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Preface

Bayesian methods are being used more and more in medicine and biology. For
example, at the University of Texas MD Anderson Cancer Center and other
institutions, Bayesian sequential stopping rules are implemented somewhat
routinely in the design of clinical trials. Also, Bayesian techniques are being
used more frequently in diagnostic medicine, such as estimating the accuracy
of diagnostic tests and for screening large populations for various diseases.
Bayesian methods are quite attractive in many areas of medicine because
they are based on prior information, which is usually available in the form
of related previous studies. An example of this is in the planning of Phase II
clinical trials, where a new therapy will be administered to patients who have
advanced disease. Such therapies are developed by pharmaceutical companies
and their success depends on the success of previous Phase I or other relevant
Phase II trials. Bayes theorem allows a logical way to incorporate the previous
information with the information that will accrue in the future. Accuracy of
a medical test is an essential component of the diagnostic process and is the
key issue of this book. Of course, medicine and biology are not the only areas
where the concept of test accuracy plays a paramount role. For example, in the
area of sports (e.g., cycling or baseball), the accuracy of a test for “doping”
is of extreme importance for maintaining the integrity of the sport.

Advanced Bayesian Methods for Medical Test Accuracy is intended as a
textbook for graduate students in statistics and as a reference for consulting
statisticians. It will be an invaluable resource especially for biostatistics stu-
dents who will be working in the various areas of diagnostic medicine (e.g.,
pathology and/or diagnostic imaging). The book is very practical and the
student will learn many useful methods for measuring the accuracy of vari-
ous medical tests. Most of the book is focused on Bayesian inferential proce-
dures, but some is devoted to the design of such studies. A student should
have completed a year of introductory probability and mathematical statis-
tics, several introductory methods courses, such as regression and the anal-
ysis of variance, and a course that is primarily an introduction to Bayesian
inference.

Consulting statisticians working in the areas of medicine and biology will
have an invaluable reference with Advanced Bayesian Methods for Medical Test
Accuracy, which will supplement the books Statistical Methods for Diagnostic
Medicine by Zhou, Obuchowski, and McClish, and The Statistical Evaluation
of Medical Tests for Classification and Prediction by Pepe. The two references
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are not presented from a Bayesian viewpoint; thus, the present volume is
unique and will develop methods of test accuracy that should prove to be
very useful to the consultant. Another unique feature of the book is that all
computing and analysis is based on the WinBUGS package, which will allow
the user a platform that efficiently uses prior information. Many of the ideas in
the present volume are presented for the first time and go far beyond the two
standard references. For the novice, an appendix introduces the fundamentals
of programming and executing BUGS, and as a result, the reader will have the
tools and experience to successfully analyze studies for medical test accuracy.

A very attractive feature of the book is that the author’s blog:
http://medtestacc.blogspot.com provides the BUGS code, which can be exe-
cuted as one progresses through the book and as one does the exercises at
the end of each chapter. Note, each chapter includes the code labeled as
BUGS CODE 4.1, BUGS CODE 4.2, etc., and this is also included in the
author’s blog; thus, the student can cycle between the book and the blog,
which reinforces the subject in a beneficial manner.
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Chapter 1

Introduction

1.1 Introduction

This book describes Bayesian statistical methods for the design and anal-
ysis of studies involving medical test accuracy. It grew out of the author’s
experience in consulting with many investigators of the Division of Diagnostic
Imaging at the University of Texas MD Anderson Cancer Center (MDACC) in
Houston, Texas. In a modern medical center, medical test accuracy is crucial
for patient management, from the initial diagnosis to assessing the extent of
disease as the patient is being treated.

Why a book on medical test accuracy? The short answer is that your life
depends on it! Every visit to the doctor involves the use of some medical test,
from measuring blood pressure and temperature to perhaps more expensive
follow-up tests. If you go to the doctor complaining of chest pain, the doctor
might refer you for an exercise stress test, and if that test is positive, you might
undergo a heart catheterization to detect coronary artery disease. Suppose the
exercise stress test is mistakenly negative, and the doctor does not order any
follow-up procedures, then you go home with a hidden heart disease. You pay
the price later when you are belatedly treated for the disease. On the other
hand, suppose the exercise stress test is mistakenly positive, and the doctor
orders an unnecessary heart catheterization, which gives the correct diagno-
sis, namely, that you do not have heart disease. Then you have paid for an
unnecessary test. Diabetes is another example, where misdiagnosis can lead to
expensive treatment. This can happen when the blood glucose test mistakenly
indicates that you have type 2 diabetes, when in fact your blood glucose is
elevated, but not to the extent that drugs are needed to control the disease.
Of course, accuracy depends not only on the medical test, but also on the
interpretation of the test results. There are two sources of error, the inherent
variability of the medical test and the subjectivity involved in interpreting the
test output. Both of the above examples will be dealt with in more detail later
in the book, namely, the blood glucose test for type 2 diabetes, and the tests
for coronary artery disease. As a patient, you should know the accuracy of the
medical tests that will be administered to you when you go to the doctor for
routine visits and, more importantly, when you are undergoing treatment for
disease. An informative reference for the patient is Johnson, Sandmire, and
Klein [1].

1
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1.2 Statistical Methods in Medical Test Accuracy

Biostatistics plays a pivotal role in the assessment of the accuracy of med-
ical tests, as can be discerned by reading papers in mainline journals, such
as Radiology and The Journal of Pathology, and more specialized journals,
such as The Journal of Computed Assisted Tomography, The Journal of Mag-
netic Resonance Imaging, The Journal of Nuclear Medicine, and The Journal
of Infectious Diseases. As we will see, the usual methods, ranging from the
t-test and chi-square test to others such as the analysis of variance and various
regression techniques, are standard fare for assessing the accuracy of medical
tests.

However, there are also some methods that are somewhat unique to the
field, including ways to estimate diagnostic test accuracy and methods to
measure the agreement between various tests and/or readers. This topic will be
addressed throughout the book. The most basic indicators of test accuracy are
the true and false positive fractions for medical tests that have binary scores or
score where a cutoff is used to declare disease, in effect providing binary scores.
For those patients with the disease, the fraction that test positive is referred to
as the true positive fraction. The fraction that test positive, among the non-
diseased patients, is called the false positive fraction. From the viewpoint of the
patient, the positive predictive value is important, because it is the fraction of
patients that have disease, among those that test positive for disease, but also
important is the negative predictive value, which is the fraction of subjects
who do not have the disease, among those that test negative. In most situations
for a medical test, these four values indicating test accuracy do not lead to
an unambiguous declaration that the test is a good one. Those factors that
affect the various measures of test accuracy will be described in the book.

An overall measure of a medical test with continuous scores is provided
by the area under the receiver operating characteristic (ROC) curve, which is
defined as follows. The area can vary from 0 to 1 and, in general, the area is
defined as follows:

ROC area = P [Y > X], (1.1)

where Y is the test score of an individual selected at random from the dis-
eased and X is the score of a subject selected at random from the non diseased.
When the area is 1, the test scores discriminate perfectly among the diseased
and non-diseased subjects, and if the area is 0.5, the scores are not at all
informative for discriminating between the two groups. The above definition
is changed to

ROC area = P [Y > X] + (1/2)P [Y = X], (1.2)

when the test scores are ordinal.
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The types of tests employed in this book are used for diabetes, heart
disease, various forms of cancer, and tests for infectious diseases. A large pro-
portion of the tests are imaging tests for cancer, while tests for heart disease
are also represented. There are only a few examples of diabetes and infec-
tious diseases. One very important case is for medical imaging tests, which
are employed in cancer clinical trials, such as Phase II trials, where the main
objective is to determine the response to a new therapy, where response is
based on an image measurement. Computed tomography (CT; a form of x-ray)
is used to measure the tumor size at baseline before the trial begins and is used
at various times throughout the trial. Thus, there are several measurements
of tumor size for each patient, where all the measurements are used to clas-
sify the patient’s response. Thus, it is of paramount importance that the CT
measurements of tumor size be accurate, because inaccurate measurements
could lead to false declarations about the success or failure of a particular
therapy! This will be described in more detail later on when the Erasmus
et al. [2] study is explained. Also involved in this type of trial is the error
introduced by the several radiologists (readers) who are interpreting the CT
tumor measurements.

Along with the basic indicator of test accuracy, various statistical method-
ologies will be employed. For example, patient covariates will be taken into
account by regression techniques. Obviously, the true and false positive frac-
tions are affected by patient covariates, such as age, gender, and medical
history, and these regression techniques are described and illustrated in the
book. When the scores are ordinal or continuous, the appropriate regression
techniques are employed to measure accuracy by the area under the ROC
curve. Regression also plays an important role when comparing several read-
ers and when estimating the agreement between readers who are interpreting
the test results.

Often, not all patients are subject to the gold standard, the test that is
used as a reference to compute the accuracy of medical tests. For example,
in an exercise stress test, those that test negative are usually not referred to
the gold standard (heart catheterization) compared to those that test positive
and are usually given a heart catheterization. This is a special situation, called
verification bias, which requires specialized methods to estimate test accuracy
involving an application of Bayes theorem. When this is considered, various
generalizations will be implemented, including the consideration of several
tests and several readers and regression to take into account other patients
covariates.

Patient sample size for a clinical trial, based on Bayesian sequential stop-
ping rules, is another application that has proven to be quite beneficial in the
development of new medical therapies, where the accuracy of the medical tests
is key in the development of “new” therapies. The Bayesian approach will be
used throughout this book and is the foundation for estimating medical test
accuracy.
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1.3 Datasets for This Book

The datasets used in this book come from the following sources: (1) the
protocol review process of clinical trials at MDACC, where the author was
either a reviewer or a collaborator on the protocol; (2) the author’s consul-
tations with the scientific and clinical faculty of the Division of Diagnostic
Imaging at MDACC with some 32 datasets; (3) the several datasets accom-
panying the excellent book by Pepe [3] (these can be downloaded at http://
www.fhcrc.org/labs/pepe/Book) The Statistical Evaluation of Medical Tests
for Classification and Prediction; (4) the information contained in the exam-
ples of the WinBUGS package; and (5) other miscellaneous sources, including
the examples and problems in Statistical Methods in Diagnostic Medicine by
Zhou, McClish, and Obushowski [4].

1.4 Software

WinBUGS will be used for the Bayesian analysis for sampling from the
posterior distribution, and the appendix, which introduces the reader to the
basic elements of using the software, including many examples. The WinBUGS
code is clearly labeled in each chapter, e.g., BUGS CODE 4.1 and BUGS
CODE 4.2 in Chapter 4, and the code can be downloaded from the author’s
blog (http://www.medtestacc.blogspot.com). The reader can easily reproduce
the many analyses included in the book, which should greatly facilitate the
reader’s understanding of the Bayesian approach to estimating medical test
accuracy. The blog also contains a detailed example of how to execute the
Bayesian analysis using WinBUGS.

Many specialized Bayesian programs for the design and analysis of clinical
trials have been developed at the Department of Biostatistics and Applied
Mathematics at MDACC, some of which will be used for the design of clinical
trials as well as for many other analyses involved in biostatistics. These can
be accessed at http://biostatistics.mdanderson.org/SoftwareDownload/.

1.5 Bayesian Approach

Why is the Bayesian approach taken here? The author has been a Bayesian
for many years, since 1974 when he took leave to study at University College
London. Dennis Lindley persuaded him of the advantages of such an approach
and, of course, the main advantage is that it is a practical way to utilize prior
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information. Prior information, especially in a medical setting, is ubiquitous
and should be used to one’s advantage as it would be a pity not to use it. It is
assumed that the reader is familiar with the Bayesian approach to inference,
but a brief introduction will be given here.

Suppose X is a continuous observable random vector and θ ∈ Ω ⊂ Rm is
an unknown parameter vector, and suppose the conditional density of X given
θ is denoted by f(x/θ). If x = (x1, x2, . . . , xn) represents a random sample of
size n from a population with density f(x/θ), and ξ(θ) is the prior density
of θ, then Bayes theorem is given by

ξ(θ/x) = c

i=n∏
i=1

f(xi/θ)ξ(θ), xi ∈ R and θ ∈ Ω,

where the proportionality constant is c and the term

i=n∏
i=1

f(xi/θ),

is called the likelihood function. The density ξ(θ) is the prior density of θ

and represents the knowledge one possesses about the parameter before one
observes X. Such prior information is most likely available to the experi-
menter from other previous related experiments. Note that θ is considered a
random variable and that Bayes theorem transforms one’s prior knowledge
of θ, represented by its prior density, to the posterior density, and that the
transformation is the combining of the prior information about θ with the
sample information represented by the likelihood function.

“An essay toward solving a problem in the doctrine of chances” by the
Reverend Thomas Bayes appeared and was the beginning of our subject. He
considered a binomial experiment with n trials and assumed that the proba-
bility θ of success was uniformly distributed (by constructing a billiard table).
Bayes presented a way to calculate P (a ≤ θ ≤ b/x = p), where x is the number
of successes in n independent trials. This was a first in the sense that Bayes
was making inferences via ξ(θ/x), the conditional density of θ given x. Also,
by assuming that the parameter was uniformly distributed, he was assuming
vague prior information for θ. In what follows, the components of the param-
eter vector θ will be various measures of medical test accuracy.

It can well be argued that Laplace [5] made many significant contributions
to inverse probability (he did not know of Bayes), beginning in 1774 with his
own version of Bayes theorem, “Memorie sur la probabilite des causes par
la evenemens” and over a period of some 40 years culminating in “Theorie
analytique des probabilites.” See Stigler [6] and Chapters 9–20 of Hald [7] for
the history of Laplace’s many contributions to inverse probability.

It was in modern times that Bayesian statistics began its resurgence with
Lhoste [8], Jeffreys [9], Savage [10], and Lindley [11]. According to Broemeling
and Broemeling [12], Lhoste was the first to justify non-informative priors by
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invariance principals, a tradition carried on by Jeffreys. Savage’s book was a
major contribution in that Bayesian inference and decision theory was put on
a sound theoretical footing as a consequence of certain axioms of probabil-
ity and utility, while Lindley’s two volumes showed the relevance of Bayesian
inference to everyday statistical problems and was quite influential, setting
the tone and style for later books such as Box and Tiao [13], Zellner [14], and
Broemeling [15]. Box and Tiao and Broemeling were essentially works that
presented Bayesian methods for the usual statistical problems of the analysis
of variance and regression, while Zellner focused Bayesian methods primarily
on certain regression problems in econometrics. During this period, inferential
problems were solved analytically or by numerical integration. Models with
many parameters (such as hierarchical models with many levels) were diffi-
cult to use because at that time numerical integration methods had limited
capability in higher dimensions. For a good history of inverse probability, see
Chapter 3 of Stigler [6], and the two volumes of Hald [7], which present a com-
prehensive history and are invaluable as a reference. Dale [16] gives a very
complete and interesting account of Bayes’ contributions.

The last 20 years are characterized by the rediscovery and development of
resampling techniques, where samples are generated from the posterior dis-
tribution via Markov Chain Monte Carlo (MCMC) methods, such as Gibbs
sampling. Large samples generated from the posterior make it possible to
make statistical inferences and to employ multi-level hierarchical models to
solve complex, but practical problems, because computing technology is
available. See Leonard and Hsu [17], Gelman et al. [18], Congdon [19–21],
Carlin, Gelfand, and Smith [22], Gilks, Richardson, and Spiegelhalter [23],
who demonstrate the utility of MCMC techniques in Bayesian statistics. Of
course, in using WinBUGS, this book employs MCMC techniques to estimate
the parameters of the model. The output of the analysis typically includes the
posterior mean, standard deviation, median, and the upper and lower 2 1/2
percentiles. Also included is the MCMC error, which is an important compo-
nent of the analysis, and tells one how close the MCMC estimate is to the
“true” posterior characteristic, consequently, the MCMC error can be utilized
to adjust the sample size for the simulation.
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Chapter 2

Medical Tests and Preliminary
Information

2.1 Introduction

This chapter gives a brief description of medical imaging tests and other
tests routinely used at a major health care institution. Diagnostic imaging
plays an extremely important role in the overall care of the patient, including
diagnosis, staging, and monitoring of the patient during their stay in hospital.
Some of the examples in this book are taken from diagnostic imaging studies
for cancer, however, there are many other ways to perform diagnoses, and some
of these will also be explained. In addition to cancer, medical tests for heart
disease and stroke will be described, as well as some medical tests for diag-
nosing diabetes and infectious diseases. Most of the medical tests described in
this chapter will appear in the many examples to follow in later chapters.

2.2 Medical Imaging Tests

The primary tests for diagnostic imaging are x-ray, fluoroscopy, mammo-
graphy, computed tomography (CT), ultrasonography (US), magnetic reso-
nance imaging (MRI), and nuclear medicine. Each test has advantages and
disadvantages with regard to image quality, depending on the particular cli-
nical situation. Broadly speaking, image quality consists of three components.
The first is contrast. Contrast is good when important physical differences in
anatomy and tissue are displayed with corresponding different shades of gray
levels. The ability to display fine detail is another important aspect of image
quality and is called resolution. Anything that interferes with image quality is
referred to as noise, which is the third component of image quality. Obviously,
noise should be minimized in order to improve image quality.

2.2.1 X-ray

Medical images are best thought of as being produced by tracking certain
probes as they pass through the body. A stream of x-rays are passed through

9
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the patient and captured on film as the stream exits. An x-ray is a stream
of photons, which are discrete packets of energy. As they pass through the
body, various tissues interact with the photons and these collisions remove and
scatter some of the photons. The various tissues reduce the amount of energy
in various parts of the stream by different amounts. A shadow is produced that
appears on a special photographic plate, producing an image. If the density
of the target object is much higher than that of the surrounding environment
(such as a bone), an x-ray does a good job of locating it. Some lesions have
densities that are quite similar to the surrounding medium and are difficult to
detect. Generally speaking, an x-ray has very good resolution and the noise is
easy to control, but has low contrast in certain cases. An x-ray is routine in
all medical settings, and is the most utilized of all imaging devices.

A close relative of x-rays is fluoroscopy. In this modality, the exiting beam
is processed further by projecting it onto an image intensifier, which is a
vacuum tube that transforms the x-ray shadow onto an optical image. This
mode has about the same image quality as an x-ray, but allows the radiologist
to manage images in real time. For example, it allows the operator to visualize
the movement of a contrast agent passing certain landmark locations in the
gastrointestinal tract or vascular system.

2.2.2 Computed tomography

Another variation of the x-ray is CT, which overcomes some of the limi-
tations of x-rays. The superimposition of shadows of overlapping tissues and
other anatomical structures often obscures detail in the image. CT produces
images quite differently from x-rays, however it does use x-rays, but the detec-
tion and processing of the shadows is quite sophisticated and is the distinctive
feature of the modality that vastly improves the image over that of an x-ray.
CT has good contrast among soft tissues (e.g., lung and brain tissue) and good
resolution. An x-ray takes information from a three-dimensional structure and
projects it onto a two-dimensional image, which causes the loss of detail due
to overlapping tissues. How does CT overcome this problem? The patient is
placed in a circle; inside the circle is an x-ray source and embedded in the
circle is an array of detectors that capture the shadow of the x-ray beam. The
x-ray source irradiates a thin slice of tissue across the patient and the detector
captures the shadow. The x-ray source moves to an adjacent location and the
process is repeated, say 700 times. The x-ray source circumscribes the patient
through 360 degrees. The source then repeats the above process with another
thin slice. For a given slice, there are 700 projections of that slice and these
700 projections are processed via computer and back projection algorithms to
produce the two-dimensional representation. The computer works backward
from the projections to reconstruct the spatial distribution of the structure of
the thin slice. In other words, CT answers the following question: what does
the original structure have to look like in order to produce the 700 generated
projections?
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A good example of CT (using the Imatron C-100 Ultrafast) is screening for
coronary heart disease, where the coronary artery calcium (CAC) score indi-
cates the degree of disease severity. See Mielke, Shields, and Broemeling [1, 2],
DasGupta et al. [3], and Broemeling and Mielke [4], where the accuracy of
CAC to diagnose heart disease is estimated by the area under the receiver
operating characteristic (ROC) curve. These examples will be examined again
in later chapters from a Bayesian perspective.

2.2.3 Mammography

Mammography is yet another variation of the x-ray. While some small
masses can be detected by a physician or by self-examination, mammography
has the ability to detect very small lesions. However, the smaller they are, the
more difficult they are to detect. The set up for mammography consists of a
specialized x-ray tube and generator, a breast compression device, an anti-
scatter grid, and film. The procedure must be able to reveal small differences
in breast density, possibly indicative of a suspicious mass, and it must also
be able to detect small calcifications that may be important to diagnosis. All
the attributes of good image quality are required, namely, high contrast, good
resolution, and low noise. Later in this book, the role of mammography in
screening for breast cancer will be described.

2.2.4 Magnetic resonance imaging

A completely different form of imaging is MRI. A beam of photons is not
passed through the body, but instead the body is placed in a large magnet
and hydrogen atoms (in the water molecules) line up in the same direction
as the magnetic field. When the magnetic field is disrupted by directing radio
energy into the field, the magnetic orientation of the hydrogen atoms is dis-
rupted. The radio source is switched off and the magnetic orientation of the
hydrogen atoms returns to the original state. The manner (referred to as T1
and T2 relaxation times) and the way in which they return to the original
state produces the image. Essentially, what is being measured is the proton
density per unit volume of imaged material. The actual image looks like an
x-ray, however the principal foundations of MRI are completely different. The
same image processing technology used in CT can be used in MRI to process
the images. For example, thin slices and backward projection methods are
often used to improve MRI image quality. MRI has excellent resolution and
contrast among soft tissue, and displays good anatomical detail.

2.2.5 Nuclear medicine

Nuclear medicine is the joining of nuclear physics, nuclear chemistry, and
radiation detection. A radioactive chemical substance, called a radiopharma-
ceutical, is injected, usually by intravenous (IV), where it concentrates in
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a particular tissue or organ of interest. The substance emits gamma rays,
which are detected by gamma cameras. The gamma camera counts the num-
ber of gamma particles it captures. There are two principal gamma cameras—
positron emission tomography (PET) and single photon emission tomography
(SPECT). Nuclear imaging is often used to view physiological processes. For
example, FDG-PET is often used to measure glucose metabolism, where the
radiopharmaceutical (18) F-florodeoxyglucose is absorbed by every cell in the
body. The higher the observed radioactivity as measured by PET, the higher
the glucose metabolism. In some cancer studies, the malignant lesion has an
increased glucose metabolism compared to the adjacent non-malignant tissue,
thus FDG-PET is useful in the diagnosis and staging of disease. Another area
where nuclear medicine is useful is in cardiac perfusion studies. For example,
radiation therapy of esophageal cancer often induces damage to the heart in
the form of ischemia and scarring. The damage can be assessed by a nuclear
medicine procedure such as an exercise stress test, where thallium is adminis-
tered via IV to the patient and concentrates in the heart muscle; the resulting
radioactivity is counted by SPECT to produce the image. Among the soft
tissues, nuclear medicine procedures have fair to good contrast but poor reso-
lution, and noise can be a problem for image quality. Another very important
instance where MRI is used is to diagnose coronary heart disease via the exer-
cise stress test; if the test is positive, the patient can be referred to coronary
angiography for a more accurate assessment of the disease.

2.2.6 Ultrasound

US is the last modality to be described. It is based on a physical stream
of energy passing through the body to be imaged. The source is a transducer
that converts electrical energy into a brief pulse of high-frequency acoustical
energy to be transmitted into the patient’s tissues. The transducer acts as a
transmitter and receiver. The receiver detects echoes of sound deflected from
the tissues, where the depth of a particular echo is measured by the round
trip time of the transmitted emission. The images are viewed in real time
on a monitor and are produced by interrogating patient tissue in the field
of view. The real-time images are rapidly produced on the monitor, allow-
ing one to view moving tissue such as respiration and cardiac motion. The
US examination consists of applying the US transducer to the patient’s skin
using a water-soluble gel to make the connection secure for good transmission
of the signal. Image quality is adversely affected by bone and gas-filled struc-
tures such as the bowel and lung. For example, bone causes almost complete
absorption of the signal, producing an acoustic shadow on the image that
hides the detail of tissues near the bone, while soft tissue gas-filled objects
produce a complete reflection of sound energy that eliminates visualization of
deep structures. Despite these drawbacks, the mode has many advantages, one
of which is the non-invasive nature of the procedure. US is used to image a
multitude of clinical challenges and is very beneficial when solving a particular
clinical problem, such as viewing the development of the fetus.
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2.2.7 Combined medical images

Various modalities are often combined to improve overall diagnostic accu-
racy. For example, recently, PET and CT have been combined to diagnose and
stage esophageal cancer. When two modalities are combined, one must formu-
late certain rules to decide when the combined procedure is deemed to produce
a “positive” or “negative” determination. In another interesting study, US
and CT were combined and their accuracy compared to FDG-PET. The ideas
involved in measuring the accuracy of combined modalities will be outlined in
the Chapter 10.

It is important to remember that the imaging device does not make the
diagnosis, rather the radiologist and others make the diagnosis! The modality
is an aid to the radiologist and to others who are responsible for the diagnosis.
After the radiologist reads the image, how is this information transformed to
a scale where the biostatistician and others are able to use it for their own
purposes?

For a non-technical introduction to medical imaging tests, Wolbarst [5]
presents a very readable account. In addition, Jawad [6], Chandra [7],
Seeram [8], and Markisz and Aguilia [9] are standard references to cardiac
ultrasound, nuclear medicine, CT, and MRI, respectively.

2.3 Other Medical Tests

2.3.1 Introduction

In order to establish a definitive diagnosis, there are several phases. For
example, a screening mammography might reveal a suspicious lesion, and this
will be followed with a biopsy of the suspected lesion. Many caregivers are
involved in the diagnostic process, and as has been emphasized, diagnos-
tic imaging plays a major role in that effort. However, they are just one of
many groups, including oncologists, surgeons, nurses, pathologists, geneticists,
microbiologists, and many more. The pathologist plays a crucial role in per-
forming the histologic tests on cell specimens taken for biopsy, as does the
microbiologist and geneticist, who are developing new techniques to measure
gene sensitivity from deoxyribo nucleic acid (DNA) specimens, etc. Two exam-
ples are described below: (1) metastasis of the primary melanoma lesion to
the lymph nodes, and (2) biopsy of lung nodules.

2.3.2 Sentinel lymph node biopsy for melanoma

This technique involves the cooperation of a melanoma oncologist, a surgi-
cal team to dissect the lymph nodes, diagnostic radiologists who will perform
the nuclear medicine procedure, and pathologists who will do the histology
of the lymph node samples. The following description of the technique is
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based on Pawlik and Gershenwald [10]. The early procedures are described by
Morton et al. [11] and consist of injecting a blue dye intradermally around the
primary lesion and biopsy site, where the lymphatic system takes up the dye
and carries it, via afferent lymphatics, to the draining regional node basins.
Surgeons then explore the draining nodal basin; the first draining lymph
nodes, the sentinel lymph nodes (SLNs), are identified by their uptake of
blue dye, then dissected and sent to pathology for histological examination of
malignancy.

These early methods were recently revised to include a nuclear medicine
application using a handheld gamma camera. (See Gershenwald et al. [12] for
a good explanation of this.) With this technique, intraoperative mapping
uses a handheld gamma probe, where 0.5–1.0 mCi of a radiopharmaceutical
is injected intradermally around the intact melanoma. The gamma camera
monitors the level of radioactivity from the injection sites to the location of
the SLNs and is also employed to assist the surgeons with the dissection of the
lymph nodes. This probe is used transcutaneously prior to surgery and has
an accuracy of 96–99% in correctly identifying the SLNs. Histological exam-
ination of the lymph node specimens determine if the lymph node basin has
malignant melanoma cells.

2.3.3 Tumor depth to diagnose metastatic melanoma

An SLN biopsy for melanoma metastasis is illustrated with a recent study
by Rousseau et al. [13], where the records of 1376 melanoma patients were
reviewed. The main objective was to diagnose metastasis to the lymph nodes,
where the gold standard is the outcome of the SLN biopsy and the diagnosis is
made on the basis of tumor depth of the primary lesion, the Clark level of the
primary lesion, the age and gender of the patient, the presence of an ulcerated
primary lesion, and the site (axial or extremity) of the primary lesion. The
overall incidence of a positive biopsy was 16.9%, the median age was 51 years,
and 58% were male. A multivariate analysis with logistic regression showed
that tumor thickness and ulceration were highly significant in predicting SLN
status. For additional details about this study, refer to Rousseau et al., but
for the present the focus will be on tumor thickness for the diagnosis of lymph
node metastasis.

How accurate is tumor thickness for the diagnosis of lymph node metas-
tasis? The original measurement of tumor thickness was categorized into four
groups: (1) ≤1 mm, (2) 1.01–2.00 mm, (3) 2.01–4.00 mm, and (4) >4.00 mm.
If groups 3 and 4 are used to designate a positive (lymph node metastasis)
test, and groups 1 and 2 a negative test, the sensitivity and specificity are cal-
culated as 156/234 = 0.666 and 832/1147 = 0.725, respectively. There were
156 patients with a tumor thickness >2 mm among 234 patients with a pos-
itive SLN biopsy, on the other hand, there were 832 patients with a tumor
thickness ≤2 mm among 1147 with a negative SLN biopsy. Also, using the
original continuous measurement and a conventional estimation method, the
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area under the ROC curve is 0.767 with a standard deviation of 0.016. This is
the type of problem that will be studied in the following chapters, but from a
Bayesian perspective.

2.3.4 Interventional radiology: A biopsy for non-small
cell lung cancer

At the MD Anderson Cancer Center (MDACC), the Department of Inter-
ventional Radiology is part of the Division of Diagnostic Imaging, and they
perform invasive biopsy procedures. For example, they perform biopsies of lung
lesions using a CT-guided technique, see Gupta et al. [14]. The Gupta example
described below compared two methods of biopsy, short vs. long needle path,
for target lesions <2 cm in size. The objective is to retrieve a specimen of the
lesion to be examined for malignancy by a cytopathologist.

Many people are involved, including those assisting the interventional radi-
ologist in guiding the needle to the target lesion, which was earlier detected and
located by various imaging modalities. Of main concern is the occurrence of a
pneumothorax, which can result in a collapsed lung and bleeding, sometimes
requiring a chest tube to drain fluid from the chest cavity.

This cohort study included 176 patients, 79 men and 97 women, with an
age range from 18 to 84 years. This was not a randomized study, and patient
information came from all persons who underwent a CT-guided biopsy for
lung nodules during the period from November 1, 2000 to December 31, 2002.
There were two groups: Group A with 48 patients, where the needle path was
<1 cm in length of aerated lung; and Group B with 128 patients, where the
needle path length was >1 cm.

The two groups were similar with regard to age, gender, lesion size, and
lesion location, and the major endpoints were diagnostic yield (number of diag-
nostic samples and test accuracy, measured by sensitivity and specificity) and
frequency of pneumothorax. The pathology report served as a gold standard
for test accuracy.

The statistical analysis consisted of estimating the test accuracy of the
two methods and comparing accuracy via the chi-square test. There was no
significant difference between the two groups with regard to sensitivity and
specificity, however, there were significant differences between the two with
regard to complications from the procedure. For example, the pneumothorax
rate of 35/48 = 0.73 was larger for the short needle path group compared to
38/128 = 0.29 for the long needle path group.

As a follow up to this, Gupta et al. [15] recently studied 191 lung biopsy
patients who experienced a pneumothorax. In that study, the principal aim
was to identify those factors that significantly impact the development of a
persistent air leak of the lung.

A conventional statistical analysis was performed for these studies, but
later in this book, we will revisit them with a Bayesian approach for the
analysis.
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2.3.5 Coronary artery disease

A common scenario in the diagnosis of coronary artery disease is: following
complaints of chest pain, the patient undergoes an exercise stress test and, if
necessary, followed by an angiogram, a catheterization of the coronary arter-
ies. There are several experimental studies that involve a CT determination
of the CAC in the coronary arteries. One such study involved 1958 men and
1281 women, who were referred to the Shields Coronary Artery Center in
Spokane, Washington, from January 1990 to May 1998. Some of the subjects
had been diagnosed with coronary artery disease, while others were referred
because they were suspected of having the disease. Measurements of CAC
were made with the Imatron C-100 Ultrafast CT Scanner. In Chapter 4, the
diagnostic accuracy of CAC is examined with a Bayesian technique for this
study.

Another way to diagnose coronary artery disease is to measure the
degree of stenosis in the arteries by magnetic resonance angiography, where
Obuchowski [16] used the results of a study by Masaryk et al. [17] to illus-
trate a non-parametric way of estimating the area under the ROC curve for
clustered data. There were two readers and two measurements per patient,
one for the left and one for the right coronary arteries, and the correlation
introduced by this clustering effect was taken into account by Obuchowski’s
analysis.

2.3.6 Type 2 diabetes

There are several tests for type 2 diabetes, including a random plasma
glucose test, a fasting blood glucose test, and an oral glucose tolerance test.
The first does not require fasting and can be given at any time, even after a
meal. If the amount of glucose is >200 mg/dL, the subject is considered to be
diabetic.

A better method to test for type 2 diabetes is the fasting blood glucose test,
which requires the subject to fast for approximately 8 hours before the test.
The test is usually done in the morning before breakfast, where a blood glucose
level between 70 and 110 mg/dL is considered normal; however, a level between
111 and 125 mg/dL indicates some problems with glucose metabolism. Levels
in excess of 126 mg/dL are usually an indication that the subject has diabetes.

Perhaps if the fasting blood glucose test indicates that the subject has the
disease, the doctor will order an oral glucose tolerance test, which requires
that the subject fast for 10 hours before the test. At baseline, a blood glucose
test is given, then the subject is given a high amount of sugar and the blood
glucose level is measured 30 minutes later, 1 hour later, and 2 and 3 hours later,
thus, there are four measurements taken after baseline. In a person without
diabetes, the glucose level rises immediately after taking the sugar load, but
then falls back to “normal” as insulin is produced. On the other hand, in
diabetics the glucose levels rise higher than normal after drinking the sugar
load. A person is said to have impaired glucose tolerance if the 2-hour level is
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between 140 and 200 mg/dL and is referred to as prediabetes. A person with
a 2-hour level in excess of 200 mg/dL is considered to be diabetic, and one
should seek a physician’s advice in order to treat the disease.

The fasting blood glucose test and the glucose tolerance test will be con-
sidered several times in later chapters as an illustration for estimating the
accuracy of medical tests.

2.3.7 Other medical tests

Johnson, Sandmire, and Klein [18] should be read for additional informa-
tion about the accuracy of medical tests. Of course, there are many other
medical tests that can be presented, but for the present, those for human
immunodeficiency virus (HIV), prostate, and ovarian cancer will be described.

2.3.7.1 Tests for HIV

There are several tests for HIV, including enzyme linked immunosorbent
assay (ELISA) and oral tests.

The ELISA test is the most commonly used test to look for HIV anti-
bodies and if present, a confirmatory test called the Western blot analysis
is done. Once an antibody test shows that the subject has been exposed to
HIV, a plasma viral load (PVL) test can be performed and will often be
ordered to measure the amount of HIV virus in the blood. Three different PVL
tests are commonly used: the reverse transcription polymerase chain reaction
(RT-PCR) the branched DNA (bDNA), and the nucleic acid sequence-based
amplification (NASBA) test. All these tests work well and measure the same
thing, the amount of HIV virus in the blood, but they can differ in the recorded
amounts, thus, one test should be used throughout the treatment for the dis-
ease. It is comforting to know that the risk of a false positive with ELISA
is quite low. Note that several tests are administered in order to diagnose
the disease and their accuracy plays an important role both for diagnosis and
treatment.

If you are at a high risk for HIV and you have a negative ELISA, the test
should be repeated every 6 months. False negatives using RT-PCR are also
rare because of prior testing using ELISA.

2.3.7.2 Tests for ovarian cancer

The carcinogenic antigen (CA) 125 blood test measures the levels of a pro-
tein that is normally confined to the cell wall, but if the wall is inflamed or
damaged, the protein may be released into the blood stream. Ovarian cancer
cells may produce an excess of these protein molecules, thus a test involving
CA 125 can help in the diagnosis and monitoring of the disease. It is important
to remember that basing the diagnosis of ovarian cancer only on CA 125 is
prone to error because the levels of CA 125 are not present in the early stages
of the disease and false positives can occur. Used together with transvaginal
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ultrasound, CA 125 can be quite effective in detecting the disease. A transvagi-
nal ultrasound involves the use of sound waves to delineate internal structures
with a transducer placed in the vagina. An example is given later in the book
using CA 125 to detect ovarian cancer.

2.3.7.3 Prostate-specific antigen test for prostate cancer

Prostate specific antigen (PSA), discovered in 1979, is a protein produced
by the cells that line the inside of the prostate gland. The cancer causes cell
changes to the cellular barriers that normally keep PSA within the ductal
system of the gland, and PSA is released into the blood stream in higher than
normal quantities. The total PSA test measures the total amount of PSA in
the blood, where the results are given in nanograms per millimeter and a
level in excess of 4 ng/mL is considered a possible sign of prostate cancer.
The total PSA test and the digital rectal examination are considered the
first line of defense against the disease and if suspicious findings are found
in either examination, follow-up tests are ordered, including the percent-free
PSA test and transrectal prostate ultrasound. Medical tests involving PSA
and transrectal ultrasound will be presented in later chapters. The percent-free
PSA test is mainly used as a follow-up test when the total PSA is found in the
gray area, between 4 and 9.9 ng/mL, to help determine who should undergo a
biopsy of the prostate. Currently, a biopsy is ordered if the percent-free PSA
level is >25%. The PSA test has problems with accuracy, where only 15–25%
of men who have elevated levels of total PSA in excess of 4 ng/dL develop
prostate cancer. Also, 30% of men who have prostate cancer have normal PSA
levels!

2.3.7.4 Bacterial infection with Strongyloides

Strongyloides is an infectious organism that affects certain groups and
is used as an example in this book where a gold standard is not available.
A group of Cambodian refugees immigrating to Canada is tested for the dis-
ease with two medical tests, a serology test and a test based on a stool example.
This example relies on prior information about the accuracy of the two tests,
and Bayesian inference is used to correct the observed accuracy of the two
tests.

2.3.7.5 Tuberculosis

Another case of infectious disease used in this book is a study of two tests
to diagnose tuberculosis, at two different sites, the first is a southern school
district in the 1940s and the second is a tuberculosis sanatorium. The scenario
is a case when there is no gold standard, and Bayesian methods are used to
correct the accuracy of the two tests, namely, the Mantour and Tine tests,
where the Mantour test is based on a sputum sample, and the Tine is a tuber-
culin skin test.
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2.4 Activities Involved in Medical Testing

As stated earlier, medical tests are ubiquitous in the health care system.
These activities will be divided generally into two categories: (1) screening
for preclinical disease, such as breast cancer, heart disease, or lung cancer;
and (2) as part of patient management during the patient’s stay in a large,
modern health care facility. The emphasis in this book will be on the latter,
where the patient has been diagnosed with the help of imaging, and are then
followed and monitored during their stay in the hospital. During the patient’s
stay, the following imaging activities are usually involved: primary diagnosis or
confirmation of earlier diagnoses, diagnostic imaging to determine the extent
of disease including biopsy procedures, so-called staging studies, and follow-up
medical procedures, such as surgery for biopsy or other forms of therapy, and
monitoring the progression of the disease during therapy, such as in Phase II
clinical trials.

Screening is performed to detect disease in the early phase, before symp-
toms appear. The main objective of screening is the early detection of disease
when treatment is more effective and less expensive. It is assumed that early
detection will lead to a more favorable diagnosis, and that early treatment
will be more effective than treatment given after symptoms appear. Another
important goal of screening is to identify risk factors that would predispose
the subject to a higher than average risk of developing disease. Imaging is
almost always involved in the diagnosis of disease, but mammography is the
only examination in wide use today as a screening tool. There are some other
areas where screening is being tested, namely, in lung cancer with multide-
tector CT, and in the detection of colorectal adenomatous polyps. One of the
most important and difficult problems in clinical medicine is making recom-
mendations for imaging studies for disease screening.

Screening should only be performed if the disease is serious and in the pre-
clinical phase, and on a population that is at relatively high risk for developing
the disease. Screening would not be effective if the disease can be treated effec-
tively after the appearance of symptoms. If a false positive occurs, the patient
is subjected to unnecessary follow-up procedures, such as surgery, additional
imaging, and pathological testing for extent of disease.

A medical test like mammography is efficacious only if it is accurate, if it
has good diagnostic characteristics like high sensitivity, specificity, and posi-
tive predictive value, and if a survival advantage can be demonstrated. How
should a study be designed in order to evaluate the effectiveness of an imaging
screening procedure? Of course, randomized studies have an advantage and
are the basis for a recent paper by Shen et al. [19], who reported on the survival
advantage of screening detected cases over control groups. This investigation
used data from three randomized studies with a total of 65,170 patients, and
it used Cox regression techniques to control for the so-called lead time bias
(detection of early stage disease with screening), tumor size, stage of disease,
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lymph node status, and age. They conclude that mammography screening is
indeed effective. For additional information on the advantages of mammogra-
phy, see Berry et al. [20]. For recent Bayesian contributions to the estimation
of sensitivity and lead time in mammography, see Wu, Rosner, and Broemeling
[21, 22].

The whole area of diagnostic screening has a voluminous literature. This
book will not focus on screening and the reader is referred to Shen et al. [19],
who cite the most relevant studies.

2.5 Accuracy and Agreement

How good is a diagnostic procedure? For example, suppose one is using
mammography to diagnose breast cancer, then how well does it correctly clas-
sify patients who have disease and those who do not have disease? Among
those patients who have been classified with disease, what proportion actually
have it? And, among those who were designated without disease, how many
actually do not have it? To answer these questions, one must have a gold
standard by which the true status of disease is determined. Thus, the gold
standard will divide the patients into two groups: those with and those with-
out the disease.

Another question is how does the radiologist decide when to classify an
image as showing a malignant lesion? Often a confidence level scale is used,
where 1 designates definitely no malignancy, 2 probably no malignancy, 3 inde-
terminate, 4 probably a malignant lesion, and 5 definitely a malignant lesion.
Given this diagnostic ordinal scale, how does the reader decide when to
designate a patient as diseased? In the case of mammography, a score of 4
or 5 is often used to classify a patient as having the disease, in which case
each image can be classified as either: (1) a true positive, (2) a true negative,
(3) a false positive, and (4) a false negative. Of course, these four possibilities
can only be used if one knows the true status of the disease as given by the
gold standard. Given these four outcomes, one may estimate the accuracy of
the procedure with the usual measures of sensitivity, specificity, and positive
and negative predictive values. For example, the specificity is estimated as the
proportion of patients who test negative, among those that do have the dis-
ease. There are many statistical methods to estimate test accuracy and these
will be explained in detail in Chapter 4. The idea of the area under the ROC
will be explained and many examples introduced to demonstrate its use as an
overall measure of test accuracy.

Other factors that need to be taken into account are: (1) the design of
the study, (2) the gold standard and how it is utilized, and (3) the variability
among and between observers and the input of others involved in diagnostic
decisions.
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With regard to the design, several questions must be asked: How are the
patients selected? Is one group of patients selected at random from some pop-
ulation, or are two groups of patients, diseased and non diseased, selected? Or
are they selected from patient charts, such as in a retrospective review? Along
with this is the nature of the population from which the patients are selected.
Is it a screening population, a community clinic, or a group of patients under-
going biopsy? These factors all affect the final determination of the accuracy
as well as what biases will be introduced.

The gold standard often depends on surgery for biopsy, the pathology
report from the laboratory, and additional imaging procedures. When and
how the gold standard is used, frequently depends on the results of the diag-
nostic test. Often, only those who test positive for disease are subjected to the
gold standard, while those that test negative are not. For example, with mam-
mography those that test positive are tested further with biopsy and tests for
histology. While among those that test negative, follow up of patient status is
the gold standard.

Lastly, with regard to reader variability, it is important to remember that
the medical test is an aid for the people who make the diagnosis, and that the
diagnosis is made by a group (e.g., cardiologists, oncologists, surgeons, radi-
ologists, and pathologists). All of this introduces variability and error into
the final determination of disease status. Is agreement between and among
observers (radiologists, pathologists, surgeons, etc.) an important component
of diagnostic medicine? Of course it is, for suppose a Phase II clinical trial
is being conducted to determine the efficacy of new treatment for advanced
prostate cancer with, say, 35 patients. The major endpoint is tumor response
to therapy, which is based on the change in tumor size from baseline to some
future time point. Often, the percentage change from baseline is used and,
furthermore, this determination depends on the readings of the same images
by several radiologists. Since they differ in regard to training and experience,
their determination of the percentage change varies from reader to reader.
How is this taken into account? How is a consensus reached?

Statistical methods that take into account and measure agreement are
well developed. For example, with ordinal test scores, agreement between
observers is often measured by the Kappa statistic, while if the test score
is continuous, regression techniques for calibration (e.g., Bland-Altman) are
frequently done to assess accuracy within and between observers. Analysis
of variance techniques that account for various sources (patients, readers,
modalities, replications, etc.) of variability help in estimating the between
and within reader variability, via the intra class correlation coefficient. In
Chapters 4 and 5, test accuracy and agreement between observers will be
revealed in detail. See Broemeling [23] for a Bayesian approach to the study of
agreement.

Kundel and Polansky [24] give a brief introduction to the various issues
concerning the measurement of agreement between observers in diagnostic
imaging, and Shoukri [25] has an excellent book on the subject.
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2.6 Developmental Trials for Medical Devices

When developing a new imaging modality, the test must pass three phases
labeled I, II, and III. This is similar to the designation for patient clinical
trials, but what is being referred to here is the development of medical devices.
The different phases are for different objectives of test accuracy and are as
follows.

Phase I trials are exploratory and are usually retrospective with 10–50
patients and 2–3 readers. There are two populations, a homogenous group of
diseased subjects who are definitely known to have the disease, and a second
group of homogenous people who are definitely known not to have the disease.
The key word here is homogenous, where the manifestations of the disease
are more or less the same among diseased patients, while among the non
diseased, their health status is the same. The accuracy is measured by true
positive and false positive rates, as well as the area under the ROC curve.
Thus, if the accuracy is not good, the modality needs to be improved. See
Bogaert et al. [26] for a good example of Phase I developmental trial involving
MRI angiography.

If a device has sufficient accuracy during Phase I, it is studied as a Phase II
trial, and is called a challenge trial, with 50–200 cases and 5–10 observers.
They are also retrospective, but with a wide spectrum of the disease in the
two groups. Thus, if the disease is, say, non-small cell lung cancer, patients
with different manifestations (different ages, different stages of disease, and
patients who have disease similar to non-small cell lung cancer) of disease
are included. Thus, it is more difficult for the device to distinguish between
diseased and non-diseased subjects. Among the non diseased, the patients are
also heterogeneous. Test accuracy is measured as in a Phase I trial, and the
association between accuracy and the pathological, clinical, and co-morbid
features of the patient can be investigated with regression modeling. A com-
parison between digital radiography and conventional chest imaging was per-
formed as a Phase II trial by Theate et al. [27].

Beam, Lyde, and Sullivan [28] investigated the interpretation of screening
mammograms as a Phase III trial using 108 readers, 79 images read twice by
each reader, and many health care centers. The sensitivity ranged from 0.47
to 1 and specificity from 0.36 to 0.99 across the readers. Phase III trials are
prospective and are designed to estimate test performance in a well-defined
clinical population and involve at least 10 observers, several hundred cases, and
competing modalities. A device should pass all three phases before becoming
standard in a general clinical setting.

Note that it is important to know the inter observer variability in these
trials, because the accuracy of the modality depends not only on the device,
but also the interpretation of the image via the various readers. In Chapter 8,
Pepe [29] provides a more detailed description of developmental trials, and
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Obuchowski [30] provides sample size tables for the number of observers and
the number of patients in trials for device development.

2.7 Literature

As mentioned earlier, biostatistics plays a pivotal role in the imaging liter-
ature, as can be discerned by reading papers in the mainline journals, such as
Academic Radiology, The American Journal of Roentgenology, and Radiology,
and the more specialized journals, such as The Journal of Computed Assisted
Tomography, The Journal of Magnetic Resonance Imaging, The Journal of
Nuclear Medicine, and Ultrasound in Medicine. For non-imaging studies, the
journal Pathology provides many examples of studies for medical test accuracy.

For some reference books in the area of general diagnostic imaging, the
standard one is Fundamentals of Diagnostic Radiology (1999 Second Edi-
tion), edited by Brant and Helms [31]. Both references are for radiologists
and give the fundamentals of imaging principals plus a description of the lat-
est clinical applications. For some good general information for the patient,
Johnson, Sandmire, and Klein [18] describe medical tests for a large number
of diseases, including those for cancer, stroke, heart disease, diabetes, and
infectious diseases.

Two statistical books are relevant: The Statistical Evaluation of Medical
Tests for Classification and Prediction by Pepe [29], and Statistical Methods
in Diagnostic Medicine by Zhou, McClish, and Obuchowski [32]. Both are
excellent and are intended for biostatisticians.
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Chapter 3

Preview of the Book

3.1 Introduction

This chapter should give the reader a good idea of what this book is about.
In one sentence, this book introduces the reader to the design and analysis
of medical test accuracy, with emphasis on a Bayesian analysis. A Bayesian
approach is taken where the foundation is based on Bayes theorem, and all
inferences are expressed as posterior distributions of the relevant parameters.
WinBUGS is the software that will execute Bayesian inferences for medical
test accuracy and the associated code is labeled in the book and also appears
on the author’s blog. In what follows, I will carefully describe the contents of
each chapter, so that the reader will know what to expect.

3.2 Preliminary Information

The first three chapters present the preliminary information necessary for
the reader to understand the importance of knowing the accuracy of a medical
test.

3.2.1 Chapter 1: Introduction

The chapter begins with a short introduction previewing the chapter, fol-
lowed by a very brief introduction to the indicators of accuracy, including
the four basic measures: true positive fraction (TPF), false positive fraction
(FPF), positive predictive value, and negative predictive value. Such mea-
sures are applicable if the test scores are binary or if the scores have been
dichotomized with a cutoff value. The area under the receiver operating char-
acteristic (ROC) curve is described as a measure of overall accuracy for med-
ical tests that have ordinal or continuous scores. The next part of the chapter
explains the various datasets that are used for the examples. For example,
some of the datasets in the book by Pepe [1] will be used, as will some exam-
ples from the book by Zhou, McClish, and Obuchowski [2]. Also included for
analysis is information that the author obtained while consulting at the Uni-
versity of Texas MD Anderson Cancer Center (MDACC). The information
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quite valuable and contains many examples of imaging studies for cancer,
including studies involving x-ray, computed tomography (CT), magnetic reso-
nance imaging (MRI), nuclear medicine, and ultrasound. The various forms of
cancer include breast, prostate, lung, ovarian, etc., and will give the reader a
good idea of the important role played by the accuracy of a particular medical
test. Other sources used in the book are papers appearing in the Journal of
Radiology, with an emphasis on procedures that combine two or more tests.

The software employed in this book is WinBUGS and is most appropriate
for our purposes of expressing accuracy inferences via the posterior distribu-
tion of the appropriate parameter. Inference is expressed by computing the
posterior mean, median, standard deviation, and the lower and upper 2 1/2
percentiles of the posterior distribution. WinBUGS generates samples from
the posterior distribution, via Markov Chain Monte Carlo (MCMC), where the
simulation sample size can be adjusted by referring to the MCMC error. The
reader is expected to have some knowledge of Bayesian inference, but a brief
introduction is presented and some history from Bayes to the present day is
given.

3.2.2 Chapter 2: Medical tests
and preliminary information

Knowing the various medical tests used in health care is essential to
understanding the value of medical test accuracy, and this chapter gives brief
descriptions of several medical devices. First to be considered are the stan-
dard imaging tests found in the diagnostic radiology department of a modern
hospital and include descriptions of x-ray, CT, mammography, MRI, nuclear
medicine, and ultrasonography (US). Sometimes, more than one test is used to
give a better picture of the extent of the disease, e.g., MRI and CT to monitor
lung cancer patients. All the tests mentioned are used to diagnose and monitor
cancer patients, however, they are also used to diagnose and monitor heart
disease and other maladies. Next to be portrayed are some specialized tests
for cancer, including nuclear medicine procedures for detecting metastasis of
melanoma from the primary tumor to the lymph nodes. Another diagnostic
test used for melanoma metastasis is using the depth of the primary tumor.

Switching from cancer to other diseases, the use of CT for screening and
monitoring coronary heart disease is characterized. There are many tests for
diagnosing heart disease, including the exercise stress test, followed if neces-
sary by coronary angiography, but a promising CT test measures the amount
of calcium in the coronary arteries. The advantage of the CT test is that it is
safer than the stress test or coronary angiography and is in the experimental
stage in order to assess its accuracy. Type 2 diabetes is becoming more of
a problem and is diagnosed by the fasting blood glucose test and the blood
glucose tolerance test. Both these blood tests are explained in Chapter 2, and
will be used in a later chapter as a way to combine two tests to achieve better
accuracy. The remaining medical tests to be portrayed are the enzyme linked
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immunosorbent assay (ELISA) test to detect antibodies for human immuno-
deficiency virus (HIV), the biomarker CA 125 test to detect ovarian cancer,
and the prostate-specific antigen (PSA) biomarker to diagnose prostate cancer.

The chapter continues by characterizing the interplay between agreement
and medical test accuracy. It is important to remember that several people
are sometimes involved in interpreting the output of a medical test. With the
aid of medical test(s), several health care workers use the medical test output
to give a diagnosis or to monitor the progress of the patient under treatment,
thus agreement or disagreement between readers is present in the treatment
of the patient. Agreement among readers will be explicated in more detail in
Chapter 6, but is given a brief introduction in Chapter 2.

Developmental trials for medical devices, including medical tests, are
briefly explained at the end of the chapter. In this part of the book, the design
aspects of the subject are mentioned for the first time, where a promising med-
ical device is first examined with two different populations, a population with
the disease and the other without the disease. Under such conditions, the test,
if it has any accuracy, should be able to discriminate between the two popu-
lations. If the test passes the Phase I trial, it is subject to a more stringent
challenge involving many readers and institutions. This part of the chapter
describes in detail Phase I, II, and III studies for medical devices.

3.2.3 Chapter 3: Preview of the book

This chapter gives a preview of the book.

3.3 Fundamentals of Test Accuracy

Chapters 4 through 6 present the basics for understanding the measure-
ment of medical test accuracy, with Chapter 4 describing the four fundamental
indicators: the TPF and the FPF, and the positive and negative predictive
values. Chapter 5 is largely devoted to regression techniques for incorporat-
ing covariate information, while Chapter 6 stresses the study of agreement
between several readers who are interpreting the output of medical tests. How
does agreement or disagreement between readers affect the accuracy of a med-
ical test?

3.3.1 Chapter 4: Fundamentals of medical
test accuracy

The chapter begins with an introduction to the design of a study to
measure the accuracy of a medical device by outlining the components that
are necessary for implementing the study, where the components of a good
design are listed as: objectives, background, patient and reader selection, study
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design, number of patients, statistical design and analysis, and, lastly, a sec-
tion for the reference of the study.

Next, a description of the four fundamental indicators of test accuracy for
binary test scores is given, where the basic theory is presented, followed by a
WinBUGS program that illustrates the estimation of test accuracy. The four
indicators are the so-called classification probabilities, namely, the true and
false positive fractions. This is followed by the positive and negative predictive
values that are of interest to the patient, and the four indicators are estimated
by an example using the exercise stress test to diagnose coronary artery dis-
ease. The Bayesian analysis is executed with BUGS CODE 4.1 using 45,000
observations, a burn in of 5,000 and a refresh of 100, and the results consist
of the posterior characteristics for the four indicators and a graph of their
posterior densities. The Bayesian approach is continued by defining the area
under the ROC curve and illustrated with an example of mammography, where
the test scores are ordinal: 1 indicating positively no evidence of malignancy;
2 indicating there is very little evidence of malignancy; 3 implying an ambigu-
ous situation for scoring the lesion malignant; 4 indicating some evidence of
malignancy; and 5 indicating that the lesion is definitely malignant. There are
30 patients with the disease and 30 without, and the analysis is executed with
BUGS CODE 4.2. Remember, the code is listed in the book and on the
author’s blog and is easily accessible to the reader. The ROC area is also illus-
trated with the Shields Heart Study, which uses CT to measure the extent of
coronary artery disease. The Bayesian methods for ordinal scores are devel-
oped by the author and appear to be unique.

The chapter continues with an interesting generalization of the ROC area
when the scores are ordinal, and portrays the case when the scores are clus-
tered, which is the case for mammography, that is, the image is partitioned into
several regions and the radiologist assigns a score from 1 to 5 to each region of
the mammogram. In this scenario, one would expect the scores to be correlated
and the chapter presents the theory and illustrates the idea with an example
taken from Zhou, McClish, and Obuchowski [2: 134] involving mammography,
where the Bayesian analysis is executed with BUGS CODE 4.4.

With ordinal scores, the subject is expanded to include a comparison
between the accuracies of two medical tests to diagnose the same disease,
and is illustrated with CT and MRI to detect lung cancer. The two tests are
compared based on their ROC areas, and the Bayesian analysis is executed
with BUGS CODE 4.6; it is noted that the design is paired in that both tests
are administered to the same patients. The chapter concludes by estimating
accuracy with ROC areas for tests with continuous scores and comparing two
tests via their ROC areas.

3.3.2 Chapter 5: Regression and medical test accuracy

This chapter deals with patient covariate information that can be accounted
for in the estimation of test accuracy. Regression techniques for ordinal and
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continuous test scores are considered, and the chapter begins with an example
from audiology, where the subject’s covariate information is accounted for in
estimating the true and false positive fractions. An example from an audiology
study test is considered, where the accuracy of the test that is supposed to
detect impaired hearing is taken from Pepe [1], where the dependent variable is
the false positive rate and the covariates are the age of the patient, the version
of the test, and the location where the test is given. This example is analyzed
using two link functions, the first is a log link and the second is a logistic link,
and the analysis is based on BUGS CODE 5.1 and 5.2, the former for the log
link and the latter for the logistic link. This example is continued by estimating
the positive diagnostic likelihood ratios using the same patient covariates. Next
to be considered is using patient covariates to estimate the area under the ROC
curve with an ordinal regression model formulated by Congdon [3: 108] and
illustrated with an example of a clinical trial that measures tumor response
to two therapies. The example is from Holtbrugge and Schumacher [4] and is
executed with BUGS CODE 5.4. Another example using ordinal regression
is a staging study for metastasis of melanoma and involves four radiologists
who all see the same information on the same patients.

When the test scores are continuous and normally distributed, the Bayesian
regression approach of O’Malley et al. [5] allows covariate information for
estimating the ROC area and is illustrated with an example from Pepe [1],
involving screening for prostate cancer, where the test scores are the total PSA
values. BUGS CODE 5.6 is executed to produce a posterior analysis where
the patient covariate is age, resulting in a posterior mean of 0.80 for the area.
The chapter concludes with another example with continuous scores using
yet another audiology example. There are 17 exercises that give the student
additional valuable information about the Bayesian analysis that estimates
test accuracy with the aid of regression models for ordinal and continuous
observations. When studying the exercises, remember to download the code
and data from the blog: http://medtestacc.blogspot.com.

3.3.3 Chapter 6: Agreement and test accuracy

Several readers are usually involved in interpreting the results of a medi-
cal test, and this chapter emphasizes how they affect the overall accuracy of
the test. Recall the melanoma example of Chapter 4, where four readers were
scoring the degree of metastasis of the disease. Since the readers are viewing
the same images, one would expect correlation between the reader scores and
their results to be similar, however, some readers may have more experience
than others, a factor that introduces additional variability to the determina-
tion of test accuracy. The ROC area estimates the accuracy of the test, one
for each reader, but which areas do we use? All four are reported, but should
one employ some type of summary of the four areas?

The first case to be considered is the melanoma metastasis example of
Chapter 5, and the four ROC areas are estimated with a Bayesian approach
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using BUGS CODE 6.1 with 65,000 observations generated from the poste-
rior distribution. It turns out that the four estimated areas varied from a low
of 0.64, estimated by reader 3, to a high of 0.80 for reader 2. On the contrary,
a second example involving the blood glucose test for type 2 diabetes with
three readers, revealed very little difference in the posterior means of the ROC
areas. The latter case involves a continuous score and the O’Malley et al. [5]
method of estimating the ROC curve, and is continued by expanding the anal-
ysis to include patient age and gender as covariates. A Bayesian analysis based
on BUGS CODE 6.2 estimates a summary ROC area with a weighted mean,
where the posterior mean area of each reader is weighted by the inverse of the
posterior variance. The unweighted mean is also computed as 0.8162(0.0130),
which compares to the weighted mean of 0.991(0.0022).

A gold standard is present for the above scenarios, and the chapter con-
tinues by considering the case when no gold standard is available, and brings
the standard approach to estimating the agreement between the readers. Of
course, if the gold standard is present, the readers can be compared on the
basis of the ROC areas, but when the gold standard is not available, how
should agreement be estimated?

There is a long history of statistical agreement based mostly on the Kappa
coefficient, and that approach will be taken for the remainder of Chapter 6.
The Kappa coefficient is defined and the Bayesian approach to the index is
described and illustrated with an example for nominal scores using an example
from Von Eye and Mun [6: 12]. The example consists of a 3× 3 table with two
psychiatrists, who are assigning scores that express the degree of depression in
each of 129 patients, where the three scores are defined as: 1 = not depressed,
2 = mildly depressed, and 3 = clinically depressed. The Bayesian analysis is
run with BUGS CODE 6.3, using 25,000 observations for the simulation and is
available on the author’s blog: http://medtestacc.blogspot.com. Also reported
is the density of the posterior distribution of conditional Kappa.

Various generalizations of Kappa are presented in the remainder of
Chapter 6, including Kappa and stratification where a hypothetical exam-
ple portrays the essential components for estimating agreement. Suppose that
the agreement between x-ray and CT is estimated, where the study is con-
ducted at three different sites and calls for a total enrollment of 2500 subjects,
with 1000 each at two sites and 500 patients at a third site. Our objective is
to estimate the overall agreement between the two devices, using a weighted
Kappa where the weights are the inverse of the posterior variance of Kappa
for a particular site. In this case, there is good agreement at each site, conse-
quently the weighted Kappa is very close to the simple average of the posterior
mean of the three Kappas.

Chapter 6 continues with various generalizations of Kappa, including an
explanation of the Bayesian analysis for the so-called intraclass Kappa. The
situation is similar to that of a one-way layout with c groups and an unequal
number of binary observations in the various groups; observations between
different groups are assumed to be independent. A crucial assumption is that
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each binary observation has the same probability of being “1.” The Bayesian
theory is described to estimate the intraclass Kappa, which is the common
correlation between the binary observations in the same group. The intraclass
correlation is estimated for an interesting example of three groups, where the
“subjects” in a group are rabbit fetuses, and each fetus responds or does
not respond to a treatment. BUGS CODE 6.3 is executed in order to estimate
intraclass Kappa with a posterior mean of 0.0907(0.1063) and a posterior mean
of 0.2262(0.0403) for the common probability of a response. In this case, Kappa
estimates the common correlation between the binary responses of the fetuses
in the same group, which is similar to the case of the usual one-way random
model with normally distributed observations.

Other measures of agreement are introduced, including the G coefficient
and the Jacquard index, both of which have the value “1” when there is perfect
agreement between two binary scores, but the Kappa coefficient remains the
index preferred by researchers in the social and medical sciences.

There is a well-known relationship between the Kappa coefficient and
the sensitivity and specificity of two readers assigning scores. Kraemer [7]
expressed Kappa in terms of the specificity and sensitivity of the two read-
ers and showed the dependence of Kappa on the disease incidence. Ironically,
when the disease incidence is low and the specificity and sensitivity are “high,”
nevertheless, Kappa can be small. A similar situation occurs in diagnostic
testing when the disease rate is small, in that it can be true that the posi-
tive predictive value can be small even though the sensitivity and specificity
are high.

Chapter 6 continues with a discussion of consensus between readers with
an example applicable to Phase II clinical trials. In such studies, two or more
radiologists grade the response of each patient, and at the end of the trial must
come to a conclusion about the success or failure of the trial.

The idea of agreement is generalized to ways to compute Kappa when
there are more than two raters with binary scores, and is demonstrated with
an example of four students who assign scores to each image where the analysis
is executed with BUGS CODE 6.8 using 25,000 observations for the simula-
tion. When there are more than two raters, one can consider several ways to
measure partial agreement. For example, when six raters are assigning binary
scores, one can consider the agreement between, say, exactly two of six among
them. This is accomplished by defining a Kappa coefficient and illustrating
the idea with an example of six pathologists who assign a 0 or 1 if there is
a certain lesion present or not in the image. The Bayesian analysis is done
with BUGS CODE 6.9 and estimates Kappa as 0.6382(0.0598) with the pos-
terior mean. Various other scenarios for partial agreement are discussed and
a relevant Kappa defined and further illustrated with real-life examples. The
last generalization for agreement is to define a Kappa when there are many
raters and ordinal scores. Twenty exercises reinforce the Bayesian analysis for
agreement presented in the chapter and are essential for a complete under-
standing of the subject.
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3.4 Advanced Methods for Test Accuracy

3.4.1 Chapter 7: Estimating test accuracy with
an imperfect reference standard

If a gold standard does not exist, the accuracy of a test is usually estimated
using an imperfect reference test. There are many cases where no gold standard
exists, such as in diagnosing depression, where the condition is assessed with a
series of questions to the patient, but such assessments are quite subjective and
no one test will give a perfect diagnosis. Pepe [1] presents another situation
where no gold standard is available where Chlamydia is being diagnosed with
polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay
(ELISA). The approach taken here is Bayesian and employs augmented data
and the assumption of conditional independence for the two tests, the new
test T and the imperfect reference test R. By conditional independence, it is
meant that given D, where D indicates disease, the two tests are indepen-
dent. Chapter 7 begins with a hypothetical example of a new test T , and an
imperfect reference test R, where the disease status is actually known and the
“true” sensitivity and specificity can be determined. Relative to the imper-
fect reference test R, the sensitivity and specificity of T can also be estimated.
The accuracies based on R are, of course, misleading, and this is demonstrated
with the example in Table 3.1.

Relative to R, the sensitivity of T is 0.80 and its specificity is 0.60, but
relative to the gold standard, the sensitivity is 0.80 and the specificity is 0.70!

Using the conditional independence assumption

P [R, T | D] = P [R | D]P [T | D],

Chapter 6 continues with a description of the Bayesian approach that employs
augmented data to estimate the accuracies of the two tests, R and T . Then
the approach is illustrated with an example of diagnosing Strongyloides among
162 Cambodian refugees who are immigrating to Canada. Two tests are used
to diagnose the disease, namely, a serology (blood) test and a test based on
the subject’s stool. The Bayesian analysis is executed with BUGS CODE 7.1
using 125,000 observations, with a burn in of 5,000 and a refresh of 100. The
Bayesian analysis relied on prior information and gave a sensitivity of 0.88 for
serology and only 0.30 for the stool examination, but on the other hand, the
specificity of the stool examination is 0.76 with 0.69 for serology. The code
and data can be downloaded from http://medtestacc.blogspot.com.

TABLE 3.1: Hypothetical example of imperfect reference R.
D = 0 D = 1 R = 0 R = 1

T = 0 70 20 74 16
T = 1 30 80 46 64
Total 100 100 120 80
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The Strongyloides example is reanalyzed, but not assuming conditional
independence, and the results are surprising, in that the accuracies are some-
what similar compared to those with the original analysis, implying that the
conditional independence assumption is valid.

Chapter 7 continues with another example from Zhou, McClish, and
Obuchowski [2] of two tests (the Tine and Mantour tests) without a gold stan-
dard, but the two tests are for diagnosing tuberculosis at two different sites,
one a southern school district, and the other a tuberculosis sanatorium. This
is an interesting example, because one would expect the tuberculosis rates
to be very different between the two sites, with a much higher rate for the
sanatorium, and one would expect this to also affect the accuracy of the two
tests at the two sites. Using the conditional independence assumption at both
sites, a Bayesian analysis was conducted with BUGS CODE 7.3 using 130,000
observations for the simulation, and it was found that the two sites did differ
substantially with regard to the rate of tuberculosis, but that the accuracy
of the two tests at the two sites was quite similar! As above, the example is
revisited, but not assuming conditional independence. The analysis is exe-
cuted with BUGS CODE 7.3, and it is interesting to compare the Bayesian
analyses with and without the conditional independence assumption.

Chapter 7 portrays an interesting generalization by considering three
binary tests with no gold standard, where the theory assumes conditional
independence among the tests. The example is of three radiologists who are
conducting a study of x-ray to detect pleural thickening of 1692 male asbestos
miners in South Africa. Here, the three tests correspond to three radiolo-
gists using the same device (x-ray) to diagnose disease with no gold standard.
Executing BUGS CODE 7.5, the disease rate (pleural thickening) is estimated
as only 0.019, but the specificities of the three radiologists are essentially the
same. The sensitivities do differ somewhat, but the difference is not substan-
tial. The reader should note that the analysis relies heavily on prior infor-
mation, and the example assesses the effect of changing prior information on
the posterior analysis. The assumption of conditional independence is dropped
and the pleural thickening example reanalyzed by executing BUGS CODE 7.6.

Chapter 7 is concluded by using the previous concepts of augmented data
and conditional independence assumption to study two tests with ordinal
scores, where the accuracy of the tests is based on the ROC areas. The Bayesian
theory is developed and the ideas illustrated with an example of MRI and CT
to stage pancreatic cancer. In order to understand the concepts of estimating
accuracy without a gold standard, the student should solve the 23 exercises
at the end of the chapter.

3.4.2 Chapter 8: Verification bias and test accuracy

The typical set up for estimating the accuracy of a medical test is to have
a gold standard, where the disease status of a subject is determined. Sub-
sequently, among those with the disease, a score that can be attributed to
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the disease status is taken. As for those without the disease, a medical test
is also given, however, there are scenarios where the patient is not subject to
the gold standard. Consider for example the case of testing for heart disease
with the exercise stress test, where among those that test negative, patients
are usually not referred for further testing with coronary angiography, but on
the other hand, among those that test positive, usually most are referred for
coronary angiography, the gold standard. This is, in fact, the normal scenario
when screening for disease. The case where the patient is always given the gold
standard is unusual and occurs only when experimental conditions call for it.
It is sometimes considered unethical to subject a person to the gold standard
when they test negative.

Chapter 8 deals with the problem of estimating accuracy when verification
bias is present, which occurs when only some of the subjects are verified for
disease; the experimental layout is as shown in Table 3.2.

From Table 3.2, V = 1 indicates a patient verified for disease, otherwise
V = 0, and the number of patients who are not verified for disease is u1 when
the test is positive, and u0 when the test is negative. If the accuracy of the
one binary test, e.g., the TPF, is estimated from among only those patients
who have been verified, the estimates are biased in the sense that they will
not be unbiased estimates of the “true” accuracy. The Bayesian approach to
correcting for verification bias is based on missing at random (MAR) and is
outlined and illustrated with an example of hepatic scintigraphy to detect
liver disease. The example clearly shows the correction for verification bias,
and that the accuracy based only on the verified patients is misleading. The
analysis is based on BUGS CODE 8.1, which is executed with 45,000 observa-
tions generated for the simulation. A plot of the posterior density of the TPF
is also provided.

Next on the agenda of Chapter 8 is estimating the accuracy of two binary
tests when verification bias is present. The theory is described, again with
the MAR assumption, and illustrated with a screening test for Alzheimer’s
disease conducted by two observers, that is, two readers are diagnosing the dis-
ease with binary scores (either the subject has the disease or the subject does
not have the disease). The Bayesian analysis is based on BUGS CODE 8.2,
which is executed with 30,000 observations generated for the simulation and
the posterior mean for the TPF for the first observer is 0.9936(0.007). The
analysis for the second observer is left as an exercise.

TABLE 3.2: One binary test.
Y 1 (Positive) 0 (Negative)

V = 1
D = 1 s1 s0
D = 0 r1 r0

V = 0 u1 u0
Total m1 m0
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The Bayesian approach to estimating the accuracy of an ordinal test with
verification bias is portrayed with a mammography example involving 1500
subjects where each patient is scored from 1 to 5, and about 11% of the
patients are not verified for disease. Again, the MAR assumption is imposed
for the Bayesian analysis and accomplished with BUGS CODE 8.3, which is
executed with 55,000 observations for the simulation, and the ROC area for
mammography is estimated as 0.7762(0.0126) with a 95% credible interval
(0.7509,0.8005). Accuracy of mammography is expanded to two sites, where
verification bias is present and the MAR assumption imposed. This type of
generalization can be extended to several tests and several sites or observers.
For example, the Bayesian approach for two ordinal tests is considered next,
where the theory is developed and characterized with a dermatologist and
surgeon staging melanoma. The code for BUGS CODE 8.4 appears in the book
and on the author’s blog and is easily executed, resulting in a ROC area of 0.78
compared to 0.63 for the dermatologist. Covariates are included in the example
of staging melanoma and provide a nice generalization of the preceding theory.
A nice alternative to the above way to correct for verification bias is to use
inverse weighting as described by Pepe [1], where it is demonstrated that it is
equivalent to that based on the MAR assumption.

Chapter 8 concludes with an approach that does not impose the MAR
assumption, but computing the posterior density can be a problem. However,
a posterior analysis for one binary test with verification bias is performed. The
code makes it possible to test for the MAR assumption. Lastly, the reader is
encouraged to solve the 18 exercises, some of which enhance one’s knowledge
of the subject.

3.4.3 Chapter 9: Test accuracy and medical practice

A different direction is taken for Chapter 9 in that the emphasis will be on
the role that the accuracy of medical tests plays in practice, where the first
topic describes how to choose the cutoff or threshold score to declare a patient
positive, or one who has the disease.

One issue facing the practitioner is the choice of a threshold or cutoff value
in order to declare that the patient has disease. For example, when undergoing
a fasting blood glucose test, how high does the value of blood glucose have to
be in order for the doctor to treat the condition as type 2 diabetes? Another
example is testing for coronary artery disease, when the patient complains
of chest pain and seeks help from a physician. The doctor might send the
subject for an exercise stress test, which involves injecting the patient with a
radioactive nucleotide that is designed to target the heart and emit radiation
that is detected by a gamma camera (positron emission tomography [PET]
or single photon emission computed tomography [SPECT]). At what point is
the patient said to have heart disease? This is a case where the choice of a
threshold is crucial. Of course, in this situation, the patient might be referred
for further testing involving the gold standard, namely, a heart catheterization
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to examine the coronary arteries. Note, in practice the physician must choose
a cutoff value in order to declare the patient positive for disease.

The idea of choosing an optimal threshold value is demonstrated with the
PSA test for prostate cancer, where 12,000 men aged 50–65 were randomized
into placebo and treatment groups. The PSA values are based on a study by
Etzioni et al. [8] and reported by Pepe [1: 10], and the accuracy is based on
the ROC area, which was determined by a Bayesian approach described in
Chapter 4. In Chapter 9, there are two criteria for choosing the threshold val-
ues, namely: (1) the threshold is chosen to correspond to the point on the ROC
curve that is closest to the point (0,1), and (2) the threshold is chosen based
on cost considerations. For the PSA example and using the first criterion, the
closest point to (0,1) has a false positive fraction of 0.20 and a corresponding
true positive fraction of 0.707, which corresponds to a log PSA value of 1.96.

For the second approach, the threshold is chosen to minimize a cost
function:

C = TPFp(Ctp − Cfn) + FPF(1− p)(Cfp − Ctn) + C0 + pCfn + (1 − p)Ctn,

where p is the disease incidence, FPF and TPF are the false positive and
true positive fractions, and ctp, cfn , cfp , and ctn are the costs of a true
positive, a false negative, a false positive, and a true negative, respectively.
The Bayesian approach to estimating the optimal threshold was derived by
Somoza and Mossman [9] and is implemented for the PSA example with
BUGS CODE 9.1, resulting in an FPF of 0.16 and a TPF of 0.709. Note,
this is very close to the point (0.20,0.70) on the ROC curve selected by the
first criterion. The second criterion, based on cost considerations, is much
more difficult to apply because one must know the various costs. A second
example using the biomarker CB-KK to predict head trauma complications
illustrates the idea of choosing the optimal threshold value.

Bayesian decision curves, an idea introduced by Vickers and Elkins [10] to
evaluate the clinical benefit of a medical test, are the second topic of Chapter 9.
They considered PSA to diagnose prostate cancer, where three scenarios are
possible: (1) the decision to biopsy a patient depends on the value of PSA,
(2) all patients have a biopsy, and (3) no patient has a biopsy.

For each scenario, a decision curve is determined, which is a plot of the
clinical benefit for a range of threshold probabilities, that is, for each threshold
probability, a clinical benefit is computed. For example, for scenario (1), the
clinical benefit is defined as

p11 − p10(pt/(1 − pt)),

where p11 is the probability of a true positive, p10 is the probability of a
false positive, and pt is the threshold probability. A person opts for a biopsy
if their probability of disease exceeds the threshold probability. A threshold
probability is chosen from some range, and logistic regression is performed to
estimate the probability of disease. For a threshold value, if the probability
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of disease is greater than the threshold value, the patient is declared positive
for disease. After all of this, a 2× 2 table is constructed, from which values
for p11 and p10 are determined, thus determining the decision curve above,
and a similar procedure is available for the second scenario. Decision curves
are demonstrated for the Etzioni et al. [8] prostate cancer example and imple-
mented with BUGS CODE 9.2, using 45,000 observations for the simulation,
and the decision curve for scenario (1) dominates that for scenario (2). The
Bayesian approach is shown to be comparable to maximum likelihood and a
second example with the head trauma data illustrates the concept of decision
curves.

Test accuracy in clinical trials is the third topic of Chapter 9. Once the
patient is diagnosed with disease and therapy is initiated, the accuracy of vari-
ous tests to monitor disease progress is crucial. The example considered in this
chapter is the case of a Phase II clinical trial for cancer, where the progress of
a patient is monitored by measuring the size of the tumor. At baseline, before
treatment begins, various imaging devices are used to measure the size of the
tumor, such as CT or MRI or both. At various times during treatment the size
is measured, and at the termination of the trial, a final determination of the
size is made. Now, a team of radiologists must decide for each patient the pro-
gress of the disease as measured by tumor size and other characteristics. In
many cases, the effect of treatment is categorized as: (a) a complete response,
(b) a partial response, (c) no change, or (d) disease progression. Each category
is defined in terms of the change in the size of the tumor from the initiation
of treatment to the termination of treatment. Such assessments are made for
each patient and the total accumulated evidence in turn determines the over-
all success or failure of the trial. Of course, at issue is the accuracy of the
imaging device (say CT) and the agreement between the team of radiologists
responsible for declaring the success or failure of the trial. The chapter con-
cludes with an example of a Phase II trial, which is implemented with some
special software written at MDACC.

3.4.4 Chapter 10: Accuracy of combined tests

Chapter 10 introduces the reader to the methodology of measuring the
accuracy of several medical tests that are administered to the patient. Our
main focus is on measuring the accuracy of a combination of two or more
tests. For example, to diagnose type 2 diabetes, the patient is given a fasting
blood glucose test, which is followed by an oral glucose tolerance test. What is
the accuracy (TPF and FPF) of this combination of two tests? Or, in order to
diagnose coronary artery disease, the subject’s history of chest pain is followed
by an exercise stress test. Yet another example is for the diagnosis of prostate
cancer, where a digital rectal examination is followed by measuring PSA. The
reader is referred to Johnson, Sandmire, and Klein [11] for a description of
additional examples of multiple tests to diagnose disease, including those for
heart disease, diabetes, lung cancer, breast cancer, etc.
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Chapter 10 begins with a discussion of measuring the accuracy of two
binary tests and the basic question is how is the accuracy defined when two
tests are combined to diagnose disease. There have been several ways to define
accuracy where the main concern is when to declare a patient as positive, based
on the results of two tests. Pepe [1: 268] presents two approaches: (1) believe
the positive rule (BP), and (2) believe the negative rule (BN), where for the
former, a patient is declared “positive” if at least one of the tests is positive,
and for the latter rule, a patient is declared positive if both tests are “positive.”
Chapter 10 continues by presenting the Bayesian theory for implementing the
BP and BN rules, which lays the foundation for BUGS CODE 10.1, which
is executed in order to analyze an example of two tests for diagnosing heart
disease, namely, the exercise stress test and the patient’s history of chest pain.
The analysis is executed with 55,000 observations, with a burn in of 5,000 and
a refresh of 100, and the posterior means of the FPF for the BN and BP rules
are 0.1568 and 0.6592, respectively, whereas, the TPF for the BN and BP
rules are 0.7662 and 0.9747, respectively. Thus, the FPF is greater for the
BP rule compared to the BN rule, and the TPF is greater for the BP rule.
Note that the BP and BN rules can put one in the predicament of choosing
a way to measure test accuracy. An example that combines CT and MRI
to detect coronary stenosis further demonstrates the BN and BP rules for
measuring the accuracy of a combined test.

Chapter 10 continues with a generalization of the accuracy for the com-
bination of two binary tests to include several readers, and the theory is
illustrated with a continuation of the previous example of CT and MRI for
coronary stenosis, but now two readers are interpreting the test scores. BUGS
CODE 10.2 is executed and the TPF and FPF for the BN and BP rules for
the two readers are computed. With more readers, the problems of summariz-
ing the accuracy become more complicated. How does one combine the test
accuracies for the two readers based on the BN and BP rules?

An interesting situation is encountered when two binary tests where verifi-
cation bias is present are considered. The problem of verification bias is studied
in Chapter 8, but in Chapter 10 it is being examined in the context of combin-
ing two binary tests. Recall that verification bias is present when some of the
patients being tested are not subject to the gold standard and recall the exam-
ple of screening for Alzheimer’s disease. What is the test accuracy of the com-
bined test for the two tests (readers) when verification bias is present? The
analysis is executed with BUGS CODE 10.3 with 45,000 observations and
determines the posterior mean of the TPF for the BN and BP rules as 0.75
and 0.99, respectively. Note for this case, the combined test is the combined
reader’s interpretations. On the other hand, the posterior mean of the FPF
for the BN and BP rules are 0.13 and 0.36, respectively. Which rule do you
prefer for reporting the accuracy of the two readers combined?

A change of emphasis from binary to ordinal and continuous test scores
brings us to some “new” ideas for measuring the accuracy by combining
two tests. For ordinal and continuous scores, the area under the ROC curve
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measures the intrinsic accuracy of a medical test, but how should the area be
computed when two tests are combined? The ROC curve for the risk score is
the foundation for measuring the accuracy of the combined test, but in turn,
the risk score is a monotone increasing function of the likelihood ratio, which
is the optimal way to measure the accuracy of the combined test.

The optimality of the risk function is a consequence of the Neyman-
Pearson lemma, which is a familiar result from classical statistics for testing
hypotheses.

The chapter continues with the likelihood ratio, which is defined, and the
optimality of the ROC curve of the likelihood ratio is demonstrated by refer-
ring to the Neyman-Pearson lemma. Then, the risk function will be defined
and shown to be a monotone increasing function of the likelihood ratio, thus,
the ROC curve of the risk function is the same as the ROC curve of the likeli-
hood ratio. Pepe’s [1: 269–274] development of the subject is followed closely
but is given a Bayesian emphasis, and the end result will be that the optimal
way to measure the accuracy of the combined test is to estimate the area
under the ROC curve of the risk function. Determining the risk function is
equivalent to performing a logistic regression using the test scores of the two
tests as predictors, then the ROC curve of the predicted probabilities (from
the logistic regression) is computed, from which the area is then estimated.
Such an area is the accuracy of the combined test, and the methodology is
illustrated with various examples using ordinal test scores. Note that the risk
score is defined as

RS(Y ) = P [D = 1 | Y ]

where Y = (Y1, Y2, . . . , Yp) is the vector of scores of p ordinal tests.
It seems that a logistic regression can determine the risk score for each

patient, based on the combined scores of Y .
The first example is from an imaging trial using MRI and CT to detect

lung cancer, where one radiologist uses a five-point confidence score, and the
ROC curve of the risk function of the combined test is computed and com-
pared to the ROC curve of the individual tests. There are 261 patients with the
disease and 674 without, and the analysis is executed with BUGS CODE 10.5
using 55,000 observations for the simulation. The analysis consists of a logistic
regression with the scores of the two tests as independent variables and the
dependent variable is the risk score (the probability that a subject has the dis-
ease). After the risk scores are computed, the ROC area is estimated with a
posterior mean of 0.72(0.019) compared to ROC areas of 0.6836 for CT and
0.6886 for MRI, thus, the use of the risk score increases the accuracy com-
pared to the component tests. Of course, it needs to be emphasized that the
logistic regression should be a good fit to the data, otherwise the ROC area of
the risk scores can be misleading. Note that use of the risk function is a sta-
tistical procedure that requires close collaboration between the clinician and
biostatistician. In essence, the two scores of the component tests are combined
to give one number, namely, the estimated probability of disease!
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The next example using the risk score for accuracy of the combined test
is the use of two versions of MRI for the localization of prostate cancer.
Localization means finding where the lesion is within the prostate gland. The
gland is partitioned into 14 segments, and a score from 1 to 5 is assigned to
each by both devices. After surgery, histopathology of the prostate gland serves
as a gold standard. This study is taken from Coakley et al. [12], where 46
patients are enrolled, giving a total of 644 segments, and body-array MRI
and endorectal MRI image the same segments of the prostate. A Bayesian
logistic regression is performed with the two tests scores for the two images,
thus a risk score is assigned to each patient. BUGS CODE 10.4 performs the
logistic regression, providing the input for BUGS CODE 10.5, which estimates
the ROC area of the combined test. With 45,000 observations generated for
the simulation, the posterior mean of the ROC area for the body-array and
endorectal MRI are 0.55(0.0257) and 0.7519(0.0216), respectively, which com-
pares to 0.80(0.0223) for the posterior mean of the combined test. Wow, what
an improvement over the accuracies of component tests!!

Chapter 10 concludes with an example that generalizes the analysis done
for two versions (body-array and endorectal) of MRI by including age as a
patient covariate; consequently, the ROC area of the risk score improves from
0.75 to 0.889. Lastly, the accuracy of a combined test with two ordinal com-
ponents is considered and demonstrated with a staging example of melanoma
done by a dermatologist and a surgeon, when verification bias is present.
I believe that this contribution has not appeared before. Note that the risk
score is also used for continuous tests and the last section of the chapter com-
putes the ROC area of the risk score for two biomarkers for pancreatic cancer.
The 17 exercises expand on the subject matter explained in the chapter and
the student should attempt to solve all of them. Also, remember that the code
and data appear in the book and can be copied from the author’s blog http://
medtestacc.blogspot.com.

3.4.5 Chapter 11: Meta-analysis for test accuracy

The last chapter of the book presents the fundamentals of the Bayesian
approach to executing a meta-analysis for medical test accuracy. Most of the
chapters deal with estimating the summary ROC curve, which summarizes
the ROC curve for a series of studies that assume a common ROC curve, but
where the studies may differ in the reported TPF and FPF, due to differ-
ent threshold values. The so-called SROC curve is based on a regression of
B values on S values, where the B and S values are linear transforms of the
logits of the TPF and FPF. The results of the regression allow one to estimate
the accuracy of the summary receiver operating characteristic (SROC) curve
using the Q parameter, which varies between 0 and 1 in much the same way
as the area under the ROC curve. Meta-analysis is introduced with one binary
test, then two binary tests are considered for the Bayesian analysis, and finally
one and two binary tests with study covariates are analyzed. Test scores are

  



K11763 Chapter: 3 page: 43 date: June 17, 2011

Preview of the Book 43

either ordinal or continuous, where a threshold value declares a patient as
either positive or negative for the disease, and, in this way, binary tests are
induced by the threshold value, which in turn, produces true and false posi-
tive rates. Many examples illustrate the Bayesian approach to meta-analysis
and include studies for coronary artery disease, inflammatory bowel disease,
osteomyelitis, breast cancer, and recurrent colorectal cancer. A non-Bayesian
approach to meta-analysis for test accuracy is portrayed by Zhou, McClish,
and Obuchowski [2] and this presentation is similar in many respects, except
that the analysis is via Bayesian inference.
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Chapter 4

Fundamentals of Diagnostic Accuracy

4.1 Introduction

This chapter describes the methodology for making inferences with respect
to the basic measures of test accuracy and begins with a section on the design
of such studies. First, the elements of a good design for the accuracy of a med-
ical test will be explained in the context of a protocol submission of a trial to
assess the accuracy of a diagnostic test in a clinical situation. This will include
describing in some detail the components of a clinical protocol, such as the
objectives of the study, the background, patient and reader selection, the study
plan, the number of patients, the statistical design and analysis, and finally
the role that references (prior experimental studies) play in the protocol.

After describing the components of designing a diagnostic study, this chap-
ter introduces Bayesian methods for the analysis of diagnostic test accuracy,
including the estimation of sensitivity, specificity, the positive predictive value
(PPV) and the negative predictive value (NPV), the positive diagnostic like-
lihood ratio (PDLR) and the negative diagnostic likelihood ratio (NDLR), and
receiver operating characteristic (ROC) curves. The basic measures are the
true positive fraction (TPF) and the false positive fraction (FPF), where such
measures are appropriate for binary test scores, as are the PPV and NPV,
where the latter are of paramount importance to the patient. A Bayesian anal-
ysis determines the posterior distribution of the accuracy parameter and its
characteristics, such as the posterior mean, median, standard deviation, cred-
ible intervals, and associated plots of the density.

The analysis of test accuracy data is introduced first with binary and ordi-
nal diagnostic test data, and then the Bayesian analysis is repeated with quan-
titative scores. When the test scores are ordinal or quantitative, the area under
the ROC curve is the accepted way to measure the accuracy of the test. Mam-
mography is a good example, where the radiologist assigns a score from 1 to 5,
which represents the likelihood of a lesion appearing in the image, and then
the ROC area is defined as the probability that a diseased patient has a score
greater than that of a non-diseased patient, and the area is between 0 and 1.
An area of 1 implies that the test is discriminating perfectly between diseased
and non-diseased patients. Remember that the above discussion of test accu-
racy always assumes a reference standard or gold standard measure whether
the disease is present or not.
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An interesting generalization of ordinal test scores is when the test scores
are clustered, such as in the study of coronary artery disease (CAD), where the
coronary arteries are grouped into segments, thus the left coronary artery is
broken into several segments, as is the left anterior descending artery. To each
segment is attached an ordinal score, assigned by the reader, which indicates
the degree of stenosis of that segment. When the information is clustered,
the correlation is present between adjacent segments, which must be modeled
for the analysis. This specialized topic includes localization and detection of
disease by diagnostic tests, where the image is partitioned into regions of inter-
est (ROI). This is interesting statistically because of the correlation between
regions of the same image. The analysis of correlated data in such a scenario
has been approached by Obuchowski, Lieber, and Powell [1], and based on
their ideas, a Bayesian technique to estimate the ROC area is developed.

For continuous or quantitative scores, the area under the ROC curve mea-
sures the accuracy of the test and many interesting examples are presented,
including a study of CAD using computed tomography (CT) to measure the
extent of plaque build up in the coronary arteries. How accurate is CT in
measuring the extent of CAD? This will be answered by examining the CT
score for some 4000 patients! Also of interest in connection with the funda-
mentals of test accuracy is the comparison of accuracies between two different
medical tests that are measuring the same thing on the same patients. For
example, several tests measure the blood glucose values of subjects screened
for type 2 diabetes, and comparing the accuracy between them is of interest
to researchers. Another example of comparing the accuracy of medical tests
is given by some recent experimental studies comparing CT screening with
x-ray for lung cancer.

Some topics of a more specialized nature are also discussed in this chapter,
such as choosing the optimal point on the ROC curve (equivalently, choosing
the optimal cut point for a positive binary test) based on cost considerations,
and comparing two tests with quantitative scores that are correlated.

A new Bayesian method for measuring the accuracy of ordinal tests
is developed and extended to clustered data and illustrated with a mammog-
raphy example, where the breast is divided into ROIs and a score assigned to
each region. This chapter lays the foundation for later chapters and should be
mastered by the student before proceeding to Chapter 5.

4.2 Study Design

The role that accuracy plays in a typical clinical study is introduced in this
section, where the elements of good study design of trials of medical devices are
explained in the context of the submission of a protocol at the MD Anderson
Cancer Center (MDACC). All protocols are first reviewed by the department
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and the protocols are essentially of two types: (a) those that originate locally
at the institution and (b) those submitted by pharmaceutical or medical device
companies. For the latter, the protocol is critiqued and reviewed by a statisti-
cian in the department. For those studies originating within the institution, a
biostatistician would assist the investigator with the design of the study, but
the protocol would be reviewed by a different person and presented to the
department for approval. The protocol is reviewed by the department and, if
necessary, revised according to the suggestions recommended by departmental
consensus. The principal investigator then revises the protocol, often with the
assistance of the statistician.

4.2.1 Protocol

There are many types of protocols submitted, thus only those dealing
mainly with the accuracy of diagnostic tests are considered. Of course, med-
ical tests are usually a part of all clinical trials, and these will be described
in later chapters. Briefly, the protocol consists of the following components:
(1) objectives, (2) background, (3) patient and reader selection, (4) study plan,
(5) number of patients, (6) statistical design and analysis, and (7) references.

4.2.2 Objectives

The study’s primary and secondary aims are given in the first section of
the protocol. The study design is illustrated by a protocol with two nuclear
medicine procedures: one using an iodine radionuclide with single photon emis-
sion tomography (SPECT; I-123 MIBG SPECT) and the other with thal-
lium (Ti-201 SPECT) that will be used to measure the amount of damage
(e.g., scarring of the cardiac wall and nerve damage) to the heart caused by
radiotherapy to the chest. The main objective is to determine the association
between the delivered dose to the target lesion and the nerve damage caused
by radiotherapy to the chest. It is an important study because little work has
been done in this area. Since the study involves two medical tests (two SPECT
images), their accuracy plays a crucial role in achieving the objectives of the
study.

4.2.3 Background

The relevant recent literature on previous studies should be cited in the
background section of the protocol. This is a very important component
because it gives the rationale for doing the study and it often provides infor-
mation that is essential for sample size estimation. The background informa-
tion is often a source of preliminary information, which will be employed as
prior information for the Bayesian analysis. In the nuclear medicine exam-
ple, there is a lot of information on cardiac morbidity and mortality due to
radiotherapy, but very little on diagnostic imaging procedures that assess the
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amount of innervation damage. There are only two references citing studies
using I-123 MIBG SPECT to assess nerve damage to the heart. Of course, the
background should also contain information about the accuracy (TPF, FPF,
and ROC areas) of the two SPECT tests involved in the study!

4.2.4 Patient and reader selection

The patient and reader selection component provides the inclusion (who
can be admitted) and the ineligibility (who cannot be admitted) criteria.
Generally speaking, those to be included are diseased but not too diseased
to be admitted, while those that are too sick will be excluded. In diagnostic
studies when several readers are involved in interpreting the diagnostic infor-
mation, the relationship between how the patients are selected and how the
readers are selected must be described. For example, in a traditional selection
with two imaging modalities, the same readers will be used to interpret both
images and the same patients will be imaged by the two modalities. There are
many variations to this scenario, including unpaired patient unpaired readers,
where there are two sets of different patients, one for image A and the other
for image B, and there are two distinct sets of readers, one for image A and
one for image B. Also, there are paired patient and unpaired reader selection
plans, etc. For additional selection plans, see Chapter 3 of Zhou, McClish, and
Obuchowski [2].

If the readers are to interpret two images, is the order randomized to elim-
inate order bias, and how is a final determination of image interpretation to
be handled? How the patients are selected will also affect the sample size esti-
mation, and it could affect any future analysis. For example, the analysis for
comparing image accuracy in a paired patient design would be different from
that for an unpaired patient selection. Is this a randomized trial, where one
set of patients is selected at random from a diseased population and the other
set from a non-diseased population?

Patient and reader selection designs often depend on the type of trial.
When developing a new imaging modality, the test should pass three phases:
I, II, and III. The different phases are for different objectives of test accuracy
and are as follows. The relation (i.e., paired or unpaired) between patients and
diagnostic modalities and the relation between readers and modalities should
be described in the protocol. Phase I, II, and III trials for imaging devices were
described in Chapter 3, and one is referred to Bogaert et al. [3] for an example
of a Phase I developmental trial involving magnetic resonance imaging (MRI)
angiography, Theate et al. [4] for an example of a Phase II trial, and finally to
Beam, Lyde, and Sullivan [5], who investigated the interpretation of screening
mammograms as a Phase III trial.

Note that it is important to know the inter observer variability in these tri-
als, because the accuracy of the modality depends not only on the device, but
also on the interpretation of the image via the various readers. In Chapter 8,
Pepe [6] gives more detail on the description of developmental trials, and Zhou,

  



K11763 Chapter: 4 page: 49 date: June 17, 2011

Fundamentals of Diagnostic Accuracy 49

McClish, and Obuchowski [2] provide the analysis for studies with multiple
readers and multiple modalities for trials of device development.

For the nuclear medicine trial, which is used to motivate the steps involved
in the design of a protocol, the patients are paired in that all are imaged by
both procedures, however the two modalities will not be compared because
they are measuring different things. The one with the iodine radionuclide is
measuring nerve damage to the heart, while the thallium stress test is measur-
ing cardiac perfusion variables, like wall scarring and left ventricular ejection
fraction, which are other indicators of cardiac damage.

4.2.5 Study plan

For this section of the protocol, details of how the diagnostic tests are to
be implemented are spelled out.

Returning to the trial being designed, the study plan is as follows. The sym-
pathetic nervous system of the heart will be imaged using I-123 MIBG, while
at the same time performing an exercise stress test (EST) using Thallium-201
(Tl-201). The patients will be imaged prior to initiation of radiation ther-
apy (RT) and at 6–12 months after completion of RT. Stress myocardial per-
fusion imaging is a standard of care test of baseline evaluation of myocardial
perfusion and possible radiation-induced CAD after RT for tumors close to
the heart. Currently, stress myocardial perfusion is performed using the dual
isotope method where the patient is injected with Tl-201 for the resting part of
the study and immediately after rest, the patient is injected with technetium-
99m (Tc-99m) tetrofosmin at peak stress and imaging is repeated for the stress
part of the study.

Next, the plan to image the patients is described. This would include the
details of administering the first radiopharmaceutical I-123 MIBG, including
the dose injected by IV and the details of how the resulting radioactivity is to
be imaged by the gamma camera, in this case SPECT. This would be followed
by a similar description of administering the thallium EST for cardiac perfu-
sion. The patient is imaged with both nuclear medicine procedures before
and after radiotherapy. There are two types of cardiac damage variables,
those for nerve damage and those measuring scarring of the heart wall and
left ventricular ejection fraction, a measure of cardiac output. If radiother-
apy is damaging the heart, one would expect to observe it by comparing the
post therapy measurements of heart damage to the corresponding pre therapy
values.

Lastly, the image processing details are given. For the cardiac damage
study, standard filtered back projection techniques to obtain SPECT images
will be employed for both imaging modalities. The image processing is an
important part of the accuracy of the nuclear medicine procedures. In order
to obtain wall motion images and ejection fraction values, gated motion images
are required, thus cardiac motion will not affect the image quality. In order to
detect nerve damage, the uptake of norepinephrine can be estimated with the
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I-123 MIBG procedure. This illustrates the ability of a nuclear procedure to
measure metabolic processes.

4.2.6 Number of patients

The total number of patients and the monthly accrual rate is described.
For multi-institutional trials, the rates for each institution are provided. The
total sample size is justified in the power analysis of the statistics section.
A maximum of 40 patients accrued at 2–3 per month should be sufficient for
the cardiac damage protocol.

4.2.7 Statistical design and analysis

The statistical section should provide a detailed power analysis outlining
the justification for the sample size. The power analysis should show how the
results of previous related studies are used to predict the results of the planned
study. It should also provide a brief description of the design of the study,
including how the readers and patients interface (i.e., paired with the modal-
ities) with the diagnostic tests. The phase (I, II, or III) of the study should
be identified, as well as an outline of how the study results will be analyzed.

For the planning of the Phase I nuclear medicine protocol, the power analy-
sis is given as follows. The sample size will be based on the expected association
between nerve damage measured by uptake of norepinephrine (as determined
by I-123 MIBG) and the dose of radiotherapy administered to the target
lesion measured in Gray (Gy) units. Note the role that the accuracy of the
I-123 MIBG image plays in the determination of the sample size!

If radiotherapy is damaging cardiac innervation, one would expect the
mean uptake ratio to be 2.5 before radiotherapy with a range from 1.5 to 3.5,
while after therapy, one would expect the average uptake ratio of norepine-
phrine to be 1.5 with a range from 0.5 to 2.5. Assuming a correlation of 0.5
between pre and post therapy for the uptake values of norepinephrine, the
standard deviation of the difference is 0.5.

The independent variable for the association is the radiotherapy delivered
dose, which will have a range of 40–60 Gy, with an average dose of 50 Gy and
a standard deviation of 5 Gy. The dose is expected to have an effect on the
cardiac nerve damage as follows. When the delivered dose is 40 Gy, it is rea-
sonable to expect an average uptake in the difference to be 0, while if the
delivered dose is 60 Gy, it is reasonable to expect the difference in the post
minus pre uptake values to average 1. Assuming a linear regression between the
difference in the uptake values as the dependent variable and the administered
dose as the independent variable, the regression line will be approximately

Y = 0.05X − 2,

where X is the delivered dose in grays, and Y is the difference in the post
minus pre RT uptake values. The null hypothesis is that the slope of the
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regression is zero vs. the alternative that it is positive. Assuming under the
alternative that the slope is 0.05, the power of the test with α = 0.05 is 0.68,
0.86, and 0.94 corresponding to sample sizes 20, 30, and 40, respectively.

It appears reasonable that 30 patients will show a strong association
between damage to the nerves of the heart and the delivered dose to the
target lesion.

The power analysis describes what to expect with regard to the nerve
damage to the heart in terms of the uptake ratios of norepinephrine, mea-
sured before and after radiotherapy. The hypothetical association between
the nerve damage and the dose delivered to the target lesion is given by the
above regression equation. The power was computed with a standard software
package, and gives 30 patients as a reasonable number to detect the desired
association. This is somewhat hypothetical in a sense, but is based on previous
studies of heart damage caused by radiotherapy to lesions close to the heart.
The power analysis could just as well be done from a Bayesian perspective;
see Broemeling [7] for the Bayesian analysis of a linear regression model.

Note that the power analysis is based on just two of the many endpoints
that could have been used. There are many ways to measure cardiac nerve
damage and many ways to measure other damage to the heart, such as left
ventricle ejection fraction and scarring to the heart wall. The power analysis
should be brief, but at the same time informative, so that other statisticians
can review the work.

4.2.8 References

This as a very important part of the protocol, because the study is only
fit to be run if previous studies show a need. Also, for the statistician, the
results from previous studies are invaluable for the power analysis and for
a history of the accuracy of the medical tests involved in the trial. It is
important to remember that previous studies addressing the accuracy of the
two SPECT studies may not be directly applicable to the trial at hand, there-
fore the actual accuracy of the images may not be known to some extent
at least.

4.3 Bayesian Methods for Test Accuracy:
Binary and Ordinal Data

4.3.1 Introduction

This section will introduce Bayesian techniques to estimate and test
hypotheses about the basic measures of test accuracy. The measures of test
accuracy are: (a) classification probabilities, (b) predictive measures, and

  



K11763 Chapter: 4 page: 52 date: June 17, 2011

52 Advanced Bayesian Methods for Medical Test Accuracy

(c) diagnostic likelihood ratios (DLRs). The classification probabilities are
the FPF and TPF, while there are two predictive values, the PPV and the
NPV. Lastly, there are two DLRs—PDLR and NDLR. These measures will
be defined in the next section in the context of a cohort study. Thus, there
is a random sample of size n selected from the target population and a gold
standard, thus each patient is classified into the four categories in Table 4.1.
The nij are the number of subjects with test score i = 0 or 1 and disease
status j = 0 or 1, while θij is the corresponding probability.

4.3.2 Classification probabilities

The basic measures of test accuracy are the TPF (sensitivity) and the FPF
(1 – specificity), where

TPF(θ) = θ11/(θ11 + θ01) = P (X = 1 | D = 1), (4.1)

and

FPF(θ) = θ10/(θ00 + θ10) = P (X = 1 | D = 0). (4.2)

It is important to know that the TPF and FPF are unknown parameters and
are functions of θ. The Bayesian analysis determines the posterior distribution
of these quantities, from which the parameters are estimated and certain tests
of hypotheses performed. Assume that the prior information is based on a
previous study, with the results given in Table 4.2, where m subjects have
been classified in the same way as those in Table 4.1.

The density based on prior information is

ξ(θ) ∝ θm00
00 θm01

01 θm10
10 θm11

11 , (4.3)

TABLE 4.1: Classification table.
Disease

Test D = 0 D = 1

X = 0 (n00, θ00) (n01, θ01)
X = 1 (n10, θ10) (n11, θ11)

TABLE 4.2: Classification table
of prior information.

Disease

Test D = 0 D = 1

X = 0 (m00, θ00) (m01, θ01)
X = 1 (m10, θ10) (m11, θ11)
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thus, the likelihood function for θ = (θ00, θ01, θ10, θ11) is

L(θ/n) ∝ θn00
00 θn01

01 θn10
10 θn11

11 , (4.4)

and the posterior distribution is Dirichlet,

θ/(n, m) ∼ Dir(n00 + m00 + 1, n01 + m01 + 1, n10 + m10 + 1, n11 + m11 + 1).

Note, if there is no prior information, mij is zero, and one in effect is assuming
a uniform prior distribution for θ.

Markov Chain Monte Carlo (MCMC) sampling from the Dirichlet distri-
bution, using WinBUGS, will determine the posterior distribution of these
classification probabilities. As an example, consider the example examined
by Pepe [6] and based on the study by Wiener et al. [8]. This is a cohort
study of 1465 subjects, where each is classified as to disease status (CAD via
an angiogram) and a diagnostic test (the EST), which is a nuclear medicine
procedure; data can be found at http://labs.fhcrc.org/pepe/book.

The analysis is based on the following code.

BUGS CODE 4.1

# Measures of accuracy
# Binary Scores
Model;
{
# Dirichlet distribution for cell probabilities
g00∼dgamma(a00,2)
g01∼dgamma(a01,2)
g10∼dgamma(a10,2)
g11∼dgamma(a11,2)
h<-g00+g01+g10+g11
# the theta have a Dirichlet distribution
theta00<-g00/h
theta01<-g01/h
theta10<-g10/h
theta11<-g11/h
# the basic test accuracies are below
tpf<-theta11/(theta11+theta01)
se<-tpf
sp<-1-fpf
fpf<-theta10/(theta10+theta00)
tnf<-theta00/(theta00+theta10)
fnf<-theta01/(theta01+theta11)
ppv<-theta11/(theta10+theta11)
npv<-theta00/(theta00+theta01)
pdlr<-tpf/fpf
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TABLE 4.3: Exercise stress
test and heart disease.

CAD

EST D = 0 D = 1

X = 0 327 208
X = 1 115 818

ndlr<-fnf/tnf
}
# Exercise Stress Test Pepe [6]
# Uniform Prior (add one to each cell of the table frequencies!)
list(a00=328,a01=209,a10=116,a11=819)
# chest pain history
# Uniform prior
list(a00=198,a01=55,a10=246,a11=970)
# initial values
list(g00=1,g01=1,g10=1,g11=1)

The notes of interest for the code are headed by #. There are three list
statements: the first gives the information necessary to generate a Dirichlet
distribution for the four cell probabilities. The entries are the cell frequencies
of Table 4.3 plus 1! In this way, a uniform prior is assumed. The third list
statement gives the initial values for the MCMC procedure, and the second
list statement will be used later.

A uniform prior is assumed, resulting in a posterior distribution that is
Dirichlet (328, 209, 116, 819). The analysis is executed with 55,000 observa-
tions generated from the joint posterior distribution of the cell probabilities,
using 5,000 as a burn in and 100 as a refresh, resulting in Table 4.4 for the
posterior analysis for the accuracy of the EST.

The sensitivity or TPF is estimated as 0.7967 with an associated pos-
terior standard deviation of 0.0125 and (0.7716,0.8208) as a 95% credible
interval. Note that the analysis also includes 5.84 ∗ 10−5 as the MCMC error
for estimating the TPF, which implies that the estimate of 0.7967 is within
5.84 ∗ 10−5 units of the “true” posterior TPF. The WinBUGS output also
includes plots of the marginal posterior distribution of the parameters and
Figure 4.1 portrays that for the sensitivity of the EST. With an estimated

TABLE 4.4: Posterior analysis for exercise stress test.
Parameter Mean sd Error Lower Median Upper

2 1/2 2 1/2

TPF 0.7967 0.0125 5.84 ∗ 10−5 0.7716 0.7968 0.8208
FPF 0.2612 0.0208 9.22 ∗ 10−5 0.2215 0.2608 0.3033
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FIGURE 4.1: Posterior density of the true positive fraction exercise stress test.

false positive fraction (FPF) of 0.2612 and an estimated true positive frac-
tion (TPF) of 0.79, the EST has good to fair accuracy, but other measures of
accuracy should be considered.

4.3.3 Predictive values

The second set of measures for test accuracy is the PPV and the NPV,
defined as follows:

PPV(θ) = θ11/(θ01 + θ11) = P (D = 1 | X = 1), (4.5)

and

NPV(θ) = θ00/(θ00 + θ01) = P (D = 0 | X = 0). (4.6)

Since these two quantities depend on disease incidence, it is important that
the patients are selected at random from the target population, so that when
estimating the predictive values, the disease incidence is estimated without
bias. Returning to the example, the posterior distributions of the predictive
values are provided in Table 4.5. They answer the question of primary interest
to the patient: do I have disease? This, to some extent, is answered by the
following posterior analysis.

The distribution of the PPV appears to be symmetric with a mean
of 0.8759, which implies that chances of heart disease among those patients
that test positive is 0.87, which gives me some confidence in the EST to detect
disease. On the other hand, for those that test negative, the chances of not
having coronary heart disease is only 0.61. My confidence is somewhat lowered
in the ability of the test to discriminate between diseased and non-diseased

TABLE 4.5: Distribution of predictive values.
Parameter Mean sd Error Lower Median Upper

2 1/2 2 1/2

PPV 0.8759 0.0108 <0.0001 0.8538 0.8762 0.8961
NPV 0.6109 0.0211 <0.0001 0.5693 0.611 0.6517
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patients. If the test is negative, I am not sure if I have the disease or not! Note
that a perfect test occurs when PPV = NPV = 1. I did not give the exact figure
for the MCMC error, only to note that it is quite small for these two measures
of test accuracy. In executing the analysis, one should vary the MCMC sample
size to see its effect on the posterior distribution and the error of estimation.

4.3.4 Diagnostic likelihood ratios

The DLRs are a third group of test accuracy measures and are

PDLR(θ) = P (X = 1 | D = 1)/P (X = 1 | D = 0)
= [θ11/(θ11 + θ01)]/[θ10/(θ10 + θ00)]
= TPF(θ)/FPF(θ) (4.7)

and

NDLR(θ) = P (X = 0 | D = 1)/P (X = 0 | D = 0)
= [θ01/(θ11 + θ01)]/[θ00/(θ10 + θ00)]
= FNF(θ)/TNF(θ). (4.8)

With regard to the PDLR, the more accurate the diagnostic test becomes,
the numerator (TPF) tends to become larger and the denominator (FPF)
tends to become smaller. But for the NDLR, the opposite is true, the numer-
ator (FNF) tends to become smaller and the denominator (TNF) tends to
become larger. The range of both is [0, ∞).

