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Introduction

THIS book must be considered a sequel to the earlier one on special
relativity but the difficulties in writing it are of rather a different
order from those described in the introduction to that book. General
relativity, unlike the special theory, is not a general framework but
a specific scientific theory, in fact the best theory of gravitation that
we have to date. It is often said to suffer unduly from lack of experi-
mental check or confirmation. This fact, however, is essentially due to
the extremely good gravitational theory which we had before, which
was that of Newton’s. In the situation when one theory is very good
it is difficult to distinguish between its predictions and those of an
alternative. The main difficulty in writing the book, however, has
been to know what to leave out. Every reader will find the choice
of papers included extremely idiosyncratic, but this is inevitable
when there has been such a sudden rapid advance as has occurred
in general relativity since 1945. If anyone feels that their work has
been passed over, or unfairly treated in any way, I can only offer my
apologies.

C. W. KILMISTER

vii






Acknowledgements

My thanks are due to the following bodies for permission to reprint
the extracts in this volume:

For Extracts 1 and 2: Macmillan & Co., London.

For Extracts 3 and 4: Johann Ambrosius Barth.

For Extract 5: The Canadian Journal of Mathematics.
For Extracts 6, 7, 9, and 11: American Physical Society.
For Extract 8: The Royal Society.

For Extract 10: Academic Press.






PART |







CHAPTER |

The Principle of Equivalence

THE special theory of relativity, which was discussed in the previous
volume, gives rise to a modification of Newtonian mechanics. In
particular the mass, which was treated as constant in Newtonian
mechanics, increases with the velocity. This modification is to the
left-hand side of Newton’s law of motion:

d*r
As far as the special theory of relativity is concerned the right-hand
side, the force, can still be filled in arbitrarily. In the particular appli-
cation of the equations of motion in electromagnetic theory there is,
indeed, a definite form for the force on a charged particle in an electric
and magnetic field
F = e(E+VAB),

and this form turns out to be consistent with the requirements of special
relativity. It can, therefore, be taken over into the modified mechanics.
The next problem, however, arises with the gravitational field. This
problem worried Einstein for the 10 years from the publication of the
special theory in 1905 (Einstein, 1905) until the advent of the general
theory of relativity in 1915. In this chapter we shall follow the general
lines of Einstein’s argument, but in order to tackle one problem at a
time we shall do so first in Newtonian mechanics, i.e. we shall ask
ourselves first what is the appropriate way of discussing the gravita-
tional field in Newtonian mechanics, and when we have answered this
question we can go on to extend this discussion to special relativity.

3



4 GENERAL RELATIVITY

There is good reason for the gravitational field to be accorded a
unigue treatment amongst other fields because of the fact, which has
been known for a long time, that the force which it exerts on a body is
proportional to its mass. So, from theequation of motion, the accel-
eration produced in a body at a particular point of the gravitational
field is the same whatever the mass of that body. To putitin an inexact
but easily remembered form: “all bodies fall equally fast.” This
fact was certainly known to Galileo (1638) but before him Stevinus in
1586 emphasised that weight (i.e. gravitation) had a theory that was
like geometry (though different) because it acts on everything. The
reader who is familiar with the treatment of planetary orbits given
in most textbooks will recall that here, and only here, the working is
carried out in terms of force per unit mass, energy per unit mass, and
so on. Thus the characteristic property of the gravitational field of
producing a definite acceleration was already taken account of in the
actual technique of Newtonian mechanics, but it was regarded as a
technical trick and not as an important question of principle that this
could be done.

Let us turn from this discussion for a moment to the question of the
existence of inertial frames in Newtonian mechanics. An inertial frame
is defined originally as a frame of reference in which Newton’s laws
hold. Although this definition has an air of unambiguousness, it is
really less clear than it seems. According to Newton’s laws a particle
acted on by no forces moves uniformly in a straight line. One would
therefore have thought that a frame of reference fixed to the surface
of the Earth could not be considered as even approximately an inertial
frame (even if the rotation of the Earth is ignored) since a particle
released in it falls with a certain acceleration. However, Newtonian
mechanics gets over this difficulty by the postulation of gravitational
forces and says that, so long as gravitational forces are allowed as
well as contact and electromagnetic forces, such a frame of reference
is approximately inertial. The question of which frames are inertial
can, then, be settled only when one has decided which are the forces
which are to be allowed. An equally valid way of starting mechanics
would be to use a frame of reference which is falling freely under
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gravity, so that a particle released from rest in this frame remains at
rest in the frame, since, as we have said, all particles fall equally fast.
Looked at from outside, the particle falls with just the same accelera-
tion as the frame of reference. There are thus at least two ways of
dealing with the gravitational field—either by postulating a certain
frame to be inertial and treating the gravitational field as a field of
force, or by refusing to admit the gravitational field as a field of force
and describing it by means of the acceleration of the reference frame
relative to the former choice of inertial frame. The possibility of these
two equivalent but different descriptions depends essentially on the
universal character of the gravitational force, i.e. on the fact that all
bodies fall equally fast,

Now when we come to look at these two possibilities we see at once
that one of them, although superficially attractive, has really only
been chosen as a historical—or possibly geographical—accident. A
frame of reference fixed to the surface of the Earth is certainly impor-
tant for practical considerations, and so remains a useful way of
doing mechanics for the engineer who is concerned with constructing
buildings on the surface of the earth. In considering mechanics in
general, however, there is nothing to be said for this method of descrip-
tion over the other one, and the other method of description has the
great advantage that the universal character of the gravitational field
is automatically incorporated as a matter of principle. It is this new
method of description which is adopted by Einstein for his generali-
zation of gravitation to make it consistent with special relativity.
Let us look at this in some detail. It will be instructive to consider
some particular problems in mechanics. Let us first take one of the
simplest problems, that of the projectile on the surface of the earth
supposed stationary. The orthodox treatment for this problem using
as an inertial frame a frame fixed to the earth’s surface, starts with the
equation of motion,

r=-—g

and integrates this twice to get a solution of the form

r = Vi—3gt2,
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which is then easily shown to represent a parabola. In order to find,
for example, the range reached on a horizontal plane through the gun,
one then chooses coordinates with the x-axis horizontal, so that
x = (V cosa)t, y = (V sin a)t—Lg#?, where « is the angle of projec-
tion. Setting y = 0 gives ¢t = 2V sin «/g as the time of flight, and the
horizontal range

R = (2V2%/g) cosa sin .

From the new point of view the inertial frame is one which is freely
falling, and so the equation of motion becomes

F=0,

that is to say, the path of the particle is a straight line. Of course,
this simplification is balanced to some extent by the fact that the
horizontal plane mentioned above will now no longer be a horizontal
plane and the point of impact of the shell will accelerate upwards
with acceleration g. In the corresponding figure in this frame of re-
ference we find R = Vtcos«, where sin « = (g#/2V). Eliminating ¢
again gives the result for R.

This first example shows that it is, indeed, a practical proposition
to do elementary problems in mechanics by the new method rather
than by the old one. However, there is a considerable simplification
in this particular problem because the gravitational field with which
we are concerned is a uniform one. If the gravitational field is
not uniform, as, for example, when we deal with the orbits of the
planets, then evidently the problem of coordinate transformations
will be much more difficult. In fact for a non-uniform field all that
we can do is to transform away the gravitational field in theimmediate
neighbourhood of one point. As a practical way of solving problems
in mechanics this turns out to be much less valuable, but as a matter of
principle this possibility of transforming away a field at one point is
extremely important because it still incorporates the essential univer-
sality of the gravitational field. Now once we decide to carry out
transformations of this sort—which reduce the gravitational field at a
pre-assigned point to zero—we are evidently involved with accelerated
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transformations, indeed, even in the simple case of the example just
considered the transformation from the first way of looking at it to the
second is by means of the transformation

1
ry - rp = r;+5g.

There is one instance in mechanics in which extensive use is made
of such accelerated frames, and this will serve as our second example.
This is in the case when one frame of reference is rotated relative to
another. Suppose that a frame of reference is defined by three ortho-
gonal unit vectors ey, e,, e;, and suppose that this frame of reference
for our present purpose can be considered as an inertial frame.
Consider now another frame of refererence ej, es, es with the same
origin. This frame of reference is moving relative to the first one and
the first step in the problem is to show that this movement consists
of an angular velocity about a certain axis. This is easily done as
follows. Since the three unit vectors remain always at right angles, we
have the equation

€;€; = 6,' s

where §; is the Kronecker delta symbol which is 1 if i = j and O
otherwise. On differentiating this with respect to the time we get

é,--ej+e,--éj = 0.

This constraint on the derivatives of the unit vectors splits into two
parts, Firstly, if i = j it shows that the derivative of each unit vector
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is at right angles to the vector and accordingly it follows that there
exist three vectors w,; such that

é; = w;\e;.

The vectors w; are not completely defined by this since they only
enter in a vector product with one of the unit vectors, and accordingly
each one’s component in the direction of that unit vector is completely
at our disposal. Now substituting this value of the derivative back into
the constraint for different values of i and j gives us, after a little
manipulation,

(w,-——w,-)-(e,-/\e,-) = 0.

When we look at this equation for different pairs of values of i and
J it shows us that w; and w, have the same e, component, where 7, j, k is
a permutation of 1, 2, 3. Let us now write out the possible values of the
three vectors w;:

Wi = -e1t+)yes+ zesy

g = xe;+ez+zeg

w3 = Xxe1+yes+es.
Using the arbitrariness of one component of each vector (signified

here by its being omitted) it is clear that we may choose all three of the
vectors to have the same value w, say, and accordingly write

é; = wAe;.

Consider now the position of a point in the moving coordinate
system in the form
r = 2xe;.

The velocity of such a point will be

= Dt xs,).
The first term in this expression corresponds to differentiating the
components of the vector in the usual way as if it were referred to a

fixed coordinate system. We could adopt the notion ¥ for this. The
second term arises from the rotation of the coordinate system but,
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because of the expression which we have for the derivatives of the
unit vectors, can be written w Ar. When we want to write down
equations of motion, however, we need the acceleration and accord-
ingly we have to apply the rule which we have found to the velocity
vector rather than to the position vector, and so we derive for the
acceleration measured relative to an inertial frame the expression

—Zj:— = F+2w A+ W Ar+wA(w Ar).

When we consider this expression in detail we see that in addition
to the usual term which we expect in an expression for acceleration
there are terms involving the position of the particle and also a term
involving its velocity. This latter term, the so-called Coriolis accele-
ration, is the one which gives rise to numerous interesting phenomena
on the rotating earth, playing an important part in the circulation
of the atmosphere, for example.

In order to show the importance of this transformation to an
accelerated reference frame, it will be instructive to work out a detailed
example. So long as we allow gravitational forces, a frame of reference
fixed to the surface of the earth is not a bad approximation to an
inertial frame, but a much better one is one with its origin at the
earth’s centre and with axes in fixed directions. If we assume this one
is inertial, and consider (Fig. 2) the transformation to one fixed to the
earth’s surface, in latitude 4, we shall have (using an equally good
origin O’ for the fixed axes on the earth’s axis)

r = a+tr
so that
A O

_— 8 02
drr — dre t dr? with dr Fa,

so that, altogether, for motion under a gravitational field — g (assumed

constant),
F+2QAF+ QA(S2AT) = —g+ a2

Here we have disregarded the time derivative of £ ; if we also neglect
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Fig, 2.

terms in {22, since the earth’s rotation is only once per day, we are left
with
F+2QAF = —g.

Let us apply this approximate result to the motion of a simple
pendulum hanging from the origin O; if there were no rotation the
equation of motion would be

mt = —mgez—Tr/l,

where [ is the length of the string and m the mass, since g == ges. Here
T is the tension in the string. But since the axes are rotating the correct
equation becomes

Tr

i=+29/\i' = '—gea—m_

Using Cartesian components, in which

Q = (—eycosA+essin d),
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this becomes

X% —20(sin A)y = —Tx/Im,
J+2LXsin A)x+2Q2(cos )z = —Ty/Im,
Z—28(cos A)y =—g—Tz/lm.

These are the equations for a general motion of the pendulum; but
consider now small oscillations for which z =~ I. In fact, then

Xty =1
so that z= I[1—(x2+ yz)/p]%

so that z differs from / only by second-order terms in the displacements
x and y. Accordingly, neglecting Z and Z, the equations become

%¥—20Q sin Ay = —Tx[Im,
y+2Q sin Ax = —Ty/Im,
—2Qcos Ay =—g—-T/m.

The last equation may be used to calculate the tension 7 when the
motion is known; the first two may be integrated by writing w =
x+ iy, since then

W+ 2(iQ sin M)W = —(T/Im)w,

and if w = ve— i sind Jmp2 = T,
then (neglecting powers of {2 again)

b+ plv =0,
with solution
v = AeéP'+ Be P,
giving
W= x+iy = e—i%1 sin A[Aeipt+ Be-—ipt]_

In general this is an ellipse, rotating with angular speed £2 sin 2.
It is to be noted that (as with most effects of the Coriolis acceleration)
the rotation will be zero for points on the equator, and in opposite
directions in the northern and southern hemispheres. The theory just
described is that of the Foucault pendulum, and the effect may be
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observed by using any simple pendulum for which / is sufficiently
great and the bob sufficiently heavy for air resistance not to reduce
the swing too greatly. But the fact that this can be observed is really
very surprising, because the theory started with the assumption that
the frame of reference fixed to the earth was rotating relative to some
fixed set of axes (in fact those axes with respect to which the rotation
of the earth is measured). These axes are determined by the distant
background of stars; but equally this theory shows that they could be
found by means of a Foucault pendulum, an instrument which can
be conducted entirely with the laboratory. Thus the local inertial
frames on the surface of the earth are related in some way to the
(position and motion) of the distant matter. Assuming that the con-
nection is a causal one, the only reasonable conclusion is that the
distribution of matter in the universe determines the local inertial
frames, an assumption attributed to Mach, and so called Mach’s
principle (Mach, 1960). This principle had a profound effect on Ein-
stein’s thought, and was part of the motivation for his re-expressing
gravitational theory. For no explanation of this causal effect has ever
been found; but Einstein hoped that general relativity would “incor-
porate Mach’s principle” (Holton, 1965).

The terms like the Coriolis acceleration arise, it is to be noted,
even for the case of a rigid Newtonian frame rotating with uniform
angular velocity. We can therefore expect that, if we are to employ
generally accelerated coordinate systems, considerably greater com-
plexity will result. The criterion of an accelerated coordinate system is
that, whereas the time is measured in the same way as in the old
coordinate system as always in Newtonian mechanics, the space
variables depend not only on the old space variables but on the time
as well and, indeed, do so in a non-linear fashion (since a linear
dependence on time comes in the transformation between inertial
frames and corresponds to motion with uniform speed). Accordingly
the transformations which we shall have to allow will be of the form

x> x*=fx,1 (e=1...3),
¢ =1,
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which may be written with the convention
=51, xt=t
in an abbreviated notation as
5 = )

that is, we make the rule that the Greek suffixes run from 1 to 3 and
Latin suffixes from 1 to 4, the fourth coordinate being the time, as it
is in special relativity. The difference here, of course, is that, since
we are now concerned with Newtonian mechanics, the time is entirely
unconnected with the space variables, unlike the way which it was in
special relativity.

The group of transformations which we are concerned with, as
defined by

XX = x50 (e=1...3)
! =t

gives rise to quantities transforming under representations of the
group, just as the Lorentz group gives rise to such quantities in special
relativity. In fact, all our experimental observations must be expressed
in terms of such quantities, and they can be derived in very much the
same way as was sketched out in the earlier book. For example,
the differentials of coordinates give rise to one representation, and a
general quantity transforming according to this representation is a
contravariant vector A°’. Since, however, the coordinates in this
particular case are Newtonian ones, the contravariant vector splits
up into the three-dimensional vector and an invariant part

A = (4, 4

This is not the case, on the other hand, with the covariant vector 4,,
which is defined as transforming under the same representation as the
gradient of an invariant quantity. This asymmetry between the two
kinds of vectors disappears again when we get to the full statement of
general relativity. But it is emphasized here because it does affect
the working in this detailed example of the corresponding Newtonian
theory.



14 GENERAL RELATIVITY

The velocity vector
i_. o —_ dxi
v=(0%1)= —

can be defined in the obvious way, and it splits up into the usual three-
vector part, the usual velocity, together with a numerical constant.
When the velocity vector is transformed it will have as its values in
a new coordinate system

v = x;'7,

where we employ the abbreviation

o oxF
i
for the array of differential coefficients. Notice here that we employ
dashes on the suffixes for the new coordinate system, a convenient
convention when a number of coordinate transformations have to
be carried out. Splitting up the transformation of the velocity into the
three-dimensional part, it becomes

v = X+ Xy,

and since, from the form of the group of transformations, the follow-
ing conditions hold for the partial derivatives:

xg‘ = xé‘ = 0:

x=xt=1;

the remaining part of the transformation of the velocity is trivial. If
we confine our attention to a transformation in which the axes are
not rotating, we can rewrite the three-vector part in vector notation
as

v = v+V,

which is the usual relative velocity formula.
So far everything is as expected, but certain difficulties enter when
we consider the acceleration, ie. the derivative of the velocity. If
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we compute, in the dashed coordinate system, the derivative of the
velocity, we get
av’ d ..
a =~ @
i
dt

i

g av i’ i
= X; Fr + V" Xgy + X440

= xi + v'xt

and we observe here terms linear in the velocity entering on one side
but not on the other. In other words, if the derivative of the velocity
1s taken as the acceleration in one coordinate system this coordinate
system will be privileged over all those others in which this derivative
has certain terms linear in the velocity added to it. There is a well-
known trick for getting out of this difficulty of a privileged coordinate
system; it is to modify the definition of the acceleration so that the
linear terms appear in all coordinate systems. In other words one
defines in general an expression for the acceleration:

. v L .
fi= c;)t + Q' = (v, ;+ £2).

In order to carry this approach through, however, the nature of the
coefficients ©; has to be investigated a little further. At present all we
know is that we are no longer to assume the existence of a coordinate
system in which £/ = 0 holds.

It is at this point that we must make an appeal to rather deeper
considerations that have not been evident up to now. These consider-
ations arise from the paper of Riemann which appears, translated
by W. K. Clifford (Clifford, 1873), as Extract 1 of the present volume.
In this paper Riemann undertakes to consider the general concepts
from which geometry is built, generalizing his investigations to the
case of an n-dimensional space and to what he calls a general notion of
magnitude. His starting point is really the investigation of Gauss
about curved surfaces, a summary of which will be found in the
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introduction to Extract 1 of the present volume. He concludes from
Gauss’s results that it is necessary to study the infinitesimal geometry
of the space and that the simplest form to assume for the displacement
between two points is a quadratic one in the coordinate differentials.
He mentions as a further possibility the question of a biquadratic
expression (cf. Eddington, 1924) but disregards this as it would throw
little new light on the idea of space. A most important consideration
for later developments in relativity enters at this point, where he
remarks on the fact that the number Ln(n+ 1) of independent coeffi-
cients in the metrical form is reduced to —;—n(nf 1) by being allowed
to take n new variables. He now goes on to consider a flat space, i.e.
an immediate generalization of a Euclidean one and asks the question:
What other spaces may there be? By drawing geodesics through a
point to get a geodesic surface he adopts, as the measure of curvature
of the space, the Gaussian curvature of this surface. Finally, he con-
siders spaces of constant curvature and applies all these ideas to three
dimensions where, he suggests, an empirical decision is necessary.
In 1876, that is 3 years after this translation, Clifford takes up the
idea enthusiastically (in Extract 2), and wants to regard space as flat
on the average but with small hills, whose motion is determined by the
motion of matter, indeed, is the motion of matter.

At this point it is not convenient for us to take over the whole
of Riemann’s ideas, although they do apply very closely when we
come to general relativity. But what is important is the idea, tentatively
put forward by Riemann and seized upon by Clifford, of a geometrical
background being used to describe physical phenomena. What we
have to do in the present instance in mechanics is to inquire what
appropriate geometrical structure to assume in our space.

It is a little more convenient, because of the general differential
geometry character of the investigation, to imagine not a single par-
ticle but a fluid consisting of many particles flowing in the coordinate
system. When we do this the ordinary expression of the acceleration,
excluding any extra terms, becomes

R

dt :j’
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and if linear terms are to be added in order to get the correct trans-
formation of the acceleration, then this must have the form

fi - vjv,;j:

where the new quantities, denoted by the semicolon, are defined in some
way in terms of the ordinary derivatives. The new kind of derivative
introduced like this is known as the covariant derivative because our
requirement that f* should have the same form in all coordinate sys-
tems implies that f " is a contravariant vector and, therefore, that the
covariant derivative is a mixed covariant tensor of rank 2. This
covariant derivative is usually assumed to fulfil the following condi-
{ions:

(1) That the covariant derivative of a sum of vectors is the sum of
their covariant derivatives.

(2) That the covariant derivative of a scalar is its ordinary derivative.

(3) That the usual rule holds for differentiating a product.

If these assumptions are made it is clear that the most general form
possible for a covariant derivative of any vector v' is

| T ) i D
GRS IRy AN

and when this assumption is made the acceleration can be written as

. dv :
fi= d?; + I Pl

We notice that in order to avoid the uniqueness of one coordinate
system we have been forced to import a certain geometrical structure
into the space just as Riemann did. Ours is defined by an array of
sixty-four coefficients I';; which may, in general, be functions of
position. In the definition of the acceleration, however, these sixty-four
quantities do not enter independently but multiply by a symmetric
product of the velocities. It is therefore only the part of these quanti-
ties symmetric in the lower suffixes which can arise and it is convenient,
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and economizes in assumptions, to suppose that the quantities them-
selves are symmetric in the lower indices. It is now a simple exercise
to calculate how these coefficients, the so-called coefficients of affine
connection, transform from one coordinate system to any other. We
have
o7 o=, Dy = X (x4 Do
= xjx; (0" j+ LppP)+ xjoipp' + (L — xxi Typep v
In order that the covariant derivative transforms like a tensor, then
ISy = x{xfxb Il —xbxind= x{x)xBLh+ xhe ;x
(s1nce (xixb), ;= (85), ;= 0).

Let us make sure that what we have done is quite clear by rewriting
the earlier examples in this new notation. More precisely, let us assume
that we begin with a coordinate system in which the coefficients of
affine connection are zero, I'y; = 0 (since in the two earlier examples
there was such a preferred coordinate system) and let us transform to a
dashed coordinate system, computing the consequent coefficients of
affine connection. In the first case the transformation was written

' =rt,g

or, in our present notation: x* = x*4 ; g"t%. We have now to work
out the various partial derivatives, and the first partial derivatives are
obviously x* = 8%, x¥ = g, since g* is a constant. Now as far as
working out the affine connection in the new coordinate system is
concerned, the main interest lies in the second partial derivatives, and
it is clear from these formulae that the only three of these which are
non-zero are given by x5, = g*. Inserting this value into the expression
for the transformed affine connection, and noting that the original
affine connection is zero, we get

F 2‘4' = g(2 ’
giving, as the expression of the generalized acceleration,

dv*
foc
femo

P i
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This agrees entirely with our earlier result for this example, i.e. that
if the freely falling coordinate system is used there is no acceleration
because the first term in the expression for the acceleration given by
this formula will cancel out with the second.

Let us now turn to the case of a rotating coordinate system and it
will simplify the working a little to confine ourselves to the rotation
about the z-axis so that the transformation equations have the form

x" = x cos 0+ ysin 0,
y' = —xsin 0+y cos 0,
where 0 = 06(2).

The first partial derivatives of interest are given by
xl'=cos0, x}=sinf, x¥=-—sinh, x¥ =cosh,

and

¥ =0y, x¥=-0x.
Hence the non-zero second derivatives will be
xly=—0sin0, x}=0cos0, x}=-—0cosb, x3=—0sin0,

X4 = 6y’—92x’,
xZ, = —Ox' —~6y.

It will be sufficient for our purposes to look at the effect at any instant
of the rotation, and so to calculate the transformation at that moment

when the axes momentarily coincide. Hence we can take 6 = 0,
x = x', y =y, and so have

=1 xF=1 x{'=0, xi=-0x
xb =0, x¥=-0, xl,=0y—0,
X% =—0x—0%.

Using the formula for the transformation of the affine connection
and noting that the undashed connection is zero (and also that, in the
partial derivatives just quoted, the interchange of dashed and undashed
suffixes is obviously accomplished by changing the sign of 6) it is at
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once clear that
I'y, =0, I%,=0,
whilst
My =TIk, =-0, Iy, =T%, =0,
Yy =—0y—@x, TI%,=0x—0%.

Inserting these values into the expression for the acceleration, it has
the x, y components

56'—20'3')-—5y—0'2x,
F+20x+ 0x— 62y

(the factor 2 arising because, for example in the first line, the terms
I'l,y and I'y,p must both occur). The reader can verify that these are
Just the expressions worked out earlier (in the particular case chosen
here).

Having reassured ourselves that we are on the right lines, fet us
now try and see how the gravitational field is to be described with
these new techniques. In one way, of course, the answer is very simple:
we adopt a freely falling coordinate system so that at any one point the
field vanishes. But this is only a very partial answer, except in very
special cases such as the uniform field, since this transformation will
not have the effect of removing the field on neighbouring points.
It would be useful then to see to what extent the field cannot be re-
moved at neighbouring points by imagining ourselves fixed to a freely
falling particle and observing the relative motions of nearby particles
of a cloud. We could do this, of course, entirely in the Newtonian
theory where the equation of motion is

mi = V¢ = mg (say),

where g is not to be thought of as constant and ¢ is the gravitationa
potential, satisfying Laplace’s equation, v2¢ = 0, in free space. When
we look at a nearby particle to the one which we have just considered,
say at the nearby point r+s, the equation of motion becomes (to the
first order in s)

m(¥ +8) = mg+ms-vg.
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For the relative motion we have, therefore,
ms = ms-vg.

Now let us write this out in terms of Cartesian coordinates x2, x2, x3; it
becomes

Evidently in the equation for the relative motion it is the derivatives of
the old gravitational field which enter, as we expected. If the relative
motion is specified in general (not only with the special coordinate
system given here) by an equation of the form

5 = PP,

we can expect the equivalent equation to that of Laplace (which im-
plies that the original gravitational field is the inverse square law

lield) to take the form
;= 0,

It remains to rewrite this rather simple derivation in terms of the
more general framework which we have constructed. We are to con-
sider a freely falling particle as our origin of coordinates, i.c. one
whose acceleration is zero. That means that the motion of the particle

satisfies the condition

A (3 .
fl = —‘;Jt—-'-.[‘;k’vj?)k = 0.

Imagine now a cloud of such particles moving in roughly the same
direction, so that the particle O, which we are looking upon as the
origin, has the velocity shown in the diagram (Fig. 3) and the nearby
particle has also at the same instant of time the velocity shown. The
quantity which we are interested in is the variation of y as the particles
move along their paths. If we examine the change from the small
parallelogram in Fig. 3, we have

o Oty 4+ 8y = Y+ (v +yi ) Ot

so that
dy’
dt

N
=y ;.
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V\S*

Fic. 3.

This appears to be four equations, but in fact it is only three, since y
is a vector joining two points at the same instant of time, so that
y* = 0, and since also v* = 1, the fourth equation is an identity.

We are failing at this point, however, to carry out our own precepts.
The equation which we have just written must evidently be true in
any coordinate system since no use has been made of the special
coordinate system (i.e. freely falling origin) devised in finding it.
But the two sides of this equation transform in most complicated
ways, because on the left-hand side we have an ordinary derivative of
the vector quantity »’ and this is given as an ordinary derivative of
another vector v’. We can, however, put matters right very conveniently
by the following trick. It is always possible at any one point to use
freely falling coordinates so that the gravitational field vanishes.
Since the gravitational field is represented here by the coefficients of
affine connection, this means that we must be able to choose coordi-

nates at one point so that
F;:k == 0.

