xp). Here p denotes an individual perturbation scheme
p = [ p1, p2, . . . , pn] ∈ Rn applied to the data x = [x1, x2, . . . , xn] ∈ Rn. Thus we can
show that comparing the two likelihood functions is analogous to comparing an unweighted

10 In fact, a computation method with a large backward error will yield inaccurate results even where the problem
itself is well-conditioned. Here the backward error is defined as the minimum |�x| for which our computation
of y, ỹ satisfies ỹ = f (x + �x) .

11 While it might appear tempting to use condition number estimators produced by standard statistical software
(such as Matlab) to calculate condition numbers for a particular data set, the results are bound to be misleading,
since the formulas used by these estimators are tailored to specific types of problems in linear algebra, such as
matrix inversion. These formulae may be completely inappropriate for estimating the conditioning of another
type of problem or computation procedure.

12 Recent work by Parker, Pierce, and Eggert (2000) formalizes a variant of numerical perturbations, which they
call “Monte Carlo arithmetic.” Essentially, they replicate an analysis while introducing uniformly distributed
perturbations (in the form of random rounding) into all values in all calculations.
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likelihood function �(θ , x) = ∑
i �i (θ , xi ) with a weighted version �p(θ , xp) =∑

i pi�i (θ , xi ). Or we could define the unperturbed likelihood function to be one in which
there are null perturbations or weights: �p0 (θ , xp0 ) = ∑

i p0i �i (θ , xi ), where p0 is simply a
vector of 1’s. This setup gives us two maximum likelihood vectors to compare: θ̂ and θ̂p.

In this context, our approach is to evaluate the range of θ̂ produced by multiple samples
of xp generated by random production of p disturbances across different data sets x. The
idea builds upon the mechanical approach of Cook (1986), who looks for maximizing and
minimizing perturbation, and roughly follows a simpler test of logistic regression given by
Pregibon (1981).

Although this evaluation methodology does not require that the likelihood function be
statistically well-behaved, it does have a natural interpretation for well-behaved maximum
likelihood estimations. If the likelihood function for an MLE is well behaved, as King surmises
for his model (see 1997: 310–311), then there is a simple mapping between perturbations of
data and perturbations of the model. For example, small normally distributed noise added
to the data should induce a correspondingly small mean shift in the likelihood curve (St.
Laurent and Cook, 1993).

16.3.2.2 Perturbations and Measurement Error

Perturbations can be considered in exactly the same way as measurement error. The effects
of measurement error on statistical models is quite well known and may take two forms: zero
mean measurement error and nonzero mean measurement error. Nonzero mean measure-
ment error obviously and immediately leads to biased coefficients in the opposite direction
to the bias. That is, in a linear model, multiplying some nontrivial δ > 1 in every case of
explanatory variable X implies that larger increases in this variable are required to provide
the same effect on the outcome variable, thus reducing the magnitude of the coefficient es-
timate. Another way of thinking about this is that a one-unit change in X now has a smaller
expected change in Y . This effect also occurs in generalized linear models, where there is
the additional complexity of taking into account the implications of the link function.

It is possible to demonstrate that outcome variable measurement error is benign and
explanatory variable measurement error is dangerous. Having discussed the modeling prob-
lems with measurement error, we would never advise intentionally including it. Instead, the
perturbations act like unintended, but completely known, measurement error as a means of
testing the behavior of estimators and algorithms. Models that react dramatically to modest
levels of measurement error warrant caution.

In summary, perturbation may introduce bias, but if the problem is well-conditioned
and the algorithm and implementation accurate, the bias should be small. Moreover, any
bias introduced by perturbations should be the same when the same model and perturbed
data are used in different implementations. So if two implementations of the same model
show marked differences in pseudo-stability with respect to similar perturbation analyses,
the root cause is asserted to be computational and not statistical.13

16.3.2.3 Some Practical Details of Applying the Perturbation Method

Using the core idea of random perturbation, we can assess whether results are reliable,
whether they are consistent with respect to small perturbations in the data, and whether

13 This approach is complementary to the one proposed by Judge, Miller, and Cho (Chapter 7 in this volume).
Their approach uses instrumental variables, where available, to reduce the effects of measurement error. Our
approach provides a diagnostic of the results’ sensitivity to it.
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other implementation factors affect the estimates. This methodology complements standard
diagnostic plots in two ways. First, one can use the strictly numerical results as an unam-
biguous check: simply evaluate whether the range of results across input perturbations still
fits the original substantive conclusions about the results. Second, this methodology may
sometimes reveal numerical problems missed in standard diagnostic plots.

With regard to input perturbation, what is considered “small” for any particular case is
a matter of subjective judgment. There is an obvious lower limit: perturbations of the data
at the level below the precision of the machine should not be expected to cause meaningful
changes in output. The upper limit on perturbations is less clear, but should be bounded by
the accuracy of data measurement.

In political science and many other social sciences, measurement error certainly dominates
machine precision as a source of input inaccuracy. For example, in macroeconomic data,
much of the data is reported as rounded to the 1000’s place. Introducing perturbations on
the order of the rounding error of these data is tractable.14

Sometimes, as in our case, data is bounded, which introduces complications to pertur-
bations. The simplest way of avoiding the bounding problem is to truncate any illegal value
generated by perturbations to the constraint, but this introduces mass at the boundary
points. To avoid this problem, we use resampling to draw sample perturbations from a set
of truncated noise distribution, made symmetric to avoid biasing the data. A consequence
of this is that observations closest to the [0,1] constraint are effectively subject to less noise.
We report results using the second, more conservative method. As a check, we replicated
our results with the first method; our substantive conclusions did not change.15

Choosing the number of perturbed data sets to generate is also something of an art. The
literature does not specify a particular number of samples that is guaranteed to be sufficient
for all cases. Parker (1997) and Parker, Pierce, and Eggert (2000) use as many as 100 and as
few as four samples in their Monte Carlo arithmetic analysis. Parker (1997) also shows that
(in all but pathological cases) the distribution of the means of coefficients calculated under
random rounding are normal, which suggests that 30 to 50 samples should be adequate.
Moreover, since the perturbation technique can be replicated indefinitely, one can simply
rerun the analysis, increasing the number of samples, until the variance across replications
is acceptable for the substantive problem at hand.

Care must be used to distinguish between differences among implementations of a par-
ticular algorithm and differences between algorithms used to compute the same quantity of
interest. We expect that new versions of software will be made more accurate as implemen-
tations are improved and better algorithms found. Software writers have a responsibility not
only to make improvements, but also to document the range of acceptable conditions for run-
ning their software and the accuracy that may be expected from it. Furthermore, as improve-
ments are made, facilities should be provided to replicate the results from previous versions.16

14 The form of the perturbation is usually either uniform noise, as in Beaton et al. (1976, 1977), Gill, Murray, and
Wright (1981), and Parker et al. (2000), or normal, as in St. Laurent and Cook (1993). However, the proportional
data used as the input to an EI analysis complicates the perturbation. Both types of perturbations can yield
proportions outside of the legal [0,1] interval.

15 In future research, it would be interesting to model the form of the measurement error according to the
substantive data-generating process. For example, in a two-party race, it is possible that the primary source of
error is miscounting individual ballots, and that each ballot has a small chance of being miscounted. Even if
the probability of misclassification were the same for each ballot, the resulting measurement error would not
necessarily be mean zero in terms of proportions: In a heavily partisan district, there would be more opportunities
to misclassify votes from one party than from the other.

16 King’s EI software provides considerable built-in support for replication, diagnosis of statistical and computa-
tional problems, and different computational options. Such support is quite rare, and to be lauded. EI’s reliance
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16.4 A NUMERICAL COMPARISON OF ECOLOGICAL INFERENCE MODELS

This section provides a comparison of the performance of four methods of ecological infer-
ence: Goodman’s regression, Achen and Shively’s quadratic extension of Goodman’s regres-
sion, King’s solution, and McCue’s approach, with regard to both their numerical accuracy
and how “correct” the estimates are – how close the answers they produce come to the truth
(when the true behavior of the social system being modeled is known). Again, note that
perturbing data introduces attenuation bias, so the estimates from perturbed data are not
expected to reproduce the truth. However, estimates far from the truth are an indication of
problems with numerical accuracy or data.

This section makes use of existing implementations of these proposed ecological inference
solutions. King (1997) distributes two software versions of his model: a Gauss program,
which King calls EI, and a standalone DOS version, which he calls EzI. McCue has not
released an official version of his model, but David James (directly provided, 2002) has made
available to us a Stata version that he coded in consultation with McCue, and that he calls
AnEI (for “Analytical EI”).17 Also, the analysis in this section will use implementations of
Goodman’s regression routines supplied by both of these authors in their programs. For the
analysis reported here we use version 1.7 of EI running with cml version 2.0 and Gauss

version 4.0.26. For the McCue algorithm we use AnEI 4.0 running in Stata version 7.0.
Interest here is focused on the correctness of four methods in estimating ecological infer-

ence parameters, as well as their sensitivity to perturbation. In addition, particular attention
is paid to the often overlooked importance of analyzing performance with different soft-
ware option settings that the authors provide, or that are a component of the underlying
programming language.

16.4.1 Goodman’s Regression

Goodman (1953) proposed a simple linear regression solution to the ecological inference
problem, and simplicity is often a virtue with regard to numerical accuracy. Numerous
studies have shown that implementations of linear regression in most statistical packages
are more accurate than nonlinear models (McCullough and Vinod, 1999; McCullough,
1998, 1999a, 1999b; Altman and McDonald, 2001). Consequently, the expectation is that
Goodman’s regression model will show the same robust behavior.

Goodman’s regression is implemented by both King’s and James’s programs. Goodman’s
regression serves as a consistency check for the estimation of the more complex models,
as well as a diagnostic for the presence of aggregation bias. In King’s EI implementation,
Goodman’s regression is estimated by executing a command within Gauss, while in EzI

it is estimated through a command given to the program through the user interface. In the
McCue–James software implementation, Goodman’s regression is only estimated if the user
requests it and if AnEI successfully finds an ecological inference solution. AnEI sometimes
fails to produce such an estimate, and then the software subsequently relies only on the
Gauss estimates of Goodman’s regression for reported results.