For the CASS dataset, the characteristics of the posterior distribution for
the likelihood ratios are given in Table 4.6. Note that the estimated error
for estimating the PDLR is 0.0011, which implies that the estimate of 3.07 is
within 0.0011 of the “true” posterior PDLR and that the test is positive about
three times more often among the diseased, compared to those without CAD.
On the other hand, among those that have the disease, the test is negative
much less often compared to those without the disease. Both measures indicate
an accurate test. The larger the PDLR and the smaller the NDLR, the more
accurate the test.

In summary, three types of measures of accuracy have been computed for
the EST. For the sensitivity and specificity, I am somewhat confident that
the test is informative, but with regard to the predictive values, the NPV did
not give me high confidence in the test to measure accuracy. For additional

TABLE 4.6: Distribution of diagnostic likelihood ratios.
Parameter Mean sd Error Lower Median Upper

2 1/2 2 1/2

PDLR 3.07 0.2526 0.0011 2.616 3.055 3.609
NDLR 0.2755 0.0187 <0.0001 0.2399 0.275 0.3135
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TABLE 4.7: Mammogram results.
Test result

Status Normal Benign Probably Suspicious Malignant Total
(1) (2) benign (4) (5)

(3)

Cancer 1 0 6 11 12 30
No cancer 9 2 11 8 0 30

Source: From Zhou, H.H., McClish, D.K., and Obuchowski, N.A. Statisti-
cal Methods for Diagnostic Medicine. 2002. Copyright Wiley-VCH Verlag
GmbH & Co. KGaA. Reproduced with permission.

information about these basic measures of accuracy, Pepe [6: 20] provides a
summary.

4.3.5 Receiver operating characteristic curve

Consider the results of mammograms given to 60 women, of which 30 had
the disease. This is presented in Zhou, McClish, and Obuchowski [2: 21] (Table
4.7).

The radiologist assigns a score from 1 to 5 to each mammogram, where 1
indicates a normal lesion, 2 a benign lesion, 3 a lesion that is probably benign,
4 indicates suspicious, and 5 malignant. How would one estimate the accuracy
of mammography from this information? When the test results are binary,
the observed TPF and FPF are calculated, but here there are five possible
results for each image. The scores could be converted to binary by designating
4 as the threshold, then scores 1–3 are negative and 4–5 are positive test
results. Then estimate the TPF as tpf = 23/30 and the specificity (1− FPF)
as (1 − fpf) = 21/30. Another approach would be to use each test result as a
threshold and calculate the tpf and fpf, which are depicted in Table 4.8.

Of the 30 diseased, 30 had a score of at least 1, while 23 had a score of
at least 4. On the other hand, of the 30 without cancer, 30 had a score of at
least 1, and 8 had a score of at least 4, etc. Figure 4.2 is a plot of the observed
true and false positive values of Table 4.8. What does this graph tell us about
the accuracy of mammography?

The area under the ROC gives the intrinsic accuracy of a diagnostic test
and can be interpreted in several ways (see Zhou, McClish, and Obuchowski

TABLE 4.8: tpf vs. fpf for mammography.
Test result

Status Normal Benign Probably Suspicious Malignant
(1) (2) benign (4) (5)

(3)

tpf 30/30 = 1.00 30/30 = 1.00 29/30 = 0.966 23/30 = 0.766 12/30 = 0.400
fpf 30/30 = 1.00 21/30 = 0.700 19/30 = 0.633 8/30 = 0.266 0/30 = 0.000
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FIGURE 4.2: Empirical ROC graph for mammography.

[2: 28]): as the average sensitivity for all values of specificity, or the average
specificity for all values of sensitivity, or as the probability that the diagnostic
score of a diseased patient is more of an indication of disease than the score
of a patient without the disease or condition. The problem is in determining
the area under the curve (AUC). For the Figure 4.2, there are five points
corresponding to the five threshold values. If the diagnostic score can be con-
sidered continuous (e.g., the coronary artery calcium (CAC) score), then the
curve through the points becomes more discernible and the area easier to
determine.

In the case of discrete data, the AUC as determined by a linear inter-
polation of the points on the graph (including (0,0) and (1,1)) have the
following interpretation:

AUC = P (Y > X) + (1/2)P (Y = X). (4.9)

See Pepe [6: 92], where it is assumed that one patient is selected at random
from the population of diseased patients, with a diagnostic score of Y , while
another patient, with a score of X, is selected from the population of non-
diseased patients. Note that the AUC depends on the parameters of the model.
Let us return to the mammography example and estimate the AUC via a
Bayesian method.

For the mammography example, the area is defined as

AUC(θ,φ) = P (Y > X/θ,φ) + (1/2)P (Y = X/θ,φ), (4.10)

where Y (=1, 2, 3, 4, 5) is the diagnostic score for a person with breast cancer
and X(=1, 2, 3, 4, 5) for a person without. It can be shown

AUC(θ,φ)
i=5∑
i=2

j=i−1∑
j=1

θiφj + (1/2)
i=5∑
i=1

θiφi. (4.11)
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It is assumed that Y and X are independent, given the parameters, and that
P (Y = i) = θi and P (X = j) = φj , i, j = 1, 2, 3, 4, 5. AUC is a parameter that
depends on θ and φ. Their posterior distributions are θ/data∼ Dir(2, 1, 7, 12,
13) and independent of φ/data ∼ Dir(10, 3, 12, 9, 1), assuming a uniform
prior for the parameters (see Table 5.7).

Samples from the posterior distribution of the AUC are generated by
sampling from the posterior distributions of θ and φ. This is accomplished
with WinBUGS, where 55,000 observations are generated from the posterior
distribution of all the parameters, with a burn in of 5,000 and a refresh of 100.
The code for the operation, BUGS CODE 4.2, follows, and the notes indicated
by # identify the important parts of the program. For example, the statements
that follow the note “# generate Dirichlet distribution,” generate the poste-
rior distribution of the cell probabilities of Table 4.7. The first list statement
is the information used to generate the gamma variables that generate the
Dirichlet distribution of the cell probabilities. A one is added to each cell fre-
quency of Table 4.7, which induces a uniform prior distribution for the cell
probabilities.

BUGS CODE 4.2

# Area under the curve
# Ordinal values
# Five values
Model;
{
# generate Dirichlet distribution
g11∼dgamma(a11,2)
g12∼dgamma(a12,2)
g13∼dgamma(a13,2)
g14∼dgamma(a14,2)
g15∼dgamma(a15,2)
g01∼dgamma(a01,2)
g02∼dgamma(a02,2)
g03∼dgamma(a03,2)
g04∼dgamma(a04,2)
g05∼dgamma(a05,2)
g1<-g11+g12+g13+g14+g15
g0<-g01+g02+g03+g04+g05
# posterior distribution of probabilities for response of diseased patients
theta1<-g11/g1
theta2<-g12/g1
theta3<-g13/g1
theta4<-g14/g1
theta5<-g15/g1
# posterior distribution for probabilities of response of non-diseased patients
ph1<-g01/g0
ph2<-g02/g0
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ph3<-g03/g0
ph4<-g04/g0
ph5<-g05/g0
# auc is area under ROC curve
#A1 is the P[Y>X]
#A2 is the P[Y=X]
auc<-A1+A2/2
A1<-theta2*ph1+theta3*(ph1+ph2)+theta4*(ph1+ph2+ph3)+
theta5*(ph1+ph2+ph3+ph4)
A2<-theta1*ph1+theta2*ph2+theta3*ph3+theta4*ph4
+theta5*ph5
}
# Mammography Example Zhou et al. [2]
# Uniform Prior
# see Table 4.7
list(a11=2,a12=1,a13=7,a14=12,a15=13,a01=10,a02=3,a03=12,
a04=9,a05=1)
# Gallium citrate Example Zhou et al. [2: 159]
# Uniform Prior
list(a11=13,a12=7,a13=4,a14=2,a15=19,a01=12,a02=3,a03=4,a04=2,a05=4)
# initial values
list(g11=1,g12=1,g13=1,g14=1,g15=1,g01=1,g02=1,g03=1,g04=1,g05=1)

The posterior analysis is given by Table 4.9.
Notice that mammography gives fair to good accuracy based on the ROC

area, which is estimated as 0.7811(0.0514) with the posterior mean and by
(0.6702, 0.8709) using a 95% credible interval. The MCMC error for the
parameter based on 50,000 observations is <0.001, but the reader should vary
the simulation sample size to see its effect on the MCMC error and posterior
mean. The parameter A1 is P [Y > X] and is estimated as 0.688(0.06350) and
the probability of a tie, P [Y = X], given by A2, is estimated as 0.1861(0.0307).
The distribution of the area appears almost symmetric as evident by a plot
of the corresponding density (Figure 4.3). The estimated area of 0.7811 is
similar to that computed by Zhou, McClish, and Obuchowski [2: 30].

TABLE 4.9: Posterior distribution of area under ROC curve
mammography example.

Parameter Mean sd Error Lower Median Upper
2 1/2 2 1/2

auc 0.7811 0.0514 <0.0001 0.6702 0.7848 0.8709
A1 0.688 0.0635 <0.0001 0.5564 0.6909 0.8036
A2 0.1861 0.0307 <0.0001 0.128 0.1854 0.2484
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FIGURE 4.3: Posterior density of ROC area for mammography.

Lastly, the mammography example is concluded with a test for the use-
fulness of the procedure. Obviously, a perfect test has an ROC area of 1, and
a useless test has an ROC area of 0.5. Thus, consider a Bayesian test of H:
AUC <0.5 vs. the alternative A: AUC ≥ 0.5. How is this performed with
WinBUGS? Based on BUGS CODE 5.2, the statement T<-step(auc-.5) will
provide a test of the null hypothesis. The mean of T is the probability of the
alternative hypothesis, and one can verify that

P [AUC(θ,φ) ≥ 0.5 | data] = 0.99999(0.0044), (4.12)

therefore, the null hypothesis is rejected and one may conclude that mammog-
raphy is a useful procedure. Also note that the MCMC error for estimating
the P [AUC > 0.5/data] is <0.0001 with 50,000 observations.

4.4 Bayesian Methods for Test Accuracy:
Quantitative Variables

4.4.1 Introduction

The methods introduced previously for discrete diagnostic tests apply to
quantitative variables as well. The basic measures of test accuracy, including
classification probabilities, predictive measures, and DLRs, all apply to con-
tinuous variables like blood glucose levels to diagnose diabetes, the levels of
glucose metabolism in nuclear medicine procedures, and the prostate-specific
antigen (PSA) levels to help diagnose prostate cancer. Other quantitative vari-
ables to be considered in this book are coronary artery calcium (CAC) levels
in coronary heart disease, and standardized uptake levels to assess metastasis
to the spinal column.

In clinical practice, quantitative variables are often dichotomized. For
example, CAC levels in excess of 400, PSA levels in excess of 4 ng/mL, and
blood glucose levels in excess of 126 mg/dL are standard threshold values.
Of course, with a threshold value and a gold standard, the diagnostic accuracy
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can be estimated with the Bayesian methods previously introduced. In this
section, methods for choosing a threshold value are explained in the context
of a cost benefit analysis.

The primary focus on test accuracy will be the area under the ROC curve.
Its mathematical properties will be outlined, and Bayesian methods of esti-
mating the area explained.

4.4.2 Shields computed tomography study of heart disease

The Shields Heart Study was conducted at Washington State University
and the CT imaging was implemented at the Shields Coronary Artery Center
in Spokane, Washington. Over a period of 10 years there were about 4400
patient visits, where the majority of patients were referred by cardiologists
and some were self referred. Thus, the relevant population was community
based and a comprehensive history was taken of each patient’s symptoms.
These patients had confirmed CAD or were at high risk for the disease.

At the time, the use of CAC to assist in the diagnosis and patient man-
agement was not an accepted standard procedure; however, since then it is
gradually being accepted. There are several experimental studies that involve
a CT determination of the CAC in the coronary arteries. Measurements of
CAC were made with the Imatron C-100 Ultrafast CT Scanner. A description
of the Spokane study is given in Mielke, Shields, and Broemeling [9]. The CAC
score is a positive score and is the sum of several CAC scores corresponding
to the various coronary arteries, giving a measure of the amount of plaque
burden.

Rumberger et al. [10] developed a risk index for CAD by categorizing the
CAC scores as follows: A value of 1 is a CAC score of zero and indicates very
low risk; a value of 2 is assigned for CAC scores between 1 and 10 and repre-
sents low risk of disease; CAC scores between 11 and 100 indicate a moderate
risk and are assigned a value of 3; a value of 4 is assigned to scores between 101
and 400 for high risk; a very high risk has a value of 5 for CAC scores >400.

With the occurrence of infarction as a gold standard, the 130 patients who
had an infarct and the 4263 who did not, were assigned the risk scores recorded
in Table 4.10. Assuming a uniform prior distribution for the parameters, the
posterior distribution of θ = (θ1, θ2, θ3, θ4, θ5) is Dirichlet (13, 7, 28, 41, 46),
where θ1 is the probability that a diseased patient has a low risk of disease, etc.,
and in a similar fashion, the posterior distribution of φ = (φ1,φ2,φ3,φ4,φ5)
is Dirichlet (1819, 528, 815, 649, 455), where φ5 is the probability that a

TABLE 4.10: Spokane heart study.
Risk Very Low Moderate High Very Total

low high

No infarction 1818 527 814 648 454 4263
Infarction 12 6 27 40 45 130

  



K11763 Chapter: 4 page: 63 date: June 17, 2011

Fundamentals of Diagnostic Accuracy 63

patient without an infarct has a very high risk of disease. If high risk is the
threshold, it can be shown that TPF(θ) has a beta distribution with mean
0.626, median 0.639, and standard deviation 0.150. On the other hand, FPF(φ)
has a beta posterior distribution with mean 0.272, median 0.251, and standard
deviation 0.133.

It is well known that partitioning a continuous variable into a small number
of categories results in a loss of information, therefore, methods developed to
estimate the ROC area for quantitative variables are more appropriate and
will be introduced in the following section. The Spokane Heart Study will be
reanalyzed with these techniques.

4.4.3 Receiver operating characteristic area

The area under the ROC curve gives an intrinsic value to the accuracy of
a diagnostic test and has a long history beginning in signal detection theory.
See Egan [11] for the early use of the ROC curve in signal detection theory.
Also, the books by Pepe [6]; Zhou, McClish, and Obuchowski [2] and Hans
et al. [12] provide the history as well as the latest statistical methods (non
Bayesian) for using ROC curves in diagnostic medicine. The ROC area is
generally accepted as the way to measure diagnostic accuracy in radiology.

Let X be a quantitative variable and r a threshold value, and consider the
test positive when X ≥ r, otherwise negative, then the ROC curve is the set
of all points:

ROC(·) = {[FPF(r), TPF(r)], r any real number}
= {[t, ROC(t)], t ∈ (0, 1)}, (4.13)

where t = FPF(r), that is, r is the threshold corresponding to t. As r becomes
large, FPF(r) and TPF(r) tend to zero, while if r becomes small, FPF(r) and
TPF(r) tend to 1, thus the ROC curve passes through (0,0) and (1,1). If the
AUC is 1, the test is discriminating perfectly between the diseased and non-
diseased groups, while if the area is 0.5, the test cannot discriminate between
the two groups.

Chapter 4 of Pepe [6] presents several useful properties of the ROC curve,
namely: (1) the invariance of the ROC curve under monotone increasing trans-
formations of X, (2) interpreting the ROC area for continuous variables as
AUC = P (X > Y ), and (3) a formula for the AUC area when X is normally
distributed.

The Bayesian approach to estimating the ROC area is based on

AUC = Φ
[
a/

√
1 + b2

]
. (4.14)

where X is normally distributed,

a = (µD −µD̄)/σD, (4.15)
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and

b = σD/σD̄. (4.16)

The mean and standard deviation of X for the diseased population are µD

and σD, respectively, while µD̄ and σD̄ are the mean and standard deviation
of X for the non diseased, and Φ is the cumulative distribution function of the
standard normal distribution. Equation 4.15 is the binormal assumption and
is cited by many authors, including Pepe [6], who presents a good discussion
of its use. Note that the ROC area AUC depends on the unknown parameters
of the model.

Bayesian methods for estimating the ROC area will be illustrated by refer-
ring to a hypothetical example of diabetes, which involves 41 subjects with
diabetes and 19 without, where those with diabetes have a mean blood glucose
value of 123.34 mg/dL and those without have a mean value of 107.54 mg/dL.
The corresponding standard deviations are 6.76 mg/dL for those with diabetes
and 9.09 mg/dL for those without the disease; the actual values from the study
are given in Table 4.11.

The Bayesian analysis for the diabetes type 2 data will be done in two
ways: first with the basic equation for the area under the ROC curve assuming
normality (Equation 4.14), and second with a program by O’Mally et al. [13].
The latter is more general and will also be used in Chapter 5 when covariates
are included in the model. The code based on the basic formula is designated
by BUGS CODE 4.3a, while the O’Malley method is coded with statements
given by BUGS CODE 4.3b.

Consider first the basic formula for the ROC area, which is given by Equa-
tion 4.15 and can be expressed as

AUC = φ
[
(µ2 − µ1)/

√
1/τ1 + 1/τ2

]
(4.17)

where φ is the distribution function of the standard normal distribution, µ1 is
the mean of the population non diseased, µ2 is the mean of the diseased
population, τ1 is the precision of the non diseased, and τ2 is the precision of the
diseased population. Given an improper prior distribution for all parameters
and assuming that the two populations are independent, it can be shown that:

The conditional posterior distribution of µi given τi is normal with mean
x̄i and precision niτi, and the marginal posterior distribution of τi is gamma
with parameters ai = ni/2 and bi = (ni − 1)s2

i /2, that is to say,

µi/τi, data ∼ normal(x̄i, niτi), (4.18)

and

τi/data ∼ gamma(ai, bi). (4.19)
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TABLE 4.11: Data for 78 patients: blood glucose values.
Diabetic patients (59) Non-diabetic patients (19)

123 109
129 106
115 100
131 88
119 106
111 108
129 110
127 111
118 112
111 94
131 122
118 110
126 113
130 106
122 114
112 101
122 99
128 128
123 106
119
119
132
118
126
136
118
122
119
117
129
120
125
115
131
123
130
113
128
119
118
124
127
139
120
122

(continued)
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TABLE 4.11 (continued): Data for 78 patients:
blood glucose values.

Diabetic patients (59) Non-diabetic patients (19)

120
114
114
122
127
123
118
131
130
139
125
135
121
124

Based on BUGS CODE 4.3a, 65,000 observations are generated from the pos-
terior distribution of all the parameters, with a burn in of 10,000 and a refresh
of 100, and the posterior analysis, based on the basic formula (Equation 4.15),
is reported in Table 4.12.

The MCMC errors appear to allow one to have confidence in the param-
eters of the model, including the main parameter, the area under the ROC
curve. It is also of interest to know the sample means and standard devia-
tions of the diseased and non-diseased populations. For the diseased popu-
lation, those with diabetes, the sample mean and sample standard deviation
are 123.58 and 6.9 mg/dL, respectively, while those for the patients without
disease are 107.54 and 9.09 mg/dL. There is a “large” difference in the sample
means, the standard deviations are not too large, and there is some overlap
between the two populations, but the estimated area of 0.91 implies some con-
fidence in using the blood glucose test to differentiate between diabetic and

TABLE 4.12: Posterior analysis for diabetes study—the basic
Formula 4.15.
Parameter Mean sd Error Lower Median Upper

2 1/2 2 1/2

Area 0.9124 0.0401 <0.0001 0.8156 0.9196 0.9696
µ1 107.5 2.142 0.0098 103.3 107.5 111.8
µ2 123.6 0.9087 0.00489 121.8 123.6 125.4
τ1 0.2421 0.0784 <0.0001 0.1132 0.2333 0.4174
τ2 1.259 0.2302 0.00112 0.8474 1.245 1.749
a 2.315 0.3964 0.00196 0.7705 1.09 3.135
b 0.7784 0.1462 <0.0001 0.5142 0.7705 1.09
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non-diabetic patients. Note that the parameters a and b are quantities used
in the calculation of the ROC area (see Equations 4.16 and 4.17).

BUGS CODE 4.3a

model
{
# area under ROC curve
auc <-phi((mu2-mu1)/sqrt(1/tau1 + 1/tau2))
# This is for the non diseased patients
mu1∼dnorm(113.14, prec1)
# this is for the diseased
mu2∼dnorm (122.57, prec2)
prec1<-n1*tau1
prec2<-n2*tau2
# a1=n1/2
# b1=(n1-1) (sample variance 1)/2
tau1∼dgamma(a1,b1)
# a2=n2/2
# b2= (n2-1)* (sample variance 2)/2
tau2 ∼dgamma(a2,b2)
# binormal parameters
a<-(mu2-mu1)*sqrt(tau2)
b<-sqrt(tau1/tau2)
# c is the proportion of auc values >.80
c<-step(auc-.80)
}
# this is the data for diabetes study
List(n1=19, n2=59, a1=9.5, b1= 745.128, a2=30, b2=1427.74)
# these are the initial values
list(mu1=0, mu2=0, tau1=1, tau2=1)

BUGS CODE 4.3b is a slight modification of the O’Malley et al. code [13].
The program is based on the binormal assumption, where the diagnostic score
has a normal distribution for both populations. The model is a linear regres-
sion model with two regression coefficients, an intercept and one for the group
effect (diseased and non diseased). If a covariable is included, add a third
regression coefficient beta [3]. This will be done in Chapter 5 on regression
techniques. The first level parameters are the mu’s and precisions of the blood
glucose values, where each patient has a mean expressed as a linear regression
on the group effect. The regression coefficients are second level parameters and
are given uninformative normal distributions, while the two precision param-
eters are given non-informative gamma distributions. One would expect the
same estimate of the ROC area using the two approaches, namely, the basic
formula and the regression approach.
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BUGS CODE 4.3b

model;
# Calculates posterior distribution of model parameters and the area under

curve.
y=test
# Based on O’Mally et al. [13] regression method
{
# likelihood function

for(i in 1:N) {

y[i]∼dnorm(mu[i],precy[d[i]+1]);
# yt[i] <-log(y[i]); # logarithmic transformation

mu[i] <-beta[1] + beta[2]*d[i];

}

# prior distributions - non-informative prior; similarly for informative priors
for(i in 1:P) {

beta[i] ∼ dnorm(0, 0.000001);

}

for (i in 1:K) {

precy[i]∼dgamma(0.001, 0.001);
vary[i] <-1.0/precy[i];

}

# calculates area under the curve
la1 <-beta[2]/sqrt(vary[1]); # ROC curve parameters
la2 <-vary[2]/vary[1];
auc <-phi(la1/sqrt(1+la2));

}
# Diabetes data
list(K=2, P=2, N=78, y=c(123,129,115,131,119,111,129,127,118,111,
131,118,126,130,122,112,122,128,123,119,132,118,126,136,118,122,
119,117,129,120,125,115,131,123,130,113,128,138,119,118,124,127,
139,120,122,120,114,114,122,127,123,118,131,130,139,125,135,121,124,
109,106,100,88,106,108,110,111,112,94,122,110,113,106,114,101,99,128,106),
d=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))
# Ordinal values from mammography
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list(K=2,P=2,N=70,
y=c(1,1,

2,
3,3,3,3,3,3,3,
4,4,4,4,4,4,4,4,4,4,4,4,
5,5,5,5,5,5,5,5,5,5,5,5,5,
1,1,1,1,1,1,1,1,1,1,
2,2,2,
3,3,3,3,3,3,3,3,3,3,3,3,
4,4,4,4,4,4,4,4,4,
5),

d=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

list(beta=c(0,0),precy=c(1,1))

There are two list statements, where the first consists of three vectors for
the data. The first list statement provides the blood glucose values and the
vector d is a group identification vector. The third list statement specifies the
initial values for the MCMC algorithm. The vector beta lists the initial values
for the regression coefficients, and the vector precy, the initial values for the
two precision parameters.

There are 79 patients, of which 19 do not have diabetes. The pri-
mary parameters are the AUC and the regression coefficients. Based on
BUGS CODE 4.3b, 75,000 observations are generated from the posterior dis-
tribution for the area and regression parameters, with a burn in of 10,000 and
a refresh of 100. Table 4.13 presents the posterior analysis.

The estimated area is 0.9082, which is almost identical to that given by the
basic formula and reported in Table 4.12, and a plot of the posterior density
is shown in Figure 4.4. The second regression coefficient is estimated as 16.13,
which implies that the group effect is strong on the blood glucose values,

TABLE 4.13: Posterior distribution for the ROC area—diabetes.
Regression approach.
Parameter Mean sd Error Lower Median Upper

2 1/2 2 1/2

beta[1] 107.5 2.246 0.0401 103 107.5 111.9
beta[2] 16.13 2.438 0.2438 11.35 16.11 21.02
precy[1] 0.0120 0.004 <0.0001 0.00544 0.0116 0.0211
precy[2] 0.0205 0.0038 <0.0001 0.0137 0.0203 0.0286
auc 0.9082 0.0424 <0.0001 0.8062 0.9155 0.9689
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FIGURE 4.4: AUC area head trauma study.

which is one reason why the ROC area is so high. Also, note the variation in
the MCMC errors of estimation.

4.4.4 Definition of the receiver operating
characteristic curve

The ROC curve is defined by Equation 4.18, and under the assumption of
binormality, has the representation:

[t, 1 − Φ(bZt − a)], t ∈ (0, 1), (4.20)

where t is the FPF, Zt is the upper t percentage point of the standard normal
distribution, a and b are involved in the definition of the ROC area, and
Φ is the cumulative distribution function of the standard normal. Note that
a and b are unknown parameters and have a posterior distribution. Therefore,
the TPR corresponding to the FPR = t, is 1 −Φ(bZt − a). When plotting the
ROC curve, what should be used for the values of a and b in Equation 4.21?
If the posterior means of a and b are used (see Table 4.12) in Equation 4.20,
the graph for the ROC curve is given in Figure 4.5.

For the points plotted above, the coordinates are (0.025,0), (0.05,0),
(0.1,0), (0.3,0.09086), (0.5,0.7928), (0.90,1), (0.95,1), and (0.975,1). Is the area
under this curve the same as the estimated value of 0.83 determined by the
above analyses? See Table 4.13.

4.4.5 Choice of optimal threshold value

Cost considerations are often used to select a threshold value for a diag-
nostic test. For example, Chapter 2 of Zhou, McClish, and Obuchowski [2]
bases the choice of an optimal cutoff value on minimizing the total cost:

C = TPFp(Ctp −Cfn) + FPF(1− p)(Cfp − Ctn) + C0 + pCfn + (1 − p)Ctn ,
(4.21)

where p is the disease incidence, c0 is the cost of performing the test, and ctp ,
cfn , cfp , and ctn are the costs of a true positive, false negative, false positive,
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FIGURE 4.5: ROC curve for head trauma data. True positive vs. false pos-
itive fraction.

and true negative, respectively. When this expression is differentiated with
respect to the FPF, the slope to the curve at the optimal point is

κ = (1 − p)R/p, (4.22)

where

R = (Ctn − Cfp)/(Ctp − Cfn). (4.23)

Assuming binormality, Somoza and Mossman [14] have shown that the optimal
point is [FPF, TPF], where

FPF(a, b) = Φ
{[

ab−
√

a2 + 2(1− b2) ln(κ/b)
]/

(1 − b2)
}

,

and

TPF(a, b) = Φ
{[

a− b
√

a2 + (1 − b2) ln(κ/b)
]/

(1 − b2)
}

. (4.24)

Treating κ as a constant, the coordinates of the optimal point are functions
of the parameters a and b (see Equations 4.14 and 4.15), and have posterior
distributions. Assuming binormality, Zhou, McClish, and Obuchowski [2: 152]
compute the coordinates (Equation 4.24) of the optimal point for values of κ
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based on R = 0.5, 1, 1.5 and p = 0.2, 0.5, 0.67. The statements corresponding
to Equation 4.24 appear in BUG CODE 4.3b.

4.5 Clustered Data: Detection and Localization

4.5.1 Introduction

In assessing the area under the ROC curve for the accuracy of a diagnostic
test, it is imperative to detect and locate multiple abnormalities per image.
This approach takes that into account by adopting a statistical model that
allows for correlation between the reader scores of several regions of interest
(ROIs).

The ROI method of partitioning the image is taken. The readers give a
score to each ROI in the image and the statistical model takes into account
the correlation between the scores of the ROIs of an image in estimating test
accuracy. The test accuracy is given by P [Y > Z] + (1/2)P [Y = Z], where Y is
a discrete diagnostic measurement of an affected ROI, and Z is the diagnostic
measurement of an unaffected ROI. This way of measuring test accuracy is
equivalent to the area under the ROC curve. The parameters are the parame-
ters of a multinomial distribution, then, based on the multinomial distribution,
a Bayesian method of inference is adopted for estimating the test accuracy.

Using a multinomial model for the test results, a Bayesian method based
on the predictive distribution of future diagnostic scores is employed to find
the test accuracy. By resampling from the posterior distribution of the model
parameters, samples from the posterior distribution of test accuracy are also
generated. Using these samples, the posterior mean, standard deviation, and
credible intervals are calculated in order to estimate the area under the ROC
curve. A Bayesian way to estimate test accuracy is easy to perform with stan-
dard software packages and has the advantage of employing the efficient inclu-
sion of information from prior related imaging studies.

Obuchowski et al. [15] demonstrate how the ROI method is used to esti-
mate the area under the ROC curve. They conclude that the ROI method
appropriately captures the detection and localization of multiple abnormal-
ities and is better suited than the free-response ROC curve method. In the
ROI approach, the image is partitioned into clinically relevant, mutually exclu-
sive regions. For example, in mammography there are five ROIs: upper outer,
upper inner, lower outer, lower inner, and retroareolar. The reader assigns a
score to each ROI, ranging from 1 to 5 as to the confidence of the presence of
an abnormality; thus, the reader’s ability to find abnormalities and to locate
them is easily determined. Obuchowski et al. continue by presenting a way of
taking into account the correlation between the scores of the several ROIs of
the same image. I will not go into the details of the Obuchowski study, but will
adopt their ROI approach as the preferred method of assessing test accuracy
when there are many ROIs per image.
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4.5.2 The Bayesian receiver operating characteristic
curve for clustered information

The proposed method is based on Broemeling [16] and the ROI (not on
a per patient basis) method and the Bayesian way to make statistical infer-
ences. Suppose that an ROI is selected at random from a group of m affected
(based on the gold standard) ROIs. Let Y be the ordinal diagnostic measure-
ment observed on that ROI, and let Z be the measurement of an ROI selected
at random from the set of n unaffected ROIs. The accuracy of the test is given
by the area under the ROC curve and is estimated by

P [Y > Z] +P [Y = Z]/2, (4.25)

thus providing the investigator with the overall accuracy of the diagnostic test.
Suppose Y and Z have possible values 1, 2, 3, 4,. . . , r, where larger values

are more of an indication that the ROI is affected, then the study results
can be represented by the following likelihood function for θ and φ.

L(θ,φ/y) ∝
i=r∏
i=1

θiφi, (4.26)

where θ = (θ1, θ2, . . . , θr) and φ = (φ1,φ2, . . . ,φr). The diagnostic measure-
ment of an affected ROI is such that Y = i with probability θi.

Similarly for an unaffected ROI, Z = i with probability φi, where Yi is the
frequency of Y = i and Zi is the frequency that Z = i(i = 1, 2, . . . , r).

Note that this likelihood function is based on the multinomial distribution.
We see that

i=r∑
i=1

(θi + φi) = 1,

i=r∑
i=1

Yi = m, and
i=r∑
i=1

Zi = n.

For a given study, the values of m, n, Yi, and Zi are known, but θi and φi

are not and must be estimated from the data. To do this using the Bayesian
approach, a prior density for the parameters must be specified. Suppose

g(θ,φ) ∝
i=r∏
i=1

θαi−1
i φ

βi−1
i , (4.27)

is the prior density, then the posterior density of the model parameters is

g(θ,φ/y, z) ∝
i=r∏
i=1

θYi+αi−1
i φ

Zi+βi−1
i . (4.28)

The posterior density is that of a Dirichlet distribution, thus θi and φi are
correlated. Because of the constraint, the correlation between the probabilities
of the scores of the affected and unaffected ROIs has been taken into account,
an essential requirement for the ROI method of detection and localiza-
tion. The posterior distribution of θ = (θ1, θ2, . . . , θr) and φ = (φ1,φ2, . . . ,φr)
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is Dirichlet with parameter (Y1 + α1, Y2 + α2, . . . , Yr + αr, Z1 + β1, Z2 + β2, . . . ,
Zr + βr).

It should be stressed that the prior distribution must be chosen with care.
There are essentially two cases to consider: (a) where prior information from
previous related experiments is available, and (b) little prior information is
available. We will discuss this further when examples are to be illustrated.

If one lets

θ∗
i = θi

/ i=r∑
i=1

θi, (4.29)

then θ∗
i is the probability that Y = i when sampling only from the affected

ROIs. Suppose an ROI is selected at random from the population of unaffected
ROIs, then φ∗

i is the probability that Z = i, where

φ∗
i = φi

/ i=r∑
i=1

φi. (4.30)

How does the probability Pr[Y > Z] + (1/2)Pr[Y = Z] depend on the model
parameters? The following gives the number of ways that Y ≥ Z and the
corresponding probabilities.

1. Y = 1 and Z = 1 with probability θ∗
1φ

∗
1 or

2. Y = 2 and Z = 1 or 2 with probability θ∗
2(φ

∗
1 + φ∗

2) or

3. Y = r and Z = 1 or 2 or, . . . or r with probability θ∗
r .

In general, the area under the ROC curve is defined as

A(θ,φ) =
i=r∑
i=2

θ∗
i

j=i−1∑
j=1

φ∗
j + (1/2)

i=r∑
j=1

θ∗
i φ

∗
i . (4.31)

Suppose a “large” number M , say 50,000, samples are generated from the
posterior Dirichlet distribution of θ and φ, then this provides M samples gen-
erated from the posterior distribution of θ∗ and φ∗, via Equations 4.29 through
4.31, and also provides M samples from the posterior distributions of A(θ,φ)
via Equation 4.32. Based on these samples, the posterior mean, median, stan-
dard deviation, and 95% credible interval (or other posterior characteristics)
are easily computed.

How large is M? One way to choose M is to choose it large enough so that
the MCMC error is less than some specified value. One may vary the MCMC
sample size to determine the effect on the MCMC error, and in this way choose
an appropriate sample for estimating the parameters of interest.

4.5.3 Clustered data in mammography

A good example of clustered data can be found in Zhou, McClish, and
Obuchowski [2: 134], which is based on mammography. In our case, a similar
example illustrates the Bayesian method of estimating the ROC area. The
example is based on the author’s experience with a lung cancer trial, where the
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CT image is partitioned into five ROIs: the upper left (UL), upper right (UR),
lower left (LL), lower right (LR), and center region (CR). One radiologist
assigns a score to each ROI, ranging from 1 to 4, which indicates the degree of
malignancy. There are 55 patients and for each a score from 1 to 4 is assigned to
each of the five ROIs. As determined by a gold standard, there are 85 abnormal
(malignant) ROIs and 190 normal (non malignant) ROIs (Table 4.14).

TABLE 4.14: Diagnostic scores for five regions of the CT image.
Disease status Diagnostic scores

ID UL UR LL LR CR UL UR LL LR CR

1 0 0 0 0 0 1 1 1 1 1
2 0 0 0 0 0 1 1 1 1 1
3 0 0 0 0 0 1 1 1 1 1
4 0 0 0 0 0 1 1 1 1 1
5 0 0 0 0 0 2 1 1 1 1
6 1 1 0 0 0 2 3 1 1 1
7 1 1 0 0 0 3 3 1 1 1
8 1 1 0 0 0 4 1 1 1 1
9 1 1 0 0 0 2 2 1 1 1

10 1 1 0 0 0 1 3 1 1 1
11 0 0 0 1 1 1 2 1 2 2
12 0 0 0 1 1 1 1 2 3 3
13 0 0 0 1 1 1 1 1 4 2
14 0 0 0 1 1 1 1 1 3 3
15 0 0 0 1 1 1 2 1 2 4
16 0 0 1 1 0 1 1 3 2 1
17 0 0 1 1 0 2 1 2 3 1
18 0 0 1 1 0 1 2 2 2 1
19 0 0 1 1 0 1 1 1 4 1
20 0 0 1 1 0 1 1 4 3 1
21 1 0 0 0 1 3 1 1 1 2
22 1 0 0 0 1 2 1 1 2 3
23 1 0 0 0 1 4 1 1 1 4
24 1 0 0 0 1 1 2 1 1 3
25 1 0 0 0 1 3 1 1 1 2
26 0 1 0 0 1 2 3 1 1 3
27 0 1 0 0 1 1 3 1 1 3
28 0 1 0 0 1 1 2 2 1 2
29 0 1 0 0 1 1 4 1 1 4
30 0 1 0 0 1 1 2 1 2 3
31 0 0 1 0 1 1 1 2 2 3
32 0 0 1 0 1 1 1 2 2 3
33 0 0 1 0 1 2 1 4 1 4
34 0 0 1 0 1 2 1 4 2 3
35 0 0 1 0 1 1 1 3 1 2

(continued)
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TABLE 4.14 (continued): Diagnostic scores for five regions of
the CT image.

Disease status Diagnostic scores

ID UL UR LL LR CR UL UR LL LR CR

36 0 1 0 1 0 1 3 1 3 1
37 0 1 0 1 0 1 4 1 4 2
38 0 1 0 1 0 1 3 2 4 1
39 0 1 0 1 0 1 2 1 2 1
40 1 0 0 0 0 4 2 1 1 1
41 1 0 0 0 0 3 1 1 2 2
42 1 0 0 0 0 3 1 1 1 1
43 1 0 0 0 0 2 1 1 2 1
44 1 0 0 0 0 4 1 1 1 1
45 0 0 1 0 0 1 1 4 1 2
46 0 0 1 0 0 1 1 3 1 1
47 0 0 1 0 0 2 2 3 1 1
48 0 0 1 0 0 1 3 2 2 1
49 0 0 1 0 0 1 1 4 1 1
50 0 0 1 0 0 1 1 3 1 1
51 0 0 0 1 0 1 1 3 1 1
52 0 0 0 1 0 1 3 1 4 1
53 0 0 0 1 0 2 1 1 3 2
54 0 0 0 1 0 1 1 2 2 1
55 0 0 0 1 0 1 1 1 2 1

Assuming a uniform prior for the parameters, the joint posterior distribu-
tion of θ = (θ1, θ2, . . . , θ4) and φ = (φ1,φ2, . . . ,φ4) is Dirichlet with parameter
(5, 27, 35, 22, 161, 29, 3, 1), that is to say, among the abnormal ROIs, there
are four with a score of 1, 26 with a score of 2, 34 with a score of 3, and 21 with
a score of 4. Among the normal ROIs, there are 160 with a score of 1, 28 with
a score of 2, two with a score 3, and none with a score of 4. Increasing values
of the diagnostic score indicate a larger chance of malignancy. The AUC is

A(θ,φ) =
i=4∑
i=2

θ∗
i

j=i−1∑
j=1

φ∗
j + (1/2)

i=4∑
i=1

θ∗
i φ

∗
i . (4.32)

Based on BUGS CODE 4.4, 60,000 values were generated from the Dirichlet
posterior distribution of θ and φ, with a burn in of 5,000 and a refresh of 100.

BUGS CODE 4.4

Model;
# Clustered Data ROC Area
{
# Joint Distribution of all cell parameters
# abnormal ROI

g11∼dgamma(a11,2)
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g12∼dgamma(a12,2)
g13∼dgamma(a13,2)
g14∼dgamma(a14,2)

# normal ROI

g01∼dgamma(a01,2)
g02∼dgamma(a02,2)
g03∼dgamma(a03,2)
g04∼dgamma(a04,2)

sg<-g11+g12+g13+g14+g01+g02+g03+g04
the1<-g11/sg
the2<-g12/sg
the3<-g13/sg
the4<-g14/sg
p1<- g01/sg
p2<- g02/sg
p3<- g03/sg
p4<- g04/sg
# sum of the the’s
sthe<-the1+the2+the3+the4
# sum of the p’s
sp<-p1+p2+p3+p4
# truncated distribution of thetas

theta1<-the1/sthe
theta2<-the2/sthe
theta3<-the3/sthe
theta4<-the4/sthe

# truncated distributions of the phi’s
ph1<-p1/sp
ph2<-p2/sp
ph3<-p3/sp
ph4<-p4/sp

# area based on truncated

Area<-A1+A2/2

A1<-theta2*ph1+theta3*(ph1+ph2)+theta4*(ph1+ph2+ph3)
A2<-theta1*ph1+theta2*ph2+theta3*ph3+theta4*ph4

}
# a1j’s are cell counts for abnormal ROI
# a0j’s are cell counts of normal ROI
# The list below is for the clustered data of the lung cancer study.
list(a11=5,a12=27,a13=34,a14=22,a01=161,a02=29, a03=3,a04=1)
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TABLE 4.15: Posterior analysis for clustered lung cancer study.
Parameter Mean sd Error Lower Median Upper

2 1/2 2 1/2

A1 0.8828 0.0262 <0.001 0.8251 0.8852 0.9272
A2 0.0993 0.0211 <0.001 0.0632 0.0975 0.1457
Area 0.9325 0.0159 <0.001 0.8973 0.934 0.9593
φ1 0.8299 0.0269 <0.0001 0.7741 0.831 0.8791
φ2 0.1495 0.0256 <0.0001 0.1031 0.1482 0.203
φ3 0.0154 0.0087 <0.0001 0.0032 0.0138 0.0368
φ4 0.0051 0.0051 <0.0001 0.00013 0.0036 0.0189
θ1 0.0561 0.0243 <0.001 0.0185 0.05282 0.1125
θ2 0.3035 0.0484 <0.001 0.2129 0.302 0.4021
θ3 0.3932 0.0514 <0.001 0.2958 0.3922 0.4956
θ4 0.2471 0.0452 <0.001 0.1642 0.245 0.3413

# initial values
list(g11=1,g12=1,g13=1,g14=1, g01=1,g02=1,g03=1,g04=1)

The posterior analysis for the clustered lung cancer study is presented in
Table 4.15.

It is interesting to note that the estimated area of 0.9325(0.0159) indicates
very good discrimination between the normal and abnormal ROIs. Recall that
a score of 1 indicates no evidence of a malignant lesion and that the pos-
terior analysis implies that the probability of a 1 for an abnormal ROI is
0.8255 compared to a posterior mean of 0.0506 for the probability of a 1 for
a normal (non-diseased) ROI. The MCMC errors are quite small, giving one
confidence that the simulation is providing accurate answers for the posterior
characteristics.

The MCMC errors appear to be reasonable. Recall that the MCMC error
is an error in the simulation that generates observations from the posterior
distribution. It estimates the accuracy of the closeness of the simulated value
to the “true” posterior characteristic. For example, in estimating the ROC
area, the MCMC error indicates that the posterior mean is within three dec-
imal values of the “true” posterior mean ROC area.

4.6 Comparing Accuracy between Modalities with
Ordinal Scores

4.6.1 Comparing true and false positive fractions

In order to compare modalities, the CASS dataset is again used, where
the EST and a history of chest pain (CPH) are used to diagnose CAD. The
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TABLE 4.16a: CASS study
for diseased subjects.

CPH
EST 0 1 Total
0 25 183 208
1 29 786 815
Total 54 969 1023

TABLE 4.16b: CASS study
for non-diseased subjects.

CPH
EST 0 1 Total
0 151 176 327
1 46 69 115
Total 197 245 442

example was used to illustrate the Bayesian estimation of the basic measures
of test accuracy, including the classification probabilities, DLRs, and the pre-
dictive probabilities. There are 1,465 subjects, all of which had an EST and
a record of their chest pain. This paired study is given in Tables 4.16a and b
(see Pepe [6: 47]). The important question is which modality, EST or CPH,
is most accurate and by how much?

The Bayesian analysis will consist of finding the posterior distribution of
the sensitivity and specificity of the two modalities and comparing them on the
basis of the ratios of the two basic measures. Let θij be the probability that
a diseased subject has an EST score of i and a record of chest pain j, where
i, j = 0, 1, where 0 indicates a negative outcome and 1 a positive outcome. In
a similar manner, let φij be the corresponding probability for a non-diseased
subject.

Assuming a uniform prior distribution for θ = (θ00, θ01, θ10, θ11) and φ =
(φ00,φ01,φ10,φ11), their joint posterior distribution is Dirichlet with param-
eter (26, 184, 30, 787; 152, 177, 47, 70). Note that there is a joint posterior
distribution of eight parameters. The truncated distribution of the θ’s is the
distribution of

θ∗
ij = θij

/ i=1∑
i=0

j=1∑
j=0

θij , (4.33)

and the truncated distribution of the φ’s is the distribution of

φ∗
ij = φij

/ i=1∑
i=0

j=1∑
j=0

φij . (4.34)
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The sensitivity (TPF) for the EST and CPH is

tpfest = θ∗
1. (4.35)

and

tpfcph = θ∗
.1, (4.36)

respectively, where the dot notation indicates summation of θ∗
ij over the miss-

ing subscript. In a similar way, the FPF for the EST and CPH modalities is

fpfest = φ∗
1. (4.37)

and

fpfcph = φ∗
.1 (4.38)

respectively.
The posterior distribution for the eight multinomial parameters, θ = (θ00,

θ01, θ10, θ11) and φ = (φ00,φ01,φ10,φ11), are determined with WinBUGS
using 70,000 observations, with a burn in of 10,000 and a refresh of 100,
and BUGS CODE 4.5 provides the statements for executing the Bayesian
analysis.

BUGS CODE 4.5

Model;
# Comparing modalities 2 by 2 table
{
# Dirichlet distribution generated

g00∼dgamma(a00,2)
g01∼dgamma(a01,2)
g10∼dgamma(a10,2)
g11∼dgamma(a11,2)

sumall<-g00+g01+g10+g11+
h00+h01+h10+h11

h00∼dgamma(b00,2)
h01∼dgamma(b01,2)
h10∼dgamma(b10,2)
h11∼dgamma(b11,2)

# cell probabilities for diseased
theta00<-g00/sumall
theta01<-g01/sumall
theta10<-g10/sumall
theta11<-g11/sumall
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# cell probabilities for non diseased
ph00<-h00/sumall
ph01<-h01/sumall
ph10<-h10/sumall
ph11<-h11/sumall
# truncated distributions
stheta<-theta00+theta01+theta10+theta11
sph<-ph00+ph01+ph10+ph11
# truncated thetas
th00<-theta00/stheta
th01<-theta01/stheta
th10<-theta10/stheta
th11<-theta11/stheta
# truncated phi’s
p00<-ph00/sph
p01<-ph01/sph
p10<-ph10/sph
p11<-ph11/sph
# true positives
# a designates row
# b designates column
tpfa<-th10+th11
tpfb<-th01+th11
# false positive
fpfa<-p10+p11
fpfb<-p01+p11
# ratio of tpf a to b
rtpf<-tpfa/tpfb
#ratio of fpf a to b
rfpf<-fpfa/fpfb
}
# CASS data set
# see Pepe [6: 8] for a description of CASS study
# Comparing est and cph
# a is est
# b is cph
list(a00=26,a01=184,a10=30,a11=787,

b00=152,b01=177,b10=47,b11=70)
list(g00=1,g01=1,g10=1,g11=1,

h00=1,h01=1,h10=1,h11=1)

The tpf’s of the est and the cph can be contrasted with the ratio

rtpf(est/cph) = tpfest/tpfcph, (4.39)
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TABLE 4.17: Posterior analysis for comparing EST and CPH.
Parameter Mean sd Error Lower Median Upper

2 1/2 2 1/2

fpfest 0.2621 0.0207 <0.0001 0.2227 0.2619 0.3036
fpfcph 0.5538 0.0234 <0.0001 0.5075 0.554 0.5944
rfpf(est/cph) 0.4741 0.0416 <0.0001 0.3963 0.473 0.5586
rtpf(est/cph) 0.8413 0.0138 <0.0001 0.814 0.8414 0.8682
tpfest 0.7954 0.0125 <0.0001 0.7704 0.7956 0.8196
tpfcph 0.9455 0.0071 <0.0001 0.9307 0.9457 0.9585

and, in a similar way, the fpf’s of the est to cph by

rfpf(est/cph) = fpfest/fpfcph. (4.40)

See the appropriate statements in BUGS CODE 4.5.
On the basis of the TPF, it appears that the CPH is more accurate, but on

the basis of the FPF, it appears that the EST is more accurate. In comparing
the sensitivities of the two modalities (Table 4.17), one could use the ratio of
the TPFs, given by rtpf(est/cph) with the corresponding density portrayed
by Figure 4.6.

4.6.2 Comparing the receiver operating characteristic
areas of two modalities with ordinal scores

Suppose one wants to compare the ROC areas of two modalities with
ordinal scores. An example involving two imaging modalities, MRI and CT,
is given in Tables 4.18a and b.

The scores indicate the confidence that the radiologist has for the presence
of a lung cancer lesion, where 1 indicates that there is no evidence of a malig-
nant lesion; 2 designates that there is very little evidence of a lesion; 3 classifies
the lesion as benign, but where a follow-up image is indicated; 4 designates
the lesion is possibly malignant; and 5 denotes the presence of a definitely

rtpf sample: 65001

rtpf
0.75 0.8 0.85 0.9

P(
rt

pf
)

0.
0

20
.0

FIGURE 4.6: Posterior density of rtpf(est/cph).
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TABLE 4.18a: MRI and CT scores for
detecting lung cancer—diseased patients.

Scores

Modality 1 2 3 4 5 Total

MRI 0 3 12 10 25 50
CT 1 4 8 11 26 50

TABLE 4.18b: MRI and CT scores for
detecting lung cancer—non-diseased patients.

Scores

Modality 1 2 3 4 5 Total

MRI 30 18 20 8 2 78
CT 31 22 15 5 5 78

malignant lesion of the lung. Suppose that the scores for non-diseased patients
are given in Table 4.18b.

Tables 4.18a and 4.18b are hypothetical example and assumes one radiol-
ogist is reading both images per patient, an MRI image and a CT image. One
would expect good agreement between the two modalities, but are the two
modalities accurate and is one more accurate than the other?

For patients with lung cancer, suppose θij is the probability that the radi-
ologist assigns a score of j(=1, 2, 3, 4, 5) using modality i, where i = 1 indicates
an MRI image, and i = 2 designates a CT image. In a similar fashion, suppose
φij is the probability for non-diseased patients that the radiologist assign a
score of j using modality i.

In order to define an ROC area, truncated probabilities for diseased and
non-diseased patients for each modality will be used. For example, for the
MRI images of the diseased patients, the cell truncated probabilities are

θ∗
1j = θ1j/θ1, (4.41)

for j = 1, 2, 3, 4, 5, (4.42)

while for the CT images of the diseased patients, the truncated cell probabil-
ities are

θ∗
2j = θ2j/θ2, j = 1, 2, 3, 4, 5. (4.43)

In a similar way, the truncated cell probabilities for the non-diseased patients
are given by

φ∗
1j = φ1j/φ1, j = 1, 2, 3, 4, 5, (4.44)

for the MRI images, and by

φ∗
2j = φ2j/φ2, j = 1, 2, 3, 4, 5, (4.45)
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for the CT images, where the dot notation means summation over the indi-
cated subscript.

The ROC area for the MRI is defined as

Area mri = Area1 mri + (1/2)Area2 mri,

where

Area1 mri = θ∗
12φ

∗
11 + θ∗

13 ∗ (φ∗
11 + φ∗

12) + θ∗
14(φ

∗
11 + φ∗

12 + φ∗
13)

+ θ∗
15(φ

∗
11 + φ∗

12 + φ∗
13 + φ∗

14), (4.46)

and

Area2 mri =
i=5∑
i=1

θ∗
1iφ

∗
1i. (4.47)

Note that the area for the CT is defined as

Area ct = Area1 ct + (1/2)Area2 ct,

where

Area1 ct = θ∗
22φ

∗
21 + θ∗

23 ∗ (φ∗
21 + φ∗

22) + θ∗
24(φ

∗
21 + φ∗

22 + φ∗
23)

+ θ∗
25(φ

∗
21 + φ∗

22 + φ∗
23 + φ∗

24), (4.48)

and

Area2 ct =
i=5∑
i=1

θ∗
2iφ

∗
2i. (4.49)

The above equations have their counterpoints in BUGS CODE 4.6.

BUGS CODE 4.6

Model;
# Comparing two modalities
# 2 ROC areas
{
# Dirichlet distribution
# modality a diseased
g11∼dgamma(a11,2)
g12∼dgamma(a12,2)
g13∼dgamma(a13,2)
g14∼dgamma(a14,2)
g15∼dgamma(a15,2)

# modaltiy b diseased
g21∼dgamma(a21,2)
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g22∼dgamma(a22,2)
g23∼dgamma(a23,2)
g24∼dgamma(a24,2)
g25∼dgamma(a25,2)

sg<-g11+g12+g13+g14+g15+
g21+g22+g23+g24+g25

# modality a non diseased
h11∼dgamma(b11,2)
h12∼dgamma(b12,2)
h13∼dgamma(b13,2)
h14∼dgamma(b14,2)
h15∼dgamma(b15,2)

# modality b non diseased
h21∼dgamma(b21,2)
h22∼dgamma(b22,2)
h23∼dgamma(b23,2)
h24∼dgamma(b24,2)
h25∼dgamma(b25,2)

sh<-h11+h12+h13+h14+h15+
h21+h22+h23+h24+h25

# the thetas and phis have a Dirichlet distribution
theta11<-g11/sg
theta12<-g12/sg
theta13<-g13/sg
theta14<-g14/sg
theta15<-g15/sg
theta21<-g21/sg
theta22<-g22/sg
theta23<-g23/sg
theta24<-g24/sg
theta25<-g25/sg
ph11<-h11/sh
ph12<-h12/sh
ph13<-h13/sh
ph14<-h14/sh
ph15<-h15/sh
ph21<-h21/sh
ph22<-h22/sh
ph23<-h23/sh
ph24<-h24/sh
ph25<-h25/sh
# truncate modality a (diseased)
sumad<-theta11+theta12+theta13+theta14+theta15
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th11<-theta11/sumad
th12<-theta12/sumad
th13<-theta13/sumad
th14<-theta14/sumad
th15<-theta15/sumad
# truncate modality b (diseased)
sumbd<-theta21+theta22+theta23+theta24+theta25
th21<-theta21/sumbd
th22<-theta22/sumbd
th23<-theta23/sumbd
th24<-theta24/sumbd
th25<-theta25/sumbd
# truncate modality a (non diseased)
sumand<-ph11+ph12+ph13+ph14+ph15
p11<-ph11/sumand
p12<-ph12/sumand
p13<-ph13/sumand
p14<-ph14/sumand
p15<-ph15/sumand
# truncate modality b (non diseased)
sumbnd<-ph21+ph22+ph23+ph24+ph25
p21<-ph21/sumbnd
p22<-ph22/sumbnd
p23<-ph23/sumbnd
p24<-ph24/sumbnd
p25<-ph25/sumbnd
# area for a
areaa<-areaa1+areaa2/2
areaa1<-th12*p11+th13*(p11+p12)+th14*(p11+p12+p13)+
th15*(p11+p12+p13+p14)
areaa2<-th11*p11+th12*p12+th13*p13+th14*p14+
th15*p15
# area for b
areab<-areab1+areab2/2
areab1<-th22*p21+th23*(p21+p22)+th24*(p21+p22+p23)+
th25*(p21+p22+p23+p24)
areab2<-th21*p21+th22*p22+th23*p23+th24*p24+
th25*p25
# compares areas a and b
diffarea<-areaa-areab
}
# Compares mri and ct for lung cancer lesions
# hypothetical example
# mri is modlaity a
# ct is modality b
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list(a11=1,a12=4,a13=13,a14=11,a15=26,
a21=2,a22=5,a23=19,a24=12,a25=27,
b11=31,b12=19,b13=21,b14=9,b15=3,
b21=32,b22=23,b23=16,b24=6,b25=6)

The above analysis is executed with 105,000 observations generated from
the posterior distribution of the parameters, with a burn in of 5,000 and a
refresh of 100. Note that the MCMC simulation error in all cases is accurate
to at least three decimal places. The parameters in Table 4.19 are named the
same way as in BUGS CODE 4.6, and the code follows the development of
Equations 4.42 through 4.49. Both modalities appear to be quite accurate with
ROC areas of 0.857 for the MRI and 0.833 for the CT, and they appear to
be equivalent areas. A 95% credible interval for the difference in the areas is
(−0.0627,0.1108), implying very little difference (Table 4.19).

4.6.3 Comparing receiver operating characteristic
areas for continuous scores

The ROC area of two continuous scores will be compared using O’Malley
et al.’s [13] Bayesian approach to computing the area, assuming the scores
are normally distributed for the diseased and non-diseased populations. It
is a regression approach that regressed the diagnostic score on the disease
indicator variable d, namely,

Y[i] ∼ dnormal(m(u)), precision[d[i] + 1), (4.50)

where i = 1, 2, . . . ,N,

m(u) = beta[1] + beta[2]∗d, (4.51)

where d is the indicator variable,

beta[i] ∼ dnorm(0, 0.0001)
precision[i] ∼ dgamma(0.0001, 0.0001),

and i = 1, 2.

TABLE 4.19: Bayesian analysis for comparing MRI and CT.
Parameter Mean sd Error Lower Median Upper

2 1/2 2 1/2

area(mri) 0.8573 0.0304 <0.00001 0.7916 0.8595 0.9108
areaa1 0.7963 0.0388 <0.0001 0.7141 0.7984 0.8663
areaa2 0.122 0.0186 <0.00001 0.0871 0.1215 0.1603
areab(ct) 0.8333 0.0320 <0.00001 0.765 0.8353 0.8901
areab1 0.7669 0.0399 <0.0001 0.6833 0.7689 0.8394
areab2 0.1328 0.0175 <0.00001 0.0992 0.1325 0.168
Diff(mri-ct) 0.02404 0.0441 <0.0001 −0.0627 0.0240 0.1108
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The AUC is computed as

auc<-phi(la1/sqrt(1 + la2)), (4.52)

where phi is the distribution function of the standard normal,

la1<-beta[2]/sqrt(var[1]),
la2<-var[2]/var[1].

Also
var[i] = 1/precison[i],

and i = 1, 2.
When considering a paired study, where two diagnostic scores, y and z,

are expected to be correlated, the approach here is to revise the O’Malley
et al. [13] approach by changing Equation 4.52 to

m(u) = beta[1] + beta[2]∗d + beta[3]∗z[t]. (4.53)

That is, by regressing one score on the other and adding it as a covariable in
the linear regression Equation 4.52, then computing the ROC area, assuming
normality. To compute the ROC area for z, the roles of y and z are reversed
in Equation 4.53. In this way, correlation between the two diagnostic scores
can be taken into account in estimating the ROC area.

The following code will be used to compute the ROC area for two diag-
nostic scores y and z.

BUGS CODE 4.7

model;
# Compares two correlated ROC areas
# Compares two biomarkers
{

for(i in 1:N) {
# yt is log of y

yt[i]< -log(y[i])

yt[i]∼dnorm(mu[i],precy[d[i]+1]);
# the regression of log y on logz

mu[i] <-beta[1] + beta[2]*d[i]+beta[3]*zt[i]
# zt is log of z

zt[i]< -log(z[i])

zt[i]∼dnorm(vu[i],precz[d[i]+1])
# the regression of logz on logy

vu[i]< -delta[1]+delta[2]*d[i]+delta[3]*yt[i]

}
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# prior distributions - non-informative prior;

for (i in 1:3) { beta[i] ∼ dnorm(0,0.0001)
delta[i]∼dnorm(0,0.0001)

}

for (i in 1:K) {

precy[i]∼dgamma(0.000001,0.000001);
vary[i]<-1.0/precy[i];
precz[i]∼dgamma(0.000001,0.000001);
varz[i]<-1.0/precz[i];

}

# calculates area under the curve
la1y<-beta[2]/sqrt(vary[1]);
la2y<-vary[2]/vary[1];
aucy<-phi(la1y/sqrt(1+la2y));
la1z<-delta[2]/sqrt(varz[1]);
la2z<-varz[2]/varz[1];
aucz<-phi(la1z/sqrt(1+la2z));
diff<-aucy-aucz

}
# Wieand et al. [17]
# two biomarkers for pancreatic cancer
# see Zhou et al. [2: 260]
# y is CA19-9 and z is CA125
list(K=2, N=141,
y=c(28.00,15.50,8.20,3.40,17.30,15.20,32.90,11.10,87.50,16.20,107.90,5.70,
25.60,31.20,21.60,55.60,8.80,6.50,22.10,14.40,44.20,3.70,7.80,8.90,18.00,6.50,
4.90,10.40,5.00,5.30,6.50,6.90,8.20,21.80,6.60,7.60,15.40,59.20,5.10,10.00,5.30,
32.60,4.60,6.90,4.00,3.65,7.80,32.50,11.50,4.00,10.20,2.40,719.00,2106.67,
24000.00,1715.00,3.60,521.50,1600.00,454.00,109.70,23.70,464.00,9810.00,
255.00,58.70,225.00,90.10,50.00,5.60,4070.00,592.00,28.60,6160.00,1090.00,
10.40,27.30,162.00,3560.00,14.70,83.30,336.00,55.70,1520.00,3.90,5.80,8.45,
361.00,369.00,8230.00,39.30,43.50,361.00,12.80,18.00,9590.00,555.00,60.20,
21.80,900.00,6.60,239.00,3100.00,3275.00,682.00,85.40,10290.00,770.00,247.60,
12320.00,113.10,1079.00,45.60,1630.00,79.40,508.00,3190.00,542.00,1021.00,
235.00,251.00,3160.00,479.00,222.00,15.70,2540.00,11630.00,1810.00,6.90,4.10,
15.60,9820.00,1490.00,15.70,45.80,7.80,12.80,100.53,227.00,70.90,2500.00),
z=c(13.30,11.10,16.70,12.60,7.40,5.50,32.10,27.20,6.60,9.80,10.50,7.80,9.10,
12.30,12.00,42.10,5.90,9.20,7.30,6.80,10.70,15.70,8.00,6.80,47.35,17.90,96.20,
108.90,16.60,9.50,179.00,12.10,35.60,15.00,12.60,5.90,10.10,8.50,11.40,54.65,
9.70,11.20,35.70,22.50,21.20,5.60,9.40,12.00,9.80,17.20,10.60,79.10,31.40,15.00,
77.80,25.70,11.70,8.25,14.95,8.70,14.10,123.90,12.10,99.10,18.60,10.50,6.60,
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74.00,43.90,45.70,13.00,7.30,8.60,17.20,15.40,14.30,93.10,66.30,26.70,32.40,
9.90,30.30,11.20,202.00,35.70,9.20,103.60,21.40,8.10,29.90,17.50,30.80,57.30,
6.50,33.80,53.60,17.20,94.20,33.50,3.70,11.70,19.90,38.70,27.30,20.10,86.10,
844.00,36.90,6.90,27.70,9.90,38.60,142.60,12.50,11.60,21.20,13.20,19.20,
1024.00,14.10,34.80,35.30,35.00,15.50,12.10,31.60,184.80,24.80,10.40,34.50,
19.40,22.20,53.90,15.40,17.30,36.80,49.80,26.57,9.70,19.20,14.20),
d=
c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1))
list(beta = c(0,0),delta=c(0,0), precy = c(1,1),precz=c(1,1))

Two continuous scores are compared using two biomarkers in a study
by Wieand et al. [17] and analyzed by Pepe [6] and Zhou, McClish, and
Obuchowski [2: 259].Which one of the biomarkers is more accurate in detect-
ing pancreatic cancer? There are 51 control patients—those without pan-
creatic cancer—and 90 patients with cancer. These values are listed in the
first list statement of BUGS CODE 4.7, and are transformed to logs in the
analysis.

The first biomarker, CA19-9, is designated as y, while z identifies the
second biomarker, CA125. The original values were transformed by logs to
achieve normality. See the P-P plot Figure 4.7. The original values of CA19-9
and CA125 are highly skewed to the right and the P-P plot shows a large
deviation from normality.
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FIGURE 4.7: P-P normal plot of CA19-9.
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TABLE 4.20: Posterior analysis for pancreatic cancer.
Parameter Mean sd Error Lower Median Upper

2 1/2 2 1/2

auc CA19-9 0.877 0.0281 <0.0001 0.8157 0.8792 0.9257
auc CA125 0.6443 0.0581 <0.0001 0.526 0.6459 0.7533
beta[1] 2.515 0.387 0.0061 1.752 2.515 3.272
beta[2] 2.95 0.292 0.0015 2.379 2.952 3.525
beta[3] −0.01574 0.1374 0.0021 −0.285 −0.0155 0.2555
delta[1] 2.568 0.1544 0.0013 2.262 2.568 2.869
delta[2] 0.4768 0.1999 0.0016 0.085 0.4767 0.8699
delta[3] 0.0397 0.0429 <0.0001 −0.0456 0.0396 0.1232
diff 0.2332 0.06447 <0.0001 0.11 0.2321 0.3622

Note: Regression takes into account other biomarker.

The Bayesian analysis consists of generating 45,000 observations from the
posterior distribution, with a burn in of 5,000 and a refresh of 100. A uniform
prior was assumed and the list statement contains the original values for the
two biomarkers. Consider the posterior analysis as portrayed in Table 4.20.

It is seen that for the regression of log CA19-9 on log CA124, the latter is
a poor predictor of the former. Note that the 95% credible interval for beta[3]
contains zero. On inspection, the 95% credible interval for delta[3] contains
zero, which implies that log CA19-9 is a poor predictor of log CA125. Also, the
ROC area for CA19-9 is much larger than that for CA125, where the former
has an area of 0.877 compared to 0.6443 for CA125. Therefore, the analysis is
repeated by not using the biomarkers as covariates in the regression analysis.
When the analysis is repeated using the disease indicator as the only predictor,
the Bayesian analysis changes (see Table 4.21).

Again, 45,000 observations were generated from the posterior distribution,
with a burn in of 5,000 and a refresh of 100. The area for CA19-9 is the
same as before with a value of 0.8733, indicating that CA125 was not helpful
in predicting CA19-9. On the other hand, the ROC area for CA125 is now

TABLE 4.21: Posterior analysis for pancreatic cancer.
Parameter Mean sd Error Lower Median Upper

2 1/2 2 1/2

auc CA19-9 0.8773 0.0275 <0.0001 0.8177 0.8795 0.9251
auc CA125 0.6786 0.0438 <0.0001 0.5892 0.6799 0.7613
beta[1] 2.472 0.1237 <0.0001 2.228 2.472 2.719
beta[2] 2.944 0.2797 0.00168 2.394 2.943 3.492
delta[1] 2.665 0.1113 0.0010 2.444 2.666 2.883
delta[2] 0.5946 0.1537 0.0014 0.2992 0.594 0.8971
diff 0.1987 0.0518 <0.0001 0.0971 0.1987 0.3018

Note: Other biomarker not taken into account.
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estimated as 0.6786, a larger value than in the previous analysis. This is to be
expected, because the previous analysis implied that each biomarker was not
a good predictor of the other. It should be noted that the Pearson correlation
between the two biomarkers is only 0.25! With 40,000 observations, the MCMC
errors for the parameters appear to be small enough to trust the analysis, and
I would go with the two estimated ROC areas as 0.8733 and 0.6786 for CA19-9
and CA125, respectively. It appears that CA19-9 has much more accuracy in
detecting pancreatic cancer than CA125.

4.7 Exercises

1. The following information is taken from Pepe [6: 9], who cites Smith,
Bullock, and Catalona [18] who conducted a prostate cancer screening
study using PSA and digital rectal examination (DRE) as diagnostic
markers, with the results shown in Table 4.22.

Using BUGS CODE 4.1 with 55,000 observations generated from the
joint posterior distribution, with a burn in of 5,000, and a refresh of 500,
find the posterior mean, median, standard deviation, MCMC error, and
the lower and upper 2 1/2 percentiles of

(a) The TPF and FPF
(b) The PPV and NPV
(c) The PDLR and NDLR
(d) The MCMC error for estimating the TPF

Based on the above, is PSA a good test for screening for prostate
cancer? Explain your answer in detail.

2. Using BUGS CODE 4.1 and Table 4.3, verify Table 4.4. Generate 55,000
observations from the posterior distribution, with a burn in of 5,000 and
a refresh of 100.

3. Using BUGS CODE 4.1 and Table 4.3, verify Tables 4.5 and 4.6. Use
55,000 observations generated from the posterior distribution, with a
burn in of 5,000 and a refresh of 100. In addition, plot the posterior
density of the PDLR.

TABLE 4.22: Screening for prostate cancer
with PSA.

Prostate cancer

PSA 0 (negative) 1 (positive)

0 (negative 1002 145
1 (positive) 899 481
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4. Using Table 4.10, find the ROC area for the Spokane Heart Study. Use
a uniform prior and generate enough observations from the posterior
distribution so that the MCMC error for estimating the ROC area is
<0.0001.

(a) Conduct the usual posterior analysis by calculating the posterior
mean, median, standard deviation, MCMC error, and the lower and
upper 2 1/2 percentiles.

(b) Plot the posterior density of the ROC area.
(c) Construct a boxplot for the ROC area.

5. Based on Table 4.7 and BUGS CODE 4.2, verify Table 4.9. Perform a
Bayesian analysis to estimate the ROC area for mammography using
55,000 observations, with a burn in of 5,000 and a refresh of 100. The
list statement of the BUGS CODE 4.2 provides the data assuming a
uniform prior.

(a) What is the posterior mean of the ROC area?
(b) What is the posterior standard deviation of the ROC area?
(c) What is the MCMC error for estimating the ROC area?
(d) Is the MCMC error small enough? Explain your answer.
(e) Plot the posterior density of ROC area.

6. Zhou, McClish, and Obuchowski [2: 159] report a study of McNeil and
Hanley [19] who used gallium citrate images to locate the focal source
of sepsis using a rectilinear scanner with the following results. The gold
standard identified 40 patients with disease and 20 without, and it is
believed that increasing scores indicate more severe sepsis (Table 4.23).

Use 75,000 observations, with a burn in of 10,000 and a refresh of 100
with BUGS CODE 4.2, and estimate the ROC area. Note that a list
statement of BUGS CODE 4.2 provides the information for the gallium
citrate study, assuming a uniform prior.

(a) What is the MCMC error for estimating the ROC area?
(b) What is a 95% credible interval for the ROC area?

TABLE 4.23: Data for sepsis using a rectilinear scanner.
Score

1 2 3 4 5 Total

Disease 12 6 3 1 18 40
No disease 11 2 3 1 3 20

Source: From Zhou, H.H., McClish, D.K., and Obuchowski, N.A. Sta-
tistical Methods for Diagnostic Medicine. 2002. Copyright Wiley-VCH
Verlag GmbH & Co. KGaA. Reproduced with permission.
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(c) Is the test for sepsis accurate test? Explain your answer!
(d) Test the null hypothesis that the ROC area is <0.65 vs. the alter-

native the ROC area if greater than 0.65. You will have to insert a
statement involving the step command in the code.

7. Verify Equation 4.12.

8. Based on Table 4.11, verify Table 4.12. Use BUGS CODE 4.3a and gen-
erate 65,000 observations from the posterior density, with a burn in of
10,000 and a refresh of 100. Note that a list statement contains the input
needed for the head trauma data corresponding to Table 4.11, assuming
a uniform prior distribution.

Suppose you want to decrease the MCMC error for estimating the
ROC area (using CK-BB as the diagnostic marker) by 10%, how many
additional observations (beyond 60,000) need to be generated from the
posterior distribution?

9. Based on Table 4.11 and BUGS CODE 4.3b, verify Table 4.13, Hans
et al. [12]. This is the head trauma example using CK-BB as a biomarker
and BUGS CODE 4.3b is based on a regression model of O’Malley
et al. [13]. The main objective is to estimate the ROC area with a
Bayesian analysis. Generate 75,000 observations from the posterior dis-
tribution, with a burn in of 10,000 and a refresh of 100. Find the posterior
mean, median, MCMC error, and 95% credible interval for

(a) The ROC area
(b) The regression coefficients b[1] and b[2]
(c) The two precision parameters precy[1] and precy[2]

What is the MCMC error for estimating the ROC area?

10. Perform a Bayesian analysis for the ROC area using the ordinal values
of the mammography study. The data are given as a list statement of
BUGS CODE 4.3b, assuming a uniform prior. Use 55,000 observations
generated from the posterior distribution, with a burn in of 5,000 and a
refresh of 100.

Find the posterior mean, median, MCMC error, and 95% credible
interval for

(a) The ROC area
(b) The regression coefficients b[1] and b[2]

What is the MCMC error for estimating the ROC area?

11. Derive the formula:

AUC = Φ
[
a/

√
1 + b2

]
where X is normally distributed, a = (µD −µD̄)/σD, and b = σD/σD̄.
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TABLE 4.24a: PSA and DRE for
diseased patients.

DRE

PSA 0 (negative) 1 (positive)

0 (negative) 0 1002
1 (positive) 755 141

TABLE 4.24b: PSA and DRE for
non-diseased patients.

DRE

PSA 0 (negative) 1 (positive)

0 (negative) 0 1002
1 (positive) 755 141

The mean and standard deviation of X for the diseased population are
µD and σD, respectively, while µD̄ and σD̄ are the mean and standard
deviation of X for the non diseased. Φ is the cumulative distribution
function of the standard normal distribution.

12. Verify Figure 4.5.

13. Verify Equation 4.32 for the ROC area of the clustered data.

14. Verify Table 4.15, the posterior analysis for the clustered lung cancer
study of Table 4.14. Note, this information is contained in a list state-
ment of BUGS CODE 4.4. Use 60,000 observations, a burn in of 5,000
and a refresh of 100.

15. The results in Tables 4.24a and b are found in a study by Smith, Bullock,
and Catalona [17] and cited by Pepe [6: 9]. It is a prostate screening
study using PSA and DRE (Table 4.24a,b). Perform a Bayesian analysis
with a uniform prior using the information from Tables 4.24a and b and
BUGS CODE 4.5 with 65,000 observations generated from the posterior
distribution. Use a burn in of 5,000 and a refresh of 100 and compute
the posterior mean, median, standard deviation, MCMC error, and 95%
credible interval for:

(a) The TPF for PSA and DRE

(b) The FPF for PSA and DRE

(c) The PPV and NPV for PSA and DRE

(d) The PDLR and NDLR for PSA and DRE
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Based on the above, which one is more accurate, PSA or DRE? Care-
fully explain your answer! What is the MCMC error for estimating the
TPF of DRE? Is the error small enough?

16. Based on Tables 4.16a and b and BUGS CODE 4.5, verify the posterior
analysis described in Table 4.17. Generate 70,000 observations, with a
burn in of 10,000 and a refresh of 100 and use the list statement in
BUGS CODE 4.5. Use a uniform prior for the parameters.

17. Verify Table 4.19, using the information in Table 4.18 and BUGS
CODE 4.6. A list statement in the code gives the data (assuming a
uniform prior) for the comparison of the MRI and the CT for diagnos-
ing lung cancer. Use 105,000 observations generated from the posterior
distribution, with a burn in of 5,000 and a refresh of 100.

18. Verify Table 4.21 using BUGS CODE 4.3b with 45,000 observations
generated from the posterior distribution, with a burn in of 5,000 and a
refresh of 100. Note that the data for this problem are contained in the
first list statement of BUGS CODE 4.7. Use a uniform prior.
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Chapter 5

Regression and Medical Test Accuracy

5.1 Introduction

It is well known that test accuracy depends on many factors, including
differences in readers and differences in various patient characteristics. For
example, the age of the patient, their gender, the stage of the disease, and the
therapy received, all have a bearing on the measured test accuracy. This chap-
ter describes Bayesian regression procedures for estimating the effect of patient
and reader covariates on test accuracy, as measured by classification proba-
bilities, predictive probabilities, and diagnostic likelihood ratios. In the case
of quantitative diagnostic scores, regression techniques will be used to allow
for these patient and reader characteristics when estimating the receiver oper-
ating characteristic (ROC) area. For additional information on this, refer to
Chapters 3 and 6 of Pepe [1] and Chapter 8 of Zhou et al. [2].

In what follows, Bayesian regression techniques for binary test scores will
be illustrated with an audiology example taken from Leisenring et al. [3] and
also analyzed by Pepe. In this example, the probability of a false positive on
the hearing test of a patient’s ear is regressed on patient covariates, includ-
ing age, severity of disease, and location of the hearing test. Two modeling
approaches are taken: (1) using the log linear function illustrated by Pepe, and
(2) using a logistic link function. In addition, the effect of patient covariates
on other measures of test accuracy, including true positive fraction (TPF) and
the positive diagnostic likelihood ratio (PDLR), are examined with regression
techniques using log and logit link functions.

When ordinal scores are appropriate, the effect of the covariates are imple-
mented with ordinal regression, based on the cumulative odds model, where
the ordinal scores are modeled as a partition of so-called latent variables.
Armstrong and Sloan [4] were one of the first to employ latent variables for
ordinal regression, while McCullagh [5] gives a good general account of using
regression when the dependent variable is ordinal and the covariates are either
continuous or discrete type independent variables. Several examples will illus-
trate the ordinal regression approach to calculating the area under the ROC
curve. For example, the first study in this category is taken from Zhou et al.,
which is based on an earlier study of Rifkin et al. [6], where the effect of several
readers on staging prostate cancer is considered. The covariates in this case are
the four readers who use ultrasound to stage cancer, and it is of interest to mea-
sure the degree of agreement between the readers. A similar example involving
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staging melanoma is also considered as an illustration estimating the ROC area
via Bayesian methods. A third example using ordinal scores that measure the
response to two treatments for lung cancer, illustrates the use of ordinal regres-
sion to estimate the area under the ROC curve. This example is based on the
Gregurich [7] dissertation and shows how the ROC is a way to compare two
groups, in this case the two treatments. The main covariate is gender and the
Bayesian analysis is based on the WinBUGS code written by Congdon [8].

The Bayesian approach using continuous scores is based on the assumption
of normality for the diagnostic scores and the assumption of linearity between
the dependent and independent variables, including the covariates. O’Malley
et al. [9] present the Bayesian approach to estimating the ROC area when
covariates are present and his WinBUGS code will be employed for the analysis
of several examples, including another audiology study, which is based on
Stover et al. [10]. Another example involving continuous scores is a prostate
cancer study of Etzioni et al. [11], which uses prostate-specific antigen (PSA)
and age to diagnose prostate cancer. The final example involving continuous
scores is a hypothetical example of diagnosing type II diabetes with a fasting
blood glucose test. In the latter two studies, age is the principal covariate of
interest.

It should be emphasized that the ROC area of a given medical test is an
estimate only and corresponds to a specific population appropriate to that
study. In a given population, the ROC area changes with various subsets of
patients, hence the effect of covariates via regression techniques is an impor-
tant methodology when assessing the accuracy of a medical test. Covariates
can have a dramatic effect on the ROC area and should always be taken into
account when possible.

5.2 Audiology Study

5.2.1 Introduction

The dataset for this study can be downloaded at http://www.fhcrc.org/labs/
pepe/book and is analyzed extensively in Pepe [1]; earlier analyses appear
in Leisenring et al. [3,12,13]. The dataset comprises 3152 cases, where the
experimental unit is an ear. There were three modalities, diagnostic tests
a, b, and c, and each hearing test took place in either a room or booth. The
test result was binary with 1690 tests being designated as positive (hearing
impaired) and 1460 being designated as not hearing impaired. According to
the gold standard, 1256 ears were indeed impaired, while 1896 were given a
non-diseased status. Other patient covariates were age and disease severity.

Among the tests, 1053 were given test b, 1039 test a, and 1060 test c.
Among the 1039 ears given test a, 515 took place in a room and 524 in a
booth. Also, 633 were declared normal according to the gold standard, while
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the remaining 406 were designated hearing-impaired ears. Among the 633
who were declared normal ears, the number of false positives that occurred
was 253, with 380 true negative. A subset of this dataset is examined below,
namely, those ears where there was information on the false positive occur-
rences, that is, only abnormal (hearing impaired) ears were examined, of which
there were 1276. Note that, among these, 633 were given test a, 643 test b,
and 651 tests were administered in a room, while the remaining tests took
place in a booth. The false positive rates were 37% and 40% for tests a and b,
respectively.

5.2.2 Log link function

The conventional analysis for the audiology study appears in Pepe [1: 54],
where the true positive occurrence is modeled with a generalized linear model
using a log link function with age, location (room or booth), and severity of
disease as patient covariates. There are 253 false positives among the 633 nor-
mal ears given test a.

The log link model is

φ = exp(β1 + β2x1 + β3x2 + β4x3 + β5x2x3), (5.1)

where φ is the probability of a false positive, x1 is the age of the patient,
x2 indicates the location (where x2 = 1 for a booth and x2 = 0 for a room)
and x3 indicates either test a or b (where x3 = 0 for test b and x3 = 1 for
test a). The covariate severity is not included in the analysis. The program
statements appear below.

BUGS CODE 5.1

# x1 is age
# x2 is location
# x3 is test a or b
# r is the false positive occurrence
model

{
for(i in 1 : N) {
r[i] ∼ dbern(p[i])
p[i] <- exp(beta[1]+beta[2]*x1[i]+beta[3]*x2[i]+beta[4]*x3[i]+beta[5]*x2[i]*x3[i])}

phat <- mean(p[ ])
for (i in 1:5){

beta[i] ∼ dnorm(0.0,0.001)}

A<-exp(beta[3])
B<-exp(beta[4])
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C<-exp(beta[5])
}

Data

list( r =

c(1,0,0,0,1,1,0,0,1,1,1,0,0,0,0,0,1,0,1,0,1,1,0,1,0,1,1,0,0,0,0,1,0,0,0,0,0,1,1,0,1,0,
0,0,0,0,1,1,0,1,0,1,0,0,0,1,0,0,0,0,1,1,0,0,0,1,0,0,1,0,1,1,0,0,1,0,1,0,0,1,0,0,1,1,1,
0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,1,0,1,0,0,1,0,1,0,1,0,0,0,0,0,1,1,0,0,0,0,0,0,0,
1,1,0,0,0,1,0,0,0,1,1,1,0,0,0,0,1,0,0,0,1,0,0,1,1,1,0,0,1,0,1,1,1,0,1,0,1,0,1,0,0,1,0,
0,0,1,0,0,1,1,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0,1,0,1,1,1,0,0,1,1,0,0,1,1,
1,1,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,1,0,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,1,0,0,1,0,0,1,0,1,
0,0,0,0,0,1,0,0,1,0,0,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0,1,1,1,1,0,0,1,0,0,0,0,1,1,0,0,1,1,
0,1,1,0,1,0,0,0,0,0,0,0,0,1,1,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,
0,1,0,0,0,0,0,1,0,1,0,0,1,0,1,0,0,0,0,0,0,1,0,0,1,0,1,0,0,0,0,0,0,1,1,0,0,0,1,0,1,0,1,
0,0,0,0,1,1,0,0,0,0,1,1,0,0,1,1,0,1,1,1,0,0,0,1,1,0,1,0,1,0,0,0,0,0,0,1,1,0,0,1,0,0,0,
0,0,0,0,1,1,1,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,1,1,1,1,0,0,0,1,0,1,0,0,0,0,
1,0,0,1,0,0,0,0,1,0,1,1,1,0,1,1,0,0,1,0,0,0,0,1,1,1,1,1,0,0,0,0,1,0,0,0,1,1,0,0,0,0,1,
0,0,0,0,1,1,0,1,1,1,0,0,0,1,1,0,0,0,0,1,0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,1,0,1,0,0,
1,1,1,0,1,1,1,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,0,1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,1,1,
1,1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0,0,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,
0,1,1,0,0,0,0,0,0,0,0,1,0,0,1,1,1,0,0,0,1,0,1,0,0,0,0,1,0,0,1,1,0,0,0,0,0,1,1,0,1,0,0,
1,1,0,0,0,0,1,0,1,0,0,0,0,1,0,1,0,0,0,1,1,0,0,0,1,1,1,1,1,0,0,0,0,1,0,0,0,1,0,0,1,0,1,
0,1,1,1,0,0,0,0,1,1,1,0,0,1,0,0,0,1,1,1,0,1,0,0,1,0,1,1,0,0,0,0,0,1,0,0,0,0,1,1,0,1,0,
0,0,1,0,0,1,1,0,0,0,0,1,1,0,0,0,1,0,1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,
0,0,0,1,0,1,1,1,1,0,0,0,0,0,0,1,1,0,0,1,0,0,0,1,1,1,0,1,1,1,1,1,1,0,1,0,0,0,1,1,1,1,0,
0,1,1,1,0,1,0,0,0,0,1,0,0,1,0,1,0,0,0,1,0,1,0,1,0,0,1,0,0,1,0,0,1,1,1,0,0,1,1,0,0,0,1,
0,1,1,1,0,0,0,0,0,0,0,1,1,1,0,1,0,0,0,1,0,0,1,0,1,0,1,0,0,1,0,0,1,0,1,0,0,0,0,1,1,0,0,
0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,
0,1,0,1,0,0,1,1,0,0,1,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,1,1,0,0,1,1,1,0,1,1,0,0,
0,0,0,1,1,1,1,1,1,0,0,1,0,1,1,0,0,0,0,1,1,0,0,0,1,0,0,0,0,1,1,0,0,0,0,1,0,0,0,1,0,0,1,
1,1,1,1,0,0,1,0,0,0,0,1,0,0,0,1,1,0,1,0,0,1,0,1,1,1,1,1,1,0,1,0,1,0,1,0,1,0,0,0,1,0,1,
0,0,0,1,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,1,1,1,1,1,1,1,0,0,1,1,1,0,1,0,1,0,1,0,0,1,1,0,0,
0,0,1,0,0,1,0,1,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,1,0,1,1,0,0,0,1,1,0,0,0,1,0,0,1,1,0,0,
1,1,0,1,0,0,1,0,0,1,1,1,0,0,1,0,0,0,0,1,1,1,0,1,1,1,1,0,1,1,1,1,0,1,0,0,1,0,0,0,0,0,0,
1,0,0,0,0,1,1,0,0,1,0,0,0,0,1,1,1,1,1,0,0,1,0,1,1,0,0,1,1,0),

N = 1276,

x3=

c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

  



K11763 Chapter: 5 page: 103 date: June 17, 2011

Regression and Medical Test Accuracy 103

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),

x1 =

c(35,33,33,38,40,40,38,38,31,44,44,37,38,38,35,31,40,32,32,32,31,34,36,32,41,
46,30,33,33,40,43,32,32,38,38,35,37,34,34,32,40,38,38,35,30,24,38,38,29,34,27,
30,35,35,35,30,40,40,37,35,39,39,32,32,32,39,35,34,33,33,37,34,25,37,32,31,39,
39,33,37,37,34,43,39,39,34,41,46,38,35,32,36,36,44,42,33,37,35,41,41,41,41,30,
36,40,33,40,40,39,39,35,41,33,33,33,33,38,36,36,29,30,34,37,38,38,34,32,32,40,
40,44,44,39,43,43,36,26,41,41,34,34,20,30,34,34,36,34,34,33,33,26,26,33,37,37,
33,33,34,35,35,43,43,44,31,38,36,34,37,37,37,37,36,29,29,32,41,38,33,33,36,37,
37,35,31,26,25,35,35,25,37,48,33,37,41,27,38,38,39,40,40,32,36,36,39,39,35,35,
39,33,37,45,45,33,33,39,30,30,31,31,35,35,30,32,32,40,40,36,33,42,42,27,46,46,
35,31,35,31,32,32,39,34,39,38,36,32,30,30,34,34,37,37,38,29,35,30,30,30,34,37,
37,36,37,38,40,40,29,44,44,27,31,31,40,36,36,34,34,42,34,34,38,37,40,37,34,37,
23,24,38,38,39,28,32,40,38,33,33,36,34,39,34,45,43,43,31,34,34,38,37,37,36,33,
35,28,44,44,28,28,42,34,34,34,34,44,40,33,30,37,44,44,34,34,47,26,38,38,29,29,
43,43,40,42,36,40,40,35,37,30,27,41,41,29,29,29,35,39,39,31,42,28,36,36,38,37,
31,31,34,29,27,39,30,40,40,34,36,32,40,30,43,40,36,36,40,40,36,44,34,34,32,40,
40,31,31,31,34,34,32,46,38,32,32,41,41,40,36,36,30,30,32,38,37,37,41,34,34,32,
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34,34,47,38,31,38,34,34,36,34,34,40,37,30,39,36,36,40,40,37,37,32,38,30,28,30,
30,47,40,34,34,32,38,30,39,29,54,54,28,36,35,35,37,35,35,43,31,37,35,26,29,42,
35,34,45,38,38,32,37,41,41,33,36,47,37,38,27,30,

26,26,38,29,38,45,30,38,33,32,40,39,40,42,34,34,42,40,32,32,33,33,40,46,
40,39,38,38,33,33,37,37,34,30,32,32,31,38,38,35,44,44,45,45,31,31,31,32,32,49,
38,39,39,39,23,31,31,30,27,40,40,45,35,33,38,38,32,31,35,35,32,27,32,21,21,34,
34,42,34,38,46,37,39,39,37,36,31,38,38,43,43,31,32,37,32,32,41,41,35,35,31,27,
36,34,28,30,30,37,34,47,47,27,32,36,36,36,36,40,40,34,36,36,40,39,39,41,38,40,
34,37,38,30,30,30,26,26,36,32,42,47,47,27,30,42,27,39,39,38,38,41,37,31,31,42,
39,39,37,37,34,34,33,33,40,40,38,31,44,37,38,38,35,31,32,32,36,34,34,34,36,32,
41,41,46,46,34,33,33,40,35,43,32,38,38,32,35,35,37,34,40,38,38,31,30,24,38,38,
36,29,38,27,30,35,35,35,30,40,40,37,35,39,38,32,32,39,40,34,34,40,33,33,37,34,
34,35,25,37,37,32,31,31,39,39,33,37,37,34,35,43,43,39,41,38,32,36,36,44,37,35,
41,41,41,36,32,33,33,40,40,39,39,35,40,41,31,33,33,33,32,38,36,36,29,30,34,37,
38,34,32,32,40,44,44,39,43,36,36,34,41,34,26,20,20,30,34,36,34,34,30,33,26,26,
33,31,37,37,33,34,35,34,35,35,43,43,44,32,37,38,36,36,34,34,37,37,37,36,29,29,
41,40,38,33,37,37,35,35,26,26,35,37,37,39,33,37,27,38,38,30,39,40,40,32,36,36,
39,35,42,35,39,37,29,45,45,33,33,30,30,31,35,30,32,32,40,40,42,42,27,46,35,38,
32,31,35,32,32,39,38,38,36,32,30,30,30,34,34,37,33,34,29,35,30,30,34,37,37,37,
40,29,44,44,27,27,31,40,40,36,34,34,42,34,34,37,23,23,39,38,38,39,39,28,32,40,
38,33,33,36,34,34,45,49,43,43,34,34,38,38,37,37,33,28,44,44,35,28,42,34,34,35,
34,34,34,40,33,37,37,44,44,34,47,38,38,29,29,43,36,40,40,30,38,30,41,41,29,29,
35,39,31,31,28,33,39,36,36,38,22,36,38,38,31,34,29,27,39,30,30,40,40,34,34,36,
32,40,40,40,36,40,40,34,34,40,31,31,34,32,32,32,30,38,41,41,40,36,30,37,37,41,
34,32,34,34,47,38,38,31,38,38,45,34,38,34,40,37,31,30,30,39,39,36,36,40,37,38,
30,30,47,40,40,32,34,28,32,38,38,30,35,36,39,29,54,54,36,35,35,33,37,35,35,30,
33,43,30,37,35,26,35,34,34,38,38,32,37,29,41,33,33,37,38,35,30,30,26,26,38,38,
38,29,45,30,35,33,40,40,40,34,42,40,32,33,33,40,46,46,39,39,38,38,33,33,37,37,
34,34,30,32,32,38,38,35,35,44,44,31,45,45,31,31,31,32,38,38,39,40,39,23,45,31,
31,30,30,41,43,40,40,45,35,35,33,38,38,32,35,33,32,31,35,35,40,27,27,32,21,36,
34,42,34,38,46,37,38,39,37,36,30,38,38,43,43,38,32,32,41,41,35,35,26,40,36,36,
28,28,30,30,37,37,34,34,47,47,27,36,36,36,36,40,40,34,36,40,40,36,39,39,41,38,
36,40,34,34,37,38,30,30,30,30,26,36,32,32,42,42,47,27,30,30,36,42,42,27,27,39,
39,38,41,41,37,31,31,33,37,39,39,37,37,34,34),

x2 =

c(0,1,1,0,0,0,0,0,0,1,1,1,0,0,1,0,1,0,1,1,0,0,1,0,1,0,0,1,1,1,1,1,1,1,1,0,1,0,0,0,1,1,
1,1,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,1,1,0,1,1,0,0,1,0,0,1,1,1,1,
1,1,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,1,0,0,1,1,1,0,1,1,1,1,0,0,0,0,1,1,1,1,1,0,0,0,
0,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0,0,
0,0,0,1,1,1,0,0,0,1,1,0,0,0,1,0,0,0,0,0,1,1,1,1,1,1,0,1,1,0,1,1,0,0,0,1,0,0,1,0,0,1,1,
0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,0,1,0,0,1,1,0,1,0,1,1,0,1,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,
1,0,0,1,0,0,1,1,0,0,0,0,1,1,0,1,1,0,0,1,1,1,0,0,1,1,1,1,1,0,1,1,0,1,0,0,1,1,1,1,0,0,0,
1,0,0,0,0,0,0,0,0,0,1,0,1,1,1,0,0,1,1,0,0,0,1,1,0,0,0,1,1,1,1,0,0,1,1,0,0,1,1,0,0,0,0,
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0,1,1,1,1,0,1,0,0,0,1,0,0,0,0,0,0,1,1,0,0,1,0,0,1,0,1,0,0,0,1,0,1,0,0,1,1,1,0,0,1,0,1,
1,1,0,0,1,0,0,1,1,1,0,1,1,1,1,1,0,0,0,1,1,0,0,0,0,0,1,1,1,1,1,0,0,0,0,1,1,0,1,1,1,1,0,
0,0,0,0,0,1,1,1,1,0,1,0,0,0,1,0,0,0,1,0,1,1,0,0,0,1,0,0,1,1,0,0,1,0,0,0,1,0,1,1,0,1,1,
0,1,1,1,0,1,0,1,1,1,1,0,0,0,0,1,0,1,0,0,0,0,1,1,0,0,0,0,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,
1,1,0,0,0,0,0,1,1,1,0,0,0,0,1,1,1,0,1,1,0,1,1,1,1,0,1,1,1,0,1,0,1,1,1,0,1,1,1,1,1,1,1,
0,0,1,1,0,1,0,1,1,1,1,0,1,1,0,0,0,1,0,0,0,0,0,1,1,1,1,1,1,1,1,1,0,1,1,1,0,1,1,1,0,0,0,
0,1,1,1,0,1,1,1,0,0,0,1,1,1,1,1,1,1,1,0,0,1,1,1,1,0,0,1,1,0,0,0,0,1,1,0,0,0,1,1,0,0,1,
1,0,0,0,0,1,1,0,0,1,0,0,1,0,1,0,1,1,0,1,1,0,0,0,1,1,1,1,1,1,1,1,0,0,0,1,0,1,1,1,1,0,0,
0,0,1,0,1,0,1,0,1,1,1,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,1,1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,
1,1,1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1,0,0,1,1,1,0,0,1,1,1,1,0,0,0,0,0,1,1,1,1,0,0,0,0,0,
0,0,1,0,0,0,0,1,0,1,1,0,0,0,1,1,0,1,1,1,1,1,1,1,1,1,0,0,1,1,0,0,1,0,1,1,0,0,0,0,0,0,0,
0,0,1,1,0,1,0,1,1,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,1,1,0,1,1,0,0,0,1,0,1,1,0,0,1,1,0,0,0,
1,1,1,1,1,1,0,0,1,0,1,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,1,1,1,0,0,1,1,1,0,0,0,1,0,0,0,0,
0,1,0,0,1,0,0,1,1,1,0,1,1,1,1,1,0,0,1,0,0,1,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,
1,1,1,1,0,0,0,1,0,0,0,1,1,1,0,1,1,0,0,1,0,0,0,1,0,1,0,1,0,0,1,0,0,0,0,1,0,0,0,1,1,1,1,
1,0,0,0,1,0,1,1,0,0,0,0,1,0,1,1,1,1,0,0,1,1,0,1,0,1,1,1,1,0,1,1,1,0,0,1,0,0,0,1,1,1,1,
0,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0,0,1,1,0,0,0,0,1,1,0,1,0,1,1,0,0,1,0,0,
0,1,1,1,1,0,0,0,0,0,0,1,1,1,1,1,0,1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,0,0,1,0,0,0,1,1,0,0,1,
1,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,1,1,1,1,1,0,0,0,0,1,1,1,1,1,0,0,1,0,1,1,0,0,
0,0,1,1,0,1,1,0,1,1,1,1,0,0,0,1,1,0,1,1,1,1,1,0,1,1,0,1,0,0,1,1,1,0,1,1,0,0,1,0,0,0,0,
1,1,1,0,1,1,1,1,1,1,0,0,1,1,1,1,0,1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,1,0,0,0,1,1,1,1,1,1,1,
1,0,0,0,0,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0,1,1,1,0,0,0,1,1,0,0))

Inits
list(beta=c(0,0,0,0,0))

The r vector is the occurrence of false positives (1 indicates a false posi-
tive and 0 a true negative). The vector xl contains the age of a patient, and
the vector of locations (room or booth) is denoted by x2. The vector of false
positive probabilities is given by p[ ], and the beta coefficients are the regres-
sion parameters on the log scale. These parameters are given a vague normal
prior with mean 0.0 and precision 0.0001, whereas the precision parameters
are given non-informative gamma priors, with hyper parameters 0.0001 and
0.0001. The main parameters are A, B, and C, where A estimates the ratio of
the false positive rate of a booth to that of a room. The number of samples
generated is 65,000, with a burn in of 5,000 and a refresh of 100. The Bayesian
analysis is given in Table 5.1 and shows that the Markov Chain Monte Carlo
(MCMC) errors produce estimates that are accurate to two decimal places for
estimating the “true” posterior characteristics.

Age does not appear to have much of an effect on the probability of a false
positive, however as for location, the ratio of the false positive fraction (FPF)
of a booth to the FPF of a room is estimated by parameter A, which has a
posterior mean of 0.9615 and a 95% credible interval of (0.7805, 1.179). This
estimate is adjusted for age, the type of test, and the interaction between loca-
tion and type of test. It also appears that the effect of the interaction between
the location (room or booth) of the test and the type of test (a or b) given by
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TABLE 5.1: Posterior distribution of audiology study—full model.
Parameter Mean sd MCMC 2.5% Median 97.5%

error

A 0.9615 0.1021 0.0035 0.7805 0.9568 1.179
B 0.9841 0.1003 0.0030 0.8053 1.188 1.191
C 1.25 0.1784 0.0060 0.9351 1.239 1.628
beta[1] −1.312 0.2667 0.0075 −1.657 −1.13 −0.6181
beta[2] 0.00402 0.0070 <0.0001 −0.0096 0.0040 0.0178
beta[3] −0.0449 0.1059 0.0037 −0.2479 −0.0441 0.165
beta[4] −0.0212 0.102 0.0030 −0.1265 −0.02 0.1751
beta[5] 0.2134 0.1421 0.0047 −0.0671 0.2143 0.4875

beta[5] and the parameter C is not important, indeed the 95% credible inter-
vals for the primary parameters A, B, and C all include unity. Perhaps the
analysis should be done with the interaction term not included? See Exercise 2
at the end of the chapter.

5.2.3 Logistic link

Another plausible approach to assessing the effect of patient covariates
on the false positive rate of the audiology example is to use a logistic link
function:

log(φ/(1 −φ)) = β1 + β2x1 + β3x2 + β4x3 + β5x2x3, (5.2)

where φ is the probability of a false positive, x1 is the vector of ages, x2
denotes the location of the test, and x3 denotes the type of test. The regression
coefficients are on the logit scale and β5 measures the effect of the interaction
between location and type of test. BUGS CODE 5.2 provides the Bayesian
analysis for estimating the plausibility of the logistic model for the audiology
study.

BUGS CODE 5.2

# x1 is age
# x2 is location
# x3 is test a vs b
# r is the false positive rate
model;

{
for( i in 1 : N ) {
r[i] ∼ dbern(p[i])
# the logistic link
logit( p[i]) <-(beta[1] + beta[2]*x1[i]+beta[3]*x2[i]+beta[4]*x3[i]+beta[5]*x2[i]*x3[i])

}
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phat <- mean(p[ ])
for (i in 1:5 ){

beta[i] ∼ dnorm(0.0,0.0001)}
A<-exp(beta[2])
B<-exp(beta[3])
C<-exp(beta[4])
D<-exp(beta[5])

}
The first list statement in BUGS CODE 5.1 provides the information on

false positive occurrences, location, age, and type of test. The r vector is as
before, the vector of false positive occurrences among ears given the hearing
test a or b, x2 is the vector of locations (room or booth), and x3 (=1 for test a
and 0 for test b) is the indicator vector for test mode. The logistic link is quite
natural as a model for binary information, such as the occurrence of a false
positive, and has the advantage over the log link, in that with the latter the
false positive rate might exceed the value 1. On the other hand, the interpre-
tation of the model parameters is somewhat more complex with the logistic
link, that is, with the logistic link, one employs odds ratios, while with the log
link, the interpretation of the model coefficient is as a ratio of probabilities.

We now return to a different aspect of the audiology example, which was
described by Pepe [1: 57]. Here, the false positive occurrence was regressed
on the test modality (a vs. b), the location (room vs. booth), and the loca-
tion by test interaction. The latter interaction estimates the odds ratio of
a false positive for test a vs. b for a booth compared to the odds ratio of a
false positive for test a vs. test b for a room. This interaction effect is esti-
mated by the exp(beta[5]) = D, in the above listing of program statements. In
this program, one must import the three vectors r, x2, and x3 into the work-
sheet above, from the internet address given before, and place them in the
list statement of BUGS CODE 5.1. Note that the regression coefficients are
given vague prior normal distributions that estimate the overall false positive
rate among those ears receiving tests a and b hearing modalities. The logistic
Bayesian analysis gave the posterior results depicted in Table 5.2.

Regarding D as the main parameter of interest, the odds ratio (of test a vs.
test b) for a booth vs. the odds ratio (of test a vs. test b) for a room is estimated
as 1.441, and the corresponding credible interval is (0.8927, 2.207), and, of
course, this is an adjusted estimate. Thus, the odds ratio (of test a vs. test b)
for a booth is 44% larger, compared to the odds ratio (of test a vs. test b) for a
room. Figure 5.1 provides a graph of the posterior density of D. The simulation
used 65,000 observations from the posterior distribution of D, with a burn
in of 5,000 and a refresh of 100. As with the log regression model shown in
Equation 5.1, the logistic model estimates that the effects of the various factors
(age, location, type of test, and interaction) on the logit of the false positive
rate are minimal. For example, the effect of age is quite small, with a 95%
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TABLE 5.2: Posterior distribution of false positive rate.
Parameter Mean sd Error 2.5% Median 97.5%

A 1.007 0.0119 <0.00001 0.9839 1.007 1.031
B 0.9511 0.157 <0.0001 0.6789 0.9328 1.296
C 0.9846 0.1606 <0.0001 0.7075 0.9721 1.336
D 1.441 0.3379 0.0016 0.8927 1.402 2.207
beta[1] −0.762 0.4436 0.0020 −1.642 −0.761 0.1022
beta[2] 0.0068 0.0118 <0.00001 −0.016 0.0068 0.0301
beta[3] −0.0635 0.164 <0.0001 −0.3873 −0.0637 0.2591
beta[4] −0.0286 0.1621 <0.0001 −0.346 −0.028 0.2893
beta[5] 0.3387 0.2312 0.0011 −0.1135 0.3376 0.7915

credible interval of (−0.016,0.0301) on the logit of false positive occurrence,
and the corresponding parameter A, which estimates the ratio of the odds of
the false positive rate of a room to that of a booth, therefore regardless of
the model used, the implications are much the same, and it appears that the
most reasonable model is one that does not take into account the effect of age,
location, and type of test. The simulation produced very small MCMC errors
for all parameters, that is, the posterior means of all parameters appear to be
estimated quite accurately with the above estimates given by Table 5.2.

5.2.4 Diagnostic likelihood ratio

The PDLR is briefly discussed in Section 5.3.4, and is defined as

PDLR = TPF/FPF,

where TPF is the true positive fraction, and FPF is the false positive fraction.
Thus, if

log(TPF) = beta[1] + beta[2]X, (5.3)

and

log(FPF) = alpha[1] + alpha[2]X,

D sample: 60000

D
0.0 1.0 2.0 3.0 4.0

P(
D)

0.
0

1.
0

FIGURE 5.1: Posterior density of D.
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TABLE 5.3: Posterior distribution of the PDLR—audiology
example.

Parameter Mean sd 2.5% Median 97.5%

alpha[1] −1.547 0.1273 −1.786 −1.557 −1.282
alpha[2] 1.382 0.1296 1.105 1.392 1.621
beta[1] −1.005 0.052 −1.111 −1.004 −0.9053
beta[2] 0.08506 0.07002 −0.04601 0.0839 0.2214
fphat 0.3826 0.01357 0.3565 0.3828 0.4088
tphat 0.6016 0.01625 0.5727 0.6043 0.6369
pdlr 1.582 0.0709 1.45 1.58 1.725
rpdlrab 3.696 0.5335 2.641 3.688 4.795

where X is the indicator function for test a or b (X = 1 for test a and 0 for
test b), then

log(PDLR) = beta[1]− alpha[1] + (beta[2]− alpha[2])X, (5.4)

and exp(beta[2]-alpha[2]) is the ratio of the PDLR for test a relative to test b.
Note that the TPF is estimated from the diseased patients and the FPF from
only the non diseased.

Below is the code for estimating the PDLR and the effect of the test modal-
ity (test a or b) on the PDLR. The following program can be downloaded from
http://medtestacc.blogspot.com onto the worksheet and executed. There are
529 hearing-impaired ears where there is information on the true positive sta-
tus (given by the tp vector), along with the matched information on test a
or b (given by the x4 vector). With regard to the false positive information,
there are 1276 normal ears with false positive information indicated by the
vector fp, and the corresponding information on the occurrence of test a or
test b, given by the vector x5. There are two parameters of interest, namely,
the PDLR and the ratio of the PDLR for test a relative to test b. The results
of the Bayesian analysis are given in Table 5.3.

BUGS CODE 5.3

Model;
{
for( i in 1 : M ) {
fp[i] ∼ dbern(p[i])
p[i] <- exp(beta[1] + beta[2]*x5[i])
}
for(i in 1:N) { tp[i]∼dbern(q[i])
q[i]<-exp(alpha[1]+alpha[2]*x4[i])
}
tphat<-mean(q[ ])
fphat <- mean(p[ ])
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for (i in 1:2 ){
beta[i] ∼ dnorm(0.0,0.0001)
alpha[i] ∼ dnorm(0.0,0.0001)
}
A<-exp(alpha[2])
B<-exp(beta[2])
rpdlrab <-exp(alpha[2]-beta[2])
pdlr<-tphat/fphat
}

What does this tell us about the effect of test modality on the value of
the PDLR? The average value over tests a and b is 1.58, with a 95% credible
interval of 1.45–1.725. On the other hand, the ratio of the PDLR for test a
relative to test b is given by rpdlrab and has a posterior mean of 3.696, that
is, the average value of the positive diagnostic ratio for test a is 3.69 times the
PDLR for test b. The analysis is executed with 25,000 observations, with a
burn in of 1,000 and a refresh of 100, and all the MCMC errors were <0.001.
See Exercise 4 for additional information.

5.3 Receiver Operating Characteristic
Area and Patient Covariates

5.3.1 Introduction

When the diagnostic scores are binary, accuracy is measured by sensitivity
and specificity, and other classification probabilities, however, when they are
continuous, the acknowledged method of determining accuracy is with the
area under the ROC curve. If the diagnostic score is continuous, the score
could be dichotomized, and the sensitivity and specificity estimated, however,
this could result in a loss of information, leading to unreliable estimates of
test accuracy. When the continuous score is dichotomized, the threshold value
must be chosen with care, as we have seen in previous chapters.

As with binary scores, patient covariate effects on ordinal or continuous
diagnostic scores should be taken into account when estimating the area under
the ROC curve. The problem of assessing the effect of covariates on the ROC
curve was first considered by Tosteson and Begg [14] for ordinal data, but was
later generalized to continuous scores by Toledano and Gatsonis [15]. For a
good introduction to the subject, see Chapter 6 of Pepe [1] and Chapter 8 of
Zhou et al. [2], both of whom present several methods of incorporating patient
covariate information into the ROC curve. Pepe, for example, describes non-
parametric, semi-parametric, and parametric regression methods to estimate
the ROC area. See also Alonzo and Pepe [16] for using distribution-free meth-
ods in the estimation of the ROC area.
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For the binormal model (assuming the diagnostic scores are normally dis-
tributed), the induced ROC curve technique of regressing the diagnostic score
on covariates will be adopted for the Bayesian approach taken here.

In what follows, several examples will illustrate the effect of patient covari-
ates on the ROC curve. First, an example is taken from two therapies for lung
cancer and was analyzed from a Bayesian viewpoint by Gregurich [7], who
developed an ordinal regression technique, based on a generalized least squares
concept, to compare the two therapies. The diagnostic score is the response
to therapy, measured on a four-point ordinal scale. The area under the ROC
curve measures the separation between the two therapy groups of patients.
Other examples involving ordinal scores are the staging of lung cancer with
ultrasound and the staging of melanoma involving several radiologists. The
principal covariate in both studies is the several radiologists, thus the degree
of agreement among them is also of interest in estimating the ROC area.

5.3.2 Ordinal regression methods

An ordinal regression model is employed to estimate the ROC area for
medial tests with ordinal scores. This particular formulation of regression uses
an underlying latent scale assumption. The cumulative odds model is often
expressed in terms of an underlying continuous response. The following spec-
ification of the ordinal model follows Congdon [8: 102], where the observed
response score, Yi, with possible values 1, 2, . . . , K is taken to reflect an under-
lying continuous part of the cumulative probability:

γij = Pr(Yi ≤ j) = F (θj − µi), (5.5)

where i = 1, 2, . . . , N is the number of patients and j = 1, 2, . . . , K − 1.
It is noted that

µi = βXi, (5.6)

expresses the relationship between the ordinal responses and the covariates,
Xi, for the ith patient. F is a distribution function and θj are the cut points
corresponding to the jth rank. For our purposes, F is usually given a logistic
or probit link, where the former leads to a proportional odds model. Suppose
pij is the probability that the ith patients have response j, then

γij = pi1 + pi2 + · · ·+ pij . (5.7)

Of course, Equation 5.7 can also be inverted to give

pi1 = γi1,

pij = γij − γi,j−1,

and

pi,K = 1 − γi,K−1. (5.8)
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Suppose F is the logistic distribution function, and

Cij = logit(γij )
= θj − βXi, (5.9)

where β, the vector of unknown regression coefficients, is constant across
response categories j, then θj are the logits of the probabilities of belong-
ing to the categories 1, 2, . . . j as compared to belonging to the categories
j + 1, . . . , K, for subjects with X = 0. The difference in cumulative logits for
different values of X, say X1 and X2, is independent of j, which is called the
proportional odds assumption, namely,

C1j −C2j = β(X1 − X2). (5.10)

Using the above ordinal regression model, the posterior distribution of
the individual probabilities, pij , are determined, as are the probabilities qj

(j = 1, 2, . . . , K) of the basic ordinal responses.
Once the posterior distribution of the basic responses is known for the

diseased and non-diseased groups, the posterior distribution of the area under
the ROC curve can also be computed. Several scenarios will be displayed for a
given example of ordinal regression: (a) the ROC area induced by all covariates
or selected subsets of covariates, and (b) the ROC area conditional on certain
values of the covariates or subsets of covariates.