In fact it is easy to see that this is possible since the coordinate trans-
formation
x> X = x— 3k,

where the coefficients of the squared terms are those of the affine
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connection at the origin, evidently reduces this connection to zero
at the origin because of the transformation equations which we have
had before. Now it is evidently such a coordinate system that we have
chosen at the point O under consideration. The equation for the rate
of change of y' can therefore be written

where the left-hand side of this equation is the absolute derivative,
defined by

8y .

= vl

5t~ UV

This new equation is also true in every coordinate system, in exactly

this form, because both sides of it transform as contravariant vectors.
We are interested, however, not in the first derivative of the vector

y' but in its second derivative, and this can be calculated by repeating
the process:

5%yt C . . L .
’3% = o] 0+ PR e = PRI, et YRV = R
= PNV p—vin)
afler using the fact that 8v'/6t = 0 from our assumption (freely
falling origin). Now the quantity in brackets in the above formula may
be found as follows:
v~y = (0 D07 — W+ o),
= V2L k=L, st Tl iy =Tl ).
It is noteworthy that this quantity does not depend on the derivatives
of ¢ but may be written in the form
R;kjfup,

where the array of numbers R;kj is called the Riemann—Christoffel
tensor, or curvature tensor, of the connection. The second rate of
change of the vector y' therefore takes the form

aZyi

31—32— = R;'kavpvky ja
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the so-called equation of geodesic deviation (Levi-Civita, 1926;
Pirani, 1956).

Let us go back to the inertial frame in which we started the discus-
sion. We could choose a freely falling frame attached to the first

particle so that
v? = (0, 0, 0; 1).

When we do this the equation of geodesic deviation reduces to

62 yi ;
5 = Ry’

which is of the same form as the equation we had in the elementary
discussion (there is, of course, the question of the fourth component of
this equation, but since y has been drawn to join two points at the
same time its fourth component is zero and both sides of the equation
vanish identically then). Laplace’s equation therefore has the form,
in this particular coordinate system,

| -
44i—'0'

However, if we make a transformation of coordinates, Laplace’s
equation will only remain true in all coordinate systems if, in addition
to the equation which we have just quoted, the remaining equations of

the set
Rjk = R;ki = 0

hold as well. At this point our Newtonian analogy begins to break
down because this set of equations is not sufficiently numerous to form
a set of equations for the forty coefficients of affine connection. It is
possible to get out of this difficulty, which is essentially connected
with the need to assume that the gravitational field is a conservative
field, so that it is derivable from a scalar potential. However, since our
purpose here is merely to provide a simple introduction to general
relativity, it is not profitable to pursue this argument further, and
instead we shall turn to the corresponding theory in general relativity.



CHAPTER II

The Beginnings of General Relativity

THE first intimations of the experimental results of this theory (as
distinct from the theory itself) are in Einstein’s 1911 paper (Einstein,
(1911) (Extract 3 of the present volume) in which he considers, by
means of a thought-experiment, the effect on a light-ray of a uniform
gravitational field. He shows that this effect arises because, firstly,
the energy of the light is related to the potential energy of the gravi-
tational field. Secondly, Einstein is proposing what he calls an impor-
tant interpretation of the fact that all bodies accelerate equally in the
uniform field; this fact, he says, is one of the most general that nature
has given us, and yet it has no fundamental place in our physical
constructions. His new interpretation is to assume that a coordinate
system in which there is a uniform gravitational field, and one which
is freely falling in the field, are physically equivalent. These ideas
must have been constantly with Einstein in the succeeding 4 years,
finally emerging in triumphantly clear form in 1915 (Einstein, 1916)
(most of which forms Extract 4 of the present volume). We can use
them by returning to our earlier discussion. The first part of the
argument which we have been discussing was carried out in Newtonian
theory with an absolute time. Now in special relativity, as we saw
in the companion book in this series, there is no absolute time, and
instead one considers the proper time defined by the equation

ds® = my; dx’ dx'= dtz—-cl;(dx% dy? -+ dz?),

z
X% = —
c

where x1==, x%= %

R , xt=1.

25
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In this case the appropriate definition for the acceleration is no
longer in terms of the coordinate time ¢ but in terms of the proper
time, and so one defines the acceleration by
iz d2x .
ds?

Now these assumptions correspond in our analogy to starting with
inertial frames in which there is a zero affine connection. In the
analogy we then considered the effect of transforming to the acceler-
ated frames needed, and this left one frame, the original inertial frame,
in a privileged position. We were able to remove this privilege by
introducing an arbitrary set of coefficients of affine connection. Here
we might as well short-cut this process by going to the general situation
straight away. If one uses any different coordinate system the metrical
form must still be a quadratic one and so we write quite generally, as
Einstein did,

ds® = gi;dxi dx’
without making the assumption that there is a coordinate system in
which g; reduces to the original form. That is to say, we are employing
a Riemannian geometry. The corresponding form for the acceleration
of a particle will then be

X
fj - —SEE = Ulv}y”
where
, dxt
v = 2,
ds

The interesting thing, which is not to be expected from our analogy,
is that with certain plausible assumptions the coefficients of the metric
then give all the geometrical structure that we need for discussing the
theory, the affine connection which enters being determined in a
particularly natural way in terms of them. For purposes of manip-
ulation it is convenient to define a related set of metric coefficients by

the equation
cofactor of g;; in det(g;))

det(g i j), ’

ij
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so that, by the usual rule for expanding a determinant,

gijgjk = 0.
It is also convenient in the exposition to introduce the idea of parallel
displacement; we shall say that a vector is parallelly displaced if in

the course of its movement from one point of the manifold to another

it satisfies

This corresponds to the idea, when a Cartesian coordinate system is
possible, of parallel displacement, meaning displacement without
change of components. In the general coordinate system it means that
the change in the component of the vector during a small displacement
dx’ is given by

dA" = — I}, 4" dx’.

In such a parallel displacement one would expect there to be no change
of length of the vector. Since the covariant derivative of a scalar is
its covariant derivative, this has the effect of requiring

(gUA'A]), k= (g,]A'Aj), k= 0,

and since the coefficients of the metric are a symmetric array this
implies
gij';k = 0.

These equations may be regarded as linear ones for the affine connec-
tion and they may easily be solved uniquely to give (Christoffel, 1869)

, I , . 1 .
e = {jk} = g[p, jk] = ‘2'-8’"’(817;, K=&k, p+ &up, i)+

Thus in the extension of our theory to special relativity the coefficients
of affine connection are determined by certain very natural assump-
tions in terms of the metric, and it is only necessary to find field equa-
tions which will determine the metric, i.e. to find ten equations rather
than forty. In this respect the situation in general relativity is para-
doxically simpler than that in the Newtonian theory.
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The field equations themselves may be derived by glancing back at
the analogy and noting the way in which Laplace’s equation is related
to them by geodesic variation. In exactly the same way as the equation

Rjk = R}kf =0,

was derived there as field equations, so the corresponding equation
may be found here. In this case, however, the Riemann—Christoffel
tensor has certain symmetry properties, and as a result this equation
represents ten scalar equations. That is just the right number to
determine the ten coefficients of the metric. The best-known solution of
these equations and the first solution to be found is that corresponding
to spherical symmetry. The metrical form for a static spherically
symmetric solution cannot be more general than

ds® = & dit — e dr* —rPe?(d0?+sin? 0 do?),

where 4, u, » are functions of . However, we must remember that we
are allowed arbitrary coordinate transformations, and it is therefore
possible to replace the radius vector by another r in such a way as to
ensure » = 0 (at least this was what was assumed in the early days of
the theory, though it is now realized (Robinson and Trautmann, 1962)
that there is one exceptional case in which this is impossible, i.e. when
v = —logr). The non-zero coefficients of the metric are therefore

En = ¥, gu=—e€¥ gun=-r gas = —rsin® 6,
and the corresponding symbols with raised suffixes are

1 1

VR Y R | R T 33
=e =—e =—— = —— .
£ & & e 8 r? sin® 0
The only non-zero derivatives of the original coefficients are then

Zuy = 24 e, g1 = —2u'e™,  gog 1 =-2r,
833,1 = —2r Sil’l2 0, g33’2 = —2p2 Sil’l 9 cos 9’

where primes denote differentiation with respect to r, and a glance at
the formulae for the coefficients of affine connection shows that the
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only non-zero ones which can arise will be those derived from

[1,44] = — A€,

[4,14] = A'e*,

[1,11] = —p'e®,

[1,22] = r,

[2,12]) = —r,

[1,33] = rsin® 0,

[3,13] = —rsin? 0,
[2,33] = r%sin O cos .
[3,23] = —r?sin O cos 0.

These will therefore have the nine values

() = wedn,

fuaf =2,

{u} = w',

{3} = —re™,

3} = 1r.

{s3} = —e %rsin® 0,
{Ig} = 1/?‘,

{53} = —sin O cos 6,
{3} = cot 0.

The next step is to calculate the contracted curvature tensor or
Ricci tensor as it is known. The formulae for this can be written
slightly differently in the form

Ry = ¢, 45— u, + IR -1,
where ¢ = log 4/(—g). This is so, since

pk = #g“[l Pk} = 2gk1(glp,k_gpk, 1+ 8k, )

In this expression the first two terms are anti-symmetric in k, / and so
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give nothing when summed with g’. The remaining term is

1 1 g

3 gk, p = b *?p ,

where g is now written for the determinant of the g;. Since, however,
g is negative (in a locally Cartesian system it is — 1) this is best written
in the form ¢ . It is now a slightly tedious but straightforward matter

to calculate all those components which may be non-zero:
Rll — 2{11#”/)"%‘2’/2_2”1/’.,
Ros = e7#(14+r(A —p))—1,
R33 = Rzz SiI’l2 6,
Ry = A= Q"4+ A — A2 =21 [r),

and Ri» which in fact comes out to be zero.
The ficld equations are now R;; = 0. From

Ri1+ DRy = —2(p' + X)),
it follows that
p+A =0

At this point in the theory it begins to prove very inconvenient to
display the velocity of light ¢ whenever it occurs. It is therefore more
convenient to adopt such a unit of /length that the unit of time is one
second, and ¢ = 1. (That is, we adopt as the unit of length the distance
travelled by light in one second.) The special relativity metric then has

the form
ds? = di?— (dx®+dy?+- dz*).

We shall later have cause to fix the units of mass as well, so that the
final situation will be that only one standard, that of time, is needed.
If we take flat space at infinity as a boundary condition, so that we can
fix the coordinate system by the requirement

w0, A~0
as r — oo, this gives A+ p = 0. Substituting in Ry = 0 then gives
e(14-21'r) = 1,
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i.e.
d oM __
g (re?) = 1,

so that

e? = 1_2Tm, (SaY)s

where a certain constant of integration has been called —2m, for
reasons which will be clear shortly.

The solution which we have found, which was originally due to
Schwarzschild (1916), then has the form

2m)> ar?

ds? = (1 ————) dtzum_r2(dez+ sin? 6 d¢2).

F
We can at once appreciate one feature of this solution without any
further calculation if we consider the weak static field, slow motion,
approximation to the theory. For such a weak field when the motions
of the particles are small compared with that of light we get for the
equation of a free particle, i.e. freely falling in the gravitational field,

d2x! dv' .
a T s = Ut

Since the motion is slow, however, and since

v 1
oL, o2 08, 0t =

R B UV (B LN

where v is the usual Newtonian velocity, it follows (bearing in mind
the choice of units) that ¢2, »2, v are all very small compared with v*.
The only surviving term is therefore that for which j = k = 4, so that

T =l

Now {i) = %g’j(gj4,4—g44,j+g4j, ) = —%g"f'g%,-

since the field is static. Choosing a locally Cartesian coordinate
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system, the equation of motion is approximately (remembering that

gﬁ ~ — ])
——— — ——._‘1
a2 Vi,

so that (apart from a possible additive constant) 4ga is the Newtonian
gravitational potential. In other words, reverting to the Schwarzschild
solution in which 3g,, = 3—(m/r) the Newtonian theory is the first
approximation to the theory which we have found, as it should be,
considering our choice of field equations. The constant m is accordingly
identified with the constant GM that occurs in the expression —GM [r
for the gravitational potential at distance » from a spherically sym-
metric mass M, G being the constant of gravitation. It is convenient
to fix the unit of mass (as we fixed the unit of length earlier), this time
so that G = 1; m is then the mass of the central gravitating particle
in these units.

We have now seen that the theory agrees closely with Newtonian
mechanics at a first approximation. Reaction to the existence of this
theory from 1915 onwards right up to 1939 was to seek the small
differences between the theory and Newtonian mechanics and look
into experimental results of these. Looking back on it, this can be seen
straight away to be a rather unprofitable exercise, since the Newtonian
theory of gravitation was an exceptionally good one and the differences
are therefore bound to be very difficult to observe. To some extent this
was not so clear at the time, principally because astronomy is a subject
in which such exceedingly refined observations are possible. The first
solution of the field equations, that of Schwarzschild, is enough to
provide three experimental checks on the theory. It is first necessary
to find the orbit of a test particle moving round the central gravitating
mass described by this solution. For this purpose one writes down the
equation for a particle moving under no forces, as before, and specifies
the particular value of the coefficients of affine connection. The
equation for 0 is then

a0 2 dr df (d¢)2_0

—gs?'l-?-%"d—s—'cosesu'] 6 _d;-
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It is to be noticed from this equation that if originally 6 is chosen
to be 17 and its derivative is chosen zero, i.e. if the particle moves
initially in the plane 6 = L, then its second derivative vanishes, and
by differentiating, so do all its derivatives, and the particle continues
always to move in this plane. That is to say, the orbit of a planet is
a plane curve, just as it is in Newtonian mechanics. It is therefore
possible to simplify all the equations by making 0 = J@ everywhere.
The equations in ¢ and ¢ then become

d®p 2 dr dp d*t ,dr dt
Wiy’ M ety w T

and these two equations are immediately integrable to the form

0,

r? %%Sm =h and -gg = ce ™ = % (say),
where h, ¢ are introduced as constants of integration.

It is possible now to tackle the remaining equation, that for , but,
as usual with a set of equations derived from a variational principle,
it is not necessary to integrate all of them. It is often more convenient
to use the easy integral which corresponds to what would be energy in
the Newtonian mechanical problem. In other words we use the fact
that the metric is, indeed, given by these coefficients, so that

dr\2 do\2 dt \?2
-1{ % 2 (¥ ) () =
() e () =
Now in order to compare with the Newtonian theory we must get
rid of both the time and the relativistic proper time, since the Newtonian

theory always considers first the shape of the orbit and then deter-
mines the time by a second integration. Performing this, we get

1 (h dr\* B _¢&
‘7;*(,,2 d¢)+r5 Y

and by making the familiar assumption r = (1/u) this becomes

= _1,

du\2 , cA—1  2m 5
(%) +ut = - i +~hz~u+2mu,
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and by differentiation we get

@+u——nl 3mu?
dge T = aome

Comparing this with the corresponding Newtonian equation

dd? e

it is clear that there is an extra term on the right-hand side. The
constant / in these two equations is also not exactly the same, since
the first one is defined by

and the second one by
do
2 7 —
"

Moreover, there is a certain amount of ambiguity in the definition of
r in the relativistic case; but it is clear that it agrees with the Newtonian
r a long way from the central mass, so we can disregard this difference.

Taking the equation we may solve it by successive approximation
by first neglecting the extra term on the right-hand side, which must
evidently be very small since we know that the Newtonian theory is a
very good first approximation. (The reader may verify, by inserting
the units explicitly, that it is indeed very small.) If we neglect it the
solution of the equation is well known to be

U= L:g(lJre cos ¢)

for a suitable choice of the initial line, ¢ = 0. This is exactly as in
the Newtonian theory, but we now insert this value for u in the very
small term and integrate again. On the right-hand side there are several
terms which produce small differences in the value of u in the second
integration, but there is one term which produces a continually increas-
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ing effect. This is because it has the same period in ¢ as the terms on
the left-hand side. Keeping only this term, so that the equation is

really

Fu L m
d¢2 = hé h4 € COoS @,

the new solution will be
u= %1-;_ [1 + e cos ¢+3T;nz—2—e¢ sin qb],
and this may be written in the form
U= 71’—1: [14+ecos (¢ — &),

where ¢ = (3m?/h%)¢. That is to say, for each revolution of the planet
the orbit advances by the fraction of a revolution equal to

e 3m? 3m

=R T -

Now the orbits of the planets all rotate by considerable amounts,
but this had been accounted for in all cases, except that of Mercury, by
the effect of the other planets on the orbits. Only in the case of Mercury
was there a discrepancy between a Newtonian correction of about
450 seconds of arc per century and the observed rotation of about 500
seconds of arc per century. The difference between these two values
was exactly that predicted by the general theory of relativity (Clemence,
1947). Of course there is a slight doubt whether it is appropriate to
add to the Newtonian correction the relativistic connection. Strictly
speaking this is working in a combined theory which does not exist,
but since the Newtonian approximation is such a good one there can
be little doubt of the correctness of the process.

Returning again to the equations of the orbit one may ask for the
path of a ray of light. If we think of light as consisting of photons,
i.e. particles of zero rest mass, the constant 4 will be infinite for these
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since such a particle moves among a path which has ds = 0. For this
limiting case the equation of the orbit has only the “correction term”

and takes the form

d?u
%ﬂ—u = Jnmu.

Carrying out the same process as before, the first approximation,
neglecting the correcting term, is a straight line, having the form in
these unusual coordinates,
cos ¢
R’

where R is evidently the closest approach of the straight line to the
origin. Substituting in the correction term then gives

d?u 3m
hetlad — O a2
d¢2+u Re €08 ¢.

Integrating again, the second approximation is

cos¢ m .
u= T+727 (cos? ¢+ 2 sin® ¢),

which may conveniently be put into Cartesian coordinates in the form

_m x4y
R VG

In this equation the second term is the measure of deviation from the
straight line. At a great distance in either direction the light is moving
in a straight line, but it is not in the same one in each direction, and the
angle between these two lines is 4m1/R.

The way in which such an effect could be measured is by observing
the stars whose light reaches the earth passing near to the sun. Such
stars are invisible, however, except at the time of a total solar eclipse,
so that the observations can only be carried out infrequently. The de-
flection of a ray which just grazes the sun’s rim should be 1% seconds
of arc; although these observations have been attempted many times it

xX=R
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cannot be said that the confirmation of general relativity by them is
completely certain (Beisbroek, 1950, 1953).

The third prediction of the Schwarzschild solution, which relies on
a small additional assumption, is concerned with the red shift of light
in the gravitational field. If one supposes that the atoms on the earth
have the same frequency of vibration no matter what gravitational
field they find themselves in, then it is clear from the Schwarzschild
solution that the atoms of the sun will be seen to have a different period
of vibration when viewed from the earth from those on the earth,
because, since they are at rest, ds? = pd®> giving different times of
vibration inversely proportional to 4/y. Here again the effect is a very
small one; in fact the difference between wavelengths of radiation
from atoms on the sun and those on the earth amounts to two parts in
108, The confirmation of the theory by this method has been very
unsatisfactory because it is necessary to take account of the motion
of the sun, and the corresponding Doppler shift of the light appears
to be much larger (Adams, 1952, 1955, 1958, 1959).

However, this particular test of the theory has been carried much
further in more recent years, notably by Pound and Rebka (1959),
and their first paper is reproduced as Extract 11 of the present volume.
The possibility of checking the difference of frequency was made
possible by the discovery of the Mssbauer effect. Mdssbauer (1958)
discovered that some gamma rays emitted from solids come out
without the nucleus recoiling individually, the recoil being taken up
by the whole of the crystal lattice, so there is a negligible Doppler
shift. In the Pound-Rebka experiment this possibility of extremely
accurate frequency gamma rays with the corresponding method of
detection was used to measure change in frequency in fall down a
tower. Such an experiment (which gave results in close agreement with
the theory) is probably even more significant as a beginning in labo-
ratory experiment in the theory.

In this situation in which so little experimental check was possible
between the theory and Newtonian mechanics, it is not surprising that
interest wained amongst a large body of scientists during the twenties
and thirties. Most interest which did survive was in the field of cos-



38 GENERAL RELATIVITY

mology, but here the contribution of the theory proved very disap-
pointing. It does not seem worth reproducing any of the papers on this
aspect of general relativity, but for the sake of completeness we give
here a brief summary of the applications to cosmology. Essentially
the problem of studying the universe as a whole was bedevilled in
Newtonian mechanics by the appearance of infinities of all kinds.
The hope was that these difficulties would be removed by discussing
the problem with general relativity. Nor was this unreasonable. If we
seek a solution of Poisson’s equation, in Newtonian mechanics,

V2 = 4nGyp

in a situation corresponding to a homogeneous universe (i.e. a constant
value for p, the smoothed-out density), we get in spherical polars (and
assuming that the universe is isotropic, i.e. the same in all directions)

1 d do
- - (rz —d"‘:‘) = 4TCGQ,

with unique solution, so long as there is no singularity at the origin,
¢ = SaGor?.

In such a universe there is at each point r a force towards the origin
— 2aGor. As a result the matter will not stay at rest, but will collapse.
A static universe can only be provided if one modifies Poisson’s
equation in some way, say by writing

V2 = dnGp—1

in general, and supposing that the actual universe has p = 1/4n2G. But
the modified Poisson equation corresponds to the situation, for the
field round a point mass, of

so that p=—— —- A,
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corresponding to a force of attraction towards o of

m 1

Ry Ar.
The modification has therefore produced a ficld of repulsion, propor-
tional to distance, around each gravitating mass. Since the number
of such masses is infinite, the total contribution of their repulsive
fields to the potential at the origin (since these fields increase with
distance) will be infinite. And such an infinite contribution results
from building in a repulsive force to overcome the gravitational
attraction. But since general relativity succeeds in describing gravi-
tation without explicitly introducing a gravitational field, it is ima-
ginable that it will also remove the infinity.

Einstein was also particularly concerned with another such problem
of the effect of distant matter, i.e. the one associated with the name of
Mach. It is a well-known observation that the local dynamical be-
haviour of bodies, as exemplified, for example, by the Foucault
pendulum, is describable simply only in the local inertial frames of
Newtonian mechanics, which are determined by the distant matter in
the universe. But what is lacking completely is the mechanism for this
determination, and Einstein hoped that general relativity would pro-
vide such a mechanism. Looking back on it it is clear even from the
Schwarzschild solution that this could not be because in the Schwarz-
schild case the very accurate determination of the orbits of the planets
proves them to be rotating ellipses, and this rotation is verified by
observations made in a frame of reference defined relative to the
distant stars, although no such stars enter into the calculation. But this
was not realized at the time, and Einstein hoped in any case to be
able to modify general relativity slightly in order to incorporate Mach’s
principle.

While it is true that most workers in the subject view Einstein’s
approach as essentially correct, it should be noted that the very well-
informed and notable voice of Fock is on the opposing side. For Fock
(as can be seen in Extract 6 of the present volume) the mistake of the
general theory is the extreme emphasis on general covariance. Fock
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(1957) notes that it is perfectly possible to express special relativity in a
generally covariant form; accordingly it is not the general covariance,
but the non-uniformity of the space-time that distinguishes the gravi-
tational situation. Accordingly Fock believes that physical systems
may correspond to a particular class of coordinate systems; not only
in the sense that the solution of the physical problem is easier in the
preferred coordinate systems (there would be general agreement about
that) but (as far as can be judged from Fock’s writings) because it is
only in these coordinate systems that the boundary conditions can be
adequately expressed, and the transformation properties (Lorentz-like
group of transformations) incorporated. Having noted Fock’s demur,
we must let him speak for himself and return to Einstein’s attempt to
modify general relativity to incorporate Mach’s principle.

His approach to this was by seeking to modify the field equations.
The equation R; = 0 was derived above by generalizing Laplace’s
equation, but this approach leans rather heavily on Newtonian mecha-
nics. The first step from this point of view was evidently to find some
other way to derive field equations, and Einstein turned to the idea of a
variational principle. The use of such variational principles has already
been discussed at some length in the volume on special relativity.
When we come to the general theory and we are using arbitrary coor-
dinate systems a little more needs to be said however. A variational
principle in the form

Bde‘ix = 6Jde1dx2dx3dx4 =0

will not be invariant under this coordinate transformation if L is a
scalar, because the integration is with respect to a coordinate volume
element. In order to add up a scalar over a region of four-dimensional
space one must multiply by a “genuine” volume element. Such an
element can be found as follows. We know that if we transform the
coordinate system to a new one, the integral is multiplied by the
Jacobian of the coordinate transformation. We therefore need to have
a factor in the integrand which will account for this multiplication by
the Jacobian. Consider now the transformation of a tensor of rank 2,
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e.g. the metric tensor

, Ox° ox?
8ot = %xla axlb Eed-

This could be written in an obvious matrix notation as

g = TgT",
oxb
where T=(Tw)= (3}’7)

and T* denotes the transposed matrix. By taking the determinant on
each side we see that g’ = J%g, where J is the Jacobian of the transfor-
mation, so that the square root of this determinant will be a factor of
the type required. Remembering, however, that the determinant in a
flat space will have the value — 1 rather than + 1, it is more convenient
to use v/ —g.

Accordingly we are to seek for a variational principle of the form

afL«/(-—g)d4x=o,

where L is a scalar. Now this scalar has to be derived from the field
quantities, i.e. the coefficients of the metric, so there is very little
choice in its construction, and by far the most obvious variational
principle to choose is

5 f Ry/(-g)d'x =0,

where R = g R, and R, = RS, as usual. As a matter of fact,
as will be seen below, this does, indeed, give the Einstein field equa-
tions, but there is rather more to be said about it than that. Firstly,
the scalar curvature R involves second derivatives of the metric ten-
sor, and so by carrying out the usual process of the calculus of varia-
tion we would expect to get field equations involving fourth deriva-
tives of these quantities. The Einstein field equations, however, involve
only second derivatives. It is clear that we are confronted with a rather
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special kind of variational principle in which the higher derivatives
cancel out, for some reason. Secondly, there will be a conservation
theorem associated with such a variational principle which is akin to
Noether’s theorem (Noether, 1918), which we discussed in the volume
on special relativity. The group of transformations involved here is
that of general functions of four variables so that the result is some-
what different from the one found there, but there must be some theo-
rem of this kind, and it is the extension of this theorem which gave
Einstein the clue to generalizing his field equations.

Let us first carry out the variation mentioned and show that this
variational principle does, indeed, give the field equations required.
From the point of view of carrying out the calculations it is best to
suppose the curvature tensor to be that of an affine connection which
initially is given independently of the metric tensor. We can then work
out the variation of the integral and at a suitable stage put on the con-
dition that the affine connection is, indeed, that of the Christoffel
brackets. Performing the variation we get

5 f Ry/(—g)dix = f [6R v/(—g)+ RS \/(— )] dox.

