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Iln'y a qu'un probleme philosophique vraiment sérieux: ¢ 'est
le suicide. Juger que la vie vaut ou ne vaut pas la peine d'étre
vécue, c'est répondre a la question fondamentale de la
philosophie. Le reste, si le monde a trois dimensions, si
'esprit a neuf ou douze catégories, vient ensuite.

Albert Camus, Le Mythe de Sisyphe

There is one really serious problem in philosophy: suicide. To
judge whether life is or not worth to be lived implies to
respond to the fundamental question of philosophy. The
rest, whether life has three dimensions, whether the spirit
has nine or twelve categories, comes later.

Albert Camus, the Mythe of Sisyphus



Preface

In any movement of their life , immune cells, especially T and
B lymphocytes, are confronted with an essential choice: to
continue their existence or to commit a sort of metabolic
suicide that is referred to as apoptosis or programmed cell
death. In contrast to most philosophers, lymphocytes and
their precursors are constantly susceptible to suicide, and it
even appears that the usual cause of T or B cell elimination is
suicide rather than death from natural causes, accidents or
murder. This book provides a vast overview of lymphocytes
suicide: external triggers and internal motives leading to
suicidal impulses, accomplices in self-destruction, weapons
implicated in self-execution, removal of dead bodies and
pharmacological prevention of suicide.

Most of the chapters in this book are devoted to the
physiology of apoptosis. The goal is to unmask the external
triggers of apoptosis, unravel the signal transduction pro-
cesses involved therein and describe the role of oncogenes,
"death genes” and effector molecules in the apoptotic cas-
cade. The remaining chapters deal with the pathophysiologi-
cal aspects of lymphocyte apoptosis, namely, as a host
contribution to HIV-induced lymphopenia, and therapeutic
strategies for the avoidance of lymphocyte death.

We are confident that this compendium will contribute
to the exploration of cellular suicide, not only from a basic
scientist's viewpoint but also with regard to the possible
clinical implications of apoptosis (dys)regulation. Far from
having a depressing effect on the reader, cellular suicide may
thus provide a source of both intellectual excitement and
therapeutic inspiration.

Guipo Kroemer and CarLos MARTINEZ-A.
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T Cell Apoptosis Triggered via
the CD3/T Cell Receptor Complex
and Alternative Activation Pathways
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RETBIBNCES . . . .ot 1

1 Introduction

Programmed cell death (apoptosis) can be triggered in immature thymocytes and
{(under certain conditions) in mature T lymphocytes by several distinct signals
including: (1) y-irradiation (SeLuns and CoHen 1987); (2) glucocorticoids (WHyLLIE
1980; Nieto and Lorez-Rivas 1989); (3) cell surface signaling via the T cell receptor
(TCR)/CD3 Complex (SmitH et al. 1989; TakaHasHI et al. 1989; McConkey et al.
1989; SHietal. 1991; RusseLL et al. 1991, 1992), via the CD2 antigen (BIERER et al.
1991; WEssELBORG et al. 1993a), or the Fas antigen (Owen-ScHaug et al. 1992; Kias
etal. 1993), or (4) by removal of essential survival and/or growth factors (Duke and
CoHeN 1986; Tsupa et al. 1993; PeranpoNES et al. 1993). In most instances,
programmed cell death is associated with the fragmentation of genomic DNA
into oligonucleosomal fragments of approximately 180 bp in length, a hallmark of
apoptosis. Even though the various death signals may all lead to the same final
stage of the cell (i.e., apoptosis associated with the characteristic morphological
features and DNA fragmentation), they are likely to be differentially regulated. It
is conceivable that intracellular signaling pathways are differentially activated if a
T cell is stimulated, e.g., by anti-CD3/TCR antibodies, glucocorticoids, or lack of
interleukin-2 (IL-2) i.e., failure to perceive a signal via a functional IL-2 receptor. In

Department of Immunology, Paul-Ehrlich Institute, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany



2 D. Kabelitz et al.

addition, differences in the level of apoptosis sensitivity exist between immature
thymocytes and mature peripheral T lymphocytes. Whereas thymocytes rapidly
undergo apoptosis in response to glucocorticoid or anti-CD3 antibody treatment
(WyLue 1980; SmitH et al. 1989), mature peripheral T cells need to be activated
before they acquire sensitivity to apoptosis signals (RusseLL et al. 1991;
\WEsSELBORG et al. 1993b; Rabvanyi et al. 1993).

Substantial evidence supports the hypothesis that apoptosis is the mecha-
nism by which potentially harmful developing T lymphocytes are deleted intra-
thymically (negative selection). Staphylococcal enterotoxin (SE) superantigens
delete in thymic organ culture those thymocytes that express the corresponding
SE-reactive TCR VP family (JEnkinsON et al. 1989). Moreover, endogenous super-
antigens such as the mouse mammary tumor virus (MMTV) also induce, intra-
thymic deletion (by apoptosis) of developing-thymocytes expressing the reactive
TCR VP elements (AcHa-Orsea et al. 1991). Clonal deletion of specific thymocytes
can also be achieved by intraperitoneal injection of the relevant antigen, as shown
in an immunoglobulin idiotype-specific TCR transgenic mouse model (Bogen et al.
1993). It appears that the capacity to induce clonal deletion in the thymus is not
restricted to bone marrow-derived cells but can also be attributed to thymic
epithelial cells (Huco et al. 1994). Taken together, there is little doubt that
apoptosis is an important physiological process contributing to the ordered
development of the immune system and the shaping of the TCR repertoire.
However, recent results from many laboratories indicate that the susceptibility to
programmed cell death is not restricted to immature thymocytes or transformed
T cells. It is quite clear now that mature peripheral T cells similarly undergo
apoptosis under certain conditions (KageLiTz et al. 1993). These results have raised
arecent burst of interest in apoptosis, due to its possible role in the regulation of
cellularimmune responses including the establishment of peripheral tolerance. In
the following sections, we will discuss some of the issues related to the induction
of apoptosis in mature T lymphocytes via the CD3/TCR complex and alternative
activation pathways. Special emphasis is given to the question under which
conditions can antigen induce death of responding T lymphocytes.

2 Apoptosis Induced by Anti-CD3/T Cell Receptor
Antibodies

BreirMEYER et al. (1987) were the first to note growth inhibitory effects of anti-CD3
antibodies on human T lymphocytes. However, in this study, growth inhibition
was reportedly not associated with significant cell death. More recently, anti-
CD3/TCR antibodies were reported to trigger apoptosis associated with DNA
fragmentation in murine and human thymocytes (SmitH et al. 1989; SHietal. 1991;
McConkey et al. 1989; MERKENSCHLAGER and FisHEr 1991), transformed T cells
(Ucker et al. 1989; MEercer et al. 1989; Opaka et al. 1990; TakaHisHI et al. 1989), and
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activated mature T lymphocytes {RusseLL et al. 1991, 1992; NeweLL et al. 1990;
LEnarDO 1991; Janssen et al. 1992; WEesserBore and Kaseutz 1993; WESSELBORG
et al. 1993a; Rabvanyi et al. 1993; DamLE et al. 1993a; Boenme and LENARDO 1993,
Groux et al. 1993). The general consensus is that resting mature T cells do not
undergo apoptosis in response to anti-CD3/TCR antibodies per se; they need to
be primed in order to respond to anti-CD3/TCR signaling with programmed cell
death. Surprisingly, one of the signals that can program mature T cells for
apoptosis is |L-2 (LenarDo 1991). It appears that the level of susceptibility to
apoptosis correlates with the level of cell cycling induced by the T cell growth
factors IL-2 and IL-4; interestingly, cells blocked in the Gl phase of the cell cycle
were resistant to TCR-induced apoptosis, whereas cells blocked in S phase were
susceptible (Boerme and Lenarpo 1993). Reports from several laboratories high-
light the important observation that mature T lymphocytes need to be activated
(by antigen or anti-CD3/TCR antibodies) and perhaps proliferate through several
rounds of cell division before they acquire sensitivity to apoptosis inducing signals
(RusseLL et al. 1991; Kias et al. 1993; Rabvanyi et al. 1993; WesseLBORG et al.
1993a). It is not well understood what exactly happens during the time lag which
is required before activated peripheral T cells can undergo apoptosis in response
to anti-CD3/TCR antibodies. However, accumulating data suggest a relationship
between Bcl-2 expression, Fas expression, CD45R0 expression, and susceptibil-
ity to apoptosis: Bcl-2 expression is known to protect from apoptosis in several
distinct experimental systems (IToH et al. 1993; VEis et al. 1993; HockeNBERY et al.
1993; Schwartz and Ossorne 1993). Interestingly, the primed T lymphocytes
which express CD45RO on their surface are characterized by low Bcl-2 expres-
sion (AkBAR et al. 1993). Moreover, the progressive in vitro differentiation of
human CD4 T cells is associated with an increased expression of CD45R0 and
Fas but a reduced expression of Bcl-2 (Satmon et al. 1994). This fits in nicely with
the observations in patients with infectious mononucleosis in which ex vivo
isolated lymphocytes are characterized by expression of CD45R0, lack of Bcl-2
expression, and rapid apoptosis upon culture in vitro (Tamaru et al. 1993).

While cross-linking of cell surface CD3/TCR molecules by {immobilized)
antibodies is sufficient to trigger apoptosis in preactivated T lymphocytes, addi-
tional signals may accelerate the acquisition of sensitivity to apoptosis of resting
T cells. In this context, cross-linking of CD4 has been shown to facilitate
subsequent apoptosis of mature T cells in response to anti-CD3/TCR antibodies
(NeweLL et al. 1990). Importantly, cross-linking of CD4 molecules by HIV gp120
similarly primes T cells for apoptosis triggered through the CD3/TCR molecular
complex (Banpa et al. 1992) thus pointing to the possible involvement of
apoptosis in the progressive depletion of CD4 T lymphocytes in HIV-infected
individuals (Groux et al. 1992; Ovaizu et al. 1993; Gouceon et al. 1993; Gouceon and
MonTacNIER 1993). Apoptosis resulting from CD4 cross-linking also seems to be
involved in the depletion of CD4 T cells in vivo following the administration of
certain anti-CD4 antibodies (Howie et al. 1994).

Apoptosis of mature T lymphocytes triggered by anti-CD3/TCR antibodies
can be influenced by multiple signals. The interaction of cells of the immune
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system is governed by cell adhesion molecules. Antibodies against such mole-
cules can modulate T cell activation in a positive or negative manner. DamLE et al.
{1993a) reported that coligation of the TCR with ICAM-1 or VCAM-1 enhanced the
activation-induced death of allospecific human CD4 T cells. An additional impor-
tant interaction between T cells and antigen-presenting cells (APCs) is mediated
viathe CD28/CTLA4 molecules (on T cells) and the B7-1/B7-2 molecules on APCs
{LinsLey and Lepsetter 1993). T cells receive via the CD28/B7 interaction the
necessary costimulatory signal required for successful T cell activation. If T cells
are triggered via the CD3/TCR molecular complex in the absence of this
costimulatory signal, they become anergic. So far, the potential role of the
interaction between CD28/CTLA4 and B7-1/B7-2 for the induction or prevention
of T cell apoptosis has not yet been intensively investigated. Whereas DamLE et al.
{1993a) reported that anti-CD28 antibody did not affect TCR-dependent, integrin-
facilitated T cell death, Groux and coworkers {1992) observed that anti-CD28
antibody prevented apoptosis of lymphocytes taken from HIV-infected individu-
als. The recent discovery that there are at least two different ligands (B7-1, B7-2)
for CD28/CTLA4 (Azuma et al. 1993; Boussiotis et al. 1993) suggests that a
combination of antibodies directed against the various ligands should be used in
order to reveal the impact of a blockade of costimulatory signals on CD3/TCR-
dependent T cell apoptosis.

The role of cytokines in the regulation of CD3/TCR-dependent T cell apopto-
sis remains controversial. LENARDO (1991) reported on a priming effect of IL-2 for
induction of apoptosis in murine splenic T cells, whereas the addition of IL-2
prevented apoptosis in other experimental systems (Groux et al. 1993). Similarly,
interferon-y (IFN-y) played a decisive role in the anti-CD3/ TCR antibody-triggered
apoptosis of a particular murine Th1 clone (Liu and Janeway 1990) and in some
studies using human thymocytes or activated T cells (Groux et al. 1993), whereas
no such role of IFN-ycould be revealed in other studies (DamLE et al. 1993a). Inline
with the latter observations, we could not see any effect of neutralizing anti-IFN-
v antibodies on the CD3/TCR-dependent apoptosis of activated peripheral blood
T lymphocytes, nor did the addition of exogenous IFN-y modulate activation-
induced T cell death (unpublished observations). In contrast to this, exogenous
IFN-y seemed to counteract antigen-induced T cell death in other studies {CoHEN
etal. 1993). The triggering of activated T cells by anti-CD3/TCR antibodies under
conditions in which apoptosis ensues may well be associated with the induction
of a wide range of cytokine genes. Itis conceivable that the respective cytokines
somehow contribute to the induction or prevention of apoptosis. Nevertheless, it
appears that the role of known cytokines in this process is not a priori clear. Thus,
the effect of cytokines in his context may depend on the type of T cell under
investigation (CD8, CD4/Th1, CD4/Th2) and on the timing of CD3/TCR and
cytokine signaling (LenarDO 1991).



T Cell Apoptosis Triggered via the CD3/T Cell Receptor Complex 5

3 Apoptosis Induced by Antigen

Although monoclonal antibodies directed against the CD3/TCR complex are
useful reagents for the analysis of T cell activation, it is quite clear that they do not
accurately mimic the stimulation of T cells by nominal antigen presented by
APCs. The discovery of the potent T cell-stimulating activity of superantigens has
been followed by the observation that such superantigens are also potent
inducers of apoptosis (Kawase and OcHi 1991; GonzaLo et al. 1992; Lussow et al.
1993; MacDonaLD et al. 1991; KaseLitz and WEesseLBorG 1992; DamLE et al. 1993b).
This topic is adequately addressed in other chapters of this volume. We have
used the staphylococcal enterotoxin E (SEE) reactivity of a human CD4 T cell
clone as a model system to investigate the role of APCs in the induction or
prevention of superantigen-induced T cell apoptosis. The results revealed that the
addition of APCs (EBV-transformed lymphoblastoid cells) did not prevent the SE
superantigen-triggered death of a fraction of T clone cells; rather, it helped to
rescue the surviving cells and to initiate a vigorous proliferative response in them
(KageLITz and WEesseLsorG 1992). In this and other clonal models of T cell apoptosis,
it is apparent that not all cells of a given T cell clone undergo apoptosis following
signaling via CD3/TCR. It is not yet clear how the susceptibility to apoptosis is
controlled, but the cell cycle seemingly is important (Boenme and LEnarpo 1993).
In this context, the activation of the serine-threorine kinase p34°*? might be a
critical checkpoint (SHi et al. 1994).

Superantigens activate T cells by directly cross-linking the MHC class i
molecule on APCs with the TCR Vp region, thereby bypassing the need for
antigen processing (Marrack and KappLer 1990). The observation that super-
antigens are potent inducers of apoptosis in activated T lymphocytes stimulated
great interest in the question of whether conventional nominal antigen can
similarly trigger death in reactive mature CD4 and/or CD8 T cells. An accumulat-
ing body of evidence suggests that this is indeed the case. It has been known for
some time that peptide epitopes can induce self-destruction of murine and
human cytotoxic T cells (WaLpen and Eisen 1990; Sudrsier et al. 1993).
Importantly, the injection of antigenic peptides also induces death of responsive
peripheral T cells in vivo as has been elegantly shown in TCR transgenic mouse
models by Kysurz et al. (1993) and MamaLaki et al. (1993). More generally,
activation of T cells during the process of viral infection seems to predispose T
cells to subsequent apoptosis triggered by signaling through the CD3/TCR
complex (Tamaru et al. 1993; Razvi and WEeLsH 1993).

Apoptosis of mature T cells triggered by nominal antigen is not restricted to
viral antigens but can also be revealed in response to MHC antigens. Immobilized
MHC class | antigens triggered the death of responding murine CD8 T cells (Ucker
et al. 1992), and exposure of HLA-DR6-reactive human CD4 T cells to APCs
expressing the relevant DR6 molecules induced the death of responding T cells
(DaMLE et al. 1993a).

In order to investigate the mechanism(s) of antigen-induced death of mature
T lymphocytes, we have established a new flow cytometry method, Standard
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cell dilution assay (SCDA), which allows for rapid determination of the abso-
lute number of viable cells of any given phenotype within heterogeneous cell
populations (PecHHoLD et al. 1994). Using SCDA, we have followed the fate of
alloantigen-stimulated, polyclonal, CD8, short-term T cell lines upon restimulation
with specific or third party stimulator cells. As shown in Fig. 1, restimulation with
the specific alloantigen reduced the number of viable responder cells after 24 h by
25%-30%; no such reduction of responder cells was observed upon restimu-
lation with third party stimulator cells. Typically, we found a reduction of respond-
er cells upon specific restimulation in the range of 15%-40% (Pohl et al.,
manuscript in preparation). A reduction of the proliferative response upon restim-
ulation, which is often taken as a parameter to estimate the extent of cell death
or anergy induction by mitogens, proved inadequate for the investigation of cell
death induction in our (allo)antigen-specific system (Fig. 1). Further analysis
indicates that, in general, the extent of the proliferative response (in relation to the
number of viable cells) and the induction of cell death are closely correlated. Thus,
a strong stimulation of CD8 T cells, most likely based on the high antigen dosage
and high affinity of the cell:cell interaction, results in an increased induction of cell
death (up to 40%) within the first 24 h and in an increased subsequent prolifera-
tive response of the surviving cells, as long as optimal culture conditions (e.g.,
growth factors) are supplemented. This has been observed by other investigators
to prevent apoptosis in preactivated CD8 T cells (KIrRserG et al. 1993). However,
helper factors, such as IL-2, had no obvious influence on the activation-induced
cell death. Therefore, mechanisms that are involved in the regulation of the
proliferative response of antigen-specific T cell lines (e.g., the induction of growth
factor responsiveness) may also govern the induction of the deletional process
itself. This view is supported by the inhibitory effect of antibodies known to

Fig. 1. Effect of restimulation on cell viability and proliferation of alloreactive T cell lines after 24 h. A
polyclonal alloreactive T cell line was restimulated with the specific or HLA-mismatched third party
stimulator cells. After 24 h, the viability of responding T cells was determined by standard cell dilution
assay {SCDA), and the proliferative activity was measured by uptake of [FH]TdR. Solid bars, cell viability;
hatched bars, proliferation
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Fig. 2. Inhibition of cell death upon restimulation in the presence of anti-CD8 monoclonal antibodies:
A polyclonal alloreactive T cell line was restimulated with the specific stimulator cells in the absence or
presence of immobilized anti-CD8 antibody. The viability of responding T cells was determined by
standard cell dilution assay (SCDA) after 24 h. solid bars, medium; hatched bars, specific stimulator

negatively interfere with antigen-specific T cell activation. Figure 2 shows that
anti-CD8 antibodies almost completely blocked the induction of cell death of CD8
T cells by alloantigen. The sensitivity to alloantigen-induced cell death does not
appear to be limited to CD8 T cells. A shift towards the accumulation of CD8 T
cells is noted as a general feature on repeated stimulation of polyclonal alloreac-
tive T cell lines in vitro indicating that cell death and/or anergy induction may be
even more critically regulated in CD4 T cells. In fact, the results obtained using
purified polyclonai CD4 T cell lines indicate that a fraction of antigen-reactive CD4
T cells is deleted upon reexposure to alloantigen or tetanus toxoid (Oberg et al.,
unpublished observation).

Does apoptosis also contribute to the deletion of mature CD4 T cells in vivo?
Perhaps the best studied model is experimental allergic encephalitis (EAE), an
autoimmune disease mediated by myelin basic protein (MBP)-specific CD4 T
cells. Ultrastructural analysis of T cells infiltrating the parenchyma of the spinal
cord suggested that a fraction of T cells was undergoing apoptosis (PENDER et al.
1992). Combining uitrastructural analysis with in situ nick translation to reveal
DNA fragmentation, ScHmieD et al. (1993) confirmed the appearance of apoptotic
T cells in EAE lesions. The assumption that antigen can kill antigen-reactive
activated T cells formed the basis for the impressive study of CriTcHFIELD et al.
(1994), showing that the injection of high concentrations of MBP can delete (by
apoptosis) MBP-reactive CD4 T cells in vivo, thereby abrogating the clinical and
pathological signs of autoimmune encephalitis. This raises the promising pros-
pect that antigen-induced apoptosis of T cells involved in pathological processes
may eventually turn out to be a feasible goal.



8 D. Kabelitz et al.

4 Apoptosis Induced by Anti-CD2 Antibodies

In addition to the CD3/TCR-dependent activation pathway, alternative T cell
activation pathways have been described. In this context, the activation of human
T cells via the 50 kDa CD2 molecule is of particular interest. CD2 is the surface
receptor for the LFA-3 (CD58) molecule. Combinations of two antibodies directed
against different epitopes of the CD2 molecuie in concert stimulate |L-2 produc-
tionand T cell proliferation (MeueR et al. 1984). Certain anti-CD2 antibodies trigger
apoptosis in murine T cell hybridomas transfected with human CD2 cDNA (BIerer
et al. 1991) and in human thymocytes (Li et al. 1992). Using polyclonal IL-2-
dependent human T cell lines and established T cell clones, we were also able to
induce apoptosis by a combination of anti-CD2 antibodies (VWEesseLBORG et al.
1993b). The extent of cell death did not differ from apoptosis triggered by anti-
CD3/TCR antibodies. Although these experiments suggested that susceptibility
to anti-CD2-mediated apoptosis is a general feature of activated T lymphocytes,
more recent data from Routeau et al. (1993) would suggest that this may not be
the case. By separating human CD8 T cells into CD57* and CD57" subsets
RouLeau et al. (1993) observed that anti-CD2 antibodies triggered apoptosis in
CD8*CD57* but not in CD8*CD57- subsets. Whether CD57 expression is also
relevant for antigen-induced apoptosis of CD8 T cells remains to be investigated.

5 Relevance of Fas Expression for CD3/T Cell
Receptor-Dependent Apoptosis

The Fas antigen, a member of the tumor necrosis factor (TNF) receptor family, is
the target molecule for an efficient apoptosis pathway. Anti-Fas antibodies in
particular trigger cell death in activated, but not resting, human T lymphocytes
(Owen-ScHaug et al. 1992; Kas et al. 1993). Mouse strains carrying a defect in the
expression of Fas (/pr) or Fas ligand (g/d) suffer from a generalized lymophopro-
liferative disease (WATANABE-FUKUNAGA et al. 1992; TakaHasH! et al. 1994). Lprand
gld mice have a defect in the CD3/TCR-dependent cell death pathway, suggest-
ing that functional Fas/Fas-ligand expression is a prerequisite for apoptosis
mediated via the CD3/ TCR complex (RusskeLL et al. 1993; RusseLL and WanG 1993;
Bossu et al. 1993).

We have attempted to investigate the interdependence of Fas-dependent
and CD3/TCR-dependent apoptosis in a clonal T cell system using variants of the
CD3* human T cell line JM. Stimulation of VB8* JM cells with SEE in the presence
but not absence of MHC class Il-positive APCs induces growth arrest and death of
a fraction of JM cells. Continuous exposure to SE superantigens plus APCs
selects for JM variants lacking cell surface expression of CD3/TCR. A second set
of JM variants was established by continuous treatment with anti-Fas antibody.
The resulting JM variants still expressed Fas antigen but had completely lost the
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functional responsiveness to anti-Fas treatment (i.e., induction of apoptosis). The
analysis of JM variants indicated that the sensitivity to anti-Fas-mediated apopto-
sis was not impaired in CD3/TCR-negative JM variants. Moreover, the anti-Fas-
resistant JM variants were still susceptible to SE superantigen-triggered cell
death, suggesting that the CD3/ TCR-dependent and the Fas-dependent cell death
pathways are not functionally linked to each otherin the JM T cell line (unpublished
observations). However, since anti-Fas-resistant JM variants still express Fas
antigen on their surface, it is possible that the death signaling cascade triggered by
SEE via the CD3/TCR complex is intracellularly connected to the Fas signal
transduction pathway. Further analysis is required to address this issue.

6 Relevance of Antigen-Induced T Cell Death
for the Regulation of Cellular Inmune Responses
and the Establishment of Peripheral Tolerance

As outlined above, signaling via the CD3/TCR molecular complex as achieved by
anti-CD3/TCR antibodies, superantigen or nominal antigen can induce death by
apoptosis in activated mature T lymphocytes. This implies that antigen-induced
death of reactive T cells is an important parameter in regulating cellular immune
responses. Several examples in favor of such a hypothesis have been discussed
above. If it is true that contact with antigen can initiate seemingly opposite
patterns of reactivity in T cells (i.e., activation associated with cytokine production
in resting T cells vs deactivation associated with cell death in activated T cells),
then one must postulate stringent control of both pathways in order to ensure a
well balanced T cell reactivity. Some of the molecular mechanisms controlling the
death pathways in lymphocytes are now being unraveled (ScHwarTz and OsBORNE
1993). It appears that antigen dosage is of additional critical importance. In the
studies of Ucker et al. (1992), guantitative differences alone determined the
alternative cellular responses of cell death and cell proliferation in nontrans-
formed murine T celis, with cell death being initiated by higher concentrations of
antigen. Similar conclusions were reached by AupHan et al. (1992) using an anti-H-
2K®-reactive transgenic TCR mouse model. In their experiments, the density of
the H-2K" antigen expression determined the degree of deletion of T cells
expressing the anti-H-2KP-reactive transgenic TCR. Together with the recent
observation that a high dosage of MBP deletes MBP-reactive T cells in vivo
(CriTcHFIELD et al. 1994), it appears that death of activated mature T cells is more
readily triggered by higher concentrations of antigen. Taken together, apoptosis
of antigen-reactive T cells may help terminate an ongoing cellular immune
response, thus preventing the continuous expansion of specific T cells. Figure 3
illustrates that a number of different parameters determine the outcome of
restimulation of activated T celis by antigen (proliferation, anergy, memory,
apoptosis).
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Fig. 3. Factors controlling the fate of activated T cells upon encounter of antigen. CD4 cross-linking,
costimulating signals, and cytokines influence the sensitivity to apoptosis of resting T cells (T,), in
addition to the level of bcl-2 and Fas expression (left). Although the same parameters also affect
activation-induced death of activated T cells (7,), additional parameters such as cell cycle, myc
expression, and antigen dosage are important (right)

Finally, the question arises whether apoptosis of antigen-reactive T cells
contributes to the establishment of peripheral tolerance. Induction of tolerance in
the mature immune system is a multifactorial process involving modulation and
down-regulation of TCR molecules, induction of anergy, and deletion of specific
T cells (ScHONRICH et al. 1991; ArnoLp et al. 1993). The beneficial effect of donor-
specific pretransplant blood transfusion is associated with a reduction of the
frequency of circulating donor-specific cytotoxic T cell precursors (HADLEY et al.
1992), presumably resulting from alloantigen-induced apoptosis of a fraction of
donor reactive T cells. The priming effect of CD4 cross-linking for subsequent
CD3/TCR-dependent T cell apoptosis has been successfully explored by Pearson
etal. (1992) in an organ transplantation model. This group demonstrated that brief
treatment of C3H/He mice with anti-CD4 antibody together with C57BL10 donor
cells induced specific tolerance of subsequent C57BL/10 cardiac allografts in
C3H/He recipients. Although not formally proven, death of donor-reactive T cells
may well have been triggered by the combination of anti-CD4 antibody plus donor
antigens in C3H/He mice. More recently, several groups have sucessfully exploit-
ed the strategy of intrathymic inoculation of donor cells as a means of deleting
donor-reactive T lymphocytes in experimental organ transplantation {(MARKMANN
et al. 1993; Campros et al. 1993; Nakarusa et al. 1993). Taken as a whole, the
preliminary results suggest that intrathymic inoculation of donor cells (perhaps in
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combination with other forms of treatment) is a powerful strategy of inducing
specific tolerance of at least certain MHC-disparate organs. Again, it is likely that
the deletion of donor-reactive T cells in the periphery following intrathymic
inoculation of donor cells is at least in part due to alloantigen-induced apoptosis of
reactive T cells (MAaRKMANN et al. 1993).