The Gregurich [7] dissertation is based on a lung cancer clinical trial
with two therapeutic strategies, where the treatments were compared with
respect to tumor response. The sequential therapy method was used in the
first group, who were given the same combination of agents, while the second
group was given an alternating approach, with three different combinations
of agents, alternating from cycle to cycle. The tumor response was assessed
at the end of treatment as progressive disease, no change, partial remission,
and complete remission. This is an unconventional application of the ROC
area in that it is usually computed to measure the accuracy of a medical
test between diseased and non-diseased populations, however, it should be
remembered that the ROC area measures the separation between two popula-
tions and is another way to view the two sample problem. Table 5.4 displays
the response to therapy.

TABLE 5.4: Tumor response from Gregurich [7].
Therapy Gender Progressive No Partial Complete Total

disease change remission remission

Sequential Male 28 45 29 26 128
Female 4 12 5 2 23

Total 32 57 34 28 151
Alternating Male 41 44 20 20 125

Female 12 7 3 1 23
Total 53 51 23 21 148
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The two treatments were sequential and alternating, and for each treat-
ment both males and females responded to treatment. For example, for sequen-
tial therapy, there are 28 out of 151 who have a complete response, compared
to 21 out of 148 who received alternating therapy. Based on this evidence,
it appears that the two treatments are almost equivalent in the pattern of
response to therapy, and one would expect a ROC area close to 0.50. Note the
small fraction of females for both treatments—15% for the sequential treat-
ment and 15% for the alternating arm. Thus, an important consideration for
the analysis is: does gender have an effect on the ROC area? If gender is
important and does have an effect, one would want to estimate the ROC area
conditionally, say for males and for females separately.

Our Bayesian analysis is based on the following code, which closely follows
the ordinal regression model outlined in Equations 5.5 through 5.10. Note
that the remarks denoted by # explain the analysis by citing the important
steps in determining the posterior distribution of the ROC area. The program
statements are taken from Congdon [8: 102].

BUGS CODE 5.4

model;
{
# ROC area
# see Gregurich
# code is from Congdon [8: 102]
# non diseased patients
for(i in 1:151){for(j in 1:4){logit(ndgamma[i,j])<-ndtheta[j]-ndmu[i]}}
for(i in 1:151){ndp[i,1]<-ndgamma[i,1]}
for(i in 1:151){ndp[i,2]<-ndgamma[i,2]-
ndgamma[i,1]}
for(i in 1:151){ndp[i,3]<-ndgamma[i,3]-
ndgamma[i,2]}
for(i in 1:151){ndy[i]∼dcat(ndp[i,1:4])}
for(i in 1:151){ndp[i,4]<-1-ndgamma[i,3]}
# intercept depends on y
for(i in 1:151){
ndmu[i]<-ndb0[ndy[i]]+ndx1[i]*ndb[1]
}
# prior distribution for the regression coefficients
ndb[1]∼dnorm(0,.0001)
for(i in 1:4){ndb0[i]∼dnorm(0,.001)}
# the following give the cut points for the latent variable
ndtheta[1]∼dnorm(0,1)
ndtheta[2]∼dnorm(0,1)
ndtheta[3]∼dnorm(0,1)
ndtheta[4]∼dnorm(0,1)I(ndtheta[3],)
# the ndq[i] are the probabilities of the responses for non diseased
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for( i in 1:4){ndq[i]<-mean(ndp[,i])}
# diseased patients
for(i in 1:148){for(j in 1:4){logit(dgamma[i,j])<-dtheta[j]-dmu[i]}}
for(i in 1:148){dp[i,1]<-dgamma[i,1]}
for(i in 1:148){dp[i,2]<-dgamma[i,2]-
dgamma[i,1]}
for(i in 1:148){dp[i,3]<-dgamma[i,3]-
dgamma[i,2]}
for(i in 1:148){dp[i,4]<-1-
dgamma[i,3]}
for(i in 1:148){dy[i]∼dcat(dp[i,1:4])}
# intercept depends on y
for(i in 1:148){
dmu[i]<-db0[dy[i]]+dx1[i]*db[1]}
# prior distributions for the regression coefficients
db[1]∼dnorm(0,.0001)
for(i in 1:4){db0[i]∼dnorm(0,.001)}
# the following dtheta are the cut points for the underlying
# latent variable
dtheta[1]∼dnorm(0,1)
dtheta[2]∼dnorm(0,1)
dtheta[3]∼dnorm(0,1)
dtheta[4]∼dnorm(0,1)I(dtheta[3],)
# the dq[i] are the probabilities of the four ordinal responses for diseased
for( i in 1:4){dq[i]<-mean(dp[,i])}
# roc area
area<-a1+a2/2
a1<-dq[2]*ndq[1]+dq[3]*(ndq[1]+ndq[2])+
dq[4]*(ndq[1]+ndq[2]+ndq[3])
# a2 is the probability of a tie
a2<-dq[1]*ndq[1]+dq[2]*ndq[2]+dq[3]*ndq[3]+
dq[4]*ndq[4]
}
list(
# for sequential therapy
ndy=c(1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,
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1,1,1,1,
2,2,2,2,2,2,2,2,2,2,2,2,
3,3,3,3,3,
4,4),

ndx1=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0),

# data for diseased
# for alternating therapy
dy=c(

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,
1,1,1,1,1,1,1,1,1,1,1,1,
2,2,2,2,2,2,2,
3,3,3,
4),

dx1=c(
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,11,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0))

# initial values
list(ndtheta=c(0,0,0,0),dtheta=c(0,0,0,0))
# initialize other values
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The Bayesian analysis is executed with 65,000 observations, with a burn in
of 5,000 and a refresh of 100. Note that in each of the two populations (sequen-
tial and alternating treatments) there is a separate regression function for each
one of the four ordinal responses (1, 2, 3, 4), and the effect of gender is assumed
to be uniform for all four responses, thus, there is a separate intercept for the
four responses (1, 2, 3, 4). In total, there are eight regression functions for the
analysis, namely, four for the sequential therapy and four for the alternating
therapy. Also in the above code, non-informative normal prior distributions
are placed on the regression coefficients. The primary objective is to estimate
the ROC area and to determine the effect of gender on the area.

The non-disease designation refers to sequential therapy and the disease
label refers to alternating therapy, thus for Table 5.5, ndb[1] refers to the gen-
der effect of the sequential therapy and db[1] to the gender effect of the alter-
nating therapy. The value of db0[1] is the estimate (posterior mean) of the
intercept for alternative therapy when the response is 1, while the correspond-
ing value for the sequential therapy is nb0[1], which has a posterior mean
of −31.02. Recall that the four responses are: 1 = progressive disease, 2 = no
change, 3 = partial remission, and 4 = complete remission. The effect of gender
on the logit of a response appears to be the same for both therapies, and the
posterior means of the intercepts are quite similar for both treatments, that
is to say, the intercepts corresponding to the response for each of the four
responses (1, 2, 3, 4) are almost the same for both therapies.

The most important parameter is the ROC area, estimated as 0.4177
(0.0092), which corresponds to a ROC area of 0.582 if the roles of the two
therapies are reversed. This implies that sequential therapy is more effective

TABLE 5.5: Posterior distribution for Gregurich study.
Parameter Mean sd Error 2 1/2 Median 97 1/2

a1 0.286 0.00888 <0.0001 0.2689 0.2859 0.3039
a2 0.2632 0.003984 <0.00001 0.2557 0.2631 0.2713
Area 0.4176 0.009211 <0.0001 0.3998 0.4175 0.436
db[1] 0.0268 0.8505 0.0495 −1.558 −0.00221 1.835
db0[1] −31.299 17.46 0.1822 −73.87 −27.52 −0.524
db0[2] −2.059 1.026 0.05745 −4.027 −2.069 −0.09438
db0[3] 2.329 1.059 0.0529 0.2989 2.34 4.508
db0[4] 30.6 18.1 0.2001 8.805 26.58 75.02
dq[1] 0.3863 0.01195 <0.0001 0.3676 0.3848 0.4138
dq[2] 0.3108 0.0187 <0.0001 0.2727 0.3113 0.3466
dq[3] 0.1366 0.0176 <0.0001 0.1031 0.1359 0.1727
dq[4] 0.1663 0.0104 <0.0001 0.1498 0.165 0.1896
ndb[1] −0.0077 0.642 0.0297 −1.283 −0.0105 1.243
ndb0[1] −31.02 17.4 0.196 −73.11 −27.16 −9.226
ndb0[2] −2.259 0.8358 0.0337 −3.934 −2.257 −0.5516
ndb0[3] 2.446 0.888 0.03661 0.771 2.44 4.268
ndb0[4] 30.78 17.69 0.1968 8.84 26.73 74.07
ndq[1] 0.2415 0.01226 <0.0001 0.2224 0.24 0.2693
ndq[2] 0.3443 0.0194 <0.0001 0.3045 0.3447 0.3816
ndq[3] 0.2019 0.0186 <0.0001 0.1657 0.2017 0.2391
ndq[4] 0.2123 0.0111 <0.0001 0.1948 0.2111 0.2382
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than alternating therapy, but not by much, which can be deduced by looking
at the raw data in Table 5.4.

What is the effect of gender on the ROC area? It appears that gender has
little effect on the logit scale for both therapies, thus one would expect the
ROC area to be the same or close to 0.582 if gender is not taken into account.

The remaining parameters are dq[i] and ndq[i] for i = 1, 2, 3, 4. The latter
are the posterior means of the probability of response i for the sequential
therapy, while the former are the corresponding values for the alternating
therapy, and both are used in the formula for the ROC area given by

area = a1 + a2/2, (5.11)

where

a1 = dq[2]∗ndq[1] + dq[3]∗(ndq[1] + ndq[2])
+ dq[4]∗(ndq[1] + ndq[2] + ndq[3]), (5.12)

and

a2 = dq[1]∗ndq[1] + dq[2]∗ndq[2] + dq[3])∗ + ndq[3] + dq[4]∗ndq[4]. (5.13)

Equations 5.12 and 5.13 appear as code for the ROC area in BUGS CODE 5.4.
Thus, so far, the conclusion for this study is that gender has no effect on a
small estimated ROC area of 0.582. One word of caution is that the MCMC
errors for db0[1], ndb0[1], and ndb0[4] are large relative to the errors of the
other parameters. For the most part, the errors are quite small, but one might
want to increase the simulation size to see the effect on the MCMC error
for those parameters that have relative large values with 65,000 observations
initially generated from the joint posterior distribution.

Using a non-parametric technique, I verified this value with the ROC area
in SPSS (version 11.5) with a value of 0.583(0.033).

5.3.3 Staging metastasis for melanoma:
Accuracy of four radiologists

As a second example with ordinal scores, a study involving melanoma
metastasis to the lymph nodes is considered. A sentinel lymph node biopsy is
performed on patients to determine the degree of metastasis, where the diag-
nosis is made on the basis of the depth of the primary lesion, the Clark level
of the primary lesion, and the age and gender of the patient. The procedure
involves the cooperation of an oncologist, a surgical team that dissects the pri-
mary tumor, pathologists, and radiologists who perform the imaging aspect
of the biopsy. A radiologist makes the primary determination of the degree
of metastasis on a five-point ordinal scale, where 1 = absolutely no evidence of
metastasis, 2 = no evidence of metastasis, 3 = very little evidence of metasta-
sis, 4 = some evidence of metastasis, and 5 = strong evidence of metastasis. For
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TABLE 5.6: Metastasis of melanoma patients—rating
of metastasis.
Reader Metastasis 1 2 3 4 5 Total

1 0 12 10 5 2 1 30
1 1 3 7 11 13 16 50
2 0 15 7 4 3 1 30
2 1 2 8 10 12 18 50
3 0 11 9 2 3 5 30
3 1 8 10 6 10 16 50
4 0 13 8 6 2 1 30
4 1 10 6 8 14 12 50

more information on the procedure, refer to Pawlik and Gershenwald [17] and
Gershenwald et al. [18].

The study is paired where each radiologist examines each patient. The
results of the hypothetical example are reported in Table 5.6.

The melanoma study has one covariate, namely, the reader, thus the study
is analyzed under the following scenarios: (1) using the effect of the radiologists
simultaneously, (2) determining if the effect of the four is the same on the
ROC area, (3) determining the ROC area separately for each reader, and
(4) estimating the ROC area conditionally on a particular reader. The analysis
is executed with the following code.

BUGS CODE 5.5

model;
{
# 4 readers
# ROC area
# melanoma example
# code is from Congdon [8: 102]
# non diseased
for(i in 1:30){for(j in 1:5){logit(ndgamma[i,j])<-ndtheta[j]-ndmu[i]}}
for(i in 1:30){ndp[i,1]<-ndgamma[i,1]}
for(i in 1:30){ndp[i,2]<-ndgamma[i,2]-
ndgamma[i,1]}
for(i in 1:30){ndp[i,3]<-ndgamma[i,3]-
ndgamma[i,2]}
for(i in 1:30){ndp[i,4]<-ndgamma[i,4]-
ndgamma[i,3]}
for(i in 1:30){ndy[i]∼dcat(ndp[i,1:5])}
for(i in 1:30){ndp[i,5]<-1-ndgamma[i,4]}
# intercept depends on y
for(i in 1:30){
ndmu[i]<-ndb0[ndy[i]]+ ndx1[i]*ndb[1]+ndx2[i]*ndb[2]+ndx3[i]*ndb[3]}
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for(i in 1:3){ndb[i]∼dnorm(0,.001)}
for(i in 1:5){ndb0[i]∼dnorm(0,.001)}
ndtheta[1]∼dnorm(0,1)
ndtheta[2]∼dnorm(0,1)
ndtheta[3]∼dnorm(0,1)
ndtheta[4]∼dnorm(0,1)
ndtheta[5]∼dnorm(0,1)I(ndtheta[4],)
for(i in 1:5){ndq[i]<-mean(ndp[,i])}
# diseased population
for(i in 1:50){for(j in 1:5){logit(dgamma[i,j])<-dtheta[j]-dmu[i]}}
for(i in 1:50){dp[i,1]<-dgamma[i,1]}
for(i in 1:50){dp[i,2]<-dgamma[i,2]-
dgamma[i,1]}
for(i in 1:50){dp[i,3]<-dgamma[i,3]-
dgamma[i,2]}
for(i in 1:50){dp[i,4]<-dgamma[i,4]-
dgamma[i,3]}
for(i in 1:50){dy[i]∼dcat(dp[i,1:5])}
for(i in 1:50){dp[i,5]<-1-dgamma[i,4]}
# intercept depends on y
for(i in 1:50){
dmu[i]<-db0[dy[i]]+ dx1[i]*db[1]+dx2[i]*db[2]+dx3[i]*db[3]}
for(i in 1:3){db[i]∼dnorm(0,.001)}
for(i in 1:5){db0[i]∼dnorm(0,.001)}
dtheta[1]∼dnorm(0,1)
dtheta[2]∼dnorm(0,1)
dtheta[3]∼dnorm(0,1)
dtheta[4]∼dnorm(0,1)
dtheta[5]∼dnorm(0,1)I(dtheta[4],)
for( i in 1:5){dq[i]<-mean(dp[,i])}
# roc area
area<-a1+a2/2
a1<-dq[2]*ndq[1]+dq[3]*(ndq[1]+ndq[2])+
dq[4]*(ndq[1]+ndq[2]+ndq[3])+
dq[5]*(ndq[1]+ndq[2]+ndq[3]+ndq[4])
a2<-dq[1]*ndq[1]+dq[2]*ndq[2]+dq[3]*ndq[3]+
dq[4]*ndq[4]+dq[5]*ndq[5]
}
list(
ndy=c(1,1,1,1,1,1,1,1,1,1,1,1,

2,2,2,2,2,2,2,2,2,2,
3,3,3,3,3,
4,4,
5,
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1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
2,2,2,2,2,2,2,
3,3,3,3,
4,4,4,
5,
1,1,1,1,1,1,1,1,1,1,1,
2,2,2,2,2,2,2,2,2,
3,3,
4,4,4,
5,5,5,5,5,
1,1,1,1,1,1,1,1,1,1,1,1,1,
2,2,2,2,2,2,2,2,
3,3,3,3,3,3,
4,4,
5

),

ndx1=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
),

ndx2=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0

),

ndx3=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
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0,0,0,0,0,0,0,0,0,0
),

# data for diseased
dy=c(1,1,1,

2,2,2,2,2,2,2,
3,3,3,3,3,3,3,3,3,3,3,
4,4,4,4,4,4,4,4,4,4,4,4,4,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,

1,1,
2,2,2,2,2,2,2,2,
3,3,3,3,3,3,3,3,3,3,
4,4,4,4,4,4,4,4,4,4,4,4,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
1,1,1,1,1,1,1,
2,2,2,2,2,2,2,2,2,2,
3,3,3,3,3,3,
4,4,4,4,4,4,4,4,4,4,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
1,1,1,1,1,1,1,1,1,1,
2,2,2,2,2,2,
3,3,3,3,3,3,3,3,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,
5,5,5,5,5,5,5,5,5,5,5,5
),

dx1=c(
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
),

dx2=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
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1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0

),

dx3=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0

))

list(ndtheta=c(0,0,0,0,0),dtheta=c(0,0,0,0,0))

The first list statement gives the basic information, where ndy refers to
the ratings for those patients without metastasis, ndx1 gives the indicator
(1 indicates the corresponding rating in ndy given by radiologist 1 and 0
otherwise) for the first reader for those patients without metastasis, the ndx2
for the second reader, etc. The variable dy refers to the rating for the patients
with metastasis, while dx1 is the column of the indicator (a zero indicates the
first rater did not give the rating and a 1 indicates reader 1 gives the rating)
for the first reader, for those patients with metastasis, etc. Refer to Table 5.6
and the first list statement and the meaning is obvious for coding the data.

A Bayesian analysis is executed with 75,000 observations, a burn in of
5,000 and a refresh of 100. The output is given in Table 5.7 with the following
identification for the parameters: area refers to the ROC area, db[1] refers
to the effect of reader 1 for the diseased (those with metastasis) patients,
while db[3] is the effect for reader 3. In addition, db0[1] is the estimate of
the intercept corresponding to the ordinal response 1 for diseased patients,
while db0[5] is the intercept corresponding to ordinal response 5. Continuing
in a similar fashion, ndb[1] is the effect of reader 1 on the logit scale for
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TABLE 5.7: Bayesian analysis for melanoma study with four
radiologists.

Parameter Mean sd Error 2 1/2 Median 97 1/2

a1 0.711 0.0296 <0.0001 0.6501 0.712 0.7663
a2 0.1522 0.01172 <0.0001 0.1301 0.1519 0.1761
area 0.7871 0.0242 <0.0001 0.7373 0.788 0.8321
db[1] 0.7786 5.535 0.3389 −8.559 0.9357 9.274
db[2] −0.0165 31.63 0.1189 −61.86 0.05461 61.66
db[3] 0.2739 31.76 0.1267 −61.73 0.1926 62.59
db0[1] −28.85 18.65 0.2988 −73.45 −25.27 −1.922
db0[2] −3.139 5.594 0.3402 −11.94 −3.407 6.138
db0[3] −1.006 5.56 0.3391 −9.757 −1.276 8.071
db0[4] 1.478 5.523 0.3367 −7.289 1.309 10.56
db0[5] 29.64 18.66 0.2877 2.925 26.07 74.36
dq[1] 0.1128 0.0226 <0.0001 0.07577 0.1103 0.1628
dq[2] 0.1153 0.0308 <0.0001 0.0603 0.1137 0.1794
dq[3] 0.1812 0.0382 <0.0001 0.1105 0.1797 0.2602
dq[4] 0.2108 0.0370 <0.0001 0.1402 0.2101 0.2861
dq[5] 0.3799 0.0258 <0.0001 0.3387 0.3769 0.4385
ndb[1] −9.859 12.43 0.7639 −30.82 −6.585 8.275
ndb[2] −0.0148 31.86 0.1198 −62.59 0.0011 62.66
ndb[3] 0.0700 31.52 0.109 −61.67 −0.0528 61.85
ndb0[1] −23.55 21.04 0.4894 −70.02 −21.36 14.22
ndb0[2] 8.081 12.45 0.7644 −10.22 4.845 28.97
ndb0[3] 10.22 12.43 0.7628 −8.036 7.048 31.21
ndb0[4] 11.62 12.4 0.7588 −6.845 8.59 32.67
ndb0[5] 33.68 19.24 0.5689 1.399 32.6 76.41
ndq[1] 0.4828 0.0381 <0.0001 0.4229 0.4785 0.5693
ndq[2] 0.244 0.0475 <0.0001 0.1508 0.2438 0.3376
ndq[3] 0.1219 0.0405 <0.0001 0.0531 0.1185 0.2113
ndq[4] 0.0586 0.0288 <0.0001 0.0148 0.0546 0.125
ndq[5] 0.0926 0.0292 <0.0001 0.0468 0.0893 0.1597

non-diseased (those without metastasis) patients and ndb0[3] is the intercept
corresponding to ordinal score 3 for non-diseased patients, etc. Also, dq[1] is
the probability of ordinal score 1 for diseased patients, while ndq[1] is the
corresponding quantity for the non-diseased patients, etc.

Note that with 75,000 observations for the simulation, the MCMC error for
db[i] and db0[i] is relatively large and the corresponding posterior distributions
are very skewed. Recall that db[i], for i = 1, 2, 3 are the effects of readers 1,
2, and 3, respectively, for the diseased, while db0[i], i = 1, 2, 3, 4, 5 are the
intercepts for the five regressions corresponding to the five ordinal responses of
those patients where the disease has metastasized. There are five regressions
of the cumulative logits on the readers. The same is observed for the non-
diseased patients, that is, the MCMC error is fairly large and the posterior
distributions skewed for the effects of the three readers and the five inter-
cepts. Thus, the posterior median should be used to estimate the location of
the skewed distributions. It does appear though that the effects of the three
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FIGURE 5.2: Posterior density of the intercept for ordinal score 1 for dis-
eased patients.

readers on the cumulative logits are not the same for the diseased and are not
the same for the non-diseased patients. It is safe to say that the pattern of the
posterior medians implies that the intercepts are the same for the diseased as
they are for the non diseased. The skewness of the posterior distribution of
db0[1] is exhibited in Figure 5.2.

On the other hand, the MCMC error is quite small for the ROC area,
which has a posterior mean of 0.7871(0.0242) and a 95% credible interval of
(0.7373,0.8321). The ROC area is “adjusted” for the simultaneous effects of
the four readers. I also used SPSS 11.5 to estimate the ROC area and got a
value of 0.767(0.027). When the ROC area is estimated with reader 3 infor-
mation only, the posterior mean is 0.6483(0.0213) and a 95% credible interval
of (0.6053,0.6891). I revised BUGS CODE 5.5 and executed the analysis with
75,000 observations, a burn in of 5,000 and a refresh of 100. The MCMC error
of the ROC area is <0.0001. Thus, it appears that the readers do not have the
same effect on the ROC area. When all four readers are used simultaneously,
the area is 0.7871, but with reader 3 it is only 0.6484. Quite a difference!

Two major scenarios have been presented for regression techniques for
determining the accuracy of medical tests. Up to this point, regression meth-
ods for false positive rates and for the ROC area of ordinal test scores have
been considered. The next section is a portrayal of the Bayesian analysis for
continuous test scores.

5.4 Regression Methods for Continuous Test Scores

The particular regression approach used for continuous scores will be based
on the assumption of normality for the test scores, both for the diseased and
non-diseased populations. Such a model is called binormal and is the foun-
dation for defining the ROC curve and its area. We begin with the following
assertion.
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Suppose

Yd ∼ N(µd, σ
2
d)

and

Ynd ∼ N(µnd, σ
2
nd),

then it can be shown that the ROC curve is given by

ROC(s) = Φ(a + bΦ−1(s)), (5.14)

where

a = (µd − µnd)/σd (5.15)

and

b = σnd/σd, (5.16)

where µd and µnd are the means of the diseased and non-diseased populations,
respectively. In addition, σd and σnd are the standard deviations of the diseased
and non-diseased populations, respectively.

The above result (Equation 5.14) is shown to be true as follows:
For any threshold t, let

FPF(t) = P (Ynd > t) = Φ((µnd − t)/σnd)

and

TPF (t) = P (Yd > t) = Φ((µd − t)/σd).

For an FPF s, the corresponding threshold is

t = µndΦ
−1(s),

thus

ROC(s) = TPF(t)
= Φ((µd − t)/σd)

= Φ((µd − µnd + σndΦ
−1(s))/σd)

= Φ(a + bΦ−1(s)), (5.17)

and the binormal ROC curve is defined by Equation 5.17. The derivation of
Equation 5.15 is given by Pepe [1: 82].

With regard to the area of the binormal ROC curve, it is

AUC = Φ
(
a/

√
(1 + b2)

)
, (5.18)

where a and b are given by Equations 5.15 and 5.16, respectively.
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From a Bayesian viewpoint, the posterior distribution of the AUC is easily
generated, once one knows the posterior distribution of a and b.

To show Equation 5.18, Pepe [1: 84] gives the following proof:
The ROC area is given by

AUC = P (Yd > Ynd)
= P (W > 0),

where

W = Yd − Ynd.

Note that

W ∼ N(µd −µnd, σ
2
d + σ2

nd),

thus

P (W > 0) = Φ

(
(µd − µnd)/

√
(σ2

d + σ2
nd)

)
,

and

AUC = Φ
(
a/

√
(1 + b2)

)
. (5.19)

Another useful property of the ROC curve is that it is invariant under a
monotone increasing transformation. That is, if h is such a transformation, and

Wd = h(Yd)

and

Wnd = h(Ynd),

then the ROC area based on Wd and Wnd is the same as that based on Yd

and Ynd. This is also shown by Pepe [1: 85] and is left as an exercise.
The WinBUGS code, BUGS CODE 5.6, to be used for the following

examples is based on Equations 5.17 and 5.18 and presented by O’Malley
et al. [9]. Other Bayesian approaches to ROC area estimation with covariates
are given by Peng and Hall [19] and Hellmich et al. [20], while non-Bayesian
approaches to ROC estimation with covariates are described by Hanley [21]
and Gatsonis [22].
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5.4.1 Induced receiver operating characteristic curves

Suppose the continuous test scores are normally distributed and follow the
regression function:

Y = β[1] + β[2]D + β[3]X + β[4]XD + σ(D)ε, (5.20)

where D is an indicator for disease, that is, D = 0 for non-diseased patients
and D = 1 for diseased, ε ∼ N(0, 1),

σ(d) = σdI[D = 1] + σndI[D = 0],

the beta are unknown regression coefficients and X is a covariate, then it can
be shown that the induced ROC curve conditional on the covariate value x is

ROCx(t) = Φ(β[2]/σd + β[4]x/σd + σndΦ
−1(1 − t)/σd), (5.21)

where 0 ≤ t ≤ 1. The regression function is a linear function of the regression
coefficients, where the variance depends on the type of population, whether
diseased or not. The main result of Equation 5.21 is a result of Equation 5.17.
Remember that the ROC curve is conditional on a particular covariate value,
where X = x.

5.4.2 Diagnosing prostate cancer with total
prostate-specific antigen

In Etzioni et al. [11], of 683 patients who had their PSA levels measured
for prostate cancer, 454 did not have the disease and 229 did. (To download
this dataset, go to http://www.fhcrc.org/labs/pepe/book and to Chapter 1
of Pepe [1] for details of this study.) Patient covariates included age, where
the average age among those with and without the disease was 64.8 years.
Among those with and without prostate cancer, the total PSA was 10.31 and
2.02 mg/dL, respectively. The total PSA measurements were highly skewed
to the right with mean and median levels of 2.02 and 1.31, respectively, for
those without disease, but were 10.31 and 4.39, respectively, for those with
cancer. Figure 5.3 shows the skewness via a P–P plot, thus it was decided
to take logarithms of the total PSA levels for binomial analysis. From Fig-
ure 5.3, it appears that the log transformation did indeed induce approxi-
mate normality for the total PSA values. Also, for many subjects, repeated
measurements of total PSA levels were taken, but this was not considered a
covariate.

The regression of log total PSA levels on disease status (d = 0, 1), age,
and the age by disease interaction gave the posterior analysis in Table 5.8.
The effect of age by disease interaction on PSA is given by beta[4] and is
quite small with a posterior mean of −0.0025 and a 95% credible interval of
(−0.0301,0.0250), with a similar result for beta[3], which estimates the effect
of age on average total PSA. Thus, it appears that age is not an important
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FIGURE 5.3: Total PSA for the Etzioni et al. study.

covariate to consider when estimating the ROC area, and one would expect a
similar ROC area if age was not included in the model. An interesting aspect
of this analysis is the posterior density of the ROC area, which has a posterior
mean of 0.8057(0.1624) but a posterior median 0.8471, and the skewness is
evident from Figure 5.4. I would go with the posterior median in order to
estimate the accuracy of PSA to discriminate between disease and non disease.
In summary, I would say that PSA is an accurate test for prostate cancer, but
that age does not influence the accuracy. The analysis should be repeated
without age as a covariate, but this is left as an exercise.

The above analysis is based on BUGS CODE 5.6, and 90,000 observations
were generated, with a burn in of 10,000 and a refresh of 100. The regression
function of PSA on disease indicator and age is given by the code:

mu[i]<-beta[1]+beta[2]*d[i]+beta[3]*age[i]+beta[4]*d[i]*age[i], (5.22)

TABLE 5.8: Posterior analysis for prostate cancer.
Parameter Mean sd Error 2 1/2 Median 97 1/2

auc 0.8057 0.1624 0.0074 0.3864 0.8471 0.991
beta[1] −0.327 0.4031 0.01893 −1.122 −0.3195 0.4464
beta[2] 1.414 0.9202 0.0429 −0.3958 1.394 3.228
beta[3] 0.0106 0.0062 <0.001 −0.0012 0.01056 0.0229
beta[4] −0.0025 0.0140 <0.001 −0.0301 −0.0022 0.0250
la1 1.848 1.203 0.0560 −0.5135 1.821 4.215
la2 2.173 0.2529 0.0010 1.725 2.157 2.713
vary[1] 0.5876 0.0392 <0.001 0.5156 0.5858 0.6691
vary[2] 1.271 0.1208 <0.001 1.057 1.265 1.529
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FIGURE 5.4: Posterior density of ROC area for prostate cancer.

and is based on Equations 5.15, 5.16, and 5.18. The reader should refer to the
notes indicated by # in the program statements. Note that the parameters
la1 and la2 are used in the formula for the ROC area. Refer to the code below
and the notes indicated by #.

BUGS CODE 5.6

model;
# Binormal model with interaction between the true disease state and the

covariates.
# Calculates posterior distribution of model parameters and the area under

curve.
{
# likelihood function

for(i in 1:N) {

# log of y is yt
yt[i]<-log(y[i])

yt[i]∼dnorm(mu[i],precy[d[i]+1]);
# yt[i] <- log(y[i]); # logarithmic transformation
# the regression function

mu[i] <- beta[1] + beta[2]*d[i]+beta[3]*age[i]+beta[4]*d[i]*age[i]
}

# prior distributions - non-informative prior
for(i in 1:P) {

beta[i] ∼ dnorm(0, 0.000001);
}

for(i in 1:K) {
precy[i]∼dgamma(0.001, 0.001);
vary[i] <- 1.0/precy[i];

}

  



K11763 Chapter: 5 page: 130 date: June 17, 2011

130 Advanced Bayesian Methods for Medical Test Accuracy

# calculates area under the curve
la1 <- beta[2]/sqrt(vary[1]);
la2 <- vary[2]/vary[1];
auc <- phi(la1/sqrt(1+la2));

}
# psa data from Etzioni et al. [11]
list(K=2, P=4, N=683, y=c(.03,
.09,.23,.27,.27,.29,.29,.29,.30,.31,.33,.35,.37,.37,.42,.43,.44,.45,
.45,.46,.46,.47,.47,.48,.49,.49,.50,.50,.50,.51,.51,.55,.55,.56,.57,
.57,.58,.58,.58,.58,.59,.59,.59,.61,.61,.62,.62,.63,.63,.64,.64,.64,
.64,.65,.65,.65,.66,.66,.66,.66,.66,.66,.67,.67,.67,.67,.67,.68,.68,
.69,.69,.69,.69,.69,.70,.71,.72,.72,.73,.74,.74,.75,.75,.75,.75,.75,
.76,.76,.77,.77,.77,.77,.77,.77,.78,.78,.78,.78,.78,.78,.79,.79,.79,
.79,.80,.80,.80,.81,.81,.81,.81,.82,.83,.83,.84,.85,.86,.87,.87,.87,
.87,.87,.88,.89,.89,.89,.89,.89,.92,.92,.92,.93,.93,.93,.93,.93,.93,
.94,.94,.95,.95,.95,.95,.96,.96,.97,.97,.98,.98,.98,.98,.98,.99,1.00,
1.00,1.00,1.01,1.01,1.02,1.03,1.03,1.03,1.03,1.03,1.03,1.04,1.04,
1.04,1.04,1.04,1.05,1.05,1.05,1.05,1.06,1.06,1.06,1.06,1.07,1.07,
1.07,1.08,1.08,1.08,1.11,1.11,1.12,1.12,1.13,1.13,1.13,1.14,1.15,
1.15,1.15,1.15,1.15,1.15,1.15,1.15,1.16,1.16,1.16,1.17,1.17,1.17,
1.17,1.18,1.18,1.18,1.18,1.18,1.19,1.19,1.19,1.20,1.20,1.21,1.22,
1.22,1.22,1.23,1.23,1.24,1.24,1.24,1.25,1.25,1.25,1.25,1.25,1.25,
1.26,1.26,1.26,1.27,1.27,1.27,1.27,1.27,1.27,1.28,1.28,1.29,1.30,
1.30,1.31,1.31,1.32,1.32,1.33,1.34,1.35,1.35,1.35,1.35,1.35,1.35,
1.35,1.36,1.37,1.37,1.37,1.38,1.39,1.39,1.40,1.40,1.40,1.40,1.41,
1.41,1.41,1.41,1.41,1.41,1.43,1.43,1.43,1.43,1.44,1.44,1.45,1.46,
1.46,1.47,1.47,1.47,1.48,1.48,1.49,1.49,1.50,1.50,1.50,1.50,1.51,
1.51,1.51,1.51,1.53,1.54,1.54,1.55,1.55,1.56,1.57,1.57,1.58,1.58,
1.58,1.61,1.62,1.62,1.62,1.62,1.64,1.67,1.67,1.67,1.67,1.67,1.68,
1.69,1.69,1.70,1.70,1.70,1.71,1.71,1.71,1.71,1.71,1.71,1.71,1.71,
1.73,1.73,1.73,1.74,1.79,1.80,1.80,1.83,1.85,1.85,1.88,1.88,1.88,
1.89,1.89,1.89,1.91,1.91,1.91,1.92,1.93,1.93,1.94,1.95,1.96,2.01,
2.01,2.03,2.03,2.03,2.04,2.04,2.05,2.05,2.06,2.07,2.08,2.08,2.10,
2.11,2.13,2.13,2.14,2.16,2.17,2.19,2.19,2.19,2.22,2.22,2.23,2.24,
2.27,2.27,2.27,2.28,2.28,2.29,2.29,2.30,2.30,2.33,2.34,2.34,2.35,
2.36,2.36,2.37,2.40,2.41,2.42,2.43,2.43,2.43,2.43,2.46,2.50,2.50,
2.51,2.51,2.52,2.53,2.55,2.55,2.56,2.56,2.57,2.58,2.61,2.62,2.62,
2.63,2.63,2.63,2.66,2.69,2.70,2.71,2.73,2.77,2.79,2.82,2.82,2.82,
2.83,2.84,2.84,2.85,2.86,2.86,2.87,2.88,2.88,2.90,2.92,2.92,2.93,
2.95,2.96,2.96,2.96,2.97,2.98,3.03,3.03,3.04,3.05,3.05,3.08,3.10,
3.11,3.13,3.17,3.17,3.18,3.20,3.21,3.24,3.25,3.25,3.29,3.30,3.30,
3.32,3.32,3.33,3.34,3.35,3.38,3.41,3.42,3.43,3.45,3.51,3.55,3.57,
3.57,3.58,3.58,3.61,3.65,3.65,3.66,3.68,3.69,3.70,3.73,3.77,3.78,
3.78,3.78,3.80,3.84,3.88,3.89,3.95,3.97,3.97,4.00,4.03,4.03,4.04,
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4.05,4.08,4.12,4.15,4.19,4.20,4.20,4.20,4.30,4.33,4.34,4.38,4.39,
4.40,4.41,4.44,4.47,4.47,4.48,4.52,4.54,4.60,4.62,4.64,4.70,4.75,
4.75,4.76,4.78,4.90,4.90,4.93,4.94,4.98,5.02,5.09,5.10,5.11,5.12,
5.13,5.13,5.25,5.28,5.37,5.39,5.44,5.44,5.53,5.54,5.64,5.65,5.67,
5.73,5.75,5.81,5.85,6.07,6.07,6.16,6.18,6.27,6.29,6.31,6.41,6.48,6.48,
6.50,6.52,6.52,6.54,6.54,6.56,6.56,6.77,6.92,6.93,7.09,7.19,7.21,
7.23,7.24,7.28,7.29,7.42,7.43,7.53,7.59,7.64,7.78,7.90,8.04,8.15,
8.31,8.37,8.57,8.62,8.69,9.07,9.11,9.15,9.15,9.17,9.24,9.30,9.33,
9.76,9.94,9.96,9.97,10.11,10.60,10.71,10.92,11.33,11.40,11.54,
11.62,11.65,12.69,12.69,13.61,13.94,14.82,15.41,15.84,15.84,15.89,
16.18,16.48,16.70,16.81,17.10,17.17,17.57,19.35,20.10,20.24,20.47,
20.53,21.48,22.50,23.81,24.63,25.06,26.67,27.68,29.31,31.46,33.02,
35.93,37.63,37.66,38.39,43.30,48.80,49.16,51.72,61.16,72.07,79.21,
90.66,99.97,99.98,99.98,99.98),
# disease status
d=c(.00,1.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,
1.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,
.00,.00,.00,.00,.00,.00,1.00,.00,.00,1.00,.00,.00,.00,.00,.00,.00,.00,
.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,1.00,
.00,1.00,.00,.00,.00,.00,.00,.00,1.00,.00,.00,.00,.00,.00,.00,.00,
.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,
.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,
.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,
.00,.00,1.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,
.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,
.00,.00,.00,.00,.00,.00,.00,.00,1.00,1.00,.00,.00,1.00,.00,.00,.00,
.00,1.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,
.00,.00,1.00,.00,.00,.00,.00,.00,.00,.00,1.00,1.00,.00,.00,1.00,.00,
1.00,1.00,.00,.00,.00,.00,.00,.00,.00,1.00,.00,.00,.00,.00,.00,.00,
.00,.00,1.00,.00,.00,.00,.00,.00,1.00,.00,.00,.00,.00,.00,.00,.00,
.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,1.00,.00,.00,.00,.00,.00,.00,
.00,.00,.00,.00,1.00,.00,.00,.00,.00,1.00,1.00,.00,.00,1.00,1.00,.00,
.00,.00,.00,.00,.00,.00,.00,.00,1.00,.00,.00,.00,.00,1.00,1.00,.00,.00,
.00,.00,.00,.00,.00,.00,.00,.00,.00,1.00,.00,.00,1.00,.00,.00,.00,.00,
.00,.00,.00,.00,.00,.00,1.00,.00,.00,.00,.00,.00,1.00,.00,.00,.00,.00,
.00,.00,1.00,1.00,.00,.00,1.00,.00,.00,.00,.00,1.00,.00,1.00,.00,.00,
.00,.00,1.00,1.00,.00,.00,.00,.00,.00,1.00,.00,1.00,.00,.00,.00,.00,.00,
.00,.00,.00,.00,1.00,1.00,1.00,.00,1.00,.00,.00,.00,1.00,1.00,.00,.00,.00,
.00,1.00,.00,.00,.00,.00,.00,1.00,1.00,.00,1.00,.00,1.00,.00,1.00,.00,
.00,.00,1.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,1.00,1.00,.00,1.00,.00,
1.00,.00,1.00,.00,1.00,.00,.00,1.00,.00,1.00,.00,.00,.00,1.00,1.00,.00,.00,
.00,.00,.00,1.00,1.00,.00,.00,.00,1.00,.00,1.00,1.00,.00,1.00,1.00,.00,
1.00,.00,.00,.00,1.00,.00,.00,.00,.00,1.00,1.00,.00,1.00,.00,.00,.00,
1.00,.00,1.00,.00,.00,1.00,.00,1.00,.00,.00,.00,1.00,.00,1.00,1.00,.00,
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1.00,.00,.00,1.00,1.00,.00,.00,1.00,.00,1.00,.00,.00,.00,.00,.00,.00,
.00,1.00,1.00,.00,1.00,1.00,.00,1.00,.00,1.00,1.00,.00,.00,.00,1.00,1.00,
.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,.00,1.00,1.00,1.00,
1.00,.00,1.00,1.00,1.00,1.00,.00,.00,.00,.00,1.00,1.00,1.00,1.00,.00,
1.00,1.00,.00,1.00,.00,1.00,1.00,1.00,.00,1.00,.00,.00,.00,1.00,1.00,
.00,1.00,1.00,1.00,1.00,.00,1.00,.00,1.00,1.00,1.00,.00,1.00,1.00,.00,
.00,.00,1.00,.00,1.00,1.00,1.00,.00,1.00,.00,1.00,.00,1.00,1.00,.00,
1.00,1.00,1.00,.00,1.00,.00,1.00,.00,1.00,.00,.00,1.00,1.00,1.00,.00,
1.00,1.00,1.00,.00,1.00,.00,1.00,1.00,1.00,1.00,.00,1.00,1.00,.00,1.00,
1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,
1.00,1.00,1.00,1.00,.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,
1.00,1.00,1.00,1.00,1.00,.00,1.00,1.00,.00,1.00,.00,1.00,1.00,1.00,
1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,.00,1.00,1.00,
1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00),
age=c(68,70,73,74,55,57,58,59,60,61,62,63,64,57,60,62,63,68,
69,70,71,72,72,58,57,59,61,68,71,58,61,62,63,64,65,66,
67,65,69,61,64,65,66,67,58,61,62,63,53,56,58,60,63,64,
62,65,66,67,68,71,72,53,54,58,60,61,63,64,65,64,65,66,
68,70,71,68,61,63,65,67,69,70,72,58,61,62,63,64,65,66,
67,67,70,71,72,74,75,76,63,66,67,68,69,70,71,72,73,58,
62,61,65,66,67,68,70,53,55,57,62,64,66,57,59,60,61,62,
63,64,65,66,48,50,52,57,61,62,63,64,65,66,67,68,70,72,
54,57,59,62,64,65,66,67,68,69,70,71,58,61,62,63,64,65,
66,67,68,64,66,66,69,70,57,63,64,65,66,67,58,62,64,64,
65,66,67,58,62,63,64,65,67,68,61,63,65,56,57,58,60,62,
63,75,77,78,55,58,59,60,62,65,69,70,71,72,73,74,75,54,
56,57,59,61,62,57,59,61,62,65,66,67,63,65,67,55,57,58,
59,60,62,63,65,67,70,65,67,68,69,70,61,64,65,66,67,68,
61,59,61,62,63,65,66,67,68,59,62,63,64,65,58,61,62,63,
64,65,66,67,70,74,75,76,53,55,57,57,58,59,61,63,64,50,
52,53,54,55,56,57,58,59,65,67,67,68,69,70,71,72,54,56,
58,60,56,59,60,61,69,71,73,70,71,72,73,74,63,65,66,57,
60,62,63,61,65,74,78,79,80,81,61,65,66,66,67,68,71,61,
58,62,63,64,65,66,67,68,68,67,68,69,71,72,65,69,70,73,
74,59,64,65,56,60,67,70,72,72,57,68,71,73,75,61,64,68,
69,56,59,60,61,62,64,66,68,50,53,54,55,57,58,60,61,62,
63,65,67,68,65,68,69,63,66,67,68,69,70,71,72,64,68,70,
71,72,73,58,62,63,63,63,64,66,66,68,53,55,56,57,58,65,
67,68,69,70,71,72,73,75,72,76,77,78,80,59,62,63,64,65,
66,49,52,53,54,55,56,57,58,65,67,69,57,58,59,61,63,64,
58,61,62,63,64,65,66,67,68,54,57,59,67,69,71,56,60,61,
62,63,65,55,59,64,64,67,69,70,71,72,73,74,52,54,61,65,
67,70,71,71,72,66,69,70,71,72,73,74,75,76,62,71,72,73,
74,75,76,77,70,71,72,73,61,65,67,57,60,60,62,62,63,64,

  



K11763 Chapter: 5 page: 133 date: June 17, 2011

Regression and Medical Test Accuracy 133

65,66,70,71,72,74,75,76,62,64,65,65,68,69,69,70,71,60,
63,64,68,72,74,67,71,72,73,74,75,76,59,62,63,64,65,66,
67,68,69,64,67,68,68,69,70,72,73,74,60,47,51,52,53,54,
55,69,71,66,68,71,72,68,70,60,63,64,65,69,71,73,75,51,
53,55,65,69,70,76,58,64,66,67,65,68,70,62,63,64,65,66,
67,65,67,68,69,70,62,66,67,61,64,65,66,67,69,70,71,66,
69,70,71,72,73,59,63,64,65,66,68,69,69,60,63,65,66,67,
68,69,63,65,66,67,68,70,65,66,67,50,53,55,57,58,71))
# initial values

list(beta=c(0,0,0,0), precy=c(1,1))

5.4.3 Stover audiology study

Another example of continuous test scores is provided by the Stover
et al. [10] audiology study. (To download this dataset with 1848 cases, go to
http://www.fhcrc.org/labs/pepe/book, and Chapter 6 of Pepe [1] for details
of this study.) For each ear, the distortion-product otoacoustic emission
(DPOAE) test is applied under several experimental settings. Each setting
is defined by a particular frequency (hertz), intensity (decibel), and threshold
of the auditory stimulus. The test score is the negative signal-to-noise ratio,
where higher values are associated with hearing impairment. The following
code does not include the data for the test response, the disease incidence,
the frequency, threshold, and intensity from the study, but the analysis is
executed with 75,000 observations, with a burn in of 5,000 and a refresh of
100. Note that the reader must import the data from the address given above
(Table 5.9).

BUGS CODE 5.7

model;
# Calculates posterior distribution of model parameters and the area under

curve. y=test
{
# likelihood function

for(i in 1:N) {

yt[i]∼dnorm(mu[i],precy[d[i]+1]);
yt[i] <--(y[i]);

# d is the disease indicator
# amt is the threshold of the stimulus
# f is the frequency
# int is the intensity
# this is the regression function

mu[i] <- beta[1]+beta[2]*d[i]+beta[3]*amt[i]+beta[4]*f[i]
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TABLE 5.9: Posterior analysis of the Stover audiology study.
Parameter Mean sd Error 2 1/2 Median 97 1/2

auc 0.5033 0.1848 0.0094 0.1324 0.5056 0.8428
beta[1] −7.439 0.7583 0.0186 −8.915 −7.44 −5.957
beta[2] 0.0679 5.881 0.3022 −12.55 0.1571 11.32
beta[3] 0.405 0.0316 <0.0001 0.3432 0.4048 0.4669
beta[4] <0.0001 <0.0001 <0.00001 −0.0018 <0.0001 <0.00001
beta[5] <0.00000001 <0.00000001 <0.0000001 <0.000001 <0.0000001 <0.0000001
beta[6] −0.122 0.0430 <0.0001 −0.2063 −0.1219 −0.0378
beta[7] 0.0038 0.0010 <0.00001 0.0017 0.0038 0.0059
beta[8] 0.0455 0.0919 0.0047 −0.1254 0.04516 0.2393
la1 0.0091 0.7998 0.0410 −1.707 0.02144 1.538
la2 1.332 0.1001 <0.0001 1.15 1.328 1.54
vary[1] 54.16 2.085 0.0078 50.23 54.1 58.38
vary[2] 72.06 4.659 0.0197 63.5 71.85 81.7
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+beta[5]*int[i]+beta[6]*d[i]*amt[i]+beta[7]*d[i]*f[i]+beta[8]*d[i]*int[i]
}

# prior distributions - non-informative prior; similarly for informative priors
for(i in 1:8){

beta[i] ∼ dnorm(0, 0.0001);
}

for(i in 1:2 ){
precy[i]∼dgamma(0.001, 0.001);
vary[i] <- 1.0/precy[i];

}
# calculates area under the curve

la1 <- beta[2]/sqrt(vary[1]); # ROC curve parameters
la2 <- vary[2]/vary[1];
auc <- phi(la1/sqrt(1+la2));

}

The analysis tentatively implies that all the covariates should be elim-
inated. If this is the case and all covariates are deleted from the model,
the ROC area is estimated as 0.922(0.0070) and a 95% credible interval of
(0.9078,0.9355); a plot of the ROC curve is given by Figure 5.5.

This result is left as an exercise. It should be noted that the presence of the
three covariates (threshold, intensity, and frequency) attenuate the estimated
ROC error by some 45% from an area of 0.92, without covariates, to an area
of 0.50, when all three are in the model, however, it appears that all three are
not important predictors of the area!

Diagonal segments are produced by ties
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FIGURE 5.5: ROC curve for the Stover et al. study.
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5.5 Exercises

1. Verify Table 5.1, the analysis for the audiology data. Use BUGS CODE
5.1 with 65,000 observations, a burn in of 5,000 and a refresh of 100.
Estimate the effect of age, location of test, and the interaction between
location and type of test. Note that the data and code are given in BUGS
CODE 5.1.

2. The analysis of Exercise 1 implies that the interaction and other effects
are not significant, therefore drop the interaction term in the model and
repeat the analysis by revising BUGS CODE 5.1. Do the location and
type of test have an effect on the false positive rate? Use 65,000 observa-
tions generated from the joint posterior distribution, with a burn in of
5,000 and a refresh of 100. What is the MCMC error for the parameters?
What is the posterior mean of A and B? What is the posterior mean of
the beta coefficients in the model? What is your final determination for
the most appropriate model?

3. Verify Table 5.2, using the same information as stored in BUGS CODE
5.1. This problem assumes a logistic link, where 65,000 observations were
generated, with a burn in of 5,000 and a refresh of 100.

4. Verify Table 5.3, that is, perform the Bayesian analysis with a logis-
tic link, but with the true positive occurrence and the false positive
occurrences as the dependent variables. See Section 5.2.4 and BUGS
CODE 5.3. For this problem, the audiology data should be uploaded
from www.fhcrc.org/labs/pepe/book, and note that from this source,
the cases (ears) should be extracted as follows. When using false posi-
tive as the dependent variable and test type as the independent variable,
use those cases where 0 ≤ fp ≤ 1 and 0 ≤ testab ≤ 1, while when true
positive is the dependent variable and test type is the dependent vari-
able, use only those cases when 0 ≤ tp ≤ 1 and 0 ≤ testab ≤ 1. Verify
that the MCMC errors are <0.001 for all parameters and the information
in Table 5.3.

5. Devise a strategy for choosing between the log and logistic links to ana-
lyze the audiology data. Explain in detail and provide a convincing argu-
ment for your choice.

6. Based on Table 5.4 and BUGS CODE 5.4, verify the results of Table 5.5
and perform the posterior analysis with 65,000 observations, with a burn
in of 5,000 and a refresh of 100.

7. Based on Table 5.4 and BUGS CODE 5.4, find the posterior distribu-
tion of the cut points dtheta[i] and ndtheta[i] for i = 1, 2, 3, 4. What
are the posterior means and standard deviations of these parameters?
Use 65,000 observations, with a burn in of 5,000 and a refresh of 100.
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What are the MCMC errors for these parameters? Are you satisfied with
the MCMC errors?

8. Refer to Table 5.4 and BUGS CODE 5.4, and estimate the ROC area
for the clinical trial, but do not use gender as a covariate. With 75,000
observations generated from the posterior distribution, with a burn in
of 5,000 and a refresh of 100, execute the analysis by revising the code,
that is, delete the gender effect from the code statements and delete
the gender data (labeled dx1 and dx2) from the list statement in BUGS
CODE 5.4. Plot the posterior distribution of the ROC area. What is the
posterior mean of the ROC area? Is it close to 0.417, which is the value
computed for the area when gender is taken into account? Recall that
the value 0.417 was computed when gender was taken into account, but
that the effect of gender on the logit of the response probabilities was
quite small, thus, one would expect the ROC area computed without
gender as a factor to be very close to 0.417. What is the MCMC error
for the ROC area? Is it sufficiently small for your taste?

9. As a second hypothetical example with ordinal scores, consider the case,
where there are four readers interpreting CT images for the metastasis
of lung cancer to the lymph nodes. The study is multicenter and reports
the accuracy of CT for detecting lymph node invasion in patients with
known lung cancer. All patients enrolled were examined preoperatively
with CT, and after reading the image, the readers were asked to rate the
degree of disease on a five-point scale in order to score the metastasis
to the lymph nodes. The gold standard for metastasis was established
by pathologic analysis obtained from surgery. If no invasion occurred,
the population is referred to as non diseased, but if metastasis occurred,
the patient belongs to the diseased population. A subset of the study
is reported in Table 5.10, where only CT images are involved and four
radiologists scored the degree of invasion. Our objective is to determine

TABLE 5.10: CT rating data of four
radiologists—lung cancer metastasis.

Reader Disease Ordinal scale Total
ratings

1 2 3 4 5

1 0 7 1 4 9 4 25
1 1 5 1 4 12 6 29
2 0 7 1 5 3 2 18
2 1 8 3 5 20 8 45
3 0 15 0 4 7 1 27
3 1 15 0 6 16 3 41
4 0 3 1 3 3 1 11
4 1 2 2 4 1 8 18
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the ROC area accounting for all four readers and to examine the effect
of the four readers on the ROC area. A similar example is given in Zhou
et al. [2: 246].

Perform the analysis with 75,000 observations, with a burn in of 5,000
and a refresh of 100, using a revision of BUGS CODE 5.4. The infor-
mation needed for the analysis is given below and should be placed as
a list statement. The second list statement contains the initial values
for executing the program. In order to accommodate the new data, the
code must be revised!

# data is from Table 5.10
list(
ndy=c(1,1,1,1,1,1,1,

2,
3,3,3,3,
4,4,4,4,4,4,4,4,4,
5,5,5,5,

1,1,1,1,1,1,1,
2,
3,3,3,3,3,
4,4,4,
5,5,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
3,3,3,3,
4,4,4,4,4,4,4,
5,

1,1,1
2,
3,3,3,
4,4,4,
5),

# reader 1 for non diseased
ndx1=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0),
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# reader 2 for non diseased
ndx2=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0
),

# reader 3 non diseased
ndx3=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0,0,0,0),

# data for diseased
# CT rating for diseased
dy=c(1,1,1,1,1,

2,
3,3,3,3,
4,4,4,4,4,4,4,4,4,4,4,4,
5,5,5,5,5,5,

1,1,1,1,1,1,1,1,
2,2,2,
3,3,3,3,3,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
5,5,5,5,5,5,5,5,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
3,3,3,3,3,3,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
5,5,5,
1,1,
2,2,
3,3,3,3,
4),

# for reader 1 diseased
dx1=c(

1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
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0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
# reader 2 diseased
dx2=c(

0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,
0,0,0,0,0,0,0,0,0,0,00,0,0,0,0,0,0),

# reader 3 diseased
dx3=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

list(ndtheta=c(0,0,0,0,0),dtheta=c(0,0,0,0,0))

10. To verify the results of Table 5.7, refer to BUGS CODE 5.5 and execute
the analysis with 75,000 observations from the joint posterior distribu-
tion of the parameters, with a burn in of 5,000 and a refresh of 100. Also,
(a) Plot the posterior density of the ROC area.
(b) Are the effects of readers 1, 2, and 3 the same for the diseased

patients?
(c) Determine the posterior distribution of the cut points of the latent

variables for the non-diseased patients. What are their means and
95% credible intervals?

(d) What is the posterior mean of the ROC area for reader 2?
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11. Refer to BUGS CODE 5.5, the code for the melanoma metastasis study
with four readers. Add the following two columns to the first list state-
ment of BUGS CODE 5.5 and execute the Bayesian analysis with 75,000
observations, a burn in of 5,000 and a refresh of 100.

agend=c(45,78,56,68,72,81,45,67,71,69,63,
71,74,68,80,49,57,59,73,72,68,52,
69,73,75,62,65,59,80,72,
5,78,56,68,72,81,45,67,71,69,63,
71,74,68,80,49,57,59,73,72,68,52,
69,73,75,62,65,59,80,72,
5,78,56,68,72,81,45,67,71,69,63,
71,74,68,80,49,57,59,73,72,68,52,
69,73,75,62,65,59,80,72,
5,78,56,68,72,81,45,67,71,69,63,
71,74,68,80,49,57,59,73,72,68,52,
69,73,75,62,65,59,80,72),

aged=c(45,78,42,68,72,81,45,67,71,69,63,59,77,78,
71,80,83,72,74,68,80,49,57,59,73,72,68,52,
69,49,59,75,80,71,59,73,75,62,65,59,80,49,
38,80,71,74,80,78,79,59,
45,78,42,68,72,81,45,67,71,69,63,59,77,78,
71,80,83,72,74,68,80,49,57,59,73,72,68,52,
69,49,59,75,80,71,59,73,75,62,65,59,80,49,
38,80,71,74,80,78,79,59,
45,78,42,68,72,81,45,67,71,69,63,59,77,78,
71,80,83,72,74,68,80,49,57,59,73,72,68,52,
69,49,59,75,80,71,59,73,75,62,65,59,80,49,
38,80,71,74,80,78,79,59,
45,78,42,68,72,81,45,67,71,69,63,59,77,78,
71,80,83,72,74,68,80,49,57,59,73,72,68,52,
69,49,59,75,80,71,59,73,75,62,65,59,80,49,
38,80,71,74,80,78,79,59)

The agend column contains the ages of the non-diseased patients, where
the ages are repeated four times for the four readers, and in the same
way, the aged column contains the ages for the diseased patients. Revise
the code accordingly and add the age factor to the regression statements
for the non-diseased and diseased populations.
(a) What is the posterior mean and standard deviation of the ROC

area?
(b) What is the effect of age on the ROC area?
(c) Is the ROC area attenuated by the age factor?
(d) What are the posterior means of the probabilities of the five ordinal

responses for the diseased and non-diseased populations?
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12. Refer to Section 5.4.1 and derive a formula for the induced ROC curve
(Equation 5.21).

13. For the prostate cancer example (see Table 5.8 and BUGS CODE 5.6),
estimate the area under the ROC curve without the covariate age. Is
there much of a change in the posterior median of the ROC area? Use
90,000 observations for the simulation, with a burn in of 5,000 and a
refresh of 1,000. Compare the MCMC error for the ROC area of Table 5.8
and the MCMC error of the present analysis (without using a covariate).

14. For the Stover et al. [10] audiology study, plot the main response y
against the three covariates to see if there is a linear response. There are
only three values for the frequency and three for the intensity.

15. Refer to BUGS CODE 5.7 and perform a Bayesian analysis for the Stover
audiology data without using any covariates (threshold (amt), frequency,
and intensity) and estimate the ROC area, the beta parameters, la1, la2,
vary[1], and vary[2]. Execute the analysis with 45,000 observations for
the simulation, with a burn in of 5,000 and a refresh of 500. Verify the
entries in Table 5.11 for the analysis. Note that the code must be revised,
including deleting the covariate data in the first list statement, revising
the regression function, and revising the initial values in the last list
statement.
(a) Compare these results with Table 5.9. Notice the difference in the

posterior means and standard deviations of the two ROC areas!
(b) Compare the beta[2] coefficient in the two cases. For the case when

all covariates are in the model, the posterior standard error of
beta[2] is much larger than the corresponding quantity when the
covariates are not in the model. The change is from 5.888 to 0.4733.

(c) In view of (b), why do the covariates in the model induce such a
large standard deviation for beta[2]?

16. Refer to BUGS CODE 5.7 and perform a Bayesian analysis for the Stover
audiology data without the three interaction terms, but including the

TABLE 5.11: Stover audiology study without covariates.
Parameter Mean sd Error 2 1/2 Median 97 1/2

auc 0.9222 0.0070 <0.00001 0.9078 0.9227 0.9255
beta[1] −6.188 0.2104 0.0013 −6.603 −6.188 −5.776
beta]2] 17.29 0.4733 0.0029 16.36 17.29 18.22
la1 2.218 0.0724 <0.0001 2.073 2.218 2.364
la2 1.431 0.1073 <0.0001 1.236 1.426 1.655
vary[1] 60.8 2.347 0.01197 56.37 60.75 65.58
vary[2] 86.9 5.585 0.02575 76.65 86.69 98.45
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main effects of the covariates (threshold (amt), frequency, and intensity)
and estimate the ROC area, the four beta parameters, la1, la2, vary[1],
and vary[2]. Execute the analysis with 75,000 observations for the simu-
lation, with a burn in of 5,000 and a refresh of 500. Verify the entries in
Table 5.12 for the analysis. Note that the code must be revised, includ-
ing deleting the covariate data in the first list statement, revising the
regression function, and revising the initial values in the last list state-
ment. The code must be revised by changing the regression function
statement. Verify the results shown in Table 5.12.
(a) The effect of the two covariates beta[4] and beta[5], appear to be

small, however, the effect of beta[3] on amt (the threshold of the
stimulus) does have some effect. Please comment.

(b) Recall without covariates that the ROC area is about 0.922, but
including the covariates without their interaction with the disease
indicator gives an area of 0.70. Also, recall that with all covariates
and their interactions with d, the area is 0.50. Why does the inclu-
sion or exclusion of the covariates and their interactions have such
a big effect on the ROC area?

17. The blood glucose test diagnoses type 2 diabetes and consist of taking
a sample after the subject fasts for 12 hours. A normal test result is
a blood glucose value < 110 mb/dL, while values between 111 and 125
mg/dL indicate problems with glucose metabolism; and values in excess
of 125 mg/dL show definite signs of type 2 diabetes. A study was con-
ducted with 217 subjects known not to have type 2 diabetes and 90
subjects who were suspected as having problems metabolizing glucose.
Those without diabetes have a mean glucose level of 100(4.622) mg/dL,
while the mean glucose level for the other group is 109.3(3.94) mg/dL,
and the glucose levels appear to be normally distributed. In addition to
the glucose values, the age and gender of each subject is recorded, and
the code below contains the data for the study.

BUGS CODE 5.8

model;
# Calculates posterior distribution of model parameters and the area

under curve.
{
# likelihood function

for(i in 1:N) {

g[i]∼dnorm(mu[i],precy[d[i]+1]);
mu[i] <- beta[1]+beta[2]*d[i]+beta[3]*age[i]+beta[4]*male[i];

}
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TABLE 5.12: Bayesian analysis audiology study without interactions.
Parameter Mean sd Error 2 1/2 Median 97 1/2
auc 0.701 0.0263 <0.0001 0.648 0.7015 0.751
beta[1] −8.09 0.6843 0.0038 −9.436 −8.09 −6.748
beta[2] 5.991 0.8474 0.0029 4.335 5.993 7.646
beta[3] 0.3413 0.0218 <0.00001 0.2987 0.3414 0.3841
beta[4] <0.0001 <0.0001 <0.000001 −0.0010 −1*10−4 7*10−4

beta[5] <0.00000001 <0.00000001 10−10 <0.0000001 −1*10−8 1*10−7

vary[1] 54.4 2.086 0.0019 50.48 54.35 58.65
vary[2] 74.03 4.822 0.0057 65.19 73.82 84.06

  



K11763 Chapter: 5 page: 145 date: June 17, 2011

Regression and Medical Test Accuracy 145

# prior distributions - non-informative prior; similarly for informative
priors

for(i in 1:P) {

beta[i] ∼ dnorm(0, 0.001);
}

for(i in 1:K) {

precy[i]∼dgamma(0.001, 0.001);
vary[i] <- 1.0/precy[i];

}

# calculates area under the curve
la1 <- beta[2]/sqrt(vary[1]); # ROC curve parameters
la2 <- vary[2]/vary[1];
auc <- phi(la1/sqrt(1+la2));

}
list(P=4,N=307, K=2,
g=c(96.63,102.98,97.72,97.82,106.94,105.32,92.61,94.99,
105.49,97.34,97.72,96.87,98.53,102.57,99.69,96.46,93.68,
97.46,104.60,98.49,107.34,96.03,105.17,96.87,98.16,
104.14,99.73,94.68,93.85,99.70,95.07,99.74,102.22,98.99,
103.72,101.55,101.55,95.54,97.47,103.37,100.31,100.55,
99.76,103.12,92.16,106.42,102.03,96.97,103.79,96.58,
113.96,100.26,95.07,104.00,101.47,105.84,103.61,98.03,
93.45,92.92,98.48,100.14,97.46,97.88,104.21,92.92,
104.49,95.51,100.49,99.46,105.03,91.78,100.75,105.68,
100.31,91.27,103.92,98.78,92.80,107.75,104.85,104.24,
93.57,100.69,97.11,101.41,84.43,101.88,94.94,94.91,
100.04,104.18,104.81,98.06,107.01,94.13,99.19,98.87,
99.01,96.42,103.26,109.30,97.20,94.74,103.36,103.82,
93.54,97.27,96.29,100.58,102.62,94.51,101.84,98.10,
102.66,99.73,96.50,104.86,100.69,97.57,101.81,98.88,
101.00,100.48,98.99,108.75,105.34,108.13,100.90,105.06,
98.10,106.16,105.64,94.18,104.07,98.64,97.82,98.49,
100.74,100.63,93.91,94.89,103.31,102.42,98.5,196.68,
109.31,95.59,99.23,102.60,104.24,103.14,109.07,103.23,
103.72,98.41,93.53,92.92,101.26,98.75,106.58,94.80,
102.49,101.80,99.97,97.73,106.66,100.91,93.13,105.04,
101.92,91.52,107.76,94.59,97.97,98.59,104.58,107.60,
98.14,101.84,101.41,92.35,99.41,99.63,96.51,100.77,
100.67,93.19,103.83,108.11,96.35,106.37,99.29,
102.72,89.20,101.92,105.87,96.66,101.85,103.92,101.38,
95.23,99.60,98.08,99.64,111.32,108.37,91.69,95.38,98.09,
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92.05,106.36,93.98,102.26,103.81,98.00,99.20,106.46,
109.58,113.86,103.72,105.94,114.61,111.08,106.89,
119.51,110.30,110.00,108.31,108.68,108.98,115.01,
113.07,114.89,109.79,105.70,114.20,113.53,113.97,
110.91,110.33,115.78,111.05,108.53,111.56,110.78,
109.71,112.18,112.05,109.46,103.84,112.23,118.56,
110.60,109.54,112.31,100.78,114.07,112.14,107.85,
111.65,105.94,108.63,109.89,107.14,108.76,110.11,
104.60,107.11,112.49,113.74,103.19,105.07,109.04,
110.45,105.02,108.27,109.17,110.37,110.92,107.53,
109.22,113.01,108.74,116.74,112.10,110.88,111.08,
110.22,111.23,112.94,99.04,113.51,107.26,110.76,
108.06,97.03,109.14,105.56,111.55,108.85,98.46,110.24,
112.22,108.57,105.95,106.30),
d
=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),
age=c(41,36,38,46,38,45,42,42,43,43,43,55,47,46,47,47,32,38,45,37,43,36,
52,48,37,42,41,47,46,46,45,49,44,48,50,48,43,47,44,57,48,49,40,41,45,45,
52,45,48,45,42,46,48,44,36,48,39,44,51,48,47,39,38,43,39,45,40,35,36,41,
46,48,55,41,44,35,38,47,45,50,40,44,46,38,38,50,44,40,46,37,43,40,46,43,
36,44,32,47,40,38,42,46,45,41,53,45,41,40,55,48,44,47,47,45,41,53,41,38,
43,47,50,45,43,46,42,43,42,47,46,44,37,42,43,44,44,46,36,50,40,39,37,55,
41,45,43,39,54,37,38,42,44,48,50,33,42,48,40,49,38,47,39,38,47,39,44,49,
46,48,38,39,38,48,42,42,43,36,34,41,36,49,43,35,40,46,44,41,49,46,42,47,
42,42,49,43,41,47,47,44,39,42,43,51,43,46,37,44,42,38,35,42,45,49,42,40,
45,48,42,52,53,49,63,53,62,57,57,64,53,54,55,59,54,53,55,63,52,58,59,57,
56,56,55,59,59,62,59,56,64,59,56,60,54,60,54,54,53,57,58,54,59,63,55,59,
51,52,57,60,58,50,62,59,61,53,64,50,55,57,60,58,59,56,55,53,57,53,54,59,
61,59,56,56,58,57,60,57,59,54,60,51,61,57,53,53,60,64,58,56,63),
male=c(1,0,1,0,0,0,1,1,1,0,0,0,0,0,0,1,0,1,1,1,0,1,0,1,1,1,1,0,1,0,0,1,1,1,0,
1,0,1,1,0,1,0,1,0,0,1,0,0,1,0,1,1,0,1,0,0,1,0,0,1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,1,
1,0,0,0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,1,1,1,1,0,1,1,1,1,0,1,1,0,1,0,1,1,0,1,1,
0,0,1,1,1,0,0,1,1,1,1,1,0,1,0,0,1,1,1,1,0,0,0,0,1,0,0,1,1,1,1,1,1,0,0,0,1,0,0,1,
0,0,1,0,1,1,1,0,1,0,1,0,1,1,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,1,1,1,0,0,0,1,1,0,1,
1,0,1,0,0,0,0,1,1,0,1,1,1,1,0,1,1,0,0,1,1,1,0,0,0,0,0,0,1,0,1,1,1,0,1,1,1,0,1,1,
0,1,1,1,0,0,0,1,0,0,0,0,1,1,1,0,1,0,1,1,0,1,1,1,1,1,1,1,0,0,1,1,0,0,1,1,1,1,1,0,
0,0,1,0,0,1,1,1,1,0,0,1,1,0,1,1,0,0,0,0,0,1,0,1,0,1,0,0,1,1,1,0))

list(beta=c(0,0,0,0), precy=c(1,1))
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TABLE 5.13: Bayesian analysis of type 2 diabetes study.
Parameter Mean sd Error 2 1/2 Median 97 1/2

auc 0.8262 0.0360 0.0014 0.7494 0.8286 0.8901
beta[1] 0.9798 3.182 0.1603 91.71 98.01 104.2
beta[2] 8.523 1.209 0.0499 6.145 8.525 10.89
beta[3] 0.04966 0.0724 0.0036 −0.0920 0.0488 0.1912
beta[4] 0.6139 0.671 0.0050 −0.7152 0.6151 1.92
vary[1] 65.34 6.35 0.0304 53.99 64.95 78.92
vary[2] 15.86 2.44 0.0123 11.8 15.63 21.31

The Bayesian analysis is executed with 55,000 observations, with a
burn in of 5,000 and a refresh of 200. Verify the entries in Table 5.13.

In Table 5.13, beta[3] is the effect of age and beta[4] is the effect of
gender(male), and the ROC area has a mean of 0.8262(0.0360) with a
95% credible interval of (0.7494,0.8901), indicating good accuracy for
the blood glucose test in differentiating between those with and without
type 2 diabetes.
(a) Are age and gender important covariates?
(b) Analyze the study without the covariate.
(c) Is there a difference in the ROC areas? Plot the blood glucose values

vs. the ages of the subjects. Is it a linear association?
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Chapter 6

Agreement and Test Accuracy

6.1 Introduction

The previous chapters provide the foundation for the Bayesian approach
to agreement. Chapter 6 will introduce the reader to estimating the accuracy
of a test when several readers are involved in interpreting the test scores. It
is important to remember that test accuracy depends not only on the med-
ical device that gives the test scores, but also on the various other elements
involved in measuring accuracy. Probably the most important factor to take
into account are the various readers who have the main responsibility of report-
ing the accuracy of the test. Chapters 4 and 5 reported several examples that
involved multiple readers.

Recall the melanoma staging example in Chapter 5, where four radiologists
used the same images to score the degree of metastasis in melanoma patients.
There were two groups determined by the gold standard, those with metastasis
to the lymph nodes and those with no metastasis. The area under the receiver
operating characteristic (ROC) curve estimates the accuracy of the test, but
there are four areas corresponding to the four radiologists. Which areas do we
use? All four, or do we report one overall score representing the effect of all
four? This is a case of ordinal scores with a gold standard; however, there are
cases where no gold standard is available.

This chapter is divided into two scenarios: the case where a gold standard
is present and the situation where no gold standard is present. The first case
will be considered when a gold standard is present, then the other scenario
will be presented. In addition, the chapter broadly deals with two other cases:
when the test scores are ordinal and when they are continuous. When a gold
standard is present, the main measure of accuracy is the area under the ROC
curve and agreement will be estimated by some average of the ROC areas
corresponding to the various readers. On the other hand, for ordinal scores
and when no gold standard is available, agreement will be measured by the
Kappa statistic. When no gold standard is present with continuous scores,
the intraclass correlation and other correlations measure the accuracy of a
medical test with several readers. For additional information on Kappa and
other measures of agreement, the reader should refer to Shoukri [1], Von Eye
and Mun [2], and Broemeling [3].

In what follows, first to be presented is the case of ordinal scores when a
gold standard is available, to be followed by the case when a gold standard
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is present but with continuous test scores. Then, the situation of no gold
standard when ordinal scores are available is reported, and lastly, the case of
no gold standard with continuous scores is described.

6.2 Ordinal Scores with a Gold Standard

The first case to be considered when a gold standard is present is when
the medical test is based on ordinal scores. Chapters 4 and 5 considered such
cases, and the reader is referred specifically to Section 4.3.5 on the Bayesian
analysis of the ROC area. Recall that the Bayesian analysis of the ROC area
is based on BUGS CODE 4.2. In addition, Section 5.3.2 presents another way
to compute the ROC area, via an ordinal regression model that incorporates
covariate information into the calculation. The analysis is based on BUGS
CODE 5.5 for the melanoma metastasis example, where four radiologists read
the results of a sentinel lymph node biopsy.

A sentinel lymph node biopsy is performed to see if metastasis to the lymph
nodes has occurred; the diagnosis is based on the Clark level and depth of the
primary tumor. The biopsy is a nuclear medicine procedure that identifies a
sentinel lymph node, which is dissected by surgery and sent to a pathologist to
determine the degree of metastasis to the lymph node basin. The results are
reported in Table 5.6.

In Chapter 5, the analysis consisted of determining the effect of each radi-
ologist on the ROC area, but here the focus will be on reporting the ROC
area for each radiologist and determining an overall estimate of test accu-
racy. A Bayesian analysis is performed based on BUGS CODE 6.1, which is
a revision of BUGS CODE 5.5.

BUGS CODE 6.1

model;
{
# reader 2
# ROC area
# melanoma example
# code is from Congdon [2003: 1020]
# non diseased
for(i in 1:30){for(j in 1:5){logit(ndgamma[i,j])<-ndtheta[j]-ndmu[i]}}
for(i in 1:30){ndp[i,1]<-ndgamma[i,1]}
for(i in 1:30){ndp[i,2]<-ndgamma[i,2]-
ndgamma[i,1]}
for(i in 1:30){ndp[i,3]<-ndgamma[i,3]-
ndgamma[i,2]}
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for(i in 1:30){ndp[i,4]<-ndgamma[i,4]-
ndgamma[i,3]}
for(i in 1:30){ndy[i]∼dcat(ndp[i,1:5])}
for(i in 1:30){ndp[i,5]<-1-ndgamma[i,4]}
# intercept depends on y
for(i in 1:30){
ndmu[i]<-ndb0[ndy[i]]}
for(i in 1:5){ndb0[i]∼dnorm(0,.001)}
ndtheta[1]∼dnorm(0,1)
ndtheta[2]∼dnorm(0,1)
ndtheta[3]∼dnorm(0,1)
ndtheta[4]∼dnorm(0,1)
ndtheta[5]∼dnorm(0,1)I(ndtheta[4],)
for( i in 1:5){ndq[i]<-mean(ndp[,i])}
# diseased population
for(i in 1:50){for(j in 1:5){logit(dgamma[i,j])<-dtheta[j]-dmu[i]}}
for(i in 1:50){dp[i,1]<-dgamma[i,1]}
for(i in 1:50){dp[i,2]<-dgamma[i,2]-
dgamma[i,1]}
for(i in 1:50){dp[i,3]<-dgamma[i,3]-
dgamma[i,2]}
for(i in 1:50){dp[i,4]<-dgamma[i,4]-
dgamma[i,3]}
for(i in 1:50){dy[i]∼dcat(dp[i,1:5])}
for(i in 1:50){dp[i,5]<-1-dgamma[i,4]}
# intercept depends on y
for(i in 1:50){
dmu[i]<-db0[dy[i]]}
for(i in 1:5){db0[i]∼dnorm(0,.001)}
dtheta[1]∼dnorm(0,1)
dtheta[2]∼dnorm(0,1)
dtheta[3]∼dnorm(0,1)
dtheta[4]∼dnorm(0,1)
dtheta[5]∼dnorm(0,1)I(dtheta[4],)
for( i in 1:5){dq[i]<-mean(dp[,i])}
# roc area
area<-a1+a2/2
a1<-dq[2]*ndq[1]+dq[3]*(ndq[1]+ndq[2])+
dq[4]*(ndq[1]+ndq[2]+ndq[3])+
dq[5]*(ndq[1]+ndq[2]+ndq[3]+ndq[4])
a2<-dq[1]*ndq[1]+dq[2]*ndq[2]+dq[3]*ndq[3]+
dq[4]*ndq[4]+dq[5]*ndq[5]
}
list( ndy=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

2,2,2,2,2,2,2,
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3,3,3,3,
4,4,4,
5 ),

# data for diseased
dy=c(1,1,2,2,2,2,2,2,2,2,

3,3,3,3,3,3,3,3,3,3,
4,4,4,4,4,4,4,4,4,4,4,4,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5))

list(ndtheta=c(0,0,0,0,0),dtheta=c(0,0,0,0,0))

The above code contains the information for reader 2 (see Table 5.6) in the
first list statement, and the second list statement gives the initial values for
the Markov Chain Monte Carlo (MCMC) simulation. In order to perform the
analysis, revise the first list statement by inserting the relevant information
for that reader, using the information in Table 5.6. A Bayesian analysis is
executed with 65,000 observations, a burn in of 5,000 and a refresh of 5,000,
resulting in MCMC errors <0.0001 for the four ROC areas (Table 6.1).

The ROC areas vary from a low of 0.6483 for reader 3 to a high of 0.8085 for
reader 2! This example presents a more realistic assessment of test accuracy,
because the variation between readers is evident and presents a dilemma. It
could be true that the reader with the lowest score is the most accurate (com-
pared to the true unknown accuracy). What is the accuracy of this medical
test? There are several ways to come up with one measure of overall accuracy:
(a) drop the high and low areas and average the two middle areas, 0.7872 and
0.7057; (b) use a weighted average of the four areas; and (c) consider the four
readers as one reader and recompute the ROC area.

By joining the code for readers 1, 2, 3, and 4 and adding statements for
the differences in the ROC areas of the four readers, and statements for the
simple and weighted averages of the four readers, the following tables give the
Bayesian analysis, which further elucidates the accuracy of the sentinel lymph
node biopsy as measured by the four radiologists.

For Table 6.2, dij is the difference in the ROC areas of reader i minus
reader j, sarea is the simple average of four ROC areas, and warea is
the weighted mean of the four, where the weight of areai is the inverse of
the posterior variance (see Table 6.1) of the ROC area of reader i. It appears

TABLE 6.1: Posterior analysis for ROC area of four
readers—melanoma example.

Parameter Mean sd Error 2 1/2 Median 97 1/2
Area 1 0.7872 0.0241 <0.0001 0.6502 0.7122 0.7633
Area 2 0.8085 0.0227 <0.0001 0.7619 0.8092 0.8509
Area 3 0.6483 0.0213 <0.0001 0.6053 0.6488 0.689
Area 4 0.7056 0.0229 <0.0001 0.6586 0.7062 0.7487
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TABLE 6.2: Posterior analysis for the difference in the four ROC areas.
Parameter Mean sd Error 2 1/2 Median 97 1/2
d12 −0.0214 0.0225 <0.0001 −0.0873 −0.0213 0.0444
d13 0.1386 0.0325 <0.0001 0.0739 0.139 0.0212
d14 0.0814 0.0335 <0.0001 0.0514 0.1601 0.1473
d23 0.16 0.0313 <0.0001 0.0982 0.2212 0.2212
d24 0.1028 0.0321 <0.0001 0.0398 0.1026 0.1659
d34 −0.0571 0.0312 <0.0001 −0.1183 −0.0572 0.0042
sarea 0.7371 0.1148 <0.0001 0.7141 0.7374 0.7591
warea 0.7321 0.0114 <0.0001 0.7092 0.7323 0.754

that the following pairs of readers have different ROC areas: 1 and 3; 1 and 4;
2 and 3; and 2 and 4. This implies that it is appropriate to use some sort of
average to represent the overall accuracy of the test for melanoma metastasis.
Note that the simple and weighted averages are almost the same, because the
posterior standard deviations are the same. It should be stressed that the most
representative analysis is to report the four ROC areas, then if appropriate,
use a weighted average as an overall estimate of the accuracy. The analysis
that produced Table 6.2 is based on 65,000 observations, with a burn in of
5,000 and a refresh of 100. Note the small MCMC error <0.0001 for all the
parameters in the analysis.

The analysis for the case of ordinal scores with a gold standard is continued
with the first three exercises at the end of the chapter. The following section
will consider the case of continuous scores with a gold standard.

6.3 Continuous Scores with a Gold Standard

The presentation of the problem of agreement with several readers and a
continuous test score is considered. Recall that the ROC area for continuous
scores is analyzed from a Bayesian approach in Chapter 5, where the area is
based on

AUC = Φ
(
a/

√
(1 + b2)

)
, (5.18)

where

a = (µd − µnd)/σd

and

b = σnd/σd.
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TABLE 6.3: Blood glucose levels (mg/dL) for three
readers.

Reader d = 0 d = 1

Mean sd Mean sd
1 100.01 4.62 109.66 3.94
2 98.01 4.52 113.66 3.40
3 105.01 4.69 106.66 3.88

The means and standard deviations are for the diseased and non-diseased
populations, respectively, and the analysis is executed using BUGS CODE 5.6,
which is based on the O’Malley et al. [4] study.

The first example to be analyzed is the type 2 diabetes example of
Chapter 5, described in Exercise 17 of that chapter. The study has three
readers, each measuring the blood glucose levels (milligram per deciliter) of
two types of patients, namely, those without the disease and those patients
having problems with glucose metabolism. There are a total of 307 subjects,
of which 217 do not have type 2 diabetes and 90 that have problems metab-
olizing glucose. The descriptive statistics for the three readers are shown in
Table 6.3.

Based on Table 6.3, one would expect the ROC area of reader 2 to be the
smallest, and the largest ROC area to correspond to reader 3, while the ROC
area of reader 1 will be between that of readers 2 and 3. BUGS CODE 6.2 will
provide the Bayesian analysis for the ROC areas of the three readers, and the
analysis is executed with 65,000 observations, a burn in of 5,000 and a refresh
of 100. The information for this study includes two covariates, the age and
gender of each patient, and the analysis includes this additional information
(Table 6.4).

BUGS CODE 6.2

model;
# Calculates posterior distribution of model parameters and the area

under curve.
# type 2 diabetes with three readers
{
# likelihood function

for(i in 1:N) {

g1[i]∼dnorm(mu1[i],precy1[d[i]+1]);
mu1[i] <- beta1[1]+beta1[2]*d[i]+beta1[3]*age[i]+beta1[4]*male[i];

g2[i]∼dnorm(mu2[i],precy2[d[i]+1]);
mu2[i] <- beta2[1]+beta2[2]*d[i]+beta2[3]*age[i]+beta2[4]*male[i];

g3[i]∼dnorm(mu3[i],precy3[d[i]+1]);
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mu3[i] <- beta3[1]+beta3[2]*d[i]+beta3[3]*age[i]+beta3[4]*male[i];
}

# prior distributions - non-informative prior; similarly for informative priors
for(i in 1:P) {

beta1[i] ∼ dnorm(0, 0.001);
beta2[i] ∼ dnorm(0, 0.001);
beta3[i] ∼ dnorm(0, 0.001);

}

for(i in 1:K) {
precy1[i]∼dgamma(0.001, 0.001);
vary1[i] <- 1.0/precy1[i];

precy2[i]∼dgamma(0.001, 0.001);
vary2[i] <- 1.0/precy2[i];

precy3[i]∼dgamma(0.001, 0.001);
vary3[i] <- 1.0/precy3[i];

}
# calculates area under the curve
# reader 1

la11 <- beta1[2]/sqrt(vary1[1]); # ROC curve parameters
la21 <- vary1[2]/vary1[1];
auc1 <- phi(la11/sqrt(1+la21));

#reader 2
la12 <- beta2[2]/sqrt(vary2[1]); # ROC curve parameters
la22 <- vary2[2]/vary2[1];
auc2 <- phi(la12/sqrt(1+la22));

# reader 3
la13 <- beta3[2]/sqrt(vary3[1]); # ROC curve parameters
la23 <- vary3[2]/vary3[1];
auc3 <- phi(la13/sqrt(1+la23));

}
list(P=4,N=307, K=2,
# g1 is blood glucose levels for reader 1
g1=c(96.63,102.98,97.72,97.82,106.94,105.32,92.61,94.99,
105.49,97.34,97.72,96.87,98.53,102.57,99.69,96.46,93.68,
97.46,104.60,98.49,107.34,96.03,105.17,96.87,98.16,
104.14,99.73,94.68,93.85,99.70,95.07,99.74,102.22,98.99,
103.72,101.55,101.55,95.54,97.47,103.37,100.31,100.55,
99.76,103.12,92.16,106.42,102.03,96.97,103.79,96.58,
113.96,100.26,95.07,104.00,101.47,105.84,103.61,98.03,
93.45,92.92,98.48,100.14,97.46,97.88,104.21,92.92,

  



K11763 Chapter: 6 page: 158 date: June 17, 2011

158 Advanced Bayesian Methods for Medical Test Accuracy

104.49,95.51,100.49,99.46,105.03,91.78,100.75,105.68,
100.31,91.27,103.92,98.78,92.80,107.75,104.85,104.24,
93.57,100.69,97.11,101.41,84.43,101.88,94.94,94.91,
100.04,104.18,104.81,98.06,107.01,94.13,99.19,98.87,
99.01,96.42,103.26,109.30,97.20,94.74,103.36,103.82,
93.54,97.27,96.29,100.58,102.62,94.51,101.84,98.10,
102.66,99.73,96.50,104.86,100.69,97.57,101.81,98.88,
101.00,100.48,98.99,108.75,105.34,108.13,100.90,105.06,
98.10,106.16,105.64,94.18,104.07,98.64,97.82,98.49,
100.74,100.63,93.91,94.89,103.31,102.42,98.5,196.68,
109.31,95.59,99.23,102.60,104.24,103.14,109.07,103.23,
103.72,98.41,93.53,92.92,101.26,98.75,106.58,94.80,
102.49,101.80,99.97,97.73,106.66,100.91,93.13,105.04,
101.92,91.52,107.76,94.59,97.97,98.59,104.58,107.60,
98.14,101.84,101.41,92.35,99.41,99.63,96.51,100.77,
100.67,93.19,103.83,108.11,96.35,106.37,99.29,
102.72,89.20,101.92,105.87,96.66,101.85,103.92,101.38,
95.23,99.60,98.08,99.64,111.32,108.37,91.69,95.38,98.09,
92.05,106.36,93.98,102.26,103.81,98.00,99.20,106.46,
109.58,113.86,103.72,105.94,114.61,111.08,106.89,
119.51,110.30,110.00,108.31,108.68,108.98,115.01,
113.07,114.89,109.79,105.70,114.20,113.53,113.97,
110.91,110.33,115.78,111.05,108.53,111.56,110.78,
109.71,112.18,112.05,109.46,103.84,112.23,118.56,
110.60,109.54,112.31,100.78,114.07,112.14,107.85,
111.65,105.94,108.63,109.89,107.14,108.76,110.11,
104.60,107.11,112.49,113.74,103.19,105.07,109.04,
110.45,105.02,108.27,109.17,110.37,110.92,107.53,
109.22,113.01,108.74,116.74,112.10,110.88,111.08,
110.22,111.23,112.94,99.04,113.51,107.26,110.76,
108.06,97.03,109.14,105.56,111.55,108.85,98.46,110.24,
112.22,108.57,105.95,106.30),
d
=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),
age=c(41,36,38,46,38,45,42,42,43,43,43,55,47,46,47,47,32,38,45,37,43,36,52,
48,37,42,41,47,46,46,45,49,44,48,50,48,43,47,44,57,48,49,40,41,45,45,52,45,
48,45,42,46,48,44,36,48,39,44,51,48,47,39,38,43,39,45,40,35,36,41,46,48,55,
41,44,35,38,47,45,50,40,44,46,38,38,50,44,40,46,37,43,40,46,43,36,44,32,47,
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40,38,42,46,45,41,53,45,41,40,55,48,44,47,47,45,41,53,41,38,43,47,50,45,43,
46,42,43,42,47,46,44,37,42,43,44,44,46,36,50,40,39,37,55,41,45,43,39,54,37,
38,42,44,48,50,33,42,48,40,49,38,47,39,38,47,39,44,49,46,48,38,39,38,48,42,
42,43,36,34,41,36,49,43,35,40,46,44,41,49,46,42,47,42,42,49,43,41,47,47,44,
39,42,43,51,43,46,37,44,42,38,35,42,45,49,42,40,45,48,42,52,53,49,63,53,62,
57,57,64,53,54,55,59,54,53,55,63,52,58,59,57,56,56,55,59,59,62,59,56,64,59,
56,60,54,60,54,54,53,57,58,54,59,63,55,59,51,52,57,60,58,50,62,59,61,53,64,
50,55,57,60,58,59,56,55,53,57,53,54,59,61,59,56,56,58,57,60,57,59,54,60,51,
61,57,53,53,60,64,58,56,63),
male=c(1,0,1,0,0,0,1,1,1,0,0,0,0,0,0,1,0,1,1,1,0,1,0,1,1,1,1,0,1,0,0,1,1,1,0,1,0,
1,1,0,1,0,1,0,0,1,0,0,1,0,1,1,0,1,0,0,1,0,0,1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,1,1,0,0,
0,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,0,1,1,1,1,0,1,1,1,1,0,1,1,0,1,0,1,1,0,1,1,0,0,1,1,
1,0,0,1,1,1,1,1,0,1,0,0,1,1,1,1,0,0,0,0,1,0,0,1,1,1,1,1,1,0,0,0,1,0,0,1,0,0,1,0,1,
1,1,0,1,0,1,0,1,1,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0,0,1,1,1,0,0,0,1,1,0,1,1,0,1,0,0,0,
0,1,1,0,1,1,1,1,0,1,1,0,0,1,1,1,0,0,0,0,0,0,1,0,1,1,1,0,1,1,1,0,1,1,0,1,1,1,0,0,0,
1,0,0,0,0,1,1,1,0,1,0,1,1,0,1,1,1,1,1,1,1,0,0,1,1,0,0,1,1,1,1,1,0,0,0,1,0,0,1,1,1,
1,0,0,1,1,0,1,1,0,0,0,0,0,1,0,1,0,1,0,0,1,1,1,0),
# glucose values of reader 2
g2=c(94.63,100.98,95.72,95.82,104.94,103.32,90.61,92.99,103.49,95.34,
95.72,94.87,96.53,100.57,97.69,94.46,91.68,95.46,102.60,96.49,105.34,
94.03,103.17,94.87,96.16,102.14,97.73,92.68,91.85,97.70,93.07,97.74,100.22,
96.99,101.72,99.55,99.55,93.54,95.47,101.37,98.31,98.55,97.76,101.12,90.16,
104.42,100.03,94.97,101.79,94.58,111.96,98.26,93.07,102.00,99.47,103.84,
101.61,96.03,91.45,90.92,96.48,98.14,95.46,95.88,102.21,90.92,102.49,93.51,
98.49,97.46,103.03,89.78,98.75,103.68,98.31,89.27,101.92,96.78,90.80,
105.75,102.85,102.24,91.57,98.69,95.11,99.41,82.43,99.88,92.94,92.91,98.04,
102.18,102.81,96.06,105.01,92.13,97.19,96.87,97.01,94.42,101.26,107.30,
95.20,92.74,101.36,101.82,91.54,95.27,94.29,98.58,100.62,92.51,99.84,96.10,
100.66,97.73,94.50,102.86,98.69,95.57,99.81,96.88,99.00,98.48,96.99,106.75,
103.34,106.13,98.90,103.06,96.10,104.16,103.64,92.18,102.07,96.64,95.82,
96.49,98.74,98.63,91.91,92.89,101.31,100.42,96.51,94.68,107.31,93.59,97.23,
100.60,102.24,101.14,107.07,101.23,101.72,96.41,91.53,90.92,99.26,96.75,
104.58,92.80,100.49,99.80,97.97,95.73,104.66,98.91,91.13,103.04,99.92,
89.52,105.76,92.59,95.97,96.59,102.58,105.60,96.14,99.84,99.41,90.35,97.41,
97.63,94.51,98.77,98.67,91.19,101.83,106.11,94.35,104.37,97.29,100.72,
87.20,99.92,103.87,94.66,99.85,101.92,99.38,93.23,97.60,96.08,97.64,109.32,
106.37,89.69,93.38,96.09,90.05,104.36,91.98,100.26,101.81,96.00,97.20,
110.46,113.58,117.86,107.72,109.94,118.61,115.08,110.89,123.51,114.30,
114.00,112.31,112.68,112.98,119.01,117.07,118.89,113.79,109.70,118.20,
117.53,117.97,114.91,114.33,119.78,115.05,112.53,115.56,114.78,113.71,
116.18,116.05,113.46,107.84,116.23,122.56,114.60,113.54,116.31,104.78,
118.07,116.14,111.85,115.65,109.94,112.63,113.89,111.14,112.76,114.11,
108.60,111.11,116.49,117.74,107.19,109.07,113.04,114.45,109.02,112.27,
113.17,114.37,114.92,111.53,113.22,117.01,112.74,120.74,116.10,114.88,
115.08,114.22,115.23,116.94,103.04,117.51,111.26,114.76,112.06,101.03,
113.14,109.56,115.55,112.85,102.46,114.24,116.22,112.57,109.95,110.30),
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# glucose levels of reader 3
g3=c(101.63,107.98,102.72,102.82,111.94,110.32,97.61,99.99,110.49,102.34,
102.72,101.87,103.53,107.57,104.69,101.46,98.68,102.46,109.60,103.49,
112.34,101.03,110.17,101.87,103.16,109.14,104.73,99.68,98.85,104.70,
100.07,104.74,107.22,103.99,108.72,106.55,106.55,100.54,102.47,108.37,
105.31,105.55,104.76,108.12,97.16,111.42,107.03,101.97,108.79,101.58,
118.96,105.26,100.07,109.00,106.47,110.84,108.61,103.03,98.45,97.92,
103.48,105.14,102.46,102.88,109.21,97.92,109.49,100.51,105.49,104.46,
110.03,96.78,105.75,110.68,105.31,96.27,108.92,103.78,97.80,112.75,109.85,
109.24,98.57,105.69,102.11,106.41,89.43,106.88,99.94,99.91,105.04,109.18,
109.81,103.06,112.01,99.13,104.19,103.87,104.01,101.42,108.26,114.30,
102.20,99.74,108.36,108.82,98.54,102.27,101.29,105.58,107.62,99.51,106.84,
103.10,107.66,104.73,101.50,109.86,105.69,102.57,106.81,103.88,106.00,
105.48,103.99,113.75,110.34,113.13,105.90,110.06,103.10,111.16,110.64,
99.18,109.07,103.64,102.82,103.49,105.74,105.63,98.91,99.89,108.31,107.42,
103.51,101.68,114.31,100.59,104.23,107.60,109.24,108.14,114.07,108.23,
108.72,103.41,98.53,97.92,106.26,103.75,111.58,99.80,107.49,106.80,
104.97,102.73,111.66,105.91,98.13,110.04,106.92,96.52,112.76,99.59,102.97,
103.59,109.58,112.60,103.14,106.84,106.41,97.35,104.41,104.63,101.51,
105.77,105.67,98.19,108.83,113.11,101.35,111.37,104.29,107.72,94.20,
106.92,110.87,101.66,106.85,108.92,106.38,100.23,104.60,103.08,104.64,
116.32,113.37,96.69,100.38,103.09,97.05,111.36,98.98,107.26,108.81,103.00,
104.20,103.46,106.58,110.86,100.72,102.94,111.61,108.08,103.89,116.51,
107.30,107.00,105.31,105.68,105.98,112.01,110.07,111.89,106.79,102.70,
111.20,110.53,110.97,107.91,107.33,112.78,108.05,105.53,108.56,107.78,
106.71,109.18,109.05,106.46,100.84,109.23,115.56,107.60,106.54,109.31,
97.78,111.07,109.14,104.85,108.65,102.94,105.63,106.89,104.14,105.76,107.11,
101.60,104.11,109.49,110.74,100.19,102.07,106.04,107.45,102.02,105.27,
106.17,107.37,107.92,104.53,106.22,110.01,105.74,113.74,109.10,107.88,
108.08,107.22,108.23,109.94,96.04,110.51,104.26,107.76,105.06,94.03,
106.14,102.56,108.55,105.85,95.46,107.24,109.22,105.57,102.95,103.30))
# initial values for simulation
list(beta1=c(0,0,0,0), beta2=c(0,0,0,0),beta3=c(0,0,0,0),

precy1=c(1,1), precy2=c(1,1), precy3=c(1,1))

Note that betai[j] for i = 1, 2, 3 and j = 1, 2, 3, 4 is the jth beta coefficient
for reader i. The intercept for reader i is betai[1], while the effect of the disease
indicator d for reader i is given by betai[2]. The effect of age on the blood
glucose level for reader i is betai[3], while the effect of gender for reader i is
given by betai[4]. It should be noted that by including age and gender as
covariates, the estimated ROC area might be attenuated. It appears from this
table that age and gender are not important covariates and should be dropped
from the analysis and the ROC areas re-estimated. The disparity between the
ROC areas of the three readers presents a dilemma. Why the large range in the
three areas? Is reader 3 inexperienced? When age and gender are eliminated,
the posterior analysis is shown in Table 6.5.
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TABLE 6.4: Posterior analysis for type 2 diabetes study—three readers
with age and gender.

Parameter Mean sd Error 2 1/2 Median 97 1/2
auc1 0.8298 0.0374 0.0014 0.7495 0.8232 0.8958
auc2 0.9907 0.0046 <0.0001 0.9793 0.9916 0.9969
auc3 0.5371 0.061 0.0024 0.4163 0.5376 0.6555
beta1[1] 98.45 3.52 0.1697 91.67 98.52 105.4
beta1[2] 8.66 1.284 0.0516 6.148 8.666 11.19
beta1[3] 0.03915 0.0800 0.0038 −0.1191 0.0373 0.1942
beta1[4] 0.6082 0.6689 0.0046 −0.7142 0.6112 1.907
beta2[1] 94.72 2.235 0.1054 89.99 94.76 99.13
beta2[2] 14.61 0.8885 0.0322 12.84 14.62 16.33
beta2[3] 0.0772 0.0528 0.0024 −0.0231 0.0758 0.1845
beta2[4] −0.1322 0.5069 0.0037 −1.128 −0.1317 0.8657
beta3[1] 101.5 2.584 0.1241 96.48 101.6 106.7
beta3[2] 0.5756 0.9525 0.0377 −1.298 0.5765 2.453
beta3[3] 0.0810 0.0587 0.0028 −0.0362 0.0806 0.1966
beta3[4] −0.1314 0.5044 0.0035 −1.124 −0.1302 0.8501
vary1[1] 65.34 6.367 0.0294 53.99 64.96 78.87
vary1[2] 15.91 2.46 0.0110 11.82 15.66 21.42
vary2[1] 21.59 2.108 0.0100 17.85 21.45 26.12
vary2[2] 16 2.476 0.0114 11.881 15.76 21.53
vary3[1] 21.58 2.088 0.0104 17.86 21.45 26.06
vary3[2] 16.01 2.463 0.0111 11.88 15.78 21.51

A comparison of Tables 6.4 and 6.5 reveals that age and gender attenuate
the ROC area for readers 1 and 3, however, the area for reader 2 appears much
too high. Reader 2 is almost perfect in differentiating the diseased from the
non-diseased subject! Also, the ROC area for reader 3 now increases to 0.607
from the previous value of 0.53, when age and gender are taken into account.
I have confidence in Table 6.5 because the posterior analysis with covariates,
reported in Table 6.4, imply that they are not needed in the estimation of the
ROC area. What is the accuracy of the blood glucose test for diagnosing type
2 diabetes? One possibility is to use the simple average or a weighted average
(see Table 6.6).

The analysis is executed with 65,000 observations, with a burn in of 5,000
and a refresh of 100, and the resulting MCMC error is quite small. It is inter-
esting that the weighted area is 0.991(0.0022), still large because the posterior

TABLE 6.5: Posterior analysis for type 2 diabetes study—three
readers and no covariates.

Parameter Mean sd Error 2 1/2 Median 97 1/2
auc1 0.847 0.0206 <0.0001 0.8038 0.848 0.8849
auc2 0.9945 0.0022 <0.0001 0.989 0.9948 0.9977
auc3 0.607 0.0333 <0.0001 0.5409 0.6073 0.6711
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TABLE 6.6: Simple and weighted ROC areas for diabetes study.
Parameter Mean sd Error 2 1/2 Median 97 1/2
sarea 0.8162 0.0130 <0.00001 0.7902 0.8164 0.8412
warea 0.991 0.0022 <0.00001 0.9856 0.9914 0.9943

standard deviation of reader 2 is 0.0022. The weighted average is computed
by weighting the ith area by the inverse of the corresponding variance of
the posterior distribution of the ROC area of the ith reader. The ROC area
for reader 2 is much too high and hard to believe, thus I would go with the
simple average of 0.8162(0.0130) as my best guess of the accuracy of the blood
glucose test.

6.4 Agreement with Ordinal Scores and
No Gold Standard

When no gold standard is available, other methods must be used to mea-
sure agreement. An introduction to the subject begins with describing various
measures of agreement that preceded the Kappa coefficient, then Kappa is
described for two readers when the medical test scores are binary (i.e., posi-
tive or negative indicators of disease). The Kappa coefficient is the accepted
measure to estimate agreement in many areas of science, including medicine,
sociology, psychology, and psychiatry. When first introduced, it applied to two
raters, but was later extended to more than two raters and to nominal and
ordinal (more than binary) test scores. These developments will be described
from a Bayesian approach and illustrated from various areas of medicine.
For an introduction to the subject, two non-Bayesian sources are Shoukri [1],
Von Eye and Mun [2], and for a Bayesian viewpoint, Broemeling [3] presents
elementary and advanced methodology.

6.4.1 Precursors of Kappa

Our study of agreement begins with some early work before Kappa, where
Kappa is introduced with a 2× 2 table (Table 6.7) giving a binary score to
n subjects. Each subject is classified as either positive, denoted by X = 1, or
negative, denoted by X = 0, by reader 1 and Y = 0 or 1, by rater 2.

Let θij be the probability that rater 1 gives a score of i and rater 2 a
score of j, where i, j = 0 or 1, and let nij be the corresponding number
of subjects. The experimental results have the structure of a multinomial
distribution. Obviously, the probability of agreement is the sum of the diagonal
probabilities θ00 + θ11, however, this measure is usually not used. Instead, the
Kappa parameter is often employed as an overall measure, and is defined as

κ = [(θ00 + θ11) − (θ0.θ.0 + θ1.θ.1)]/[1 − (θ0.θ.0 + θ1.θ.1)], (6.1)
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TABLE 6.7: Classification table.
Rater 2

Rater 1 Y = 0 Y = 1
X = 0 (n00, θ00) (n01, θ01) (n0., θ0.)
X = 1 (n10, θ10) (n11, θ11) (n1., θ1.)
Total (n.0, θ.0) (n1, θ1)

where the dot indicates summation of θij over the missing subscript, and the
probability of a positive response for rater 2 is θ0.1. Kappa is a so-called chance
corrected measure of agreement.

Before Kappa, there were some attempts to quantify the degree of agree-
ment between two raters, and what follows is based on the Fleiss [5] account
of the early history of the subject, beginning with Goodman and Kruskal [6].
They assert that the raw agreement measure θ00 + θ11 is the only sensible
measure, however, as Fleiss stresses, other logical measures have been adopted.
This presentation closely follows Fleiss, who summarizes the early publications
of indices of agreement and the two origins of Kappa, then presents his own
version of chance corrected early indices and how they relate to Kappa.

One of the earliest measures is from Dice [7], who formulated

SD = θ11/[(θ.1 + θ1.)/2], (6.2)

as an index of agreement. First select a rater at random, then SD is the condi-
tional probability that judge has assigned a positive rating to a subject, given
that the other judge has assigned a positive rating. This seems reasonable
if the probability of a negative rating is greater than that of a positive rat-
ing. In a similar way, define S′

D = θ00/[(θ.0 + θ0.)/2], then based on the Dice
approach, Rogot and Goldberg [6] defined

A2 = θ11/(θ1. + θ.1) + θ00/(θ0. + θ.0), (6.3)

as a measure of agreement, with the desirable property that A2 = 0 if there
is complete disagreement and A2 = 1 if there is complete agreement.

According to Fleiss [5], Rogot and Goldberg [8] define another measure of
agreement as

A1 = (θ00/θ.0 + θ00/θ0. + θ11/θ1. + θ11/θ.1)/4, (6.4)

which is an average of the four conditional probabilities. This index has the
same properties as A1, namely, 0 ≤ A2 ≤ 1, but in addition, A2 = 1/2 when
the raters are giving independent scores, that is, when θij = θi.θ.j for all
i and j.

Suppose two raters assign scores to 100 subjects, as shown in Table 6.8.
Then, what are the estimated values of A1 and A2? It can be verified that
Ã1 = (22/55 + 22/37 + 30/45 + 30/63)/4 = (0.4 + 0.59 + 0.68 + 0.47)/4 = 0.53,
and Ã2 = 30/(63 + 45) + 22(55 + 37) = 0.52, where both indicate fair agree-
ment; remember that the maximum value of both is 1. The first index is
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TABLE 6.8: Hypothetical
example of 100 subjects.

Rater 2

Rater 1 Y = 0 Y = 1
X = 0 22 15 37
X = 1 33 30 63
Total 55 45 100

very close to 1/2; does this indicate independence between the two read-
ers? Does 22/100 = 22/55 ∗ 22/37? Or does 0.22 = 0.23? This is evidence
that the raters are acting independently in their assignment of scores to the
100 subjects.

What is the Bayesian analysis? Some assumptions are in order, therefore
suppose that the 100 subjects are selected at random from some well-defined
population, that the structure of the experiment is multinomial, and that the
assignment of scores to subjects is such that the probability of each of the four
outcomes stays constant from subject to subject. Initially, a uniform prior is
assigned to the four mutually exclusive outcomes, and the posterior distribu-
tion of (θ00, θ01, θ10, θ11) is Dirichlet (23, 16, 34, 31). What is the posterior
distribution of A1 and A2?

Using 25,000 observations generated, with a burn in of 1,000 observations
and a refresh of 100, the posterior analysis is displayed in Table 6.9. Good
accuracy is achieved with an MCMC error <0.0001 for all parameters, and
the parameter g is

g(θ) =
i,j=1∑
i,j=0

(θij − θi.θ.j)2,

which can be used to investigate the independence of the two raters. From
Table 6.9, it appears that independence is a tenable assertion. Note that g is
non negative and has a median of 0.0015 and a mean of 0.00308, and that inde-
pendence is also implied by the posterior mean of A2 = 0.5138. The role of the
independence of the two raters is important for chance corrected measures such
as Kappa. Fleiss [5] reports two additional indices proposed by Armitage [9]
and Goodman and Kruskal [6], but these will not be presented here.

TABLE 6.9: Posterior distribution of A1 and A2.
Parameter Mean sd 2 1/2 Median 97 1/2
A1 0.5324 0.0482 0.4362 0.5326 0.6254
A2 0.5138 0.0487 0.4180 0.5138 0.6088
g 0.00308 0.0040 3.437*10−6 0.0015 0.01457

  



K11763 Chapter: 6 page: 165 date: June 17, 2011

Agreement and Test Accuracy 165

6.4.2 Chance corrected measures of agreement

Fleiss [5] continues with a review of the chance corrected indices of agree-
ment, which have a general form of

M = (Ir − Ic)/(1 − Ic), (6.5)

where Ir is a measure of raw agreement and Ic is a measure of agreement by
chance. Scott [10] first introduced such a measure called Kappa, which was
followed by Cohen [11], who gave a related version. Recall Equation 6.1 for
Kappa, where Scott assumed both raters have the same marginal distribu-
tion; however, Cohen did not make such an assumption. The Cohen version
of Kappa will be used in this book.

From the information in Table 6.8 and the WinBUGS code used to produce
Table 6.9, the posterior distribution of Kappa and its components are given
in Table 6.10. The value of Kappa indicates very poor agreement, because
the raw agreement estimate of 0.5196 and the estimated chance agreement
of 0.4882 are quite close. This demonstrates the effect of chance agreement on
Kappa.

Fleiss [5] continues the presentation by correcting the two precursors of
Kappa, A1 and A2, for chance agreement using Equation 2.4, thus the chance
corrected A2 index is

M(A2) = 2(θ11θ00 − θ01θ10)/(θ1.θ.0 + θ.1θ0.)
= κ, (6.6)

where Ic = E(A2), assuming independent raters.
In similar fashion, the chance corrected value of SD can be shown to be κ,

however, this is not true for A1, that is, the chance corrected value of A1 is not
Kappa.

Kappa has been embraced as the most popular index of agreement and
has been extended to ordinal scores and to multiple raters and scores, and its
use is ubiquitous in the social and medical sciences. Kappa gives an idea of
the overall agreement between two raters with nominal scores, but once the
value is estimated, it is important to know why Kappa has that particular
value, and this will entail investigating the marginal and joint distribution of
the raters. Performing an agreement analysis is much like doing an analysis
of variance (ANOVA), where if at the first stage the null hypothesis of equal
means is rejected, it is followed by a multiple comparison procedure. In the

TABLE 6.10: Posterior distribution of Kappa.
Parameter Mean sd 2 1/2 Median 97 1/2
Kappa −0.0905 0.1668 −0.4131 −0.0916 0.2437
Ir 0.5196 0.0486 0.4239 0.5199 0.6148
Ic 0.4882 0.0135 0.458 0.4896 0.5126
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case that no agreement is indicated by Kappa, a look at the disagreement
between the two readers at the off-diagonal cells would be informative. On
the other hand, if Kappa indicates strong agreement, a comparison between
the two raters at the on-diagonal cells can be fruitful.

6.4.3 Conditional Kappa

The conditional Kappa for rating category i is

κi = (θii − θi.θ.i)/(θi. − θi.θ.i)
= (θii/θi. − θi.θ.i/θi.)/(1 − θi.θ.i/θi.) (6.7)

and is the conditional probability that the second rater assigns a score of i
to a subject, given that the first rater scores an i, adjusted for conditional
independence between the raters. Since

P [Y = i | X = i] = θii/θi., i = 0, 1, (6.8)

and assuming conditional independence between the two raters, Equation 6.7
is apparent.

Thus, if overall Kappa gives an indication of strong agreement, then con-
ditional Kappa will identify the degree of agreement between the two raters
for each possible category, 0 or 1. The Bayesian approach allows one to deter-
mine the posterior distribution of conditional Kappa. For the example from
Table 6.8, WinBUGS gives 0.0925 for the posterior mean of κ0 and a posterior
standard deviation of 0.1391. Also, a 95% credible interval for κ0 is (−0.1837,
0.3646). This is not surprising since overall Kappa is only −0.0905. One would
expect a value near 0 for the posterior mean of κ1. Conditional Kappa should
be computed after the value of overall Kappa is known, because such esti-
mates provide additional information about the strength of agreement. The
concept of conditional Kappa (sometimes referred to as partial Kappa) was
first introduced by Coleman [12] and later by Light [13] and is also described
by Von Eye and Mun [2] and Liebetrau [14].