Now the curvature tensor is given by
Ria= Iy o~ 1% a+ Ihal 6 — T 1%,
and it follows from this that
ORG.q = 6ng;c—argc';d'

(The simplest way of establishing this is to remark that the variation
in the affine connection is, from the law of transformation of affine
connections, a tensor of rank 3, and also that the equation stated
can be derived at once from the definition of the curvature tensor at
any particular point in the coordinate system which is freely falling
there, i.e. such that at that point the affine connection vanishes. But
since both sides of the equation are tensors their equality in one coor-
dinate system involves their equality in all, and therefore the theorem
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is established in general.) By contraction it follows that
OR,, = 6]_‘ga;c_61—‘gc;a
and therefore that

R = a(ga bRab) = 6gabRab+(gbcar ga);c
_(gbcﬁrgc);a'

At this point we assume that the affine connection is the one usually
used in general relativity both before and after the variation. This
means that the covariant derivative of the metric tensors will be zero.
It is a slightly more subtle question to ask whether

(\/_g);a = 0;

the quantity here being differentiated is not a scalar, as we remarked
above, but is what is known as a density, because it is analogous to
mass density measured in the given coordinate system. Since we have
not given any rules for the covariant derivatives of denstties it will be
in order to define (\/—g),., = 0. This will lead to a general formula
for the covariant dertvatives of densities, which need not concern
us for the moment. It will have the effect, moreover, that for any
vector A° we shall have

f (V—gAY); d*x = f v —g A d'x;

On the other hand, it is easy to see that, since
A, = A+ T0A°
where the affine connection term is given by
I, = 38°™(8me,a—8ea, m+ Eam, o)
= 38 8am,c

(taking account of the antisymmetry of the first 2 terms in the expres-
sion for the affine connection), we can use the law for differentiating
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a determinant to write this as

L
I‘ca_“,\/__g ('\/ g),c-

Accordingly the left-hand integral may be written in the form

[ @v-ga9.cat,

where the divergence which enters is an ordinary divergence and so,
by Gauss’s theorem, may be converted into a three-dimensional sur-
face integral. In the usual way, so long as the field quantities tend to
zero appropriately at infinity, this may be disregarded.

This enables us to integrate certain expressions by parts even when
the derivatives are covariant derivatives, and we apply this to the
last two terms in the expression for the variation of R. Disregarding
the surface integrals we get

5 f R/(—g)dix = f [v/(—g) 6g®Rup+ RS /—g] dix.

However, by a similar calculation to the one just carried out it follows
that
0g = Ogap-88"™
)
or “5“ = g0ga = —gap0g®

since g%gq = 4.

Finally, collecting everything together we have

5 f Rv/(—g)dx = f V(—8) 58%(Rap — LguR) dbx.

This does, indeed, give a variational principle for the field equa-
tions, because since the variations of the metric tensor are arbitrary,
we conclude that the quantity in brackets must vanish, ie.

Rab = %g abR-
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By contracting this quantity over its two suffixes it follows that
g”Ray = R = 38“8aR = 2R,

so that R = 0, which then leads back to the field equations in their
usual form. Einstein’s approach in generalizing this was, however,
a little different. The quantity in brackets satisfies the identity

(R~ §gR), , = 0.

This may be verified directly most simply by the reader by observing
that it is a vector equation, and that it can be verified straightforwardly
at a point in which the coordinate system has been chosen so that the
first derivatives of the metric vanish and therefore the coefficients of
affine connection vanish. But it is also a general rule that a quantity
derived in the way in which we have derived this one will always have
vanishing covariant divergences.

This is really an application of Noether’s theorem which was dis-
cussed at some length in the book on special relativity, but since the
generalization of Noether’s theorem to the present case is a little
difficult we shall derive the result directly for any scalar function K
of the metric tensor. Let us assume, then, that

5 f K+/(—g)dix = f P bgup/( — g) dix.

There is no question here of a variational principle. On the other
hand, we could consider special variations which were simply due
to a coordinate transformation. In that case, since the left-hand side
is an invariant it cannot be changed by this transformation, and there-
fore the result will be zero, very much as in the case of the variational
principle. Consider, then, the infinitesimal coordinate transformation

x4 > x'¢ = x4+ et

for which the differential coefficients which enter into the transfor-
mation equations can be written

ox'?

oxb O+ el
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with the corresponding inverse transformation. The transformation
of the metric tensor will then take the form

., oxc  ox?
gax'") = X Wgcd(xr)

— d
- gab_efagcb'—e, »8ad-

Notice, however, that by definition this gives the new metric tensor
at the point with transformed coordinates, whereas the difference
employed in the variational principle is a difference keeping the coor-
dinates fixed, that is to say we need

Eapn(X") = gop(x""—¢")

= gap(x'")— &' 8ab, r-

Inserting all these it is clear that
0= [ P™letuert e5umet £ V(=) dx

= *J‘ eTP™gen A/ —8),m+ (P""gnc A/ ~ &), m+ P \/(—8)8mn, ] d*X,

and it follows that since the infinitesimal coordinate transformation
is an arbitrary one the contents of the square bracket must vanish.

This easily reduces to
(P 4/ —g),n=10

which has as its consequence
P =0,

Finstein’s approach was the following. He interpreted the tensor
which arose in this way as the energy momentum tensor for the gra-
vitational field. The vanishing of its covariant divergence he viewed
as in some sense representing the conservation of total energy and
momentum. The equation derived by putting the tensor equal to
zero is then the condition for free space, that is to say, the field equa-
tions. The generalization i1s to ask whether any more general energy
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tensor can be derived. It is necessary to put some restrictions on this,
and Einstein looked for the most general energy tensor which did
not involve covariant derivatives of the metric above the second and
which was linear in those derivatives. By choosing again a special
coordinate system in which the first derivatives of the metric vanish
at one particular point, it is not difficult to prove that the most general
tensor is a multiple of

Rmn - 'é_gmn(R - 2}‘)9

where A is a constant. The same process of equating this to zero now
gives as field equations

Run = AZmn-

Before solving these equations there are two small investigations
which we may make. Firstly, we shall discuss what they correspond
to in the Newtonian approximation, and, secondly, we shall consider
a recent new approach to this problem by Lovelock (1970). We are
already aware of the Newtonian equations to which Einstein’s field
equations correspond, i.e. Laplace’s equation. Accordingly, in the
static solution, or at any rate in one in which the matter does not
move very quickly, taking account of the fact that the metric tensor
is then related to the gravitational potential ¢ by the equation

814 = 1+2¢,

it follows that, to the first order in the gravitational potential, the
Newtonian approximation will be exactly that modification of the
Newtonian theory discussed above,

Vi = A

(The interest of general relativity in this connection is in the way this
turns up as virtually the only possibility. This fact is also true in the
Newtonian theory in the case of cosmology because of the additional
assumptions of homogeneity and isotropy. But it follows already
from the general covariance in general relativity.) The right-hand
side of the equation is now a constant, since the cosmical constant 4



48 GENERAL RELATIVITY

is very small, and therefore the terms involving a gravitational poten-
tial on the right-hand side may be disregarded. To see the significance
of this equation we may look again at the static spherically symmetric
solution; the equation becomes, as we saw,

1 © 0p\
o ("2 3;) =4
with the solution
0o 1 m
or T 3 Ar— 2

for the gravitational force. In the Newtonian approximation, then,
the equation corresponds, just as in the modification of the Newtonian
theory, to the well-known inverse square law, to which is added a
direct distance law. With a suitable sign of the cosmical constant
this direct distance law can cancel out the gravitational attraction and
accordingly give rise to a stable universe.

Moreover, the direct distance law, being a force which increases
with distance instead of decreasing, has a superficial attraction because
its value in our immediate locality is almost entirely determined by
the most distant matter, for there is more of this matter, and it is
also at a greater distance away, This at once suggests the fulfilment of
Einstein’s desire to incorporate Mach’s principle into the theory.
Unfortunately, however, this attractive feature vanishes on closer
investigation. The trouble now is not the same as it was in the Newto-
nian theory, that of an infinite potential at the origin. It is possible,
as will be clear below, to solve the field equations for a finite distri-
bution of matter, which is, none the Iess, unbounded in extent; the
obvious analogy is with two-dimensional spaces, amongst which the sur-
face of a sphere has the properties of isotropy and homogeneity, and
is of finite total area, yet without a boundary. But the direct distance
law is not actually attached to any sources at all, the constant in front
of it is an absolute constant, bearing no relation to the distribution
or motion of masses. Indeed, it is hard to see how it could be other-
wise, since conventional laws of force which decrease with distance
like the inverse square law, are provided with sources at the singular
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points of the field where it has increased without limit. A law of force
of this kind has no singularities of that sort and is therefore not
connected to its sources in the way that we are used to. It is not sur-
prising, therefore, to find again that the introduction of this additional
term into the equations of motion fails to achieve its result.

Turning now to Lovelock’s work, he considers the curious fact that
although a variational principle exists for general relativity in terms
of a Lagrangian involving the metric tensor and its first and second
derivatives, the field equations which result are not of the fourth
order, as would be expected from the usual theory, but only of the
second. Perhaps an analogy to Lovelock’s investigation in a simpler
case would be of help. Consider the well-known result, in special
relativity, of a scalar field y derived from a Lagrangian L = L(y, v ;).
The usual field equations are, of course, of the second order, having

the form
oL 0 oL \ _ 0
oy oOx' (61/)_,-) -

We may ask the question: Can these equations be of the first order?
If the theory is a Lorentz invariant one, the Lagrangian must be a
function of invariants under the Lorentz group and so can only depend
upon y and

o = 3¥yi = 3%, ., say.

Writing, therefore,
L = f(y, o)

oL oL ;
a7t T W

we have

which then produces the field equations in the form

Si—(fay),i = 0.

These field equattons will certainly contain second derivatives of the
scalar field unless

.o
=0, ie. L =0.
f2 89
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In that case the Lagrangian is a function of the scalar field only not
involving its derivatives, and so, in fact, the field equation must be
algebraic, 1.e. of zero order. We have therefore shown, in this parti-
cularly simple case, that it is possible to have field equations of lower
order than the second but that they must then be of zero order.

The investigation in the case of general relativity is very much more
complicated for two reasons. Firstly, it is obviously going to be more
difficult to deal with a set of ten independent field variables instead
of one. Secondly, the theory has to be invariant under the general
group of transformations rather than merely the Lorentz group, and
the implications of this for the form of the Lagrangian and its deri-
vatives take quite a lot of working out. It will suffice merely to summa-
rize Lovelock’s result here. In a four-dimensional space the only
second-order field equations which can be derived from a Lagrangian
invariant depending on the metric tensor and its first and second deri-
vatives are Einstein’s equations with the cosmical term. The result is
false in spaces of higher dimension (and Lovelock also shows that
there is only one possible third-order equation in the four-dimensional
case). Lovelock’s investigation goes as far as one can hope to settle
the form of the field equations so long as you believe them to be of
the second order and derived from a variational principle.

It is now quite straightforward to carry out the calculations for the
cosmological theory. The early investigators were looking for a static
universe, and so they again assumed for the metric

ds® = e* d? — & dr® — r2(db2+sin® 6 dip?).

It Is convenient to continue using the same notation as before, invol-
ving the function 2 = A(r), and so it is necessary to change the letter
chosen for the cosmical constant. We shall now use A for the cosmical
constant. Exactly the same calculation as before now gives

Ryy= v/ =P+ pv2=2')r,
Ry = e~ M1 +1r(v —A)] -1,
R33 = R22 sin2 9,

Ry = e~ H— 5"+ AV —4v'2—~v'[p),
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but these quantities are not now to be equated to zero. Instead we
have to find the tensor

R, — 38, (R—2A).

This is to represent the distribution of energy and momentum, and
we want to impose upon it certain symmetry conditions. It obviously
makes a difference, however, whether we impose these conditions on
the form of the tensor given or on the contravariant or mixed forms.
We shall have to consider which of these, if any, is the physically sig-
nificant one, for which we can assume that it is the same at all points
and that the components for different directions are the same. That
is to say, we have to make precise in which way we can put in the
assumption that the universe is homogeneous and isotropic.

This at once raises a severe problem, the importance of which was
not realized in the early days of relativity theory, although it was
clearly foreshadowed in Einstein’s original paper. This is the fact that
the coordinates, since they can be changed by perfectly arbitrary
transformations, can have no physical significance until some has been
found for them. We have, gfter solving a problem and using a parti-
cular coordinate system, to investigate the circuinstances of the prob-
lem and relate the important features of the coordinate system with
what is actually measured. The phrase “actually measured” has a
comfortable sound, but it is necessary to be more precise about what
it means. The seductive apparatus of general relativity makes us feel
that we understand the physical significance of tensors of various
ranks, but in fact the way in which we carry out measurements in the
theory is that an observer sets up a local Cartesian coordinate system.
Such an observer may be freely falling, in which case his coordinate
system locally forms an inertial frame without any gravitational field,
or it may be convenient in some problems to use an observer fixed
(e.g. on the surface of the earth), in which case a gravitational field
has also to be introduced. In either case a general feature is that a
set of four unit vectors in the four coordinate directions are set up.
Of course any other set derived from this by a Lorentz transformation
will be equally suitable. Once these vectors are set up, however, it is
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the components of the other quantities with respect to this coordinate
system that we are able to measure.
By a component is meant here the inner product. Suppose that the

four unit vectors along the axes are written as

h; or H,

[+ 3 -3
where the o labels the individual vectors. The condition that they are
unit vectors at right angles in the coordinate system which they define,
can be written in the form

hihi:' wfs
o« B nﬁ

where the occurrence of 7, on the right-hand side is due to the fact
that one of the four unit vectors must be time-like (and has been
chosen here as h;), whilst the other three will then be space-like.

4
Given a tensor of rank 2, e.g. the energy tensor T}, the quantities
which can actually be measured are the components

Tap = hi th,‘j.
« B

Now a convenient set of unit vectors for the coordinate systems
which we are using here will be those in the direction of the coordi-
nates t, r, 0, ® increasing. In that case the conditions of orthogonality
and being a unit vector reduces to a much simpler form. It is first
necessary to rearrange the conditions in the form

7 hy hy = gi;.
« B
This may be most easily proved by modifying the original condition

slightly, writing
hl = Aqi,
4

hy=idy, h = idy, h, = ids,
1 8
and, similarly,

h = By, and so on.
4



BEGINNINGS OF GENERAL RELATIVITY 53

The original condition then has the matrix form
AB =1,

where I is the unit matrix, and this is well known in matrix algebra

to have the consequence
BA =1,

which is easily seen to be the new form of the conditions.
The vectors now have the form, then,

h;=¢642, hi=vr, hi=rsinb, h;= el
1 2 3 1
Accordingly, the actual measured quantities are derived by multi-
plying the covariant components by the quantities
e—*2 and so on,
or the contravariant components by the quantities
e¥?  and so on.

Finally, if we take the mixed form of the tensor we find that the meas-
ured quantities are equal to the mixed components. Accordingly, the
conditions which we want to impose are

0 .
(of which the last equality is an identity, i.e. we have already been
able to assume 1t by our choice of metric.)

If we use the expressions for the components of the Ricci tensor

R} = —e"'(l v”—lﬂ.'v'+l 1,'2_5;_'_) ,

R} = —r—ll,a{e"l[1+r(v’—2')]—1} = R},

1 1 1 v’
4_ _A rr F 12
Ri=e (———zv +-—4Zv———4v __r)’
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which accordingly give

1 2(v'—=2) 2 2
2 2 r _ri)

Re e bayhn 200 29,2

We derive for the radial and the time components of the energy ten-
sor the values

’

I ) _,__v_ J_ __,L

_ A1 1
—Ti=e¢ ‘(——r-+~r-2-) —72~+/1.

Here the cosmical constant has been inserted, and the negative sign
on the left-hand side is necessary since, firstly, we have only proved
proportionality between the energy tensor and the expression

Rij—58i{R—24),

and a short calculation with the Newtonian approximation shows,
in fact, that the constant of proportionality must be negative. In iden-
tifying the expressions with the energy tensor instead of with the mul-
tiple of it, we are, of course, making a certain special choice of units
for energy, but it does not matter for our purposes exactly what this
choice is. The other two non-zero components of the energy tensor
have complicated forms.
From the time component, which must be a constant, it follows
that
0 1
o e = A

which integrates to the form
re* = 34r+r+ B,

where A and B are constants of integration. However, since the solu-
tion cannot have a singularity at the origin, because this would mark
the origin off as different from other points, the arbitrary constant B
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must be zero, and, accordingly, the solution is
e = 1—}—%Ar2.

Substituting this solution back into the radial component and equat-
ing this to a constant, gives

| Y 1 |
(”?A’)(ﬁ?)—rz—c’

and this easily simplifies to

1 1

v'(—+~Ar) = D,

r 3
where D is a new constant. Again this is straightforward to integrate,
giving

e’ = (1+5A4P)F,

where 24E = 3D. The form of the metric so far is, therefore,

1 E dr? )
ds? — (1 ks Ar2) de—— T p(dr 4 sin® 0 dg?).
3 1+ 3‘AI‘2

We must now take account of the other components of the energy
tensor, but this is simpler in that we have definite expressions for the
coefficients of the metric. In fact the transverse component of the
contracted curvature is given by

R = —3(D+54),

whilst the radial component reduces to

1 ri 4 1 2
| R e o i 2 - 2 2
Rl — 1+§Ar2[2 (D+3A)+(4D+9A)r].

Since these two must be equal if the corresponding mixed components
of the energy tensor are to be equal, it follows that

1 4 TD2+ 2 A2
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Simplifying, either D = 0, which implies that E =0, or D = 24, so
that £ = 1. We must now examine these two possibilities separately.
Before we begin, however, we may notice that as well as the two cases
described by this choice of constants there is also the one obtained
by taking 4 = 0 in the original integration. This third choice is
simply the flat space—time of special relativity and need not concern
us any more in the description of a universe supposed to contain
matter.

Let us consider first the possibility that £ = 0 so that the time com-
ponent of the metric tensor is constant and the mixed components
of the energy are given by

—T1 = 14+ 4,
——Tg = A+ A.
The usual choice in this case is to make A = —3/ so that there is

no pressure in the universe but only matter at rest, with density (in
suitable units) given by ¢ = 2. This was the choice originally made
by Einstein (1917). Since we can rewrite the metric coefficient in the

form
e*=1-Ar*=1—-rR> (say),

so long as A is positive it follows that
A=1/R%, p=2/R?

which relates the density of matter, which evidently must refer to a
smoothed-out average density, to a length in the universe corre-
sponding roughly speaking to the greatest possible length. For the
kind of values of the length constant thought to be applicable in
astronomical situations, the corresponding density turns out to be
very much higher than that observed, a fact which has been pictur-
esquely described by Eddington in the words “the Einstein universe
has as much matter as it can possibly hold”. He envisaged the pro-
cess of increasing the matter in the universe as at the same time in-
creasing the amount of curvature, since the gravitational field becomes
stronger, until a point is reached at which the universe ceases to be
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open at infinity in the sense that flat space 1s open, and becomes clo-
sed. And Einstein’s universe can, indeed, be considered closed in this
way, as we can see by considering a radial geodesic. By making a
transformation of coordinates akin to that from Cartesian to polars,
i.e. by putting r = R sin x, the metric becomes

ds® = d* — R} dy?®+ sin’y(d0?+ sin? 0 d¢?)].

Length measured radially (df = d0 = d¢ = 0) (which is easily seen
to be along a geodesic, by using the geodesic equations) is then Ry.
But as y increases from 0 to , the metric coefficient R sin x increases
to a maximum value R and then decreases to zero. The vanishing of
a coefficient of the metric in a diagonal metric like this involves the
vanishing of the determinant, and this means that it is impossible to
get beyond y = n. (The singularity at y = 0 is to be expected, as it
always arises in polar coordinates.) It is helpful to look at this from a
geometrical point of view. Writing

x1 = Rcosy, x2 = Rsinycos?,
x3 = RsinysinfGcos ¢, x4 = Rsin ysin 0sin 0¢,
it follows that
X34+ x3+x3+ x5 = R?

so that (x1, xa2, xa, x4) are the Cartesian coordinates of a point in an
(imaginary) four-dimensional space which lies on a “sphere” of radius
R. Moreover,

dx3+dx3+dx3? = {d(R sin y)}*+ R?sin® y(d0%+ sin 6 d¢?),
so that the original spatial metric is given by
ds® = dx3+ dx3+ dx3+dx3.

The point y = 0, at which there is the expected singularity, is at (R,
0, 0, 0), whilst the other one is at (—R, 0, 0, 0). The radial geodesic
is like a “great circle” on the “sphere” and returns to its original point
after a (measured) distance 2nR.
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It should be mentioned that this global interpretation of the Ein-
stein metric (which is only given locally), is by no means unique.
Another obvious possibility is that the sphere just mentioned could
be considered to have its opposite points identified, so that the point
(- R,0,0,0)is to be taken as representing the same one as (R, 0, 0, 0),
and the greatest length is then @wR. An infinite range of other global
possibilities is also available, all consistent with the original local
metric.

The analysis of the other case when £ = 1 is a little more compli-
cated. This solution was discovered by de Sitter (1917), and one of
the interesting features is that it is possible to choose the constants in
such a way that there is no matter present at all. This would also have
been possible in the case of the Newtonian universe if we had chosen
A = —A, but the result would then have been a negative pressure
at all points. The de Sitter universe manages to provide a zero-den-
sity, zero-pressure solution, i.e. the choice 4 = — /1 gives

—Tj = Ri—18i(R—24) = 0

7

everywhere, although the space-time is certainly not the flat space-
time of special relativity. This is very disquieting for those who believe
in Mach’s principle and who hope that it is incorporated in general
relativity.

However, the de Sitter universe has another feature which makes it
very interesting from the point of view of the development of general
relativity and cosmology. Let us consider the equation for a particle
moving radially outwards along a geodesic. This has the form
d%r 1) dx’ dxJ
o + e Ty T3 & 0,
ds? {1]} ds ds
and substituting the values for the metric tensor it is easy to calculate
that its derivatives, which are non-zero, are

gu,1 = —2r[R?, 1= —(2r/R®)/(1 —[R?P,
8o, = —2r, 833, = —2rsin® 0,
Za3.2 = —2r? sin 6 cos 0,
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giving rise to the following three-index symbols:
{} = — (/R A—-r*/R?),
{4} = /RH/(1—r*[R?),
{5} = —r(1 —r?¥/R%),
{&} = —rsin® 0(1 —r2/R?).
Hence we have, for d0 = d¢ = 0,

Pr v o(drye
ds? Rz(ds) _(r)(dt

2
A N e 2 IR —
R = ds)(l 2|R?) = 0.

This equation (together with the f-equation) is hard to integrate
exactly. For a particle which is initially at rest, however, the equation

will simplify to
ar_ 1 (NN
ds® R? ( RZ)(ds) e
Moreover, for such a particle, using the original form of the metric,

1e.
2 - r2 2
ds? = (1 Rz) dr?,

it follows that when the particle is at rest

AR
(”dT) T 1-2R

Accordingly, the initial motion of the particle is determined by the

equation
d’r r

ds? — R*’

The constant 1/R? in this equation is certainly non-zero, since other-
wise we would have a flat space-time. Accordingly, the universe must
either be collapsing or expanding. We noticed above that the constant
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A turned out to be negative in the Einstein case if the density is posi-
tive, and accordingly we introduced —+A4 = 1/R2 By working out
the components of the energy tensor here it will be found that the
same situation arises even for zero density, and accordingly the
de Sitter universe has the following property: there is no uniform dis-
tribution of matter in 1t, butif a test particle is introduced at a point,
at rest, it begins to accelerate away from the origin. The analysis
which we have given is not enough to show how this acceleration
continues, but the original equation for radial motion can be written

d?r r r? dr? 1 r
—y = e [ {1 == ) di2— e = —,
ds®> R? R? 1—r2/R? | ds* R?

so that we see that the acceleration has the same value at a point even
for particles not at rest. In this way the de Sitter metric suggested that
astronomers should look for a systematic recession of distant matter.

It was already known (Wirtz, 1922; Hubble, 1929), that the spiral
galaxies tended to have velocities away from the earth, as shown by
their red shifts, and this was regarded at the time as a curious pheno-
menon since it suggested a total untenable view of the earth as the
centre of the universe. In fact the de Sitter universe provides a model
for such a recession; i.e. one in which the recession velocity is pro-
portional to the distance from the earth. But, of course, once we have
come to this point in our theoretical analysis it strongly suggests that
we should consider models of the universe containing matter, which is
actually expanding, and the Einstein universe which we discussed
above becomes an obsolete picture. It was usually considered that the
Einstein universe was unstable, so that the slightest disturbance of it
would send it into an expanding phase, finishing ultimately in the de
Sitter form. This fact, however, is not quite so straightforward as was
formerly supposed, since, as Bonnor (1954) has shown, this instability
involves a discontinuity in the pressure; in other words, the Einstein
universe is only unstable for very extreme disturbances.

Be that as it may, there arose in the years following the discovery
of the static models of the universe, on the one hand, a great deal
of experimental information of the velocities of recession of the
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galaxies, and, on the other, an exhaustive theoretical description of
expanding universes. No final conclusions emerged from all this work.
There are a number of reasons for this. Perhaps the most important
is that the whole problem of cosmology is to describe the unique uni-
verse in which we find ourselves. In cosmology a theory which gives
rise to a number of possibilities, with choices of arbitrary parameters,
fails to do this. The situation with the static universes of general
relativity was not so unsatisfactory in this respect since only one of
them contained matter. But once one considers expanding models
there is such a wide range that the subject becomes a purely scholas-
tic one.

There is another deeper reason which also contributes to the diffi-
culties of cosmology. That is, that if the universe is expanding and
has expanded from a2 much more concentrated state, then since some
of the light we see from the stars comes from them at a time when
they were in this state very different from local conditions, we have no
systematic theory of what the laws of physics would be in the very
different circumstances in which the light was emitted. These laws
are formulated on the earth for a very small range of temperature,
pressure, and density. Until we have a theory which explains how
they should be changed in different circumstances it is highly specu-
lative to try to produce a cosmology. None the less, a great deal of the
effort expended on general relativity between the wars went in this
direction.



CHAPTER I

Modern Developments

AFTER a disappointing period in the late twenties and thirties, general
relativity became a really active subject again immediately before and
following the Second World War. The problems which have led to
its various further developments are so interlinked that it is necessary
to describe them to a large extent together. But before entering into
details, we ought to try to characterize these problems in some way.
General relativity is undoubtedly a complicated theory, and when
dealing with such a theory some simple analogue is useful as a guide.
Of course, to understand the whole of a theory will need more than
one such analogue (for otherwise the theory itself is really equivalent
to one of the simpler ones). The problems of general relativity before
1938 are all immediately comprehensible in terms of Newtonian gra-
vitation. The gravitational field considered in them is measured rela-
tive to some given coordinate system, and so can be represented by
the right-hand side of the geodesic equation

d?x? pl dx? dx"
ds ds’

dst T T \qr| ds ds

notwithstanding the non-covariant nature of this procedure. But, of
course, a corollary of this is that the predictions of the theory are
of small variations from the Newtonian theory, and since Newtonian
gravitation happens to be an extremely exact theory, these variations
are in fact very small indeed, and correspondingly difficult to measure.

The analogue that has been the mainspring of developments since
1938 has been Maxwell’s electrodynamics; correspondingly, since the

62
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field there, in the Lorentz invariant formulation, is a skew-symmetric
tensor of rank 2, F;, it is natural that the Riemann tensor Ry,
should enter as the gravitational field in which the theory is now inter-
ested. For this tensor is doubly antisymmetric; so that those features
of electromagnetic theory which are connected with the antisymmetry
of F; reappear in general relativity (only twice over). It is to be ex-
pected that the problems suggested by this analogue will be quite
unlike those in Newtonian theory, and so the experimental distinc-
tion between the theories becomes more possible. We shall make
considerable use of the electromagnetic analogue to clarify the recent
developments of the theory.