In addition, Achen and Shively recommend weighting Goodman’s model when the units
of analysis, such as census blocks or voting precincts, are of different population sizes. We

on Gauss as a statistical environment sometimes interferes with replication, however, as changes across Gauss
versions cannot be controlled for in EI. Furthermore, although many computational options are provided in
EI, the accuracy of these options is not always well documented.

17 According to McCue, the James method also corrects an error in McCue’s linear estimator, such that the original
estimator can fall outside the interval [0,1].
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constructed a weighted Goodman’s model in R, using bootstrap replications to compute the
standard errors.

16.4.2 Achen and Shively’s Quadratic Model

Achen and Shively (1995) extend Goodman’s regression using an explicitly modeled
quadratic term. They demonstrate that this ameliorates the effects of aggregation bias. This
model also permits eitherβB orβW (but not both simultaneously) to vary at the precinct level.

The model starts with the assumption that βB and βW are both linear functions of X:

βBi = b1 + b2X + εBi , (16.3)
βWi = b3 + b4X + εWi .

Substituting these equations into the basic Goodman model yields a model which can be
estimated through standard linear regression (OLS):

T = B0 + B1X + B2X2 + ε,

where

B0 = b3,

B1 = b1 − b3 + b4, (16.4)

B2 = b2 − b4.

In this framework, Goodman’s regression is a special case of the quadratic model when
b2 = b4 = 0. However, the quadratic model requires additional assumptions to make it
identified. B0, B1, and B2 are known, while the parameters of interest, b1, b2, b3, and b4,
are unknown. To extract the parameters of interest (b1, . . . , b4), Achen and Shively propose
the following steps:

1. Make assumptions to enable identification of the model. Achen and Shively assume that
the relationships between βB and βW are positive, which implies b2 ≥ 0 and b4 ≥ 0.
Under this assumption, they prove that aggregation bias of Goodman’s regression is
reduced using the following identification rule:

when B2 > 0, set b4 = 0;

when B2 < 0, set b2 = 0; (16.5)

when B2 = 0, set both equal to zero.

This allows the calculation of the estimated parameters b̂1, . . . , b̂4.
2. Estimate the precinct-level parameters β̃ Bi and β̃Wi , using b̂1, . . . , b̂4 and Equa-

tion 16.3.
3. Compute the district-level parameters β̃ B and β̃W , using a weighted average of the

precincts:

β̃B =
∑

β̃Bi Ni Xi/NB ,

β̃W =
∑

β̃Wi Ni Xi/NW ,
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where

NB =
∑

Ni Xi , NW =
∑

Ni (1 − Xi ). (16.6)

Achen and Shively do not specify a particular method for calculating the standard errors of
the estimates. In our analysis, we report bootstrap standard errors for the weighted quadratic
and weighted Goodman models.

Achen and Shively’s assumption that b2 ≥ 0 and b4 ≥ 0 is based on empirical knowledge
of the situation under study. If external information provides a basis for believing otherwise,
the identification rules above should be changed.

Achen and Shively prove that with an uninformative prior, this assumption, plus the
identification rules above, yields less expected bias than Goodman’s regression. However,
it is easy to show that assuming b2 ≤ 0 and b4 ≤ 0 and reversing the identification rules
(e.g., when B2 > 0, set b2 = 0) yields exactly the same expected bias. Unfortunately, the two
solutions do not yield (substantively) identical parameter estimates.

Because of this, and because the authors of the analyses which we replicate did not identify
priors that would allow us to determine whether b2 ≤ 0, we assume an uninformative prior
and report results under both sets of assumptions.

16.4.3 King’s EI

Our intention is to choose, where possible, the set of options most favorable to running each
program accurately. This involves adjusting options away from their defaults both within
the EI program and in the Gauss statistical environment.

Our previous research showed the importance of using an accurate cumulative bivariate
normal distribution. And, in our analysis, we used the most accurate option that EI pro-
vides, as described above. In addition, estimates where the final Hessian would not invert
were discarded, as the use of the algorithm by EI alerts the user to take care in making
inferences from the estimates. Finally, two options available to Gauss’s CML algorithm are
employed: a more numerically accurate method of calculating central derivatives, White’s
(1982) quasi-maximum-likelihood (QML) covariance matrix. (Note also that the docu-
mentation accompanying Gauss recommends this method as being more expensive, but
uniformly better, than the alternative methods Gauss provides for computing the covari-
ance matrix.)

CML offers a number of options for computing derivatives. The default method is to use
forward differences, but the most accurate approach is for the user to supply subroutines
to compute analytic derivatives (and Hessians). No analytic derivatives are known to exist
for EI’s likelihood function, and EI uses the default CML method. However, an interme-
diate option exists – central differences – and it is used here. This is more computationally
expensive than the default, but is generally more accurate (see Gill et al., 1981, and Altman,
Gill, and McDonald, 2003).

The analysis also uses thecml library’s option to calculate QML covariances. White (1981,
1982) observes that when the variance–covariance matrix can be calculated in multiple ways,
and the results differ, then it is an indication of serious model misspecification. White’s test
is related to that of Hausman (1978), but is free from some of its well-noted deficiencies
(Kramer and Sonnberger, 1986; Thursby, 1985). The variance–covariance matrix can be cal-
culated from either the expected or the observed Fisher’s information matrix (with almost
sure convergence, according to White’s (1981) information matrix equivalence theorem), so
a comparison of the two variance–covariance matrices has the potential to reveal misspecifi-
cation resulting from computationally introduced problems, provided that the two methods
should give the same answer in the absence of such problems (e.g., when one is computed with
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analytical derivatives and the other is computed with forward differences). The procedure
defines a vectorized difference of the two matrices: ∇ = vec(1/(−H(θ|y)) − 1/G(θ|y)),
but the test statistic is calculated from a subvector, ∇∗, selected so that its asymptotic covari-
ance C ∗ is nonsingular: W = ∇∗C ∗∇∗. White gives the procedures for Wald and Lagrange
tests based on the asymptotic χ2 distribution of W with degrees of freedom equal to the
rank of C ∗. While this test has found its way into a number of computing packages and
is recommended in Gauss, some authors criticize its utility on account of its selection of
numerically unstable estimates for the subvector and associated covariance (Fahrmeir and
Tutz, 2001; Andrews, 1988).

A second important implementation option is the choice of method for inverting a non-
positive-definite Hessian. In these circumstances the program uses specialized methods to
find a “close”18 Hessian that is nonsingular and therefore invertible. The _EI_vc option
controls how the EI program attempts a number of methods in sequence, and exits on
the execution of the first successful method. As new versions of the program have been
developed, new techniques have been devised to handle situations when the Hessian is not
strictly positive definite. The sequence of methods applied when the normal method fails has
also changed. In early versions of the EI, the first specialized method that the program will
attempt is documented as a “wide step procedure” or “quadratic approximation with falloff”
(King, 1997: 9). In later versions of EI, the program attempts a generalized inverse Cholesky
alternative proposed in a paper by Gill and King (2003) and based on Schnabel and Eskow’s
(1990) procedure. These methods are not guaranteed to produce meaningful results in all
cases; the researcher must exercise caution, since there is a paucity of theoretical and empirical
work in favor of any particular method. One should also note that noninvertible Hessians
may signal limitations in data or in numerical methods, and that the generalized inverse
method used by King is justified in the former case. If the Hessian is noninvertible because,
e.g., the likelihood function or derivatives are insufficiently accurate, a more orthodox,
and well-studied, approach would be to increase the accuracy of those calculations, rather
than trying to correct the Hessian at a later stage. In fact, in some of our replications we
discovered that though EI produced noninvertible Hessians using the replication settings,
the Hessian was invertible when the analysis was run again using a more accurate version of
the cumulative bivariate normal distribution function.

A third implementation option is the choice of the cumulative bivariate normal distri-
bution algorithm, which is an important factor in determining the shape of the likelihood
function for the EI method. The shape of the likelihood function determines not only
the location of the mode of posterior, but also the Hessian matrix, which is the curvature
around this mode as measured by the second derivative of the likelihood function at the
modal value. The importance of the Hessian matrix is that it produces, by inversion, the
variance–covariance matrix of the coefficient estimate. King recognizes that this process is
not always straightforward and provides options for users to choose six different methods of
calculating the cumulative bivariate normal distribution with the _Ecdfbvn option, which
we refer to as cdfbvn (from “cumulative density function, bivariate normal”). The original
default cdfbvn is a fast algorithm, but subject to inaccuracies for small values, while the
current default represents a tradeoff between accuracy and speed. King once recommended
the use of the current default (King, 1997: 8), but he now provides a more accurate version.19

18 Here the definition of “close” is that the diagonal of the Hessian matrix is changed as little as possible in order
to obtain a barely invertible matrix form.

19 The improvements to the cdfbvn function within EI were made following our earlier numerical accuracy
investigations of the EI program. When we discussed these results with King, he convinced us that much of
this sensitivity could be corrected by increasing the accuracy of the cumulative distribution function for the
bivariate normal distribution. We consulted an expert in this area, Professor Allen Genz, who supplied us with
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16.4.4 The McCue–James Approach

Ken McCue does not distribute a program to estimate the model he proposes in his 2001
American Statistician article, so instead this section uses an implementation of the program
written for Stata by David James, who worked in consultation with McCue. McCue’s
model is similar to King’s in that it stipulates a bivariate normal specification, but McCue
claims that he can avoid the Bayesian-style simulations required in EI by using Lagrange
multipliers to arrive at a generalized least squares problem instead of the more complicated
posterior that King uses. The article actually leaves out some of the computational and
technical details, but James’s implementation seems to produce answers as advertised.

