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PREFACE

This book can be viewed as a reasonably comprehensive compendium of mathematical
definitions, formulas, and theorems intended for researchers, university teachers, engineers,
and students of various backgrounds in mathematics. The absence of proofs and a concise
presentation has permitted combining a substantial amount of reference material in a single
volume.

When selecting the material, the authors have given a pronounced preference to practical
aspects, namely, to formulas, methods, equations, and solutions that are most frequently
used in scientific and engineering applications. Hence some abstract concepts and their
corollaries are not contained in this book.

¢ This book contains chapters on arithmetics, elementary geometry, analytic geometry,
algebra, differential and integral calculus, differential geometry, elementary and special
functions, functions of one complex variable, calculus of variations, probability theory,
mathematical statistics, etc. Special attention is paid to formulas (exact, asymptotical, and
approximate), functions, methods, equations, solutions, and transformations that are of
frequent use in various areas of physics, mechanics, and engineering sciences.

¢ The main distinction of this reference book from other general (nonspecialized) math-
ematical reference books is a significantly wider and more detailed description of methods
for solving equations and obtaining their exact solutions for various classes of mathematical
equations (ordinary differential equations, partial differential equations, integral equations,
difference equations, etc.) that underlie mathematical modeling of numerous phenomena
and processes in science and technology. In addition to well-known methods, some new
methods that have been developing intensively in recent years are described.

e For the convenience of a wider audience with different mathematical backgrounds,
the authors tried to avoid special terminology whenever possible. Therefore, some of the
methods and theorems are outlined in a schematic and somewhat simplified manner, which
is sufficient for them to be used successfully in most cases. Many sections were written
so that they could be read independently. The material within subsections is arranged in
increasing order of complexity. This allows the reader to get to the heart of the matter
quickly.

The material in the first part of the reference book can be roughly categorized into the
following three groups according to meaning:

1. The main text containing a concise, coherent survey of the most important definitions,
formulas, equations, methods, and theorems.

2. Numerous specific examples clarifying the essence of the topics and methods for
solving problems and equations.

3. Discussion of additional issues of interest, given in the form of remarks in small
print.

For the reader’s convenience, several long mathematical tables — finite sums, series,
indefinite and definite integrals, direct and inverse integral transforms (Laplace, Mellin,
and Fourier transforms), and exact solutions of differential, integral, functional, and other
mathematical equations — which contain a large amount of information, are presented in
the second part of the book.

This handbook consists of chapters, sections, subsections, and paragraphs (the titles of
the latter are not included in the table of contents). Figures and tables are numbered sep-
arately in each section, while formulas (equations) and examples are numbered separately
in each subsection. When citing a formula, we use notation like (3.1.2.5), which means
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formula 5 in Subsection 3.1.2. At the end of each chapter, we present a list of main and
additional literature sources containing more detailed information about topics of interest
to the reader.

Special font highlighting in the text, cross-references, an extensive table of contents,
and an index help the reader to find the desired information.

We would like to express our deep gratitude to Alexei Zhurov for fruitful discussions
and valuable remarks. We also appreciate the help of Vladimir Nazaikinskii and Grigorii
Yosifian for translating several chapters of this book and are thankful to Kirill Kazakov and
Mikhail Mikhin for their assistance in preparing the camera-ready copy of the book.

The authors hope that this book will be helpful for a wide range of scientists, university
teachers, engineers, and students engaged in the fields of mathematics, physics, mechanics,
control, chemistry, biology, engineering sciences, and social and economical sciences.
Some sections and examples can be used in lectures and practical studies in basic and
special mathematical courses.

Andrei D. Polyanin
Alexander V. Manzhirov
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Main Notation

Special symbols

equal to

identically equal to

not equal to

approximately equal to

of same order as (used in comparisons of infinitesimals or infinites)
less than; “a less than b” is written as a < b (or, equivalently, b > a)
less than or equal to; a less than or equal to b is written as @ < b

much less than; a much less than b is written as a < b

greater than; a greater than b is written as a > b (or, equivalently, b < a)
greater than or equal to; a greater than or equal to b is written as @ > b

much greater than; a much greater than b is written as @ > b
plus sign; the sum of numbers ¢ and b is denoted by a + b and has the property

a+b=b+a

minus sign; the difference of numbers a and b is denoted by a — b
multiplication sign; the product of numbers a and b is denoted by either ab
or a - b (sometimes a X b) and has the property ab = ba; the inner product of
vectors a and b is denoted by a - b

multiplication sign; the product of numbers a and b is sometimes denoted by
a X b; the cross-product of vectors a and b is denoted by a x b

division sign; the ratio of numbers a and b is denoted by a:b or a/b

factorial sign: 0!=1!=1, n!=1-2-3...(n-Dn, n=2,3,4, ...
double factorial sign: O!! =1!!=1, 2n)!!=2-4-6...(2n), Cn+ D! =
1-3-5...2n+1),wheren=1, 2, 3, ...

percent sign; 1% is one hundredth of the entire quantity

infinity

tends (infinitely approaches) to; z — a means that z tends to a

implies; consequently

is equivalent to (if and only if .. .)

for all, for any

there exists

belongs to; a € A means that a is an element of the set A

does not belong to; a ¢ A means that a is not an element of the set A

union (Boolean addition); A U B stands for the union of sets A and B
intersection (Boolean multiplication); A N B stands for the intersection (com-
mon part) of sets A and B

inclusion; A C B means that the set A is part of the set B

nonstrict inclusion; A C B means that the set A is part of the set B or coincides
with B

empty set
n
sum, Y ap =aj+az+---+ay
k=1
n
product, [Jar=a;-az- ... ay

k=1
symbol used to denote partial derivatives and differential operators; 0, is the
operator of differentiation with respect to x
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V  vector differential operator “nabla”; Va is the gradient of a scalar a
- b
/ integral; / f(x) dz is the integral of a function f(x) over the interval [a, b]
S Ja
74 contour integral (denotes an integral over a closed contour)
1 perpendicular
|| parallel
Roman alphabet
Argz  argument of a complex number z = x + iy; by definition, tan(Arg z) = y/x
arg z  principal value of Arg z; by definition, arg z = Arg z, where —-m < Argz <7
Va  square root of a number a, defined by the property (v/a)? = a
/a  nthrootof anumber a(n=2, 3, ...,a>=0), defined by the property ({/a )" =a
if >
la]  absolute value (modulus) of a real number a, |a| = { a %f @20
—a if a<0
a vector, a ={aj,a, a3}, where a1, ay, a3 are the vector components
|al modulus of a vector a, |[a] = y/a-a
a-b inner product of vectors a and b, denoted also by (a - b)
axb cross-product of vectors a and b
[abe] triple product of vectors a, b, ¢
(a,b) interval (open interval) a < z < b
(a,b] half-open interval a < x < b
[a,b) half-open interval a < x < b
[a,b] interval (closed interval) a <z <b
arccos x  arccosine, the inverse function of cosine: cos(arccosz) =z, |z|] <1
arccotxz  arccotangent, the inverse function of cotangent: cot(arccotx) =
arcsinx  arcsine, the inverse function of sine: sin(arcsinz) =z, |z] <1
arctanx  arctangent, the inverse function of tangent: tan(arctan z) =
arccoshz  hyperbolic arccosine, the inverse function of hyperbolic cosine; also denoted
by arccosh = cosh™! z; arccoshz = In (m +Vazr-1 ) (x=21)
arccothx  hyperbolic arccotangent, the inverse function of hyperbolic cotangent; also
1 x+1
denoted by arccoth x = coth™ z; arccothz = = In I (lz| > 1)
arcsinhz  hyperbolic arcsine, the inverse function of hyperbolic sine; also denoted by
arcsinh z = sinh™! z; arcsinh z = In (:r +Vz2 +1 )
arctanh x  hyperbolic arctangent, the inverse function of hyperbolic tangent; also denoted
l+z
by arctanh x = tanh™' x; arctanh z = 5 In I (lzl < 1)
-z
k . . . n k_ n! _
Cy  binomial coefficients, also denoted by < i ) ,C = o hr k=1,2,...,n
. 1 1 1
C Euler constant, C = lim (1 +—+ =4+ — —lnn) =0.5772156...
n— 00 2 3 n
cosz  cosine, even trigonometric function of period 27
. . . . 1
cosecx  cosecant, odd trigonometric function of period 27: cosec x = —
sinx
coshxz  hyperbolic cosine, cosh x = %(ez +e™7)
cotz  cotangent, odd trigonometric function of period 7, cot z = cos z/sin
cothz  hyperbolic cotangent, coth 2z = cosh x/sinh x
det A determinant of a matrix A = (a;;)
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diva

erf x

erfcx

expx
grad a

Hy(x)
I, ()

Im 2
inf A

Ju(x)

K, ()
lim f(x)
Inx

log, =

max f(x)
agz<b

min f(x)

alx<b
P ()

Rez

T’,QO,Z
r, 0, ¢

rank A
curla

secx
signz

sin
sinh x
sup A

tan x
tanh x

T, Y,z

divergence of a vector a
the number “e” (base of natural logarithms), e = 2.718281...; definition:

1 n
= lim <1+—>
n—oo n

Gauss error function, erf x = 2 / ’ exp —52) d€
1) ﬁ O

complementary error function, erfc x = \/_ / exp 52 d£

exponential (exponential function), denoted also by exp x = e*

gradient of a scalar a, denoted also by Va
n

2 d
Hermite polynomial, H,,(x) = (-1)"e z? T (e’xz)

dified Bessel function of the first kind, 7, (z) = » | (/22"
modiiie €Ssel Tunction o € 1rst Kind, xX) = _—
v «nIT(v+n+1)

n=
imaginary part of a complex number; if z = z + iy, then Imz = y
infimum of a (numerical) set A; if A = (a,b) or A =[a,b), theninf A =a
0 (_l)n(m/z)u+2n
Bessel function of the first kind, J,(z) = ; m
L -1,
modified Bessel function of the second kind, K, (x) = s M
2 sin(7v)

limit of a function f(x)asx — a

natural logarithm (logarithm to base e)
logarithm to base a
maximum of a function f(x) on the interval a < x < b

minimum of a function f(z) on the interval a < x < b
factorial: 0! =1!'=1, n!=1-2-3. (n Dn, n=23,4,...
—— (@ - 1)"

Legendre polynomial, P,(z) = T d —
set of real numbers, R = {-0c0 < x < o0}

real part of a complex number; if z = x + iy, then Rez = x
cylindrical coordinates, r = \/22 + 4% and z = r cos , y = rsin
spherical coordinates, r = \/x2+y2+22 and x = r sin 6 cos ¢, y = sin 6 sin ¢,
z=rcosf
rank of a matrix A
curl of a vector a, also denoted by rota
1

cosx
“sign” function: itisequalto 1 ifx >0,-1if x <0,and 0 if x = 0

sine, odd trigonometric function of period 27

hyperbolic sine, sinh z = %(e“" )

supremum of a (numerical) set A; if A = (a,b) or A = (a,b],thensup A =5
tangent, odd trigonometric function of period 7, tan x = sin x /cos
hyperbolic tangent, tanh = = sinh z /cosh z

independent variable, argument

spatial variables (Cartesian coordinates)

secant, even trigonometric function of period 27: secx =
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Jy(x)cos(mv) — J_,(x)
sin(7v)
y  dependent variable, function; one often writes y = y(x) or y = f(x)

Y, (x) Bessel function of the second kind; Y, (z) =

d
y.  first derivative of a function y = f(x), also denoted by ¢/, d—z, f(x)

dzy

dx?’

y second derivative of a function y = f(x), also denoted by 3",

f@)
d™y

dam

z=x+1iy complex number; x is the real part of z, y is the imaginary part of z, i* = -1
Z=x—iy complex conjugate number, i> = —1

|zl  modulus of a complex number; if z = = + 7y, then |z| = \/x2 + y2.

y"™  nth derivative of a function y = f(x), also denoted by

Greek alphabet
: e |
I'(0) gamma function, I'(a) = /0 et dt
y(a,x)  incomplete gamma function, y(a, z) = /0 *etrorl gt
ala+1)...(a+n-1) ="

b(b+1)...(b+n—1) n!

. . . 2 2
A Laplace operator; in the two-dimensional case, Aw = ?3715 + %7“2”,

®(a,b;x)  degenerate hypergeometric function, ®(a, b; x)=1+ Z
n=1

where x
and y are Cartesian coordinates

Az  increment of the argument

Ay increment of the function; if y = f(x), then Ay = f(x + Ax) - f(x)

_J1 if n=m
onm  Kronecker delta, 6,,,, = { 0 if netm

m  the number “pi” (ratio of the circumference to the diameter), 7 =3.141592.. ..

Remarks
(z)

1. If a formula or a solution contains an expression like f—2’ it is often not stated
a —
explicitly that the assumption a # 2 is implied.
2. If a formula or a solution contains derivatives of some functions, then the functions

are assumed to be differentiable.

3. If a formula or a solution contains definite integrals, then the integrals are supposed
to be convergent.

4. ODE and PDE are conventional abbreviations for ordinary differential equation and
partial differential equation, respectively.
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Chapter 1
Arithmetic and Elementary Algebra

1.1. Real Numbers
1.1.1. Integer Numbers

‘ 1.1.1-1. Natural, integer, even, and odd numbers.

Natural numbers: 1, 2,3, ... (all positive whole numbers).
Integer numbers (or simply integers): 0, =1, 12, 3, ...
Even numbers: 0, 2, 4, ... (all nonnegative integers that can be divided evenly by 2).

An even number can generally be represented as n = 2k, where £ =0, 1,2, ...

Remark 1. Sometimes all integers that are multiples of 2, such as 0, +2, 4, ..., are considered to be
even numbers.

Odd numbers: 1, 3,5, ... (all natural numbers that cannot be divided evenly by 2). An
odd number can generally be represented as n =2k + 1, where k=0, 1, 2, ...

Remark 2. Sometimes all integers that are not multiples of 2, such as 1, £3, £5, ..., are considered to
be odd numbers.

All integers as well as even numbers and odd numbers form infinite countable sets,
which means that the elements of these sets can be enumerated using the natural numbers
1,2,3,...

1.1.1-2. Prime and composite numbers.

A prime number is a positive integer that is greater than 1 and has no positive integer
divisors other than 1 and itself. The prime numbers form an infinite countable set. The first
ten prime numbers are: 2,3, 5,7, 11, 13, 17, 19, 23, 29, ...

A composite number is a positive integer that is greater than 1 and is not prime, i.e.,
has factors other than 1 and itself. Any composite number can be uniquely factored into
a product of prime numbers. The following numbers are composite: 4 =2 x2,6 =2 X 3,
8=2%,9=32%10=2x5,12=22x3, ...

The number 1 is a special case that is considered to be neither composite nor prime.

1.1.1-3. Divisibility tests.

Below are some simple rules helping to determine if an integer is divisible by another
integer.

All integers are divisible by 1.

Divisibility by 2: last digit is divisible by 2.

Divisibility by 3: sum of digits is divisible by 3.

Divisibility by 4: two last digits form a number divisible by 4.

Divisibility by 5: last digit is either O or 5.

3
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Divisibility by 6: divisible by both 2 and 3.

Divisibility by 9: sum of digits is divisible by 9.

Divisibility by 10: last digit is O.

Divisibility by 11: the difference between the sum of the odd numbered digits (1st, 3rd,
5th, etc.) and the sum of the even numbered digits (2nd, 4th, etc.) is divisible by 11.

Example 1. Let us show that the number 80729 is divisible by 11.

The sum of the odd numbered digits is 31 = 8 + 7+ 9 = 24. The sum of the even numbered digits is
3 =0+2 =2. The difference between them is ¥; — 3> = 22 and is divisible by 11. Consequently, the original
number is also divisible by 11.

1.1.1-4. Greatest common divisor and least common multiple.

1°. The greatest common divisor of natural numbers a1, as, ..., a, is the largest natural
number, b, which is a common divisor to aq, . . ., a,,.

Suppose some positive numbers ap, as, ..., a, are factored into products of primes so
that

ki, k k kot k k kn1, k k
e L R U R R R O LN SRR e

where pi, pa, ..., py are different prime numbers, the k;; are positive integers (i = 1, 2,
...,n; j=1,2,...,m). Then the greatest common divisor b of ay, as, .. ., a,, is calculated

as

= 0102 o = min ko
b=pi'py° . ..pp, aj—lm<i1<1711kzw.

Example 2. The greatest common divisor of 180 and 280 is 2% x 5 = 20 due to the following factorization:
180 =2°x 3" x5 =2" x3*x5' x7°,
280=2"x5x7 =2"x3"x5"x7".

2°. The least common multiple of n natural numbers ap, ay, ..., a, is the smallest natural
number, A, that is a multiple of all the ay.

Suppose some natural numbers ay, ..., a, are factored into products of primes just as
in Item 1°. Then the least common multiple of all the ay, is calculated as

— Y12 Ym p— ..
A=pl'py...pom, uj—lrg%km.

Example 3. The least common multiple of 180 and 280 is equal to 2° x 3* x 5' x 7' = 2520 due to their
factorization given in Example 2.

1.1.2. Real, Rational, and Irrational Numbers

1.1.2-1. Real numbers. ‘

The real numbers are all the positive numbers, negative numbers, and zero. Any real number
can be represented by a decimal fraction (or simply decimal), finite or infinite. The set of
all real numbers is denoted by R.

All real numbers are categorized into two classes: the rational numbers and irrational
numbers.
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1.1.2-2. Rational numbers.

A rational number is a real number that can be written as a fraction (ratio) p/q with integer
pand q (¢ # 0). It is only the rational numbers that can be written in the form of finite
(terminating) or periodic (recurring) decimals (e.g., 1/8 = 0.125 and 1/6 = 0.16666. ..).
Any integer is a rational number.

The rational numbers form an infinite countable set. The set of all rational numbers is
everywhere dense. This means that, for any two distinct rational numbers a and b such that
a < b, there exists at least one more rational number ¢ such that a < ¢ < b, and hence there
are infinitely many rational numbers between a and b. (Between any two rational numbers,
there always exist irrational numbers.)

‘ 1.1.2-3. Irrational numbers. ‘

An irrational number is a real number that is not rational; no irrational number can
be written as a fraction p/q with integer p and ¢ (¢ # 0). To the irrational numbers
there correspond nonperiodic (nonrepeating) decimals. Examples of irrational numbers:
V3=1.73205...,7m=3.14159...

The set of irrational numbers is everywhere dense, which means that between any
two distinct irrational numbers, there are both rational and irrational numbers. The set of
irrational numbers is uncountable.

1.2. Equalities and Inequalities. Arithmetic Operations.
Absolute Value

1.2.1. Equalities and Inequalities

‘ 1.2.1-1. Basic properties of equalities. ‘

» Throughout Paragraphs 1.2.1-1 and 1.2.1-2, it is assumed that a, b, ¢, d are real numbers.

1. Ifa=0b,then b =a.
2. If a = b, then a + ¢ = b+ ¢, where c is any real number; furthermore, if a + ¢ = b+ ¢, then
a=hb.
3. If a =0, then ac = be, where c is any real number; furthermore, if ac = bc and ¢ # 0, then
a=hb.
.Ifa=band b=c,thena =c.
. If ab = 0, then either ¢ = 0 or b = 0; furthermore, if ab # 0, then @ # 0 and b # 0.

W A~

1.2.1-2. Basic properties of inequalities.

If a < b, then b > a.
Ifa<bandb<a,thena=>0.
Ifa<bandb<c,thena<ec.
Ifa<bandb<c(ora<bandb<c),thena<c.
Ifa<bandc<d(orc=d),thena+c<b+d.
If a <band ¢ >0, then ac < be.

If a <band c <0, then ac = be.
If0<a<b(ora<b<0),thenl/a>1/b.

PN R LD -
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1.2.2. Addition and Multiplication of Numbers

1.2.2-1. Addition of real numbers.