Historically the first of these problems was already tackled by Ein-
stein in the twenties, and yet it is one of the most mysterious features
of the theory. In a paper with Grommer (Einstein and Grommer,
1927), and then in a further one by himself, Einstein (1927) posed the
problem: If the gravitating masses are represented by the singularities
(as in the Newtonian theory of point masses), is it possible to prescribe
the motion of these singularities arbitrarily or will this violate the
field equations? In fact Einstein was at that time only able to answer
the question negatively to a first approximation. But the calculations
were carried further, and Einstein, Infeld, and Hoffman (1938) veri-
fied that the usual formulation of general relativity, in which one first
postulates the geodesic equation for a particle, in this way assuming
that the metric of the space can be so chosen that this equation pro-
perly represents the particle’s motion and then postulates field equa-
tions to determine this metric, 1s not, after all, a formulation consist-
ing of independent parts. In fact, the original geodesic assumption
need not be made at all if one agrees to represent a particle, as in New-
tonian mechanics, by a singularity in the solution of the field equations.
For Einstein, Infeld, and Hoffman were able to show that such a sin-
gularity moved along a geodesic in the limit when the strength of the
singularity was vanishingly small.

The electromagnetic analogue is useful here. Maxwell’s equations
in special relativity, in free space, can be written in the form

Fi.= J, Fyu+Fp+Fu;= 0,

i
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where J' is the four-vector of charge and current density. Now in the
Mazxwell theory an important part is played by the energy tensor

E} = FiF,—% 8/F"F,,.

(One is led to consider this tensor, either by generalizing Maxwell’s
original treatment of the “stresses in the medium” (Maxwell, 1892)—
following Faraday (1852)— to a Lorentz invariant form, or by con-
sidering that the original field equations are invariant, if J' = 0,
under the inhomogeneous Lorentz group, applying Noether’s theo-
rem, and making the resultant tensor symmetric.) This tensor has the

divergence
E]é,j == F:'_’,F,k‘*" Fijl:ik,j_‘ % 6,{ququ,j.

The first term is J'F,,, and the second is

—FUFyy i+ Fjy ) = —FUFy j+ FPOF, .

Hence, in all
E} ; =—FuJ = -G,

where G, is the Lorentz force on the current J'. We are not therefore at
liberty to postulate any law of force in the theory. We have good rea-
sons for thinking that £} ; will just balance the forces on the currents,
and this determines the Lorentz force.

The differences which arise in general relativity do so because there

~Tj= R~} 8R

has its (covariant) divergence identically zero. The existence of such
a quantity is, in fact, a consequence (as we saw above) of the general
covariance of the theory. Before going on to the actual derivation,
which is represented in Extract 5 of this volume by a later paper of
Einstein and Infeld (1949) in which the ideas have been more clearly
presented, we can give a general idea of the physical principles behind
the method by considering the field equations in matter which, as we
saw, were adopted by Einstein in the form

—T,'j = R,-,-—%gin.
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(We are now no longer concerned with problems of cosmology, and
so we shall ignore the possibility of the cosmical term Ag; being added
to —T.)

The energy density here may be taken in the form

TY = puiu,

where ' is the velocity dx'/ds, and p is the rest density (i.e. the local
density of matter measured in a frame of reference locally chosen so
that ' = (0, 0, 0, 1)), if we are considering a cloud of dust. (If we were
to consider a fluid there would, of course, have to be additional terms
representing the pressure.) The energy tensor reduces to the form

i [Bove?, o _
= [ Bovt PR ] (@f =123

where v* = dx"/dt, and at low velocities, when the S-factors can be
ignored, this corresponds very well with the expressions which one
would expect from the Newtonian theory. There is one component
giving the energy or mass, three components giving the momentum,
and the other six components are very small compared with these.
As to the f-factors, the only remark that needs to be made is that they
occur squared because we are considering a density distribution of
energy and momentum. One of the factors is necessary because of the
contraction of length, the other because of the increase of mass with
velocity.

Now having postulated the field equations in matter this involves
the following identity for the energy tensor:

T = ovl w+ (o). i = 0.
However, the vector u/, being the velocity of the particle in four dimen-
sions, is a unit vector, so that
and this gives
ity = g(up);; = 0.

By taking the inner product of the original identity with the velocity
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vector we can therefore deduce
(Quj); j = O:

which is simply the equation of continuity; for example, in the New-
tonian approximation it becomes

%

at--!— div (pv) = 0.

This results in the second term of the identity vanishing, and as a
consequence the first term must also vanish, which is essentially the
geodesic equation
B
s
In this treatment we have used the field equations in matter but, on
the other hand, no mention has been made of singularities. We have
considered a cloud of dust instead of a test particle. The Einstein,
Infeld, Hoffman technique was to use the field equations in vacuum
except, of course, that there would be a singularity present acting as a
source of the field, and so to find the motion of test particles without
any special assumption about the form of the energy tensor. Since the
field equations have a singularity at which they are not satisfied, Ein-
stein, Infeld, and Hoffman enclose this singularity in a small sphere and
write the field equations in such a form that they can be turned in
part into surface integrals over this sphere. The treatment which they
give is said in the paper quoted to be possible as a consequence of the
non-linearity of the theory. This is not really true, however (Tulczyjew,
1965). It has been shown that it is possible for a linear theory to pre-
scribe the equations of motion of its singularities. The real difference
is that in a linear theory, since solutions can be superposed, there can
be no interaction between these singularities; each of them may move
independently of the others. Thus the non-linearity, although not
essential for the calculation, is essential for it to be of any physical
interest. Essentially, however, the calculation is simply a means of
avolding postulating any particular form for the energy tensor as we
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have done above. What is needed for it to succeed is a theory which
is invariant under a general group of transformations. As we saw in
an earlier chapter, such an invariance leads to conserved quantities,
in this case the energy tensor, and whether we take the short cut given
here of assuming a particular form for this energy tensor or whether
we refuse to make an additional assumption of this kind, is to some
extent a matter of taste. The calculations given by Einstein and Infeld
have been repeatedly simplified on later occasions by using more and
more refined analytical techniques, but essentially the step forward
which they took in 1938 is one of those results which have to be shown
once and for all, and must then be accepted as part of the theory and
need not be re-worked.

It is worth while examining their methods a little more closely,
however, since certain assumptions repay investigation. For example,
in order to derive their results they are bound to use an approximation
procedure for solutions of the field equations. The quantities enter-
ing, such as the metric tensor, are expanded in infinite series, and the
various terms are then found one after the other in the usual way.
It is necessary to make certain assumptions about the degrees of
the parameter (which enters into the solution) in the various expan-
sions, and Einstein and Infeld remarked that these assumptions are
equivalent to those in the Maxwell theory which choose for the poten-
tial the average of the advanced and retarded potentials. The fact
that any assumption of this kind is to be made early in the investiga-
tion is of extreme importance. The whole question really comes down
to how one avoids considering a radiating system, where radiation is
here meant to signify gravitational radiation (whatever the meaning
of that term).

A system which radiates may well be expected to lose energy, and
correspondingly the motion of the test particle may be expected no
longer to be along a geodesic. Accordingly, Einstein and Infeld have
somehow managed at the beginning of their investigation to rule out
the possibility of radiation. In order to complete this investigation,
then, we must certainly have a clear idea of what is meant by gravi-
tational radiation and also, we would hope, to investigate the trans-
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port of energy by it. Now this whole idea of radiation comes from
electromagnetic theory and it is there that we must first ook for the
definition. We can see the general idea if we write Maxwell’s equations
in their four-dimensional form

Ff‘z = 09 F(;w, 9 — 05

where F, ,=F, ,+F,, ,+F, ., and where the various com-
ponents of the field tensor are related to the three-dimensional de-
scription by

(Fas3, F31, F12) = H,

(F14) F249 F34) = E9
in suitable units. The following treatment is a perfectly standard one
and has as its aim the derivation of the field around an oscillating

dipole. Firstly, in free space the second of the Maxwell equations is
simply the condition that the field tensor can be written in the form

Fuv = A,u, v_Ar, i3]

where the vector potential A4, can with advantage be made to satisfy
the identity 4% = O (Lorentz condition). Here we can rewrite this
in three-dimensional form as

H = curl A,
OA
E=(4,,—4)= _V‘i’_"&",

where
A% = (P, A).
The Lorentz condition in this form becomes
¢ )
‘u —_ —_—
A~ ar T divA = 0.

We are concerned with the equations in free space which take the

simple form

oH oE
CurlE—'—'W, CUTIHZ*E.
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With a view to integrating the second one with respect to time, a sub-
stitution which suggests itself is

0
A= EI—II.

When we insert this into the Lorentz condition we derive
O (p+divID =0
ot val =5

and one particular solution of this, admittedly a very special one, will
be
¢ = —div IL

Let us substitute this into the second of the Maxwell equations.
The result simplifies to the vector wave equation
(o4 1|
qI = .
v o
Further, let us simplify matters by considering fields which are
derived from a particular vector field always in one fixed direction
which we may choose as the z-axis so that

II = q)e3,
the wave equation then becoming the scalar wave equation

el

2 =
VY o

It is well known that for spherical waves a solution of this equation is
= Lye-n
Y= y 4 s
the occurrence of the term f—# in the function corresponding to the
retarded time. There is, of course, another solution, (1/r)u(t+r), with

the advanced time, and equally one may take averages involving both
solutions. Although both of these are formal solutions of the equation,
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they do not equally agree with our ideas of causality. The question
of how we should exclude one solution is a subtle one which we do not
wish to take up here, so we will accept the retarded solution alone.
Substituting we get for the components of the potential

A = ezy'/r,
¢ = eg-r(y/rP+y'/r?).
Differentiating again, the electric field is given by

E = —egy’'/r+e;-1Ty" [r+ o/r2+ B3,

where o, 8 are two expressions involving the various functions which
enter but not depending on the distance. We can rewrite this in a
shortened form as

£ _ T A(eaAf)y +°‘, B

r 2t
Similarly, the magnetic field comes to

H= E;;_/\;l‘M + Jf_z .
r r

The interpretation of these fields is well known. The larger that r
becomes the more important are the first terms in each expression.
These are the so-called distant field, a radiation field. At a great dis-
tance from the source, which is evidently the origin because of the
singularity, we have a field which is propagating in a radial direction,
such that the electric and magnetic vectors are transverse to the direc-
tion of the propagation. The other terms represent the so-called near
field which are only important in the neighbourhood of the source
and, as a matter of fact, it is only the radiation field which carries
away the energy. In the near field the energy is transmitted away
from the oscillating source during one part of the cycle and back
to it again during the other part. It is this splitting of the field of the
oscillator into radiation carrying energy, and a local field, which
gives rise to the idea of radiation in electromagnetic theory.
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We notice that the electric and magnetic vectors of the radiation
field, as well as being at right angles to the direction of propagation,
are also at right angles to each other, so that

E-H =0,
and, moreover,
E2--H?> = 0.

At first sight these two identities do not appear to be invariant under
Lorentz transformations, but as a matter of fact we see that they are
equivalent to

I=F"F,=0,

J=F"F, =0,

where £, = -1£,,,,F°, which are, indeed, invariants.

Let us pause for a moment to consider the difference between the
electromagnetic case and the gravitational one. In the first place the
electromagnetic radiation comes from a dipole. This fact was clear to
Hertz when he found the solution which we have just quoted because
the nearest field of all comes from the term f£/r3, that is to say, the
term which arises from that part of the scalar potential of the form

e3r gy _ ysinf
2 2

corresponding to a dipole of varying moment y. A corresponding in-
vestigation of the gravitational field of a moving system would finish
with quadrupole radiation. Thus, apart from anything else, the gravi-
tational case is bound to be considerably more complicated than the
electromagnetic. But also Maxwell’s equations are linear and solutions
of them can be written down in terms of certain potentials which in
turn can be simplified in particular problems by substitutions of the
sort we have used above. No such simplification arises in gravitational
theory. The equations are non-linear and, indeed, it is at first slightly
mysterious what one should treat as the gravitational field at all.
Originally people thought in terms of the Christoffel bracket connec-
tion as the gravitational field, the metric tensor being a potential
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from which it was derived. But this evidently only represents the field
relative to some previously determined coordinate system since, when
one writes the theory in an invariant form, this field can always be
reduced to zero at any point. The field must then really be constituted
by the Riemann tensor, and algebraically this suggests that the analogy
with electromagnetic theory is not so far-fetched as it might have
seemed. For just as in the electromagnetic case a skew-symmetric
tensor of rank 2 arises, the generalization to the gravitational case is to
a tensor of rank 4, skew-symmetric in each pair of indices. We have
then somehow to characterize the idea of radiation in terms of the
Riemann tensor. There have been a number of treatments of this, but
the earliest attempt which really provides the basis for all the later
ones is that of Pirani described in Extract 7.

The essential idea of Pirani’s paper (1957) can be seen in terms of
electromagnetic theory. The radiation part of the field is characterized
by the vanishing of the two invariants mentioned before. Let us consi-
der more closely the role of these invariants in the classification of
the electromagnetic field. Given a pair of vectors (E, H) in three-
dimensional space we can certainly rotate the axes so that they take the
form

E = (0,0, E),
H = (0, Hs, Hj).

Consider now the effect of a Lorentz transformation in the x-direction.
These two vectors then become, if we suppose them to constitute parts
of a skew-symmetric tensor of rank 2, as the notation suggests,

E = (09 ﬁVH& ﬁ(E— VHZ))a
H = (0, f(Ha—VE), Ha)

A number of consequences follow, dependent upon whether or not the
third component of H vanishes, that is whether or not J = 0. In the
case when this invariant does vanish so that Hs = 0, we have three
cases to consider:

(i) If T > 0, so that H2 > E?, we can choose V = E[H», and in the

new coordinate system E = 0, so that the field is purely mag-
netic.
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(ii) If I < 0, so that H2 > E2, we choose V = H,/E, and then the
new H = 0, so that the field is purely electric.
(iii) If I = 0, neither of these reductions is possible.

Before discussing (iii) further, we need to consider the corresponding
cases when Hjz = 0, i.e. J # 0. Certainly if J # 0, both fields are
present in all Lorentz frames, but another reduction is possible, in
which the fields are parallel.

For if
H:—VE _ Hy
VHy  E-VH,’
then
vV EH,
1+V2~ HELHIAE®
Since

V(e YT ana ve Ll o<
1+"V2_( V) v ’

the only constraint on whether or not there is a solution is
H3+ H24-E® > 2EH,,
ie. Hi+(H,—E)* =0,
which is certainly fulfilled if J = 0. The only casein which no reduc-
tion is possible is the so-called null field in which I = J = 0, i.e.
E2-H?2=0 and EH=0,

the radiation case.

Another way of looking at these results will also be instructive in
the future account of relativity. The classification which has already
been given is in terms of the two invariants I, J of the field tensor.
One may well ask whether there are other invariants so that the classifi-
cations can be carried out more finely. That there are not is clear when
one writes out the transformation of the electric and magnetic fields in
three-dimensional form:

H = H, H,=p(H,—VE,), H;= p(Hs+VE,),
Ei=E,, E;=fB(E;+VHs), E3= (E3s—VH,),



74 GENERAL RELATIVITY

If we introduce the complex quantity
Z = E+iH,
these transformations assume the form

Zi = Zi, Zé = ﬂ(Zz—fVZ3) = Z3 cos 0—2Z3sin 0,
Zs = B(Z3+iVZs) = Z3cos 64 Z, sin 6,

that is to say, a rotation about the x-axis with complex angle of rota-
tion defined by tan 6 = iV.

Thus the Lorentz transformations of the field vectors are in a one-
to-one correspondence with a certain group of transformations of
complex three-dimensional space. Now the only invariant of a single
vector in three-dimensional space is its magnitude, given by

|Z)2 = (E+iH)® = E2—H2+ 2iE-H,

and the two invariants are seen here as the real and imaginary parts of
this. This reduction of the complexity of the algebra by going over to
a complex three-dimensional space will prove to be of value again in
considering the Riemann tensor.

Yet another approach is also of value in the electromagnetic case,
and can then be carried over to general relativity by analogy. This is to
consider electromagnetic tensors as a linear transformation of the
vectors of the four-dimensional space-time into themselves and to
ask whether there are any such vectors ©/; which are left unchanged in
direction by this transformation, i.e. we search for vectors satisfying

Fiv/ = Qv

Because of the skew-symmetry of the electromagnetic tensor it follows
by taking an inner product that

Ivty; = 0,

so that either the vector concerned is a null vector or else the eigen-
value concerned is zero. Let us confine attention to the null vectors
since this is obviously the general case. We can then write the vector
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in the form
v = (v, v),
where v2 = 22,
Noticing, however, that the electromagnetic tensor corresponds to a
matrix of the form

0 —Hj H, —E;
Fi— H 0 —H, —E,
4 —Hs H, 0 —E; 0
—E; —E, —Ej; 0

the conditions become

HAv—Ev = 1y,
—E«v = v,

of which the second can be derived from the first, as one would expect,
since we have already used the non-independence of these four con-
ditions in assuming the vector to be a null vector. The classification of
the field can now be carried out by asking the questions (i} whether
the eigenvalues are different or coincident, real, zero, or imaginary,
(i1} whether the corresponding vectors are different. It is easiest, in
order to do this, first to reduce the field by a rotation of axes to the
standard form

H = (0, Hs, Hy), E = (0,0, E).

The equation for the eigenvalue then becomes

2  —Hs Hy, 0
Hio -2 0 0]|_,
~H, 0 -3 =—E| 7
0 0 —-E -2

and it is easy to expand this into the form

A+ TR2—-J2 = 0.
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The following possibilities arise about the roots of the equation:

(@) If I = J = 0, there are four equal zero roots which may be
described symbolically as (0000).

(b) If J = 0 but I > 0, there are two zero roots and a pair of con-
jugate imaginary ones (00f, —i). ‘

(c) If J = 0 but I < 0, there are two zero roots and two equal and
opposite real ones (00 1, —1).

(d) If 7 = 0 the two roots for A% are

22 = LIt (P+4J2)1),

one of which is positive and one negative, so that the four roots
for A have the pattern (1, —1, i, —1).

These four cases are exactly the ones noticed earlier, so that the
classification suggested by determining the null eigenvectors of the
electromagnetic tensor parallels closely the classification derived
before by considering whether or not the field can be made purely
electric or purely magnetic, etc. The radiation case corresponds to the
existence of four equal zero roots of the eigenvalue equation. The
corresponding results in general relativity may now be discussed.

We are concerned in this case with the curvature tensor, with the
symmetry properties

Rabcd = _Rbacd = _Rabdc = Rcdaba
Rabcd+ Racdb‘l“Radbc = 0.

The tensor has therefore twenty independent components. There are a
number of ways of discussing the special cases which this tensor may
take, and the earliest of these is that due to Petrov (1954) described at
some length in the paper by Pirani (Extract 7). Pirani’s motive in this
will be clear from the electromagnetic case discussed above. The
algebraically most special case in electromagnetism corresponds to
what is known to be the radiative field. The same situation in gravi-
tation might then, one hopes, be defined as the radiative one there.
The following classification, which is slightly more elegant than Pet-
rov’s is essentially due to Debever (1958), but the version given here is
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that of Sachs (1961). In the electromagnetic case the classification by
looking for eigenvectors falls into two cases as it leads to zero
roots of the eigenvalue equation or else to non-zero ones. The corre-
sponding situations could be described by Table 1. To construct
this, let us first notice that, if

Fapk?= 2k,
then we must have

Fapkck®—Fockpk® = — Akpk.—koks) = 0,

which may be written (using square brackets to denote anti-sym-

metrization)
Fa[bkc]ka = 0.

This equation is always satisfied by a null eigenvector k%, but, of
course, it may be replaced by a simpler one (if the eigenvalue is zero),
F abkb = O

The equation found for the eigenvalue 4 was, in a special coordinate

system,
AAy A2AHE—E?)—E*H = 0,

which, as we saw, gives rise to the following cases:

TABLE 1
) {2) 3
N Fabkb = 0 4
1I Fukt =0 FJ[,mm]=0 211
I F,[,k°k,} =0 1111

The first column labels the type of field (N denoting “null”). The
second column gives the equations satisfied by the null directions,
and the third gives the number of coincidences (i.e. 4 denotes 4 coin-
cident directions, 211 a pair of coincident and 2 others, 1111 4 direc-
tions all different).
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In the same way for the curvature tensor, so long as the field equa-
tions are satisfied, that is to say, in empty space, Debever proved
that there exists at least 1 and at most 4 null directions such that

k [aRb] ij[cka']kikj = 0.

TABLE 2
M (2 3)
N Rabvdkd = 0 4
III Rkl =0 3,1
k Jkk: =
D Rabc[d e} 0 2’ 2
Rabc[d"’e]mame =0
I Rl kJkoke = 0 2, 11
1 k[aRb]ij[ckd]kékj =0 1181

The null directions satisfying equations of this kind are said to define
rays and by knowing these rays the field may be classified. The Petrov
classification cited by Pirani becomes in the form shown in Table 2.

In Table 2 the first column gives the so-called Petrov type of the
metric, the second gives the equation satisfied by 1 or possibly more
of the rays, and the number of coincidences amongst the rays is
shown in the third column. For example in the null case, which is
evidently the one of radiation, there is only one distinct solution,
which therefore satisfies the equation stated. In the case of type D,
however, there are two distinct solutions, the corresponding case
where only one ray actually satisfies the equation falling into type II.
The Table 2 has been constructed so that as one goes up from the
bottom line the metrics become more and more specialized. (The
term algebraically special is used to describe all those not of type 1.)

The fact that the classification is in terms of the rays led to a more
intensive study of the so-called gravitational ray optics by Sachs.
He considered the way in which such a family of rays, if they were
imagined to be light rays, would expand, rotate, and distort (shear) the
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shadow of an object, and it proved possible to relate the Petrov type
of the metric to these geometrical properties. There is, for example,
the well-known Goldberg-Sachs (1962) theorem that an empty space-
time is algebraically special if and only if it contains a shear-free null
geodesic family of rays.

Although the discussion given here is a very elegant one, it is a
little remote from Petrov’s original one, as expounded by Pirani, and
it seems useful to give an outline of a more pedestrian development,
which needs less technical knowledge. In the course of this develop-
ment, we need to use the technique of the dual of a bivector F,,, defined
by

1 d
Fap = 5eapeaF,

where ¢, , = 1 if abed is an even permutation of
1234
= —1 if abcd is an odd permutation of

1234
= 0 otherwise.

Thus a moment’s calculation will show that

Fia = £1934F? = Fa3,

F23 = 81234F14 =—Fy,,

and so on. It is at once apparent that

~
~

Fap = —Fa.

Another useful result is the following: if both F, and G, arebivectors,
then
FabGab = 2(F23G23+ coe +FGYM 4 L. )
= 2(-“F14G~14— e —Fzgé%— . ) == _Fabéab-

We have already seen that, in any Lorentz frame, a bivector splits
into a pair of three-vectors, which we called E, H. Let us now combine
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these to make a complex three-vector Z = E+iH. Thus
Zy = E1+iH; = Fy+iFe3, and so on,
and so, if Z denotes the vector corresponding to the dual bivector

Zy = Fy3—iFyy = Hy~iE; = —i(E1+iHy) = —iZ,,
ie. Z =—il.

Now R, ., defines a linear mapping of all bivectors into bivectors:
Fap - Ggp = RabchCd~

So it also defines a mapping of complex three-vectors Z into themselves,
only this mapping is ne longer linear (since all the six real components
of Z must be allowed to enter separately). In fact the mapping can
obviously be written

Z ~7' = AZ+BZ*,

where A, B are linear vector functions of vectors with complex values
(i.e. 3X 3 complex matrices) and Z" is the complex conjugate of Z.

Next let us consider the effect of dual operations on R, Of
course, there are two pairs of antisymmetric suffixes to which the
operation can be applied. We shall define R, ., to be the result of
performing both of these, so that

1 .
Rovea = 4 €aijecart RV

-~
~

and so, now, R,;.; = R4
If Gas = Rapea F°,
it is obvious, using the result above about duals, that
Gap = — RapcaF**.

Suppose we translate this into the complex three-space notation. If
W corresponds to G,,, and if the terms 4 and B become (say) 4 and B
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when we consider R, ,, then we have

W = AZ+BZ*
and W = iW = —i(AZ+BZ*) = AZ—BZ*.
But NV = —(4Z+ BZ*)

by definition and the result above, so that
A=—A and B=B.

In other words, the obvious decomposition of R, , into self-dual and
anti-self-dual parts,

Rabcd = %“(Rabcd + Rabcd) + %‘(Rabcd_ Rabcd)

is the split into B and A respectively.

The next step, which gives the key to the Petrov classification, is to
prove the subsidiary result that the self-dual part 1(R .+ Ry.p) is
an algebraic function of R, only. This, then, shows that, when the
field equations R, = O are satisfied, B = 0. To prove this result it is
sufficient to note that there are essentially only four cases to consider:

(a) Razaz+ Risis, () Raara— Rugos,
(b) Rasai+ Risze,  (d) Roaza— Rugas.
Of these only case (a) is of any difficulty. For case (b), adopting

for convenience a coordinate system at the point under consideration
for which g, = 1,

Rassi+ Riszs = — R3aa—Riay
= _R129
and for (d) similarly

Ra3zs— Russ: = Risa+ Rhz = Ra,.
Case (c) is identically zero, whilst in case ()

Rozas+ Rigs = (R3sa+ Rlai+ R+ Riys)
—(Risi+ Rio)
= R3s+ Ru—(Ri313+ Rasze)-



82 GENERAL RELATIVITY
Hence, if we write for a moment

S1 = Rezoz+ Rigias
we have

S1+S2 = Raz+ Ry,
so that, by symmetry,

S2+ 83 = Rii+ Ras,
S3+S1 = Ros+ Ry,
whence
251 = Rii1+ Raa+ Ras+ Ry,

and the result is proved.

Accordingly, in free space the problem of classifying the curvature
tensor is equivalent to that of classifying the 3 X3 complex matrix A4.
We will not enter further into the details of this here, since they can
be found in books on algebra, but our investigation suffices to show
why the Petrov classification is so easy and straightforward for empty
space, but complicated and difficult when the field equations are not
satisfied and so two 3X3 complex matrices 4 and B have to be
discussed. ‘

The initial impetus given to gravitational radiation theory by
Pirani’s investigation was very considerable, but like many other
developments in general relativity it runs into trouble from the non-
linearity of the theory. When we discussed the electromagnetic case
we found the radiation field followed for a Hertzian oscillator by
finding the complete field and picking out those terms which fall
away most slowly at great distances. These terms by themselves
would not be solutions to the physical problem, but it is possible
to consider them separately in electrodynamics because the complete
field is derived by adding together the partial fields. Of course, if
one asked whether a given electromagnetic field were a radiation
field or not, and used the criteria developed above, the answer would
almost certainly be no; for whatever the radiation properties of the
field there would in any physical situation always be local near
fields present as well, and the criterion only distinguishes the case
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when there is nothing but radiation from all other cases. The situation
is unfortunately much the same in gravitation. If one tries to apply the
Petrov classification to the Riemann tensor of the metric the result is
almost bound to be of type 1. 1t is necessary to develop the metric in
terms of distance from the physical objects involved and the criterion
for radiation must then be applied to the terms in 1/r in this develop-
ment.

This brings us to another aspect of the problem of radiation which,
it will be recalled, we have taken up because of the necessity of
excluding radiation in determining the equations of motion. This
new problem is that of relating the field to its sources, rather in the
way in which the electromagnetic radiation field was identified as
coming from an oscillating dipole. A number of attempts were made
by means of successive approximations to determine whether or
not freely gravitating particles radiate when moving in each other’s
field. There are difficulties of two kinds. In the first place the solutions
are so complicated that it is difficult in practice, and in principle,
to say whether radiation is taking place or not. Secondly, because of
this complication, the mere calculations are often intolerable. A step
forward was taken by Bonnor (1959) when he considered the much
simpler problem of whether a constant isolated system could lose mass
by radiation. The advantage here was that he was able to require the
system to vibrate in an arbitrary way. For example, he could consider
a system initially at rest which then oscillated for a finite time before
returning to rest. Since the initial and final states are those of rest, in
which the concept of the mass of the system is a well understood one,
the question of whether the mass has the same value afterwards or not
is a well-defined one. Bonnor was able to find results which suggested
that there were genuine gravitational waves which carried energy
away from the source, but there was still the problem of the conver-
gence of his method, and the calculations were extremely long. It would
have been interesting to know a higher approximation to the result,
but this would have been virtually impossible because of the com-
plexity.