A precise understanding of the regulation of T celi apoptosis at the molecular
level is required before programmed cell death of mature T cells can be success-
fully manipulated by pharmacological agents (KrRoEMER and MARTINEZ-A 1994).
Nevertheless, it can be anticipated that modulation of T cell apoptosis in a positive
or negative manner will eventually provide a powerful immunotherapeutic strate-
gy in the field of autoimmune diseases and transplantation medicine.
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1 Introduction

The antigen recognition potential of lymphocytes is theoretically so vast that,
without appropriate regulation, the immune system should inevitably react to
self-antigens. The development of B and T lymphocytes is therefore controlled at
multiple levels in order to ensure that individuals will be able to respond to a large
array of foreign antigens while being tolerant to self. Under some circumstances,
the encounter between a foreign antigen and a naive lymphocyte will resultin the
emergence of a clonal population of effector cells able to eliminate this antigen.
Such activation-induced positive selection not only involves the antigen-depend-
ent step, but also depends on the differentiation state of the cell, and often
requires additional stimuli from the environment. By contrast, activation-induced
negative selection of lymphocytes refers essentially to the process whereby the
immune system eliminates potentially harmful self-reactive lymphocytes. Again,
the state of differentiation of lymphocytes and/or environmental signals play a
critical role in this self-tolerance process. Viewed in this way, the distinction
between activation-induced positive and negative selection is not straightfor-
ward. However, studies conducted recently had shed new light on this area and
contribute to a better understanding of the underlying processes which keep the
immune system under control.

Negative selection of B lymphocytes is now considered to occur by (at least)
two distinct pathways (NossaL 1994). B cells can be silenced by antigens without
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being deleted, or, alternatively, can be eliminated from the repertoire. The former
situation is referred to as clonal anergy, a process which in some cases may be
reversible upon removal of antigen and which allows some B lymphocytes to
replace their self-reactive antigen receptors by non-self-reactive surface immu-
noglobulins, a phenomenon termed receptor editing (Gay et al. 1993; Rabic et al.
1993; Tiess et al. 1993). In the latter situation, self-reactive lymphocytes are
irreversibly silenced through activation-induced apoptosis. The manners in which
lymphocytes are anergized or deleted may involve partially overlapping mecha-
nisms. First, self-antigens may be weakly or strongly ligated by antigen receptors
and may thereby induce anergy or deletion. Second, a single lymphocyte may
differentially respond to an antigen according to its maturation state. The signal
transducing capacity of the antigen receptor may vary during ontogeny and
therefore may be critical in this respect. Third, environmental conditions may
facilitate either anergy or deletion, according to the location where antigen
encounter takes place, and/or the involvement of auxiliary cells and cytokines.

Although self-antigen-driven clonal deletion of autoreactive lymphocytes has
been shown to involve apoptotic cell death, apoptosis is also believed to be
responsible for purging the immune system of lymphocytes with nonfunctional
antigen receptors and of lymphocytes which do not interact with antigens and/or
other ligands at some stages of their developmental program. Thus, continuous
elimination of abnormal or useless lymphocytes through apoptotic death is an
essential part of shaping the immune repertoire and regulation of immune
response.

Cumulative evidence for the essential role of apoptosis in the functional
regulation of the lymphoid system has been provided over the recent years, with
a special emphasis on the T cell lineage. However, it has now become clear that
B cell tolerance is mediated by multiple mechanisms including activation-induced
apoptosis. B cell development from early progenitors to peripheral B lym-
phocytes is mediated by interactions involving pre-B and B cell receptors, as well
as accessory receptors, which receive signals from the environment. The specific
functions of these molecules should not be examined independently of each
others, since cross-talk between such receptors may influence the decision of
the cell which has to integrate the information in a coherent way. This would
result in the activation of genes which under some circumstances could induce
either apoptotic cell death or resistance to apoptosis. Although the molecular
bases of such critical events are yet largely unknown, a series of recent findings
has provided some convincing evidence that is likely to increase our knowledge
in this field.

B lymphocytes provide a suitable material to study the cellular and molecular
events which make the decision between activation and tolerance. An increasing
body of evidence strongly suggests that the extent of the B cell antigen receptor
(BCR) cross-linking plays a pivotal role in the activation vs inhibition decision. If the
tolerance thresholds of mature and immature B cells were to differ, the degree of
ligation of surface immunoglobulins (slgs) could markedly influence the fate of
these cells. Thus, the question arises whether intracellular signals originating
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from the BCR may vary according to developmental and environmental condi-
tions. Under most circumstances, BCR-dependent signaling provides a neces-
sary but incomplete stimulus. Proliferation and further differentiation require
additional signals. Coreceptors contribute either to amplify or to inhibit signals
generated from the antigen receptor, and therefore cytokines and B cell-T cell
contacts may dictate, or at least modulate, the choice between activation and
tolerance. Recent evidence suggests that the CD40 receptor expressed on B
cells plays a prominent role in this regard, but other B cell surface molecules such
as CD45, which appear to interact with the BCR, are likely candidates for such a
regulatory function in B cell responsiveness. Once delivered, primary and second-
ary signals have to be integrated by the cellular machinery as to result in gene
expression in a way that may be beneficial or harmful to the cell. Apoptosis has
been the subject of extensive investigations over the recent years. Within the
lymphoid system, genes involved in the multiple forms of apoptosis encode the
Bcl-2, APO-1/Fas, c-Myc, nur 77 and Pim-1 proteins (KRamMER et al. 1994). It
appears from most recent studies that bcl-2 and c-myc genes play an essential
role in the control of apoptotic death, although full characterization of such
regulatory pathways on a molecular basis awaits further investigation.

Some of the topics related to the role of apoptosis in the immune system
have been reviewed in the last 2 years (CoHeN et al. 1992; GRreen et al. 1992;
KrammeRr et al. 1994; Nemazee 1993; NossaL 1994). The purpose of this review is
therefore to highlight the latest developments which illustrate the contribution of
apoptosis in the specific regulation of B cell responsiveness. As mentioned
above, the strength of interactions between antigens and the BCR, the matura-
tion status of the cells, the contribution of coreceptors and cytokines, and the role
of genes implicated in apoptosis are essential pieces of a complex puzzle of
metabolic pathways on which should be focussed the attention of investigators.

2 Antigen-Receptor Cross-Linking
and B Cell Responsiveness

Maturation of the B cell antigen receptor proceeds throughout B cell differentia-
tion from early B cell progenitors to mature B lymphocytes (JongsTRA and MISENER
1993). Compelling evidence has accumulated which shows that pre-B cells
require membrane expression of the u heavy chain in association with other
proteins in order to complete differentiation (MeLcHERs et al. 1993). It seems likely
that the p chain-including complexes mediate interactions with the environment
of the bone marrow through ligation of so far unidentified self-ligand(s). Selection
and maturation of the developing B cell progenitors may therefore depend on the
signal transducing ability of these complexes. Such signals may be necessary to
rescue the cells from programmed cell death, and positive selection would
ensure that only those cells which express functional u chains on the surface are
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allowed to proceed to further differentiation. Although negative selection of B
cells has been commonly viewed to involve B cells rather than pre-B cells (see
below), the possibility that the p chain complexes on pre-B cells may play a
significant role in this respect has been suggested recently (ScHwaRrTz and SToLLAR
1994). Partial skewing of the primary B cell repertoire could thus result from
negative selection at the pre-B cell stage, provided that high-affinity interactions
with self-antigens could occur within the bone marrow.

However, most of our knowledge in the field of B cell tolerance susceptibility
comes from the large number of investigations which addressed this issue in slg-
positive B cell populations. From earlier studies (MeTcaLr and Kuinman 1977,
NossaL and Pike 1975), it appeared that slg-positive immature B cells in the bone
marrow were especially sensitive to inhibition after antigenic encounter, and
further investigations revealed that these cells were rendered tolerant through
clonal anergy (NossaL and Pike 1980). Mice transgenic both for a soluble form of
hen egg lysozyme (HEL) and anti-HEL-specific B lymphocytes were later used to
demonstrate that self-reactive B cells were again silenced through clonal anergy
(GoopNow et al. 1988). However, when the soluble form of HEL was replaced by
a membrane-anchored form, B cell tolerance was accomplished by arrested
development and soon followed by cell death (HarTLEY et al. 1991, 1993).
Interestingly, constitutive expression of the counter-apoptotic bct2 gene delayed
cell death in chimeric transgenic mice, so that a large number of immature self-
reactive B cells were shown to accumulate within the bone marrow and in the
periphery (HaRTLEY et al. 1993). It should be mentioned that clonal deletion of self-
reactive transgenic B cells was first demonstrated when mice transgenic for an
antibody specific for MHC class | H-2K* molecules were crossed with H-2K* mice
{Nemazee and Burki 1989a,b). However, recent work from the same group has
now shown that such self-reactive B cells were notimmediately deleted and that
delayed elimination enabled some of them to escape death by means of receptor
editing (Tiecs et al. 1993). Taken together, these experiments clearly show that
anergy and deletion within the primary B cell repertoire may be variations around
a theme and that arrested development is not a mandatory step towards cell
death. In addition, and of special concern for this review, these and other findings
support the view that while soluble antigens appear to promote B cell tolerance
mainly through clonal anergy, membrane bound antigens are likely to readily
induce B cell death. Since the latter form of antigenic stimulation most probably
involves extensive cross-linking of ligand-receptor pairs, one may postulate that
multimerization of slgs generates stronger and/or more sustained signals than
oligomerization does, with rapidly irreversible consequences in terms of cell
death induction. However, this concept may appear hardly tenable if one con-
siders that insolubilized anti-lg antibodies or anti-lg-dextran conjugates, which are
believed to promote extensive cross-linking of slg, are indeed in vitro power-
ful mature B cell stimulators, in contrast to their unconjugated counterpart
(Brunswick et al. 1988; Monaini et al. 1992; PARker 1975; Pure and ViTetta 1980).
These seemingly paradoxical observations might reflect different signaling thres-
holds for activation vs inhibition in immature and mature B cells, due to intrinsic
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signaling properties and/or to the contribution of environmental factors. Indeed, it
has been reported that the ligand binding requirements for growth inhibition of
immature murine B cell lines were less stringent than those required for mature
B cell activation (UpHavakumar et al. 1991a). More specifically, these studies
demonstrated first that growth inhibition of immature B cells was achieved by
much lower doses of soluble anti-lg antibodies than those needed for stimulation
of resting mature B cells. Second, while Sepharose-coupled anti-lg antibodies
were required for optimal mature B cell stimulation, both soluble and immobilized
anti-lg antibodies were equivalent in causing growth inhibition in immature B
cells. In line with this study, it has recently been shown that malignant human B
cell lines could either be inhibited or stimulated, depending on whether anti-lg
antibodies were used in a soluble or a Sepharose form respectively (vAN ENDERT
and MoLpenNHAUER 1992). It should be stressed however, that while growth arrest
was clearly demonstrated in the latter two reports, none of them adressed the
possibility that apoptosis was the final outcome of the inhibition process. Of
interest, therefore, is the recent finding that extensive cross-linking of slg
receptors by plastic-immobilized anti-lg antibodies, or biotinylated anti-lg anti-
bodies plus avidin, induced apoptosis in mature resting B cells (Parry et al. 1994a,
b). Thus, it appears that B cells respond to antigenic encounter in hardly predict-
able ways according to the read out systems employed. In this regard, the
elaboration of a comprehensive model of tolerance which would take the influ-
ence of aggregation of slg receptors into account is probably far from completion.
Nonetheless, B lymphocytes are undoubtedly a valuable model for the study of
the crucial effects of membrane molecular aggregation on the control of cellular
responses (BacHmANN et al. 1993; Metzcer 1992), though a more systematic
investigation of this process is clearly required.

Apparent from the data discussed above, whetherimmature B cells are more
sensitive to slg ligation than mature cells remains an open question. Newly
differentiated immature B cells are slgM-positive and slgD-negative, and it is
commonly accepted that they mature further along with surface expression of
IgD molecules (Goobnow 1992, JongsTrRA and MisenEr 1993; RoLink and MELCHERS
1991). Surface IlgM and IgD molecules are associated with some identical and
other unique signaling components, which upon antigen binding may convey
similar but not identical informations into the cytoplasm (Camsier et al. 1993).
However, the physiological consequences of signaling through these two iso-
types are unclear. For example, previous evidence suggested that these mole-
cules played unique roles in the activation vs inhibition decision, when it was
shown that antigen binding was stimulatory for mature IgM*/IgD* B cells and
inhibitory for immature IgM*/lgD™ B cells (NossaL 1983). Phenotypically immature
B lymphomas were also shown to be growth-inhibited by slgM- but not slgD-
cross-linking (ALEs-MARTINEZ et al. 1988; TiscH et al. 1988). These conclusions are
further supported by recent studies conducted on the murine B lymphoma cell
line WEHI-231. This lymphoma has been commonly used as a model to study
anti-lg-dependent apoptosis in immature B cells (BenHamou et al. 1990; HassoLb
and Kraus 1990) and was initially characterized as slgM*/slgD". However, it was
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recently shown that this cell line actually expresses IgD on its surface, but is not
growth inhibited by anti-d antibodies (GotTscHaLk et al. 1994; HaGGERTY et al. 1993;
and our unpublished observations). Interestingly, the 8-chain on WEHI-231 ap-
pears differentially glycosylated when compared to its counterpart in splenic B
cells (HacGERTY et al. 1993), and some features of the early biochemical signals
generated upon slgD ligation differ from those elicited by sigM ligation (HAGGERTY
et al. 1993; and our unpublished observations). Therefore, although these obser-
vations cast doubt on the so-called immature status of WEHI-231, they clearly
demonstrate that sigM molecules, but not sigD, have the unique potential of
inducing apoptotic death in this tolerance susceptible cell line. However, some
equally convincing evidence has been provided which demonstrates that sigD
receptors can deliver inhibitory signals in immature B cells. Splenic B cells from
neonatal mice display an immature phenotype on the basis of their susceptibility
to the inhibitory effects of slg ligation (Brines and KLaus 1991,1992,1993; CARSETTI
et al. 1993; CHaNG et al. 1991; NossaL 1983; YELLEN et al. 1991; YELLEN-SHAW and
MonroE 1992). Although such cells are predominantly slgM*/sigD", even the
minority of slgM*/IgD* neonatal splenic B cells can be rendered unresponsive to
lipopolysaccharide (LPS) after anti-u or anti-6 treatment (BriNes and Kraus
1992,1993). Surface IgM ligation in adult splenic B cells was recently shown to
resultin unresponsiveness to subsequent antigenic or LPS challenge, and where-
as slgD alone failed to induce tolerance in this system, this isotype could
synergize with slgM in the generation of negative signals (Gaur et al. 1993). While
establishing that tolerance could be achieved through slgM ligation in mature
conventional B cells, the latter study did not address the issue of whether
apoptosis resulted from such treatment. This possibility has now been tested in
more recent studies which demonstrated that extensive cross-linking of both
slgM and sigD receptors on mature B cells causes apoptosis (PARrY et al.
1994a,b). The latter findings strongly support the notion that polymerized anti-
gens or membrane antigens which are likely to cause hyper-cross-linking of slig
receptors are powerful inducers of clonal deletion of mature B lymphocytes (see
above). Moreover, they conclusively demonstrate that slgD molecules have a
killing potential, provided that they are extensively ligated by antigens. These
observations are also consistent with the recent demonstration that B cells from
HEL-specific lg-transgenic mice were anergized or deleted, irrespective of the
anti-HEL IgM- or IgD-isotypes expressed on the cell surface (Brink et al. 1992).
B-1 (or Ly-1*) lymphocytes may constitute a separate lineage from conven-
tional (or B-2) lymphocytes and are found predominantly in the peritoneal cavity
in mice. Interestingly, B-1 cells from mice transgenic for an anti-erythrocyte
autoantibody underwent apoptotic cell death upon injection of the relevant
antigen into the peritoneal cavity (Murakami et al. 1992). Peritoneal B-1 cells from
normal mice also underwent apoptosis when their sig receptors were extensively
cross-linked in vivo by injection of anti-lg antibodies, but interestingly, B-1 cells
from autoimmune disease prone NZB mice strains were resistant to such
treatment (TsusaTa et al. 1994). Although these findings support the view that
mature B-1 cells can be deleted in vivo by cross-linking antigens such as surface
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erythrocyte molecules or anti-lg antibodies, results from in vitro studies carried
out by other groups have demonstrated that B-1 cells are resistant to slg-
mediated growth inhibition (Liou et al. 1992; Morris and RoTtHsTEIN 1993). Investi-
gation of the influence of cytokines and/or cell-to-cell contacts in B-1 cell
responsiveness to slg ligation should help to resolve this paradox.

Altogether, the bulk of evidence discussed above provides some clues about
how B cell antigen receptors may convey stimulatory or inhibitory signals. The
picture emerges that both the strength of sig-derived signals and the maturation
status of B cells are of critical importance in the choice between clonal ignorance,
clonal anergy, or clonal deletion. Simply put, immature B cells appear exquisitely
sensitive to the inhibitory effect of antigenic encounter, with a tolerance threshold
far lower than that of more mature B cells. However, this is not an all-or-nothing
response, and according to the strength or duration of the stimulus, immature B
cells may be irreversibly committed to apoptotic cell death, or alternatively may
be given a chance to survive upon reception of external help. Once passed
through this developmental stage, the cells would further mature and enter a
second tolerance window. At this point, B cells should die by default unless
rescued by antigen and/or accessory signals, or should be stimulated or killed by
antigens according to the strength of the antigenic stimulus. If the signaling
capacity of the BCR was to vary along with B cell ontogeny, this receptor could
play a unique role in the decision that must be taken. Cosignals originating from
the environment are also likely to markedly influence this decision, acting either
in synergy with, or in opposition to, the initial signals.

Thus, these processes depend on a complex array of intracellular signals,
which may interact with each others. Though the study of such metabolic
pathways is still in its early stages, numerous reports have been recently
published which provide valuable information in this field. The next section will
focus on the regulation of apoptotic death by BCR- and accessory receptor-
dependent signals.

3 Signals and Cosignals in the Control
of B Cell Responsiveness

Upon antigen binding to slg receptors, B cells undergo a signal transduction
cascade originating from the BCR complex. This complex consists of an antigen
binding subunit which is noncovalently but stably associated with a signal
transducing subunit composed of disulfide-linked iga and Igf molecules. The
cytoplasmic domains of the latter proteins carry a tyrosine-based activation motif
which couples the BCR to protein tyrosine kinases (PTKs). After antigen binding,
these PTKs phosphorylate a series of substrates including PTK, Igo and B
molecules themselves, and phospholipase Cyl and y2 (PLC), which in turn
activate the phosphatidyl-inositol (Pl) pathway, thereby initiating the calcium and
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protein kinase C (PKC)-dependent cascades. Other identified PTK substrates
include guanine nucleotide exchange proteins such as Vav and the p21™ GTPase-
activating protein, PI-3 kinase, and MAP kinase (Baixeras et al. 1993; Camgier et al.
1993; DesiDeERIO 1994; ReTH 1994).

Whether BCR-mediated signaling properties vary during maturation of B cells
has been the subject of numerous investigations and controversies. Since a
comprehensive survey of this topic has been recently published (Baixeras et al.
1993), we will focus on some recent developments which may contribute to a
better understanding of the mechanisms implicated in BCR-triggered growth
inhibition and apoptosis.

B cell precursors express pseudo-lg complexes on the cell surface (MEeLCHERS
et al. 1993). Whether or not these complexes display unique signaling properties
is still debatable, although recent evidence suggests that it might be the case.
The A5 surrogate light chain transduces early biochemical signals from surface y
chain-positive or -negative pre-B cell lines, suggesting that this protein may
convey information inside the cell, even at the earlier stages of progenitor B cell
differentiation (JongsTra and Misener 1993; Misener et al. 1991). The p/pseudo-
light chain complex in pre-B cells was found to be associated with the Igoc and B
molecules and to display the functional characteristics of a signal transduction
unit (Bossy et al. 1993; Brouns et al. 1993; Matsuo et al. 1993). The interesting
possibility that Iga.and f molecules may transduce unique signals that vary along
with the differentiation program of B lymphocytes has been suggested (NakamMura
et al. 1993), and expression of structurally distinct Igo/IgB-like heterodimers
appears to change as a function of differentiation (IsHiHARA et al. 1993). Together
with the reports that pre-B cell receptors may transduce incomplete signals when
compared to mature B cells (Bossy et al. 1993) and that surface y chains fail to
transduce growth inhibitory signals in pre-B cell lymphomas (Tsutsumi et al.
1992a), in contrast to immature B lymphomas (see below), these observations
strongly suggest that developmental maturation of BCR-like molecules may be
specially relevant to the susceptibility of B cell precursors to antigenic encounter.
It should be stressed, however, that activation-induced apoptotic death of precur-
sor B cells has yet to be demonstrated, especially regarding the strength of the
stimulus. This would further define the molecular requirements for positive vs
negative selection, which may shape the early and late pre-B cell repertoires.

Most of the current knowledge of the signaling requirements which may
condition activation or inhibition of B lymphocytes comes from studies of the
unique susceptibility of immature, slg-positive B cells or B cell lines to antigen-
induced tolerance. Neonatal splenic B cells, which are known to be particularly
susceptible to tolerance induction, have been shown to be deficient in phosphoi-
nositide hydrolysis following slg ligation (YELLEN et al. 1991). Immature B cells
may therefore display alteration(s) in the BCR-dependent early signal transduc-
tion machinery. A BCR-related signaling defect has now been evidenced using
the HEL/anti-HEL double transgenic approach (Cooke et al. 1994). When mice
transgenic for anti-HEL slg receptors were mated with transgenic mice express-
ing soluble HEL, self-reactive anti-lysozyme B cells developed but were tolerant
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to HEL. Biochemical analysis revealed that activation of part of the BCR-
dependent PTK signaling cascade was prevented in these anergized cells. Inter-
estingly, the signaling block could be overcome by extensive slg cross-linking by
membrane bound HEL, in agreement with the notion that anergy can be reversed
upon appropriate antigenic stimulation.

PTK and protein tyrosine phosphatase (PTPase) activities are critically in-
volved in antigen-induced signal transduction and during development. Dysregu-
lation of the subtle signaling balance which ensures appropriate positive B cell
responses may therefore allow dominant negative signals to arise. Although the
available evidence in this area is so far scarce, it has been recently shown that one
of the PTKs involved in early signal transduction from the BCR, p55°*, may play a
significant role in this respect. Pretreatment of the immature CH31 B lymphoma
with antisense oligonucleotides to blk effectively prevented anti-lg-induced apop-
tosis (Yao and ScotT 1993). Though these findings suggest that blk may convey a
death signal in B cells, whether this kinase plays a similar role in other B
lymphomas or normal B cells remains to be established, and blk gene targeting
inactivation should contribute to test this hypothesis. Our recent observations
suggest that PTK substrates such as p75"' may play a similar role in this context.
The HS1 protein binds to the SH2 domain of p53/66"" PTK and is phosphorylated
upon IgM ligation (Kitamura et al. 1989; YamanasHl et al. 1993). Mutants of
WEHI-231 B cells resistant to anti-lg-induced apoptotic death were shown to be
deficient in HS1 expression (BenHamou et al. 1994), and complementation of
a mutant cell line by the HS1 protein restored the anti-lg-induced apoptotic
phenotype (Fukupa et al. 1994). Moreover, B lymphocytes from HS1 knock-out
mice were found to be resistant to anti-lg-induced apoptosis (Taniushi et al.,
unpublished observations). Taken together, these observations raise the interest-
ing possibility that PTK activities and PTK substrates may play a unique role in
the tolerance susceptibility of B cells and that redundant mechanisms operate in
this regard.

PTPases such as the CD45 molecule are expressed as multiple isoforms on
the cell surface of B and T lymphocytes (ALexanDer et al. 1992; Fearon 1993).
Tyrosine dephosphorylation by CD45 of proximal components of the signal
transduction cascade is believed to be crucial for anti-lg-induced B cell activation
(JusTeMENT et al. 1991; RetH 1992). Mice defective in the expression of CD45
displayed a block in T cell development, but not in B cell development, although
in this case B lymphocytes did not proliferate in response to slg cross-linking
(KisHiHARA et al. 1993). Since the number of peripheral B cells was apparently
normal in CD45 knock-out mice, the role of CD45 molecules in shaping the
primary B cell repertoire remains questionable. However, CD45 negative variants
from the WEHI-231 B cell line were recently found to be more susceptible to anti-
Ig-induced apoptosis than the parental cells, suggesting that this molecule may
nonetheless play a role in the regulation of tolerance in B cells (OcimoTo et al.
1994).

Downstream from PTK activation, calcium and PKC-dependent steps may
also contribute to the regulation of apoptosis in B cells. Since apoptotic cell death
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is a Ca?*-dependent process (CoHen et al. 1992: Trump and Berezesky 1992), and
given that BCR ligation generates both early and sustained elevations of
intracellular Ca?* concentration, it is tempting to speculate that the amplitude and/
or duration of Ca®* signaling may be an important parameter in the biological
response of B cells. Although this proposal seems reasonable in view of the
known susceptibility of lymphocytes to Ca?* ionophore-induced apoptosis, the
contribution of BCR-dependent Ca** signals to apoptosis is so far mostly specu-
lative. However, an imbalance in slg-dependent signaling pathways, which could
favor sustained intracellular Ca®* increase, has been proposed to be causal for the
apoptotic death of murine B lymphoma (BenHamou et al. 1990,1994; SarTHou et al.
1989), malignant human B-CLL cells (McConkey et al. 1991), and Burkitt's
lymphoma cell lines (Knox et al. 1992). Moreover, the immunosuppressive drug
cyclosporin A {CsA), which was initially thought to most notably affect T cell
functions, has now been shown to protect B cell lines from some forms of
apoptotic death, including anti-lg treatment (Bonnerov-Berarp et al. 1994;
KaNazasHI et al. 1994; MuTtHukkuMAR et al. 1993; UpHavakumaRr et al. 1991b). The
Ca?*-calmodulin-dependent protein phosphatase calcineurin is the target of the
CsA/cyclophilin complex, and CsA inhibits several Ca?*-dependent pathways
(ScHreiger and CraeTREE 1992). These findings therefore reinforce the notion that
Ca? signals may play a unique role in slg receptor-triggered apoptosis, perhaps
from dysregulation of the early signaling cascade, with subsequent alterations in
more distal Ca®*-dependent events.

Although PKC activation is generally believed to be part of the initial signaling
pathways involved in antigenic stimulation of B cells (Camsier et al. 1993), it has
been suggested that PKC-independent signals may be generated from slg
receptor ligation (MonD et al. 1987). From previous examination of the proximal
signaling pathways triggered by slg receptor ligation in WEHI-231 B lymphoma
cells, we suggested that insufficient activation of PKC could be related to slg-
induced growth inhibition and apoptotic death in these cells (BenHamOU et al.
1990; SarTHou et al. 1989). These findings were in agreement with earlier
experiments which demonstrated that PKC activators such as phorbol diesters
afforded protection from anti-lg-mediated growth inhibition in the same cells
(WARNER and ScotT 1988). Also in line with this proposal was the later observation
that slgM-cross-linking of tolerance-susceptible splenic B cells from neonatal
mice resulted in negative signaling through calcium elevation, while phorbol ester
activation of PKC was stimulatory (YELLEN et al. 1991). This hypothesis has now
received further support from the recent findings that PKC activation rescued
Burkitt's lymphoma cells (Knox et al. 1992), Ramos cells (VALENTINE and LicCIARDI
1992), and the immature BKS-2 lymphoma (MuTHukkumar et al. 1993) from anti-Ig-
induced death. Interestingly, spontaneous apoptosis of germinal center B cells
(Knox et al. 1992), sheep ileal Peyer’s patch B cells (Motvka et al. 1993), and even
resting splenic B cells (ILLeErA et al. 1993) was prevented upon activation of PKC.

These studies suggest that insufficient PKC activation may be at least
partially responsible both for antigen-induced apoptosis in immature B cells and
for apoptotic death-by-default of mature B cells deprived of antigenic stimulation.
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Since it has been shown that sustained PKC activation blocks the ability of anti-ig
antibodies to induce Ca?* mobilization in B cells and in B lymphomas (BisTERBOSCH
and Kraus 1987; Gowp and DeFranco 1987; MizucucHi et al. 1987), low level PKC
activation might result in sustained intracellular Ca** elevation, which in turn
would trigger the apoptosis program (McConkey et al. 1990). It should be
stressed, however, that multiple PKC isoforms, which may differentially respond
to antigenic stimulation, are expressed in B lymphocytes (HaccerTy and MoNROE
1994; Terauma et al. 1992; Tsutsumi et al. 1992b). Since pre-B cell lines, B
lymphomas and splenic B cells express different PKC isoforms, which may
vary in substrate specificity and activation requirements (Marauez et al. 1992),
whether or not PKC expression is developmentally regulated is an interesting
issue regarding susceptibility of B cells to tolerance induction.