Unfortunately Stata does not allow users the same degree of option control as Gauss,
but it does not require as much patience either. There is one option available in Stata’s
maximum likelihood algorithm that may affect numerical accuracy, the difficult option,
which is only invoked by user request and is recommended for “difficult” likelihood prob-
lems. Stata’s documentation of the difficult option is minimal. Similar to King’s _EI_vc
option, Stata’s difficult option appears to allow the invocation of a different method to
calculate the Hessian: “difficult states that there may be regions where −H is not invertible
and that, in those regions, ml’s [Stata’s maximum likelihood command] may not work
well” (Stata Corporation, 1999: 385). More specifically, using difficult causes Stata to
switch from Newton–Raphson to steepest descent when the Hessian (temporarily) cannot
be inverted (Gould and Sribney, 1999).

In the experiments, however, the use of the difficult option did not improve the correctness
or sensitivity of the solutions. In fact, it prevented convergence in a number of cases, without
providing any noticeable change in the results of the analysis. Thus, in creating the tables,
we used only the default options.

16.4.5 Observations and Evaluations: Sensitivity and Correctness

This section analyzes the correctness and pseudostability of these four methods for solving
the ecological inference problem using both simulated and real data. These simulated data is
drawn from eighteen variants of the truncated bivariate normal distribution – each with high,
low, or moderate degrees or truncation; positive, zero, or negative correlations; and either
20 or 100 observations – as described in detail by Mattos and Vega (this book, Chapter 15).20

This real data is drawn from the seven example cases described in King’s (1997) book
(and above), as supplied in his replication archive. For each of the eighteen simulated and
seven replication data sets, 50 replications are created with 1% normally distributed, mean
zero error added to Xi and Ti .21

a quadruple-precision function based on an extension of Drezner and Wesolowsky (1989). After porting this
function to Gauss and integrating it into King’s program, we tested the areas of previous instability. These were
greatly improved, although not eliminated. The more accurate function has now been incorporated into a new
version of King’s programs as an option. This approach to remove numerical inaccuracies may prove fruitful
for sophisticated consumers of statistical software.

20 Professors Mattos and Veiga provided this data set and nine additional, each with 50 observations each. We
appreciate their support and willingness to share their data for this project and others.

21 The experiment was repeated with an additional set of perturbations in the form of 5% uniformly distributed
error with mean zero. Since the results are not substantially different, we prefer to make our points using the
more modest perturbations. The number of replications chosen was based on practice in the literature (see
above) and computational tractability – the computations for this study required 6 months of computer time
at 1000 MIPS. Moreover, three additional replications using other forms of input perturbations (as above) did
not yield substantially different results.
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In the estimation of the perturbed data sets, the recommended option settings described
above are used for each program. For King’s EI, the recommended settings use QML
covariance calculations and the most precise version of cdfbvn, and exclude those cases
whereEIfinds a noninvertible Hessian. For McCue’sAnEI, the default option setting proved
to be the most useful. Also for Goodman’s regression and Achen and Shively’s extensions,
the standard defaults are employed.22

Of interest are two characteristics of these perturbed data: the sensitivity and correctness
of the resulting estimates. Sensitivity (or “pseudostability”), described above, refers to the
consistency of the estimates across perturbed data sets, where less variation in the results
is an indication of less sensitivity to error induced from measurement error or numerical
errors found in the algorithm and implementation. Again one should be cautioned that these
data perturbations are diagnostic tests, not classical statistical tests. As mentioned above,
estimates of perturbed data may be sensitive to other aspects of the model, such as a broad
and flat curvature around the MLE solution in the data space (in the multidimensional
sense) or data that is ill-conditioned with respect to the estimation. There is no threshold
for the degree of statistical significance to attach to the results we observe; however, caution
is warranted when small amounts of measurement or numerical error substantially change
the inferences drawn from a statistical model. As a rule of thumb, we recommend caution
where the confidence intervals reported in the original estimates are much narrower than
the simulated confidence intervals generated when the data is slightly perturbed.

Correctness in this context refers to the reproduction of true values: estimates closer to the
truth are an indication of an internally valid estimation process. For the real data, all but one
of King’s examples, NJ, are based on aggregate data generated from individual data, so the
estimates generated by these models can be compared with the truth. Unfortunately, even
a numerically accurate solution is not guaranteed to produce correct answers (answers that
match the truth), because the model itself could be misspecified. Furthermore, as discussed
above, adding data perturbations introduces attenuation bias into the estimates. For these
reasons, one should not expect a particular solution to provide a perfectly correct estimate,
although it is important to gain insight into how perturbations affect the correctness of
the answer. Particularly, since the same data is tested on all four methods, we should be
interested in cases where different estimates are produced using these same data.

First, we present results based on simulated data. Figure 16.1 provides evidence of the
comparative sensitivity of the Goodman, Achen–Shively, King, and McCue methods under
different conditions: twelve variations of the number of observations, type of correlation,
and degree of truncation. Here shorter bars are better, since they indicate sensitivity of the
algorithm and software to data perturbations by presenting the standard deviation of the
parameter across βb fifty perturbation of simulated data.

Three major patterns are demonstrated by this analysis:

• In all four solutions, the sensitivity to perturbations decreases, holding other factors
constant, as the number of observations in the original data set increases.

• The sensitivity to perturbations decreases with moderate data truncation. For EI, the
decrease was even greater with strong truncation.

22 Many additional configurations were investigated but are not presented here. For AnEI, all parts of the analysis
were replicated using the Stata difficult option. For EI, the replicated analysis used the software defaults. In
addition, the reanalyzed EI results includes corrected Hessians. Combined with variations of the perturbations
(1% normal and 5% uniform, with and without resampling and adjustment for observations near the bound-
aries), there was an additional examination of 32 variations of Table 16.1. The table presented is based on the
most conservative assumptions about noise, and uses the options most favorable to each software package. None
of these variations produced results that were substantially different from those in Table 16.1.
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Figure 16.1. Comparing stability across EI solutions: relative stability (shorter is better) of the King,
McCue, Goodman, weighted Goodman, and quadratic (Achen–Shively) Goodman methods. The
height of the bars shows the standard deviation of the parameter βb across fifty perturbations, on a
scale of [0, 0.1]

• The sensitivity is worst, in all methods, when observations are few, truncation is weak,
and X and T are positively correlated.

We find it reassuring that these findings follow the natural intuition that increasing the
amount of information in the data improves the performance of the methods.

Although King’s EI is internally the most complex algorithm, it is typically less sensi-
tive to perturbations than Goodman’s regression (and weighted Goodman’s), Achen and
Shively’s quadratic model (and our extension of it), and McCue’s simpler alternative when the
number of observations is small. In cases with more observations, all four solutions show
similar sensitivity to data perturbations, although EI tends to shows the least sensitivity
when there is null correlation or when the degree of truncation is strong, AnEI tends
to perform slightly better in the presence of negative and positive correlation and weak
truncation, and weighted Goodman’s shows the least sensitivity when there is moderate
truncation.



P1: FZZ/FZZ P2: FZZ

CB658A-16 CB654-KING-Sample CB658-KING-Sample.cls June 8, 2004 9:37

Ta
bl

e
16

.1
Co

m
pa

ris
on

of
Ec

ol
og

ic
al

In
fe

re
nc

e
So

lu
tio

n
Al

go
rit

hm
s

Ki
ng

Ex
am

pl
e

Pa
ra

m
et

er
W

ei
gh

te
d

Go
od

m
an

Ac
he

n
&

Sh
iv

el
y

Ac
he

n
&

Sh
iv

el
y

b 2
≤

0
Tr

ut
h

CENS1910

(n=50)

β
b i

0.
59

89
(.0

02
3)

0.
55

25
(0

.0
03

0)
0.

65
59

(0
.0

02
4)

0.
73

4
[0

.5
93

6,
0.

06
03

1]
[0

.5
45

0,
0.

55
94

]
[0

.6
50

8,
0.

66
11

]
SE

(β
b i
)

0.
00

85
67

(0
.0

02
1)

0.
01

86
2

(0
.0

04
2)

0.
01

15
3

(0
.0

02
3)

–
[0

.0
04

27
6,

0.
01

34
7]

[0
.0

10
54

,0
.0

30
51

]
[0

.0
07

45
8,

0.
01

65
6]

β
w i

0.
96

63
(0

.0
01

9)
0.

95
78

(0
.0

01
3)

0.
91

48
(0

.0
01

1)
0.

93
39

[0
.9

62
5,

0.
97

07
]

[0
.9

54
7,

0.
96

13
]

[0
.9

12
5,

0.
91

73
]

SE
(β

w i
)

0.
00

43
67

(0
.0

01
2)

0.
00

75
52

(0
.0

01
8)

0.
00

53
42

(0
.0

01
2)

–
[0

.0
02

35
8,

0.
00

66
56

]
[0

.0
04

35
2,

0.
01

21
5]

[0
.0

02
79

3,
0.

00
82

70
]

FULTON

(n=50)

β
b i

0.
68

36
(0

.0
02

9)
0.

50
84

(0
.0

04
4)

0.
80

51
(0

.0
04

1)
0.

53
0

[0
.6

76
5,

0.
68

90
]

[0
.4

97
2,

0.
51

56
]

[0
.7

97
4,

0.
81

52
]

SE
(β

b i
)

0.
04

32
7

(0
.0

09
1)

0.
07

60
1

(0
.0

18
)

0.
06

98
9

(0
.0

01
8)

–
[0

.0
16

11
,0

.0
62

02
]

[0
.0

43
35

,0
.1

08
3]

[0
.0

65
87

,0
.0

73
80

]
β

w i
−0

.2
24

4
(0

.0
06

0)
0.

19
09

(0
.0

10
)

−0
.5

08
9

(0
.0

09
3)

0.
06

47
2

[−
0.

23
9,

−0
.2

09
]

[0
.1

73
2,

0.
21

90
]

[−
0.

53
11

,−
0.

48
93

]
SE

(β
w i

)
0.

10
94

(0
.0

21
)

0.
18

29
(0

.0
42

)
0.

15
87

(0
.0

03
9)

–
[0

.0
47

72
,0

.1
53

8]
[0

.1
05

6,
0.

26
06

]
[0

.1
50

1,
0.

16
75

]

KYCK88

(n=50)

β
b i

0.
07

86
2

(0
.0

67
)

−0
.4

92
1

(0
.1

9)
0.

32
17

(0
.6

4)
0.