The sum of real numbers is a real number.
Properties of addition:

a+0=a (property of zero),
a+b=b+a (addition is commutative),
a+(b+c)=(a+b)+c=a+b+c (addition is associative),

where a, b, c are arbitrary real numbers.
For any real number a, there exists its unique additive inverse, or its opposite, denoted
by —a, such that
a+(-a)=a-a=0.

1.2.2-2. Multiplication of real numbers.

The product of real numbers is a real number.
Properties of multiplication:

ax0=0 (property of zero),
ab = ba (multiplication is commutative),
a(bc) = (ab)c = abe  (multiplication is associative),
axl=1xXa=a (multiplication by unity),
a(b+c)=ab+ac  (multiplication is distributive),
where a, b, c are arbitrary real numbers.
For any nonzero real number a, there exists its unique multiplicative inverse, or its

reciprocal, denoted by alorl /a, such that

aa’' =1 (a#0).

1.2.3. Ratios and Proportions

1.2.3-1. Operations with fractions and properties of fractions.

Ratios are written as fractions: a : b = a/b. The number a is called the numerator and the
number b (b # 0) is called the denominator of a fraction.
Properties of fractions and operations with fractions:

a a ab a:c . . .
—=a, —=—=—— (simplest properties of fractions);
1 b bc b:
+ dxb
% + % - 5 ¢ s % + % - o (addition and subtraction of fractions);
Yse= E, 4yc_ 2 (multiplication by a number and by a fraction);
b b b d b
d
% ic= %, % : % = (Z—C (division by a number and by a fraction).
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1.2.3-2. Proportions. Simplest relations. Derivative proportions.‘

A proportion is an equation with a ratio on each side. A proportion is denoted by a/b =c¢/d
ora:b=c:d.

1°. The following simplest relations follow from a/b = ¢/d:

a b bc ad
d=bc, —=-—, =—, b=—.

¢ “ CTT T c
2°. The following derivative proportions follow from a/b = ¢/d:

ma + nb a me + nd
pa+qgb  pc+qd’
ma+nc mb + nd

pa + qc pb+qd’

where m, n, p, q are arbitrary real numbers.
Some special cases of the above formulas:

aib_cid a—b_c—d

b d > a+b c+d

1.2.4. Percentage

1.2.4-1. Definition. Main percentage problems.

A percentage is a way of expressing a ratio or a fraction as a whole number, by using 100 as
the denominator. One percent is one per one hundred, or one hundredth of a whole number;
notation: 1%.

Below are the statements of main percentage problems and their solutions.
1°. Find the number b that makes up p% of a number a. Answer: b = {{.

100b

2°. Find the number a whose p% is equal to a number b. Answer: a = v

3°. What percentage does a number b make up of a number a? Answer: p = %Ob%.

1.2.4-2. Simple and compound percentage.

1°. Simple percentage. Suppose a cash deposit is increased yearly by the same amount
defined as a percentage, p%, of the initial deposit, a. Then the amount accumulated after
t years is calculated by the simple percentage formula

pt
=all+ —) .
¢ “( 100
2°. Compound percentage. Suppose a cash deposit is increased yearly by an amount defined

as a percentage, p%, of the deposit in the previous year. Then the amount accumulated after
t years is calculated by the compound percentage formula

T =a(l + %)t,

where a is the initial deposit.
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1.2.5. Absolute Value of a Number (Modulus of a Number)

1.2.5-1. Definition.

The absolute value of a real number a, denoted by |a, is defined by the formula

_Ja if a=20,
'a"{ a if a<O.

An important property: |a| = 0.

1.2.5-2. Some formulas and inequalities. ‘

1°. The following relations hold true:

lal = l-al = Va2, a<]al,
llal = [b1] < la +b] < la] + [b],
llal = [b1] < la - bl < |al + [b],
labl = lal b, la/bl = lal/Ibl.

2°. From the inequalities |a| < A and |b| < B it follows that |a + b < A + B and |ab| £ AB.

1.3. Powers and Logarithms
1.3.1. Powers and Roots

‘ 1.3.1-1. Powers and roots: the main definitions. ‘

Given a positive real number a and a positive integer n, the nth power of a, written as a”,
is defined as the multiplication of a by itself repeated n times:

a"=axaxax---Xa.

n multipliers

The number a is called the base and n is called the exponent.

Obvious properties: 0" =0, 1" =1, a! = a.

Raising to the zeroth power: a® = 1, where a # 0. Sometimes 0° is taken as undefined,
but it is often sensibly defined as 1.

Raising to a negative power: a™"* = —-, where n is a positive integer.
a

If a is a positive real number and n is a positive integer, then the nth arithmetic root or
radical of a, written as {/a, is the unique positive real number b such that b = a. In the
case of n = 2, the brief notation +/a is used to denote /a.

The following relations hold:

Vo=0, Vi=1, (¥a)"=a
Raising to a fractional power p = m/n, where m and n are natural numbers:

aP = a™™ = Yam, a>0.
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1.3.1-2. Operations with powers and roots.

The properties given below are valid for any rational and real exponents p and ¢ (a > 0,
b>0):

+ a?
aPal = gP*1, = gP 4,

ad

1
aP? = —
aP

B

In operations with roots (radicals) the following properties are used:

Remark. It often pays to represent roots as powers with rational exponents and apply the properties of
operations with powers.

(aP)? = a4,

1.3.2. Logarithms

1.3.2-1. Definition. The main logarithmic identity.

The logarithm of a positive number b to a given base a is the exponent of the power c to
which the base a must be raised to produce b. It is written as log, b = c.
Equivalent representations:

log,b=c <<= a°=b,

where ¢ >0,a # 1, and b > 0.
Main logarithmic identity:
a'%%ab = p,

Simple properties:
log,1=0, log,a=1.

1.3.2-2. Properties of logarithms. The common and natural logarithms.

Properties of logarithms:

b
log,(bc) = log, b +log, c, log,, <—) =log, b-log, c,
c

1
log,(b*) = klog,, b, log,x b= = log,b (k#0),
log,.b
log, b= b#1), log, b= —"— #1),
%8a log, a ( ) %%a log.a (c=1)

where ¢ >0,a # 1,0 >0, ¢ >0, and £ is any number.
The logarithm to the base 10 is called the common or decadic logarithm and written as

log,gb=1logb orsometimes log,,b=I1gb.

The logarithm to the base e (the base of natural logarithms) is called the natural
logarithm and written as
log, b =1Inb,
where e = lim (1+1)" =2.718281...

n—oo
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1.4. Binomial Theorem and Related Formulas
1.4.1. Factorials. Binomial Coefficients. Binomial Theorem

‘ 1.4.1-1. Factorials. Binomial coefficients. ‘

Factorial:
ol=1=1,
n!=1x2x3x...x(n-1)n, n=2,3,4, ...
Double factorial:
on=1n=1,
n”z{(Zk)!! @fn:Zk:,
RE+D!N ifn=2k+1,

QN =2X4%X6X...x 2k -2)2k) = 2"k,
CE+ DN =1%x3x5%x...x2k-1DR2k +1),

where n and k are natural numbers.
Binomial coefficients:

E_ (T _ n! _nn-1)...(n-k+1) B ‘

Cn_</€)_k'!(n—/~c)!_ il . k=123, ..m
~1...(a-k+1

sza(a )k'(a "D here k=1,2,3,...

where n is a natural number and a is any number.

1.4.1-2. Binomial theorem.

Let a, b, and c be real (or complex) numbers. The following formulas hold true:
(a£b)? =d>+2ab+ 17,
(a£b)® = a®+3a%b+3ab® £,
(atb)* = a* £4ab + 6ab* £ 4ab® +b*,
(a+b)" = ZCka”’kbk, n=1,2,...
k=0

The last formula is known as the binomial theorem, where the C* are binomial coefficients.

1.4.2. Related Formulas

1.4.2-1. Formulas involving powers < 4.

a? —b* = (a-b)(a +b),
a® +b = (a+b)a®—ab+b),
a—b = (a— b)(a2 +ab+ b2),
a*—b* = (a—b)(a + b)(a® + b?),
(a+b+c)2 =a’ +b* + & +2ab + 2ac + 2be,
a* + a?b? + b* = (a® + ab + b¥)(a® — ab + b?).
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1.4.2-2. Formulas involving arbitrary powers.

Let n be any positive integer. Then
A’ =" =(a-b)@" " +a" b+ +ab 2+ M.
If n is a positive even number, then
A" b= (a+b)a@" —a" 2+ +ab" -
=(a-b)a+b)a"?+a" + -+ PV D).
If n is a positive odd number, then

A"+ 0" =(a+b) @ —a" 2o+ —ab" T+ 0.

1.5. Arithmetic and Geometric Progressions. Finite
Sums and Products
1.5.1. Arithmetic and Geometric Progressions

‘ 1.5.1-1. Arithmetic progression. ‘

1°. An arithmetic progression, or arithmetic sequence, is a sequence of real numbers for
which each term, starting from the second, is the previous term plus a constant d, called the
common difference. In general, the terms of an arithmetic progression are expressed as

ap =a1+(n-1)d, n=1,2,3,...,

where a; is the first term of the progression. An arithmetic progression is called increasing
if d > 0 and decreasing if d < 0.

2°. An arithmetic progression has the property
an = %(an—l + apt1)-

3°. The sum of n first terms of an arithmetic progression is called an arithmetic series and
is calculated as

Sp=a1+---+ap= %(al +ap)n = %[Zal +(n—-1)d]n.

1.5.1-2. Geometric progression.

1°. A geometric progression, or geometric sequence, is a sequence of real numbers for
which each term, starting from the second, is the previous term multiplied by a constant ¢,
called the common ratio. In general, the terms of a geometric progression are expressed as

an = a1q"", n=1,2,3,...,
where a is the first term of the progression.
2°. A geometric progression with positive terms has the property

Ap = 4/ Qn-10n+1-

3°. The sum of n first terms of an arithmetic progression is called a geometric series and is

calculated as (¢ # 1)
1-qg"

l-q°

Sp=a1+--+a,=q
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1.5.2. Finite Series and Products

1.5.2-1. Notations for finite series and products.

A finite series is just the sum of a finite number of terms and a finite product is the product
of a finite number of terms. These are written as

ait+ay+:---+a, = E ag, Am + Qmy1 + -+ ap = E ag,
k=m
n n
alaz...an:Hak, amam+1...an:Hak,
k=1 k=m

where m is a nonnegative integer (m < n). The variable k appearing on the right-hand
sides of the above formulas is called the index of summation (for series) or the index of
multiplication (for products). The 1 and n (or the m and n) are the upper and lower limits
of summation (multiplication).

The values of sums (products) are 1ndependent of the names used to denote the index of

summation (multiplication): Z ap = Z aj, H ap = H a;. Such indices are called dummy
k=1 7=1 k=1 i=1
indices.

1.5.2-2. Formulas for summation of some finite series. ‘

. nm+l)
>ok=
k=1

- -1
Z(—l)kk =" [nT} , [m] is the integer part of m;

> @k+1)=(n+ D%

k=0

> D@+ 1) = DM+ 1;

k=0

" 1
Z k2 = S+ 1)2n +1);
k=1

Soeni = M,

n

Z(Zk: +1)?% = %(n +D2n+ D2n +3);
k=0

Z(—l)k(zk + 12 =2(-D)"(n+1)%- % [1+D"];

k=0

1
> (k+a)k +1b) = Zn(n+1)@n+ 1+3a+3b) + nab.
k=1

» A large number of formulas for the summation of various finite series can be found in
Section T1.1.
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1.6. Mean Values and Inequalities of General Form

1.6.1. Arithmetic Mean, Geometric Mean, and Other Mean Values.
Inequalities for Mean Values

‘ 1.6.1-1. Arithmetic mean, geometric mean, and other mean values. ‘

The arithmetic mean of a set of n real numbers a1, ay, ..., a, is defined as
aj+ary+---+a
My = ———2 n (1.6.1.1)
n
Geometric mean of n positive numbers aj, as, ..., Gyn:
mg = (a1az . .. ap)"/™. (1.6.1.2)
Harmonic mean of n real numbers ay, as, ..., ap:
n +0 (1.6.1.3)
mp = , ag . .6.1.
(I/ap)+A/ap)+ -+ (1/ay)
Quadratic mean (or root mean square) of n real numbers ay, ay, ..., ay:
2, 2 2
as+as5+--+a
mq=\/ L2 n (1.6.1.4)
n
1.6.1-2. Basic inequalities for mean values. ‘
Given n positive numbers ap, as, . .., an, the following inequalities hold true:
mp < mg < my < My, (1.6.1.5)

where the mean values are defined above by (1.6.1.1)—(1.6.1.4). The equalities in (1.6.1.5)
are attained only if ay = ap = -+ - = ay.
To make it easier to remember, let us rewrite inequalities (1.6.1.5) in words as

‘ harmonic mean ‘ < ‘ geometric mean ‘ < ‘ arithmetic mean ‘ < ‘ quadratic mean ‘

‘ 1.6.1-3. General approach to defining mean values. ‘

Let f(z) be a continuous monotonic function defined on the interval 0 £ z < oc.
The functional mean with respect to the function f(x) for n positive real numbers a, as,
..., Gy is introduced as follows:

_ i fa) + flap) + -+ flan)
mf—f >

n

(1.6.1.6)

where f~!(y) is the inverse of f(z).



14 ARITHMETIC AND ELEMENTARY ALGEBRA

The mean values defined by (1.6.1.1)—(1.6.1.4) in Paragraph 1.6.1-1 are all special cases
of the functional mean (1.6.1.6), provided the real numbers a1, ay, ..., a, are all positive.
Specifically,

the arithmetic mean is the functional mean with respect to f(z) = z,
the geometric mean is the functional mean with respect to f(z) = Inz,
the harmonic mean is the functional mean with respect to f(x) = 1/x,

the quadratic mean is the functional mean with respect to f(z) = 2.

1.6.2. Inequalities of General Form

1.6.2-1. Triangle inequality, Cauchy inequality, and related inequalities. ‘

Let aj, and by, be real numbers with k =1,2, ..., n.
Generalized triangle inequality:

n
<Y lal.

k=1

n
P
k=1

Cauchy’s inequality (also known as the Cauchy—Bunyakovski inequality or Cauchy-
Schwarz—Bunyakovski inequality):

Minkowski’s inequality:

=
D=
D=

<Z|ak+bk|p> s(kaV’) +<Z|bk|p> . p2L
k=1 k=1 k=1

Holder’s inequality (reduces to Cauchy’s inequality at p = 2):

b1
p

1
s(kaP) (Zwkw—l) . p>1
k=1 k=1

n
D> akb
k=1

‘ 1.6.2-2. Chebyshev’s inequalities. ‘

Chebyshev’s inequalities:

(Zak><2bk> Sn<2akbk> if O<a1Sar<---<apy, 0<b<bry<---<by;

k=1 k=1 k=1

<Zak><2bk>2n<2akbk> if O<a1$a2S--~<an, 512b22"'25n>0;
k=1 k=1

k=1
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Generalized Chebyshev inequalities:

<1 Z”: p)l/p<1z”:bp 1/p lz”: pyp 1/p
- ag - k;) S<_ ag k>
Ly "= "=
if O<a;<ar<---<ap, O0<bi<bh<---<by;
n 1 n 1 n 1
<lZaz> /p<lez> /:02 <lzazb£> /p
o= "= "=
if O<a1$a2S--~<an, b12b22"'2bn>0.

‘ 1.6.2-3. Generalizations of inequalities for means. ‘

1°. The following inequality holds:

1
— L apitaptota
(a'af? ... abr) prepar=4pn < 1P1 + 92p2 nbn

pPL+p2+---+py

where the aj, and py, are all positive. In the special case p; =pr =--- =p, = 1, we have the
well-known inequality stating that the geometric mean of a series of positive numbers does
not exceed their arithmetic mean (see Paragraph 1.6.1-2).

2°. The following inequality holds:

1

pr+pr+---+pn P1 D2 D\ p+pat-+pn
< (ay ay” ...y ) Pripetetpn
(p1/an) + (p2/az) + -+ + (pn/an) (aff a3 )
where the aj, and py, are all positive. In the special case p; =pr =--- =p, = 1, we have the

well-known inequality stating that the harmonic mean of a series of positive numbers does
not exceed their geometric mean (see Paragraph 1.6.1-2).

‘ 1.6.2-4. Jensen’s inequality. ‘

If f(x) is a convex function (in particular, with f” > 0), then the following Hélder—Jensen

inequality holds:
me) < 2 Pef (@)
< , 1.6.2.1
()= =5 (1621

where the zj, are any numbers and the py are any positive numbers; the summation is
performed over all £ (the limits are omitted for simplicity). The equality is attained if and
only if either z; = x = --- = x,, or f(x) is a linear function. If f(x) is a concave function
(f" < 0), inequality (1.6.2.1) is the other way around.

The Holder—Jensen inequality is often used to obtain various inequalities; in particular,
the previous two inequalities as well as the Holder inequality follow from it.

1.7. Some Mathematical Methods
1.7.1. Proof by Contradiction

Proof by contradiction (also known as reductio ad absurdum) is an indirect method of
mathematical proof. It is based on the following reasoning:
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1. Suppose one has to prove some statement 5.

2. One assumes that the opposite of S is true.

3. Based on known axioms, definitions, theorems, formulas, and the assumption of
Item 2, one arrives at a contradiction (deduces some obviously false statement).

4. One concludes that the assumption of Item 2 is false and hence the original state-
ment S is true, which was to be proved.

Example. (Euclid’s proof of the irrationality of the square root of 2 by contradiction.)

1. It is required to prove that V/2 is an irrational number, that is, a real number that cannot be represented
as a fraction p/q, where p and ¢ are both integers.

2. Assume the opposite: v/2 is a rational number. This means that v/2 can be represented as a fraction
V2 =p/q. (1.7.1.1)

Without loss of generality the fraction p/q is assumed to be irreducible, implying that p and ¢ are mutually
prime (have no common factor other than 1).
3. Square both sides of (1.7.1.1) and then multiply by ¢* to obtain

2¢° = p. 1.7.1.2)

The left-hand side is divisible by 2. Then the right-hand side, p*, and hence p is also divisible by 2. Consequently,
p is an even number so that

p=2n, (1.7.1.3)
where 7 is an integer. Substituting (1.7.1.3) into (1.7.1.2) and then dividing by 2 yields
¢ =2p% (1.7.1.4)

Now it can be concluded, just as above, that ¢ and hence ¢ must be divisible by 2. Consequently, ¢ is an even
number so that
q=2m, (1.7.1.5)

where m is an integer.

It is now apparent from (1.7.1.3) and (1.7.1.5) that the fraction p/q is not simple, since p and ¢ have a
common factor 2. This contradicts the assumption made in Item 2.

4. It follows from the results of Item 3 that the representation of V2 in the form of a fraction (1.7.1.1) is
false, which means that /2 is irrational.

1.7.2. Mathematical Induction

The method of proof by (complete) mathematical induction is based on the following
reasoning:

1. Let A(n) be a statement dependent on n withn =1, 2, ... (A is a hypothesis at this
stage).

2. Base case. Suppose the initial statement A(1) is true. This is usually established by
direct substitution n = 1.

3. Induction step. Assume that A(n) is true for any n and then, based on this assumption,
prove that A(n + 1) is also true.

4. Principle of mathematical induction. From the results of Items 2-3 it is concluded
that the statement A(n) is true for any n.

Example.

1. Prove the formula for the sum of odd numbers,

1+3+5+--+Q2n-1)=n’ (1.7.2.1)

for any natural n.

2. Forn =1, we have an obvious identity: 1 = 1.

3. Let us assume that formula (1.7.2.1) holds for any n. To consider the case of n + 1, let us add the next
term, (2n + 1), to both sides of (1.7.2.1) to obtain

143454 +2n-D+Cn+D=n+Cn+1)=n+1>

Thus, from the assumption of the validity of formula (1.7.2.1) for any n it follows that (1.7.2.1) is also valid
forn + 1.
4. According to the principle of mathematical induction, this proves formula (1.7.2.1).
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Remark. The first step, the formulation of an original hypothesis, is the most difficult part of the method
of mathematical induction. This step is often omitted from the method.