Much less attention has been paid to the cyclic AMP (cAMP) cascade over
the past few years. However, it is generally believed that the cAMP/proteine
kinase A pathway conveys an "off “ signal which contributes to the regulation of
“on" signals generated through antigen receptors or other surface receptors
(Kammer 1988). Physiological agents such as prostaglandin E, (PGE,), which are
known to elevate intracellular cAMP, are powerfu!l negative regulators of B cell
activation and differentiation (MuTHusamy and Bonbaba 1993; PHipps et al. 1990;
Rorer and PHiprs 1992), and a key costimulatory function has been assigned to
PGE, in antigen-induced B cell tolerance (PHiprs et al. 1989; ScHap and PHipPs
1988). The contribution of cAMP to the regulation of apoptosis in lymphocytes is
so far largely unknown. Recent reports have provided new evidence in this
regard, although a consensus is not yet possible. For example, murine thymo-
cytes were shown to be highly sensitive to the synergistic action of glucocorti-
coids and cAMP-elevating agents, which resulted in enhanced apoptotic death,
compared to thymocytes treated with glucocorticoids alone (McConkey et al.
1993). In contrast, cAMP analogs did not modulate glucocorticoid-induced death
of T cell hybridoma, and TCR-induced apoptotic death was actually prevented by
cAMP (Lee et al. 1993). While the latter report provides further support to the
notion that glucocorticoid- and TCR-induced apoptotic pathways differ (King and
AsHweLL 1993), further investigations are needed to explain the reported dis-
crepancies in the regulation of steroid action by cAMP.

With respect to the B lineage, germinal center (GC) B cells were shown to
express higher amounts of cAMP than quiescent B cells, and a correlation was
found between the unique propensity of GC B cells to undergo spontaneous
apoptosis, and elevated levels of cAMP. Conversely, rescue from death of GC B
cells afforded by phorbol esters and anti-CD40 antibodies was accompanied by
decreased cAMP levels. In striking contrast, anti-CD40 treatment induced cAMP
elevation in resting B lymphocytes (Knox et al. 1993). Therefore, although cAMP
is likely to be involved in the regulation of some apoptotic pathways in B
lymphocytes, the differentiation/activation status of B cells may be of critical
importance in this respect.

Full antigenic stimulation of B cells not only depends on the cascade of early
biochemical events described above (first signal), but most often requires
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additional help from cytokines and cell contacts (second signal). Cross-talk
between the BCR, cytokine receptors, and cell surface adhesion molecules is
therefore likely to play a critical part in this process (CLark and LepBeTTER 1994).
Recent attention has been paid to B cell surface molecules such as CDA40,
which have the dual capacity of mediating activation of B cells themselves and
of T cells through cell-to-cell ligand-receptor interactions. CD40 cross-linking by
anti-CD40 antibodies or the T cell ligand for CD40, gp®, delivers a comitogenic
signal to B cells, prevents apoptotic death of GC B cells, and promotes
immunoglobulin isotype switching (CaLLarp et al. 1993; CLark and LepBeTTER 1994,
LenpermaN et al. 1993; NotLLe et al. 1992). The observations that GC B cells die
spontaneously unless rescued by anti-lg and anti-CD40 antibodies (Liu et al.
1989), or recombinant gp® (HoLper et al. 1993), is likely to reflect the physiological
elimination of useless circulating B cells, i.e., those cells which are not stimulated
through antigenic encounter and subsequent T-cell help. The CD40 molecule
could play a wider role in the control of apoptotic death, since it has been shown
that immature Burkitt’'s lymphoma cell lines (HoLper et al. 1993; LEDERMAN et al.
1994; VaLentiNe and Licciarpr 1992) and the WEHI-231 B-cell line (Tsusata et al.
1993) were rescued from anti-lg-induced apoptosis through CD40. Even
apoptotic death induced by hyper-cross-linking of mature splenic B cells was
partially prevented by anti-CD40 antibodies and was totally blocked when anti-
CD40 antibodies and IL-4 were used in combination (PARRY et al. 1994b). CD40
may also control additional apoptotic pathways, since, while interleukin-10 (IL-10)
was shown to enhance spontaneous apoptosis in B-CLL cells, this effect could be
prevented by anti-CD40 antibodies (FLuckiGer et al. 1994). The anti-apoptotic
potential of the CD40 molecule may seem paradoxical given its structural
homology with the Fas receptor, which upon ligation induces apoptosis in a
variety of cells including B cell lines (Marara et al. 1993; TrauTH et al. 1989),
although it may promote T cell activation under some circumstances (ALDERSON
et al. 1993). Investigation of the signaling pathways downstream from these
two receptors should help to clarify the situation. Recent studies have
demonstrated that CD40 cross-linking on the surface of B cells triggers a
PTK-dependent signaling cascade (Knox et al. 1992; Ren et al. 1994), which
shares some of the characteristic features of the BCR-dependent cascade.
Interestingly, while CD40 ligation induces phosphorylation of PLCy2 and PI-3-
kinase in Daudi B cell lines (Ren et al. 1994), it does not stimulate the PLCy
dependent elevation of IP3 and intracellular Ca?* in GC B cells (Knox et al. 1992).
Though further experiments are needed in this field, the available evidence
provided so far suggests that intracellular dialogue between CD40 and antigen
receptors through partially overlapping signaling pathways may account for the
reported ability of CD40 to potentiate antigenic stimulation of B Cells (WHeELER
et al. 1993).

Appropriate expression of CD40 and CD80 receptors on B cells and of their
respective counterreceptors on T cells ensures mutual cellular regulation, provid-
ed that the latter cells recognize MHC class ll-bound peptides presented by the
former cells. It has been suggested that expression of such ligand-receptor pairs
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is reciprocally regulated and that recognition of class Il bound peptides by T cells
may trigger or at least control this process (CLark and LEDBETTER 1994). It is now
widely accepted that MHC molecules are signal transducing receptors on B cells,
and that antigen-primed B cells are positively stimulated through MHC ligation
(WaDE et al. 1993). An additional safety pathway has been now documented,
which shows that, in striking contrast with activated B cells, MHC ligation on
resting B cells results in apoptotic death through a cAMP-dependent pathway
(NeweLL et al. 1993). Such a mechanism would ensure that only those B cells
which received a specific first signal through slg ligation should be allowed to
receive help from antigen-specific T cells. Altogether, these findings provide
compelling evidence that the immune system has developed multiple ways of
controlling the efficiency of cognate and noncognate interactions.

In addition to cell-to-cell contact, soluble factors such as cytokines are
essential for the activation and differentiation of B cells. Some of the biological
effects of different cytokines may result from their ability to protect B cells from
growth inhibition or apoptotic death (Baixeras et al. 1993). Although IL-2, IL-5,
interferon (IFN)-a/B, tumor necrosis factor (TNF)-o/B, and more recently IL-10,
were shown to be involved in this process, IL-4 has been the focus of several
investigations which suggest that this Th2-specific lymphokine plays a key role in
this respect. However, as it is often the case when the biological effects of
cytokines are addressed, 1L-4 may display proapoptotic properties, such as those
recently evidenced inamurine B cell line (BisHor et al. 1993) or in activated human
monocytes (Mangan et al. 1992). Nonetheless, an increasing amount of data has
accumulated over the past few years which convincingly demonstrate that this
lymphokine reverses the inhibitory effects of slg ligation in B cells or B
lymphomas (ALEs-MaRTINEZ et al. 1991; BriNes and KLaus 1991, 1992, 1993; PARRY
et al. 1994b; Scotr et al. 1987), rescues splenic B cells and B-CLL cells from
spontaneous apoptosis (Dancescu et al. 1992; ILLErA et al. 1993), and counteracts
the proapoptotic effects of IL-10 in B-CLL cells (FLuckicer et al. 1994). Investiga-
tion of the biochemical pathways which ensue IL-4 receptor ligation revealed that
PKC and PTPase activations were rapidly induced and could perhaps control
signals originating from slg receptor ligation (HArADA et al. 1992; HARNETT et al.
1991; Mire-SLuis and THorre 1991).

Most recent studies have now addressed the possibility that IL-10 may
regulate apoptotic death in B cells. Interestingly, this lymphokine, which was
shown to protect helper T cells from IL-2 deprivation-induced apoptotic death
(Taca et al. 1993), has now been found to prevent spontaneous death of GC B
cells (Levy and BroueT 1994). In striking contrast is the recent demonstration that
IL-10 induces apoptotic death in B-CLL cells (FLuckiger et al. 1994). Such a
discrepancy may reflect differential susceptibility of normal and malignant B cells
to IL-10 treatment and may be of interest in the context of anti-tumor chemo-
therapy. Finally, since it has been previously reported that IL-10 does not afford
protection from anti-lg-induced B cell deletion (Cuenpe et al. 1992), it appears
likely that some but not all forms of apoptotic death are under the control of IL-10,
although this topic clearly requires further investigations.
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Once delivered to the cell, the multiple signals which originate from the
antigen receptor, accessory receptors, and cytokine receptors must be integrated
and conveyed to the nucleus in order to induce transcription of genes involved in
the regulation of B cell proliferation and differentiation. Alternatively, these
signals may be interpreted as to result in growth inhibition and ultimately cell
death. Genetic control of such adverse pathways has received much attention
over the past few years, with special regards to the lymphoid system. Although
several genes have now been shown to be involved in this process in the immune
system, expression and regulation of the c-myc and bck2 genes appear to play a
key role in this respect (CoHeN et al. 1992; Evan and LittLewoop 1993; GReen et al.
1992; Hiener and CoutinHo 1994; King and AsHweLL 1993; KramMeR et al. 1994,
SchwarTz and OseorNE 1993; WiLuams and SmitH 1993). The next section will
focus on the recent developments in this field.

4 Genetic Controls of Apoptosis in B Lymphocytes

The c-myc oncogene has been classically involved in the control of cell prolifera-
tion. However, it has now become clear that the c-Myc protein can also induce
apoptotic cell death under some circumstances (Evan and LiTTLewoop 1993). For
example, high constitutive expression of c-myc in conjunction with a growth
inhibitory signal is a potent inducer of apoptosis (Askew et al. 1991; Evan et al.
1992; Fanipi et al. 1992). These observations may reflect the dilemma which faces
a cell confronted with contradictory stimuli for proliferation and arrest. Thus,
reception of aninhibitory signal during cell cycle progression would induce the cell
to commit suicide (HiBner et al. 1993; Hisner and CouTinHo 1994; Rusin et al. 1993).
With respect to lymphocytes, recent observations suggested that the c-Myc
protein may contribute to the regulation of cell proliferation vs death. TCR ligation-
induced apoptosis in a T cell hybridoma was prevented by antisense inhibition of
c-myc expression (SHi et al. 1992). In line with this study, was the recent report
that some Burkitt's lymphoma cell lines could be rescued from spontaneous
apoptotic death by antisense inhibition of c-myc expression. Moreover, protec-
tion by IFN-a from spontaneous apoptosis in these cell lines was shown to
correlate with a decrease in c-Myc protein expression {MiLNER et al. 1993).
However, we have recently reported that prolonged expression of c-myccorrelat-
ed with survival rather than apoptosis in anti-ig-treated WEHI-231 B cells (HiBNER
et al. 1993). Although somewhat surprising in view of the studies mentioned
above, our observations have been recently supported by the finding that, while
antisense c-mycoligonucleotide indeed prevented anti-Ig inhibition of WEHI-231
cells, such a treatment actually resulted in stabilization of c-myc mRNA and of
c-myc protein expression (Fischer et al. 1994). Although such unexpected func-
tions of an antisense oligonucleotide molecule may have to be further examined,
together with our own observations these findings imply that sustained levels of
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c-Myc proteins are required to prevent anti-lg-induced apoptosis in this immature
B cell line. Thus, while c-myc is undoubtedly involved in the control of multiple
forms of apoptosis, its precise function in these processes is unclear. In this
respect, we believe that the early suggestion that appropriate temporal expres-
sion rather than absolute levels of c-myc could be relevant to growth regulation
(KeLwy et al. 1983) could now apply to the regulation of apoptotic death.

To date, the most intensively studied gene involved in programmed celi
death regulation has been undisputably the bcl-2 gene. Bel-2 prolongs cell survival
and can be considered as an antidote to cell death (Korsmeyer 1992; Reep 1994).
Elucidation of the biochemical mechanisms by which the bcl2 gene product
prevents apoptosis may not be far off, since it has been recently shown that the
Bcl-2 protein interferes with the generation of harmful reactive oxygen species
(Hockengery et al. 1993). The family of bck2 genes, which includes EBV and other
virus bck2 homologs, has been growing from the recent discovery of human Bcl-
2 related proteins, including Bcl-X and Bax proteins (Reep 1994). A number of
physiological and pathological situations are under the control of the Bcl-2 protein
family in terms of cell death regulation. Bcl-2 is involved in regulating some of the
survival pathways of developing B lymphocytes (Korsmever 1992). The topologi-
cal distribution of Bcl-2 within secondary GCs is most instructive in this respect,
demonstrating a close correlation between up-regulation of Bcl-2 and B cell
survival and proliferation. Conversely, local down-regulation of Bcl-2 correlates
with extensive death of those B cells which are not stimulated by signals prevent-
ing their entry into apoptosis (BonNerFoy et al. 1993; HockenBERRY et al. 1991; Knox
and GorooN 1993; Levy and Brouet 1994; Liu et al. 1991). Bcl-2 up-regulation is
also likely to favor the survival of peritoneal B cells (TsusaTa et al. 1994) and of
IL-4 stimulated B-CLL malignant cell lines (Dancescu et al. 1992). In line with these
findings, APO-1/Fas-mediated apoptosis of B-CLL cells (Marara et al. 1993) or
other cells (IToH et al. 1993) correlates with down-regulation of Bcl-2.

However, recent studies have shown that Bcl-2 does not control all forms of
apoptotic death in B lymphocytes. For example, although CD40 ligation rescued
GC B cells from spontaneous apoptosis, and Burkitt's lymphoma cells from anti-
Ig-induced apoptosis, none of these events could be significantly correlated with
enhanced Bcl-2 expression (HoLper et al. 1993). Moreover, anti-ig-induced apop-
tosis in WEHI-231 immature B cells did not correlate with endogenous expres-
sion of Bcl-2 (GotrscHalk et al. 1994; HiBNER et al. 1993) nor was it prevented by
overexpression of Bcl-2 (Cuenpe et al. 1993), although a recent study suggested
that Bcl-2 protein indeed partially protected this cell line from anti-lg-induced
apoptosis (Kamesaki et al. 1994).

A series of recent experiments has provided some new clues, but also some
uncertainty, about the implication of Bcl-2 in B cell development and responsive-
ness. For example, high expression of Bcl-2 was evidenced in pro-B cells and
mature B cells, while down-regulation was found in pre-B and immature B cells
(MEeriNO et al. 1994). These observations parallel the earlier report that transition
from double negative to double positive thymocytes was accompanied by down-
regulation of Bcl-2 and that peripheral T cells regain Bcl-2 expression (VEis et al.
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1993a). Such a dynamic regulation of Bcl-2 expression may explain differential
susceptibility to environmental signals which control the development of
lymphoid cells. However, immature self-reactive B cells from mice transgenic
both for bcl-2 and an anti-erythrocyte autoantibody, were clonally deleted in the
bone marrow in spite of high expression of the bck2 gene (Nisitani et al. 1993).
High expression of Bcl-2 may therefore not be sufficient to override the strong
inhibitory signals generated by extensive slg-cross-linking by multivalent self-
antigens. It should be therefore predicted that clonal deletion of B cells via
moderate cross-linking of slg receptors by soluble antigens should be prevented
or delayed by Bcl-2 expression. Interestingly, this seems to be the case, since
constitutive expression of the bcl2 gene delayed cell death in chimeric mice
transgenic for both soluble HEL and anti-HEL antibody (HarTLEY et al. 1993). Taken
together, these experiments strongly suggest that Bcl-2 may play a critical role in
some but not all steps of B cell ontogeny (STrasseRr et al. 1994). However, such a
view may be an oversimplification, since recent studies have shown that bct2
gene inactivation did not impede initial B and T cell development in young mice,
although dramatically disturbing responsiveness of older animals (Nakavama et al.
1993; VEis et al. 1993b). Though it can be suggested that other members of the
bck2 family replaced the defective bcl2 gene in such genetically manipulated
animals, it appears that characterization of the role of bct2 and related genes in
lymphoid development and responsiveness is still in its infancy.

5 Conclusions

An impressive amount of data has accumulated over the last few years which
have clarified some areas in the field of B cell activation and apoptosis, but, at the
same time, further complications have been uncovered. Although we are prob-
ably far from integrating these observations in a conceptual model, future studies
will certainly improve our knowledge in these fundamental aspects of immunol-
ogy and cell biology. They should focus on determining how mulitiple intracellular
signaling pathways are connected to each other and act in conjunction to dictate
the fate of B cells. Biochemical, transgenic and gene targeting approaches will
certainly allow us to critically define the molecular bases of such important
processes. Imunologists should grasp the recent opportunities afforded by the
discovery of new regulatory pathways in cell cycle control. Finally, pharmacol-
ogists should benefit from elucidation of the biochemical mechanisms which
underlie the apoptotic pathways. This could hopefully, provide the future basis for
treament of autoimmune or other immunological diseases.
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1 Introduction

The immune system is endowed with a multitude of different mechanisms to
eliminate, paralyze or neutralize T and B lymphocytes expressing self-reactive
antigen receptors that might endanger the individual’s life. The ability of both
types of lymphocytes to recognize and react to different stimuli is a learning
process that occurs during lymphocyte differentiation, and the mechanisms
implicated in self-tolerance intervene at determined control points following
developmental criteria. B and T lymphocyte differentiation from committed
precursor cells into antibody-secreting plasma cells or effector T cells proceeds
through multiple steps that are defined by changes in the expression pattern of
lineage-specific genes (MoLLER 1994).

Antigen-independent stages of B cell maturation take place in the bone
marrow, where lymphoid precursors commit to the B lineage and subsequently
differentiate into surface IgM* B cells. This differentiation process includes the
transition from pro-B cells (stage at which the Ig genes are in germline
configuration) towards pre-B cells (where VDJ recombination of the |g variable
region in the heavy chain locus generates v chains that are expressed on the cell
surface in association with the surrogate light chains, VpreB and 15. Finally,

! Instituto de Bioguimica, CSIC, Universidad Complutense, 28040 Madrid, Spain
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rearrangements of the k or A chains take place and the IgM receptor is displayed
on the surface of immature B cells. The transition from immature to mature B
cells is accompanied by Ig heavy chain class switching. Later, mature B cells
migrate out from bone marrow into the periphery (spleen and lymph nodes),
where an antigen-dependent phase of B cell development takes place (MoLLEr
1994).

During development, B cells are exposed to intense selection within the
bone marrow so that potentially autorreactive cells are induced to undergo
programmed cell death (PCD) while nonself-reactive lymphocytes are exported
to the periphery. These observations raise interesting questions as to what deter-
mines these very different responses and what is the nature of the signaling
pathways involved in the maturation process (Baixeras et al. 1993).

Identification of the mechanisms that control B cell survival at different
stages of proliferation and differentiation of the precursors is crucial for the
understanding of B cell biology. The protective effect over apoptosis exerted
through CD40 signaling of B cells activated upon antigen-receptor cross-linking is
illustrative (CLark and LepBETTER 1994; TsusaTa et al. 1993) CD40 is expressed in
both pre-B cells and mature B cells, and activation through this molecule prevents
apoptosis not only in circulating B cells but also in immature B cell lines such as
WEHI-231 cells (Ciark and LepseTTER 1994; Tsusata et al. 1993). CD40 is closely
related to the tumor necrosis factor receptor, whereas its natural ligand (CD40L)
is structurally related to the family of tumor necrosis factor o molecules. CD40L
is expressed on the cell surface of activated T cells, but not on resting T cells,
therefore providing costimulatory signals in the process of B cell-T cell interaction
(Crark and LepseTTER 1994; JENKINS and JoHnsoN 1993; Tsusata et al. 1993).

2 B Cell Activation

Mice that cannot rearrange variable region genes such as SCID mice or mice
homozygous for disrupted RAG.1- / - or RAG.2- / - lack mature B cells. This,
together with the restoration of B cell maturation in RAG.2 deficient mice by
transgenic BCR, constitutes compelling evidence that B cells must display
functional antigen receptors in order to complete differentiation (Lorrert 1994,
MoLLER 1994). The ability of surface v polypeptide to mediate these effects may
depend on associated membrane proteins, which together with the v polypeptide
constitutes the B cell receptor complex. Surface immunoglobulin receptor facili-
tates differentiation by transducting intracellular signals after binding to ligands.
However, binding of antigenic structures to BCR does not lead to differentiation
or clonal expansion, rather it drives B cells into apoptosis. Only upon appropriate
combinations of signals delivered by activated T cells and/or macrophages will B-
lymphocytes initiate antibody production and isotype switching (Baixeras et al.
1993).
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Escape from PCD occurs when specific combinations of surface molecules
are ligated in concert with surface immunoglobulin. Many studies using soluble
blocking antibodies, hybrid antibodies and antibodies bound to plastic have
identified numerous molecules that may contribute to lymphocyte activation and
are classified as costimulatory molecules (Krammer et al. 1994; Kroemer and
MarTINEZ-A 1994). A few of these molecules act together with the antigen-
specific signal to prevent induction of anergy in the responding cell. They included
the B cell surface molecules B7/BB1, heat stable antigen, CD20, CD40 and CD2
(Baixeras et al. 1993). The transduction of signals involved in costimulatory
interactions has been shown to influence the expression of early genes such as
c-myc, c-mybor B-myb (GoLay et al. 1992). Also, the levels of various transcription
factors are controlled by these interactions; for example AP-1 expression is
sustained after costimulation using protein kinase C and cyclic AMP-dependent
protein kinase pathways (Rincon 1993).

Recently we have derived a system where purified splenic B cells, when
confronted with nominal soluble antigen, undergo extensive PCD {Genaro and
Bosca 1993). In contrast, when the same antigen is presented on the surface of
either B or T cells, the responding B cells undergo extensive clonal expansion. We
have characterized the differential signals that will drive the B cells either into
proliferation or PCD, This system can be extensively studied in B cells from v/x
transgenic mice specific for H-2K* haplotype that, upon stimulation with purified
soluble MHC-1 alloantigen of the K* specificity, initiates a rapid process that ends
in PCD (Baixeras et al. 1993).

To date, two classes of PCD inhibitory costimuli have been well characterized
in B cells: those mediated by soluble mediators, including cytokines, and those
received via cell surface receptors like CD40 and CD2. Hereby we review the role
that a soluble mediator, nitric oxide, a cell surface receptor CD2 and protein
kinase C (PKC) plays in preventing apoptosis in B cells.

3 Nitric Oxide as a Mediator in the Immune System:
Implications in Autoimmunity

Nitric oxide (NO) constitutes an important signaling molecule in a variety of cell
systems, including the immune system (Nathan 1992). NO was unexpectedly
discovered as the molecule responsible for the vasodilation produced by acetyl-
choline and other neurotransmitters in the presence of endothelial cells
(FurcHGoTT 1988; Moncaba 1992; Moncaba et al. 1991). The NO generating
system is now well identified but characterization of its biological and patho-
physiological role is still in progress (Brept and Snyper 1992; Horrman et al. 1990;
Moncaba et al. 1991). At present, NO is considered an important intra- and
intercellular regulatory molecule exhibiting functions as diverse as vasodilation
neural communication, host defense and immunoregulation. NO is synthesized
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by many different cell types such as neurons, endothelial cells and monocytes,
although the regulatory mechanism controlling its synthesis varies in different
tissues (Breot et al. 1990, LowensTeIN and Snyper 1992; Moncaba et al. 1991;
Moncaba 1992).

NO synthase, the enzyme involved in the production of NO from molecular
0, and arginine, belongs to a growing family of isoenzymes all sharing structural
and functional homology and conserving the same chemical reaction. By cDNA
analysis at least four isoforms have been identified in mammalian tissues. They
are encoded by at least three distinct genes, which in turn define the main
characteristics of NO synthase’s synthesis (Knowles and Moncaba 1992;
LowensTeIN and SNyDErR 1992): two genes encode the constitutively expressed
enzymes, and another gene is responsible for expression of the inducible form of
NO synthase. Neural and endothelial cells express both forms of the constitutive
enzyme, which requires Ca?* and calmodulin to be active. The cytokine-inducible
isoenzyme is expressed in several cell types including macrophages, monocytes
and hepatocytes and is induced upon stimulation with a wide array of cytokines,
e.g., interferon-y (IFN-y), tumor necrosis factor-a. and endotoxins (lipopoly-
saccharide, LPS). This form is Ca** and calmodulin independent (BiLLiar et al.
1990; HauscHiLDT et al. 1990; MaRLETTA et al. 1988), and its activity is mainly
controlled by transcriptional mechanisms and by substrate (arginine) availability
(ALBINA et al. 1993; Lvons et al. 1992; Xie et al. 1993).

Since NO is a gaseous substance it acts not only on the agonist-stimulated
producing cell (i.e., macrophages or dendritic cells} but also, through a diffusion
process, may exert its physiological action over neighboring cells. This mode of
action defines a new type of intercellular communication mechanism in which
the synthesis of second messengers by the responding cell is achieved in the
absence of additional transmembrane signaling events required to perceive
extracellular messages (BReoT and Snyper 1989,1992). This type of communica-
tion is especially important in the immune system where intercellular cognate
recognition may provide an additional way to promote cell contact and to perceive
the release of this messenger (KNnowLes and Moncaba 1992; KnowlLes et al. 1989;
PaLmer 1993; PaLMER et al. 1987).

Expression of the Ca*-independent, cytokine-inducible NO synthase has
been described in various cell types, in addition to macrophages (STueHR et al.
1991; StueHr and MaRLETTA 1985); however, the current view, that the enzyme
induced by cytokines is the same isotype in all tissues, is doubtful. In fact, using
different mice strains we have identified at least three different species of mMRNA
probably generated by differential splicing (M. Velasco et al., unpublished obser-
vations). Furthermore, the NO synthase induced in interleukin-1-stimulated
human hepatocytes exhibits an important degree of Ca%*/calmodulin depend-
ence, in contrast to the independence displayed by the enzyme expressed in
macrophages (GELLER et al. 1993a,b). Finally, it is also possible that all forms of
NO synthase so far characterized require Ca?* and calmodulin to be active, but
the interactions of these cofactors with the enzyme exhibits a broad range of
affinity. In the case of the inducible isoenzyme, the affinity for calmodulin is so
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high that the enzyme appears as an oligomer with calmodulin tightly bound as a
subunit.

Macrophage inducible NO synthase is by far the most well characterized
isoenzyme among the cytokine-inducible forms, both from the biological and
chemical points of view. The complex regulatory mechanism implicated in the
control of its expression by cytokines and endotoxins has also been extensively
studied (DinG 1990; MARLETTA et al. 1988; GELLER 1993b: NaTHAN 1992). The ability
of different macrophage-like cell lines such as RAW 264.7 to release NO after
activation allows detailed study of the mechanisms of response to combinations
of cytokines and endotoxins. Thus, an extensive and complex relationship bet-
ween individual factors, acting synergistically in most cases, has been revealed.
Specifically, combinations of IFN-y, INF-a and LPS produced one of the highest
inductions of the enzyme in macrophages, in agreement with its role in host
defense (Liew et al. 1991; Lvons et al. 1992).

Interestingly, in addition to the short-term regulation, the main difference
between the constitutive and inducible enzyme activities is the amount of NO
released, quantitatively more important in cells expressing the inducible enzyme.
The biological role of the NO released by these cells is more difficult to under-
stand than that of the NO which is constitutively produced. NO, in addition to
promoting the activation of guanylate cyclase, inhibits enzymes (aconitase,
ribonucleotide reductase, ADP-ribosylation of proteins (Drarier and Hises 1986;
Leroivrem et al. 1990; Brune and LareTina 1989), metabolic pathways (mito-
chondrial respiration, DNA synthesis in some types of cells; (GArc and Hassip
1989; GranGEeR et al. 1980), and, presumably through these actions, participates in
a vast array of processes, includinig host defense, autoimmunity and rejection of
engrafted tissues (HorFman et al. 1990; McCaRTNEY et al. 1993, LANGREHR et al.
1992; WEINBERG et al. 1994).