66
6

[−
0.

08
55

0,
0.

20
34

]
[−

1.
43

0,
−0

.3
53

0]
[−

0.
44

60
,2

.1
14

]
SE

(β
b i
)

0.
49

36
(0

.0
83

)
0.

98
37

(0
.6

7)
4.

00
9

(1
.4

)
–

[0
.2

89
8,

0.
65

24
]

[0
.1

31
5,

3.
90

]
[0

.4
81

4,
6.

75
7]

β
w i

0.
79

43
(0

.0
03

8)
0.

85
77

(0
.0

13
)

0.
79

95
(0

.0
46

)
0.

75
33

[0
.7

86
1,

0.
80

34
]

[0
.8

48
2,

0.
92

07
]

[0
.6

72
6,

0.
85

21
]

SE
(β

w i
)

0.
02

05
3

(0
.0

04
1)

0.
06

58
5

(0
.0

44
)

0.
27

42
(0

.0
96

)
–

[0
.0

12
90

,0
.0

29
07

]
[0

.0
10

80
,0

.2
53

5]
[0

.0
29

79
,0

.4
67

0]

(c
on

tin
ue

d
)

399



P1: FZZ/FZZ P2: FZZ

CB658A-16 CB654-KING-Sample CB658-KING-Sample.cls June 8, 2004 9:37

Ta
bl

e
16

.1
(c

on
tin

ue
d

)

Ki
ng

Ex
am

pl
e

Pa
ra

m
et

er
W

ei
gh

te
d

Go
od

m
an

Ac
he

n
&

Sh
iv

el
y

Ac
he

n
&

Sh
iv

el
y

b 2
≤

0
Tr

ut
h

LAVOTE

(n=50)

β
b i

0.
62

62
(0

.0
00

48
)

0.
62

38
(0

.0
00

64
)

0.
63

15
(0

.0
00

68
)

0.
61

68
[0

.6
25

2,
0.

62
72

]
[0

.6
22

3,
0.

62
51

]
[0

.6
30

1,
0.

63
28

]
SE

(β
b i
)

0.
00

44
43

(0
.0

01
1)

0.
00

46
96

(0
.0

01
1)

0.
00

43
21

(0
.0

01
1)

–
[0

.0
02

58
3,

0.
00

71
48

]
[0

.0
02

50
3,

0.
00

69
99

]
[0

.0
02

43
7,

0.
00

67
46

]
β

w i
0.

70
63

(0
.0

00
26

)
0.

71
25

(0
.0

00
24

)
0.

70
97

(0
.0

00
32

)
0.

68
42

[0
.7

05
7,

0.
70

69
]

[0
.7

12
0,

0.
71

31
]

[0
.7

09
0,

0.
71

04
]

SE
(β

w i
)

0.
00

17
17

(0
.0

00
38

)
0.

00
19

71
(0

.0
00

55
)

0.
00

16
67

(0
.0

00
37

)
–

[0
.0

00
85

28
,0

.0
02

66
6]

[0
.0

01
13

3,
0.

00
36

12
]

[0
.0

00
93

44
,0

.0
02

51
5]

MATPROII

(n=50)

β
b i

0.
33

99
(0

.0
07

5)
0.

14
64

(0
.0

28
)

0.
68

60
(0

.0
13

)
0.

58
47

[0
.3

26
1,

0.
35

70
]

[0
.0

82
54

,0
.2

24
3]

[0
.6

61
7,

0.
71

41
]

SE
(β

b i
)

0.
07

67
0

(0
.0

17
)

0.
18

27
(0

.0
40

)
0.

08
72

6
(0

.0
23

)
–

[0
.0

43
69

,0
.1

13
4]

[0
.1

03
6,

0.
26

55
]

[0
.0

39
71

,0
.1

45
3]

β
w i

0.
88

57
(0

.0
03

0)
0.

97
44

(0
.0

08
1)

0.
82

12
(0

.0
03

5)
0.

82
42

[0
.8

78
4,

0.
89

17
]

[0
.9

51
3,

0.
99

35
]

[0
.8

14
4,

0.
82

81
]

SE
(β

w i
)

0.
02

57
9

(0
.0

05
5)

0.
05

25
9

(0
.0

11
)

0.
02

91
6

(0
.0

07
5)

–
[0

.0
13

19
,0

.0
36

80
]

[0
.0

29
90

,0
.0

76
49

]
[0

.0
14

87
,0

.0
48

04
]

NJ

(n=50)

β
b i

0.
03

91
5

(0
.0

04
8)

−0
.0

57
29

(0
.0

04
7)

0.
26

24
(0

.0
06

1)
–

[0
.0

28
65

,0
.0

50
20

]
[−

0.
06

84
,−

0.
04

65
]

[0
.2

48
7,

0.
27

29
]

SE
(β

b i
)

0.
02

33
4

(0
.0

07
0)

0.
02

94
9

(0
.0

06
8)

0.
06

97
9

(0
.0

15
)

–
[0

.0
11

87
,0

.0
38

12
]

[0
.0

13
19

,0
.0

41
78

]
[0

.0
35

24
,0

.1
02

0]
β

w i
0.

38
48

(0
.0

00
84

)
0.

43
24

(0
.0

00
95

)
0.

35
82

(0
.0

01
4)

–
[0

.3
82

9,
0.

38
67

]
[0

.4
30

5,
0.

43
42

]
[0

.3
55

6,
0.

36
14

]
SE

(β
w i

)
0.

00
51

25
(0

.0
01

2)
0.

00
67

64
(0

.0
01

6)
0.

01
40

5
(0

.0
03

1)
–

[0
.0

02
47

0,
0.

00
88

75
]

[0
.0

03
55

1,
0.

00
97

18
]

[0
.0

07
20

9,
0.

02
03

6]

SCSP

(n=50)

β
b i

−0
.3

88
9

(0
.0

07
5)

−0
.0

10
20

(0
.0

27
)

0.
72

24
(0

.0
26

)
0.

13
13

[−
0.

40
50

,−
0.

37
50

]
[−

0.
10

88
,−

0.
96

30
]

[0
.6

70
3,

0.
79

36
]

SE
(β

b i
)

0.
03

52
4

(0
.0

08
1)

0.
18

84
(0

.0
47

)
0.

20
34

(0
.0

48
)

–
[0

.0
18

01
,0

.0
55

68
]

[0
.0

91
50

,0
.2

91
8]

[0
.1

26
8,

0.
32

75
]

β
w i

0.
65

36
(0

.0
07

0)
1.

24
7

(0
.0

25
)

−0
.3

58
2

(0
.0

24
)

0.
17

32
[0

.6
40

3,
0.

66
85

]
[1

.1
94

,1
.3

09
]

[−
0.

42
40

,−
0.

31
00

]
SE

(β
w i

)
0.

03
31

2
(0

.0
07

5)
0.

17
32

(0
.0

43
)

0.
18

78
(0

.0
44

)
–

[0
.0

17
87

,0
.0

51
87

]
[0

.0
84

61
,0

.2
70

6]
[0

.1
16

6,
0.

30
21

]

400



P1: FZZ/FZZ P2: FZZ

CB658A-16 CB654-KING-Sample CB658-KING-Sample.cls June 8, 2004 9:37

Ki
ng
E
I

(v
1.

7)
M

cC
ue

-J
am

es
A
n
E
I

Ki
ng

Ex
am

pl
e

Pa
ra

m
et

er
(b

es
ts

et
tin

gs
,i

nv
er

tib
le

He
ss

ia
ns

)
de

fa
ul

ts
et

tin
gs

Go
od

m
an

’s
Re

gr
es

si
on

Tr
ut

h

CENS1910

(obs=1040)

LL
24

05
(1

2)
24

04
(5

.8
)

–
–

[2
37

8,
24

32
]n

=
50

[2
39

5,
24

12
]n

=
7

β
b i

0.
63

96
(0

.0
01

8)
0.

57
42

(0
.0

02
2)

0.
61

25
(0

.0
01

1)
0.

73
4

[0
.6

35
9,

0.
64

35
]n

=
50

[0
.5

70
8,

0.
57

73
]n

=
7

[0
.6

09
9,

0.
61

46
]n

=
50

SE
(β

b i
)

0.
00

34
38

(0
.0

00
28

)
0.

11
79

(0
.0

01
2)

0.
00

65
42

(0
.0

00
05

0)
–

[0
.0

02
92

7,
0.

00
39

73
]n

=
50

[0
.1

16
1,

0.
11

98
]n

=
7

[0
.0

06
50

0,
0.

00
66

00
]n

=
50

β
w i

0.
94

94
(0

.0
00

94
)

0.
95

02
(0

.0
01

3)
0.

93
47

(0
.0

00
62

)
0.

93
39

[0
.9

47
6,

0.
95

13
]n

=
50

[0
.9

48
5,

0.
95

17
]n

=
7

[0
.9

33
5,

0.
93

60
]n

=
50

SE
(β

w i
)

0.
00

14
26

(0
.0

00
12

)
0.

04
54

2
(0

.0
00

44
)

0.
00

37
86

(0
.0

00
03

5)
–

[0
.0

01
20

0,
0.

00
16

72
]n

=
50

[0
.0

44
57

,0
.0

45
77

]n
=

7
[0

.0
03

70
0,

0.
00

38
00

]n
=

50

FULTON

(obs=289)

LL
58

6.
5

(2
.4

)
72

6.
0

(7
.1

)
–

–
[5

82
.0

,5
92

.9
]n

=
24

[7
12

.3
,7

41
.7

]n
=

50
β

b i
0.

57
24

(0
.0

01
2)

0.
54

82
(0

.0
03

1)
0.

67
25

(0
.0

02
4)

0.
55

30
[0

.5
70

3,
0.

57
63

]n
=

24
[0

.5
40

7,
0.

55
53

]n
=

50
[0

.6
67

4,
0.

67
79

]n
=

50
SE

(β
b i
)

0.
00

21
29

(0
.0

00
17

)
0.

09
72

5
(0

.0
00

96
)

0.
01

17
9

(0
.0

00
14

)
–

[0
.0

01
80

0,
0.