1.7.3. Proof by Counterexample

A counterexample is an example which is used to prove that a statement (proposition) is
false. Counterexamples play an important role in mathematics. Whereas a complicated
proof may be the only way to demonstrate the validity of a particular theorem, a single
counter example is all that is need to refute the validity of a proposed theorem.

In general, the scheme of a proof by counterexample is as follows:

1. Given a proposition: all elements a that belong to a set A also belong to a set (possess
a property) B.

2. Refutation of the proposition: one specifies an element a, (counterexample) that
belongs to A but does not belong to B.

Example. Proposition: Numbers in the form 22" +1, where n is a positive integer, were once thought to
be prime.
These numbers are prime for n = 1, 2, 3, 4. But for n = 5, we have a counterexample, since

27 41 = 4294967297 = 641 x 6700417

it is a composite number.

. . n o, . .
Conclusion: When faced with a number in the form 22" + 1, we are not allowed to assume it is either prime
or composite, unless we know for sure for some other reason.

1.7.4. Method of Undetermined Coefficients

The method of undetermined coefficients is employed to find coefficients in expressions
(such as formulas, series expansions, solutions to mathematical equations), the form of
which is either known in advance or assigned based on intuitive judgment.

Example. The fractional function
T+2

it (1.7.4.1)

whose denominator can be rewritten in the factored form x(x + 1)(z — 1), can be represented as the sum of
partial fractions

A B C

r z+1 =x-1

s (1.7.4.2)

where A, B, C are (undetermined) coefficients whose values are to be found. Equating (1.7.4.1) with (1.7.4.2),
multiplying by x(z*> — 1), and rearranging, one obtains

(A+B+C)a*+(B+C-Dz-A-2=0.

For this equation to be valid for any z, the coefficients of the different powers of x must be set equal to zero.
This results in the system of linear algebraic equations

A+B+C=0, C-B-1=0, -A-2=0.
On solving this system, one determines the coefficients in (1.7.4.2):

A=-2, B=4, C=3

1
2
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Chapter 2
Elementary Functions

Basic elementary functions: power, exponential, logarithmic, trigonometric, and inverse
trigonometric (arc-trigonometric or antitrigonometric) functions. All other elementary
functions are obtained from the basic elementary functions and constants by means of
the four arithmetic operations (addition, subtraction, multiplication, and division) and the
operation of composition (composite functions).

The graphs and the main properties of the basic as well as some other frequently
occurring elementary functions of the real variable are described below.

2.1. Power, Exponential, and Logarithmic Functions

2.1.1. Power Function: y = x® (« is an Arbitrary Real Number)

‘2.1.1—1. Graphs of the power function. ‘

General properties of the graphs: the point (1, 1) belongs to all the graphs, and y > 0 for
x > 0. For a > 0, the graphs pass through the origin (0, 0); for a < 0, the graphs have the
vertical asymptote z =0 (y — +oo as x — 0, x > 0). For o = 0, the graph is a straight line
parallel to the z-axis.

Consider more closely the following cases.

Case I: y = 22" where n is a positive integer (n = 1, 2, ...). This function is defined
for all real x and its range consists of all y > 0. This function is even, nonperiodic, and
unbounded. It crosses the axis Oy and is tangential to the axis Ox at the origin x =0, y = 0.
On the interval (—oo, 0) this function decreases, and it increases on the interval (0, +00). It
attains its minimum y = 0 at 2 = 0. The graph of the function y = 2 (parabola) is given in
Fig. 2.1a.

Case 2: y = x>™*!, where n is a positive integer. This function is defined on the entire
x-axis and its range coincides with the y-axis. This function is odd, nonperiodic, and
unbounded. It crosses the x-axis and the y-axis at the origin « =0, y = 0. It is an increasing
function on the entire real axis with no points of extremum, the origin being its inflection
point. The graph of the function 3 = 23 (cubic parabola) is shown in Fig. 2.1 a.

Case 3: y = 272", where n is a positive integer. This function is defined for all = # 0,
and its range is the semiaxis y > 0. It is an even, nonperiodic, unbounded function having
no intersection with the coordinate axes. It increases on the interval (—oo, 0), decreases on
the interval (0, +00), and has no points of extremum. This function has a vertical asymptote
x = 0. The graph of the function 3y = 22 is given in Fig. 2.1 b.

Case4: y = 272" where n is a positive integer. This function is defined for all x # 0,
and its range is the entire y-axis. It is an odd, nonperiodic, unbounded function with no
intersections with the coordinate axes. This is a decreasing function on the entire real axis
with no points of extremum. It has a vertical asymptote = 0. The graph of the function
y = 27! is given in Fig. 2.1b.

19



20 ELEMENTARY FUNCTIONS

(b)

Figure 2.1. Graphs of the power function y = =", where n is an integer.

Case 5: y = z® with a noninteger o > 0. This function is defined for all* x > 0 and
its range is the semiaxis ¥ = 0. This function is neither odd nor even and it is nonperiodic
and unbounded. It crosses the axes Ox and Oy at the origin « = 0, y = 0 and increases
everywhere in its domain, taking its smallest value at the limit point z =0, y = 0. The graph
of the function y = !/ is given in Fig. 2.2.

Ay
4
3
5 y=x’”2 y:x1/2
1
X
0 1 2 3 4 5

Figure 2.2. Graphs of the power function y = “, where « is a noninteger.

Case 6: y =z with a noninteger o < 0. This function is defined for all x = 0 and its
range is the semiaxis y = 0. This function is neither odd nor even, it is nonperiodic and
unbounded, and it has no intersections with the coordinate axes, which coincide with its
horizontal and vertical asymptotes. This function is decreasing on its entire domain and has
no points of extremum. The graph of the function y = z~'/2 is given in Fig. 2.2.

* In fact, the power function y = z'/" with an odd integer n is defined and negative for all z < 0. Here,
however, it is always assumed that > 0. A similar assumption is made with regard to the functions of the
formy = ™™ where m is a positive integer and m /n is an irreducible fraction.
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2.1.1-2. Properties of the power function.

Basic properties of the power function:
a2l =20 (@) =afay, @)’ =2,

for any « and (3, where x >0, z; >0, 2 > 0.
Differentiation and integration formulas:

a+l

Injz|+C if a=-1.

The Taylor series expansion in a neighborhood of an arbitrary point:

o
% = Z Clxg ™ (x—x)" for |z—z0| < l|xol,

n=0

ala-1)...(ax=n+1)

' are binomial coefficients.
n!

where C, =

2.1.2. Exponential Function: y = a” (a >0, a = 1)

2.1.2-1. Graphs of the exponential function. ‘

This function is defined for all x and its range is the semiaxis y > 0. This function is neither
odd nor even, it is nonperiodic and unbounded, and it crosses the axis Oy at y = 1 and
does not cross the axis Ox. For a > 1, it is an increasing function on the entire real axis;
for 0 < a < 1, it is a decreasing function. This function has no extremal points; the axis
O is its horizontal asymptote. The graphs of these functions have the following common
property: they pass through the point (0, 1). The graph of y = a® is symmetrical to the
graph of y = (1/a)* with respect to the y-axis. For a > 1, the function a” grows faster than
any power of x as x — +00, and it decays faster than any power of 1/ as z — —oc. The

graphs of the functions y = 2* and y = (1/2)" are given in Fig. 2.3.

2 -1 O

Figure 2.3. Graphs of the exponential function.
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2.1.2-2. Properties of the exponential function.

Basic properties of the exponential function:
azla:cz — aI1+I2 a:cbz — (ab)x (azl)zz — a:z:l:z:Z.
Number e, base of natural (Napierian) logarithms, and the function e”:

1\n AL
e= Lm (1+—) =2718281.... ¢°= lim (1+—) .

n—oo n n—oo n
The formula for passing from an arbitrary base a to the base e of natural logarithms:

aw — ewlna‘

The inequality

a®l' > ™2 — {IL’1>$2 ¥fa>1,
ry<wy if O<a<l.
The limit relations for any a > 1 and b > O:
€T
im — = o0, lim a®|z|” = 0.
z—+oo |z| Z——00

Differentiation and integration formulas:

/
(e*) =¢€”, efdr=e"+C;

@*) =a"Ina, /am de=2_4C.

- Ina

The expansion in power series:
2 3

n x  _k
L PN :E
T =l ey :E -
20 3! n! k!

k=0

2.1.3. Logarithmic Function: y =log, = (a >0, a = 1)

2.1.3-1. Graphs of the logarithmic function. ‘

This function is defined for all > 0 and its range is the entire y-axis. The function is
neither odd nor even; it is nonperiodic and unbounded; it crosses the axis Ox at = 1 and
does not cross the axis Oy. For a > 1, this function is increasing, and for 0 < a < 1, it is
a decreasing function; it has no extremal points, and the axis Oy is its vertical asymptote.
The common property of the graphs of such functions is that they all pass through the point
(1,0). The graph of the function y =log,, x is symmetric to that of y = log, ,, « with respect
to the z-axis. The modulus of the logarithmic function tends to infinity slower than any
power of x as © — +00; and it tends to zero slower than any power of 1/x as  — +0. The
graphs of the functions y = log, « and y = log, /2« are shown in Fig. 2.4.
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AY

2 y=log,x

Figure 2.4. Graphs of the logarithmic function.

2.1.3-2. Properties of the logarithmic function.

By definition, the logarithmic function is the inverse of the exponential function.
following equivalence relation holds:

=log,z <<= x=4d’,
where ¢ >0, a # 1.
Basic properties of the logarithmic function:

a%%® = g, log,(z122) = log, z1 +log, x2,
1
log,(z*) = klog, =, log, == 12?’2,
b

where £ >0, 21 >0,22>0,a>0,a21,6>0,b# 1.

The simplest inequality:
ry>xy if a>1,
r1<zy if O<a<l.
For any b > 0, the following limit relations hold:

loga : b
zEHloo e 0, xli}nlox log, xz =0.

log, z1 >log, z2 <= {

The

The logarithmic function with the base e (base of natural logarithms, Napierian base)

is denoted by
log, x =Inux,

where e = lim (1 + i)" =2.718281 ...

n—~0o0

Formulas for passing from an arbitrary base a to the Napierian base e:
1 Inz
0g, T =—.
8a Ina

Differentiation and integration formulas:
1
(Inz) = —, /1na:dac=a:ln:r—x+0.
x

Expansion in power series:
2 3 o

In(l+2) =0 - —+ 2 . 4 1)y~! Z 1)’f1 . “l<z<l.

2 3
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2.2. Trigonometric Functions
2.2.1. Trigonometric Circle. Definition of Trigonometric Functions

‘2.2.1—1. Trigonometric circle. Degrees and radians.

Trigonometric circle is the circle of unit radius with center at the origin of an orthogonal
coordinate system Ozy. The coordinate axes divide the circle into four quarters (quadrants);
see Fig. 2.5. Consider rotation of the polar radius issuing from the origin O and ending
at a point M of the trigonometric circle. Let o be the angle between the x-axis and the
polar radius O M measured from the positive direction of the z-axis. This angle is assumed
positive in the case of counterclockwise rotation and negative in the case of clockwise
rotation.

A
M

Y

-1
Figure 2.5. Trigonometric circle.

Angles are measured either in radians or in degrees. One radian is the angle at the vertex
of the sector of the trigonometric circle supported by its arc of unit length. One degree is
the angle at the vertex of the sector of the trigonometric circle supported by its arc of length
7/180. The radians are related to the degrees by the formulas

180° ™

1radian = ——; 1°= ——.
radian p 180

2.2.1-2. Definition of trigonometric functions.

The sine of « is the ordinate (the projection to the axis Oy) of the point on the trigonometric
circle corresponding to the angle of « radians. The cosine of « is the abscissa (projection
to the axis Ox) of that point (see Fig. 2.5). The sine and the cosine are basic trigonometric
functions and are denoted, respectively, by sin a and cos a.

Other trigonometric functions are fangent, cotangent, secant, and cosecant. These are
derived from the basic trigonometric functions, sine and cosine, as follows:

sin av COS & 1 1
tan o = , cota= — , sec o= , coseca=—.
CoS « sin « CoS « sin o

Table 2.1 gives the signs of the trigonometric functions in different quadrants. The
signs and the values of sin a and cos a do not change if the argument « is incremented by
+27n, where n = 1, 2, ... The signs and the values of tan o and cot & do not change if the
argument « is incremented by 7n, wheren =1, 2, ...

Table 2.2 gives the values of trigonometric functions for some values of their argument
(the symbol co means that the function is undefined for the corresponding value of its
argument).
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TABLE 2.1
Signs of trigonometric functions in different quarters
Quarter Angle in radians sin « cos o tan o cot sec o cosec av

| O<a<? + + + + + +

11 T <a<mw + — _ _ _ +

111 T<a< - - + + - _

v I ca<dn - + - - + -
TABLE 2.2

Numerical values of trigonometric functions for some angles « (in radians)

Angle o 0 z % 5 3 I i = T
sin 0 % % % 1 % % % 0
cos o 1 % % 1 0 _ % _ % B % 1
tan o 0 3 1 V3 00 -3 -1 -~ 0
cota 00 V3 1 3 0 _f 1 V3 00

2.2.2. Graphs of Trigonometric Functions

2.2.2-1. Sine: y =sinzx.

This function is defined for all « and its range is y € [-1, 1]. The sine is an odd, bounded,
periodic function (with period 27). It crosses the axis Oy at the point y = 0 and crosses
the axis Ox at the points x = 7n, n = 0,£1,£2,... The sine is an increasing function
on every segment [-5 + 27n, 5 + 27n] and is a decreasing function on every segment
[5 +2mn, %71 +2mn]. For x = 5 + 2mn, it attains its maximal value (y = 1), and for

xr =—7% + 27n it attains its minimal value (y = —1). The graph of the function y = sinz is
called the sinusoid or sine curve and is shown in Fig. 2.6.

ol

Q

YNy A
/“

Figure 2.6. The graph of the function y = sin x.

2.2.2-2. Cosine: ¥y = cos .

This function is defined for all x and its range is y € [-1, 1]. The cosine is a bounded,
even, periodic function (with period 27). It crosses the axis Oy at the point y = 1, and
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crosses the axis O at the points x = 7 + 7n. The cosine is an increasing function on every
segment [-7 + 27n,2mn] and is a decreasing function on every segment [27n, 7 + 27n],
n =0,£1,£2,... For x = 27n it attains its maximal value (y = 1), and for x = 7 + 27n
it attains its minimal value (y = —1). The graph of the function y = cos x is a sinusoid
obtained by shifting the graph of the function y = sinx by 7 to the left along the axis Ox
(see Fig. 2.7).

AY

y=cosx
/\ x

Figure 2.7. The graph of the function y = cos x.

2.2.2-3. Tangent: y =tanz.

This function is defined for all = # % +mn,n =0,£1,+2,..., and its range is the entire
y-axis. The tangent is an unbounded, odd, periodic function (with period 7). It crosses the
axis Oy at the point y = 0 and crosses the axis Oz at the points x = 7wn. This is an increasing
function on every interval (-7 +mn, 7 +mn). This function has no points of extremum and
has vertical asymptotes at z = 5 +7n, n =0,£1,%2, ... The graph of the function y = tan =
is given in Fig. 2.8.

2.2.2-4. Cotangent: y = cotx.

This function is defined for all z # 7n,n =0,£1,%2,..., and its range is the entire y-axis.
The cotangent is an unbounded, odd, periodic function (with period 7). It crosses the axis
Oz at the points x = 7 +7n, and does not cross the axis Oy. This is a decreasing function on
every interval (7mn, m+7n). This function has no extremal points and has vertical asymptotes
atz =mn,n =0,£1,%2,... The graph of the function y = cotx is given in Fig. 2.9.

Ay Ay

| | | | |

! I I I l

: | |y =tanx | |y =cotx
YNy = =

| VA : 1 :

: | | g | | \g
S [0 TG N\ ¥

| | | ' '

| | | | |

I I I | |

I I I ! !

| | | ' !

Figure 2.8. The graph of the function y = tan . Figure 2.9. The graph of the function y = cot .
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2.2.3. Properties of Trigonometric Functions

2.2.3-1. Simplest relations.

sin® z + cos® z = 1,

sin(—x) = —sin x,
sinx

2.2.3-2. Reduction formulas.

sin(x + 2nm) = sin z,
sin(z £ nw) = (-1)" sinz,

2n+1
sin (m + 2" 77) =+(-1)"cos z,
2
sin(a: + Z) = i(sinx tcosx),
4 2
tan(x £ nw) = tan x,
2n +1
tan (a: + 7r> =-—cotz,
+
tan (a: + Z) = tagxi_l’
4 1+tanx

tanzcotx =1,
cos(—x) =cos x,

CoS T
cotx =

sinz’
cot(—x) = —cot z,
1
sin2

1+cot’z =

cos(x £2nw) = cos x,
cos(z £ nm) = (-1)" cos z,

1
cos (a: + 7r> =F(-1)"sinz,
2
cos (:1: + E) = £(cos T Fsinx),
4 2
cot(x £ nw) = cotx,
2n+1
cot (a: + 7r> =-—tanz,
™ cotxF1
cot (a: + —) =—,
4 1£cotx

wheren=1, 2, ...

2.2.3-3. Relations between trigonometric functions of single argument.

+ tan _ 1
“Vi+tan2zr V1+collz

3 1 cotx
cosr=1V1-sin“x == == ,
V1 +tan? x V1 +cot?x
sin x V1 -cos?z 1
V1_sin2z cosr  cotx’
V1-sin?z cosz 1
sin x V1_cos2y tanz’

sinz =V 1-cos?zx =

1]
I+

tanz =

Il
H

cotx ==

The sign before the radical is determined by the quarter in which the argument takes its

values.
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2.2.3-4. Addition and subtraction of trigonometric functions. ‘

+ —
sinx+siny=2sin<$2y)cos(xzy),

. . . (T=Y Tty
smm—smyzZsm( 7 )cos( ),

2
T+ x -
cosx+cosy=Zcos( Zy)cos< 2y>’
L (TH+Y\ . [Ty
COS & — COS =—2s1n< )sm( ),

Y 2 2
sinzx—sinzy:coszy—cos2m:sin(m+y)sin(a:—y),
sin® z — cos? y =—cos(z + y) cos(x —y),

sin(z sin(y £ x
tanxitany:M, cota:icotyz#,
COS Z COS Y sin z siny

acosz + bsinz = rsin(x + @) = r cos(x — ).

Here, r = Va? + b2, sinp =a/r, cosp =b/r, sintp =b/r, and cos) =a/r.

‘2.2.3—5. Products of trigonometric functions. ‘

sinxsiny = %[cos(m —y)—cos(z +y)l,
COS T COSY = %[cos(m —1y) + cos(x + y)],

sinx cosy = %[sin(m —y) + sin(x + y)].