As previously indicated, one quantitatively important source of NO in the
immune system is activated macrophages. NO plays an important role in anti-
microbial immunity and in nonseptic inflammatory reactions (LowensTEIN et al.
1994; Moncaba and Higas 1993). Upon macrophage activation with LPS and IFN-
v, NO synthase induction is maximal and large amounts of NO are released. In
contrast, glucocorticoids and Th2 cytokines such as interleukin-4 (IL-4), IL-10 and
IL-13 inhibit NO synthase expression (Moncapa 1992; NaTHAN 1992). In this way, a
cross-modulation between Th1 cells, by increasing NO synthetase expression
and the NO generating system, and Th2 cells, by inhibiting NO synthase expres-
sion, seems to operate in macrophages. This situation is of physiopathological
relevance since it is possible that this pathway is functional in the response of the
host in cases such as leishmaniasis and other parasitic pathologies in which the
Th1/Th2 ratio is critical (LiIEw et al. 1991).

An antitumoricidal activity for NO has been reported for various cell types
(JonaTHAN et al. 1994). NO is also involved in cell proliferation, the effect
depending on the nature of the target cell. When murine splenic cells are
activated with concanavalin A {ConA) or LPS in the presence of macrophages,
proliferation is supressed due to the NO released by macrophages. The synthesis
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of IFN-y by T cells seems to play a prominent role in NO synthase expression in
macrophages, since the presence of anti-IFN-y antibodies blocks NO production
and prevents the antiproliferative role of macrophages on T cells (ALBiNA et al.
1991).

A role for NO in the pathogenesis of spontaneous murine autoimmune
disease has been reported for MRL-Ipr/Ipr (LANGREHR et al. 1992; WEINBERG et al.
1994). This strain of mice exhibits spontaneous autoimmune diseases involving
lymphadenopathy, production of autoantibodies, arthritis, nephritis and other
inflammatory dysfunctions. These animals have elevated plasma levels of IFN-y,
TNF-o. and IL-1 and IL-6. At the molecular and genetic levels, part of the
dysfunctions in MRL-Ipr/lpr animals are due to a mutation in the Fas/Apo.1 gene
(WaTaNABE-FUKUNAGA et al. 1992; Wartson et al. 1992). Characteristic of these
animals is the presence of high levels of nitrites and nitrates in the blood and
secretion of large amounts of these metabolites through the urine. By treating the
mice with aminoguanidine or N-nitroarginie, two NO synthase inhibitors, some of
the pathological symptoms associated with NO production (i.e., arthritis) signifi-
cantly decrease. The high NO synthesis in MRL-Ipr/ipr animals has been
attributed to elevated levels of inducible NO synthase in various tissues
(IscHiroPOULOS et al. 1992). It is interesting to mention that macrophages, when
activated under physiological conditions, release arginase, thereby reducing the
substrate concentration required for NO synthesis. However, whether this is also
true for MRL-Ipr/lpr mice remains to be established (ALsina et al. 1993; Lyons et al.
1992; Xie et al. 1993). Indeed, in addition to NO the generation of other oxygen
reactive species is increased and they may participate in the peculiar
pathogenesis of disease in these animals. For instance, the simultaneous pres-
ence of NO and H,0, may produce peroxinitrites, a derivative of both reactive
molecules which has been proposed to play a relevant role in the development of
the disease in Ipr mice (IscHIrRoPoULOS et al. 1992).

4 Role of Nitric Oxide in B Cell Deletion

In contrast to activated macrophages, NO synthase is only poorly induced in B
cells. Nevertheless, in LPS-activated B cells, NO synthase is significantly induced
a few hours after stimulation and NO is released into the medium (Hortelano
et al., unpublished observations).The role of NO in B cell function can be easily
studied with the help of substances that intracellularly release NO as result of the
activation of cellular esterases. Ex vivo purified B cells, in the absence of
stimulation, after 4 h in vitro, initiate a series of changes that lead to PCD. Under
these conditions, micromolar concentrations of NO block apoptosis. The release
of NO induced in B cells by chemical donors is accompanied by an increase of
intracellular levels of cyclic GMP, which is a good indicator for the presence of NO
and which in turn may act as an additional second messenger (Tsou et al. 1993;
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Breot and Snyber 1989). Moreover, the inhibition of apoptosis by NO is also
observed when B cells are stimulated with aggregated antigens in the absence of
the costimulatory signals (see above). A possible mechanism underlying
protection from apoptosis by NO might involve elevated levels of Bcl-2 (Genaro
etal. 1994, KeLsoe and ZHENG 1993, MeriNO et al. 1994, MoLLer 1992: NuNEez et al.
1990b). In fact, both in naive B cells and in B cells activated with soluble MHC-I
alloantigen, the mRNA and protein levels of Bcl-2 are maintained over a long
period of time (4-8 h) (KeLsoe and ZHeEnG 1993; GENARO et al. 1994; MoLLER 1992).

The protective role of NO against PCD in B cells contrasts with the NO-
dependent induction of apoptosis observed in other cell types such as macro-
phages (ALBINA et al. 1993; MeriNo et al. 1994; NuNez et al. 1990a), suggesting
the existence of cell-specific pathways for the response to NO. Such a bivalent
role of NO in macrophages and B cells is not unique, because in neurons both
a neuroprotective and neurodestructive effects of NO have been reported. In
this case the complex behavior has been explained on the basis of the different
redox states of NO once it is released into the cytoplasm of the cell (LipTon et al.
1993). Moreover, it is also possible that the involvement of other signaling
molecules can influence regulation of the expression of the inducible form of NO
synthase, as reported for the complex dual stimulation of macrophages with
traces of LPS and IFN (BocDaN et al. 1993). In conclusion, the generation of low
but sustained amounts of NO may prolong the survival of B cells in secondary
lymphoid organs.

5 Protein Kinase C Activation Prevents Apoptosis
in B Lymphocytes

The role of protein kinase C (PKC) in B cell activation through the antigen receptor
or by bacterial products (LPS and lipoproteins) is still unclear (Baixeras et al. 1993;
Marauez et al. 1992). The initial events after activation by antigens, LPS or
synthetic lipopeptides, involve tyrosine phosphorylation, which in turn may
deliver second messengers that activate PKC (Dong et al. 1993). However, if the
temporal pattern of signal transduction is altered {i.e., cells are stimulated with
phorbol esters), a complete blockage in B cell triggering is obtained. These data
support the view of PKC as a modulatory step in the signaling process and
suggest that only specific isoforms of PKC might participate in each specific
activatory pathway (Marauez et al. 1992). In addition to a modulatory role of PKC
in signaling through the B cell receptor, it is possible that other receptor-operated
interactions may cause PKC activation. In this regard, it cannot be excluded that
some costimulatory signals may involve PKC activation in their mechanism
(CLark and Lane 1991; CLark and LEDBETTER 1994 ; Parker 1993; Tsusataet al. 1993).

When B cells from mice carrying a v/x transgene specific for the haplotype K
of MHC-l were used to study antigen-dependent B cell apoptosis, a high
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percentage of B cells recognized the solubilized alloantigen (Genaro et al. 1994,
KeLsoe and ZHeng 1993; MoLLer 1992). This recognition results in the release of
early signals that are qualitatively identical to those obtained after stimulation
with intact allogeneic cells. These signals involve a rapid increase in tyrosine
phosphorylation via shared protein tyrosine kinases (among them Lyn, Fyn and
Blk), and activation of a phosphoinositide-specific phospholipase C, which
produces an increase in the inositol trisphosphate and diacyiglycerol pools,
resulting in Ca** mobilization and activation of some isoforms of PKC (Genaro and
Bosca 1993; KeLsoe and ZHenG 1993; MoLLer 1992; GeNnaro et al. 1994). However,
the signals obtained using solubilized alloantigen are quantitatively different from
those elicited using intact allogeneic cells.

Since early signals only provide a partial view of the commitment to a
biological response, it is useful to follow the proliferation of the cells after
antigenic stimulation. In this case, only B lymphocytes activated with intact
allogeneic cells proliferate, whereas those stimulated with solubilized alloantigen
initiate an abortive signaling which results in cell death by apoptosis. Therefore,
an additional {costimulatory) signal released through intercellular contact is re-
quired to achieve proliferation of the responder cells. Pretreatment of the
responder cells with phorbol esters, pharmacological activators of PKC, is suffi-
cient to provide the positive signal for survival upon interaction with the
solubilized alloantigen. Thus, phorbol esters convert an apoptotic signal into a
signal leading to a proliferative response.

6 CD2 Ligation Rescues B Cells
from Programmed Cell Death

Binding of antigenic structures to the B cell receptor initiates responses as
different as differentiation, clonal expansion or apoptosis. To escape the
apoptotic pathway, the B cell requires additional signals triggered by other
receptor interactions on the cell surface. Itis the combination of signals delivered
from surface Ig and other surface molecules that determines the outcome.
One possible candidate for such a coreceptor molecule that provides the
costimulation to prevent cell death is CD2, a member of the immunoglobulin
superfamily (MoingeoN et al. 1989a) In mice this receptor protein is expressed in
all B and T cells and in Natural Killer (NK) cells (Sen et al. 1990; YaciTa et al. 1989).
In humans, however, CD2 is not expressed in peripheral B cells, but only
in a small fraction of bone marrow B celis and thymic B celis (MuracucHi et al.
1992; PunnoneN and pe-VRies 1993). Although the role of CD2 is well studied in
T celis, little is known for B cells. In T cells, it exerts two main functions, which
can be delineated to structurally distinct portions of the cytoplasmic domain
(Bierer and Hann 1993). As an adhesion molecule, it facilitates the interaction
between T cells and antigen presenting cells (MoINGEON et al. 1989b). It also has
a regulatory function in the antigen-specific response by the T cell receptor
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complex (MoingeoN et al. 1989a). Since CD2 is expressed at very early stages of
differentiation, a possible role during B lymphopoiesis has been suggested
(MuracucHi et al. 1992; SeN et al. 1990).

The role of CD2 in apoptosis has been studied in the mature mouse B cell line
BAL-17, because it expresses surface IgM, IgD and CD2 molecules and high
levels of the proto-oncogene bcl-2, which has been shown to inhibit cell death in
many systems. Stimulation of CD2, either by cross-linking with an anti-CD2
antibody or by its physiological ligand sCD48, can rescue BAL-17 cells from
apoptosis induced either by serum starvation or by increased free radical produc-
tion in the presence of H,O, (E. Baixeras, unpublished data). Thus, activation of
CD2 can provide one signal to prevent apoptosis, suggesting that CD2 might be
involved in delivering a costimulatory signal during the antigenic triggering of B
cells and inhibiting the apoptotic pathway.

Ligation of CD2 induces tyrosine phosphorylation of at least two substrates
with different kinetics (E. Baixeras, unpublished data). One of the substrates
resembles the pb6* kinase. In fact, both CD2 ligation and surface IgM cross-
linking stimulate phosphorylation of the p56™ kinase, whereas only the surface
IgM cross-linking results in phosphorylation of the Lyn kinase. Furthermore,
immunoprecipitations showed that CD2 associated with p56™ kinase and this
complex dissociates upon stimulation by either surface IgM or CD2 (E. Baixeras,
unpublished data). This analysis clearly suggests a functional relationship be-
tween surface IgM and CD2 receptors, analogous to the observed interaction
between T cell receptor-CD3 and CD2 in T cells. Moreover, our results, together
with the finding that p56"* kinase activity also increases in human T cells activated
via CD2 (DaniELaN et al. 1991,1993), indicate that pb6'™ participates in signal
transduction upon CD2 activation in both B and T cells.

CD2 is regulated during B cell differentiation and its expression coincides
with Bcl-2 expression. We have also observed simultaneous high levels of
expression of Bcl-2 and CD2 in B and T cell lines (E. Baixeras, unpublished data).
Furthermore, Bcl-2 has been reported to associate with R-ras p23 (FERNANDEZ-
SaraBia and BiscHorr 1993). These results suggest that CD2 and Bcl-2 could
cooperate in the prevention of apoptosis, either by direct interaction or via a
common signal transduction pathway.

We can conclude that the CD2 molecule probably plays an essential role in
modulation of the response to other distinct extracellular signals. According to our
results and in analogy with the reported CD2-T cell receptor interactions, we
propose that, in B cells, CD2 may interact with B cell receptor signaling via shared
kinases such as pb6', thereby establishing a common signaling pathway for B
cell receptor and CD2 when both molecules are coexpressed at the cell surface.
How, if at all, this signal transduction is connected with the effect on stabilizing
the cytoskeleton organization remains to be established.
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1 Introduction

Cell death occurs in many physiological situations, including embryogenesis, dif-
ferentiation, and metamorphosis. It is an important mechanism in maintaining
homeostasis by providing a counterbalance to mitosis. There are at least two
types of cell death that are now recognized: necrosis and apoptosis. In necrosis,
the cell undergoes irreversible swelling and lysis in response to a variety of signals
which are primarily nonphysiological; the plasma membrane disrupts and then
spills the intracellular contents into the environment, resulting in activation of the
immune response. Apoptosis, by contrast, is inherently “programmed” as part of
the cellular processes, allowing the cell to die in response to a variety of signals
without a deleterious effect on surrounding cells, i.e., it does not elicitan immune
response. Details of the morphology of apoptosis have been extensively reported
(Kerr et al. 1972; Arenps and WyLue 1991; SchwartzmaN and CipLowskl 1993a;
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Compron and CipLowski 1992), but briefly, apoptosis involves separation of the cell
from its neighbors, condensing of the cytoplasm, condensing of the chromatin,
which moves to the margins of the nuclear envelope, convolution of the plasma
membrane, and, finally, blebbing off of apoptotic bodies, which contain various
organelles and chromatin fragments.

The condensed chromatin of apoptosis is often associated with internucleo-
somal cleavage, displaying DNA fragments that are multiples of 180-200 base
pairs in size (Kerr et al. 1972; WyLLiE 1980; WyLLEE et al. 1984; CoHeN and Duke
1984; Arenps et al. 1990). When such fragmented DNA is electrophoresed
through an agarose gel and stained with ethidium bromide, the cleavage products
will form a “ladder” pattern (the “rungs” of which are composed of integer
multiples of the nucleosomal-sized fragments), diagnostic of cells undergoing
apoptosis. The endonuclease responsible for cleaving the DNA in the linker
regions (between the nucleosomes) has been characterized in many lymphocytic
cells as being calcium-and magnesium-dependent. Internucleosomal cleavage is
always associated with apoptosis, but apoptosis is not strictly defined by inter-
nucleosomal cleavage and may actually incorporate other types of DNA fragmen-
tation. Recently, additional patterns of DNA fragmentation from dying or dead
cells have been reported to occur in nonlymphocytic cell lines {OBerHAMMER et al.
1992,1993). It is not clear if these cells are actually undergoing apoptosis or a
novel form of programmed cell death. Additional indicators, such as specific
morphology or the requirement of energy, as in the case of apoptosis, are
mandatory to help properly categorize a certain death response.

Apoptosis occurs often in the immune system. Cell death helps shape the
immune system as it matures by deleting autoreactive T cells (SmiTH et al. 1989)
and unreacted B cells (HaseoLp and Kraus 1990). Immune cells can also be
stimulated to undergo apoptosis with growth factor withdrawal (NieTo et al. 1990;
WitLLiams et al. 1990) or by glucocorticoid administration (Compton and CibLowski
1992; WyLLie 1980; Conen and Duke 1984). The apoptotic effect of glucocorticoids
on the different types of immune cells is well documented, although most of the
studies concerning the effect of glucocorticoids on immune cells involve imma-
ture thymocytes. These can be easily isolated in large numbers from rats or mice,
which provides a convenient and adaptable model for the study of programmed
cell death, or they can be studied as a specific cell line, such as the S49 mouse
thymoma cell line.

In this review, we will cover the topic of glucocorticoid-induced death of
immune cells, keeping in mind that, despite intensive study, the events that lead
to glucocorticoid-stimulated cell death are still poorly understood. Some general
metabolic and genetic responses during steroid hormone treatment in immune
cells will be discussed, followed by several apoptotic-specific effects of glucocor-
ticoids, such as gene induction and calcium fluxes. Since the studies included in
these sections were performed mostly on mature and immature T cells, we
included a separate section for apoptosis in B cells. This is followed by a
discussion of Bcl-2 and its role in preventing glucocorticoid-induced apoptosis.
Finally, we demonstrate how these different effects of glucocorticoids can be
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integrated by a repressor model of nuclease activation that carries out the
apoptotic process.

2 General Effects of Glucocorticoids
on Metabolism and Gene Regulation

Glucocorticoid effects in immune cells had been studied long before the seminal
apoptotic paper was published by Kerr et al. in 1972. For several decades prior,
glucocorticoids were known to elicit a lytic response in immune cells. During this
time there was much research concerning altered metabolic responses following
glucocorticoid treatment. For example, thymocyte and lymphocyte nuclei ex-
posed to hormone were described as displaying a pyknotic phenotype, with
abnormal chromatin arrangements and nuclear edema, followed by the eventual
dissolution of the nuclear membrane and karyolysis (DoucHerTY and WHiTe 1945;
BurTon etal. 1967; WHITFIELD et al. 1968; CowaN and SORENSEN 1964). Interestingly,
WHITFIELD et al. noted in 1968 that the effect of cortisol on lymphocyte nuclei was
identical to lymphocytic response to irradiation—both of these insults have been
subsequently demonstrated to induce apoptosis. One well-studied example of
altered metabolic effects is the decrease in glucose uptake in both lymphocytic
and nonlymphocytic cells {(Munck and Leung 1977). Another example is the
decrease of amino acid transport (MoriTa and Munck 1964) and nucleoside
accumulation (MakmaN et al. 1968), as well as decreased protein and nucleic acid
biosynthesis (Norpeen and Youne 1976). ATP production (Makman et al. 1971) and
RNA polymerase activity (BeLL and BortHwick 1975) are also diminished following
addition of hormone. Thus, glucocorticoids have been shown to inhibit several
anabolic processes. Our laboratory has shown that glucocorticoids are also
capable of stimulating catabolic processes, so that protein and RNA degradation
is actually enhanced (MacDonaLp and CipLowskl 1982; MacDonalp et al. 1980;
CipLowski 1982). Indeed, glucocorticoids are capable of stimulating the activity of
several hydrolytic enzymes in lymphocytes, including acid phosphatase (CLaARKE
and WiLLs 1978), two serine hydrolases (MacDonaLb and CioLowski 1981), ribo-
nuclease (AMBELLAN and HoLLanper 1966; WierNik and MaclLeob 1965; MASHBURN
et al. 1969), and deoxyribonuclease (Wiernik and MacLeob 1965).

In addition to altering metabolic processes in immune cells, glucocorticoids
can, when complexed with an activated receptor, induce or inhibit specific genes
resulting in measurable changes of a number of mMRNAs (RoulLLEr et al. 1988;
MacDonatp and Golprine 1988; Hirata 1981; Brackwell et al. 1980; ColLBerT
and YouNnG 1986; BurnsTEIN et al. 1990; Eastman-Reks and Vepeckis 1986; BArBOUR
et al. 1988). Obviously, glucocorticoids exert a wide range of actions over
varied genes and proteins. What role any or all of these actions may play in
glucocorticoid-induced death of immune cells is a question currently under
extensive investigation.
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3 Glucocorticoid-Induced Apoptotic Genes

Glucocorticoid-induced apoptosis of some immune cells has been shown to
require protein synthesis (WvLLIE et al. 1984; CoHen and Duke 1984; CompToN et al.
1988; McConkey et al. 1990), although the apoptotic nuclease is constitutively
expressed (Gaipo and CipLowski 1991; VANDERBILT et al. 1982). Such a requirement
was suggested by several groups (WvLLE et al. 1984; Coxen and Duke 1984) who
showed that the RNA and protein synthesis blockers actinomycin D and cyclo-
hexamide, respectively, could prevent steroid-induced death of thymocytes. This
result implies that the activated glucocorticoid receptor can induce programmed
cell death-specific genes. Meanwhile, because glucocorticoids have also been
shown to inhibit protein synthesis, the inhibitory action of the glucocorticoid
receptor may also be important in shutting off certain proteins so that apoptosis
may progress. Indeed, in certain cell types (549.1, HL-60, U 937, Mol t4, Daudi,
MRC-5, Raji, K 562) use of inhibitors of protein and mRNA synthesis alone was
enough to induce apoptosis (MaRTIN et al. 1990; Caron-LesLIE and CipLowski 1994).
Caron-LesLie and CipbLowski proposed that the inhibition of protein synthesis does
not directly cause apoptosis, but rather is part of a cascade of events which are
dependent on protein inhibition to lead to apoptotic death. The necessary inter-
play between gene induction and gene inhibition during glucocorticoid-induced
apoptosis has not yet been defined, but such data can be unified by a repressor
model in which key genes and proteins that mediate the apoptotic process are
kept in check through posttranslational modification, association with inhibitors,
or as inactive precursors.

Studies of genes expressed specifically in apoptotic immune cells have
addressed the issue of the requirement of synthesizing proteins in the death
process. HaRRIGaN et al. (1989) isolated and characterized 11 genes induced in
glucocorticoid-treated WEHI-7TG cells, the majority of which showed an increase
of message within 0.5-1 h after dexamethasone treatment. This work was
continued by BaucHman et al. (1991), who reported two more glucocorticoid-
regulated genes from WEHI-7TG cells. Seven of these 13 clones have been
identified (BaugHmaN et al. 1992), two are repressed in response to hormone, the
remaining 11 are induced. The types of induced proteins that were identified
include chondroitin sulfate proteoglycan core protein, mitochondrial PO, carrier
protein, immunoglobulin-related glycoprotein-70, Lupus-Graves antigen, a G-
protein-coupled receptor, and calmodulin. Interestingly, calmodulin gene expres-
sion was also shown by Dowb et al. (1991) to be induced by glucocorticoid
treatment of WEHI7.2 lymphocytes, supporting the theory that Ca?*-calmodulin-
dependent enzymes are involved in the cell death process (McConkey et al.
1989a,b). These calmodulin results reflect the possibility that Ca** plays an
important role in glucocorticoid-induced apoptosis, a subject which is discussed
in greater detail in the following section. Two other mRNAs associated with
programmed cell death were described by Owens et a!. (1991). The protein
encoded by the clone RP-2 has an a-helical domain and a membrane-spanning
region, which suggest it is an integral membrane protein, while the protein
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associated with RP-8 has a zinc finger domain, suggestive of DNA binding
activity. A heat labile factor, thought to be a Ca?* pore, produced 60 min following
methylprednisolone treatment of thymocytes appears to be another protein
necessary for the apoptotic process (Mcconkey et al. 1989). Further work is
required to determine exactly how all of these glucocorticoid-induced genes and
proteins play a role in carrying out the process of apoptosis. Some proteins may
help in activating the apoptotic nuclease, while others, such as proteases or
transglutaminases, may contribute to the other aspects of cell death like the
formation of apoptotic bodies.

4 Effect of Glucocorticoid Administration
on Ca* Levels

The role Ca** may play, if any, in glucocorticoid-induced apoptosis of lymphocytes
is still under dispute. The following section will discuss data concerning whether
or not glucocorticoid treatment results in an increase in Ca?* levels which then
initiate the apoptotic process. Most of the work reported has been performed on
immature rat thymocytes or thymoma cell lines, although some data include
other lymphoid tissues.

Early work by Kaiser and EpeLman (1977) demonstrates a Ca®* requirement for
glucocorticoid-induced death of rat thymocytes. When comparing thymocytes
treated with steroid to thymocytes treated with the Ca®* ionophore A23187, the
authors noted that the two treatments had similar effects, namely, cytolysis and
inhibition of uridine metabolism. When Ca?* was removed from the media, the
cells showed decreased sensitivity to hormone-induced death. The authors then
tested lymph node lymphocytes (Kaiser and EDeLmaAN 1978) to determine whether
this “Ca** effect” was specific only for thymocytes or all lymphocytes in general.
Although both cell types displayed sensitivity to hormone and A23187, the lymph
node lymphocytes did not appear to require Ca?* for this hormone effect. The
difference in Ca®* requirements for the two cell types can be trivially explained by
concluding there is a differential sensitivity to Ca?* between thymocytes and
lymph node lymphocytes. Interestingly, however, more recent data from several
different groups are revealing conflicting results as to the role of Ca?* just in
hormone-induced death of thymocytes.

McConkey et al. (1989a) provided evidence that a sustained increase in
cytosolic Ca®* concentration resulted from treatment of thymocytes with methyl-
prednisolone and preceded DNA degradation. In these studies, the Ca?* level
increased eightfold over a 2 h time period. The resulting DNA degradation could
be blocked by the addition of RU486, suggesting the glucocorticoid receptor
is directly involved. A decrease in DNA degradation in the presence of the
intracellular Ca?* buffer guin-2 demonstrated the requirement of an elevated
Ca?* concentration for endonuclease activation. This buffering effect could
be overcome by the addition of Ca** ionophore, resulting in restoration of
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endonuclease activity. This group also demonstrated a direct correlation between
Ca* concentration and amount of DNA fragmentation {(McConkey et al. 1989b). In
a similar study, the effect of A23187 on S49.1 {(mouse thymoma) cells was shown
to result in DNA fragmentation {Caron-Lesuie and CipLowski 1991), again suggest-
ing a role for Ca?* in hormone-induced thymocyte apoptosis.

In direct contrast to this idea is research indicating that Ca** is not required for
glucocorticoid-induced apoptosis. NickoLson and Youna (1979) used nuclear fragil-
ity, determined by the inability of nuclei to withstand cellular lysis caused by a
hypotonic shock, as an early indicator of glucocorticoid effect on P1798
lymphosarcoma cells. Although there was an increase in Ca** uptake after these
lymphoid cells were treated with hormone, no correlation could be made with the
increase in nuclear fragility. [n an attempt to correlate these data with those of
McConkey et al., who showed that an elevated Ca* level was part of the
glucocorticoid-induced death process of thymocytes, Iseki et al. {(1993) obtained
rat {and mouse) thymocytes and looked for glucocorticoid-inspired changes in
Ca* flux. With fura-2 as a fluorescent Ca® indicator, Ca?* levels were measured
up to 15 min after treatment, during which time a glucocorticoid-induced increase
in intracellular Ca?* levels was not observed. The differences in experimental
technigues {Ca?* indicators and time of incubation) prevents a true comparison of
the two results, however.

The human T cell leukemic cell line CEM-C7 also displays sensitivity to
glucocorticoids with a different Ca?* response. For example, these cells do not
appear to require extracellular Ca?* to mediate the DNA fragmentation (ALNEMRI
and Litwack 1990). Likewise, BansaL et al. (1990} were able to show that DNA
degradation occurred in CEM-C7 cells after dexamethasone treatment in a Ca2*-
free media; however, they indicate that this DNA does not have the characteristic
ladder pattern, which suggests they are looking at DNA from necrotic cells that
are dying in the absence of Ca**; therefore the CEM-C7 response to glucocorti-
coids may not be apoptotic. Perhaps since CEM-C7 cells are a transformed cell
line they may have lost a component of the normal apoptotic pathway so the
differences observed may result from cell-specific responses to glucocorticoids.
For example, thymocytes readily take up extracellular Ca?* to activate an endog-
enous nuclease in response to hormone, whereas CEM-C7 cells apparently
contain a non-Ca?*/Mg*-dependent nuclease. Additionally, DNA fragmentation
occurs much more rapidly following hormone treatment in thymocytes than in
CEM-C7 cells (BansaL et al. 1990). Another possibility that needs to be considered
is that subtle Ca?* level changes, resulting from the release of internal stores of
Ca*, are responsible for the glucocorticoid effect (BansaL et al. 1990). This
possibility is explored by Lam et al. {1993), who present evidence that glucocorti-
coids release Ca?* from intracellular stores in W7MG1 mouse lymphoma cells,
thus allowing for continuation of Ca?*-requiring mechanisms during apoptosis,
even in the absence of extracellular Ca?. Unlike immature thymocytes, which
show a significant increase in intracellular Ca®* levels after glucocorticoid treat-
ment, the W7MG1 cells show only a slight increase in cytosolic Ca?* levels 4 h
after addition of dexamethasone. However, when ionomycin, which promotes
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Ca?* uptake and releases Ca?* from several internal sources, and thapsigargin,
which releases Ca** only from the ER, were used to probe for determining the
effect of glucocorticoids on internal Ca?* release, there was a significant decrease
in the levels of mobilizable Ca** released from organelle storage sites in the
hormone-treated cells as compared to control cells. Thapsigargin treatment
revealed that not only are levels of mobilizable Ca®* from ER significantly reduced
after incubation in dexamethasone, but that thapsigargin treatment alone result-
ed in a dose-dependent decrease of cell growth and viability and an increase in
DNA degradation in the typical apoptotic ladder pattern. These data imply that
release of Ca?* from the ER may be an important step in glucocorticoid-induced
apoptosis.