For k nominal scores, Kappa is defined as

κ =

[
i=k∑
i=1

θii −
i=k∑
i=1

θi.θ.i

]/ [
1 −

i=k∑
i=1

θi.θ.i

]
, (6.9)

where θij is the probability that raters 1 and 2 assign scores i and j, respec-
tively, to a subject, where i, j = 1, 2, . . . , k, and k is an integer of at least 3.
With more than two scores, the agreement between raters becomes more com-
plex. There are more ways for the two to agree or disagree. Von Eye and
Mun [2: 12] examine the agreement between two psychiatrists who are assign-
ing degrees of depression to 129 patients. Consider Table 6.11, where they
report Kappa as 0.375, and the scores are interpreted as: 1 = “not depressed,”
2 = “mildly depressed,” and 3 = “clinically depressed.”
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TABLE 6.11: Agreement for depression.
Psychiatrist 2

Psychiatrist 1 1 2 3 Total
1 11 2 19 32
2 1 3 3 7
3 0 8 82 90
Total 12 13 104 129

Source: From Von Eye, A. and Mun, E.Y. Analyzing Rater Agree-
ment, Manifest Variable Methods. Lawrence Erlbaum, Mahwah, NJ, and
London, 2005, P. 12, Table 1.3, with permission of T&F.

If one adopts a Bayesian approach with a uniform prior density for θij ,
i and j = 1, 2, 3, then the parameters have a Dirichlet (12, 3, 20, 2, 4, 4, 1, 9, 83)
posterior distribution; the resulting posterior analysis is shown in Table 6.12.

The above description of the posterior analysis is based on 25,000 observa-
tions, with a burn in of 1,000 observations, a refresh of 100, and the MCMC
error is <0.0001 for all parameters. It shows that the raw agreement proba-
bility is estimated as 0.7174 with the posterior mean. The chance agreement
probability has a posterior mean of 0.5595, which determines the posterior
mean of Kappa as 0.3579, and the difference d between the probability of raw
agreement and the probability of chance agreement has a posterior mean of
0.1578. Overall agreement is fair but not considered strong.

A plot of the posterior density of conditional Kappa for the score of 1 (not
depressed) has a mean of 0.2639 with a standard deviation of 0.074, again
implying only fair agreement for the not depressed category (see Figure 6.1).
Von Eye and Mun [2: 9] report an estimated κ1 of 0.276 and an estimated
standard deviation of 0.0447, thus the conventional and Bayesian are about
the same.

How does the Bayesian analysis for overall Kappa compare to Von Eye
and Mun [2]? Their estimate of Kappa is 0.375 with a standard error of 0.079,
compared to a posterior mean of 0.357, where the standard deviation of the
posterior distribution of Kappa is 0.0721. I used SPSS, which gave 0.375 (0.079
is the asymptotic standard error) as an estimate of Kappa, which confirms the
Von Eye and Mun analysis.

The code for these calculations and graphics follows. It is of interest to com-
pare the posterior mean and standard deviation of θ11 with its known mean

TABLE 6.12: Posterior analysis of depression.
Parameter Mean sd 2 1/2 Median 97 1/2
Kappa 0.3579 0.0721 0.219 0.3577 0.4995
Kappa1 0.2639 0.0740 0.1326 0.26 0.4194
agree 0.7174 0.0382 0.62 0.7184 0.7889
cagree 0.5595 0.03704 0.489 0.559 0.6335
D 0.1578 0.0358 0.0914 0.1566 0.232
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FIGURE 6.1: Posterior density of conditional Kappa for non depressed.

and standard deviation, which are 0.086956 and 0.0238995, respectively. The
posterior mean and standard deviation based on 25,000 observations gener-
ated by WinBUGS are 0.08699 and 0.02398, respectively, thus the simulation
is accurate to four decimal places (truncated) for estimating the mean and to
three places for the standard deviation of θ11.

BUGS CODE 6.3

model
{
g[1,1]∼dgamma(12,2)
g[1,2]∼dgamma(3,2)
g[1,3]∼dgamma(20,2)
g[2,1]∼dgamma(2,2)
g[2,2]∼dgamma(4,2)
g[2,3]∼dgamma(4,2)
g[3,1]∼dgamma(1,2)
g[3,2]∼dgamma(9,2)
g[3,3]∼dgamma(83,2)
h<-sum(g[,])

for( i in 1 : 3 ) {for( j in 1 :3 ){ theta[i,j]<-g[i,j]/h}}
theta1.<-sum(theta[1,])
theta.1<-sum(theta[,1])
theta2.<-sum(theta[2,])
theta.2<-sum(theta[,2])
theta3.<-sum(theta[3,])
theta.3<-sum(theta[,3])
kappa<-(agree-cagree)/(1-cagree)
agree<-theta[1,1]+theta[2,2]+theta[3,3]
cagree<-theta1.*theta.1+theta2.*theta.2+theta3.*theta.3
d<-agree-cagree
Kappa1<-(theta[1,1]-theta1.*theta.1)/(theta1.-theta1.*theta.1)
}
list( g = structure(.Data = c(2,2,2,2,2,2,2,2,2),.Dim = c(3,3)))
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The raw agreement by itself indicates a strong association between psychi-
atrists, however, the chance agreement is also fairly strong, which reduces the
overall agreement to only fair agreement, estimated as 0.357 via a Bayesian
approach, and as 0.375 via maximum likelihood by Von Eye and Mun [2].
The Bayesian and conventional analyses of Kappa and conditional Kappa (for
the not depressed category) agree quite well, but it is difficult to assign a
Kappa value.

6.4.4 Kappa and stratification

Stratification is a way to take into account additional experimental infor-
mation that will be useful in estimating agreement between observers. Up to
this point, the only information brought to bear on estimating Kappa are the
scores of the two raters, however, other information is often available, includ-
ing age, sex, and other subject demographics. In medical studies, in addition
to patient demographics, other information on previous and present medical
history is available and might have an influence on the way raters disagree.
Stratification is the first stage on the way to utilizing other experimental infor-
mation that influences Kappa. Later, this will be expanded to model-based
approaches that will incorporate covariate information in a more efficient way.

Consider a hypothetical national trial that compares x-ray and computed
tomography (CT) for detecting lung cancer in high-risk patients. The study
is to be conducted at three different sites, under the same protocol. One is
primarily interested in the agreement between x-ray and CT, where both
images are taken of each patient. The design calls for a total enrollment of
2500 patients from two major cancer centers enrolling 1000 patients each, with
a smaller cancer center enrolling 500. The idea of estimating Kappa between
x-ray and CT is one of the major issues being studied, along with the usual one
of estimating and comparing the diagnostic test accuracies of the two images.
For the time being, this information and patient covariate information, as well
as other experimental factors, will not be considered. The major objective is to
estimate an overall Kappa and to compare the individual Kappas of the three
sites. It is assumed that the patients are enrolled according to strict eligibility
and ineligibility criteria, which describes a well-defined population of subjects.

The scores assigned are 1, 2, 3, and 4, where 1 indicates “no evidence of
disease,” 2 indicates “most likely no evidence of disease,” 3 implies it is “likely
there is evidence of disease,” and 4 indicates “evidence of a malignant lesion.”
Obviously, a team of radiologists assign the scores, however, the details are
not considered relevant. Having both images of the same person is somewhat
unique in this type of trial. Usually a patient receives only one type of image
(Tables 6.13 through 6.15).

A posterior analysis based on WinBUGS with 25,000 observations gener-
ated from the joint posterior distribution, with a burn in of 1,000 observations
and a refresh of 100 are reported in Table 6.16. A uniform prior density is used
for the parameters, and the MCMC error is <0.0001 for all parameters.
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TABLE 6.13: CT vs. x-ray: site 1.
CT

X-ray 1 2 3 4 Total
1 320 57 22 15 414
2 44 197 18 10 269
3 20 26 148 5 199
4 11 7 3 73 94
Total 395 287 191 103 976

The parameter K12 is the difference between κ1 and κ2, where κ1 is the
Kappa for site 1, and the overall Kappa is denoted by κ, where

κ = (κ1ω1 + κ2ω2 + κ3ω3)/(ω1 + ω2 + ω3), (6.10)

and ωi is the inverse of the variance of the posterior distribution of κi,
i = 1, 2, 3. This particular average is one of many that could have been com-
puted, but this issue will be explored later.

D1, D2, and D3 are the difference between the raw agreement probability
and the chance agreement probability for sites 1, 2 and 3, respectively. The
characteristics of the posterior distribution across the three sites are very
consistent, as portrayed by the posterior mean and median of K12 and K13.
The posterior analysis for the partial Kappas of the four scores at each site
were not computed, but are left as an exercise.

As seen, the posterior analysis for overall Kappa was based on the weighted
average, where the weights were the reciprocals of the posterior standard devi-
ations of the individual site Kappas. This is a somewhat arbitrary choice, and
Shoukri [1: 32,33] states three alternatives for the weighted average:

A. Equal weights
B. ωi = ni, the number of observations in stratum i
C. ωi = [var(κi/data)]−1

The var(κi/data) are variances of the posterior distribution of κi, and now
there is the problem of choosing a particular weighting scheme. Which one
should be used for a particular problem? From a frequentist viewpoint, the

TABLE 6.14: CT vs. x-ray: site 2.
CT

X-ray 1 2 3 4 Total
1 297 44 26 12 379
2 37 210 16 2 265
3 20 26 155 7 208
4 12 6 1 65 84
Total 366 286 198 86 936
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TABLE 6.15: CT vs. x-ray: site 3.
CT

X-ray 1 2 3 4 Total
1 185 20 11 4 220
2 15 101 16 2 134
3 8 20 80 7 115
4 8 1 1 15 25
Total 216 142 108 28 494

bias as well as the variance of the estimated (by the posterior mean) should
be taken into account (for more on this, see Barlow [15]).

Shoukri [1], using hypothetical data, analyzes the association between
magnetic resonance imaging (MRI) and ultrasound as a function of lesion
size. The usual approach is to use a weighted Kappa parameter with weights
chosen according to several schemes. The weighted Kappa parameter is given
by Equation 6.10, where the sum of the weights is unity, κi is the usual
Kappa parameter for the ith stratum, and ωi is the weight assigned to the ith
stratum.

6.4.5 Weighted Kappa

A weighted Kappa was introduced earlier to perform a stratified analy-
sis, however, a weighted Kappa is important when ordinal scores are being
assigned to subjects. Recall that ordinal scores are used for computing the
ROC area when a gold standard is available. The basic idea is to assign a
weight to each cell of the table where the weight signifies the importance
attached to the degree of difference assigned by the raters. Consider the exam-
ple of the two psychiatrists assigning a degree of depression score to patients
(Table 6.17).

When the two agree, a larger weight is assigned to that cell compared to
a cell where they disagree, that is, the Kappa value should account for the

TABLE 6.16: Posterior analysis for x-ray and CT.
Parameter Mean sd 2 1/2 Median 97 1/2
K12 −0.0296 0.02761 −0.0836 −0.0297 0.0244
K13 0.0008812 0.03367 −0.0643 0.000677 0.0676
κ 0.6508 0.01245 0.6266 0.6509 0.675
κ1 0.6391 0.0197 0.6004 0.6393 0.677
κ2 0.6688 0.0194 0.6298 0.6691 0.7059
κ3 0.6382 0.0274 0.5828 0.6385 0.6908
D1 0.4464 0.0146 0.4175 0.4466 0.4748
D2 0.4689 0.0144 0.44 0.4691 0.4965
D3 0.4323 0.0191 0.3941 0.4324 0.4964
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TABLE 6.17: Agreement for depression.
Psychiatrist 2

Psychiatrist 1 1 2 3 Total
1 11 (1) 2 (0.5) 19 (0) 32
2 1 (0.5) 3 (1) 3 (0.5) 7
3 0 (0) 8 (0.5) 82 (1) 90
Total 12 13 104 129

Source: From Von Eye, A. and Mun, E.Y. Analyzing Rater Agreement, Manif-
est Variable Methods. Lawrence Erlbaum, Mahwah, NJ, and London, 2005,
P. 50, Table 2.8, with permission of T&F.

weights assigned to the cells as:

κw =
i=k∑
i=1

j=k∑
j=1

ωij (θij − θi.θ.j)

/
1 −

i=k∑
i=1

j=k∑
j=1

ωij θi.θ.j


 , (6.11)

where ωij is the weight assigned to the ij th cell of the table. When Cohen [11]
introduced this index, he required: (a) 0 ≤ ωij ≤ 1, and (b) ωij be a ratio.
By (b) is meant that if one weight is given a value of 1, then a weight of 1/2
is a value that is half that of (a) in value. Also, note that when ωii = 1 for
all i, and ωii = 0 otherwise, the weighted Kappa reduces to the usual Kappa
parameter.

Von Eye and Mun [2] assign the weights enclosed in parentheses in
Table 6.17. Thus, if the two psychiatrists agree that the assigned weight is 1,
while disagreeing by exactly one unit, the assigned weight is 0.5, and for all
other disagreements, the assigned weight is 0.

In order to execute a Bayesian analysis, I used a burn in of 5,000 observa-
tions, generated 50,000 observations from the posterior distribution of the
parameters, and used a refresh of 100. The posterior analysis is given in
Table 6.18.

The posterior mean of 0.3866 differs from the estimated Kappa of 0.402
stated by Von Eye and Mun, however, they are still very close. Also, the
posterior mean of the weighted Kappa differs from a value of 0.375 for the
unweighted Kappa of Table 3.5 from Von Eye and Mun. The following code
will perform the posterior analysis reported in Table 6.18.

TABLE 6.18: Posterior analysis for weighted Kappa.
Parameter Mean sd Error 2 1/2 Median 97 1/2
agree 0.7826 0.0314 <0.0001 0.7177 0.7838 0.8405
cagree 0.6451 0.0310 <0.0001 0.5854 0.6447 0.7068
d 0.1375 0.0310 <0.0001 0.0799 0.1363 0.2014
κw 0.3866 0.0764 <0.0001 0.2366 0.387 0.5354
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BUGS CODE 6.4

Model;
{

# generates Dirichlet Distribution
g[1,1]∼dgamma(12,2); g[1,2]∼dgamma(3,2); g[1,3]∼dgamma(20,2);
g[2,1] ∼dgamma(2,2); g[2,2] ∼dgamma(4,2); g[2,3]∼dgamma(4,2;
g[3,1]∼dgamma(1,2); g[3,2]∼dgamma(9,2); g[3,3]∼dgamma(83,2);
h<- sum(g[,]) ;
for( i in 1 : 3 ) {for( j in 1 :3 ){ theta[i,j]<-g[i,j]/h }}
theta1.<-sum(theta[1,]); theta.1<-sum(theta[,1]);
theta2.<-sum(theta[2,]); theta.2<-sum(theta[,2]);
theta3.<-sum(theta[3,]); theta.3<- sum(theta[,3]);

# kappa is weighted kappa
kappa<- (agree-cagree)/(1-cagree);
agree<-

w[1,1]*theta[1,1]+w[1,2]*theta[1,2]+w[1,3]*theta[1,3]+w[2,1]*theta[2,1]
+w[2,2]*theta[2,2]+w[2,3]*theta[2,3]+w[3,1]*theta[3,1]+w[3,2]*theta[3,2]
+w[3,3]*theta[3,3];

cagree<-
w[1,1]*theta1.*theta.1+w[1,2]*theta1.*theta.2+w[1,3]*theta1.*theta.3
+w[2,1]*theta2.*theta.1+w[2,2]*theta2.*theta.2+w[2,3]*theta2.*theta.3
+w[3,1]*theta3.*theta.1+w[3,2]*theta3.*theta.2 +w[3,3]*theta3.*theta.3;

d<-agree-cagree ;
}
list(g = structure(.Data = c(2,2,2,2,2,2,2,2,2),.Dim = c(3,3)))
list(w = structure(.Data = c(1,.5,0,.5,1,.5,0,.5,1),.Dim = c(3,3)))

Note that the first list statement contains the initial values of the g vector of
gamma values, while the second includes the data for the vector of weights, w.
Obviously, the assignment of weights is somewhat arbitrary, resulting in many
possible estimates of weighted Kappa for the same dataset.

One set of weights advocated by Fleiss and Cohen [16] is

ωij = 1 − (i− j)2/(k − 1)2, i, j = 1, 2, . . . , k, (6.12)

where k is the number of scores assigned by both raters. With this assignment
of weights to the cells, weighted Kappa becomes an intraclass Kappa, a mea-
sure of agreement that will be explained in the following section, along with
some additional assumptions that are needed to define the index.

6.4.6 Intraclass Kappa

The intraclass correlation for the one-way random model is well known as
an index of agreement between readers assigning continuous scores to subjects,
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however, the intraclass Kappa for binary observations is not as well known.
The intraclass Kappa is based on the following probability model. Let

P (Xij = 1) = π, (6.13)

for all i = 1, 2, . . . , c and j = 1, 2, . . . , ni, i 	= j, where Xij is the response of the
jth subject in the ith group, and suppose the responses from different groups
are independent; assume the correlation between two distinct observations in
the same group is ρ.

Thus, the intraclass correlation measures a degree of association. Other
characteristics of the joint distribution are

P (Xij = 1, Xil = 1) = θ11 = π2 + ρπ(1 − π),
P (Xij = 0, Xil = 0) = θ00 = (1 − π)[(1−π) + ρπ], (6.14)
P (Xij = 0, Xil = 1) = P (Xij = 1, Xil = 0) = π(1 −π)(1 − ρ) = θ01 = θ10,

where j 	= l, i = 1, 2, . . . , c, and j = 1, 2, . . . , ni.
Note that this model induces some constraints on the joint distribution,

where the two probabilities of disagreement are the same, and the marginal
probabilities of all raters are the same. For this model, the subjects play the
role of raters, there may be several raters, and the raters may differ from group
to group. Also, all pairs of raters for all groups have the same correlation!
Table 6.19 shows the relation between the θij parameters and π and ρ deter-
mined by Equation 6.14.

Under independence ρ = 0, the probability of chance agreement is π2 +
(1 − π)2 = 1 − 2π(1 − π), thus a Kappa type index is given by

κI = {[1 − 2π(1 − π)(1 − ρ)] − [1 − 2π(1 −π)]}/{1 − [1 − 2π(1 −π)]}
= ρ. (6.15)

The likelihood function as a function of θ = (θ00, θ01, θ11) is

L(θ) ∝ θn00
00 θ

(n01+n10)
01 θn11

11 , (6.16)

where nij are the observed cell frequencies. This is the form of a multinomial
experiment with four cells, but with three cell probabilities, because θ01 = θ10.

As an example, consider the study shown in Table 6.20, with five groups
and five subjects per group. What is the common correlation between the
subjects? The corresponding frequency table is Table 6.21. This table is con-
structed by counting the number of pairs within a group where xij = k,

TABLE 6.19: Cell probabilities for intraclass Kappa.
0 1

0 (1 − π)2 + ρπ(1 − π) = θ00 π(1 −π)(1 − ρ) = θ01
1 π(1 − π)(1 − ρ) = θ10 π2 + ρπ(1 −π) = θ11
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TABLE 6.20: Five
groups and 15 subjects.

Group Response
1 1, 1, 1, 1, 1
2 0, 1, 0, 1, 0
3 1, 1, 0, 0, 1
4 1, 1, 1, 0, 0
5 0, 0, 1, 1, 1

xij = m, where k,m = 0 or 1, i = 1, 2, 3, 4, 5, j, l = 1, 2, 3, 4, 5, and j 	= l. By
definition,

κI = cov(Xij , Xil)
/√

var(Xij )var(Xil), (6.17)

Cov(Xij , Xil) = E(Xij Xil) − E(Xij )E(Xil)

= θ11 − π2.

Also, var(Xij ) = π(1 − π), thus

κI = (θ11 −π2)/π(1 − π). (6.18)

Using a uniform prior for the cell probabilities, the following BUGS CODE 6.5
presents the posterior distribution of the interclass Kappa, and the statement
for Kappa is from Equation 6.18.

BUGS CODE 6.5

model
{

phi∼dbeta(1,1)
for( i in 1 : 5) {
for( j in 1 : 5 ) {
Y[i , j] ∼ dbern(phi)}}
theta11∼dbeta(20,30)
kappa<-(theta11-phi*phi)/phi *(1-phi)

}
list(Y= structure( .Data=c(1,1,1,1,1,
0,1,0,1,0,1,1,0,0,1,1,1,1,0,0,
0,0,1,1,1), .Dim=c(5,5)))
list(theta11=.5 )

The posterior mean of the intraclass Kappa is 0.02546(0.0995), median
−0.00137, and a 95% credible interval of (−0.0853, 0.2883), indicating a weak
agreement between pairs of subjects of the groups. The posterior mean(sd)
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TABLE 6.21: Cell frequencies.
Intraclass Kappa

X = 0 X = 1 Total
X = 0 6 11 17
X = 1 13 20 33
Total 19 31 50

of π is 0.6295(0.0911). The first list statement is the data from Table 6.20,
while the second list statement defines the starting values of theta11. Note
that theta11 is given a beta(20, 30) posterior density, which implies the prior
for theta11 is

g(θ11) = θ−1
11 (1 − θ11)−1, (6.19)

an improper distribution.
Twenty-five thousand observations are generated from the posterior dis-

tribution, with a burn in of 1000 and a refresh of 100. Note that the MCMC
error is <0.0001 for all parameters in the model.

This is a hypothetical example with equal group sizes. Often, however,
the groups differ in size, such as in heritability studies, where the groups cor-
respond to litters and the groups consist of littermate offspring that share
common traits. The binary outcomes designate the presence or absence of the
trait.

Development of the intraclass Kappa is based on the constant correlation
model described by Mak [17]. The constant correlation model is a special
case of the beta-binomial model, which will be used for the following exam-
ple. (See Kupper and Haseman [18] and Crowder [19] for some non-Bayesian
approaches using the beta-binomial model as the foundation. Other sources
for information about intraclass Kappa type indices are Banerjee et al. [20]
and Bloch and Kraemer [21].)

Paul [22] presents an example where the intraclass Kappa can be used
to estimate the agreement between pairs of fetuses affected by treatment.
There are four treatment groups, and several litters are exposed to the same
treatment, where each litter consists of live Dutch rabbit fetuses, among which
a number respond to the treatment. What is the correlation between the
binary responses (yes or no) to treatment? For each treatment group, an
intraclass Kappa can be estimated, then the four compared. In order to do
this, two models will be the basis for the analysis: (a) the constant correlation
model seen earlier, and (b) the beta-binomial model, which is a generalization
of the constant correlation model. For this study, Paul reported the data given
in Table 6.22, where 1 = control group, 2 = low dose, 3 = medium dose, and
4 = high dose. In the high-dose group, there are 17 litters, with the first litter
having 9 live fetuses and 1 responding to treatment, while the second litter
of 10 has 0 responding. For this treatment group: n00 = 135, (n01 + n10) = 78,
n11 = 17, for a total of 230.
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TABLE 6.22: Response to therapy of Dutch rabbit fetuses.
1 x 1 1 4 0 0 0 0 0 1 0 2 0 5 2 1 2 0 0 1 0 0 0 0 3 2 4 0

n 12 7 6 6 7 8 10 7 8 6 11 7 8 9 2 7 9 7 11 10 4 8 10 12 8 7 8
2 x 0 1 1 0 2 0 1 0 1 0 0 3 0 0 1 5 0 0 3

n 5 11 7 9 12 8 6 7 6 4 6 9 6 7 5 9 1 6 9
3 x 2 3 2 1 2 3 0 4 0 0 4 0 0 6 6 5 4 17 0 3 6

n 4 4 9 8 9 7 8 9 6 4 6 7 3 13 6 8 11 6 10 6

Source: From Paul, S.R. Biometrics, 38, 361, 1982. With permission.
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TABLE 6.23: Posterior analysis for Dutch rabbit fetuses.
Parameter Mean sd 2 1/2 Median 97 1/2
κI 0.09075 0.1063 −0.0752 0.0766 0.3429
π 0.2262 0.0403 0.1521 0.2245 0.3103
θ11 0.074 0.0172 0.0435 0.0727 0.1110

BUGS CODE 6.3 was revised and executed to give Table 6.23, which pro-
vides the posterior analysis of the intraclass Kappa for the high-dose treatment
group. The program is executed assuming a uniform prior and using 25,000
observations for the simulation, with a burn in of 5,000 and a refresh of 100.
The MCMC error is very small, <0.0001 for all parameters (Table 6.23).

Thus, there is a low correlation between responses (yes or no) of live fetuses
in the same litter, with a 95% credible interval of (−0.0752, 0.3429), and the
posterior mean of π estimates the probability that a fetus will respond to a
high dose as 0.22(0.04). The Bayesian results can be compared to the conven-
tional values calculated from formula 2.4 in Shoukri [1: 27], and is 0.081525
for the estimated intraclass correlation, with an estimated standard deviation
of 0.071726. Also, the conventional estimate of π is 0.2434, thus the Bayesian
results differ, but there is very little difference. In fact, the posterior median
of 0.0766 is very close to the conventional estimate.

6.5 Other Measures of Agreement

The two standard references on measures of agreement are Shoukri [1]
and Von Eye and Mun [2]. Their presentations have a lot in common, but
they also differ is some respects. Shoukri gives a very complete account of
the many measures of agreement in Chapter 3, while Von Eye and Mun place
heavy emphasis on the log-linear model, which is barely mentioned by Shoukri.
The majority of the material in this section is based mostly on Shoukri [1] and
Von Eye and Mun [2], but their developments are not Bayesian, and they give
many examples, from which we draw to illustrate the Bayesian counterpart.

The G coefficient and the Jacquard index will be the subject of this section.
The G coefficient and the Jacquard index are not well known, and are very
rarely used in agreement studies, but do have some attractive properties. Very
little is known about the Jacquard coefficient, but it is given by Shoukri [1] as

J = θ11/(θ11 + θ01 + θ10), (6.20)

an index that ignores the (0,0) outcome, and is the proportion of (1,1) out-
comes among the three cell probabilities. I cannot find any references to this
coefficient, but it has the property that 0 ≤ J ≤ 1, and if there is perfect
agreement J = 1, but if there is perfect disagreement J = 0.
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TABLE 6.24: Posterior analysis of indices of agreement.
Parameter Mean sd Error 2 1/2 Median 97 1/2
G 0.5715 0.0558 <0.0001 0.459 0.5728 0.6759
J 0.3845 0.0550 <0.0001 0.2802 0.3828 0.4955
Kappa 0.0636 0.0919 <0.0001 −0.1199 0.0643 0.2415

Shoukri reports that J is estimated by

J̃ = n11/(n11 + n01 + n10), (6.21)

with an estimated variance of

var(J̃) = J̃2(1 − J̃)/n11. (6.22)

Another adjusted index is the G coefficient defined as

G = (θ00 + θ11) − (θ01 + θ10), (6.23)

and is estimated by

G̃ = [(n00 + n11) − (n01 + n10)]/n, −1 ≤ G ≤ 1, (6.24)

with an estimated variance of (1 − G̃2)/n. Also note that G = 1 if the agree-
ment is perfect, and if there is perfect disagreement, G = −1.

The estimates and their estimated variances depend on the sampling plan
of the 2× 2 table, which is assumed to be multinomial, that is, the n subjects
are selected at random from a well-defined population and fall into the four
categories with the probabilities indicated in Table 5.1.

Suppose the example of Table 6.8 is reconsidered, and the agreement
between the two raters is estimated with Kappa, the Jacquard, the G coeffi-
cient, and their Bayesian counterparts. The posterior analyses for the three
measures of agreement are reported in Table 6.24. These can be compared with
the non-Bayesian estimates: for J , the estimate is 0.38 with a standard error
of 0.055 via Equations 6.22 and 6.24, while 0.57 is the estimate of the G coef-
ficient with a standard error of 0.0558, via Equation 6.24. The Bayesian and
conventional estimates are approximately the same, but they differ because
the three measure different properties of agreement. Kappa indicates very poor
agreement, but Kappa is adjusted for chance agreement, whereas G adjusts
raw agreement by non agreement. The Bayesian analysis is based on:

BUGS CODE 6.6

Model;
{

g00∼dgamma(a00,b00); g01∼dgamma(a01,b01);
g10∼dgamma(a10,b10); g11 ∼dgamma(a11,b11);
h<- g00+g01+ g10 +g11; theta00<-g00/h;
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theta01<-g01/h; theta10<-g10/h; theta11<-g11/h;
theta0.<-theta00+theta01; theta.0<-theta00+theta10;
theta1.<-theta10+theta11; theta.1<-theta01+theta11;
kappa<- (agree-cagree)/(1-cagree); g<-agree-cagree;
c<- (1/2)*(theta11/(theta11+theta01) +theta11/(theta11+theta10));
J<-theta11/(theta11+theta10+theta01); agree <-theta11+theta00;

cagree<-theta1.*theta.1+theta0.*theta.0;
}
list( a00 = 22, b00 = 2, a01 = 15, b01=2, a10= 33 , b10=2, a11=30 , b11=2)

list( g00 = 2, g01 =2, g10 =2, g11=2)

which is executed with 25,000 observations, 1,000 for the burn in, and a refresh
of 100. An improper prior

g(θ) ∝
i,j=2∏
i,j=1

θ−1
ij , (6.25)

is also assumed for the Bayesian analysis, which implies that the Bayesian and
conventional analyses will provide very similar estimates and standard errors.
Note that an improper prior like Equation 6.5 can be used if there are no cells
with a zero count, and if some of the cells have zero counts, a uniform prior
may be used when very little prior information is available.

6.6 Agreement and Test Accuracy

When a gold standard is present, two or more raters are compared with ref-
erence to the gold standard, not to each other, as demonstrated in Sections 6.2
and 6.3. If the readers are judging the severity of disease, the gold standard
provides an estimate of disease prevalence, and the effect of prevalence on
measures of agreement can be explored, but there are situations where raters
are judging disease and no gold standard is available. Judges and readers need
to be trained, and frequently the gold standard provides the way to do this
efficiently. However, in other cases, such as in gymnastics, judges are trained
with reference to more experienced people, because a gold standard is not
available.

Consider a case where two radiologists are being trained with ultrasound
to diagnose prostate cancer, where they either identify the presence of disease
or of no disease. The lesion tissue from the patient is sent to pathology where
the disease is either detected or declared not present. The pathology report
serves as the gold standard. If the same set of 235 lesions is imaged by both
radiologists, then how should the two be compared? One approach is to esti-
mate a measure of agreement between the radiologist and pathology for both
radiologists and compare them.
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TABLE 6.25a: Radiologist 1: prostate cancer with
ultrasound.

Pathological stage

Radiologist 1 No disease = 0 Disease = 1 Total
No disease = 0 85 25 110
Disease = 1 15 110 125
Total 100 135 235

TABLE 6.25b: Radiologist 2: prostate cancer with
ultrasound.

Pathological stage

Radiologist 2 No disease = 0 Disease = 1 Total
No disease = 0 2 85 87
Disease = 1 98 50 148
Total 100 135 235

With the improper prior density (Equation 6.25), the Bayesian analysis
based on Tables 6.25a and b is executed with WinBUGS and the output is
reported in Table 6.26.

There is an obvious difference in agreement between the two radiologists
relative to pathology based on Kappa and the G coefficient. The second radiol-
ogist is a beginner and is a very inexperienced resident in diagnostic radiology.

Another approach is to estimate the diagnostic accuracy of each radiologist
with the sensitivity, specificity, or ROC area of ultrasound, where pathology
is the gold standard. If disease detected is the threshold for diagnosis, the
sensitivity of ultrasound with the first radiologist is 0.814 and 0.370 with the
second, and one would conclude that the first radiologist is doing a much
better job than the second radiologist. In fact, the first radiologist is a very
experienced diagnostician. What is the effect of disease incidence on Kappa?

Shoukri [1: 35] provides a value of Kappa, the agreement between the
two radiologists, based on disease incidence, sensitivity, and specificity. The
dependence of Kappa on these measures of test accuracy was formulated by

TABLE 6.26: Posterior analysis for two radiologists.
Parameter Mean sd 2 1/2 Median 97 1/2
κ1 0.6555 0.0492 0.5541 0.6575 0.7458
κ2 −0.6156 0.04101 −0.3389 −0.2971 −0.2527
G1 0.3237 0.0246 0.2731 0.3245 0.3692
G2 −0.2968 −0.0221 −0.3389 −0.2972 −0.2527
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Kraemer [23] and later by Thompson and Walter [24] and is given by

κtw = 2θ(1 − θ)(1 − α1 − β1)(1 − α2 − β2)/[π1(1 −π1) + π2(1 − π2)], (6.26)

where θ, as determined by the gold standard, is the proportion with disease,
πi is the proportion having disease according to rater i, 1 − αi is the sensitivity
of rater i, and 1− βi is the specificity of rater i. Based on Tables 6.25a and b,
a quick calculation for an estimate of κtw is −0.65667, thus the two radiologists
have very poor agreement (relative to each other), which in view of Table 6.26
(they had poor agreement relative to the gold standard) is not a surprise.
It should be noted that κtw is often not relevant because a gold standard is
not available. When a gold standard is available, the agreement between the
readers should be assessed by comparing the readers’ measures of accuracy,
as demonstrated in Sections 6.2 and 6.3.

The dependence of Kappa on disease incidence shows that the two raters
can have high sensitivity and specificity, nevertheless Kappa can be small.
It all depends on the disease incidence, which if small, can produce a low
value of κtw . A similar phenomenon occurs in diagnostic testing, when a test
can have high sensitivity and specificity, but because of low disease incidence,
the positive predictive value is low.

How should the Bayesian analysis for estimating κtw be performed? One
approach is to treat the scores of the two radiologists as independent and
find their posterior distribution based on Equation 6.26, where θ is the inci-
dence of disease estimated from either table, πi the proportion having disease,
according to rater i, and is estimated from Table 6.25a. Also, 1 − α1, the sensi-
tivity of rater 1, is estimated by θ11/θ.1, (see Table 6.25b), and the specificity
of rater 2, 1− β2, is estimated by φ10/φ.0, etc. The posterior distribution of
all the terms in Equation 6.26 and consequently for κtw , is determined from
the following:

BUGS CODE 6.7

model;
{
g00∼dgamma(a00,b00); g01∼dgamma(a01,b01); g10∼dgamma(a10,b10);
g11∼dgamma(a11,b11);
h<- g00+g01+ g10 +g11 ; theta00<-g00/h;
theta01<-g01/h; theta10<-g10/h; theta11<-g11/h;
theta0.<-theta00+theta01; theta.0<-theta00+theta10;
theta1.<-theta10+theta11; theta.1<-theta01+theta11;
p00∼dgamma(c00,d00); p01∼dgamma(c01,d01); p10∼dgamma(c10,d10);
p11∼dgamma(c11,d11);
q<-p00+p01+p10+p11; phi00<-p00/q;
phi01<-p01/q; phi10<-p10/q; phi11<-p11/q;
phi0.<-phi00+phi01; phi.0<-phi00+phi10;
phi1.<-phi10+phi11; phi.1<-phi01+phi11 ;
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FIGURE 6.2: Posterior density of κtw .

kappatw<-k11/k12; k11<-2*(theta.1)*(1-theta.1)*(1-theta01/theta.1-
theta10/theta.0)*(1-phi01/phi.1-phi10/phi.0);

k12<-theta1.*(1-theta1.)+ phi1.*(1-phi1.);
}
list( a00 =85, b00 = 2, a01 = 25, b01=2, a10= 15, b10=2, a11=110 , b11=2,

c00 =2, d00 = 2,c01 = 85, d01=2, c10= 98, d10=2, c11=50 , d11=2)
list( g00 = 2, g01 =2, g10 =2, g11=2, p00 = 2, p01 =2, p10 =2, p11=2)

The theta parameters refer to Table 6.25a, while the phi parameters corre-
spond to the entries of Table 6.25b, and the Kappa parameter κtw is referred
to as kappatw in the above statements. I computed the posterior mean of κtw
as −0.4106 (0.04013), a median of −0.4105, and a 95% credible interval of
(−0.49,−0.3325), indicating very poor agreement between the two radiolo-
gists. Utilizing 25,000 observations generated from the posterior distribution
of κtw , with a burn in of 1,000, a refresh of 100, and the MCMC error is
<0.0001 produces Figure 6.2, a graph of the posterior density of κtw .

6.7 Kappa and Association

Obviously, agreement is a form of association between raters, and the word
association is ubiquitous in the statistical literature. It can be argued that the
goal of most, if not all, statistical methods is to demonstrate an association, or
lack thereof, between various experimental variables. By itself, the term asso-
ciation is often used in an informal way. In the context of a 2 × 2 table, the
way to test for no association is to test the hypothesis that the marginal prob-
abilities of the raters are the same. Our last version of Kappa is in the context
of association, when the marginal distributions of the two raters are not the
same as represented in Table 6.27, where θ1 = P (X1 = 1), θ2 = P (X2 = 1),
and φi = 1 − θi, i = 1, 2. It can be shown that

γ = ρ
√

θ1θ2φ1φ2, (6.27)
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TABLE 6.27: Cell probabilities of two
raters.

Rater 2

Rater 1 X2 = 0 X2 = 1
X1 = 0 φ1φ2 + γ = λ00 φ1θ2 − γ = λ01
X1 = 1 φ2θ1 − γ = λ10 θ1θ2 + γ = λ11

where ρ is the correlation between X1 and X2, and the chance corrected Kappa
under the above distribution for the two raters is

κa = 2ρ
√

θ1θ2φ1φ2/[θ1φ2 + θ2φ1]. (6.28)

This derivation of κa is found in Shoukri [1: 30], who references Bloch and
Kraemer [21], who give a complete account of measures of agreement and
association.

Note that

ρ = (λ11 − θ1θ2)/
√

θ1φ1 + θ2φ2, (6.29)

where θ1 = λ1. and θ2 = λ.1.
Under a multinomial sampling scheme for the 2× 2 table of outcomes, the

cell probabilities have a Dirichlet (n00 + 1, n01 + 1, n10 + 1, n11 + 1) distribu-
tion under a uniform prior density. This induces a prior distribution for θi and
hence for the correlation coefficient ρ and also for γ, thus, these distributions
should be determined and examined to see if they are compatible with the
investigator’s prior information about these particular parameters.

Suppose that the outcomes for two raters are represented by Table 6.28,
where the probability of success is estimated as 25/125 = 0.2 for rater 2 and
90/125 = 0.72 for rater 1, an obvious case of no association between the two
raters. What is the posterior distribution of κa? I generated 15,500 observa-
tions from the joint posterior distribution of κa and ρ, and a burn in of 500
with a refresh of 500; the results are shown in Table 6.29.

In order to determine if there is an association between the two raters, the
posterior distribution of d = λ1. − λ.1 should be determined. From Table 6.29,
the posterior means of κa and ρ imply a weak agreement between the two

TABLE 6.28: Kappa in the
context of association.

Rater 2

Rater 1 0 1 Total
0 30 5 35
1 70 20 90
Total 100 25 125
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TABLE 6.29: Posterior analysis for κa.
Parameter Mean sd 2 1/2 Median 97 1/2
κa 0.0503 0.0472 −0.0476 0.0516 0.1406
ρ 0.0883 0.0799 −0.0839 0.0932 0.2294
d 0.5205 0.0509 0.4183 0.522 0.6168

readers, and the posterior analysis reveals that there is no, or very little, asso-
ciation between the two. It can be verified that the posterior distribution of
the usual Kappa is the same as κa.

Shoukri [1] also states that the maximum likelihood estimation (MLE)
of κa is

κ̃a = 2(n11n00 − n10n01)/[(n11 + n10)(n00 + n10) + (n11 + n10)(n00 + n10)],

which, using the information from Table 6.28, determines an estimate of
0.0506, which is almost the same as the posterior mean.

6.8 Consensus

Many agreement situations involve a method to come to a conclusion. For
example, in boxing, the rules of the contest determine a definite conclusion
about the outcome of the contest. If the bout goes the limit without a knockout
or technical knockout, one of three things can occur: (1) fighter A wins or
(2) fighter B wins or (3) the contest is ruled a draw. Or, as in a jury trial,
each juror has an opinion as to guilt or innocence, and one of three outcomes
will happen: (a) the defendant is guilty or (b) the defendant is innocent or
(c) there is a hung jury.

Still another example is figure skating, where skaters perform at three
events (compulsory figures, the short program, and the long), and for each
event the skater receives a score from a panel of judges. Finally, each receives
a final score and the winner is the skater with the highest total score. How
they are scored is governed by the rules of the skating association. The rules
can be quite involved, however, there is a mechanism to come to a consensus.

Reviewing and editing papers submitted to a scientific journal involves
coming to a consensus about the acceptance of the paper for publication.
The consensus revolves around the editor who receives input from a panel of
reviewers and, sometimes, other editors, but somehow a final decision is made.
The paper can be accepted with or without revision, rejected, etc., depending
on the rules set down by the journal’s editorial board.

In Phase II clinical trials, a panel of radiologists declares for each patient
that the response to therapy is in one of four categories: a complete response,
a partial response, progressive disease, or stable disease. How does this panel
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resolve the individual differences between the radiologists? That is a good
question!

Some statistical approaches study the way that people come to a consen-
sus. For example, DeGroot [25] addresses this issue, which is briefly described
as follows. A group of individuals must work jointly and each has their own
subjective probability distribution about an unknown parameter. DeGroot
describes how the group might come to a decision about a common probabil-
ity distribution for the parameter by combining their individual opinions. The
process is iterative, where each individual revises their own subjective prob-
ability distribution by taking into account the opinions of the other judges.
The author describes how the iterative process might converge, how a consen-
sus is reached, and how the process is related to the Delphi technique. (For
additional information about statistical consensus methods, see Winkler [26].)

Is the DeGroot method applicable to the Phase II trial example given
above? If applied, apparently a common probability distribution among the
panel of radiologists would be agreed on. This distribution would place a prob-
ability on each of the four possible outcomes: a complete response, a partial
response, progressive disease, or stable disease. This could be very helpful,
because if one outcome had a high probability, presumably the panel would
agree to label that particular outcome to the patient. On the other hand, if the
consensus distribution is uniform, another mechanism is necessary in order to
label the patient’s outcome.

6.9 Agreement with Multiple Raters and
Ordinal Scores—No Gold Standard

With more than two raters, the determination of agreement becomes much
more complicated. How should one measure agreement among three or more
raters? One could use an overall measure, like Kappa, in order to estimate per-
fect agreement, corrected for chance, or, one could estimate all pairwise agree-
ments with Kappa, then take an average of them. And, as seen in the last
chapter, one could estimate a common intraclass correlation between all raters.
Yet another possibility with multiple raters is to introduce the idea of partial
agreement, say among six raters, and measure the agreement between five,
four, and three raters. What is the role of conditional type Kappa measures
with multiple raters? When the scores are ordinal, how should the weights
be defined for a weighted Kappa? In some situations, it is obvious how to
generalize the Kappa for a 2× 2 table to multiple scores and raters, but not
so obvious in other cases.

The Bayesian approach to measuring agreement is continued with several
interesting examples. For example, six pathologists studying Crohn’s disease
are asked to identify (yes or no) lesions in 68 biopsy specimens. This example
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illustrates the complexity involved when there are multiple raters. Several
issues not addressed earlier are considered with this example, including: (1) Is
there an overall general measurement of agreement for six readers? (2) How is
the problem of partial agreement to be met? For example, how does one mea-
sure partial agreement between five of the six pathologists? (3) Can one use
a weighted Kappa by averaging all pairwise Kappas, and what is the optimal
weighting scheme? (4) Should a modeling approach be taken? The example is
based on a study by Rogel, Boelle, and Mary [27], who cite Theodossi et al. [28]
with an earlier analysis of the data.

Another example with several raters and a binary response serves to exem-
plify the complexity of analyzing such information. Shoukri [1: 50], in his
Table 4.4, presents an example of four veterinary students from a college in
Ontario, who are asked to identify foals that have a cervical vertebral malfor-
mation. They each examine 20 x-rays and score each as either affected, des-
ignated by 1, or not affected, scored as a 0. Shoukri’s analysis consists of
testing for inter rater bias via Cochran’s test and estimating the intraclass
correlation coefficient with the one-way ANOVA. The Bayesian approach will
be compared to his conventional analysis and the approach extended in order
to answer questions about partial agreement and Kappa in the context of
association.

A third example, from Williams [29], involves multiple raters and outcomes
by the College of American Pathologists, who conducted a reliability test with
four laboratories and three classifications for each pathology specimen. How
reliable is the testing of these laboratories? The laboratories are the raters,
and the analysis is presented by Shoukri [1: 56], who based his examination on
Fleiss [5], who developed a Kappa type index, κmc , which was further studied
by Landis and Koch [30] for its relation to intraclass Kappa.

Chapter 6 continues with presentations about weighted Kappa, conditional
Kappa, agreement with many raters and ordinal scores, stratified Kappa, the
intraclass Kappa, a generalization of the G coefficient, and agreement indices
in the context of association. Thus, Chapter 6 is seen as a generalization of
Chapter 5, which greatly expands the scope of the Bayesian approach to the
subject.

Finally, it should be pointed out that it is just as important to focus on
disagreement between raters. Often, more emphasis is placed on agreement,
however, in any given real problem, one will usually find more disagreement
than agreement, especially so when multiple raters and multiple outcomes are
encountered. What is a good index of disagreement?

6.9.1 Kappa with many raters

There are several ways to define a measure of overall agreement between
multiple raters, and two approaches will be taken: (1) a generalization of
Kappa from 2× 2 tables, and (2) an average of the Kappas for all pairs of 2 × 2
tables. The details of both approaches and the issues that are raised follow.
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For the first approach, suppose each m rater assigns scores to all n subjects
using a nominal response with c outcomes labeled 1, 2, . . . , c, then an overall
Kappa can be defined for m = c = 3 as

κ(3, 3) =

[
i=3∑
i=1

θiii −
i=3∑
i=1

θi..θ.i.θ..i

]/ [
1 −

i=3∑
i=1

θi..θ.i.θ..i

]
, (6.30)

which is a chance corrected index for all three agreeing simultaneously at the
three possible outcomes. Of course, it is obvious how to extend Kappa to
κ(m, c) in general for m raters and c scores, where m is a positive integer of
at least 3, and c is a positive integer greater than or equal to 2. It should be
pointed out that this is just one of the possible ways to define an agreement
measure for multiple raters, and this will be addressed in a later section. Note
that θijk is the probability that rater 1 assigns a score of i, rater 2 a score of j,
and rater 3 a score of k, where i, j, k = 1, 2, 3. Assume for the moment that
the n subjects are selected at random from a population so that the study has
the structure of a multinomial experiment.

The first example taken from Shoukri [1: 50] presents the assessment
of cervical vertebral malformation of foals detected by four veterinary stu-
dents who, on the basis of 20 x-rays, report either a 1 for not affected or a 2
for affected. These responses are reported in Table 3.1 of Shoukri et al., and
the appropriate Kappa is

κ(4, 2) =

[
i=2∑
i=1

θiiii −
i=2∑
i=1

θi...θ.i..θ..i.θ...i

]/ [
1 −

i=2∑
i=1

θi...θ.i..θ..i.θ...i

]
. (6.31)

The frequencies that are contained in the 16 categories are presented in
Table 6.30.

Assuming a uniform prior for θijkl, the probability that student A assigns
an i, B a j, C a k, and D an l, the posterior distribution of these parameters is
Dirichlet (4, 1, 3, 1, 4, 1, 1, 1, 1, 2, 2, 1, 3, 2, 1, 8), and the posterior analysis
for κ(4,2) is given in (Table 6.31).

The program is executed with BUGS CODE 6.8 using 45,000 observa-
tions, with a burn in of 1,000 and a refresh of 100. The analysis estimates
κ(4,2) with a posterior mean(sd) of 0.2322(0.0836) and an upper 97.5 per-
centile of 0.4056. The raw agreement of the four students, agreeing on the
outcomes (1,1,1,1) or (2,2,2,2), is 0.333(0.077) with the posterior mean(sd).
A quick calculation based on Table 4.2 gives a raw agreement of 10/20 = 0.5.
The only way they can perfectly agree with the same score is at those two
outcomes. The posterior mean(sd) of theta(1, 1, 1, 1) = 0.1109(0.0512) and of
theta(2, 2, 2, 2) = 0.2227(0.0685).

The parameter d is the difference between the probability of agreement
and the probability of agreement by chance (assuming the four raters are
independent) and implies that there is a difference in the two probabilities that
comprise Kappa42. This parameter is defined as (agree− cagree)/(1 − cagree).
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TABLE 6.30: Agreement of four students.
Students A B C D Frequencies Case
1 1 1 1 3 1
1 1 1 2 0 2
1 1 2 1 2 3
1 2 1 1 0 4
2 1 1 1 3 5
1 1 2 2 0 6
1 2 1 2 0 7
2 1 1 2 0 8
1 2 2 1 0 9
2 1 2 1 1 10
2 2 1 1 1 11
2 2 2 1 0 12
2 2 1 2 2 13
2 1 2 2 1 14
1 2 2 2 0 15
2 2 2 2 7 16

Source: From Shoukri, M.M. Measures of Interobserver Agree-
ment. Chapman & Hall/CRC, Boca Raton, 2004, P. 50,
Table 4.4, with permission of T&F.

The following code does not follow the notation of the above derivation.
Note that theta[1] of the code corresponds to θ1111 and theta[16] corresponds
to θ2222 of the derivation (see Table 6.30).

BUGS CODE 6.8

{
# the following assumes a uniform prior
# Uses information in Table 6.30
# The 16 observations are labeled 1 to 16 from top to bottom
g[1]∼dgamma(4,2); g[2]∼dgamma(1,2);
g[3]∼dgamma(3,2); g[4] ∼dgamma(1,2);
g[5] ∼dgamma(4,2); g[6]∼dgamma(1,2);
g[7]∼dgamma(1,2); g[8]∼dgamma(1,2);
g[9]∼dgamma(1,2); g[10]∼dgamma(2,2);
g[11]∼dgamma(2,2); g[12]∼dgamma(1,2);

TABLE 6.31: Posterior analysis for cervical vertebral malformation.
Parameter Mean sd Error 2 1/2 Median 97 1/2
agree 0.3334 0.0770 <0.0001 0.1924 0.3307 0.4914
cagree 0.1322 0.0198 <0.0001 0.1087 0.126 0.1865
κ(4,2) 0.2322 0.0836 <0.0001 0.0794 0.2289 0.4056
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g[13]∼dgamma(3,2); g[14]∼dgamma(2,2);
g[15]∼dgamma(1,2); g[16]∼dgamma(8,2);
h<- sum(g[ ])
for( i in 1:16){ theta[i]<- g[i]/h}
# The following are the terms for chance agreement
atheta2...<-theta[5]+theta[8]+theta[10]+theta[11]+theta[12]+theta[13]+

theta[14]+theta[16];
atheta.2..<-theta[4]+theta[7]+theta[9]+theta[11]+theta[12]+theta[13]+

theta[15]+theta[16];
atheta..2.<-theta[3]+theta[6]+theta[9]+theta[10]+theta[12]+theta[14]+

theta[15]+theta[16];
atheta...2<-theta[2]+theta[6]+theta[7]+theta[8]+theta[13]+theta[14]+

theta[15]+theta[16];
atheta1...<-theta[1]+theta[2]+theta[3]+theta[4]+theta[6]+theta[7]+

theta[9]+theta[15];
atheta.1..<-theta[1]+theta[2]+theta[3]+theta[5]+theta[6]+theta[8]+

theta[10]+theta[14];
atheta..1.<-theta[1]+theta[2]+theta[4]+theta[5]+theta[7]+theta[8]+

theta[11]+theta[13];
atheta...1<-theta[1]+theta[3]+theta[4]+theta[5]+theta[9]+theta[10]+

theta[11]+theta[12];
kappa42<- (agree-cagree)/(1-cagree)
agree<-theta[1]+theta[16]
cagree<-atheta1...*atheta.1..*atheta..1.*atheta...1

+atheta2...*atheta.2..*atheta..2.*atheta...2
d<- agree-cagree
}
# initail values
list(g = c(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2))

6.9.2 Partial agreement

Another multi rater example with binary scores is presented to demon-
strate the Bayesian approach to estimating partial agreement between six
pathologists, who examined the presence of epithelioid granuloma in 68 intesti-
nal biospy lesions of patients with Crohn’s disease. The study was carried
out by Rogel, Boelle, and Mary [27], using a log-linear model approach.
For the time being, a more basic descriptive approach is proposed. Consider
Table 6.32, where 1 designates the presence and 2 the absence of epithelioid
granuloma. An overall measure of agreement for the six pathologists is

κ(6, 2) = (agree − cagree)/(1 − cagree), (6.32)

where

agree =
i=2∑
i=1

θiiiiii . (6.33)
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TABLE 6.32: Observed frequencies of epithelioid granuloma.
Pathologist

Case A B C D E F Number

1 1 1 1 1 1 1 15
2 1 1 1 1 1 2 0
3 1 1 1 1 2 1 2
4 1 1 1 1 2 2 0
5 1 1 1 2 1 1 2
6 1 1 2 2 2 1 1
7 1 1 2 1 1 1 0
8 1 1 2 1 2 1 0
9 1 1 2 1 2 2 0

10 1 1 2 2 1 1 1
11 1 2 1 1 1 1 0
12 1 2 1 1 1 2 0
13 1 2 1 1 2 1 0
14 1 2 1 1 2 2 1
15 1 2 1 2 2 1 0
16 1 2 2 2 2 2 1
17 1 2 2 1 1 1 0
18 1 2 2 1 1 2 1
19 1 2 2 1 2 1 0
20 1 2 2 1 2 2 0
21 1 2 1 2 2 2 0
22 2 1 1 1 1 1 1
23 2 1 1 1 1 2 0
24 2 1 1 1 2 1 0
25 2 1 1 2 1 1 1
26 2 1 1 2 2 1 1
27 2 1 2 2 2 2 1
28 2 1 2 1 1 1 0
29 2 1 2 1 2 1 0
30 2 1 2 1 2 2 0
31 2 1 1 2 2 2 0
32 2 2 1 1 1 2 0
33 2 2 1 1 2 1 0
34 2 2 1 1 2 2 0
35 2 2 1 2 1 1 3
36 2 2 1 2 2 1 2
37 2 2 1 2 2 2 2
38 2 2 2 1 1 2 0
39 2 2 2 1 2 1 0
40 2 2 2 1 2 2 0
41 2 2 2 2 1 2 2
42 2 2 2 2 2 1 1
43 2 2 2 2 2 2 30

Source: From Rogel, A., Boelle, P.Y., and Mary, J.Y. Global and partial agreement
among several observers. Statistics in Medicine. 1998, 17, 489. Copyright Wiley-VCH
Verlag GmbH & Co. KGaA. Reproduced with permission.
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TABLE 6.33: Agreement of six pathologists.
Parameter Mean sd Error 2 1/2 Median 97 1/2
θ111111 0.2206 0.0498 <0.0001 0.1307 0.2178 0.3257
θ222222 0.4414 0.0597 <0.0001 0.3267 0.4408 0.5595
agree 0.6615 0.0571 <0.0001 0.5461 0.6627 0.7696
cagree 0.0631 0.0268 <0.0001 0.0308 0.0587 0.1316
κ(6,2) 0.6382 0.0598 <0.0001 0.5183 0.6392 0.7521
agree5 0.8088 0.0473 <0.0001 0.7076 0.8118 0.8918
cagree5 0.2072 0.0502 <0.0001 0.1389 0.1984 0.327
κ5(6,2) 0.758 0.0611 <0.0001 0.6266 0.7623 0.8644
GC 0.3241 0.1143 <0.0001 0.0918 0.3269 0.5382
GC5 0.6178 0.0948 <0.0001 0.4146 0.6235 0.7854

is the probability of agreement among the six pathologists, and the probability
of agreement by chance is

cagree =
i=2∑
i=1

θi.....θ.i....θ..i...θ...i..θ....i.θ.....i, (6.34)

where θijklmn is the probability that pathologist 1 assigns a score of i, and
pathologist 6 assigns a score of n, etc., where i, j, k, l, m, n = 1, 2. It can be
verified that the posterior distribution of a Kappa type index κ(6,2) of overall
agreement is given in Table 6.33.

The analysis is based on BUGS CODE 6.9 and executed with 75,000 obser-
vations, with a burn in of 5,000 and a refresh of 100, resulting in MCMC errors
<0.0001 for all parameters.

BUGS CODE 6.9

model
{

# g1 corresponds to the first case
g1∼dgamma(15,2) g3∼dgamma(2,2)
g5∼dgamma(2,2) g6 ∼dgamma(1,2)
g10∼dgamma(1,2)
g14∼dgamma(1,2) g16∼dgamma(1,2)
g18∼dgamma(1,2) g22∼dgamma(1,2)
g25∼dgamma(1,2) g26∼dgamma(1,2)
g27∼dgamma(1,2) g35∼dgamma(3,2)
g36∼dgamma(2,2) g37∼dgamma(2,2)
g41∼dgamma(2,2) g42∼dgamma(1,2)
g43∼dgamma(30,2)

h<- g1+ g3+ g5+ g6 + g10+ g14+ g16+ g18+ g22+ g25+g26+g27+g35+g36
+g37+ g41+g42+g43
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# a1 is the probability of the outcome for case 1
a1<- g1/h; a3<- g3/h; a5<- g5/h; a6<- g6/h; a10<- g10/h;
a14<- g14/h ; a16<- g16/h; a18<- g18/h; a22<- g22/h;
a25<- g25/h ; a26<- g26/h; a27<- g27/h; a35<- g35/h;
a36<- g36/h; a37<- g37/h; a41<- g41/h; a42<- g42/h;
a43<- g43/h ;
agree<- a1+a43
GC<-agree -(1-agree)
# a1..... is the probability that pathologist A assigns a 1 to a lesion
a1.....<- a1+a3+a5+a6+a10+a14+a16+a18
a.1....<- a1+a3+a5+a6+ a10+a22+a25+a26+a27
a..1...<- a1+a3+a5+a14+a22+a25+a26+a35+a36+a37
a...1..<- a1+a3+a14+a18+a22
a....1.<- a1+a5+a10+a18+a22+a25+a35+a41
a.....1<- a1+a3+a5+a6+a10+a22+a25+a26+a35+a36+a42
a2.....<- a22+a25+a26+a27+a35+a36+a37+a41+a42+a43
a.2....<- a14+a16+a18+a35+a36+a37+a41+a42+a43
a..2...<- a6+a10+a16+a18+a27+a41+a42+a43
a...2..<- a5+a6 +a10+a16+a25+a26+a27+a35+a36+a37+a41+a42+a43
a....2.<- a3+a6+a14+a16+a26+a27+a36+a37+a42+a43
a.....2<- a14+a16+a18+a27+a37+a41+a43
# a.....2 is the probability that reader F assigns a score of 2 to a lesion
cagree<- (a1.....*a.1....*a..1...*a...1..*a....1.*a.....1)+

(a2.....*a.2....*a..2...*a...2..*a....2.*a.....2)
# kappa is the index that all six agree
kappa<- (agree-cagree)/(1-cagree)
al5<- a1+a3+a5+a22+a37+a41+a42+a43
#al5 is the probability at least five agree
cal5<- a1.....*a.1....*a..1...*a...1..*a....1.*a.....1+

a1.....*a.1....*a..1...*a...1..*a....2.*a.....1+
a1.....*a.1....*a..1...*a...2..*a....1.*a.....1+
a2.....*a.1....*a..1...*a...1..*a....1.*a.....1+
a2.....*a.2....*a..1...*a...2..*a....2.*a.....2+
a2.....*a.2....*a..2...*a...2..*a....1.*a.....2+
a2.....*a.2....*a..2...*a...2..*a....2.*a.....1+
a2.....*a.2....*a..2...*a...2..*a....2.*a.....2

# cal5 is the probability at least 5 agree by chance
# kappa5 is the index that at least 5 agree
kappa5<-(al5-cal5)/(1-cal5)
GC5<- al5 -(1-al5)

}
list(g1=2, g3=2, g5 =2, g6=2, g14=2, g16=2, g18=2, g22=2, g25=2, g26=2,

g27 =2, g35=2, g36 =2,g37 =2, g41=2, g42=2,g43=2).
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In the above code, a3 denotes the probability of the outcome corresponding
to Case 3 of Table 6.32.

The analysis show a fairly good overall agreement between the six pathol-
ogists based on the Kappa κ(6, 2). Most agreement is when all six concur
30 times on the absence of an epithelioid granuloma, which has a posterior
mean of 0.441 and a 95% credible interval of (0.326, 0.559), while they concur
15 times that an epithelioid granuloma is present, with a posterior mean of
0.2206 and a 95% credible interval of (0.1307, 0.3257). Also, there is very little
evidence that the pathologists are presenting independent scores.

As the number of raters increase, the chances of overall agreement decrease
and it is important to measure partial agreement. For example, when do at
least five of the pathologists agree on either the absence or presence of the
condition?

Suppose the agreement of at least five of the pathologists is measured by
a chance type Kappa parameter κ5(6,2) = (a15− cal5)/(1 − cal5), where

a15=a1+a3+a5+a10+a22+a37+a41+a42+a43

and

cal5= a1.....*a.1....*a..1...*a...1..*a....1.*a.....1+
a1.....*a.1....*a..1...*a...1..*a....2.*a.....1+
a1.....*a.1....*a..1...*a...2..*a....1.*a.....1+
a2.....*a.1....*a..1...*a...1..*a....1.*a.....1+
a2.....*a.2....*a..1...*a...2..*a....2.*a.....2+
a2.....*a.2....*a..2...*a...2..*a....1.*a.....2+
a2.....*a.2....*a..2...*a...2..*a....2.*a.....1+
a2.....*a.2....*a..2...*a...2..*a....2.*a.....2.

Note, a1..... is the probability that pathologist A assigns a score of 1 to a
lesion, while a.....2 is the probability that pathologist F assigns a score of 2 to
a lesion.

The a15 parameter is the raw probability that at least five agree and cal5
is the probability that at least five agree, assuming all six are giving indepen-
dent scores. Table 6.34 also shows the posterior analysis for the agreement
of at least five pathologists. Exactly five agree (at either 1 or 2) for cases
3, 5, 10, 22, 41, and 42 of Table 6.32, with frequencies 2, 2, 1, 1, 2, and 1,
respectively. All six agree for cases 1 and 43 with frequencies 15 and 30,

TABLE 6.34: Posterior analysis for split agreement.
Parameter Mean sd 2 1/2 Median 97 1/2
GCS −0.7942 0.0729 −0.9142 −0.8019 −0.6311
agrees 0.1029 0.0364 0.0428 0.0990 0.1844
cagrees 0.0723 0.0114 0.0473 0.0734 0.0915
Kappas 0.03292 0.0389 −0.0331 0.0294 0.1178
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respectively. A quick calculation shows a raw probability of 8/68 = 0.1117 for
the probability that exactly five agree and a probability of 0.794 that at least
5 agree. These results agree very well with the corresponding posterior means
of Table 6.34.

Another approach to partial agreement is to ask: when do the pathologists
disagree the most? Of course, when they split 3–3, that is when three patholo-
gists agree for the absence of epithelioid granuloma and when the other three
agree for the presence of granuloma or vice versa. This occurs for cases 6, 14,
18, 26, and 35, of Table 6.32, with frequencies 1, 1, 1, 1, and 3, respectively.
See Table 6.32, where a quick calculation reveals that the probability of such
a split is 7/68 = 0.1029, while the posterior analysis for a Kappa-like index
for this event appears in Table 6.34.

As one would expect, the analysis shows very poor agreement between the
six pathologists when they split 3–3. The probability of a split agreement is
0.1029 and the corresponding chance agreement is 0.0723. When discussing
Kappa, the probability of agreement and of chance agreement of the event
should always be stated.

Of course, the analysis of partial agreement can be expanded by determin-
ing Kappa in the context of association and the intraclass Kappa. This will be
considered in the exercise section. One could examine the following situations
for partial agreement: (a) when exactly five of the six agree, or a 5–1 split
(either way for absence or presence of granuloma); and (b) when exactly four
agree (a 4–2 split). The case where exactly three agree with a 3–3 split and
pairwise agreement have already been analyzed. (See Table 6.33 for the latter
case, and Table 6.34 for the former.)

6.9.3 Stratified Kappa

The example of a national lung cancer screening trial is continued, but
another modality is added, namely, MRI, that is, each subject receives three
images: one from x-ray, one from CT, and one from MRI, and three hospital
sites are involved. The study was designed to have 1000 subjects in the first
two sites, and 500 in the third, but the final assignment of patients was 976
and 936 for sites 1 and 2, respectively, and 494 for the third site.

For the first site, the outcomes are displayed in Table 6.35a, where the cell
entries are interpreted as follows: 1 indicates no evidence of disease, 2 indicates
that most likely no disease is present, 3 denotes that it is likely that disease
is present, and 4 that there is a malignant lesion. Thus, for case 64 of site 1,
the three images agree 50 times that there is a malignant lesion.

Obviously, this is the most complex example introduced so far. It involves
multiple raters, the three imaging modalities, four ordinal outcomes, and three
sites. Such complexity introduces a myriad of ways that agreement is to be
approached. The overall Kappa for agreement between the three modalities
can be determined, as well as many indices for partial agreement. How should
the various indices of agreement of the three strata (sites) be combined and
compared?
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TABLE 6.35a: X-ray, CT, and MRI for site 1.
Case X-ray CT MRI Total

1 1 1 1 200
2 1 1 2 55
3 1 1 3 40
4 1 1 4 25
5 1 2 1 25
6 1 2 2 15
7 1 2 3 10
8 1 2 4 7
9 1 3 1 9

10 1 3 2 6
11 1 3 3 4
12 1 3 4 3
13 1 4 1 3
14 1 4 2 1
15 1 4 3 1
16 1 4 4 10
17 2 1 1 10
18 2 1 2 20
19 2 1 3 8
20 2 1 4 6
21 2 2 1 100
22 2 2 2 40
23 2 2 3 35
24 2 2 4 22
25 2 3 1 2
26 2 3 2 3
27 2 3 3 7
28 2 3 4 6
29 2 4 1 1
30 2 4 2 1
31 2 4 3 1
32 2 4 4 7
33 3 1 1 10
34 3 1 2 5
35 3 1 3 3
36 3 1 4 2
37 3 2 1 1
38 3 2 2 3
39 3 2 3 20
40 3 2 4 2
41 3 3 1 15
42 3 3 2 10
43 3 3 3 100
44 3 3 4 23
45 3 4 1 1
46 3 4 2 1
47 3 4 3 2
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TABLE 6.35a (continued): X-ray, CT,
and MRI for site 1.

Case X-ray CT MRI Total
48 3 4 4 1
49 4 1 1 1
50 4 1 2 1
51 4 1 3 2
52 4 1 4 7
53 4 2 1 1
54 4 2 2 3
55 4 2 3 1
56 4 2 4 2
57 4 3 1 0
58 4 3 2 0
59 4 3 3 2
60 4 3 4 1
61 4 4 1 8
62 4 4 2 6
63 4 4 3 9
64 4 4 4 50

TABLE 6.35b: X-ray, CT, and MRI for site 2.
Case X-ray CT MRI Total

1 1 1 1 150
2 1 1 2 50
3 1 1 3 50
4 1 1 4 47
5 1 2 1 5
6 1 2 2 25
7 1 2 3 10
8 1 2 4 4
9 1 3 1 5

10 1 3 2 5
11 1 3 3 15
12 1 3 4 1
13 1 4 1 3
14 1 4 2 2
15 1 4 3 1
16 1 4 4 6
17 2 1 1 20
18 2 1 2 8
19 2 1 3 6
20 2 1 4 3
21 2 2 1 50

(continued)
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TABLE 3.35b (continued): X-ray, CT,
and MRI for site 2.

Case X-ray CT MRI Total
22 2 2 2 100
23 2 2 3 40
24 2 2 4 20
25 2 3 1 3
26 2 3 2 2
27 2 3 3 10
28 2 3 4 1
29 2 4 1 0
30 2 4 2 0
31 2 4 3 0
32 2 4 4 2
33 3 1 1 10
34 3 1 2 5
35 3 1 3 4
36 3 1 4 1
37 3 2 1 2
38 3 2 2 18
39 3 2 3 3
40 3 2 4 3
41 3 3 1 30
42 3 3 2 20
43 3 3 3 90
44 3 3 4 15
45 3 4 1 2
46 3 4 2 1
47 3 4 3 0
48 3 4 4 4
49 4 1 1 6
50 4 1 2 3
51 4 1 3 2
52 4 1 4 1
53 4 2 1 1
54 4 2 2 3
55 4 2 3 1
56 4 2 4 1
57 4 3 1 0
58 4 3 2 0
59 4 3 3 1
60 4 3 4 0
61 4 4 1 7
62 4 4 2 3
63 4 4 3 50
64 4 4 4 5
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TABLE 6.35c: X-ray, CT, and MRI for site 3.
Case X-ray CT MRI Total

1 1 1 1 100
2 1 1 2 40
3 1 1 3 22
4 1 1 4 23
5 1 2 1 4
6 1 2 2 10
7 1 2 3 3
8 1 2 4 3
9 1 3 1 2

10 1 3 2 2
11 1 3 3 5
12 1 3 4 2
13 1 4 1 1
14 1 4 2 1
15 1 4 3 0
16 1 4 4 2
17 2 1 1 10
18 2 1 2 2
19 2 1 3 2
20 2 1 4 1
21 2 2 1 20
22 2 2 2 60
23 2 2 3 11
24 2 2 4 10
25 2 3 1 3
26 2 3 2 2
27 2 3 3 10
28 2 3 4 1
29 2 4 1 0
30 2 4 2 0
31 2 4 3 1
32 2 4 4 1
33 3 1 1 4
34 3 1 2 2
35 3 1 3 1
36 3 1 4 1
37 3 2 1 2
38 3 2 2 10
39 3 2 3 4
40 3 2 4 4
41 3 3 1 5
42 3 3 2 5
43 3 3 3 60
44 3 3 4 10
45 3 4 1 2
46 3 4 2 1

(continued)
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TABLE 3.35c (continued): X-ray, CT,
and MRI for site 3.

Case X-ray CT MRI Total
47 3 4 3 1
48 3 4 4 3
49 4 1 1 4
50 4 1 2 1
51 4 1 3 1
52 4 1 4 2
53 4 2 1 0
54 4 2 2 1
55 4 2 3 0
56 4 2 4 0
57 4 3 1 0
58 4 3 2 0
59 4 3 3 1
60 4 3 4 0
61 4 4 1 3
62 4 4 2 2
63 4 4 3 2
64 4 4 4 8

Consider combining the three Kappas for the three sites into one, by a
weighted average, where the weights depend on the inverse of the variance of
the posterior distribution of Kappa of Table 6.36.

BUGS CODE 6.10 is for the posterior analysis of overall Kappa for site 3
and was executed with 45,000 observations generated from the joint posterior
distribution of Kappa3, agree3, and cagree3, with a burn in of 5,000 observa-
tions and a refresh of 100. A similar program can be executed for the other
two sites, giving Kappas for the three sites (strata) and the corresponding
standard deviations, and the stratified Kappa is easily computed. This is left
as an exercise, and note a uniform prior is used for prior information.

TABLE 6.36: Stratified Kappa for screening trial.
Parameter Mean sd Error 2 1/2 Median 97 1/2
agree1 ? ? ? ? ?
cagree1 ? ? ? ? ?
Kappa1 ? ? ? ? ?
agree2 ? ? ? ? ?
cagree2 ? ? ? ? ?
Kappa2 ? ? ? ? ?
agree3 0.3348 0.0196 <0.0001 0.2966 0.3348 0.374
cagree3 0.0892 0.0042 <0.0001 0.0817 0.0890 0.09835
Kappa3 0.2697 0.0206 <0.0001 0.2295 0.2696 0.3107
Kappa stratified ? ? ? ? ?
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BUGS CODE 6.10

model
{

# for site 3
# g[i] corresponds to case i of Table 6.35c.
# a uniform prior is assumed

g[1]∼dgamma(101,2) g[2]∼dgamma(41,2) g[3]∼dgamma(23,2)
g[4]∼dgamma(24,2) g[5]∼dgamma(5,2) g[6]∼dgamma(11,2)
g[7]∼dgamma(4,2) g[8]∼dgamma(4,2) g[9]∼dgamma(4,2)
g[10]∼dgamma(3,2) g[11]∼dgamma(6,2) g[12]∼dgamma(3,2)
g[13]∼dgamma(2,2) g[14]∼dgamma(2,2) g[15]∼dgamma(.1,2)
g[16]∼dgamma(3,2) g[17]∼dgamma(11,2) g[18]∼dgamma(3,2)
g[19]∼dgamma(3,2) g[20]∼dgamma(2,2) g[21]∼dgamma(21,2)
g[22]∼dgamma(61,2) g[23]∼dgamma(12,2) g[24]∼dgamma(11,2)
g[25]∼dgamma(4,2) g[26]∼dgamma(3,2) g[27]∼dgamma(11,2)
g[28]∼dgamma(2,2) g[29]∼dgamma(1,2) g[30]∼dgamma(11,2)
g[31]∼dgamma(2,2) g[32]∼dgamma(2,2) g[33]∼dgamma(5,2)
g[34]∼dgamma(3,2) g[35]∼dgamma(2,2) g[36]∼dgamma(2,2)
g[37]∼dgamma(3,2) g[38]∼dgamma(11,2) g[39]∼dgamma(5,2)
g[40]∼dgamma(5,2) g[41]∼dgamma(6,2) g[42]∼dgamma(6,2)
g[43]∼dgamma(61,2) g[44]∼dgamma(11,2) g[45]∼dgamma(3,2)
g[46]∼dgamma(2,2) g[47]∼dgamma(2,2) g[48]∼dgamma(4,2)
g[49]∼dgamma(5,2) g[50]∼dgamma(2,2) g[51]∼dgamma(2,2)
g[52]∼dgamma(3,2) g[53]∼dgamma(.1,2) g[54]∼dgamma(2,2)
g[55]∼dgamma(11,2) g[56]∼dgamma(1,2) g[57]∼dgamma(1,2)
g[58]∼dgamma(.01,2) g[59]∼dgamma(1,2) g[60]∼dgamma(.01,2)
g[61]∼dgamma(3,2) g[62]∼dgamma(2,2) g[63]∼dgamma(2,2)
g[64]∼dgamma(8,2)
h<- sum(g[])
for(i in 1:64){a[i]<- g[i]/h}

agree3<- a[1]+a[21]+a[43]+a[64]
b1..<-a[1]+a[2]+a[3]+a[4]+a[5]+a[6]+a[7]+a[8]+a[9]+a[10]+a[11]+a[12]+

a[13]+a[14]+a[15]+a[16]
b.1.<-a[1]+a[2]+a[3]+a[4]+a[17]+a[18]+a[19]+a[20]+a[33]+a[34]+a[35]+

a[36]+a[49]+a[50]+a[51]+a[52]
b..1 <-a[1]+a[5]+a[9]+a[13]+a[17]+a[21]+a[25]+a[29]+a[33]+a[37]+a[41]+

a[45]+a[49]+a[53]+a[57]+a[61]
b2..<-a[17]+a[18]+a[19]+a[20]+a[21]+a[22]+a[23]+a[24]+a[25]+a[26]+a[27]+

a[28]+a[29]+a[30]+a[31]+a[32]
b.2.<-a[5]+a[6]+a[7]+a[8]+a[21]+a[22]+a[23]+a[24]+a[37]+a[38]+a[39]+

a[40]+a[53]+a[54]+a[55]+a[56]
b..2<-a[2]+a[6]+a[10]+a[14]+a[18]+a[22]+a[26]+a[30]+a[34]+a[38]+a[42]+

a[46]+a[50]+a[54]+a[58]+a[62]
b3..<-a[33]+a[34]+a[35]+a[36]+a[37]+a[38]+a[39]+a[40]+a[41]+a[42]+a[43]+

a[44]+a[45]+a[46]+a[47]+a[48]
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b.3.<-a[9]+a[10]+a[11]+a[12]+a[25]+a[26]+a[27]+a[28]+a[41]+a[42]+a[43]+
a[44]+a[57]+a[58]+a[59]+a[60]

b..3<-a[3]+a[7]+a[11]+a[15]+a[19]+a[23]+a[27]+a[31]+a[35]+a[39]+a[43]+
a[47]+a[51]+a[55]+a[59]+a[63]

b4..<-a[49]+a[50]+a[51]+a[52]+a[53]+a[54]+a[55]+a[56]+a[57]+a[58]+a[59]+
a[60]+a[61]+a[62]+a[63]+a[64]

b.4.<-a[13]+a[14]+a[15]+a[16]+a[29]+a[30]+a[31]+a[32]+a[45]+a[46]+a[47]+
a[48]+a[61]+a[62]+a[63]+a[64]

b..4<-a[4]+a[8]+a[12]+a[16]+a[20]+a[24]+a[28]+a[32]+a[36]+a[40]+a[44]+
a[48]+a[52]+a[56]+a[60]+a[64]

cagree3<- b1..*b.1.*b..1+b2..*b.2.*b..2+b3..*b.3.*b..3+b4..*b.4.*b..4
kappa3<- (agree3-cagree3)/(1-cagree3) }
list( g=c(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,

2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2))

6.10 Conclusions for Agreement and Accuracy

This chapter introduces ideas that allow one to assess the accuracy of a
medical device when there are several readers involved in the diagnosis of
the disease. In the first three sections, methodology that addresses agree-
ment when a gold standard is present, is described and illustrated with many
examples from the medical field. When a gold standard is present, one can
compare the accuracy of several readers, and if there is wide variation in the
stated accuracies, an overall assessment of accuracy can be devised. The case
where the test scores were ordinal and continuous were both considered.

When no gold standard is present, the main focus of the chapter is on esti-
mating the degree of agreement between the various readers. The main param-
eter for estimating agreement is the posterior distribution of the Kappa
coefficient. Several scenarios are presented, when there are two readers and
binary scores, two readers with multiple nominal and ordinal scores, and finally
for multiple readers and multiple ordinal scores. Generalizations of Kappa are
introduced, namely, for the situation when stratified designs are appropriate
and a weighted Kappa is estimated via Bayesian techniques. All examples
use WinBUGS, where the MCMC errors of the parameters are controlled to
be small, frequently <0.0001.

The case where the medical test scores are continuous is not considered, but
is an important topic and the reader is referred to Chapter 6 of Broemeling [6],
who used the intraclass correlation and other correlation type measures to
estimate the agreement between and among readers.

It should be noted that when no gold standard is available, the focus on
accuracy is somewhat blunted, because agreement is not the same as accu-
racy. When a gold standard is present, the accuracies of the readers can be
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compared, but when it is not present, this cannot be done. The situation
where some patients are subject to the gold standard and other patients are
not is often done in practice, and under certain conditions, accuracy can be
assessed. This important scenario will be considered in Chapters 7 and 8, one
addressing verification bias, and the other chapter addressing the situation
when no gold standard is present, but prior information about the disease
rate is available. In the latter scenario, Bayesian approaches are employed to
estimate the test accuracies.

Even if there is no gold standard, each patient either has or does not
have the disease, and if the “present” study does not have a gold standard,
but there is reliable information about the disease rate from previous related
studies, then mathematically it is possible to build models that estimate the
test accuracy. This interesting situation will be addressed in later chapters.

6.11 Exercises

1. Verify Table 6.1 for the four ROC areas of the four readers of the sentinel
lymph node biopsy. Execute the analysis with 65,000 observations, with
a burn in of 5,000 and a refresh of 100 based on BUGS CODE 6.1.

2. Verify Table 6.2 by joining the code of the four readers and add state-
ments that allow for computation of the differences in the ROC areas
of all pairs of readers. Also, add statements that allow for computa-
tion of the simple and weighted averages. Execute the analysis with
65,000 observations, with a burn in of 5,000 and a refresh of 100. State
your conclusion about the overall accuracy of the test and justify your
answer.

3. As a second example with ordinal scores, consider Exercise 9 of
Chapter 5, where four readers are interpreting the metastasis of lung
cancer to the lymph nodes using CT. The study is multicenter and
reports the accuracy of CT in detecting lymph node invasion in patients
with known lung cancer. All patients enrolled were examined preop-
eratively with CT, and after reading the image readers were asked to
rate the degree of disease on a five-point scale to rate the metastasis
to the lymph nodes. The gold standard for metastasis was established
by pathologic analysis obtained from surgery. If no invasion occurred,
the population is referred to as non diseased, but if metastasis occurred,
the patient belongs to the diseased population. A subset of the study
is reported in Table 5.10, where only CT images are involved and four
radiologists scored the degree of invasion. Our objective is to determine
the ROC area accounting for all four readers and to examine the effect
of the four readers on the ROC area.
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These data were analyzed in Exercise 9 of Chapter 5, based on BUGS
CODE 5.4, where the effect of the four readers on the ROC area was
determined.
(a) Similar to Exercises 1 and 2 above, using BUGS CODE 6.1, per-

form a Bayesian analysis that determines the ROC area of the four
readers.

(b) As with Exercises 1 and 2 above, revise the code by adding state-
ments that will provide the posterior analysis for the difference in
the ROC areas of the four readers.

(c) Based on the ROC areas of the four readers, what is your conclu-
sion about the overall accuracy of the medical test for periprostatic
invasion?

(d) Find the posterior distribution of the simple average of the four
ROC areas.

(e) Determine the posterior distribution of a weighted average of the
four ROC areas, where the weight of a particular ROC area is the
inverse of the variance of the posterior distribution of that ROC
area.

(f) Based on (d) and (e), what is your conclusion about the over-
all accuracy of this medical test for lung cancer metastasis to the
lymph nodes?

4. Verify Table 6.4 using BUGS CODE 6.2. Use 65,000 observations, with
a burn in of 5,000 and a refresh of 100.

5. Verify Table 6.5 by revising BUGS CODE 6.2. The code is revised
by eliminating age and gender as independent variables in the three
regressions.

Again use 65,000 observations, with a burn in of 5,000 and a refresh
of 100. You should get exactly the same results as reported in Table 6.5.

6. Verify Table 6.6 by revising BUGS CODE 6.2 to include statements
that allow computation of the simple and weighted averages of the three
ROC areas. I used 65,000 observations for the simulation, with a burn
in of 5,000 and a refresh of 100. You should get the same results as I did
for Table 6.6.

7. Refer to Table 6.8 and suppose the results of a previous related experi-
ment are given in Table 6.37. Combining this prior information and using
a Bayes theorem with the data given in Table 6.8, perform the appropri-
ate analysis and compare with the posterior analysis of Table 6.9. Use
35,000 observations, with a burn in of 5,000 and a refresh of 100. Also,
plot the posterior densities of A1 and A2.

8. The following code is based on the beta-binomial model. With 25,000
observations generated from the joint posterior distribution of theta11,
π, and κI , with a burn in of 1,000 and a refresh of 100, execute the
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TABLE 6.37: Two raters.
Rater 2

Rater 1 Y = 0 Y = 1
X = 0 2 1 3
X = 1 3 22 25
Total 5 23 28

statements below and estimate the three parameters. This is the Dutch
rabbit fetus study. How do your results compare with those based on
the constant correlation model? (See Table 6.23.)

BUGS CODE 6.11

model
{ for (i in 1:17) {phi[i]∼dbeta(1,1)}
for( i in 1 : 17) {
for( j in 1 : 10) {
Y[i , j] ∼ dbern(phi[i])}}
theta11∼dbeta(17,213)
kappa<-(theta11-pi*pi)/pi*(1-pi)
pi<-mean(phi[]) }

list(Y= structure( .Data=
c(1,0,0,0,0,0,0,0,0,NA,0,0,0,0,0,0,0,0,0,0,
1,0,0,0,0,0,0,NA,NA,NA,0,0,0,0,0,NA,NA,NA,NA, NA,
1,0,0,0,NA,NA,NA,NA, NA,NA,0,0,0,0,0,0,NA,NA, NA,NA,
1,0,0,NA,NA,NA,NA, NA,NA,NA,1,0,0,0,0,0,0,0,NA,NA,
1,1,0,0,0,0,0,0,NA,NA,0,0,0,0,NA,NA,NA, NA,NA,NA,
1,1,1,1,NA,NA,NA, NA,NA,NA,1,0,0,0,0,NA,NA, NA,NA,NA,
1,0,0,NA,NA,NA, NA,NA,NA,NA,1,1,1,1,0,0,0,0,NA,NA,
1,1,0,0,0,0,NA,NA,NA,NA,1,1,1,0,0,0,0,0,NA,NA,
1,0,0,0,0,0,NA,NA,NA,NA),.Dim=c(17,10)))
list(theta11=.5 )

9. Using the above program, estimate the intraclass Kappa for the four
treatment groups of Table 6.21. Do the four groups differ with respect
to the correlation between fetuses across groups? Explain in detail how
the WinBUGS code is executed and carefully explain the posterior anal-
ysis for comparing the four groups. If there is no difference in the four
Kappas, how should they be combined in order to estimate the overall
intraclass correlation?

10. Refer to Table 6.24 and give an interpretation of the degree of agree-
ment between the three indices. What is your overall conclusion about
the degree of agreement? Should only one index be used or should all
four be reported? Kappa is the usual choice as an index of agreement.
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11. Verify Table 6.26 and determine the posterior distribution of the differ-
ence in the two Kappas. Is there a difference between them? Based on
the G coefficient, what is your interpretation of the degree of agreement
between the radiologists and the gold standard? Test for a difference in
G1 and G2.

12. In view of Equation 6.26, show that two raters can have high sensitivity
and specificity, but κtw can be small.

13. Verify Equation 6.26, and if necessary, refer to Kraemer [22] and
Thompson and Walter [23].

14. Verify Equations 6.27 and 6.28.

15. If θ1 = θ2, what is the value of κa (Equation 6.28)?

16. Verify Table 6.29 with your own WinBUGS code. Verify that the pos-
terior distribution of the usual Kappa (1.1) is the same as that of κa,
given by Table 6.29.

17. Using BUGS CODE 6.8, verify the posterior analysis for Table 6.31, and
produce a plot of the posterior distribution of κ(4,2).

18. Amend BUGS CODE 6.9, verify Table 6.33, and perform the posterior
analysis for a split agreement between the six pathologists. Generate
75,000 observations from the joint posterior distribution of the parame-
ters, with a burn in of 5,000 and a refresh of 100.

19. Amend BUGS CODE 6.9 and determine the posterior distribution of
a Kappa type index for the following events: (a) exactly five agree, or
a 5–1 split between pathologists; and (b) exactly four agree for a 4–2
split. For each of the two events above, find the posterior probability of
the event and the posterior probability of the same event, but assuming
that the six pathologists are acting independently in their assignment of
scores to the lesions. Use 125,000 observations, with a burn in of 10,000
observations and a refresh of 100, and employ a uniform prior density
for the parameters. Provide a plot of the posterior distribution of the
Kappa type index for both events (a) and (b).

20. Using BUGS CODE 6.10, verify the posterior analysis of Table 6.36.
What is the posterior mean and standard deviation of the stratified
Kappa? Provide the posterior density of stratified Kappa and give a 95%
credible interval for the same parameter. What is your overall conclusion
about the agreement between the three imaging modalities? Recall that
30,000 observations are generated from the posterior distribution with
a uniform prior.
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Chapter 7

Estimating Test Accuracy with an
Imperfect Reference Standard

7.1 Introduction

Suppose that a gold standard does not exist, but the accuracy of a new test
will be assessed with an imperfect gold standard. Many cases exist where there
is no perfect gold standard. For example, depression is usually determined by
a series of questions and observing the behavior of the patient, but such assess-
ments are highly subjective, and there is no one test that provides a perfect
diagnosis. For infectious diseases, a perfect diagnosis can be elusive, where a
culture is taken, however, the culture may not contain the infective agent or if
the agent is present, it may not grow in the culture. Pepe [1] gives other exam-
ples, including tests for diagnosing cancer and hearing loss. Zhou, McClish,
and Obuchowski [2] also present various studies, including the diagnosis of a
bacterial infection with the stool and serology tests. The method of analy-
sis is maximum likelihood, while the approach taken here is Bayesian. Other
examples presented by Zhou, McClish, and Obuchowski include two tests for
tuberculosis, with the Tine and Mantour tests, at two different sites, while a
third example for detecting pleural thickening is performed by x-ray with three
readers. Pepe describes another interesting example of multiple tests, where
Chlamydia bacterial infection is diagnosed with a blood culture, polymerase
chain reaction (PCR), and enzyme linked immunosorbent assay (ELISA).

Previous work has focused on maximum likelihood estimation (MLE) and
Bayesian. Zhou, McClish, and Obuchowski emphasize maximum likelihood
and Bayesian. The Bayesian method is based on earlier work by Joseph,
Gyorkos, and Coupal [3], who employ an augmented data approach. The
augmented data approach views the missing data (the disease status D of
a patient) as an unobservable random variable that can be modeled in such
a way as to provide the posterior density of the measures of disease accuracy
(true and false positive rates). Such an approach will be used here, because the
Bayesian method has the advantage of using prior information and being able
to separate the parameters of interest from nuisance parameters. Fortunately,
prior information is available for diagnostic tests, especially the disease rates
and the accuracy assessments of medical tests, and can be used as part of the
posterior analysis.

209
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With the Bayesian approach of Joseph, Gyorkos, and Coupal [3] and
Dendukuri and Joseph [4], the various tests are assumed to be condition-
ally independent, an assumption that will be used in the present approach;
however, the assumption will be relaxed in some cases and the two ways
compared in estimating test accuracy.

Pepe [1: 195] presents an example of using an imperfect reference stan-
dard R to assess the accuracy of a new test T (see Table 7.1). The new test T
has a “true” sensitivity of 0.80 (80/100) and a specificity of 0.70 (70/100), but
of course this is actually not known because there is no gold standard. Relative
to the reference test R, the estimated sensitivity is also 0.8 (64/80) but has
a specificity of 0.61(74/120), thus the new test is assessed to be less specific
than it actually is. Also, with respect to the gold standard, the prevalence of
disease is 50%, but is estimated to be 40% with regard to R. Remember, the
gold standard is not present, we do not know the “true” measures of accuracy,
only those with regard to the reference standard can be estimated, and can
be misleading!

The two tests are said to be conditionally independent if

P [T,R | D] = P [T | D]P [R | D], (7.1)

and, but is usually employed with both the conventional and Bayesian
approaches. Using this assumption, Pepe [1: 195] states that it is likely that
both the observed (relative to the reference test R) sensitivity and specificity
will be decreased.

Are there methods that will improve on the measures of accuracy pro-
vided by the imperfect standard test? Using primarily the Bayesian approach,
this question will be explored in this chapter. In what follows, the subject is
introduced with two binary tests, one is the reference test R and the other is
a new test, T , whose accuracy is to be assessed. Note, none of the patients
will have their true disease status (D) measured, instead each patient will be
given a positive or negative score on both tests. A Bayesian approach is taken,
where based on the likelihood function, the posterior distribution of the sen-
sitivity and specificity is determined. The likelihood function is presented in
two forms. The first is presented without augmented variables and the second
assumes that the missing disease status is modeled by augmented or latent
variables. In the first form of the likelihood function, conditional indepen-
dence is not assumed and the posterior distribution of disease prevalence is
isolated as a product of four functions, each of which is a mixture of beta

TABLE 7.1: Hypothetical example—imperfect
reference.

D = 0 D = 1 R = 0 R = 1

T = 0 70 20 74 16
T = 1 30 80 46 64
Total 100 100 120 80

  



K11763 Chapter: 7 page: 211 date: June 17, 2011

Estimating Test Accuracy with an Imperfect Reference Standard 211

random variables. In the second form of the likelihood function with latent
variables, and assuming conditional independence, the posterior distribution
of the sensitivity, specificity, and disease prevalence is determined. An example
earlier analyzed by Joseph, Gyorkos, and Coupal [3] and presented by Zhou,
McClish, and Obuchowski [2] involves a bacterial infection of immigrants to
Canada and employs the augmented data method to estimate the sensitivity
and specificity of the reference test R (a serology test) and another test T ,
the stool examination.

Presented next is an extension of two binary tests to several populations,
using the augmented data method. An example from Zhou, McClish, and
Obuchowski taken from Hui and Walter [5] involves two tests to diagnose
tuberculosis. The reference test is the Mantour test and the new test is the
Tine test. Both tests are used on two different populations, one with a low
prevalence of tuberculosis and the other with a very high prevalence rate.
Of interest here is the comparison of the sensitivity and specificity between
the two populations. In all cases, the accuracy of the new test relative to the
reference is compared to the accuracy computed by the Bayesian approach.

Multiple tests are also of interest in diagnostic medicine, and the Bayesian
approach with augmented variables is easily extended. An interesting example
of this is comparing the accuracies of three readers who are using x-ray to diag-
nose pleural thickening of the lungs of South African asbestos workers. In this
case, there is no reference test (reader) and the sensitivities and specificities
of the three are estimated using the latent variable method with and with-
out the conditional independence assumption (CIA). As for agreement, see
Broemeling [6] for Bayesian methods of estimating agreement between read-
ers diagnosing a disease. Of course, of interest is an extension of using multiple
tests in various populations. For example, different sets of three readers could
be assessing pleural thickening in two locations, say among asbestos workers
in South Africa and among those in Montana asbestos mines. Of interest is
comparing the combined sensitivity among the three readers in South Africa
with the combined sensitivity of the three readers in Montana (see Megibow
et al. [7]).

The last topic to be presented in this chapter, is estimating the area
under the receiver operating characteristic (ROC) curve of a new test com-
pared to the area of a reference standard test. Both tests provide ordinal
scores to patients, and an example of this is staging the disease of, say, can-
cer patients. Staging involves assigning a stage to each patient, e.g., using
magnetic resonance imaging (MRI) and computed tomography (CT) to stage
breast cancer. The stage reflects the state of the disease, where local disease
is designated 1, disease that has spread to the lymph nodes is assigned a 2,
and 3 is assigned to those where the disease has spread beyond the lymphatic
system to other organs. Knowing the accuracy of the staging system is crucial
in patient management.

Much of the work in the area of medical test accuracy when there is no
gold standard is presented in Pepe [1] and Zhou, McClish, and Obuchowski [2].
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What is presented here follows the same general topics and theme, however,
the emphasis is inclusively Bayesian. With Bayesian inferences, prior informa-
tion is used in an optimal fashion and is of great advantage for these types
of problems when there is no gold standard. When determining the accuracy
of a “new” medical test, prior information is usually plentiful, because often
there have been many previous related studies that are highly related to the
study at hand. When studying a “new” test, its accuracy is usually better
than the reference test. Of course, this information is valuable to a Bayesian!
Of special concern is prior information about the disease rate or prevalence,
because accurate estimates of the disease rate are crucial in order to estimate
efficiently the sensitivity and specificity of the new test. Since no gold stan-
dard is available, the prevalence rate is not measured in the present study;
therefore, prior studies must be used for prior information about disease rates.

What is the scientific interest in estimating test accuracy when no gold
standard is available? The radiology literature contains many studies where
no gold standard is available, thus it is important to have methods that allow
one to determine accuracy. Also, many tests are routinely used when no gold
standard is present, and based on the outcome of the test, the patient is
referred to another test procedure, which is not necessarily the gold standard.
For example, a patient’s symptoms might indicate the possibility of heart
disease, and the patient is referred for an exercise stress test. The diagnosis
based on the symptoms is preliminary, but it is of interest to know the accuracy
of the diagnosis based only on the symptoms, where the reference test is the
exercise stress test. A gold standard is not involved up to this point. Using
a series of tests or multiple tests is an area of statistical and clinical interest
and will be examined in more detail in Chapter 10.

The present chapter is somewhat related to the next, when the test is
carried out but the disease status of some patients is not verified. The bias of
measures of accuracy is corrected by statistical techniques based on missing
value methodology. In this chapter, a patient is not referred to a gold standard,
but the accuracy of the test at hand is based on a reference test. Statistically,
missing values techniques based on augmented data lead to methods that
correct the bias of accuracy measures given by the reference test.

7.2 Two Binary Tests

Consider the experiment shown in Table 7.2 with a reference test R and
a new test T .

The likelihood function is

L(θ,φ) ∝ [θ11p + φ11(1 − p)]x11 [θ10p + φ10(1 − p)]x10

θ01p + φ01(1 − p)]x01 [θ00p + φ00(1 − p)]x00 ,
(7.2)
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TABLE 7.2: Two binary tests.
Test T

Reference test T = 1 T = 0

R = 1 x11 x10
R = 0 x01 x11
Total n1 n0

where p is the disease rate,

θij = P [R = i, T = j | D = 1], i, j = 0, 1,

and

φij = P [R = i, T = j | D = 0].

Also note that
i=1∑
i=0

j=1∑
j=0

θij = 1

and
i=1∑
i=0

j=1∑
j=0

φij = 1.

The likelihood function is a product of four functions, corresponding to the
four cells of Table 7.2. Each function gives the joint probability of R and T
conditional on D = 1, followed by the same probability conditional on D = 0,
and the likelihood function is a highly nonlinear function of the parameters.
Since xij are positive integers, the binomial theorem can be used to expand
each of the four functions into a mixture, e.g., consider the first factor, then

[θ11p + φ11(1 − p)]x11 =
i=x11∑
i=0

BC(x11, i)θi
11φ

x11−i
11 pi(1 − p)x11−i,

where BC(x11, i) = x11!/i!(x11 − i)!.
A similar expansion can be used for the other three factors of the likelihood

function, but in general:

[θijp + φij (1 − p)]xij =
l=xij∑
l=0

BC(xij , l)θl
ijφ

xij −l
ij pl(1 − p)xij −l, (7.3)

for i, j = 0, 1, thus the likelihood function is

L(θ,φ) =
i,j=1∏
i,j=0

l=xij∑
l=0

BC(xij , l)θl
ijφ

xij −l
ij pl(1 − p)xij −l, (7.4)
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and, when combined with a uniform prior for the parameters, gives an interest-
ing and complex posterior distribution. It can be seen that the thetas and phis
can be eliminated by integration using the properties of the beta distribution,
leaving

g(p/data) =
i=1∏
i=0

j=1∏
j=0

l=xij∑
l=0

wijp
l(1 − p)xij −l, (7.5)

as the marginal posterior distribution of p, expressed as the product of four
mixtures of beta distributions. Note that the weights are

wij = [Γ(xij + 2)/Γ(l + 1)Γ(xij − l + 1)]/xij ,

thus, each of the four factors of the marginal distribution of p is a mixture
of beta distributions. It is difficult to work with this form of the likelihood
function, therefore an augmented data form (latent variables) of the likelihood
function will be employed.

7.3 Posterior Distribution for Two Binary Tests

Consider an alternative layout for the experiment with the two tests R
and T . When D = 1, the results of the study are shown in Table 7.3a, and
when D = 0, the results are shown in Table 7.3b, where the augmented data
is represented by yij and the observations by the corresponding nij . As above,

θij = P [R = i, T = j | D = 1], i, j = 0, 1,

and

φij = P [R = i, T = j | D = 0].

Thus, the likelihood function is

L(θ,φ/data) ∝ py..(1 − p)n..−y..
i=1∏
i=0

j=1∏
j=0

θ
yij
ij

i=1∏
i=0

j=1∏
j=0

φ
nij −yij
ij , (7.6)

TABLE 7.3a: Augmented data for
reference R and test T when D = 1.

Test T

Reference test T = 1 T = 0

R = 1 y11 y10
R = 0 y10 y00
Total
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TABLE 7.3b: Augmented data for
R and T when D = 0.

Test T

Reference test T = 1 T = 0

R = 1 n11 − y11 n10 − y10
R = 0 n01 − y10 n00 − y00
Total

and assuming a uniform prior, the posterior distribution of the parameters p,
θij , and φij can be determined in terms of all the conditional distributions as
follows.

7.4 Posterior Distribution without Conditional
Independence

The conditional distribution of θij (i, j = 0, 1), given the other parameters
(including the augmented data yij ) is Dirichlet with parameter vector:

(y11 + 1, y10 + 1, y01 + 1, y00 + 1). (7.7)

The conditional distribution of φij (i, j = 0, 1), given the other parameters
(including the augmented data yij ) is Dirichlet with parameter vector:

(n11 − y11 + 1, n10 − y10 + 1, n01 − y01 + 1, n00 − y00 + 1). (7.8)

The conditional distribution of p given the other parameters is beta with
parameters:

alphap = y.. + 1

and

betap = n.. − y.. + 1. (7.9)

The conditional distribution of yij given the other parameters is binomial
with hyperparameters θijp/[θijp + φij (1 − p)] for the probability parameter
and nij for the second parameter, where

i, j = 0, 1. (7.10)

Note that the assumption of conditional independence does not hold and the
sensitivity of T is

P [T = 1 | D = 1],
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or

seT = θ11 + θ01, (7.11)

while that for R is

seR = θ11 + θ10. (7.12)

With regard to the specificity, that of T is

spT = φ10 + φ00, (7.13)

and for R is

spR = φ01 + φ00. (7.14)

7.5 Posterior Distribution Assuming Conditional
Independence

If one assumes conditional independence, the likelihood function is exp-
ressed directly in terms of sensitivity and specificity as

L(p, s1, s2, c1, c2) ∝ sy11+y01
1 (1 − s1)y10+y00sy11+y10

2 (1 − s2)y01+y00 ,

cn10+n00−y10−y00
1 (1 − c1)n11+n01−y11−y01 ,

cn01+n00−y01−y00
2 (1 − c2)n11+n10−y11−y10 ,

py..(1 − p)n..−y.. , (7.15)

where y.. is the sum of yij and n.. is the sum of the four cell frequencies. The
notation has been changed to denote s1 and c1 as the sensitivity and specificity
of T , respectively, while s2 and c2 denote the corresponding quantities for
reference R.

For computational purposes and assuming a uniform prior, it is obvious
from the above likelihood function (Equation 7.15) that the conditional dis-
tribution of the unknown parameters is as follows.

The marginal distribution of p is beta with parameters:

ap = y.. + 1

and

bp = n.. − y.. + 1.. (7.16)

The conditional distribution of s1, given the other parameters, is beta with
parameters as1 and bs1, where

as1 = y11 + y01 + 1
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and

bs1 = y10 + y00 + 1. (7.17)

The conditional distribution of s2, given the other parameters, is beta with
hyperparameters:

as2 = y11 + y10 + 1

and

bs2 = y01 + y00 + 1. (7.18)

The conditional distribution of c1 is beta with hyperparameters:

ac1 = n10 + n00 − y10 − y00 + 1

and

bc1 = n11 + n01 − y11 − y01 + 1. (7.19)

The conditional distribution of c2 is beta with parameters:

ac2 = n01 + n00 − y01 − y00 + 1

and

bc2 = n11 + n10 − y11 − y10 + 1. (7.20)

In addition, the posterior distribution of the latent variables is as follows.
The conditional distribution of y11 given the other variables is binomial

with parameters:

m11 = ps1s2/[ps1s2 + (1 − p)(1 − c1)(1 − c2)] (the probability parameter)

and

q11 = n11. (7.21)

The conditional distribution of y10, given the other parameters, is binomial
with parameters:

m10 = p(1 − s1)s2/[p(1 − s1)s2 + (1 − p)c1(1 − c2)]

and

q10 = n10. (7.22)

The conditional distribution of y01, given the other parameters, is binomial
with hyperparameters:

m01 = ps1(1 − s2)/[ps1(1 − s2) + (1− p)(1 − c1)c2]
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and

q01 = n01. (7.23)

Lastly, the conditional distribution of y00, given the other parameters, is bino-
mial with hyperparameters:

m00 = p(1 − s1)(1 − s2)/[p(1 − s1)(1 − s2) + (1 − p)c1c2]

and

q00 = n00. (7.24)

It is important to know that the above posterior distributions for the accu-
racy of two binary tests assume a uniform prior for p, s1, s2, c1, and c2
and the assumption of conditional independence between R and T ! In Sec-
tion 7.6, conjugate-type prior distributions will be used for these quantities,
namely, informative beta distributions for the disease prevalence and accuracy
parameters.

7.6 Example of Accuracy for Diagnosing
a Bacterial Infection

This section examines three alternative Bayesian analyses for the study of a
bacterial infection. The three analyses are: (a) assuming a uniform prior and
conditional independence between an imperfect reference test R and a new
test T , (b) assuming an informative prior and conditional independence, and
(c) assuming a uniform prior, but not assuming conditional independence.

Consider the diagnosis of a bacterial infection with Strongyloides in 162
Cambodian refugees in Canada. They entered Canada from July 1982 to
February 1983 and were tested with a stool examination, which serves as
the “new” test T , and a serologic reference test R; the results as reported
by Zhou, McClish, and Obuchowski [2: 366] are given in Table 7.4.

A number of people, including Joseph, Gyorkos, and Coupal [3] and
Dendukuri and Joseph [4], have analyzed this information, but earlier stud-
ies involving the microbiology of the infective agent Strongyloides were done
by Genta [8] and Bailey [9], both of whom studied the ELISA to detect the
pathogen. The observed sensitivity and specificity of the stool examination
relative to the serology examination are 38/125 = 0.304 and 35/37 = 0.945,
respectively. The main focus is to correct the actual sensitivity and speci-
ficity of the stool examination via the methodology derived in the previous
section. In order to estimate the sensitivity and specificity of the two tests,
two Bayesian analyses will be provided: (a) assuming conditional indepen-
dence between the stool and serology examinations, and (b) not assuming
conditional independence.
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TABLE 7.4: Results of a stool examination T and
a serologic reference examination R.

Stool examination T

Serology test R T = 1 T = 0 Total

R = 1 38 87 125
R = 0 2 35 37
Total 40 122 162

Source: From Joseph, L., Gyorkos, T.W., and Coupal, L.
American Journal of Epidemiology, 1995, by permission
of Oxford University Press.

First, assume conditional independence between T and R, then the pos-
terior distribution of the relevant parameters is given by the conditional
distributions of each parameter given the others, and these are identified
in Equations 7.14 through 7.24. The computations are executed with the
following code.

BUGS CODE 7.1

model;
{
# conditional distribution of p
p∼dbeta(alp,bep)
alp<- y11+y10+y01+y00+ap
bep<- sn -ap+bp
sn<- n11+n10+n01+n00
# conditional distribution of s1
s1∼dbeta(als1,bes1)
als1<-y11+y01+as1
bes1<-y10+y00+bs1
#conditional distribution of s2
s2∼dbeta(als2,bes2)
als2<-y11+y10+as2
bes2<-y01+y00+bs2
# conditional distribution of c1
c1∼dbeta(alc1,bec1)
alc1<-n10+n00-y10-y00+ac1
bec1<-n11+n01-y11-y01+bc1
# conditional distribution of c2
c2∼dbeta(alc2,bec2)
alc2<- n01+n00-y01-y00+ac2
bec2<- n11+n10-y11-y10+bc2
# conditional distribution of y11
y11∼dbin( py11,n11)
py11<-p*s1*s2/(p*s1*s2+(1-c1)*(1-c2)*(1-p))
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# conditional distribution of y10
y10∼dbin(py10,n10)
py10<-p*(1-s1)*s2/(p*(1-s1)*s2+c1*(1-c2)*(1-p))
# conditional distribution of y01
y01∼dbin(py01,n01)
py01<-p*s1*(1-s2)/(p*s1*(1-s2)+c2*(1-c1)*(1-p))
# conditional distribution of y00
y00∼dbin(py00,n00)
py00<-p*(1-s1)*(1-s2)/(p*(1-s1)*(1-s2)+c1*c2*(1-p))
}
# hyperparameters for uniform prior Joseph
list(ap=1,bp=1,as1=1,bs1=1,as2=1,bs2=1,
ac1=1,bc1=1,ac2=1,bc2=1, n11=38,n10=87,n01=2,n00=35)
# hyperparameters for informative prior joseph
list(ap=80,bp=80,as1=4.44,bs1=13.31,as2=21.96,
bs2=5.49,ac1=71.25,bc1=3.75,ac2=4.1,bc2=1.76, n11=38,n10=87,n01=2,n00=35)
# initial values
list(p=.5,c1=.95,c2=.9,s1=.9,s2=.9,y11=1,y10=1,
y01=1,y00=00)

This code is very similar to those appearing in Equations 7.14 through
7.24 and are self-evident, but are also described by the comment statements
labeled by #. There are three list statements: (a) the hyperparameters for a
uniform prior, (b) the hyperparameters for an informative prior, and (c) a list
of starting values for the algorithm. The first analysis will be using a uniform
prior for all parameters, thus, the first list statement of BUGS CODE 7.1 is
the data. For a uniform prior, the posterior analysis is shown in Table 7.5.

The analysis is performed with 125,000 observations generated from the
posterior distribution of the parameters, with a burn in of 5,000 and a refresh
of 100. As seen from Table 7.5, the standard deviation for the two sensitivities
is almost as large as the mean, indicating uncertainty for these measures of
accuracy, and the Markov Chain Monte Carlo (MCMC) errors are relatively
large for all parameters. Also of interest is that the prevalence is estimated
at of 0.4986, whereas prior information stated in earlier studies believed the
prior mean was 0.5, however, much uncertainty was expressed about that

TABLE 7.5: Posterior analysis of the stool (T ) and serology (R)
examinations—uniform prior.

Parameter Mean sd Error 2 1/2 Median 97 1/2

p 0.4986 0.2011 0.0053 0.1604 0.4991 0.8352
c1 0.6977 0.2586 0.0109 0.0922 0.7046 0.9942
c2 0.2504 0.2552 0.0109 0.0042 0.1237 0.8862
s1 0.2517 0.2503 0.0107 0.0046 0.1308 0.8826
s2 0.7014 0.2623 0.0109 0.0889 0.7192 0.9945
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s1 sample: 125001
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FIGURE 7.1: Posterior density of the sensitivity of the stool examination
with a uniform prior.

value. A plot of the posterior density of s1 (the stool test) also reveals much
uncertainty (see Figure 7.1).

A plot of the last 200 observations generated from the posterior density
of s1 also shows the variation in values for this parameter (see Figure 7.2).
On the other hand, the analyses of Zhou, McClish, and Obuchowski [2: 367]
utilized informative prior information about the parameters (Table 7.6).

The prior information was elicited from a panel of experts and the ranges
of the parameter values were converted to hyperparameters of the correspond-
ing beta prior distribution, that is, a beta prior was used for each parameter
with the above values for the parameters of that variable. Note the uncertainty
for p, expressed as a range (0,1) and a uniform prior for the prevalence. For
example, the prior mean for c1 the specificity of the stool examination is 0.95,
while that for the sensitivity s2 of the serology test is believed to be 0.80, com-
pared to a prior mean of 0.74 for the sensitivity of the stool examination. Of
course, the accuracy of serology is supposed to be better than that compared
to the stool examination, and this is reflected in the prior values of Table 7.6.

A Bayesian analysis is performed utilizing the prior information in
Table 7.6. Again, 125,000 observations are generated from the joint poste-
rior distribution, with a burn in of 5,000 and a refresh of 100 (see Table 7.7).

Comparing Tables 7.5 and 7.7 reveals less uncertainty in the estimates
(posterior means) using informative beta priors for the accuracy parameters,

Iteration
129950129900129850

s1
0.

0
0.

5
1.

0

FIGURE 7.2: The “trace” of the last 200 observations generated from the
posterior distribution of s1.
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TABLE 7.6: Prior information about
stool and serology tests.

Parameter Range Alpha Beta

p 0–100 1 1
c1 90–100 71.25 3.75
c2 35–100 4.1 1.76
s1 5–45 4.44 13.31
s2 65–95 21.96 5.49

and the MCMC errors are much smaller when the informative prior is used.
For the accuracy parameters (sensitivity and specificity), the posterior stan-
dard deviations are less across the board. This is also seen when comparing
Figures 7.1 and 7.3, where the latter depicts the posterior density of the stool
examination using informative prior information shown in Table 7.7.