2.2.3-6. Powers of trigonometric functions.

cos2az=%cos2x+%, sin2x=—%cos2x+%,
cos’x = % cos3x + % cos x, sin® z = —% sin 3x + % sin x,
cos* x = %cos4az+ %cos2x+ %, sin 2 = %cos4a:—%cos23:+ %,
5 5 1 5 5 o
cos’ x = 16 cos 5z + 2 5 COs 3r+ 8 cos x, sin” z = ¢ sin Sx {5 sin 3r+ 3 sinz,
1 n—1
cos? x = pr= ZCZn cos[2(n — k)z] + CZn,
k=0
s2*l g C 2n-2k+1
co 22n om+1 €OS[(2n =2k + 1)x],
k=0
n—1
= sy S CAYEOR, cosl2n Byl + 3
sin“* x = ST om COS[2(n — k) .
k=0
2n+1 1 n— kC 2 2]6' 1
sin 22n ( ) O sIn[(2n = 2k + Dz].
k m! . . .
Here,n =1, 2, ... and (), = ———— are binomial coefficients (0! = 1).

kl(m—k)!
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2.2.3-7. Addition formulas.

sin(z £y) =sinzcosy tcosxsiny, cos(xty)=cosxcosyFsinxsiny,

tan x * tan 1 ¥ tan x tan
tan(z ty) = _—y, cot(zty) = —y'
1 Ftanztany tanz + tany
2.2.3-8. Trigonometric functions of multiple arguments.
cost:Zcosza:—1=1—2sin2x, sin2x = 2sinx cos x,
cos 3z = -3 cosz +4cos’ , sin3z = 3sinz —4sin’ z,
cosdx =1-8cos’ z + 8cos? z, sindx = 4 cos x (sin z — 2 sin’ z),

cos5z =5cosx—20cos’ x + 16cos’ z, sin5z = 5sinz —20 sin® z + 16sin’ ,

- 2m2-1)...[n*=(k-1)?]
cos(2nx) =1+ _1)F n(n 4k gin2k T,
(2nz) ;( ) )
n 2 222 2 (91 1\2
cos[(2n+1)z] = cos x {14_2(_1);@ [Cn+1)*=1][2n+1)"=37]...[n+1)*-(2k-1)"] Gin2k a:}
— 2k)!
n 2 2_~2 212
sin(2nz) = 21 cos [sin T+ ;(—N ( 1)("( : kz_)l')'! (=R e a:] ,
n 2 2 22 2 (V1 1\2
Sin[(2n+1)aj]=(2n+l){sin $+Z(_1)k [(2n+1) 1][(2n+1) 3 ] . [(2n+1) (Zk 1) ] Sin2k+1 ’1;}
— 2k+1)!
tan 20 = 2tanx tan 3 = 3tanx —tan’ z tan 4z = 4tanx — 4 tan’ x
T 1-tan’z’ T 1-3tan?x T 1-6tan’x +tantz’

wheren=1, 2, ...

2.2.3-9. Trigonometric functions of half argument.

., x l-cosx 2« l+cosz
sin — = —, cos* — = ————,
2 2 2 2
T sinx 1-cosz T sin 1+cosx
tan - = = . . cot — = = -
2 1l+cosz sin x 2 1l-cosx sinx
. 2 tan % 1 — tan? % 2 tan %
Slnl’=72m, COSIIZ’=72$, tanfl,’:i”.
1 + tan 5 1+ tan 5 1 —tan 5
2.2.3-10. Differentiation formulas.
dsinx dcosx . dtanx 1 dcotx 1

=COoSx =-—-SInx = - - .
dx ’ dx ’ dx cos2z’ dx sin? &
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2.2.3-11. Integration formulas.

/sina:da::—cosm+C’, /cosa:da::sinx+(],

/tanxda::—lnlcosa;|+0, /cot:rd:r=ln|sin:r|+0,

where C'is an arbitrary constant.

2.2.3-12. Expansion in power series. ‘

22 gt g6 n
Cosa::1—2—!+4—!—a+---+(—1)”(2n)!+--- (Jz| < 00),
sinx:m—i—?+ﬁ—j—:—:+~-+(—l)”%+"' (|z| < 00),
tanx = x + %3 + 21—:1;5 + 1371:27 +ee 22”(22(”2;)1!)|B2n|x2n1 + (x| < 7/2),
cota:=%—<§+%+%+m+%xzn1+~-> 0 < |z| < 7),

where B,, are Bernoulli numbers (see Subsection 18.1.3).

2.2.3-13. Representation in the form of infinite products. ‘

. ..'L'z ZL'2 33'2 ZL'2
Sln$=$<l—p><l—m><l—w><l—m>
cosz= (142N (142N (42N (4
- w2 on? 2572 ) Qn+1)n2 )

2.2.3-14. Euler and de Moivre formulas. Relationship with hyperbolic functions. ‘

¥ = eY(cosz +isinx), (cosz +isinz)” = cos(nz) +isin(nx), i°=-1,
sin(¢zx) = ¢sinhx, cos(zx) =coshx, tan(tx)=ttanhx, cot(tx)=—icothx.

2.3. Inverse Trigonometric Functions
2.3.1. Definitions. Graphs of Inverse Trigonometric Functions

‘2.3.1—1. Definitions of inverse trigonometric functions. ‘

Inverse trigonometric functions (arc functions) are the functions that are inverse to the
trigonometric functions. Since the trigonometric functions sin z, cosx, tanz, cotx are
periodic, the corresponding inverse functions, denoted by Arcsinz, Arccosx, Arctanz,
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Arccot x, are multi-valued. The following relations define the multi-valued inverse trigono-
metric functions:

sin (Arcsin m) =x, COS (Arccos m) =z,

tan(Arctanz) =z, cot(Arccotz) = z.

These functions admit the following verbal definitions: Arcsin x is the angle whose sine is
equal to z; Arccos z is the angle whose cosine is equal to ; Arctan x is the angle whose
tangent is equal to «; Arccot x is the angle whose cotangent is equal to «.
The principal (single-valued) branches of the inverse trigonometric functions are denoted
by
arcsinz = sin”! (arcsine is the inverse of sine),

arccos T = cos | z (arccosine is the inverse of cosine),

arctanz = tan_' (arctangent is the inverse of tangent),
arccotz =cot™' z  (arccotangent is the inverse of cotangent)

and are determined by the inequalities

5 <arcsinz < 7, O<arccosz < -1<x<1);
5 <arctanz < 5, 0 <arccotz < (-0 < x < 00).

The following equivalent relations can be taken as definitions of single-valued inverse
trigonometric functions:

y=arcsinz, -1<zx<1 < 2z =siny, —%Sysg;
y=arccosz, —-1<zx<1 < z=cosy, 0O0<y<m
y=arctanxr, —-00<IT<+00 <= =tany, 72r Yy < %
y =arccotx, -—-oo<xr<+o0 <= x=coty, O<y<m.

The multi-valued and the single-valued inverse trigonometric functions are related by

the formulas ) _
Arcsin x = (-1)" arcsin x + mn,

Arccos x = tarccos x + 27n,
Arctan z = arctan x + 7n,
Arccot x = arccot x + mn,
where n =0, =1, £2, ...
The graphs of inverse trigonometric functions are obtained from the graphs of the

corresponding trigonometric functions by mirror reflection with respect to the straight line
y = x (with the domain of each function being taken into account).

2.3.1-2. Arcsine: y = arcsin x.

This function is defined for all x € [-1, 1] and its range is y € [—%, %]. The arcsine is an
odd, nonperiodic, bounded function that crosses the axes Oz and Oy at the origin x = 0,
y = 0. This is an increasing function in its domain, and it takes its smallest value y = —7 at
the point z = —1; it takes its largest value y = 7 at the point x = 1. The graph of the function
y = arcsin x is given in Fig. 2.10.
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2.3.1-3. Arccosine: y = arccos x.

This function is defined for all « € [-1, 1], and its range is y € [0, 7]. It is neither odd nor
even. It is a nonperiodic, bounded function that crosses the axis Oy at the point y = 5 and
crosses the axis Ox at the point & = 1. This is a decreasing function in its domain, and at
the point = = —1 it takes its largest value y = 7; at the point = 1 it takes its smallest value
y = 0. For all z in its domain, the following relation holds: arccos x = 7 — arcsinz. The
graph of the function y = arccos z is given in Fig. 2.11.

AY A

[N

'y = arcsin x

= arccos x
¥ Y

R

Q

—_
(S1E]

-1 O 1

]

Figure 2.10. The graph of the function y = arcsin z. Figure 2.11. The graph of the function y = arccos z.

2.3.1-4. Arctangent: y = arctan x.

This function is defined for all z, and its range is y € (—%, %). The arctangent is an odd,

nonperiodic, bounded function that crosses the coordinate axes at the origin z = 0, y = 0.

This is an increasing function on the real axis with no points of extremum. It has two
s

horizontal asymptotes: y = -7 (as  — —o0) and y = 7 (as x — +00). The graph of the
function y = arctan x is given in Fig. 2.12.

2.3.1-5. Arccotangent: y = arccot x.

This function is defined for all z, and its range is y € (0, ). The arccotangent is neither odd
nor even. It is a nonperiodic, bounded function that crosses the axis Oy at the pointy = 7
and does not cross the axis Oz. This is a decreasing function on the entire real axis with
no points of extremum. It has two horizontal asymptotes y = 0 (as x — +00) and y = 7 (as
x — —00). For all z, the following relation holds: arccotx = 7 —arctan x. The graph of the
function gy = arccot x is given in Fig. 2.13.

X
>

2 -10" 1

Figure 2.12. The graph of the function y = arctanz.  Figure 2.13. The graph of the function y = arccot z.
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2.3.2. Properties of Inverse Trigonometric Functions

2.3.2-1. Simplest formulas.

sin(arcsin x) = x,

tan(arctan x) = x,

2.3.2-2. Some properties.

arcsin(—x) = —arcsin z,

arctan(—x) = —arctan x,

arcsin(sin x) = {

arccos(cos x) = {

T -2nmw
-z +2n+ D7

T —2nm
-z +2n+ D7

arctan(tan x) = x — nmw

arccot(cotx) = x —nmw

if nm-— >

cos(arccos x) = x,
cot(arccot x) = x.

arccos(—x) = 7 — arccos ,

arccot(—x) = 7 — arccot x,

us

if 2nm -5 <2 <2nm+ 7,
if 2n+ -3 <x<2n+ D+ 7,

if 2nr < <2n+ D,
if Cn+ <z <2n+ D,

<z <nm+7,

if nr<z<n+ Dm.

2.3.2-3. Relations between inverse trigonometric functions. ‘

arcsin z +arccos x = 7,

arccos V' 1—a2
—arccos V' 1-22

arctan

arcsin x =

arccot -

8 R

arcsin

H
—
B
[N

arccos

—

+

8
o

arctanx =

—_—

—arccos

—

+

8
&)

1
arccot —
T

if 0<x<1,
if -1<2<0,

if -l<x<l,
if -1<2<0;
for any =z,
if x>0,
if <0,

if £ >0;

arctan z+arccotz = 7;

arccosx =

arccotx =

g

1-22

m—arcsin V' 1

arcsin

S}

T

¥

-z
arctan

88

arccot

—
¥

-

. 1
arcsin

¥

1

+

X

—

mT—arcsin

—_

+

8
[$)

1
arctan —

8

1
m+arctan —
x

2.3.2-4. Addition and subtraction of inverse trigonometric functions. ‘

arcsin z + arcsin y = arcsin (z V1-y?+yV1-22 )

if 0<x<1,
if -1<z2<0,

if O<z<1,

if -l<zx<l;

if x>0,

if <0,

if >0,

if x<0.

for a:2+y2 <1,

arccos x * arccos y = tarccos[zy F /(1 —22)(1-y?)| for xz+y=0,
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+
arctan x + arctan y = arctan Y for zy<1,
-y
arctan x — arctan y = arctan for zy>-1.
1 +zy
2.3.2-5. Differentiation formulas. ‘

. 1 1
—arcsinx = ——, — arccos = ————,
dx V1-22 dx V1-22

1
—arctanx = R — arccotxr = — .
dx 1+ 22 dz 1+22

‘2.3.2—6. Integration formulas. ‘

/arcsinxdx =garcsinz +V1-22+C, /arccosxdx =garccosz—V1—-a2+C,

1 1
/arctanxdw = rarctanr — > In(1+2%)+C, /arccotx dx = x arccotx + > In(1 +2%) +C,

where C' is an arbitrary constant.

‘2.3.2—7. Expansion in power series. ‘

aresin +19c3+1><3x5+1><3><5:c7+ +1><3><---><(2n—1) 2+l N (el < 1)
mr=x+—— R J— €T s
23 2x4 5 2x4x6 7 2x4x---x(2n) 2n+1
3.5 7 2n-1
X X X X
tane = - — 4+ —— 4 (D) — 4. <0,
arctan & = & — -+ = - — =D ] (zl<1)
arctan 1+ ! ! +oo+ (D" ! + (Jz[ > 1)
r=——-— _— — _ X .
2 x 323 529 2n—1)z2n-1

The expansions for arccosx and arccotx can be obtained from the relations arccos x =
% —arcsinx and arccotx = 5 —arctan .

2.4. Hyperbolic Functions
2.4.1. Definitions. Graphs of Hyperbolic Functions

‘2.4.1—1. Definitions of hyperbolic functions.

Hyperbolic functions are defined in terms of the exponential functions as follows:

T —X T —X xT —X

. et —e e +e e —e
simhz=———, coshz=———, tanhz=—"—,
2 2 eT + e

ef+e T

cothyr = ——.
et —e @

The graphs of hyperbolic functions are given below.
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2.4.1-2. Hyperbolic sine: y = sinhz.

This function is defined for all x and its range is the entire y-axis. The hyperbolic sine is an
odd, nonperiodic, unbounded function that crosses the axes Ox and Oy at the origin = = 0,
y = 0. This is an increasing function in its domain with no points of extremum. The graph
of the function y = sinh « is given in Fig. 2.14.

2.4.1-3. Hyperbolic cosine: y = coshz.

This function is defined for all =, and its range is y € [1,+00). The hyperbolic cosine is
a nonperiodic, unbounded function that crosses the axis Oy at the point 1 and does not
cross the axis Ox. This function is decreasing on the interval (—oo, 0) and is increasing on
the interval (0, +00); it takes its smallest value y = 1 at z = 0. The graph of the function
y = cosh z is given in Fig. 2.15.

y=coshx

Y=

2 -1 O 1 2

Figure 2.14. The graph of the function y = sinh x. Figure 2.15. The graph of the function y = cosh x.

2.4.1-4. Hyperbolic tangent: y = tanh x.

This function is defined for all z, and its range is y € (—1, 1). The hyperbolic tangent is an
odd, nonperiodic, bounded function that crosses the coordinate axes at the origin x =0, y =0.
This is an increasing function on the entire real axis and has two horizontal asymptotes:
y=-1(asx — —oo0)and y = 1 (as x — +00). The graph of the function y = tanh x is given
in Fig. 2.16.

2.4.1-5. Hyperbolic cotangent: y = coth z.

This function is defined for all x #0, and its range consists of all y € (—o0,—1) and y € (1, +00).
The hyperbolic cotangent is an odd, nonperiodic, unbounded function that does not cross
the coordinate axes. This is a decreasing function on each of the semiaxes of its domain;
it has no points of extremum and does not cross the coordinate axes. It has two horizontal
asymptotes: y =—1 (as z — —oo0) and y = 1 (as * — +o0). The graph of the function
y = coth z is given in Fig. 2.17.
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Figure 2.16. The graph of the function y = tanh x.

Figure 2.17. The graph of the function y = coth x.

2.4.2. Properties of Hyperbolic Functions

2.4.2-1. Simplest relations.

cosh? z —sinh® x = 1,
sinh(—x) = —sinh z,
sinh x

tanh x = s
coshx

tanh(—z) = —tanh x,
1

cosh?z’

1 —tanh?z =

tanh z cothz =1,
cosh(—z) = cosh z,

cosh x
cothx = — s
sinh z
coth(—x) = —coth x,
1
COth2 X — 1 = 7 -
sinh” z

2.4.2-2. Relations between hyperbolic functions of single argument (x = 0).

sinhz = Vcosh? z — 1
coshz = Vsinh?z +1=

tanh sinh z
anh r = =
Vsinh? z + 1
Vsinh?x + 1
cothz = =

_ tanh x _ 1
" Vi—tanh?’z  Veoth?z—1
1 : cothx
V1 -tanh? z - Veoth?z -1
Veosh? z— 1 1
cosh cothz’
cosh x 1

sinh

2.4.2-3. Addition formulas. \

sinh(x £ y) = sinh z cosh y & sinh y cosh z,

tanh x + tanh y
1 +tanh z tanhy’

tanh(x £ y) =

coth(z ty) =

Veosh2z—1 tanhz’

cosh(z = y) = cosh x cosh y £ sinh x sinh y,

cothzxcothy £ 1
cothytcothzx
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2.4.2-4. Addition and subtraction of hyperbolic functions. ‘

xt F
sinhx £ sinhy = 2s1nh< Zy)c h(aczy)’

cosh x + cosh y :ZCosh(x;y> co sh( 2y>’

coshx —coshy = 2sinh<xT+y) sinh(%),

sinh? z — sinh? Y= cosh? z — cosh? y = sinh(z + y) sinh(x —y),

sinh? z + cosh? y = cosh(z + y) cosh(x — y),
(cosh z £ sinh )" = cosh(nz) £ sinh(nx),

sinh(z + 1) sinh(z + y)

cothx £cothy ==

tanhz ftanhy = ————,
4 cosh x cosh y sinh z sinh gy’

where n =0, £1, £2, ...

2.4.2-5. Products of hyperbolic functions.

sinh x sinh ¢ = %[cosh(az +y) — cosh(x — y)],
cosh x coshy = %[cosh(m + 1) + cosh(x — )],
sinh x cosh y = %[sinh(x +y) + sinh(x — y)].

2.4.2-6. Powers of hyperbolic functions.

coshzaj—j osh23:+%, s1nh233—§ osh2x—l,
cosh?® 2= 41‘ cosh3z+32 7 cosh z, sinh® 2= 41‘ sinh 33;—2 sinh z,

4. ._1 1 3 SV | 3
cosh™ z = ¢ cosh 4m+7 cosh 2z + 3 sinh™ z = ¢ cosh 4m—7 cosh2x + 3

cosh’ 2= 1—16 cosh5x+ 1% cosh3x+ % cosh z, sinh’ 7= 6 sinh 5z —

n-1

1
Z C¥, cosh[2(n—k)x]+ ZWC;‘W
k=0

1
22n—1

cosh?” z =

cosh?™*! 22n Z C% .., cosh[(2n—2k+1)z],

k=0
inh?" z = 5 1ECE coshi2(n—kyz]+ =2 cm
sinh™ 2 =7 z_:(— )*C5,, cosh[2(n— )x]+27 s
sinh>™*! z 22n Z( D*CE ., sinh[(2n—2k+1)z).

k=0

Here,n =1, 2, ...;and C¥ are binomial coefficients.

6 sinh 3z + 32 2 3 sinh T,
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2.4.2-7. Hyperbolic functions of multiple argument.

cosh 2z =2cosh? z—1, sinh 2z = 2 sinh x cosh z,
cosh 3z =3 cosh 2 +4 cosh® z, sinh 3z = 3 sinh z + 4 sinh® z,
cosh4z = 1—8 cosh® z + 8 cosh* z, sinh 4x =4 cosh z(sinh x +2 sinh? ),

cosh 52 = 5 cosh 2—20cosh® z+ 16 cosh® zz,  sinh 52 = 5 sinh 2 +20 sinh® z: + 16 sinh° z.

n [n/2] (_1)k+1
cosh(nz) =2"" cosh™ z + 5 Z o Crlf:;%_ZZ"_Zk_2(cosh 2y k2,
k=0
[(n-1)/2]
sinh(nx) = sinh Z Lok (cosh )2k
k=0

Here, C* are binomial coefficients and [A] stands for the integer part of the number A.

2.4.2-8. Hyperbolic functions of half argument. ‘

sinh£=sign:p /cosh:z:—l, coshzz /cosha:+1’
2 2 2 2
tanh T _ sinh x _ coshz -1 coth T _ sinh _ coshz +1
2 coshz+1 sinhz 2 coshz—1 sinh z
2.4.2-9. Differentiation formulas.
dsinh x dcosh x )
= cosh z, =sinh z,
dx dx
dtanhx 1 decothx 1
dr  cosh’z’ der ~ sinh’z’

2.4.2-10. Integration formulas.

/sinh:pd:pzcoshx+0, /cosha:da:=sinh:n+0,
/tanha:da:=lncosha:+0, /cotha:da:zlnlsinha:|+0,

where C' is an arbitrary constant.
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2.4.2-11. Expansion in power series.