The different conclusions as to the role of Ca** emphasize the complexity of
steroid-induced death in immune cells. Due to the amount of evidence of a Ca*/
Mg?*-dependent apoptotic nuclease (WviLie 1980; CoHen and Duke 1984; ARENDS
et al. 1990), it is highly probable that glucocorticoid treatment does result in
increased Ca?* levels, whether by an influx of extracellular Ca®* or a release of Ca?*
from internal stores; however, comparable studies between thymocytes and
CEM-C7 cells need to be performed to ascertain if there are cell-specific mecha-
nisms for glucocorticoid-induced apoptosis.

5 Actions of Ca>*-Binding Proteins
in Glucocorticoid-Induced Apoptosis

Studies on the effect of Ca?*-binding proteins in glucocorticoid-induced apoptosis
complement the results described above, suggesting that Ca** does play an
important role during the process in thymocytes, although perhaps not in CEM-
C7 cells. Calmodulin, a Ca**-binding protein involved in a variety of cellular events,
such as division, motility and contractility, demonstrates increased mRNA levels
following addition of dexamethasone to WEHI7.2 cells (Dowp et al. 1991). The
rise appears to be a result of an increase in transcription of calmodulin mMRNA
rather than a result of message stability. Inhibitors of calmodulin action, such as
calmidazolium and trifluoperazine, blocked steroid-induced DNA degradation in
thymocytes (McConkey et al. 1989b; Isexi et al. 1993) and cell death in WEHI7.2
cells (Dowp et al. 1991); however, this effect was not observed in CEM-C7 cells
(Bansat et al. 1990). Stable expression of the Ca?*-binding protein calbindin-D g in
WEHI7.2 cells provided interesting results that point to a Ca®* requirement for
glucocorticoid-induced death (Dowp et al. 1992) of those cells. Calbindin-D,g
can bind five or six Ca?* ions with high affinity (LeaTHERs et al. 1990). WEHI7.2
cells containing overexpressed calbindin-D,g were not as susceptible to dexa-
methasone-induced cell death. This protective effect correlated with the relative
levels of overexpression—the greater the concentration of calbindin-D,, the
greater the resistance to dexamethasone-induced death. A similar protective
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effect was noted when cells were treated with the Ca?* ionophore A23187,
indicating the anti-apoptotic effect may be a result of sequestering Ca? ions.
Thus, for most examples, Ca®* ions appear to be a result of glucocorticoid
treatment of immune cells and are necessary to create the phenotypic character-
istics of apoptosis.

6 Glucocorticoid-Induced Apoptosis of B Cells

B cells are also capable of undergoing apoptosis, whether in response to being
placed in culture, as in the case of germinal centers of secondary lymphoid organs
(HoLper et al. 1992), or being treated with steroid hormone. The disorder chronic
lymphocytic leukemia of B cell type (B-CLL) is characterized by small, immature
resting B lymphocytes accumulating in the periphery. Treatment involves gluco-
corticoid administration, which results in a decrease of these peripheral lym-
phocytes. The mechanism of this response is not understood, but probably
involves apoptosis. Previous work had shown that a significant fraction of B-CLL
B cells would undergo apoptosis spontaneously when placed in culture (CoLLINS
et al. 1989). These facts, plus the knowledge of the effect of glucocorticoids on
immature thymocytes, prompted McConkey et al. (1991) to compare the effect of
methylprednisolone on B-CLL celis to normal peripheral blood lymphocytes. The
data showed that methyiprednisolone treatment resulted in increased DNA
fragmentation, the formation of apoptotic ladders, and decreased viability in the
B-CLL cells as compared to the normal peripheral blood lymphocytes. Additional-
ly, the hormone-treated B-CLL cells showed an increase in cytosolic Ca? levels
2 h after addition of hormone, an effect that was blocked by both RU486 and
cyclohexamide. Thus, the leukemic B cells display a sensitivity to hormone
similar to that of the immature thymocytes. Other studies of hormone-induced
apoptosis in B cells include studies of the protein Bcl-2.

7 Bcl-2 Blocks Glucocorticoid-Induced Death
of Immune Cells

bck2 (B-cell leukemia/lymphoma-2 gene) is a proto-oncogene first identified by its
association with B cell malignancies (Reep 1994). The concentration of the 26 kDa
Bcl-2 protein is highly regulated during maturation of the B cell (MeriNO et al.
1994); however, if at(14:18) chromosomal translocation occurs, which places the
bel-2 gene under control of immunoglobulin heavy chain enhancer elements, the
protein is expressed at much higher levels and apoptotic death of these cells is
blocked. This anti-programmed cell death effect of Bcl-2 was first noted in the
case of interleukin-3 (IL-3) withdrawal from immature pre-B cells (Vaux et al.
1988; HockenBerry et al. 1990). Although these cells did not die, they also
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did not proliferate. They appeared to be stuck at the G, phase of the cell cycle
(Hockenserry et al. 1990). Therefore, the cancerous effect of Bcl-2 may result
from a lowering of the rate of cell death without an increase in the rate of cell
growth (Reep 1994). We (Caron-LesLiE et al. 1994) have shown that glucocorti-
coids can inhibit protein synthesis in Bcl-2 expressing S49 cells without activating
apoptosis. Such data dissociate the growth inhibition effect from the apoptotic
effect of glucocorticoids.

Reports of anti-apoptotic activity of Bcl-2 led researchers to further explore
the protective effects of Bcl-2 with other inducers of apoptosis, namely glucocor-
ticoids. ALNEMRI et al. {1992) showed that B cells expressing high levels of the Bcl-
2 protein did not have the decrease in viability after triamcinolone acetonide
treatment as compared to a similar strain that contained much lower levels of Bcl-
2. These resistant cells also did not have internucleosomally cleaved DNA, nor did
they proliferate, as seenin the case of [L-3 withdrawal, suggesting they were in G,
Information about how Bcl-2 might play a role in B cell development was provided
when MErino et al. (1994) demonstrated that pro-B cells (the least developed) and
mature B cells contained high levels of Bcl-2, and pre-B cells and immature B cells
containedlow levels of bel-2. When cells at the various stages of development are
treated with dexamethasone, the pre-B and the immature B cells are much more
susceptible to the death-inducing effects of the hormone than the pro-B and
mature B cells, Thus, the amount of glucocorticoid-induced apoptosis appears to
depend on the developmental stage of that cell, which is also correlated with the
levels of Bcl-2 protein. This developmental effect is also seen with thymocytes.
The mature medullary thymocytes are positive for Bcl-2 while the immature cells
in the cortex are negative (PezzeLLa et al. 1990; HockenBERRY et al. 1991). Conse-
guently, dexamethasone treatment almost completely eliminates the immature
CD4* CD8* cells without affecting the mature thymocytes. Our laboratory
(OLpenserG and CipLowskl 1994) has noted that mature thymocytes contain the
same level of glucocorticoid receptors as immature cells, therefore, the de-
creased response to hormone cannot be attributed to diminished glucocorticoid
receptor levels. The deleterious glucocorticoid effect on immature thymocytes is
overcome in transgenic mice containing a bcl-2 vector expressed in the thymus,
although negative selection of the transgenic thymocytes still occurs {SENTMAN
etal. 1991). Additionally, the bck2 gene was transfected into S49.1 and WEHI7.2
cells, a thymoma and lymphoma cell line, respectively, and was shown to
enhance resistance to dexamethasone-induced death and DNA fragmentation in.
both cases (MivasHiTa and Reep 1992), although it did not prevent inhibition of
proliferation induced by glucocorticoids. A similar protective effect was noted for
transgenic mice expressing Bcl-2 in B cells (Merino et al. 1994). Thus, Bcl-2
appears to confer resistance to glucocorticoid-induced death in several types of
immune cells, but does not block the proliferation inhibition effect of glucocorti-
coids. Additionally, we (Caron-Lesuie and CipLowski 1994) observed that expres-
sion of Bcl-2 protein in S49 cells prevents dexamethasone-induced apoptosis of
these cells, but does not prevent cyclohexamide- or A23187-induced apoptosis,
indicating that Bcl-2 somehow interferes with the signal leading to apoptosis
rather than interfering with the apoptotic process itself.
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8 The Repressor Model of Nuclease Activation

Our research has explored the mechanisms of glucocorticoid-induced apoptosis
of thymocytes from rat thymic or thymoma cell lines. We have incorporated
these data with those of others studying apoptosis to propose that apoptosisis a
repressed phenotype that can be activated by addition of glucocorticoids. For this
situation we propose that all normal cells express the inherent genes necessary
to carry out the apoptotic process. The resulting proteins are kept in an inactive
state by mechanisms such as inhibitors, inactive precursors, or posttranslational
modification. This model (Fig. 1) is based on our current understanding of apop-
totic activation in thymocytes and immune cells with similar responses to gluco-
corticoids and accounts for the effects of glucocorticoid treatment on protein
turnover and Ca?* levels as well as nuclease activation and DNA cleavage.
Activation of the apoptotic nuclease is a committed step to programmed cell
death and is therefore critical in regulating apoptosis in immune cells. This

Fig. 1. Repressor model for glucocorticoid-induced apoptosis activation in rat thymocytes.
Glucocorticoid (G)-induced apoptosis is initiated directly through the glucocorticoid receptor (GR).
Cellular responses to the activated receptors by induction or inhibition of specific genes may account for
the activation of the apoptotic process. The evidence for a nuclease (NUC) that is constitutively
expressed in all cells is incorporated into our hypothesis that apoptotic nuclease activity is inhibited by
a labile repressor protein. Glucocorticoid treatment could allow for activation of this nuclease by
decreasing the repressor protein MRNA levels. Glucocorticoids may concomitantly act to eliminate the
repressor protein by stimulating its degradation. This degradation could occur with the induction of a
specific protease or with the induction of a Ca?* transporter protein that increases Ca** levels, resulting
in activation of a protease. Any of these actions could result in release of an active nuclease
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nuclease was originally thought to be induced by glucocorticoids (CompToN and
CioLowski 1987), based on the inhibitory effect of RNA and protein synthesis
blockers (WyLLE et al. 1984; CoHen and Duke 1984), but there is no evidence foran
increase in either levels of nuclease protein or mRNA. More recent work is
suggestive of a constitutively expressed nuclease (ScHwarTzMAN and CiDLOWSK
1993b; Gaipo and CipLowski 1991; Nikonova et al. 1993). Such a nuclease would
require inhibition until the proper apoptotic signal was received. Several lines of
evidence suggest that the nuclease exists in a complex with a repressor protein.
When nuclear extracts from dexamethasone-treated rat thymocytes were as-
sayed for nuclease activity, a low molecular weight (18 kDa) nuclease was
identified (NUC18) (Gaipo and CipLowski 1991). In control cells, those not treated
with dexamethasone, nuclease activity was apparent at a much higher molecular
weight (approximately 100 kDa), indicating NUC18 is part of a complex that
separates after glucocorticoid treatment. Additionally, thymocyte nuclear ex-
tracts from similar control cells were capable of internucleosomal DNA degrada-
tion only after being passed over a sucrose gradient or gel filtration column
{(SchwarTzmaN and CibLowski 1993b). This again suggests that the nuclease is
associated with other proteins that are capable of preventing any activity until the
nuclease is separated from the complex, either by specific glucocorticoid action
or by a physical means, such as a sucrose gradient.

The inhibition of glucocorticoid-induced apoptosis by the antagonist RU486
{McConkey et al. 1989; Caron-Lesuie and CipLowski 1991; Compton and CipLowski
1986) indicates that programmed cell death is initiated directly through the
glucocorticoid receptor. The activated glucocorticoid receptor has several re-
sponses, discussed in this review, that, singly or in concert, may account for
induction of apoptosis. We hypothesize that glucocorticoids may inhibit the
transcription of mRNA that encodes a repressor protein, thus resulting in in-
creased levels of unrepressed nuclease. This proposal is supported by the fact
that, in some cases, blocking protein synthesis alone is enough to cause apopto-
sis (MaRTIN et al. 1990; Caron-Lestie and CioLowski 1994). This suggests that the
repressor protein is labile and requires constant synthesis to keep the nuclease in
check. In addition to decreasing repressor mRNA levels, glucocorticoids may
increase transcription of Ca?* transporter mRNA, such as a Ca?** pore protein
{McConkey et al. 1989a), The newly synthesized Ca?* transporter protein could
contribute to the observed Ca?* influx, which could then activate a protease that
degrades the repressor protein. Or, glucocorticoids could directly increase tran-
scription of a protease mRNA, which could specifically degrade the repressor
protein. Interestingly, recent reports implicate the cysteine protease interleukin-
1B converting enzyme (ICE) in the apoptotic process (GAGLIARDINI et al. 1994;
Miura et al. 1993). Any of the proposed mechanisms would result in increased
levels of active nuclease, capable of cleaving the DNA in the characteristic
internucleosomal pattern of apoptosis.

If the nuclease is constitutively expressed, then why do we observe inhibi-
tion of glucocorticoid-induced apoptosis in the presence of RNA and protein
synthesis inhibitors? There are several explanations. First, the production of a
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protein involved in regulating the level of repressor protein may be decreased,
thus interfering with the normal effect of glucocorticoids. Second, the inhibited
proteins may regulate Ca?* influx, which plays a critical role in glucocorticoid-
induced apoptosis. Third, the inhibitors may block production of the protease
necessary to release the repressor from the apoptotic nuclease. Thus, inhibitors
of RNA and protein synthesis could block glucocorticoid-induced apoptosis
through several pathways.

Constitutive expression of the apoptotic nuclease could provide several
advantages. For example, the constant presence of a repressed nuclease would
allow the cell to quickly initiate apoptosis, because de novo synthesis of the
nuclease would not be necessary. Also, the metabolic demands on the cell would
be reduced and would require less energy because the substrate and the enzyme
are colocalized, preventing the need to export RNA and import protein, actions
that would become increasingly difficult in a dying cell.

The importance of apoptosis in the maintenance of many different systems
is becoming increasingly apparent. It is crucial, therefore, to more clearly define
the mechanisms of this fascinating process. We have begun this task by
proposing the repressor model, which is based on current knowledge of apopto-
sis in the immune system. The immune system is a great resource for studying
the intricacies of apoptosis. As detailed in this review, even one apoptotic signal
given to one cell type (e.g., glucocorticoid treatment of immature thymocytes)
results in a multifaceted response (e.g., Ca®* flux, DNA degradation). Knowing
how these apoptotic responses interact to result in the death of a cell will provide
great insight into this essential component of life.
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1 Negative Selection in the Thymus

The T cell receptor (TCR) repertoire is known to arise from a series of random
genetic recombinational events, similar to the generation of immunoglobulin
diversity, which give rise to antigen binding heterodimers capable of responding
to a wide spectrum of MHC-presented peptides. However, in this differentiation
process only a small number of cells reach the mature state, as most are deleted
by a process called negative selection (von BoenmER et al. 1989; Janeway et al.
1992). In the mouse around 50 x 10° cells/day are formed in the thymus; of these,
only approximately 1-2 x 10° mature to CD4* helper and CD8* cytotoxic T cells.
Negative selection can be a consequence of either lack of self-MHC recognition
or high avidity recognition of dominant self-peptides (AsHTon-RickaRDT et al. 1994;
Janeway et al. 1992; Seszpa et al. 1994).

This deletion process targets the cortical TCR'** CD4*CD8* subpopulation of
thymocytes and is mediated by TCR engagement. Negative selection can be
mimicked using activating anti-TCR antibodies or bacterial superantigens, result-
ing in DNA fragmentation and cell death typical of apoptosis (SmiTH et al. 1989; SHi
et al. 1989; McConkey et al. 1989). The relevance of these observations has been
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confirmed in studies utilizing mice transgenic for a particular TCR, in which
administration of specific antigenic peptides elicits an identical apoptotic re-
sponse (MurpHY et al. 1990; MawmaLaki et al. 1992).

Paradoxically, the TCR on CD4*CD8* thymocytes also appear to be required
to promote differentiation into functionally mature CD4*CD8 or CD4CD8*
thymocytes. Thus, one of the greatest challanges for immunlogists at present
involves defining the molecular mechanisms underlying this dual signaling func-
tion of the TCR. One proposal is that positive selection is promoted by moderate
avidity TCR interactions, whereas high avidity interactions lead to apoptosis.
Strong support for this model has recently emerged from studies with transgenic
thymocytes in organ culture, in which low concentrations of peptides promote
maturation while high concentrations are lethal to the cells (AsHTon-RickarpT et al.
1994; Seszpa et al. 1994; HocauisT et al. 1994). Additionally, it appears that
independent signal transduction pathways contribute to the outcome of TCR
engagement. For example, it has been shown that TCR triggering is fairly
inefficient at promoting apoptosis in vitro but requires an additional signal that can
be contributed by Thy-1 (NakasHima et al. 1991), CD28 (Punt et al. 1994) or CD4/
CD8 (McConkey et al., manuscript submitted). In addition, second signals provid-
ed by steroid hormones (ZacHArcHUk et al. 1990; IwaTa and colleagues, this
volume) or protein kinase C activation (McConkey et al. 1989) may inhibit TCR-
mediated apoptosis. Thus, both TCR avidity differences and the presence or
absence of parallel signaling pathways are likely to influence positive and
negative selection.

A second observation that remains to be explained concerns why apoptosis
is fairly readily observed in CD4*CD8* thymocytes exposed to diverse stimuli,
whereas in their immediate precursors (CD4°CD8" cells) and in mature thymo-
cytes itis not. Compelling evidence has recently emerged from several laborato-
ries to suggest that developmental regulation of the expression of the bck2
oncogene is involved (GraTioT-Deans et al. 1993; VEis et al. 1993; Moore et al.
1994; ANpJueLic et al. 1993). Levels of Bcl-2 protein are relatively high in the
apoptosis-resistant immature and mature compartments, while the level in the
apoptosis-sensitive CD4*CD8* cells are low. The important question that remains
is how these fluctuations are promoted within the thymic microenvironment.

2 Glucocorticoids and the Thymus

Early findings demonstrated that stress-induced involution of the thymus is due
to adrenal glucocorticoid (GC) release (SELve 1936; INGLE 1940). Involution was
caused by a process involving the typical morphological changes and DNA
cleavage of apoptosis (WvLLE et al. 1980). One crucial event in the induction of
apoptosis is the activation of a Ca?*-dependent endonuclease which cleaves DNA
into nucleosome sized fragments. Several defined endonucleases have been
implicated (Gaibo and CipLowskl 1991; PerrscH et al. 1993; BaArry and EAsTMAN
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1993). The endonuclease is constitutively present in isolated nuclei and can be
activated by Ca?* and Mg?* treatment (CompToN and CipLowski 1992). GC induced
thymocyte apoptosis requires protein synthesis and RNA transcription and is
associated with an increase in cytosolic Ca** (ComeToN and CibLowski 1992).

Thymocytes respond to GC by apoptosis both in vitro and in vivo. In vivo, the
immature CD4*/CD8* thymocyte fraction is rapidly killed whereas both the
precurser population (TCR/CD47/CD8) and mature thymocytes (CD4* or CD8*)
are comparatively resistant (S. Chow, personal communication). Peripheral T
cells are resistant to GC but become sensitive upon activation (KaseLitz 1993).
Inflammatory mediators such as interleukins, interferon (IFN) and tumor necrosis
factor (TNF) provoke the release of corticotropin releasing factor (CRF) and
adrenocorticotropic hormone (ACTH) from hypothalamus and the pituary gland,
respectively (BATEMAN et al. 1989; Besepovsky et al. 1991). ACTH-induced adrenal
GC release is animportant negative feedback loop to prevent overactivation in the
peripheral immune system (GonzaLo et al. 1993).
~ Using anti-CD3 monoclonal antibodies as a model for negative selection, we
had found that pretreatment of mice with a GC receptor antagonist (RU486,
Roussel-Uclaf) protected immature CD4*/CD8* thymocytes from an apoptotic
reaction {JonDAL et al. 1993). More recently, using peptide treatment of TCR
transgenic mice to induce apoptosis in immature thymocytes (MurpHy et al.
1990), we have found a similar protective effect (manuscript in preparation).
Interestingly, the same thymocyte subpopulation was also protected from apop-
tosis induced by a cAMP-inducing drug, (N-ethyl)-carboxamide-adenosine
(NECA), agonistic for adenosine A2 receptors. However, the involvment of
adrenal GC release in the effects of anti-CD3 monoclonal antibodies, TCR binding
peptides and NECA needs to be addressed in further studies with adrenal-
ectomized mice to distinguish a possible role for increased corticosterone levels
in blood. Still, adrenalectomy would not influence steroid synthesis within the
thymic gland itself (VaccHio et al. 1994) (see below).

In rats, the level of circulating GC is low during the first week of life, at a time
when the thymic gland is large and active. In a recent intriguing report, VAccHIO
etal. (1994) have identified GC production within the thymic gland itself. Enzymes
involved in the GC synthetic pathway were shown to be present in radioresistant
thymic epithelial cells which produced pregnenolone and deoxycorticorsterone in
vitro.

Recent findings implicate certain proteases with specificity for aspartate
residues, such as IL-1B converting enzyme (ICE), and the lytic proteins granzyme
B and fragmentin-2 in the induction of apoptosis (JacoBson and Evan 1994; SHI
et al. 1994). These proteins are homologous with the ced-3 gene product in C.
elegans, necessary for apoptosis in certain defined cell populations. Down-
stream, these proteases may dysregulate the cyclin/cdc kinase system to initiate
apoptosis (SHi et al. 1994). How, or if, GC and the activated glucocorticoid
receptor (GR) are related to these effector pathways is presently not known.

Thus, GC is known to affect both immature CD4*/D8* thymocytes and to
control the peripheral immune system and GC may actually be synthesized within
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a subcompartment of the gland. These circumstances indicate that endogenous
GC may participate as one important regulator of normal thymic differentiation, as
earlier suggested (ZazcHARACHUK et al. 1990; lwaTa et al. 1991).

3 The Glucocorticoid Receptor

Glucocorticoids excert their effects cells via a specific receptor. It is generally
believed that GCs, being lipophilic in nature, enter target cells by passive diffusion
(BaLLarp 1979; Gioral and STeIN 1981), although in some systems there appear to
be evidence in support of an active, energy driven transport mechanism (Rao
1981; SrinDLER et al. 1991; ALLERA and WiLDT 1992). In the resting state, the GR
exists as a large multiprotein heteromeric complex that contains one molecule of
GR and a 90 kDa heat shock protein (HSP) dimer, HSP 56/59 and HSP 70. Upon
binding of the hormone, the complex undergoes a process termed transforma-
tion, which results in the release of the free ligand-bound GR (for review, see PraTT
1993). This process permits the GR to translocate to the nucleus, where its
biological effects are manifested through its ability to regulate the expression of a
network of genes in a tissue-specific manner (Beato 1988, 1991; Lucas and
GranNER 1992). This is accomplished by the interaction of the GR with specific
DNA sequences termed glucocorticoid response elements (GREs), which most
often lies in the promoter region of regulated genes. The sequence of most GREs
is partially palindromic in nature, and the GR-GRE complex contains a dimer of GR,
with one molecule of GR contacting each half of the palindrome (Tsal et al. 1988;
WRANGE et al. 1989). Once bound to the GREs the GR modulates (induces or
represses) the activity of the target promoter (for reviews, see Beato 1988, 1991).

The GR, like the other members of the nuclear receptor superfamily, has a
conserved domain structure, each domain harboring distinct and independent
functions. The most highly conserved domain is the central DNA-binding domain,
while the NH,-terminal domains are the most variable both in size and sequence.
The NH,-terminal domain of the GR harbors the major transactivation capacity.
Weaker transactivation capacity is found in the 5'end of the COOH-terminal
domain. The importance of that region for transactivation of target genes in vivo
has been demonstrated by the inability of mutated GRs that lack this NH,-
terminal transactivation domain to induce apoptosis (Dieken et al. 1990). The
COOH-terminal hormone binding domain is not only responsible for ligand
binding but also for interaction with hsp90 and possibly for dimerization (for
reviews, see WanHL and MaRrTINEZ 1991; GRONENMEYER 1992).

The GR has been shown to be a phosphoprotein. Phosphorylated sites are
present in the untransformed receptor and hyperphosphorylation is induced
following ligand binding (OrTi et al. 1992). However, the exact function of
phosphorylation/dephosphorylation in the GRs mechanism of action is still un-
clear. The main sites for phosphorylation has been localized to the NH,-terminal



Thymocyte Apoptosis by Glucocorticoids and cAMP 71

transactivation domain, where six phosphoserines and one phosphothreonine
were identified (BopweLL et al. 1991). This indicated a role for phosphorylation in
transactivation. However, preliminary mutational studies have so far failed to
identify a major role for the NH,-terminal phosphorylation sites (Mason and
HousLey 1993).

No effect by cAMP or the protein phosphatase inhibitor okadaic acid on the
phosphorylation of the GR has been observed (Somers and DeFranco 1992; Mover
et al. 1993). This was investigated since cAMP or okadaic acid in some experi-
mental systems can enhance transcriptional stimulation by the GR (see below).

The GR induces transcription from GC target genes following binding to
GREs. The location of these GREs with respect to the transcription start site can
vary greatly, from within 200 base pairs, seen for example in the mouse mam-
mary tumor virus (MMTV) gene (Pavvar et al. 1983), to over 2 kilobases upstream,
seen in the tyrosine aminotranserease (TAT) gene (JanTzeN et al. 1987). For many
genesinduced by GCs, it has now been shown that the GR does not act alone, but
requires the presence of additional transcription factors. Aithough the GR can
function alone when placed close to the TATA box in an artificial reporter gene, it
is inactive when positioned further upstream (STRAHLE et al. 1988). The inability of
the GR to stimulate transcription from a distance alone can, however, be
compensated for by other factors working in synergism manner with the
receptor (STRAHLE et al. 1988; ScHULE et al. 1988a,b). The GR has been
demonstrated to cooperate with numerous transcription factors, including other
steroid receptors (STRAHLE et al. 1988; ScHULE et al. 1988; ANKENBAUER et al. 1988).
Recently, full GC inducibility of the phosphoenolpyruvate carboxykinase gene
was demonstrated to require the presence of a GRE and a basal promoter/cAMP
response element which binds a cAMP response element binding protein
(CREB). A direct protein—protein interaction between the GR and CREB could
be detected, possibly explaining the functional cooperation between the two
elements (Imal et al. 1993).

4 Glucocorticoid Receptor and cAMP
Signal Transduction Pathways

Signaling and transcriptional regulation through the second messenger cAMP
occurs through a multistep process involving activation of protein kinase A (PKA)
and subsequent phosphorylation of transcription factors such as CREB or activat-
ing transcription factors (ATFs) (GonzaLes and MonTminy 1989; HaNER 1990). The
CREB/ATF family consists of a series of transcription factors that function
through binding to the cAMP responsive element (CRE). Although each of the
CREB/ ATF proteins bind CREs as homodimers, in some cases they may bind as
heterodimers both within the CRFEB/ATF family or with members of the AP-1
transcription factor family, with different transcriptional effects as a result.
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Several genes have been shown to be regulated by both GCs and cAMP. For
example, GCs and cAMP synergistically activate transcription of genes encoding
phosphoenolpyruvate carboxykinase, vasopressin, proenkaphalin and neuro-
peptide Y (Imal et al. 1993; JosHi and SesoL 1991; Vergeek et al. 1991; HicucHi et al.
1988). Similarly, cAMP and GCs synergistically activate transcription of several
genes in the murine thymoma cell line WEHI-7 (HarriGaN et al. 1989). Further-
more, GCs and cAMP synergistically trigger cell lysis in WEHI-7 and S49
lymphoma cells (Vepeckis and BrabsLow 1983; Gruol et al. 1986). In contrast, the
cAMP-mediated transcriptional activation of o-1 acidic glycoprotein gene tran-
scription is repressed by GCs (STauger et al. 1992).