00
25

00
]n

=
24

[0
.0

94
63

,0
.0

99
25

]n
=

50
[0

.0
11

43
,0

.0
12

00
]n

=
50

β
w i

0.
03

82
6

(0
.0

01
1)

0.
06

36
6

(0
.0

06
9)

−0
.1

94
7

(0
.0

05
0)

0.
06

47
2

[0
.0

36
20

,0
.0

40
30

]n
=

24
[0

.0
51

27
,0

.0
82

59
]n

=
50

[−
0.

20
61

,−
0.

18
41

]n
=

50
SE

(β
w i

)
0.

00
50

33
(0

.0
00

42
)

0.
05

23
0

(0
.0

03
4)

0.
02

43
7

(0
.0

00
29

)
–

[0
.0

04
30

0,
0.

00
60

00
]n

=
24

[0
.0

46
78

,0
.0

65
72

]n
=

50
[0

.0
23

80
,0

.0
24

80
]n

=
50

KYCK88

(obs=118)

LL
21

4.
0

(1
.1

)
21

6.
5

(2
.2

)
–

–
[2

11
.8

,2
16

.8
]n

=
39

[2
13

.4
,2

19
.5

]n
=

12
β

b i
0.

41
52

(0
.0

51
)

0.
37

52
(0

.0
88

)
−0

.4
13

9
(0

.0
45

)
0.

66
60

[0
.3

52
0,

0.
63

33
]n

=
39

[0
.1

29
1,

0.
45

25
]n

=
12

[−
0.

50
21

,−
0.

29
68

]n
=

50
SE

(β
b i
)

0.
09

95
4

(0
.0

23
)

0.
15

79
(0

.0
23

)
0.

20
56

(0
.0

04
9)

–
[0

.0
62

10
,0

.1
82

8]
n

=
39

[0
.1

38
1,

0.
22

25
]n

=
12

[0
.1

92
8,

0.
21

47
]n

=
50

β
w i

0.
77

05
(0

.0
04

4)
0.

82
09

(0
.0

04
2)

0.
85

16
(0

.0
02

3)
0.

75
33

[0
.7

54
6,

0.
77

83
]n

=
39

[0
.8

16
3,

0.
83

24
]n

=
12

[0
.8

46
0,

0.
85

52
]n

=
50

SE
(β

w i
)

0.
00

70
79

(0
.0

01
6)

0.
10

23
(0

.0
02

3)
0.

01
17

3
(0

.0
00

19
)

–
[0

.0
04

50
0,

0.
01

34
0]

n
=

39
[0

.0
97

04
,0

.1
05

5]
n

=
12

[0
.0

11
23

,0
.0

12
00

]n
=

50

(c
on

tin
ue

d
)

401



P1: FZZ/FZZ P2: FZZ

CB658A-16 CB654-KING-Sample CB658-KING-Sample.cls June 8, 2004 9:37

Ta
bl

e
16

.1
(c

on
tin

ue
d

)

Ki
ng
E
I

(v
1.

7)
M

cC
ue

-J
am

es
A
n
E
I

Ki
ng

Ex
am

pl
e

Pa
ra

m
et

er
(b

es
ts

et
tin

gs
,i

nv
er

tib
le

He
ss

ia
ns

)
de

fa
ul

ts
et

tin
gs

Go
od

m
an

’s
Re

gr
es

si
on

Tr
ut

h

LAVOTE

(obs=3262)
LL

67
84

(8
.0

)
69

13
(1

0)
–

–
[6

76
8,

67
99

]n
=

50
[6

89
0,

69
31

]n
=

50
β

b i
0.

62
52

(0
.0

00
51

)
0.

56
27

(0
.0

00
48

)
0.

62
78

(0
.0

00
47

)
0.

61
68

[0
.6

24
1,

0.
62

63
]n

=
50

[0
.5

61
8,

0.
56

37
]n

=
50

[0
.6

26
7,

0.
62

88
]n

=
50

SE
(β

b i
)

0.
00

11
20

(0
.0

00
07

8)
0.

21
82

(0
.0

00
28

)
0.

00
33

86
(0

.0
00

03
5)

–
[0

.0
01

00
0,

0.
00

13
00

]n
=

50
[0

.2
17

5,
0.

21
87

]n
=

50
[0

.0
03

30
0,

0.
00

34
00

]n
=

50
β

w i
0.

70
67

(0
.0

00
26

)
0.

70
89

(0
.0

00
23

)
0.

71
11

(0
.0

00
23

)
0.

68
42

[0
.7

06
0,

0.
70

72
]n

=
50

[0
.7

08
4,

0.
70

94
]n

=
50

[0
.7

10
7,

0.
71

16
]n

=
50

SE
(β

w i
)

0.
00

04
02

0
(0

.0
00

02
5)

0.
07

09
6

(0
.0

00
25

)
0.

00
17

94
(0

.0
00

02
4)

–
[0

.0
00

32
75

,0
.0

00
50

00
]n

=
50

[0
.0

70
50

,0
.0

71
63

]n
=

50
[0

.0
01

70
0,

0.
00

18
00

]n
=

50

MATPROII

(obs=268)

LL
40

7.
2

(2
.6

)
41

5.
9

(2
.5

)
–

–
[3

99
.4

,4
11

.2
]n

=
41

[4
11

.2
,4

20
.9

]n
=

50
β

b i
0.

61
43

(0
.0

06
8)

0.
52

55
(0

.0
09

7)
0.

51
52

(0
.0

04
6)

0.
58

47
[0

.6
00

6,
0.

62
79

]n
=

41
[0

.5
04

5,
0.

54
32

]n
=

50
[0

.5
06

1,
0.

52
49

]n
=

50
SE

(β
b i
)

0.
03

60
2

(0
.0

02
6)

0.
19

47
(0

.0
03

0)
0.

04
54

7
(0

.0
00

25
)

–
[0

.0
28

35
,0

.0
40

00
]n

=
41

[0
.1

89
1,

0.
20

24
]n

=
50

[0
.0

44
85

,0
.0

45
97

]n
=

50
β

w i
0.

80
78

(0
.0

02
4)

0.
85

65
(0

.0
03

2)
0.

86
73

(0
.0

01
6)

0.
82

42
[0

.8
00

9,
0.

81
39

]n
=

41
[0

.8
50

8,
0.

86
39

]n
=

50
[0

.8
63

0,
0.

87
03

]n
=

50
SE

(β
w i

)
0.

01
02

2
(0

.0
00

78
)

0.
12

55
(0

.0
01

1)
0.

01
78

7
(0

.0
00

09
7)

–
[0

.0
08

04
0,

0.
01

14
9]

n
=

41
[0

.1
23

1,
0.

12
77

]n
=

50
[0

.0
17

60
,0

.0
18

07
]n

=
50

402



P1: FZZ/FZZ P2: FZZ

CB658A-16 CB654-KING-Sample CB658-KING-Sample.cls June 8, 2004 9:37

NJ

(obs=268)
LL

10
38

(3
.3

)
10

97
(6

.6
)

–
–

[1
03

1,
10

45
]n

=
50

[1
08

1,
11

11
]n

=
50

β
b i

0.
06

13
6

(0
.0

02
7)

0.
07

50
8

(0
.0

03
5)

0.
02

26
7

(0
.0

03
3)

–
[0

.0
56

36
,0

.0
68

90
]n

=
50

[0
.0

66
86

,0
.0

83
68

]n
=

50
[0

.0
12

85
,0

.0
30

15
]n

=
50

SE
(β

b i
)

0.
00

66
02

(0
.0

00
54

)
0.

02
54

2
(0

.0
08

6)
0.

02
67

6
(0

.0
00

14
)

–
[0

.0
05

52
8,

0.
00

77
18

]n
=

50
[0

.0
12

50
,0

.0
51

27
]n

=
50

[0
.0

26
43

,0
.0

27
07

]n
=

50
β

w i
0.

37
96

(0
.0

01
)

0.
40

03
(0

.0
00

6)
0.

41
50

(0
.0

00
65

)
–

[0
.3

77
8,

0.
38

17
]n

=
50

[0
.3

98
9,

0.
40

15
]n

=
50

[0
.4

13
9,

0.
41

64
]n

=
50

SE
(β

w i
)

0.
00

15
28

(0
.0

00
13

)
0.

07
92

9
(0

.0
01

1)
0.

00
48

50
(0

.0
00

05
1)

–
[0

.0
01

30
0,

0.
00

17
72

]n
=

50
[0

.0
77

05
,0

.0
81

05
]n

=
50

[0
.0

04
80

0,
0.

00
49

00
]n

=
50

SCSP

(obs=3185)

LL
56

13
(1

.2
)

53
17

(9
.5

)
–

–
[5

61
2,

56
14

]n
=

2
[5

29
5,

53
34

]n
=

50
β

b i
0.

05
72

0
(0

.0
07

4)
0.

14
54

(0
.0

00
66

)
−0

.1
84

7
(0

.0
05

0)
0.

13
13

[0
.0

52
00

,0
.0

62
40

]n
=

2
[0

.1
43

8,
0.

14
69

]n
=

50
[−

0.
19

42
,−

0.
17

22
]n

=
50

SE
(β

b i
)

0.
00

30
50

(0
.0

00
92

)
0.

10
04

(0
.0

01
1)

0.
02

48
6

(0
.0

00
09

7)
–

[0
.0

02
40

0,
0.

00
37

00
]n

=
2

[0
.0

98
17

,0
.1

02
9]

n
=

50
[0

.0
24

70
,0

.0
25

07
]n

=
50

β
w i

0.
24

29
(0

.0
06

9)
0.

17
77

(0
.0

00
59

)
0.

48
38

(0
.0

04
6)

0.
17

32
[0

.2
38

0,
0.

24
78

]n
=

2
[0

.1
76

4,
0.

17
89

]n
=

50
[0

.4
72

5,
0.

49
27

]n
=

50
SE

(β
w i

)
0.

00
28

00
(0

.0
00

85
)

0.
16

93
(0

.0
00

87
)

0.
02

27
6

(0
.0

00
08

8)
–

[0
.0

02
20

0,
0.