2 4 6 2n
xt T
COSh$=1+5+E+E+W+(2n)!+m (x| < 00),
— 2325 27 p2n+
Sin $—$+§+§+7+“‘+m+"' (|$|<OO),
3 5 7 2n(9H2n 2n-1
x> 22 17z _1 272" = 1)| By |
tanhz =2 — — + — — oo+ (=D <7/2),
AT =Y s T 315 =D 2n)! (It </2)
3 5 2n 2n-1
r z 2 _1 2™ Byplx
the= —+—— "+ ...t <),
M= T3 745 43 D 2n)! (] <)
where B,, are Bernoulli numbers (see Subsection 18.1.3).
‘2.4.2—12. Relationship with trigonometric functions. ‘
sinh(zx)=%sinx, cosh(ix)=cosx, tanh(tzx)=itanz, coth(iz)=—icotzx, i?=-1.

2.5. Inverse Hyperbolic Functions
2.5.1. Definitions. Graphs of Inverse Hyperbolic Functions

‘2.5.1—1. Definitions of inverse hyperbolic functions. ‘

Inverse hyperbolic functions are the functions that are inverse to hyperbolic functions. The
following notation is used for inverse hyperbolic functions:

arcsinh z =sinh™ = (inverse of hyperbolic sine),
arccosh z = cosh™ z  (inverse of hyperbolic cosine),
arctanh z = tanh™' = (inverse of hyperbolic tangent),

arccoth z = coth™ = (inverse of hyperbolic cotangent).
Inverse hyperbolic functions can be expressed in terms of logarithmic functions:

arcsinhz =In(z + Va2 +1) (zisany); arccoshz =In(z+Va?-1) (z21);

1, 1+ 1 +1
arctanh z = — In z (lz| < 1); arccothxz = — In x
2 1-z 2 x-1

Here, only one (principal) branch of the function arccosh « is listed, the function itself being
double-valued. In order to write out both branches of arccosh z, the symbol + should be
placed before the logarithm on the right-hand side of the formula.

Below, the graphs of the inverse hyperbolic functions are given. These are obtained
from the graphs of the corresponding hyperbolic functions by mirror reflection with respect
to the straight line y = « (with the domain of each function being taken into account).

(|2 > D).

2.5.1-2. Inverse hyperbolic sine: y = arcsinh x.

This function is defined for all x, and its range coincides with the y-axis. The arcsinh x is an
odd, nonperiodic, unbounded function that crosses the axes Ox and Oy at the origin = = 0,
y = 0. This is an increasing function on the entire real axis with no points of extremum.
The graph of the function y = arcsinh x is given in Fig. 2.18.
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2.5.1-3. Inverse hyperbolic cosine: y = arccosh z.

This function is defined for all z € [1,+00), and its range consists of y € [0, +00). The
arccosh x is neither odd nor even; it is nonperiodic and unbounded. It does not cross the
axis Oy and crosses the axis Oz at the point z = 1. It is an increasing function in its domain
with the minimal value y = 0 at = 1. The graph of the function y = arccosh z is given in
Fig. 2.19.

AY
AY

1 v = arcsinh x o)
X
> = arccosh x

2 - o 1 2 | Y
,1 ﬁ
) 1 2 3 4

Figure 2.18. The graph of the function y = arcsinh x. Figure 2.19. The graph of the function y =arccosh x.

2.5.1-4. Inverse hyperbolic tangent: y = arctanh z.

This function is defined for all z € (-1, 1), and its range consists of all y. The arctanh x
is an odd, nonperiodic, unbounded function that crosses the coordinate axes at the origin
x =0, y = 0. This is an increasing function in its domain with no points of extremum and
an inflection point at the origin. It has two vertical asymptotes: x = 1. The graph of the
function y = arctanh z is given in Fig. 2.20.

2.5.1-5. Inverse hyperbolic cotangent: ¥y = arccoth x.

This function is defined for x € (—00,—1) and « € (1,+00). Its range consists of all y # 0.
The arccoth z is an odd, nonperiodic, unbounded function that does not cross the coordinate
axes. It is a decreasing function on each of the semiaxes of its domain. This function has
no points of extremum and has one horizontal asymptote y = 0 and two vertical asymptotes
x = *1. The graph of the function y = arccoth x is given in Fig. 2.21.
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Figure 2.20. The graph of the functiony=arctanh z.  Figure 2.21. The graph of the function y = arccoth x.
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2.5.2. Properties of Inverse Hyperbolic Functions

‘ 2.5.2-1. Simplest relations.

arcsinh(-x) = —arcsinh x,  arctanh(—x) = —arctanh x,  arccoth(-z) = —arccoth z.

‘2.5.2—2. Relations between inverse hyperbolic functions. ‘

. T
arcsinh x = arccosh V22 + 1 = arctanh ———,
Vzz +1
. 5 Va?-1
arccosh z = arcsinh v x# — 1 = arctanh s

X
tanh inh —~ ho L th &
arctann r = arcsinn ———— = arccosn ——— = arcco —.
V1-—g2 V1-2? T

2.5.2-3. Addition and subtraction of inverse hyperbolic functions. ‘

arcsinh z + arcsinh y = arcsinh (z/1 + 32 £ yV1 +22),

arccosh z £ arccosh y = arccosh [zy £ /(22 - D(y? - 1) ],
arcsinh z + arccosh y = arcsinh [zy = /(2% + D(y* - 1) |,

x x
arctanh z t arctanh y = arctanh Y , arctanh z * arccoth y = arctanh .
1tzy ytax

t1

2.5.2-4. Differentiation formulas. \

1 d 1
—arcsinhx = ——, — arccosh x = s
dx VaZ+1 dx 22 -1
d d
T arctanh x = 2 (:r2 <1, Ir arccoth x = 2 (ZL'2 >1).

2.5.2-5. Integration formulas. ‘

/arcsinhacda: =garcsinhz—V1+22+C,
/arccosha:da: =zarccoshz—vVaz2-1+C,

1
/arctanh x dx = x arctanh = + 5 In(1 - 1'2) +C,

1
/arccoth x dx = x arccoth x + > ln(av2 -D+C,

where C' is an arbitrary constant.
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2.5.2-6. Expansion in power series.

arcsinh z = In(2x) + %2%32 + %4%:4 +- 4+ ! ;i:xx fg;)l) 271;2” (|lz| > 1),
BRI T AN
arctanhx:x+%3+%5+x77+---+;;Tll+--- (|2 < D),
arccothx:%+%+%+%+---+m+ (2 > 1).
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Chapter 3
Elementary Geometry

3.1. Plane Geometry
3.1.1. Triangles

‘ 3.1.1-1. Plane triangle and its properties. ‘

1°. A plane triangle, or simply a triangle, is a plane figure bounded by three straight line
segments (sides) connecting three noncollinear points (vertices) (Fig. 3.1a). The smaller
angle between the two rays issuing from a vertex and passing through the other two vertices
is called an (interior) angle of the triangle. The angle adjacent to an interior angle is called
an external angle of the triangle. An external angle is equal to the sum of the two interior
angles to which it is not adjacent.

(b)

Figure 3.1. Plane triangle (). Midline of a triangle (b).

A triangle is uniquely determined by any of the following sets of its parts:
Two angles and their included side.

Two sides and their included angle.

Three sides.

w =

Depending on the angles, a triangle is said to be:
Acute if all three angles are acute.

Right (or right-angled) if one of the angles is right.
Obtuse if one of the angles is obtuse.

W=

Depending on the relation between the side lengths, a triangle is said to be:

Regular (or equilateral) if all sides have the same length.
Isosceles if two of the sides are of equal length.
Scalene if all sides have different lengths.

w =

2°. Congruence tests for triangles:

1. If two sides of a triangle and their included angle are congruent to the corresponding
parts of another triangle, then the triangles are congruent.

2. If two angles of a triangle and their included side are congruent to the corresponding
parts of another triangle, then the triangles are congruent.

43
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3. If three sides of a triangle are congruent to the corresponding sides of another triangle,
then the triangles are congruent.

3°. Triangles are said to be similar if their corresponding angles are equal and their corre-
sponding sides are proportional.

Similarity tests for triangles:

1. If all three pairs of corresponding sides in a pair of triangles are in proportion, then the
triangles are similar.

2. If two pairs of corresponding angles in a pair of triangles are congruent, then the triangles
are similar.

3. If two pairs of corresponding sides in a pair of triangles are in proportion and the
included angles are congruent, then the triangles are similar.

The areas of similar triangles are proportional to the squares of the corresponding linear
parts (such as sides, altitudes, diagonals, etc.).

4°. The line connecting the midpoints of two sides of a triangle is called a midline of the
triangle. The midline is parallel to and half as long as the third side (Fig. 3.15).

Let a, b, and ¢ be the lengths of the sides of a triangle; let o, 3, and y be the respective
opposite angles (Fig. 3.1a); let R and r be the circumradius and the inradius, respectively;
and let p = %(a + b + ¢) be the semiperimeter.

Table 3.1 represents the basic properties and relations characterizing triangles.

TABLE 3.1
Basic properties and relations characterizing plane triangles

No. The name of property Properties and relations
| Trianele inequalit The length of any side of a triangle does not exceed
& quatity the sum of lengths of the other two sides
Sum of angles of o
2 a triangle a+f+y=180
b
3 Law of sines S = =2R
sina sinf  sinvy
4 Law of cosines & =a* +b* - 2abcos o
tan[ (o + t( %
5 Law of tangents atb - Aan [ 2 (o + )] = col (27)
a-b tan[3(a-p)] tan[3(a-p)]
Theorem on projections _
6 (law of cosines) c=acosf+bcosa
_ _ sin) =,/ @-0@-b v _ [pe-0)
7 Trigonometric 2 ab 2 ab
angle formulas — g 2
an = JEDED iny = ol -0
8 Law of tangents tany = < sina__ csinf3
g W_b—ccosa_a—ccosﬁ
a+b _cos[5(a-P)] cos[5(a-p)]
- . 1 - El
c sin( 5 cos +
9 Mollweide’s formulas . . 1( 2 7) [2 (o 5)]
a—b_smb(a B)] _ sin[4(a - B)]
c cos(37) - sm[z(a+,6’)]
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Table 3.2 permits one to find the sides and angles of an arbitrary triangle if three
appropriately chosen sides and/or angles are given. From the relations given in Tables 3.1
and 3.2, one can derive all missing relations by cyclic permutations of the sides a, b, and ¢
and the angles «, (3, and ~.

TABLE 3.2
Solution of plane triangles

No. | Three parts Formulas for the remaining parts
specified
1 Three sides | First method.
a,b,c b+ —a?
> One of the angles is determined by the law of cosines, cosa = e
c
Then either the law of sines or the law of cosines is applied.
Second method.
One of the angles is determined by trigonometric angle formulas. Further
proceed in a similar way.
Remark. The sum of lengths of any two sides must be greater than the length of
the third side.
2 Two sides a, b | First method.
and the included| The side c is determined by the law of cosines, ¢ = \/a?+ b?> —2abcos 7.
angle The angle « is determined by either the law of cosines or the law of sines. The
angle 3 is determined from the sum of angles in triangle, 3 = 180° — . —.
Second method.
a+ (3 is found from the sum of angles in triangle, o+ 3 = 180° —~;
- -b
a—f is found from the law of tangents, tan o= =2 b cot %
a
Then « and 3 can be found. The third side c is determined by either the law of
cosines or the law of sines.
3 Aside ¢ The third angle + is found from the sum of angles in triangle, v = 180° —a - 3.
and the two | Sides a and b are determined by the law of sines.
angles «, 3
adjacent to it
b
4 | Two sides a, b | The second angle is determined by the law of sines, sin3 = — sina.
a
and the_ angle o The third angle is v = 180° —a — (. .
opposite one T . . sin~y
of them The third side is determined by the law of sines, ¢ = a— .
sin o
Remark. Five cases are possible:
1. a > b; i.e., the angle is opposite the greater side. Then o > 3, 8 < 90° (the larger
angle is opposite the larger side), and the triangle is determined uniquely.
2. a = b; i.e., the triangle is isosceles and is determined uniquely.
3. a < band bsin o < a. Then there are two solutions, 3; + (3, = 180°.
4. a < b and bsin a = a. Then the solution is unique, 3 = 90°.
5. a < band bsin a > a. Then there are no solutions.

3.1.1-2. Medians, angle bisectors, and altitudes of triangle.

A straight line through a vertex of a triangle and the midpoint of the opposite side is called
a median of the triangle (Fig. 3.2a). The three medians of a triangle intersect in a single
point lying strictly inside the triangle, which is called the centroid or center of gravity of
the triangle. This point cuts the medians in the ratio 2:1 (counting from the corresponding
vertices).
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(b)

C

Figure 3.2. Medians (a), angle bisectors (), and altitudes (c) of a triangle.

The length of the median m,, to the side a opposite the angle « is equal to

1 1
my = 5\/2(b2 +c2)—a? = 5\/a2+b2+2abcosy. (3.1.1.1)

An angle bisector of a triangle is a line segment between a vertex and a point of the
opposite side and dividing the angle at that vertex into two equal parts (Fig. 3.2b). The three
angle bisectors intersect in a single point lying strictly inside the triangle. This point is
equidistant from all sides and is called the incenter (the center of the incircle of the triangle).
Concerning the radius 7 of the incircle, see Paragraph 3.1.1-3. The angle bisector through
a vertex cuts the opposite side in ratio proportional to the adjacent sides of the triangle.

The length of the angle bisector [, drawn to the side a is given by the formulas

\/—2_2 —
la=m: be[(b + ¢) a]:\/m’

b+c b+c
2cheos () sin 3 sin y sin(13) sin (L) (3.1.1.2)
la = =2R 1 =2p—. :
b+c cos[5(8-7)] sin 3 + sin

where b; and ¢ are the segments of the side a cut by bisector /, and adjacent to the sides b
and c, respectively, and R is the circumradius (see Paragraph 3.1.1-3).

An altitude of a triangle is a straight line passing through a vertex and perpendicular to
the straight line containing the opposite side (Fig. 3.2¢). The three altitudes of a triangle
intersect in a single point, called the orthocenter of the triangle.

The length of the altitude h, to the side a is given by the formulas

b
he =bsiny =c¢sin 3 = —C,
2R
N 3 - N 4 - (3.1.1.3)
hq =2(p—a)cos§cos§cos§ =2(p—b)s1n§s1n§cos 5

The lengths of the altitude, the angle bisector, and the median through the same vertex
satisfy the inequality h, <1, <mg. If hy =1, =m,, then the triangle is isosceles; moreover,
the first equality implies the second, and vice versa.

3.1.1-3. Circumcircle, incircle, and excircles.

A straight line passing through the midpoint of a segment and perpendicular to it is called
the perpendicular bisector of the segment. The circle passing through the vertices of a
triangle is called the circumcircle of the triangle. The center O of the circumcircle, called
the circumcenter, is the point where the perpendicular bisectors of the sides of the triangle
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Figure 3.3. The circumcircle of a triangle. The circumcenter (a), the Simpson line (b), and the Euler line (c).

meet (Fig. 3.3a). The feet of the perpendiculars drawn from a point () on the circumcircle
to the three sides of the triangle lie on the same straight line called the Simpson line of @
with respect to the triangle (Fig. 3.3b). The circumcenter, the orthocenter, and the centroid
lie on a single line, called the Euler line (Fig. 3.3c¢).

The circle tangent to the three sides of a triangle and lying inside the triangle is called
the incircle of the triangle. The center O, of the incircle (the incenter) is the point where
the angle bisectors meet (Fig. 3.4a). The straight lines connecting the vertices of a triangle
with the points at which the incircle is tangent to the respective opposite sides intersect in
a single point G called the Gergonne point (Fig. 3.4b).

(b)

)

C

Figure 3.4. The incircle of a triangle (a). The incenter and the Gergonne point (b).

The circle tangent to one side of a triangle and to the extensions of the other two sides is
called an excircle of the triangle. Each triangle has three excircles. The center of an excircle
(an excenter) is the point of concurrency of two external angle bisectors and an interior
angle bisector. The straight lines connecting the vertices of a triangle with the points at
which the respective opposite sides are tangent to the excircles intersect in a single point IV,
called the Nagel point (Fig. 3.5).

The inradius 7, the circumradius R, and the exradii p,, pp, and p. satisty the relations

r= (p_a)(p_b)(p_c)=ptangtanétan1
D 2 2 2
—arsinSsin 2 sin ) = —oytan L = 2
=4Rsin 2 sin > sin > =(p-c)tan 27 3.1.1.4)
R=——0 b ¢ _abe P (3.1.1.5)

T 2sina 2sinfg  2siny 4S5 4cos(ga) cos(3/3) cos(57)’

1 1 1 1
L S SO (3.1.1.6)

" Pa P Pc
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Figure 3.5. Excircles of a triangle. The Nagel point.

The distance d; between the circumcenter and the incenter and the distance d, between
the circumcenter and the excenter are given by the expressions

dy =V R*-2Rr, (3.1.1.7)
dy =\/R?+2Rp,. (3.1.1.8)

3.1.1-4. Area of a triangle.

The area S of a triangle is given by the formulas

1
S =ahy = —absiny = rp,

2
S =+/p(p-a)p-b)p—c) (Heron’s formula),
abc 7 . . . (3.1.1.9)
S = iR 2R sin asin 3 sin 7,

,sinasing  , sinasin 3
=c =

s 2sinyC 2sin(a+ B)

3.1.1-5. Theorems about points and lines related to triangle. ‘

CEVA’S THEOREM. Let points Cy, A, and By lie on the sides AB, BC, and CA,
respectively, of a triangle (Fig. 3.6). The straight lines AA;, BBy, and C'C are concurrent
or parallel if and only if

ACl BA1 CBl

Ci,B A,C BjA

=1. (3.1.1.10)

STEWART’S THEOREM. If a straight line through a vertex of a triangle divides the opposite
side into segments of lengths m and n (Fig. 3.7), then

(m +n)(p* + mn) = b¥m + n. (3.1.1.11)
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4 B, C B

Figure 3.6. Ceva’s theorem. Figure 3.7. Stewart’s theorem.

MENELAUS’S THEOREM. If a straight line intersects sides AB, BC', and CA of a triangle
(Fig. 3.8) or their extensions at points C', A1, and By, respectively, then

ACy, BA;, CB;
: : =-1. 3.1.1.12
1B A C B/A ( )

A C

Figure 3.8. Menelaus’s theorem. Figure 3.9. Morley’s theorem.

Straight lines dividing the interior angles of a triangle into three equal parts are called
angle trisectors.

MORLEY’S THEOREM. The three points of intersection of adjacent angle trisectors of a
triangle form an equilateral triangle (Fig. 3.9).

In a triangle, the midpoints of the three sides, the feet of the three altitudes, and the
midpoints of the segments of the altitudes between the orthocenter and the vertices all lie
on a single circle, the nine-point circle (Fig. 3.10).

Figure 3.10. Nine-point circle.

FEUERBACH’S THEOREM. The nine-point circle is tangent to the incircle and the three
excircles. The points of tangency are called the Feuerbach points. The center of the
nine-point circle lies on the Euler line (see Paragraph 3.1.1-3).
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Figure 3.11. A right triangle.

3.1.1-6. Right (right-angled) triangles. ‘

A right triangle is a triangle with a right angle. The side opposite the right angle is called
the hypotenuse, and the other two sides are called the legs (Fig. 3.11).

The hypotenuse c, the legs a and b, and the angles « and 3 opposite the legs satisfy the
following relations:

a+ 3 =90°
o _a o b
s1noz—cosﬁ—z, s1nﬁ—cosa—z, (3.1.1.13)
a b
tana=cot=—, tan(=cota=—.
b a
One also has
a’> +b> =¢®> (PYTHAGOREAN THEOREM), (3.1.1.14)
h? = mn, a’ = me, b = ne, (3.1.1.15)

where h is the length of the altitude drawn to the hypotenuse; moreover, the altitude cuts
the hypotenuse into segments of lengths m and n.