The above two analyses show the importance of prior information when
estimating the accuracy parameters of a medical test. In the former situation,
with little prior information when a uniform prior is used, there was much
uncertainty in the posterior distributions, compared to the situation when
there is more informative information, such as that expressed in Table 7.6.
With “more” prior information, the standard deviations of the posterior distri-
butions are smaller compared to their counterparts when the prior information
is vague. More structure is imposed with the informative prior information,
resulting in more stability in estimating accuracy. The situation is familiar
to the non-Bayesian approach using MLE, where “more” parameters than
observations cause instability in the likelihood function, which causes prob-
lems with the estimation algorithm. Constraints on the parameters are usually
imposed to facilitate convergence of the maximum likelihood procedure, and
both Pepe [1] and Zhou, McClish, and Obuchowski [2] discuss the problem in
some detail. Of course, for the Bayesian, inducing stability with informative
prior information must be done with caution, because one needs to be sure
that the informative prior information is indeed reliable!

The Strongyloides study will be analyzed in another way, where the CIA
between R (serology) and T (the stool examination) does not hold. Recall
that Equations 7.7 through 7.14 state the various conditional posterior

TABLE 7.7: Posterior analysis of the stool (T ) and serology (R)
examinations—informative prior.

Parameter Mean sd Error 2 1/2 Median 97 1/2

p 0.7618 0.1007 0.0014 0.5236 0.7755 0.9286
c1 0.957 0.0214 <0.0001 0.9065 0.9603 0.9885
c2 0.6901 0.1605 0.0020 0.3727 0.7006 0.9558
s1 0.3093 0.0518 <0.0001 0.2224 0.3043 0.4269
s2 0.8831 0.0423 <0.0001 0.7892 0.8874 0.9535
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s1 sample: 125001
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FIGURE 7.3: Posterior density of the stool examination with informative
prior.

distributions of all the parameters, assuming a uniform prior distribution,
and the following code.

BUGS CODE 7.2

# accuracy parameters for two binary tests R and T
# the sensitivity and specificity of R and T
# T is the new and R is the reference
model;
{
p∼dbeta(y..,m)
# p and d are the disease rate.
d<- p
m<-n-y..+1
y..<-y11+y10+y01+y00+ 1
y11∼dbin(a11,b11)
a11<- theta11*d/(theta11*d+ph11*(1-d))
y10∼dbin(a10,b10)
a10<-theta10*d/(theta10*d+ph10*(1-d))
y01∼dbin(a01,b01)
a01<- theta01*d/(theta01*d+ph01*(1-d))
y00∼dbin(a00,b00)
a00<-theta00*d/(theta00*d+ph00*(1-d))
# Dirichlet distribution for the thetas
g11∼dgamma(r11,2)
g10∼dgamma(r10,2)
g01∼dgamma(r01,2)
g00∼dgamma(r00,2)
r11<-y11+1
r10<-y10+1
r01<-y01+1
r00<-y00+1
sg<-g11+g10+g01+g00
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theta11<-g11/sg
theta10<-g10/sg
theta01<-g01/sg
theta00<-g00/sg
# Dirichlet distribution for the phs
h11∼dgamma(s11,2)
h10∼dgamma(s10,2)
h01∼dgamma(s01,2)
h00∼dgamma(s00,2)
s11<-z11+1
s10<-z10+1
s01<-z01+1
s00<-z00+1
sh<-h11+h10+h01+h00
ph11<-h11/sh
ph10<-h10/sh
ph01<-h01/sh
ph00<-h00/sh
z11<-b11-y11
z10<-b10-y10
z01<-b01 -y01
z00<-b00-y00
# tests for conditional independence of the thetas
theta11c<- (theta11+theta10)*(theta11+theta01)-theta11
theta10c<- (theta11+theta10)*(theta10+theta00)-theta10
theta01c<- (theta11+theta01)*(theta01+theta00)-theta01
theta00c<- (theta10+theta00)*(theta01+theta00)-theta00
# tests for conditional independence for phs
ph11c<- (ph11+ph10)*(ph11+ph01)-ph11
ph10c<- (ph11+ph10)*(ph10+ph00)-ph10
ph01c<- (ph11+ph01)*(ph01+ph00)-ph01
ph00c<- (ph10+ph00)*(ph01+ph00)-ph00
#sensitivity and specificity
# sensitivity and specificity of the stool exam
s1<- (theta11+ theta01)
c1<- ph10+ph00
# sensitivity and specificity of the serology exam
s2<-theta11+theta10
c2<- ph01+ph00
}
# Strongyloides example taken from Joseph
list(n=163, b11=38,b10=87,b01=2,b00=35)
# starting values
list(g11=1,g10=1,g01=1, g00=1, p=.5, h11=1,h10=1,h01=1,h00=1, y11=1,

y10=1,y01=1, y00=1))
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FIGURE 7.4: Posterior density of s1 with uniform prior and without CIA.

An analysis without assuming conditional independence between stool and
serology is performed with a uniform prior and appears in Table 7.7. The
results should be compared with Table 7.5, which reports the posterior analysis
with a uniform prior when the CIA between R and T is imposed. It is difficult
to make a general overall comparison, but it appears that the results of the two
tables are somewhat similar, suggesting that the CIA is true. The posterior
density of s1 for the two scenarios is depicted in Figures 7.1 and 7.4, and the
posterior distributions of s1 are reported in Tables 7.5 and 7.7 and reveal the
similarity between the two.

The posterior analysis shown in Table 7.8 used 130,000 observations gener-
ated for the simulation, with a burn in of 5,000 and a refresh of 100. Compare
the results below with the corresponding results of Table 7.5.

Since the two analyses are somewhat similar, one might believe that the
CIA is valid, but this can be tested by referring to BUGS CODE 7.2, which
provides the relevant posterior distributions. Recall that the CIA is defined by

P [R = i, T = j | D = k] = P [R = i | D = k]P [T = j | D = k],

for i, j, k = 0, 1, and eight conditions need to be checked. Refer to the relevant
code of BUGS CODE 7.2, and Table 7.9, which describes the various posterior
distributions for testing conditional independence.

The first row is the posterior distribution of the difference:

P [R = 0, T = 0 | D = 0] − P [R = 0 | D = 0]P [T = 0 | D = 0],

TABLE 7.8: Posterior analysis of Strongyloides—without CIA
uniform prior.

Parameter Mean sd Error 2 1/2 Median 97 1/2

p 0.4736 0.3271 0.0128 0.0113 0.4412 0.987
c1 0.7036 0.1731 0.0038 0.2358 0.7428 0.9526
c2 0.2906 0.176 0.0042 0.0481 0.2442 0.7671
s1 0.3183 0.1847 0.0030 0.0537 0.2702 0.7913
s2 0.7006 0.1852 0.0040 0.2183 0.7513 0.9541
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TABLE 7.9: Posterior distributions for conditional independence.
Parameter Mean sd Error 2 1/2 Median 97 1/2

ph00 0.2425 0.1593 0.0027 0.0167 0.2138 0.6711
ph01 0.0549 0.092 0.0020 0.0010 0.0225 0.3450
ph10 0.4453 0.2113 0.0058 0.0267 0.5052 0.7978
ph11 0.2572 0.1599 0.0025 0.0188 0.2333 0.6772
theta00 ?
theta01 ?
theta10 ?
theta11 ?

ph00 sample: 130000

ph00
0.0 0.5 1.0

P(
ph

00
)

0.
0

4.
0

FIGURE 7.5: Posterior density of the conditional independence of ph00.

and if the 95% credible interval contains zero, the implication is that the CIA
is valid, at least for this condition. Of course, there are seven other conditions
that need to be checked, and the last four of Table 7.9 are left as an exercise.
For the first row, the 95% credible interval for ph00 is (0.0167,0.6711) implying
that for this restriction, the CIA is not justified, which is also demonstrated
with a plot of the corresponding posterior density of Figure 7.5.

Note that the MCMC errors are relatively large, thus a larger simulation
size should be adopted. This is left as an exercise.

7.7 Accuracies of Two Binary Tests for Several
Populations with Conditional Independence

The previous analysis of two binary tests is extended to several popu-
lations, and a good example of this is presented by Zhou, McClish, and
Obuchowski [2: 371], with two tests that diagnose tuberculosis at two dif-
ferent sites. The Zhou approach is MLE and is based on the clinical study of
Hui and Walter [5]. The two diagnostic tests are the Tine test (T ) and the
Mantour test (R), while the two populations of patients are quite different in
the prevalence of the disease, as the first is a southern school district, while
the second is a tuberculosis sanatorium in Missouri. Of interest for this type
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TABLE 7.10a: Mantour and Tine tests for tuberculosis at site 1—a
southern school district.

Tine test T

Mantour test R T = 1 T = 0

R = 1 14 4 19
R = 0 9 528 537
Total 23 532 556

Source: From Zhou, X.H., McClish, D.K., and Obuchowski, N.A. Statistical
Methods for Diagnostic Medicine. 2002; P. 371, Table 11.8. Copyright Wiley-
VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

TABLE 7.10b: Mantour and Tine tests for tuberculosis at site 2—a
tuberculosis sanatorium.

Tine test T

Mantour test R T = 1 T = 0

R = 1 887 31 918
R = 0 37 367 404
Total 924 398 1322

Source: From Zhou, X.H., McClish, D.K., and Obuchowski, N.A. Statistical
Methods for Diagnostic Medicine. 2002; P. 371, Table 11.8. Copyright Wiley-
VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

of study is a comparison of the accuracies of both tests between the two pop-
ulations. Also for this problem, the prevalence rates of tuberculosis are known
with some confidence and such information can be used to specify an infor-
mative prior distribution. Since the two locations are quite different and one
would expect the clinicians of the two sites to not be the same people, the
results from the two sites are statistically independent.

Results from the two sites are presented in Tables 7.10a and b. Note the
observed sensitivity for T , relative to R, at site 1 is 14/19 = 0.736, while
the specificity is 528/537 = 0.983, also the sensitivity of T , relative to R, at
site 2 is 887/918 = 0.966, with a specificity of 367/404 = 0.908. What will be
the change in the accuracies of the two tests at the two sites when corrected by
the Bayesian methodology presented earlier? Some of the questions pertinent
to the Bayesian approach are: What prior information should be employed and
should conditional independence between R and T be imposed? Reasonable
guesses about the prior information for the prevalence rates of tuberculosis
are possible. For the first site, a low rate of, say, 4%, while 95% for the second
site will be specified. One would expect the sensitivity of T for the first site to
be low because the prevalence is low compared to the corresponding sensitivity
of T for the second site, where the prevalence rate is extremely high. On the
other hand, for the specificity of T , one would expect it to be higher for the first
site compared to the second, because the prevalence rate is lower for the first
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TABLE 7.11a: Accuracies of the Tine (test 1) and Mantour (test 2)
tuberculosis tests for site 1—a southern school district.

Parameter Mean sd Error 2 1/2 Median 97 1/2

p 0.0304 0.0049 <0.00001 0.0216 0.0302 0.0409
c1 0.9862 0.0066 <0.00001 0.972 0.9866 0.9979
c2 0.9934 0.0043 <0.00001 0.9833 0.9948 0.9997
s1 0.8595 0.1016 <0.0001 0.6227 0.8775 0.9945
s2 0.8149 0.1269 <0.0001 0.536 0.8339 0.9918

TABLE 7.11b: Accuracies of the Tine (test 1) and Mantour (test 2)
tuberculosis tests for site 2—a tuberculosis sanatorium.

Parameter Mean sd Error 2 1/2 Median 97 1/2

p 0.9896 0.0028 <0.0001 0.9832 0.9899 0.9944
c1 0.0392 0.0397 <0.0001 0.00099 0.0270 0.1471
c2 0.0367 0.0028 <0.0001 0.00091 0.0255 0.1365
s1 0.6946 0.0128 <0.0001 0.6693 0.6947 0.7194
s2 0.69 0.0128 <0.0001 0.6646 0.6902 0.715

compared to the second! This is borne out, to some extent, by inspection of
the observed accuracies for T (relative to R) from Table 7.10.

A Bayesian approach to estimating test accuracies will be done with three
scenarios, where the first is assuming an informative prior for the disease rate,
namely, a beta(30,970) distribution and a uniform prior for the accuracies;
the results shown in Table 7.11a are for site 1.

These are interesting results because the reported sensitivities and speci-
ficities are quite close to the observed accuracies relative to the reference, that
is to say, the Tine test has a sensitivity and specificity of 0.777 and 0.98,
respectively, relative to the Mantour test, while the Mantour test, has a sen-
sitivity and specificity of 0.60 and 0.99, relative to the Tine test. Thus, the
observed accuracies appear to be less than those estimated by the Bayesian
analysis. Recall from Pepe [1: 195,196], that if the two tests are conditionally
independent, the observed accuracies (sensitivities and specificities) are less
than the accuracies relative to the gold standard. Note, a uniform prior is used
for all parameters, except the disease rate, thus the estimated accuracies are
based on the data only, and if the estimated accuracies are indeed accurate,
the implication is that the two tests are conditionally independent, but this
will be tested later in this section.

As for the second site, if a uniform prior is used for all parameters, the
Bayesian analysis gives the results shown in Table 7.11b. These are interesting
results, recall the prior distribution of the disease rate is given as beta(990,10)
and the specificities are quite small, as they should be, because the disease is
seen almost all the time. I am surprised that the sensitivities are no larger, both
of which are about 70%. Note that the observed accuracies for the second site
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are 0.969 and 0.908 for the sensitivity and specificity of the Tine test relative
to the Mantour test, while the sensitivity and specificity of the Mantour test
relative to the Tine test are 0.95 and 0.922, respectively. I would expect the
observed accuracies to be less than those estimated above by Bayesian tech-
niques. To compute the observed accuracies, see Tables 7.10a and b.

These results should be compared to the MLEs of Zhou, McClish, and
Obuchowski [2: 371]. They assume that the sensitivities and specificities of
the Tine and Mantour tests are the same in the two populations, but assume
that the prevalence rates are not the same for the two sites, and compute the
sensitivity and specificity of the Tine test as 0.9841 and 0.9688, respectively,
with associated standard errors 0.01279 and 0.00623. Of course, this is quite
different for the present Bayesian analysis. They imposed a restriction (equal-
ity) on the sensitivities and specificities of the two tests because of the number
of parameters relative to the number of cell frequencies.

On the other hand, the Bayesian approach did not impose those types
of restrictions. It is important to remember that the accuracies of the two
tests will surely depend on the prevalence rates of tuberculosis, which differ
dramatically between the students of a school district and the patients at
a tuberculosis sanatorium. Thus, the two populations were considered to be
independent and a uniform prior was assumed for the sensitivities and speci-
ficities of the two populations. The following code generated the output for
the tuberculosis example at the two sites. The first list statement is for site 1
with a uniform prior, while the second list statement provides the input for
the second site, again with a uniform prior distribution.

BUGS CODE 7.3

model;
{
# conditional distribution of p
# p0 is an informative prior for p
# note that the distribution for p0 has be deactivated by the comment sign #!
# p0∼dbeta(ap0,bp0)
# the following are hyperparameters for the disease rate of the second site
ap0<- 990
bp0<-10
# p1 depends on the data only
p1∼dbeta(alp,bep)
# p can be expressed as a mixture of p0 and p1
P<-.90*p0+.10*p1
alp<- y11+y10+y01+y00+ap
bep<- sn -alp+bp
sn<- n11+n10+n01+n00+1
# conditional distribution of s1
s1∼dbeta(als1,bes1)
als1<-y11+y01+as1
bes1<-y10+y00+bs1
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#conditional distribution of s2
s2∼dbeta(als2,bes2)
als2<-y11+y10+as2
bes2<-y01+y00+bs2
# conditional distribution of c1
c1∼dbeta(alc1,bec1)
alc1<-n10+n00-y10-y00+ac1
bec1<-n11+n01-y11-y01+bc1
# conditional distribution of c2
c2∼dbeta(alc2,bec2)
alc2<- n01+n00-y01-y00+ac2
bec2<- n11+n10-y11-y10+bc2
# conditional distribution of y11
y11∼dbin( py11,n11)
py11<-p*s1*s2/(p*s1*s2+(1-c1)*(1-c2)*(1-p))
# conditional distribution of y10
y10∼dbin(py10,n10)
py10<-p*(1-s1)*s2/(p*(1-s1)*s2+c1*(1-c2)*(1-p))
# conditional distribution of y01
y01∼dbin(py01,n01)
py01<-p*s1*(1-s2)/(p*s1*(1-s2)+c2*(1-c1)*(1-p))
# conditional distribution of y00
y00∼dbin(py00,n00)
py00<-p*(1-s1)*(1-s2)/(p*(1-s1)*(1-s2)+c1*c2*(1-p))
}
# hyperparameters for Tuberculosis example
# Page 371 of Zhou site 1
# Test 1 is Tine Test
# Test 2 is Mantour test
# uniform prior for accuracy parameters
list(ap= 1, bp=1, as1=1,bs1=1,as2=1,bs2=1,
ac1=1,bc1=1,ac2=1,bc2=1, n11=14,n10=4,n01=9,n00=528)
# hyper parameters for Tuberculosis example
# Page 371 of Zhou site 2
# Test 1 is Tine Test
# Test 2 is Mantour test
# uniform prior for accuracy parameters
list(ap=1,bp=1,as1=1,bs1=1,as2=1,bs2=1,
ac1=1,bc1=1,ac2=1,bc2=1, n11=887,n10=31,n01=37,n00=367)
# initial values
list(c1=.5,c2=.5,s1=.5,s2=.5,y11=1,y10=1,
y01=1,y00=1)

In the above examples for Tables 7.10a and b, the distribution of p is
expressed as a mixture. The posterior distribution of p may be determined by
the prior distribution p0 for p and the posterior distribution for p, labeled p1.
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The distribution of p is specified as a mixture between p0 and p1, and the
hyperparameters for p0 are ap0 and bp0, which may be specified in the first
two list statements of BUGS CODE 7.3. The first list statement gives the data
for site 1, the second list statement gives the data for site 2, while the third
list statement provides the initial values for the MCMC computations.

7.8 Accuracies of Two Binary Tests without Conditional
Independence: Two Populations

Tables 7.10a and b present the results for two diagnostic tests for tuber-
culosis at two sites, and the previous section presented the Bayesian analysis
based on the CIA, assuming a uniform prior for all parameters, except disease
prevalence. For now, conditional independence will not be imposed. How will
the posterior analysis differ between the two scenarios?

The first analysis is for site 1, the population of a southern school district,
where the prevalence is assumed to be 4%. A uniform prior is assumed for the
sensitivities and specificities of the Tine and Mantour tests and the analysis
is based on the study results (shown in Table 7.10). The computations are
executed with 130,000 observations generated from the posterior distribution,
with a burn in of 5,000 and a refresh of 100. BUGS CODE 7.2 is slightly
revised as follows: the first few statements give the posterior distribution of d,
the disease rate as a mixture of the posterior distribution of p, the disease rate
with a uniform prior, and the prior distribution of the disease rate expressed
as beta distribution.

BUGS CODE 7.4

p∼dbeta(y..,m)
p0∼dbeta(ap0,bp0)
# d is a mixture of the uniform prior and an
# informative prior p0
# d is the posterior distribution of disease rate
d<-.10*p+.90*p0
m<-n-y..+1
y..<-y11+y10+y01+y00+ 1
The first list statement, among those below gives the data for the first site:
# Tine test & Mantour test site 1
list(n=556,ap0=17,bp0=538, b11=14,b10=4,b01=9,b00=528)
# Tine test & Mantour test site 2
list( n=1323,ap0=1296,bp0=26, b11=887,b10=31,b01=37,b00=367)
# starting values
list(g11=1,g10=1,g01=1, g00=1, p=.5, h11=1,h10=1,h01=1,h00=1, y11=1,

y10=1,y01=1,y00=1))
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TABLE 7.12a: Posterior analysis of the Tine and Mantour tests
without conditional independence—site 1.

Parameter Mean sd Error 2 1/2 Median 97 1/2

d 0.0299 0.0049 <0.0001 0.0189 0.0300 0.0449
c1 0.9695 0.0106 <0.0001 0.9473 0.97 0.9885
c2 0.9753 0.0097 <0.0001 0.9554 0.9757 0.9929
s1 0.5345 0.2131 0.0018 0.1158 0.5458 0.9038
s2 0.4416 0.2081 0.0017 0.0840 0.4304 0.8559

TABLE 7.12b: Posterior analysis of the Mantour and Tine tests
without conditional independence—site 2.

Parameter Mean sd Error 2 1/2 Median 97 1/2

d 0.9802 0.0034 <0.0001 0.9728 0.9805 0.9864
c1 0.5006 0.2241 0.0025 0.0945 0.5006 0.9069
c2 0.5057 0.2235 0.0024 0.0982 0.5065 0.9099
s1 0.7024 0.0137 <0.0001 0.6753 0.7024 0.729
s2 0.697 0.0135 <0.0001 0.6707 0.6979 0.7243

For site 1, the posterior analysis is given by Table 7.12a. It is interesting to
compare Table 7.11a with Table 7.12a, where the former assumes conditional
independence and the latter does not. The sensitivities of the two tests are
higher under the assumption of conditional independence, and the specifici-
ties appear to be the same. When the prevalence rate is low, I would expect
higher specificities compared to sensitivities. In summary, comparing the
two tables implies that the assumption of conditional independence may not
be valid.

The posterior distribution of the two sensitivities, s1 and s2, appear to
have more uncertainty than the other parameters in Table 7.11a, and this is
demonstrated by a plot of the posterior density as shown in Figure 7.6, and a
plot of the posterior density of s2 is similar.

s1 sample: 125001

s1
0.0 0.5 1.0

P(
s1

)
0.

0
1.

0
2.

0

FIGURE 7.6: Posterior density of s1 with no conditional independence.
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With a similar approach, not assuming conditional independence, the pos-
terior analysis of location 2 is displayed by Table 7.12b. Recall that the
prevalence for tuberculosis is assumed to be 98%, expressed as a beta(980,20)
distribution, a prior.

Note that the two specificities are the same, as are the two sensitivities,
and that the two tests have higher sensitivity than specificity, which is to be
expected with such a high prevalence rate. Looking at Tables 7.10a and b
for the basic information on the two tests at sites 1 and 2, respectively, one
sees symmetry (the marginal totals are similar) in the test results at both
sites, suggesting that the specificities of the two would be similar, as would
the specificities, at both sites.

The tuberculosis example has been analyzed by assuming conditional inde-
pendence, resulting in Tables 7.11a and b for the Bayesian results. Without
assuming conditional independence, the analyses are reported in Tables 7.12a
and b. It cannot be over emphasized that an informative prior distribution is
placed on the disease rate, with a value of approximately 4% for site 1 (a south-
ern school district) and a rate of 98% for site 2 (a tuberculosis sanatorium).
For the former site the prevalence is expressed as the beta(40,960) distribution
and as beta(980,20) for the latter site. It should also be noted that if the prior
distributions for the disease rate and for the accuracies are changed, the results
will be quite different than that reported in Tables 7.11 and 7.12. This sensi-
tivity to the prior will be explored in the exercises at the end of the chapter.

7.9 Multiple Tests in a Single Population

What is to be presented is for three tests, where the generalization to
more than three tests is obvious and will be left as an exercise at the end of
this chapter. Label the tests T1, T2, and T3, and when Ti = 1, the ith test is
positive, and when Ti = 0, the test is negative, where i = 1, 2, 3. Suppose p
denotes the prevalence of the disease and that the three tests are scored on
the same units.

A Bayesian approach requires a likelihood function, which, if condi-
tional independence is assumed, will have seven parameters, three sensitivities
denoted by si (i = 1, 2, 3), three specificities denoted by ci, and the disease
prevalence p. A typical layout for the study results for three tests is given by
Tables 7.13a and b.

There are eight cell frequencies, and the posterior distribution is based on
the marginal distribution of p, the conditional distribution of each of the other
six parameters, given the other parameters.

As before, let the marginal distribution of p be

p ∼ beta(alp, bep), (7.25)
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TABLE 7.13a: Three
binary tests results when T1 = 1.

T2

T3 T2 = 1 T2 = 0

T3 = 1 n111 n101
T3 = 1 n110 n100

TABLE 7.13b: Three
binary tests results when T1 = 0.

T2

T3 T2 = 1 T2 = 0

T3 = 1 n011 n001
T3 = 1 n010 n000

where

alp =
i=1∑
i=0

j=1∑
j=0

yij + 1

and

bep = n.. − alp,

where

n.. =
i=1∑
i=0

j=1∑
j=1

nij ,

where yij are augmented variables, which will be defined in a moment.
The following sensitivities will have the following conditional beta posterior
distributions.

s1 ∼ beta(als1, bes1), (7.26)

where

als1 = y111 + y101 + y110 + y100 + as1

and

bes1 = y011 + y001 + y010 + y000 + bs1.

s2 ∼ beta(al2, bes2), (7.27)

where

als2 = y111 + y110 + y011 + y010 + as2
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and

bes2 = y101 + y100 + y001 + y000 + bs2.

s3 ∼ beta(al3, bes3), (7.28)

where

als3 = y111 + y101 + y011 + y001 + as3

and

bes3 = y110 + y100 + y010 + y000 + bs3.

As for the specificities,

c1 ∼ beta(alc1, bec1), (7.29)
alc1 = n010 + n001 + n010 + n000 − y010 − y001 − y010 − y000 + ac1,

bec1 = n111 + n101 + n110 + n100 − y111 − y101 − y101 − y100 + bc1.

c2 ∼ beta(alc2, bec2), (7.30)
alc2 = n101 + n100 + n101 + n000 − y101 − y100 − y101 − y000 + ac2,

bec2 = n111 + n110 + n011 + n010 − y111 − y110 − y011 − y010 + bc2.

c3 ∼ beta(alc3, bec3), (7.31)
alc3 = n110 + n100 + n010 + n000 − y110 − y100 − y010 − y000 + ac3,

bec3 = n111 + n101 + n011 + n001 − y111 − y101 − y011 − y001 + bc3.

The augmented variables are given binomial distributions as follows.

y111 ∼ binomial(py111, n111), (7.32)

where

py111 = ps1s2s3/[ps1sss3 + (1 − p)(1 − c1)(1 − c2)(1 − c3)].
y101 ∼ binomial(py101, n101), (7.33)

where

py101 = ps1(1 − s2)s3/[ps1(1 − s2)s3 + (1 − p)(1 − c1)c2(1 − c3)].
y110 ∼ binomial(py110, n110), (7.34)

where

py110 = ps1s2(1 − s3)/[ps1s2(1 − s3) + (1− p)(1 − c1)(1 − c2)c3].
y100 ∼ binomial(py100, n100), (7.35)

where

py100 = ps1(1 − s2)(1 − s3)/[ps1(1 − s2)(1 − s3)/[ps1(1 − s2)(1 − s3)
+ (1 − p)(1 − c1)c2c3].

y011 ∼ binomial(py011, n011), (7.36)
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where

py011 = p(1 − s1)s2s3/[p(1 − s1)s2s3 + (1 − p)c1(1 − c2)(1 − c3)].
y001 ∼ binomial(py001, n001), (7.37)

where

py001 = p(1 − s1)(1 − s2)s3/[p(1 − s1)(1 − s2)s3 + (1 − p)c1c2(1 − c3)].
y010 ∼ binomial(py010, n010), (7.38)

where

py010 = p(1 − s1)s2(1 − s3)/[p(1 − s1)s2(1 − s3) + (1 − p)c1(1 − c2)c3].
y000 ∼ binomial(py000, n000), (7.39)

where

py000 = p(1 − s1)(1 − s2(1 − s3)/[p(1 − s1)(1 − s2)(1 − s3) + (1 − p)c1c2c3].

Equations 7.25 through 7.39 comprise the posterior distribution of the
seven parameters of the problem and will be executed with BUGS CODE 7.5.
A good example of multiple tests is the study by Irwig et al. [10], presented
as an example of multiple tests and consisting of three radiologists who are
conducting a study on the accuracy of x-ray in detecting pleural thickening of
asbestos miners in South Africa. The example presented in Tables 7.14a and b
is similar in that there are three readers who are studying the enlargement
of the prostate gland via MRI images, where a positive reading indicates
enlargement and a negative reading implies the reader believes the prostate
was not enlarged (Tables 7.14a and b).

TABLE 7.14a: Three radiologists when radiologist 1
scores positive T1 = 1.
Prostate enlargement Radiologist 2

Radiologist 3 T2 = 1 T2 = 0

T3 = 1 n111 = 46 n101 = 27
T3 = 0 n110 = 20 n100 = 31

TABLE 7.14b: Three radiologists when radiologist 1
scores negative T1 = 0.
Prostate enlargement Radiologist 2

Radiologist 3 T2 = 1 T2 = 0

T3 = 1 n011 = 31 n001 = 41
T3 = 1 n010 = 79 n000 = 1533
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TABLE 7.15: Posterior analysis of three radiologists for prostate
enlargement.

Parameter Mean sd Error 2 1/2 Median 97 1/2

p 0.02674 0.0035 <0.0001 0.0200 0.0266 0.0341
c1 0.9709 0.0052 <0.0001 0.9598 0.9711 0.9804
c2 0.9387 0.0067 <0.0001 0.9249 0.9388 0.9513
c3 0.9267 0.0069 <0.0001 0.9126 0.9269 0.9399
s1 0.8427 0.0676 <0.0001 0.7062 0.841 0.9702
s2 0.8024 0.0623 <0.0001 0.6771 0.8035 0.9211
s3 0.821 0.0541 <0.0001 0.7115 0.8223 0.9235

The posterior analysis assumes conditional independence between the
three radiologists and a uniform beta prior for each of the seven parameters,
and reveals some interesting results. The disease prevalence is estimated at
almost 3%, with high specificity for the three radiologists and good sensitivity
ranging from a low of 80% for radiologist 2 to a high of 84% for the first radi-
ologist. These results appear to be reasonable because of the low prevalence
of prostate enlargement.

The Bayesian analysis assumes a uniform prior for all parameters, includ-
ing the disease rate. The readers show good agreement with regard to speci-
ficity, but there is less agreement between them with regard to sensitivity,
but it is still good, and as it should be, the specificities are greater than
the sensitivities, which is to be expected with the disease prevalence so low
(Table 7.15).

Stability is evident in the Bayesian analysis with “small” posterior stan-
dard deviations and plots of the posterior densities that appear well behaved.
The analysis is executed with BUGS CODE 7.5, using 135,000 observations
generated from the posterior distribution, with a burn in of 5,000 and a refresh
of 100, which gives very small MCMC errors, all of which are <0.0001.

BUGS CODE 7.5

model;
{
p1∼dbeta(alphap1,betap1)
p0∼dbeta(100,900)
# note p is not expressed as a mixture for this example
p<-p1
alphap1<-sy+1
betap1<-sn -alphap1
sn<-n111+n101+n110+n000+n011+n001+n010+n000
sy<-y111+y101+y110+y000+y011+y001+y010+y000
s1∼dbeta(alphas1,betas1)
alphas1<-y111+y101+y110+y100+as1
betas1<- y011+y001+y010+y000+ bs1
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s2∼dbeta(alphas2,betas2)
alphas2<-y111+y110+y011+y010+as2
betas2<- y101+y100+y001+y000+bs2
s3∼dbeta(alphas3,betas3)
alphas3<-y111+y101+y011+y001+as3
betas3<-y110+y100+y010+y000+bs3
c1∼dbeta(alphac1,betac1)
alphac1<-n011+n001+n010+n000-y011-y001
-y010-y000+ac1
betac1<-n111+n101+n110+n100-y111-y101
-y110-y100+bc1
c2∼dbeta(alphac2,betac2)
alphac2<-n101+n100+n001+n000-y101-y100-
y001-y000 +ac2
betac2<- n111+n110+n011+n010-y111-y110
-y011-y010+bc2
c3∼dbeta(alphac2,betac3)
alphac3<-n110+n100+n010+n000-y110+y100+y010+y000+ac3
betac3<-n111+n101+n011+n001-y111+y101+y011+y001+bc3
y111∼dbin( py111,n111)
py111<-p*s1*s2*s3/(p*s1*s2*s3+(1-c1)*(1-c2)*(1-c3)*(1-p))
y101∼dbin(py101,n101)
py101<-p*s1*(1-s2)*s3/(p*s1*(1-s2)*s3+(1-c1)*c2*(1-c3*(1-p)))
y110∼dbin(py110,n110)
py110<-p*s1*s2*(1-s3)/(p*s1*s2*(1-s3)+c3*(1-c2)*(1-c1)*(1-p))
y100∼dbin(py100,n100)
py100<-p*s1*(1-s2)*(1-s3)/(p*s1*(1-s2)*(1-s3)+(1-c1)*c2*c3*(1-p))
y011∼dbin(py011,n011)
py011<-p*(1-s1)*s2*s3/(p*(1-s1)*s2*s3+(1-p)*c1*(1-c2)*(1-c3))
y001∼dbin(py001,n001)
py001<-p*(1-s1)*(1-s2)*s3/(p*(1-s1)*(1-s2)*s3+(1-p)*c1*c2*(1-c3))
y010∼dbin(py010,n010)
py010<- p*(1-s1)*s2*(1-s3)/(p*(1-s1)*s2*(1-s3)+(1-p)*c1*(1-c2)*c3)
y000∼dbin(py000,n000)
py000<- p*(1-s1)*(1-s2)*(1-s3)/(p*(1-s1)*(1-s2)*(1-s3)+(1-p)*c1*c2*c3)
}
# hyperparameters for Pepe example
# Test1 is culture, 2 is Elisa, 3 is PCR
list(n111=20,n101=4,n110=2,n100=2,
n011=4,n001=3,n010=2,n000=292,
as1=1,bs1=1,as2=1,bs2=1,
ac1=1,bc1=1,ac2=1,bc2=1,
as3=1,bs3=1,ac3=1,bc3=1)
# hyperparameters for prostate enlargement
list(n111=46,n101=27,n110=20,n100=31,n011=31,
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n001=41,n010=79,n000=1533,
as1=1,bs1=1,as2=1,bs2=1,
ac1=1,bc1=1,ac2=1,bc2=1,
as3=1,bs3=1,ac3=1,bc3=1)
# hyperparameters Pepe table 7.14
# Page 204
list(n111=70,n101=25,n110=5,n100=10,
n011=110,n001=150,n010=100,n000=530,
as1=1,bs1=1,as2=1,bs2=1,
ac1=1,bc1=1,ac2=1,bc2=1,
as3=1,bs3=1,ac3=1,bc3=1)
# initial values
list(c1=.5,c2=.5,s1=.5,s2=.5,s3=.5,c3=.5,
y111=1,y101=1,y110=1,y100=1,y011=1,y001=1,
y010=1,y000=1)

7.10 Multiple Tests without Conditional Independence

Recall that the above analysis for three binary tests depends on conditional
independence between them. Will the accuracies change if this assumption is
not imposed? Our next challenge is to develop an analysis that not only does
not include this assumption, but also provides reasonable estimates of test
accuracy. Recall also that the Bayesian analysis without conditional indepen-
dence was based on the likelihood function (Equation 7.6) and developed in
Section 7.6, and that BUGS CODE 7.2 was executed to analyze two diagnostic
tests for Strongyloides, where the assumption of conditional independence was
tested. A similar approach is now taken, where Equations 7.7 through 7.14
are generalized to three binary tests.

For three tests with latent variables yijk , let

θijk = P [T1 = i, T2 = j, T3 = k | D = 1], i, j, k = 0, 1,

and

φijk = P [T1 = i, T2 = j, T3 = k | D = 0].

Then, the likelihood function is

L(θ,φ/data) ∝ py...(1 − p)n...−y...

i=1∏
i=0

j=1∏
j=0

k=1∏
k=0

θ
yijk
ijk

i=1∏
i=0

j=1∏
j=0

k=1∏
k=0

φ
nijk−yijk
ijk , (7.40)
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and assuming a uniform prior, the posterior distribution of the parameters p,
θijk , and φijk can be determined in terms of all the conditional distributions
as follows.

The conditional distribution of θijk (i, j, k = 0, 1), given the other param-
eters (including the augmented data yijk ), is Dirichlet with parameter vector
(y111 + 1, y110 + 1, y101 + 1, y100 + 1, y011 + 1, y010 + 1, y001 + 1, y000 + 1).

The conditional distribution of φijk (i, j = 0, 1), given the other param-
eters (including the augmented data yij ), is Dirichlet with parameter
vector (n111 − y111 + 1, n110 − y110 + 1, n101 − y101 + 1, n100 − y100 + 1, n011 −
y011, n010 − y010, n001 − y001, n000 − y000).

The conditional distribution of p, given the other parameters, is beta with
parameters

alphap = y... + 1

and

betap = n... − y... + 1,

where

y... =
i=1∑
i=0

j=1∑
j=0

k=1∑
k=0

yijk

and

n... =
i=1∑
i=0

j=1∑
j=0

k=1∑
k=0

nijk .

The conditional distribution of yijk , given the other parameters, is binomial
with hyperparameters θijkp/[θijkp + φijk (1 − p)] for the probability parameter
and nijk for the second parameter, where i, j, k = 0, 1.

This is sufficient to determine the joint posterior distribution of all the
parameters, assuming a uniform prior for all. WinBUGS uses Gibbs sampling
from all the conditional distributions to determine the joint posterior distri-
bution of all the parameters.

The analysis shown in Table 7.16 estimates the disease (prostate enlarge-
ment) prevalence at 4.1% using a uniform prior. The disease rate d can be
defined as a mixture of two distributions for p and p0. In effect, the prior
distribution of d is uniform. One may adjust the prior distribution for d by
varying the parameters of the beta prior for p0 and the mixing weights.

It is seen that the specificities are all high and very similar among the
three radiologists, while the sensitivities are quite low, varying from 0.46 for
radiologist 1 to a high of 0.49 for radiologist 2. Are these results reasonable?

It is interesting to compare the results of Table 7.15 with Table 7.16, where
the former reports the analysis when the conditional independence is imposed,
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TABLE 7.16: Posterior analysis of three binary tests without
conditional independence—prostate enlargement with three radiologists.

Parameter Mean sd Error 2 1/2 Median 97 1/2

d 0.0414 0.0285 <0.0001 0.0024 0.0369 0.1102
c1 0.9447 0.0119 <0.0001 0.9243 0.9435 0.9708
c2 0.9173 0.0148 <0.0001 0.8939 0.9152 0.9523
c3 0.9344 0.0134 <0.0001 0.9122 0.9329 0.964
s1 0.4602 0.1604 0.0023 0.1694 0.4542 0.7826
s2 0.4924 0.1593 0.0021 0.1901 0.4916 0.8001
s3 0.487 0.1586 0.0022 0.1877 0.4854 0.7961

while the latter reveals the analysis when the conditional independence is not
imposed. The most obvious difference is that the sensitivities of the three
readers for the former case are much higher than those for the latter case. It
is interesting to observe that the MCMC errors for the sensitivities are larger
than that for the other parameters, which is also evident from the plots of the
posterior densities of all the posterior distributions. The analysis is executed
with BUGS CODE 7.6 using 130,000 observations generated from the joint
posterior distribution, with a burn in of 5,000 and a refresh of 100.

BUGS CODE 7.6

model;
# three tests wo cia
{
p∼dbeta(y...,m)
# p0∼dbeta(ap0,bp0)
# d is a mixture of the uniform prior and an
# informative prior p0
# d is the posterior distribution of disease rate
d<- p
m<-n...-y...+1
y...<- y111+y101+y110+y100+y011+y001+y010+y000+1
n...<- n111+n101+n110+n100+n011+n001+n010+n000
y111∼dbin(a111,n111)
a111<- theta111*d/(theta111*d+ph111*(1-d))
y110∼dbin(a110,n110)
a110<-theta110*d/(theta110*d+ph110*(1-d))
y101∼dbin(a101,n101)
a101<- theta101*d/(theta101*d+ph101*(1-d))
y100∼dbin(a100,n100)
a100<-theta100*d/(theta100*d+ph100*(1-d))
y011∼dbin(a011,n011)
a011<-theta011*d/(theta011*d+ph011*(1-d))
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y001∼dbin(a001,n001)
a001<-theta001*d/(theta001*d+ph001*(1-d))
y010∼dbin(a010,n010)
a010<-theta010*d/(theta010*d+ph010*(1-d))
y000∼dbin(a000,n000)
a000<-theta000*d/(theta000*d+ph000*(1-d))
g111∼dgamma(r111,2)
g110∼dgamma(r110,2)
g101∼dgamma(r101,2)
g100∼dgamma(r100,2)
g011∼dgamma(r011,2)
g010∼dgamma(r010,2)
g001∼dgamma(r001,2)
g000∼dgamma(r000,2)
r111<-y111+1
r110<-y110+1
r101<-y101+1
r100<-y100+1
r011<-y011+1
r010<-y010+1
r001<-y001+1
r000<-y000+1
sg<-g111+g110+g101+g100+g011+g010+g001+g000
theta111<-g111/sg
theta110<-g110/sg
theta101<-g101/sg
theta100<-g100/sg
theta011<-g011/sg
theta010<-g010/sg
theta001<-g001/sg
theta000<-g000/sg
h111∼dgamma(s111,2)
h110∼dgamma(s110,2)
h101∼dgamma(s101,2)
h100∼dgamma(s100,2)
h011∼dgamma(s011,2)
h010∼dgamma(s010,2)
h001∼dgamma(s001,2)
h000∼dgamma(s000,2)
s111<-z111+1
s110<-z110+1
s101<-z101+1
s100<-z100+1
s011<-z011+1
s010<-z010+1
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s001<-z001+1
s000<-z000+1
sh<-h111+h110+h101+h100 + h011+h010+h001+h000
ph111<-h111/sh
ph110<-h110/sh
ph101<-h101/sh
ph100<-h100/sh
ph011<-h011/sh
ph010<-h010/sh
ph001<-h001/sh
ph000<-h000/sh
z111<-n111-y111
z110<-n110-y110
z101<-n101 -y101
z100<-n100-y100
z011<-n011-y011
z010<-n010-y010
z001<-n001 -y001
z000<-n000-y000
# test for conditional independence
theta111c<- (theta111+theta110)*(theta111+theta101)-
theta111
theta110c<- (theta111+theta110)*(theta110+theta100)-
theta110
theta101c<- (theta111+theta101)*(theta101+theta100)-
theta101
theta100c<- (theta110+theta100)*(theta101+theta100)-
theta100
theta011c<- (theta011+theta010)*(theta011+theta001)-
theta011
theta010c<- (theta011+theta010)*(theta010+theta000)-
theta010
theta001c<- (theta011+theta001)*(theta001+theta000)-
theta001
theta000c<- (theta010+theta000)*(theta001+theta100)-
theta000
# test for conditional independence for phs
ph111c<- (ph111+ph110)*(ph111+ph101)-ph111
ph110c<- (ph111+ph110)*(ph110+ph100)-ph110
ph101c<- (ph111+ph101)*(ph101+ph100)-ph101
ph100c<- (ph110+ph100)*(ph101+ph100)-ph100
ph011c<- (ph011+ph010)*(ph011+ph001)-ph011
ph010c<- (ph011+ph010)*(ph010+ph000)-ph010
ph001c<- (ph011+ph001)*(ph001+ph000)-ph001
ph000c<- (ph010+ph000)*(ph001+ph000)-ph000
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#sensitivity and specificity
s1<- theta111+ theta101+theta110+theta100
c1<- ph011+ph001+ph010+ph000
s2<-theta111+theta110+theta011+theta010
c2<- ph101+ph100+ph001+ph000
s3<-theta111+theta101+theta011+theta001
c3<-ph110+ph100+ph010+ph000
}
# prostate enlargement with 3 readers
list( n111=46,n110=20,n101=27,n100=31,
n011=31,n010=79,n001=41,n000=1533)
# hyperparameters for pepe example
# Test1 is culture, 2 is Elisa, 3 is PCR
list(ap0=50,bp0=1000,n111=20,n101=4,n110=2,
n100=2,n011=4,n001=3,n010=2,n000=292)
# starting values
list(p=.5, h111=1,h110=1,h101=1,h100=1,
h011=1,h010=1,h001=1,h000=1,
y111=1,y110=1,y101=1,y100=1,
y011=1,y010=1,y001=1,y000=1)

It is obvious how to generalize multiple tests to several populations with
and without conditional independence and this will not be presented here, but
will be considered as an exercise.

7.11 Two Ordinal Tests and the Receiver Operating
Characteristic Area

The central theme of this chapter is estimating test accuracy when there
is no gold standard, and at best an imperfect reference test is available. Thus
far, two ordinal tests have been considered for a variety of scenarios. First, two
tests for one population of patients is considered under two conditions: with
and without conditional independence between the two, then the situation
is generalized to two binary tests and several populations, with and without
conditional independence. Lastly, multiple binary tests are considered, with
and without conditional independence, and all scenarios were illustrated with
a variety of real-life examples of estimating medical test accuracy. Latent
variables were used in each case, which allows one to envision what can happen,
both when the disease is present and when it is absent.

Now the goal is to estimate the area under the ROC curve for two ordinal
tests, when there is no gold standard, but one of the tests serves as an imperfect
reference test.
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Suppose the two tests, T1 and T2, have ordinal scores 1, 2, . . . , c and that

θij = P [T1 = i, T2 = j | D = 1], (7.41)

and

φij = P [T1 = i, T2 = j | D = 0], (7.42)

where i, j = 1, 2, . . . , c. Then

θi. = P [T1 = i | D = 1], (7.43)

and

θ.j = P [T2 = j | D = 1]. (7.44)

Also,

φi. = P [T1 = i | D = 0], (7.45)

and

φ.j = P [T2 = j | D = 0]. (7.46)

In addition, suppose that the latent variables are distributed

yij ∼ beta(aij , nij ), (7.47)

where

aij = pθij/[pθij + (1 − p)φij ], (7.48)

and p is the disease rate and the observations are nij for i, j = 1, 2, . . . , c.
The area under the ROC curve for T1 is defined as follows:

AT 1 = AT 11 +AT 12/2, (7.49)

where

AT 11 =
i=c∑
i=2

θi.

j=i−1∑
j=1

φj.,

and

AT 12 =
i=c∑
i=1

j=c∑
j=1

θi.φi..

  



K11763 Chapter: 7 page: 246 date: June 17, 2011

246 Advanced Bayesian Methods for Medical Test Accuracy

In a similar fashion, the area under the ROC curve for T2 is

AT 2 = AT 21 +AT 22/2, (7.50)

where

AT 21 =
i=c∑
i=2

θ.i

j=i−1∑
j=1

φ.j ,

and

AT 22 =
i=c∑
i=1

j=c∑
j=1

θ.iφ.i.

As an example of finding the ROC area of two tests, consider the example
of staging melanoma with two readers, T1 and T2, where the ordinal scores
are 1, 2, 3, indicating the stage of the disease, and the results are given by
Table 7.17.

On examination of the staging results of Table 7.17, the following observa-
tions are made: assuming T2 is the reference test and that a score of 3 identi-
fies disease (stage 3), the ROC area for T1 is approximately 0.58; on the other
hand, assuming T1 (reader 1) is the reference with a T1 score of 3 indicating
disease, it can be shown that the ROC area of T2 (reader 2) is approximately
0.58. Also, if a score of 3 from either test indicates disease, the disease preva-
lence is approximately 60%; on the other hand, if disease is indicated only if
both tests score 3, the disease rate is estimated as only 46/286 = 16%. Notice
the symmetry in the two tests, the marginal distributions are each u-shaped,
implying that the accuracy of both tests will be similar.

Because there is no gold standard, a Bayesian analysis is performed based
on the derivations above, consisting of Equations 7.41 through 7.50. First,
a prevalence rate of 20% is imposed with uniform priors for the thetas and
phis and an analysis is executed with 135,000 observations generated from the
posterior distribution of all parameters, with a burn in of 5,000 and a refresh
of 100. See BUGS CODE 7.7, where the list statement gives the data for the
MRI and CT results of Table 7.18.

It is evident that the ROC area for reader 1 is greater than that for reader 2.
The prevalence rate was set at 20%, however, different values of the rate

TABLE 7.17: Two readers staging
melanoma.

T1

T2 T1 = 1 T1 = 2 T1 = 3 Total

T2 = 1 45 26 28 99
T2 = 2 25 20 20 65
T2 = 3 46 30 46 122
Total 116 76 94 286
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TABLE 7.18: ROC areas for T1 and T2 for staging melanoma.
Parameter Mean sd Error 2 1/2 Median 97 1/2

d 0.2004 0.0362 <0.0001 0.1344 0.1987 0.2765
T1 0.5272 0.101 0.0017 0.331 0.5272 0.7218
T2 0.4721 0.1004 0.0016 0.2814 0.4712 0.6663

should be tried to see the effect on the ROC areas of the two modalities.
It is imperative that one knows the disease prevalence with a high degree of
confidence in order to have reliable estimates of the test accuracies.

BUGS CODE 7.7

model;
{
# Two tests T1 and T2 with ordinal values
# Dirichlet for theta
for(i in 1:3){ for (j in 1:3){h[i,j]∼dgamma( zh[i,j],2)}}
sh<-sum(h[,])
for(i in 1:3){ for (j in 1:3){theta[i,j]<-h[i,j]/sh}}
for(i in 1:3){ for (j in 1:3){zh[i,j]<-y[i,j]+1}}
# Dirichlet for ph
for(i in 1:3){ for (j in 1:3){g[i,j]∼dgamma( zg[i,j],2)}}
sg<-sum(g[,])
for(i in 1:3){ for (j in 1:3){ph[i,j]<-g[i,j]/sg}}
for(i in 1:3){ for (j in 1:3){zg[i,j]<- n[i,j] - y[i,j]+1}}
# dist of augmented data y[i,j]
for(i in 1:3){ for (j in 1:3){y[i,j]∼dbin(w[i,j],n[i,j])}}
for(i in 1:3){ for (j in 1:3){w[i,j]<-d*theta[i,j]/(d*theta[i,j]+(1-d)*ph[i,j])}}
# posterior distribution of p
# the disease rate d is a mixure of p and p0
# p0 is the prior distribution of the disease rate
# p is the disease rate with a uniform prior
d<-.1*p+.9*p0
p0∼dbeta(ap,bp)
p∼dbeta(alphap,betap)
sy<-sum(y[,])
sn<-sum(n[,])
alphap<- sy+1
betap<- sn-sy+1
# ROC area T1
# Prob T1 = 1,2,3 given D=1
theta.1<-
theta[1,1]+theta[2,1]+theta[3,1]

theta.2<-
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theta[1,2]+theta[2,2]+theta[3,2]
theta.3<-
theta[1,3]+theta[2,3]+theta[3,3]

# Prob T1=1,2,3 given D=0
ph.2<- ph[1,2]+ph[2,2]+ph[3,2]
ph.3<- ph[1,3]+ph[2,3]+ph[3,3]
ph.1<- ph[1,1]+ph[2,1]+ph[3,1]
T1<-T11+T12/2
T11<- theta.2*ph.1+theta.3*(ph.1+ph.2)
# T12 is the prob of a tie
T12<- theta.1*ph.1+theta.2*ph.2+theta.3*ph.3
# ROC area T2
# Prob T2=1,2,3 given D=1
theta1.<- theta[1,1]+theta[1,2]+theta[1,3]
theta2.<-
theta[2,1]+theta[2,2]+theta[2,3]

theta3.<-
theta[3,1]+theta[3,2]+theta[3,3]

# Prob T2=1,2,3 given D=0
ph2.<-
ph[2,1]+ph[2,2]+ph[2,3]

ph3.<-
ph[3,1]+ph[3,2]+ph[3,3]

ph1.<-
ph[1,1]+ph[1,2]+ph[1,3]

T2<- T21+T22/2
T21<-theta2.*ph1.+theta3.*(ph1.+ph2.)
# T22 is the Prob of a tie
T22<- theta1.*ph1.+theta2.*ph2.+theta3.*ph3.
}
# staging for melanoma
list(ap=20,bp=80, n=structure(.Data=c(45,26,28,25,20,20,46,30,46),
.Dim=c(3,3)))
# hypothetical
list(ap=64,bp=36, n=structure(.Data=c(30,40,50,1,30,60,1,1,70),
.Dim=c(3,3)))
# initial values
list(p=.5,
g=structure(.Data=c(1,1,1,1,1,1,1,1,1),.Dim=c(3,3)),
h=structure(.Data=c(1,1,1,1,1,1,1,1,1),.Dim=c(3,3)))

Note for the example that the disease rate is expressed as a mixture of two
random variables, p and p0, where p is the posterior distribution of the disease
rate assuming a uniform prior, and p0 is the prior distribution of the disease
rate, with parameters ap and bp, which were set at 20 and 80, respectively.
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The mixture weights were chosen at 0.20 and 0.80 for p and p0, respectively.
See the appropriate statements in BUGS CODE 7.7.

7.12 Exercises

1. Show that if two tests are conditionally independent

P [T,R | D] = P [T | D]P [R | D], (7.1)

that it is likely that both the observed sensitivity and specificity are
decreased.

Assume that P [T = 1 | D = 0] < P [T = 1 | D = 1], which is reason-
able if test T has reasonable accuracy. That is, the test is better at
detecting disease when it is present compared to when disease is absent.

2. This problem is due to Pepe [1: 196]. Show that if the reference test R is
100% specific, but less that 100% sensitive, then the observed sensitivity
of the “new” test T is increased if P [T = 1 | R = 1, D = 1] > P [T = 1 |
D = 1].

The latter inequality implies that additional information given by the
reference test that disease is present (in addition to knowing disease is
actually present) increases the chance of detecting disease with the new
test.

3. Refer to Section 7.4 on the posterior distribution of the parameters with-
out assuming conditional independence between R and T .
(a) Verify Equations 7.7 through 7.14.
(b) Derive the likelihood function Equation 7.6.

4. Refer to Section 7.5 on the posterior distribution of the parameters
assuming conditional independence between R and T .
(a) Verify Equations 7.15 through 7.24.
(b) In particular, derive the likelihood function Equation 7.15.

5. Verify the posterior analysis of Table 7.5, with BUGS CODE 7.1 and
a uniform prior distribution. Use as I did, 125,000 observations generated
from the posterior distribution of the parameters, with a burn in of 5,000
and a refresh of 100. Note that the first list statement provides the data
and the third list statement the starting values. What are the MCMC
errors for the simulation?

6. Verify the posterior analysis of Table 7.7 with BUGS CODE 7.1 and
an informative prior distribution. Use as I did, 125,000 observations
generated from the posterior distribution of the parameters, with a burn
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in of 5,000 and a refresh of 100. What are the MCMC errors for all the
parameters? Note the second list statement provides the data and the
third list statement the starting values.

7. Complete the last four rows of Table 7.9, which is a check on the condi-
tional independence for the Strongyloides study when D = 1.
(a) Use BUGS CODE 7.2 and generate 130,000 observations, a burn in

of 5,000 and a refresh of 100 from the posterior distribution of the
parameters. The section for checking the CIA is labeled by # tests
for conditional independence of the thetas.

(b) What is your overall conclusion about the CIA assumption? Does
it hold for this study?

(c) Are 130,000 observations sufficiently large for the simulation?

8. The Strongyloides study was analyzed three ways (see Tables 7.5, 7.7
and 7.8). Which analysis is the most appropriate? Provide convincing
reasons for your conclusion.

9. Verify the posterior analysis of Table 7.5, using 130,000 observations
generated from the posterior distribution of the parameters, with a burn
in of 5,000 and a refresh of 100. Recall this is for the case of the CIA
and a uniform prior.

10. Verify the posterior analysis of Table 7.7, using 130,000 observations
generated from the posterior distribution of the parameters, with a burn
in of 5,000 and a refresh of 100. Recall this is for the case of imposing
the CIA and an informative prior.

11. Refer to Table 7.4 and compute the observed sensitivity and specificity
of the stool examination using serology as a reference test.
(a) Explain how the Bayesian analyses corrected the observed accuracy

of the stool examination.
(b) Did the Bayesian analyses increase or decrease the sensitivity of

the stool examination?
(c) Did the Bayesian analyses increase or decrease the specificity of the

stool examination?

12. Two dermatologists, R and T , are diagnosing melanoma, where R is
an experienced clinician in skin cancer, but T is a first year resident in
dermatology (Table 7.19).
(a) What is the observed sensitivity and specificity of T using R as a

reference?
(b) Perform a Bayesian analysis assuming a uniform prior and with

conditional independence, estimate the prevalence rate p, as well
as the sensitivities and specificities of both dermatologists. Use
BUGS CODE 7.1 and generate 150,000 observations from the joint
posterior distribution of the parameters, with a burn in of 5,000
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TABLE 7.19: Two dermatologists
diagnosing melanoma.

Dermatologist T

Dermatologist T = 1 T = 0

R = 1 17 42
R = 0 13 200

and a refresh of 100. Calculate the posterior mean, median, stan-
dard deviation, and the lower and upper 2 1/2 percentiles. Plot the
posterior density of the sensitivity for dermatologist T . Do the cor-
rected accuracies of resident T differ from the observed accuracies
relative to R?

(c) Perform a Bayesian analysis assuming an informative prior and
with conditional independence, estimate the prevalence rate p, as
well as the sensitivities and specificities of both dermatologists.
For informative prior information, assume the sensitivity of R and
T are approximately 0.70 and 0.50, respectively, and assume the
specificities of R and T are approximately 0.9 and 0.8, respectively.
Also assume the prevalence rate of melanoma is approximately 0.30.

Using BUGS CODE 7.1, generate 150,000 observations from the
joint posterior distribution of the parameters, with a burn in of
5,000 and a refresh of 100. Calculate the posterior mean, median,
standard deviation, and the lower and upper 2 1/2 percentiles. Plot
the posterior density of the sensitivity for dermatologist T .

(d) Perform a Bayesian analysis assuming a uniform prior, but not
assuming conditional independence, estimate the prevalence rate p,
as well as the sensitivities and specificities of both dermatologists.
Using BUGS CODE 7.2, generate 150,000 observations from the
joint posterior distribution of the parameters, with a burn in of
5,000 and a refresh of 100. Calculate the posterior mean, median,
standard deviation, and the lower and upper 2 1/2 percentiles. Plot
the posterior density of the sensitivity for dermatologist T .

(e) What are the MCMC errors for the parameters?

13. Refer to Tables 7.11a and b, which display the posterior analysis of the
sensitivities and specificities of the Tine and Mantour tests for two sites.
Test the hypothesis that the sensitivity of the Tine test is the same for
both sites. The posterior mean(sd) of s1 is 0.8595(0.1016) for site 1, and
0.6941(0.0128) for site 2.

14. Repeat the posterior analysis of the accuracies of the Tine and Mantour
tests for the two sites, but use a prevalence rate of 10% for site 1 and
85% for site 2. Refer to BUGS CODE 7.3, and use the following param-
eters for the prior distribution of p for site 1:
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In the first list statement for site 1, let ap0 = 55 and bp0 = 500. This
puts a prior mean of 0.10 for p. Also, let the weights in the mixture distri-
bution of p (the 7th statement in the code) be 0.10 for p1 and 0.90 for p0.

For site 2, in the second list statement, let ap0 = 1124 and bp0 = 198.
This puts a prior mean of 0.85 for p of site 2. Use the same weights as
above, namely, 0.90 for p0 and 0.10 for p1.

Use 130,000 observations generated from the posterior distribution of
the parameters, with a burn in of 5,000 and a refresh of 100, and assume
a uniform prior for the sensitivities and specificities of both sites.

15. Refer to Tables 7.11a and b. Zhou, McClish, and Obuchowski [2: 371]
assume the sensitivities and specificities of the two tests are the same for
the two locations. On inspection of the two tables, does this assumption
appear valid? Based on the Bayesian analysis, it appears to me that the
assumption is not unreasonable. Do you agree?

16. Refer to Tables 7.10a and b.
(a) What is the observed sensitivity and specificity of the Tine test

relative to the Mantour test?
(b) What is the observed sensitivity and specificity of the Mantour test

relative to the Tine test?
(c) Does the Bayesian analysis reported in Tables 7.11a and b change

these observed accuracies of the two tests? How? Explain your
conclusions.

17. Refer to Figure 7.6, the plot of the posterior density of s1 for site 1,
and plot the posterior densities of the other accuracy parameters: s2, c1,
and c2. The posterior analysis is based on an informative beta prior for
the disease rate of 4% for d (expressed as beta(40,960)), a uniform prior
for the other parameters, 130,000 generated from the posterior distribu-
tion, with a burn in of 5,000 and a refresh of 100. BUGS CODE 7.2 is
revised according to the description in Section 7.8.

18. Refer to Table 7.12a and test the hypothesis that conditional indepen-
dence does not hold for site 1. Use BUGS CODE 7.4, which is a revi-
sion of BUGS CODE 7.2, which contains the code (it is labeled with
a comment # that identifies the test for independence of the thetas
and phis) that implements the test for conditional independence. Use
130,000 observations generated from the posterior distribution, with
a burn in of 5,000 and a refresh of 100. Plot the posterior density of
theta00c. Does the plot suggest conditional independence? What is the
95% credible interval for theta00c? What are the MCMC errors for the
parameters? Are the errors sufficiently small to trust the analysis with
130,000 observations?

19. Two pathologists are classifying prostate biopsies as either positive or
negative at a New York hospital, with the results shown in Table 7.20.
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TABLE 7.20: Two New York pathologists
and prostate biopsies.

Pathologist 1

Pathologist 2 T = 1 T = 0

R = 1 51 23 74
R = 0 16 212 228
Total 67 235 302

TABLE 7.21: Two Houston pathologists
and prostate biopsies.

Pathologist 1

Pathologist 2 T = 1 T = 0

R = 1 123 45 168
R = 0 51 36 87
Total 174 81 255

At another hospital in Houston, two pathologists are performing the
same tests with the results shown in Table 7.21. The disease rate for
this particular clinical population of prostate cancer in the New York
hospital is approximately 20% (with a high degree of certainty), and is
believed to be 52% (also with a high degree of certainty) for the Houston
hospital.
(a) Assuming conditional independence and a uniform prior for the

sensitivities and specificities for the New York hospital, perform a
Bayesian analysis and estimate the test accuracy of the two pathol-
ogists by generating 150,000 observations from the joint posterior
distribution, with a burn in of 5,000 and a refresh of 100. Do
the two pathologists have similar accuracy for classifying prostate
tissue biopsies? Plot the posterior density of the specificity of
pathologist 2.

(b) Repeat (a) above for the Houston hospital and compare the results
for the two hospitals.

(c) Repeat (a) and (b) above, not assuming conditional independence.
(d) Test the hypothesis that there is no conditional independence

between the two pathologists in New York.
(e) Test the hypothesis that there is no conditional independence

between the two pathologists in Houston.
(f) What are the MCMC errors for the above parameters?

20. Refer to Section 7.8 for multiple tests with one population, assuming
conditional independence, and consider an example presented by Pepe
[1: 199] involving three diagnostic tests for Chlamydia. PCR, ELISA,
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TABLE 7.22a: Three binary tests results
when T1 = 1.

T2

T3 T2 = 1 T2 = 0

T3 = 1 n111 = 20 n101 = 4
T3 = 1 n110 = 2 n100 = 2

Source: From Pepe, M.S. The Statistical Eval-
uation of Medical Tests for Classification and
Prediction, 2003, P. 199, Table 7.8, by permis-
sion of Oxford University Press.

TABLE 7.22b: Three binary tests results
when T1 = 0.

T2

T3 T2 = 1 T2 = 0

T3 = 1 n011 = 4 n011 = 3
T3 = 1 n010 = 2 n000 = 292

Source: From Pepe, M.S. The Statistical Eval-
uation of Medical Tests for Classification and
Prediction, 2003, P. 199, Table 7.8, by permis-
sion of Oxford University Press.

and a bacterial culture were scored as either positive or negative on 324
specimens from two clinics in China. The results are given in Tables
7.22a and b, where test 1 is culture, 2 is ELISA, and 3 is PCR.

Perform a Bayesian analysis with a uniform beta prior for all seven
parameters, use 155,000 observations generated from the posterior dis-
tribution, with a burn in of 5,000 and a refresh of 100. Assume a uni-
form prior for all parameters and report a complete posterior analysis
by citing the posterior mean, sd, lower and upper 2 1/2 percentiles,
and the median of each parameter. Execute the calculations with BUGS
CODE 7.5, using the first list statement for the data and the third list
statement as initial values.

Verify that the posterior analysis is given by Table 7.23.
(a) Which test is most accurate?
(b) Plot the posterior densities of all seven parameters.
(c) Why are the specificities larger than the sensitivities?
(d) What is the observed sensitivity of test 1 relative to test 2?
(e) Report the MCMC error for each parameter of Table 7.22.

21. Repeat Exercise 20, but use the following parameters for the mixture p:
ap0 = 200, bp0 = 800 with weights 0.90 for p0 and 0.10 for p1.
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TABLE 7.23: Posterior analysis of three tests for Chlamydia with
conditional independence.

Parameter Mean sd Error 2 1/2 Median 97 1/2

p 0.0468 0.0089 <0.0001 0.0311 0.0462 0.0658
c1 0.9865 0.0078 <0.0001 0.9679 0.9878 0.9977
c2 0.9764 0.0087 <0.0001 0.9565 0.9774 0.9909
c3 0.9423 0.0140 <0.0001 0.9126 0.9434 0.9677
s1 0.864 0.0695 <0.0001 0.7089 0.8721 0.9742
s2 0.8595 0.0720 <0.0001 0.6999 0.8686 0.9757
s3 0.9005 0.0587 <0.0001 0.7598 0.9113 0.9857

22. Compare Tables 7.15 and 7.16, which give the results for the Bayesian
analysis of three radiologists who assess enlargement of the prostate.
The former analysis assumes conditional independence between the three
readers and a uniform prior for all parameters, while the latter analy-
sis does not assume independence. Verify the results of Table 7.16 and
explain the difference between the two tables. Test for no conditional
independence using BUGS CODE 7.6 (the relevant statements are easily
found) with 130,000 observations generated from the posterior distribu-
tion, with a burn in of 5,000 and a refresh of 100. Plot the posterior
density of theta111c. Does the plot suggest conditional independence?

23. Perform a Bayesian analysis of the accuracies of three tests for the
diagnosis of Chlamydia, where the data are given in problem 20. Do
the analysis, but do not assume conditional independence and use uni-
form priors for all parameters. See the first statements in BUGS CODE
7.6. Note the second list statement of the code lists the data for this
problem. Execute the analysis with BUGS CODE 7.6 using 130,000
observations generated from the joint posterior distribution, with a
burn in of 5,000 and a refresh of 100.Verify the analysis as given in
Table 7.24.
(a) Compare the two tables in Exercises 20 and 23. What is your overall

impression of the difference?

TABLE 7.24: Posterior analysis of three tests for
Chlamydia without conditional independence.

Parameter Mean sd 2 1/2 Median 97 1/2

p 0.023 0.0202 0.00089 0.018 0.0741
c1 0.9201 0.0176 0.8836 0.9207 0.9531
c2 0.9202 0.0176 0.8837 0.9208 0.9531
c3 0.9142 0.0182 0.8766 0.9148 0.9482
s1 0.4924 0.1592 0.1906 0.4916 0.7993
s2 0.4927 0.1598 0.1912 0.4920 0.7996
s3 0.5438 0.1579 0.2276 0.55 0.8305
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(b) Plot the posterior densities of all parameters.
(c) Why is there more uncertainty in the sensitivities compared to the

specificities?
(d) Do the posterior plots of the densities reveal any instability in the

posterior distributions?
(e) Is conditional independence justified for the Chlamydia data?
(f) Vary the disease prevalence p and study the effect on the accuracies

of the three tests.
(g) Report the MCMC error for each parameter.

24. Refer to Exercises 20 and 21 and repeat the analysis of each one using
uniform beta priors for all parameters. You will notice a big change in the
estimate (posterior mean) of the disease rate d. Use weights 1 and 0 for
p and p0, this will impose a uniform prior for the prevalence of Chlamy-
dia. Recall that Exercise 20 imposes conditional independence but Exer-
cise 21 does not! Compare the sensitivities and specificities between the
two analyses. Use 150,000 observations, with a burn in of 10,000 and a
refresh of 500, and plot the posterior densities of the seven parameters.

25. (a) Verify Table 7.18, the posterior analysis for estimating the ROC
areas for T1 and T2. Use BUGS CODE 7.7 and generate 45,000
observations from the joint posterior distribution, with a burn in
of 5,000 and a refresh of 100.

(b) Repeat the analysis with a disease rate d set at 60%. Let ap = 60
and bp = 40 in the first list statement of BUGS CODE 7.7 and
express d as a mixture with weights 0.2 and 0.8 for p and p0, respec-
tively. See the relevant statements and set the appropriate values.

(c) Compare the ROC areas for T1 and T2. Why the difference?
(d) What is the MCMC error for each parameter? Is it small enough?

Why or why not?

26. Consider two tests, T1 and T2, with ordinal scores given in Table 7.25.
Perform a Bayesian analysis using a prevalence rate d of approximately
60%, setting ap = 64 and bp = 36 in the second list statement of BUGS
CODE 7.7. In the statement for d, set d as a mixture of p and p0 with
weights 0.2 and 0.8, respectively, and execute the analysis with 45,000

TABLE 7.25: Two tests—T1 and T2.
T1

T2 T1 = 1 T1 = 2 T1 = 3 Total

T2 = 1 30 40 50 120
T2 = 2 1 30 60 91
T2 = 3 1 1 70 72
Total 32 71 180 283
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TABLE 7.26: ROC areas for T1 and T2.
Parameter Mean sd 2 1/2 Median 97 1/2

d 0.6397 0.0396 0.56 0.6403 0.7151
T1 0.5475 0.1093 0.3413 0.5459 0.7622
T2 0.5343 0.1383 0.2502 0.5427 0.7729

observations generated from the posterior distribution of all parameters,
with a burn in of 5,000 and a refresh of 500.
(a) Verify Table 7.26 for the posterior distribution of the two ROC

curves.
(b) Plot the posterior densities of the ROC areas.
(c) Vary the prevalence rate d and determine the effect on the two

ROC areas.
(d) What is the MCMC error for the two ROC areas?
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Chapter 8

Verification Bias and Test Accuracy

8.1 Introduction

Consider a standard diagnostic test, say the blood glucose test for type 2
diabetes, where after fasting for at least 8 hours, the patient is declared
positive if the measured level is in excess of 126 mg/dL. If this is the case,
the person is often given an oral glucose tolerance test, which is consid-
ered a gold standard for the disease. For those with levels between 111 and
125 mg/dL, problems with glucose metabolism are suspected, while for those
with levels below 111 mg/dL, type 2 diabetes is not suspected. For this latter
group, the patient would not ordinarily be given the oral glucose tolerance
test, while for those between 111 and 125 mg/dL, a follow-up test might be
appropriate if other factors point to diabetes. In this example, the diagnostic
test value Y falls into one of three categories: (1) those with values below
111 mg/dL, (2) those between 111–125 mg/dL, and (3) those with values of
Y > 125 mg/dL. Suppose the oral glucose tolerance test is considered a gold
standard, where all those in the third group undergo the gold standard for
disease verification, say 23% are verified for the second group, and none are
verified for the first group. This is a typical case of verification bias because the
usual estimates of test accuracy are biased if they are estimated using only the
verified cases. For simplicity, suppose the test Y is positive if Y > 125 mg/dL,
otherwise the test is declared negative. If only the validated cases are used to
estimate, say sensitivity, all those in the third group would be verified with the
gold standard, while only a subset of those with values Y ≤ 125 are verified
by the gold standard. These usual estimates would be biased, that is to say,
the sensitivity would be too high, compared to those estimated by referring
all patients for disease verification.

Actually, verification bias is present in many medical test accuracy stud-
ies, but often the investigator is unaware that bias is present. According to
Zhou, McClish, and Obuchowski [1], Greenes and Begg [2] reviewed 145 inves-
tigations that took place over the period 1976–1980 and found that 26% had
verification bias that was not recognized by the authors. In addition, Bates,
Margolis, and Evans [3] reported that at least one-third of 54 pediatric studies
had unrecognized verification bias. There are many more such studies, includ-
ing those reported by Philbrick, Horwitz, and Feinstein [4], who found that
of 33 diagnostic studies for coronary artery disease, 31 had verification bias.
In a major review of verification bias, which reviewed 112 studies in major
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medical journals, Reid, Lachs, and Feinstein [5] reported finding that 54% had
verification bias!

It is important to remember that verification bias is present in the routine
use of diagnostic procedures, but these are usually not part of a study for accu-
racy. For example, in mammography, for those women whose image is negative,
it would be unethical to refer them for a biopsy. As another example, take
the exercise stress test for coronary artery disease. Those that test negative
would not usually be referred for a coronary angiography (an invasive nuclear
medicine procedure), the gold standard. However, if the main purpose of the
study is to assess diagnostic accuracy, the study should be designed in order
to avoid verification bias if at all possible.

All is not lost, even if verification bias is unavoidable, statistical techniques
are available that correct for verification bias, and this chapter will introduce
such methodologies. The concept is first introduced with a binary test that
indicates either a positive or a negative result for the patient. Among those
that test positive, not all will be referred to the gold standard, and the same
applies to those that test negative. In order to correct for verification bias, the
missing at random (MAR) assumption is made, that is, for those persons who
did not undergo the follow-up gold standard, that observation is considered
MAR, that is to say, the decision to verify the disease status depends only on
the result, Y , of the diagnostic test. Using the MAR assumption, estimates of
sensitivity and specificity are derived based on the likelihood function of the
observed results. The likelihood is based on the conditional distribution of the
disease status, D = 1, given Y = 0 or 1, and the marginal distribution for Y .
The probability that Y = 1, given D = 1, is then found via Bayes theorem,
and the result is the estimated sensitivity of the test. This method of using
Bayes theorem for correction is attributed to Begg and Greenes [6].

Of course, a prior for the unknown parameters must be specified. The spec-
ified prior depends on the design of the study and the layout of the observa-
tions. Usually, a uniform prior or an improper Jeffrey’s type prior is employed,
however, in the case where prior information is available based on previous
related studies, a conjugate type prior is appropriate.

The above approach is extended to two correlated binary tests. The exam-
ples in this case use two readers who are testing the same patients. This is
a paired design, where it is important to know the degree to which the two
readers agree in their diagnosis. An obvious generalization is to a test with
ordinal outcomes. A good example of this is mammography, where the radi-
ologist assigns scores 1, 2, 3, 4, and 5 to each mammogram, where 1 indicates
a high confidence of no disease, and 5 signifies a very high confidence that a
malignant lesion is present. For ordinal tests, the main emphasis is on the
area under the receiver operating characteristic (ROC) curve, which will be
estimated in the presence of verification bias.

Again, the methodology is based on the likelihood of the observed result
and a prior distribution for the parameters. The actual correction is based on
Bayes theorem applied to the probability that D = 1, given Y = i (the ith
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outcome of the test), then the ROC area is computed using a formula in
Broemeling [7: 72]. This formula is the familiar rule that the ROC area for
ordinal scores is given by P [Y given D = 1 is greater than Y given D = 0] +
(1/2) P [Y given D = 1 equals Y given D = 0].

An interesting alternative for computing the corrected estimates of accu-
racy is to use the inverse probability weighting (IPW) method of estimating
the original data from the observed results, where verification bias is present.
For a particular value of Y , each cell in the table is multiplied by the inverse
of the proportion of patients who have been referred to the gold standard
and is repeated for each value of Y ; then the accuracy is estimated the usual
way. Pepe [8] illustrates the IPW method and states that this method is the
same as the correction method of Begg and Greenes [6]. In this chapter, their
method will be given a Bayesian flavor.

The latter part of the chapter focuses on two correlated ordinal tests for two
readers with and without covariates. Lastly, the case of extreme verification
bias is considered. In the simplest case of a binary test Y , extreme bias occurs
when all those that test positive are verified for disease status, but among
those that test negative, none are verified. Of course, in such cases it is not
possible to estimate the standard measures of accuracy, including true and
false positive fractions, however, other measures such as detection probabil-
ities and false referral probabilities can be estimated. When the test results
are ordinal, it is interesting to observe that if extreme bias does occur for
some values of Y , it is still possible to estimate the ROC area. This is an
interesting generalization. The interested reader should refer to Pepe [8] for
more information on the extreme verification bias, and to Zhou, McClish, and
Obuchowski [1] for a good introduction to the maximum likelihood approach
to correcting for verification bias. Throughout the chapter, various examples
illustrate the Bayesian methods and the exercises at the end of the chapter
provide the student with many interesting extensions of the basic concepts.

8.2 Verification Bias and Binary Tests

Consider Table 8.1 for one binary test Y = 0, 1, where verification bias is
present. In the table, V = 1 indicates the patient is verified and the disease
status is known, and V = 0 indicates a patient has not been verified, thus,
there are u1 individuals who are not verified when Y = 1. The total number
of patients in the study is m1 + m0, while the number who tested positive and
had the disease is s1. Let

φi = P [D = 1 | Y = i], (8.1)

and

θi = P [Y = i], (8.2)
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TABLE 8.1: One binary test.
Y 1 (Positive) 0 (Negative)

V = 1
D = 1 s1 s0
D = 0 r1 r0

V = 0 u1 u0
Total m1 m0

where i = 0, 1, then the likelihood function for the parameters is

L(θ,φ) ∝ φs1
1 (1 −φ1)r1φs0

0 (1 − φ0)r0θm1
1 θm0

0 , (8.3)

where all parameters are between 0 and 1, and θ0 + θ1 = 1. With a uniform
prior for all parameters, the posterior distribution of the parameters is as
follows:

φi ∼ beta(si + 1, ri + 1), (8.4)

for i = 0, 1, and (θ0, θ1) has a Dirichlet with parameters (m0 + 1, m1 + 1). On
the other hand, with an improper prior distribution

f(θ,φ) ∝ 1/θ0θ1φ0φ1, (8.5)

the posterior distribution of the parameters is

φi ∼ beta(si, ri), (8.6)

and

(θ0, θ1) ∼ Dirichlet (m0, m1). (8.7)

The approach to correcting for bias is to use Bayes theorem to compute

P [Y = 1 | D = 1] = P [D = 1 | Y = 1]/P [D = 1], (8.8)

where

P [D = 1] = φ1θ1 + φ0θ0. (8.9)

Let

α1 = φ1θ1/(φ1θ1 + φ0θ0), (8.10)

then α1 is the sensitivity of the test. On the other hand, let

β1 = (1 − φ1)θ1/(1 −φ1θ1 − φ0θ0), (8.11)

then β1 is the false positive fraction, that is, the probability that Y = 1, given
D = 0.

Once the posterior distribution of the parameters is determined, the pos-
terior distribution of the true and false positive fractions is also determined.
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TABLE 8.2: Diabetes study for verification bias.
Y 1 (Positive) 0 (Negative)

V = 1
D = 1 s1 = 298 s0 = 31
D = 0 r1 = 26 r0 = 48

V = 0 u1 = 150 u0 = 117
Total m1 = 474 m0 = 196

A good example of verification bias is the study by Drum and Christa-
copoulos [9]. The example presented in Table 8.2 is a diabetes study where
patients are tested for the disease based on the blood glucose test, but where
some of the patients are not further tested by the gold standard, the glucose
tolerance test.

This test had two results, Y = 0 or 1, where 1 indicates a positive result
for diabetes. Note that the total number of subjects was 670, with 474 who
tested positive, and among those, 150 were not verified for the disease. Among
those who tested negative, 79 were examined by the gold standard, with 31 of
those having the disease. The estimated sensitivity based on the selected table
is 298/329 = 0.905, and the estimated false positive rate is 26/74 = 0.35.

The following is the WinBUGS code for estimating the sensitivity and false
positive fraction. The notation in the statements is quite similar to that in
the above presentation.

BUGS CODE 8.1

model;
{
th1∼dbeta(m1,m0)
ph0∼dbeta(s0,r0)
ph1∼dbeta(s1,r1)
th0<-1-th1
tpf<- ph1*th1/(ph1*th1+ph0*th0)
fpf<- (1-ph1)*th1/(1-ph1*th1-ph0*th0)
}
# diabetes example
# the following values assume an improper prior
list(m0= 196,m1=474,s0=31,r0=48,r1=26,s1=298)

Note that the above values used in the list statement assume an improper
prior distribution for the parameters in the likelihood (Equation 8.3). I used
45,000 values generated from the posterior distribution, with a burn in of
5,000 and a refresh of 100; the analysis is presented in Table 8.3.

The true positive fraction or sensitivity has a posterior mean of 0.8503,
while the false positive fraction has a mean of 0.2424. The 95% posterior cred-
ible interval for the true positive fraction is (0.8081,0.8894). Note, the mean
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TABLE 8.3: Posterior distribution for diabetes study.
Parameter Mean sd Error 2 1/2 Median 97 1/2
fpf 0.2424 0.0412 <0.0001 0.167 0.2407 0.3277
tpf 0.8503 0.0208 <0.0001 0.8081 0.8507 0.8894

and median are almost the same, indicating little skewness in the posterior
distributions, and the symmetry is also evident from the graph of the posterior
distribution. Compare the Bayesian estimates with the näıve estimates (based
on the selected data, i.e., those not corrected for bias) of 0.905 and 0.35 for
the true and false positive fractions, respectively, thus verifying the theory
that suggests the true and false positive fractions will be less than the corre-
sponding näıve estimates based on the verified data only. It is also noted that
the Markov Chain Monte Carlo (MCMC) error for all parameters is <0.0001,
implying that the 45,000 observations generated for the simulation are suffi-
cient in order to estimate the “true” posterior characteristics (Figure 8.1).

The MAR assumption is formally expressed by

P [V = 1 | Y, D] = P [V = 1 | Y ]. (8.12)

In other words, the probability of referring a subject to the gold standard
depends only on the results of the diagnostic test. If the decision to refer
depends on additional factors, such as symptoms or family history, the MAR
assumption is not valid; however, a later section considers such an eventuality.

8.3 Two Binary Tests

When assessing the accuracy of two tests, the design in many cases is
paired. For example, two imaging devices (e.g., computed tomography [CT]
and magnetic resonance imaging [MRI]) are procuring information from the
same patients and the two images would be expected to be quite similar.
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FIGURE 8.1: Posterior density of the true positive fraction.
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TABLE 8.4: Two binary scores with verification bias.
Y1 = 1 0

V = 1 Y2 = 1 0 1 0
D = 1 s11 s10 s01 s00
D = 0 r11 r10 r01 r00
V = 0 u11 u10 u01 u00
Total m11 m10 m01 m00

Another case of a paired design is two readers who are imaging the same set
of patients with the same imaging device. One expects the information gained
from the two paired sources to be highly correlated, and in the case of two
paired readers, agreement between the two is also of interest. The results for
a paired design with two binary scores are given in Table 8.4.

Suppose the unknown parameters are

φij = P [D = 1 | Y1 = i, Y2 = j] (8.13)

and

θij = P [Y1 = i, Y2 = j], (8.14)

for i, j = 0, 1. Also let

φi. = P [D = 1 | Y1 = i] (8.15)

and

θ.j = P [D = 1 | Y2 = j], (8.16)

where i, j = 0, 1.
The likelihood for the parameters is

L(θ,φ) ∝
i=1∏
i=0

j=1∏
j=0

φ
sij
ij (1 −φij )rij

i=1∏
i=0

j=1∏
j=0

θ
mij
ij . (8.17)

Assuming an improper prior distribution for the parameters, the posterior
distributions are

φij ∼ beta(sij , rij ), (8.18)

for i, j = 0, 1, and θij are distributed Dirichlet (m00, m01, m10, m11).
Note that

φ1. ∼ beta(s1., r1.) (8.19)

and

φ.1 ∼ beta(s.1, r.1), (8.20)
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where

s1 = s11 + s10

and

r1 = r11 + r10.

The main parameters of interest are the true positive fraction and the false
positive fraction for the two tests, thus for the first test:

tpf1 = P [Y1 = 1 | D = 1]

and is given by Bayes theorem as

tpf1 = φ1.θ1./(φ1.θ1. + φ0.θ0.), (8.21)

where φi. is given by Equation 8.19 and

θ1. = θ11 + θ10.

As for test 1, the false positive fraction is given by

fpf1 = (1 −φ1.)θ1./(1 − φ1.θ1. −φ0.θ0.).

As a first example of two binary tests, consider two tests for detecting metas-
tasis of colon cancer to the liver, where the first test, Y1, is MRI, and the
second test, Y2, is a nuclear medicine image provided by single photon emis-
sion tomography (SPECT) (Table 8.5).

There are very few (149/855) referred to the gold standard when both
readers give a negative score, but when both observers give a positive score,
221/234 are referred to the gold standard. What are the true positive fractions
for both observers? What are the false positive fractions? Of the 1301 sub-
jects, 750 received a negative assessment by both images, while 234 received a
positive assessment (judged as having the disease) from tests for metastasis.
When using two tests, it is of interest to estimate the accuracy of the com-
bined tests, and this will be accomplished in Chapter 10, but this is not done
here, and instead the accuracy of the two tests are estimated individually.

The following WinBUGS code follows the notation in the above section
and performs the Bayesian analysis for the colon cancer metastasis study.

TABLE 8.5: Two binary tests for metastasis of colon cancer.
Y1 = 1 0

V = 1 Y2 = 1 0 1 0
D = 1 s11 = 210 s10 = 20 s01 = 65 s00 = 8
D = 0 r11 = 11 r10 = 29 r01 = 89 r00 = 141
V = 0 u11 = 13 u10 = 11 u01 = 103 u00 = 601
Total m11 = 234 m10 = 60 m01 = 257 m00 = 750
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BUGS CODE 8.2

model;
{
g00∼dgamma(m00,2)
g01∼dgamma(m01,2)
g10∼dgamma(m10,2)
g11∼dgamma(m11,2)
h<-g00+g01+g10+g11
th00<-g00/h
th01<-g01/h
th10<-g10/h
th11<-g11/h
phi00∼dbeta(s00,r00)
phi01∼dbeta(s01,r01)
phi10∼dbeta(s10,r10)
phi11∼dbeta(s11,r11)
s1.<-s11+s10
r1.<-r11+r10
s.1<-s01+s11
r.1<- r01+r11
r0.<- r00+r01
s0.<-s00+s01
s.0<-s00+s10
r.0<-r00+r10
# for test 1=1 pd=1
ph1.∼dbeta(s1.,r1.)
# for test 1=1 d=0
ph.1∼dbeta(s.1,r.1)
# for test 1 = 0 d=1
ph0.∼dbeta(s0.,r0.)
# for test 2=1 d=1
ph.0∼dbeta(s.0,r.0)
th1.<-th11+th10
th.1<-th01+th11
th0.<-th01+th00
th.0<-th00+th10
# accuracy for test 1
tpf1<-ph1.*th1./pd1
fpf1<-(1-ph1.)*th1./(1-pd1)
pd1<-ph1.*th1.+ph0.*th0.
# accuracy for test 2
tpf2<-ph.1*th.1/pd2
fpf2<-(1-ph.1)*th.1/(1-pd2)
pd2<-ph.1*th.1+ph.0*th.0
}
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TABLE 8.6: Posterior distribution colon cancer and liver metastasis.
Parameter Mean sd Error 2 1/2 Median 97 1/2
tpf1 0.509 0.0310 <0.0001 0.4492 0.5084 0.5707
fpf1 0.0539 0.0083 <0.0001 0.03882 0.05355 0.0714
tpf2 0.7594 0.0304 <0.0001 0.691 0.7599 0.8241
fpf2 0.1586 0.0142 <0.0001 0.1315 0.1582 0.1876

# metastasis study
list(s00=8,r00=141,s01=65,r01=89,s10=20,r10=29,s11=210,r11=11,
m00=750,m01=257,m10=60,m11=234)
# initial values
list( g00=1, g01=1, g10=1, g11=1)

BUGS CODE 8.2 closely follows the notation in Section 8.3 and performs
the Bayesian analysis for the colon cancer study, and the analysis is executed
with 65,000 observations generated for the simulation, with a burn in of 5,000
and a refresh of 100, accordingly the results are reported in Table 8.6.

Simulation errors are quite small, and the sensitivity of the first test (MRI)
is estimated as 0.509(0.0310) with the posterior mean, while the false positive
fraction is estimated as 0.0539(0.0083), and the two distributions appear to
be symmetric. The 95% credible intervals for the two accuracy parameters
are (0.4492,0.5707) and (0.0388,0.0714) for the true and false positive frac-
tions, respectively, and it is seen that the MRI test has poor sensitivity but
a very small false positive rate. On the other hand, the accuracy estimates
for SPECT are much better with a true positive fraction estimated with the
posterior mean as 0.759 and a false positive fraction of 0.158. I would prefer
the nuclear medicine procedure, which has fair sensitivity and a small false
positive fraction. It should be remembered that the above analysis assumed
an improper prior (similar to Equation 8.5) for the parameters.

One could study the agreement in the two observers, which is treated
somewhat differently from our approach to correcting for verification bias. See
Chapter 2 of Broemeling [10] for measuring agreement between two observers
with the Kappa statistic.

8.4 Ordinal Tests and Verification Bias

The next step in our study of verification bias is to extend the previous
treatment to tests with ordinal scores. Mammography is a good example of
such a test, where the scores Y = 1, 2, 3, 4, 5 indicate the degree of confidence
of the observer in their belief that a lesion is present in the mammogram.
For example, a score of 1 indicates a high degree of belief that a lesion is not
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TABLE 8.7: Verification bias and one
ordinal test.

Y = 1 2 . . . k

V = 1
D = 1 s1 s2 sk

D = 0 r1 r2 rk

V = 0 u1 u2 uk

Total m1 m2 mk

present, while 5 denotes a high degree of belief that the lesion is present in the
breast as indicated by the mammogram. On the other hand, a score of 2 implies
a moderate degree of belief that a lesion is not present, while 4 indicates a
moderate degree of belief that a lesion is present. Finally, a score of 3 indicates
that one is ambivalent as to the presence of a lesion. When verification bias is
present, for each level Y of the test, a certain number is subject to verification
of the disease, but all will not necessarily be verified by the gold standard.
When the test has ordinal outcomes, the best overall measure of accuracy is
the area under the ROC curve.

The typical layout for such a test Y with possible values 1, 2, . . . , k, is
reported with familiar notation as in Table 8.7.

The analysis is likelihood based, where the likelihood function is deter-
mined by the conditional distribution of D = 1, given Y = i and the marginal
distribution of Y , where i = 1, 2, . . . , k. Let

φi = P [D = 1 | Y = i] (8.22)

and

θi = P [Y = i],

thus, the likelihood function is

L(φ, θ) ∝
i=k∏
i=1

φsi
i (1 −φi)ri

i=k∏
i=1

θmi
i . (8.23)

If an improper prior is used for the parameters, the posterior distribution of φi

is beta with parameters si and ri, and that for θi is Dirichlet with parameter
(m1, m2, . . . , mk).

On the other hand, if a uniform prior distribution is deemed appropriate,
the posterior distribution of φi is beta with parameters si + 1 and ri + 1, and
that for θi is Dirichlet with parameter (m1 + 1, m2 + 1, . . . , mk + 1).

In order to compute the area under the ROC, one must compute P [Y =
i | D = 1] and P [Y = i | D = 0] for all i = 1, 2, . . . , k, where the first compo-
nent is represented by Bayes theorem as

P [Y = i | D = 1] = P [D = 1 | Y = i]P [Y = i]/P [D = 1]
= φiθi/P [D = 1], (8.24)
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where

P [D = 1] =
i=k∑
i=1

φiθi. (8.25)

On the other hand, the second component is computed as

P [Y = i | D = 0] = (1− φi)θi/P [D = 0], (8.26)

where

P [D = 0] = 1−P [D = 1].

We are now in a position to compute the area under the ROC curve.
Let

αi = P [T = i | D = 1] (8.27)

and

βi = P [T = i | D = 0], (8.28)

for i = 1, 2, . . . , k, then the area under the ROC is given by

A = A1 + A2/2, (8.29)

where

A1 = α2β1 + α3(β1 + β2) + · · ·+ αk(β1 + β2 + · · ·+ βk−1) (8.30)

and

A2 =
i=k∑
i=1

αiβi. (8.31)

Equation 8.31 for the ROC area is given in Broemeling [7: 72].
The example for ordinal test scores is taken from a mammography study

with 1509 subjects, where each patient is given a score of Y , where Y = 1, 2,
3, 4, 5 (see Table 8.8).

TABLE 8.8: Ordinal results for mammography.
Y = 1 2 3 4 5
V = 1
D = 1 s1 = 72 s2 = 54 s3 = 121 s4 = 145 s5 = 245
D = 0 r1 = 308 r2 = 127 r3 = 78 r4 = 33 r5 = 77
V = 0 u1 = 92 u2 = 66 u3 = 76 u4 = 10 u5 = 5
Total m1 = 472 m2 = 247 m3 = 275 m4 = 188 m5 = 327
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BUGS CODE 8.3

# uses Bayes theorem on terms in Broemeling formula page 72
# Mammography example
Model;
{
for ( i in 1:5){ ph[i]∼dbeta(s[i],r[i])}
for ( i in 1:5){ g[i]∼dgamma(m[i],2)}
h<-sum(g[ ])
for ( i in 1:5){ theta[i]<-g[i]/h}
A<- A1+A2
A2<- (alpha1*beta1+alpha2*beta2+alpha3*beta3+alpha4*beta4+
alpha5*beta5)/2
A1<-alpha2*beta1+alpha3*(beta1+beta2)+alpha4*(beta1+beta2+beta3)
+alpha5*(beta1+beta2+beta3+beta4)
alpha2<-ph[2]*theta[2]/pd
pd<-ph[1]*theta[1]+ph[2]*theta[2]+ph[3]*theta[3]+ph[4]*theta[4]
+ph[5]*theta[5]
alpha1<-ph[1]*theta[1]/pd
beta4<-(1-ph[4])*theta[4]/(1-pd)
beta5<-(1-ph[5])*theta[5]/(1-pd)
beta1<-(1-ph[1])*theta[1]/(1-pd)
alpha3<-ph[3]*theta[3]/pd
beta2<-(1-ph[2])*theta[2]/(1-pd)
alpha4<-ph[4]*theta[4]/pd
alpha5<-ph[5]*theta[5]/pd
beta3<-(1-ph[3])*theta[3]/(1-pd)
}
# mammography example
list(s=c(72,54,121,145,245),r=c(308,127,78,33,77),
m=c( 472,247,275,188,327))

The posterior analysis with BUGS CODE 8.3 is performed with 55,000
observations, a burn in of 5,000 and a refresh of 100, and has MCMC errors
<0.0001 and is presented in Table 8.9.

The estimated area A under the ROC curve is 0.7762 with a 95% credible
interval of (0.7509,0.8005), indicating reasonable accuracy for mammography.

TABLE 8.9: Posterior analysis for mammography study.
Parameter Mean sd Lower 2 1/2 Median Upper 2 1/2

A 0.7762 0.0126 0.7509 0.7764 0.8005
A1 0.6972 0.0154 0.6665 0.6974 0.7272
A2 0.0789 0.00303 0.0729 0.0789 0.0848
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FIGURE 8.2: Posterior density of the ROC area.

The median and mean are identical, indicating symmetry for the posterior
distribution of the area, and this is also evident from Figure 8.2. Recall that
the ROC area is composed of two parts, where A2 is the component measuring
the ties between αi and βi, i = 1, 2, 3, 4, 5, therefore, this component of the area
is quite small, relative to A1.

Suppose the mammography study is repeated at another site with 1563
patients, under the same protocol, then how should the results be combined
in order to provide an overall estimate of the accuracy of the imaging modal-
ity? Assume that the two sites do not share the same patients, but otherwise
the way the study is conducted is the same for both hospitals. The radi-
ologists of the two sites have similar training and are guided by the same
protocol. In particular, the inclusion and exclusion criteria are the same for
both sites, implying similar study populations. Then, one would expect “sim-
ilar” estimates of the ROC estimates, but how similar will they, in fact, be?
See Table 8.10.

The analysis was repeated using BUGS CODE 8.3. The burn in is 5,000
with a refresh of 100, and 55,000 observations are generated from the joint
posterior distribution to give the results shown in Table 8.11.

The posterior mean of the ROC area from site 2 is 0.8085, compared
to 0.7762 for site 1. How should these two estimates be combined? One way
is to use a weighted estimate, with weights proportional to the inverse of the
posterior variance, or one could weight by the number of patients in each
study. This analysis is left as an exercise.

TABLE 8.10: Ordinal test for mammography of site 2.
Y = 1 2 3 4 5
V = 1
D = 1 s1 = 65 s2 = 77 s3 = 118 s4 = 162 s5 = 233
D = 0 r1 = 331 r2 = 202 r3 = 43 r4 = 22 r5 = 66
V = 0 u1 = 88 u2 = 58 u3 = 82 u4 = 13 u5 = 3
Total m1 = 484 m2 = 337 m3 = 243 m4 = 197 m5 = 302
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TABLE 8.11: Posterior analysis for mammography site 2.
Parameter Mean sd Lower 2 1/2 Median Upper 2 1/2

A 0.8085 0.01175 0.7848 0.8087 0.8308
A1 0.7379 0.0146 0.7086 0.7381 0.7659
A2 0.0705 0.00314 0.0644 0.0705 0.0767

8.5 Two Ordinal Tests and Verification Bias

With two ordinal tests, the design is often paired, where two readers are
examining the same patients and assigning a score to each. For example,
consider the following study for staging melanoma. A dermatologist and a
surgeon are assigning a score to each melanoma patient where the score is the
reader’s estimate of the stage of the disease. The stages for melanoma are:
1 indicates primary lesion is localized and no metastasis to the lymph nodes;
2 signifies metastasis to the lymph nodes; and 3 indicates an advanced stage,
where the disease has metastasized beyond the lymph nodes. The general
schematic for two correlated tests is shown in Table 8.12.

As before, let

φi. = P [D = 1 | Y1 = i]

and

φ.i = P [D = 1 | Y2 = i], (8.32)

for i = 1, 2, 3, then assuming an improper prior distribution,

φi. ∼ beta(si., ri.),

and

φ.i ∼ beta(s.i, r.i).

TABLE 8.12: Two ordinal tests.
Y1 = 1 2 3

Y2 1 2 3 1 2 3 1 2 3
D = 1 s1 s2 s3 s4 s5 s6 s7 s8 s9
D = 0 r1 r2 r3 r4 r5 r6 r7 r8 r9
V = 0 u1 u2 u3 u4 u5 u6 u7 u8 u9
Total m1 m2 m3 m4 m5 m6 m7 m8 m9
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Note that

s1. = s1 + s2 + s3,

s.1 = s1 + s4 + s7,

and

r1. = r1 + r2 + r3, etc.

Also, let

θ1 = P [Y1 = 1, Y2 = 1]

and

θ9 = P [Y1 = 3, Y2 = 3].

In addition, let

θ1. = θ1 + θ2 + θ3,

thus

θ1. = P [Y1 = 1]. (8.33)

Also let

θ.3 = θ3 + θ6 + θ9,

then

θ.3 = P [Y2 = 3], etc. (8.34)

In order to compute the area under the ROC, Bayes theorem is used to
compute

α1i = φi.θi./tα1,

where i = 1, 2, 3, and

tα1 =
i=3∑
i=1

φi.θi..

Note that

α1i = P [Y1 = i | D = 1], (8.35)

and in a similar manner

β1i = (1 − φi.)θi./tβ1,
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where

tβ1 =
i=3∑
i=1

(1 − φi.)θi.,

thus

β1i = P [Y1 = i | D = 0]. (8.36)

Also,

α2i = P [Y2 = i | D = 1] (8.37)

and

β2i = P [Y2 = i | D = 0] (8.38)

can be defined. The ROC area for the first test is

A1 = A11 + A12, (8.39)

where

A11 = α12β11 + α13(β11 + β12) (8.40)

and

2A12 =
i=3∑
i=1

α1iβ1i. (8.41)

A2 = A21 + A22 (8.42)

Of course, a similar expression holds for the ROC area of test 2. For the
melanoma staging study, the first test corresponds to a melanoma surgeon,
while the second corresponds to a dermatologist. Both assign a stage to each
patient, and we expect the two tests to be correlated (see Table 8.13).

The likelihood function for the parameters is

L(φ, θ) ∝
i=9∏
i=1

φsi
i (1 −φi)ri

i=9∏
i=1

θmi
i , (8.43)

and all inferences about the ROC area of the two readers are based on the
likelihood and the prior distribution. If an improper prior distribution is appro-
priate,

φi ∼ beta(si, ri) (8.44)

and θi follow a Dirichlet with parameter mi. On the other hand, if a uniform
prior distribution is used,

φi ∼ beta(si + 1, ri + 1) (8.45)

and θi follow a Dirichlet with parameter m1 + 1.
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TABLE 8.13: Staging melanoma by a dermatologist and a surgeon.
Y1 = 1 2 3

Y2 1 2 3 1 2 3 1 2 3
D = 1 s1 = 8 s2 = 26 s3 = 51 s4 = 43 s5 = 81 s6 = 94 s7 = 117 s8 = 140 s9 = 208
D = 0 r1 = 101 r2 = 105 r3 = 83 r4 = 67 r5 = 72 r6 = 40 r7 = 41 r8 = 30 r9 = 4
V = 0 u1 = 2 u2 = 18 u3 = 62 u4 = 14 u5 = 83 u6 = 67 u7 = 63 u8 = 40 u9 = 108
Total m1 = 111 m2 = 149 m3 = 196 m4 = 124 m5 = 236 m6 = 201 m7 = 221 m8 = 210 m9 = 320
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TABLE 8.14: Posterior analysis for melanoma staging—two readers.
Parameters Mean sd Lower Median Upper

2 1/2 2 1/2
A1 (surgeon) 0.7867 0.01192 0.763 0.7869 0.8095
A11 0.6656 0.01621 0.6335 0.6658 0.6967
A12 0.1211 0.004355 0.1126 0.1211 0.1296
A2 (dermatologist) 0.6351 0.01452 0.6061 0.6352 0.6631
A21 0.4762 0.01706 0.440 0.4763 0.5093
A22 0.1589 0.002748 0.1534 0.1589 0.1641
d 0.1517 0.01882 0.1144 0.1517 0.1883

Based on the staging data of Table 8.12, an analysis is performed assuming
an improper prior distribution. Forty-five thousand observations were gener-
ated from the joint posterior distribution. The MCMC error of estimation was
<0.0001 for all seven parameters shown in Table 8.14. The d parameter is the
difference in the two areas.

The ROC area based on the surgeon is 0.7867 compared to an area
of 0.6351 for the dermatologist, and the 95% credible interval for the dif-
ference is (0.1144,0.1883), indicating that there is a real difference in the two
assessments of staging accuracy. See the exercises for additional information
about the melanoma study. It should be noted that the staging for melanoma
is much more complex than presented here, and for additional information
refer to the AJCC Cancer Staging Handbook [11]. The analysis is performed
using BUGS CODE 8.4.

BUGS CODE 8.4

model;
# hypothetical data set
# two tests for staging melanoma
# one rater is a surgeon the other a dermatologist
# ratings are: stage 1, stage 2, stage 3
# similar to Zhou page 347 on CT and MRI
{
for (i in 1:9) {ph[i]∼dbeta(s[i],r[i])}
for (i in 1:9) {g[i]∼dgamma(m[i],2)}
ms<-sum(g[ ])
for (i in 1:9) {theta[i]<-g[i]/ms }
theta1.<- theta[1]+theta[2]+theta[3]
theta2.<- theta[4]+theta[5]+theta[6]
theta3.<- theta[7]+theta[8]+theta[9]
theta.1<- theta[1]+theta[4]+theta[7]
theta.2<- theta[2]+theta[5]+theta[8]
theta.3<- theta[3]+theta[6]+theta[9]
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s1.<-s[1]+s[2]+s[3]
s2.<-s[4]+s[5]+s[6]
s3.<-s[7]+s[8]+s[9]
s.1<-s[1]+s[4]+s[7]
s.2<-s[2]+s[5]+s[8]
s.3<-s[3]+s[6]+s[9]
r1.<-r[1]+r[2]+r[3]
r2.<-r[4]+r[5]+r[6]
r3.<-r[7]+r[8]+r[9]
r.1<-r[1]+r[4]+r[7]
r.2<-r[2]+r[5]+r[8]
r.3<-r[3]+r[6]+r[9]
# the prob D=1 given Y1=1
ph1.∼dbeta(s1.,r1.)
ph2.∼dbeta(s2.,r2.)
ph3.∼dbeta(s3.,r3.)
ph.1∼dbeta(s.1,r.1)
ph.2∼dbeta(s.2,r.2)
ph.3∼dbeta(s.3,r.3)
# the prob the first test =1 given d=1
alpha1[1]<- ph1.*theta1./dalpha1
alpha1[2]<- ph2.*theta2./dalpha1
alpha1[3]<- ph3.*theta3./dalpha1
dalpha1<- ph1.*theta1.+ph2.*theta2.+ph3.*theta3.
# the prob the first test =1 given D=0
beta1[1]<-((1-ph1.)*theta1.)/dbeta1
beta1[2]<-((1-ph2.)*theta2.)/dbeta1
beta1[3]<-((1-ph3.)*theta3.)/dbeta1
dbeta1<-(1-ph1.)*theta1.+(1-ph2.)*theta2.+(1-ph3.)*theta3.
# the prob that the second test = 1 given d=1
alpha2[1]<- ph.1*theta.1/dalpha2
alpha2[2]<- ph.2*theta.2/dalpha2
alpha2[3]<- ph.3*theta.3/dalpha2
dalpha2<- ph.1*theta.1+ph.2*theta.2+ph.3*theta.3
beta2[1]<-((1-ph.1)*theta.1)/dbeta2
beta2[2]<-((1-ph.2)*theta.2)/dbeta2
beta2[3]<-((1-ph.3)*theta.3)/dbeta2
dbeta2<-(1-ph.1)*theta.1+(1-ph.2)*theta.2+(1-ph.3)*theta.3
# area of test 1

A1<- A11+A12
A11<- alpha1[2]*beta1[1]+alpha1[3]*( beta1[1]+beta1[2])
A12<- (alpha1[1]*beta1[1]+alpha1[2]*beta1[2]+alpha1[3]*beta1[3])/2

# area of test 2
A2<- A21+A22
A21<- alpha2[2]*beta2[1]+alpha2[3]*( beta2[1]+beta2[2])
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A22<- (alpha2[1]*beta2[1]+alpha2[2]*beta2[2]+alpha2[3]*beta2[3])/2
d<-A1-A2

}
# melanoma staging two readers
list(r = c(101,105,83,67,72,40,41,30,4), s = c(8,26,51,43,81,94,117,140,208), m =
c(111,149,196,124,236,201,221,210,320))

8.6 Two Ordinal Tests and Covariates

Consider the melanoma staging study reported in Table 8.13. Suppose the
gender of the subjects is taken into account in order to estimate the ROC
area. Would one expect gender to make a difference? The approach here is to
estimate the ROC areas separately, then combine the estimates. First consider
the results for males given in Table 8.15a.

There are four ROC areas to compute, two for the dermatologist and two
for the surgeon. The Bayesian analysis is performed using BUGS CODE 8.4
with 45,000 observations generated from the joint posterior distribution of the
18 parameters appearing in the likelihood function, using a burn in of 5,000
and a refresh of 100. An improper prior distribution is employed (Table 8.16).

The estimated area for the surgeon using the posterior mean is 0.8045
with a 95% credible interval of (0.7715,0.8348), while that for the dermatolo-
gist is 0.6401, and it appears that the surgeon has more accuracy in staging
melanoma patients. Bayesian inferences for females are left as an exercise.
Notice that this study is paired by readers, but not by gender.

Refer to Exercise 8 for additional information about comparing the ROC
areas for two correlated ordinal tests.

8.7 Inverse Probability Weighting

Pepe [8] describes an interesting variation in estimating test accuracy with
verification bias by the IPW technique. Briefly, this method involves con-
structing an imputed data table from the observed data table. The latter is
the actual table observed that has verification bias. Consider the selected data
in Table 8.17a.

For the selected data, all subjects were verified when they tested positive,
and for those 860 that tested negative, 95/917 were verified for disease status.
The inverse probability approach is to multiply each cell frequency by the
inverse of the verification rate.
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TABLE 8.15a: Staging melanoma by a dermatologist and surgeon—males.
Y1 = 1 2 3

Y2 1 2 3 1 2 3 1 2 3
D = 1 s1 = 4 s2 = 12 s3 = 23 s4 = 21 s5 = 45 s6 = 51 s7 = 56 s8 = 78 s9 = 100
D = 0 r1 = 56 r2 = 51 r3 = 40 r4 = 33 s5 = 35 r6 = 18 r7 = 16 r8 = 13 r9 = 2
V = 0 u1 = 0 u2 = 6 u3 = 31 u4 = 8 u5 = 40 u6 = 31 u7 = 28 u8 = 22 u9 = 55
Total m1 = 60 m2 = 69 m3 = 94 m4 = 62 m5 = 120 m6 = 100 m7 = 100 m8 = 113 m9 = 157
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TABLE 8.15b: Staging melanoma by a dermatologist and a surgeon—females.
Y1 = 1 2 3

Y2 1 2 3 1 2 3 1 2 3
D = 1 s1 = 4 s2 = 14 s3 = 28 s4 = 22 s5 = 36 s6 = 43 s7 = 61 s8 = 62 s9 = 108
D = 0 r1 = 45 r2 = 54 r3 = 43 r4 = 34 r5 = 37 r6 = 022 r7 = 25 r8 = 17 r9 = 2
V = 0 u1 = 2 u2 = 12 u3 = 31 u4 = 6 u5 = 43 u6 = 36 u7 = 35 u8 = 018 u9 = 53
Total m1 = 51 m2 = 80 m3 = 102 m4 = 62 m5 = 116 m6 = 101 m7 = 121 m8 = 97 m9 = 163
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TABLE 8.16: Posterior analysis for melanoma staging
study—staging by a surgeon and a dermatologist for males.

Parameter Mean sd Lower Median Upper
2 1/2 2 1/2

A1 (surgeon) 0.8045 0.0162 0.7715 0.805 0.8348
A2 (dermatologist) 0.6401 0.02089 0.5986 0.6403 0.6810

The test accuracy, namely, the true and false positive fractions, is estimated
in the usual way. The true positive rate is estimated as 280/348 = 0.804, and
the false positive rate as 190/1039 = 0.1828. Of course, the sensitivity and false
positive rate can also be estimated by using the methods described earlier and
applied to Table 8.17a. Will the Bayesian approach give the same results when
applied to both tables?

First, consider the selected data from Table 8.17a. Then using an improper
prior with BUGS CODE 8.1, a burn in of 5,000, a refresh of 100, and gener-
ating 25,000 observations from the posterior distribution of the parameters,
gives the results shown in Table 8.18.

Additional information about the IPW approach is continued with
Exercise 9, but for now the presentation is continued by considering diag-
nostic tests with verification bias and ordinal outcomes. Recall the mammog-
raphy study given in Table 8.10, where the results are given in Table 8.7. The
inverse probability method is applied by multiplying the cell probabilities by
the appropriate inverse verification rate, yielding Table 8.19.

TABLE 8.17a: Selected
data with verification bias.

Y = 1 0
V = 1
D = 1 280 7
D = 0 190 88
V = 0 0 822
Total 470 917

TABLE 8.17b: Imputed
data from Table 8.16a.

Y = 1 0
V = 1
D = 1 280 68
D = 0 190 849
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TABLE 8.18: Bayesian analysis based on selected data of
Table 8.16a.

Parameter Mean sd Lower Median Upper
2 1/2 2 1/2

fpf 0.183 0.0127 0.1589 0.1827 0.2093
tpf 0.8091 0.0562 0.6909 0.8121 0.9101

TABLE 8.19: Imputed table for mammography study.
Y = 1 2 3 4 5
V = 1
D = 1 s1 = 89 s2 = 74 s3 = 167 s4 = 153 s5 = 249
D = 0 r1 = 383 r2 = 173 r3 = 108 r4 = 35 r5 = 78
Total m1 = 472 m2 = 247 m3 = 275 m4 = 188 m5 = 327

If an improper prior distribution is used, the posterior analysis based on
Table 8.18 and BUGS CODE 8.3, with 35,000 observations generated from the
posterior distribution, with a burn in of 5,000 and a refresh of 100, the analysis
gives essentially the same results for the ROC area as reported in Table 8.8.
Note that BUGS CODE 8.3 can be used for the imputed Table 8.19 or the
selected Table 8.7 with verification bias. Refer to Exercises 10 and 11 for
additional information.