The whole situation in this field was transformed by the intro-
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duction by Bondi and his fellow workers of a special coordinate
system. Bondi’s work is described at length in the paper by Bondi,
van der Burg, and Metzner (1962), Extract 8 of the present volume.
Instead of using the ordinary polar coordinates, Bondi imagines a
source of light placed at the origin O and surrounded by a small
sphere so that the ordinary angles ¢ and ¢ can be defined. There is also
a time coordinate, but this is now called # and the u0¢ coordinates of
any event are defined to be those at which the light ray from O to the
event cuts the sphere. Taking r as a radial variable, i.e. the distance
along this light ray, the relationship with the usual  in flat space—time is

that
u=1r—-r

and the corresponding special relativistic metric becomes
ds® = duP+ 2du dr —r* (d0%+sin? 0 d¢?).

It is very striking that, whereas in most calculations in both special and
general relativity a diagonal form of the metric is preferred, Bondi
finds that physically it is most convenient to transform to this non-
diagonal form. For the case of general relativity he generalizes this to
the metric

ds® = gudi®+ 2e% du dr+ 284 du df — r*(e* d6®+ e~ sin® 0 d¢?),

where g,,, B, 840, and y are functions of », r, and 6.

This generalization simplifies tremendously the calculations needed
for the higher approximation in Bonnor’s technique. In this way
Bondi and his collaborators are able, in the paper mentioned, to
discuss outgoing radiation, and they find it possible to expand the
metric in a series of powers of 1/# very much like the result for electro-
magnetic theory. If the expansion is of the form

, 6 , 6
7):crl(ur )+02(l;2 ).

and this is substituted into the field equations, relations arise between
the coefficients. It is proved in the paper that only one function
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ci(u, 0) is left undetermined, and the derivative of this function with
respect to u is what is called by Bondi the news function. According
to his view, gravitational radiation is simply the transmission of
“news” through space.

Important as these theoretical ideas of radiation have been in the
development of the subject, deepening our knowledge of the structure
of the gravitational field, they cannot yet be said to have had very
great influence in the experimental confirmation of the theory. It
is true that, in recent months, Weber (1961) in Maryland has reported
definite positive results in his attempt to measure gravitational radia-
tion. The apparatus which he employs consists of a very heavy alu-
minium cylinder to which quartz transducers are fixed. The passage of
a gravitational wave causes elastic waves in the cylinder and this in
turn produces electric oscillation on the quartz transducers which
are amplified by a very high gain d.c. amplifier. The need for shielding
from other perturbations leads to a very poor signal to noise ratio
(of about 1:30). In order to improve on this very poor ratio, Weber
employed two sets of apparatus at a considerable distance apart and
tried to correlate the output from the two of them. It is too soon to
assess the results of his experiments but, according to his own inter-
pretation, there appears to be a strong source of gravitational radia-
tion which is probably situated somewhere near the centre of our
galaxy (Carmeli, Fickler, and Witten, 1970). A number of other
experiments are being carried out in different parts of the world to
confirm or contradict Weber’s results, and in the next year or so we
should have much more definite information. This is because, owing
to the way in which gravitational waves pass through matter almost
without modification, all of these observatories should receive the
radiation at the same time and, therefore, any lack of consistency
between their results will at once show Weber’s to have been due to
some other influence than the gravitational.

A more exciting and exotic possibility of confirmation of general
relativity has, however, come up in more recent years from the con-
sideration of gravitational collapse. The early work on this subject, due
to Oppenheimer and Snyder (1939), is described in the paper forming
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Extract 9 of the present book. The idea of gravitational collapse,
however, is one which could already have been considered by Newton.
Since Newton’s law of gravitation states that the forces between any
two masses are always attractive, unlike the situation in the electro-
static case, it follows that a large mass of matter acted on by no other
forces than the gravitational will always collapse towards the centre of
mass. \

It is not difficult to work out some order of magnitude results about
such a collapse. Suppose that we have initially a uniform sphere of
gravitating matter acted on only by gravitational force. The matter
will therefore collapse towards the centre of the sphere. We can start
by making the assumption that there is no overtaking, so that matter
which is originally at a greater distance from the centre always re-
mains at a greater distance. When we have derived our solutions it
will then be possible to verify that this assumption is satisfied.

The matter which is originally at a distance R from the centre forms
a shell which is under the attraction of all the matter which is inside
it. That is to say, the amount of matter attracting this shell is

R,

where p is the original uniform density. Our assumption of no over-
taking means that this is the matter which is always attracting the shell
and, as is well known in Newtonian gravitation, this matter acts
as if it were all concentrated at the centre. Accordingly, when the
shell is at a distance » from the centre, the attraction on it will be per

unit mass
AGrR3p/r2.
By a well-known calculation the potential energy of this attraction is
—2GnR3/r,
and therefore the total energy of the matter which was originally at a
distance R from the centre will be
1 , 4 GaR%

2

2 3 r

per unit mass.
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This total energy is, of course, constant, so that if we suppose that,
by some inexplicable means, the sphere starts from rest, we get for the
speed of the matter at any time

8 1 1
2 = . 3o ———
v 3 Gz R3p (r R ) .
However, the inward velocity is obviously given by

dr

'U:—?d?‘

so that the time taken for the shell to reach the centre is

(S

08 R—r\
- S 3 .

This integral is quite ¢asy to evaluate by making the substitution

r = Rcos?0,

and the corresponding time is
A
- (32GQ) '
It is important to notice that this time does not depend upon the value
of R, so that all the matter reaches the centre at the same time. Accord-
ingly, our assumption that there is no overtaking has been satisfied.
It is also of interest to note the size of this time. If we start with a
sphere which is initially of the density of water and is moving under
its gravitational attraction alone, all the matter in the sphere will
apparently have reached the centre in less than half an hour.
Such results were not regarded as very important in Newtonian
gravitation because of the artificial assumption made in deriving
them that only gravitational forces were acting. It is obvious that for

ordinary matter other forces must always be present. The principal
of equivalence makes some difference to this, however. The more the
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mass of a body is increased by the addition of further matter, the more
the gravitational forces increase. Although these forces are never
the only ones acting, the other forces which act, which are chemical
and nuclear forces, all saturate to a certain extent. Accordingly, for
sufficiently large collections of matter we can be sure that the gravi-
tational forces will be all important. This is the situation considered by
Oppenheimer and Snyder and the extract quoted goes quite a long
way to working out the dynamics of the situation.

At the same time it is interesting to try to put this picture, derived
by theoretical calculations within general relativity, into a larger
framework provided by physics as a whole. Matter in fact consists of
elementary particles of various kinds, and the mass of the matter
mainly resides in the baryons. It is convenient to consider a collection
of baryons and in the calculations to disregard the appropriate number
of electrons which have to be added in order to keep the matter
neutral. It is then possible to do certain calculations about the equi-
librium states of numbers of baryons (Wheeler, 1962; Harrison et al.,
1965). It has, for example, been calculated that a collection of 560
baryons has an equilibrium state, that is to say a state of lowest
energy, which is of the form of 10 atoms of iron of atomic weight 56.
These atoms are arranged in a certain crystal lattice. The reason that
the matter is iron lies in the nuclear forces. The crystal lattice in which
the atoms are found is determined by the chemical forces.

Now imagine the calculation done for a larger number of baryons;
even when there are as many as 56 X 104! baryons the state of equilib-
rium is not very different. It consists of a sphere, of iron again, of
radius about 8 km and if we continue in this way, constantly carrying
out the calculations for larger and larger numbers of baryons, the
gravitational forces eventually overcome the weaker of the other
two forces acting, that is the chemical ones. It turns out that there is an
instability first at the point where the chemical forces are overcome.
The central density of the sphere is then about 5X 108 gcm™3.

The electrons at the centre of the sphere have now been squeezed
to such a small volume that they combine with the protons to make
neutrons. If we add any more matter, the body, which is essentially
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a star, collapses with the central pressure rising still further, more
electrons are crushed and the matter sinks further inwards. It might
be thought that the result of this catastrophic interaction is that the
system would tend inwards to a stable situation in which all the protons
had become neutrons and we should have a neutron star. This is not
true, however; the mass at which the chemical forces are overcome is
about 1.2 times that of the sun, but for very high densities the star has a
critical mass of only 0.7 of the sun’s mass. At these high densities
the gravitational forces then overcome even the nuclear ones. If one
starts with matter of about nuclear density and adds even more mass
to it, a second collapse point arises; the central density now becomes
1018 g cm™3,

If still further matter is added after this, the nuclear and chemical
forces both become entirely negligible compared with the gravitational
ones and we are back at the simple problem discussed earlier in this
section. There are now no forces left which could prevent the cata-
strophic collapse described.

However, the situation in general relativity is considerably more
complicated than that in Newtonian mechanics because, as we have
seen before, the field round a spherically symmetrical body has, at
least in an ordinary coordinate system, a singularity at a finite distance
from the origin—the so-called Schwarzschild singularity. If a body is
to collapse indefinitely then it seems as if it will eventually pass
inside its own Schwarzschild singularity. Of course the critical radius
in the Schwarzschild solution was noticed as early as 1916, but it was
not regarded as a serious defect in the theory since for any ordinary
body such as the sun the Schwarzschild sphere was so far inside the
matter as to be quite unreachable. The actual solution for the sun as a
whole consisted of the Schwarzschild solution outside the matter and
some other solution corresponding to the matter present inside the sun.
The investigations of collapse initiated by Oppenheimer and Snyder
have changed all this. When a body reaches the second crushing point
and engages in its final catastrophic collapse, it seems as if there is
nothing to stop all the matter eventually being inside the critical
radius.
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If, indeed, thisis possible, then we should have extremely massive
bodies and these bodies would be surrounded by the Schwarzschild
sphere which further investigation shows to have rather unusual
properties. Signals, such as light signals, can be traced into the sphere
from outside, although there are certain difficulties about the length of
time which they take, but from inside the sphere no signals can come
outside. Accordingly, such a body, even if it produced light and heat
like a star, would be completely invisible to us and we could only
detect it by its strong gravitational field. Such bodies have come to be
known as black holes, and current astronomy is on the look out for
them.

It should be remarked, however, that not all workers in the subject
agree with this analysis of the collapse situation. We can see why
this is, even within the framework of the Newtonian theory, if we
use some of the ideas of special relativity (McCrea, 1964). If a sphere of
mass M and radius R has a mass m brought up from infinity to its
surface, the potential energy lost by the particle is GMm/R. If we
import from special relativity the energy mass relation E = mc?, or
E = m, when ¢ = 1, this loss of potential energy will show up as a loss
of mass of amount (GMm)/R. Accordingly, only the amount of mass
m[1—(GM)/R] is actually added to the sphere. In this mixed theory, a
critical situation arises when R = GM; no more mass can then be
added. In general relativity a factor 2 is introduced; the critical
radius is now the Schwarzschild radius, and accordingly those
workers who accept this analysis refuse to believe in the prediction of
black holes by the theory.

To conclude this chapter it is appropriate to try to look ahead at
the direction in which future developments in general relativity may
take place. An outstanding problem is the relationship between general
relativity and quantum mechanics. These two subjects have developed
in quite different ways employing different techniques; it is very hard
at this moment to see how these can be related to each other. Attempts
have been made of various kinds, but it is too early to give any reason-
ed assessment of them; accordingly, we can do no more than note
that this is an outstanding problem which will require to be tackled
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at some time. Leaving that on one side, the most striking development
of the last 10 years has been an entirely new method of setting out
the working in general relativity. This may seem a comparatively
trivial matter, but when one comes down to the calculation of even
such a simple problem as the spherically symmetrical gravitational
field which was given in an earlier chapter, the reader will be convinced
that any easing of the problem of calculation is to be welcomed. This is
all the more so in theoretical investigations in the subject. It appears to
me that the most important step forward has been that of Penrose
(1960) in the paper reproduced as Extract 10 of the present book, in
which he introduced the spinor technique to general relativity.

In understanding Penrose’s paper it is important to notice a certain
difference of emphasis in the treatment of spinors from that in special
relativity. In the corresponding book to this on special relativity,
spinors were dealt with in the following way. The rotation group in
three dimensions, which is a sub-group of the Lorentz group, was
studied in some detail on page 79 of that book. It was found that,
by using the transformation of a symmetric tensor of rank 2, it was
possible to deduce that there would be new quantities which were not
tensor quantities and which transformed under a two-valued represen-
tation of the rotation group. These quantities, with two components,
are called spinors. It is very easy to extend the working given in the
earlier book to the whole Lorentz group; sometimes it is convenient
to use the proper Lorentz group, i.e. excluding time reflection and
space reversal, in which case two-component spinors are appropriate;
sometimes it is useful to use the full Lorentz group, including improper
transformations, and then we need four-component spinors of the type
studied by Dirac.

Whichever we use, however, the treatment in the previous book was
firmly grounded on the two-valuedness of the representation under
which the spinors transform and, although it was not stated there, this
was based on a particular property of the orthogonal group in relation
to what is known as its universal covering group.

A number of attempts were made from 1930 onwards (Infeld and
van der Waerden, 1933; Bade and Jehle, 1953; Corson, 1953) to
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extend the spinor technique to general relativity, but all of these
attempts were founded on the two-valuedness of the spinor represen-
tation. Since they regarded the spinor technique as essentially to do
with the structure of the Lorentz group, it was necessary to have the
Lorentz group in the theory. But general relativity is invariant under a
quite different group and accordingly these earlier techniques operated
by introducing, as well as the ordinary coordinate system of the theory,
a local orthogonal coordinate system at every point. The transfor-
mations of one of these local orthogonal coordinate systems into
another one at the same point then formed a group isomorphic to the
Lorentz group, and these earlier authors considered that it was here
that the spinor representations might enter.

Although this was all perfectly correct and straightforward to carry
out, nothing of great value arose from it. It was Penrose’s genius to
see that the importance of the spinor technique in general relativity
was not particularly related to the two-valuedness of the representation
under which it transformed. Its real value was in the way in which
it simplified the very heavy algebra connected with the Riemann tensor.
It is easy to see why it is so valuable by using again the electromagnetic
analogy. In the treatment in the book on special relativity we explained
how a four-vector corresponds to a pair of one-component spinors.
There is however, another connected correspondence, i.¢. between the
real skew-symmetric tensors of rank two and the symmetric spinors of
rank 2. In fact, as Penrose shows in equation (1.3) of his paper, we
may write instead of the electromagnetic bivector F,, a corresponding
four-index spinor

1 ~
Fagcp = i{(ﬁAcEB'D'-I-SAchB’D'}-

It is to be noticed here that the spinor ¢ , has only three independent
components, since it is symmetric. These components are, of course,
complex, but none the less this way of writing the electric field has
produced a considerable simplification. Of course, this grouping of
the electric field into three complex quantities is essentially the same
as the one employed above in discussing the classification of electric
fields when the quantity Z was introduced.
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An important quantity in electromagnetic theory is the Maxwell
stress tensor which arises as a rather complicated kind of product of the
electric field bivector with itself. The corresponding quantity in spinor
notation is easily written down and turns out to be a particularly
simple kind of product of the spinor ¢, with its complex conjugate.
This alone shows the value of the spinor algebra in dealing with
electromagnetic theory.

Now the curvature tensor is skew-symmetric in both pairs of in-
dices and can therefore be regarded as a linear mapping of the set of
all bivectors at a point into this same set by an equation of the form

Fab - Gab = RabchCd-

Such a linear mapping will, of course, be a simple function of the
spinor ¢ 4., although, because both ¢, and its complex conjugate
are involved in specifying the electric field, it cannot be simply a
linear function of ¢. In fact, to get the general idea at this point the
reader need only turn back to the earlier treatment in terms of Z.
The situation here is exactly the same, but the spinor technique makes
it a little more straightforward. For example, such a linear function
would have the form

¢AB = Yap = AABCDQSCD,

and it is easy to see that this is not sufficiently general, since the oper-
ator must be symmetric in both pairs of suffixes. That means each
pair of suffixes can have only three independent values, but it is
also known that the Riemann tensor, and therefore the operator, is
symmetric under interchange of the pairs of suffixes so that the total
number of independent components available here would be six.
These are, of course, complex components and so would correspond
to twelve components of the Riemann tensor at most. Since the cur-
vature tensor has twenty independent components, this cannot be
enough to describe the general field. In fact, just as in the calculations
with Z two such quantities are required, as Penrose shows in equation
(2.2) of his paper.

However, it is not the general gravitational field with which one
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is concerned in free space in general relativity but the gravitational
field which satisfies Einstein’s field equation, and these equations
quite simply can be shown to imply, according to Penrose in equation
(3.3), ¢4pcp =0 exactly as, in the Z calculation, they implied
B = 0, together with the condition y 4., completely symmetric.

As Penrose remarks, it is very striking that the gravitational field
can be described by a single totally symmetric spinor with four indi-
ces.

On page 179 of his paper, another striking result appears. By taking
the product of this spinor with itself, another quantity occurs which
when translated into tensor notation corresponds to a rather com-
plicated type of product of the curvature tensor with itself, a type of
product which has been interpreted as a kind of energy. The simpli-
fication here is of the same type as that with the Maxwell stress ten-
sor in the electromagnetic theory, but even more considerable. Simi-
larly, in section 4 of the paper the classification of the Riemann tensor
by Petrov, which we described above with the help of the electromag-
netic analogy, is carried out in an extremely simple manner by means
of spinors.

Of course, all these results are really only finding new ways of deri-
ving relations about the curvature tensor which have been found
already with much greater labour. But the fact that the labour can
be cut down in this way is extremely significant in a subject in which so
very much heavy computation is required, as can be seen in the last
part of the paper where Penrose even applies his new ideas to the
construction of analytic solutions. Moreover, the techniques employed
here are essentially free of any coordinate system and they may there-
fore be applied to a problem of considerably greater subtlety and
complexity than any mentioned up to now. All orthodox treatments
of general relativity tend to begin with the assumption that the events
to be described can be plotted in a four-dimensional differentiable
manifold. Without going into technical details, this means that the
space-time framework for the events is always assumed and, more-
over, it is assumed to have comfortable smooth properties at every
point, although, of course, with the proviso that if there is anything
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peculiar, such as a point particle, some kind of singularities can arise.
It is only a matter of elementary prudence to remember, when begin-
ning the subject in this way, that the attempts so far to quantize
gravitation, i.e. to render it consistent with quantum mechanics,
have all failed, and since quantization is a process for making a con-
tinuous theory consistent with the discreteness involved in quantum
mechanics, one reason for this failure could be the overstrong assump-
tion of the existence of the differentiable manifold. If this is so, then
we need to construct the differentiable manifold, or rather something
which approximates to it, explicitly as we go along instead of taking
it for granted from the beginning (Penrose, 1967, 1968, 1971). The co-
ordinate-free technique, with its freedom from the differentiable mani-
fold assumption and its algebraic power, provides a possibility of
doing this. It is too early yet to say more than that the possibility
exists but if, indeed, it is successfully carried out in future years, it is
likely to rest heavily on this paper of Penrose.
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NOTES ON EXTRACT 1

ExTRACT 1 is a translation by W. K. Clifford of the introduction to Riemann’s
famous discussion on the foundations of differential geometry. Both Clifford and
Riemann were completely familiar with certain striking properties of the differen-
tial geometry of surfaces, mostly due to Gauss, which are now less well known.
These results, though hardly mentioned in Extract 1, are implicit in the whole
discussion, These notes aim to re-write the results, on which Riemann was drawing,
in a modern notation.

A surface § is a set of points with two degrees of freedom (just as a curve has
one degree of freedom) and so any point r of § can be expressed in terms of two
parameters. It is convenient to write r = r(i*, 4?), putting the suffixes on the para-
meters at the top. If we displace ourselves to a neighbouring point of the surface
by making small changes in the parameters, the displacement is

or or . ]
dr = "a;i dut + 67172 du? = I; dut

with the summation convention over i = 1, 2, defining

or
= s

The length of this displacement is then
dst = de® = r;-v; duf did = gy didb du?

(say), and it is important to notice that g, is an intrinsic property (that is to say, it
does not depend on how § is embedded in the surrounding three-dimensional
space). One can think of intrinsic properties conveniently in terms of what can be
measured by imaginary beings living on S, In this picture, the parameters u* must
be thought of as a coordinate system on § and then g; can be measured in terms
of the lengths of displacements between (1!, 42) and nearby points.

The two vectors r, serve as two vectors in the tangent plane to S, and so define
the tangent plane. Any vector A in the tangent plane can then be written

A = l','A.'
for suitable components 4%, and its derivatives are
0A .
A,j = W = l',-jAt—f-l’;A_‘,,
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where
al"
ij = 5,;;
We define
ry = e+ iy,

where n is written for the unit normal to the surface, so r;-n = 0. We would not
expect either of the symmetric arrays of coefficients /; or I'y; to be intrinsic; in
fact, /;; is not, but it is surprising that I'}; is. This can be seen as follows:

Lt = gy
Hence, differentiating with respect to u*,
i (Lix, +1gm) vy (DR, + Ln) = giy 4,
ie.
Eulht 8l h = 8y, 2

Denoting for a moment, g,,/'% by [j] this has the form

L1+ = gigss

whence (k1+0i1 = g, s>
i1+ 1K} = gus, 5o
and so 1kl = H g~ 8y x & ) = il B

Assuming (as usual) that the determinant

g = lgml #0,

these equations can be solved and so I} is defined in terms of g; and its first
derivatives, which we have already seen to be intrinsic.

The geometer is always interested in some measure of curvature of the surface
(say, in terms of the radius of a suitable defined closest fitting sphere). A suitable
measure can be defined by drawing curves on the surface and discussing their
properties. Let t be the unit tangent, dr/ds, of any curve on the surface, so that

ids.

Let n be, as before, the unit normal to the surface and let tAm = b. Then (t, n, b)
forms a triad of unit vectors at right angles and so has an “angular velocity™
(see Chapter 1) except that the independent variable here is s instead of ¢. Call

0 = Qt+Qn+ b,

t=

this “angular velocity”, so that, mulitiplying out,
t' = Qn-0Q,b,
l]’ = _Qat‘l"glb,
b = Q2,t—-2n,
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where primes are used to denote differentiation with respect to arc length. From
the second of these equations (which simply gives an expression for the rate of
change of the normal to §), £2; and £2; must be properties of S related to the parti-
cular direction t of displacement, but not depending on the curve further than that,
The properties of the particular cutve (curvature and so on) are determined by £2,.
Curves characterized by £2, = 0 at all points are called geodesics. Since t’ = r” is
then normal to the surface, i.e. has no component in the tangent plane, it follows
that the displacement of the projection of a point of the curve on to the tangent
plane differs from that along the tangent by small quantities of the third order in
the arc length, i.e. that the curvature of the projection (which depends on the
second-order terms) vanishes at the point. In a well-defined sense, then, the geode-
sics are the “straightest” curves that can be drawn on the surface.

This characterization of geodesics, however, does not show that the property
in question is intrinsic; i.e. it does not make clear that the “straightest”’ character
can be judged by the beings dwelling on S. This will be clear, however, from the
fact that, if 2, = 0, thent’ = r”’ is parallel to n. Now

» dut\’ dut dw d?u?
= (ng) e g

Using the expression above for r,

*Es'—z“‘l"r —— )+

. (d’uf’ p du’ duf) dut du n
e Yds ds Uds ds

From this we see at once that, if 2, = 0, then
r i i
ds? ds ds !
and since I} is an intrinsic array, the property of being a geodesic is intrinsic.

Further, the non-intrinsic part of the same equation, as it were, gives

dut di’
”- = ’I —_— Q _ 8, m———
r’n=1t-n sl,jdsds,
from the same equation. This may be used to investigate how £2, depends on direc-
tion. Near any point P of S let us adopt such parameters * that the coordinate
lines (u® = const) are at right angles and also displacement along each line is
measured by the change of parameter along that line, That is,

dut\2 du\2
(71;) +(‘d;) =15

SO we can put

where @ is the angle between the direction in which €2, is being measured and the
axis of u', Then €2, = /;, cos? 8+ 2,, cos 8sin 8+, sin? 0.
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This has a turning-value when d$2;/d0 = 0,

ie.
2(lyy—1yy) sin 0 cos 0+ 21, cos 20 = 0,
or
tan 20 = 7“2_11_24-
11""22

Notice that, except in the special case when /;; = /5 and /;, = 0 (in which case
L2, is independent of ), there are always two directions at right angles that satisfy
this equation. Now let these two directions (the principal directions of curvature)
be chosen as the two coordinate directions at P. Then, in the new coordinate
system

23 = 2, cos? 0+x, sin? 0,

where %, », are the values of /,,, /,, in the new expression, and obviously the new
L1, = 0. Here »,, x, are called the principal curvatures, and this expression for the
curvature in any direction in terms of them is Euler’s theorem. But, as noted at
the beginning of the paragraph, »,, », are not intrinsic properties.

The problem to which Gauss directed his attention in this field was to find an
intrinsic quantity which was a measure of the curvature. Such a quantity must be a
function of »,, »,, from Euler’s theorem. Gauss’s investigation is on the following
lines.

Returning to the equation, in general coordinates,

dut du?
D, =1, - —
5=y ds ds’
it is convenient to use the fact that ds? = g, di’ du’, and so write
T gy dutdw’
The corresponding turning values can now be derived by remarking that, for any
arbitrarily chosen 2, the direction (du?, du?) is determined by
(Lpg —5238,,) du? du® = O

a quadratic in dul/du®. The turning values arise when this has equal roots, and the
condition for this is the vanishing of the determinant

1 lpg— 25 8pgl = O
which gives a quadratic equation
g2i-2(, 9)2,+1= 0,
if we write g, / for the determinants | g,,|, |/,,!, and (/, g) for the remaining coefficient.

The roots of this equation are x,, %, and we have

1 l,
H= ‘i“(”ﬁ"”z) = (—;2, G

=}{1%2=——'
g

H is called the mean curvature, G the Gaussian curvature.
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Now, in fact, H is not intrinsic, but Gauss was able to show that G was, and so
G provides the sought-for intrinsic measure of curvature. This can be seen as
follows:
From the expression
Py = [ht,+im

by differentiating with respect to ¥,
Yoy = Ih X P DEGx + Dilm A nly 4y,
Interchanging j, k and subtracting,
0 = r R+ (Fflp— il pn+ Iyn  — Ly,
where we have written
Ry =rlha—Th +TE1%-TEY,

an expression which is evidently intrinsic, since I'; is intrinsic. Considering the
components of this expression in the tangent plane, it follows that, in particular

r,REp+ [hon, , — 10, ,] = 0,

where the square brackets denote that only the component in the tangent plane is
taken.
Now n = PriATL,,
where %= (1, Ar,)* = riri—(r)- 1)
= g18n—82 = &
(again writing g for |g;1), so that

_ N v/(g) = 1AL,
Differentiating,

V@I A2 = I At AL+ Lux Alry Ary)

] = (Ung12— luga1+ 11812 — lx&10F5.
Hence, in all,

g[’zz“, 1= llzn, 2] = glz([u 122 - Flzz)rz _gzz([n[zz - lfz)rl'

Taking scalar products of the original equation with r,, r, respectively gives

1
glqR%IZ-i"? (g1: — 211822 Unlye—112) = 0,
i.e. I = g, Ry, and g, RS, = 0.