In a right triangle, the length of the median m. drawn from the vertex of the right
angle coincides with the circumradius R and is equal to half the length of the hypotenuse c,
me=R= %c. The inradius is given by the formula r = %(a + b—c). The area of the right

triangle is S = ah, = %ab (see also Paragraphs 3.1.1-2 to 3.1.1-4).

3.1.1-7. Isosceles and equilateral triangles. ‘

1°. An isosceles triangle is a triangle with two equal sides. These sides are called the legs,
and the third side is called the base (Fig. 3.12a).

(a) (b)

a

Figure 3.12. An isosceles triangle (a). An equilateral triangle (b).
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Properties of isosceles triangles:

In an isosceles triangle, the angles adjacent to the base are equal.

2. In an isosceles triangle, the median drawn to the base is the angle bisector and the
altitude.

3. In an isosceles triangle, the sum of distances from a point of the base to the legs is
constant.

p—

Criteria for a triangle to be isosceles:

If two angles in a triangle are equal, then the triangle is isosceles.
If a median in a triangle is also an altitude, then the triangle is isosceles.
If a bisector in a triangle is also an altitude, then the triangle is isosceles.

w =

2°. An equilateral (or regular) triangle is a triangle with all three sides equal (Fig. 3.12b).
All angles of an equilateral triangle are equal to 60°. In an equilateral triangle, the circum-
radius R and the inradius r satisfy the relation R = 2r.

For an equilateral triangle with side length a, the circumradius and the inradius are given
S= \/5 a’.

by the formulas Y3gand r = \/_a and the area is equal to

3.1.2. Polygons

3.1.2-1. Polygons. Basic information.

A polygon is a plane figure bounded by a closed broken line, i.e., a line obtained if one takes
n distinct points such that no three successive points are collinear and draws a straight line
segment between each of these points and its successor as well as between the last point and
the first point (Fig. 3.13a). The segments forming a polygon are called the sides (or edges),
and the points themselves are called the vertices of the polygon. Two sides sharing a vertex,
as well as two successive vertices (the endpoints of the same edge), are said to be adjacent.
A polygon can be self-intersecting, but the points of self-intersection should not be vertices
(Fig. 3.13b). A polygon is said to be plane if its vertices are coplanar. A polygon is said to
be simple if its nonadjacent sides do not have common interior or endpoints. A polygon is
said to be convex if it lies on one side of any straight line passing through two neighboring
vertices (Fig. 3.13¢). In what follows, we consider only plane simple convex polygons.

(a) (b) (©)

Figure 3.13. Polygons. Nonself-intersecting (a), self-intersecting (b), and convex (c) polygon.

An (interior) angle of a convex polygon is the angle between two sides meeting in a
vertex. An angle adjacent to an interior angle is called an external angle of the convex
polygon. A convex polygon is said to be inscribed in a circle if all of its vertices lie on the
circle. A polygon is said to be circumscribed about a circle if all of its sides are tangent to
the circle.

For a convex polygon with n sides, the sum of interior angles is equal to 180°(n — 2),
and the sum of external angles is equal to 360°.
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One can find the area of an arbitrary polygon by dividing it into triangles.

3.1.2-2. Properties of quadrilaterals.

. The diagonals of a convex quadrilateral meet.

1

2. The sum of interior angles of a convex quadrilateral is equal to 360° (Fig. 3.14a and b).

3. The lengths of the sides a, b, ¢, and d, the diagonals d; and dp, and the segment
m connecting the midpoints of the diagonals satisfy the relation a? + b*> + ¢ + d? =

d2 + d3 + 4m?.
A convex quadrilateral is circumscribed if and only if a + ¢ = b + d.
A convex quadrilateral is inscribed if and only if « + v = 3+ 4.

A

Figure 3.14. Quadrilaterals.

3.1.2-3. Areas of quadrilaterals. ‘

The area of a convex quadrilateral is equal to

s:%m@gnw=v@@—w@—w@—@@—®—a“d”§5;5’

where ¢ is the angle between the diagonals d; and d; and p = %(a +b+c+d).
The area of an inscribed quadrilateral is

S =/plp-a)p-b)p-o)p-ad.

The area of a circumscribed quadrilateral is

S =1/ abed sin? B;—é.

If a quadrilateral is simultaneously inscribed and circumscribed, then

S = vVabed.

3.1.2-4. Basic quadrilaterals.

The relation ac + bd = dd, holds for inscribed quadrilaterals (PTOLEMY’S THEOREM).

(3.1.2.1)

(3.1.2.2)

(3.1.2.3)

(3.1.2.4)

1°. A parallelogram is a quadrilateral such that both pairs of opposite sides are parallel

(Fig. 3.15a).
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(@) (b)
C
d, a
v/ |, / 4 4
d, N
a

Figure 3.15. A parallelogram (a) and a thombus (b).

Attributes of parallelograms (a quadrilateral is a parallelogram if):

Both pairs of opposite sides have equal length.

Both pairs of opposite angles are equal.

Two opposite sides are parallel and have equal length.
The diagonals meet and bisect each other.

D=

Properties of parallelograms:

The diagonals meet and bisect each other.

Opposite sides have equal length, and opposite angles are equal.

. The diagonals and the sides satisfy the relation d? + d5 = 2(a* + b?).

. The area of a parallelogram is S = ah, where h is the altitude (see also Paragraph 3.1.2-3).

BN

2°. A rhombus is a parallelogram in which all sides are of equal length (Fig. 3.15b).

Properties of rhombi:

1. The diagonals are perpendicular.
2. The diagonals are angle bisectors.
3. The area of a thombus is S = ah = a®sin« = %dldz.

3°. A rectangle is a parallelogram in which all angles are right angles (Fig. 3.16a).

(@) (b)
b b
a d a d

Figure 3.16. A rectangle (a) and a square (b).

Properties of rectangles:
1. The diagonals have equal lengths.
2. The area of a rectangle is .S = ab.

4°. A square is a rectangle in which all sides have equal lengths (Fig. 3.16b). A square is
also a special case of a rhombus (all angles are right angles).
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Properties of squares:
All angles are right angles.

The diagonals are equal to d = av/?2.
The diagonals meet at a right angle and are angle bisectors.

: _2_17p
The area of a square is equal to S = a” = 5d*.

Ll

5°. A trapezoid is a quadrilateral in which two sides are parallel and the other two sides
are nonparallel (Fig. 3.17). The parallel sides a and b are called the bases of the trapezoid,
and the other two sides are called the legs. In an isosceles trapezoid, the legs are of equal
length. The line segment connecting the midpoints of the legs is called the median of the
trapezoid. The length of the median is equal to half the sum of the lengths of the bases,

m = %(a+b).
1 m \d
/i

b

Figure 3.17. A trapezoid.

The perpendicular distance between the bases is called the altitude of a trapezoid.

Properties of trapezoids:

A trapezoid is circumscribed if and only if a + b = ¢ + d.

A trapezoid is inscribed if and only if it is isosceles.

3. The area of a trapezoid is S = %(a +bh =mh = %dldz sin ¢, where ¢ is the angle
between the diagonals d; and dj.

4. The segment connecting the midpoints of the diagonals is parallel to the bases and has
the length %(b —a).

Example 1. Consider an application of plane geometry to measuring distances in geodesy. Suppose that
the angles «, 3, 7y, and ¢ between a straight line AB and the directions to points D and C are known at points A
and B (Fig. 3.18a). Suppose also that the distance a = AB (or b = DC) is known and the task is to find the

distance b = DC' (or a = AB).

(a) (b)

N —

Figure 3.18. Applications of plane geometry in geodesy.

Let us find the angles ¢ and 1. Since o is the angle at the vertex O in both triangles AOB and DOC,
it follows that « + v = ¢ + 9. Lete; = %(cp +10). We twice apply the law of sines (Table 3.1) and find the
half-difference of the desired angles. The main formulas read

AD siny siny BC sin &

a sin(mr—a-B-7) sinf@+B8+7)"  a  sin(a+vy+90)’
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b sin 8 b sind

AD ~ siny’ BC  sing’

These relations imply that

= = 3.1.2.
siny sinfa+ B+7)  singsin(a + v+ 9J) ( 3

b sin 3 siny sin d sin v
a

and hence
sing _ sindsinasin(a+ [ +7)

sint)  sinGsin~ysin(a + v + 6)

=cotn,

where 7 is an auxiliary angle. By adding and subtracting, we obtain
sing—sinyy _ cotn—1  2cos[5(p+¢)]sin[5(p—v)]  cot(;7)cotn—1
sing +sing — cotn+ 1’ 2sin[1(p+v)| cos[I(p-v)|]  cotn+cot(im)

tanﬂ = tan prY cot<% +77> =tanaT+’ycot(% +77>.

2 2
From this we find &, = %(cp — 1) and, substituting ¢ = €1 + €2 and Y = 1 — 3 into (3.1.2.5), obtain the
desired distance.

Example 2. Suppose that the mutual position of three points A, B, and C is determined by the seg-
ments AC = a and BC' = b, and the angle ZAC B = ~y. Suppose that the following angles have been measured
at some point D: ZCDA =« and ZCDB = f5.

In the general case, one can find the position of point D with respect to A, B, and C, i.e., uniquely
determine the segments x, y, and z (Fig. 3.18b). For this to be possible, it is necessary that D does not lie on
the circumcircle of the triangle ABC'. We have

p+Y=2mr—(a+p+7)=2e. (3.1.2.6)
By the law of sines (Table 3.1), we obtain
sinp = —sinq, siny = 3 Sin B, (3.1.2.7)
a
which implies that

sing _ bsina
siny ~ asinf

=cotn, (3.1.2.8)

where 7 is an auxiliary angle. We find the angles ¢ and % from (3.1.2.6) and (3.1.2.8), substitute them
into (3.1.2.7) to determine z, and finally apply the law of sines to obtain x and y.

3.1.2-5. Regular polygons. ‘

A convex polygon is said to be regular if all of its sides have the same length and all of its
interior angles are equal. A convex n-gon is regular if and only if it is taken to itself by the
rotation by an angle of 27 /n about some point O. The point O is called the center of the
regular polygon. The angle between two rays issuing from the center and passing through
two neighboring vertices is called the central angle (Fig. 3.19).

2
N

Figure 3.19. A regular polygon.
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Properties of regular polygons:

The center is equidistant from all vertices as well as from all sides of a regular polygon.
A regular polygon is simultaneously inscribed and circumscribed; the centers of the

circumcircle and the incircle coincide with the center of the polygon itself.

In a regular polygon, the central angle is a = 360° /n, the external angle is 3 = 360° /n,

and the interior angle is v = 180° — [3.

The circumradius R, the inradius 7, and the side length a of a regular polygon satisfy

the relations

. «@
a=2VR?-r =2Rs1n§=2rtan5. (3.1.2.9)
5. The area S of a regular n-gon is given by the formula
arn «@ a 1 «
S = — =nr’tan — = nR%sin — = —na’cot —. 3.1.2.10
2 2 2 4 2 ( )
Table 3.3 presents several useful formulas for regular polygons.
TABLE 3.3
Regular polygons (a is the side length)
No. Name Inradius r Circumradius R Area S
a a
1 | Regular polygon Ytan & L 2sin = Sarn
2 Triangle ﬁ a ﬁ a ﬁ a?
6 3 4
3 Square la La 2
2 V2 “
4 Pentagon 5+ 2\/§a 5+/5 " V25 +10V/5 2
20 10 4
5 Hexagon éa a ﬁaz
2 2
6 Octagon 1 +2\/§ a \/2;' V2 a 2(1 + \/E)a2
7 Enneagon 5+2V5 a L++5 a 5+2V5 a2
2 2 2
3++43
8 Dodecagon 2 +2\/§ a \/%/_ a 32+ \/g)a2
3.1.3. Circle

3.1.3-1. Some definitions and formulas.

The circle of radius R centered at O is the set of all points of the plane at a fixed distance
R from a fixed point O (Fig. 3.20a). A plane figure bounded by a circle is called a disk.
A segment connecting two points on a circle is called a chord. A chord passing through
the center of a circle is called a diameter of the circle (Fig. 3.20b). The diameter length
is d = 2R. A straight line that meets a circle at a single point is called a tangent, and the
common point is called the point of tangency (Fig. 3.20c). An angle formed by two radii is
called a central angle. An angle formed by two chords with a common endpoint is called

an inscribed angle.
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(@ (®) ©
(D
NS

Figure 3.20. A circle (a). A diameter (b) and a tangent (c) of a circle.

Properties of circles and disks:

. The circumference is L = 27 R = nd = 2\/7S.

. The area of a disk is S = 7R? = Ird* = 1 Ld.

. The diameter of a circle is a longest chord.

. The diameter passing through the midpoint of the chord is perpendicular to the chord.

. The radius drawn to the point of tangency is perpendicular to the tangent.

. An inscribed angle is half the central angle subtended by the same chord, . = %ZB ocC
(Fig. 3.21a).

. The angle between a chord and the tangent to the circle at an endpoint of the chord is
B =3/A0C (Fig. 3.21a).

. The angle between two chords is v = %(B\-C/' + Ef) (Fig. 3.21b).
. The angle between two secants is o = %(Df - B\C/') (Fig. 3.21¢).

(b)
G-
ED
(©) r ) (d) .
"’ p b
E' .j A
D C

Figure 3.21. Properties of circles and disks.

AN NN =

-

O oo

10. The angle between a secant and the tangent to the circle at an endpoint of the secant is
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5 = L(FE - BF) (Fig. 3.210).
11. The angle between two tangents is o = %(BB/C - B\EJC) (Fig. 3.21d).

12. If two chords meet, then AC - AD = AB - AE = R> —m? (Fig. 3.21b).
13. For secants, AC - AD = AB - AE = m? — R? (Fig. 3.21¢).
14. For a tangent and a secant, AF - AF = AC' - AD (Fig. 3.21c¢).

3.1.3-2. Segment and sector.

A plane figure bounded by two radii and one of the subtending arcs is called a (circular)
sector. A plane figure bounded by an arc and the corresponding chord is called a segment
(Fig. 3.22a). If R is the radius of the circle, [ is the arc length, a is the chord length, « is the
central angle (in degrees), and h is the height of the segment, then the following formulas

hold:
a=2V2hR -2 = 2Rsin %

2
N Y SN S
h=R R 1 R( cos2> 2‘[an4, (3.13.1)

3 2t Ra

l= 360 0.01745 Ra.

The area of a circular sector is given by the formula

_E_ TR2a

S 2 360

~0.00873 R2a, (3.1.3.2)

and the area of a segment not equal to a half-disk is given by the expression

S = +Sa, (3.1.3.3)

where S is the area of the triangle with vertices at the center of the disk and at the endpoints
of the radii bounding the corresponding sector. One takes the minus sign for o < 180 and
the plus sign for a > 180.

The arc length and the area of a segment can be found by the approximate formulas

8h—a , . 1612
~ oI~ ]a?+ ——,

3 3 (3.1.3.4)
_ h(6a +8b)

15

l

Si

where b is the chord of the half-segment (see Fig. 3.22a).

3.1.3-3. Annulus.

An annulus is a plane figure bounded by two concentric circles of distinct radii (Fig. 3.22b).
Let R be the outer radius of an annulus (the radius of the outer bounding circle), and let r
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(a) (b)

Figure 3.22. A segment (a) and an annulus (b).

be the inner radius (the radius of the inner bounding circle). Then the area of the annulus
is given by the formula

S =n(R*-1?) = %(D2 —d%) = 2mp0, (3.13.5)
where D = 2R and d = 2r are the outer and inner diameters, p = %(R + 1) is the midradius,
and § = R —r is the width of the annulus.

The area of the part of the annulus contained in a sector of central angle ¢, given in
degrees (see Fig. 3.22b), is given by the formula

S = E(Rz_rz)_ TP

_ TP 5
~ 360 © 1440

(D*-d)=—Zp

3.1.3.
180 (3.1.3.6)

3.2. Solid Geometry
3.2.1. Straight Lines, Planes, and Angles in Space

‘3.2.1—1. Mutual arrangement of straight lines and planes.

1°. Two distinct straight lines lying in a single plane either have exactly one point of
intersection or do not meet at all. In the latter case, they are said to be parallel. If two
straight lines do not lie in a single plane, then they are called skew lines.

The angle between skew lines is determined as the angle between lines parallel to them
and lying in a single plane (Fig. 3.23a). The distance between skew lines is the length of
the straight line segment that meets both lines and is perpendicular to them.

(a) (b)

/

— < [f=

Figure 3.23. The angle between skew lines (a). The angle between a line and a plane (b).

2°. Two distinct planes either intersect in a straight line or do not have common points.
In the latter case, they are said to be parallel. Coinciding planes are also assumed to be
parallel. If two planes are perpendicular to a single straight line or each of them contains a
pair of intersecting straight lines parallel to the corresponding lines in the other pair, then
the planes are parallel.
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3°. A straight line either entirely lies in the plane, meets the plane at a single point, or has
no common points with the plane. In the last case, the line is said to be parallel to the plane.

The angle between a straight line and a plane is equal to the angle between the line
and its projection onto the plane (Fig. 3.23b). If a straight line is perpendicular to two
intersecting straight lines on a plane, then it is perpendicular to each line on the plane, i.e.,
perpendicular to the plane.

3.2.1-2. Polyhedral angles,

1°. A dihedral angle is a figure in space formed by two half-planes issuing from a single
straight line as well as the part of space bounded by these half-planes. The half-planes are
called the faces of the dihedral angle, and their common straight line is called the edge. A
dihedral angle is measured by its linear angle ABC' (Fig. 3.24a), i.e., by the angle between
the perpendiculars raised to the edge D E of the dihedral angle in both planes (faces) at the
same point.

(b)

Figure 3.24. A dihedral (a) and a trihedral (b) angle.

2°. A part of space bounded by an infinite triangular pyramid is called a trihedral angle
(Fig. 3.24b). The faces of this pyramid are called the faces of the trihedral angle, and the
vertex of the pyramid is called the vertex of a trihedral angle. The rays in which the faces
intersect are called the edges of a trihedral angle. The edges form face angles, and the faces
form the dihedral angles of the trihedral angle. As a rule, one considers trihedral angles
with dihedral angles less than 7 (or 180°), i.e., convex trihedral angles. Each face angle of
a convex trihedral angle is less than the sum of the other two face angles and greater than
their difference.

Two trihedral angles are equal if one of the following conditions is satisfied:

1. Two face angles, together with the included dihedral angle, of the first trihedral angle
are equal to the respective parts (arranged in the same order) of the second trihedral
angle.

2. Two dihedral angles, together with the included face angle, of the first trihedral angle
are equal to the respective parts (arranged in the same order) of the second trihedral
angle.

3. The three face angles of the first trihedral angle are equal to the respective face angles
(arranged in the same order) of the second trihedral angle.

4. The three dihedral angles of the first trihedral angle are equal to the respective dihedral
angles (arranged in the same order) of the second trihedral angle.

3°. A polyhedral angle OABC DE (Fig. 3.25a) is formed by several planes (faces) having
a single common point (the vertex) and successively intersecting along straight lines O A,
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(b)

Figure 3.25. A polyhedral (a) and a solid () angle.

OB, ..., OF (the edges). Two edges belonging to the same face form a face angle of the
polyhedral angle, and two neighboring faces form a dihedral angle.

Polyhedral angles are equal (congruent) if one can be transformed into the other by
translations and rotations. For polyhedral angles to be congruent, the corresponding parts
(face and dihedral angles) must be equal. However, if the corresponding equal parts are
arranged in reverse order, then the polyhedral angles cannot be transformed into each other
by translations and rotations. In this case, they are said to be symmetric.

A convex polyhedral angle lies entirely on one side of each of its faces. The sum
LAOB+/ZBOC+- - -+ ZFEOA of face angles (Fig. 3.25a) of any convex polyhedral angle
is less that 27 (or 360°).

4°. A solid angle is a part of space bounded by straight lines issuing from a single point
(vertex) to all points of some closed curve (Fig. 3.25b). Trihedral and polyhedral angles are
special cases of solid angles. A solid angle is measured by the area cut by the solid angle
on the sphere of unit radius centered at the vertex. Solid angles are measured in steradians.
The entire sphere forms a solid angle of 47 steradians.