00
34

00
]n

=
2

[0
.1

67
2,

0.
17

13
]n

=
50

[0
.0

22
60

,0
.0

22
90

]n
=

50

403



P1: FZZ/FZZ P2: FZZ

CB658A-16 CB654-KING-Sample CB658-KING-Sample.cls June 8, 2004 9:37

404 Micah Altman, Jeff Gill, and Michael P. McDonald

Counterintuitively, the most basic and simple algorithm, Goodman’s regression, is not
always the least sensitive to data perturbations. This is because Goodman’s regression, unlike
the more complex alternatives, is not constrained to fall within the unit interval. Out-of-
bounds values cannot be produced by King’s or McCue’s method, and that explains, in part,
the higher degree of sensitivity of Goodman’s regression to data perturbations.

Achen and Shively’s quadratic model is consistently the most sensitive to perturbations.
This may simply be because Achen and Shively’s approach is mathematically more sensitive
to measurement error. Since X appears in the linear form of the regression in two places (and
squared in the second), the effect of a perturbation to X is greater in Achen and Shively’s
quadratic model than in Goodman’s regression, with a only single X term. Cheng and Van
Ness (1999: Section 6.4) look at this phenomenon in detail in terms of a general polynomial
form

ηi = β0 + β1ξ + β2ξ
2 + · · · + βkξ

k (16.7)

for i = 1, . . . , n cases. They find that the resulting regression error term is augmented by a
component resulting from the polynomial specification.

We analyze each of the 50 separate perturbed data sets, based on the data provided by King
(1997) using Goodman’s regression, Achen and Shively’s quadratic model, EI, and AnEI.
The results are organized by the following cases: for the log likelihood, the coefficients βw

and βb , and their associated standard errors. In every case where one of the three algorithms
produced an estimate, the table lists the mean, standard deviation, and 95% range (2.5% and
97.5% quantiles) based on the observed standard deviation across the 50 runs. In addition,
for comparison purposes, we report the “truth,” available in all but the NJ example.

There are some notable patterns in the results. First, it is clear that some caution is war-
ranted when employing the quadratic model. Generally, the quadratic model was more
sensitive to perturbations in these examples (the variance of the estimates across perturba-
tions is larger than for the other models), as it was with the simulated data. In addition,
results from the quadratic model were often substantially different when one assumed
b2 ≤ 0. Moreover, the quadratic model often was much farther from the true estimates than
EI and never much closer.

Second, there are some similarities among the results. For one data set, LAVOTE, all
models produce estimates of βb and βw that are close to one another and close to the “truth”
(i.e., are less than 7 percentage points – 0.07 – from the latter). In addition, Goodman’s
regression (unweighted), EI, and AnEI produced mean estimates of βb and βw across the
perturbed data sets close to one another and close to the “truth” for NJ23 and MATPROII. For
CENS1910, the three methods produced correct estimates for βw , but all underestimated βb

by at least 10 percentage points (EI coming closest to the “truth”). For all of these examples,
the three solutions also appeared to be relatively insensitive to perturbations. However, the
standard errors of the estimates for AnEI were sometimes much larger than the other two
models.

Third, EI performed quite well (when run with the best options, and after discarding
the runs that resulted in noninvertible Hessians). Its estimates were close to the true values
more often than any of the competitors’, were sometimes much closer to them than the
other models’, and were never much farther away from them than the others.’ In addition,
the estimates were, for the most part, quite stable across the perturbations: the range of the

23 For NJ, this data is not generated from individual data aggregated to pose on ecological inference problem, so
the “truth” is not known for this one example.
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perturbed estimates was small, and the standard deviation of the perturbed estimates was
almost always considerably smaller than the originally estimated standard deviation.

Finally, there were some notable dissimilarities among the models, and some anomalies.
For FULTON, KYCK88, and SCSP, Goodman’s regression and its weighted variant produced
incorrect estimates outside the [0 :1] unit square, and in addition produced more sensitive
estimates than in the other four examples. (As King notes, such results suggest aggregation
bias.)

Despite the aggregation bias in FULTON, the quadratic model, EI, and AnEI estimate
βb close to the “truth.” However, the quadratic model produces estimates of βw relatively
far from the “truth.” EI has difficulty arriving at a solution, finding an invertible Hessian
only 23 of 50 times. AnEI reaches a solution for all 50 perturbed data sets, which were on
average close to the “truth.”

With KYCK88, King observes a ridge in the tomography plot for βb , indicating that the
likelihood surface is flat over a large region around the solution for this parameter. Our
perturbation results highlight the lack of information in the data: For all four methods,
estimates of βb have large standard errors, are far from the “truth,” and are sensitive to data
perturbations. The sensitivity to perturbations for βb , although large, is not worrisome,
because it does not exceed the original confidence intervals: While the estimates are not
good, the researcher would not have been misled.

In KYCK88 EI produces an estimate of βb that is closer to the “truth” than any other
method. For βw , both EI and AnEI come close to the “truth” – although EI is closer. In
addition, EI finds invertible Hessians for 39 of 50 cases, and AnEI converges only 12 times,
although the range of the βb estimates is quite large.

With SCSP, Achen and Shively’s quadratic model fails, producing estimates outside the
legal bounds on using either form of the model. For these coefficients, the quadratic model
shows considerably more sensitivity to data perturbations, and much larger standard errors
than EI. AnEI produces good parameter estimates, but very large standard errors. EI
encounters particular difficulties in inverting the Hessian, resorting to using the generalized
inverse or generalized Cholesky method of inverting the Hessian for all but 2 of the 50 runs.
(It is important to recall that it seemed more conservative to analyze only the runs where
no warnings about Hessians were issued. This approach can lead to few final observations,
as is the case here. We reanalyzed the data using the previously excluded 48 runs, but this
did not substantially affect our conclusions.) The large number of warnings encountered
during the perturbation runs signals that numerical issues have caused problems for EI –
in King’s original analysis, the results were much closer to the “truth.”

16.5 CONCLUSION

Readers of this volume may be overwhelmed by the plethora of solutions proposed and the
subsequent critiques of these approaches. We believe this is a sign that the field of ecological
inference has moved into a new and dynamic phase of scientific progress. We have tried
to exploit this situation by studying herein the various tradeoffs between complexity and
accuracy. We noted most basically that when the problem is one of the easy forms, there
is little to be lost in selecting between the approaches studied, as they produce similar
examples, all close to the truth when it is known. When more challenging problems arise,
Goodman’s regression often produces invalid results outside the unit square. EI’s basic
constructs preclude such nonsensical results, but the necessary complexity of the method
can lead to slightly more sensitivity in the underlying statistical computations. This is a basic
tradeoff: sensitivity versus validity.
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Using the recommended, most numerically accurate options may help improve the re-
searcher’s accuracy, but this is not a guarantee of success. King’s repeated admonishments
to users of his EI program should be well heeded. Users should carefully scrutinize all avail-
able diagnostic tools available to them, including common sense. To the diagnostic tests
incorporated into the EI program, we herein suggest data perturbations as an additional
diagnostic test: Numerical and data problems can be revealed by failure to converge across a
large proportion of slightly perturbed data sets, or by variances of the estimated coefficients
that substantially exceed the originally reported confidence intervals.

These results raise the question: is numerical accuracy for ecological inference related to
the statistical problems? Estimated results may be more sensitive when the problem is ill
conditioned, so that small changes in the data may result in relatively large changes in the
shape of the likelihood function to be estimated. In this situation, data perturbations may
provide another diagnostic test for the presence of aggregation bias or for other mismatches
between the data and the statistical assumptions of the model. It is not a procedure recom-
mended for initial data exploration, as the amount of time to conduct this suggested test
increases linearly with the number of perturbed data sets – but it should be used before
publication of results.

REFERENCES

Achen, Christopher H. 2002. “Toward a New Political Methodology: Microfoundations and ART,”
Annual Review of Political Science, 5: 423–50.

Achen, Christopher and Phillips Shively. 1995. Cross-level Inference, Chicago: University of Chicago
Press.

Altman, Micah, Jeff Gill, and Michael P. McDonald. 2003. Numerical Issues in Statistical Computing
for the Social Scientist. New York: Wiley.

Altman, Micah and Michael P. McDonald. 2001. “Choosing Reliable Statistical Software,” PS: Political
Science and Politics, XXXIV: 681–687.

Altman, Micah and Michael P. McDonald. 2003. “Replication with Attention to Numerical Accuracy,”
Political Analysis, 11: 302–307.

Andrews, D. W. K. 1988. “Chi-Square Diagnostic Tests for Econometric Models: Theory,” Econometrica
56: 1419–1453.

Beaton, Albert E., Donald B. Rubin, and John L. Barone. 1976. “The Acceptability of Regression
Solutions: Another Look at Computational Accuracy,” Journal of the American Statistical Association,
71: 158–168.

Beaton, Albert E., Donald B. Rubin, and John L. Barone. 1977. “More on Computational Accuracy in
Regression: Comment,” Journal of the American Statistical Association, 72, 600–601.

Cheng, C., and J. W. Van Ness. 1999. Statistical Regression with Measurement Error. London: Arnold.
Cook, R. Dennis. 1986. “Assessment of Local Influence,” Journal of the Royal Statistical Society, 48:

133–169.
Drezner, Z. and G. O. Wesolowsky. 1989. “On the Computation of the Bivariate Normal Integral,”

Journal of Statistical Computation and Simulation, 35: 101–107.
Duncan, Otis Dudley and Beverly Davis. 1953. “An Alternative to Ecological Correlation,” American

Sociological Review, 18: 665–166.
Fahrmeir, L. and G. Tutz. 2001. Multivariate Statistical Modelling Based on Generalized Linear Models,

2nd ed. New York: Springer-Verlag.
Ferree, Karen. 1999. “Iterative Approaches to R × C Ecological Inference Problems: Where They

Can Go Wrong.” Presented at Summer Methods Conference, College Station, TX. Available as
http://polmeth.wustl.edu/papers/99/ferre99.pdf.