G = _.,_ — glnglz,
g 4

Hence

which is evidently an intrinsic expression. Gauss, who was not noted for overrating
his own work, described this as theorema egregium, a theorem out of the common
herd.






EXTRACT It

On the Hypotheses which Lie at the Bases
of Geometry

W. K. CLIFFORD

[Translation of a paper by Riemann]

Plan of the investigation

IT 1s known that geometry assumes, as things given, both the notion
of space and the first principles of constructions in space. She gives
definitions of them which are merely nominal, while the true deter-
minations appear in the form of axioms. The relation of these assump-
tions remains consequently in darkness; we neither perceive whether
and how far their connection is necessary, nor, a priori, whether it
is possible.

From Euclid to Legendre (to name the most famous of modern
reforming geometers) this darkness was cleared up neither by mathe-
maticians nor by such philosophers as concerned themselves with it.
The reason of this is doubtless that the general notion of multiply
extended magnitudes (in which space-magnitudes are included) re-
mained entirely unworked. I have in the first place, therefore, set
myself the task of constructing the notion of a multiply extended
magnitude out of general notions of magnitude. It will follow from
this that a multiply extended magnitude is capable of different measure-
relations, and consequently that space is only a particular case of
a triply extended magnitude. But hence flows as a necessary conse-

t Nature (London) 183, 14 (1873).
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quence that the propositions of geometry cannot be derived from
general notions of magnitude, but that the properties which distin-
guish space from other conceivable triply extended magnitudes are
only to be deduced from experience. Thus arises the problem, to
discover the simplest matters of fact from which the measure-relations
of space may be determined; a problem which from the nature of the
case is not completely determinate, since there may be several sys-
tems of matters of fact which suffice to determine the measure-relations
of space—the most important system for our present purpose being
that which Euclid has laid down as a foundation. These matters of
fact are—Ilike all matters of fact—not necessary, but only of empirical
certainty; they are hypotheses. We may therefore investigate their
probability, which within the limits of observation is of course very
great, and inquire about the justice of their extension beyond the

limits of observation, on the side both of the infinitely great and of
the infinitely small.

I. Notion of an n-ply extended magnitude

In proceeding to attempt the solution of the first of these problems,
the development of the notion of a multiply extended magnitude, I
think 1 may the more claim indulgent criticism in that T am not prac-
tised in such undertakings of a philosophical nature where the diffi-
culty lies more in the notions themselves than in the construction; and
that besides some very short hints on the matter given by Privy
Councillor Gauss in his second memoir on Biguadratic Residues, in
the Gottingen Gelehrte Anzeige, and in his Jubilee-book, and some
philosophical researches of Herbart, I could make use of no previous
labours.

§ 1. Magnitude-notions are only possible where there is an ante-
cedent general notion which admits of different specialisations. Ac-
cording as there exists among these specialisations a continuous
path from one to another or not, they form a continuous or discrete
manifoldness: the individual specialisations are called in the first
case points, in the second case elements, of the manifoldness. No-
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tions whose specialisations form a discrete manifoldness are so com-
mon that at least in the cultivated languages any things being given
it 1s always possible to find a notion in which they are included.
(Hence mathematicians might unhesitatingly found the theory of
discrete magnitudes upon the postulate that certain given things are
to be regarded as equivalent.) On the other hand, so few and far
between are the occasions for forming notions whose specialisations
make up a continuous manifoldness, that the only simple notions
whose specialisations form a multiply extended manifoldness are the
positions of perceived objects and colours. More frequent occasions
for the creation and development of these notions occur first in the
higher mathematic.

Definite portions of a manifoldness, distinguished by a mark or
by a boundary, are called Quanta. Their comparison with regard to
quantity is accomplished in the case of discrete magnitudes by count-
ing, in the case of continuous magnitudes by measuring. Measure
consists in the superposition of the magnitudes to be compared; it
therefore requires a means of using one magnitude as the standard
for another. In the absence of this, two magnitudes can only be com-
pared when one is a part of the other; in which case also we can only
determine the more or less and not the how much. The researches
which can in this case be instituted about them form a general divi-
sion of the science of magnitude in which magnitudes are regarded
not as existing independently of position and not as expressible in
terms of a unit, but as regions in a manifoldness. Such researches have
become a necessity for many parts of mathematics, e.g., for the treat-
ment of many-valued analytical functions; and the want of them is
no doubt a chief cause why the celebrated theorem of Abel and the
achievements of Lagrange, Pfaff, Jacobi for the general theory of
differential equations, have so long remained unfruitful. Out of this
general part of the science of extended magnitude in which nothing
is assumed but what is contained in the notion of it, it will suffice
for the present purpose to bring into prominence two points; the
first of which relates to the construction of the notion of a multiply
extended manifoldness, the second relates to the reduction of deter-
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minations of place in a given manifoldness to determinations of quan-
tity, and will make clear the true character of an n-fold extent.

§ 2. If in the case of a notion whose specialisations form a conti-
nuous manifoldness, one passes from a certain specialisation in a
definite way to another, the specialisations passed over form a simply
extended manifoldness, whose true character is that in it a continuous
progress from a point is possible only on two sides, forwards or back-
wards. If one now supposes that this manifoldness in its turn passes
over into another entirely different, and again in a definite way, namely
so that each point passes over into a definite point of the other, then
all the specialisations so obtained form a doubly extended manifold-
ness. In a similar manner one obtains a triply extended manifoldness,
if one imagines a doubly extended one passing over in a definite way
to another entirely different; and it is easy to see how this construc-
tion may be continued. If one regards the variable object instead of
the determinable notion of it, this construction may be described as a
composition of a variability of n+1 dimensions out of a variability
of n dimensions and a variability of one dimension.

§ 3. I shall now show how conversely one may resolve a variability
whose region is given into a variability of one dimension and a
variability of fewer dimensions. To this end let us suppose a variable
piece of a manifoldness of one dimension—reckoned from a fixed ori-
gin, that the values of it may be comparable with one another—which
has for every point of the given manifoldness a definite value, varying
continuously with the point; or, in other words, let us take a contin-
uous function of position within the given manifoldness, which,
moreover, is not constant throughout any part of that manifoldness.
Every system of points where the function has a constant value, forms
then a continuous manifoldness of fewer dimensions than the given
one. These manifoldnesses pass over continuously into one another
as the function changes; we may therefore assume that out of one of
them the others proceed, and speaking generally this may occur in
such a way that each point passes over into a definite point of the
other; the cases of exception (the study of which is important) may
here be left unconsidered. Hereby the determination of position in
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the given manifoldness is reduced to a determination of quantity and
to a determination of position in a manifoldness of less dimensions.
It is now easy to show that this manifoldness has n—1 dimensions
when the given manifoldness is n-ply extended. By repeating then this
operation n times, the determination of position in an n-ply extended
manifoldness is reduced to n determinations of quantity, and therefore
the determination of position in a given manifoldness is reduced to a
finite number of determinations of quantity when this is possible.
There are manifoldnesses in which the determination of position re-
quires not a finite number, but either an endless series or a continuous
manifoldness of determinations of quantity. Such manifoldnesses are,
for example, the possible determinations of a function for a given
region, the possible shapes of a solid figure, etc.

I1. Measure-relations of which a manifoldness of n dimensions is capable
on the assumption that lines have a length independent of position,
and consequently that every line may be measured by every other

Having constructed the notion of a manifoldness of n dimensions,
and found that its true character consists in the property that the
determination of position in it may be reduced to n determinations
of magnitude, we come to the second of the problems proposed above,
viz. the study of the measure-relations of which such a manifoldness
is capable, and of the conditions which suffice to determine them.
These measure-relations can only be studied in abstract notions of
quantity, and their dependence on one another can only be represent-
ed by formulae. On certain assumptions, however, they are decompo-
sable into relations which, taken separately, are capable of geometric
representation; and thus it becomes possible to express geometrically
the calculated results. In this way, to come to solid ground, we cannot,
it is true, avoid abstract considerations in our formulae, but at least
the results of calculation may subsequently be presented in a geomet-
ric form. The foundations of these two parts of the question are estab-
lished in the celebrated memoir of Gauss, Disquisitiones generales
circa superficies curvas.
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§ 1. Measure-determinations require that quantity should be inde-
pendent of position, which may happen in various ways. The hypothe-
sis which first presents itself, and which I shall here develop, is that
according to which the length of lines is independent of their posi-
tion, and consequently every line is measurable by means of every
other. Position-fixing being reduced to quantity-fixings, and the posi-
tton of a point in the n-dimensioned manifoldness being consequently
expressed by means of »n variables x1, x2, X3, ... X,, the determination
of a line comes to the giving of these quantities as functions of one
variable. The problem consists then in establishing a mathematical
expression for the length of a line, and to this end we must consider
the quantities x as expressible in terms of certain units. I shall treat
this problem only under certain restrictions, and I shall confine myself
in the first place to lines in which the ratios of the increments dx of
the respective variables vary continuously. We may then conceive
these lines broken up into elements, within which the ratios of the
quantities dx may be regarded as constant; and the problem is then
reduced to establishing for each point a general expression for the
linear element ds starting from that point, an expression which will
thus contain the quantities x and the quantities dx. I shall suppose,
secondly, that the length of the linear element, to the first order, is
unaltered when all the points of this element undergo the same infi-
nitesimal displacement, which implies at the same time that if all the
quantities dx are increased in the same ratio, the linear element will
vary also in the same ratio. On these suppositions, the linear element
may be any homogeneous function of the first degree of the quantities
dx, which is unchanged when we change the signs of all the dx, and in
which the arbitrary constants are continuous functions of the quan-
tities x. To find the simplest cases, I shall seek first an expression for
manifoldnesses of n— 1 dimensions which are everywhere equidistant
from the origin of the linear element; that is, I shall seek a continuous
function of position whose values distinguish them from one another.
In going outwards from the origin, this must either increase in all
directions or decrease in all directions; I assume that it increases in all
directions, and therefore has a minimum at that point. If, then, the
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first and second differential coefficients of this function are finite,
its first differential must vanish, and the second differential cannot
become negative; I assume that it is always positive. This differential
expression, then, of the second order remains constant when ds
remains constant, and increases in the duplicate ratio when the dx,
and therefore also ds, increase in the same ratio; it must therefore be
ds® multiplied by a constant, and consequently ds is the square root
of an always positive integral homogeneous function of the second
order of the quantities dx, in which the coefficients are continuous
functions of the quantities x. For Space, when the position of points
is expressed by rectilinear co-ordinates, ds = 4/2(dx)?; Space is there-
fore included in this simplest case. The next case in simplicity inclu-
des those manifoldnesses in which the line-element may be expressed
as the fourth root of a quartic differential expression. The investiga-
tion of this more general kind would require no really different prin-
ciples, but would take considerable time and throw little new light
on the theory of space, especially as the results cannot be geometrically
expressed; I restrict myself, therefore, to those manifoldnesses in
which the line-element is expressed as the square root of a quadric
differential expression. Such an expression we can transform into
another similar one if we substitute for the n independent variables
functions of n new independent variables. In this way, however, we
cannot transform any expression into any other; since the expression
contains %n(n+1) coefficients which are arbitrary functions of the
independent variables; now by the introduction of new variables we
can only satisfy n conditions, and therefore make no more than n of
the coefficients equal to given quantities. The remaining %n(n— 1) are
then entirely determined by the nature of the continuum to be re-
presented, and consequently -Ln(n— 1) functions of positions are re-
quired for the determination of its measure-relations. Manifoldnesses in
which, as in the Plane and in Space, the line-element may be reduced
to the form 4/(Z dx?), are therefore only a particular case of the mani-
foldnesses to be here investigated; they require a special name, and
therefore these manifoldnesses in which the square of the line-element
may be expressed as the sum of the squares of complete differentials
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1 will call flat. In order now to review the true varieties of all the con-
tinua which may be represented in the assumed form, it is necessary
to get rid of difficulties arising from the mode of representation,
which is accomplished by choosing the variables in accordance with
a certain principle.

§ 2. For this purpose let us imagine that from any given point the
system of shortest lines going out from it is constructed; the position
of an arbitrary point may then be determined by the initial direction
of the geodesic in which it lies, and by its distance measured along that
line from the origin. It can therefore be expressed in terms of the ratios
dxo of the quantities dx in this geodesic, and of the length s of this
line. Let us introduce now instead of the dx, linear functions dx of
them, such that the initial value of the square of the line-element
shall equal the sum of the squares of these expressions, so that the
independent variables are now the length s and the ratios of the quan-
tities dx. Lastly, take instead of the dx quantities xi, Xa, x5, ... X,
proporfional to them, but such that the sum of their squares = s2.
When we introduce these quantities, the square of the line-element is
2 dx? for infinitesimal values of the x, but the term of next order in
it is equal to a homogeneous function of the second order of the
1 n(n— 1) quantities (x1dxs— xodxy), (x1dxs— xadx1). . . aninfinitesimal,
therefore, of the fourth order; so that we obtain a finite quantity on
dividing this by the square of the infinitesimal triangle, whose vertices
arc (0, 0, 0, - .), (xl, X2, X3, .. .), (dxl, dx2, dx:_:,, .. ) This quantity
retains the same value so long as the x and the dx are included in
the same binary linear form, or so long as the two geodesics from 0
to x and from O to dx remain in the same surface-element; it depends
therefore only on place and direction. It is obviously zero when the
manifold represented is flat, i.e., when the squared line-element is
reducible to 2dx?, and may therefore be regarded as the measure of
the deviation of the manifoldness from flatness at the given point
in the given surface-direction. Multiplied by — 3 it becomes equal to
the quantity which Privy Councillor Gauss has called the total cur-
vature of a surface. For the determination of the measure-relations
of a manifoldness capable of representation in the assumed form we
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found that %n(n— 1) place-functions were necessary; if, therefore, the
curvature at each point in %n(n— 1) surface-directions is given, the
measure-relations of the continuum may be determined from them—
provided there be no identical relations among these values, which in
fact, to speak generally, is not the case. In this way the measure-
relations of a manifoldness in which the line-element is the square
root of a quadric differential may be expressed in a manner wholly
independent of the choice of independent variables. A method entire-
ly similar may for this purpose be applied also to the manifoldness
in which the line-element has a less simple expression, e.g., the fourth
root of a quartic differential. In this case the line-element, generally
speaking, is no longer reducible to the form of the square root of a
sum of squares, and therefore the deviation from flatness in the squared
line-element is an infinitesimal of the second order, while in those
manifoldnesses it was of the fourth order. This property of the last-
named continua may thus be called flatness of the smallest parts.
The most important property of these continua for our present pur-
pose, for whose sake alone they are here investigated, is that the rela-
tions of the twofold ones may be geometrically represented by sur-
faces, and of the morefold ones may be reduced to those of the sur-
faces included in them; which now requires a short further discussion.

§ 3. In the idea of surfaces, together with the intrinsic measure-
relations in which only the length of lines on the surfaces is considered,
there is always mixed up the position of points lying out of the sur-
face. We may, however, abstract from external relations if we con-
sider such deformations as leave unaltered the length of lines—i.e.,
if we regard the surface as bent in any way without stretching, and
treat all surfaces so related to each other as equivalent. Thus, for
example, any cylindrical or conical surface counts as equivalent to
a plane, since it may be made out of one by mere bending, in which
the intrinsic measure-relations remain, and all theorems about a
plane—therefore the whole of planimetry—retain their validity. On
the other hand they count as essentially different from the sphere,
which cannot be changed into a plane without stretching. According
to our previous investigation the intrinsic measure-relations of a
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twofold extent in which the line-element may be expressed as the square
root of a quadric differential, which is the case with surfaces, are
characterised by the total curvature. Now this quantity in the case of
surfaces is capable of a visible interpretation, viz., it is the product
of the two curvatures of the surface, or multiplied by the area of a
small geodesic triangle, it is equal to the spherical excess of the same.
The first definition assumes the proposition that the product of the
two radii of curvature is unaltered by mere bending; the second, that
in the same place the area of a small triangle is proportional to its
spherical excess. To give an intelligible meaning to the curvature of
an n-fold extent at a given point and in a given surface-direction
through it, we must start from the fact that a geodesic proceeding
from a point is entirely determined when its initial direction is given.
According to this we obtain a determinate surface if we prolong all
the geodesics proceeding from the given point and lying initially in
the given surface-direction; this surface has at the given point a defi-
nite curvature, which is also the curvature of the n-fold continuum
at the given point in the given surface-direction.

§ 4. Before we make the application to space, some considerations
about flat manifoldnesses in general are necessary; i.e., about those
in which the square of the line-element is expressible as a sum of squares
of complete differentials.

In a flat n-fold extent the total curvature is zero at all points in
every direction; it is sufficient, however (according to the preceding
investigation), for the determination of measure-relations, to know
that at each point the curvature is zero in —;—n(n— 1) independent sur-
face-directions. Manifoldnesses whose curvature is constantly zero
may be treated as a special case of those whose curvature is constant.
The common character of these continua whose curvature is constant
may be also expressed thus, that figures may be moved in them with-
out stretching. For clearly figures could not be arbitrarily shifted
and turned round in them if the curvature at each point were not the
same in all directions. On the other hand, however, the measure-rela-
tions of the manifoldness are entirely determined by the curvature;
they are therefore exactly the same in all directions at one point as
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at another, and consequently the same constructions can be made
from it: whence it follows that in aggregates with constant curvature
figures may have any arbitrary position given them. The measure-
relations of these manifoldnesses depend only on the value of the
curvature, and in relation to the analytic expression it may be remarked
that if this value is denoted by «, the expression for the line-element
may be written
1

2
s VI dx?).

§ 5. The theory of surfaces of constant curvature will serve for a
geometric illustration. It is easy to see that surfaces whose curvature
is positive may always be rolled on a sphere whose radius is unity
divided by the square root of the curvature; but to review the entire
manifoldness of these surfaces, let one of them have the form of a
sphere and the rest the form of surfaces of revolution touching it at
the equator. The surfaces with greater curvature than this sphere will
then touch the sphere internally, and take a form like the outer por-
tion (from the axis) of the surface of a ring; they may be rolled upon
zones of spheres having less radii, but will go round more than once.
The surfaces with less positive curvature are obtained from spheres
of larger radii, by cutting out the lune bounded by two great half-
circles and bringing the section-lines together. The surface with cur-
vature zero will be a cylinder standing on the equator; the surfaces
with negative curvature will touch the cylinder externally and be for-
med like the inner portion (towards the axis) of the surface of a ring.
If we regard these surfaces as locus in quo for surface-regions moving
in them, as Space is locus in gquo for bodies, the surface-regions can be
moved in all these surfaces without stretching. The surfaces with posi-
tive curvature can always be so formed that surface-regions may also
be moved arbitrarily about upon them without bending, namely
(they may be formed) into sphere-surfaces; but not those with negative
curvature. Besides this independence of surface-regions from position
there is in surfaces of zero curvature also an independence of direction
from position, which in the former surfaces does not exist.
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III. Application to Space

§ 1. By means of these inquiries into the determination of the mea-
sure-relations of an n-fold extent the conditions may be declared which
are necessary and sufficient to determine the metric properties of
space, if we assume the independence of line-length from position and
expressibility of the line-element as the square root of a quadric
differential, that is to say, flatness in the smallest parts.

First, they may be expressed thus: that the curvature at each point
is zero in three surface-directions; and thence the metric properties
of space are determined if the sum of the angles of a triangle is always
equal to two right angles.

Secondly, if we assume with Euclid not merely an existence of lines
independent of position, but of bodies also, it follows that the cur-
vature is everywhere constant; and then the sum of the angles is deter-
mined in all triangles when it is known in one.

Thirdly, one might, instead of taking the length of lines to be inde-
pendent of position and direction, assume also an independence of
their length and direction from position. According to this conception
changes or differences of position are complex magnitudes expressible
in three independent units.

§ 2. In the course of our previous inquiries, we first distinguished
between the relations of extension or partition and the relations of
measure, and found that with the same extensive properties, different
measure-relations were conceivable; we then investigated the system
of simple size-fixings by which the measure-relations of space are com-
pletely determined, and of which all propositions about them are a
necessary consequence; it remains to discuss the question how, in
what degree, and to what extent these assumptions are borne out by
experience. In this respect there is a real distinction between mere
extensive relations, and measure-relations; in so far as in the former,
where the possible cases form a discrete manifoldness, the declarations
of experience are indeed not quite certain, but still not inaccurate;
while in the latter, where the possible cases form a continuous mani-
foldness, every determination from experience remains always inaccu-
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rate: be the probability ever so great that it is nearly exact. This
consideration becomes important in the extensions of these empirical
determinations beyond the limits of observation to the infinitely great
and infinitely small; since the latter may clearly become more inaccu-
rate beyond the limits of observation, but not the former.

In the extension of space-construction to the infinitely great, we
must distinguish between unboundedness and infinite extent, the former
belongs to the extent relations, the latter to the measure-relations.
That space is an unbounded three-fold manifoldness, is an assumption
which is developed by every conception of the outer world; according
to which every instant the region of real perception is completed and
the possible positions of a sought object are constructed, and which
by these applications is for ever confirming itself. The unboundedness
of space possesses in this way a greater empirical certainty than any
external experience. But its infinite extent by no means follows from
this; on the other hand if we assume independence of bodies from posi-
tion, and therefore ascribe to space constant curvature, it must
necessarily be finite provided this curvature has ever so small a posi-
tive value, If we prolong all the geodesics starting in a given surface-
element, we should obtain an unbounded surface of constant curva-
ture, i.e., a surface which in a flat-manifoldness of three dimensions
would take the form of a sphere, and consequently be finite.

§ 3. The questions about the infinitely great are for the interpreta-
tion of nature useless questions. But this is not the case with the ques-
tions about the infinitely small. It is upon the exactness with which
we follow phenomena into the infinitely small that our knowledge of
their causal relations essentially depends. The progress of recent
centuries in the knowledge of mechanics depends almost entirely on
the exactness of the construction which has become possible through
the invention of the infinitesimal calculus, and through the simple
principles discovered by Archimedes, Galileo, and Newton, and used
by modern physic. But in the natural sciences which are still in want
of simple principles for such constructions, we seek to discover the
causal relations by following the phenomena into great minuteness,
so far as the microscope permits. Questions about the measure-rela-
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tions of space in the infinitely small are not therefore superfluous
questions.

If we suppose that bodies exist independently of position, the cur-
vature i1s everywhere constant, and it then results from astronomical
measurements that it cannot be different from zero; or at any rate its
reciprocal must be an area in comparison with which the range of our
telescopes may be neglected. But if this independence of bodies from
position does not exist, we cannot draw conclusions from metric
relations of the great, to those of the infinitely small; in that case the
curvature at each point may have an arbitrary value in three direc-
tions, provided that the total curvature of every measurable portion
of space does not differ sensibly from zero. Still more complicated
relations may exist if we no longer suppose the linear element expres-
sible as the square root of a quadric differential. Now it seems that
the empirical notions on which the metrical determinations of space
are founded, the notion of a solid body and of a ray of light, cease to
be valid for the infinitely small. We are therefore quite at liberty to
suppose that the metric relations of space in the infinitely small do
not conform to the hypotheses of geometry; and we ought in fact
to suppose it, if we can thereby obtain a simpler explanation of phe-
nomena.

The question of the validity of the hypotheses of geometry in the
infinitely small is bound up with the question of the ground of the
metric relations of space. In this last question, which we may still
regard as belonging to doctrine of space, is found the application of
the remark made above; that in a discrete manifoldness, the ground
of its metric relations is given in the notion of it, while in a continuous
manifoldness, this ground must come from outside. Either therefore
the reality which underlies space must form a discrete manifoldness,
or we must seek the ground of its metric relations outside it, in bind-
ing forces which act upon it.

The answer to these questions can only be got by starting from the
conception of phenomena which has hitherto been justified by ex-
perience, and which Newton assumed as a foundation, and by making
in this conception the successive changes required by facts which it
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cannot explain. Researches starting from general notions, like the
investigation we have just made, can only be useful in preventing this
work from being hampered by too narrow views, and progress in
knowledge of the interdependence of things from being checked by
traditional prejudices.

This leads us into the domain of another science, of physic, into
which the object of this work does not allow us to go to-day.

Synopsis
PLAN of the Inquiry:

I. Notion of an n-ply extended magnitude.

§ 1. Continuous and discrete manifoldnesses. Defined parts of
a manifoldness are called Quanta. Division of the theory of
continuous magnitude into the theories,

(1) Of mere region-relations, in which an independence of
magnitudes from position is not assumed;

(2) Of size-relations, in which such an independence must be
assumed.

§ 2. Construction of the notion of a one-fold, two-fold, n-fold
extended magnitude.

§ 3. Reduction of place-fixing in a given manifoldness to quan-
tity-fixings. True character of an n-fold extended magnitude.

II. Measure-relations of which a manifoldness of n-dimensions is
capable on the assumption that lines have a length independent
of position, and consequently that every line may be measured
by every other.

§ 1. Expression for the line-element. Manifoldnesses to be cal-
led Flat in which the line-element is expressible as the square
root of a sum of squares of complete differentials.

§ 2. Investigation of the manifoldness of n-dimensions in which
the line-element may be represented as the square root of a
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quadric differential. Measure of its deviation from flatness (cur-
vature) at a given point in a given surface-direction. For the
determination of its measure-relations it is allowable and suffi-
cient that the curvature be arbitrarily given at every point in
sn(n—1) surface directions.

§ 3. Geometric illustration.

§ 4. Flat manifoldnesses (in which the curvature is everywhere =
0) may be treated as a special case of manifoldnesses with con-
stant curvature. These can also be defined as admitting an inde-
pendence of n-fold extents in them from position (possibility
of motion without stretching).

§ 5. Surfaces with constant curvature.

I11. Application to Space.

§ 1. System of facts which suffice to determine the measure-
relations of space assumed in geometry.

§ 2. How far is the validity of these empirical determinations
probable beyond the limits of observation towards the infinitely
great?

§ 3. How far towards the infinitely small? Connection of this
question with the interpretation of nature.






NOTES ONEXTRACT 2

CLIFFORD here goes some distance, in a purely speculative manner, building on his
study of Riemann’s paper (Extract 1 above), towards a physical theory like general
relativity. His idea is that curvature represents matter, and its change represents
the motion of matter.
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EXTRACT 2t

On the Space-theory of Matter

W. K. CLIFFORD

(Abstract)

Riemann has shewn that as there are different kinds of lines and sur-
faces, so there are different kinds of space of three dimensions; and
that we can only find out by experience to which of these kinds the
space in which we live belongs. In particular, the axioms of plane
geometry are true within the limits of experiment on the surface of a
sheet of paper, and yet we know that the sheet is really covered with a
number of small ridges and furrows, upon which (the total curvature
not being zero) these axioms are not true. Similarly, he says although
the axioms of solid geometry are true within the limits of experiment
for finite portions of our space, yet we have no reason to conclude
that they are true for very small portions; and if any help can be got
thereby for the explanation of physical phenomena, we may have
reason to conclude that they are not true for very small portions of
space.

I wish here to indicate a manner in which these speculations may
be applied to the investigation of physical phenomena. I hold in fact

(1) That small portions of space are in fact of a nature analogous
to little hills on a surface which is on the average flat; namely, that
the ordinary laws of geometry are not valid in them.

(2) That this property of being curved or distorted is continually
being passed on from one portion of space to another after the manner
of a wave.

Y Proc. Camb. Phil. Soc. 2, 157 (1876).
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(3) That this variation of the curvature of space is what really hap-
pens in that phenomenon which we call the motion of matter, whether
ponderable or etherial.

(4) That in the physical world nothing else takes place but this
variation, subject (possibly) to the law of continuity.

I am endeavouring in a general way to explain the laws of double
refraction on this hypothesis, but have not yet arrived at any results
sufficiently decisive to be communicated.