3.2.2. Polyhedra

3.2.2-1. General concepts.

A polyhedron is a solid bounded by planes. In other words, a polyhedron is a set of finitely
many plane polygons satisfying the following conditions:

1. Each side of each polygon is simultaneously a side of a unique other polygon, which is
said to be adjacent to the first polygon (via this side).

2. From each of the polygons forming a polyhedron, one can reach any other polygon by
successively passing to adjacent polygons.

These polygons are called the faces, their sides are called the edges, and their vertices
are called the vertices of a polyhedron.

A polyhedron is said to be convex if it lies entirely on one side of the plane of any of its
faces; if a polyhedron is convex, then so are its faces.

EULER’S THEOREM. If the number of vertices in a convex polyhedron is e, the number
of edges is f, and the number of faces is g, thene + f — g = 2.

3.2.2-2. Prism. Parallelepiped. |

1°. A prism is a polyhedron in which two faces are n-gons (the base faces of the prism)
and the remaining n faces (joining faces) are parallelograms. The base faces of a prism are
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(@) (b)

Figure 3.26. A prism (@) and a truncated prism (b).

equal (congruent) and lie in parallel planes (Fig. 3.26a). A right prism is a prism in which
the joining faces are perpendicular to the base faces. A right prism is said to be regular if
its base face is a regular polygon.

If ] is the joining edge length, S is the area of the base face, H is the altitude of the prism,
Piec is the perimeter of a perpendicular section, and S is the area of the perpendicular
section, then the area of the lateral surface .Sj;; and the volume V of the prism can be
determined by the formulas

Stat = Peecl

V= SH = Seudl. (3.2.2.1)

The portion of a prism cut by a plane nonparallel to the base face is called a truncated
prism (Fig. 3.26b). The volume of a truncated prism is

V =LP, (3.2.2.2)

where L is the length of the segment connecting the centers of the base faces and P is the
area of the section of the prism by a plane perpendicular to this segment.

2°. A prism whose bases are parallelograms is called a parallelepiped. All four diagonals
in a parallelepiped intersect at a single point and bisect each other (Fig. 3.27a). A paral-
lelepiped is said to be rectangular if it is a right prism and its base faces are rectangles. In
a rectangular parallelepiped, all diagonals are equal (Fig. 3.27b).

(a) (b)
7

\
NESY
\
\
\
A\
[3Y

— — = =

ol

b

Figure 3.27. A parallelepiped (a) and a rectangular parallelepiped (b).

If a, b, and c are the lengths of the edges of a rectangular parallelepiped, then the
diagonal d can be determined by the formula d> = a” + b + ¢*>. The volume of a rectangular
parallelepiped is given by the formula V' = abc, and the lateral surface area is Si, = PH,
where P is the perimeter of the base face.

3°. A rectangular parallelepiped all of whose edges are equal (a = b = ¢) is called a cube.
The diagonal of a cube is given by the formula d” = 3a?. The volume of the cube is V' = a?,
and the lateral surface area is Sj,; = 4a>.
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3.2.2-3. Pyramid, obelisk, and wedge.

1°. A pyramid is a polyhedron in which one face (the base of the pyramid) is an arbitrary
polygon and the other (lateral) faces are triangles with a common vertex, called the apex of
the pyramid (Fig. 3.28a). The base of an n-sided pyramid is an n-gon. The perpendicular
through the apex to the base of a pyramid is called the altitude of the pyramid.

(a) (b)
D

E

Figure 3.28. A pyramid (a). The attitude DO, the plane DAE, and the side BC' in a triangular pyramid (b).

The volume of a pyramid is given by the formula

1
V= gSH, (3.2.2.3)

where S is the area of the base and H is the altitude of the pyramid.
The apex of a pyramid is projected onto the circumcenter of the base if one of the
following conditions is satisfied:
1. The lengths of all lateral edges are equal.
2. All lateral edges make equal angles with the base plane.
The apex of a pyramid is projected onto the incenter of the base if one of the following
conditions is satisfied:
3. All lateral faces have equal apothems.
4. The angles between all lateral faces and the base are the same.

If DO is the altitude of the pyramid ABC'D and DAL BC, then the plane DAFE is
perpendicular to BC' (Fig. 3.28b).
If the pyramid is cut by a plane (Fig. 3.29a) parallel to the base, then

SA, _SB, SO

AlA BB 00’ (3224
SABCDEF _ ( SO >2 o
S A\B.CiDIEF SO, )’

where SO is the altitude of the pyramid, i.e., the segment of the perpendicular through the
vertex to the base.

The altitude of a triangular pyramid passes through the orthocenter of the base if and
only if all pairs of opposite edges of the pyramid are perpendicular. The volume of a
triangular pyramid (Fig. 3.29b), where DA = a, DB =b, DC = ¢, BC = p, AC = q, and
AB =r, is given by the formula

0 2 ¢ a* 1

1 r2 0 p* v o1
2o |2 2 0 2 1], (3.2.2.5)

2812 2 2 0 1

1 1 1 1 O
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Figure 3.29. The pyramid cut by a plane and the original pyramid (a). A triangular pyramid (b).

where the right-hand side contains a determinant.

A pyramid is said to be regular if its base is a regular n-gon and the altitude passes
through the center of the base. The altitude (issuing from the apex) of a lateral face is called
the apothem of a regular pyramid. For a regular pyramid, the lateral surface area is

1
Shat = EPZ’ (3.2.2.6)

where P is the perimeter of the base and [ is the apothem.

2°. If a pyramid is cut by a plane parallel to the base, then it splits into two parts, a pyramid
similar to the original pyramid and the frustum (Fig. 3.30a). The volume of the frustum is

1 1 a a?
V= gh(Sl +Sz+\/ 5152) = ghSz |:1+ Z+ﬁ:|’ (3227)

where S and S, are the areas of the bases, a and A are two respective sides of the bases,
and h is the altitude (the perpendicular distance between the bases).

(a) (b) (©)

a

Figure 3.30. A frustum of a pyramid (a), an obelisk (b), and a wedge (c).

For a regular frustum, the lateral surface area is
1
Slat = E(Pl + P)l, (3.2.2.8)

where P, and P; are the perimeters of the bases and [ is the altitude of the lateral face.
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3°. A hexahedron whose bases are rectangles lying in parallel planes and whose lateral
faces form equal angles with the base, but do not meet at a single point, is called an obelisk
(Fig. 3.30b). If a, b and aj, b; are the sides of the bases and h is the altitude, then the
volume of the hexahedron is

= %[(Za +a)b+ (2a; + a)by]. (3.2.2.9)

4°. A pentahedron whose base is a rectangle and whose lateral faces are isosceles triangles
and isosceles trapezoids is called a wedge (Fig. 3.30c). The volume of the wedge is

_ %(m +apb. (3.2.2.10)

3.2.2-4. Regular polyhedra.

A polyhedron is said to be regular if all of its faces are equal regular polygons and all
polyhedral angles are equal to each other. There exist five regular polyhedra (Fig. 3.31),
whose properties are given in Table 3.4.

O

Tetrahedron Octahedron
T ZEN
Dodecahedron Icosahedron

Figure 3.31. Five regular polyhedra.

3.2.3. Solids Formed by Revolution of Lines

3.2.3-1. Cylinder. |

A cylindrical surface is a surface in space swept by a straight line (the generator) moving
parallel to a given direction along some curve (the directrix) (Fig. 3.32a).

1°. A solid bounded by a closed cylindrical surface and two planes is called a cylinder; the
planes are called the bases of the cylinder (Fig. 3.32b).

If P is the perimeter of the base, Py is the perimeter of the section perpendicular to the
generator, S is the area of this section, Sy is the area of the base, and [ is the length of
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TABLE 3.4
Regular polyhedra (a is the edge length)
Number of faces | Number Number
No. Name and its shape of vertices | of edges Total surface area Volume
3
1 Tetrahedron 4 triangles 4 6 V3 a 1\2/§
2 Cube 6 squares 8 12 6a> @
3
3 | Octahedron 8 triangles 6 12 282V3 a ;/E
3
4 | Dodecahedron | 12 pentagons 20 30 3a1/25 + 10v/5 %(1 5+7V5)
3
5 | Icosahedron 20 triangles 12 30 3a*V3 %(3 +/5)

(@)

\

Figure 3.32. A cylindrical surface (a). A cylinder ().

the generator, then the lateral surface area Sj,c and the volume V' of the cylinder are given
by the formulas

Slat =PH = Psecl’

(3.2.3.1)
V = SpasH = Ssecl.
In a right cylinder, the bases are perpendicular to the generator. In particular, if the
bases are disks, then one speaks of a right circular cylinder. The volume, the lateral surface
area, and the total surface area of a right circular cylinder are given by the formulas

V =nR*H,
Spat = 27 RH, (3.2.3.2)
S =2nR(R+ H),

where I? is the radius of the base.
A right circular cylinder is also called a round cylinder, or simply a cylinder.

2°. The part of a cylinder cut by a plane nonparallel to the base is called a truncated cylinder
(Fig. 3.33a).
The volume, the lateral surface area, and the total surface area of a truncated cylinder
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(b) (©)
R
71| Hﬂﬂﬂh
H
Figure 3.33. A truncated cylinder (a), a “hoof” (b), and a cylindrical tube (c).
are given by the formulas
H +H,
V= WRZITZ,

S=7R

2
H1+H2+R+\/R2+ <¥> ]

where H; and H; are the maximal and minimal generators.

3°. A segment of a round cylinder (a “hoof”) is a portion of the cylinder cut by a plane that
is nonparallel to the base and intersects it. If R is the radius of the cylindrical segment, h is
the height of the “hoof,” and b is its width (for the other notation, see Fig. 3.330), then the
volume V" and the lateral surface area Sjy of the “hoof” can be determined by the formulas

h h 3 i3
V= —[a(3R2—a2)+3R2(b—R)a] = i sin v — @ —acosa |,
3b b 3
R (3.23.4)
S = =5~ [b= Ry +al
where o = %gp is measured in radians.

4°. A solid bounded by two closed cylindrical surfaces and two planes is called a cylindrical
tube; the planes are called the bases of the tube. The volume of a round cylindrical tube
(Fig. 3.33¢) is

V =aHR?>-r*)=1HSQR-71)=TH6Qr +6) = 2 Hop, (3.2.3.5)

where R and r are the outer and inner radii, § = R — r is the thickness, p = %(R + 1) is the
midradius, and H is the height of the pipe.

3.2.3-2. Conical surface. Cone. Frustum of cone.

A conical surface is the union of straight lines (generators) passing through a fixed point
(the apex) in space and any point of some space curve (the directrix) (Fig. 3.34a).
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(@) (b) (©) (d)

Figure 3.34. Conical surface (a). A cone (), a right circular cone (c¢), and a frustum of a cone (d).

1°. A solid bounded by a conical surface with closed directrix and a plane is called a cone;
the plane is the base of the cone (Fig. 3.34b). The volume of an arbitrary cone is given by
the formula
1
V= §HSba5, (3.2.3.6)
where H is the altitude of the cone and Sy, is the area of the base.

A right circular cone (Fig. 3.34c¢) has a disk as the base, and its vertex is projected onto
the center of the disk. If [ is the length of the generator and R is the radius of the base, then
the volume, the lateral surface area, and the total surface area of the right circular cone are
given by the formulas

V = %ﬂ-RZH’
Siat = TRl = TRV R? + H2, (3.2.3.7)
S=mR(R+]1).

2°. If a cone is cut by a plane parallel to the base, then we obtain a frustum of a cone
(Fig. 3.34d). The length [ of the generator, the volume V/, the lateral surface area Sy, and
the total surface area .S of the frustum of a right circular cone are given by the formulas

l=+vVh2+(R-1)?,

V= 7TTh(R2 +72+ Rr),
Shat = (R +7),

S =n[l(R+r)+R>+r?,

(3.2.3.8)

where r is the radius of the upper base and h is the altitude of the frustum of a cone.

3.2.3-3. Sphere. Spherical parts. Torus.

1°. The sphere of radius R centered at O is the set of points in space at the distance R
from the point O (Fig. 3.35a). A solid bounded by a sphere is called a ball. Any section
of the sphere by a plane is a circle. The section of the sphere by a plane passing through
its center is called a great circle of radius R. There exists exactly one great circle passing
through two arbitrary points on the sphere that are not antipodal (i.e., are not the opposite
endpoints of a diameter). The smaller arc of this great circle is the shortest distance on the
sphere between these points. Concerning the geometry of the sphere, see Section 3.3. The
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surface area .S of the sphere and the volume V' of the ball bounded by the sphere are given
by the formulas

S =4rR = nD? = V361V2,

v 4rR3 D3 1 /S3 (3.2.3.9)
=73 "6 TV
where D = 2R is the diameter of the sphere.
(@) (b) ()
h h
Ll
2a 2a

Figure 3.35. A sphere (a), a spherical cap (b), and a spherical sector (c).

2°. A portion of a ball cut from it by a plane is called a spherical cap (Fig. 3.35b). The
width a, the area Sj, of the curved surface, the total surface area .S, and the volume V of a
spherical cap can be found from the formulas

a® = hQR-h),
Sia = 2mRh = m(a® + h?),
S = Sia + ma* = 72Rh + a®) = w(h* + 2a?), (3.2.3.10)

2
V= %h@a? +h%) = %(3341),

where R and h are the radius and the height of the spherical cap.

3°. A portion of a ball bounded by the curved surface of a spherical cap and the conical
surface whose base is the base of the cap and whose vertex is the center of the ball is called
a spherical sector (Fig. 3.35¢). The total surface area S and the volume V' of a spherical
sector are given by the formulas

S =nRQ2h + a),
3.2.3.11
V= %ﬂth, ( )

where «a is the width, h is the height, and R is the radius of the sector.

4°. A portion of a ball contained between two parallel plane secants is called a spherical
segment (Fig. 3.36a). The curved surface of a spherical segment is called a spherical zone,
and the plane circular surfaces are the bases of a spherical segment. The radius R of the
ball, the radii a and b of the bases, and the height & of a spherical segment satisfy the relation

2 12 2\2
sy 9 a“—-b"—h
= . 3.2.3.12
R =a +< o > ( )
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The curved surface area Sy, the total surface area S, and the volume V of a spherical
segment are given by the formulas

Slat = 27I‘Rh,
S = Sy + m(a® +b%) = T(2Rh + a® + b?), (3.23.13)

h
V= %(3&2 +30% + h2).

(a) (b)
2b 2b
= e
' 2a ' ' 2a

Figure 3.36. A spherical segment (@) and a spherical segment without the truncated cone inscribed in it (b).
A torus (¢).

If V1 is the volume of the truncated cone inscribed in a spherical segment (Fig. 3.36b)
and [ is the length of its generator, then

whl?

V-Vi=—¢

(3.2.3.14)
4°. A torus is a surface generated by revolving a circle about an axis coplanar with the
circle but not intersecting it. If the directrix is a circle (Fig. 3.36¢), the radius R of the
directrix is not less than the radius 7 of the generating circle (R = r), and the center of the
generator moves along the directrix, then the surface area and the volume of the torus are
given by the formulas
S =4m*Rr = *Dd,
12 Dd2 (3.2.3.15)

4 b
where D = 2R and d = 2r are the diameters of the generator and the directrix.

V =2n’Rr? =

3.3. Spherical Trigonometry
3.3.1. Spherical Geometry

3.3.1-1. Great circle.

A great circle is a section of a sphere by a plane passing through the center.

Properties of great circles:

1. The radius of a great circle is equal to the radius of the sphere.
2. There is only one great circle through two arbitrary points that are not the opposite
endpoints of a diameter.

The smaller arc of the great circle through two given points is called a geodesic, and the
length of this arc is the shortest distance on the sphere between the two points. The great
circles on the sphere play a role similar to the role of straight lines on the plane.
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Any two points on the sphere determine a pencil of planes. The intersection of each
plane in the pencil with the sphere is a circle. If two points are not the opposite endpoints
of a diameter, then the plane passing through the center of the sphere determines the largest
circle in the pencil, which is a great circle. The other circles are called small circles; the
intersection with the sphere of the plane perpendicular to the plane containing the great
circle is the smallest circle.

3.3.1-2. Measurement of arcs and angles on sphere. Spherical biangles.

The distances on the sphere are measured along great circle arcs. The great circle arc length
between points A and B is given by the relation

AB = Ra, (3.3.1.1)

where R is the radius of the sphere and « is the corresponding central angle (in radians).
If only the unit sphere (the radius R = 1) is considered, then each great circle arc can
be characterized by the corresponding central angle (in radians). The angle between two
intersecting great circle arcs is measured by the linear angle between the tangents to the
great circles at the point of intersection or, which is the same, by the dihedral angle between
the planes of the great circles.

Two intersecting great circles on the sphere form four spherical biangles. The area of a
spherical biangle with the angle « is given by the formula

S =2R2a. (3.3.1.2)

3.3.2. Spherical Triangles

3.3.2-1. Basic notions and properties.

A figure formed by three great circle arcs pairwise connecting three arbitrary points on
the sphere is called a spherical triangle (Fig. 3.37a). The vertices of a spherical triangle
are the points of intersection of three rays issuing from the center of the sphere with the
sphere. The angles less than 7 between the rays are called the sides a, b, and c of a spherical
triangle. Such spherical triangles are called Euler triangles. To each side of a triangle there
corresponds a great circle arc on the sphere. The angles «, 3, and  opposite the sides a,
b, and c of a spherical triangle are the angles between the great circle arcs corresponding
to the sides of the triangle, or, equivalently, the angles between the planes determined by
these rays.

(b)

Figure 3.37. A spherical triangle.



72 ELEMENTARY GEOMETRY

By analogy with the circumcircle of a plane triangle, there is a “circumscribed cone of
revolution” that contains the three straight lines determining the triangle; the axis of this
cone is the intersection of the planes perpendicular to the sides at their midpoints. There
also exists an “inscribed cone of revolution” that is tangent to the three planes corresponding
to the spherical triangle; the axis of this cone is the intersection of the angle bisector planes.
The “circumradius” R and the “inradius” r are defined as the angles equal to half the angles
at the vertices of the first and the second cone, respectively.

If R is the radius of the sphere, then the area S of the spherical triangle is given by the
formula

S = R, (3.3.2.1)
where ¢ is the spherical excess defined as
e=a+fB+y-7 (3.3.2.2)

and measured in radians.

A spherical triangle is uniquely determined (up to a symmetry transformation) by:

Three sides.

Three angles.

Two sides and their included angle.
Two angles and their included side.

el

Let v, 3, and y be the angles and a, b, and c the sides opposite these angles in a spherical
triangle (Fig. 3.37b). Table 3.5 presents the basic properties and relations characterizing
spherical triangles (with the notation 2p = a + b+ c and 2P = o+ 3 + v — 7). From the
relations given in Table 3.5, one can derive all missing relations by cyclically permuting the
sides a, b, and ¢ and the angles «, 3, and ~.

LEGENDRE’S THEOREM. The area of a spherical triangle with small sides (i.e., with sides
that are small compared with the radius of the sphere) is approximately equal to the area of
a plane triangle with the same sides; the difference between each angle of the plane triangle
and the corresponding angle of the spherical triangle is approximately equal to one-third of
the spherical excess.

The law of sines, the law of cosines, and the half-angle theorem in spherical trigonometry
for small sides become the corresponding theorems of the linear (plane) trigonometry.

Table 3.6 allows one to find the sides and angles of an arbitrary spherical triangle if
three appropriately chosen sides and/or angles are given.

3.3.2-2. Rectangular spherical triangle. ‘

A spherical triangle is said to be rectangular if at least one of its angles, for example, 7, is
equal to %71‘ (Fig. 3.38a); the opposite side c is called the hypotenuse.