Recent studies have indicated that cAMP and/or PKA may play an important
role in reguiating signal transduction through the steroid hormone receptor
superfamily (DenNER et al. 1990; Power et al. 1991; RancaraJaN et al. 1992; SOMERS
and DeFranco 1992; NorpEeeN et al. 1993: Mover et al. 1993). For example, it has
been shown that cAMP can, in certain cells and with some promoters, potentiate
effects mediated by the GR. This can also be seen with transfected GC-regulated
reporter genes which lack CREs {(RanGaRrAJAN et al. 1992; Somers and DeFRanco
1992; NorpEeeN et al. 1993). This synergistic effect does not appear to involve the
NH,-terminal transactivation of COOH-terminal ligand binding domains of the GR
but rather by enhanced DNA-binding activity for the GR to its cognate GRE
(RanGARAJAN et al. 1992). No effect by cAMP/PKA on GR expression was ob-
served. However, results from other groups have in other systems demonstrated
that cAMP treatment leads to increased GR expression, which correlates with
increased transcriptional activation of transfected or endogenous GC regulated
genes (OikaRrINEN et al. 1984; GruoL et al. 1986; Dong et al. 1989). Thus, several
mechanisms may be responsible for the enhancing activity. Although the exact
mechanisms for the argumentation of GC responses by cAMP/PKA is unclear, it
does not seem to involve direct GR phosphorylation (see above). Instead,
phosphorylation of various components of the GR signal transduction pathway
other than the GR may influence the transcriptional response. Phosphorylation
may activate CREB or ATFS, which through a direct protein-protein interaction
with the GR may influence transcriptional responses. In fact, a direct interaction
between the GR and the CREB has been demonstrated in vitro, which might
account for the synergistic activation of the phosphohenolpyruvate carboxy-
kinase gene by GCs and cAMP seen in vivo (Imal et al. 1993). However, the effect
of cAMP on GR transcriptional activity may be very complex and also occur in
celis lacking CREB (RanGaAraJAN et al. 1992). Finally, the complexity of the system
is demonstrated by the observation that the GC antagonist RU486 acquires
agonistic properties when celis are treated with activators of PKA (Norbeen et al.
1993).
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5 cAMP Regulation of T Cell Activation and Apoptosis

Prostaglandins and pharmacologic agents that elevate cAMP are known to be
relatively potent inhibitors of T cell activation, and previous work has shown that
they are capable of blocking both early and late consequences of productive TCR
engagement, such as phospholipase C activation and interleukin-2 production
(PaTeL et al. 1987; LernER et al. 1988). Indeed, the existence of an interrelationship
between the TCR and adenylate cyclase-regulated signal transduction pathways
is strongly supported by the recent observation that the type | regulatory subunit
and the catalytic subunit of cAMP-dependent protein kinase cocap and can be
coimmunoprecipitated with the TCR following TCR triggering (SkALHEGG et al.
1994). When thymocytes and certain other lymphoid cell types are treated with
prostaglandin E, or pharmacological agents that elevate cAMP, they undergo
apoptosis (GruoL et al. 1986; McConkey et al. 1990b; Lee et al. 1993; Suzuki
et al. 1991). cAMP-induced apoptosis has also been reported to be enhanced by
TNF-a (Kizaki et al. 1993). However, recent work by Let et al. (1993) has shown
that cAMP can antagonize T cell receptor-mediated apoptosis without affecting
other relatively late molecular events induced by TCR triggering. This type of
mutual inhibition by two apoptotic pathways is reminiscent of the effects of GCs
or protein kinase C (PKC) on PKC-mediated apoptosis and may therefore contrib-
ute in some way to positive selection.

Importantly, moderate elevations in cAMP have also been reported to occur
as a direct response to TCR triggering (LEDBETTER et al. 1986), and it is therefore
possible that cAMP may have positive effects on TCR signal transduction
function under some circumstances, particularly when potent PKC activation is
also involved (PaTEL et al. 1987).

Fig. 1. Proposed pathways involved in the T cell receptor (TCR)-dependent potentiation of a cAMP res-
ponse to the adenosine analogue NECA, using the Jurkat T cell line (KVANTA et al. 1989, 1990, 1991)
A, adenosine A, receptor; G, G proteins; AC, adenylate cyclase; PLC, phospholipase C; PTK, protein
tyrosine kinase; CaM, calmodulin
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Using the human T cell line Jurkat we have found previously that stimulation
of cells with anti-CD3 antibodies potentiates a cAMP response through adenos-
ine A2 receptors (KvanTa et al. 1989,1990). Further work using the adenylate
cyclase stimulator forskolin indicated that there are at least two different mech-
anisms involved in this receptor cross-talk, one of which depends on PKC (KvanTa
etal. 1991) (Fig. 1).

In summary, moderate cAMP elevations, in combination with defined trans-
ductions signals, may have a positive effect on T cell activation whereas high
elevations may have a negative effect including the direct or indirect (through GR)
induction of apoptosis.

6 Potentiation of Glucocorticoid-Induced
Apoptosis by cAMP

As discussion above, the capacity of cAMP to promote GR expression and
function is well documented. Given that cAMP and GCs are each capable of
inducing thymocyte apoptosis when administered individually, these observa-
tions beg the question of whether they might synergize when added together.
Indeed, previous work by Bourgeois and coworkers has demonstrated that cAMP
promotes GC-mediated cytolysis of T cells via a mechanism involving enhance-
ment of GR function (Gruot et al. 1986). Moreover, we have shown that cAMP
potentiates GC-mediated apoptosis in thymocytes via a mechanism involving
increased hormone binding that is independent of effects of cCAMP on GR
expression (McConkey et al. 1993). Also, a similar effect had been found in the
T cell line CEM-C7 (M. Jondal, manuscript in preparation). Pretreatment of these
cells with cAMP for 24 h increases both the apoptotic response to GC
and hormone binding and both of these effects are dose-related. Potention of
GC-induced apoptosis by cAMP can also be observed in leukemic cells from
patients with chronic B lymphocytic leukemia (M. Aguilar-Santelises et al.,
submitted). Furthermore, we have also obtained evidence for the relevance of
this phenomenon to thymocyte apoptosis in vivo in experiments using NECA,
which appears to induce thymocyte apoptosis via elevations of cAMP. When GC
and NECA are administered to mice together, efficient apoptosis can be observed
at doses of the agents which alone are insufficient to promote an effect (JonpaL
et al. 1993). Interestingly, the effects of high dose NECA are inhibited by the
steroid receptor antagonist RU486, suggesting that the basal levels of steroid
presentin the circulation may be required for the effect. Together, these observa-
tions suggest that cAMP might promote GR function at subthreshold levels of
steroid hormone.
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7 Proposed Model

Negative selection in thymus and in the peripheral immune system may partly be
dependent on the induction of apoptosis by endogenous GC. Cyclic AMP-
dependent signaling may also be important for the induction of apoptosis in
lymphoid cells, acting both independently and dependently of GC. Itis not clear at
present which level in the signaling chain, GC and cAMP interact. It might be
either at the level of transcriptional regulatory proteins or at the gene regulation
level.

It should be pointed out that thymocyte apoptosis may also occur independ-
ent of GC, as exemplified by in vitro experiments using either single cell
suspensions or organ tissue cultures, However, in such experiments serum,
containing GC, is often used and recent data suggest that the epithelial compo-
nent within the thymus can produce its own GC (VaccHio et al. 1994). It is likely,
though, that an apoptotic reaction can be the consequence of the “unbalancing”
of many different transduction signals which may act upon particular switch and
effector molecules (McConkey et al. 1990a). The hypothetical role for GC in thymic
negative selection presented in this chapter should be looked upon as being one
important component in a system that may have a considerable amount of
redundancy.

In summary, we suggest that without recognition of self (lack of positive
selection) thymocytes are vulnerable to apoptosis induction mediated by endog-
enous GC (Fig. 2). Medium activity TCR interaction with self (positive selection)
would rescue thymocytes from apoptosis by some undefined intracellular signal,
possibly involving PKC (McConkey et al. 1990a). High affinity interaction with self
would lead to apoptosis (negative selection) by intracellular signals associated
with cAMP, including effects both independent and dependent on the GR.

If steroid receptors are of major importance in immunoregulation, that may
also have some bearing on the well known difference in immune reactivity

GC

TCR
- APOPTOSIS

GC

TCR
<€— SURVIVAL

CR

<. APOPTOSIS Fig. 2. The role of glucocorticoid (GC), glucocorticoid
receptor (GR), cAMP and T cell receptor (TCR) in
thymic selection. For further explanation, see text



76 M. Jondal et al.

between sexes (Grossman 1989). The overall hormonal background may fine-tune
the GR to a tighter negative immune regulation in males than in females. This, in
turn, might be related to the higher occurrence of some autoimmune diseases in
females (AHMED et al. 1985).
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1 Introduction

Steroid hormones play essential roles in a variety of physiological processes
including embryonic development, sexual differentiation and maturation, and
metamorphosis. The homeostatic regulation of metabolism and cell turnover that
determines tissue sizes and shapes are also under the influence of these
hormones. Apoptosis is involved in many of these phenomena, The pharmaco-
logical or surgical manipulation of animals to change steroid levels often causes
involution or enlargement of certain tissues partly through the enhancement or
inhibition of apoptosis. For example, an elevation of blood glucocorticoid level, by
an injection of glucocorticoids or by excessive stress, causes thymus involution
due to apoptosis in cortical immature thymocytes (CLaman 1972). By contrast,
adrenalectomy of mice causes not only depletion of glucocorticoids from the
plasma but also a marked increase in the thymus size (SHORTMAN and JACKSON
1974). Glucocorticoid-induced apoptosis is dependent on the binding of gluco-
corticoids to glucocorticoid hormone receptors (GRs), which is also required in
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the general effects of steroids (Duval et al. 1984). The steroid receptors such as
GR, mineralcorticoid receptors, progesterone receptors, androgen receptors, and
estrogen receptors are members of a superfamily of ligand-inducible transcription
factors. The steroid receptor superfamily also includes retinoic acid receptors,
thyroid hormone receptors, vitamin D, receptors, ecdysone receptors, and COUP
transcription factor. They are related to v-erbA oncogene.

2 Glucocorticoid-Induced Apoptosis in Thymocytes

Glucocorticoid-induced death in immature thymocytes is one of the classical
examples of apoptosis, in which the typical morphological changes, such as
chromatin condensation, nucleolar disruption, and cytoplasmic contraction, take
place (WyLLIE et al. 1980). Without glucocorticoid binding, GRs exist mainly in the
cytosol associating with proteins such as heat shock protein 90 (hsp90). The
binding of glucocorticoids induces dissociation of GR from hsp90 and trans-
location of the glucocorticoid-GR complex from the cytosol to the nucleus (PratT
et al. 1989). The complex acts as a translation regulatory factor, inducing or
enhancing the expression of certain genes. Indeed, glucocorticoid-induced apop-
tosis in thymocytes is inhibited by inhibitors of mMRNA and protein synthesis.
Thus, it is postulated that there is a “death gene(s)” that codes a protein(s)
responsible for the induction of apoptosis. Some candidate genes, such as RP-2
and RP-8, have been cloned (Owens et al. 1991; ScHwaRrTz and OsBoRNE 1993).

2.1 DNA Fragmentation and the Role of Ca**

The morphological changes in glucocorticoid-induced apoptosis are usually asso-
ciated with endonuclease cleavage of DNA into oligonucleosomal fragments
(WyLLiE 1980; WyLLE et al. 1984). This DNA degradation is one of the early signs
in most of the apoptotic processes. CoHen and Duke (1984) have shown that DNA
fragmentation in isolated nuclei of murine thymocytes is induced by Ca?" and
Mg?*. They suggested that a Ca®*, Mg?*-dependent and Zn?**-sensitive endonucle-
ase is constitutively present in the nuclei of thymocytes, and that the protein for
which synthesis is necessary for glucocorticoid-induced thymocyte death is not
the endonuclease itself, but is in some way involved in its activation. SCHWARTZMAN
and CioLowski (1993) detected intranucleosomal DNA cleavage activity in nuclear
extracts of glucocorticoid-treated apoptotic rat thymocytes, but not in control
thymocytes. In both cases, however, millimolar concentrations of Ca?* and Mg*
or Mn?* were required for optimal DNA cleavage activity. Intracellular free Mg*
concentrations in many cells range from 0.1-0.7 mM (Preston 1990), whereas
intracellular free Ca?* concentrations ([Ca®*]) in normal and activated thymocytes
are usually on the order of 0.1-1 pM (Isexi et al. 1993). Jones et al. {1989) have
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shown that submicromolar concentrations of Ca?* induce DNA fragmentation in
rat liver nuclei in the presence of physiological levels of ATP and NAD*. Thus,
within cells that are in the process of apoptosis, it may be possible that endonu-
clease activation is induced by the combination of physiological concentrations of
intracellular Ca®*/Mg?* and other components.

A sustained increase in [Ca%], is considered to be essential for several
apoptotic processes (ALLBRITTON et al. 1988; McConkEey et al. 1989; Isekietal. 1991;
NicoTera et al. 1992), but not for others (ALNEMRI and Lirwack 1990; BansaL et al.
1990; McConkey et al. 1990; Suzuki et al. 1990; Isexi et al. 1991; NicoTera et al.
1992). It was reported that glucocorticoid-induced death in rat thymocytes was
dependent on a sustained increase in [Ca*'], and was inhibited by depletion of
extracellular Ca?* with EGTA or buffering of intracellular Ca** with quin-2/AM
(Kaiser and EpeLman 1977; McConkey et al. 1989). However, NicHoLson and YOUNG
(1979) reported that it is unlikely that glucocorticoid-induced changes in Ca?*
uptake initiate the lethal actions of glucocorticoids. To resolve this problem, we
employed microscopic fluorometry that enabled us to monitor real-time [Ca®],
on a single cell basis (Isexi et al. 1993). The results indicated that dexamethasone
(DEX), a potent synthetic glucocorticoid, does not induce an increase in [Ca®*],
above the control level either in murine or rat thymocytes for at least 1 h after the
start of the culture. We also found that DEX-induced apoptosis in both murine and
rat thymocytes is not inhibited by EGTA. High concentrations (25 pMand over) of
quin-2/AM inhibited DNA fragmentation, but failed to inhibit cytolysis.
Furthermore, we found that a proper combination of the calcium ionophore
ionomycin, and the protein kinase C activator phorbol 12-myristate 13-acetate
(PMA), inhibits glucocorticoid-induced apoptosis {IwaTa et al. 1993). Thus, we
suggested that an early increase in [Ca?*] is neither induced by glucocorticoids
nor responsible for glucocorticoid-induced apoptosis in thymocytes (Isexi et al.
1993). By fluorocytometric analysis, Deckers et al. (1993) detected an elevation of
[Ca?], in methylprednisolone-treated murine thymocytes 3-6 h after addition of
the glucocorticoid and suggested that the elevation of [Ca**] is not involved in the
induction of the apoptosis. Thus, [Ca?*] may increase somehow after the cells are
cornmitted to apoptosis. The measurement of [Ca?*], in most of the experiments
depends on the loading of the cells with a fluorescent Ca?* chelating agent. The
loading, however, often disturbs the cell's functions and sometimes results in cell
death. A more improved monitoring system for [Ca**], is required for determining
the role of [Ca?], in the later stage of glucocarticoid-induced apoptosis.

Extensive DNA strand breaks caused by oxidative stresses induce the
activation of poly(ADP-ribose) synthetase in cells. The enzyme utilizes NAD as
substrate and depletes NAD and ATP from the cells. Inhibitors of poly(ADP-
ribose) synthetase prevent oxidant-induced cell lysis probably by preventing the
depletion of NAD and ATP, but they do not prevent the DNA strand breakage
(SCHRAUFSTATTER et al. 1986). Similarly, 3-aminobenzamide, a potent inhibitor of
poly(ADP-ribose) synthetase, effectively prevents glucocorticoid-induced
thymocyte lysis, but it does not prevent the DNA strand breakage (HosHino et al.
1993). Thus, ATP depletion caused by glucocorticoids, through the induction of
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DNA fragmentation and the activation of poly(ADP-ribose) synthetase, may result
in the inhibition of Ca**-ATPases and an increase in [Ca®*],.

Originally apoptosis was defined morphologically, but DNA fragmentation
has been often used as a major indicator of apaptosis. CoHeN et al. (1992),
however, dissociated some of the key morphological changes of apoptosis, such
as heterochromatin condensation, from internucleosomal DNA fragmentation by
treating thymocytes with glucocorticoid and Zn?*. The dissociation was further
confirmed in isolated liver nuclei treated with Ca?* and Mg?* in the presence of
Zn?** (Sun et al. 1994). Brown et al. (1993) found that Zn?* inhibits cleavage of DNA
into oligonucleosomal fragments but does not prevent the cleavage of DNA into
high molecular weight fragments. Thus, key enzymes other than the Ca?*/Mg?*-
dependent endonuclease appear to be involved at the earliest stages of induction
of apoptosis by glucocorticoids.

It has been suggested that in CEM-C7 human lymphocytes glucocorticoid-
induced DNA cleavage and cytolysis do not involve a Ca?*-requiring mechanism
(ALNEMRI and Litwack 1990; Bansal et al. 1990). In T cell hybridomas, we have
shown that glucocorticoid-induced apoptosis does not accompany early mobiliza-
tion of [Ca?*], and that the apoptosis is not inhibited by EGTA but is inhibited by
ionomycin with or without PMA (Isexi et al. 1991).

2.2 Involvement of Ca**-Independent Protein Kinase C

Glucocorticoid-induced apoptosis in murine thymocytes appears to be dependent
on protein kinase C (PKC), since PKC inhibitors inhibit glucocorticoid-induced
DNA fragmentation and cytolysis in murine thymocytes (OJepa et al. 1990; IwaTA
et al. 1994). PKC is a family of closely related enzymes, consisting of Ca?*-
dependent (PKC-o,, -1, -B II, and -y} and Ca**-independent (PKC-§, -g, -n (L), -0, -C,
and -A) isozymes. We found that glucocorticoid selectively induces an increase in
Ca?*-independent PKC activity in the particulate fraction of immature thymocytes
but not in that of mature T cells. The increase and the apoptosis was inhibited by
actinomycin D, cycloheximide, or the GR antagonist RU 38486, Immunoblotting
studies revealed the selective translocation of PKC-e from the cytosolic fraction
to the particulate fraction upon glucocorticoid treatment. Thus, glucocorticoid-
induced apoptosis in immature thymocytes appears to involve GR-mediated
activation of PKC-e through de novo synthesis of macromolecules (lwaTta et al.
1994).

Protein dephosphorylation may be also a essential step for glucocorticoid-
induced apoptosis. We found that okadaic acid, a potent inhibitor of protein
phosphatase 1 and 2A, inhibits glucocorticoid-induced apoptosis in T cell
hybridomas (OHoka et al. 1993). The okadaic acid-sensitive step appeared to be
after the translocation of GR and the expression of the genes controlled by
glucocorticoid response elements. However, the effect of okadaic acid on murine
thymocyte apoptosis was hard to assess, as it inhibited glucocorticoid-induced
DNA fragmentation but enhanced cytolysis in thymocytes.
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3 The Role of Glucocorticoids in Thymic Selection

The major population of glucocorticoid-sensitive thymocytes is immature and
double positive (CD4*CD8*). These cells constitute approximately 80% of the
total thymocytes (Huco et al. 1991). It is known that the vast majority of double
positive cells is destined to die within the thymus after a short life-span (EcerToN
et al. 1990), whereas some of these cells appear to survive and differentiate into
single-positive cells and to be exported from the thymus. The T cell repertoire is
molded by thymic selection that is based on the regulation of apoptosis in each T
cell clone at its double positive stage. The peak concentrations of glucocorticoid
hormones (0.1-1 uM) in the plasma of a normal mouse or rat can induce death in
its double positive thymocytes in vitro (WvLLie 1980; Coren and Duke 1984; Iwata
etal. 1991). Therefore, it appears that immature T cell clones which are positively
selected should be protected from glucocorticoid-induced death. It is likely that
the clonal selection in the thymus is dependent on the affinity or avidity of the T
cell receptors (TCRs) to self MHC-encoded molecules with self antigens. Indeed,
in TCR-transgenic mice, TCR antagonist peptides, or low concentrations of the
antigen peptide recognized by the transgenic TCR in combination with MHC
molecules, can mediate positive selection, whereas high concentrations of the
antigen peptide result in thymocyte deletion (negative selection; ALLEN 1994).

3.1 Positive Selection of Thymocytes

We have previously found that cross-linking of TCR/CD3 molecules with a
specific antibody at a proper concentration rescued normal mouse thymocytes
from glucocorticoid-induced apoptosis in vitro {lwata et al. 1991). Thus, we have
proposed a hypothesis that positive selection of T cell clones is based on the
inhibition of glucocorticoid-induced apoptosis in thymocytes by a proper TCR/
CD3-mediated signal (lwata et al. 1991). Depending on our hypothesis, it may be
possible to analyze the positive selection signals in vitro.

CARRERA et al. (1992) have suggested that signal transduction through TCR
and other molecules is involved in positive selection. It is evident that not only
TCR engagement but also other molecular interactions are required for effective
cell-cell interaction and signaling during T cell ontogeny. CD4, CD8, and LFA-1/
ICAM-1 molecules are known to play particularly important roles in development
and/or selection of thymocytes (MacDonaLD et al. 1988; RamspeLL and FowLKes
1989; FiNe and KruisBeek 1991). We found that the inhibitory effect of anti-CD3 on
glucocorticoid-induced death was significantly enhanced or stabilized by
costimulation via LFA-1 (Fig. 1), while, with anti-CD3 alone, the extent of the
inhibition and the optimal dose of anti-CD3 for inhibition varied from experiment
to experiment, as we described before {lwata et al. 1991). Costimulation via CD4
or CD8 may also enhance or modify TCR/CD3-mediated signals. PunT et al. (1993)
have shown that treatment of the fetal thymus with a combination of anti-TCR-B
and anti-CD4 antibodies dominantly induced CD4*CD8" thymocytes.
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The protective effect of the TCR/CD3-mediated stimulation was mimicked
by a combination of ionomycin and PMA, but ionomycin or PMA alone failed to
inhibit glucocorticoid-induced DNA fragmentation and cytolysis (lwata et al.
1993). Thus, a PKC isozyme(s) other than PKC-e may be involved in the protective
signal. In murine T cell hybridomas, we (lwaTa et al. 1991) and ZACHARCHUK et al.
(1990) independently found that TCR/CD3-mediated stimulation and glucocorti-
coids are mutually antagonistic in the induction of apoptosis. Our subsequent
study (Iseki et al. 1991) suggested that theTCR/CD3-mediated stimulation in T cell
hybridomas involves an elevation of [Ca®*] and the activation of PKC. The
combination of ionomycin and PMA mimicked the effect of the TCR/CD3-
mediated stimulation. Shi et al. (1992) suggested that inhibition of the activation-
induced apoptosis may be due to the inhibition of c-myc expression by
glucocorticoid. However, the precise mechanism remains to be elucidated.
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3.2 Negative Selection of Thymocytes

As an in vivo model of negative selection, some groups observed the death of
immature thymocytes in mice after an injection of an anti-CD3 or anti-TCR
monoclonal antibody. JonDaL et al. (1993) found that the GR antagonist RU 38486
inhibited anti-CD3-induced death in double positive thymocytes, suggesting that
ondogenous glucocorticoid is involved in negative selection. However, it may be
necessary to consider some other possibilities. For example, the injection of anti-
CD3 induces polyclonal activation of mature T cells and the systemic production
of various lymphokines, which disturb various systems in the body (FErRrRAN et al.
1990; ALeGre et al. 1990). Polyclonal activation of T cells by an injection of anti-
CD3 or Staphylococcus aureus enterotoxin B (SEB), a superantigen, appears to
induce an increase in blood glucocorticoid levels (GonzaLo et al. 1993). The
increase may also explain the controversial results in the effect of anti-CD3 on
thymocytes in vivo and in vitro. SHi et al. {1989) have shown that the anti-CD3-
induced apoptosis in murine thymocytes in vivo was inhibited by an injection of
cyclosporin A (CsA), while McCartHy et al. (1992) found that CsA and FK506 failed
to inhibit anti-CD3-induced DNA fragmentation in thymocytes in vitro. CsA and
FK506 are known to inhibit the TCR/CD3-mediated activation of mature T cells
including the production of lymphokines.

In T cell hybridomas, it has been shown that activation-induced death is
inhibited by glucocorticoids, but we do not have any direct evidence that gluco-
corticoids also inhibit activation-induced apoptosis in thymocytes or negative
selection.

It has been shown that cAMP analogs or agents that elevate cAMP potenti-
ate the apoptotic response to glucocorticoids (Durant 1986; McConkey et al.
1993). Endogenous glucocorticoids in concert with cAMP-elevating stimuli may
modulate thymic selection.

4 Effect of Glucocorticoids on Mature T Cells

The major population of thymocytes is sensitive to the apoptosis-inducing activity
of glucocorticoids, while the major population of mature peripheral T cells is
resistant to it. Glucocorticoid-sensitive and resistant thymocytes and mature T
cells have almost the same number of GR per cell, with similar binding properties
(Homo et al. 1980). Recently, PeranDones et al. (1993) have reported that a
significant population of murine splenic T cells succumbs to apoptotic death by
DEX at the same concentration range that induces apoptosis in thymocytes. They
have shown that cycloheximide failed to inhibit glucocorticoid-induced death;
thus, the mechanism of glucocorticoid-induced apoptosis in mature T cells is
different from that in immature T cells. Concordantly, GonzaLo et al. (1994) have
reported that linomide (quinoline-3-carboxamide), a immunomodulator with pre-
dominantly stimulatory properties, inhibited the depletion of splenic CD4* and
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CD8* cells induced by an in vivo treatment with DEX, but that linomide failed to
inhibit glucocorticoid-induced apoptosis in double-positive thymocytes.

In concert with naturally produced glueocorticoids in vivo, T cell growth
factors may play a role in modulation of the immune response. ZusiAGA et al.
(1992) have shown that IL-4 specifically rescues Th2 cells from glucocorticoid-
induced apoptosis, whereas IL-2 and IL-1 are ineffective in these cells. However,
IL-2 is the relevant rescue factor of glucocorticoid-treated Th1 cells. PKC activa-
tion appears to be involved in the IL-4- or IL-2-dependent protection of Th cells, as
a PKC inhibitor blocks the protective effect of the lymphokines (Zusiaca et al.
1992).

Glucocorticoids may also be essential cofactors for the superantigen-driven
deletion of T cells in vivo. GonzaLo et al. (1993) have shown that an injection of the
VB8-specific superantigen SEB into a mouse induces an increase in circulating
corticosterone levels, and that an administration of RU 38486 abolishes the early
deletion of VB8-expressing spleen cells detectable 12 h after the injection of SEB.