NOTES ON EXTRACT 3

IN THIs 1911 paper Einstein has progressed a great way towards understanding
the physical basis of general relativity, but he has presumably not worked out the
mathematics to his satisfaction since he proposes to submit “only a few quite
elementary reflections”. The technical details were to take four more years to work

out.
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EXTRACT 3t

On the Effect of Gravitation on the Propagation of
Light

A. EINSTEIN

IN A memoir published 4 years ago! I tried to answer the question
whether the propagation of light is influenced by gravitation. I return
to this theme because my previous presentation of the subject does not
satisfy me, and, moreover, because I now see that one of the most
important consequences of my former treatment can be tested experi-
mentally. It follows from the present theory that rays of light passing
close to the sun are deflected by its gravitational field, so that the
angular distance between the sun and a fixed star appearing near to it is
apparently increased by nearly a second of arc.

In the course of these considerations, further results arise which
relate to gravitation. But as the exposition of the whole matter would
be rather difficult to follow, only a few quite elementary reflections
will be given in the following pages from which the reader will readily
be able to see the suppositions of the theory and its line of thought.
The relations here deduced, even if the theoretical foundation is
sound, are valid only in the first approximation.

§ 1. A Hypothesis on the Physical Nature of the Gravitational Field

In a homogeneous gravitational field (acceleration of gravity y) let
there be a stationary system of co-ordinates K, orientated so that the

1 Annin. Phys. 35, 898 (19i1).
v A. Einstein, Jahrbuch fiir Radioakt. und Elektronik, 4, 1907.
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lines of force of the gravitational field run in the negative direction
of the z-axis. In a space free of gravitational fields let there be a second
system of co-ordinates K’, moving with uniform acceleration y in the
positive direction of its z-axis. To avoid unnecessary complications,
let us disregard the theory of relativity and regard both systems from
the customary point of view. of kinematics and the movements occur-
ring in them from that of ordinary mechanics.

Relative to K, as well as relative to K’, material points which are
not subjected to the action of other material points move in keeping
with the equations

d*x d’y _

d’z
ar =% = e =

az =

For the accelerated system K’ this follows directly from Galileo’s
principle, but for the system K, at rest in a homogeneous gravitational
field, from the experience that all bodies in such a field are equally
and uniformly accelerated. This experience, of the equal fall of
all bodies in the gravitational field, is one of the most universal which
the observation of nature has yielded; but in spite of that the law
has not found any place in the foundations of our physical picture of
the world.

But we arrive at a very satisfactory interpretation of this law of
experience if we assume that the systems K and K’ are physically
exactly equivalent, that is, if we assume that we may just as well
regard the system K as being in a space free from gravitational fields,
if we then regard K as uniformly accelerated. This assumption of
exact physical equivalence makes it impossible for us to speak of the
absolute acceleration of the system of reference, just as the usual
theory of relativity prevents our speaking of the absolute velocity of
a system;2 and it makes the equal falling of all bodies in a gravitational
field seem obvious.

2 Of course we cannot replace any arbitrary gravitational field by a state of
motion of the system without a gravitational field, any more than, by a transfor-
mation of relativity, we can transform all points of a medium in any kind of
motion to rest.
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So long as we restrict ourselves to purely mechanical processes
where Newton’s mechanics holds, we are certain of the equivalence
of the systems K and K’. But this view of ours will only have a deeper
significance if the systems K and K’ are equivalent with respect to
all physical processes, that is, if the laws of nature with respect to
K are in entire agreement with those with respect to K’. By assuming
this to be so, we arrive at a principle which, if it is really true, has great
heuristic importance. For by theoretical consideration of processes
which take place relatively to a system of reference with uniform
acceleration, we obtain information as to how the processes take place
in 2 homogeneous gravitational field. We shall now show, first of all,
from the standpoint of the ordinary theory of relativity, what degree of
probability is inherent in our hypothesis.

§ 2. On the Weight of Energy

One result yielded by the theory of relativity is that the inertial
mass of a body increases with the energy it contains; if the increase
of energy amounts to E, the increase in inertial mass is equal to E/c?,
when ¢ denotes the velocity of light. Now is there an increase of gra-
vitating mass corresponding to this increase of inertial mass? If not,
then a body would fall in the same gravitational field with varying
acceleration according to the energy it contained. That highly satis-
factory result of the theory of relativity by which the law of the conser-
vation of mass is merged in the law of conservation of energy could
not be maintained, because it would compel us to abandon the law
of the conservation of mass in its old form for inertial mass, but main-
tain it for gravitating mass.

This must be regarded as very improbable. On the other hand, the
usual theory of relativity does not provide us with any argument from
which to infer that the weight of a body depends on the energy con-
tained in it. But we shall show that our hypothesis of the equivalence
of the systems K and K’ gives us the weight of energy as a necessary
consequence.

Let two material systems S; and S», provided with instruments of
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measurement, be situated on the z-axis of K at the distance A from
each other,® so that the gravitation potential in S5 is greater than
that in S by yh. Let a definite quantity of energy E be emitted from
S towards S1. Let the quantities of energy in S and S» be measured by
devices which—brought to one place in the system z and there com-
pared—are perfectly alike. As to the process of this conveyance of
energy by radiation we can make no a priori assertion, because we
do not know the influence of the gravitational field on the radiation
and the measuring instruments in S and S.

But by our postulate of the equivalence of K and K’ we are able,
in place of the system K in a homogeneous gravitational field, to set
the gravitation-free system K’, which moves with uniform acceleration
in the direction of positive z, and with the z-axis of which the material
systems S; and S are rigidly connected.

We judge of the process of the transference of energy by radiation
from S» to Sy from a system K, which is to be free from acceleration.

FiG. 1.

At the moment when the radiation energy E» is emitted from S toward
S, let the velocity of K’ relatively to K, be zero. The radiation will
arrive at S; when the time 4/c has elapsed (to a first approximation).
But at this moment the velocity of S; relatively to Ko is yh/c = v.
Therefore by the ordinary theory of relativity the radiation arriving

3 The dimensions of S, and S, are regarded as infinitely small in comparison
with /.
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at S; does not possess the energy E», but a greater energy Ei, which is
related to E, to a first approximation by the equation

v h
(1) “ﬂ=@0+2):%O+WJ

By our assumption exactly the same relation holds if the same
process takes place in the system K, which is not accelerated, but is
provided with a gravitational field. In this case we may replace vk by
the potential @ of the gravitation vector in S, if the arbitrary constant
of @ in S, is equated to zero. We then have the equation

E
(1a) m=m+ﬁa

This equation expresses the law of energy for the process under
observation. The energy E; arriving at S, is greater than the energy
E,, measured by the same means, which was emitted in S», the excess
being the potential energy of the mass E;/c? in the gravitational field.
Accordingly, for the fulfilment of the principle of energy we have to
ascribe to the energy E, before its emission in S», a potential energy
due to gravity, which corresponds to the gravitational mass E/c2. Our
assumption of the equivalence of K and K’ thus removes the difficulty
mentioned at the beginning of this paragraph which is left unsolved
by the ordinary theory of relativity.

The meaning of this result is shown particularly clearly if we con-
sider the following cycle of operations:

1. The energy E, as measured in S, is emitted in the form of radia-
tion in S towards Sy, where, by the result just obtained, the energy
E(1+4vh/c?), as measured in S, is absorbed.

2. A body W of mass M is lowered from S5 to §1, work Myh being
done in the process.

3. The energy E is transferred from S to the body W while W is in
S1. Let the gravitational mass M be thereby changed so that it acquires
the value M’.

4. Let W be again raised to S, work M’'yh being done in the pro-
cess.
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5. Let E be transferred from W back to S».

The effect of this cycle is simply that §; has undergone the increase
of energy Eyh/c% and that the quantity of energy M’yh— Myh has
been conveyed to the system in the form of mechanical work. By the
principle of energy, we must therefore have

h ,
Ey —C—Z— == M‘yh—M‘))h
or
(1b) M —M = E|c®.

The increase in gravitational mass is thus equal to E/c2, and therefore
equal to the increase in inertial mass as given by the theory of rela-
tivity.

The result emerges still more directly from the equivalence of the
systems K and K’, according to which the gravitational mass with
respect to K is exactly equal to the inertial mass with respect to K';
energy must therefore possess a gravitational mass which is equal to its
inertial mass. If a mass M, be suspended on a spring balance in the
system K’', the balance will indicate the apparent weight Moy on
account of the inertia of M. If the quantity of energy E be transferred
to M,, the spring balance, by the law of the inertia of energy, will
indicate (Mo+E/c?)y. By reason of our fundamental assumption
exactly the same thing must occur when the experiment is repeated in
the system K, that is, in the gravitational field.

§ 3. Time and the Velocity of Light in the Gravitational Field

If the radiation emitted in the uniformly accelerated system K’ in
S toward S, had the frequency v, relatively to the clock in S, then,
relatively to 8§, at its arrival in S: it no longer has the frequency v
relatively to an identical clock in S1, but a greater frequency vy, such
that to a first approximation

@) p = up (1+yzh-2-).
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For if we again introduce the unaccelerated system of reference Ko,
relatively to which, at the time of the emission of light, K’ has no
velocity, then §;, at the time of arrival of the radiation at S, has,
relatively to Ko, the velocity vh/c, from which, by Doppler’s principle,
the relation as given results immediately.

In agreement with our assumption of the equivalence of the systems
K’ and K, this equation also holds for the stationary system of co-
ordinates K, provided with a uniform gravitational field, if the
transference by radiation takes place as described. It follows, then,
that a ray of light emitted in S, with a definite gravitational potential,
and possessing at its emission the frequency ve—compared with a
clock in Sy—will, at its arrival in S;, possess a different frequency
v;—measured by an identical clock in §1. For yh we substitute the
gravitational potential @ of Ss—that of §; being taken as zero—and
assume that the relation which we have deduced for the homogeneous
gravitational field also holds for other forms of field. Then

(2a) vy = Vg (1+~(§-).

This result (which by our deduction is valid to a first approximation)
permits, in the first place, of the following application. Let », be the
vibration-number of an elementary light-generator, measured by a
delicate clock at the same place. Let us imagine them both at a place
on the surface of the sun (where our S, is located). Of the light there
emitted a portion reaches the Earth (S:), where we measure the
frequency of the arriving light with a clock U in all respects resembling
the one just mentioned. Then by (2a),

o
V= 7% (1+"E§‘),

where @ is the (negative) difference of gravitational potential between
the surface of the sun and the earth. Thus according to our view the
spectral lines of sunlight, as compared with the corresponding spectral
lines of terrestrial sources of light, must be somewhat displaced toward
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the red, in fact by the relative amount

oV P50,
Vo c?

If the conditions under which the solar bands arise were exactly
known, this shifting would be susceptible of measurement. But as
other influences (pressure, temperature) affect the position of the
centres of the spectral lines, it is difficult to discover whether the in-
ferred influence of the gravitational potential really exists.*

On a superficial consideration equation (2), or (2a), respectively,
seems to assert an absurdity. If there is constant transmission of light
from S to S1, how can any other number of periods per second arrive
in S than is emitted in S, ? But the answer is simple. We cannot simply
regard v, or v; as frequencies (as the number of periods per second)
since we have not yet determined the time in system K. What », de-
notes is the number of periods with reference to the time-unit of the
clock U in §9, while »; denotes the number of periods per second
with reference to the identical clock in S;. Nothing compels us to
assume that the clocks U in different gravitation potentials must be
regarded as going at the same rate. On the contrary, we must certainly
define the time in K in such a way that the number of wave crests
and troughs between S's and §, is independent of the absolute value
of time; for the process under observation is by nature a stationary
one. If we did not satisfy this condition, we should arrive at a defini-
tion of time by the application of which time would enter explicitly
into the laws of nature, and this would certainly be unnatural and un-
practical. Therefore the two clocks in §; and S» do not both give the
“time” correctly. If we measure time in S, with the clock U, then we
must measure time in S with a clock which goes 1+®/¢? times more
slowly than the clock U when it is compared with U at one and the

4 L. F. Jewell (Journ. de Phys., 6, 1897, p. 84) and particularly Ch. Fabry and
H. Boisson (Comptes rendus, 148, 1909, pp. 688-690) have actually found such
displacements of fine spectral lines toward the red end of the spectrum, of the
order of magnitude here calculated, but have ascribed them to an effect of pressure
in the absorbing layer.
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same place. For when measured by such a clock the frequency of the
ray of light which is considered above is at its emission in S

(/]
Vo (1 + 7)
c
and is therefore, by (2a), equal to the frequency »; of the same ray of
light on its arrival in S.

This has a consequence which is of fundamental importance for
our theory. For if we measure the velocity of light at different places
in the accelerated, gravitation-free system K’', employing clocks U
of identical constitution, we obtain the same magnitude at all these
places. The same holds good, by our fundamental assumption, for the
system K as well. But from what has just been said we must use clocks
of different constitution for measuring time at places with differing
gravitation potential. For measuring time at a place which, relatively
to the origin of the co-ordinates, has the gravitation potential @, we
must employ a clock which—when removed to the origin of co-
ordinates—goes (1 +@/c?) times more slowly than the clock used for
measuring time at the origin of co-ordinates. If we call the velocity
of light at the origin of co-ordinates ¢, then the velocity of light c at a
place with the gravitation potential® will be given by the relation

3) ¢ = c0(1+%).

The principle of the constancy of the velocity of light holds good
according to this theory in a different form from that which usually
underlies the ordinary theory of relativity.

§ 4. Bending of Light-rays in the Gravitational Field

From the proposition which has just been proved, that the velocity
of light in the gravitational field is a function of position, we may
easily infer, by means of Huyghens’s principle, that light-rays pro-
pagated across a gravitational field undergo deflexion. For let E be a
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wave front of a plane light-wave at the time ¢, and let P; and P; be
two points in that plane at unit distance from each other. P; and P, lie
in the plane of the paper, which is chosen so that the differential coeffi-
cient of @, taken in the direction of the normal to the plane, vanishes,

FiG. 2.

and therefore also that of ¢. We obtain the corresponding wave front
at time ¢-+dt, or, rather, its line of section with the plane of the paper,
by describing circles round the points Py and P, with radii ¢1df and
codt respectively, where ¢, and ¢, denote the velocity of light at the
points P, and P, respectively, and by drawing the tangent to these
circles. The angle through which the light-ray is deflected in the path
cdt is therefore
oc

(c1—co)dt = T

dt,

if we calculate the angle positively when the ray is bent toward the
side of increasing #'. The angle of deflexion per unit of path of the
light-ray is thus

1 &c 1 0P
o O O T

Finally, we obtain for the deflexion of a light-ray toward the side »" on
any path (s) the expression

1 (0P

We might have obtained the same result by directly considering the
propagation of a ray of light in the uniformly accelerated system K’,

and transferring the result to the system K, and thence to the case of a
gravitational field of any form.
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By equation (4) a ray of light passing along by a heavenly body
suffers a deflexion to the side of the diminishing gravitational potential,
that is, on the side directed toward the heavenly body, of the magnitude

1 J'9=%” kM kM
a =

— ———cosfds =2,

oy 1P ¢/

where k denotes the constant of gravitation, M the mass of the
heavenly body, A the distance of the ray from the centre of the body.

FiG, 3.

A ray of light going past the sun would accordingly undergo deflexion
to the amount of 4.10~% = 83 seconds of arc. The angular distance
of the star from the centre of the Sun appears to be increased by this
amount. As the fixed stars in the parts of the sky near the Sun are
visible during total eclipses of the Sun, this consequence of the theory
may be compared with experience. With the planet Jupiter the dis-
placement to be expected reaches to about 1%0 of the amount given. It
would be a most desirable thing if astronomers would take up the
question here raised. For apart from any theory there is the question
whether it is possible with the equipment at present available to detect
an influence of gravitational fields on the propagation of light.



NOTES ON EXTRACT 4

THIs paper is the definitive presentation of Einstein’s theory. (In the present
extract some 23 pages are omitied; they contain merely technical development.)
So complete is it, that it might be read as a standard textbook on the subject,
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EXTRACT 4f

The Foundations of General Relativity Theory

A. FINSTEIN

THE theory set out in the following is perhaps the most extensive
generalisation amongst the theories known to-day as relativity theories.
These last I take as the heirs to the first “special relativity” theory,
which 1 assume is famihiar to the reader. The generalisation of rela-
tivity theory is carried out very easily in the form given to special
relativity by Minkowski. This mathematician was the first to recognise
clearly the formal equivalence of space and time coordinates and use
it for a convenient exposition of the theory. The necessary mathe-
matical apparatus for the general relativity theory is already completed
in the absolute differential calculus. This rests on the researches of
Gauss, Riemann and Christoffel on non-Euclidean manifolds, and was
systematised by Ricci and Levi-Civita, who have already applied it to
problems of theoretical physics. In part B of the present paper I have
explained as much of this apparatus as is needed, and is not well
known to physicists, as simply and transparently as I can. In this way
no study of the mathematical literature is necessary for the under-
standing of the present paper. Finally my thanks are due here to my
friend, the mathematician Grossman, who not only helped me in the
study of the extensive mathematical literature, but led me by his
researches to the discovery of the field equations.

Y Annain. Phys. 49, 769 (1916)
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A. Fundamental Considerations on the Postulate of Relativity

§ 1. Remarks on Special Relativity Theory

The special theory of relativity is based on the following postulate,
which is also satisfied by the mechanics of Galileo and Newton:

If a system of co-ordinates K is chosen so that, in relation to it,
physical laws hold good in their simplest form, the same laws also
hold good in relation to any other system of co-ordinates K’ moving
in uniform translation relatively to K. This postulate we call the
“special principle of relativity”. The word “special” is meant to inti-
mate that the principle is restricted to the case when K’ has a motion
of uniform translation relatively to K, and that the equivalence of K’
and K does not extend to the case of non-uniform motion of K’ rela-
tively to K.

Thus special relativity does not depart from classical mechanics
through the postulate of relativity, but through the postulate of the
constancy of the velocity of light in vacuo, from which, in combina-
tion with the special principle of relativity, there follow, in the well-
known way, the relativity of simultaneity, the Lorentz transforma-
tion, and the related laws for the behaviour of moving bodies and
clocks.

The modification to which special relativity has subjected the theory
of space and time is indeed far reaching, but one important point has
remained unaffected. The laws of geometry, even according to special
relativity, are to be interpreted directly as laws relating to the possible
relative positions of solid bodies at rest; and more generally, the laws
of kinematics are to be interpreted as laws which describe the relations
of measuring bodies and clocks. To two selected material points of a
stationary rigid body there always corresponds a distance of quite
definite length, which is independent of the locality and orientation
of the body, and is also independent of the time. To two selected posi-
tions of the hands of a clock at rest relatively to the privileged system
of reference there always corresponds an interval of time of a definite
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length, which is independent of position and time. We shall soon see
that the general theory of relativity cannot adhere to this simple phy-
sical interpretation of space and time.

§ 2. The Need for an Extension of the Postulate of Relativity

In classical mechanics, and no less in the special theory of relati-
vity, there is an inherent epistemological defect which was, perhaps
for the first time, clearly pointed out by Ernst Mach. We will eluci-
date it by the following example :—Two fluid bodies of the same size
and nature hover freely in space at so great a distance from each other
and from all other masses that only those gravitational forces need
be taken into account which arise from the interaction of different
parts of the same body. Let the distance between the two bodies be
invariable, and in neither of the bodies let there be any relative move-
ments of the parts with respect to one another. But let either mass,
as judged by an observer at rest relatively to the other mass, rotate
with constant angular velocity about the line joining the inasses.
This is a verifiable relative motion of the two bodies. Now let us ima-
gine that each of the bodies has been surveyed by means of measuring
instruments at rest relatively to itself, and let the surface of S; prove
to be a sphere, and that of S, an ellipsoid of revolution. Thereupon
we put the question—What is the reason for this difference in the two
bodies? No answer can be admitted as epistemologically satisfactory,!
unless the reason given is an observable fact of experience. The law
of causality has not the significance of a statement as to the world
of experience, except when observable facts ultimately appear as causes
and effects.

Newtonian mechanics does not give a satisfactory answer to this
question. It pronounces as follows:—The laws of mechanics apply
to the space Ry, in respect to which the body S is at rest, but not to
the space Rg, in respect to which the body S, is at rest. But the pri-
vileged space R; of Galileo, thus introduced, is a merely factitious

1 Of course an answer may be satisfactory from the point of view of epistem-
ology, and yet be unsound physically, if it is in conflict with other experiences.
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cause, and not a thing that can be observed. It is therefore clear that
Newton’s mechanics does not really satisfy the requirement of causa-
lity in the case under consideration, but only apparently does so,
since it makes the factitious cause R; responsible for the observable
difference in the bodies §1 and Sb.

The satisfactory answer can only be that the physical system consist-
ing of §1 and S5 reveals within itself no imaginable cause to which
the differing behaviour of S; and S, can be referred. The cause must
therefore lie outside this system. We have to take it that the general
laws of motion, which in particular determine the shapes of S1 and
S, must be such that the mechanical behaviour of §; and S’ is partly
conditioned, in quite essential respects, by distant masses which we
have not included in the system under consideration. These distant
masses and their motions relative to S; and S must then be regarded
as the seat of the causes (which must be susceptible to observation)
of the different behaviour of our two bodies S1 and S,. They take over
the rdle of the factitious cause R;. Of all imaginable spaces Ri, Ro,
etc., in any kind of motion relatively to one another, there is none
which we may look upon as privileged a priori without reviving the
above-mentioned epistemological objection. The laws of physics must
be of such a nature that they apply to systems of reference in any kind
of motion. In this way we arrive at an extension of the postulate of
relativity.

In addition to this weighty argument from the theory of knowledge,
there is a well-known physical fact which favours an extension of the
theory of relativity. Let K be a Galilean system of reference, i.e. a
system relative to which (at least in the four-dimensional region under
consideration) a mass, sufficiently distant from other masses, moves
with uniform motion in a straight line. Let K’ be a second system of
reference which is moving relatively to K in uniformly accelerated
translation. Then, relatively to K’, a mass sufficiently distant from
other masses would have an accelerated motion such that its accelera-
tion and direction of acceleration are independent of the material com-
position and physical state of the mass.

Does this permit an observer at rest relatively to K’ to infer that he
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is on a “really” accelerated system of reference? The answer is in the
negative; for the above-mentioned relation of freely movable masses
to K’ may be interpreted equally well in the following way. The sys-
tem of reference K’ is unaccelerated, but the space-time region in
question is in a gravitational field, which generates the accelerated
motion of the bodies relatively to K.

This view is made possible for us by our experience that there
exists a field of force, namely, the gravitational field, which possesses
the remarkable property of imparting the same acceleration to all
bodies.2 The mechanical behaviour of bodies relatively to K’ is the
same as is observed in the case of systems which we are used to regar-
ding as “stationary” or as “privileged.” Therefore, from the physical
standpoint, the assumption that the systems K and K’ may both with
equal right be looked upon as “stationary”, is a very natural one.
That is to say, they have an equal title as systems of reference for
the physical description of phenomena.

It will be seen from these reflections that in pursuing the general
theory of relativity we shall be led to a theory of gravitation, since we
are able to “produce” a gravitational field merely by changing the
system of co-ordinates. It will also be obvious that the principle of
the constancy of the velocity of light ir vacuo must be modified, since
we easily recognize that the path of a ray of light with respect to K’
must in general be curvilinear, if with respect to K light is propagated
in a straight line with a definite constant velocity.

§ 3. The Space-Time Continuum. Requirement of General Co—variance
for the Equations Expressing General Laws of Nature

In classical mechanics, as well as in the special theory of relativity,
the co-ordinates of space and time have a direct physical meaning.
To say that a point-event has the X7 coordinate x; means that the
projection of the point-event on the axis of X3, determined by rigid
rods and in accordance with the rules of Euclidean geometry, is obtain-

z Eotvos has proved experimentally that the gravitational field has this property
with great accuracy.
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ed by measuring off a given rod (the unit of length) x; times from the
origin of coordinates along the axis of X;. To say that a point-event
has the X, co-ordinate x, = ¢, means that a standard clock, made to
measure time in a definite unit period, and which is stationary relati-
vely to the system of co-ordinates and practically coincident in space
with the point-event,® will have measured off x, = ¢ periods at the
occurrence of the event.

This view of space and time has always been in the minds of physi-
cists, even if, as a rule, unconsciously. This is clear from the part
which these concepts play in physical measurements; it must also
have underlaid the reader’s consideration of the preceding paragraph
(§ 2) for him to connect any meaning with what he read. But we shalli
now show that we must put it aside and replace it by a more general
view, in order to be able to carry through the postulate of general
relativity, if the special theory of relativity applies to the special case
of the absence of a gravitational field.

In a space which is free of gravitational fields we introduce a Gali-
lean system of reference K (x, y, z, £), and also a system of co-ordinates
K' (x', y', 2/, t) in uniform rotation relatively to K. Let the origins
of both systems, as well as their Z-axes permanently coincide. We shall
show that for a space-time measurement in the system K’ the above
definition of the physical meaning of lengths and times cannot be
maintained. For reasons of symmetry it is clear that a circle around
the origin in the X, Y plane of K may at the same time be regarded
as a circle in the X7, ¥’ plane of K’. We suppose that the circumference
and diameter of this circle have been measured with a unit measure
infinitely small compared with the radius, and that we have the quo-
tient of the two results. If this experiment were performed with a
measuring-rod at rest relatively to the Galilean system K, the quotient
would be z. With a measuring-rod at rest relatively to K’, the quotient
would be greater than 7. This is readily understood if we envisage
the whole process of measuring from the “stationary” system K, and

3 We assume the possibility of verifying “simultaneity” for events immediately
proximate in space, or—to speak more precisely—for immediate proximity or
coincidence in space-time, without giving a definition of this fundamental concept.
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take into consideration that the measuring-rod applied to the peri-
phery undergoes a Lorentzian contraction, while the one applied along
the radius does not. Hence Euclidean geometry does not apply to K.
The notion of co-ordinates defined above, which presupposes the
validity of Euclidean geometry, therefore breaks down in relation
to the system K’. So, too, we are unable to introduce a time corre-
sponding to physical requirements in K’, indicated by clocks at rest
relatively to K'. To convince ourselves of this impossibility, let us
imagine two clocks of identical constitution placed, one at the origin
of co-ordinates, and the other at the circumference of the circle, and
both observed from the “stationary” system K. By a familiar result
of the special theory of relativity, the clock at the circumference—
judged from K—goes more slowly than the other, because the former
is in motion and the latter at rest. An observer at the common origin
of co-ordinates, capable of observing the clock at the circumference
by means of light, would therefore see it lagging behind the clock
beside him. As he will not decide to let the velocity of light along the
path in question depend explicitly on the time, he will interpret his
observations as showing that the clock at the circumference “really”
goes more slowly than the clock at the origin. So he will be obliged
to define time in such a way that the rate of a clock depends upon
where the clock may be.

We therefore reach this result:—In the general theory of relativity,
space and time cannot be defined in such a way that differences of the
spatial co-ordinates can be directly measured by the unit measuring-
rod, or differences in the time co-ordinate by a standard clock.

The method hitherto employed for specifying co-ordinates in the
space—time continuum in a definite manner thus breaks down, and
there seems to be no other way which would allow us to adapt sys-
tems of co-ordinates to the four-dimensional universe so that we might
expect from their application a particularly simple formulation of the
laws of nature. So there is nothing for it but to regard all imaginable
systems of co-ordinates, on principle, as equally suitable for the
description of nature. This comes to requiring that:

The general laws of nature are to be expressed by equations which
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hold good for all systems of co-ordinates, that is, are covariant with
respect to any substitutions whatever (generally covariant ).