(a) (b)

Figure 3.38. A rectangular spherical triangle (a). The Neper rules ().
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TABLE 3.5

Basic properties and relations characterizing spherical triangles

No. | The name of property Properties and relations
The sum of lengths of two sides is greater than the length of the third side.
| Trianele inequalit The absolute value of the difference between the lengths of two sides is
& d Y less than the length of the third side,
a+b>c, la-bl<c
The sum of two angles of a triangle is greater than
Sum of two angles . .
2 . the third angle increased by T,
of a triangle
a+fB<m+7y
The greatest side and The greatest side is opposite the greatest angle,
3 the greatest angle a<b if a<f
a=b if a=p
4 Sum of angles The sum of the angles lies between 7 and 3,
of a triangle T<a+f+v<3m
5 Sum of sides The sum of sides lies between 0 and 27
of a triangle O<a+b+c<2m
) sina sinb sinc
6 The law of sines - = =—
sina  sinf@  sin~y
7 The law (.)f cosines cos ¢ = cos acos b+ sinasinbcosy
of sides
8 The law of cosines cosy = —cos acos 3 + sin asin § cos
of angles 087y =—cosaco @ o8¢
S h—a)sin(o—b - v
sin Y \/sm(p . a) s%n(p )’ cos Y /sm].osm(.p c) ’
9 Half-angle formulas 2 sina sinb . . 2 sina sinb
tan Yy _ /sin(p—a)sin(p— b)
2 sin p sin(p — ¢)
.. C —sin Psin(P - ) c sin(P — a) sin(P - 3)
Sy = sinasin@ €83 = sin asin 3 ’
10 Half-side theorem - -
tan c _ —sin P sin(P —7)
2 "V sin(P - o) sin(P - 8)
- b
tangcosaz’g=tana;r anr,B,
c . a-— a-b . a+p
tanzsm 5 = tan 5 sin——,
! Nepers analogs cot L cos 4= b_ tan &5 b cos & b
2 2 2 2 b ’
- - +
cot%sin a2 = tan azﬂ sin a2
.y . a+b . ¢ a-0 .y . a+b c
i D’ Alembert (Gauss) sin o sin —— =sin - cos ——,  sin - sin —— =cos 5 cos —-—,
formulas cos L sin a=b = sin < sin o= cos . cos a=b = cos < sin atf
2 2 2 2 2 2 2 2
sina cos 3 = cos bsin ¢ —cos asin b cos ¢,
13 Product formulas sina cos b = cos 3sin ¢ — cos a sin (3 cos 7y
= = in(P — in(P - [3) sin(P —
14 | The “circumradius” R cot R = \/ sin(P — ) sm(. B sin(P - 7) = cot = sin(a — P)
sin P 2
15 The “inradius” r tanr = \/sm(p— @) sin(p - §) sin(p - 7) =

a .
- tan — sin(p — o)
sinp 2
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TABLE 3.5 (continued)
Basic properties and relations characterizing spherical triangles

No. | The name of property Properties and relations
16 t\}lﬂslliire’iiizzjiisfs I(;: tan 5= tan % = \/ tan g tan ¥ ; “ tan 2 ; b tan ¥ ; €
17 L’Huiller equation tan < J_ f) = M
2 4 tan & tan 75°
TABLE 3.6.

Solution of spherical triangles

No. Three parts Formulas for the remaining parts
specified
1 | Threesides | The angles «, (3, and 7y are determined by the half-angle formulas and the cyclic
a,b,c permutation.
Remark. 0<a+b+c<2m The sum and difference of two sides are greater than the third.
2 | Three angles | The sides a, b, and c are determined by the half-side theorems and the cyclic
a, B,y permutation.
Remark. m<a+8+v<37. The sum of two angles is less than 7 plus the third angle.
3 | Two sides a, b | First method.
and the o+ 3 and a — (3 are determined from Neper’s analogs, then e and (3 can be found;
included side a is determined from the law of cosines, sin ¢ = sin~y S_l na.
angle vy sin o
Second method.
The law of cosines of sides is applied, cos ¢ = cos acos b + sina sin b cos 7,
cosb—sinasinc cosa—sinbsinc
003,8 = coso=———.
sina sin ¢ sinbsin ¢
Remark 1. If v > 3 (v < ), then ¢ must be chosen so that ¢ > b (¢ < b).
Remark 2. The quantities ¢, o, and (3 are determined uniquely.
4 A side ¢ First method.
and the two a + b and a — b are determined from Neper’s analogs, then ¢ and b can be found;
angles «, 3 angle ~y is determined from the law of sines, sin~y = sinc e
adjacent to it sina
Second method.
The law of cosines of angles is applied, cos v = —cos acos 3 + sin asin B cos ¢,
cosq = &% a.+ cos. [ cosy cosh = cos ﬂ.+ cos.a cosy
sin G sin~y sin asin 7y
Remark 1. If ¢ > b (c < b), then ¥ must be chosen so that v > 5 (v < ().
Remark 2. The quantities v, a, and b are determined uniquely.
inb
5 | Two sides a, b | 3 is determined by the law of sines, sin 3 = sin :1;1 .
ina
and the angle &} The elements ¢ and 7 can be found from Neper’s analogs.
opposite one | Remark 1.The problem has a solution for sin b sin v < sin a.
of them Remark 2. Different cases are possible:
1. If sina = sin b, then the solution is determined uniquely.
2. If sin bsin « < sin a, then there are two solutions 3; and 532, 81 + 52 = 7.
3. If sin bsin o = sin a, then the solution is unique: 3 = 5.
6 | Two angles | b is determined by the law of sines, sinb = sina s?n b .
sinq
& fand th? The elements c and ~y can be found from Neper’s analogs.
side a opposite| Remark 1. The problem has a solution for sin a sin 3 < sin a.
one of them | Remark 2. Different cases are possible:
1. If sin « 2 sin (3, then the solution is determined uniquely.
2. If sin 8 sin « < sin a, then there are two solutions b; and by, by + by = 7.
3. If sin 8 sin & = sin a, then the solution is unique: b = %71‘.
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The following basic relations hold for spherical triangles:

sina = cos(% ) =sinasinc = cot(ﬂ —b) cot 3 =tanbcot 3,

sinb:cos(% b) mBsmc—cot(——a) cot o = tan a cot «v,

cos ¢ =sin(5 —a) sin(5 —b) = cosacos b = cot acot 3, (3.3.2.3)
cos (x = sin(% a) sin =cosasinf = cot(— —b) cotc =tanbcotc,

cos 3 =sin(5 —b) sina = cos bsin o = cot(5 —a) cot ¢ = tan a cot c,

which can be obtained from the Neper rules: if the five parts of a spherical triangle (the right
angle being omitted) are written in the form of a circle in the order in which they appear in
the triangle and the legs a and b are replaced by their complements to %77 (Fig. 3.38b), then
the cosine of each part is equal to the product of sines of the two parts not adjacent to it, as
well as to the product of the cotangents of the two parts adjacent to it.
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Chapter 4
Analytic Geometry

4.1. Points, Segments, and Coordinates
on Line and Plane

4.1.1. Coordinates on Line

‘4.1.1—1. Axis and segments on axis.‘

A straight line on which a sense is chosen is called an axis. If an axis is given and a scale
segment, i.e., a linear unit used to measure any segment of the axis, is indicated, then the
segment length is defined (see Fig. 4.1).

— e o —— >

A B C

Figure 4.1. Axis.

A segment bounded by points A and B is called a directed segment if its initial point
and endpoint are chosen. Such a segment with initial point A and endpoint B is denoted
by AB. Directed segments are usually called simply “segments” for brevity.

The value of a segment AB of some axis is defined as the number AB equal to its
length taken with the plus sign if the senses of the interval and the axis coincide, and with
the minus sign if the senses are opposite. Obviously, the length of a segment is its absolute
value. The segment length is usually denoted by the symbol |AB]|. It follows from the
above that

AB =-BA, |AB| = |BA|. 4.1.1.1)

Main identity. For any arbitrary arrangement of points A, B, and C' on the axis, the
values of the segments E, B? , and m satisfy the relation

AB+ BC = AC. (4.1.1.2)

4.1.1-2. Coordinates on line. Number axis.

One says that a coordinate system is introduced on an axis if there is a one-to-one corre-
spondence between points of the axis and numbers.
Suppose that a sense, a scale segment, and a point O called the origin are chosen on a

line. The value of a segment OA is called the coordinate of the point A on the axis. It is
usually denoted by the letter . The coordinates of different points are usually denoted by
subscripts; for example, the coordinates of points Ay, ..., A, are zy, ..., x,. The point A,
with coordinate x,, is denoted by A,,(z,). An axis with a coordinate system on it is called
a number axis.

77
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4.1.1-3. Distance between points on axis. ‘

The value Aj A, of the segment A; 22 on an axis is equal to the difference between the
coordinate x; of the endpoint and the coordinate x; of the initial point:

A1A2=x2—$1. (4.1.1.3)

The distance d between two arbitrary points Aj(x1) and Ay(x;) on the line is given by the
relation

d:|A1A2|:|x2—m1|. (4.1.1.4)

Remark. If segments do not lie on some axis but are treated as arbitrary segments on the plane or in space,

then there is no reason to assign any sign to their lengths. In such cases, the symbol of absolute value is usually
omitted in the notation of lengths of segments. We adopt this convention in the sequel.

4.1.2. Coordinates on Plane

4.1.2-1. Rectangular Cartesian coordinates on plane.

If a one-to-one correspondence between points on the plane and numbers (pairs of numbers)
is specified, then one says that a coordinate system is introduced on the plane.

A rectangular Cartesian coordinate system is determined by a scale segment for mea-
suring lengths and two mutually perpendicular axes. The point of intersection of the axes is
usually denoted by the letter O and is called the origin, while the axes themselves are called
the coordinate axes. As arule, one of the coordinate axes is horizontal and the right sense is
positive. This axis is called the abscissa axis and is denoted by the letter X or by OX. On
the vertical axis, which is called the ordinate axis and is denoted by Y or OY’, the upward
sense is usually positive (see Fig. 4.2a). The coordinate system introduced above is often
denoted by XY or OXY.

YA (@ YA (0
A
Ay———- ¢ Upper | half-plane
|
L 5 >
0 A X 0 X
Lower| half-plane
YA (0 YA @
1 1
Left Right
0 X 0 X
half-plane half-plane
i 1w

Figure 4.2. A rectangular Cartesian coordinate system.
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The abscissa axis divides the plane into the upper and lower half-planes (see Fig. 4.2b),
while the ordinate axis divides the plane into the right and left half-planes (see Fig. 4.2c¢).
The two coordinate axes divide the plane into four parts, which are called quadrants and
numbered as shown in Fig. 4.24.

Take an arbitrary point A on the plane and project it onto the coordinate axes, i.e.,
draw perpendiculars to the axes OX and OY through A. The points of intersection of the
perpendiculars with the axes are denoted by Ax and Ay, respectively (see Fig. 4.2a). The
numbers

r=0Ax, y=0Ay, 4.1.2.1)

where OAx and O Ay are the respective values of the segments OA x and 073/ on the
abscissa and ordinate axes, are called the coordinates of the point A in the rectangular
Cartesian coordinate system. The number z is the first coordinate, or the abscissa, of the
point A, and y is the second coordinate, or the ordinate, of the point A. One says that the
point A has the coordinates (x, 3) and uses the notation A(z, y).

Example 1. Let A be an arbitrary point in the right half-plane. Then the segment OAx has the positive
sense on the axis OX, and hence the abscissa z = OAx of A is positive. But if A lies in the left half-plane,
then the segment A x has the negative sense on the axis OX, and the number x = OAx is negative. If the
point A lies on the axis OY’, then its projection on the axis OX coincides with the point O and x = OAx = 0.

Thus all points in the right half-plane have positive abscissas (x > 0), all points in the left half-plane have
negative abscissas (x < 0), and the abscissas of points lying on the axis OY are zero (x = 0).

Similarly, all points in the upper half-plane have positive ordinates (y > 0), all points in the lower half-plane
have negative ordinates (y < 0), and the ordinates of points lying on the axis OX are zero (y = 0).

Remark 1. Strictly speaking, the coordinate system introduced above is a right rectangular Cartesian
coordinate system. A left rectangular Cartesian coordinate system can, for example, be obtained by changing
the sense of one of the axes. There also exist right and left oblique Cartesian coordinate systems, where the
coordinate axes intersect at an arbitrary angle.

Remark 2. A rightrectangular Cartesian coordinate system is usually called simply a Cartesian coordinate
system.

4.1.2-2. Transformation of Cartesian coordinates under parallel translation of axes.

Suppose that two rectangular Cartesian coordinate systems OXY and OXY are given and
the first system is taken to the second by the translation of the origin O of the first system to
the origin O of the second system. Under this translation, the axes preserve their directions
(the respective axes of the systems are parallel), and the origin moves by x in the direction
of the pX -axis and by gy in the direction of the OY -axis (see Fig. 4.3a). Obviously, the
point O has the coordinates (zg, 39) in the coordinate system O XY .

Let an arbitrary point A have coordinates (x,y) in the system OXY and coordi-
nates (2, §j) in the system OXY. The transformation of rectangular Cartesian coordinates
by the parallel translation of the axes is given by the formulas

=

T =2+ xo,
y=9+%

Zo,

e (4.12.2)
Y—Yo0.

<>
1l

4.1.2-3. Transformation of Cartesian coordinates under rotation of axes.

Suppose that two rectangular Cartesian coordinate systems O XY and OXY are given and
the first system is taken to the second by the rotation around the point O by an angle «
(see Fig. 4.3b).
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(b)

Figure 4.3. Transformation of Cartesian coordinates under parallel translation (a), under rotation (), and
under translation and rotation (c¢) of axes.

Let an arbitrary point A have coordinates (x,y) in the system OXY and coordi-

nates (Z,¢) in the system OXY . The transformation of rectangular Cartesian coordinates
by the rotation of axes is given by the formulas

T =X cosa—{sina L= xcosa+ysina
. 7 ’ or N . ’ (4.1.2.3)
Yy =& sina + 9 cos « §) = —xsin a + y cos a.

4.1.2-4. Transformation of coordinates under translation and rotation of axes.

Suppose that two rectangular Cartesian coordinate systems O XY and OXY are given and
the first system is taken to the second by the translation of the origin O(0, 0) of the first
system to the origin 5(3:0, o) of the second system followed by the rotation of the system
around the point 9] by an angle « (see Fig. 4.3¢ and Paragraphs 4.1.2-2 and 4.1.2-3).

Let an arbitrary point A have coordinates (x,y) in the system OXY and coordi-
nates (&, ¢) in the system OXY. The transformation of rectangular Cartesian coordinates
by the parallel translation and rotation of axes is given by the formulas

T =¥ cosa—{sina+ xg, = (x—x9)cosa+ (y—1yo)sinq,
) or ) (4.1.2.4)
Yy = & sin a + §j cos o + Yo, 1 = —(x — xg) sin a + (y — yo) cos a.

4.1.2-5. Polar coordinates.

A polar coordinate system is determined by a point O called the pole, a ray O A issuing
from this point, which is called the polar axis, a scale segment for measuring lengths, and
the positive sense of rotation around the pole. Usually, the anticlockwise sense is assumed
to be positive (see Fig. 4.4a).

The position of each point B on the plane is determined by two polar coordinates, the
polar radius p = |0 B| and the polar angle 0 = Z AO B (the values of the angle 6 are defined
up to the addition of £27n, where n is an integer). To be definite, one usually assumes that
0 <60 <27 or —m <0 < m. The polar radius of the pole is zero, and its polar angle does not
have any definite value.

4.1.2-6. Relationship between Cartesian and polar coordinates.

Suppose that B is an arbitrary point on the plane, (x,y) are its rectangular Cartesian coor-
dinates, and (p, ) are its polar coordinates (see Fig. 4.4b). The formulas of transformation



4.1. POINTS, SEGMENTS, AND COORDINATES ON LINE AND PLANE 81

o A

Figure 4.4. A polar coordinate system (a). Relationship between Cartesian and polar coordinates (b).

from one coordinate system to the other have the form

- = /12 142
w=peost, o pEVEHY, (4.1.2.5)
y=psinf tanf = y/x,

where the polar angle 6 is determined with regard to the quadrant where the point B lies.

Example 2. Let us find the polar coordinates p, € (0 < 0 < 27) of the point B whose Cartesian coordinates
are x =-3,y =-3.

From formulas (4.1.2.5), we obtain p = \/(-3)* + (-3)? = 3v/2 and tan ) = % = 1. Since the point B lies

in the third quadrant, we have = arctan 1 + 7 = %w.

4.1.3. Points and Segments on Plane

4.1.3-1. Distance between points on plane. ‘

The distance d between two arbitrary points A and A; on the plane is given by the formula

d=/(x2 -1+ (2 —y1)?, (4.13.1)

where x and y with the corresponding subscripts are the Cartesian coordinates of these
points, and by the formula

d=\/p} + P —2p1p2 cos(6:— 1), 4.13.2)

where p and 6 with the corresponding subscripts are the polar coordinates of these points.

‘4.1.3—2. Segment and its projections. ‘

Suppose that an axis u and an arbitrary segment A Zz are given on the plane (see Fig. 4.5a).
From the points A; and Aj, we draw the perpendiculars to u and denote the points of
intersection of the perpendiculars with the axis by P} and P. The value P, P, of the

segment P 1_3)2 of the axis w is called the projection of the segment Ay Zz onto the axis wu.

Usually one writes pr,, A; Zz =P P,. If o (0< ¢ <) is the angle between the segment A4 Zz
and the axis u, then
pr, Ai Zz = dcos . (4.1.3.3)

For two arbitrary points A;(z1,y1) and As(z2,12), the projections = and y of the
segment A 22 onto the coordinate X- and Y-axes are given by the formulas (see Fig. 4.5b)

Prx Alzz =2 —T1, pPry Alzz =Y2—Y1. (4.1.3.4)
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Figure 4.5. Projection of the segment onto the axis u (a) and onto the coordinate X- and Y-axes (b).

Thus, to obtain the projections of a segment onto the coordinate axes, one subtracts the
coordinates of its initial point from the respective coordinates of its endpoint.

The projections of the segment A, Zz onto the coordinate axes can be found if its length d
(see (4.1.3.1)) and polar angle 6 are known (see Fig. 4.5b). The corresponding formulas
are
Y2-Y1

erAIZchose, prymzzdsine, tan9=$ .
2T

(4.1.3.5)

4.1.3-3. Angles between coordinate axes and segments. ‘

The angles «,, = 0 and o, between the segment A; Zz and the coordinate - and y-axes are
determined by the expressions

Ty — X1 -
, COSay = = >
V(@2 -2+ W2 —y1)? V(@ -2+ @ —y1)
and ay =T — Q.

The angle (§ between arbitrary segments A; Zg and Az 24 joining the points A(x1,y1),
Ax(xa,y2) and As(xs,y3), Aa(z4, ys), respectively, can be found from the relation

(4.1.3.6)

COS (v =

(w2 —z1)(®a — 73) + (Y2 —Y1)(Ya — y3)
V(@ =212 + W2 —y1)? V(x4 — 23)2 + (ya — y3)2

cos 3 = 4.1.3.7)

‘4.1.3—4. Division of segment in given ratio. ‘

The number A=p/q, where p= A} A and g = A A, are the values of the directed segments A A
and ﬂz, is called the ratio in which point A divides the segment A; Zg. It is independent
of the sense of the segment (i.e., one could use the segment A, Zl) and the scale segment.

The coordinates of the point A dividing the segment A, Zg in a ratio A\ are given by the
formulas

+ A + + A +

_ T T2 _ 9T+ pra . y= Y1 Y2 _ 991+ DPY2 ’ (4.1.3.8)

1+A q+p 1+ )\ q+p

where —0o £ A < oo.
For the coordinates of the midpoint of the segment A, 22, we have
T1+ X2 Y1+

- , = . 4.1.39
7 Y 7 ( )

i.e., each coordinate of the midpoint of a segment is equal to the half-sum of the respective
coordinates of its en