Freedman, D. A., M. Ostland, M. R. Roberts, and S. P. Klein. 1999. “Response to King’s Comment,”
Journal of the American Statistical Association, 94: 355–357.



P1: FZZ/FZZ P2: FZZ

CB658A-16 CB654-KING-Sample CB658-KING-Sample.cls June 8, 2004 9:37

A Comparison of the Numerical Properties of EI Methods 407

Gentle, J. E. 1999. Random Number Generation and Monte Carlo Methods. New York: Springer-Verlag.
Gill, Jeff and Gary King. 2003. “Inverting Hessians” in Altman, Micah, Jeff Gill, and Michael P.

McDonald. 2003. Numerical Issues in Statistical Computing for the Social Scientist. New York:
Wiley.

Gill, Phillip E., Walter Murray, and Margaret H. Wright. 1981. Practical Optimization. San Diego:
Academic Press.

Goodman, Leo. 1953. “Ecological Regressions and the Behavior of Individuals,” American Sociological
Review, 18: 663–666.

Gould, W. and W. Sribney. 1999. Maximum Likelihood Estimation with Stata. College Station, TX:
Stata Press.

Hausman, J. A. 1978. “Specification Tests in Econometrics,” Econometrica, 46: 1251–1271.
Herron, M. C. and K. W. Shotts. 2004. “Testing for Logical Inconsistency in EI-based Second Stage

Regressions,” American Journal of Political Science, 48: 172–183.
Herron, M. C. and K. W. Shotts. 2003. “Using Ecological Inference Point Estimates As Dependent

Variables in Second-Stage Linear Regressions,” Political Analysis, 11, 1: 44–64. With a response from
Adolph and King (pp. 65–76), a reply (pp. 77–86), and a summary by Adolph, King, Herron, and
Shotts (pp. 86–94).

Higham, Nicholas J. 2002. Accuracy and Stability of Numerical Algorithms, 2nd ed. Philadelphia: SIAM.
King, Gary. 1997. A Solution to the Ecological Inference Problem. Princeton: Princeton University Press.
Knuth, Donald E. 1997. The Art of Computer Programming, 3rd ed. Reading, MA: Addison-Wesley.
Kramer, W. and H. Sonnberger. 1986. “Computational Pitfalls of the Hausman Test,” Journal of Eco-

nomic Dynamics and Control, 10: 163–165.
Lewis, J., followed by a reply by K. McCue, (2002). Comment on “The Statistical Foundations of the

EI Method” and Reply (An exchange in the letter’s to the editor section.) The American Statistician
56: 255–257.

McCue, Kenneth. 2001. “The Statistical Foundations of the ‘EI’ Method,” The American Statistician,
55: 106–111.

McCullough, B. D. 1998. “Assessing the Reliability of Statistical Software: Part I,” The American Statis-
tician, 53: 149–159.

McCullough, B. D. 1999a. “Econometric Software Reliability: Eviews,
LIMDEP, SHAZAM, and TSP,” Journal of Applied Econometrics, 14: 191–202.

McCullough, B. D. 1999b. “Assessing the Reliability of Statistical Software: Part II,” The American
Statistician, 53: 149–159.

McCullough, B. D. and H. Vinod. 1999. “The Numerical Reliability of Econometric Software,” Journal
of Economic Literature, 37: 633–665.

Morgan, Byron J. T. 1984. Elements of Simulation. New York: Chapman & Hall.
Parker, D. Stott. 1997. “Monte Carlo Arithmetic: Exploiting Randomness in Floating-Point Arith-

metic.” Technical Report CSD-970002. Computer Science Dept., UCLA. http://www.cs.

ucla.edu/ stott/mca/.
Parker, D. Stott, Brad Pierce, and Paul R. Eggert. 2000. “Monte Carlo Arithmetic,” Computing in Science

and Engineering, July, 58–68.
Pregibon, D. 1981. “Logistic Regression Diagnostics.” Annals of Statistics, 9: 705–724.
Press, William H., Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. 2002. Numerical

Recipes in C++: The Art of Scientific Computing, 2nd ed. Cambridge, U.K.: Cambridge University
Press.

Ripley, Brian D. 1987. Stochastic Simulation. New York: Wiley.
Ripley, Brian D. 1988. “Uses and Abuses of Statistical Simulation,” Mathematical Programming, 42:

53–68.
Schnabel, Robert B. and Elizabeth Eskow. 1990. “A New Modified Cholesky Factorization,” SIAM

Journal of Scientific Statistical Computing, 11: 1136–1158.
Stata Corporation, 1999. Stata Statistical Software Release 6.0. College Station, TX: Stata Corporation.
St. Laurent, R. T. and R. D. Cook. 1993. Leverage, Local Influence and Curvature in Nonlinear Regres-

sion. Biometrika 80: 99–106.



P1: FZZ/FZZ P2: FZZ

CB658A-16 CB654-KING-Sample CB658-KING-Sample.cls June 8, 2004 9:37

408 Micah Altman, Jeff Gill, and Michael P. McDonald

Tam Cho, Wendy K. 1998. “Iff the Assumption Fits . . . : A Comment on the King Ecological Inference
Model,” Political Analysis, 7: 143–164.

Thursby, Jerry G. 1985. “The Relationship among the Specification Tests of Hausman, Ramsey, and
Chow.” Journal of the American Statistical Association, 80: 926–928.

White, Halbert. 1981. “Consequences and Detection of Misspecified Nonlinear Regression Models.”
Journal of the American Statistical Association, 76: 419–433.

White, Halbert. 1982. “Maximum Likelihood Estimation of Misspecified Models.” Econometrica, 50:
1–26.



P1: FZZ/FZZ P2: FZZ

CB658-index CB654-KING-Sample CB658-KING-Sample.cls April 29, 2004 0:2

Index

1920 Presidential election, 145
2 × 2 tables, 9–10, 13, 26, 49–55, 60, 67–68, 122, 150,

161, 190, 231–233, 266–267, 269, 287, 301,
304, 322–323, 332, 335

2 × 3 tables, 340–341
2000 Census, 1
2SAIV, 188n, 204
accounting identity, 4–5, 24, 100, 126, 150, 158, 190,

192, 268–269, 271, 282, 294, 297, 346,
354–360, 363, 365, 377–378

accuracy, 11, 90–91, 125, 188–189, 195, 201, 319, 383,
386, 387–388, 391–392, 395–396, 405–406

Achen, Christopher H., 4, 11, 13, 17, 20, 25, 49, 149,
161–162, 186, 268–269, 300, 303, 322, 325,
327, 330, 351, 353, 381, 383–384, 392–393,
397, 398n, 404–406

Adams, Greg, 112, 113, 122, 216, 232
Addy, C. L., 239, 244
Adolph, Christopher, 8, 11, 245, 253–254, 264, 407
aggregate binomial distribution, 358, 360
aggregate line segment, 129
aggregate residuals, 376–377
aggregation bias, 10–11, 70, 72, 75, 77, 79, 83–90, 105,

108, 111, 114, 117, 119–120, 147–149, 234,
245, 249, 252, 254, 256, 258–260, 262, 269, 289,
296–297, 303, 326, 346, 356, 365, 392–393,
405–406

aggregation consistency, 352, 354–355, 357, 359–360,
363, 377

aggregation effect, 233–234
aggregation, information lost, 52–53
aggregation, two components of, 87n
Agnew, John, 246, 264, 342, 350
Aitchison, J., 105, 121
Alabama, 85
algorithm, defined, 387n
algorithmic issues, numerical accuracy, 388
Alt, James, 81, 93
Altman, Micah, 11, 112–113, 122, 216, 232, 364,

383–386, 386n, 388, 390, 392, 394, 396, 398,
404, 406, 408

Amemiya, Takeshi, 201, 204
analytic derivatives, 394

Andrews, D. W. K., 395, 406
AnEI, 392, 397–398, 401–402, 404–405
Anselin, Luc, 69, 76, 78, 86, 93, 125, 142, 184, 186, 245,

245n, 246–247, 253, 256, 258, 262, 264, 269,
300, 351, 361, 381

Ansolabehere, S., 19, 50
Arbia, G., 234–235, 243–244
ArcView, 252
area-minimizing algorithm, 136, 139
areal interpolation, 235–236
Argentina, 246, 258
ARMS software, 101–103
Arnold, R., 283, 300, 301
assumptions, 6, 7, 16, 19–21, 28, 30, 33, 46, 58, 72,

97–103, 144–145, 149–150, 153–160, 184, 190,
198, 208–211, 219, 249–250, 269, 296, 325,
338, 340, 353, 393

asymptotic normality, 175
constancy, 191, 356
constant baseline probabilities, 318
distributional, 8, 79, 107, 113, 116, 150, 151, 272,

274, 318, 349, 376
Goodman’s, 4n, 120
homogeneity, 58, 62, 66
independence assumption, 111, 121, 224, 327, 372
no aggregation bias, 254, 356, 365
no confounding, 320
no exposure effect, 327
Freedman’s assumption, 328
of EI, discussion of violations, 107, 120–121
required for ecological inference, 107, 266
Shively’s, 394
spatial independence, 262, 356
useful in MCMC estimation, 160
untestable assumptions, 296

asthma data, 236, 304, 313, 315, 320, 322, 324, 330
asymptotic normal theory, 121
attenuation bias, 254, 392, 397
Australian census, 9, 61
autocorrelation statistics, 270, 275, 283, 291, 298

backcasting, 190
backward error, defined, 389n

409



P1: FZZ/FZZ P2: FZZ

CB658-index CB654-KING-Sample CB658-KING-Sample.cls April 29, 2004 0:2

410 Index

Baggerly, K., 166, 186
Balintfy, J. L., 360, 382
Baltes, P. B., 49
Banducci, S., 334, 349
Barndorff-Nielsen, O. E., 21, 49
Barone, John L., 389, 406
Barreto, Matt A., 88, 93
basic EI model, 2–7, 79, 98–99, 101, 121
Bayesian approach, 28, 93, 145, 149, 160, 195–196,