One would expect the IPW method would also apply for the case of two
correlated ordinal tests. See Exercises 12 and 13 for additional information.

8.8 Without the Missing at Random Assumption

The MAR assumption assumes that the probability of referring a subject
to the gold standard only depends on the results Y of the test. If the referral
depends on the disease status of the patient, the MAR assumption is violated
and another approach is taken. Consider the case of one binary test, as shown
in Table 8.20.

The MAR assumption holds if

P [V = 1 | D, Y ] = P [V = 1 | Y ],

and if this is not possible, the probability of validation has to depend on the
disease status. One way to do this is to base inferences on the probability
model to be defined as

θi = P [Y = i] (8.46)

  



K11763 Chapter: 8 page: 284 date: June 17, 2011

284 Advanced Bayesian Methods for Medical Test Accuracy

TABLE 8.20: One binary test.
Y 1 (Positive) 0 (Negative)

V = 1
D = 1 s1 s0
D = 0 r1 r0

V = 0 u1 u0
Total m1 m0

and

φi = P [D = 1 | Y = i], (8.47)

for i = 0, 1.
The probability of validation is made to depend on the disease status by

defining

λij = P [V = 1 | D = i, Y = j], (8.48)

for i, j = 0, 1.
Consequently,

P [V = 0 | Y = 0] = P [V = 0 | D = 0, Y = 0]P [D = 0 | Y = 0]
+ P [V = 0 | D = 1, Y = 0]P [D = 1 | Y = 0]

= (1 − λ10)φ0 + (1 − λ00)(1 −φ0), (8.49)

and in a similar way,

P [V = 0 | Y = 1] = (1− λ11)φ1 + (1 −λ01)(1 −φ1). (8.50)

The likelihood function is based on the marginal distribution of Y , the
conditional distribution of V given D and Y , and the conditional distribution
of D given Y . Referring to Table 8.20 and the definition of the parameters
above, gives

L(θ,φ,λ) ∝ θm0
0 (1 − θ0)m1(λ11φ1)s1(λ10φ0)s0λr1

01(1 −φ1)r1 , (8.51)
λr0

00(1 − φ0)r0 [(1 − λ10)φ0 + (1 −λ00)(1 −φ0)]u0 ,

[(1 − λ11)φ1 + (1 − λ01)(1 − φ1)]u1 ,

as the likelihood function, which depends on seven unknown parameters.

∝ θm0
0 (1 − θ0)m1 ,

i=u0∑
i=0

B(u0, i)λs0
10(1 − λ10)iλr0

00(1 −λ00)u0−iφs0+i
0 (1 −φ0)r0+u0−i, (8.52)

i=u0∑
i=0

B(u1, i)λs1
11(1 − λ11)iλr1

01(1 −λ01)u1−iφs1+i
1 (1 −φ1)r1+u1−i,

  



K11763 Chapter: 8 page: 285 date: June 17, 2011

Verification Bias and Test Accuracy 285

where B(u0, i) is the binomial coefficient “i from u0.” The Bayesian approach
requires a prior distribution for the parameters, and if a uniform is used, the
effect is to make the posterior density of all the parameters proportional to
the likelihood function (Equation 8.52). Note that the posterior distribution
has three components: (a) the marginal posterior distribution of θ0; (b) the
joint marginal posterior distribution of λ00, λ10, and φ0; and (c) the joint
marginal posterior distribution of λ01, λ11, and φ1. Also note that λ00 and
λ10 can be eliminated (using the properties of the beta distribution) from the
second component, thus leaving the posterior distribution of φ0 expressed as a
mixture of beta distributions, where the ith component has a beta distribution
with parameters (s0 − i+ 1, r0 + u0 + 1 − i). In a similar fashion, eliminating
λ01 from the third component leaves a mixture of beta distributions for the
posterior distribution of φ1, where the ith component has a beta distribution
with parameters (s1 − i+ 1, r1 + u1 + 1 − i).

What are the weights for the mixture of the posterior distribution of φ0?
Consider the second component of Equation 8.52 and integrate with

respect to λ00, λ10, and φ0, then the result is proportional to the ith weight
of the mixture, namely,

w′
i = BC(u0, i)Γ(s0 + 1)Γ(i+ 1)Γ(r0 + 1)Γ(u0 + 1 − i)Γ(s0 + 1 + i)

×Γ(r0 + u0 + 1 − i), (8.53)

Γ(s0 + i+ 2)Γ(r0 + u0 + 2 − i)Γ(m0 + 2 − i).

The ith component of the posterior distribution of φ0 is

wi = w′
i

/ i=u0∑
i=0

w′
i, (8.54)

for i = 0, 1, . . . , u0, and a similar expression holds for the posterior distribution
of φ1, namely, in Equation 8.53 replace subscript 0 with subscript 1. The code
below follows the notation given above.

BUGS CODE 8.5

model;
# w/o MAR assumption
# one binary test
# uniform prior for parameters
{
theta0∼dbeta(23,18)
theta1<-1-theta0
# for lamda00
for( i in 1:9){x00[i]∼dbeta(5,s00[i])}
# for ph1
for( i in 1:6){ y1[i]∼dbeta(s1[i],r1[i])}
# for lamda10
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for( i in 1:9){ x10[i]∼dbeta(11,r10[i])}
# for ph0
for( i in 1:9){ y0[i]∼dbeta(s0[i],r0[i])}
# mixture for lamda00
for ( i in 1:9){ lam00[i]<-w0[i]*x00[i]}
#for mixture for lamda10
for ( i in 1:9){ lam10[i]<-w0[i]*x10[i]}
# dist of lamda00
lamda00<-sum(lam00[ ])
# distribution for lamda10
lamda10<-sum(lam10[ ])
# mixture for ph1
for ( i in 1:6){ z1[i]<-w1[i]*y1[i]}
# dist of ph1
ph1<-sum(z1[ ])
# mixture for ph0
for ( i in 1:9){ z0[i]<-w0[i]*y0[i]}
# dist of ph0
ph0<-sum(z0[ ])
tpf<-ph1*theta1/(ph1*theta1+ph0*theta0)
fpf<-(1-ph1)*theta1/(1-ph1*theta1-ph0*theta0)
# d is the difference between lamda00 and lamda10
# d0010 =0 implies MAR assumption is valid
d0010<-lamda00-lamda10
}
list( s0=c(11,12,13,14,15,16,17,18,19),

r0=c(13,12,11,10,9,8,7,6,5),
s00=c(9,8,7,6,5,4,3,2,1),
r10=c(1,2,3,4,5,6,7,8,9),
r1=c(9,8,7,6,5,4),
s1=c(10,11,12,13,14,15),

w0=c(.0000000000317598,
.0000000007254027,
.0000000160704596,
.0000003447113582,
.0000071495689118,
.0001432706582719,
.0027739125769611,
.0519594920665954,
.9451158135902790),
w1=c(.0000006087689438,

.0000112068828285,

.0001995892465651,

.0034390762485069,

.0574817030107593,

.938867815))
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TABLE 8.21: One binary test.
Y 1 (Positive) 0 (Negative)

V = 1
D = 1 s1 = 9 s0 = 10
D = 0 r1 = 3 r0 = 4

V = 0 u1 = 5 u0 = 8
Total m1 = 17 m0 = 22

As an example of not assuming the MAR, consider the outcomes for a
binary test (Table 8.21).

The posterior analysis was performed with a burn in of 5,000, a refresh
of 100, and 50,000 observations are generated for the posterior distribution of
the parameters (Table 8.22).

Recall that φ1 is the probability of disease given the test is positive, while θ0
is the probability the test is negative. The weights can be difficult to compute
because of the large numbers of the gamma function. I used the log gamma
function on w′

i in Equation 8.53, followed by exponentiation, then normalized
w′

i, giving the ith weight of the mixture as wi in Equation 8.54. The results
give the characteristics of the posterior distribution of the relevant parameters,
including λ00 and λ10. If these two are equal, there is a possibility that the
MAR assumption holds. The parameter d0010 is the posterior distribution
of the difference, and the 95% credible interval is (−0.1073, 0.5604), which
indicates the possibility that the MAR is valid; however, the other two lambda
parameters, λ01 and λ11, must also be equal for the MAR assumption to hold.
The parameters λ00 and λ10 are part of the second component of the marginal
joint distribution of λ00, λ10, and φ0, while λ01 and λ11 are part of the third
component, the marginal joint posterior distribution of λ01, λ11, and φ1.

Plots of the posterior densities of the false and true positive fractions are
given in Figures 8.3 and 8.4, respectively. Note the larger standard deviation
for the false positive rate, which is also confirmed by Table 8.20. The densities

TABLE 8.22: The posterior analysis without MAR one
binary test.

Parameter Mean sd Lower Median Upper
2 1/2 2 1/2

fpf 0.4427 0.1489 0.1733 0.4381 0.7402
tpf 0.4381 0.0848 0.2756 0.4372 0.607
φ0 0.7891 0.0772 0.6186 0.7969 0.916
φ1 0.7863 0.08571 0.5946 0.796 0.9242
θ0 0.5609 0.0766 0.4086 0.5617 0.708
λ00 0.8266 0.1333 0.4908 0.8614 0.9815
λ10 0.5517 0.103 0.3477 0.5531 0.7450
d0010 0.2749 0.1684 −0.1073 0.2919 0.5604
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fpf sample: 55000
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FIGURE 8.3: Posterior density of the false positive fractions.

of λ00 and λ10 appear as Figures 8.5 and 8.6, respectively, and the asymmetry
of the former is evident.

How is the above analysis extended to two correlated binary tests?
Consider Table 8.23. The Bayesian approach is based on the likelihood func-
tion, which is

L(θ,φ,λ) ∝
i=1∏
i=0

j=1∏
j=0

θ
mij
ij

i=1∏
i=0

j=1∏
j=0

φ
sij
ij (1 − φij )rij

i=1∏
i=0

j=1∏
j=0

λ
sij
1ij

i=1∏
i=0

j=1∏
j=0

λ
rij
0ij , (8.55)

[(1 −λ111)φ11 + (1 − λ011)(1 −φ11)]u11 ,

[(1 −λ110)φ10 + (1 − λ010)(1 −φ10)]u10 ,

[(1 −λ101)φ01 + (1 − λ001)(1 −φ01)]u01 ,

[(1 −λ100)φ00 + (1 − λ000)(1 −φ00)]u00 ,

which is of the same form as the likelihood function for one binary test, with-
out the MAR assumption. Note, the likelihood function is for 16 unknown
parameters, and with a uniform prior the posterior distribution is the like-
lihood function (Equation 8.55). Using the binomial theorem, the last four
components of the likelihood function are expressed as a mixture of beta dis-
tributed random variables.

tpf sample: 55000

tpf
0.0 0.2 0.4 0.6 0.8

P(
tp

f)
0.

0
4.

0

FIGURE 8.4: Posterior density of the true positive fraction.
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lamda00 sample: 105001
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FIGURE 8.5: Posterior density of λ00.

For example, the second component of the likelihood function is exp-
ressed as

i=u11∑
i=0

BC(u11, i)(1 −λ111)iφi
11(1 −λ011)u11−i(1 −φ11)u11−i,

and when combined with λ111, λ011, and φ11 of the first component, gives

i=u11∑
i=0

BC(u11, i)λs11
111(1 −λ111)iλr11

011(1 −λ011)u11−iφs11+i
11 (1 −φ11)r11+u11−i

as a mixture. Integrating this component with respect to λ111, λ011, and φ11,
expresses the marginal posterior distribution of φ11 as a mixture of random
variables where the ith has a beta distribution with parameter (s11 + 1 + i,
r11 + 1 − i), where i = 0, 1, . . . , u11, namely,

i=u11∑
i=0

BC(u11, i){Γ(s11 + 1)Γ(i+ 1)Γ(r11 + 1)Γ(u11 + 1 − i)Γ(s11 + i+ 1)

× Γ(r11 + u11 − i+ 1)
÷Γ(s11 + 2 + i)Γ(r11 + u11 + 2 − i)Γ(m11 + 2)}

×φs11+i
11 (1 −φ11)r11+u11−i. (8.56)
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FIGURE 8.6: Posterior density of λ10.
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TABLE 8.23: Two binary scores with verification bias.
Y1 = 1 0

V = 1 Y2 = 1 0 1 0
D = 1 s11 s10 s01 s00
D = 0 r11 r10 r01 r00
V = 0 u11 u10 u01 u00
Total m11 m10 m01 m00

Of course, the last three components can be expressed in a similar fashion as
mixtures of beta random variables for the posterior distribution of φ10, φ01,
and φ00, respectively. Our main focus is to estimate the true and false positive
fractions for the two tests. For example, the tpf for the first test is

tpf1 = φ1.θ1./(φ1.θ1. + φ0.θ0.), (8.57)

where

ϕ1. ∼ beta(s1. + 1, r1. + 1)

and

θ1. = θ10 + θ11.

fpf1 = (1 −φ1.)θ1./(1 − φ1.θ1. −φ0.θ0.). (8.58)

8.9 One Ordinal Test and the Receiver Operating
Characteristic Area

Consider one ordinal test with verification bias (Table 8.24). Not assuming
MAR, what is the likelihood for making Bayesian inferences about the area
under the ROC curve?

TABLE 8.24: Verification bias and
one ordinal test.

Y = 1 2 3 k

V = 1
D = 1 s1 s2 sk

D = 0 r1 r2 rk

V = 0 u1 u2 uk

Total m1 m2 mk

  



K11763 Chapter: 8 page: 291 date: June 17, 2011

Verification Bias and Test Accuracy 291

The relevant parameters are:

θi = P [Y = i],
φi = P [D = 1 | Y = i],
λij = P [V = 1 | D = i, Y = j],

P [V = 0 | Y = i] = (1−λ1i)φi + (1 −λ0i)(1 −φi),
αi = P [Y = i | D = 1],

= φiθi

/ i=k∑
i=1

φiθi,

and

βi = (1 − φi)θi

/ (
1 −

i=k∑
i=1

φiθi

)
.

The area under the ROC curve is

A = A1 + A2, (8.59)

where

A1 = α2β1 + α3(β1 + β2) + · · ·+ αk(β1 + · · ·+ βk−1),

and

2A2 =
i=k∑
i=1

αiβi..

Lastly, the likelihood function is

L(θ,φ,λ) ∝
i=k∏
i=1

θmi
i

i=k∏
i=1

φsi
i (1 −φi)ri

i=k∏
i=1

[(1 − λ0i)(1 −φi) + (1−λ1i)φi]ui ,

(8.60)
i=k∏
i=1

λsi
1iλ

ri
0i,

and all inferences, including the area under the ROC curve, are based on it.
If a uniform prior is used for all parameters, the joint posterior distribution

is proportional to the above likelihood. Recall that the marginal posterior dis-
tribution of φi is a mixture of beta distributed random variables. Consider then
the ith component of the mixture, then φi ∼ beta(si + i+ 1, ri + ui + 1 − i),
where i = 1, 2, . . . , i.
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8.10 Comments and Conclusions

This chapter presents a Bayesian approach to making inferences about
medical test accuracy when verification bias is present, and this approach
follows, to some extent, the presentation of Zhou, McClish, and Obuchowski
[1], and Pepe [8]. The Zhou method is basically based on the likelihood func-
tion of the outcomes for various scenarios. The Bayesian approach uses the
likelihood function, but uses a different method to compute the area under
the ROC curve. The area under the ROC curve is based on a formula from
Broemeling [7: 72], which is the form given also by Pepe [8].

The MAR assumption is used, as was done by Zhou, McClish, and
Obuchowski, for one binary test, two binary tests, tests with ordinal out-
comes, and two correlated tests with ordinal outcomes. Some variations of
these basic designs include taking covariates into account and other aspects
of the study design. Zhou, McClish, and Obuchowski [1] relaxed the MAR
assumption for one binary test, using maximum likelihood for estimating test
accuracy, while the Bayesian approach is extended to two binary tests, two
correlated ordinal tests, where the posterior distribution of the ROC area
is determined. I believe the latter Bayesian presentations without the MAR
assumption have not been presented.

The following exercises review the basic concepts presented and extend
those concepts to other experimental scenarios.

8.11 Exercises

1. Verify the analysis given by Table 8.3 for the posterior distribution of
the tpf and fpf of the diabetes study of Table 8.2. Repeat the analysis
using a uniform prior for the parameters, instead of an improper prior,
with WinBUGS generating 55,000 observations from the posterior dis-
tribution, with a burn in of 5,000 observations and a refresh of 100.
Plot the posterior densities of the tpf and the fpf. Report the poste-
rior mean, standard deviation, median, and the lower and upper 2 1/2
percentiles, and display the trace of the various posterior distributions.
Refer to BUGS CODE 8.1. In addition, report the MCMC error for all
parameters.

2. For the two tests for detecting metastasis of colon cancer to the liver,
reported in Table 8.5, perform a Bayesian analysis with an improper
prior, as was done in Section 8.3, and compute the posterior distribution
for the true and false positive fractions of both observers. Also, compare
the true and false positive fractions of the two images. How do the two
agree in their diagnosis of the disease? Refer to BUGS CODE 8.2, and
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TABLE 8.25: CT study uterine cancer metastasis.
Y = 1 2 3 4 5
V = 1
D = 1 s1 = 9 s2 = 8 s3 = 7 s4 = 8 s5 = 45
D = 0 r1 = 12 r2 = 2 r3 = 4 r4 = 5 r5 = 6
V = 0 u1 = 38 u2 = 9 u3 = 6 u4 = 4 u5 = 14
Total m1 = 59 m2 = 19 m3 = 17 m4 = 17 m5 = 65

note that the code for all required computations for the second observer
appears in the program statements.

3. Table 8.25 presents the results of a study using CT to study the metas-
tasis of uterine cancer to the lymph nodes, where 1 indicates definitely
no evidence of metastasis, 2 signifies very little evidence, 3 indicates very
little evidence one way or the other, 4 is interpreted as some evidence of
metastasis, while 5 indicates very strong evidence of metastasis. Note, a
similar study was conducted by Gray, Begg, and Greenes [13], which is
also reported and analyzed by Zhou, McClish, and Obuchowski [1].

Suppose the prior distributions are taken as a uniform over the
parameters φi and θi for i = 1, 2, 3, 4, 5, where φi = P [D = 1 | Y = i]
and θi = P [Y = i]. Use the likelihood function as expressed by Equa-
tion 8.23 and combine with the uniform prior for the posterior analysis.
(a) What is the posterior distribution of φi for i = 1, 2, 3, 4, 5?
(b) What is the posterior distribution of θi for i = 1, 2, 3, 4, 5?
(c) What is the posterior distribution of P [Y = i | D = 1] for i =

1, 2, 3, 4, 5?
(d) What is the posterior distribution of P [Y = i | D = 0] for i =

1, 2, 3, 4, 5?
(e) What is the posterior distribution of the area under the ROC curve?

Perform the analysis using WinBUGS with 45,000 observations, a burn
in of 5,000 and a refresh of 100. Report the posterior mean, standard
deviation, median, and the lower and upper 2 1/2 percentiles. Follow
the analysis of Section 8.4, but with a uniform prior distribution. Refer
to BUGS CODE 8.3. What are the MCMC errors for all parameters?

4. Consider Tables 8.9 and 8.11, which give the posterior analysis for esti-
mating the ROC area for sites 1 and 2, respectively. How should the
two estimates (using the posterior mean) of the two areas be combined?
Consider weighting inversely proportional to the variance of the pos-
terior distribution of the ROC area. What are the additional ways of
combining the posterior means of the ROC areas?

5. Refer to Tables 8.13 and 8.14 and the melanoma staging study that
compares a surgeon and a dermatologist with regard to the area under
the ROC. Repeat the analysis, but use a uniform prior distribution for
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the parameters. The prior is to be combined with the likelihood function
(Equation 8.43). Hint: modify the list statement of BUGS CODE 8.4
using the information given by Equation 8.45!

6. The results in Table 8.26 report an experimental study for staging breast
cancer, which involves MRI and mammography and involves staging 285
patients by two paired modalities, MRI and mammography. The first
test, Y1, is based on MRI, while the other, Y2, corresponds to mam-
mography, and the scores are 1, 2, and 3, which indicate the stage of
the disease. Stage 1 indicates disease is confined to the primary tumor,
while 2 indicates ambiguous information about metastasis, and 3 signals
definite evidence of metastasis to lymph nodes. Megibow et al. [12] is a
similar study.

I recommend using a uniform prior distribution for all the parameters
and BUGS CODE 8.4 to perform a Bayesian analysis with a burn in of
5,000, a refresh of 100, and generate sufficient observations from the pos-
terior distribution until the MCMC errors are <0.001 for all parameters.
(a) Find the posterior characteristics of the ROC areas of the two

modalities.
(b) Test the hypothesis that the two modalities have the same area

under the ROC curve.
(c) Plot the densities of the posterior distributions of the two images.
(d) Why do small cell frequencies cause problems for the analysis?

7. What is the MAR assumption for two ordinal tests with verification bias?

8. Refer to Table 8.13 for the melanoma staging study, where a dermatol-
ogist and a surgeon assign a stage to each patient. Tables 8.15a and b
stratify the patients by gender, with Table 8.15a reporting the results
for males. A Bayesian analysis, shown in Table 8.16, provides estimates
of the ROC area for the two readers for the males.
(a) Perform the analysis for the female results, reported in Table 8.15b,

using BUGS CODE 8.4 with a burn in of 5,000 observations, a
refresh of 100, and generating enough observations from the pos-
terior distribution so that the MCMC error for all parameters is
<0.0001. Assume a uniform prior distribution.

(b) For females, compare the ROC area of the two readers. Do they
differ?

(c) Does gender have an effect on the ROC area for the dermatologist?
(d) Does gender have an effect on the ROC area for the surgeon?
(e) Combine the estimated ROC areas for males and females for the

surgeon, and explain how they were combined and what principle
is used.

(f) Combine the estimated ROC areas for males and females for the
dermatologist and explain how they were combined and what prin-
ciple is used.
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TABLE 8.26: Mammography and MRI for staging pancreatic cancer.
Y1 = 1 2 3

Y2 1 2 3 1 2 3 1 2 3
D = 1 s1 = 21 s2 = 10 s3 = 19 s4 = 8 s5 = 17 s6 = 19 s7 = 14 s8 = 10 s9 = 21
D = 0 r1 = 9 r2 = 11 r3 = 15 r4 = 11 r5 = 11 r6 = 13 r7 = 9 r8 = 8 r9 = 3
V = 0 u1 = 4 u2 = 0 u3 = 7 u4 = 5 u5 = 6 u6 = 8 u7 = 0 u8 = 4 u9 = 22
Total m1 = 34 m2 = 21 m3 = 41 m4 = 24 m5 = 34 m6 = 40 m7 = 23 m8 = 22 m9 = 46
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9. Refer to the IPW method for correcting for verification bias.
(a) Verify Table 8.18, the Bayesian analysis from the selected Table

8.17a. Use an improper prior and generate 25,000 observations from
the posterior distribution, with a burn in of 5,000 and a refresh
of 100. Use BUGS CODE 8.1 and note that it is valid for data with
or without verification bias.

(b) Do the same analysis as part (a), but use information from the
imputed data given by Table 8.17b. Show, computationally, that
the results are essentially the same for the posterior distribution of
the true and false positive fractions.

(c) Prove theoretically that using either table—the imputed data table
or the selected data (showing verification bias) table—and using the
same prior, the posterior distribution is the same for the true and
false positive fractions.

(d) Pepe [8] reports that the maximum likelihood estimation of Begg
and Greenes [6] are the same as those given by the inverse proba-
bility method. Show this is true.

(e) What are the MCMC errors for the parameters?

10. Refer to the imputed Table 8.19 and show that the Bayesian analysis is
essentially the same based on either the imputed table or the original
selected table with verification bias. Use an improper prior distribution
and BUGS CODE 8.3 with 35,000 observations generated from the pos-
terior distribution, with a refresh of 100 and a burn in of 5,000.

11. When estimating the ROC area, prove theoretically that the Bayesian
analysis gives the same result when based on either the imputed table or
the selected table with verification bias. Assume the same prior is used
in both cases. Refer to Section 8.4.

12. Prove that the Bayesian approach gives the same result for estimating
two ROC areas for two correlated ordinal tests using either the imputed
table or the original selected table with verification bias. Assume the
same prior distribution for both.

13. Refer to Table 8.21, the results for one binary test. BUGS CODE 8.5
is implemented to perform the analysis without the MAR assumption.
Perform an analysis assuming MAR using BUGS CODE 8.1 and com-
pare your results to those of Table 8.22, the posterior analysis without
the MAR condition.
(a) Why do the results differ?
(b) The analysis without the MAR assumption is more complex.

Describe why.

14. In the case of two correlated binary tests, do not assume MAR and find
the posterior distribution of φ10 based on the likelihood function, Equa-
tion 8.55. Refer to Equation 8.56, which expresses the marginal posterior
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TABLE 8.27: CT and lung cancer risk.
Y1 = 1 0

V = 1 Y2 = 1 0 1 0
D = 1 s11 = 14 s10 = 12 s01 = 9 s00 = 3
D = 0 r11 = 4 r10 = 9 r01 = 13 r00 = 18
V = 0 u11 = 7 u10 = 8 u01 = 9 u00 = 10
Total m11 = 25 m10 = 29 m01 = 31 m00 = 31

distribution of φ11 as a mixture of beta random variables. The marginal
posterior distribution of φ10 should be similar. Assume a joint uniform
prior distribution for the parameters.

15. Refer to two correlated binary tests, without the MAR assumption deter-
mine the marginal posterior distribution of the true and false positive
fractions for test 2, assuming a uniform prior for the parameters. Begin
with the likelihood function Equation 8.55. Your result should be similar
to Equations 8.57 and 8.58.

16. Consider the results of two correlated binary tests given in Table 8.27.
The first test, Y1, gives the results for a CT determination of lung cancer
risk, where 0 indicates a small risk and 1 a high risk of lung cancer, while
the second test, Y2, is a determination of lung cancer risk using MRI.

Write your own WinBUGS code and execute the analysis with 45,000
observations, with a burn in of 5,000 and a refresh of 100.
(a) Assume a uniform prior distribution for the parameters and deter-

mine the posterior distribution of the true and false positive frac-
tions for CT.

(b) Find the posterior distribution of the true and false positive rates
for MRI.

(c) Plot the posterior densities of the true and false positive rates for
CT and MRI.

(d) Are CT and MRI correlated? How much?
(e) Which test is more accurate?

17. Consider the case of one ordinal test, where mammography is used to
screen for breast cancer. The results of the study are given in Table 8.28.

Based on the likelihood function (Equation 8.60) and not assuming
MAR and using a uniform prior for the parameters:
(a) Write a WinBUGS program to find the area under the ROC curve.
(b) Execute the program with 55,000 observations generated from the

posterior distribution, with a burn in of 5,000 and refresh of 100.
Determine the posterior distribution of the area under the ROC
curve. What is the posterior mean, median, and standard devia-
tion? What is a 95% credible interval for the area?
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TABLE 8.28: Verification bias and mammography.
Y = 1 2 3 4 5
V = 1
D = 1 s1 = 7 s2 = 23 s3 = 21 s4 = 44 s5 = 78
D = 0 r1 = 15 r2 = 42 r3 = 38 r4 = 58 r5 = 145
V = 0 u1 = 67 u2 = 18 u3 = 43 u4 = 21 u5 = 10
Total m1 = 89 m2 = 83 m3 = 102 m4 = 123 m5 = 233

(c) Repeat the above, but assuming MAR, using BUGS CODE 8.3.
Use the same number of observations generated from the posterior
distribution, and the same burn in and refresh as in (b).

(d) Compare the two estimated areas with the mean of the posterior
distribution. Is there a difference? Why is there a difference?

18. Refer to the likelihood function (Equation 8.60) for one ordinal test
without the MAR assumption. Extend the Bayesian analysis to two cor-
related ordinal tests.
(a) What is the likelihood function? Give the formula.
(b) What is the area under the ROC curve for the two tests? Refer to

Equation 8.59.

19. Refer to the posterior density (Equation 8.52) for the parameters of one
binary test without the MAR assumption, the results of one binary test
(Table 8.20), and BUGS CODE 8.5. Find the posterior density of λ01
and λ11 from the third component of the posterior density. That is,
eliminate φ1 by integration using properties of the beta distribution and
express the posterior distribution of φ1 as a mixture. Referring to BUGS
CODE 8.5, it will be obvious how to determine the posterior distribution
of φ1 as a mixture. Note, the same weights of the mixture are given by
w1 in the list statement of BUGS CODE 8.5. A uniform prior distribu-
tion is assumed. Generate 50,000 observations from the joint posterior
distribution, with a burn in of 5,000 and a refresh of 100.
(a) Report the characteristics of the posterior distribution of λ01.
(b) Report the characteristics of the posterior distribution of λ11.
(c) Determine the posterior distribution of the difference in the two

parameters.
(d) Are they different? If so, why?
(e) Using the results of Table 8.22 and your previous results, is the

MAR assumption valid?
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Chapter 9

Test Accuracy and Medical Practice

9.1 Introduction

The role of test accuracy in various forms of clinical practice is explored
in this chapter. Of course, clinical practice involves the use of medical tests to
assess the condition of the patients. Medical tests are used in many ways, as the
patient soon finds out on entering the health care system, from diagnosing the
underlying disease, to keeping track of the disease as the patient undergoes
treatment.

One issue facing the practitioner is the choice of a threshold or cutoff value
in order to declare that the patient has disease. For example, when undergoing
a fasting blood glucose test, how high does the value of the blood glucose have
to be in order for the doctor to treat the condition as type 2 diabetes? Another
example is testing for coronary artery disease, when the patient complains of
chest pain and seeks help from a physician. The doctor might send the subject
for an exercise stress test, which involves injecting the patient with a radioac-
tive nucleotide that is designed to target the heart and emit radiation that is
detected by gamma cameras positron emission tomography or single photon
emission tomography (PET or SPECT). At what point is the patient said to
have heart disease? This is a case where the choice of a threshold is crucial.
Of course, in this situation, the patient might be referred for further testing
involving the gold standard, namely, a heart catheterization to examine the
coronary arteries.

Another example is testing for breast cancer via a mammography where,
as we have seen in previous chapters, on the basis of a five-point scale, the
radiologist scores the likelihood that the lesion is present in the image. At what
point does the clinician say that the patient has a malignant lesion? Again, we
are faced with the choice of a threshold value to declare disease. Still another
example that has been stressed repeatedly in the book is the diagnosis of
prostate cancer using prostate-specific antigen (PSA) levels; at what point
does the clinician declare that the disease is present? These examples will
again illustrate the main topic of this chapter, namely, the role of test accuracy
in clinical practice.

Once the patient is diagnosed with disease and therapy is initiated, the
accuracy of various tests to monitor disease progress is crucial. The example
considered in this chapter is the case of a Phase II clinical trial for cancer,
where the progress of a patient is monitored by measuring the size of the
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tumor. At baseline, before treatment begins, the size of the tumor is measured
by various imaging devices, such as computed tomography (CT) or magnetic
resonance imaging (MRI) or both. The size is measured at various times during
treatment, and at the termination of the trial, a final determination of the
size is made. Next, a team of radiologists must decide for each patient the
progress of the disease as measured by tumor size and other characteristics.
In many cases the effect of treatment is categorized as: (a) a complete response,
(b) a partial response, (c) no change, or (d) disease progression. Each category
is defined in terms of the change in the size of the tumor, from the initiation of
treatment to the termination of treatment. Such assessments are made for each
patient and the total accumulated evidence, in turn, determines the overall
success or failure of the trial. Of course, at issue is the accuracy of the imaging
device and the agreement between the team of radiologists responsible for
declaring the success or failure of the trial.

The last sections in the chapter are devoted to a new way to measure
the accuracy of a medical test and are based on so-called decision curves, an
approach whose foundation is the clinical benefit of a medical test. In turn,
the clinical benefit is defined in terms of the true positive rate (TPR) and false
positive rate (FPR) and a threshold value (that probability of disease, above
which a patient would choose a biopsy). For example, in using PSA to diagnose
prostate cancer, should the decision to biopsy a subject be based on the value
of PSA and a threshold value, or should every patient be biopsied? A decision
curve can be used to make this decision. The prostate cancer example and
some others will illustrate the decision curve as a way to measure the accuracy
of a medical test. The Bayesian approach to decision curves is novel and adds
some features not provided with standard methods.

9.2 Choice of Optimal Threshold

Suppose that the scores of a medical test are available and that the scores
are continuous, and that higher values of the score imply disease and that
lower values imply non disease. Also suppose that sufficient studies have been
performed so that the area under the receiver operating characteristic (ROC)
curve is a reliable estimate of the accuracy of the medical test. Remember that
the area under the ROC curve represents test accuracy for a given patient
population. For the individual patient, the clinician is faced with the problem
of choosing a cutoff value or threshold value that declares that the patient has
the disease and the approach taken here considers two scenarios: (a) the score
corresponding to the point on the ROC curve that is closest to the point (0,1),
and (b) the score corresponding to the point on the ROC curve that minimizes
the expected cost of conducting the test. Both scenarios will be illustrated with
three examples: (1) the PSA test for prostate cancer, (2) the blood glucose test
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for type 2 diabetes, and (3) a biomarker test for the diagnosis of complications
to head trauma. These three examples have been studied in earlier chapters
for various methods of measuring test accuracy.

9.2.1 Optimal threshold for the prostate-specific antigen
test for prostate cancer

Recall the prostate specific antigen (PSA) study of 12,000 men aged 50–65,
which was a randomized study with a beta-carotene group as the treatment
group vs. a placebo group. The data values for our use are from the study by
Etzioni et al. [1], who used a subset of 683 subjects, on which the total PSA
values were reported. See Pepe [2: 10] for additional details about the study,
which was analyzed from a non-Bayesian approach. First to be conducted is
a Bayesian analysis that estimates the ROC area under the assumption of
binormality, where the ROC area is estimated as

AUC = Φ
[
a/

√
1 + b2

]
, (4.14)

where X is normally distributed,

a = (µd − µnd)/σd

and

b = σd/σnd.

The mean and standard deviation of X for the diseased population are µd

and σD, respectively, while µnd and σnd are the mean and standard deviation,
respectively, of X for the non diseased. Φ is the cumulative distribution func-
tion (CDF) of the standard normal distribution. Recall these developments
from Chapter 4, where the ROC area is based on Equation 4.16 and the
analysis is executed with BUGS CODE 4.3b, which is based on the Bayesian
approach of O’Malley et al. [3]. The following BUGS CODE 9.1 contains the
PSA data in the first list statement.

BUGS CODE 9.1

model;
# Binormal model for area under ROC
# Calculates posterior distribution of model parameters and the area

under curve.
# calculates the coordinates of the optimal psa threshold
# yt= log transformed outcome, d=disease status, # var y[N], yt[N],
d[N], mu[N], beta[P], vary[K], precy[K], auc, la1, la2;
{
# likelihood function

for(i in 1:N) {
yt[i]∼dnorm(mu[i],precy[d[i]+1]);
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yt[i] <- log(y[i]);
mu[i] <- beta[1] + beta[2]*d[i];

}
# prior distributions - non-informative prior; similarly for informative
# priors

for(i in 1:P) {
beta[i] ∼ dnorm(0, 0.000001);

}

for(i in 1:K) {
precy[i]∼dgamma(0.001, 0.001);
vary[i] <- 1.0/precy[i];

}

# calculates area under the curve
a <- beta[2]/sqrt(vary[2]);
# ROC curve parameters
la2 <- vary[1]/vary[2];
# ROC area
auc <- phi(a/sqrt(1+la2));
b<- sqrt(la2) ;

ka<-R*(1-p)/p
nfpf<- a*b-sqrt(a*a+2*(1-b*b)*log(ka/b));

dfpf<-1-b*b;
fpf <- phi(nfpf/dfpf) ;
ntpf<-a - b*sqrt(a*a+(1-b*b)*log(ka/b));
tpf<- phi(ntpf/dfpf);

}
list(K=2, P=2, N=683, p=.5, R=1,
y=c(.03,
.09,.23,.27,.27,.29,.29,.29,.30,.31,.33,.35,.37,.37,.42,.43,.44,.45,
.45,.46,.46,.47,.47,.48,.49,.49,.50,.50,.50,.51,.51,.55,.55,.56,.57,
.57,.58,.58,.58,.58,.59,.59,.59,.61,.61,.62,.62,.63,.63,.64,.64,.64,
.64,.65,.65,.65,.66,.66,.66,.66,.66,.66,.67,.67,.67,.67,.67,.68,.68,
.69,.69,.69,.69,.69,.70,.71,.72,.72,.73,.74,.74,.75,.75,.75,.75,.75,
.76,.76,.77,.77,.77,.77,.77,.77,.78,.78,.78,.78,.78,.78,.79,.79,.79,
.79,.80,.80,.80,.81,.81,.81,.81,.82,.83,.83,.84,.85,.86,.87,.87,.87,
.87,.87,.88,.89,.89,.89,.89,.89,.92,.92,.92,.93,.93,.93,.93,.93,.93,
.94,.94,.95,.95,.95,.95,.96,.96,.97,.97,.98,.98,.98,.98,.98,.99,1.00,
1.00,1.00,1.01,1.01,1.02,1.03,1.03,1.03,1.03,1.03,1.03,1.04,1.04,
1.04,1.04,1.04,1.05,1.05,1.05,1.05,1.06,1.06,1.06,1.06,1.07,1.07,
1.07,1.08,1.08,1.08,1.11,1.11,1.12,1.12,1.13,1.13,1.13,1.14,1.15,
1.15,1.15,1.15,1.15,1.15,1.15,1.15,1.16,1.16,1.16,1.17,1.17,1.17,
1.17,1.18,1.18,1.18,1.18,1.18,1.19,1.19,1.19,1.20,1.20,1.21,1.22,
1.22,1.22,1.23,1.23,1.24,1.24,1.24,1.25,1.25,1.25,1.25,1.25,1.25,
1.26,1.26,1.26,1.27,1.27,1.27,1.27,1.27,1.27,1.28,1.28,1.29,1.30,
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1.30,1.31,1.31,1.32,1.32,1.33,1.34,1.35,1.35,1.35,1.35,1.35,1.35,
1.35,1.36,1.37,1.37,1.37,1.38,1.39,1.39,1.40,1.40,1.40,1.40,1.41,
1.41,1.41,1.41,1.41,1.41,1.43,1.43,1.43,1.43,1.44,1.44,1.45,1.46,
1.46,1.47,1.47,1.47,1.48,1.48,1.49,1.49,1.50,1.50,1.50,1.50,1.51,
1.51,1.51,1.51,1.53,1.54,1.54,1.55,1.55,1.56,1.57,1.57,1.58,1.58,
1.58,1.61,1.62,1.62,1.62,1.62,1.64,1.67,1.67,1.67,1.67,1.67,1.68,
1.69,1.69,1.70,1.70,1.70,1.71,1.71,1.71,1.71,1.71,1.71,1.71,1.71,
1.73,1.73,1.73,1.74,1.79,1.80,1.80,1.83,1.85,1.85,1.88,1.88,1.88,
1.89,1.89,1.89,1.91,1.91,1.91,1.92,1.93,1.93,1.94,1.95,1.96,2.01,
2.01,2.03,2.03,2.03,2.04,2.04,2.05,2.05,2.06,2.07,2.08,2.08,2.10,
2.11,2.13,2.13,2.14,2.16,2.17,2.19,2.19,2.19,2.22,2.22,2.23,2.24,
2.27,2.27,2.27,2.28,2.28,2.29,2.29,2.30,2.30,2.33,2.34,2.34,2.35,
2.36,2.36,2.37,2.40,2.41,2.42,2.43,2.43,2.43,2.43,2.46,2.50,2.50,
2.51,2.51,2.52,2.53,2.55,2.55,2.56,2.56,2.57,2.58,2.61,2.62,2.62,
2.63,2.63,2.63,2.66,2.69,2.70,2.71,2.73,2.77,2.79,2.82,2.82,2.82,
2.83,2.84,2.84,2.85,2.86,2.86,2.87,2.88,2.88,2.90,2.92,2.92,2.93,
2.95,2.96,2.96,2.96,2.97,2.98,3.03,3.03,3.04,3.05,3.05,3.08,3.10,
3.11,3.13,3.17,3.17,3.18,3.20,3.21,3.24,3.25,3.25,3.29,3.30,3.30,
3.32,3.32,3.33,3.34,3.35,3.38,3.41,3.42,3.43,3.45,3.51,3.55,3.57,
3.57,3.58,3.58,3.61,3.65,3.65,3.66,3.68,3.69,3.70,3.73,3.77,3.78,
3.78,3.78,3.80,3.84,3.88,3.89,3.95,3.97,3.97,4.00,4.03,4.03,4.04,
4.05,4.08,4.12,4.15,4.19,4.20,4.20,4.20,4.30,4.33,4.34,4.38,4.39,
4.40,4.41,4.44,4.47,4.47,4.48,4.52,4.54,4.60,4.62,4.64,4.70,4.75,
4.75,4.76,4.78,4.90,4.90,4.93,4.94,4.98,5.02,5.09,5.10,5.11,5.12,
5.13,5.13,5.25,5.28,5.37,5.39,5.44,5.44,5.53,5.54,5.64,5.65,5.67,
5.73,5.75,5.81,5.85,6.07,6.07,6.16,6.18,6.27,6.29,6.31,6.41,6.48,6.48,
6.50,6.52,6.52,6.54,6.54,6.56,6.56,6.77,6.92,6.93,7.09,7.19,7.21,
7.23,7.24,7.28,7.29,7.42,7.43,7.53,7.59,7.64,7.78,7.90,8.04,8.15,
8.31,8.37,8.57,8.62,8.69,9.07,9.11,9.15,9.15,9.17,9.24,9.30,9.33,
9.76,9.94,9.96,9.97,10.11,10.60,10.71,10.92,11.33,11.40,11.54,
11.62,11.65,12.69,12.69,13.61,13.94,14.82,15.41,15.84,15.84,15.89,
16.18,16.48,16.70,16.81,17.10,17.17,17.57,19.35,20.10,20.24,20.47,
20.53,21.48,22.50,23.81,24.63,25.06,26.67,27.68,29.31,31.46,33.02,
35.93,37.63,37.66,38.39,43.30,48.80,49.16,51.72,61.16,72.07,79.21,
90.66,99.97,99.98,99.98,99.98),
d=c(.00,1.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,
1.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,
.00,.00,.00,.00,.00,.00,1.00,.00,.00,1.00,.00,.00,.00,.00,.00,.00,.00,
.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,1.00,
.00,1.00,.00,.00,.00,.00,.00,.00,1.00,.00,.00,.00,.00,.00,.00,.00,
.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,
.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,
.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,
.00,.00,1.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,
.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,
.00,.00,.00,.00,.00,.00,.00,.00,1.00,1.00,.00,.00,1.00,.00,.00,.00,
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.00,1.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,

.00,.00,1.00,.00,.00,.00,.00,.00,.00,.00,1.00,1.00,.00,.00,1.00,.00,
1.00,1.00,.00,.00,.00,.00,.00,.00,.00,1.00,.00,.00,.00,.00,.00,.00,
.00,.00,1.00,.00,.00,.00,.00,.00,1.00,.00,.00,.00,.00,.00,.00,.00,
.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,1.00,.00,.00,.00,.00,.00,.00,
.00,.00,.00,.00,1.00,.00,.00,.00,.00,1.00,1.00,.00,.00,1.00,1.00,.00,
.00,.00,.00,.00,.00,.00,.00,.00,1.00,.00,.00,.00,.00,1.00,1.00,.00,.00,
.00,.00,.00,.00,.00,.00,.00,.00,.00,1.00,.00,.00,1.00,.00,.00,.00,.00,
.00,.00,.00,.00,.00,.00,1.00,.00,.00,.00,.00,.00,1.00,.00,.00,.00,.00,
.00,.00,1.00,1.00,.00,.00,1.00,.00,.00,.00,.00,1.00,.00,1.00,.00,.00,
.00,.00,1.00,1.00,.00,.00,.00,.00,.00,1.00,.00,1.00,.00,.00,.00,.00,.00,
.00,.00,.00,.00,1.00,1.00,1.00,.00,1.00,.00,.00,.00,1.00,1.00,.00,.00,.00,
.00,1.00,.00,.00,.00,.00,.00,1.00,1.00,.00,1.00,.00,1.00,.00,1.00,.00,
.00,.00,1.00,.00,.00,.00,.00,.00,.00,.00,.00,.00,1.00,1.00,.00,1.00,.00,
1.00,.00,1.00,.00,1.00,.00,.00,1.00,.00,1.00,.00,.00,.00,1.00,1.00,.00,.00,
.00,.00,.00,1.00,1.00,.00,.00,.00,1.00,.00,1.00,1.00,.00,1.00,1.00,.00,
1.00,.00,.00,.00,1.00,.00,.00,.00,.00,1.00,1.00,.00,1.00,.00,.00,.00,
1.00,.00,1.00,.00,.00,1.00,.00,1.00,.00,.00,.00,1.00,.00,1.00,1.00,.00,
1.00,.00,.00,1.00,1.00,.00,.00,1.00,.00,1.00,.00,.00,.00,.00,.00,.00,
.00,1.00,1.00,.00,1.00,1.00,.00,1.00,.00,1.00,1.00,.00,.00,.00,1.00,1.00,
.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,.00,1.00,1.00,1.00,
1.00,.00,1.00,1.00,1.00,1.00,.00,.00,.00,.00,1.00,1.00,1.00,1.00,.00,
1.00,1.00,.00,1.00,.00,1.00,1.00,1.00,.00,1.00,.00,.00,.00,1.00,1.00,
.00,1.00,1.00,1.00,1.00,.00,1.00,.00,1.00,1.00,1.00,.00,1.00,1.00,.00,
.00,.00,1.00,.00,1.00,1.00,1.00,.00,1.00,.00,1.00,.00,1.00,1.00,.00,
1.00,1.00,1.00,.00,1.00,.00,1.00,.00,1.00,.00,.00,1.00,1.00,1.00,.00,
1.00,1.00,1.00,.00,1.00,.00,1.00,1.00,1.00,1.00,.00,1.00,1.00,.00,1.00,
1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,
1.00,1.00,1.00,1.00,.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,
1.00,1.00,1.00,1.00,1.00,.00,1.00,1.00,.00,1.00,.00,1.00,1.00,1.00,
1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,.00,1.00,1.00,
1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00))
list(beta=c(0,0),precy=c(1,1))

Also recall from Chapter 4 that under binormality, the ROC curve has the
representation

ROC(t) = Φ(a + bΦ−1(t)), 0 ≤ t ≤ 1, (9.1)

where Φ is the CDF of the standard normal distribution. It can be shown
that with 45,000 observations generated from the Markov Chain Monte Carlo
(MCMC) simulation, the ROC area has a posterior mean of 0.8216(0.0179) and
a 95% credible interval (0.7848,0.855), a has a posterior mean of 1.12(0.0908),
and b has a posterior mean of 0.684(0.0394). The MCMC simulation has a
burn in of 5,000 and a refresh of 100, and the MCMC error is <0.0001 for all
parameters.
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FIGURE 9.1: ROC curve for PSA test.

Our objective is to estimate the ROC curve via Equation 9.1 and to find
the point on the ROC curve that is closest to the point (0,1) and declare the
corresponding test score (PSA value) the optimal threshold for diagnosing
prostate cancer.

The graph of the ROC curve shown in Figure 9.1 is based on Equation 9.1
and is calculated with the worksheet shown in Table 9.1. The first column is
the false positive fraction (FPF), the second is the true positive fraction (TPF)
based on Equation 9.1, where the posterior means of a and b (which are 1.12
and 0.684, respectively), are used in the formula, and the third column is the
distance from a point on the ROC curve to the point (0,1).

The Euclidean distance is given by

d =
√

fpf2 + (tpf − 1)2, (9.2)

which is used to calculate the values in the third column, revealing that the
point (0.25,0.744) is closest to the point (0,1); thus, the optimal point is esti-
mated as (0.25,0.744), that is, the one with an fpf = 0.25 and a true positive
fraction of 0.744. What is the corresponding threshold PSA value on the log
scale? The basic PSA information is given in natural log units, because the
log transformation is needed to induce normality so that Equation 9.1 is the
appropriate formula. Note, according to Pepe [2: 82], that the corresponding
threshold is given by

c = µnd − σndΦ
−1(t), (9.3)

and the fourth column of Table 9.1 reports the test scores corresponding to
the fpf values of the first column.

This approach to choosing the optimal threshold is not based on cost con-
siderations, but is instead based on the point that is closest to the point where
the fpf = 0 and the true positive fraction is 1. Cost considerations are often
used to select a threshold value for a diagnostic test. Recall from Chapter 4
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TABLE 9.1: Worksheet for PSA study.

t = fpf Φ(a + bΦ−1(t)) = tpf Distance Log PSA values
0 0
0.05 0.4979 0.5045 2.88302
0.10 0.5961 0.416037 2.46924
0.15 0.65949 0.372082 2.19006
0.20 0.70689 0.35484 1.96817*
0.25 0.74494 0.35715 1.77782
0.3 0.77676 0.373944 1.60687
0.35 0.80412 0.401083 1.44846
0.4 0.82811 0.435370 1.29815
0.45 0.84944 0.474518 1.15272
0.5 0.86864 0.516967 1.00960
0.55 0.88608 0.561674 0.86648
0.5 0.90204 0.607943 0.72105
0.65 0.91675 0.655309 0.57074
0.7 0.93901 0.703453 0.41233
0.75 0.94310 0.752155 0.24138
0.8 0.95503 0.801263 0.05103
0.85 0.99629 0.850668 −0.17086
0.9 0.87706 0.900292 −0.45004
0.95 0.98762 0.950081 −0.86832
1 1

* Log PSA values corresponding to the smallest distance from (0,1).

that Zhou, Obuchowski, and McClish [4: Ch. 2] base the choice of an optimal
cutoff value on minimizing the total cost:

C = TPFp(Ctp −Cfn) + FPF(1− p)(Cfp −Ctn) + C0 + pCfn + (1 − p)Ctn ,
(4.21)

where p is the disease incidence, C0 is the cost of performing the test, while
Ctp , Cfn , Cfp , and Ctn are the costs of a true positive (TP), false negative
(FN), false positive (FP), and true negative (TN), respectively. When this
expression is differentiated with respect to FPF, the slope of the curve at the
optimal point is

κ = (1 − p)R/p, (4.22)

where

R = (Ctn −Cfp)/(Ctp −Cfn). (4.23)

Assuming binormality, Somoza and Mossman [5] have shown that the optimal
point is [FPF, TPF], where

FPF(a, b) = Φ
{[

ab−
√

a2 + 2(1 − b2) ln(κ/b)
] /

(1 − b2)
}
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and

TPF(a, b) = Φ
{[

a− b
√

a2 + (1 − b2) ln(κ/b)
] /

(1 − b2)
}

. (4.24)

Treating κ as a constant, the coordinates of the optimal point are functions
of the parameters a and b (see Equations 4.14 and 4.15) and have posterior
distributions. In the approach to be presented, a and b will be considered
random variables with a posterior distribution, but κ, and hence p and R (and
hence the costs), will be considered fixed known constants, which is somewhat
unrealistic (see Hans et al. [6]).

Basing the optimal point on cost considerations presents additional com-
plexity in choosing a threshold score, because the costs or expected costs for
the TP, FP, TN, and FN alternatives are not easy to determine and depend
on one’s point of view. By the latter, I mean taking cost into account by the
provider and/or insurer will differ substantially from the patient’s perspective.
Ethical issues are also involved in the choice of an optimal threshold. Should
costs be involved in the choice?

Returning to the PSA example, R = 1, which gives the Bayesian analysis
shown in Table 9.2 for the coordinates of the optimal threshold based on the
Somoza and Mossman formula 4.24.

Note that based on the posterior mean, the optimal point on the ROC
curve has coordinates (0.1631,0.7097), which corresponds to the threshold log
PSA value of between 1.968 and 2.190, or to a threshold between 7.156 and
8.944 on the original PSA scale. One needs to interpolate Table 9.1 to arrive
at these values; thus, the optimal value based on cost considerations is quite
close to that based on the distance criterion. Interpolation is required because
the coordinates of the optimal point are based on a and b, which are ran-
dom variables. Note also that the optimal point depends on κ, which in turn
depends on R and disease incidence p. R given by Equation 4.23 is a ratio,
whose numerator is the benefit of a TN and whose denominator is the ben-
efit of a TP. It is difficult to know the value of the exact costs for the four
alternatives, thus for purposes of illustration, consider taking multiples of the
numerator vs. the denominator. As for the disease incidence, one must be care-
ful of how the study is designed. If, for example, one is taking a true random
sample from a well-defined population, then estimating p with the observed
incidence is plausible, but in many studies this is not the case. For example,
in the PSA study the observed incidence is 33.5% (of 683 cases), which must

TABLE 9.2: Posterior distribution of optimal point for κ = 1.
Parameter Mean sd Error 2 1/2 Median 97 1/2
a 1.12 0.0908 <0.0001 0.9431 1.119 1.299
b 0.684 0.0394 <0.0001 0.6088 0.6832 0.7638
fpf 0.1631 0.0127 <0.0001 0.1394 0.1626 0.1894
tpf 0.7097 0.0205 <0.0001 0.6675 0.7101 0.748
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TABLE 9.3: Posterior analysis for optimal point PSA study.
Parameter Mean sd Error 2 1/2 Median 97 1/2
fpf 0.0288 0.0020 <0.0001 0.0251 0.0288 0.0329
tpf 0.5777 0.0284 <0.0001 0.5194 0.5784 0.6319

Note: p = 33% and R = 2.

be taken with a grain of salt since the study is actually longitudinal with
repeated values for some subjects.

Another problem with using Equation 4.24 is that certain restrictions are
necessary because the expression under the square root must be positive, thus
for the FPF point,

a2 > 2(1 − b2) ln(κ/b), (9.4)

and a similar constraint is necessary for the TPF of Equation 4.24. Recall that
choices of p and R can result in Kappa values that give values that violate
the constraint, which in turn makes the expression under the square root
negative. Note also, that one cannot choose κ as negative, which would give
an undefined value for the ln (log) function.

Suppose the benefit of a TN is double that of a TP, and the disease inci-
dence is put at the observed value of 33%, then the posterior analysis is
reported in Table 9.3. Based on cost considerations where the disease inci-
dence is estimated at 33% and the benefit of a TN is twice that of a TP, the
optimal point is (0.0288,0.5777), which corresponds to a threshold of approx-
imately 2.90 on the log scale, or approximately 18 on the original PSA scale.
The disease estimate of 33% is most likely much too high. Note that for
screening studies, the disease incidence is usually quite small.

For example, suppose the disease incidence is 33% and the benefit of a
TN is one half that of a TP, that is R = 0.5, then it can be verified that the
coordinates of the optimal point are fpf = 0.16023 and tpf = 0.7081. This is left
as an exercise, where 45,000 observations are generated from the simulation,
with a burn in of 5,000 and a refresh of 500. All the MCMC errors are <0.0001,
and a 95% credible interval for the tpf is (0.6658,0.7467). Compared to when
R = 2 (the benefit of a TN is twice that of a TP) and p = 33%, the change
in the optimal point is dramatic. Note that the optimal threshold on the log
scale is between 1.96 and 2.19, using interpolation of Table 9.1.

9.2.2 Test accuracy of blood glucose for diabetes

Attention is now given to a hypothetical example of diabetes in Chapter 4,
which involves 59 subjects with diabetes and 19 without, where those with
diabetes have a mean blood glucose value of 123.34 mg/dL, and those without
have a mean value of 107.54 mg/dL. The corresponding standard deviations
are 6.76 mg/dL for those with diabetes and 9.09 mg/dL for those without the
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FIGURE 9.2: Normal P–P plot of glucose.

disease, and the actual values from the study are given in Table 4.11. From
Figure 9.2, which gives the P–P plot of the blood glucose values, they appear
to be normally distributed.

For the diabetes data of Table 4.11, the Bayesian analysis is executed
with BUGS CODE 9.1 using 45,000 observations for the simulation, with a
burn in of 5,000 and a refresh of 100. The blood glucose values discriminate
well between those with and without the disease with a posterior mean(sd)
of 0.9062(0.0433) for the ROC area, and based on the posterior mean(sd),
the optimal point on the ROC has coordinates fpf = 0.2047(0.0665) and tpf
= 0.8576(0.0328), see the asterisk of Table 9.4. Also based on the posterior
mean, the values of a and b used for finding the point in the curve closest
to (0,1) are a = 2.33 and b = 1.405.

Based on Equations 9.1 and 9.2, the second and third columns of Table 9.4
report the TP values and the distance from (0,1) for various values of the
FPF given in the first column. It is seen that based on the distance criterion
(Equation 9.2), the optimal point is (0.25,0.88), which corresponds to a thresh-
old value of approximately 113 mg/dL. The table also gives the coordinates
(fpf,tpf) of the ROC curve for the diabetes study.

The Bayesian analysis for the diabetes study is given in Table 9.5. The
blood glucose test has good accuracy with a ROC area of 0.90 and the values
a and b are used to compute the worksheet and the coordinates of the ROC
curve of Figure 9.3. The TP and FP values reported above correspond to
R = 2 and p = 0.5, where the latter is the disease incidence and the former
assumes that the benefit of a TN is twice the benefit of a TP.
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TABLE 9.4: ROC curve diabetes study.

t = fpf Φ(a + bΦ−1(t)) = tpf Distance
0 0
0.05 0.307 0.694
0.10 0.557 0.454
0.15 0.718 0.318
0.20 0.822 0.267
0.25 0.889 0.273*
0.3 0.931 0.307
0.35 0.958 0.352
0.4 0.976 0.400
0.45 0.986 0.450
0.5 0.992 0.500
0.55 0.995 0.550
0.6 0.997 0.600
0.65 0.999 0.650
0.7 0.999 0.7004
0.75 0.999 0.7502
0.8 0.999 0.8000
0.85 1 0.8500
0.9 1 0.9000
0.95 1 0.9500
1 1 1.000

For additional information about choosing the optimal point on the ROC
curve, refer to Exercises 1–12. Another way to study the accuracy of a medical
test is to determine its clinical value as defined by decision curves.

9.3 Test Accuracy with Bayesian Decision Curves

9.3.1 Introduction

Vickers and Elkin [7] introduced decision curves to evaluate the clinical
benefit of a diagnostic test. Using PSA as a diagnostic marker for prostate

TABLE 9.5: Posterior analysis for diabetes study.
Parameter Mean sd Error 2 1/2 Median 97 1/2
auc 0.9062 0.0433 <0.0001 0.802 0.9137 0.9683
a 2.33 0.4173 0.0060 1.559 2.316 3.19
b 1.405 0.2842 0.0013 0.9606 1.368 2.075
tpf 0.8576 0.0328 <0.0001 0.7889 0.8595 0.9164
fpf 0.2047 0.0665 <0.0001 0.1021 0.1955 0.3608
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FIGURE 9.3: ROC curve for diabetes study.

cancer, three scenarios were considered. The first scenario bases a decision to
biopsy on the value of the diagnostic marker, while the second calls for a biopsy
of all persons, and no person has a biopsy for the third scenario. In order to
compare the three scenarios, a decision curve is defined. A decision curve is a
plot of the clinical benefit vs. a threshold probability. Also, Vickers et al. [8]
extended the basic idea with confidence intervals that estimated the clinical
benefit at given threshold probabilities and calculated the frequency properties
of the estimated clinical benefits. Finally, Vickers [9] and, later, Steyerberg and
Vickers [10] gave a general review of the topic. The approach taken here is to
utilize a Bayesian method to make statistical inferences about decision curves.

To stress again the main point of this section, in order to assess the accu-
racy of a diagnostic test, Vickers and Elkin [7] introduced clinical benefits
as the foundation for decision curves. They describe a prostate cancer study,
where three scenarios are considered: (a) on the basis of the diagnostic test,
perform a biopsy if the probability of cancer is greater than a threshold prob-
ability; (b) biopsy all persons; or (c) do not biopsy any person. Corresponding
to the three alternatives, three decision curves are plotted on the same graph.
A decision curve is a plot of the clinical benefit vs. a threshold probability.

With a traditional decision theory approach, a utility is assigned for each
alternative and the alternative with the largest expected utility is selected as
optimal. Using the prostate cancer example, Vickers [9] assigns a benefit to
each of the four possible outcomes, TP, FP, TN, and FN on the familiar 2× 2
table, where TP is a true positive (the person has the disease and the diagnos-
tic test is positive), FP is a false positive, TN is a true negative, and FN is a
false negative. Vickers continues by showing that the first alternative has the
largest average benefit; however, he notes that it is often difficult to assign a
benefit to the various outcomes and defines instead a net clinical benefit that
depends only on the probabilities of the TPR and FPR and the incidence of
disease. Then, using this definition of clinical benefit, a decision curve can be
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constructed and plotted for the three alternatives. The decision curve corre-
sponding to alternative (a) dominates the other two curves, which implies that
the biopsy decision of an individual should depend on the value of a diagnostic
variable. This shows the clinical value, thus the accuracy, of the PSA test for
prostate cancer.

The decision curve is independent of the assignment of utilities to the four
outcomes of the 2 × 2 table; however, the clinical benefit does depend on sen-
sitivity, specificity, and the prevalence of disease.

In a later paper, Vickers et al. [8] developed confidence intervals to estimate
the clinical benefit at a given set of threshold probabilities and described the
sampling properties of confidence intervals via a bootstrap.

The main purpose of this presentation is to utilize a Bayesian approach to
making inferences about decision curves. This includes calculating the poste-
rior distribution of the clinical benefit. In the forthcoming sections, decision
curves are defined, Bayesian inferences are described, and the methodology
is illustrated with a study based on a diagnostic test for prostate cancer.
Determining the posterior distribution of a clinical benefit at a selected set
of threshold probabilities is the foundation for computing decision curves for
scenarios (a) and (b).

9.3.2 Decision curves

After reviewing a formal cost approach for choosing a therapy, and citing
Baker, Kramer, and Srivastava [11], Vickers defines the net clinical benefit at
threshold probability, pt, as

p11 − p10(pt/(1 − pt)), (9.5)

where p11 is the probability of a TP, and p10 is the probability of an FP. Also,
this can be expressed as

Sensπ − (1 − Spec)(1 −π)[pt/(1 − pt)], (9.6)

where Sens is the sensitivity, Spec is the specificity, and π is the preva-
lence of disease. The definition of clinical benefit depends on the threshold
probability pt.

For scenario (a), if a person’s estimate of disease is greater than the thresh-
old probability pt, the person opts for a biopsy, otherwise, they do not. Plotting
the clinical benefit (1) vs. a reasonable range of pt values, defines a decision
curve for scenario (a). Note that the sensitivity and specificity depend on the
threshold probability.

Assuming there is a diagnostic variable (e.g., PSA for prostate cancer),
Vickers [9], following Vergouwe et al. [12], adopts the following algorithm in
order to determine a positive test result for scenario (a):

(1) Select a threshold probability pt.

(2) Using logistic regression, estimate the probability of disease.
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(3) Define a test as positive if the probability of disease is greater than pt.

(4) Calculate the net benefit using (1).

(5) Repeat (1) through (4) for a reasonable range of pt.

Once one knows what patients test positive for disease, the sensitivity and
specificity may be calculated for a given threshold probability.

On the other hand, for scenario (b), where all patients have a biopsy, the
clinical benefit is calculated as

π − (1 − π)[pt/(1 − pt)], (9.7)

for a range of pt values. Note, for scenario (b) the sensitivity is 1, the specificity
is 0, and the disease prevalence does not depend on pt.

For scenario (c), when no one has a biopsy, the clinical benefit is zero, and
the three decision curves can be plotted on the same graph and the clinical
benefit of each scenario assessed and compared to the others.

For the range from 0.1 to 0.4 of pt, Vickers [9] plots the three decision curves
for a population of high-risk persons for prostate cancer and demonstrates
that the first scenario is optimal because the decision curve for scenario (a)
dominates the decision curve for the other two. Thus, for this population of
high-risk patients, a biopsy is chosen depending on the probability of disease,
which in turn depends on the value of the diagnostic variable PSA.

It can be shown that the assessment of clinical benefit is, in a sense, equiv-
alent to choosing the optimal point on the ROC curve with a slope of 1, where
the threshold probability is the same as the disease prevalence. Recall that the
optimal point is chosen to minimize the total cost of performing a diagnos-
tic test. Additional information is available from Broemeling [13] and Zhou,
Obuchowski, and McClish [4: 150].

9.3.3 Bayesian inferences for decision curves

Consider Table 9.6 showing disease status vs. the results of a diagnostic
test. A person at high risk for disease has a probability, pxy, of disease status
x and test result y, where x, y = 0 or 1. Note that p00 is the probability of

TABLE 9.6: Disease status vs. test
result—cell probabilities and frequencies.

Disease

Diagnostic test 0 1
0 p00, n00 p01, n01
1 p10, n10 p11, n11
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a TN, and p11 the probability of a TP, while p01 is the probability of an FN.
The usual measures of test accuracy are given by the sensitivity:

Sens = p11/(p01 + p11), (9.8)

and specificity

Spec = p00/(p00 + p10). (9.9)

With regard to scenario (a), the diagnostic test is positive if the probability
of disease is greater than the threshold probability pt, where pt is chosen over
some reasonable range. Thus, the probability that the diagnostic test is posi-
tive depends on the threshold probability. For clinical benefit (Equation 9.6),
the TPR and FPR depend on the threshold probability, and a decision curve
is generated.

For scenario (b), the clinical benefit (Equation 9.7) depends on the disease
prevalence, π, and the threshold probability, pt, but the disease prevalence
does not depend on the threshold probability!

A random sample of size n of high-risk individuals for disease is selected,
where nij is the number with disease status j and test result i of Table 9.6.
The conditional distribution of the cell frequencies, given the cell probabilities,
is multinomial.

Which scenario, (a) or (b), is optimal, that is, does the decision curve
of one scenario dominate the other? This will be answered by determining
the posterior distribution of the clinical benefit for a given threshold proba-
bility. Scenario (a) is considered first, where the clinical benefit is given by
Equation 9.6. Note the dependence of the cell frequencies and estimated cell
probabilities on the threshold probability.

Assume a prior density for the probabilities of Table 9.6 and select a
threshold probability from some range, then p11 and p10 have posterior dis-
tributions that induce a posterior distribution for the clinical benefit at that
threshold probability. If the prior distribution of the cell probabilities is chosen
as Dirichlet, the posterior distribution of the cell frequencies is also Dirichlet,
and in particular if the prior is chosen as uniform, the posterior distribution
is Dirichlet with parameter (n00 + 1, n01 + 1, n10 + 1, n11 + 1).

Once the threshold probability is selected, a logistic regression determines
the number of subjects who test positive and negative, which in turn affects
the cell frequencies of Table 9.6, and thus the clinical benefit.

In a similar fashion, the clinical benefit of scenario (b) is given by Equa-
tion 9.7, with a posterior distribution that is induced by the posterior distri-
bution of the disease prevalence:

π = p01 + p11. (9.10)

Recall for scenario (a) that a threshold probability is selected and a logis-
tic regression determines the number of subjects that test positive, then the
posterior distribution of a clinical benefit is generated from the joint pos-
terior distribution of the four cell probabilities of Table 9.6. The posterior
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distribution of the clinical benefits is easily generated by an MCMC method
of WinBUGS, and Bayesian inferences are implemented. The methodology is
demonstrated with an example using PSA as a diagnostic marker to detect
prostate cancer.

9.3.4 Bayesian decision curves for prostate cancer

Decision curves for scenarios (a) and (b) will be determined with the PSA
study by Etzioni et al. [1]. The data can be found at http://labs.fhcrc.org/
pepe/book/index/html. This is an interesting dataset that is described by
Pepe [2: 10], who assessed the accuracy of the test for prostate cancer, and
it was used as an example for selecting the optimal point on the ROC curve
in an earlier section. It should be noted that these cases are screen detected,
which affects the over-diagnosis bias. For additional information, see Baker,
Kramer, and Pierce [14].

Our purpose is to assess the clinical benefit of a diagnostic test by deriving
the decision curve for scenarios (a) and (b) and calculating a credible interval
for the estimated clinical benefits of both scenarios. In the Etzioni et al. [1]
study, the free and total PSA levels of 683 men are available.

Some idea of the overall accuracy of total PSA is provided by the area
under the ROC curve. See Broemeling [13], Pepe [2], and Zhou, Obuchowski,
and McClish [4] for descriptions of measures of accuracy for medical tests. The
area under the curve is estimated as 0.837(0.016) with a 95% confidence inter-
val of (0.805,0.870), where a non-parametric technique of SPSS is employed
to calculate the area. It shows that total PSA had fairly good accuracy.
A Bayesian calculation using the regression method of O’Malley et al. [3] for
the ROC area gives a posterior mean of 0.8215, a posterior standard deviation
of 0.0178, and a 95% credible interval of (0.7848,0.8548).

A total of 454 men with no disease had a mean total PSA of 2.023(2.684)
compared to 229 men with prostate cancer, with a mean total PSA of
10.313(17.451). This also indicates that total PSA is a good prognostic marker
for the disease. The PSA for diseased and non-diseased individuals was highly
skewed to the right. By analogy with breast cancer, interest in the ROC curve
should be focused on “small” FPR values in the neighborhood of 0.01 and
for moderate sensitivity values in a range around 0.80. See Baker, Kramer,
and Pierce [14] for more information about the role of the ROC curve in eval-
uating diagnostic test accuracy. For the PSA example, in the region where
FPR = 0.01, TPR = 0.188.

The test accuracy of total PSA appears to be good, but does it have
a clinical benefit? In order to answer this question, the Vickers approach
is taken and decision curves for scenarios (a) and (b) will be determined.
For threshold probabilities, pt = 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, the
posterior distribution of clinical benefits (Equations 9.6 and 9.7) is computed
as follows. The threshold probability range begins at 0.01, which is based on
an analogy to breast cancer screening, where the ratio of “benefit” to “cost” is
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TABLE 9.7: Posterior distribution of clinical benefits—scenarios (a)
and (b) posterior mean(sd) and 95% credible intervals.

Clinical Clinical 95% credible 95% credible
benefit benefit interval for interval for

Threshold scenario scenario scenario scenario
probability (a) (b) (a) (b)

0.01 0.3281(0.0181) 0.3295(0.0182) 0.2929,0.3639 0.2942,0.3656
0.05 0.3000(0.0189) 0.3014(0.0189) 0.2633,0.3375 0.2646,0.3390
0.1 0.2613(0.0200) 0.2626(0.0200) 0.2228,0.3011 0.2239,0.3024
0.15 0.2202(0.0211) 0.2190(0.0213) 0.1793,0.2621 0.1778,0.2613
0.2 0.2241(0.0196) 0.1703(0.0224) 0.1862,0.2631 0.1269,0.2147
0.25 0.2048(0.0186) 0.1151(0.0240) 0.1688,0.2419 0.0684,0.1625
0.3 0.1775(0.0177) 0.0517(0.0259) 0.1434,0.2128 0.0015,0.1033
0.35 0.1645(0.0169) −0.0212(0.0276) 0.1320,0.1984 −0.0748,0.0340
0.4 0.1387(0.0163) −0.1065(0.0299) 0.1072.0.1713 −0.1643,−0.0472

1/0.0054 = 185, and the corresponding risk threshold is 1/(185 + 1) = 0.011.
See Baker, Kramer, and Pierce [14] and Pauker and Kassirer [15] for interesting
information on choosing a probability threshold.

Assume a uniform prior density for the cell probabilities of Table 9.1 and
select a pt and perform a logistic regression with a threshold probability pt.
The dependent variable is the occurrence of prostate cancer, and the indepen-
dent variable is PSA. This determines the number of people who test positive
and negative in Table 9.6. In all cases, PSA is a significant predictor of the
occurrence of cancer. Lastly, determine the parameters of the joint Dirichlet
posterior distribution of the cell probabilities of Table 9.6. Once this is com-
puted, the posterior distributions of p11, p10, and π are determined, and so
are those of the two clinical benefits (1) and (2). Repeat the above procedure
for the other threshold probabilities. Using a refresh of 100 and a burn in of
5,000 observations, 45,000 values are generated from the Dirichlet distribution
of the cell probabilities of Table 9.6, and the results are reported in Table 9.7.
The MCMC error for estimating all model parameters is <0.0001, and the
code is given below.

BUGS CODE 9.2

model;
# Pepe Caret PSA Etzioni et al. [1]
# Uniform prior

{
# This is the calculation for the critical benefit
# method of Vickers
# uniform prior
# pt is threshold probability
# the parameters for the gamma variables are determined separately

by logistic regression
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# pt=.01
g01[1,1]∼dgamma(1,2)
g01[1,2]∼dgamma(1,2)
g01[2,1]∼dgamma(455,2)
g01[2,2]∼dgamma(230,2)
h01<- sum(g01[,])
for( i in 1 :2 ) {for( j in 1 :2 ){ theta01[i,j]<-g01[i,j]/h01}}

cb01<-theta01[2,2]-theta01[2,1]*(.01/.99)
#pt=.05

g05[1,1]∼dgamma(1,2)
g05[1,2]∼dgamma(1,2)
g05[2,1]∼dgamma(455,2)
g05[2,2]∼dgamma(230,2)
h05<- sum(g05[,])
for( i in 1 :2 ) {for( j in 1 :2 ){ theta05[i,j]<-g05[i,j]/h05}}
cb05<-theta05[2,2]-theta05[2,1]*(.05/.95)

#pt=.1
g1[1,1]∼dgamma(1,2)
g1[1,2]∼dgamma(1,2)
g1[2,1]∼dgamma(455,2)
g1[2,2]∼dgamma(230,2)

h1<- sum(g1[,])
for( i in 1 :2 ) {for( j in 1 :2 ){ theta1[i,j]<-g1[i,j]/h1}}
cb1<-theta1[2,2]-theta1[2,1]*(1/9)

#pt=.15
g15[1,1]∼dgamma(16,2)
g15[1,2]∼dgamma(2,2)
g15[2,1]∼dgamma(440,2)
g15[2,2]∼dgamma(229,2)
h15<- sum(g15[,])

for( i in 1 :2 ) {for( j in 1 :2 ){ theta15[i,j]<-g15[i,j]/h15}}

cb15<-theta15[2,2]-theta15[2,1]*(15/85)
# pt=.2

g2[1,1]∼dgamma(252,2)
g2[1,2]∼dgamma(26,2)
g2[2,1]∼dgamma(204,2)
g2[2,2]∼dgamma(205,2)

h2<- sum(g2[,])
for( i in 1 :2 ) {for( j in 1 :2 ){ theta2[i,j]<-g2[i,j]/h2}}

cb2<-theta2[2,2]-theta2[2,1]/4
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# pt=.25
g25[1,1]∼dgamma(338,2)
g25[1,2]∼dgamma(51,2)
g25[2,1]∼dgamma(118,2)
g25[2,2]∼dgamma(180,2)

h25<- sum(g25[,])
for( i in 1 :2 ) {for( j in 1 :2 ){ theta25[i,j]<-g25[i,j]/h25 }}
cb25<-theta25[2,2]-theta25[2,1]/3

# pt=.3
g3[1,1]∼dgamma(379,2)
g3[1,2]∼dgamma(76,2)
g3[2,1]∼dgamma(77,2)
g3[2,2]∼dgamma(155,2)

h3<- sum(g3[,])
for( i in 1 :2 ) {for( j in 1 :2 ){ theta3[i,j]<-g3[i,j]/h3 }}
cb3<-theta3[2,2]-theta3[2,1]*3/7

# pt=.35
g35[1,1]∼dgamma(406,2)
g35[1,2]∼dgamma(91,2)
g35[2,1]∼dgamma(50,2)
g35[2,2]∼dgamma(140,2)
h35<- sum(g35[,])

for( i in 1 :2 ) {for( j in 1 :2 ){ theta35[i,j]<-g35[i,j]/h35 }}
cb35<-theta35[2,2]-theta35[2,1]*35/65

# pt=.4
g4[1,1]∼dgamma(416,2)
g4[1,2]∼dgamma(109,2)
g4[2,1]∼dgamma(40,2)
g4[2,2]∼dgamma(122,2)
h4<- sum(g4[,])

for( i in 1 :2 ) {for( j in 1 :2 ){ theta4[i,j]<-g4[i,j]/h4 }}
cb4<-theta4[2,2]-theta4[2,1]*2/3

# differences in clinical benefit for a minus that for scenario b
d01<- cb01-clinb01
d05<-cb05-clinb05
d1 <- cb1-clinb1
d15<-cb15-clinb15
d2 <-cb2-clinb2
d3 <-cb3-clinb3
d25<- cb25-clinb25
d35<-cb35-clinb35
d4 <- cb4-clinb4
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# probability that clinical benefit of a is greater than that for scenario b
p01<-step(d01)
p05<-step(d05)
p1<- step(d1)
p15<-step(d15)
p2<- step(d2)
p25<-step(d25)
p3<- step(d3)
p35<-step(d35)
p4<-step(d4)
p<- p01*p05*p1*p15*p2*p25*p3*p35*p4
# The following is the clinical benefit where all patients are biopsed and based on the
# Pepe total PSA data and the method of Vickers
# scenario b
# pt=.01
clinb01<- (theta01[1,2]+theta01[2,2]) -(1-(theta01[1,2]+theta01[2,2]))*(.01/.99)
# pt=.-5
clinb05<- (theta05[1,2]+theta05[2,2]) -(1-(theta05[1,2]+theta05[2,2]))*(.05/.95)
# pt=.1
clinb1<- (theta1[1,2]+theta1[2,2]) -(1-(theta1[1,2]+theta1[2,2]))*(1/9)
# pt=.15
clinb15<- (theta15[1,2]+theta15[2,2]) -(1-(theta15[1,2]+theta15[2,2]))*(15/85)
# pt =.2
clinb2<- (theta2[1,2]+theta2[2,2]) -(1-(theta2[1,2]+theta2[2,2]))*(1/4)
# pt =.25
clinb25<- (theta25[1,2]+theta25[2,2]) -(1-(theta25[1,2]+theta25[2,2]))*(1/3)
# pt=.3
clinb3<- (theta3[1,2]+theta3[2,2]) -(1-(theta3[1,2]+theta3[2,2]))*(3/7)
# pt=.35
clinb35<- (theta35[1,2]+theta35[2,2]) -(1-(theta35[1,2]+theta35[2,2]))*(35/65)
#pt=.4
clinb4<- (theta4[1,2]+theta4[2,2]) -(1-(theta4[1,2]+theta4[2,2]))*(2/3)
}

Figures 9.4a and b are the densities of the posterior distribution of the
clinical benefit at threshold probabilities 0.05 and 0.30 for scenario (a), and
demonstrate the dramatic effect of the threshold probability on the clinical
benefit. The mean of the posterior distribution of the clinical benefit at thresh-
old 0.05 is 0.30, for the threshold 0.30, the posterior mean is 0.178, and the
density plots are based on BUGS CODE 9.2. The posterior means correspond-
ing to the selected threshold probabilities for the two decision curves are shown
in Figure 9.5.

It is seen that the decision curve for scenario (a) dominates (b), begin-
ning with threshold probability 0.15. On inspection of Figure 9.5, one would
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FIGURE 9.4: (a) Posterior density of clinical benefit at threshold 0.05,
(b) Posterior density of clinical benefit at threshold 0.3.

conclude that the optimal strategy is to choose a biopsy on the basis of the
total PSA level compared to every person having a biopsy. For threshold
probabilities less than 0.15, the clinical benefits of the two scenarios are essen-
tially the same. As the threshold probability increases, the posterior mean of
the difference also increases, and can be observed from Figure 9.5.

The entries of Table 9.8 are computed with BUGS CODE 9.2, and present
convincing evidence that the decision curve for scenario (a) dominates that
for scenario (b), beginning with the threshold 0.15. The posterior probability
that the clinical benefit for scenario (a) is greater than that for scenario (b)
is 0.7478 at a threshold of 0.15 and 1 at a threshold of 0.2 and the larger
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FIGURE 9.5: Clinical benefit for scenarios (a) and (b).
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TABLE 9.8: The posterior probability that the clinical
benefit of scenario (a) is greater than that for scenario (b).

Threshold Mean sd 2 1/2 Median 97 1/2
0.01 0.0098 0.0988 0 0 0
0.05 0.0493 0.2167 0 0 0
0.1 0.0969 0.2959 0 0 1
0.15 0.7478 0.4343 0 1 1
0.2 1 0 1 1 1
0.25 1 0 1 1 1
0.3 1 0 1 1 1
0.35 1 0 1 1 1
0.4 1 0 1 1 1

thresholds. Thus, if one’s threshold probability is at least 0.15, one would
benefit by using scenario (a), where the decision to biopsy depends on the
value of PSA. In summary, this is an example where one scenario dominates
the other, and becomes dominant in an obvious way when the threshold prob-
ability exceeds 0.15.

One advantage of the Bayesian approach is the way it uses prior infor-
mation. For example, consider a threshold value of pt = 0.20, then the 2× 2
table (Table 9.6) would appear with cell frequencies: 251 for a TN, 203 for an
FP, 204 for a TP, and 25 for an FN. If a uniform prior distribution is used,
the resulting posterior distribution of the cell frequencies (TN, FP, TP, FN) is
Dirichlet with parameter (252, 204, 205, and 26). Suppose a prior related study
is available with cell frequencies (37, 20, 23, 11) for (TN, FP, TP, FN), then
the prior information would be expressed as Dirichlet with parameter (38, 21,
24, 12) and would be combined with the experimental results of the present
study to give a Dirichlet with parameter (289, 224, 228, 37). Of course, the
effect of prior information is to lower the standard deviations of the posterior
distribution of the clinical benefits.

9.3.5 Maximum likelihood and Bayes estimators

It is interesting to compare the maximum likelihood estimator (MLE) of
the clinical benefit of scenario (a) with the Bayesian estimators of the clinical
benefit. Vickers and Elkin [7] and others use MLE to estimate the clinical
benefit of the two scenarios. Recall that the clinical benefit for scenario (a) is
given by Equation 9.6, namely,

p11 − p10(pt/(1 − pt)).

The MLE of this parameter is

n11/n − n10(pt/(1 − pt))/n, (9.11)
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TABLE 9.9: MLE(sd) and posterior mean(sd) of the
clinical benefits for scenario (a).

Threshold probability MLE Posterior mean
0.01 0.3353(0.0180) 0.3281(0.0181)
0.05 0.3353(0.0180) 0.3000(0.0189)
0.1 0.3353(0.0180) 0.2613(0.0200)
0.15 0.3336(0.0180) 0.2202(0.0211)
0.2 0.2895(0.0176) 0.2241(0.0196)
0.25 0.2377(0.0176) 0.2048(0.0186)
0.3 0.1784(0.0176) 0.1775(0.0177)
0.35 0.1326(0.0181) 0.1645(0.0169)
0.4 0.0717(0.0188) 0.1387(0.0163)

where n = n00 + n01 + n10 + n11. In Table 9.6, nij are the cell frequencies,
where in particular n11 and n10 are the number of TP and FP counts for
a particular threshold probability pt. It should be emphasized that the cell
frequencies of Table 9.6 vary with the threshold probability. The variance of
the MLE is

p11(1 − p11)/n + p10(1 − p10)(pt/(1 − pt))2/n − 2(pt/(1 − pt))p11p10/n,
(9.12)

which is estimated by the MLE

n11(n −n11)/n3 + (pt/(1 − pt))2n10(n −n10)/n3 + 2(pt/(1 − pt))n11n10/n3.
(9.13)

It follows from the above that the MLEs of the clinical benefit and the MLE
of the corresponding standard deviations are given by Table 9.9.

Recall that the Bayesian approach used a uniform prior for the cell proba-
bilities, which accounts for the differences in the MLE and Bayesian estimators
of the clinical benefits. The pattern of the MLEs and the posterior means is the
same, but the former are somewhat larger than the latter, however, the stan-
dard deviations for each threshold probability are almost identical. I suppose
that if an improper prior is used, the two estimators would be more alike, how-
ever, an improper prior was not used because it would result in an improper
posterior density when the cell frequencies are zero. For “small” pt (=0.01 and
0.05), some of the cell frequencies are in fact zero, thus, a uniform prior was
employed instead. It would be interesting to compare the frequency properties
of the posterior means with the corresponding MLEs.

9.3.6 Another example of decision curves

Suppose the head trauma study is revisited, where interest centers on
investigating the accuracy of the biomarker for predicting complications of

  



K11763 Chapter: 9 page: 325 date: June 21, 2011

Test Accuracy and Medical Practice 325

TABLE 9.10: Posterior analysis for clinical benefits— scenarios (a)
and (b) head trauma study.

Parameter Mean sd 2 1/2 Median 97 1/2
cb2 0.5777 0.0725 0.4308 0.5799 0.7138
cb3 0.5333 0.0789 0.3724 0.5358 0.6798
cb4 0.4687 0.0839 0.298 0.4708 0.626
cb5 0.4063 0.0898 0.2224 0.4093 0.5743
cb6 0.3156 0.0969 0.1132 0.3196 0.4944
cb7 0.2555 0.1108 0.0174 0.263 0.4512
cb8 0.1882 0.1294 −0.1045 0.203 0.4007
cb9 0.1253 0.1514 −0.2619 0.1588 0.331
clinb2 0.5895 0.0730 0.441 0.592 0.7259
clinb3 0.5624 0.0778 0.4039 0.5648 0.7073
clinb4 0.4531 0.0972 0.2535 0.4562 0.6337
clinb5 0.3436 0.1168 0.1058 0.3473 0.561
clinb6 0.1543 0.1454 −0.141 0.1581 0.4252
clinb7 −0.0938 0.1943 −0.4923 −0.0876 0.2677
clinb8 −0.6409 0.2917 −1.23 −0.6325 −0.0949
clinb9 −2.281 0.5809 −3.467 −2.263 −1.202

Note: cb values correspond to scenario (a) and clinb values to scenario (b).

head trauma by determining the clinical benefits for scenarios (a) and (b),
defined by Equations 9.6 and 9.7, respectively. BUGS CODE 9.2 is revised by
executing logistic regressions for threshold values ranging from 0.2 to 0.9 in
steps of 0.1. Refer to the code where the cell counts for the 2× 2 tables are
entered as parameters of the gamma distribution, and note that by adding
a 1 to the each of the four cell counts, a uniform prior is assumed. There is
a 2 × 2 table for each threshold value and the cell counts are determined by
logistic regression for the TP, TN, FP, and FN cells.

Based on 45,000 observations generated from the posterior distribution,
with a burn in of 5,000 and a refresh of 100, the posterior analysis is reported
in Table 9.10.

Beginning with threshold probability 0.4, that the clinical benefit of sce-
nario (a) is larger than that of scenario (b), and it is even more obvious from
Figure 9.6. This implies that beginning with threshold probability 0.4, if the
probability of a complication exceeds the threshold value, then the subject
should be further examined for complications due to head injury.

9.3.7 Comments and conclusions

Decision curves were introduced as a way to assess the clinical utility of
a diagnostic test. The optimal strategy is to base the decision to biopsy on
the value of a diagnostic variable compared to each person having a biopsy.
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FIGURE 9.6: Clinical benefit scenario of (a) vs. (b) for head trauma study.

A Bayesian approach allows one to assess the uncertainty of a clinical benefit
and to compare decision curves between various scenarios. It would be inter-
esting to develop simultaneous credible bands about the decision curves.

In addition, it would be interesting to study the frequency properties of
the Bayes estimators of the clinical benefits. For example, for a particular
threshold probability, what are the frequency properties of the mode of the
posterior distribution of the clinical benefit? With a uniform prior for the cell
probabilities, one would expect the frequency properties of the posterior mode
to be almost the same as the MLE of the clinical benefit. The 95% credible
intervals for a clinical benefit should be very similar to the 95% confidence
intervals of Vickers et al. [8]. With an improper prior, one would expect similar
results with the Bayesian approach.

9.4 Test Accuracy and Clinical Trials

9.4.1 Introduction

This section describes the interplay between medical testing accuracy and
clinical trials. Indeed, medical tests are a crucial element in the design and
conduct of most clinical trials in oncology. For example, medical tests involv-
ing diagnostic imaging are present in Phase I trials for safety studies of new
therapies, be they chemotherapy, radiotherapy, or biological therapy. In order
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to monitor the safety and efficacy endpoints of such trials, imaging procedures
determine the advance and extent of the disease and produce the primary and
secondary endpoints. This section introduces the three phases of clinical trials
and how imaging plays a role in the conduct of the trial. This is followed by
a description of the protocol for clinical trials in oncology and a brief descrip-
tion of the protocol review process at the University of Texas MD Anderson
Cancer Center (MDACC). The response evaluation criteria in solid tumors
(RECIST) criteria for response to therapy are introduced. This is a set of
guidelines for the radiologist in their determination of the patient’s response
to therapy and hence on the conclusions for the success or failure of the trial.

Bayesian sequential stopping rules for the design and conduct of clinical
trials are outlined and developed in the latter parts of the chapter, followed
by a description of the software developed at MDACC for the design of such
trials. The focus will be on Bayesian stopping rules for safety and efficacy in
Phase I, II, and III trials.

Lastly, several examples are presented. The first example is a Phase I trial
in renal cell carcinoma (RCC) that illustrates a Bayesian dose finding, based
on logistic regression, while the second is a hypothetical Phase II study, devel-
oped by the author, but based on an actual study for inter observer agreement
in lung cancer. The third example illustrates a statistical stopping rule for a
Phase II trial in melanoma. For the three examples, the role of medical test
accuracy is emphasized.

9.4.2 Clinical trials

Bayesian methods in clinical trials are best explained by Thall [16], who
emphasizes the role that ethics and science play in the design and analysis of
clinical trials. He stresses the complexity of such studies, because they involve
decisions when selecting therapies, the choice of dose levels of a particular
regimen, and above all, concern for the patient’s safety. Primarily for patient
safety, clinical trials should be conducted in a sequential fashion, which calls
for interim monitoring of patient outcomes.

This section will review the three phases of a clinical trial and focus on the
role of diagnostic imaging in such studies. Later, Bayesian sequential stopping
rules for interim analysis of clinical trials will be given in more detail.

9.4.3 Phase I designs

Phase I trials evaluate how a treatment is to be administered and how
that treatment affects the human body. First, consider a Phase I study that
evaluates safety among a set of doses of a new treatment. The study will be
designed to determine the maximum tolerable dose (MTD), which is the dose,
whereby at higher doses, the safety of the patient would be compromised.
We are assuming that as the dose level increases, the probability of toxicity
increases and the probability of efficacy also increases. The main endpoint in
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a Phase I study is some measure of toxicity experienced by the patient as
a result of the treatment, while the secondary endpoint is some measure of
efficacy. To define the toxicity endpoint, the investigator characterizes the dose
limiting toxicity (DLT), which is a set of toxicities that are severe enough to
prevent giving more of the treatment at higher doses. The investigator bases
the DLT on knowledge of the disease, treatment, and the patients who are
eligible for the trial. Investigators are guided by the National Cancer Institute
(NCI) list of common toxicities or in some other manner that is appropriate
for the particular study.

Prior to implementing a Phase I trial, the investigator must have decided
on the treatment route of administration and schedule. Also required for esti-
mating the MTD, is the patient population defined via the eligibility and inel-
igibility criteria, a starting dose and a set of dose levels to test (DLT), and the
dose escalation. The dose escalation includes decisions on selecting the MTD
among a set of doses. The chosen starting dose is based on other similar Phase I
studies and/or information from animal experiments. Once the investigator
has chosen the dose levels to be tested, the dose escalation can be described.

There are many dose escalation rules, including the commonly used 3 + 3
design and the continual reassessment method (CRM). Since the early days
of the NCI, investigators have used traditional escalating rules, such as the
3 + 3 design for determining the MTD in oncology trials, while the CRM (see
Crowley [17]) is a newer development that is becoming more popular. The 3 + 3
design is based on cohorts of size three or six, and there are several versions.

What is the role of medical test accuracy in Phase I clinical trials? The
assessment of safety can include imaging of damage due to treatment and
can also be an integral part of the assessment of efficacy. If a solid tumor is
involved, imaging will measure the growth of that tumor during the course of
the trial and this information will be used in planning the Phase II trial, and
can serve as a source of prior information for a Bayesian sequential design of
a trial. Thus, the accuracy of the imaging device to measure the size of the
tumor is essential for the successful implementation of a Phase I trial, and as
will be seen in the next section, for Phase II trials.

9.4.4 Phase II trials

Once a particular treatment or intervention has been studied with a Phase I
trial and the MTD has been selected and we are quite satisfied that the treat-
ment will be safe, studies of the treatment may progress to Phase II trials to
determine if the treatment holds sufficient promise. Typically, the target pop-
ulation is patients with a specific disease, disease site, histology, or stage, or
patients undergoing some surgical or anesthetic procedure. Often, the treat-
ment dose is the MTD determined from previous Phase I trials. Although
limited dose finding is sometimes allowed to accommodate different patient
populations, the primary endpoints are measures of efficacy, while safety would
be a secondary issue.
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It is for Phase II trials that medical test accuracy, via diagnostic imaging,
plays a crucial role. Often, the primary endpoint is the fraction of patients
who experience a response to therapy, and frequently the response is based
on the change in tumor size as measured from baseline to some future point
at the end of the treatment cycle. The response categories can be classified
as a complete response, a partial response, or no response, depending on the
percent relative change from baseline. The World Health Organization (WHO)
and RECIST criteria, as described by Padhani and Ollivier [18], define the
actual response categories that must be carefully specified in the protocol.
It is important to understand the uncertainty introduced into such trials by
the disagreement between the radiologists who are responsible for assigning
the response to therapy to each patient. This uncertainty is often unknown
and unaccounted for by others, including statisticians, who are designing and
analyzing trial information.

The efficacy information from a Phase I trial is also important and largely
determines the type of Phase II trial to be designed. If little is known about
the efficacy, a Phase IIa trial can be performed, with the goal of determining
a certain minimum efficacy. On the other hand, if the efficacy information
from Phase I trials indicates that the intervention does indeed have some
benefit, a Phase IIb trial may be implemented to determine if the treatment
has sufficient benefit compared to some standard treatment, either historical
(from past patient data) or from an ongoing trial.

We will see how prior information from the relevant Phase I trials will be
employed in the design of Bayesian sequential stopping rules and sample size
information of the planning of the Phase II trial. Designs for Phase IIa tri-
als include Gehan’s two-stage and Simon’s two-stage design, and also relevant
are multi-stage designs, which are explained in Crowley [17]. Simon’s [19] two-
stage design is discussed here, because it is the most popular for a Phase IIa
trial, however, Bayesian alternatives are becoming more widely used because
they are more flexible and can easily incorporate information from prior
related Phase I and II trials.

Phase II designs are based on statistical testing principals. Suppose p is
the probability of a treatment response, then one tests the null hypothesis vs.
the alternative hypothesis:

H : p < p0 (e.g.,= 0.05) vs. A : p > p1 (e.g.,= 0.25). (9.14)

The null hypothesis states that the proportion of responses is less than or equal
to some specified proportion, p0, that would not exhibit sufficient interest for
further development. The alternative hypothesis states that the proportion of
responses is greater than or equal to a proportion p1 that the investigator con-
siders clinically meaningful. If the alternative hypothesis is true, then further
testing could be deemed reasonable. Of course, this decision is based on other
considerations as well, such as any new information on safety.

The values for p0 and p1 are specified in advance and depend on the results
of previous trials. Typical values for p0 are from 0.1 to 0.4, and typical values
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for p1 are from p0 + 0.15 to p0 + 0.2. To use a Simon two-stage design, investi-
gators must also specify the probability of a type I error α, the probability of
rejecting the null hypothesis when it is true (declaring that the new treatment
has an effect above p0 when it actually does not), and β, the probability of
accepting the null hypothesis when it is false (declaring that the new treat-
ment has no effect above p0 when it actually does). Note that (1− β) is the
power of the test.

Given these values, the Simon method will give the maximum sample
size n, the stage 1 sample size n1, and the rejection rule at each stage.
DeVita, Hellman, and Rosenberg [20] provide tables for Simon’s [19] two-stage
design, and for example, when α = 0.05, β = 0.20, p0 = 0.05, and p1 = 0.25,
then n1 = 9, n = 17, and the trial would be stopped early if there were zero
out of nine responses. If there are one or more responses with 9 patients, the
trial is continued, and if there are two or less responses among 17 patients,
the null hypothesis is accepted, that is the intervention or treatment would
not be of sufficient interest for further testing. Note with this design that the
trial is stopped early for lack of efficacy. The Simon design can be used to
justify the sample size and for stopping early. Stopping early protects future
patients from receiving inefficacious treatments.

Some Bayesian designs allow more flexibility. For example, suppose the
maximum sample size of N patients is accrued in k cohorts of size n, and that
after observing the response of patients at the end of each cohort the inves-
tigator computes the probability that the observed proportion of responses p
is greater than p1, given the responses of the observed patients as Pr[p > p1
responses of patients]. If this probability is small, say 0.10 or 0.20, the trial is
stopped for lack of efficacy. This is very much like the Simon design; however,
a decision on lack of efficacy can be made after each cohort of patients. See
Thall, Simon, and Estey [21,22] for additional information on Phase II trials
that use Bayesian stopping rules.

If the intervention under investigation has shown some activity, a Phase IIb
trial can be used to determine the extent of efficacy. This type of trial is
usually comparative, since it has demonstrated prior efficacy, and the study
intervention will be compared to some historical control, or to some standard
current treatment via a randomized design. The advantage of using historical
controls over concurrent controls is the smaller number of patients required,
but the disadvantages of historical controls are that the patient populations
may not be comparable to those used in the current clinical trial.

9.4.5 Phase III trials

We are now at the point where an intervention (drug or procedure) has
been studied in a series of Phase I and Phase II trials and has demonstrated
sufficient promise to be compared to the standard clinical treatment in a large
randomized study.
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Phase III trials are confirmatory, where the study procedure is to be com-
pared to the standard therapy with the goal of providing evidence that the
study drug will provide substantial improvement in survival time or in disease-
free survival or some other time-to-event endpoint, such as time to response
or time to hospitalization. Phase III trials should be designed to have a suffi-
cient sample size to detect clinically relevant differences and are usually done
in a multicenter setting. Provisions are made for interim looks by an inde-
pendent Data Safety Monitoring Board, where the trial may be stopped early
for reasons of safety and/or efficacy. The response to therapy may serve as a
secondary endpoint in Phase III trials, thus diagnostic imaging plays a crucial
role in the conduct of all clinical trials.

9.4.6 Protocol

What is a protocol? It states in detail how the medical study is to be
organized and executed. There are generally two types: those submitted by
a pharmaceutical or medical device company, and those that are initiated by
a principal investigator at the institution. The protocol should include the
following components: (1) an explanation of the scientific basis for the study;
(2) a summary of the results of all previous related studies and experiments of
the study intervention; (3) the patient eligibility and ineligibility criteria; (4) a
list of the major and minor endpoints, including their definitions and how and
when they will be measured; (5) the definitions of evaluable and intent-to-treat
populations; (6) the estimated patient accrual rates by site; (7) a statistical
section that outlines a detailed power analysis for sample size, a description of
rules for stopping early, methods for randomizing patients, and the proposed
statistical analysis; and (8) non-statistical stopping rules for safety consid-
erations. Additional documentation that must accompany the protocol is a
list of all NIH toxicities and the patient informed consent form. For protocols
initiated by private companies, a biostatistician is assigned to review it, but
for protocols initiated at MDACC, the study has one biostatistician assigned
as a collaborator (the one who assisted the principal investigator [PI] in the
statistical design) and a different statistician who reviews it and presents it
to the department for approval.

Every protocol at MDACC is reviewed in three stages, first by the Depart-
ment of Biostatistics and Applied Mathematics, next by the Clinical Research
Committee (CRC), and lastly by the Institutional Review Board (IRB). Dur-
ing the first review, a biostatistician presents the protocol in written and oral
form to the department, and there is a set procedure for this presentation. The
presentation is concluded with a list of major and minor concerns regarding the
revision of the protocol. Then, the department discusses the above-mentioned
recommended revisions and votes to approve or disapprove, after that a direc-
tive is sent to the PI. If need be, the PI then revises the protocol accordingly,
often with the help of the biostatistical collaborator and/or reviewer.
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9.4.7 Guidelines for tumor response

The RECIST criteria provide the radiologist with guidelines for determin-
ing the change in tumor size in such a way that the response to therapy can be
judged and the success or failure of the trial evaluated. The following outline
will be useful for understanding the guidelines: eligibility, methods of measure-
ment, baseline identification of target and non-target lesions, response criteria,
evaluation of best overall response, confirmation and duration of response, and
reporting of results. What follows is a very brief description.

Only patients with measurable lesions are eligible, namely, those that can
be accurately measured with CT or MRI. Both targeted and non-target lesions
are to be identified. A maximum of 10 lesions representative of all involved
organs are identified as target lesions, which must be accurately and repeatedly
measured by the longest diameter of the lesion. The primary endpoint is the
sum of the longest diameters (SL) of the target lesions. All other lesions are
identified as non-target lesions.

Based on the SL of the target lesions, each patient is classified into the fol-
lowing categories: complete response (CR), where all target lesions disappear;
partial response (PR), where there is at least a 30% decrease in the SL of all
target lesions, using the baseline SL as a reference; progressive disease (PD),
where there is at least a 20% increase in the SL, relative to the smallest value
of SL recorded since the treatment started; stable disease (SD), where there
is neither sufficient shrinkage to qualify as PR or sufficient increase to qualify
as PD.

There is also an evaluation of the non-target lesions, where the patient is
classified as CR, incomplete response/SD, and PD. The patient is then given
an overall best response, based on the response of the target and non-target
lesions, and finally, the patient is put into one of four overall categories: CR,
PR, SD, or PD. See Therasse et al. [23] for more detailed information on the
RECIST guidelines and Padhani and Ollivier [18] for the implications of those
guidelines for diagnostic radiologists.

Note, the guidelines are only that and do not include procedures for just
how they are to be implemented. For example, there is no mention of the num-
ber of readers to be included or a procedure for the resolution of disagreement
between radiologists in their determination of the patient’s response to ther-
apy. All these elements create an element of uncertainty, which is unknown
by others involved in the design and conduct of a clinical trial. This creates
uncertainty in the classification of a patient’s response to therapy, and, con-
sequently, is not accounted for by the statisticians in their design of Phase II
trials. Now it is seen how accuracy affects the clinical trial, not only is there
intrinsic inaccuracies with the medical devices but other inaccuracies intro-
duced by the disagreement between radiologists who are classifying patients
into the various response categories.

The study by Thiesse et al. [24] gives one some idea of the uncertainty
in the process of assigning a patient’s response to treatment. The study eval-
uated the impact of a review committee on the overall response status of a
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TABLE 9.11: Agreement between the review committee and the
original report—response by Review Committee.
Original report CR PR MR SD PD Total
CR 14 2 1 0 2 19
PR 4 38 4 6 10 62
MR 0 7 9 3 5 20
SD 0 0 1 4 15 20
PD 0 1 0 3 1 5
Total 18 48 11 16 33 126

Source: From Thiesse et al., Journal of Clinical Oncology, 15, 3507, 1997, with
permission of American Society of Clinical Oncology.

patient for a large multicenter trial with 489 patients with renal cancer given
cytokine therapy, see Negrier et al. [25]. There were five response categories:
CR, PR, MR, SD, and PD, where MR stands for marginal response. A blinded
peer review of all responders and all litigious cases was done by the review
committee. The results for 126 reviewed files are given by Table 3 in Thiesse
et al. [24] and Table 9.11.

Using the generalization of the G coefficient (see Chapter 4), its posterior
distribution is easily found and provides a posterior mean of 0.019, a median
of 0.018, and a standard deviation of 0.089. This implies that the agreement
between the review committee and the original readers was very poor. Indeed,
the Thiesse study itself gives 0.32 as the Kappa coefficient, which also confirms
poor agreement. This shows that disagreement among radiologists is quite
common in the conduct of a clinical trial, and in particular in the assignment of
a patient’s response to therapy. This fact usually remains unknown to others,
including statisticians, in the design and analysis of such studies.

Many studies have demonstrated such lack of agreement between radiol-
ogists. For example, a recent investigation by Erasmus et al. [26] shows the
lack of consistency in measuring tumor size and poor intra and inter observer
agreement. In fact, for some lesions there was as much as a 50% difference
in measuring the lesion size for two looks at the same image by the same
reader! Again, it is important to recognize the importance of the role that
test accuracy plays in assessing the success of a clinical trial.

9.4.8 Bayesian sequential stopping rules

Because of the complexity of clinical trials and the incorporation of prior
information from other previous studies, the Bayesian approach to interim
analysis is quite appropriate. What is to be presented here is for Phase II
trials, where response to therapy is the primary endpoint, while toxicity is a
secondary endpoint. Prior information on response and toxicity will be taken
from previous Phase I and II trials that are relevant to the “new” therapy.
The response to therapy is the main endpoint generated by radiologists using
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the RECIST criteria. The software to implement the design of the Bayesian
stopping rule will be discussed and demonstrated in the next section.

Denote the following four probabilities of mutually exclusive and exhaus-
tive events for a Phase II trial of an experimental therapy as: θ1 = probability
of response and toxicity, θ2 = response and no toxicity, θ3 = no response
and toxicity, and θ4 = no response and no toxicity. Suppose the corre-
sponding probabilities of a previous standard relevant study are φ1, φ2, φ3
and φ4, respectively. Thus, the probability of a response with the experi-
mental therapy is θr = θ1 + θ2 and that for the standard is φr = φ1 + φ2, the
probability of toxicity with the experimental therapy is θt = θ1 + θ3, while
that for the standard is φt = φ1 + φ3. It is known that θ = (θ1, θ2, θ3, θ4)
and φ = (φ1,φ2,φ3,φ4) have Dirichlet distributions, thus so does (θr, θt)
and (φr,φt).

Now suppose, based on historical information, that among n patients on
the standard therapy, there are a responses, and among m patients, there are b
toxicities, while for the “new” experimental therapy, a priori, there will be c
responses and d toxicities.

Therefore, a priori,

φr ∼ beta(a, n− a) (9.15)

and

φt ∼ beta(b, m − b). (9.16)

Frequently, the prior information about experimental therapy is taken to be
vague or non informative, and one lets θr and θt have uniform distributions.

The alternative hypothesis is

A : θr < φr or θt > φt

vs. the null

H : θr ≥ φr or θt ≤ φt.

The rule to stop the trial after observing the number of responses and toxicities
is when

Pr[θr < φr | data] > η

or

Pr[θt > φt | data] > ε, (9.17)

where η and ε are usually selected “large,” say 0.90 or 0.95.
Thus, the trial is stopped if the posterior probability is high when the

rate of responses with the experimental therapy is less than that of the stan-
dard, or if the posterior probability is large when the rate of toxicities with
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the experimental therapy exceeds that of the standard. Since φr and φt are
correlated, the events θr < φr and θt > φt are not independent!

Medical test accuracy, via diagnostic imaging, plays an important role in
this type of trial. It is important to know how the trial parameters are based
on prior information. Such information about efficacy most likely is the result
of imaging the tumor size in Phase I trials. For the trial at hand, the number
of responses and the number of toxicities are based on imaging the size of
the primary tumor and tumors at the sites of metastases. Note that θr, the
probability of a response, is based on the RECIST criteria for categorizing
patients into the various responses categories: CR, PR, SD, and PD. The
protocol must specify in detail the definition of response that is used in the
Bayesian stopping rule. Usually, response means the event CR or PR, which in
turn, as has been explained above, depends on the change in tumor size from
some reference time, defined in the protocol. The protocol will not mention
the number of readers or how disagreements between readers are resolved. Of
course, such information is not known to the statisticians who design the trial.

The following example is taken from Cook [27]. Suppose a previous related
trial had 200 patients, among which a = 60 responded and 140 did not. Among
160 of these patients, b = 40 experienced toxicities, but 120 did not experience
any serious side effects. Let the prior distribution of

φr ∼ beta(60,140)

and

φt ∼ beta(40,120),

while the prior distributions for the corresponding parameters of the melanoma
group for response and toxicity are assumed to be uniform.

The trial is stopped when the null hypothesis is rejected:

Pr[θr < φr | data] > 0.95

or

Pr[θt > φt | data] > 0.95. (9.18)

The stopping rule for response is presented in Table 9.12.

TABLE 9.12: Stopping rule
for response.

Response Boundary
0 6
1 12
2 17
3 22
4 27
5 30

  



K11763 Chapter: 9 page: 336 date: June 21, 2011

336 Advanced Bayesian Methods for Medical Test Accuracy

TABLE 9.13: Stopping rule
for toxicity.

Toxicity Boundary
3 3
3 4
4 6
5 8
6 10
6 11
7 13
7 14
8 16
8 17
9 19

10 21
10 22
11 24
11 25
12 27
12 28
13 30

Thus, if there are no responses among six patients, the trial is stopped.
Therefore, one must know the response among at least six patients before the
stopping rule for response takes effect. On the other hand, see Table 9.13 for
the stopping rule for toxicity.

If the first three patients experience toxicity, the trial is stopped. What are
the frequency properties of this test? Suppose the null hypothesis is “true” and
that, hypothetically, θr = 0.4, θt = 0.2, φr = 0.3, and φt = 0.25, then using the
above stopping rule, the probability of stopping the trial with various sample
sizes is given in Table 9.14.

The probability of stopping is equivalent to the probability of a type I error.
Note, with only three patients, the probability is 0.008 of stopping the trial,
and as the sample size increases, the probability of stopping slowly increases up
to 28 patients, then it has to increase to 1 at the maximum sample size of 30.
Also for this scenario, the average number of patients is 26.7, experiencing
an average of 5.34 toxicities and an average of 1.68 responses. The average
number of patients treated is relatively large, because this scenario is when
the null hypothesis is true.

Now suppose that the alternative hypothesis is “true” with θr = 0.2, θt =
0.35, φr = 0.3, and φt = 0.25, then the probability of stopping is equivalent
to the “power” of the test and is shown in Table 9.15.

With this particular scenario of the alternative hypothesis, the probability
of stopping or “power” gradually increases from 0.0429 with 3 patients to 1
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TABLE 9.14: Probability of stopping when
θr = 0.4, θt = 0.2, φr = 0.3, and φt = 0.25.

n Probability of stopping
3 0.0080
4 0.0272
5 0.1037
6 0.1095
8 0.1120
9 0.1128

11 0.1198
12 0.1268
13 0.1277
14 0.1298
16 0.1305
17 0.1355
19 0.1361
20 0.1375
22 0.1395
23 0.1406
25 0.1409
26 0.1430
28 0.1433
29 0.439
30 1.000

with 30. The average number of responses is 2.8 with an average of 4.92
toxicities among an average of 14 treated patients. The probability of stopping
or power is approximately 0.8 with 29 patients.

Thus, for any scenario of the probabilities for response and toxicity of
the experimental and standard therapies, the probability of stopping the trial
can be computed. This allows one to estimate the sampling properties of the
Bayesian test for stopping the trial.

9.4.9 Software for clinical trials

The Department of Biostatistics and Applied Mathematics at MDACC has
developed many programs for the analysis and design of clinical and scientific
studies in medicine and biology. These can be accessed at http://Biostatistics/
mdanderson.org/SoftwareDownload/.