5 Inhibition of Apoptosis by Glucocorticoids

Under certain conditions, glucocorticoids inhibit apoptosis, as is observedin T cell
hybridomas. Glucocorticoid hormones appear to be involved directly or indirectly
in the survival of the granule cells in the rat hippocampal dentate gyrus,
Adrenalectomy induces apoptosis in these cells, while apoptosis is not induced in
rats that are maintained on corticosterone in saline (SLoviTer et al. 1993).
Glucocorticoids administered to various mammals at midgestation stage
inhibit complete formation of the secondary palate in the fetus. It is partly
because glucocorticoids inhibit the programmed cell death in the medial epithelial
cells in the fetal shelves. In normal development, the palatal shelves grow from
the maxillary process in both sides until the apposing epithelia into contact at the
midline. The medial epithelial cells then undergo a programmed cell death, and
the two shelves fuse into a single tissue, the secondary palate, which separates
the oral and nasal cavities (PRATT et al. 1984). GurTa et al. (1984) have shown that
DEX itself or phospholipase A, inhibitory proteins obtained from DEX-treated
thymocytes or embryonic palates inhibited programmed cell death in the medial
edge epithelium of single mouse embryonic palatal shelves in culture. The
capacity of glucocorticoids to induce cleft palate and thymocyte apoptosis is
correlated with their anti-inflammatory potency (Goibman 1984) (Fig. 2). It is
known that at least some of the anti-inflammatory effects of glucocorticoids can
be explained by the inhibition of oxygenated arachidonate metabolite release.
Glucocorticoid-induced inhibition of arachidonate release may be related to
glucocorticoid-induced cleft palate (GoLoman 1984), whereas PraTT et al. (1984)
concluded that the regulation of arachidonate release is not directly involved.
Susceptibility to both glucocorticoid-induced cleft palate and glucocorticoid-
induced thymolytic activity appears to be controlled by genes that map within the
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Fig. 2. Effects of various steroids on DNA fragmentation in murine thymocytes. BALB/c thymocytes
were cultured with graded concentrations of various steroids for 18 h. Cortisone, which exerts anti-
inflammatory activity after it is converted to active forms such as hydrocortisone in vivo, failed to affect
thymocyte apoptosis in vitro. The sex steroids, except high concentrations of progesterone, hardly
induced DNA fragmentation. Closed circles, dexamethasone; open circles, hydrocortisone; closed
squares, corticosterone; open squares, cortisone; closed circles, dotted line, progesterone; open
triangles, dotted line, B-estradiol; closed triangle, dotted line, testosterone

I region of the H-2 complex and involve genetic complementation (PLa et al. 1976;
Tyan 1979; Bonner 1984; GoLbman 1984).

6 Effect of Gonadal Steroids

Testosterone and B-estradiol hardly affect apoptosis in thymocytes and T cell
hybridomas in vitro (Fig. 2) {iwata et al. 1991). Barr et al. (1982) found, however,
that dihydrotestosterone and estradiol delete the same cortical population of
thymocytes as glucocorticoids do in mice. As they could not find receptors for
estradiol of dehydrotestosterone in this cortical population, they suggested that
the sex steroids bind to other thymic elements, possibly thymic reticular epithelial
cells, which may in turn act secondarily on cortical thymocytes within the thymus.

The survival of some types of cells is dependent on sex steroids. Deprivation
of testosterone induces apoptosis in epithelial cells in the ventral prostate in rats,
and the apoptosis requires RNA and protein synthesis (LEGeR et al. 1987; SALTZMAN
et al. 1987). The regression of human mammary cancers following estrogen
ablation is partly due to the induction of apoptosis (Kyprianou et al. 1991).

In mammals, the embryogenesis of the urogenital tract is identical in males
and females during the first phase of gestation (WiLson et al. 1981). Only after
the onset of endocrine function of the testis do anatomic and physiologic
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development of male and female embryos diverge. Testosterone and Millerian-
inhibiting substance appear to play critical roles in these processes partly through
the control of apoptotic cell death.

Sexual dimorphism can be seen also in the nervous system. In the absence
of gonadal secretions, the nervous system also develops in a primarily female
fashion (BreepLove 1992). The spinal nucleus of the bulbocavernosus contains
many more motoneurons in adult male rats than in females. Noroeen et al. (1985)
have suggested that androgens attenuate normally occurring cell death in the
motoneurons during a critical period of the development. By contrast, the
anteroventral nucleus of the preoptic area is larger and more densely cellular in
females than males because androgen induces apoptosis in neurons in the
nucleus (Murakami and Aral 1989). In many songbird species, the male sings and
the female does not. The vocal control regions of the male brain are five to six
times larger in volume than those of the female brain. Konisui and Akutacawa
(1985) reported that one of the forebrain vocal control regions, the robust nucleus
of the archistriatum, undergoes ontogenetic cell death that is more pronounced in
females than males. Testosterone, which can be converted to estradiol in the
brain or, surprisingly, estrogen itself apparently prevents cell death.

7 Effect of Retinoic Acids on Apoptosis

Ligands of other members of the steroid receptor superfamily are also involved in
the regulation of apoptosis. It is well-known that thyroid hormones induce
massive programmed cell death and cell transformation in the tadpole tail at
metamorphosis.

All-trans retinoic acid (RA), a metabolite of vitamin A, is known to play an
essential role in embryonic development. RA also affects apoptosis in thymo-
cytes and T cell hybridomas (lwaTa et al. 1992). RA at near physiological concen-
trations (0.01-1 uM) significantly inhibits the induction of thymocyte apoptosis by
coimmobilized antibodies to CD3 and LFA-1 molecules, but enhances glucocorti-
coid-induced apoptosis. The inhibitory effect of RA might be correlated to the
finding that acquired immunological tolerance of foreign cells is impaired by a
vitamin A acetate-supplemented diet {(MaLkovsky et al. 1985). Apoptosis induced
in T cell hybridomas by TCR/CD3-mediated stimulation or by the combination of
ionomycin and PMA is also inhibited by RA at 0.1-10 uM. RA appears to interfere
with the apoptotic process at some point after its initiation stage (lwaTa et al.
1992). YanG et al. (1993) raised the possibility that retinoid X receptors (RXRs)
might take part in the RA effect, since they found that 9-cis-retinoic acid, which
binds to RXRs with high affinity in addition to binding to RA receptors, was
approximately tenfold more potent than RA.

There is a possibility that retinoid receptors may not be necessarily involved
in the inhibitory activity of RA. Buttke and Sanpstrom (1994) have reported that
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antioxidants such as glutathione and N-acetylcysteine (NAC) can inhibit activa-
tion-induced death in T cell hybridomas. The antioxidant N-(2-mercaptoethyl)-1,3-
propanediamine (WR-1065) protects thymocytes from apoptosis induced by
glucocorticoids, y-irradiation, and calcium ionophores (RamakrisHNAN and CATRAVAS
1992). As RA is also known to have antioxidant potential, RA might inhibit
apoptosis by reducing the oxidative stress. Hockensery et al. (1993) have reported
that treatment of T hybridoma cells with DEX resulted in quantifiable lipid
peroxidation and that overexpression of Bcl-2 suppressed the lipid peroxidation
and the glucocorticoid-induced cell death. As Bcl-2 protected cells from H,0,-and
menadione-induced oxidative deaths, they proposed a model in which Bcl-2
regulates an antioxidant pathway at sites of free radical generation. Interestingly,
either A23187 or DEX enhances the expression of glutathione S-transferase
(GST) gene and apoptosis in murine thymoma cells (FLOMERFELT et al. 1993).
GST is an antioxidant defense enzyme. As GST gene expression was also
elevated in the regressing prostate of androgen-ablated rats (SaLTzman et al.
1987), FLomerrELT et al. (1993) suggested that activation of GST gene expression
is a likely indicator of oxidative stress, rather than a required step in the pathway.
Considering that RA enhances glucocorticoid-induced apoptosis in thymocytes,
RA- and glucocorticoid-dependent regulation of oxidant-redox metabolism in
apoptosis still remain to be elucidated.

8 Conclusions

Induction or inhibition of apoptosis is one of the physiologic roles of steroids. For
some types of cells, steroids are physiological survival factors or trophic factors at
certain periods of ontogeny. Among steroid-dependent apoptosis, thymocyte
death induced by glucocorticoids and epithelial cell death in the ventral prostate
induced by androgen depletion have been most intensively studied with respect
to their biochemistry and molecular biology. The mechanism of glucocorticoid-
induced apoptosis in thymocytes and its inhibition may have some relation to the
mechanism of thymic selection that molds the T cell repertoire. The blood
glucocorticoid hormone level has a circadian rhythm. As the peak concentrations
can induce apoptosis in immature thymocytes in vitro, especially in mouse or rat
cells, the immature T clones that are positively selected in the thymus should
receive protective signals through the TCR and accessory molecules at least
against the glucocorticoid effect. Glucocorticoids appear to activate Ca**-inde-
pendent PKC-g, while the protective signals can be provided by a proper increase
in [Ca?*], and proper activation of PKC, probably other than PKC-e. The molecular
mechanisms of these events are, however, still largely unknown. Depending on
the glucocorticoid effect, in vitro experimental modeling may help to discover the
essential signals for clonal selection in thymocytes.
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1 Introduction

Calcium concentration control is critical to cell viability and function. Energy-
dependent Ca** transport systems located in the plasma membrane, endoplas-
mic reticulum, mitochondria, and nucleus maintain a cytosolic Ca?* concentration
(about 100 nM) that is roughly three orders of magnitude lower than that present
in the extracellular millieu {(about 1 mM). During cellular activation the presence
of this gradient is exploited, and controlled elevations in the cytosolic Ca? level
mediate the effects of hormones and other growth stimuli. However, damage to
the cell can impair the proper function of Ca?* homeostatic mechanisms and lead
to uncontrolled, sustained Ca?* increases that mediate cell killing in many patho-
logical situations (Orrenius et al. 1989). Thus, Ca?* can promote proliferation or
death depending upon the cellular context.

The implication of apoptosis as the mechanism of cell deletion in both
physiological and pathological circumstances has led to growing interest in the
biochemical and molecular control of the process. Accumulating evidence indi-
cates that Ca®* plays a central role in regulating apoptosis in many tissues. This
chapter will summarize these findings.
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2 Calcium-Dependent Endonuclease Activation

Chromatin condensation is one of the most characteristic morphological features
of apoptosis (WyLLE et al. 1980). This change can be induced by Ca?* in isolated
nuclei (Sun et al. 1994) and has been linked to the activation of an endogenous
endonuclease that cleaves host chromatin into oligonucleosome length DNA
fragments (WyLLie 1980; WvLLIE et al. 1984; Arenps et al. 1990). Such DNA
fragmentation gives rise to a ladder pattern on agarose gels (WyLLie 1980) and
serves as the most characteristic biochemical feature of the process.

Prior to the implication of oligonucleosomal DNA fragmentation in apoptosis,
several investigators noted the presence of an enzyme activity capable of
generating such fragments in preparations of isolated nuclei. HewisH and
Burcovyne (1973), studying the Ca®* requirement for activation of transcription in
vitro, demonstrated that concentrations optimal for RNA synthesis also stimu-
lated oligonucleosomal DNA cleavage. The activity was found in a variety of
tissues. Later work by VanDerBILT et al. (1982) with isolated liver nuclei demon-
strated that the enzyme possessed a strict Ca?*/Mg?* requirement and could be
inhibited by polyamines (spermine, spermidine). Following Wyllie's demonstra-
tion of oligonucleosomal DNA fragmentation in apoptotic thymocytes, CoHen and
Duke (1984) and WyLLIE et al. (1984) presented evidence that the Ca?*-dependent
endonuclease was responsible for DNA cleavage in intact apoptotic cells. More
recently, Kyprianou et al. (1988) implicated a Ca®*-dependent endonuclease in
DNA fragmentation during apoptosis in the prostate induced by androgen with-
drawal. Together, these results clearly establish the presence of Ca**-dependent
endonuclease activity in nuclei from various tissue sources and strongly suggest
that its activation mediates DNA fragmentation in many examples of apoptosis.

Several candidate Ca**-dependent endonucleases have been purified. Gaipo
and CipLowskl {1990) reported the purification of an 18 kDa enzyme from rat
thymocyte nuclei whose biochemical characteristics are consistent with those
exhibited by the apoptosis endonuclease in intact cells. Microsequence analysis
has revealed its identity with the 18 kDa cyclosporin A binding protein cyclophilin,
and experiments with recombinant cyclophilin confirm that it possesses intrinsic
endonuclease activity (personal communication). ARenps et al. (1990) have isolat-
ed another, higher molecular weight protein from apoptotic thymocytes that
they have linked to the chromatin condensation observed in whole apoptotic
cells. Finally, PerrscH et al. (1993) presented evidence that deoxyribonuclease |
(DNase 1), an enzyme that is also found in serum and several other tissues, is
involved in DNA cleavage in rat thymocytes. Thus, at least three different Ca?*-
dependentenzymes have been isolated that could mediate DNA fragmentationin
apoptotic cells. Whether redundant Ca**-dependent pathways of DNA cleavage
actually exist in cells requires further study.

We have shown that addition of adenosine triphosphate (ATP) and nicotine
adenine dinucleotide (NAD*) to preparations of isolated nuclei allows DNA
fragmentation to occur at submicromolar Ca** concentrations (Jones et al. 1989).
The ATP requirement is linked to the function of a nuclear Ca?* uptake system
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capable of raising intranuclear free Ca?* levels and maintaining a concentration
gradient between the nuclear matrix and the extranuclear millieu {the cytoplasm
in intact cells) (Nicotera et al. 1989). The pump is also dependent on the Ca*
binding protein calmodulin. Preliminary evidence suggests that NAD* is required
for activation of poly(ADP-ribose) polymerase (Jones et al. 1989), an enzyme that
has been implicated in the response to DNA damage. Supporting its involvement
in the regulation of apoptosis, previous work has suggested that the Ca?*-
dependent endonuclease is a substrate for this enzyme (YosHiHARA et al. 1975),
although how ADP-ribosylation modulates its activity is unclear.

Although Ca?* appears critical in the regulation of chromatin degradation in
many systems, calcium-independent endonuclease(s) may mediate apoptotic
DNA fragmentation in other models. For example, although glucocorticoid-
induced apoptosis in the human CEM (T cell acute lymphoblastic leukemia) cell
line clearly involves oligonucleosomal DNA fragmentation, endonuclease activa-
tion does not occur in isolated CEM nuclei incubated in the presence of Ca** and
Mg?* (ALNemal and Litwack 1990). This could be due to localization of the enzyme
in another subcellular compartment or to the involvement of a different enzymatic
activity. Supporting the latter, Barry and Eastman (1993) have implicated deoxyri-
bonuclease Il {DNase Il) in the apoptotic DNA fragmentation induced in Chinese
hamster ovary (CHO) cells by various chemotherapeutic agents. This 40 kDa
enzyme is dependent upon Mg?* but not Ca?* and is active at low (acidic) pH. At
least a fraction of DNase || may be localized to nuclei, consistent with a role in
DNA fragmentation. Ongoing work is aimed at determining whether the pH levels
required for DNase |l activation are reached in apoptotic cells.

3 High Molecular Weight DNA Fragmentation
in Apoptosis

Scattered throughout the literature are notable exceptions to the idea that
chromatin condensation is invariably linked to oligonucleosomal DNA fragmenta-
tion. For example, OBERHAMMER et al. (1993) have shown that, although typical
apoptotic chromatin condensation can be demonstrated in hepatocytes treated
with TGF-B and in DU-145 prostatic carcinoma cells treated with etoposide,
oligonucleosomal DNA fragmentation cannot be detected. Similarly, CoHeN
et al. (1992) have reported that zinc is capable of blocking oligonucleosomal
DNA fragmentation but not chromatin condensation in glucocorticoid-treated
rat thymocytes. Instead, both groups have demonstrated that apoptosis in
these models is associated with cleavage of chromatin into large (50-300
kilobase) DNA fragments (OerHaMMER et al. 1993; Brown et al. 1993). Since
these observations were published a number of other groups have reported
similar findings in other cell types. Thus, the formation of large DNA fragments
may be another characteristic biochemical marker for apoptosis in certain
cell types.
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Although the mechanisms underlying the formation of the large DNA
fragments remain unclear, it has been suggested that they may result from
sequential disorganization of chromatin structure occurring as a consequence of
apoptosis, leading to the release of loop domains that are subsequently vulnera-
ble to endonuclease attack (FiLipski et al. 1990; ZHivoTovsky et al. 1994). Fiurski and
coworkers have proposed that higher order folding of chromatin involves the
formation of 50 kb loops that are wound in groups of six into structures termed
rosettes; the sizes of these structures correspond well with the sizes of the large
fragments produced within apoptotic cells. It is therefore possible that changes in
chromatin structure regulate endonuclease activation and apoptosis by altering
substrate availability, an idea that is under investigation at present. In addition, it
will be interesting to determine whether formation of the large fragments plays a
direct role in promoting chromatin condensation.

The biochemical characteristics of the enzyme(s) responsible for forming the
large DNA fragments are also still poorly defined, but preliminary results support
a central role for Ca%" in this process when studied in human thymocytes
(ZrivoTovsky et al. 1994). Thus, the large fragments can be induced by Ca*
ionophore or thapsigargin treatment in whole cells. Moreover, incubation of
isolated nuclei in the presence of Ca** also leads to their formation (FiLieski et al.
1990). Therefore, it appears that the large DNA fragments may be produced by
the same enzymatic activity responsibie for the subsequent oligonucleosomal
DNA fragmentation and that sequential changes in chromatin structure alone are
what dictate its substrate specificity. Support for this notion comes from the
observation that zinc, calcium chelators, protease antagonists, and the endonu-
clease inhibitor aurintricarboxylic acid can all block the formation of large DNA
fragments in human thymocytes and isolated human thymocyte nuclei (FiLipski
etal. 1990; ZnivoTovsky et al. 1994), although Cohen and coworkers have suggest-
ed that the activities responsible for production of the large DNA fragments and
the subsequent oligonucleosomal DNA fragmentation may be distinguished on
the basis of differential sensitivity to inhibition by zinc in rat thymocytes (Brown
etal. 1993). Nonetheless, the observation that all of the morphological (chromatin
condensation, reduction in cell volume) and biochemical (production of large
chromatin fragments, oligonucleosomal DNA fragmentation) features of apopto-
sis can be induced in human and rat thymocytes by thapsigargin suggests that the
increase in intracellular Ca?* can account for all of the events observed.

4 Calcium Signaling in Apoptosis

Early work by Kaiser and Edelman provided the first evidence that increases in
intracellular Ca?* might be involved in triggering apoptosis. Working with imma-
ture thymocytes, the authors showed that glucocorticoid-stimulated apoptosis is
associated with Ca* influx (Kaiser and Epetman 1977) and that the cytolytic
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process can be mimicked by treating the cells with Ca** ionophores (Kaiser and
EpeLman 1978). We have since confirmed that glucocorticoids induce cytosolic
Ca?* increases in thymocytes (McConkey et al. 1989a). WvLLE and coworkers
showed that Ca?* ionophores induce many of the morphological changes and
endogenous endonuclease activation in thymocytes that are typical of apoptosis
(Wyllie et al. 1984). Rapid, sustained Ca?* increases precede the cytolysis of the
targets of cytotoxic T lymphocytes (ALLBRITTON et al. 1988) and natural killer (NK)
cells (McConkey et al. 1990). In developing T lymphocytes high affinity engage-
ment of the T cell receptor induces apoptosis (SmiTH et al. 1989; SHi et al. 1989;
McCoNkey et al. 1989b; MurpHy et al. 1990) that is preceded by Ca* increases
{(McConkey et al. 1989b; Nakagama et al. 1992). Calcium increases have since been
observed in many other examples of apoptosis as well (PeroTT et al. 1990; ZHENG
et al. 1991; McConkey et al. 1991; BeLLomo et al. 1992).

Direct evidence that Ca?* increases are necessary for apoptotic endonucie-
ase activation and cell death has been obtained from experiments with intracellu-
lar Ca?* buffering agents and extracellular Ca?* chelators. We (McConkey et al.
19894, b, 1990, 1991; Aw et al. 1990; PerotTi et al. 1990; BeLLomo et al. 1992) and
others (STory et al. 1992; RoeerTson et al. 1993} have shown that intracellular Ca?*
buffers and extracellular EGTA can inhibit both DNA fragmentation and death in
apoptotic cells, suggesting that sustained Ca?* elevations are required for both
responses. Furthermore, increases in calmodulin expression are linked to apopto-
sis in glucocorticoid-treated thymoma cells (Dowb et al. 1991) and in the prostate
following withdrawal of androgen (Furuya and Isaacs 1993), and we and others
have shown that calmodulin antagonists can interfere with apoptosis in some of
these systems (McConkey et al. 1989a; Dowp et al. 1991). Independent evidence
for the involvement of Ca?* influx has come from studies with specific Ca?*
channel blockers, which abrogate apoptosis in the regressing prostate following
testosterone withdrawal (MaRTIKAINEN and Isaacs 1990) and in pancreatic B-cells
treated with serum from patients with type | diabetes (JUNTT-BERGGREN et al.
1993). Thus, elevations of the cytosolic Ca?* level appear to represent a relatively
common trigger for apoptosis in cells of diverse tissue origins.

Calcium-dependent mechanisms also appear to play important roles in
promoting apoptosis in the brain. Apoptosis has been proposed as the mecha-
nism underlying neuronal death in Huntington's and Alzheimer's diseases
(ForLoni et al. 1993), ischemia, and glutamate toxicity (CHol 1992). The latter is
somewhat similar to activation-induced cell death in T lymphocytes, as it is
triggered by a surface receptor (the NMDA receptor) and is mediated by eleva-
tions in the cytosolic Ca?* concentration. Cell-permeant Ca** chelators (TymiaNski
et al. 1993) or overexpression of the Ca?* binding protein calbindin (MaTTsoN et al.
1991) block NMDA receptor-mediated cell killing, as is true in T cells treated with
T cell receptor agonists, glucocorticoid hormones, or calcium ionophores {Dowb
et al. 1992). Calcium may act directly by promoting endonuclease activation in
neurons. In addition, Ca** may also promote the function of nitric oxide synthase
(Dawson et al. 1991). This in turn can lead to the accumulation of nitric oxide, a
second messenger that has also been implicated in triggering apoptosis in
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several different experimental systems (CHoi 1992; ALsina et al. 1993; Xie et al.
1993).

In some model systems elevations of the cytosolic Ca** level have been
shown to block apoptosis. Hematopoietic cells dependent upon interleukin 3
(IL-3) for their growth and survival die by apoptosis when the cytokine is removed.
Robricuez-TarbucHy and colleagues have shown that the calcium ionophore
A23187, which triggers apoptosis in thymocytes (WvLLIE et al. 1984), suppresses
apoptosis at similar concentrations in |L-3-dependent hematopoietic progenitor
cells (Robricuez-TARDUCHY et al. 1990,1992). The effect of ionophore is dependent
upon the production of IL-4 which in turn promotes survival. Interestingly, isolated
nuclei from these cells lack Ca?*-dependent endonuclease activity (Ropricuez-
TarbucHy et al. 1992). This observation supports the idea that multiple chromatin
cleavage mechanisms exist within different types of mammalian cells and that
the response to elevated Ca?* may be dictated by tissue-specific genetic pro-
gramming. The observation that nerve growth factor (NGF)-deprived neurons can
be saved from apoptosis by depolarization (Ebpwarps et al. 1991; MaRrTIN et al.
1992), which induces Ca** increases in the cells, strengthens this conclusion.
Whether an acidic nuclease mediates DNA fragmentation in IL-3-dependent cells
has not been determined, although the observation that phorbol esters protect
the cells via a mechanism that involves intracellular alkalinization suggests that
this may be the case (RAJoTTE et al. 1992).

5 Role of Cyclosporin A

An important aim of ongoing research is to define the targets of Ca?* in apoptotic
cells. It is conceivable that elevations in the cytosolic Ca?* level might promote
apoptosis by directly stimulating the enzymatic activities of proteases, phos-
pholipases, and/or endonucleases responsible for mediating cellular demise in
apoptosis. Alternatively, Ca® rises may activate intracellular signal transduction
pathways involving protein kinases and/or phosphatases that could regulate
downstream effectors of apoptosis via posttranslational modification. The obser-
vation that calmodulin antagonists can interfere with apoptosis supports this
interpretation, as calmodulin is a well-known mediator of Ca?* signal transduction
pathways.

The immunosuppressive drugs cyclosporin A (CsA) and FK-506 are known to
interfere with a Ca?*-sensitive signal transduction pathway in B and T lym-
phocytes. In the latter, the effects are due to interference with critical elements
within the IL-2 promoter, resulting in an inhibition of IL-2 production. The drugs act
by binding to small polypeptides, cyclophilin A and FK506-binding protein (FKBP),
known as immunophilins, which possess peptidyl-prolyl isomerase activities.
The three-dimensional structures of CsA-cyclophilin and FK506-FKBP complexes
have recently been solved (Ringe 1991 and references therein), and although they
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are in general distinct, certain aspects of their structures are quite similar,
particularly a hybrid surface created in each case by the drug-immunophilin
interaction. Interaction of the drug with its receptor is absolutely required for
immunosuppression. Evidence that inhibition of immunophilin peptidyl-prolyl
isomerase activity is not involved in the drugs’ actions has been obtained from
experiments with 506BD and rapamycin, inactive analogs of FK506 which inhibit
peptidyl-prolyl isomerase activity without suppressing T cell activation (Bierer
et al. 1990).

Recent work has demonstrated that CsA-cyclophilin and FK506-FKBP com-
plexes block T cell activation by sequestering the Ca®*/calmodulin-dependent
protein phosphatase calcineurin (Liu et al. 1991). This is accomplished by direct
binding to the phosphatase, resulting in an inhibition of its enzymatic activity. It
has been suggested that the conserved surfaces formed by the immuno-
suppressant/immunophilin interaction may represent the complex contact sites
for calcineurin. Calcineurin function appears to be required for the translocation of
a component of the transcription factor, nuclear factor of activated T cells (NFAT),
from the cytoplasm to the nucleus (FLanagan et al. 1991), an effect that appears
sufficient to explain the inhibitory actions of CsA and FK506 on the |L-2 promoter.
Further evidence that inhibition of calcineurin function is solely responsible for
mediating the inhibitory effects of CsA and FK506 comes from the observation
that overexpression of calcineurin makes Jurkat T cells resistant to CsA action
(Cupstone and CRABTREE 1992).

Studies with CsA and FK506 suggest that calcineurin is one target for Ca?*
in apoptosis. SHI et al. (1989) demonstrated that CsA could block activation-
induced cell death in T cell hybridomas in vitro and thymocyte apoptosis in
response to anti-CD3 antibody treatment in vivo. However, not all pathways of
apoptosis are affected by the drugs: Although CsA and FK506 can almost
completely inhibit DNA fragmentation induced by anti-CD3 antibodies, Ca?*
ionophores, or thapsigargin in T cell hybridomas, they have no effect on
endonuclease activation induced by the zinc chelator TPEN or the synthetic
glucocorticoid methylprednisolone (S. Jiang, S.C. Chow, S. Orrenius, unpub-
lished observation). Significantly, the FKBP ligand rapamycin, which interferes
with a different signal transduction pathway but does not inhibit calcineurin, has
no effect on DNA fragmentation observed in response to any of these treat-
ments. Thus, CsA and FK506 may specifically and selectively inhibit some of the
important Ca?*-dependent pathways of apoptosis in certain T cell model systems.
Together with the observations discussed above, these results indicate that
calcineurin and perhaps NFAT are involved in at least some of the apoptotic
pathways operative in thymocytes. Intriguingly, CsA and FK506 may also inter-
fere with certain apoptotic pathways in neurons, where their mechanism of
action appears to involve inhibition of calcineurin-deperident dephosphorylation
and activation of nitric oxide synthase (Dawson et al. 1993). Whether CsA and
FK506 have similar effects in other tissues requires further investigation.
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6 Summary and Future Directions

A large body of evidence supports the idea that Ca?* plays an important role in
regulating apoptosis. A schematic model illustrating potential targets for Ca* in
apoptosis is presented in Fig. 1. Studies on the endonuclease(s) involved suggest
that many cell types constitutively express a Ca?*-dependent activity that by all
available biochemical criteria is a strong candidate for the enzyme that mediates
oligonucleosomal DNA cleavage in intact apoptotic cells. Sustained elevations in
the cytosolic Ca?* level are observed in diverse cell types undergoing apoptosis,
and it is possible that they directly trigger endogenous endonuclease activation,
perhaps via a mechanism that involves the function of a nuclear Ca®* pump.
Alternatively, results from experiments with CsA suggest that Ca** may also
exert its effects in some model systems via activation of the Ca?*/calmodulin-
dependent protein phosphatase calcineurin. Results obtained with Ca?* buffering
agents, Ca®* chelators, and Ca** channel blockers confirm that these increases
are required for both endonuclease activation and subsequent cell death. In some
model systems Ca?* appears either not to be involved in apoptosis regulation or
it inhibits the process, and the involvement of alternative endonuclease(s) has
been proposed to explain these differences.

Further efforts are required to identify and clone candidate apoptosis endo-
nuclease(s) to directly test whether they are necessary for DNA fragmentation in
apoptotic cells by gene targeting. In addition, investigation into the potential
involvement of selective regulation of subcellular Ca?* localization in apoptosis,
including the potential involvement of Bcl-2 in these processes (Barry etal. 1993;
AnDJELIC et al. 1993), deserves additional attention. The possible involvement of
other Ca**-dependent processes, particularly protease activation, should reveal
additional targets of Ca?* action in apoptosis. Finally, identification of apoptosis-
regulating genes whose expression is controlled by Ca?* may help to reveal a
molecular basis for the Ca** dependency.