200, 207, 231–232, 272, 293, 300, 318,
357–358, 359, 361, 381, 384

confidence intervals, 294
credibility intervals, 200, 223
estimation theory, 363
inference, 12, 28, 31, 50, 70, 121, 211, 350, 361, 382
method of moments, 180
models, 8–10, 15, 25, 28, 37, 97, 149, 151n, 152, 180,

231, 300
hierarchical, 13, 46, 207, 238, 294, 318, 376
point estimates (Figure 9.10), 222
posteriors, 376
predictive distributions, 357
simulation, 188–189, 195, 396
statistics, 93, 231, 300, 354, 357, 361

bayesian confidence intervals (CI), 294–295
Beaton, Albert E., 389, 391n, 406
Beck, Nathaniel, 201, 204, 251n, 264
Beck, Paul Allen, 334, 349
Beh, Eric J., 9, 58–59, 68
benchmark cases, use as a diagnostic, 388
Benoit, Kenneth, 11, 26, 49, 61–62, 68, 112–113, 122,

216, 232, 284, 292, 300, 333–334, 336, 338, 340,
341–342, 344, 346, 348, 350, 357, 381

Bera, Anil K., 204
Bernardinelli, L., 318, 331
Besag, Julian, 30, 49, 207, 210, 210n, 211, 224, 231,

271–273, 298, 300, 318, 330
Best, N. G., 15, 50, 101, 121, 272, 274, 297, 300–301,

331–332
beta-binomial hierarchical EI model, 268, 352, 384, see

also King, Gary
between-area confounder, 307, 310–315, 326, 328, see

also confounding
bias due to unmeasured covariates, 272, 296–297,

303–304
due to presence of contextual effects, 289, 304
due to spatial heterogeneity, 10–11, 249, 253, 256,

262, 304
bias in EI, 111, 120–121
biases, arising from assumptions, 266–267
Biehl, K., 235, 244
Biggar, Jeanne C., 79, 93
binomial sampling, 22
Binomial-Beta Hierarchical Methods, 351–380
binomial-beta hierarchical, 268, 352, 384
binomial-beta model, 45, see also King, Gary
Bithell, J. F., 239, 240, 242, 244
bivariate binomial-beta distribution, 365

black candidate, 77, 112, 119, 122, 125–127, 131,
137–138

Blackstone Jr., J. H., 360, 382
Blalock, H. M., 235, 244
block kriging, 235–238
Blue Book of the State of Illinois, 147n
Bobo, Lawrence, 112, 121
Booth, J. G., 58, 68
bootstrap method, 10, 124, 132, 136, 188–189,

194–195, 198–204, 389, 393, 394
bootstrap resampling, 195, 203
Boston, urban wards in, 153, 160
bounding information, 169, 171, 174
bounds (method of), 2–13, 22–24, 32–33, 42, 46, 57,

73–77, 81–88, 91–92, 100, 107, 123–125, 127,
129, 130, 133, 137, 140, 148, 150, 169–171,
183–185, 192–193, 209, 213, 216, 219, 223,
224, 231, 254, 258, 261, 263, 324, 344, 354–360,
377–378, 385, 387, 404–405

bounds, Duncan-Davis, 10, 22, 124–127, 133–134,
183, 192–193, 209, 354, 354n, 357, 360, 377, 385

bounds, informative, 213, 216, 223–224, 231, 261, 262
Bradley, Neil, 112, 122
Brady, Henry E., 88, 96
Breckling, J. U., 53, 68
Brennan, Geoffrey, 336, 350
Breslow, N., 305, 330
Brillinger, D. R., 238–239, 243–244
Bronner, M., 332
Brown, P. J., 13, 21, 49, 244
Brunsdon, Charles A., 245n, 249–250, 250n, 252–253,

264
Budge, Ian, 334, 350
Buenos Aires, 258–262
Burden, Barry C., 69, 89, 90, 93–94, 334, 350
Burdick, D. S., 360, 382
Burnham, Walter Dean, 146, 161
Butler, A. J., 244
Byar, D. P., 309, 331
Byers, S., 30, 49

C++ code, 212
calibration, of model, 251
California general election, 78–79
Calvo, Ernesto, 10, 184, 186, 233, 245, 256, 256n, 258,

260, 262, 264, 297, 300
Campbell, David, 85, 94
CAR (conditional autoregressive) model, 318
Carlin, B. P., 244
Carlin, J. B., 354, 381
Carsey, Thomas M., 91, 94
Carstairs, V., 322, 331
cartel switching, 337, 344f
Cartel-disloyal voting, 338–339, 340, 342, 349
Cartel-loyal voting, 338–339, 342, 345
cartel-loyality, 336–349
Carter data set, 138–139
case, 304



P1: FZZ/FZZ P2: FZZ

CB658-index CB654-KING-Sample CB658-KING-Sample.cls April 29, 2004 0:2

Index 411

Casseti, 250
casuality, difficulties of determining, 304–305,

316–317
causal model, 324, 329
Census, Australian, 9, 61

US Bureau, 1, 113, 147
data, 2, 10, 99, 144, 147, 233

Chambers, Ray L., 9, 19, 49, 53, 62, 68
Change-Of-Support Problem (COSP), 233–237, 239,

243
change-of-support problem, 10, 233–236
Charlton, M., 249, 250, 252, 252n, 253n, 264
Cheng, C., 404, 406
Cho, Wendy Tam, 10, 23, 49, 69, 76, 78–79, 86n, 89,

94, 125, 142, 184, 186, 192, 245–246, 253, 256,
258, 269, 300, 328, 331, 335, 349, 351, 353,
355n, 356, 361, 376, 381, 384, 390n

Cholesky, 395, 407
Chu, K., 360, 382
classical predictive distributions, 356
Clayton, David G., 210n, 211, 231, 305, 309, 318, 331
Cleave, N., 13, 49, 233, 244, 351, 381
Cleo Fields data set, 139
cluster detection, 6, 7, 11, 213, 224, 248, 270, 273, 291,

346, 371
CML (constrained maximum likelihood), 385, 392,

394
Cobb, Michael D., 80, 90, 95
code, WinBUGS, 48, 161, 283, 299
coherence, 319, see also plausibility
collinearity, 106
computational burden, reduced by restriction, 103
computational issues, 383–408
conditional autoregressive (CAR) model, 318
conditional distribution, 30, 101–102, 182, 211, 272
conditional probabilities, 55, 63, 101, 162–185, 208,

219, 384
conditioning, 7, 164, 174, 356, 388–389

inaccuraties related to, 389
cone of feasible regression lines
confidence interval, 3, 51, 83, 106, 115–117f, 132, 136,

194, 258, 286, 291–292, 294–296, 343–345,
381, 397, 405–406

confounding, 11, 20, 234, 304–328
by group variables, 304

Connecticut, 94
estimation of male and female voter turnout,

144–160
constancy assumption, 16, 191, 327, 356
constrained Goodman ecological regression, 123
Constrained Maximum Likelihood (CML), 385, 392,

394
constrained minimization problem, 168, 170, 238
constrained optimization problem, 131, 168, 170, 181,

238
contextual effects, 17–25, 27, 46–47, 70–77, 79–81, 83,

88–89, 248–249, 261, 266, 284, 289, 296–297,
304, 306–317

contextual hypothesis testing, 89
contextual knowledge, applying EI with, 80
contextual patterns, 69, 70, 72, 74, 76, 91–93
contextual research, 69, 70
contextual variable, 14, 246–247, 314
contextual variation, 72, 75–76
contiguity matrix, 248, 250, 254
contingency tables, 305
contour lines, 120, see also tomography plots
contour reaggregation, 236
convergence, 28, 30, 45–46, 59, 62, 101, 103, 106, 137,

152, 252, 263, 283, 284, 388, 394, 396
failure of Fisher optimization algorithm, 202

conversion, proportions to frequencies, 378–380
convolution surface, 37
Cook, R. Dennis, 389, 390, 391n, 406, 407
Copas, J. B., 25, 49
Corcoran, S., 167, 186
Corder, J. Kevin, 10, 266
Cornfield, J., 319, 331
correctness tests, 383–384, 387, 392, 396–399
correlation parameter, 46, 102
correlations, 72, 77, 78, 98, 100, 124, 234, 243, 272, 396
Couto, Richard A., 71, 94
Cowen, D. J., 239, 244
Cox, D. R., 21, 49, 52, 68
Crawford Gotway, Carol A., 10, 184, 186, 237, 243–244
Cressie, N., 166–167, 186–187, 234, 236, 238, 244

Cressie-Read power divergence (CRPD), 162,
166–169, 171–172, 175–177, 181–182

Cressie Read statistic, 10, 180
cross-entropy, 180
cross-level bias, 270, 303, 325
cross-level inference, 11, 49, 142, 161, 164, 186, 188,

300, 330, 381
cross-sectional data, 10, 70, 175, 185, 186, 188–205, 331
CrossMark, 188n
Crow, Jim, 83
CRPD (Cressie-Read power divergence), 166–169,

171–172, 175–178, 181–182
cumulative bivariate normal distribution, 394–395

D’Alimonte, Roberto, 335, 350
Daling, J., 305, 332
Daniels, D., 236, 244
Dannemora, New York, 147
data anomalies, 308, 311, 315, 316, 318
data generation process, 6, 77, 163, 248, 253, 352, 360
data perturbation, 11, 383–388, 397–398, 404–406
data, Australian census, 9, 51, 61
data, Corder and Wolbrecht, 146
David Duke (Klansman), 87n
Davidson, Chandler, 93, 122, 143
Davis, Beverly, 1–3, 10–11, 22, 49, 73, 94, 124, 143,

162, 169, 186, 204, 231, 324, 331, 354, 381, 406
Duncan-Davis bounds, 10, 22, 124, 127, 133–134,

183, 192–193, 209, 354, 354n, 357, 360, 377,
385



P1: FZZ/FZZ P2: FZZ

CB658-index CB654-KING-Sample CB658-KING-Sample.cls April 29, 2004 0:2

412 Index

Davison, A. C., 195, 204
Dawkins, Maurice, 112–113
Day, N. E., 305, 330
de Mattos, Rogerio Silva, 351–382
De Sio, Lorenzo, 140, 142
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