This library includes many programs, and is easily accessible to the stu-
dent. Only two of the most relevant for clinical trials will be described. The
first is appropriate for Phase I dose-finding trials, while the second is used for
Phase II trials, when the major endpoints are for response and toxicity. The
latter program is called Multc Lean, and the former CRM Simulator.
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TABLE 9.15: Probability of stopping with
θr = 0.2, θt = 0.35, φr = 0.3, and φt = 0.25.

n Probability of stopping
3 0.0429
4 0.1265
5 0.4235
6 0.4517
8 0.4680
9 0.4980

11 0.5132
12 0.5798
13 0.5881
14 0.6044
16 0.6125
17 0.6713
19 0.6780
20 0.6902
22 0.7261
23 0.7361
25 0.7409
26 0.7763
28 0.7802
29 0.7874
30 1.000

9.4.10 CRM simulator for Phase I trials

Recall that Phase I trials are the beginning of studying a new agent or
therapy and the first concern is for the safety of the patient. The study is
designed in order to determine the MTD, which is the dose whereby at higher
doses the safety of the patient would be compromised. We are assuming that as
the dose level increases, the probability of toxicity increases and the probability
of efficacy also increases. The main endpoint in a Phase I study is some measure
of toxicity experienced by the patient as a result of the treatment, while the
secondary endpoint is some measure of efficacy. To define the toxicity endpoint,
the investigator characterizes the DLT, which is a set of toxicities that are severe
enough to prevent giving more of the treatment at higher doses. The investigator
bases the DLT on knowledge of the disease, treatment, and the patients who
are eligible for the trial. Investigators are guided by the NCI’s list of toxicities,
or in some other manner that is appropriate for the particular study.

Also required for estimating the MTD is the patient population defined via
the eligibility and ineligibility criteria, a starting dose and a set of DLT, and
the dose escalation. The dose escalation includes decisions on how to select the
MTD among a set of doses. The chosen starting dose is based on other sim-
ilar Phase I studies and/or information from animal experiments. Once the
investigator has chosen the dose levels to be tested, the dose escalation can be
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described. The CRM simulator uses only one endpoint, namely toxicity, and
is easily executed. The student should refer to the CRM Simulator Guide and
the Methods of Description. Both technical reports can be accessed from the
above internet address.

9.4.11 Multc Lean for Phase II trials

The example of a Phase II trial appearing earlier was implemented using
Multc Lean. Recall that there are two major endpoints, one for the number of
responses and one for the number of toxicities among the maximum number
of patients to be accrued for the trial. The methods are best explained by
the Multc Lean Statistical Tutorial by Cook [27], which together with the
program, can be downloaded from the above address. The user must supply the
maximum number of patients to be accrued, and information about prior
related studies. Prior therapy is referred to as the standard therapy, while
the therapy to be tested is referred to as the experimental therapy. Prior
information about the new treatment is usually given as non informative or
vague, while that for the standard is more informative and usually provided
with the number of responses and the number of toxicities experienced by a
given number of patients in earlier Phase I studies.

Multc Lean consists of four parts: model input, stopping criteria, scenario
input, and scenario output. The model input statement specifies the prior
information for the standard and experimental treatments. With regard to
the stopping criteria, recall that

Pr[θr < φr | data] > 0.95

or

Pr[θt > φt | data] > 0.95. (9.19)

The first probability is for stopping the trial when the probability of a response
for the experimental therapy is less than that for the standard therapy. If this
probability exceeds 95%, the trial is stopped for lack of efficacy, relative to the
standard treatment. On the other hand, the trial is stopped early if the proba-
bility of toxicity with the experimental treatment exceeds that of the standard
with a high probability, in this case 0.95. All this information is specified in
the stopping criteria section of Multc Lean. As a result of this information, the
program provides stopping boundaries for response (Table 9.12) and toxicity
(Table 9.13).

In order to know the frequency properties of the Bayesian stopping rule,
Multc Lean computes the probability of stopping the trial for all sam-
ple sizes, given a particular scenario of values for θ = (θ1, θ2, θ3, θ4) and
φ = (φ1,φ2,φ3,φ4) and thus for (θr, θt) and (φr,φt).

The stopping criteria (Equation 9.18) are given in terms of the response
and toxicity parameters for the experimental (θr, θt) and standard therapies
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(φr,φt), which must be kept in mind when running a particular scenario. For
example, θr = 0.4, θt = 0.2, φr = 0.3, and φt = 0.25 was used when assuming
the null hypothesis was true, while θr = 0.2, θt = 0.35, φr = 0.3 and φt = 0.25,
was employed for an alternative hypothesis scenario. The program computes
the probability of stopping, the average number of patients treated, the num-
ber of responses to be expected, and the average number of toxicities to be
experienced by this average number of patients. See Tables 9.14 and 9.15 for
the outcome of the two scenarios for the null and alternative hypotheses of
this Phase II study.

9.4.12 A Phase I trial for renal cell carcinoma

Thall and Lee [28] give a nice description of three designs for Phase I
trials. The 3 + 3, CRM, and Bayesian logistic regression are compared with
regard to the percentage of times the correct dose is selected, and they use
prior information to design a Phase I trial for RCC. Patients were previously
treated with interferon and are to be treated with a fixed dose of 5-FU and
six dose levels of gemcitabine (GEM). These designs were briefly mentioned,
but only the latter design will be described and illustrated with WinBUGS.

The logistic model for this design is

Log[θi/(1 − θi)] = α + βxi, (9.20)

where there are d dose levels x1 < x2 < · · · < xd, θi is the probability of a DLT
at dose xi, and α and β are unknown parameters. Recall that the objective of
a Phase I trial is to estimate the MTD, and to do this the investigator must
specify the number of dose levels, d, the dose level, xi, and a target toxicity
level, T . The MTD is that dose where the probability of toxicity is as close
as possible to T . That is, doses greater than the MTD have probabilities of
toxicity that are at least as large as T , while for doses that are less than the
MTD, the corresponding probabilities of a DLT are less than or equal to T .

Also to be specified is a rule for stopping the trial early. This can be
problematic, and there is no unique way to do it. One can choose n patients
and test all n to estimate the MTD, or one can have a rule that stops the trial
early if a given number of patients has been treated at the next recommended
dose. Usually, patients enter the trial in cohorts of size three or six, and after
each cohort is treated, the next recommended dose level is selected.

The logit model assumes that as the dose level increases, so does the prob-
ability of toxicity. However, it is usually true that as the dose level increases,
so does the probability of a favorable response, which creates somewhat of
a dilemma, in that the two events, “toxicity” and “response,” are competing
with one another.

With the Bayesian approach, a prior probability for the parameters α and β

must be specified, and this is usually done by selecting two probabilities of
toxicity corresponding to two of the dose levels, d, and “solving” the resulting
two equations for α and β. This information is given by the study investiga-
tor and is based on previous related human and animal studies. This way of
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TABLE 9.16: Average probability (%) of toxicity by dose of GEM
(mg/m2).

Assigned Observed #
Cohort dose toxicities 100 200 300 400 500 600
Prior 5.9 25 46.8 63.7 75 82.3
1 200 0 3.3 11.3 26.1 41.1 52.4 60.5
2 300 1 3.7 12.2 29.1 47.1 59.9 68.2
3 300 0 2.6 7.8 19.2 34.6 47.9 57.4
4 300 0 2.0 5.8 14.5 27.7 40.6 50.5
5 400 1 2.1 6.2 15.2 29.4 43.5 54.4
6 400 0 2.1 5.4 11.7 21.7 33.0 43.0
7 400 1 2.3 5.8 12.8 23.9 36.5 47.2
8 400 0 2.1 5.3 10.9 19.9 30.6 40.5
9 400 0 2.1 4.9 9.6 17.1 26.4 35.5

10 500 2 2.2 4.9 11.2 22.4 36.0 48.4
11 400 0 1.6 4.3 10.1 20.1 32.7 44.7
12 400 1 1.6 4.6 10.8 21.3 34.5 46.7

Source: From Thall, P.F. and Lee, S.J., International Journal of Gynecological Can-
cer, 13, 251, 2003, with permission of International Journal of Gynecological Cancer.

estimating the MTD is taken from Table 1 of Thall and Lee [28] and is pre-
sented as Table 9.16. They assume the target toxicity level is T = 0.25 and do
not use an early stopping rule, but use the information from all 36 patients.

The prior distribution for α and β is chosen so that the probabilities of tox-
icity at doses 200 and 500 are 0.25 and 0.75, respectively, giving α = −1.1133
and β = 0.0031808. This begins the process of selecting the MTD. With these
initial values for the parameters as prior information, three patients enter the
trial resulting in zero toxicities, then the logistic model estimates the param-
eters and the six probabilities of toxicity corresponding to the six dose levels.
The dose level 300 is the dose that has a probability of toxicity of 26.1, which
is closest to the target toxicity level, T = 0.25, thus 300 is selected as the next
recommended dose, see the italicized entries of Table 9.16. The process is
repeated for the remaining 33 patients in cohorts of size three. At the twelfth
cohort, the next recommended dose level is 400, which is the estimated MTD.

It is important to remember that the primary aim of the Phase I trial
is to provide information about the safety of the therapy, but an important
secondary objective is to gather information on the efficacy of the treatment.
Both the estimated MTD and the information on efficacy will be used in any
following Phase II trials. Diagnostic imaging will determine the response of
the primary kidney tumor size and the response of the size of any metastatic
lesions to treatment.

9.4.13 An ideal Phase II trial

As the first case of a Phase II trial that employs diagnostic imaging, a
hypothetical example based on real data from Erasmus et al. [26] is described.
The study involves 5 readers, 40 lung cancer lesions, and 2 replications, that
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TABLE 9.17: Tumor size mean(sd) by time and response
category—averaged over 10 lesions.

Response

Time CR PR SD PD
0 3.77(1.57) 4.79(0.958) 4.20(1.69) 3.95(1.70)
1 2.16(1.51) 4.26(1.11) 4.14(1.93) 4.34(1.81)
2 1.37(1.31) 3.81(0.947) 4.19(1.68) 4.94(1.70)
% increase −63.66 −20.45 0.0023 25.06
from baseline

is, each reader views the same image twice. All readers read all 40 lesions,
and the major endpoint is the size of the lesion as determined by CT. The
main focus of this study is to estimate the inter and intra observer error, and
the main conclusion is that tumor size measurements are often inconsistent
and can lead to incorrect interpretations of response to therapy based on the
WHO and RECIST criteria.

Using the first replication of the five readers, the study results are used
as baseline measurements for a hypothetical Phase II study. The “first” 10
lesions are used for patients with an intended complete response, and repeat
measurements are assigned at random for times 1 and 2. The “second” set
of 10 lesions are used for an intended partial response category of patients,
where the average lesion size decreased from time 0 to time 2 by 25%. The
basic descriptive statistics for the trial are given in Table 9.17.

A normal random number generator is used to generate hypothetical tumor
size measurements by category of response and by the repeated measurement
times 0, 1, and 2. Thus, for the complete response category of 10 patients,
there was a 64% decrease in the average lesion size, relative to baseline. On
the other hand, for the progressive disease category, the average lesion size
increased from 3.95 to 4.94 cm, an increase of 25.06%.

There were five readers in this study and the mean(sd) readings for the
three times are given in Table 9.18.

Note that each reader has 10 lesions for each of the four response categories.
Assuming no disagreement between readers, how should their readings be used

TABLE 9.18: Average (sd) lesion size for five readers by
time—averaged over 40 lesions.

Reader

Time 1 2 3 4 5
0 3.92(2.59) 3.70(1.51) 4.42(1.55) 4.36(1.61) 4.14(1.55)
1 3.48(1.97) 3.09(1.68) 3.83(1.94) 3.92(2.00) 3.56(1.88)
2 3.24(2.04) 3.02(1.90) 3.72(2.13) 3.64(2.15) 3.37(2.02)

  



K11763 Chapter: 9 page: 343 date: June 21, 2011

Test Accuracy and Medical Practice 343

to assign lesions to response categories CR, PR, SD, and PD? Suppose that the
lesions are assigned to two categories, response (including complete and partial
response) if the percent decrease in lesion size is less than 30%, otherwise a
lesion is assigned to the no response category.

Differences between readers will be tested with a logistic regression using
the occurrence of response or no response as the dependent variable and using
two factors for the independent variables: the patient label (1, 2, . . . , 40) and
the reader number (1, 2, 3, 4, and 5). The logistic regression was performed
using BUGS CODE 9.3.

BUGS CODE 9.3

model {
for( i in 1 : N ) {
y[i] ∼ dbern(p[i])
logit( p[i]) <- beta[1] + beta[2]*n[i]+beta[3]*r[i]
}
phat <- mean(p[])
for (i in 1:3 ){
beta[i] ∼ dnorm(0.0,0.0001)}
}

The list statement for the data includes the column y[ ] for the 200 occur-
rences or non occurrences of the overall response, while the n[ ] column con-
tains the lesion id (1, 2, . . . , 40). The 200 × 1 reader id column is the coefficient
of beta[3] in the logistic regression model. Zeros are given as the initial val-
ues of the three beta coefficients in the list statement for initial values of the
WinBUGS program. The posterior analysis is given by Table 9.19. The lesion
factor is included because the readers were paired with lesions, thus the effect
for readers, given by beta[3], is adjusted for the lesion effect.

The lesion effect beta[2] is “significant.” Its 95% credible interval excludes
zero, however, the interval for the reader effect does include zero, implying
that reader differences have a minimal effect in estimating the tumor response
phat, see BUGS CODE 9.3. The posterior mean of the overall response is 0.32
with a standard deviation of 0.016 and a 95% credible interval of (0.287,0.352).
Thus, the estimate of the overall response to therapy is 32%.

TABLE 9.19: Posterior distribution of tumor response.
95% credible

Parameter Mean sd Median interval
beta[1] 6.240 1.268 6.174 3.968,8.906
beta[2] −0.459 0.076 −0.453 −0.626,−0.325
beta[3] −0.045 0.214 −0.045 −0.471,0.372
Phat: overall response 0.320 0.016 0.320 0.287,0.352
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Of course, the fact that there was good reader agreement to begin with
was by design for the hypothetical outcomes of lesion size.

9.4.14 A Phase II trial for advanced melanoma

Melanoma is a cancer of the skin, and about 55,000 new cases are diagnosed
annually with approximately 8,000 deaths. If not successfully treated early
intervention, it metastasizes to the brain, lungs, and liver, and in this advanced
stage, there are few promising therapies. The protocol to be explained is for
stage IV melanoma with a therapy that has shown some promise in other
forms of cancer.

The therapy to be tested is an agent that is designed to be anti angio-
genic, i.e., designed to destroy the blood supply to the tumor, and several
Phase I and II trials have utilized this agent. In an early European Phase I
trial with 37 patients with solid tumors, no serious toxicities were reported. In
a Phase II study with 35 patients, this agent in combination with another pro-
duced no toxicities. In an NCI study with six patients, there were no objective
responses but three patients experienced stable disease. In an ongoing Phase II
trial, there have been some minor toxicities and reports of one confirmed CR.
Thus, prior information leads us to use the following: with 72 patients, there
have been no reported serious toxicities and, at the same time, little evidence
of a favorable response to therapy.

Patients to be entered into this study must have a confirmed stage IV
disease, must have measurable disease with at least one lesion that can be
accurately measured over the course of the study, be at least 18 years of age,
and have a performance status that shows they are well enough to complete
the therapy. This is a randomized study, with patients randomly assigned to
two dose levels of chemotherapy, where the endpoint is response to therapy.

In order to assign patients to a response category, the RECIST criteria
will be followed. A patient’s overall response is based on dynamic CT scans of
the target lesions. The final category is based on the imaging results for the
target lesions, the status of the non-target lesions, and the appearance of new
lesions (Table 9.20).

TABLE 9.20: Overall response to therapy.
Target Non-target New Overall
lesions lesions lesions response
CR CR No CR
CR SD/incomplete response No PR
PR Non-PD No PR
SD Non-PD No SSD
PD Any Yes or no PD
Any PD Yes or no PD
Any Any Yes PD
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In addition, the classification of response to the target lesions is based on
the change in lesion size for the target lesions, relative to some reference time,
either at baseline or at some earlier time when the size of the lesion was a
minimum. One cycle of therapy is 4 weeks and the protocol must designate
the times during this period when CT imaging of the target lesions will take
place. Several treatment cycles of therapy must be experienced by patients in
order for the patient to be assigned to an overall response category and for
the category to be confirmed.

A statistics section of the protocol contains the power analysis, a justifi-
cation for the sample size, and a description of the statistical analysis for the
study results. It was decided that 57 patients can be accrued at the rate of
3 to 4 per month for this single center trial. A Bayesian stopping rule must be
given that utilizes the information from prior Phase I and II studies. We have
seen that with a total of 72 patients, no toxicities were reported and there was
very little evidence of response to therapy (there were three of six who expe-
rienced SD in a European trial). Thus, there is good evidence of no toxicity,
but very little evidence of response to therapy. There is very little evidence for
treatment response because these trials were designed primarily to evaluate
safety, not efficacy, thus the prior information for response is designated as
vague or uninformative.

Multc Lean is used to design the stopping rule for this trial. The prior
distribution, shown in Table 9.21, is for the probabilities of response and
toxicity of the standard and the melanoma trial.

Thus, one is quite confident that there was very little toxicity among the
72 patients of previous trials. A uniform prior is given to the probabilities of a
response for the standard and experimental therapies. Using Multc Lean, the
stopping rule is

Pr[θr < φr | data] > 0.85,

Pr[θt > φt | data] > 0.85. (9.21)

The stopping boundaries for response are shown in Table 9.22. The trial is
stopped if there are three or less responses among the first 25 patients. On
the other hand, the stopping boundaries for toxicity are shown in Table 9.23,
and the trial is stopped early at one patient if there is at least one toxicity.

What are the sampling properties of this stopping rule? The third section
of Multc Lean provides a way to estimate the probability of stopping for

TABLE 9.21: Prior beta distributions for the
standard and experimental therapies.

Category Therapy Beta parameters
Response Standard (1,1)
Response Experimental (1,1)
Toxicity Standard (1,71)
Toxicity Experimental (0.0278,1.9722)
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TABLE 9.22: Stopping
boundaries for response.

Responses Boundary
0 5
1 12
2 19
3 25
4 32
5 39
6 45
7 52
8 57

TABLE 9.23: Stopping
boundaries for toxicity.
Toxicities Boundary

1 1–12
2 14–45
3 47–57

various scenarios involving the probabilities of response and toxicity of the
experimental therapy relative to the corresponding probabilities of φr = 0.5
(beta(1,1)) and φt = 0.0135 (beta(1,71)) for the standard therapy. The five
scenarios shown in Table 9.24 were assumed for the experimental therapy.

For each scenario, the probability of stopping for a given number of patients
can be computed with Multc Lean (Table 9.25). See scenario input and output
sections of the program. In addition, Multc Lean gives the average number of
patients, the average number of responses, and the average number of toxicities
for each scenario (Table 9.26).

9.5 Summary and Conclusions

Chapter 9 explains the role that test accuracy plays in clinical practice.
The choice of an optimal threshold for a medical test affects the accuracy of
the test and two approaches are taken for choosing the cutoff point. The first
approach is to base the choice on distance, where the optimal point on the
ROC curve is the one that is closest to (0,1), and once this point is estimated,
the corresponding test score threshold is determined. The choice of the optimal
point, using both criteria, is demonstrated with two examples: (a) the PSA test
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TABLE 9.24: Scenarios of the melanoma study.
Probability of response θr Probability of toxicity θt Scenario

0.5 0.5 1
0.01 0.01 2
0.2 0.2 3
0.21 0.02 4
0.60 0.011 5

for prostate cancer, and (b) the biomarker CK-BB test for complications from
head trauma. BUGS CODE 9.1 executes the Bayesian analysis and method
of selecting the optimal threshold of the test score.

The decision curve is a novel approach to measure the accuracy of a med-
ical test and is demonstrated with the PSA and CK-BB medical tests for
prostate cancer and head trauma complications. The decision curve is a plot
of the clinical benefit vs. a range of threshold probabilities, and the clinical
benefit is defined in terms of the TPF and FPF and the threshold probability.
The decision curve is used to choose between two strategies to treat a patient:
(1) biopsy a patient if the probability of disease is greater than a threshold
probability, where the probability of disease is estimated with logistic regres-
sion; or (2) biopsy all patients, regardless of the score of the medical test. In
both examples, the best approach is to biopsy the subject based on the value
of the medical test.

Of course, clinical trials are an important part of clinical research and the
accuracy of a medical test is crucial for the successful implementation of the
trial. The emphasis here is on Phase I and II cancer trials, where the medi-
cal tests are the imaging devices that measure the size of the tumor during
treatment. Based on the change in tumor size (measured by CT or MRI), each
patient in the trial is classified into several categories (CR, PR, PD, etc.), thus,
if the imaging devices are not accurate, patient progress can be misclassified
and can lead to misleading conclusions about the efficacy of the treatment.

TABLE 9.25: Probability of stopping early for
melanoma trial.

Scenario

n 1 2 3 4 5
1 0.5000 0.10000 0.0200 0.0200 0.0110
5 0.9697 0.8532 0.9548 0.3848 0.0639

10 0.9999 0.9133 0.9592 0.4439 0.1143
20 1 0.9867 0.9994 0.5654 0.1366
40 1 0.9994 1 0.6442 0.1666
56 1 0.9998 1 0.6707 0.1795
57 1 1 1 1 1

  



K11763 Chapter: 9 page: 348 date: June 21, 2011

348 Advanced Bayesian Methods for Medical Test Accuracy

TABLE 9.26: Average number of patients, responses, and toxicities.
Average number Average number Average number

Scenario of patients of responses of toxicities
1 1.99 0.999 0.999
2 5.17 0.517 0.517
3 5.13 0.102 0.1076
4 26.29 5.52 0.525
5 49.18 29.51 0.541

The role accuracy plays in clinical trials is illustrated with a Phase I trial
for RCC and a Phase II trial for advanced melanoma. WinBUGS is not used
for these examples, instead software available at the MDACC is employed to
describe the Bayesian stopping rules for evaluating efficacy of treatment for
Phase I and II trials.

9.6 Exercises

1. Verify Figure 9.1, the ROC curve for the PSA data. Use the information
in Table 9.1, the TP and FP values of the first two columns. What point
on the ROC curve gives a minimum distance between that point and
the point (0,1)?

2. Construct the worksheet of Table 9.1, which gives the TP and FP values
for the PSA study. How is the column for the distance from a point on
the ROC curve to the point (0,1) calculated?

3. Show that Equation 9.2 gives the distance between (fpf,tpf) and (0,1).

4. Verify Equation 9.3.

5. Verify Table 9.2 using 45,000 observations generated from the joint pos-
terior distribution, with a burn in of 5,000 and a refresh of 100. Note that
the optimal point has coordinates given by the posterior mean of the fpf
and tpf of the table and is for the value Kappa = 1. What is the optimal
threshold on the log and the original scales corresponding to the optimal
point on the ROC curve given by the table?

6. Verify Table 9.3, which is the posterior analysis for the optimal point on
the ROC curve for the PSA study for R = 2 and p = 0.33. Use 45,000
observations generated from the posterior distribution, with a burn in
of 5,000 and a refresh of 100. The posterior mean for the fpf and tpf is
0.0288 and 0.577, respectively. What is the corresponding threshold for
PSA on the log and original scales?
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7. Verify Table 9.4, the worksheet for the diabetes study. How is the second
column of tpf values calculated? Be specific in your answer. How is
third column of distances to the point (0,1) from points on the ROC
calculated?

8. Verify Table 9.5, the posterior analysis for the diabetes study, using
45,000 observations, with a burn in of 5,000 and a refresh of 100. Note,
the coordinates of the optimal point correspond to R = 2 and p = 0.5,
where p is the incidence of diabetes. Thus, one is assuming that the
benefit of a TN is twice that of TP. What is the corresponding threshold
for the diabetes study?

9. Reproduce Figure 9.3, the ROC curve of the diabetes study. Use the
first and second columns of Table 9.4 to plot the ROC curve.

10. Equation 9.5 defines the clinical benefit of scenario (a) and depends on
the true and false positive fractions. Explain how the clinical benefit
depends on the disease rate π and explain its effect on the clinical ben-
efit. As the disease rate decreases to zero, what happens to the clinical
benefit?

11. Using BUGS CODE 9.2, verify Table 9.7 with 45,000 observations gen-
erated from the posterior distribution, with a burn in of 5,000 and a
refresh of 100. Plot the posterior densities of the clinical benefit for sce-
narios (a) and (b) at threshold probability 0.35.

12. Verify Table 9.8 using BUGS CODE 9.2.

13. Verify Table 9.10 by revising BUGS CODE 9.2 and generating 45,000
observations, with a burn in of 5,000 and a refresh of 100. Also, plot the
posterior density of the clinical benefit for both scenarios (a) and (b)
at threshold probability 0.75. What are the MCMC errors for the
parameters?

14. Refer to Exercise 10 and BUGS CODE 9.2. Perform a Bayesian analysis
for the clinical benefit of scenarios (a) and (b) using the blood glucose
values given by the first list statement of the code. Also note that the
disease indicator vector d is given in the first list statement of the code.

Revise BUGS CODE 9.2 to perform the analysis. Determine the clin-
ical benefit for a plausible range of threshold probabilities. Note that for
each threshold probability, a logistic regression must be performed that
computes the four counts in the 2× 2 table. For each cell count, add 1
to the cell count and use those as the gamma parameters in the code.
Execute the analysis with 55,000 observations, with a burn in of 10,000
and a refresh of 500.

15. Perform the posterior analysis for the G coefficient based on the infor-
mation in Table 9.11. What is the posterior distribution of the Kappa
parameter? See relevant formulas in Chapter 4.
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16. Read Section 9.4.8 and using Multc Lean (download the program from
MDACC: http://Biostatistics/mdanderson.org/SoftwareDownload/), ver-
ify the results of Tables 9.12 and 9.13 using the stopping rule (Equa-
tion 9.18).

17. Read Section 9.4.14 and using Multc Lean with the stopping rule (Equa-
tion 9.20), verify the results of the melanoma trial in Tables 9.20
through 9.25. Explain the difference in the probability of stopping
between scenarios 1 and 5.

18. By choosing different beta prior distributions for the parameters of the
standard and melanoma therapies and using Multc Lean, describe the
effect of the prior distribution on the probability of stopping the trial.

19. Refer to Table 9.25 and explain why the average number of patients for
scenario 5 is much greater than that for scenario 1. What is the effect
of the stopping probabilities on the average number of patients?

20. Refer to Equation 9.20 where the probability of stopping for response
and toxicity are both 0.85. Change these to 0.80 and 0.80, respectively,
and determine the effect on the average number of patients, the average
number of responses, and the average number of toxicities.
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Chapter 10

Accuracy of Combined Tests

10.1 Introduction

Chapter 10 introduces the reader to the methodology of measuring the
accuracy of several medical tests that may be administered to a patient. Our
main focus is on measuring the accuracy of a combination of two or more
tests. For example, to diagnose type 2 diabetes, the patient is given a fasting
blood glucose test, which is followed by an oral glucose tolerance test. What
is the accuracy (true positive fraction [TPF] and false positive fraction [FPF])
of this combination of two tests? Or, in order to diagnose coronary artery
disease, the subject’s history of chest pain (CPH) is followed by an exercise
stress test (EST). Still another example is for the diagnosis of prostate cancer,
where a digital rectal exam is followed by measuring prostate-specific antigen
(PSA). The reader is referred to Johnson and Sandmire [1] for a description of
additional examples of multiple tests to diagnose a large number of diseases,
including heart disease, diabetes, lung cancer, breast cancer, etc.

In certain situations, it is common practice to administer one or more tests
to diagnose a given condition and we will explore two avenues. One is where
it is common to administer several tests as standard medical practice, and the
other is an experimental situation, where one test is compared to a standard
medical test. As an example of the latter, magnetic resonance imaging (MRI)
is now being studied as an alternative to standard mammography, as a method
to diagnose breast cancer.

There are many studies that assess the accuracy of the combination of
two or more tests. Two tests for the diagnosis of a disease measure different
aspects or characteristics of the same disease. In the case of diagnostic imag-
ing, two modalities have different qualities (resolution, contrast, and noise),
thus, although they are imaging the same scene, the information is not the
same from the two sources. When this is the case, the accuracy of the combi-
nation of two modalities is of paramount importance. For example, Buscombe
et al. [2] have reported the accuracy of the combination of mammography and
scintimammography for suspected breast cancer. Another study for diagnos-
ing breast cancer was performed by Berg et al. [3], who measured the accuracy
of mammography, clinical examination, ultrasound, and MRI in a preopera-
tive assessment of the disease. The accuracy of each modality and various
combinations of the modalities were measured. When investigating metasta-
sis to the lymph nodes in lung cancer, Van Overhagen et al. [4] measured the
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accuracy of ultrasound and computed tomography (CT) and the combination
of the two. Ultrasound conveys different information about metastasis com-
pared to CT, but the combination of the two might provide a more accurate
diagnosis than each separately. For an example of the diagnosis of head and
neck cancer, Pauleit et al. [5] used two nuclear medicine modalities, 18F-FET
PET and 18F-FDG PET, to assess the extent of the disease and estimate the
accuracy of each, and the combination of the two. On the other hand, Schaffler
et al. [6] evaluated pleural abnormalities with CT and 18F-FDG PET and the
combination of the two.

Now, switching from cancer to heart disease, Gerber et al. [7] used four-
section multidetector CT and 3D Navigator MR for detecting stenosis of the
coronary arteries, where the accuracy of each and the combination of the two
was estimated. The above examples involve binary test scores where accuracy
is measured by TPF, FPF, positive predictive value (PPV), and negative
predictive value (NPV), but when the test scores are ordinal and involve more
than two possible values, or when the test scores are continuous, the accuracy
is measured by the area under the receiver operating characteristic (ROC)
curve.

What is the optimal way to measure the accuracy for the combination of
two binary tests? Pepe [8: 268] presents two approaches: (1) believe the pos-
itive rule (BP), where a positive test score on a subject means one or the
other of the two tests is scored positive; and (2) believe the negative rule
(BN), where a subject is scored positive if both tests are scored positive. Pepe
[8: 268] also presents some properties about these rules.

Statement 10.1

a. The BP rule increases sensitivity relative to the two binary tests, but
increases the FPF, but by no more than the sum of the two FPFs, namely,

FPF1 + FPF2. (10.1)

b. The BN rule decreases the false positive rate relative to the false positive
rates of the two tests, but at the same time, decreases the sensitivity, however,
the sensitivity remains above TPF1 + TPF2 − 1.

This result is left as an exercise and is illustrated with many examples to
be presented in the chapter.

The chapter is divided into four parts: (1) for two binary test scores, (2) for
two ordinal test scores, (3) for continuous test scores, and (4) choosing an
optimal test among several component tests.

For the first part on two binary tests, several examples are provided; then
the idea is generalized to two binary tests with several readers, and to two
binary tests when verification bias is present. For the section on two ordinal
tests, the accuracy of the combination of the two tests is provided by the ROC
curve, which in turn depends on the risk score of the component tests.
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Again, the idea is generalized to several readers and when verification bias
is present. For two tests with continuous scores, the ROC curve based on the
risk score is the optimal way to measure the accuracy of the combination of
the two tests, and the basic approach is generalized to several readers and to
when verification bias is present.

10.2 Two Binary Tests

This section will employ a Bayesian approach to estimate the accuracy of
two binary tests and the accuracy of the combination of the two using the
BP rule and the BN rule given by Statement 10.1. Label the two tests Y1 and
Y2, where both take on the values 0 or 1, where 0 indicates a negative test
and 1 is a positive score for the medical test. A subject either has the disease
or does not, as determined by the gold standard; thus, when D = 1, let

θij = P [Y1 = i, Y2 = j], (10.2)

for i, j = 0, 1, and when D = 0, let

φij = P [Y1 = i, Y2 = j]. (10.3)

Thus, the thetas are the four cell probabilities for the diseased subjects and
the corresponding phis are the cell probabilities for the non-diseased subjects.
The corresponding cell frequencies are denoted by nij and mij for the dis-
eased and non-diseased subjects, respectively. Thus, assuming a uniform prior
for the cell probabilities, the posterior distribution of the cell probabilities
is Dirichlet for θ = (θ00, θ01, θ10, θ11) with parameter (n00 + 1, n01 + 1, n10 + 1,
n11 + 1), and φ = (φ00,φ01,φ10,φ11) is also Dirichlet with parameter vector
(m00 + 1, m01 + 1, m10 + 1, m11 + 1).

Once the posterior distribution of the cell probabilities is determined, the
posterior distribution of the truncated cell probabilities is easily found. The
truncated cell probabilities for the diseased subjects are given by

θ∗
ij = θij

/ i=1∑
i=0

θij , (10.4)

and for the non-diseased subjects the truncated cell probabilities are

φ∗
ij = φij

/ i=1∑
i=0

φij , (10.5)

for i and j = 0 or 1.
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The TPF and FPF for the first test Y1 are

tpf1 = θ1. (10.6)

and

fpf1 = φ1., (10.7)

respectively, and the TPF and FPF for the second test are

tpf2 = θ.1 (10.8)

and

fpf2 = φ.1, (10.9)

respectively.
The Equations 10.6 through 10.9 give the accuracy of the individual tests,

but what about the combination of the two? Recall that there are two ways
to measure the accuracy of combined tests, either by the BP rule or by the
BN rule. With the former rule, the TPF is

tpfbp = θ01 + θ11 + θ10 (10.10)

and the FPF is

fpfbp = φ01 + φ11 + φ10. (10.11)

On the other hand, using the BN rule the TPF is

tpfbn = θ11, (10.12)

while the FPF is

fpfbn = φ11. (10.13)

In what follows, the accuracies of the individual tests and the combined test
will be estimated for several examples, but first, the computations necessary
to achieve this goal will be executed with BUGS CODE 10.1.

BUGS CODE 10.1

Model;
# Two Binary Tests
{
# Dirichlet distribution generated

g00∼dgamma(a00,2)
g01∼dgamma(a01,2)
g10∼dgamma(a10,2)
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g11∼dgamma(a11,2)
sumall<-g00+g01+g10+g11+
h00+h01+h10+h11

h00∼dgamma(b00,2)
h01∼dgamma(b01,2)
h10∼dgamma(b10,2)
h11∼dgamma(b11,2)

# cell probabilities for diseased
theta00<-g00/sumall
theta01<-g01/sumall
theta10<-g10/sumall
theta11<-g11/sumall
# cell probabilities for non diseased
ph00<-h00/sumall
ph01<-h01/sumall
ph10<-h10/sumall
ph11<-h11/sumall
# truncated distributions
stheta<-theta00+theta01+theta10+theta11
sph<-ph00+ph01+ph10+ph11
# truncated thetas
th00<-theta00/stheta
th01<-theta01/stheta
th10<-theta10/stheta
th11<-theta11/stheta
# truncated phi’s
p00<-ph00/sph
p01<-ph01/sph
p10<-ph10/sph
p11<-ph11/sph
# sensitivities
# a designates row
# b designates column
# tpf a
tpfa<-th10+th11
#tpf b
tpfb<-th01+th11
# believe the positive tpf
bptpf<-th01+th11+th10
# believe the negative tpf
bntpf<-th11
# false positives
#fpf a
fpfa<-p10+p11
# fpf b

  



K11763 Chapter: 10 page: 358 date: June 17, 2011

358 Advanced Bayesian Methods for Medical Test Accuracy

fpfb<-p01+p11
# believe the positive false positive fraction
bpfpf<-p01+p11+p10
# believe the negative fpf
bnfpf<-p11
}
# CASS data set
#Comparing est and cph
# a is est
# b is cph
list(a00=26, a01=184,a10=30,a11=787,

b00=152,b01=177,b10=47,b11=70)
# Gerber et al. data set
# a is CT
# b is MRI
list(a00=13, a01=1,a10=11,a11=37,

b00=169,b01=1,b10=31,b11=39)
# Berger et al. study for breast cancer
# a is mammography
# b is ultrasound
list(a00=11, a01=48,a10=21,a11=101,

b00=22,b01=40,b10=8,b14=39)
# initial values
list(g00=1,g01=1,g10=1,g11=1,

h00=1,h01=1,h10=1,h11=1)

10.2.1 Two binary tests for heart disease

The first example to be run is the coronary artery disease study dataset
taken from Pepe [8: 47], consisting of two tests for coronary artery disease,
where the first test is the EST and the second is the CPH. Tables 10.1a and
b give the results for this paired study with 1465 subjects, where 1023 have
the disease and 442 do not.

From the information portrayed in Tables 10.1a and b, and assuming a
uniform prior, it can be shown that the posterior distribution of the cell prob-
abilities, θij , for the diseased subjects is Dirichlet (26, 184, 30, 787), while the
cell probabilities, φij , for the non-diseased subjects is Dirichlet with parameter
vector (152, 177, 47, 70).

Using BUGS CODE 10.1 to execute the analysis with 55,000 observations
generated from the posterior distribution, with a burn in of 5,000 and a refresh
of 100, the posterior analysis is given in Table 10.2.

Thus, with the BN rule, the FPF and TPF are 0.1568 and 0.7662, respec-
tively, with corresponding standard deviations 0.0171 and 0.0131. On the other
hand, with the BP rule, the FPF and TPF are 0.6592 and 0.9747, respectively,
with corresponding standard deviations 0.0224 and 0.0049. The simulations
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TABLE 10.1a: Coronary artery
disease for diseased patients.

CPH

EST 0 1 Total
0 25 183 208
1 29 786 815
Total 54 969 1023

TABLE 10.1b: Coronary artery
disease for non-diseased patients.

CPH

EST 0 1 Total
0 151 176 327
1 46 69 115
Total 197 245 442

errors are quite small for all parameters, implying that 55,000 observations
are sufficient to estimate the accuracy parameters.

Our main focus is on the combined test: for the TPF, the BP rule gives the
largest value at 0.9745, while for the false positive rate, the BN rule gives the
smallest value at 0.1568, compared to 0.6592 with the BP rule. Note that
the TPF of 0.974 with the BP rule is greater than the TPF for the two
modalities. On the other hand, the FPF with the BN rule is smaller than the
FPF for the two modalities (EST and CPH). Figure 10.1 portrays the density
of the posterior distribution of the TPF for the BP rule.

The main question remains, namely, which is the best rule, BP or BN, for
measuring the accuracy of the combined test, where the first test is the EST
and the second is the CPH? For the BN rule, the TPF of 0.7662 is reasonable,
and the FPF of 0.1568 is outstanding, thus, I prefer the BN rule for this

TABLE 10.2: Posterior distribution of EST, CPH, and the combined
test.

Parameter Mean sd Error 2 1/2 Median 97 1/2
bnfpf 0.1568 0.0171 <0.00001 0.1247 0.1564 0.1919
bntpf 0.7662 0.0131 <0.00001 0.7399 0.7663 0.7915
bpfpf 0.6592 0.0224 <0.00001 0.6142 0.6594 0.7029
bptpf 0.9747 0.0049 <0.00001 0.9641 0.975 0.9833
fpfest 0.2622 0.0207 <0.00001 0.2228 0.2619 0.3035
fpfcph 0.5539 0.0234 <0.00001 0.5075 0.554 0.5996
tpfest 0.7954 0.0125 <0.00001 0.7704 0.7955 0.8195
tpfcph 0.9455 0.0071 <0.00001 0.9307 0.9457 0.9586
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FIGURE 10.1: Posterior density of the TPF of the BP rule.

combined test, because the FPF of 0.6592 for the BP rule is much too high,
and as a compromise, I would opt for the BN rule.

As a general rule of thumb for combined tests, for two tests that have high
sensitivity, the accuracy should be measured by the BP rule, but on the other
hand, if the two tests have relatively small false positive rates, the BN rule
is to be preferred. Of course, this also implies that if the above is not true,
then choosing the optimal rule to measure accuracy is difficult, and one must
compromise. Note, for the prostate cancer study example, the TPF for both
tests is “high,” which implies accuracy should be measured by the BP rule,
which is the choice stated above, but using a compromise approach.

10.2.2 Computed tomography and magnetic resonance
imaging and coronary stenosis

The next example is based on the study by Gerber et al. [7], who investi-
gated the use of both CT and MRI to determine the degree of stenosis in the
coronary arteries, where 26 patients were suspected of having coronary artery
disease.

The gold standard is coronary catheterization, which found 58 diseased seg-
ments (stenosis greater than 50%) and 236 non-diseased segments. This was
an experimental study to determine the value of the two non-invasive imaging
modalities to diagnose coronary artery disease. The study found that the sen-
sitivity of CT and MRI was 79% and 62%, respectively, and that the specificity
of CT and MRI was 71% and 84%, respectively, thus CT had higher sensitiv-
ity but smaller specificity compared to MRI. This is a very interesting study
and only a brief synopsis is given here, thus the reader is invited to read the
paper for more detail in order to know the value of the investigation. The
information for the study is given in Table 10.3a.

Our goal is to determine the accuracy of the combined test using the
BP and BN rules, thus BUGS CODE 10.1 is used to perform the Bayesian
analysis. The simulation consists of generating 25,000 observations from the
joint posterior distribution, with a burn in of 5,000 and a refresh of 100, and
the results are shown in Table 10.4.

  



K11763 Chapter: 10 page: 361 date: June 17, 2011

Accuracy of Combined Tests 361

TABLE 10.3a: Study results of the
CT-MRI study.

MRI

CT 0 1 Total
0 12 0 12
1 10 36 46
Total 22 36 58

Source: From Gerber, B.L. et al. Radiology,
234, 98, 2005, with permission of Radiologi-
cal Society of North America.

TABLE 10.3b: Study results of the
CT-MRI study.

MRI

CT 0 1 Total
0 168 0 168
1 30 38 68
Total 198 38 236

Source: From Gerber, B.L. et al. Radiology, 234,
98, 2005, with permission of Radiological Society
of North America.

Which rule, the BP or BN rule, should be used to measure the accuracy of
the combined test? Note, the TPF with the BP rule is higher than that with
the BN rule, but on the other hand, the false positive rate is lower with the BN
rule compared to the BP rule. This is a true quandary and it is not obvious
which rule should be used to measure the accuracy of the combined test (see
Exercise 3). Figure 10.2 displays the posterior density of the false positive
rate for the BN rule of the combined test. Note that WinBUGS displays the
posterior density of all the parameters listed in Table 10.4.

TABLE 10.4: Bayesian analysis for combined test of CT and MRI.
Parameter Mean sd Error 2 1/2 Median 97 1/2
bnfpf 0.1627 0.0236 <0.0001 0.1191 0.1617 0.2116
bntpf 0.5965 0.0623 <0.0001 0.4731 0.5977 0.7148
bpfpf 0.2959 0.0293 <0.0001 0.2404 0.2953 0.3553
bptpf 0.7901 0.0515 <0.0001 0.68 0.7933 0.8817
fpfct 0.2918 0.0292 <0.0001 0.2361 0.2911 0.3511
fpfmri 0.1668 0.0238 <0.0001 0.1228 0.1658 0.2163
tpfct 0.7739 0.0527 <0.0001 0.662 0.766 0.8675
tpfmri 0.6127 0.0619 <0.0001 0.4883 0.614 0.7299
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FIGURE 10.2: FPF for the BN rule of the combined test.

10.3 Two Binary Tests and Several Readers

When more than one reader is involved, the level of complexity increases.
For now, only two readers will be considered, however, it will be obvious how
to extend the results to follow more than two readers. Our approach is to
assume a double paired design for two medical tests, where both tests are
applied to all subjects and both readers look at exactly the same evidence,
that is, for each subject, both readers interpret both tests.

Suppose, given D = 1,

θijk = P [Y1 = i, Y2 = j, K = k], (10.14)

where Y1 is the first test, Y2 is the second, with possible values i, j = 0, 1, and
reader k, with possible values k, where k = 1, 2.

In a similar way, given D = 0,

φijk = P [Y1 = i, Y2 = j, K = k]. (10.15)

Therefore, θijk are the cell probabilities for the diseased subjects and φijk are
the corresponding quantities for the non-diseased subjects for the kth reader.
For each reader there will be a TPF and FPF for each of the two tests.
In addition, for each rule, BP and BN, there will be a TPF and FPF for
each reader. Suppose the cell frequencies are denoted by nijk for the diseased
subjects and mijk for the non diseased, then assuming a uniform prior for all
parameters, resulting in a posterior Dirichlet distribution for

θ = (θ001, θ011, θ101, θ111; θ002, θ012, θ102, θ112), (10.16)

with parameter vector

n = (n001 + 1, n011 + 1, n101 + 1, n111 + 1;n002 + 1, n012 + 1, n102 + 1, n112 + 1),

and for

φ = (φ001,φ011,φ101,φ111; φ002,φ012,φ102,φ112), (10.17)
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a Dirichlet with parameter vector

m = (m001 + 1, m011 + 1, m101 + 1, m111 + 1; m002 + 1, m012 + 1,

m102 + 1, m112 + 1).

The parameters will be truncated as follows:
For reader 1 and the diseased patients, let

θ∗
ij1 = θij1

/ i,j=1∑
i,j=0

θij1, (10.18)

and for reader 1 of the non-diseased subjects, let

φ∗
ij1 = φij1

/ i,j=1∑
i,j=0

φij1. (10.19)

In all, there will be four truncated distributions for the cell frequencies, the
two given by Equations 10.18 and 10.19, and the corresponding truncations
for reader 2, with probabilities θ∗

ij2 and φ∗
ij2, respectively.

The relevant accuracy parameters are the TPF and FPF for the two tests
for reader 1, and the TPF and FPF for reader 2. Assuming the BP rule, there
will be the TPF and FPF for readers 1 and 2, and assuming the BN rule the
TPF and FPF for readers 1 and 2. This is a total of 16 accuracy parameters,
thus the level of complexity has increased twofold from previous considera-
tions, when only one reader is present.

In order to make inferences about the accuracy, consider the following.
The TPF of reader 1 for the first test is

tpft1r1 = θ1.1, (10.20)

where the dot denotes summation over the missing subscript, and the TPF
for reader 1 of test 2 is

tpft2r1 = θ.12. (10.21)

As for the FPF of test 1 and reader 1,

fpfr1t1 = φ1.1. (10.22)

Assuming the BP rule, the TPF for reader 1 is

tpfbpr1 = θ011 + θ111 + θ101, (10.23)

and assuming the BN rule, the FPF for reader 2 is

fpfbnr2 = φ112. (10.24)
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The remaining accuracy indices are defined in the obvious way, following the
pattern provided by Equations 10.20 through 10.24.

The example considered for this section is a variation of the second example
of the previous section, where the study information is given by Tables 10.3a
and b. Recall that the two tests involved were imaging modalities CT and
MRI for a coronary artery trial, where among all the patients, 58 coronary
artery segments were determined to be diseased (stenosis >50%) and 236 were
determined to be non diseased (stenosis <50%) and the reference standard
was coronary angiography. Gerber et al. [7] is the basis for this study and
the information provided in Tables 10.3a and b is for one reader, who was an
expert in both CT and MRI and read the two images for all patients. I should
point out that the information from the paper is portrayed in the margins of
the tables (to give the actual TPF and FPF for each modality), however, the
four cell frequencies are provided by me. This information was not provided
by the Gerber et al. study.

I will change the four cell frequencies to give the information for a second
reader (radiologist) and assume that the information in Tables 10.3a and b
is that provided by the first radiologist, and that by the second reader is
contained in the second list statement of BUGS CODE 10.2 provided by the
second reader.

Note that I made a slight change in the cell frequencies so that the marginal
totals are the same as those in Tables 10.3a and b for radiologist 1, however,
this is not necessary, and will be explored further in Exercise 6. In order to
execute the analysis, use BUGS CODE 10.2 below and note that the program
statements closely follow Equations 10.14 through 10.24.

BUGS CODE 10.2

model;
# BUGS CODE 10.1
# Two Binary Tests with Two Readers
# Accuracy of Combined Tests
# BP or BN
# Dirichlet Distribution generated
{
g001∼dgamma(a001,2)
g011∼dgamma(a011,2)
g101∼dgamma(a101,2)
g111∼dgamma(a111,2)
g002∼dgamma(a002,2)
g012∼dgamma(a012,2)
g102∼dgamma(a102,2)
g112∼dgamma(a112,2)
h001∼dgamma(b001,2)
h011∼dgamma(b011,2)
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h101∼dgamma(b101,2)
h111∼dgamma(b111,2)
h002∼dgamma(b002,2)
h012∼dgamma(b012,2)
h102∼dgamma(b102,2)
h112∼dgamma(b112,2)
sumall<-g001+g011+g101+g111+g002+g012+g102+g112+

h001+h011+h101+h111+h002+h012+h102+h112
# cell probabilities for diseased
th001<-g001/sumall
th011<-g011/sumall
th101<-g101/sumall
th111<-g111/sumall
th002<-g002/sumall
th012<-g012/sumall
th102<-g102/sumall
th112<-g112/sumall
# cell probabilities for non diseased
ph001<-h001/sumall
ph011<-h011/sumall
ph101<-h101/sumall
ph111<-h111/sumall
ph002<-h002/sumall
ph012<-h012/sumall
ph102<-h102/sumall
ph112<-h112/sumall
# truncated cell probabilities
# reader 1 diseased
sth1<-th001+th011+th101+th111
theta001<- th001/sth1
theta011<- th011/sth1
theta101<- th101/sth1
theta111<- th111/sth1
# reader 2 diseaded
sth2<-th002+th012+th102+th112
theta002<- th002/sth2
theta012<- th012/sth2
theta102<- th102/sth2
theta112<- th112/sth2
# reader 1 non diseased
sph1<- ph001+ph011+ph101+ph111
phi001<-ph001/sph1
phi011<-ph011/sph1
phi101<-ph101/sph1
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phi111<-ph111/sph1
# reader 2 non diseased
sph2<- ph002+ph012+ph102+ph112
phi002<-ph002/sph2
phi012<-ph012/sph2
phi102<-ph102/sph2
phi112<-ph112/sph2
# accuracy parameters
# TPF test 1 reader 1
tpft1r1<- theta101+theta111
# TPF test 2 reader 1
tpft2r1<- theta011+theta111
# TPF test 1 reader 2
tpft1r2<- theta102+theta112
# TPF test 2 reader 2
tpft2r2<- theta012+theta112
# FPF test 1 reader 1
fpft1r1<-phi101+phi111
#FPF test 1 reader 2
fpft1r2<- phi102+phi112
# FPF test 2 reader 1
fpft2r1<-phi011+phi111
# FPF test 2 reader 2
fpft2r2<- phi012+phi112
# accuracy for combined test
# accuracy parameters for BP
# TPF reader 1 BP
tpfbpr1<-theta101+theta111+theta011
# FPF reader 1 BP
fpfbpr1<-phi101+phi111+phi011
# TPF reader 2 BP
tpfbpr2<-theta102+theta112+theta012
# FPF reader 2 BP
fpfbpr2<- phi102+phi112+phi012
# accuracy parameters for BN
# TPF reader 1 BN
tpfbnr1<-theta111
# TPF reader 2 BN
tpfbnr2<- theta112
# FPF reader 1 BN
fpfbnr1<- phi111
# FPF reader 2 BN
fpfbnr2<- phi112
}
# two readers CT and MRI
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list(a001=13 , a011=1,a101=11,a111=37,
a002=10, a012=4,a102=14,a112=34,
b001=169, b011=1,b101=31,b111=39,b002=167, b012=3,b102=33,b112=36)

# two readers CT and MRI second version
list(a001=13 , a011=1,a101=11,a111=37,
a002=7, a012=7,a102=17,a112=31,
b001=169 , b011=1,b101=31,b111=39,
b002=151 , b012=19,b102=49,b112=21)

# initial values
list( h001= 1, h011=1,h101=1,h111=1,h002= 1, h012=1,h102=1,h112=1,
g001=1 ,g011=1,g101=1,g111=1,g002=1 , g012=1,g102=1,g112= 1 )

The parameter labels are as follows: fpft2r1 means FPF test 2 reader 1 and
tpfbnr1 signifies TPF believe the negative reader 1, etc. It is not surprising that
for a given measure of accuracy there is very little difference in the posterior
characteristics of the two distributions for the two readers (see Table 10.5).

Simulations errors were <0.0001 for all parameters, thus we would expect
the accuracy of the combined test (CT and MRI) to be the same for both
radiologists, for both the BP and BN rules. Note that the analysis is gen-
erated using 45,000 observations, with a burn in of 5,000 and a refresh of
100. The input for this problem appears in the first list statement of BUGS
CODE 10.2 and assumes that a uniform prior is appropriate for all 16 cell
probabilities.

TABLE 10.5: Posterior accuracy for two readers—coronary
artery stenosis for CT and MRI: combined test accuracy.

Parameter Mean sd 2 1/2 Median 97 1/2
fpfbnr1 0.1639 0.0237 0.1187 0.1617 0.2119
fpfbnr2 0.1506 0.023 0.1082 0.1494 0.1984
fpfbpr1 0.2958 0.0293 0.2399 0.2954 0.3549
fpfbpr2 0.3011 0.0295 0.245 0.3006 0.3605
fpft1r1 0.2941 0.0293 0.2354 0.2913 0.3508
fpft1r2 0.2885 0.0291 0.2333 0.2881 0.3474
fpft2r1 0.1667 0.0240 0.1224 0.1658 0.2167
fpft2r2 0.1631 0.0237 0.1194 0.1662 0.2122
tpfbnr1 0.5965 0.0617 0.4734 0.5979 0.7135
tpfbnr2 0.5483 0.0625 0.4243 0.5487 0.6692
tpfbpr1 0.79 0.0514 0.681 0.7932 0.8816
tpfbpr2 0.8388 0.0464 0.7386 0.8424 0.9187
tpft1r1 0.7738 0.0527 0.6633 0.7767 0.8685
tpft2r2 0.774 0.0525 0.6635 0.7768 0.8683
tpft2r1 0.6127 0.0612 0.47 0.6141 0.729
tpft2r2 0.6131 0.0612 0.4896 0.6143 0.73
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10.4 Accuracy of Combined Binary Tests with
Verification Bias

Upcoming is a venture into an area that has not been studied, the case of
two binary tests with verification bias. What is the accuracy of the combined
test when verification bias is present?

When assessing the accuracy of two tests, the design in many cases is
paired. For example, two imaging devices (e.g., CT and MRI) are procuring
information from the same patients and both images would be expected to
be quite similar. Another case of a paired design is for two readers who are
imaging the same set of patients with the same imaging device. One expects
the information gained from the two paired sources to be highly correlated,
and in the case of two paired readers, agreement between the two is also of
interest. Recall from Chapter 8, the experimental layout for a paired study
when verification bias is present (Table 10.6).

Note that the number of subjects verified under the gold standard, when
both tests are positive, is s11 + r11, among which s11 had the disease and
r11 did not have the disease, and the number who were not verified under the
gold standard when both tests are positive is u11 etc. Also note that the total
number of subjects is

i,j=1∑
i,j=0

mij = m...

The following derivation is based on the missing at random (MAR) assump-
tion, namely,

P [V = 1 | Y1, Y2, D] = P [V = 1 | Y1, Y2].

Thus, the probability that a subject’s disease status is verified depends only
on the outcomes of the two tests.

Suppose the unknown parameters are defined as follows:

φij = P [D = 1 | Y1 = i, Y2 = j] (10.25)

TABLE 10.6: Two binary scores
with verification bias.

Y1 = 1 0

V = 1 Y2 = 1 0 1 0
D = 1 s11 s10 s01 s00
D = 0 r11 r10 r01 r00
V = 0 u11 u10 u01 u00
Total m11 m10 m01 m00
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and

θij = P [Y1 = i, Y2 = j], (10.26)

for i, j = 0, 1.
Also let

φi. = P [D = 1 | Y1 = i] (10.27)

and

φ.j = P [D = 1 | Y2 = j], (10.28)

where i, j = 0, 1.
The likelihood for the parameters is

L(θ,φ) ∝
i=1∏
i=0

j=1∏
j=0

φ
sij
ij (1 −φij )rij

i=1∏
i=0

j=1∏
j=0

θ
mij
ij . (10.29)

Assuming an improper prior distribution for the parameters, the posterior
distributions are

φij ∼ beta(sij , rij ), (10.30)

for i, j = 0, 1, and θij are distributed Dirichlet with parameter vector (m00,
m01, m10, m11).

Note that

φ1. ∼ beta(s1., r1.)

and

φ.1 ∼ beta(s.1, r.1), (10.31)

where

s1. = s11 + s10

and

r1. = r11 + r10.

The main parameters of interest are the TPF and the FPF for the two
tests, thus for the first test

tpf1 = P [Y1 = 1 | D = 1]

and is given by Bayes theorem as

tpf1 = φ1.θ1./(φ1.θ1. + φ0.θ0.), (10.32)
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where φi. are given by Equation 8.19 and

θ1. = θ11 + θ10.

As for test 1, the FPF is given by

fpf1 = (1 −φ1.)θ1./(1 −φ1.θ1. −φ0.θ0.). (10.33)

With regard to test 2, the TPF is

tpf2 = φ.1θ.1/(φ.1θ.1 + φ.0θ.0)

and the FPF is

fpf2 = (1−φ.1)θ.1/(1 − φ.1θ.1 −φ.0θ.0) (10.34)

The main focus of this section is on measuring the accuracy of the combined
test in the presence of verification bias of both tests using the BN and BP
principles.

Assume the BP principle is in effect, then the TPF for the combined test is

tpfbp = P [Y1 = 1 or Y2 = 1 | D = 1], (10.35)

while

fpfbp = P [Y1 = 1 or Y2 = 1 | D = 0]. (10.36)

Now assume that the BN assumption is in effect, then the TPF is

tpfbn = P [Y1 = 1, Y2 = 1 | D = 1], (10.37)

while

fpfbn = P [Y1 = 1, Y2 = 1 | D = 0]. (10.38)

The above four accuracy measures can be expressed as follows: for the BP
assumption,

tpfbp = (φ11θ11 + φ01θ01 + φ10θ10)/P [D = 1] (10.39)

and

fpfbp = ((1− φ11)θ11 + (1 −φ01)θ01 + (1 −φ10)θ10)/P [D = 0], (10.40)

where

P [D = 1] = (φ11θ11 + φ01θ01 + φ10θ10 + φ00θ00). (10.41)
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TABLE 10.7: Screening test for Alzheimer’s disease.
Y1 = 1 0

V = 1 Y2 = 1 0 1 0
D = 1 s11 = 191 s10 = 25 s01 = 85 s00 = 5
D = 0 r11 = 10 r10 = 25 r01 = 95 r00 = 150
V = 0 u11 = 10 u10 = 10 u01 = 100 u00 = 700
Total m11 = 211 m10 = 60 m01 = 280 m00 = 855

For the BN assumption

tpfbn = φ11θ11/P [D = 1] (10.42)

and

fpfbn = (1− φ11)θ11/P [D = 0]. (10.43)

As a first example of two binary tests, consider a screening test for
Alzheimer’s disease, where the two tests correspond to two observers (psy-
chiatrists) screening the same patients (Table 10.7).

Only 155 of 855 are referred to the gold standard when both readers give
a negative score, but when both observers give a positive score, 201 of 211
are referred to the gold standard. What are the TPFs for both observers?
What are the FPFs? Of the 1406 subjects, 855 received a negative assessment
by both psychiatrists, while 211 received a positive assessment (judged as
having the disease) from both. Recall that this study is analyzed in Chapter 8
where the accuracy is assessed for both readers, but for the present, the main
emphasis will be on the accuracy of the combined readers (psychiatrists).
BUGS CODE 10.3 closely follows the notation of the above derivation for the
accuracy measures of the two readers.

BUGS CODE 10.3

model;
{
# two binary tests verification bias
# accuracy of combined tests
g00∼dgamma(m00,2)
g01∼dgamma(m01,2)
g10∼dgamma(m10,2)
g11∼dgamma(m11,2)
h<-g00+g01+g10+g11
th00<-g00/h
th01<-g01/h
th10<-g10/h
th11<-g11/h
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ph00∼dbeta(s00,r00)
ph01∼dbeta(s01,r01)
ph10∼dbeta(s10,r10)
ph11∼dbeta(s11,r11)
s1.<-s11+s10
r1.<-r11+r10
s.1<-s01+s11
r.1<- r01+r11
r0.<- r00+r01
s0.<-s00+s01
s.0<-s00+s10
r.0<-r00+r10
ph1.∼dbeta(s1.,r1.)
ph.1∼dbeta(s.1,r.1)
ph0.∼dbeta(s0.,r0.)
ph.0∼dbeta(s.0,r.0)
th1.<-th11+th10
th.1<-th01+th11
th0.<-th01+th00
th.0<-th00+th10
# accuracy for test 1
tpf1<-ph1.*th1./pd1
fpf1<-(1-ph1.)*th1./(1-pd1)
# p[D-1]
pd1<-ph1.*th1.+ph0.*th0.
# accuracy for test 2
tpf2<-ph.1*th.1/pd2
fpf2<-(1-ph.1)*th.1/(1-pd2)
pd2<-ph.1*th.1+ph.0*th.0
# accuracy combined tests
# believe the positive, BP
tpfbp<-(ph11*th11+ph01*th01+ph10*th10)/pd
# P[d=1]
pd<- ph11*th11+ph10*th10+ph01*th01+ph00*th00
fpfbp<-((1-ph11)*th11+(1-ph10)*th10+(1-ph01)*th01)/(1-pd)
# believe the negative , BN
tpfbn<-ph11*th11/pd
fpfbn<- (1-ph11)*th11/(1-pd)
}
# Alzheimers two readers improper prior
list(s00=5,r00=150,s01=85,r01=95,s10=131,r10=25,s11=191,r11=10,
m00=211,m01=60,m10=280,m11=855)
# CT and MRI for lung cancer risk improper prior
list(s00=3,r00=18,s01=9,r01=13,s10=12,r10=9,s11=14,r11=4,
m00=31,m01=31,m10=29,m11=25)
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TABLE 10.8: Posterior analysis for the accuracy of two readers—
Alzheimer’s study with verification bias.

Parameter Mean sd Error 2 1/2 Median 97 1/2
fpf1 0.358 0.0406 <0.0001 0.2788 0.3582 0.4372
fpf2 0.4768 0.0279 <0.0001 0.4218 0.4769 0.5311
fpfbn 0.1306 0.0354 <0.0001 0.0681 0.1282 0.2055
fpfbp 0.3674 0.0358 <0.0001 0.2986 0.3667 0.4394
tpf1 0.9336 0.0070 <0.0001 0.9189 0.9339 0.9468
tfp2 0.7554 0.0168 <0.0001 0.7214 0.7557 0.7876
tpfbn 0.7504 0.0138 <0.00001 0.723 0.7504 0.7771
tpfbp 0.9937 0.0027 <0.00001 0.9872 0.9941 0.9979

The list statement of BUGS CODE 10.3 contains the information from
the Alzheimer’s study in Table 10.7, and the analysis is executed with 45,000
observations, with a burn in of 5,000 and a refresh of 100, assuming an
improper prior density for the parameters (Table 10.8). See the likelihood
function (Equation 10.29) and put an improper prior density on θij and φij
that appear in the formula.

According to the BP rule, the TPF and FPF are 0.9937 and 0.3374, respec-
tively, while the corresponding entities for the BN rule are 0.7504 and 0.1306.
How should accuracy be reported for the combined test? As usual, the BP
rule gives higher true and false positive rates compared to the BN rule. I like
the BN rule, which gives a fairly high TPF but an extremely small false pos-
itive rate. On the other hand, the BP rule provides an extremely large TPF.
What rule would you choose to represent the accuracy of the combined test?
See Exercise 7 for additional information about choosing the accuracy of the
combined test.

Figure 10.3 presents the posterior density of the TPF (tpfbp) for the BP
rule, with a 95% credible interval of (0.9872,0.997). This topic will be contin-
ued in Exercise 8 with an example based on Exercise 16 of Chapter 8, which
uses two imaging modalities to assign risk of lung cancer in a paired design.

tpfbp sample: 40000

tpfbp
0.97 0.98 0.99 1.0

P(
tp

fb
p)

0.
0

10
0.

0

FIGURE 10.3: Posterior density of the TPF for the BP rule.
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10.5 Likelihood Ratio, the Risk Score,
the Neyman–Pearson Lemma, and
the Accuracy of Multiple Ordinal Tests

A change of emphasis from binary to ordinal and continuous test scores
brings us to some “new” ideas for measuring the accuracy by combining two
tests. For ordinal and continuous scores, the area under the ROC curve mea-
sures the intrinsic accuracy of a medical test; but how should the area be
computed when two tests are combined? The ROC curve of the risk score is
the foundation for measuring the accuracy for the combined test, but in turn,
the risk score is a monotone increasing function of the likelihood ratio, which
is the optimal way to measure accuracy for the combined test.

The optimality of the risk function is a consequence of the Neyman–
Pearson lemma, which is a familiar result from classical statistics for testing
hypotheses.

In what follows, the likelihood ratio will be defined and the optimality of
the ROC curve of the likelihood ratio will be demonstrated by referring to the
Neyman–Pearson lemma, then the risk function will be defined and shown
to be a monotone increasing function of the likelihood ratio, thus the ROC
curve of the risk function is the same as the ROC curve of the likelihood ratio.
Pepe’s [8: 269–274] development of the subject is closely followed but is given a
Bayesian emphasis, and the end result will be that the optimal way to measure
the accuracy of the combined test is to estimate the area under the ROC curve
of the risk function. Determining the risk function is equivalent to performing
a logistic regression using the test scores of the two tests as predictors, then
the ROC curve of the predicted probabilities (from the logistic regression) is
computed, from which the area is then estimated. Such an area is the accuracy
of the combined test, and the methodology is illustrated with various examples
using ordinal test scores. The first example is from an imaging trial using
MRI and CT to detect lung cancer, where one radiologist uses a five-point
confidence score, and the ROC curve of the risk function of the combined test
is computed and compared to the ROC curve of the individual tests.

This section continues with the definition of the likelihood ratio and con-
cludes with the definition of the risk score.

Suppose Y = (Y1, Y2, . . . , Yp) is the vector of scores of p ordinal tests, then
the likelihood ratio is

LR(Y ) = P [Y | D = 1]/P [Y | D = 0], (10.44)

where D is the indicator of disease. The numerator is the probability of the
observed test scores when the disease is present, and the denominator is the
probability of the observed scores, given the disease is not present.

Recall that the likelihood ratio is used as a test statistic for the null
hypothesis

H: D = 1
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versus the alternative hypothesis

A: D = 0,

where larger values of LR(Y ) are evidence of the null hypothesis, and smaller
values are evidence that the alternative is true.

It can be shown that the likelihood ratio has certain optimal properties,
summarized by the following result.

Statement 10.2

Suppose a decision about the accuracy of a medical test is based on the
criterion

LR(Y ) > c, (10.45)

then the likelihood ratio:

a. Maximizes the TPF among all rules with FPF = t, for all t ∈ (0,1).

b. Minimizes the FPF among all rules with TPF = r, for all r ∈ (0,1).

c. Minimizes the overall misclassification probability

ρ(1 − tpf) + (1− ρ)]fpf,

where ρ is the disease rate.

d. Minimizes the expected cost, regardless of the costs associated with false
negative and false positive errors.

The threshold c above, appearing in Statement 10.1, depends on the objec-
tive at hand, but for our purposes the above result implies that the ROC
curve based on the likelihood ratio is optimal, in the sense that its area is the
largest.

Pepe [8: 269–275] states that the above results are a consequence of the
Neyman–Pearson lemma, and also presents the correspondence between con-
cepts involving medical test accuracy and the analogous classical approach to
testing hypothesis (Table 10.9).

The likelihood function (Equation 10.45) is difficult to work with because of
the complexity of determining its distribution, but, fortunately, the risk score

RS(Y ) = P [D = 1 | Y ] (10.46)

does not have this disadvantage and has the property that it is a monotone
function of the likelihood ratio. Simply stated, the risk score assigns a prob-
ability of disease to each study subject.
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TABLE 10.9: Correspondence between testing hypotheses and medical
test accuracy.

Hypothesis testing Accuracy of test
Type I error Significance level FPF

α = P [reject null | null] FPF = P [D = 1 | D = 0]
Type II error Power TPF

1 − β = P [reject null | alt.] TPF = P [choose D = 1]D = 1]
Possible states H0 vs. H1 D = 0 vs. D = 1
Decision Either H0 or H1 Either D = 0 or D = 1
Information Sample results Y Test results Y
Test statistic P [Y | H1]/P [Y | H0] P [Y | D = 1]/P [Y | D = 0]

Statement 10.3

The risk score (Equation 10.46) has the same ROC curve as the likelihood
ratio (Equation 10.45). Also, it has the same optimal properties (see Statement
10.1) as the likelihood ratio. Observe that

RS(Y ) = P [D = 1 | Y ]
= P [Y | D = 1]P [D = 1]/P [Y ]
= P [Y | D = 1]P [D = 1]/{P [Y | D = 1]P [D = 1]

+ P [Y | D = 0]P [D = 0]}
= LR(Y )P [D = 1]/{LR(Y )P [D = 1] +P [D = 1]} (10.47)

which shows that the risk score is a monotone increasing function of the like-
lihood ratio, which implies that the ROC curve of the risk score is the same
as that of the likelihood ratio. For our purposes, the risk score will be used to
measure the accuracy of combined tests, namely, using the area of the ROC
curve of the risk score. Pepe [8: 274–275] shows the utility of logistic regression
for finding the ROC curve of the risk score. Note that the following statement
shows why.

Statement 10.4

Suppose the risk score is expressed as

logitP [D = 1 | Y ] = γ + g(λ, Y ), (10.48)

where g is a known function, then:

a. The parameter λ can be estimated, even for retrospective designs in
which the sampling depends on D.

b. The function g is optimal for determining the ROC curve of the risk
function.
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From a practical point of view, logistic regression can be used to determine
the ROC curve of the risk function, but it should be noted that finding a
suitable function g can be a challenge. After all, g can be a complicated non-
linear function of λ and/or Y , but it would be convenient if g is linear in the
test scores Y . Of course, a Bayesian approach is taken in order to estimate
the logistic regression function (Equation 10.48).

The approach taken here is based on the risk score and Pepe [8: 274–
275] gives a good account, which is outlined in more detail in McIntosh and
Pepe [9].

Suppose that there are two medical tests with ordinal scores, then for
diseased subjects the layout is as shown in Tables 10.10a and b. Thus, there
are nij diseased subjects with a score of i for test 1 and score j for test 2 and
the cell probabilities for the diseased are

θij = P [T1 = i, T2 = j | D = 1], (10.49)

for the first test, where i, j = 1, 2, . . . , k.
For the non diseased, the cell probabilities are

φij = P [T1 = i, T2 = j | D = 0]. (10.50)

Define the ROC area for test 1, the usual way, as

Area1 = A11 + A12/2, (10.51)

TABLE 10.10a: Two medical tests
with ordinal scores—diseased patients:
frequencies and probabilities.

Test 2 scores

Test 1 1 2 . . . k

1 n11, θ11 n12, θ12 n1k, θ1k

2 n21, θ21 n22, θ22 n2k, θ2k

·
·

k nk1, θk1 nk2, θk2 nkk , θkk

TABLE 10.10b: Two medical tests
with ordinal scores—non-diseased patients:
frequencies and probabilities.

Test 1 2 . . . k

1 m11,φ11 m12,φ12 m1k,φ1k

2 m21,φ21 m22,φ22 m2k,φ2k

·
·
k mk1,φk1 mk2,φk2 mkk ,φkk
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where

A11 =
i=k∑
i=2

θi.


j=i−1∑

j=1

φj.


 , (10.52)

and θi., i = 1, 2, . . . , k, are the sum of θij over the missing subscript and

A12 =
i=k∑
i=1

θi.φi.. (10.53)

The ROC area for the second test is defined in a similar fashion as

Area2 = A21 + A22/2, (10.54)

where

A21 =
i=k∑
i=2

θ.i


j=i−1∑

j=1

φ.j


 (10.55)

and

A22 =
i=k∑
i=1

θ.iφ.i.

Our goal is to use the area under the ROC of the risk score as a measure of the
accuracy of the combined tests T1 and T2, where the risk scores are determined
by logistic regression (if appropriate)

logit(θij ) = γ + g(λ, T1, T2), (10.56)

and the unknown parameters γ and λ (possibly a vector) are estimated by
Bayesian techniques. From the logistic regression, the estimated (e.g., pos-
terior means) cell probabilities are employed to estimate the area under the
ROC curve of the risk score.

Note that the area under the ROC curve of the risk score is based on the
posterior distribution of the 2k2 parameters, θij and φij , for i, j = 1, 2, . . . , k,
and this scenario is illustrated with the following example, where the area
under the ROC curve is given by the usual formulas (Equations 4.47 and
4.48) employed earlier in Chapter 4. Of course, in addition, the area under
the ROC curves for the individual tests will also be portrayed and compared
to the area under the ROC curve of the risk score. It will be a challenge to
develop a good logistic regression (Equation 10.51); however, in some cases it
will turn out that the logit is a linear function of the two tests, T1 and T2.
The risk score is assigned to each experimental unit and is the probability of
disease, which is estimated from the raw scores of the two component tests!
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Note, using the risk score is a statistical procedure and will ideally be utilized
by the clinician working with a statistician.

10.5.1 Magnetic resonance imaging and computed
tomography determination of lung cancer risk

When considering the accuracy of two ordinal tests, a paired study is
envisioned, where each test is applied to each patient and one reader examines
the results of both tests. It is important to remember that the reader uses the
results of both tests for each patient in order to decide what score to assign
to the patient.

Our first example involves the MRI and CT determination of lung cancer
risk, where one radiologist interprets both images and gives a score from 1 to 5
for the presence of a malignant lesion with the following definition: A score of
1 indicates no evidence of malignancy, while a score of 2 indicates very little
evidence of a lesion. A score of 3 designates a benign lesion, while a score of
4 indicates that there is some evidence of a malignancy, and finally a score
of 5 signals that the lesion is definitely malignant. This is obviously a paired
design in that both images are taken on each patient and one would expect
a “large” correlation between the scores of MRI and CT images. A total of
261 patients have lung cancer and 674 do not, and the gold standard is lung
biopsy (Tables 10.11a and b).

The above study is hypothetical, but many studies have investigated CT
and MRI as alternatives to detecting lung cancer, and it should be noted that
CT has shown good promise (in comparison to x-ray) in a recent national
lung cancer screening trial, see Gierada, Pilgrim, and Ford [10] for additional
information.

With regard to the accuracy of the combined test, the approach is to find
the area under the ROC curve of the risk score, which is determined by logistic
regression, namely,

logit(theta[i]) = b[1] + b[2]T1 + b[3]T2, (10.57)

TABLE 10.11a: MRI and CT scores for
detecting lung cancer—diseased patients.

MRI scores

CT scores 1 2 3 4 5 Total
1 15 10 6 2 1 34
2 9 21 10 3 2 45
3 5 6 32 6 3 52
4 2 0 6 47 2 57
5 0 1 2 5 65 73
Total 31 38 56 63 73 261
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TABLE 10.11b: MRI and CT scores for
detecting lung cancer—non-diseased patients.

MRI scores

CT scores 1 2 3 4 5 Total
1 92 62 41 8 5 208
2 58 81 10 8 4 161
3 38 30 65 31 18 182
4 16 2 21 35 12 86
5 5 1 3 11 17 37
Total 209 176 140 93 56 674

where theta[i] is the probability that the ith patient has disease, and i = 1,
2, . . . , N .

N is the number of patients in the study with 261 with disease (lung
cancer) and 674 with no disease, and b[i] are unknown regression coefficients.
From a Bayesian viewpoint, the regression coefficients are given vague prior
distributions of the form

b[i] ∼ dnorm(0.000, 0.0001), (10.58)

namely, a normal distribution with mean 0 and precision 0.0001.
A Bayesian analysis for the lung cancer study is executed in two stages:

(1) using BUGS CODE 10.4, estimate the ROC areas of MRI and CT;
and (2) using BUGS CODE 10.5, estimate the ROC area of the combined
test, based on the risk score (Equation 10.57).

Consider first, estimating the area of the two tests, BUGS CODE 10.4.

BUGS CODE 10.4

model;
# BUGS CODE 10.4
{
# Scores for tests 1 and 2 diseased
for(i in 1:5){for(j in 1:5){ g[i,j]∼dgamma(y[i,j],2)}}
sg<-sum(g[,])
# Scores for tests 1 and 2 non diseased
for(i in 1:5){for(j in 1:5){ h[i,j]∼dgamma(z[i,j],2)}}
sh<-sum(h[,])
# cell probabilities for diseased
for( i in 1:5){for( j in 1:5){ theta[i,j]<-g[i,j]/sg }}
# cell probabilities for non diseased
for( i in 1:5){for( j in 1:5){ phi[i,j]<-h[i,j]/sh }}
# cell probabilities have a Dirichlet distribution
th1.<-sum(theta[1,])
th2.<-sum(theta[2,])
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th3.<-sum(theta[3,])
th4.<-sum(theta[4,])
th5.<-sum(theta[5,])
th.1<-sum(theta[,1])
th.2<-sum(theta[,2])
th.3<-sum(theta[,3])
th.4<-sum(theta[,4])
th.5<-sum(theta[,5])
ph1.<- sum(phi[1,])
ph2.<-sum(phi[2,])
ph3.<- sum(phi[3,])
ph4.<- sum(phi[4,])
ph5.<- sum(phi[5,])
ph.1<- sum(phi[,1])
ph.2<- sum(phi[,2])
ph.3<-sum(phi[,3])
ph.4<-sum(phi[,4])
ph.5<-sum(phi[,5])
# ROC area test 1
area1<- area11+area12/2
area11<-th2.*ph1.+th3.*(ph1.+ph2.)+th4.*(ph1.+ph2.+ph3.)+
th5.*(ph1.+ph2.+ph3.+ph4.)
area12<-th1.*ph1.+th2.*ph2.+th3.*ph3.+th4.*ph4.+th5.*ph5.
# ROC area for test 2
area2<- area21+area22/2
area21<-th.2*ph.1+th.3*(ph.1+ph.2)+th.4*(ph.1+ph.2+ph.3)+
th.5*(ph.1+ph.2+ph.3+ph.4)
area22<-th.1*ph.1+th.2*ph.2+th.3*ph.3+th.4*ph.4+th.5*ph.5
}
# example of mri (test 2)and ct (test 1) for lung cancer
# assumes uniform prior
list(y=structure(.Data=c(16,11,7,3,2,

10,22,11,4,3,
6,7,33,7,4,
3,1,7,48,3,
1,2,3,6,66),.Dim = c(5,5)),

z=structure(.Data=c(93,63,42,9,6,
59,82,11,9,5,
39,31,66,32,19,
17,3,22,36,13,
6,2,4,12,18),.Dim = c(5,5))))

# Two MRI versions for prostate cancer
# Assumes a uniform prior
list(y=structure(.Data=c(4,8,7,4,1,

2,6,9,8,7,
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TABLE 10.12: Posterior analysis for MRI and CT study of lung
cancer—individual ROC areas.

Parameter Mean sd Error 2 1/2 Median 97 1/2
area ct 0.6836 0.0188 <0.0001 0.6459 0.6837 0.7198
area11 0.5931 0.0213 <0.0001 0.5509 0.5931 0.6346
area12 0.181 0.0057 <0.0001 0.1696 0.1811 0.1921
area mri 0.6886 0.0183 <0.0001 0.652 0.6889 0.7239
area21 0.5992 0.0207 <0.0001 0.5581 0.5994 0.6392
area22 0.1788 0.0049 <0.0001 0.1689 0.1789 0.1883

3,3,5,12,8,
1,2,2,9,14,
1,1,2,5,24),.Dim = c(5,5)),

z=structure(.Data=c(104,10,4,3,4,
32,63,12,7,6,
26,23,32,14,10,
12,12,21,31,16,
14,16,29,22,14),.Dim = c(5,5))))

Based on generating 45,000 observations from the posterior distribution,
with a burn in of 5,000 and a refresh of 100, the Bayesian analysis is presented
in Table 10.12.

The Markov Chain Monte Carlo (MCMC) errors are quite small and show
that the presented estimated ROC areas are very “close” to the actual pos-
terior areas, and the analysis also shows that the two areas are about the
same, that is the accuracy of the two modalities are essentially the same. The
probability of a tie with CT is estimated with a posterior mean of 0.181 and
0.1788 with MRI. Thus, one would expect the accuracy of the combined test,
as measured by the ROC area of the risk score, to be about the same value
in the area of 0.70.

The statements of BUGS CODE 10.5 closely follow the formulas given
above.

BUGS CODE 10.5

model:
# logistic regression
{
for( i in 1:935){d[i]∼dbern(theta[i])}
for( i in 1:935){logit(theta[i])<- b[1]+b[2]*T1[i]+b[3]*T2[i]}
# prior distributions
for( i in 1:3){ b[i]∼dnorm(0.000,.0001)}
# area under the curve
for( i in 1 : 935){ p[i]∼dnorm(mu[i], precy[d[i]+1])
mu[i]<-beta[1]+beta[2]*d[i]}
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# prior distributions
for( i in 1:2){beta[i]∼dnorm(0.000,.0001)
precy[i]∼dgamma(0.0001,.0001)
vary[i]<-1/precy[i]}
la1y<-beta[2]/sqrt(vary[1])
la2y<-vary[2]/vary[1]
auc<-phi(la1y/sqrt(1+la2y))
}
list(T1=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
5,5,5,5,5,5,5,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5),
T2=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,5,1,1,1,1,1,1,
1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,5,5,1,1,1,1,
1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,
4,4,5,5,5,1,1,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,2,3,3,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
5,5,5,5,5,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,1,1,1,1,1,1,1,1,1,1,1,1,
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1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,1,1,
1,1,1,2,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5),
d=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
p=c(.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.13,.13,.13,.13,.13,
.13,.13,.13,.13,.13,.17,.17,.17,.17,.17,.17,.23,.23,.29,.13,.13,.13,.13,.13,.13,.13,
.13,.13,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,
.17,.17,.23,.23,.23,.23,.23,.23,.23,.23,.23,.23,.29,.29,.29,.37,.37,.18,.18,.18,.18,
.18,.23,.23,.23,.23,.23,.23,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,
.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.37,.37,.37,
.37,.37,.37,.45,.45,.45,.23,.23,.38,.38,.38,.38,.38,.38,.46,.46,.46,.46,.46,.46,.46,
.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,
.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.54,.54,
.38,.46,.46,.55,.55,.55,.55,.55,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,
.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,
.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,
.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,
.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,
.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,
.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,
.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.13,.13,.13,

  



K11763 Chapter: 10 page: 385 date: June 17, 2011

Accuracy of Combined Tests 385

.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,

.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,

.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.17,.17,.17,.17,

.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,

.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.23,.23,.23,.23,.23,

.23,.23,.23,.29,.29,.29,.29,.29,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,

.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,

.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,.13,

.13,.13,.13,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,

.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,

.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,

.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,

.23,.23,.23,.23,.23,.23,.23,.23,.23,.23,.29,.29,.29,.29,.29,.29,.29,.29,.37,.37,.37,

.37,.18,.18,.18,.18,.18,.18,.18,.18,.18,.18,.18,.18,.18,.18,.18,.18,.18,.18,.18,.18,

.18,.18,.18,.18,.18,.18,.18,.18,.18,.18,.18,.18,.18,.18,.18,.18,.18,.18,.23,.23,.23,

.23,.23,.23,.23,.23,.23,.23,.23,.23,.23,.23,.23,.23,.23,.23,.23,.23,.23,.23,.23,.23,

.23,.23,.23,.23,.23,.23,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,

.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,

.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,.30,

.30,.30,.30,.30,.30,.30,.30,.30,.37,.37,.37,.37,.37,.37,.37,.37,.37,.37,.37,.37,.37,

.37,.37,.37,.37,.37,.37,.37,.37,.37,.37,.37,.37,.37,.37,.37,.37,.37,.37,.45,.45,.45,

.45,.45,.45,.45,.45,.45,.45,.45,.45,.45,.45,.45,.45,.45,.45,.23,.23,.23,.23,.23,.23,

.23,.23,.23,.23,.23,.23,.23,.23,.23,.23,.30,.30,.38,.38,.38,.38,.38,.38,.38,.38,.38,

.38,.38,.38,.38,.38,.38,.38,.38,.38,.38,.38,.38,.46,.46,.46,.46,.46,.46,.46,.46,.46,

.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,.46,

.46,.46,.46,.46,.46,.54,.54,.54,.54,.54,.54,.54,.54,.54,.54,.54,.54,.30,.30,.30,.30,

.30,.38,.46,.46,.46,.55,.55,.55,.55,.55,.55,.55,.55,.55,.55,.55,.63,.63,.63,.63,.63,

.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63,.63))
list(precy=c(1,1), beta=c(0,0), b=c(0,0,0))

As before, when estimating the ROC area of the risk score, 45,000 obser-
vations are generated for the MCMC simulation, with a burn in of 5,000 and
a refresh of 100. The first list statement of BUGS CODE 10.5 gives the data for
executing the analysis. There are 935 observations in each vector, where the
first 261 correspond to the diseased subjects and the remaining 674 correspond
to the non-diseased patients. Vector T1 is for the first test and T2 gives the
values (1, 2, 3, 4, 5) for the second test. After running the logistic regression,
I put the estimated probability of lung cancer (the risk score) into a vector
labeled p. This vector is the input to the algorithm for estimating the ROC
area, which is clearly specified in the code. This part of the code has been used
before in Chapter 4 for continuous normally distributed observations, and the
posterior analysis is presented as Table 10.13.

The ROC area of the risk score is the area under the curve (AUC) and is
estimated as 0.7246(0.0192) with the posterior mean, and the median is about
the same value, indicating very little skewness in the posterior distribution.
The implication is that the combined test has an accuracy that is about the
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TABLE 10.13: Posterior accuracy of the combined test—ROC area of
the risk score.

Parameter Mean sd Error 2 1/2 Median 97 1/2
auc 0.7246 0.0192 <0.0001 0.6858 0.725 0.7616
b[1] −2.952 0.2162 <0.0001 −3.381 −2.949 −2.533
b[2] 0.3562 0.0752 <0.0001 0.2089 0.3562 0.504
b[3] 0.3392 0.0723 <0.0001 0.1965 0.3391 0.481
beta[1] 0.2412 0.0053 <0.0001 0.2309 0.2412 0.2516
beta[2] 0.1385 0.0127 <0.0001 0.1136 0.1385 0.1638
precy[1] 53.13 2.904 0.0143 47.59 53.1 58.92
precy[2] 28.79 2.528 0.0122 24.08 28.71 33.99

same as the accuracy of the individual tests (see Table 10.13), which portrays
the individual area as approximately 0.68. Of course, this is not surprising
because the individual ROC area for CT and MRI are essentially the same,
thus, one would expect the accuracy of the combined test to be about the
same as the individual values.

Note, that b are the regression coefficients for the logistic regression, and
beta are the regression coefficients in the normal regression for the ROC area of
the risk score. As shown in BUGS CODE 10.5, the logistic regression is linear
in the two test variables, T1 and T2, but I did add the squares and cross product
of the two and the ROC area remained the same, thus, the linear association
appears to be adequate for estimating the risk score for the combined test. The
risk scores are not normally distributed, but can be transformed to normality
approximately via the log transformation, however, when this is done the ROC
area remains at about 0.72.

There are many interesting examples involving two or more modalities for
assessing risk of disease. For example, Utsunomiya et al. [11] used SPECT/CT
scintigraphy and CT to study bone metastasis in cancer patients, while
Mazaheri et al. [12] combined diffusion weighted MRI imaging with MR spec-
trographic imaging to identify malignant lesions of the prostate. In another
prostate cancer study, Futterer et al. [13] studied the accuracy of prostate
cancer localization with a combination of contrast enhanced MRI and pro-
ton MR spectroscopic imaging. In all these investigations, the accuracy of the
tests was measured by the ROC area.

Prostate cancer is an active area of imaging studies as illustrated by
Coakley et al. [14], who employed endorectal MR imaging with MR spec-
troscopic imaging with the objective of detecting recurrence of the disease.

For additional information about combination imaging modalities in
prostate cancer see Heijmink et al. [15], who used body array vs. endorec-
tal coil MR for a comparison of image quality for localization and staging of
prostate cancer.

It should be emphasized that the combined test is the one that assigns a
risk score (the probability of disease) to each experimental unit and is obtained
by logistic regression, thus, it is envisioned that the clinician or the responsible
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person assigns the risk score. The ROC area of the risk score is the accuracy
of the combined test and is optimal, in the sense that its ROC area is at least
as large as the ROC areas of the component tests. In other words, the optimal
combined test is a statistical procedure for assigning scores to the experimental
unit (often a patient).

10.5.2 Body array and endorectal coil magnetic resonance
imaging for localization of prostate cancer

Heijmink et al.’s [15] study is the basis of the next example and illustrates
the use of the risk score to measure the accuracy of using two tests to iden-
tify those parts (segments) of the prostate gland that have malignant lesions.
MRI is the basis of this important study, where the modality is applied in
two ways to each patient, either with a body array or by the rectum. There
are many objectives to the study, including measuring the quality (contrast,
resolution, and noise) of two tests, but the emphasis for our purposes is on
localization, that is, determining what part of the prostate contains malignant
lesions.

The reader assigns a score from 1 to 5 to each of the 14 segments of the
gland, where 1 means a lesion is definitely absent, 2 signifies a lesion is prob-
ably absent, 3 indicates an ambiguous result, 4 signifies a lesion is probably
present, and 5 indicates a lesion is definitely present. After total prostatec-
tomy, histopathology of the prostate gland serves as the gold standard for the
46 patients, where 124 segments among a total of 644 segments were identi-
fied as having separate cancer foci; the imaging results are shown in Tables
10.14a and b.

BUGS CODE 10.4 and 10.5 are used to execute the Bayesian analysis
where the latter deals with the ROC area for the two tests, test 1 and test 2,
where test 1 is the body array coil MRI and test 2 is the endorectal coil MRI.
The second list statement of BUGS CODE 10.4 is the information from
Tables 10.14a and b, and the analysis is executed with 45,000 observations

TABLE 10.14a: Body array and endorectal MRI for
localization of prostate cancer for 124 diseased segments.

Endorectal scores

Body array scores 1 2 3 4 5 Total
1 3 7 6 3 1 20
2 1 5 8 7 6 27
3 2 2 4 11 7 26
4 0 1 1 8 13 23
5 0 0 1 4 23 28
Total 6 15 20 33 50 124

Source: From Heijmink, S.W.T.P., et al., Radiology, 244,
184, 2007, with permission of Radiological Society of North
America.
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TABLE 10.14b: Body array and endorectal MRI for
localization of prostate cancer for 520 non-diseased segments.

Endorectal scores

Body array scores 1 2 3 4 5 Total
1 103 9 3 2 3 120
2 31 62 11 6 5 115
3 25 22 31 13 9 100
4 11 19 20 30 15 95
5 13 15 28 21 13 90
Total 183 127 93 72 45 520

Source: From Heijmink, S.W.T.P. et al., Radiology, 244, 184,
2007, with permission of Radiological Society of North America.

generated by MCMC, with a burn in of 5,000 and a refresh of 100, where the
Bayesian analysis is given in Table 10.15.

It is apparent from Table 10.15 that the ROC area of the endorectal coil
MRI images are more accurate than the body array MRI coil images, where
the latter area has a posterior mean of 0.7519 compared to 0.5521 for the
former. Assuming one radiologist is reading both images for all patients, does
the combined test have higher accuracy? Remember, the radiologist is using
the scores of both images to assign a score for the combined test.

In order to assess the accuracy of the combined test, BUGS CODE 10.5
is executed using the study information of Table 10.16, which should be
appended to BUGS CODE 10.5 as a list statement. The information includes
the d vector, the disease indicator, results of the first test T1, results of the
second test T2, and the vector p of risk scores, which are the theta values
produced by the logistic regression (Table 10.16).

Using 55,000 observations for the MCMC simulation, with a burn in of
5,000 and a refresh of 100, the posterior analysis for the accuracy of the
combined test is given in Table 10.17.

This is a very encouraging result because the ROC area of the combined
test has a posterior mean of 0.8038, which is larger than the ROC areas of the
component tests, which are 0.5521 for test 1, the body array coil, and 0.7517
for the endorectal coil, and one sees the value of using two imaging methods
to identify the segment of the prostate gland that has a malignant lesion.

TABLE 10.15: Posterior analysis for the prostate cancer study with
two MRI images—ROC areas of the two tests.

Parameter Mean sd Error 2 1/2 Median 97 1/2
Body coil array 0.5521 0.0257 <0.0001 0.5011 0.5523 0.602

MRI area
Endorectal coil 0.7519 0.0216 <0.00001 0.7078 0.7525 0.7927

MRI area
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TABLE 10.16: Information for the prostate cancer study—values for
the first test, second test, disease indicator, and risk scores.

list(N=644,
T1=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
5,5,5,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5),
T2=c(1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,5,1,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,
4,4,4,5,5,5,5,5,5,1,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,2,3,4,4,4,4,
4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,3,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
5,5,5,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3,4,4,5,5,
5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,
4,4,5,5,5,5,5,5,5,5,5,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5),
d=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

(continued)
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TABLE 10.16 (continued): Information for the prostate cancer
study—values for the first test, second test, disease indicator, and risk scores.

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),
p=c(.06,.06,.06,.15,.15,.15,.15,.15,.15,.15,.33,.33,.33,.33,.33,.33,.59,.59,.59,
.80,.04,.10,.10,.10,.10,.10,.25,.25,.25,.25,.25,.25,.25,.25,.48,.48,.48,.48,.48,
.48,.48,.72,.72,.72,.72,.72,.72,.03,.03,.07,.07,.17,.17,.17,.17,.37,.37,.37,.37,
.37,.37,.37,.37,.37,.37,.37,.63,.63,.63,.63,.63,.63,.63,.05,.12,.28,.28,.28,.28,
.28,.28,.28,.28,.52,.52,.52,.52,.52,.52,.52,.52,.52,.52,.52,.52,.52,.08,.20,.20,
.20,.20,.41,.41,.41,.41,.41,.41,.41,.41,.41,.41,.41,.41,.41,.41,.41,.41,.41,.41,
.41,.41,.41,.41,.41,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,
.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,
.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,
.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,
.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,.06,
.06,.06,.06,.06,.06,.06,.06,.06,.15,.15,.15,.15,.15,.15,.15,.15,.15,.33,.33,.33,
.59,.59,.80,.80,.80,.04,.04,.04,.04,.04,.04,.04,.04,.04,.04,.04,.04,.04,.04,.04,
.04,.04,.04,.04,.04,.04,.04,.04,.04,.04,.04,.04,.04,.04,.04,.04,.10,.10,.10,.10,
.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,
.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,
.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.10,.25,.25,
.25,.25,.25,.25,.25,.25,.25,.25,.25,.48,.48,.48,.48,.48,.48,.72,.72,.72,.72,.72,
.03,.03,.03,.03,.03,.03,.03,.03,.03,.03,.03,.03,.03,.03,.03,.03,.03,.03,.03,.03,
.03,.03,.03,.03,.03,.07,.07,.07,.07,.07,.07,.07,.07,.07,.07,.07,.07,.07,.07,.07,
.07,.07,.07,.07,.07,.07,.07,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,
.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.17,.37,.37,
.37,.37,.37,.37,.37,.37,.37,.37,.37,.37,.37,.63,.63,.63,.63,.63,.63,.63,.63,.63,
.02,.02,.02,.02,.02,.02,.02,.02,.02,.02,.02,.05,.05,.05,.05,.05,.05,.05,.05,.05,
.05,.05,.05,.05,.05,.05,.05,.05,.05,.05,.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,
.12,.12,.12,.12,.12,.12,.12,.12,.12,.12,.28,.28,.28,.28,.28,.28,.28,.28,.28,.28,
.28,.28,.28,.28,.28,.28,.28,.28,.28,.28,.28,.28,.28,.28,.28,.28,.28,.28,.28,.28,
.52,.52,.52,.52,.52,.52,.52,.52,.52,.52,.52,.52,.52,.52,.52,.01,.01,.01,.01,.01,
.01,.01,.01,.01,.01,.01,.01,.01,.03,.03,.03,.03,.03,.03,.03,.03,.03,.03,.03,.03,
.03,.03,.03,.08,.08,.08,.08,.08,.08,.08,.08,.08,.08,.08,.08,.08,.08,.08,.08,.08,
.08,.08,.08,.08,.08,.08,.08,.08,.08,.08,.08,.20,.20,.20,.20,.20,.20,.20,.20,.20,
.20,.20,.20,.20,.20,.20,.20,.20,.20,.20,.20,.20,.41,.41,.41,.41,.41,.41,.41,.41,
.41,.41,.41,.41,.41))
list(precy=c(1,1), beta=c(0,0), b=c(0,0,0))
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TABLE 10.17: Accuracy of the combined test for the prostate cancer
study.

Parameter Mean sd Error 2 1/2 Median 97 1/2
auc 0.8038 0.0223 <0.0001 0.7579 0.8047 0.8451
b[1] −3.405 0.3392 0.0026 −4.088 −3.397 −2.758
b[2] −0.441 0.1035 <0.0001 −0.6495 −0.439 −0.2419
b[3] 1.052 0.1081 <0.0001 0.846 1.05 1.269
beta[1] 0.1518 0.00702 <0.0001 0.1381 0.1519 0.1656
beta[2] 0.2098 0.0181 <0.0001 0.1742 0.2097 0.2456

Recall that the radiologist assigns a risk score (via logistic regression) to each
segment based on the scores of the two MRI images, and the ROC curve of
the combined test is shown in Figure 10.4.

10.5.3 Accuracy of combined test with a covariate
for lung cancer study

An analysis of the above example is continued by taking into account the
effect of a covariate on the risk score. Suppose the age of each patient in the
study is known and is included in the logistic regression. What is the effect
on the accuracy of the test? The age is listed in Table 10.18 and is used with
BUGS CODE 10.5 to estimate the accuracy of the combined test.
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FIGURE 10.4: ROC curve of the combined test for prostate cancer study.
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TABLE 10.18: The covariable age for the prostate cancer study and
risk scores.

age=c(68,70,67,75,75,72,73,84,81,91,61,81,85,75,75,83,74,80,80,57,89,100,
68,84,99,88,83,78,84,89,80,91,70,81,85,78,80,85,76,76,81,89,89,100,64,79,82,
82,69,92,75,95,65,75,81,83,84,89,80,67,72,94,85,73,84,77,79,70,69,77,75,76,
73,77,67,76,88,87,88,63,76,85,79,74,77,86,73,83,87,78,83,78,70,101,94,100,
78,82,69,85,78,85,84,87,81,85,88,87,82,76,90,73,69,77,89,75,85,69,76,83,71,
81,77,101,84,93,94,72,68,96,93,79,71,75,86,87,80,96,76,70,74,77,97,98,93,65,
79,65,71,82,78,63,87,74,73,84,90,70,81,85,76,72,75,88,48,77,92,85,74,87,90,
95,64,66,104,80,74,96,79,84,69,73,92,79,84,72,84,6,88,47,98,88,47,78,77,58,
47,95,48,175,72,80,68,99,58,99,98,82,73,88,80,65,82,97,83,78,81,96,76,80,86,
73,67,101,80,71,91,87,61,72,83,76,64,80,83,89,57,90,75,99,73,80,66,87,83,70,
75,77,64,52,84,71,81,64,90,92,76,74,75,91,80,76,68,55,69,56,70,71,67,81,69,
58,78,66,74,53,53,67,73,76,70,61,66,61,66,56,60,48,83,69,62,66,42,62,62,70,
57,69,68,83,75,87,65,62,65,59,67,54,71,81,68,64,47,55,51,62,63,65,52,80,48,
70,65,75,69,63,65,94,56,59,61,73,58,40,66,76,60,79,50,82,74,70,73,71,55,76,
67,73,76,90,68,67,49,58,66,57,56,77,64,61,65,60,33,53,70,69,83,65,81,74,63,
71,63,75,64,71,64,58,59,59,58,64,76,56,68,67,65,76,73,64,53,80,45,62,72,85,
58,81,58,52,61,63,64,58,64,70,62,60,78,69,79,60,45,62,73,80,88,73,63,73,63,
69,63,73,51,66,62,64,47,72,49,63,61,57,63,75,82,56,71,71,56,62,73,70,65,69,
59,71,56,70,61,70,86,36,59,77,66,66,60,70,71,76,73,61,73,63,59,50,60,61,82,
61,55,73,53,69,65,59,67,63,69,82,73,60,52,51,62,67,67,50,57,67,92,68,72,53,
46,60,54,73,49,65,58,74,57,72,74,84,62,82,70,56,69,63,66,67,59,57,66,60,56,
63,66,80,97,67,76,77,38,66,49,45,54,75,79,94,61,82,74,66,56,65,55,78,68,61,
68,54,67,89,81,61,36,77,66,76,66,53,49,72,85,83,76,70,62,81,58,76,55,63,57,
84,58,66,54,64,59,53,46,65,58,56,39,69,65,62,63,65,37,70,72,58,66,70,58,55,
85,53,72,74,70,49,56,58,76,63,65,74,61,54,56,65,54,66,68,69,65,64,76,65,52,
72,73,77,65,72,70,59,65,56,60,54,59,65,58,66,72,62,56,62,58,51,61,83,67,69,
50,70,75,55,48,72,71,52,57,68,79,54,58,47,53,62,56,49,68,62,62,58,80,62,77,
69,51,69,46,84,49,57,67,74,52,80,61,64,71,45,61,56,56,65,69,80,37,60,57,72,
59,55,82,62,66,77,82,47,87,77,71,66,60,72,58,47,55,78,57,69,76,61,77,83,53,
44,71,69,51,73,75,49,41,47,64,68,60,69,75,74,77,68,64,70,46,64,67,50,55,59,
63,63,68,62,69,56,88,71,82,49,68,42,62,54,57,71,74,65,51,82,57,72,59,62,73,
64,63,53,67,75,72,62,61,82,81,71,46,70,52,57,58,68,74,69,74,75,64,75,72,54,
75,54,58,61,72,51,75,81,61,63,66,64,62,86,52,59,61,59,76,59,50,54,57,73,56,
50,70,64,85,75,55,55,53,61,64,73,60,44,82,65,53,77,58,63,66,82,45,43,63,62,
72,73,71,76,64,50,57,69,76,78,63,61,77,65,66,65,75,59,70,73,64,61,67,60,50,
52,55,77,63,73,61,76,63,69,58,46,71,60,49,51,78,71,52,61,64,78,47,72,70,95,
72,62,49,65,73,54,53,70,58,63,73,80,63,75,72,41,59,42,66,72,65,59,64,64,54,
71,56,69,54,40,48,73,60,73,57,77,79,52,57)
p=c(.05,.07,.04,.13,.13,.09,.10,.36,.27,.62,.02,.27,.39,.14,.14,.39,.15,.32,.29,
.01,.61,.90,.07,.44,.88,.66,.48,.29,.51,.68,.35,.79,.14,.54,.51,.28,.35,.50,.21,
.21,.38,.65,.67,.93,.06,.38,.48,.47,.11,.80,.25,.86,.06,.23,.42,.51,.54,.72,.39,
.09,.16,.85,.57,.20,.61,.37,.44,.17,.15,.38,.29,.32,.25,.37,.14,.38,.81,.82,.83,
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TABLE 10.18 (continued): The covariable age for the prostate
cancer study and risk scores.

.06,.28,.60,.39,.23,.39,.72,.26,.61,.75,.44,.68,.50,.23,.97,.91,.96,.48,.63,.20,

.73,.50,.75,.72,.79,.60,.73,.82,.79,.65,.43,.86,.33,.20,.46,.84,.40,.74,.21,.43,

.69,.25,.61,.53,.98,.76,.93,.94,.34,.29,.97,.94,.52,.24,.48,.84,.85,.68,.96,.53,

.38,.54,.63,.97,.98,.95,.22,.69,.22,.41,.79,.67,.19,.89,.55,.50,.83,.93,.39,.77,

.85,.60,.47,.57,.90,.02,.65,.94,.85,.55,.89,.93,.96,.20,.25,.99,.73,.54,.97,.70,

.83,.35,.48,.94,.72,.83,.47,.88,.39,.81,.73,.91,.88,.72,.93,.66,.88,.82,.11,.87,

.72,.64,.86,.48,.99,.17,.99,.99,.88,.66,.95,.85,.39,.89,.99,.90,.81,.87,.98,.76,

.84,.93,.66,.45,.99,.84,.60,.97,.94,.25,.63,.90,.75,.33,.84,.91,.95,.15,.96,.73,

.99,.68,.85,.42,.94,.89,.56,.72,.77,.34,.08,.91,.60,.87,.33,.96,.97,.74,.69,.73,

.97,.85,.16,.05,.01,.06,.01,.06,.08,.04,.27,.06,.01,.20,.04,.11,.01,.01,.04,.10,

.15,.06,.02,.04,.02,.04,.01,.02,.00,.33,.06,.02,.04,.00,.02,.02,.07,.01,.06,.05,

.33,.13,.50,.03,.02,.03,.01,.05,.01,.07,.27,.05,.03,.00,.01,.00,.02,.03,.03,.00,

.24,.00,.07,.04,.14,.06,.02,.04,.73,.01,.01,.02,.10,.01,.00,.04,.15,.02,.21,.00,

.30,.11,.06,.10,.07,.01,.15,.05,.10,.14,.59,.05,.04,.00,.02,.05,.01,.01,.22,.04,

.03,.04,.02,.00,.01,.09,.07,.42,.04,.35,.14,.03,.10,.03,.17,.04,.10,.04,.02,.02,

.02,.02,.04,.19,.01,.07,.06,.04,.18,.14,.04,.01,.29,.00,.03,.12,.46,.02,.33,.02,

.01,.03,.03,.04,.02,.04,.08,.03,.02,.24,.07,.28,.02,.00,.03,.12,.37,.67,.17,.05,

.18,.04,.10,.04,.17,.01,.06,.04,.05,.00,.15,.01,.04,.03,.02,.04,.21,.42,.02,.12,

.13,.02,.04,.16,.12,.06,.10,.02,.14,.02,.11,.03,.12,.58,.00,.03,.27,.08,.09,.04,

.15,.16,.30,.20,.05,.26,.08,.04,.01,.05,.03,.40,.03,.01,.15,.01,.09,.05,.02,.07,

.04,.09,.39,.14,.02,.01,.01,.03,.06,.07,.01,.02,.06,.76,.08,.14,.01,.00,.03,.01,

.15,.00,.05,.02,.17,.02,.13,.16,.47,.03,.38,.10,.01,.09,.04,.06,.07,.02,.01,.06,

.02,.01,.04,.05,.32,.87,.07,.22,.30,.00,.08,.01,.00,.01,.25,.38,.83,.04,.48,.22,

.08,.02,.06,.02,.33,.09,.03,.11,.01,.09,.72,.44,.04,.00,.30,.07,.27,.08,.01,.01,

.17,.57,.50,.26,.13,.04,.43,.02,.27,.01,.05,.02,.55,.02,.08,.01,.05,.03,.01,.00,

.07,.03,.02,.00,.11,.06,.04,.05,.07,.00,.13,.17,.02,.08,.12,.02,.02,.58,.01,.17,

.22,.12,.01,.02,.02,.26,.05,.06,.22,.05,.02,.02,.09,.02,.09,.12,.14,.08,.07,.41,

.12,.02,.27,.28,.43,.11,.25,.26,.07,.14,.04,.04,.01,.03,.08,.03,.08,.20,.05,.02,

.05,.03,.01,.04,.54,.09,.13,.01,.14,.27,.02,.01,.19,.17,.01,.02,.11,.41,.02,.03,

.01,.01,.05,.02,.01,.11,.05,.05,.03,.52,.07,.39,.16,.01,.17,.01,.63,.01,.03,.13,

.30,.01,.49,.06,.08,.20,.01,.06,.03,.03,.10,.17,.51,.00,.05,.03,.25,.04,.02,.65,

.08,.14,.48,.64,.01,.79,.46,.26,.15,.07,.28,.05,.01,.03,.50,.04,.20,.42,.07,.47,

.67,.02,.01,.26,.20,.02,.31,.41,.01,.00,.01,.10,.19,.06,.20,.38,.35,.47,.19,.11,

.24,.01,.11,.17,.01,.03,.06,.10,.10,.19,.09,.21,.03,.83,.27,.65,.01,.19,.00,.08,

.03,.04,.27,.36,.16,.02,.69,.05,.35,.07,.11,.40,.15,.13,.03,.20,.48,.34,.10,.09,

.71,.68,.33,.01,.28,.03,.05,.06,.23,.44,.25,.44,.46,.14,.44,.42,.04,.54,.05,.08,

.12,.42,.03,.53,.75,.12,.16,.22,.19,.15,.86,.04,.10,.07,.05,.39,.05,.01,.02,.04,

.30,.03,.01,.20,.09,.72,.36,.03,.03,.03,.09,.16,.43,.09,.01,.73,.18,.04,.56,.07,

.14,.21,.73,.01,.01,.14,.13,.37,.43,.35,.53,.15,.03,.08,.35,.61,.66,.18,.13,.65,

.23,.26,.24,.55,.10,.38,.49,.21,.15,.30,.12,.03,.04,.06,.63,.17,.50,.14,.60,.18,

.36,.09,.02,.41,.13,.03,.04,.72,.50,.06,.17,.24,.74,.03,.54,.44,.97,.54,.20,.02,

.16,.40,.03,.03,.35,.11,.21,.51,.82,.24,.68,.58,.01,.15,.01,.36,.55,.33,.16,.33,

.33,.10,.59,.14,.52,.10,.01,.04,.67,.23,.66,.16,.78,.82,.08,.16)
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TABLE 10.19: Posterior analysis for the accuracy of the
combined test.

Parameter Mean sd 2 1/2 Median 97 1/2
auc 0.889 0.0128 0.8623 0.8896 0.9125
b[1] −12.5 0.8524 −14.23 −12.48 −10.88
b[2] 0.4446 0.0936 0.2638 0.4443 0.63
b[3] 0.2784 0.0895 0.1031 0.2781 0.4552
b[4] 0.1319 0.0104 0.1119 0.1317 0.1529
beta[1] 0.1608 0.0074 0.1462 0.1609 0.1755
beta[2] 0.4238 0.0192 0.3859 0.4237 0.4615

Note: Age is a covariable: lung cancer test.

Add the age vector and the risk scores p to the second list statement of
BUGS CODE 10.5 and revise the code accordingly, and remember that the
output of the logistic regression is the theta vector of risk scores, which should
be included in the second list statement as the vector p. I executed the analysis
using 45,000 observations, with a burn in of 5,000 and a refresh of 100, and
the results are listed in Table 10.19.

The effect of age on the ROC area of the combined test is dramatic, with
a value of 0.889(0.0128) compared to a posterior mean of 0.7246 when the
covariate is ignored. Compare Table 10.13 with Table 10.19 and remember
that the b coefficients are the regression coefficients for the logistic regression,
while the beta values are the values of the regression coefficient for the normal
regression, which is necessary for calculating the ROC area. It appears that
the regression coefficients have a substantial effect and are needed to calcu-
late the risk score (via logistic regression) and the ROC area. Perhaps it is
not surprising after all, because the average age of the patients with disease
is 79.81(9.83) years compared to 64.63(10.44) years for the patients without
disease.

The effect of age on the ROC for each modality (MRI and CT) is not calcu-
lated, but is left as an exercise. See Chapter 5 and the use of ordinal regression
techniques for calculating the ROC area for ordinal test scores and including
covariates in the analysis.

TABLE 10.20: Two ordinal tests.
Y1 = 1 2 3

Y2 1 2 3 1 2 3 1 2 3
D = 1 s1 s2 s3 s4 s5 s6 s7 s8 s9
D = 0 r1 r2 r3 r4 r5 r6 r7 r8 r9
V = 0 u1 u2 u3 u4 u5 u6 u7 u8 u9
Total m1 m2 m3 m4 m5 m6 m7 m8 m9
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10.5.4 Accuracy of a combined test with
two components and verification bias

Our objective is to estimate the accuracy of the combined test with two
components, when the design is paired and each test is subject to verification
bias. As far as I know, this is “new” material, and recall from Section 8.5 in
Chapter 8, the Bayesian approach to estimating the accuracy of two paired
test, where the general layout is given by Table 8.11, which is portrayed in
Table 10.20.

The total number of observations is

m =
i=9∑
i=1

mi,

for two ordinal tests with scores 1, 2, 3, where the total number of subjects
who are not subject to verification (the gold standard) is

u =
i=9∑
i=1

ui.

Also recall from Chapter 8, Equations 8.32 through 8.42, which provide the
Bayesian analysis for the ROC areas of the two paired tests. The paired design
can occur in basically two ways: (a) there are two medical tests, both admin-
istered to each subject; or (b) there are two readers who are assigning scores
to each patient, based on the results of one medical test. What is the accuracy
of the combined test?