Endonuclease Phospholipase Protease
Activation Activation Activation
\ 2 R
Ca
Activation of Gene Chromatin
Protein Kinases Activation Unfolding

and Phosphatases

Fig. 1. Summary of the most likely targets for Ca?* in apoptotic cells, based on experimental data
available at present. For detailed explanation of these processes, see text
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1 Apoptosis

Apoptosis is a form of cell death critical for the normal development of multi-
cellular organisms (Kerr et al. 1972; WvyLLEE et al. 1980). It is characterized by
morphological and biochemical criteria consisting of: nuclear shrinkage, chroma-
tin condensation, cytoplasmic blebbing, and internucleosomal DNA fragmenta-
tion (Kerr et al. 1972; WyLLE et al. 1980; Coren and Duke 1992). As opposed to
other forms of cell death, apoptosis does not induce an inflammatory response.
There are a number of ways by which cell death by apoptosis can be induced,
including growth factor deprivation, cytokine treatment, antigen-receptor en-
gagement, cell-cell interactions, irradiation, and glucocorticoids (CoHen and Duke
1992). Within the immune system, the regulation of cell death appears to be
crucial for the prevention of autoimmune disease. Immature lymphocytes
are particularly susceptible to apoptosis, as 95% of thymocytes die in situ
during development. Self-reactive lymphocytes are eliminated from the immune
repertoire following engagement of their antigen-specific receptors. Thus, the
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process of clonal deletion by apoptosis allows for the elimination of self-reactive
lymphocytes without initiating an inflammatory response.

The process of apoptosis is conserved in virtually all complex organisms. In
recent years, much attention has been focused on the molecular mechanism of
apoptosis and a number of genes have been identified that regulate programmed
cell death (PCD) in both mammalian and nematode systems. The genetics of
apoptotic cell death are best worked out in the nematode C. elegans, where
the developmental fate of every cell is known. The C. elegans genes ced-3
and ced-4 are required for apoptosis to occur (ELLis and Horvitz 1986; Yuan and
Horvitz 1990), while ced9 functions as a suppressor (HENGARTNER et al. 1992).
Although a mammalian homologue for ced-4 has not yet been identified, the
interleukin (IL)-1B converting enzyme (ICE) has structural homology to ced-3
(Yuan et al. 1993). Overexpression of either ced-3 or the murine ICE gene induces
apoptosis in rat fibroblasts (Miura et al. 1993), suggesting that ICE may function
during mammalian development to cause apoptosis. Interestingly, the activity of
ICE is inhibited by a cowpox protein encoded by the crmA gene (Ray et al. 1992;
GacLIARDINI et al. 1994), indicating one mechanism viruses may have evolved to
regulate death in infected cells. Ced-9 is most homologous to the mammalian
gene bck2, but also shows homology to other members of the Bcl-2 family
(HenGARTNER and Horvitz 1994). In cedQ mutants it has been shown that human
bcl2 can reduce the number of PCDs in C. elegans (Vaux et al. 1992b; HENGARTNER
and HorviTz et al. 1994), suggesting that the mechanism of apoptosis controlled
by bck2 in human is the same as that in nematodes.

2 bcl-2

becl2 was initially described as the oncogene that was present in the immu-
noglobulin locus as a result of a translocation [t(14;18)] that is seen in human B cell
leukemias and lymphomas (TsuuimoTo et al. 1984; BakHasHi et al. 1985; CLeArY
et al. 1986; TsusimoTo and Croce 1986). Upon cloning of the normal bek2 gene it
was determined that the oncogenic form of the protein was identical to the
normal gene product (CHen-LEvy et al. 1989). Thus inappropriate expression of the
normal protein was the cause of tumor formation. The bck2 gene product is a 26
kDa membrane-associated protein that localizes to the mitochondrial mem-
brane and to the perinuclear membrane (Cren-Levy et al. 1989; Hockenbery et al.
1990; CHen-Levy and CLeary 1990; De Jong et al. 1992). In vitro analysis revealed
that bck2 was distinct from previously described oncogenes in that it did not
enhance the growth or proliferation of transfected cell lines (Nutez et al. 1990).
Upon closer inspection it was discovered that bck2 expression could enhance cell
survival in the absence of growth factors in some cells (Vaux et al. 1988; Nunez
et al. 1990). Normally, growth factor-dependent cell lines die rapidly in the
absence of growth factor through the process of apoptosis. In contrast, bcl2
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transfected cells remained in a quiescent state following growth factor
withdrawal but could be induced to proliferate by reintroduction of growth factor.
The ability of bef-2 to block this form of PCD sets it apart from other oncogenes in
that bck-2 expression can affect normal homeostasis by allowing cells destined to
die to survive instead of affecting the proliferation rate of the cell.

PCD represents the mechanism by which cell death occurs in response to a
wide range of conditions. The ability of bck2 to prevent a variety of dissimilar
causes of cell death has been tested. bck2 has been shown to function in many
systems, including cell death induced by nerve growth factor (NGF) withdrawal
(Garcia et al. 1992; ALLsorp et al. 1993; KanE et al. 1993), y-irradiation (SENTMAN
et al. 1991; Strasser et al. 1991a), and cancer chemotherapeutics (MiYASHITA
and Reep 1992; Oxmori et al. 1993; WaLton et al. 1993). Recently, genes such as
the oncogene c-myc, the tumor suppressor gene p53, and the Fas antigen have
all been shown to cause cell death. When ¢c-myc is ectopically expressed in
serum-starved fibroblasts it causes these cells to undergo apoptosis (BisSONNETTE
et al. 1992; Fanioi et al. 1992; WaanER et al. 1993). bci-2 is capable of preventing
the c-myc-induced cell death. p53 has been demonstrated to be necessary for
irradiation-induced cell death in thymocytes (CLaARkE et al. 1993; Lowe et al. 1993).
The wild-type homologue of p53is necessary for induction of PCD as demonstrat-
ed by the transfection of cell lines with a temperature-sensitive form of p53
(YonisH-RouacH et al. 1991). When cells are incubated at the permissive temper-
ature (37° C), the protein takes on the wild-type confirmation and the cells die.
Conversely, if cells are placed at the nonpermissive temperature (32.5° C) the p53
protein reverts to a mutant confirmation and the cells can survive. As seen with
c-myc-induced cell death, bck2 is capable of preventing p53-induced cell death
(Chiou et al. 1994). Wild-type p53-mediated apoptosis is also inhibited by the
adenovirus E1B gene which may have some structural similarities with bck2
(DesBas and WHiTe 1993). It has also been shown that engagement of the Fas
antigen induces apoptosis in a variety of murine cell lines transfected with the
human Fas gene (iToH et al. 1991). In addition, the lymphoproliferative disorder
associated with /or mice has been attributed to a defect in the Fas antigen
(WaTaAnABE-FUKUNAGA et al. 1992).-Cotransfecting murine cell lines with human Fas
and bcl-2 partially protected these cells from Fas-induced PCD, as more than 50%
of the double transfectants were still viable following incubation with anti-Fas
antibody (ItoH et al. 1993).

How the Bcl-2 protein functions to inhibit PCD is uncertain. Bcl-2 may block
the generation of reactive oxygen species which are produced during cell death
as a result of growth factor withdrawal (HockenseRy et al. 1993; KanE et al. 1993).
The actual mechanism of antioxidant activity and whether this is the only
mechanism of action of Bcl-2 remains to be determined. That Bcl-2 can block
PCD induced by a variety of signals suggests that Bcl-2 plays a central role in the
regulation of cell death from diverse signaling mechanisms.
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2.1 Bcl-2: A Role in B Cell Development

Since bcl2 was initially described as an oncogene active in B cells, its expression
and function has been widely studied in lymphocytes. Bcl-2 expression is
regulated in the developing B cells of the bone marrow in a biphasic fashion, with
expression present in pro-B cells and mature B cells, but not in pre-B orimmature
B cells (Merino et al. 1994). In splenic B cells, Bcl-2 is highly expressed in the
IgM*/IgD* cells of the follicular mantle (KorsmeYer et al. 1990). This is in contrast
to the lack of expression seen in the proliferating centroblasts of the dark zone
and the centrocytes of the basal light zone of the germinal center (KorSMEYER et al.
1990). Germinal center B cells spontaneously undergo apoptosis unless they are
rescued by antigen receptor cross-linking or CD40 ligation, both of which induce
expression of Bcl-2 protein (Liu et al. 1991). Expression of Bcl-2 reappears in the
B cell blasts of the apical light zone (KorsmEeYer et al. 1990).

Mice that carry a bek2 transgene with expression directed to lymphoid cells
have increased numbers of resting B cells in the spleen and bone marrow
(McDoNNELL et al. 1989, 1990; Strasser et al. 1991b; Katsumata et al. 1992). These
cells had enhanced survival in culture and prolonged immune responses. In
adoptive transfer experiments it was determined that as a consequence of
prolonging cell survival, B¢l-2 can maintain B cell memory (NuRez et al. 1991). The
importance of normal Bcl-2 in B cell development is unclear since mice that are
deficient in Bc¢l-2 or have reconstituted lymphoid systems that are lacking Bcl-2,
can develop normal lymphocytes (Nakavama et al. 1993; Veis et al. 1993b). This
suggests that Bcl-2 is not necessary for B cell development but, interestingly,
these mice eventually show a loss of B and T cells suggesting a role for Bcl-2 in
the maintenance of lymphoid cells. Strasser et al. (1991b) found that Bcl-2
transgenic mice suffered from renal failure due to autoimmune disease, suggest-
ing that Bcl-2 could override selective processes which deleted autoreactive B
cells. Overexpression of Bcl-2 has also been shown to allow B cell development
in the absence of immunoglobulin expression in SCID mice (STrasser et al. 1994).
These SCID/Bcl-2 mice have B220* cells present in their periphery which,
although lacking surface immunoglobulin, express other markers consistent with
mature B cells. Thus, Bcl-2 allowed B cells to survive through developmental
selection events and permitted B cell development in SCID mice to occur. These
patterns of expression suggest that Bcl-2 may play a role in the development
(including selection) of B cells and the maintenance of B cell memory.

2.2 Bcl-2 Is Regulated During T Cell Development

Bcl-2 protein expression in thymocytes parallels that of developing B cells in that
the expression pattern is biphasic through the developmental pathway (GratioT-
Deans et al. 1993; VEis et al. 1993a), The progenitor cells (CD4, CD8") express
moderate levels of protein. This is down-regulated in double positive cells (CD4",
CD8*), the population which will undergo positive and negative selection.
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Following selection, single positive, mature thymocytes express high levels of
Bcl-2 protein. This pattern of expression predicts a role for Bcl-2 in the selection
of the T cell repertoire, yet genetically manipulated mice have yielded equivocal
results. Mice which are transgenic for bck2 have higher numbers of thymocytes
(SeEnTMaN et al. 1991: Strasser et al. 1991b; SiecaL et al. 1992). These cells have
enhanced survival in culture and in the presence of glucocorticoids, ionomycin,
and irradiation, suggesting that Bcl-2 can allow survival of normaily PCD-suscep-
tible cells. When the bck2 transgenic mice were crossed with a mouse transgenic
for the H-Y T cell receptor, it was shown that Bcl-2 could alter positive selection
by skewing the repertoire of mature thymocytes to the CD4~ CD8* lineage (Tao
etal. 1994). However, bcF2 transgenic animals had normal numbers of peripheral
T cells. Thus, bck2 transgenes appear to have almost no effect on the processes
of negative selection.

The expression of bek2 is maintained in the periphery, as T cells isolated from
lymph nodes, spleen and blood express Bcl-2 protein (Konpo et al. 1992; CLea-
DesHamps et al. 1993). The regulation of this pattern of expression is unique in that
mRBNA and protein levels can show an inverse correlation. When T cells are
activated, bc-2 mRNA levels increase, with little to no effect on protein levels
(Reep et al. 1987, 1992; Boise et al. 1993, submitted). This regulation may be
related to the long half-life of the Bcl-2 protein (Merino et al. 1994).

2.3 Bcl-2 Is Ineffective in Several Systems

Although Bcl-2 can prevent apoptosis in a variety systems, there are several
examples where the role of Bcl-2 is not clear. For example, while Bcl-2 could
promote survival of an IL-3-dependent cell line, the effect of Bcl-2 on growth
factor deprivation was not universal. Both an IL-2-dependent T cell line and an
[L-6-dependent myeloma line that were infected with bck2 retroviral vector
demonstrated no enhanced survival upon growth factor withdrawal (NuREz et al.
1990). There are conflicting reports on the ability of Bcl-2 to block PCD in the
IL-2-dependent T cell line CTLL2. NuRez et al. {1990) show that CTLL2 cells
overexpressing Bcl-2 do not survive following the removal of IL-2. In contrast,
Deng and Popack (1993) demonstrate that CTLL2 cells expressing even higher
levels of Bcl-2, by the use of a high copy number episomal plasmid, can survive
in the absence of IL-2. In the latter system, survival of the bct2 transfectants
allowed for analysis of endogenous bcF2 mRNA levels. Following the withdrawal
of IL-2, expression of the endogenous bcl-2 gene was down-regulated within 8 h
and was not detected after 3 days. Addition of IL-2 to growth factor-deprived cells
induced endogenous bcl2 expression within 8 h. Although these findings
suggest that apoptosis is prevented in CTLL2 cells by the induction of Bcl-2
expression by IL-2, further investigation of Bcl-2 protein levels in the absence of
a transgene is necessary.

There are also conflicting reports on the effect of Bcl-2 in tumor necrosis
factor-a (TNF-o)-mediated cytotoxicity. Data by HenneT et al. (1993) demonstrated
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that the highly TNF-o-sensitive L929 mouse fibrosarcoma, cell line transfected
with bck2 exhibited increased survival compared to wild-type cells. In contrast,
VANHAESEBROECK et al. (1993) reported that overexpression of bck2 in the same
L929 cells did not alter TNF sensitivity. In addition, transfection of the bcl-2 gene
in the human MCF7 breast carcinoma, HL-60 promyelocytic leukemia and U937
histiocytic lymphoma cell lines did not reduce TNF sensitivity. Although the
reason for this discrepancy is unclear, it may reflect the relative amount of Bcl-2
protein expressed in each system.

There are a number of other systems in which Bcl-2 fails to promote
cell survival including negative selection in the thymus (SENTMAN et al. 1991),
apoptosis induced by cytotoxic T lymphocytes (Vaux et al. 1992a), and anti-
immunoglobulin-induced cell death in WEHI-231 cells (Cuenpe et al. 1993).
Although in transgenic mice, Bcl-2 protected immature CD4* CD8* thymocytes
from glucocorticoid, irradiation and anti-CD3-induced apoptosis, clonal deletion of
T cells that recognized endogenous superantigens still occurred (SENTMAN et al.
1991). In contrast to B cells, T cell development in SCID mice was not affected by
the overexpression of bck2 (STrasser et al. 1994). In addition, PCD mediated by
cytotoxic T lymphocytes (CTLs) is not prevented by bck-2 expression (Vaux et al.
1992a). It has been shown that CTL-induced killing occurs by apoptosis (RusseLL
etal. 1982; MarTz and HoweLL 1989), but overexpression of bck2 in the target cells
does not prevent cell death (Vaux et al. 1992a). In avian CNS, Bcl-2 can protect
NGF-, brain derived neurotrophic factor-, and neurotrophin 3-dependent neurons,
but not ciliary neurotrophic factor-dependent neurons from growth factor with-
drawal (ALLsorp et al. 1993). These differential effects of Bcl-2 on cell death could
result from cell death inducing pathways that bypass a Bcl-2-dependent step or
by the presence of additional factors that regulate the Bcl-2-dependent step of
cell death. Consistant with this possibility, several Bcl-2-related proteins have
recently been discovered in vertebrates.

3 bcl-2-Related Genes

3.1 bcel-x

The bckx gene was originally identified in chickens by low stringency hybridiza-
tion with the murine bcl-2 cDNA in an attempt to clone the avian bcl-2 homologue
(Boise etal. 1993). A 2.7 kb mRNA was detected by northern analysis with the bcl-
x-specific probe. Messenger RNA levels were highest in the thymus, bursa and
CNS. The bclx clone hybridized efficiently to chicken, mouse and human DNA,
implicating conservation during vertebrate evolution. In addition, the bc/x and
bcl-2 probes bound distinct genomic fragments in all three species, suggesting
that the probes recognize separate genetic loci. By screening human libraries two
types of bcl-x cDNAs were identified. These sequences contained different open
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Fig. 1. The Bcl-2 family. The protein structure of the known Bcl-2 family members have been aligned,
and regions of homology have been highlighted. The numbers above each protein represent the amino
acid residues. The gray shaded area is the hydrophobic domain that has been shown to be important in
Bcl-2 membrane association. The homology in this domain is based on predictions of hydrophobicity
(CHEN-LEVY and CLEARY 1990). Box 7 and Box 2 have been previously defined as homology regions
between various members of the Bcl-2 family (OLTvAI et al. 1993; WiLLIAMS and SMITH 1993). The NH,-
terminal homology domain was initially defined as a region of high (50%) identity between Bcl-x and Bcl-
2 (BOIsE et al. 1993). More recently this region has been found in the NH,terminals of Ced-9
(HENGARTNER and HORVITZ et al. 1994). Upon inspection of other family members, the region is also
found in the viral homologue BHRF1 and LMWS5-HL. Other shaded areas represent other regions of
homology between Bcl-2 and related proteins

reading frames, but identical 5' and 3' untranslated regions. The longer cDNA
clone, bckx, contains an open reading frame with 233 amino acids. The other
cDNA, bckxg, encodes a 170 amino acid protein in which the area of highest
homotlogy to Bcl-2 has been deleted (Fig. 1). Additional regions of homology
include the first 20 amino acids in the NH,-terminal and the putative transmem-
brane domain in the COOH-terminal both of which are presentin Bcl-2, Bel-x, and
Bcl-xg. The difference between the two bcix ¢cDNAs arises from differential
usage of two 5’ splice sites within the first coding exon. Overexpression of belx,
inan IL-3-dependent cell line prevented apoptosis upon growth factor withdrawal.
In contrast, transfection of bclxg into the same cell line neither caused PCD nor
accelerated apoptotic cell death induced by IL-3 deprivation. Interestingly, belx,
could prevent overexpression of bcl-2 from inducing resistance to PCD.
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3.2 bax

Bax (Bcl-2-associated X protein) is a 21 kDa protein originally identified by
coimmunoprecipitation with human Bcl-2 (OLtvai et al. 1993). The interaction of
Bcl-2 and Bax is stable in 0.2% Nonidet P-40 (NP-40), but the association is
interrupted by the addition of 0.1% SDS, arguing that Bax is noncovalently bound
to Bcl-2. The 21 kDa Bax protein was partially microsequenced and two degener-
ate primers, corresponding to the amino acid regions of the sequenced peptide
fragment, created a 71 bp PCR product that was used as a probe to screen both
human and murine cDNA libraries. Both the murine and human open reading
frames encoded a 192 amino acid protein that were 96% homologous to each
other. Northern blot analysis of total RNA from a survey of organs revealed that
bax was not lymphoid specific, but expressed in a wide variety of tissues. bax is
alternatively spliced to forma 1.0 kb and 1.5 kb RNA transcript, but a function has
only been attributed to the 1.0 kb RNA species. There is 20.8% identity and
43.2% similarity between human Bax and Bcl-2. The areas most highly con-
served are box 1 on exon 4, box 2 on exon 5 and the putative COOH-terminal
transmembrane domain on exon 6 (Fig. 1). Functionally, overexpression of Bax in
FL5.12 cells accelerated cell death following the removal of IL-3. In addition,
overexpression of Bax reversed protection conferred by Bcl-2. The ability of Bax
to block Bcl-2-enhanced cell survival was critically dependent on the ratio of Bcl-
2 to Bax. When Bcl-2 is in excess, Bax/Bcl-2 heterodimers are formed, and cells
are protected. However, when Bax predominates, Bax homodimers are formed,
and cells are susceptible to PCD.

3.3 MCL1/A1

Recently two bel2 homologues were cloned through screens designed to isolate
myeloid-specific early response genes. MCL1 was differentially cloned from
ML-1 cells which were induced to differentiate with phorbol ester (Kozoras et al.
1993). MCL1 expression is induced within the first few hours of differentiation
and then gradually returns to baseline through the time course of differentiation
(3 days). The MCL1 protein is homologous to Bcl-2 only in the COOH-terminal
portion of the proteins including the boxes of high homology and the membrane-
binding domain of the COOH-terminal (Fig. 1). The NH,-terminal half of MCL1
contains PEST sequences which have been predicted to be important in
protein—protein interactions.

The A1 gene was cloned by a similar strategy (Linetal. 1993). In this case the
search was for myeloid-specific genes which were induced by treatment of bone
marrow cells with the growth factor GM-CSF. While A1 was screened for
myeloid-specific expression, characterization of its expression at the mRNA level
has revealed that A1 is also expressed in the T cell lineage but not the B cell or
erythroid lineages. In addition, A1 is also induced in macrophages by lipopoly-
saccharide (LPS) and can be superinduced by cycloheximide. The homology
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between A1 and Bcl-2 is restricted to the homology boxes in the central portion
of Bcl-2. To date, no function has been determined for either of these inducible
members of the Bcl-2 family.

3.4 Viral Homologues

The Epstein-Barr virus (EBV) gene BHRF-1 is expressed early in the lytic replica-
tion cycle and transiently in some latent infected cell lines and has been shown to
be related to bcl2 (CLeary et al. 1986). BHRF-1 is not required for B cell
transformation or viral replication, but can function in a similar fashion as Bcl-2
{(MaRcHINt et al. 1991; Lee and YaTes 1992). BHRF-1 can enhance the survival of
serum-starved B cells in culture (Henberson et al. 1993). These characteristics of
BHRF-1 predict that it may function to maintain a viable host cell for proper
replication of the virus. Cells isolated from patients with Burkitt's lymphoma that
express latent EBV proteins have also been shown to have high levels of bc/-2
expression (HENDERSON et al. 1991; Liu et al. 1991). Thus, EBV may also utilize the
host's own survival machinery to its benefit. ’

A second viral gene, the LMWA5-HL open reading frame of the African swine
fever virus, has also been shown to be homologous to bcl-2, but no function has
yet been demonstrated for this gene (NeiLan et al. 1993). The role of cell survival
genes in viral pathogenesis should be an area of focus in the study of PCD in the
coming years.

4 WEHI-231: A Model of Bcl-2-Independent Cell Death

WEHI-231 is a murine B cell ymphoma commonly used to study immature B
lymphocytes because it can readily undergo apoptosis (BenHamou et al. 1990;
HaseoLb and Ktaus 1990). In contrast to the classical IgM*/IgD~ phenotype of
immature B lymphocytes, WEHI-231 cells are IgM*/IgD* (HaGGERTY et al. 1993;
GotrscHALK et al. 1994a). However, as inimmature B cells, cross-linking of surface
IgM with anti-lg reagents causes WEH!-231 cells to initially growth arrest in the
G,/G, phase of the cell cycle, followed by initiation of PCD 24-48 h later
(GotTscHALk et al. 1994a). The anti-lg-induced PCD in WEHI-231 cells has all the
morphological and biochemical features of apoptosis (BenHamou et al. 1990;
HassoLp and Kraus 1990; GotrscHalk et al. 1994a). Unlike bcl-2 (Cuenpe et al.
1993), overexpression of bckx, in WEHI-231 cells enhanced cell survival
(manuscript submitted), indicating that bc/2 and bclx, can differentially regulate
apoptosis in WEH!-231 cells. Following anti-IlgM treatment, > 75% of the bclx,
transfectants remain viable, while less than 10% of the bcl-2 transfectant survive.
PCD in WEH!-231 cells induced by immunosuppressants, irradiation, and protein
synthesis inhibitors is also blocked by overexpression of bclx,, but not bck2
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(GoTrscHAaLK et al., 1994b). Cyclosporin A, FK-506 and rapamycin are immunosup-
pressants often used as pharmacological probes to study lymphocyte activation
and PCD (SieaL and Dumont 1992). Cyclosporin A and FK-506 are known to
prevent PCD in T cell hybridomas and thymocytes (SHi et al. 1989; Bierer et al.
1990; StarucH et al. 1991). These reagents, as well as rapamycin, induced PCD
only in WEHI-231 cells susceptible to anti-igM-mediated apoptosis (GoTTscHALK
etal. 1994b). PCD was preceded by growth arrest and characterized by the DNA
fragmentation pattern typical of apoptosis. In all the systems mentioned above,
the degree of protection provided by bckx  correlated with the level of
Bcl-x, protein expressed by the transfectants. These results suggest that the
inability of bcl-2 to protect WEHI-231 cells from PCD is characteristic of the cell
line and not specific for the mode in which cell death is induced.

There are several explanations for the differential abilities of Bcl-2 and Bcel-x,
to regulate apoptosis in WEHI-231 cells. One possibility is that Bcl-x_ regulates a
pathway that is independent of Bcl-2 expression. An alternative interpretation is
that Bcl-2 and Bcel-x_ regulate overlapping pathways to prevent apoptosis, but the
function of Bcl-2 is actively inhibited in certain cellular systems. There are two
recently identified antagonist of Bcl-2: Bel-xg and Bax. Transfection with either
bclxg or bax reversed the protection provided by the overexpression of bcl-2 in
the IL-3-dependent FL5.12 cell line (Boise et al. 1993; OLTval et al. 1993). Bax can
form homodimers which is thought to accelerate cell death and heterodimers
with Bcl-2 that neither enhance cell survival nor prevent it (Octvar et al. 1993). In
contrast, in vitro translated Bcl-xg does not bind Bcl-2, suggesting that Bax and
Bcl-xg regulate PCD by different mechanisms.

WEHI-231 cells express high levels of Bax protein and undetectable levels of
Bcel-xg protein, implicating Bax expression as a possible explanation for the
inability of Bcl-2 to protect against anti-lg-induced apoptosis in this cell line.
Furthermore it has been found that although Bax can antagonize Bcl-2, over-
expression of Bax in FL5.12 cells did not alter the ability of Bcl-x, to enhance cell
survival in the absence of IL-3 {manuscript in preparation). In addition, there may
be differences in the ability of Bcl-x_ and Bcl-2 to physically associate with Bax in
either FL5.12 or WEHI-231 cells. These differences suggest that Bcl-2 and Bel-x,
probably regulate similar pathways to prevent apoptosis, and the interplay
between these factors with Bax and potentially other members (known and
unknown) of the Bcl-2 family may determine the susceptibility of a cell to undergo
PCD.

5 Summary

In this review we have discussed the importance of Bcl-2 and related proteins in
the regulation of apoptotic cell death in mammalian systems. it is clear that Bcl-
2 plays a critical role in controlling many forms of PCD. Bcl-2 seems to have
particular significance in lymphocyte development and the function of the
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immune system. We have also discussed the increasing size of the newly
identified Bcl-2 family. There are a number of Bcl-2 homologues in human,
murine, avian, nematode, and viral systems. The evolutionary conservation of the
function of the Bcl-2 homologues, reinforces the importance of PCD in all
complex organisms. Some of these bcl-2-like genes function as agonists and
others as antagonists. Despite the seemingly universal importance of Bcl-2, it is
unable to prevent PCD in all systems. In addition, we have described a role for
other Bcl-2 family members in systems in which Bcl-2 is ineffective and supplied
a potential rationale for the large number of genes involved in the regulation of
PCD. Identification and functional analysis of the Bcl-2 family members reveals
the complex nature of cell death regulation.

As we begin to appreciate the significance of PCD in the control of develop-
ment and homeostasis, its regulation at the molecular level is becoming better
understood. Bcl-2 has long been the only known intracellular regulator of the PCD
pathway(s), although its ability to prevent apoptosis is not universal. We now
know that bcl-2 is only one member of an evolutionary conserved family of genes
which display different patterns of expression as well as function. At least two
family members, Bcl-x; and Bax, act in opposition to Bel-2. The discovery of these
new family members, including those with Bcl-2-like function and antagonists,
should help clear up the discrepancies seen in Bcl-2's ability to protect cells from
PCD. In doing so, we will be able to further define the pathways associated with
cell death signaling. The study of these family members, as well as the non-
related genes of the PCD pathways (ced-3, ced4, ice) should lead us to under-
standing of how cells of multicellular organisms make decisions to die.
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