It should be recalled that our approach assumes the MAR assumption and
uses inverse probability weighting to create an imputed table corresponding
to Table 10.20. That is, for each pair of tests scores (Y1, Y2) in Table 10.20,
multiply the two cell frequencies by the inverse of the verification rate. For
example, corresponding to (1,1), the verification rate is (s1 + r1)/m1, and s1
is replaced by s1m1/(s1 + r1), an operation that is performed for all nine cells
of the table. Once the imputed table is constructed, the risk score is found
by using logistic regression to compute the risk scores, then the risk scores
are employed to compute the ROC area of the combined test. For additional
information on the inverse probability method, see Section 8.7 in Chapter 8
or Pepe [8: 171–2]. The methodology is introduced by an example taken from
Chapter 8 (Table 8.13), which is depicted in Table 10.21.

Table 10.21 gives the results of a paired study, where a dermatologist and
a surgeon score the stage of disease of a patient, where those patients who
are diseased actually have melanoma, but where those that do not have the
disease do not have melanoma, but have some other form of skin disease.

In Table 8.13 of Chapter 8, the ROC area for the surgeon is reported
as 0.7867(0.01192) and 0.6351(0.0145) for the dermatologist. Using inverse
probability weighting, Table 10.21 is converted to the imputed Tables 10.22a
and b.
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TABLE 10.21: Staging melanoma by a dermatologist and a surgeon.
Y1 = 1 2 3

Y2 1 2 3 1 2 3 1 2 3
D = 1 s1 = 8 s2 = 26 s3 = 51 s4 = 43 s5 = 81 s6 = 94 s7 = 117 s8 = 140 s9 = 208
D = 0 r1 = 101 r2 = 105 r3 = 83 r4 = 67 r5 = 72 r6 = 40 r7 = 41 r8 = 30 r9 = 4
V = 0 u1 = 2 u2 = 18 u3 = 62 u4 = 14 u5 = 83 u6 = 67 u7 = 63 u8 = 40 u9 = 108
Total m1 = 111 m2 = 149 m3 = 196 m4 = 124 m5 = 236 m6 = 201 m7 = 221 m8 = 210 m9 = 320
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TABLE 10.22a: Imputed values
for 1078 diseased patients.

Y1 1 2 3

Y2 Total
1 8 30 75 113
2 48 125 141 314
3 164 173 314 651
Total 220 328 530 1078

TABLE 10.22b: Imputed values
for 689 non diseased.

Y1 1 2 3

Y2 Total
1 103 119 121 343
2 76 110 60 246
3 57 37 6 100
Total 236 266 187 689

The posterior analysis for the accuracy of the combined test is executed
with BUGS CODE 10.5 using 45,000 observations for the simulation, with a
burn in of 5,000 and a refresh of 100, where the logistic regression produced a
risk score vector with ROC area 0.825(0.010), with a 95% credible interval of
(0.806,0.844), which compares with a ROC area of 0.7867 for the surgeon and
0.6351 for the dermatologist. The logistic regression had two strong predictors,
where the percentage of correct predictions for the 1078 diseased patients is
85.1 compared to 60.8 for the 689 non-diseased patients.

To execute the analysis with BUGS CODE 10.5, the list statement must
contain the vector of values d, the disease indicator, the values for T1 and T2
for each of the 1767 patients, and lastly, the vector of risk scores produced by
the logistic regression. Note that each of the vectors in the list statement is of
length 1767! See Exercise 12 for additional information about the dermatology
study.

10.6 Accuracy of the Combined Test for Continuous
Scores

When considering continuous scores, the accuracy of the combined test is
based on the ROC area of the risk scores, thus, the approach for this section
is to employ the O’Malley et al. [16] Bayesian determination of the ROC area,

  



K11763 Chapter: 10 page: 398 date: June 17, 2011

398 Advanced Bayesian Methods for Medical Test Accuracy

where the risk scores r are regressed on the disease indicator d, that is to say:

r[i] ∼ dnormal(m(u)), precision(d[i]+1), (10.59)

where i = 1, 2, . . . , N ,

m(u) = beta[1]+beta[2]∗d, (10.60)

where d is the indicator variable, beta[i] ∼ dnorm(0, 0.0001),

precision[i] ∼ dgamma(0.0001, 0.0001), and i=1, 2.

The AUC is computed as

AUC<-phi(la1/sqrt(1+la2)), (10.61)

where phi is the distribution function of the standard normal,

la1<-beta[2]/sqrt(var[1]), (10.62)
la2<-var[2]/var[1], (10.63)

Also

var[i]=1/precision[i], (10.64)

and i = 1, 2.
The risk score, vector r, is obtained by logistic regression where the depen-

dent variable is probability of disease (the risk score) and the independent
variables are the continuous scores of the component tests, but additional
covariate information can be included.

10.6.1 Two biomarkers for pancreatic cancer

A good example for illustrating the methodology is one previously con-
sidered in Chapter 4, the pancreatic cancer study by Wieand, Gail, and
James [17] that investigated the effect of two biomarkers on the disease inci-
dence. The data can be downloaded at http://www.fhcrc.org/labs/books/pepe
and is referenced by Pepe [8: 9].

The first biomarker is CA19-9 and the second biomarker is CA125. The
original values were transformed by logs to achieve approximate normal-
ity, because the original values of CA19-9 and CA125 were highly skewed
to the right. On the original scale the mean(sd) of CA19-9 is 18.03(20.81) for
the 51 control patients and 1715(3681) for the cancer patients, whereas for
the CA125 marker, the mean(sd) for the control patients is 21.81(30.29) and
55.04(138.8) for the diseased. The median for the first biomarker is 10 for the
control and 249 for the cancer patients, and for the second biomarker, the
medians are 11.4 vs. 21.8 for the control and diseased patients, respectively.
Note the large variability of both biomarkers, but based on the difference in
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TABLE 10.23: Biomarkers, risk scores, and disease incidence of
pancreatic study.

T1=c(28.00,15.50,8.20,3.40,17.30,15.20,32.90,11.10,87.50,16.20,107.90,5.70,
25.60,31.20,21.60,55.60,8.80,6.50,22.10,14.40,44.20,3.70,7.80,8.90,18.00,
6.50,4.90,10.40,5.00,5.30,6.50,6.90,8.20,21.80,6.60,7.60,15.40,59.20,5.10,
10.00,5.30,32.60,4.60,6.90,4.00,3.65,7.80,32.50,11.50,4.00,10.20,2.40,719.00,
2106.67,24000.00,1715.00,3.60,521.50,1600.00,454.00,109.70,23.70,464.00,
9810.00,255.00,58.70,225.00,90.10,50.00,5.60,4070.00,592.00,28.60,6160.00,
1090.00,10.40,27.30,162.00,3560.00,14.70,83.30,336.00,55.70,1520.00,3.90,
5.80,8.45,361.00,369.00,8230.00,39.30,43.50,361.00,12.80,18.00,9590.00,
555.00,60.20,21.80,900.00,6.60,239.00,3100.00,3275.00,682.00,85.40,
10290.00,770.00,247.60,12320.00,113.10,1079.00,45.60,1630.00,79.40,
508.00,3190.00,542.00,1021.00,235.00,251.00,3160.00,479.00,222.00,15.70,
2540.00,11630.00,1810.00,6.90,4.10,15.60,9820.00,1490.00,15.70,45.80,7.80,
12.80,100.53,227.00,70.90,2500.00),
T2=c(13.30,11.10,16.70,12.60,7.40,5.50,32.10,27.20,6.60,9.80,10.50,7.80,
9.10,12.30,12.00,42.10,5.90,9.20,7.30,6.80,10.70,15.70,8.00,6.80,47.35,17.90,
96.20,108.90,16.60,9.50,179.00,12.10,35.60,15.00,12.60,5.90,10.10,8.50,
11.40,54.65,9.70,11.20,35.70,22.50,21.20,5.60,9.40,12.00,9.80,17.20,10.60,
79.10,31.40,15.00,77.80,25.70,11.70,8.25,14.95,8.70,14.10,123.90,12.10,
99.10,18.60,10.50,6.60,74.00,43.90,45.70,13.00,7.30,8.60,17.20,15.40,14.30,
93.10,66.30,26.70,32.40,9.90,30.30,11.20,202.00,35.70,9.20,103.60,21.40,
8.10,29.90,17.50,30.80,57.30,6.50,33.80,53.60,17.20,94.20,33.50,3.70,11.70,
19.90,38.70,27.30,20.10,86.10,844.00,36.90,6.90,27.70,9.90,38.60,142.60,
12.50,11.60,21.20,13.20,19.20,1024.00,14.10,34.80,35.30,35.00,15.50,12.10,
31.60,184.80,24.80,10.40,34.50,19.40,22.20,53.90,15.40,17.30,36.80,49.80,
26.57,9.70,19.20,14.20),
d = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),
p=c(.38,.30,.28,.24,.30,.28,.49,.33,.74,.30,.84,.23,.35,.40,.34,.68,.24,.24,.32,
.28,.48,.25,.25,.25,.45,.27,.56,.64,.26,.24,.84,.25,.34,.35,.25,.24,.29,.57,.24,
.43,.24,.40,.32,.29,.27,.22,.25,.41,.27,.25,.27,.47,.99,.99,.99,.99,.24,.99,.99,
.99,.85,.77,.99,.99,.99,.58,.99,.90,.65,.36,.99,.99,.37,.99,.99,.28,.69,.98,.99,
.37,.73,.99,.56,.99,.31,.24,.61,.99,.99,.99,.47,.56,.99,.27,.40,.99,.99,.85,.42,
.99,.25,.99,.99,.99,.99,.91,.99,.99,.99,.99,.86,.99,.89,.99,.71,.99,.99,.99,.99,
.99,.99,.99,.99,.99,.30,.99,.99,.99,.25,.31,.33,.99,.99,.31,.52,.34,.42,.85,.99,
.69,.99))

the means and medians between the diseased and non-diseased patients, one
would expect a high value for the ROC area of CA19-9. The original values
are presented in Table 10.23, where T1 is the CA19-9 biomarker, T2 is CA125,
and d is the vector that indicates disease or non disease among the subjects.

  



K11763 Chapter: 10 page: 400 date: June 17, 2011

400 Advanced Bayesian Methods for Medical Test Accuracy

TABLE 10.24: Bayesian analysis for the accuracy of the combined
test—two biomarkers for pancreatic cancer.

Parameter Mean sd Error 2 1/2 Median 97 1/2
auc 0.9127 0.0227 <0.0001 0.8625 0.915 0.951
beta[1] 0.3568 0.0223 <0.0001 0.3129 0.3567 0.4015
beta[2] 0.4361 0.0368 <0.0001 0.3633 0.4362 0.5084

BUGS CODE 10.4 is executed with 45,000 observations, with a burn in of
5,000 and a refresh of 100, in order to determine the effect of the biomarkers
on the probability of disease with the following result. The logistic regression
gave posterior means(sd) of – 1.464(0.388) for the constant, 0.027(0.009) for
the coefficient of CA19-9, and 0.016(0.008) for the coefficient of CA125, and
gave a very good fit to the data, where 86.3% of the patients without disease
were correctly predicted, and 77.8% of the diseased patients were correctly
predicted with the model. Note that the risk scores estimated by the logistic
regression are the risk scores indicated by the vector r above.

In order to determine the accuracy of the combined test, BUGS CODE 10.5
is executed with 45,000 observations, with a burn of 5,000 and a refresh of
100, and the results are reported in Table 10.24.

A ROC area of 0.9127 implies very good accuracy for the combined test,
which compares to a ROC area of 0.8733(0.0275), based on CA19-9, and
0.6786(0.0438) for CA125, where the Bayesian analysis of the individual
biomarkers are reported in the discussion after Table 4.21 of Chapter 4. Sim-
ulation errors of <0.0001 for the parameters indicate 45,000 observations are
sufficient, and imply that the reported values are close to the “true” posterior
quantities (Figure 10.5).

Figure 10.5 shows three ROC curves: (a) the combined test in blue, (b) the
CA125 test in green, and (c) the C19-9 test in red.

10.6.2 Blood glucose tests and type 2 diabetes

As a second example for finding the accuracy of a combined test for dia-
betes, a special study is designed involving 120 subjects, 60 of whom have the
disease and 60 who do not, where the first test is the fasting blood glucose test
and the second is the glucose tolerance test. The first test is performed after
fasting for 8 hours and consists of taking a blood sample and measuring the
amount of glucose in milligrams per deciliter. Normal levels are between 70
and 110 mg/dL, whereas a fasting level between 111 and 125 mg/dL indicates
some problems with sugar metabolism, but levels in excess of 126 mg/dL are
considered those of a true diabetic.

As for the oral glucose tolerance test, fasting for at least 10 hours is required
and a first sample of blood is taken, then the subject is given a bottle of
“glucola” with a high amount of sugar, and the glucose level is measured at
30 minutes, 1 hour, and 2 hours later. If the 2-hour measurement is between
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FIGURE 10.5: ROC curves for two biomarkers for the combined test of the
pancreatic cancer study.

140 and 200 mg/dL the subject is judged to have prediabetes, whereas 2-hour
levels in excess of 200 mg/dL indicate that the subject is definitely diabetic.

For more information about tests for type 2 diabetes, see Johnson and
Sandmire [1: 146]. If it is assumed that one reader interprets both tests, what
is the accuracy of the individual tests and the combined test?

The descriptive statistics for the diabetes study is shown in Table 10.25.
It appears that there is good discrimination between the diseased and non-
diseased groups by both tests. The Bayesian analysis shows that the posterior
mean(sd) of the ROC area for the oral glucose test is 0.9196(0.0238) and
0.9945(0.0034) for the glucose tolerance test, while that for the combined test
is 1(0.0000001611). Thus, the combined test is perfect, but not much of an
improvement on the glucose tolerance test, therefore, one does not have to
rely on the combined test, the glucose tolerance test is accurate enough! If
cost considerations are taken into account, the fasting oral test is probably
sufficient because the cost of the oral glucose test is much less than that of the
glucose tolerance test, but the former is also quite accurate with a ROC area of

TABLE 10.25: Means and standard deviations for
type 2 diabetes: the oral glucose test and the glucose
tolerance test.
D test 0 1
T1 (oral glucose) 108.24(14.37) 135.25(12.28)
T2 (glucose tolerance) 139.80(20.11) 215.84(20.62)
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TABLE 10.26: Posterior ROC areas for the blood glucose test and the
glucose tolerance test.

Parameter Mean sd Error 2 1/2 Median 97 1/2

Combined 1 <0.0000001 <0.000000001 1 1 1
Oral 0.9196 0.0238 <0.0001 0.8658 0.9222 0.9585
Tolerance 0.9945 0.0034 <0.00001 0.9857 0.9954 0.9988

0.9196. The Bayesian analysis is executed with BUGS CODE 10.5 using 45,000
observations with a burn in of 5,000 and a refresh of 100 (see Table 10.26).

Figure 10.6 portrays the ROC areas of the combined tests, where the
combined test is in blue, the glucose tolerance test is in green, and the fasting
oral test is in red, and note that the combined test is perfect, but there is little
improvement on the glucose tolerance test. Recall that the ROC area for the
combined test is based on the risk scores, which in turn is determined by a
logistic regression which regresses the risk score on the scores of the two tests.
For the logistic regression use BUGS CODE 10.4, with the values shown in
Table 10.27 for the two tests.

10.7 Observations and Conclusions

This chapter introduces the reader to Bayesian techniques for measur-
ing the accuracy of multiple tests that diagnose the same disease, and it is
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FIGURE 10.6: ROC area of the oral glucose test and the glucose toler-
ance test.
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TABLE 10.27: List statement for the type 2 diabetes study.

list(K=2, N=120,
d=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),
T1=c(117,139,101,94,94,108,124,88,122,111,112,83,118,111,90,92,107,116,
83,94,115,115,118,125,123,65,115,139,84,115,113,98,121,114,104,99,127,95,
109,111,118,128,118,107,103,94,117,118,103,99,93,93,97,108,119,120,100,
115,128,108,124,109,150,134,117,158,160,126,145,148,138,155,146,145,139,
147,126,130,141,126,125,117,130,137,156,152,124,146,113,134,130,146,138,
123,127,128,133,116,149,130,123,130,135,149,129,118,133,134,128,142,164,
125,128,148,135,129,143,134,137,134),
T2=c(136,125,115,134,159,196,144,130,179,141,111,99,105,146,164,122,
136,139,166,147,159,143,183,126,137,159,156,157,152,115,119,153,103,125,
131,110,138,126,129,127,174,170,146,134,129,119,144,138,140,152,147,132,
130,132,144,131,138,170,159,124,220,220,219,220,214,194,200,221,205,177,
171,207,225,226,224,217,215,237,232,167,180,212,214,201,219,230,207,235,
263,201,233,215,215,199,217,220,208,214,217,242,248,224,242,246,238,221,
231,198,218,211,203,233,193,217,188,277,229,184,203,192))

Note: d is the disease indicator, T1 is the blood glucose test, and T2 is the
glucose tolerance test.

interesting to note that the subject is not dealt with in a substantial way by
contemporary textbooks like Pepe [8] and Zhou, Obuchowski, and McClish
[19], however, the Pepe account does introduce the idea of risk score, which is
the approach (with a Bayesian flavor) taken in this book. An older account by
Kraemer [18] does introduce the central ideas for dealing with multiple tests,
but with an emphasis on taking costs into account.

The accuracy of the combined binary test is introduced by using the BP
and BN rules, and the concepts are illustrated with two examples: (a) two
tests for heart disease, and (b) the combined test using both CT and MRI to
diagnose coronary stenosis.

The scenario of working with two binary tests is generalized to multiple
readers and to the case when verification bias (assuming MAR) is present.
I believe the latter section has not been studied before. Following Pepe [8],
the risk score is defined and used to measure the overall accuracy of multiple
binary tests. The risk score is the probability that the experimental unit has
the disease, given the outcomes the ordinal tests, and the ROC area of the
risk scores estimates the accuracy of the combined test, and the risk score is
determined by a logistic regression, where the dependent variable is the risk
score and the independent variables are the scores of the various tests. A nice
feature of the risk score is that it is optimal and should be used by the practi-
tioner to measure the accuracy of the combined test. It should be emphasized
that the risk score is a statistical procedure that is available to the clinician in
order to estimate accuracy via the ROC area. Such methodology is illustrated
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with an example of a combined test using MRI and CT to determine the risk
of lung cancer, and another example with two versions (body array coil and
endorectal coil) of MRI for the localization of prostate cancer. Patient covari-
ate information is easily accommodated in the logistic regression to determine
the risk scores of the combined test.

Lastly, the chapter deals with continuous test scores, where logistic regres-
sion determines the risk score for estimating the accuracy of the combined
test, and two examples illustrate the methodology. The first example involves
two biomarkers for prostate cancer while the second involves two blood glucose
tests (fasting blood glucose and the glucose tolerance test).

The exercises at the end of the chapter give the student additional infor-
mation about the important concepts involved in measuring the accuracy of
the combined test, be they binary, ordinal, or continuous test scores, and the
necessary code and data are provided to make it easier for the student to learn
the fundamental ideas.

There are areas for generalizing the concepts of the chapter, namely: (a) not
assuming MAR for two binary or ordinal tests with verification bias, see
Section 10.4, and Section 10.5.4; and (b) measuring the accuracy of the com-
bined test with three or more components. A good example of the latter is the
Berg et al. [3] study that investigates the accuracy of mammography, clinical
examination, ultrasound, and MRI for the preoperative assessment of breast
cancer, thus, there are four diagnostic tests that can be combined into one,
for which the accuracy can be measured by the risk score.

10.8 Exercises

1. Verify the posterior analysis for the dataset given by Table 10.2. Use
BUGS CODE 10.1 and generate 55,000 observations from the joint pos-
terior distribution, with a burn in of 5,000 and a refresh of 100. Which
is the “best” rule, BP or BN, for estimating the accuracy of the com-
bined test?

2. Prove Statement 10.1 about the TPF and FPF for the BP and BN rules.

3. Verify Table 10.4, the Bayesian analysis for the combined CT and MRI
tests for coronary artery disease. Use the information in Tables 10.3a
and b along with BUGS CODE 10.1. Note, the second list statement of
the code is the data from Tables 10.3a and b, assuming a uniform prior,
which is used because two of the cells have zero counts. I used 25,000
observations, with a burn in of 5,000 and a refresh of 100, which resulted
in simulation errors of less than 0.0001 for all parameters. Based on your
analysis, which rule, the BP or BN rule, should be employed to measure
the accuracy of the combined test? Plot the posterior density of the TPF
and FPF for the BP rule.
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The student should refer to Gerber et al. [7] for additional informa-
tion about using CT and MRI to diagnose coronary artery disease, which
gives much more detail than provided here about the image quality of
the two modalities. Based on the Bayesian analysis of Table 10.4, is it
reasonable to replace coronary angiography (the gold standard) with
MRI or CT?

4. Refer to the Berg et al. [3] study about the accuracy of multiple tests
(mammography, clinical examination, ultrasound, and MRI) to detect
malignant lesions in preoperative breast cancer. Two of the tests were
the standard mammography and ultrasound. What is presented here is
just a synopsis of a very detailed investigation into multiple tests to
diagnose breast cancer. The data presented in Tables 10.28a and b are
for two tests, mammography and ultrasound, and the marginal totals of
the table are taken from the paper, but the cell frequencies are provided
by me.

From Tables 10.28a and b, it is obvious that the sensitivity of mam-
mography and ultrasound are 120/177 = 0.67 and 147/177 = 0.83,
respectively, while the specificity for mammography and CT are 61/81 =
0.75 and 28/81 = 0.34, respectively. Note this is not a screening trial for
breast cancer but a clinical study that identifies malignant lesions before
an operation. What is the accuracy of the test that combines these two
modalities?

TABLE 10.28a: Data for 177
malignant lesions and two tests.

Mammography 0 1 Total
0 10 47 57
1 20 100 120
Total 30 147 177

Source: From Berg, W.A. et al., Radiol-
ogy, 233, 830, 2004, with permission of
Radiological Society of North America.

TABLE 10.28b: Data for 82
non-malignant lesions and two tests.

Mammography 0 1 Total
0 21 40 61
1 7 13 20
Total 28 53 81

Source: From Berg, W.A. et al., Radiol-
ogy, 233, 830, 2004, with permission of
Radiological Society of North America.
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TABLE 10.29: Posterior analysis for mammography and ultrasound.
Parameter Mean sd Error 2 1/2 Median 97 1/2
bnfpf 0.1647 0.0399 <0.0001 0.9045 0.1622 0.25
bntpf 0.5579 0.0366 <0.0001 0.4858 0.5579 0.6293
bpfpf 0.7411 0.0463 <0.0001 0.6443 0.7427 0.8275
bpfpf 0.9392 0.0177 <0.0001 0.9003 0.9409 0.9691
fpfmam 0.2586 0.0470 <0.0001 0.1723 0.2565 0.3554
fpfus 0.6472 0.0514 <0.0001 0.5435 0.6482 0.7447
tpfmam 0.6471 0.0345 <0.0001 0.6047 0.6749 0.74
tpfus 0.823 0.0283 <0.0001 0.7641 0.8242 0.8747

Note: Berg et al. [3] study.

Use BUGS CODE 10.1 and note that the data taken from the above
tables appear in the third list statement of the program. Using 35,000
observations generated for the simulation, with a burn in of 5,000 and a
refresh of 500, verify the Bayesian analysis that appears in Table 10.29.
(a) Based on Table 10.29, what is the accuracy of the combined test

with the BP rule?
(b) Based on Table 10.29, what is the accuracy of the combined test

with the BN rule?

5. Extend the BP and BN rules to more than two binary tests. For three
binary tests, what is the best way to express the accuracy of the com-
bined test? Read the Berg et al. [3] study that uses several modalities
(mammography, clinical examination, ultrasound, and MRI) to detect
malignant breast lesions. Use the information in Table 1 of the paper
and determine the accuracy of the combined test for MRI, mammogra-
phy, and ultrasound, by employing your generalization for the BP and
BN rules.

6. Consider a second version of the Gerber et al. [7] study with two readers,
but now the reader 2 scores have marginal totals that are not the same as
those of the first reader, thus the accuracy measures for the two modal-
ities are not the same as those of the first reader (Tables 10.30a and b).

TABLE 10.30a: Study results
for CT-MRI study: radiologist 2
and 58 diseased segments.

MRI

CT 0 1 Total
0 6 6 12
1 16 30 46
Total 22 36 58
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TABLE 10.30b: Study results
for CT-MRI study: radiologist 2 and
236 non-diseased segments.
CT 0 1 Total
0 150 18 168
1 48 20 68
Total 198 36 236

(a) Perform a Bayesian analysis using Tables 10.30a and b for the
second reader, and Tables 10.3a and b for the first reader. With
BUGS CODE 10.2, note that the second list statement included
the data for this version of the Gerber et al. study. Also, note that
the author of this book provided the information for the cell fre-
quencies. A uniform prior is assumed for all parameters! Generate
45,000 observations for the posterior distribution, with a burn in
of 5,000 and a refresh of 100.

(b) You should get the results shown in Table 10.31 for the posterior
distribution of accuracy parameters; thus, verify Table 10.31.

The differences in the posterior mean between reader 1 and
reader 2 for the same accuracy parameter begins with fpfbn1 (the
FPF for BP), which is quite different from the first scenario por-
trayed in Exercise 5, when the two readers had very high agreement.

(c) Verify that the simulations errors are <0.0001 for all parameters.

TABLE 10.31: Posterior distribution of accuracy for
two readers: second version.

Parameter Mean sd 2 1/2 Median 97 1/2
fpfbn1 0.1625 0.0238 0.1187 0.1616 0.2117
fpfbnr2 0.0874 0.0181 0.0552 0.0863 0.126
fpfbpr1 0.2958 0.0249 0.2396 0.2954 0.3551
fpfbpr2 0.3709 0.0309 0.3111 0.3706 0.4327
fpft1r1 0.2917 0.0293 0.2356 0.2912 0.351
fpft1r2 0.2916 0.0291 0.2362 0.291 0.3506
fpft2r1 0.1666 0.0241 0.1221 0.1657 0.2164
fpft2r2 0.1667 0.0240 0.1223 0.1658 0.2162
tpfbnr1 0.5972 0.0618 0.4733 0.598 0.7159
tpfbnr2 0.5005 0.0632 0.377 0.5008 0.6249
tpfbpr1 0.7905 0.0513 0.6819 0.7935 0.8818
tpfbpr2 0.8875 0.0397 0.7985 0.8917 0.9529
tpft1r1 0.7744 0.0527 0.6632 0.7775 0.8682
tpft1r2 0.7745 0.0529 0.6635 0.7775 0.869
tpft2r1 0.6133 0.0612 0.4907 0.614 0.7303
tpft2r2 0.6135 0.0612 0.4901 0.6149 0.7302
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(d) What is your conclusion about the accuracy of the combined test?
Do you prefer the BN rule compared to the BP rule? Why?

7. Verify Table 10.8 using the information in Table 10.7, which gives the
study results for the Alzheimer’s study. Execute the analysis with 45,000
observations for the simulation, with a burn in of 5,000 and a refresh
of 100.

Which rule, BN or BP, gives the “best” estimates for the accuracy of
the combined test? Explain your answer in detail!

8. Consider the results of two correlated binary tests when verification bias
is present, as given in Table 10.32. The first test, Y1, gives the results
for a CT determination of lung cancer risk, where 0 indicates a small
risk, and 1 is a high risk of lung cancer, while the second test, Y2, is a
determination of lung cancer risk using MRI.

Using BUGS CODE 10.3, execute the analysis with 45,000 observa-
tions, with a burn in of 5,000 and a refresh of 100. The second list state-
ment of the code gives the data for this example, assuming an improper
prior distribution.
(a) Assume an improper prior distribution for the parameters and

determine the posterior distribution of the TPF and FPF for CT.
(b) Find the posterior distribution of the true and false positive rates

for MRI.
(c) Find the posterior distribution of the TPF and FPF for the BP rule.
(d) Find the posterior distribution of the TPF and FPF for the BN rule.
(e) Plot the posterior densities of the true and false positive rates for

the BP and BN rules.
(f) Verify the posterior analysis reported in Table 10.33, and base your

answers to (a) to (e) on the results.
(g) What is your estimate of the accuracy of the combined test?
(h) Repeat (a) to (e) but assume a uniform prior for the parameters

appearing in the likelihood function (Equation 10.29).

9. Generalize Section 10.4 to two binary tests with verification bias and
two readers. There will be 16 measures of test accuracy, including eight
for the combined test based on the BP and BN rules. Add the relevant

TABLE 10.32: CT and lung cancer risk.
Y1 1 0

V = 1 Y2 = 1 0 1 0
D = 1 s11 = 14 s10 = 12 s01 = 9 s00 = 3
D = 0 r11 = 4 r10 = 9 r01 = 13 r00 = 18
V = 0 u11 = 7 u10 = 8 u01 = 9 u00 = 10
Total m11 = 25 m10 = 29 m01 = 31 m00 = 31
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TABLE 10.33: Posterior analysis for CT and MRI determination of
lung cancer risk with verification bias.

Parameter Mean sd Error 2 1/2 Median 97 1/2
fpf1 0.2864 0.06201 <0.0001 0.1725 0.284 0.4141
fpf2 0.3809 0.0668 <0.0001 0.253 0.3799 0.5144
fpfbn 0.0880 0.0697 <0.0001 0.0264 0.0829 0.1795
fpfbp 0.5766 0.0653 <0.0001 0.4559 0.5777 0.7021
tpf1 0.6755 0.0712 <0.0001 0.5305 0.6779 0.8074
tpf2 0.6007 0.0737 <0.0001 0.4538 0.6018 0.7414
tpfbn 0.3663 0.0694 <0.0001 0.2367 0.3645 0.5081
tpfbp 0.9165 0.0439 <0.0001 0.8131 0.9233 0.9812

statement to BUGS CODE 10.3 that will execute the Bayesian analysis.
Illustrate your results with an example.

10. (a) Refer to Tables 10.11a and b, the information about the MRI-
CT study of lung cancer and verify Table 10.12, which gives the
posterior analysis for the ROC areas of the two modalities sepa-
rately. In order to do this, execute the analysis using BUGS CODE
10.4 with 45,000 observations generated for the MCMC simulation,
with a burn in of 5,000 and a refresh of 100.

(b) Using BUGS CODE 10.5, verify Table 10.13, the Bayesian analysis
for the ROC area of the combined test. Again, use 45,000 observa-
tions, with a burn in of 5,000 and a refresh of 100.

11. For both parts below, generate 45,000 observations, with a burn in of
5,000 and a refresh of 100.
(a) Using Tables 10.14a and b and BUGS CODE 10.4, verify Table

10.15, the Bayesian analysis for the prostate cancer study using
two forms of MRI, the body array coil and the endorectal coil.
This table gives the ROC areas separately for the two tests.

(b) Using Tables 10.14a and b and 10.16, and using BUGS CODE 10.5,
verify Table 10.17, the posterior analysis for the ROC area of the
combined test.

12. From the information in Tables 10.22a and b, use BUGS CODE 10.5
with 45,000 observations generated from the joint posterior distribu-
tion, with a burn in of 5,000 and a refresh of 100, and execute a Bayesian
analysis for the melanoma study. Show the following:
(a) The posterior mean(sd) of the coefficients for the logistic regression

are: −4.932(0.287) for b[0], the constant, 1.683(0.085) for b[1], the
coefficient of Y1, and 0.892(0.081) for b[2], the coefficient of Y2.

(b) The posterior mean(sd) for the ROC area of the combined test
is 0.825(0.010).
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(c) Comment on the accuracy of the combined test found in (b)
relative to the ROC areas of 0.786(0.0119) for the surgeon and
0.6351(0.0145) for the dermatologist. How would you interpret the
accuracy of the combined test? What does it mean?

13. (a) Verify Table 10.24, the Bayesian analysis for the pancreatic study,
using BUGS CODE 10.5 and the data about the biomarkers in
Table 10.24, with 45,000 observations generated from the posterior
distribution, with a burn in of 5,000 and a refresh of 100.

(b) Via BUGS CODE 10.4, perform a logistic regression using the risk
score theta as the dependent variable and the values of T1 and T2
as independent variables, and verify that the estimated risk scores
are given by the vector p of Table 10.23. Note that the p vector is
used as the dependent variable for the normal regression of BUGS
CODE 10.5, which is used to estimate the ROC area of the com-
bined test.

14. Verify Figure 10.5, the plot of the three ROC curves for the combined
test, for the CA19-9 biomarker and for the CA125 biomarker of the
pancreatic cancer study.

15. (a) Verify Table 10.26, the posterior analysis for the type 2 diabetes
study using the oral glucose test, T1, and the glucose tolerance test,
T2, by referring to Table 10.27, which contains the values of the two
tests and the disease incidence vector d. Use BUGS CODE 10.5
with 45,000 observations for the simulation, with a burn in of 5,000
and a refresh of 100.

(b) Estimate the risk score vector by performing a logistic regression
using the values of the two tests as independent variables and the
risk score theta as the dependent variable. Refer to BUGS CODE
10.4 and use the estimated risk vector as the dependent variable in
BUGS CODE 10.5.

16. Reproduce Figure 10.6, a plot of the ROC curves for the combined test,
and for the two diagnostic tests T1 and T2, for type 2 diabetes.

17. Read the Berg et al. [3] study that investigates the accuracy of four
binary tests for the preoperative assessment of breast cancer.
(a) Using Table 5 of that reference, develop a rule that combines the

TPF and FPF of the four-into-one combined test, and measure the
accuracy of the combined test. Write the code and generate suf-
ficient observations for the simulation so that the MCMC errors
are <0.0001 for all parameters. Report the TPF and the FPF for
the combined test with a Bayesian analysis that gives the poste-
rior mean, sd, median, and lower and upper 2 1/2% points of each
posterior distribution.
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(b) In order to combine the four tests into one combined test, use the
risk scores.

(c) Plot the ROC for the combined test based on the risk scores of
part (b).
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Chapter 11

Bayesian Methods for Meta-Analysis

11.1 Introduction

Determining the accuracy of a medical test is quite difficult because accu-
racy is an elusive thing to estimate. It is well known that the accuracy of
a particular test will vary because of intra and inter study variation. Even
though a test can be replicated under identical conditions, nevertheless, the
accuracy will vary between repetitions. The literature on the accuracy of a
particular test continues to grow, with each study giving some estimate of its
accuracy, but, of course, the estimates vary because of different study condi-
tions. Accuracy varies because the study population of patients vary, the test
itself changes somewhat, and the readers of the test scores also vary. Because
of the various sources of variation, it is important to conduct studies that
summarize the accuracy of a particular medical test.

For example, take the case of heart disease and the accuracy of the exercise
stress test. Hundreds of studies estimate the accuracy (the true and false pos-
itive fractions or the receiver operating characteristic [ROC] area) of this test.
Suppose the exercise stress test could be replicated under identical conditions
with the same patients and the same readers to interpret the test scores, and
the test accuracy estimated. Of course, the accuracy of the test will vary from
test to test and such variation is called experimental error. It is difficult and,
in fact, almost impossible to estimate the experimental error for most medi-
cal tests, and it is more common to summarize the accuracy of the exercise
stress test of different studies that involve different patient populations and
different sets of radiologists. There are studies where it is possible to estimate
the replication variation within readers and this is presented in Chapter 6 on
agreement.

The first scenario to be considered is estimating the common true positive
rate (TPR) and the false positive rate (FPR) from different studies and arriv-
ing at a common value of the accuracy of the test. The accuracy is expressed
with an estimate similar to the area under the ROC curve. When it is assumed
that the various studies have different TPR and FPR, because the decision
threshold varies, one is assuming that the studies have the same ROC curve,
called the SROC curve. The estimate of the accuracy of the summary receiver
operating characteristic (SROC) curve is the ordinate of the point of intersec-
tion, where the SROC curve intersects the line with equation TPR + FPR = 1.

413
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The approach taken here is appropriate for ordinal and continuous data
that employ a threshold to declare a positive test and follows the presenta-
tion of Kardaun and Kardaun [1], and Moses, Shapiro, and Littenberg [2],
who do not work directly with the TPF and FPR, but with their logits
and consequently with a regression model that allows one to work easily
with the SROC curve. It should be noted that this approach is also adopted by
Zhou, Obuchowski, and McClish [3], and will be followed to some extent here,
except a Bayesian model is established. Much has been accomplished using the
Bayesian approach and the reader is referred to Stangl and Berry [4], who edit
a book consisting of many papers that address various issues in meta-analysis
from a Bayesian viewpoint; however, the book focuses on summarizing various
estimates of treatment efficacy in clinical trials and not on estimating various
measures of test accuracy.

Chapter 11 begins with summarizing information about test accuracy for
tests with ordinal and continuous scores, where it is assumed that the tests
share a common ROC curve, thus, the tests may differ in the threshold used
to declare a positive test. The FPR and TPR can be plotted to determine a
common ROC curve, called the SROC curve. The TPR and FPR are trans-
formed so that one may use bilogistic regression to determine the accuracy
of the combined tests, where the posterior distribution of the parameters of
the model is determined. The slope and intercept of the regression deter-
mine the SROC curve. The chapter is continued by allowing the inclusion
of study covariates that allow for inter study variation between the various
studies that comprise the meta-analysis. Two or more versions of the same
tests are compared with the bilogistic regression methodology, using inter
study covariates. Bayesian inference is illustrated with a well-known example
of DeVries, Hunink, and Polak [5], which is based on two versions of ultra-
sonography (US) for the diagnosis of stenosis of the peripheral arteries, and the
accuracy of the two versions is compared with a regression model and by com-
paring the Q-statistics, which measure the accuracy of the SROC. Additional
examples include diagnostic studies for coronary artery disease, inflammatory
bowel disease, osteomyelitis, breast cancer, and recurrent colorectal cancer.
The conclusion of the chapter emphasizes the summarization of tests with a
common ROC area, where the posterior distribution of the ROC area and its
standard deviation allow one to compute the common area, which is estimated
as a weighted average of the individual ROC areas weighted by the inverse of
the posterior variance.

Several of the examples are based on recent studies of meta-analyses. For
example, a meta-analysis by Vanhoenacker et al. [6] summarizes the accuracy
of multidetector computed tomography (CT) angiography for the diagnosis of
coronary artery disease, while the Horsthuis et al. [7] meta-analysis explores
the detection of inflammatory bowel disease with ultrasound, MR scintigra-
phy, and CT. The latter study allows one to compare the accuracy of the three
modalities. A third example by Pakos et al. [8] is a meta-analysis of a nuclear
medicine procedure to diagnose osteomyelitis, and in all three examples the
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SROC curve is inferred by Bayesian methods. Such papers have a standard
way of presenting their results, including an introduction, a description of the
methods, a report of the results, and a section for comments and conclusions.
Such papers usually have enough detail so that others may check and repli-
cate their results. Of paramount importance is describing just how the various
studies of the meta-analysis are included in the study, and the description
should include enough information to determine the heterogeneity between
the various studies, including the number of readers used in each study, and
the threshold value stated. If the SROC curve is to be determined, the homo-
geneity needs to be demonstrated so that one has confidence in the overall
accuracy of the combined studies.

11.2 Summary Receiver Operating Characteristic
Curve and Bilogistic Regression

The first scenario for meta-analysis is the least complicated, namely, one
assumes that the various studies have a common ROC curve. If the test scores
are continuous or ordinal, the threshold value may vary, giving different FPR
and TPR values that can be plotted to give the common ROC curve, referred
to as the SROC curve. Thus, there is enough homogeneity between studies to
assume a common ROC curve and this assumption needs to be checked with
the information given for the various studies. The reader should remember
that the inclusion and exclusion criteria may vary between studies, that, of
course, the readers interpreting the test scores will not be the same between
studies, that the threshold (the value that declares a positive test) value can
vary, and lastly that the various tests, although related, may not be the same.
For example, using CT to diagnose lung cancer, the CT equipment will not be
the same and will not be operated in the same manner from study to study. On
examining the recent issues of the imaging literature, the summary accuracy
is usually based on a SROC analysis.

The approach taken here is to base the regression analysis on the approach
of Moses, Shapiro, and Littenberg [2], who do not work with the (FPR,TPR)
points directly, but with a transformation

B = V −U (11.1)

and

S = V + U, (11.2)

where

U = logit(FPR)
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and

V = logit(TPR). (11.3)

The B values are regressed on the S values

B = beta[1] + beta[2]S, (11.4)

where beta[1] and beta[2] are unknown parameters.
It is assumed that U and V have logistic distributions, thus, it is reasonable

to assume that B and S also have logistic distributions. The interpretation
of B and S is very informative, because B is the log odds ratio where the
numerator is the odds of a positive test given the disease is present, and the
denominator is the odds that the test score is positive given the disease is
not present. The variable S can be thought of as measuring the effect of the
threshold value, in the sense that if S is zero, the TPR and FPR are equal, and
if S is positive, the sensitivity (TPR) is greater than the specificity (1− FPR).
On the other hand, when the sensitivity is less than the specificity, the values of
S are negative. Note, the interpretation of the intercept beta[1] is the average
value of B (the log odds ratio) when S = 0, and that beta[2] measures the
effect of S on B, that is for each unit increase in S, B increases on the average
by beta[2] units. It is probably safe to say that if beta[2] is close to zero,
then the test at hand has the same power to detect a difference in the two
populations (diseased vs. non diseased) for all values of the threshold.

It can be shown that the SROC curve is defined as

SROC(FPR) =
[
1 + exp−beta[1]/

(1 − beta[2])[(1− FPR)/FPR](1+beta[2])/(1−beta[2])]−1

(11.5)

and the curve is determined by plotting (SROC,TPR) where the SROC and
FPR values are given by Equation 11.5. Note that if beta[2] = 0, Equation 11.5
can be modified accordingly by letting beta[2] = 0.

There are many ways to estimate the parameters beta[1] and beta[2] of
the regression of B on S, and the reader is referred to Moses, Shapiro, and
Littenberg [2] for some non-Bayesian estimation techniques. The approach
here is Bayesian, where first the posterior density of beta[1] and beta[2] is
determined using Equation 11.4 with a non-informative prior for the regres-
sion coefficients and scale parameter tau. The prior distribution of beta[i] is
normal (0.0001,0.0001) and the prior distribution of tau is gamma with param-
eters 0.0001 and 0.0001. Note, the logistic distribution has two parameters and
is similar in shape to the normal distribution. The posterior distribution of the
ordinates of the SROC curve (Equation 11.4) is induced by the posterior dis-
tribution of beta[1] and beta[2], and will be illustrated with several examples
in a later section.
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11.3 Bayesian Analysis for Summary Accuracy

The obvious measure of test accuracy for a meta-analysis is the area under
the SROC curve, however, since the TPR values tend to be concentrated over a
relatively small range of FPR values, the entire SROC curve must be estimated
by extrapolation to the entire range of FPR values over (0,1). Because of this
impediment, other measures of test accuracy have been devised, e.g., Moses,
Shapiro, and Littenberg [2], who proposed the ordinate of the intersection
between the SROC curve and the line with equation

(TPR + FPR) = 1, (11.6)

which is the negative diagonal of the unit square.
It can be shown that the ordinate of the intersection is

Q = (1 + e−beta[1]/2)−1, (11.7)

where beta[1] is the intercept term of the bilogistic regression (Equation 11.4).
Therefore, the posterior distribution of beta[1] induces the posterior distribu-
tion of Q. Note that “large” values of Q close to 1 indicate excellent accuracy
because the intersection point is close to the (0,1) point of the unit square,
and in a similar way, values of Q close to 0.5 imply that the SROC curve is
close to the main diagonal of the unit square, indicating very poor accuracy.

11.3.1 A meta-analysis with one test

The first set of examples of a meta-analysis are for studies with a
common SROC curve, where the sample information consists of true and false
positive ratios or, equivalently, the true negative (TN), true positive (TP),
false positive (FP), and false negative (FN) of the 2× 2 square for each study.
Consider the DeVries, Hunink, and Polak [5] meta-analysis, which summa-
rizes nine studies where peripheral artery stenosis is determined with regular
duplex US. The information from the study is in the form of a 2× 2 table of
TN, TP, FP, and FN values for each study and appears in the following list
statement of BUGS CODE 11.1.

BUGS CODE 11.1

# one test
model;
{
for(i in 1:N){tpr[i]<-(tp[i]+.5)/(tp[i]+fn[i]+.05)}
for(i in 1:N){fpr[i]<-(fp[i]+.5)/(fp[i]+tn[i]+.05)}
for(i in 1:N){u[i]<-logit(fpr[i])}
for(i in 1:N){v[i]<-logit(tpr[i])}
for(i in 1:N){b[i]<-v[i]-u[i]}
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for(i in 1:N){s[i]<-v[i]+u[i]}
# bilogistic regression of b on s
for(i in 1:N){b[i]∼dlogis(mu[i],tau)
mu[i]<-beta[1]+beta[2]*s[i]}
for(i in 1:2){beta[i]∼dnorm(.0000,.0001)}
tau∼dgamma(.0001,.0001)
P<-1+exp(-beta[1]/2)
# accuracy of test
Q<-1/P
#sroc curve assumes slope is 0
r1<-exp(-beta[1])
for(i in 1:N){r2[i]<-(1-fpr[i])/fpr[i]}
for(i in 1:N){r3[i]<-1+r1*r2[i]}
for(i in 1:N){sroc[i]<-1/r3[i]}
}
# data from DeVries et al. [5] duplex mode
list(N=8, tn=c(516,89,235,262,488,48,156,376),
fn=c(28,8,23,20,14,7,2,31),
fp=c(20,12,5,22,9,3,14,12),
tp=c(78,59,75,89,118,48,39,121))
# data from Meijer et al.
# a 1 replaces a 0 in the data of Meijer et al.
list(N=20,
tn=c(23,35,10,9,23,30,60,48,12,38,23,60,9,42,27,50,35,5,37,20),
fn=c(2,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1),
fp=c(1,2,1,1,1,6,7,4,4,1,6,7,1,4,3,5,1,1,3,3),
tp=c(36,28,29,29,16,19,20,18,88,12,35,14,25,53,38,25,13,26,44,76))
# initial values
list(beta=c(0,0), tau=1))

For example, the TN, FN, FP, and TP values for the first study are 516, 28,
20, and 78, respectively, and the program calculates the TPR and FPR. First, a
bilogistic regression is performed, which produces the posterior characteristics
of the regression coefficients beta[1] and beta[2], then the posterior distribution
of the Q parameter is calculated, which expresses the summary accuracy of
the eight studies. Lastly, the posterior characteristics of the ordinates of the
SROC curve are determined corresponding to the eight FPR values of the
eight studies. The analysis is executed with 65,000 observations generated
from the joint posterior distribution, with a burn in of 5,000 and a refresh
of 100 (Table 11.1).

Regression analysis of B on S reveals that the slope is “small” with a 95%
credible interval (−0.6842, 0.5995), indicating that it is not unreasonable to let
beta[2] = 0, and implying that ultrasound duplex is discriminating between
the diseased and non-diseased populations in the same way for all values of
the test threshold. BUGS CODE 11.1 contains statements that calculate the
SROC values assuming the slope is zero. The coefficient beta[1] has a posterior
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TABLE 11.1: Posterior analysis for peripheral artery stenosis.
Parameter Mean sd Error 2 1/2 Median 97 1/2
Q 0.9104 0.0270 <0.0001 0.861 0.9132 0.946
beta[1] 4.7 0.551 0.0098 3.647 4.707 5.728
beta[2] −0.0275 0.3372 0.0060 −0.6842 −0.0231 0.5995
sroc[1] 0.802 0.0857 0.0015 0.604 0.8149 0.9244
sroc[2] 0.9319 0.0455 <0.0001 0.8411 0.9399 0.9775
sroc[3] 0.7104 0.1046 0.0018 0.4735 0.7219 0.8781
sroc[4] 0.8946 0.0587 0.0011 0.7674 0.905 0.9636
sroc[5] 0.673 0.1102 0.0019 0.4277 0.6832 0.8569
sroc[6] 0.8796 0.0636 0.00125 0.7384 0.8907 0.9577
sroc[7] 0.9017 0.0563 0.0011 0.7814 0.9116 0.9663
sroc[8] 0.7737 0.9023 0.0016 0.5607 0.7865 0.9109
tau 2.063 0.6882 0.0051 0.9117 1.995 3.602

mean of 4.7, which is the average value of B when S = 0, indicating that the
odds ratio has a posterior mean of 4.7, that is to say, the odds of a positive
test for the diseased population (those with stenosis in the peripheral arteries)
is 4.7 times more than the odds of a positive test result for the non-diseased
patients. Q has a posterior mean of 0.91, which implies good accuracy with
ultrasound to detect stenosis.

The slope beta[2] of the regression of B on S is close to zero and the analysis
calculates the posterior characteristics of the SROC values corresponding to
the FPR values, which are calculated as the FPR vector. The posterior density
of beta[2] is depicted in Figure 11.1 and shows that the posterior probability
is large in the neighborhood of zero.

Simulation errors were quite small for all parameters, demonstrating that
60,000 observations are sufficient for a reliable posterior analysis. The above
determination of the SROC values assumes beta[2] = 0, however, I performed
the analysis assuming beta[2] is not zero and the results were quite similar to
Table 11.1; the analysis was executed with BUGS CODE 11.2.

beta[2]
–6.0 –4.0 –2.0 0.0 2.0 4.0

P(
be

ta
[2

])
0.

0
1.

0

beta[2] sample: 60000

FIGURE 11.1: Posterior density of the slope beta[2].
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BUGS CODE 11.2

# one test with beta[2] not zero
model;
{
for(i in 1:N){tpr[i]<-(tp[i]+.5)/(tp[i]+fn[i]+.05)}
for(i in 1:N){fpr[i]<-(fp[i]+.5)/(fp[i]+tn[i]+.05)}
for(i in 1:N){u[i]<-logit(fpr[i])}
for(i in 1:N){v[i]<-logit(tpr[i])}
for(i in 1:N){b[i]<-v[i]-u[i]}
for(i in 1:N){s[i]<-v[i]+u[i]}
# bilogistic regression of b on s
for(i in 1:N){b[i]∼dlogis(mu[i],tau)
mu[i]<-beta[1]+beta[2]*s[i]}
for(i in 1:2){beta[i]∼dnorm(.0000,.0001)}
tau∼dgamma(.0001,.0001)
P<-1+exp(-beta[1]/2)
# accuracy of test
Q<-1/P
# sroc curve, does not assume slope is zero
r1<-exp(-beta[1]/(1-beta[2]))
for(i in 1:N){r2[i]<-(1-fpr[i])/fpr[i]}
r3<-(1+beta[2])/(1-beta[2])
for(i in 1:N){r4[i]<-pow(r2[i],r3)}
for(i in 1:N){r5[i]<-1+r1*r4[i]}
for(i in 1:N){sroc[i]<-1/r5[i]}
}
# data from DeVries et al. duplex mode
list(N=8, tn=c(516,89,235,262,488,48,156,376),
fn=c(28,8,23,20,14,7,2,31),
fp=c(20,12,5,22,9,3,14,12),
tp=c(78,59,75,89,118,48,39,121))
# initial values
list( beta=c(0,0), tau=1))

11.3.2 Summary accuracy for scintigraphy

Our second example of a meta-analysis involves the diagnosis of osteomyeli-
tis using antigranulocyte scintigraphy with 99m radiolabeled monoclonal anti-
bodies, and the analysis consists of 19 non-overlapping studies with reference
standards of cell culture, histologic examination, and clinical follow-up. The
study was conducted by Pakos et al. [8] with MEDLINE and EMBASE
searches, and a SROC curve was constructed; the reader is referred to the
paper for additional important information as to the heterogeneity of the
meta-analysis. Our approach is Bayesian and will consist of determining the
overall accuracy as expressed by the Q parameter, performing the regression
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analysis of the B scores on the S scores, and, finally, computing the posterior
characteristics of the SCROC values. Note, for this example, the input values
are the TPR and FPR of the 19 studies contained in the list statement of
BUGS CODE 11.3.

BUGS CODE 11.3

# one test
model;
{
for(i in 1:N){u[i]<-logit(fpr[i])}
for(i in 1:N){v[i]<-logit(tpr[i])}
for(i in 1:N){b[i]<-v[i]-u[i]}
for(i in 1:N){s[i]<-v[i]+u[i]}
# bilogistic regression of b on s
for(i in 1:N){b[i]∼dlogis(mu[i],tau)
mu[i]<-beta[1]+beta[2]*s[i]}
for(i in 1:2){beta[i]∼dnorm(.0000,.0001)}
tau∼dgamma(.0001,.0001)
P<-1+exp(-beta[1]/2)
# accuracy of test
Q<-1/P
#sroc curve assumes slope is 0
r1<-exp(-beta[1])
for(i in 1:N){r2[i]<-(1-fpr[i])/fpr[i]}
for(i in 1:N){r3[i]<-1+r1*r2[i]}
for(i in 1:N){sroc[i]<-1/r3[i]}
}
# data from Pakos et al.
list(N=19,tpr=c(.67,.75,.85,.35,.99,.95,.90,.99,.80,.78,.95,.61,.90,.89,.88,.93,.93,

.43,.38),
fpr=c(.15,.05,.11,.17,.22,.33,.33,.01,.33,.60,.43,.04,.17,.01,.10,.70,.01,.01,.57))
# initial values
list( beta=c(0,0), tau=1))

A Bayesian analysis is performed with 65,000 observations generated for
the Markov Chain Monte Carlo (MCMC) simulation, with a burn in of 5,000
and a refresh of 100, and the results appear in Table 11.2.

It should be noted that the 19 SROC values correspond to the following
(in that order) FPR values

FPR=(0.15,0.05,0.11,0.17,0.22,0.33,0.33,0.01,0.33,0.60,0.43,0.04,0.17,0.01,
0.10,0.70,0.01,0.01,0.57),

where the SROC values are computed according to Equation 11.5, assum-
ing beta[2]=0. The 95% credible interval for beta[2] is (−0.7051, 0.2755) and
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TABLE 11.2: Bayesian analysis for the osteomyelitis meta-analysis.
Parameter Mean sd Error 2 1/2 Median 97 1/2
Q 0.8524 0.0346 <0.0001 0.7756 0.8555 0.9113
beta[1] 3.559 0.5512 0.0048 2.481 3.558 4.658
beta[2] −0.2063 0.2454 0.0020 −0.7051 −0.2032 0.2755
sroc[1] 0.8486 0.0702 <0.0001 0.6783 0.8609 0.949
sroc[2] 0.6899 0.1189 0.0010 0.3861 0.6487 0.8473
sroc[3] 0.7994 0.08594 <0.0001 0.5963 0.8126 0.9287
sroc[4] 0.8661 0.064 <0.0001 0.7099 0.8778 0.9557
sroc[5] 0.8981 0.0511 <0.0001 0.7712 0.9082 0.9675
sroc[6] 0.9382 0.0335 <0.0001 0.8548 0.9453 0.9811
sroc[7] 0.9382 0.0335 <0.0001 0.8548 0.9453 0.9811
sroc[8] 0.2745 0.1052 <0.0001 0.1077 0.2616 0.5158
sroc[9] 0.9382 0.0335 <0.0001 0.8548 0.9453 0.9811
sroc[10] 0.9785 0.0127 <0.0001 0.9472 0.9813 0.9937
sroc[11] 0.9585 0.0235 <0.0001 0.9001 0.9636 0.9876
sroc[12] 0.5881 0.1243 <0.0001 0.3324 0.5938 0.8146
sroc[13] 0.8661 0.064 <0.0001 0.7099 0.8778 0.9557
sroc[14] 0.2745 0.1052 <0.0001 0.1077 0.2616 0.5158
sroc[15] 0.7826 0.0906 <0.0001 0.5704 0.7958 0.9214
sroc[16] 0.9861 0.0084 <0.0001 0.9654 0.9879 0.996
sroc[17] 0.2745 0.1052 <0.0001 0.1077 0.2616 0.5185
sroc[18] 0.2745 0.1052 <0.0001 0.1077 0.2616 0.5185
sroc[19] 0.9758 0.0142 <0.0001 0.9406 0.9789 0.9929
tau 0.7552 0.1549 <0.0001 0.4822 0.7445 10.087

contains zero, thus, I let beta[2] = 0 in the code for sroc of BUGS CODE 11.3.
A regression of B on S values gives a posterior mean(sd) for the intercept of
3.559(0.5512), implying that the odds ratio for a positive test is 3.6 times
larger for those patients with osteomyelitis compared to those without the
disease (when S = 0). Figure 11.2 is a plot of the SROC curve for the Pakos
et al. [8] meta-analysis, whose ordinates are the posterior means portrayed in
Table 11.2.

The green line is the minor diagonal of the unit square. What is the area
under the curve? This is left as an exercise! It appears that the accuracy
implied by the SROC curve is quite good, and this is confirmed by the value
of the Q parameter, which has a posterior mean of 0.8524, a 95% credible
interval of (0.7756,0.9113), and a posterior density portrayed by Figure 11.3.

11.4 Meta-Analysis with Two Tests

When two tests are used to diagnose the same disease, the main emphasis
is on comparing the accuracy of the two tests. There are many examples of
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FIGURE 11.2: SROC curve of the Pakos et al. [8] study.

meta-analyses that summarize the accuracy of two sets of studies. The first
set is a series of studies that use one test to diagnose disease, and the other set
focuses on a series of tests with another test for diagnosing the same disease.
For such a situation, two regressions of B on S are performed, two values of
Q are computed, and the SROC curve for each test is determined.

Thus, let

B1 = beta1[1] + beta1[2]S1 (11.8)

be the first regression, and

B2 = beta2[1] + beta2[2]S2 (11.9)

Q sample: 60000

Q
0.5 0.6 0.7 0.8 0.9 1.0

P(
Q)

0.
0

10
.0

FIGURE 11.3: Posterior density of Q for Pakos et al. [8].
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be the second, where

Bi = Vi −Ui,

and Ui and Vi are the logits of the TPR and FPR for the ith test i = 1, 2. See
Equations 11.1 and 11.2 for the formal definitions.

In a similar way, the accuracy of the ith test is based on the Q parameters

Qi = [1 + e−betai[2]/2]−1 (11.10)

for i = 1, 2.
Finally, the SROC curve is defined by its ordinates for the ith test as

SROCi(FPR) =
[
1 + exp−betai[1]/

(1 − betai[2])[(1− FPR)/FPR](1+betai[2])/(1−betai[2])]−1

(11.11)

corresponding to the FPR of the ith test, where i = 1, 2. Note that if the
regression analysis implies beta[2] = 0, then one should modify Equation 11.11
accordingly.

For the first example, consider the meta-analysis of Horsthuis et al. [7],
which is a study of the use of ultrasound and magnetic resonance imaging
(MRI) to diagnose inflammatory bowel disease; nine studies were based on
ultrasound and seven on MRI. On the basis of the meta-analysis, our pur-
pose is to compare the two modalities. The authors found 1406 papers in
a MEDLINE search and reduced the number to 16 for the present analysis.
Much information was extracted concerning the number of readers, the thresh-
old values for a positive test, and other study covariates. A later section will
be devoted to including study covariates into the determination of test accu-
racy. The Bayesian analysis will consist of performing regression analyses for
the two modalities and determining if the slope coefficient is zero. Depending
on the value of beta[2], the appropriate formula for the SROC values for each
test is used to determine the summary curve, and lastly, the Q values are
computed to compare the two modalities for accuracy.

Consider BUGS CODE 11.4.

BUGS CODE 11.4

# two tests
model;
{
# for test 1
for(i in 1:N1){u1[i]<-logit(fpr1[i])}
for(i in 1:N1){v1[i]<-logit(tpr1[i])}
for(i in 1:N1){b1[i]<-v1[i]-u1[i]}
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for(i in 1:N1){s1[i]<-v1[i]+u1[i]}
# bilogistic regression test 1
for(i in 1:N1){b1[i]∼dlogis(mu1[i],tau1)
mu1[i]<-beta1[1]+beta1[2]*s1[i]}
for(i in 1:2){beta1[i]∼dnorm(.0000,.0001)}
tau1∼dgamma(.0001,.0001)
P1<-1+exp(-beta1[1]/2)
# accuracy of test 1
Q1<-1/P1
#sroc test 1, assumes slope is 0
r11<-exp(-beta1[1])
for(i in 1:N1){r12[i]<-(1-fpr1[i])/fpr1[i]}
for(i in 1:N1){r13[i]<-1+r11*r12[i]}
for(i in 1:N1){sroc1[i]<-1/r13[i]}
# for test 2
for(i in 1:N2){u2[i]<-logit(fpr2[i])}
for(i in 1:N2){v2[i]<-logit(tpr2[i])}
for(i in 1:N2){b2[i]<-v2[i]-u2[i]}
for(i in 1:N2){s2[i]<-v2[i]+u2[i]}
# bilogistic regression test 2
for(i in 1:N2){b2[i]∼dlogis(mu2[i],tau2)
mu2[i]<-beta2[1]+beta2[2]*s2[i]}
for(i in 1:2){beta2[i]∼dnorm(.0000,.0001)}
tau2∼dgamma(.0001,.0001)
#sroc test 2, assumes slope is zero
r21<-exp(-beta2[1])
for(i in 1:N2){r22[i]<-(1-fpr2[i])/fpr2[i]}
for(i in 1:N2){r23[i]<-1+r21*r22[i]}
for(i in 1:N2){sroc2[i]<-1/r23[i]}
P2<-1+exp(-beta2[1]/2)
# accuracy of test 2
Q2<-1/P2
# difference in accuracy of two tests
d<-Q1-Q2
}
# below is data from DeVries et al. [5] for duplex and color
# duplex is test 1
# color is test 2
list(N1 = 8, fpr1=c(.04,.12,.02,.08,.02,.06,.08,.03),

tpr1=c(.74,.88,.77,.82,.89,.87,.95,.80),
N2=6, fpr2=c(.01,.01,.02,.06,.05,.05),

tpr2=c(.90,.99,.88,.89,.99,.96))
# horsthuis et al. [7] study
# test 1 is US and test 2 is MR
list(N1 =9, fpr1=c(.10,.01,.06,.12,.07,.07,.01,.33,.04),
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tpr1=c(.78,.93,.90,.81,.93,.88,.87,.96,.92),
N2=7, fpr2=c(.01,.01,.39,.39,.01,.08,.15),

tpr2=c(.99,.99,.91,.87,.82,.95,.89))
list(beta1=c(0,0), tau1=1, beta2=c(0,0),tau2=1)

The second list statement is the information for the Horsthuis et al. [7]
meta-analysis, where the first test is ultrasound and the second is MRI. The
third list statement is for the initial values of the parameters. A Bayesian
analysis is executed with 65,000 observations for the simulations, with a burn
in of 5,000 and a refresh of 100.

The two Q values are quite close, where for ultrasound the posterior
mean is 0.9098 and for MRI the posterior mean is 0.9324, and the differ-
ence d between the two have a 95% credible interval of (−0.0956, 0.0991),
implying that the accuracy of US and MRI are about the same, which is
confirmed to some extent by a plot of the two SROC curves portrayed by
Figure 11.4. Note, the green curve corresponds to US and the red to MRI
(Table 11.3).

The Bayesian regression analysis indicates that that the slope of each test is
zero, thus, the SROC values for both tests are computed assuming beta1[2] and
beta2[2] are zero. Also, the intercept term, beta1[1], has a posterior mean of
4.668, implying that the odds (when S1 = 0) of a positive test result for those
with inflammatory bowel disease is 4.6 times that of the odds of a positive
result for those without the disease. Also, since the two slopes are close to zero,
the implication is that both tests are differentiating equally between disease
and non disease for all values of the threshold. See Horsthuis et al. [7] for
additional information about the choice of threshold for the various studies
for each modality.
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FIGURE 11.4: SROC curves for US and MRI.
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TABLE 11.3: Posterior analysis for the inflammatory bowel disease
meta-analysis.
Parameter Mean sd Error 2 1/2 Median 97 1/2
Q1 0.9098 0.0203 <0.0001 0.8629 0.9123 0.942
Q2 0.9324 0.0493 <0.0001 0.8148 0.9426 0.9863
beta1[1] 4.668 0.4757 0.0048 3.679 4.683 5.575
beta1[2] −0.5686 0.3238 0.0034 −1.242 −0.5631 0.0664
beta2[1] 5.647 1.418 0.0129 2.963 5.597 8.557
beta2[2] −0.901 1.003 0.0112 −2.929 −0.8595 0.9871
d −0.02263 0.05346 <0.0001 −0.0956 −0.03004 0.09919
sroc1[1] 0.9151 0.0409 <0.0001 0.8148 0.9232 0.967
sroc1[2] 0.5176 0.1107 0.0011 0.2857 0.522 0.7271
sroc1[3] 0.8626 0.0594 <0.0001 0.7165 0.8734 0.9439
sroc1[4] 0.9294 0.03521 <0.0001 0.8438 0.9365 0.9729
sroc1[5] 0.8805 0.0535 <0.0001 0.7488 0.8906 0.952
sroc1[6] 0.8805 0.0535 <0.0001 0.7488 0.8906 0.952
sroc1[7] 0.5176 0.1107 0.0011 0.2857 0.522 0.7271
sroc1[8] 0.9791 0.0120 <0.0001 0.9512 0.9816 0.9924
sroc1[9] 0.806 0.0754 <0.0001 0.6227 0.8184 0.9166
sroc2[1] 0.6875 0.2199 0.0019 0.1636 0.7314 0.9813
sroc2[2] 0.6875 0.2199 0.0019 0.1636 0.7314 0.9813
sroc2[3] 0.986 0.0410 <0.0001 0.9253 0.9942 0.9997
sroc2[4] 0.986 0.0410 <0.0001 0.9253 0.9942 0.9997
sroc2[5] 0.6875 0.2199 0.0019 0.1636 0.7314 0.9813
sroc2[6] 0.926 0.1041 <0.0001 0.6274 0.9591 0.9978
sroc2[7] 0.9581 0.0748 <0.0001 0.7736 0.9794 0.9989
tau1 1.538 0.4736 0.0030 0.735 1.498 2.588
tau2 0.5946 0.2134 0.0015 0.2411 0.5732 1.072

11.5 Meta-Analysis with Study Covariates
and One Test

Often, a meta-analysis contains information about the various studies and
should be included in the meta-analysis. Of course, patient covariates and
individual study information do indeed affect the accuracy of the medical
test being assessed, and need to be taken into account when estimating test
accuracy. This will be done using the following bilogistic regression model for
the meta-analysis of one test:

B = β[1] + β[2]S +
i=k∑
i=1

ηiXi, (11.12)

where B = V − U , S = V + U , and Xi are k study covariates, while the
parameters are unknown. Thus, for a given study of the analysis, there are

  



K11763 Chapter: 11 page: 428 date: June 17, 2011

428 Advanced Bayesian Methods for Medical Test Accuracy

k covariates such as age, the number of readers, the percentage of males to
females, and other information. Of course, it depends on the meta-analysis
just what information is available and often the information is not available
for some studies. The information for a particular meta-analysis will consist of
a column for the FPR, the TPR, and a separate column for each study covari-
ate. Once the regression is performed, the SROC ordinates can be computed
along with the accuracy parameter Q.

The meta-analysis of Horsthuis et al. [7] provides an excellent example
of using covariates to estimate the summary accuracy of ultrasound in order
to diagnose inflammatory bowel disease, with the fraction of patients with
Crohn’s disease and the fraction of males per study serving as covariates.
Recall in the previous example with the ultrasound information of Horsthuis
et al., the accuracy of ultrasound was 0.9098 as measured by the posterior
mean of the Q parameter. Will the accuracy change when study age and
fraction of males are included in the analysis?

In order to answer that question, the Bayesian regression (Equation 11.12)
is executed with 65,000 observations for the simulation, with a burn in of
5,000 and a refresh of 100. Note, the first list statement of BUGS CODE 11.5
contains the necessary information to execute the Bayesian analysis, where the
emphasis will be on assessing the effects of the covariates on B and using Q and
the SROC values to assess the accuracy of ultrasound to detect inflammatory
bowel disease.

BUGS CODE 11.5

# one test with covariates
model;
{
for(i in 1:N){u[i]<-logit(fpr[i])}
for(i in 1:N){v[i]<-logit(tpr[i])}
for(i in 1:N){b[i]<-v[i]-u[i]}
for(i in 1:N){s[i]<-v[i]+u[i]}
# bilogistic regression of b on s
for(i in 1:N){b[i]∼dlogis(mu[i],tau)
mu[i]<-beta[1]+beta[2]*s[i]+neta[1]*x1[i]+neta[2]*x2[i]}
for(i in 1:2){beta[i]∼dnorm(.0000,.0001)}
for(i in 1:2){neta[i]∼dnorm(.0000,.0001)}
tau∼dgamma(.0001,.0001)
P<-1+exp(-beta[1]/2)
# accuracy of test Q<-1/P
# sroc curve assumes slope is 0
r1<-exp(-beta[1])
for(i in 1:N){r2[i]<-(1-fpr[i])/fpr[i]}
for(i in 1:N){r3[i]<-1+r1*r2[i]}
for(i in 1:N){sroc[i]<-1/r3[i]}
}
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# data from Horsthuis et al.
# x1 is fraction with Crohn disease
# x2 is fraction of males
# true and false positive ratios are on per patient basis
list(N=9,tpr=c(.78,.935,.90,.812,.931,.884,.87,.96,.92),

fpr=c(.10,.01,.05,.12,.07,.07,.01,.33,.03),
# the first component of x2 is the average of the remaining 8

x1=c(.322,.093,.322,1,.406,.643,1,1,.642),
x2=c(.4088,.097,.457,.571,.423,.465,.366,.571,.321))

# Pakos et al.
list(N=19,
tpr=c(.67,.75,.85,.35,.99,.95,.90,.99,.80,.78,.95,.61,.90,.89,.88,.93,.93,.43,.38),
fpr=c(.15,.26,.11,.17,.22,.33,.33,.01,.33,.6,.43,.04,.17,.01,.10,.70,.01,.01,.57),
# x1 is the average age
# x2 is the percentage of males
# components 2,3,4,14, and 17 of x1were given the age 54, the avg of remaining
# components 2,3,4,14, and 17 of x2 were given the value.70, the avg of

remaining
x1=c(59,54,54,54,48,57,61,56,66,45,58,48,47,54,60,58,54,48,46),
x2=c(83,70,70,70,81,53,68,67,86,72,82,76,71,70,58,68,70,59,67))
# initial values
list(beta=c(0,0),neta=c(0,0), tau=1))

The surprising result is that the adjusted accuracy of ultrasound is 0.9748
with covariates compared to 0.9098 without covariates, even though the
effect of the covariates is somewhat negligible (Table 11.4). For example,

TABLE 11.4: Bayesian analysis for meta-analysis of ultrasound for
diagnosis of inflammatory bowel disease.

Parameter Mean sd Error 2 1/2 Median 97 1/2
Q 0.9748 0.0394 0.0015 0.9034 0.9826 0.996
beta[1] 7.978 1.591 0.0827 4.472 8.006 11.04
beta[2] −0.0813 0.3484 0.0141 −0.8162 −0.0714 0.5889
neta[1] 0.9398 1.443 0.0598 −1.916 0.988 3.858
neta[2] −8.634 4.293 0.2369 −16.65 −8.773 0.4042
sroc[1] 0.9868 0.0528 0.0021 0.9067 0.9972 0.9999
sroc[2] 0.9262 0.1329 0.0064 0.4691 0.9698 0.9984
sroc[3] 0.9773 0.0749 0.0030 0.8216 0.9941 0.9997
sroc[4] 0.9887 0.0546 0.0019 0.9227 0.9977 0.9999
sroc[5] 0.9825 0.0662 0.0026 0.8682 0.9958 0.9998
sroc[6] 0.9825 0.0662 0.0026 0.8682 0.9958 0.9998
sroc[7] 0.9262 0.1329 0.0064 0.4691 0.9698 0.9984
sroc[8] 0.9954 0.0384 0.0012 0.9773 0.9994 1.0
sroc[9] 0.9665 0.0903 0.0039 0.7302 0.9899 0.9995
tau 2.167 0.7886 0.0190 0.8561 2.089 3.919
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FIGURE 11.5: Effect of covariates on SROC.

the 95% credible interval for beta[1], which is the effect of the proportion of
patients with ulcerated colitis, is (−1.916, 3.858), which implies a small effect
of that covariate on the average value of B. Also, it should be noted that the
95% credible interval for beta[2] contains zero, thus the ordinates of the points
on the SROC curve are computed assuming beta[2]=0. See Equation 11.5.

The effect of the covariates on the SROC curve is evident from Figure 11.5,
because the SROC curve corresponding to the inclusion of the two covariates
dominates the SROC curve when the covariates are not included over the
range where 0 < FPR < 0.35.

11.6 Meta-Analysis with Covariates for Several Tests

A Bayesian analysis provides an excellent approach to comparing two medi-
cal tests with covariates when the information is provided by a meta-analysis,
and Horsthuis et al. [7] paper presents such an example. It consists of two
modalities, ultrasound and MRI, to diagnose inflammatory bowel disease,
where the two covariates are the fraction of patients with Crohn’s disease
and the fraction of male patients. The disease presents as Crohn’s disease or
as ulcerative colitis, while the disease attacks both genders with about the
same frequency. The analysis is based on BUGS CODE 11.6.
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BUGS CODE 11.6

# two tests with covariates
model;
{
for(i in 1:N1){u1[i]<-logit(fpr1[i])}
for(i in 1:N1){v1[i]<-logit(tpr1[i])}
for(i in 1:N1){b1[i]<-v1[i]-u1[i]}
for(i in 1:N1){s1[i]<-v1[i]+u1[i]}
# bilogistic regression of b on s for test 1
for(i in 1:N1){b1[i]∼dlogis(mu1[i],tau1)
mu1[i]<-beta1[1]+beta1[2]*s1[i]+neta1[1]*x11[i]+neta1[2]*x12[i]}
for(i in 1:2){beta1[i]∼dnorm(.0000,.0001)}
for(i in 1:2){neta1[i]∼dnorm(.0000,.0001)}
tau1∼dgamma(.0001,.0001)
P1<-1+exp(-beta1[1]/2)
# accuracy of test 1
Q1<-1/P1
# sroc curve assumes slope is 0
# sroc values for test 1
r11<-exp(-beta1[1])
for(i in 1:N1){r12[i]<-(1-fpr1[i])/fpr1[i]}
for(i in 1:N1){r13[i]<-1+r11*r12[i]}
for(i in 1:N1){sroc1[i]<-1/r13[i]}
# for test 2
for(i in 1:N2){u2[i]<-logit(fpr2[i])}
for(i in 1:N2){v2[i]<-logit(tpr2[i])}
for(i in 1:N2){b2[i]<-v2[i]-u2[i]}
for(i in 1:N2){s2[i]<-v2[i]+u2[i]}
# bilogistic regression of b2 on s2 for test 2
for(i in 1:N2){b2[i]∼dlogis(mu2[i],tau2)
mu2[i]<-beta2[1]+beta2[2]*s2[i]+neta2[1]*x21[i]+neta2[2]*x22[i]}
for(i in 1:2){beta2[i]∼dnorm(.0000,.0001)}
for(i in 1:2){neta2[i]∼dnorm(.0000,.0001)}
tau2∼dgamma(.0001,.0001)
P2<-1+exp(-beta2[1]/2)
# accuracy of test 2
Q2<-1/P2
# sroc curve assumes slope is 0
r21<-exp(-beta2[1])
for(i in 1:N2){r22[i]<-(1-fpr2[i])/fpr2[i]}
for(i in 1:N2){r23[i]<-1+r21*r22[i]}
for(i in 1:N2){sroc2[i]<-1/r23[i]}
# difference of accuracy of two tests
d<-Q1-Q2
}
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# data from Horsthuis et al. [7] for US and MRI
# US is test 1 and MRI is test 2
# x11 is fraction with Chron’s disease
# x12 is fraction of males
# tpr and fpr are on a per patient basis
list(N1=9,tpr1=c(.78,.935,.90,.812,.931,.884,.87,.96,.92),

fpr1=c(.10,.01,.05,.12,.07,.07,.01,.33,.03),
# the first component of x12 is the average of the remaining 8

x11=c(.322,.093,.322,1,.406,.643,1,1,.642),
x12=c(.4088,.097,.457,.571,.423,.465,.366,.571,.321),

# the following is for test 2 or MRI
N2=7,
x21=c(.6,.54,1,1,.34,.36,1),

# below.49 is the average of other six components of x22
x22=c(.6,.42,.46,.36,.49,.56,.52),

# tpr and fpr are on a per patient basis
tpr2=c(.99,.99,.913,.87,.818,.956,.889),
fpr2=c(.18,.01,.29,.29,.01,.08,.143))

# initial values
list( beta1=c(0,0),neta1=c(0,0), tau1=1,beta2=c(0,0),neta2=c(0,0), tau2=1))

The analysis consists of two bilogistic regressions corresponding to the two
tests.

B1 = β1[1] + β1[2]S1 +
i=k∑
i=1

η1iX1i (11.13)

for the first test and

B2 = β2[1] + β2[2]S2 +
i=k∑
i=1

η2iX2i (11.14)

for the second, where the same k covariates apply to both tests. B and S values
are defined the usual way in terms of U and V values, which are the logits of the
false and true positive fractions, respectively. See Equations 11.1 through 11.3
for definitions of U , V , B, and S values used in the above regression.

Once the regressions are performed, the posterior distribution of the regres-
sion parameters induce a posterior distribution for the accuracy parameters,
namely,

Q1 = (1 + e−β1[1]/2)−1 (11.15)

for the first test and

Q2 = (1 + e−β2[1]/2)−1 (11.16)

for the second test.
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For the last part of the analysis, the posterior distribution of the SROC
values is generated, which allows one to compare the SROC curves, and hence
to compare graphically the accuracy of the two tests. Equation 11.11 should be
modified in order to compute the SROC values for the two tests (Table 11.5).

The analysis is executed with 325,000 observations, with a burn in of 5,000
and a refresh of 100. Comparing US and MRI, based on the posterior means
of Q1 and Q2, indicates that US has more accuracy, but this comparison
should be made with caution because the posterior distribution of Q2 is highly
skewed with a median for Q2 of 0.998 and a posterior mean of 0.866, thus, if
the comparison is made with the means there appears to be a difference, but
if based on the medians there appears to be no difference. From Figure 11.6,
the two SROC curves are plotted for the two tests, implying that the US test
has more accuracy than MRI.

TABLE 11.5: Bayesian analysis for comparing US and MRI for
inflammatory bowel disease.

Parameter Mean sd Error 2 1/2 Median 97 1/2

Q1 0.9774 0.0335 <0.0001 0.9318 0.9828 0.9962
Q2 0.866 0.2919 0.0109 0.00021 0.998 1
beta1[1] 8.106 1.53 0.0442 5.231 8.093 11.13
beta1[2] −0.058 0.3414 0.0075 −0.7215 −0.0595 0.6222
beta2[1] 12.15 12.58 0.4865 −16.93 12.45 35.1
beta2[2] 0.2252 0.8867 0.0199 −1.656 0.2409 1.931
d 0.1114 0.2933 0.0109 −0.05664 −0.01007 0.9798
neta1[1] 1.195 1.43 0.0313 −1.568 1.172 4.075
neta1[2] −9.288 4.252 0.1304 −17.69 −9.193 −1.522
neta2[1] −6.287 5.884 0.1805 −17.61 −6.324 6.22
neta2[2] −5.574 20.13 0.7688 −42.63 −6.059 40.85
sroc1[1] 0.9903 0.0489 0.00125 0.9541 0.9973 0.9999
sroc1[2] 0.9392 0.1068 0.0028 0.6538 0.9706 0.9985
sroc1[3] 0.9828 0.0609 0.0015 0.9077 0.9942 0.9997
sroc1[4] 0.9916 0.0462 0.0011 0.9623 0.9978 0.9999
sroc1[5] 0.9869 0.0547 0.0014 0.9336 0.996 0.9998
sroc1[6] 0.9869 0.0547 0.0014 0.9336 0.996 0.9998
sroc1[7] 0.9392 0.1068 0.0028 0.6538 0.9706 0.9985
sroc1[8] 0.9966 0.0338 0.000821 0.9893 0.9994 1
sroc1[9] 0.9742 0.0723 0.0019 0.8525 0.9902 0.9995
sroc2[1] 0.852 0.3289 0.01212 0 1 1
sroc2[2] 0.7841 0.377 0.0140 0 0.9996 1
sroc2[3] 0.8627 0.3192 0.0117 0 1 1
sroc2[4] 0.8627 0.3192 0.0117 0 1 1
sroc2[5] 0.7841 0.377 0.0140 0 0.9996 1
sroc2[6] 0.8344 0.3436 0.0127 0 1 1
sroc2[7] 0.847 0.3332 0.0123 0 1 1
tau1 2.174 0.7841 0.0056 0.8769 2.094 3.93
tau2 0.8198 0.3824 0.0066 0.2321 0.7694 1.699
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FIGURE 11.6: SROC curves for US and MRI.

Based on the 95% credible interval, the slope of the two regressions is zero,
that is, the effect of the S values on the B value is negligible, but note that
the intercept for the regression of US is 8.106, which implies that the odds
of a positive test with US for the diseased population is 8 times the odds of
a positive US for those without inflammatory disease, whereas for MRI, the
intercept posterior mean is 12.15 implying the odds of a positive test with MRI
for the diseased group is about 12 times the odds of a positive test for the non-
diseased group. Also, based on the 95% credible interval, for all values of the
threshold both tests discriminate equally between those with inflammatory
bowel disease and those without.

Do the covariates have any effect on the accuracy of the two tests? The
95% credible interval for neta1[2] is (−17.69,−1.522) which implies that the
percentage of male patients has an effect on the B score for US, however,
additional analysis is needed in order to determine if the effect is non negli-
gible by calculating the Q value for US when covariates are not used in the
regression.

One note of caution in using regression for the meta-analysis to assess the
accuracy is that the relatively small sample size (the number of studies) might
not produce a model with a good fit to the data, which in turn implies that
one may not have high confidence in one’s assessment of the accuracy of the
medical test.

It is interesting to observe the posterior density of Q2 (see Figure 11.7).
Note, the “small” jump in a small neighborhood of 0 and the “large” jump

in a small neighborhood of 1!
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FIGURE 11.7: Posterior density of Q2: the accuracy of MRI.

11.7 Other Meta-Analyses

Up to this point, the emphasis has been on summarizing the accuracy of
various medical tests, but now the focus will be on estimating the complica-
tions of various medical tests. As is well known, many tests are accompanied
by various complications: (a) coronary angiography can result in stroke and
damage to the coronary arteries, and (b) certain contrast media in diagnos-
tic imaging can result in damage to the kidneys. It is for the latter scenario
that a Bayesian approach will be taken and is based on the meta-analysis of
Heinrich et al. [9], who compare the nephrotoxity of iso-osmolar iodixanol with
non-ionic, low-osmolar contrast media.

The meta-analysis included a thorough search of MEDLINE, EMBASE,
and BIOSIS databases, trial registries, conference proceedings, and requests
from companies. Also, randomized clinical trials assessing the serum creatinine
levels before and after the intravascular administration of iodixanol (LOCM)
were included. The main endpoint was the incidence of contrast media-induced
nephropathy (kidney disease), which is measured by a change in serum creati-
nine values. Their main conclusion was based on 25 trials and on conventional
statistical procedures, which showed that iodixanol is not associated with a
significantly reduced risk of contrast-induced nephropathy.

Our approach is Bayesian, where the main endpoint is the incidence of
kidney complications (defined as a certain percent increase in serum creatinine,
which is measured before and after the administration of the procedure). There
are two groups, one with contrast media, labeled LOCM, while the other group
of patients did not have contrast medium administered, and is referred to as
the iodixanol group. Some of the trials are randomized, and there are various
types of contrast media, as well as many other study covariates, and are of
interest in how they impact the complication rate.
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Suppose the analysis is based on the logistic model, where for the control
group (patients not receiving the contrast media)

Xi ∼ binomial(ni, pi) (11.17)

for i = 1, 2, . . . , n, and for the patients receiving the contrast agent

Yi ∼ binomial(mi, qi) (11.18)

with i = 1, 2, . . . , m.
In addition, let

log(pi/(1 − pi)) = θi (11.19)

for i = 1, 2, . . . , n, and

log(qi/(1 − qi)) = φi + θi (11.20)

with i = 1, 2, . . . , m.
Prior information for the parameters is specified as

θi ∼ nid(µθ, τθ) (11.21)

and

φi ∼ nid(µφ, τφ). (11.22)

At this stage there are several choices: one could let θi and φi have non-
informative normal distributions (0.0000,0.00001), or let µθ and µφ have nor-
mal distributions (informative or non informative) and the precisions τθ and
τφ have gamma distributions (informative or non informative). It depends on
the amount of prior information available to the analyst. For additional infor-
mation about the model, see Berry [10]. The first part of the analysis will
be based on the model defined by Equations 11.17 through 11.22, then the
analysis will be expanded to include the study covariates.

Our analysis is executed with BUGS CODE 11.7 with 65,000 observations
for the simulation, a burn in of 5,000 and a refresh of 100.

BUGS CODE 11.7

model;
{
# binomial distributions for two tests
for(i in 1:17){x[i]∼dbin(p[i],m[i])}
for(i in 1:17){y[i]∼dbin(q[i],n[i])}
# logit models for the two complication rates
for(i in 1:17){logit(p[i])<-theta[i]}
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for(i in 1:17){logit(q[i])<-phi[i]}
# prior distributions
for(i in 1:17){theta[i]∼dnorm(muth,tauth)}
for(i in 1:17){phi[i]∼dnorm(muphi,tauphi)}
muth∼dnorm(0.000,.0001)
muphi∼dnorm(0.000,.0001)
tauth∼dgamma(.00001,.00001)
tauphi∼dgamma(.00001,.00001)
# mean of complication rates
pee<-mean(p[])
qee<-mean(q[])
d<-pee-qee
}
# Heinrich et al. meta analysis
list( m=c(123,72,54,210,58,105,76,134,35,25,64,54,32,100,20,59,101),
n=c(125,76,48,204,56,116,77,125,35,25,65,49,32,50,19,60,99),
x=c(6,5,1,14,0,4,2,12,2,4,2,5,1,7,1,0,0),
y=c(7,0,5,9,1,1,0,17,9,4,17,14,0,3,0,0,2))
# initial values
# must initiate other chain with specification tool
list(muth=0,muphi=0,tauth=1,tauphi=1)

The above code is labeled with the appropriate identification for the
Bayesian analysis, such as pee and qee are the means of the complication
rates for the two groups of patients, and the data for the Heinrich et al. [9]
meta-analysis, where the components of the x vector are the number of com-
plications for the control or iodixanol patients, and the y vector contains the
number of complications for the treatment or the patients receiving the con-
trast media. In addition, the m vector is the number of patients in the control
group and the n vector contains the number of patients in the treatment
group. Note that only 17 of the 22 studies are used for the analysis because
they have complete information on the complication rates. Table 11.6 portrays
the Bayesian analysis for the Heinrich et al. meta-analysis.

TABLE 11.6: Bayesian analysis for the safety of contrast media study.
Parameter Mean sd Error 2 1/2 Median 97 1/2
d −0.0337 0.01098 <0.0001 −0.0556 −0.0336 −0.0125
muphi µφ −3.319 0.547 0.0033 −4.532 −3.274 −2.365
muth µθ −3.085 0.2284 0.0050 −3.617 −3.057 −2.722
pee 0.0489 0.0063 <0.0001 0.0374 0.0486 0.0622
qee 0.0826 0.0089 <0.00001 0.0660 0.0823 0.1009
tauphi τφ 0.3825 0.2161 0.0017 0.1003 0.3378 0.9219
tauth τθ 2596 14400 429 0.6974 5.058 28040
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Key parameters are d, the difference in the two averages of the complication
rates, and muphi, which is the difference in the logits of the complication
rates, and both imply there is a difference in the complication rates. The
average complication rate for the group not receiving the contrast agent is
0.0489, compared to 0.0826 for the group receiving the contrast agent, and
their difference d has a 95% credible interval of (−0.0556,−0.0125), while the
95% credible interval for muphi is (−4.532,−2.365). Note the large posterior
mean for τθ, however, the median is 5.058, and should be used as the estimate
of the precision parameter.

This example is generalized to include study covariates in the exercises.

11.8 Comments and Conclusions

This chapter has introduced the reader to the Bayesian approach to meta-
analysis with emphasis on the SROC curve, that is where one assumes that the
separate studies have a common ROC curve. The Bayesian approach is based
on a regression analysis and consists of computing the posterior distribution
of the SROC values and the accuracy Q of the combined studies. If covariates
are involved, the posterior distribution of the relevant regression coefficients
tells one if they contribute to the analysis.

The chapter begins by considering a meta-analysis involving only one test
and, via an MCMC simulation, determines the posterior distribution of the
relevant parameters. A regression of B on S is the basis of the analysis, where
the intercept and slope give us valuable information about the worth of the test
in differentiating between diseased and non-diseased patients; B = V −U and
S = V + U , where U and V are the logits of the FPF and TPF, respectively.
It can be shown that the intercept is the odds ratio of a positive test result
for those with and without the disease (when S = 0), and that the value of
the slope is very informative about the accuracy. For example, if the slope is
close to zero, the implication is that the test’s ability to discriminate between
the two groups of patients is independent of the threshold values used in the
separate studies. Once the posterior distribution of the slope and intercept are
determined, their joint posterior distribution induces a posterior distribution
for the SROC values and the accuracy parameter Q.

Various interesting examples exemplify the Bayesian analysis and are taken
from the medical research literature. For example, the Horsthuis et al. [7]
study is especially interesting because it is well documented and involves sev-
eral tests, namely, US, MR, scintigraphy, and CT, to diagnose inflammatory
bowel disease, and is one of the few meta-analyses to study several modalities
simultaneously. Another positive feature of the Horsthuis et al. analysis is the
inclusion of many covariates to assess the inter study variation.

The example is examined in three stages: (a) US was only considered
without any covariates; (b) US and MR were compared, without using any
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covariates; and (c) US was used along with two covariates, the fraction of
patients with Crohn’s disease and the fraction of male patients. Thus, this
example allows one to display the full complement of Bayesian methods in
order to conduct the analysis.

As mentioned earlier, the foundation of the Bayesian approach is the bilo-
gistic regression model of B on S, however, Zhou, Obuchowski, and McClish
[3: 403] describe another method based on a binary regression model. This
was not considered, but instead the bilogistic regression model was employed.
Also, very little has appeared in the literature concerning the meta-analysis of
tests with continuous scores from a Bayesian viewpoint, however, Zhou, Obu-
chowski, and McClish [3: 409] do present such an approach, which is based
on a weighted average of estimated ROC areas of the various studies. Note, it
would be very difficult to do a Bayesian analysis, because most, if not all, such
meta-analyses are not done in a Bayesian fashion, but instead are done with
non-Bayesian methodology, that is, each individual ROC area is estimated
by conventional methods along with an associated estimated standard error
(standard deviation).

The approach presented here follows Miller et al. [13], but other approaches
can be found in Harbord et al. [14], Leeflang et al. [15], Paul et al. [16]; and
Rutter and Gatsonins [17]. Lastly, the chapter concludes with many exercises
that expand on the methods introduced earlier in the chapter, which gives the
student additional information that should prove advantageous in a consulting
environment.

11.9 Exercises

1. Confirm Table 11.1, the Bayesian analysis for the meta-analysis of
the DeVries, Hunink, and Polak [5] study for the diagnosis of periph-
eral artery stenosis using regular duplex ultrasound. Based on BUGS
CODE 11.1, generate 65,000 observations for the MCMC simulation,
with a burn in of 5,000 and a refresh of 100.
(a) What is the posterior mean and 95% credible interval for the accu-

racy parameter Q? Does it indicate good accuracy for ultrasound?
(b) Do you agree that the slope of the regression of B on S can be

considered zero?
(c) Explain how the SROC values are computed. What are the false

positive ratios corresponding to the nine SROC values.
(d) Display the posterior density of Q. Is the distribution skewed?
(e) Using the MCMC errors as a guide, are 65,000 observations suffi-

cient for the simulation?

2. Consider the meta-analysis of Meijer et al. [11], which consists of 22
studies for the diagnostic performance of thin slice CT coronary angiog-
raphy to detect coronary stenosis of at least 50% occlusion of the artery.
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The data appear as a list statement in BUGS CODE 11.1 and a Bayesian
analysis is performed with 65,000 observations, a burn in of 5,000 and
a refresh of 100 with the following results. Note that this is a very
involved meta-analysis and the reader is encouraged to carefully read
the paper. The purpose here is to focus on the Bayesian analysis and
not critique the meta-analysis. The authors do a conventional analysis,
which should be compared to the results of Table 11.7.

The plot of the posterior density of the slope parameter beta[2]
appears in Figure 11.8 and shows that the posterior probability is con-
centrated in a “small” neighborhood of zero, which is confirmed by a 95%
credible interval of (−0.33, 0.19), thus the SROC values are computed
assuming beta[2]=0.
(a) Do you agree that one should let beta[2] = 0 for computing the

SROC values?
(b) Plot the posterior density of Q.
(c) Does the posterior density of Q imply that CT angiography has

good accuracy?

TABLE 11.7: Posterior analysis for the meta-analysis of Meijer
et al. [11].

Parameter Mean sd Error 2 1/2 Median 97 1/2
Q 0.9526 0.0059 <0.0001 0.9397 0.953 0.9628
beta[1] 6.016 0.2573 0.0059 5.492 6.021 6.51
beta[2] −0.0676 0.1334 0.0030 −0.3304 −0.0675 0.1938
sroc[1] 0.9664 0.0087 <0.0001 0.9417 0.9648 0.9781
sroc[2] 0.9842 0.0042 <0.00001 0.9461 0.9675 0.9798
sroc[3] 0.9842 0.0042 <0.00001 0.9744 0.9848 0.9906
sroc[4] 0.9858 0.0038 <0.00001 0.9771 0.9863 0.9916
sroc[5] 0.9635 0.0094 <0.0001 0.9417 0.9648 0.9781
sroc[6] 0.9887 0.0030 <0.00001 0.9816 0.9891 0.9933
sroc[7] 0.9804 0.0052 <0.0001 0.9397 0.953 0.9628
sroc[8] 0.9741 0.0068 <0.0001 0.9583 0.975 0.9845
sroc[9] 0.9936 0.0017 <0.00001 0.9895 0.9938 0.9962
sroc[10] 0.9408 0.0149 <0.0001 0.9065 0.9427 0.9641
sroc[11] 0.9913 0.0023 <0.00001 0.9859 0.9916 0.9949
sroc[12] 0.9804 0.0052 <0.0001 0.9397 0.953 0.9628
sroc[13] 0.9858 0.0038 <0.00001 0.9771 0.9863 0.9916
sroc[14] 0.9773 0.0060 <0.0001 0.9634 0.9781 0.9864
sroc[15] 0.9812 0.0050 <0.0001 0.9697 0.9819 0.9888
sroc[16] 0.9778 0.0058 <0.0001 0.9642 0.9786 0.9868
sroc[17] 0.9453 0.0138 <0.0001 0.9134 0.947 0.9668
sroc[18] 0.9924 0.0020 <0.00001 0.9877 0.9927 0.9955
sroc[19] 0.9744 0.0067 <0.0001 0.9588 0.9753 0.9847
sroc[20] 0.9861 0.0037 <0.00001 0.9775 0.9866 0.9918
tau 3.011 0.5821 0.0037 1.977 2.98 4.238
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FIGURE 11.8: Posterior density of the slope parameter beta[2].

(d) Do the SROC values indicate good accuracy for CT angiography?
(e) Confirm that the plot of the SROC values vs. the corresponding

FPR values appear as in Figure 11.9.
(f) Does the plot of the SROC values confirm a Q value with a posterior

mean of 0.9526?
(g) Are any of the posterior distributions of the parameters skewed? If

so, identify the parameter.
(h) Interpret the posterior mean of the intercept beta[1].

3. This is another example of a meta-analysis with no covariates where
only the TPR and FPR are reported, and is based on the research of
Huebner et al. [12], who determined the summary accuracy of whole-
body FDG-PET for detecting recurrent colorectal cancer. It consists of
10 studies that vary from 18 to 130 patients. The FPR and TPR appear
as a list statement in BUGS CODE 11.8 and the analysis is executed

FPR
1.00.90.5 0.6 0.7 0.80.1 0.2 0.3 0.40.0

SR
O

C

1.00

0.90

0.80

0.70

0.60

0.50

FIGURE 11.9: SROC curve of the Meijer et al. [11] meta-analysis.
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TABLE 11.8: Bayesian analysis of meta-analysis for FDG-PET of
recurrent colorectal cancer.

Parameter Mean sd Error 2 1/2 Median 97 1/2
Q 0.9581 0.0078 <0.00001 0.9396 0.959 0.971
beta[1] 6.291 0.3801 0.003794 5.489 6.30 7.024
beta[2] −0.3434 0.1435 0.0014 −0.642 −0.3415 −0.0596
sroc[1] 0.94 0.023 <0.0001 0.8821 0.9441 0.972
sroc[2] 0.8386 0.0526 <0.0001 0.7097 0.8465 0.919
sroc[3] 0.996 0.0017 <0.0001 0.9917 0.9963 0.9982
sroc[4] 0.9904 0.0040 <0.0001 0.9802 0.9911 0.9957
sroc[5] 0.9921 0.0033 <0.0001 0.9837 0.9927 0.9965
sroc[6] 0.8386 0.0526 <0.0001 0.7097 0.8465 0.919
sroc[7] 0.9956 0.0018 <0.0001 0.9909 0.9959 0.998
sroc[8] 0.9951 0.0020 <0.0001 0.99 0.9955 0.997
sroc[9] 0.9926 0.0031 <0.0001 0.9847 0.9932 0.996
sroc[10] 0.8386 0.0526 <0.0001 0.7097 0.8465 0.919
tau 1.773 0.5353 <0.0001 0.8855 1.719 2.965

with 65,000 observations for the simulation, with a burn in of 5,000 and
refresh of 100. See Table 11.8 for the results of the posterior distribution
for the parameters. Note, this code uses an analysis that does not assume
the slope beta[2] = 0 and the reader is referred to Equation 11.5.

BUGS CODE 11.8

# one test and assumes beta[2] is not zero
model;
{
for(i in 1:N){u[i]<-logit(fpr[i])}
for(i in 1:N){v[i]<-logit(tpr[i])}
for(i in 1:N){b[i]<-v[i]-u[i]}
for(i in 1:N){s[i]<-v[i]+u[i]}
# bilogistic regression of b on s
for(i in 1:N){b[i]∼dlogis(mu[i],tau)
mu[i]<-beta[1]+beta[2]*s[i]}
for(i in 1:2){beta[i]∼dnorm(.0000,.0001)}
tau∼dgamma(.0001,.0001)
P<-1+exp(-beta[1]/2)
# accuracy of test
Q<-1/P
# sroc curve, does not assume slope is zero
r1<-exp(-beta[1]/(1-beta[2]))
for(i in 1:N){r2[i]<-(1-fpr[i])/fpr[i]}
r3<-(1+beta[2])/(1-beta[2])
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for(i in 1:N){r4[i]<-pow(r2[i],r3)}
for(i in 1:N){r5[i]<-1+r1*r4[i]}
for(i in 1:N){sroc[i]<-1/r5[i]}
}
# data from Huebner et al.
list(N=10, tpr=c(.96,.90,.99,.98,.92,.96,.99,.99,.95,.94),
fpr=c(.03,.01,.33,.17,.20,.01,.31,.29,.21,.01))

# initial values
list( beta=c(0,0), tau=1))

The 95% credible interval for beta[2] is (−0.642,−0.0596), which
does not contain zero, thus I used Equation 11.5 in the above code to
compute the SROC curve.
(a) Is FDG-PET an accurate test for detecting recurrent colorectal

cancer?
(b) Are 65,000 observations sufficient for the simulation? Explain your

answer.
(c) Would you use Equation 11.5 to compute the SROC values?

Explain your answer.
(d) Display the posterior density of beta[2].
(e) The intercept has a posterior mean of 6.291. What does this imply

about the odds ratio of a positive test for those diseased vs. a
positive test for those without recurrent colorectal cancer?

(f) Plot the posterior means of the SROC values vs. the FPR values
appearing in the list statement in the above code.

4. Verify Table 11.3, the Bayesian analysis for the Horsthuis et al. [7] meta-
analysis for the diagnosis of inflammatory bowel disease using ultra-
sound, MRI, scintigraphy, and CT. Use BUGS CODE 11.4 with 65,000
observations for the MCMC simulation, with a burn in of 5,000 and a
refresh of 100.
(a) Is ultrasound a good test for the diagnosis of inflammatory bowel

disease? Explain your answer.
(b) Is the slope beta[2] = 0? Explain your answer.
(c) Display the posterior density of beta[2].
(d) What is your interpretation of the intercept of the regression of B

on S? What does the value imply about the detection of disease
with US?

(e) If the simulation is increased to 120,000 observations, describe the
effect on the MCMC error.

5. Verify Table 11.4, the posterior analysis for the Horsthuis et al. [7] meta-
analysis with covariates for the diagnosis of inflammatory bowel dis-
ease. There are two covariates, namely, the percentage of patients with
Crohn’s disease and the percentage of male patients on a per study basis.
Execute the analysis with BUGS CODE 11.5 with 65,000 observations
for the simulation, with a burn in of 5,000 and a refresh of 100.
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(a) Are the covariates needed for the analysis?
(b) Display the posterior densities of beta[1] and beta[2].
(c) What is the 95% credible interval for beta[2]?
(d) What is the overall accuracy of ultrasound based on Q for the

meta-analysis?
(e) Using Q, compare the accuracy of US with covariates to that of

not using covariates. That is, compare the results of Table 11.4 to
Table 11.3.

(f) What is your overall conclusion about using covariates for the diag-
nosis of inflammatory bowel disease with ultrasound?

6. Using BUGS CODE 11.5, execute a Bayesian analysis for the Pakos
et al. [8] meta-analysis, which summarizes the accuracy of antigranu-
locyte scintigraphy with 99m Tc radiolabeled monoclonal antibodies for
the diagnosis of osteomyelitis. Two covariates are used, namely, the aver-
age age and the percentage of males on a per study basis. Note, a list
statement of BUGS CODE 11.5 contains the relevant information for
the Pakos et al. [8] study. Using 65,000 observations for the simulation,
with a refresh of 100 and a burn in of 5,000, I got the results shown in
Table 11.9. Confirm the results of the table.
(a) Note the highly skewed distribution for Q with a posterior mean

of 0.6112 and posterior median of 0.799. Because of the skewness,
I prefer the median and assign an accuracy of 0.799. Do you agree?

(b) The posterior distributions of the SROC values are also highly
skewed, thus, I prefer the medians. If you plot the posterior
medians vs. the corresponding false positive ratios, you arrive at
Figure 11.10. Verify Figure 11.10.

(c) From the plot of the SROC curve, I believe that the accuracy corre-
sponds to approximately the posterior median of Q. Do you agree?

(d) An accuracy of 0.799 is respectable, thus I affirm that the nuclear
medicine procedure of using scintigraphy to diagnose osteomyelitis
is useful in medical practice. Do you agree?

(e) Display the posterior density of Q.
(f) Are the two covariates useful for estimating accuracy?
(g) Compare the accuracy using covariates to that of not using covari-

ates. Use BUGS CODE 11.1 with the Pakos et al. [8] data for the
Bayesian analysis without covariates (Table 11.9) or revise BUGS
CODE 11.5, either way it is your choice!

7. Verify Table 11.5 by executing the analysis with BUGS CODE 11.6
for comparing ultrasound with MRI for the diagnosis of inflammatory
bowel disease. There are nine studies with US and seven with MRI
and the list statement of the code gives the necessary information for
the analysis, including the two covariates, which are the percentage of
patients with Crohn’s disease and the percentage of males in each study.
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TABLE 11.9: Bayesian analysis for the Pakos et al. [8] meta-analysis.
Parameter Mean sd Error 2 1/2 Median 97 1/2
Q 0.6112 0.4034 0.0253 0.000167 0.799 0.999
beta[1] 2.559 9.528 0.6029 −17.39 2.76 18.17
beta[2] −0.2215 0.3121 0.0083 −0.84 −.2196 0.4051
neta[1] 0.0270 0.1435 0.0090 −0.2604 0.0404 0.3229
neta[2] −0.0078 0.0801 0.004987 −0.1666 −0.01264 0.1708
sroc[1] 0.5453 0.4546 0.0283 <10−9 0.7359 1
sroc[2] 0.5738 0.4504 0.0821 10−9 0.8473 1
sroc[3] 0.5306 0.4562 0.0284 10−9 0.6612 1
sroc[4] 0.5514 0.4538 0.02833 10−9 0.7639 1
sroc[5] 0.5647 0.4519 0.0282 10−9 0.8167 1
sroc[6] 0.5879 0.448 0.0279 10−9 0.8861 1
sroc[7] 0.5879 0.448 0.0279 10−9 0.8861 1
sroc[8] 0.4301 0.4531 0.0279 10−9 0.1376 1
sroc[9] 0.5879 0.448 0.0279 10−9 0.8861 1
sroc[10] 0.6336 0.438 0.0273 10−9 0.9595 1
sroc[11] 0.6056 0.4446 0.0277 10−9 0.9226 1
sroc[12] 0.4867 0.458 0.0286 10−9 0.3969 1
sroc[13] 0.5514 0.4538 0.0283 10−9 0.7639 1
sroc[14] 0.4301 0.4531 0.0283 10−9 0.1376 1
sroc[15] 0.5263 0.4566 0.0285 10−9 0.637 1
sroc[16] 0.6512 0.4332 0.0270 10−9 0.9736 1
sroc[17] 0.4301 0.4531 0.0283 10−9 0.1376 1
sroc[18] 0.4301 0.4531 0.0283 10−9 0.1376 1
sroc[19] 0.6286 0.4393 0.0274 10−9 0.9544 1
tau 0.6768 0.1493 0.0037 0.4135 0.6672 0.9975
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FIGURE 11.10: SROC curve of the Pakos et al. [8] meta-analysis.
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I used 325,000 observations for the simulation, with a burn in of 5,000
and refresh of 100.
(a) Note the highly skewed distribution for Q2 for the accuracy of

MRI and beta1[1], the intercept for the regression of the first test.
I prefer the posterior median of 0.9982 for the accuracy of MRI.
Do you agree? Explain your answer.

(b) Are the covariates necessary in order to estimate the accuracy of
the two tests?

(c) Is there a difference in the accuracy of MRI and US for diagnosing
inflammatory bowel disease?

(d) Plot the posterior density of Q2.
(e) Based on Figure 11.6, is there a difference in the two modalities?

Explain your answer.

8. The meta-analysis of Heinrich et al. [9] is continued by including the
covariates, average age per study, and percentage of women per study,
and the student is referred to the paper for additional information about
this important contribution to contrast safety. Recall that such contrast
media as used in the Heinrich et al. analysis is common for coronary
angiography, but its use runs the risk of kidney damage. The two logistic
models (Equations 11.19 and 11.20) are easily generalized to

log(pi/(1 − pi)) = θi + η1[1]x1 + η1[2]x2 (11.23)

and

log(qi/(1 − qi)) = φi + θi + η2[1]y1 + η2[2]y2, (11.24)

and the code to execute the analysis with covariates follows. One must
specify the prior densities of the parameters in the above model in the
obvious way and one should refer to BUGS CODE 11.9 for the definition
of those priors.

BUGS CODE 11.9

model;
{
# binomial distributions for the two tests
# with covariates
for(i in 1:17){x[i]∼dbin(p[i],m[i])}
for(i in 1:17){y[i]∼dbin(q[i],n[i])}
# logit models for the two complication rates
for(i in 1:17){logit(p[i])<-theta[i]+neta1[1]*x1[i]+neta1[2]*x2[i]}
for(i in 1:17){logit(q[i])<-theta[i]+phi[i]+neta2[1]*y1[i]+neta2[2]*y2[i]}
# prior distributions
neta1[1]∼dnorm(0.000,.0001)
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neta1[2]∼dnorm(0.000,.0001)
neta2[1]∼dnorm(0.000,.0001)
neta2[2]∼dnorm(0.000,.0001)
for(i in 1:17){theta[i]∼dnorm(muth,tauth)}
for(i in 1:17){phi[i]∼dnorm(muphi,tauphi)}
muth∼dnorm(0.000,.0001)
muphi∼dnorm(0.000,.0001)
tauth∼dgamma(.00001,.00001)
tauphi∼dgamma(.00001,.00001)
# mean of complication rates
pee<-mean(p[])
qee<-mean(q[])
d<-pee-qee
}
# heinrich et al. meta analysis
list(m=c(123,72,54,210,58,105,76,134,35,25,64,54,32,100,20,59,101),
n=c(125,76,48,204,56,116,77,125,35,25,65,49,32,50,19,60,99),
x=c(6,5,1,14,0,4,2,12,2,4,2,5,1,7,1,0,0),
y=c(7,0,5,9,1,1,0,17,9,4,17,14,0,3,0,0,2),
# x1 is the age for control group
x1=c(68.3,65.4,65,70.5,60.6,60.6,67,71,70,73.8,71.1,62,67,55,61.9,62.4,61),
# y1 is age for the treatment group
y1=c(69.5,67.1,66,72.4,61.1,62.1,67.3,72.8,72,72,70.6,65,69,52,60.2,63,59),
# x2 is the % women for control group
x2=c(50,36,52,40,31,25,33,31,31,44,36,28,12,18,23,19,20),
# y2 is % women for treatment group
y2=c(57,24,33,32,27,24,30,28.4,28.4,44,46,31,16,22,23,7,12))
# initial values
# must initiate other chain with specification tool
list(muth=0,muphi=0,tauth=1,tauphi=1, neta1=c(0,0), neta2=c(0,0))

A posterior analysis for the kidney complications of the con-
trast media is presented in Table 11.10 and is executed with 75,000

TABLE 11.10: Posterior analysis of complications of contrast media.
Parameter Mean sd Error 2 1/2 Median 97 1/2
d −0.032 0.0109 <0.00001 −0.0545 −0.0328 −0.0118
µφ −1.28 3.611 0.2133 −8.428 −1.324 6.122
µθ −6.466 2.26 0.1343 −10.51 −6.7 −1.57
η1[1] 0.0456 0.0399 0.0022 −0.0408 0.0499 0.1157
η1[2] 0.0105 0.0251 <0.0001 −0.0344 0.0087 0.0652
η2[1] 0.0357 0.0644 0.0036 −0.0947 0.0397 0.1515
η2[2] 0.0702 0.0471 0.0011 −0.0124 0.0666 0.1736
pee 0.0493 0.0064 <0.00001 0.0376 0.049 0.0628
qee 0.0822 0.0089 <0.00001 0.0656 0.0819 0.1006
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observations generated for the MCMC simulation, with a burn in of
5,000 and a refresh of 100.

What does this imply about comparing the complication rates
between the two groups?
(a) Are 75,000 observations sufficient for the simulation?
(b) The MCMC errors for µφ and µθ are relatively large. Does this

affect your conclusions about comparing the two tests? Explain
your answer!

(c) Which covariates impact the comparison of the two groups?
(d) Note the 95% credible interval for µφ. Why is µφ the key param-

eter to comparing the complication rates adjusted for the other
variables?

(e) Plot the posterior density of µφ.
(f) After observing Tables 11.6 and 11.10, what is the implication for

the impact of the covariates?

9. Refer to Miller et al. [13], which is a Bayesian adaptation of the SROC
for meta-analysis, and refer to the following derivations:
(a) Derive the equation of the SROC curve (Equation 11.5).
(b) Derive the formula for Q (Equation 11.7).

Remember the definitions of U , V , B, and S given by Equations 11.1
through 11.4, and that Q is the ordinate of the intersection of the SROC
curve and the line TPR + FPR = 1.

The Miller et al. [13] approach is similar to the one taken in this
chapter and the paper illustrates the methodology with two interesting
examples.
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