It is clear that a physics which satisfies this postulate will also be
suitable for the general postulate of relativity. For amongst all sub-
stitutions are those which correspond to all relative motions of three-
dimensional systems of co-ordinates. That this requirement of general
covariance, which takes away from space and time the last remnant
of physical objectivity, is a natural one, will be seen from the following
reflexion. All our space-time verifications invariably amount to a
determination of space-time coincidences. If, for example, events
consisted merely in the motion of material points, then ultimately
nothing would be observable but the meetings of two or more of
these points. Moreover, the results of our measurings are nothing
but verifications of such meetings of the material points of our meas-
uring instruments with other material points, coincidences between
the hands of a clock and points on the clock dial, and observed point-
events happening at the same place at the same time.

The introduction of a system of reference serves no other purpose
than to facilitate the description of the totality of such coincidences.
We allot to the world four space-time variables x1, x2, X3, x4 in such
a way that for every point-event there is a corresponding set of values
of the variables x; ... x4. To two coincident point-events there corre-
sponds the same set of values of the variables x; . .. xs, 1.e. coincidence
is characterized by the identity of the co-ordinates. If, in place of the
variables x, ... x,, we introduce functions of them, xj, x,, x5, Xj,
as a new system of co-ordinates, so that the sets of values are made to
correspond to one another in a one-valued way, the equality of all
four co-ordinates in the new system will also serve as an expression
for the space-time coincidence of the two point-events. As all our
physical experience can be ultimately reduced to such coincidences,
there is no immediate reason for preferring certain systems of co-ordi-
nates to others, that is to say, we arrive at the requirement of general
covariance,
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§ 4. The Relation of the Four Co-ordinates to Measurement
in Space and Time

It is not my purpose in this discussion to represent the general
theory of relativity as a system that is as simple and logical as possible,
and with the minimum number of axioms. Rather my main object is
to develop this theory in such a way that the reader will feel that the
path we have entered upon is psychologically the natural one, and
that the underlying assumptions will seem to have the highest possible
degree of security. With this aim in view let it now be granted that:

For infinitely small four-dimensional regions the theory of relativity
in the restricted sense is appropriate, if the co-ordinates are suitably
chosen.

For this purpose we must choose the acceleration of the infinitely
small (“local”) system of co-ordinates so that no gravitational field
occurs; this is possible for an infinitely small region. Let X1, X», X3,
be the space co-ordinates and X, the corresponding time co-ordinate
measured in the appropriate unit.? If a rigid rod is imagined to be
given as the unit measure, the co-ordinates, with a given orientation
of the system of co-ordinates, have a direct physical meaning in the
sense of the special theory of relativity. By the special theory of relati-
vity the expression

1), ds? = —dX?—dX2—dX2+ dX2

then has a value which is independent of the orientation of the local
system of co-ordinates, and is ascertainable by measurements of
space and time. The magnitude of the linear element pertaining to
infinitely near points of the four-dimensional continuum we call ds.
If the ds belonging to the element dX, ... dX; is positive, we follow
Minkowski in calling it time-like; if it is negative, we call it space-like.

To the “linear element” in question, or to the two infinitely near
point-events, there will also correspond definite differentials dx; . . . dxs

4 The unit of time is to be chosen so that the velocity of light in vacuo as measu-
red in the ““local” system of co-ordinates is to be equal to unity.
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of the four-dimensional co-ordinates of any chosen system of refer-
ence. If this system, as well as the “local” system, is given for the
region under consideration, the dX, will allow themselves to be
represented here by definite linear homogeneous expressions of the dx,:

) dx, = Y a,, dx,.

Inserting these expressions in (1), we obtain

(3) ds®* = Y g, dx, dx,,

where the g_ will be functions of the x,. These can no longer be
dependent on the orientation and the state of motion of the “local”
system of co-ordinates, for ds? is a quantity ascertainable by rod-clock
measurement of infinitely near point-events in space-time, and defined
independently of any particular choice of co-ordinates. The g, are
to be chosen here so that g, = g..; the summation is to extend over
all values of ¢ and 7, so that the sum consists of 4 X4 terms, of which
twelve are equal in pairs.

The case of the usual relativity theory arises out of the case here
considered, if it is possible, by reason of the particular relations
between the g__ in a finite region, to choose the system of reference in
the finite region in such a way that the g, assume the constant values

-1 0 0 0
@ 0-1 0 0
0 0-1 0

0 0 0+1

We shall find below that the choice of such co-ordinates is, in general,
not possible for a finite region.

From the considerations of § 2 and § 3 it follows that the quantities
g.. are to be regarded from a physical standpoint as the quantities
which describe the gravitational field relative to the chosen system of
reference. For, if we now assume the special theory of relativity to
apply to a certain four-dimensional region with the co-ordinates
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properly chosen, then the g, have the values given in (4). A free
material point then moves, relative to this system, with uniform
motion in a straight line. Then if we introduce new space-time co-
ordinates xi, xa, X3, X3, by means of an arbitrary substitution, the g,,,
in this new system will no longer be constants, but functions of space
and time, At the same time the motion of the free material point will
be represented in the new co-ordinates as a curvilinear non-uniform
motion, and the law of this motion will be independent of the nature
of the moving particle. We shall therefore interpret this motion as a
motion under the influence of a gravitational field. We thus find the
occurrence of a gravitational field connected with a space-time
variability of the g,,. So, too, in the general case, when we are no
longer able by a suitable choice of co-ordinates to apply the special
theory of relativity to a finite region, we shall hold fast to the view
that the g, describe the gravitational field.

Thus, according to general relativity theory, gravitation occupies an
exceptional position with regard to other forces, particularly the elec-
tromagnetic forces, since the ten functions representing the gravita-
tional field at the same time define the metrical properties of the space
measured.

[Here there follows an exposition of the mathematical techniques on much the
same lines as is given in the main text of the present book. In what follows, the
equation

T T
A,uv; c = Ayv, a—FouArv_‘PavAut
which, in Einstein’s notation is written

04 o ov
oo (1)

is referred to.]

§ 12. The Riemann—Christoffel Tensor

We now seek the tensor which can be obtained from the funda-
mental tensor alone, by differentiation. At first sight the solution
seems obvious. We place the fundamental tensor of the g,, in (27)
instead of any given tensor 4,,, and thus have a new tensor, namely,
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the extension of the fundamental tensor. But we may easily convince
ourselves that this extension vanishes identically. We reach our goal,
however, in the following way. In (27) place

04
Aw = ax# ~{uv, p}4,,

i.e. the extension of any four-vector 4,. Then (with a somewhat
different naming of the indices) we get the tensor of the third rank

%4, 04, 04, 04,
Ay = o, O b —{um, o) 5, ~lom Al 5
?

This expression suggests forming the tensor 4,,,—4,.,. For, if we do
so, the following terms of the expression for A4, cancel those of
A,.,: the first, the fourth, and the member corresponding to the last
term in square brackets; because all these are symmetrical in o and 7.
The same holds good for the sum of the second and third terms. Thus

we obtain
(42) Ay~ Ao = Bl A,
where

0 9
Bl = =5, {wo: o}+ 5~ {uv, o} —{uo, o}{ar, o}

(43) +{u7, 2} {oo, 0}

The essential feature of the result is that on the right side of (42) the
A, occur alone, without their derivatives. From the tensor character
of 4,,.— A4, in conjunction with the fact that 4 is an arbitrary vec-
tor, it follows that B2, is a tensor (the Riemann-Christoffel tensor).

The mathematical significance of this tensor is as follows: If the
continuum is of such a nature that there is a co-ordinate system with
reference to which the g, are constants, then all the B? _ vanish. If we
choose any new system of co-ordinates in place of the original ones,
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the g, referred thereto will not be constants, but in consequence of its
tensor nature, the transformed components of B, will still vanish
in the new system. Thus the vanishing of the Riemann tensor is a
necessary condition that, by an appropriate choice of the system of
reference, the g,, may be constants. In our problem this corresponds
to the case in which® with a suitable choice of the system of reference,
the special theory of relativity holds good for a finite region of the
continuum.

Contracting (43) with respect to the indices v and p we obtain the
covariant tensor of second rank

G = Bl = Rt S,
where

@y Ro=—g (wn o+ B B2}

_ Clogv/—g Olog+v/—g
S = oOx, Ox, {uv, o 0x,

L,

Note on the Choice of Co-ordinates.—It has already been observed
[in the part omitted in this extract] that the choice of co-ordinates
may with advantage be made so that 4/—g = 1. A glance at the equa-
tions obtained in the last two sections shows that by such a choice
the laws of formation of tensors undergo an important simplification.
This applies particularly to G,,, the tensor just developed, which
plays a fundamental part in the theory to be set forth. For this specia-
lization of the choice of co-ordinates brings about the vanishing of
S..,» 80 that the tensor G, reduces to R,,.

On this account I shall hereafter give all relations in the simplified
form which this specialization of the choice of co-ordinates brings
with it. It will then be an easy matter to revert to the generally co-
variant equations, if this seems desirable in a special case.

8 The mathematicians have proved that this is also a sufficient condition.
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C. Theory of the Gravitational Field

§ 13. Equations of Motion of a Mass-point in the Gravitational Field.
Expression for the Field-Components of Gravitation

A freely movable body not subjected to external forces moves,
according to special relativity, in a straight line and uniformly. This
is also the case, according to general relativity, for a part of four-
dimensional space in which the system of co-ordinates K, may be,
and is, so chosen that they have the special constant values given in
4).

If we consider precisely this motion from any chosen system of
co-ordinates K,, the body, observed from K,;, moves, according to
the considerations in § 2, in a gravitational field. The law of motion
with respect to K; results without difficulty from the following con-
sideration. With respect to Ko the law of motion corresponds to a
four-dimensional straight line, i.e. to a geodetic line., Now since the
geodetic line is defined independently of the system of reference, its
equations will also be the equation of motion of the mass-point with
respect to K. If we set

(45) I, = —{u, 7}
the equation of the motion of the point with respect to K;, becomes

(46) dx. _ I dx, dx,

ds? “ods ds

We now make the assumption, which readily suggests itself, that this
covariant system of equations also defines the motion of the point in
the gravitational field in the case when there is no system of reference
Ko, with respect to which the special theory of relativity holds good
in a finite region. We have all the more justification for this assumption
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as (46) contains only first derivatives of the g,,, between which even
in the special case of the existence of Ky, no relations subsist.®

If the I'7, vanish, then the point moves uniformly in a straight line.
These quantities therefore condition the deviation of the motion
from uniformity. They are the components of the gravitational field.

§ 14. The Field Equations of Gravitation in the Absence of Matter

We make a distinction in what follows between “gravitational
field” and “matter” in this way: we denote everything but the gra-
vitational field as “matter”. Our use of the word therefore includes
not only matter in the ordinary sense, but the electromagnetic field as
well.

Our next task is to find the field equations of gravitation in the
absence of matter. Here we again apply the method employed in the
preceding paragraph in formulating the equations of motion of the
material point. A special case in which the required equations must in
any case be satisfied is that of the special theory of relativity, in which
the g, have certain constant values. Let this be the case in a certain
finite region relative to a definite system of co-ordinates K. Relative to
this system all the components of the Riemann tensor B%,,, defined
in (43), vanish. For the space under consideration they then vanish in
any other system of co-ordinates.

Thus the required equations of the matter-free gravitational field
must in any case be satisfied if all BS,, vanish. But this condition goes
too far. For it is clear that, e.g., the gravitational field generated by a
point in its environment certainly cannot be “transformed away” by
any choice of the system of co-ordinates, i.e. it cannot be transformed
to the case of constant g ,.

This prompts us to require for the matter-free gravitational field
that the symmetrical tensor G,,, derived from the tensor B,,, shall
vanish. Thus we obtain ten equations for the ten quantities g,,, which
are satisfied in the special case of the vanishing of all B¢ . With the

6 It is only between the second (and first) derivatives that, by § 12, the relations

B?,. = 0 subsist.
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choice which we have made of a system of co-ordinates, and taking
(44) into consideration, the equations for the matter-free field are

ore,
(47) x,,

+PzﬂFf¢=0
v—-g=1

It must be pointed out that there is only a minimum of arbitrariness
in the choice of these equations. For besides G, there is no tensor of
second rank which is formed from the g, and its derivatives, contains
no derivations higher than second, and is linear in these second
derivatives.?

These equations, which proceed, by the method of pure mathe-
matics, from the requirement of the general theory of relativity, give
us, in combination with the equations of motion (46), to a first approx-
imation Newton’s law of attraction, and to a second approximation
the explanation of the motion of the perihelion of the planet Mercury
discovered by Leverrier (as it remains after corrections for pertur-
bation have been made). These facts must, in my opinion, be taken as
convincing proof of the correctness of the theory.

§ 15. The Hamiltonian Function for the Gravitational Field. Laws of
Momentum and Energy

To show that the field equations correspond to the laws of momen-
tum and energy, it is most convenient to write them in the following
Hamiltonian form:

| Hdv=0
(47a) J.

E

H = gT%I,
vV—-g=1

7 Properly speaking, this can be affirmed only of the tensor

Gyv + lg ,uvg“ﬁ Gozﬁs

where 2 is a constant. If, however, we set this tensor = 0, we come back again
to the equations G,,, = 0.
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where, on the boundary of the finite four-dimensional region of
integration which we have in view, the variations vanish.

We first have to show that the form (47a) is equivalent to the equa-
tions (47). For this purpose we regard H as a function of the g*” and

the gi'(= 0g*/ox,).
Then in the first place
OH = I's,I'8 dgh+ 2g+T%0I"8,
= —Fzﬂf'fuég’“’ﬂ- 2F§56(g””rfa)

02 | 08  0g.
6(,_2"'”’11)——‘-"6[ ;uv A(a§l+agl aixl‘):l

But

The terms arising from the last two terms in round brackets are of
different sign, and result from each other (since the denomination
of the summation indices is immaterial) through interchange of the
indices u and B. They cancel each other in the expression for éH,
because they are multiplied by the quantity I',,, which is symmetrical
with respect to the indices ¢ and 8. Thus there remains only the first
term in round brackets to be considered, so that we obtain

6H = — I, 1" 6g"+ I 018

Thus
__ai =_ zﬁ]“fu
og""
(48)
oH _ .
ag;;v - fw

Carrying out the variation in (47a), we get in the first place
0 oH OH
Ox, ( og” )

(47b) ~ g = 0

which, on account of (48), agrees with (47), as was to be proved.
If we multiply (47b) by g%*, then because

owr _ e
dx,  oOx,

4
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and, consequently,

wv
7 Ox,

@ (PHY\ @ [, OH\ ©0H dg
(agz”) - Ox, (gu agi‘") Ogs 0x,

we obtain the equation

o [, 0H\ °H _
ox, (gﬁ ag;:v) ax, = °
or®
ot
axa =0
(49) " :
—2nt% = gl oH —O0%H
o o agif” o

where, on account of (48), and the second equation of (47),
(50) uty = 302g# T4 I6 — g, I8,

It is to be noticed that £, is not a tensor; on the other hand (49)
applies to all systems of co-ordinates for which 4/—g = 1. This equa-
tion expresses the law of conservation of momentum and of energy
for the gravitational field. Actually the integration of this equation
over a three-dimensional volume ¥ yields the four equations

(49a) a f Bty = f (It m2 4 ne3) ds,
dX4

where I, m, n denote the direction-cosines of the inward drawn normal
at the element dS of the bounding surface (in the sense of Euclidean
geometry). We recognize in this the expression of the laws of conser-
vation in their usual form. The quantities £ we call the “energy com-
ponents” of the gravitational field.

I will now give equations (47) in a third form, which is particularly
useful for a vivid grasp of our subject. By multiplication of the field
equations (47) by g*° these are obtained in the “mixed” form. Note

8 The reason for the introduction of the factor — 2 will be apparent later.
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that
woly 0O

agi'o .
ox, Ox, r

'a uvs

(g"I')—
which quantity is equal to
A (gmr,z») g"'BI1 I"m _gcﬂFEmFZw

or (with different symbols for the summation indices)

oﬁpaﬁ) g-'J”(’I.1 Fﬁ _,_g O'Pa'er

The third term of this expression cancels with the one arising from

the second term of the field equations (47); using relation (50), the
second term may be written

w(t;—308),

where ¢ = £. Thus instead of equations (47) we obtain

L) = ——x( 6°t)
v-g=1

(1)

§ 16. The General Form of the Field Equations of Gravitation

The field equations for matter-free space formulated in § 15 are to
be compared with the field equation

V=0

of Newton’s theory. We require the equation corresponding to Pois-
son’s equation

Vi = dmup,

where p denotes the density of matter.
The special theory of relativity has led to the conclusion that inertial
mass is nothing more or less than energy, which finds its complete
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mathematical expression in a symmetrical tensor of second rank, the
energy-tensor. Thus in the general theory of relativity we must intro-
duce a corresponding energy-tensor of matter T, which, like the
energy-components % [equations (49) and (50)] of the gravitational field,
will have mixed character, but will pertain to a symmetrical cova-
riant tensor.?

The system of equation (51) shows how this energy-tensor (cor-
responding to the density g in Poisson’s equation) is to be introduced
into the field equations of gravitation. For if we consider a complete
system (e.g. the solar system), the total mass of the system, and there-
fore its total gravitating action as well, will depend on the total
energy of the system, and therefore on the ponderable energy together
with the gravitational energy. This will be expressed by introducing
into (51), in place of the energy-components of the gravitational
field alone, the sums ¢,+ T, of the energy-components of matter and
of gravitational field. Thus instead of (51) we obtain the tensor equa-
tion

s o @ =~ T804,
v-g=1

where we have set T = T (Laue’s scalar). These are the required
general field equations of gravitation in mixed form. Working back
from these, we have in place of (47)

0

(53) ggrz"'*'FzﬁPfu = ——%(Tw,—ng),
v—g=1

It must be admitted that this introduction of the energy-tensor of
matter is not justified by the relativity postulate alone. For this reason
we have here deduced it from the requirement that the energy of the
gravitational field shall act gravitatively in the same way as any other
kind of energy. But the strongest reason for the choice of these equa-

*

2g, Tg = Ty and g"f’Tg = TP are to be symmetrical tensors.
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tions lies in their consequence, that the equations of conservation
of momentum and energy, corresponding exactly to equations (49)
and (49a), hold good for the components of the total energy. This will
be shown in § 17.

§ 17. The Laws of Conservation in the General Case

Equation (52) may readily be transformed so that the second term
on the right-hand side vanishes. Contract (52) with respect to the in-
dices u and o, and after multiplying the resulting equation by 367,
subtract it from equation (52). This gives

(52a) ai ( °ﬂ1*°=ﬁ—— aﬂgﬂﬂnﬁ) = — (174 T9).

On this equation we perform the operation 9/0x,. We have

0? 0? Og AL Og 0g
— Xx9B Iz BL  VouB
Ox, Ox, (&%) = 2 Ox, 0x, [ gﬂ( ax Ox; )]

2

The first and third terms of the round brackets yield contributions
which cancel one another, as may be seen by interchanging, in the
contribution of the third term, the summation indices « and g on the
one hand, and # and 4 on the other. The second term may be re-model-
led so that we have

02 B 03g*f
ox, axa Tig) = 2 ox, Oxz 0x,

(54)

The second term on the left-hand side of (52a) yields in the first place

IR
2 x, ax,,( i)

or
1 af O8a agag 0g1p
7 6x o, [gA & (’a}; o, Ox, )]

With the choice of co-ordinates which we have made, the term deri-
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ving from the last term in round brackets disappears. The other two
may be combined, and together they give

1 g
2 Bx, ox; ox,°

so that using (54), we have the identity

62
(55) é;u—a}: (gcr llﬁ_m ) g"ﬁfw) = 0.

From (55) and (52a), it follows that

A+ TS

“ox, = 0.

(36)

Thus it follows from our field equations of gravitation that the laws
of conservation of momentum and energy are satisfied. This may be
seen most easily from the consideration which leads to equation (49a);
except that here, instead of the energy components ¢, of the gravi-
tational field, we have to introduce the totality of the energy compo-
nents of matter and gravitational field.

§ 18. The Laws of Momentum and Energy for Matter, as a
Consequence of the Field Equations

Multiplying (53) by dg"*/0x,, we obtain, by the method adopted
in § 15, in view of the vanishing of

Og*
g‘qu ’

the equation

o, 1dog” .

0X, ) ox, T =0,
or, in view of (56),

or: 1 og*
7 x, T2 ox, =0
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With the choice of system of co-ordinates which we have made,
this equation predicates nothing more nor less than the vanishing of
the divergence of the material energy-tensor. Physically, the occur-
rence of the second term on the left-hand side shows that laws of
conservation of momentum and energy do not apply in the strict
sense for matter alone, or else that they apply only when the g** are
constant, i.e. when the field intensities of gravitation vanish. This
second term is an expression for momentum, and for energy, as trans-
ferred per unit of volume and time from the gravitational field to
matter. This is brought out still more clearly by re-writing (57) as

oT? .
(57a) ¥ —I%T;.
The right side expresses the energetic effect of the gravitational field
on matter.

Thus the field equations of gravitation contain four conditions
which govern the course of material phenomena. They give the equa-
tions of material phenomena completely, if the latter is capable of
being characterized by four differential equations independent of one
another.10

D. Material Phenomena

The mathematical aids developed in part B [omitted in this extract]
enable us forthwith to generalize the physical laws of matter (hydro-
dynamics, Maxwell’s electrodynamics), as they are formulated in
special relativity, so that they will fit in general relativity. When this
is done, the general principle of relativity does not indeed afford us a
further limitation of possibilities; but it makes us acquainted with
the influence of the gravitational field on all processes, without our
having to introduce any new hypothesis whatever.

Hence it comes about that it is not necessary to introduce definite
assumptions as to the physical nature of matter (in the narrower

o On this question cf. H. Hilbert, Nachr. d. K. Gesellsch. d. Wiss. zu Gottingen,
Math.-phys. Klasse, 1915, p. 3.
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sense). In particular it must remain an open question whether the
theory of the electromagnetic field in conjunction with that of the
gravitational field furnishes a sufficient basis for the theory of matter
or not. The general postulate of relativity is unable in principle to tell
us anything about this. It must remain to be seen, during the working
out of the theory, whether electromagnetics and the doctrine of gra-
vitation are able in collaboration to perform what the former by itself
is unable to do.

§ 19. Euler’s Equations for a Frictionless Adiabatic Fluid

Let p and p be two scalars, the former of which we call the “pres-
sure”, the latter the “density” of a fluid; and let an equation subsist
between them. Let the contravariant symmetrical tensor

dx, dxg
ds ds

be the contravariant energy-tensor of the fluid. To it belongs the co-
variant tensor

(58) T = ~gp+p

dx, dx
(583) T,uv = —gyvp+g,uag,uﬁ —dT _d}g 0,
as well as the mixed tensorl
. sa dxg dx,
(58b) T: = 6,,+gaﬁjd}— ds 0

Inserting the right-hand side of (58b) in (57a), we obtain the Eulerian
hydrodynamical equations of the general theory of relativity. They
give, in theory, a complete solution of the problem of motion, since
the four equations (57a), together with the given equation between
p and p, and the equation
dx, dxg
gtxﬁd_s a5

I For an observer using a system of reference in the sense of the special theory
of relativity for an infinitely small region, and moving with it, the density of
energy T§ equals p—p. This gives the definition of p. Thus g is not constant for an
incompressible fluid.
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are sufficient, g, being given, to define the six unknowns

dx1 dx2 dX3 dX4
P g Tds  Tds  ds
If the g, are also unknown, the equations (53) are brought in. These
are eleven equations for defining the ten functions g,, so that these
functions appear over-defined. We must remember, however, that the
equations (57a) are already contained in the equations (53), so that
the latter represent only seven independent equations. There is good
reason for this lack of definition, in that the wide freedom of the choice
of co-ordinates causes the problem to remain mathematically undefi-
ned to such a degree that three of the functions of space may be
chosen at will. [There follows an investigation of Maxwell’s equations.]

§ 21. Newton’s Theory as a First Approximation

As has already been mentioned more than once, special relativity
as a special case of the general theory is characterized by the g,,
having the constant values (4). From what has already been said,
this means complete neglect of the effects of gravitation. We arrive
at a closer approximation to reality by considering the case where the
g, differ from the values of (4) by quantities which are small com-
pared with 1, and neglecting small quantities of second and higher
order. (First stage of approximation.)

It is further to be assumed that in the space-time region under
consideration the g,, at spatial infinity, with a suitable choice of
co-ordinates, tend toward the values (4); i.e. we are considering gra-
vitational fields which may be regarded as generated exclusively by
matter in the finite region.

It might be thought that these approximations must lead us to
Newton’s theory. But to that end we still need to approximate the
fundamental equations. We consider the motion of a mass-point.
In the case of special relativity the components

dx1 dx2 dX3
ds > ds ’ ds
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may take on any values. This signifies that any velocity

Y — dxy 2+ dxq 2+ dx3)2
Y1)+ (a) ()]
may occur, which is less than the velocity of light in vacuo. If we
restrict ourselves to the case which is almost the only one in our

experience, of v being small as compared with the velocity of light;
this denotes that the components

dx1 dX2 dX3
ds > ds’ ds

are to be treated as small quantities, while dx,/ds, to the second order
of small quantities, is equal to one. (Second stage of approximation.)
Now we remark that in the first stage of approximation the magni-

tudes I, are all small magnitudes of at least the first order. A glance
at (46) thus shows that in this equation, in the second stage of approx-
imation, we have to consider only terms for which y = » = 4. Re-
stricting ourselves to terms of lowest order we first obtain in place
of (46) the equations

d*x

'“3"{21 = Iy,
where we have set ds = dxs = dt; or with restriction to terms which
in the first stage of approximation are of first order:

‘Zt’;' = [44,7] (r= 1,2 3),
a2
_d_;‘; = —[44, 4].

If in addition we suppose the gravitational field to be a quasistatic
field, by confining ourselves to the case where the motion of the matter
generating the gravitational field is slow (in comparison with the
velocity of the propagation of light), we may neglect on the right-
hand side differentiations with respect to the time in comparison with
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those with respect to the space co-ordinates, so that we have

dzxt _ 1 agél4

7 df — 2 ox,

(x=1,2,3).

This is the equation of motion of the material point according to
Newton’s theory, in which lgis plays the part of the gravitational
potential. What is remarkable in this result is that the component
gu of the fundamental tensor alone defines, to a first approximation,
the motion of the mass-point.

We now turn to the field equations (53). Here we have to take into
consideration that the energy-tensor of “matter” is almost exclusively
defined by the density of matter in the narrower sense, i.e. by the
second term of the right-hand side of (58) [or, respectively, (58a) or
(58b)]. If we form the approximation in question, all the components
vanish with the one exception of Ty = g = T. On the left-hand side
of (53) the second term is a small quantity of second order; the first
yields, to the approximation in question,

S [,w 1]+ [/w 2]+—[6v 31— —[zw 4].

For u = v = 4, this gives, with the omission of terms differentiated
with respect to time,

—5

1 /o2 o2 02
(6824_'_ 'ga4 n 844)
X1

1 2
oxz " oxd ) T —g Viéu.

The last of equations (53) thus yields
(68) V2gas = 20.

The equations (67) and (68) together are equivalent to Newton’s law
of gravitation.
By (67) and (68) the expression for the gravitational potential be-
comes
_ % (e
(682) 8n ) r’
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while Newton’s theory, with the unit of time which we have chosen,
gives
K [ odr

c? ¥
in which K denotes the constant 6:7X 1078, usually called the constant

of gravitation. By comparison we obtain

8w K

(69) ” = 1-87Xx 10~

§ 22. Behaviour of Rods and Clocks in the Static Gravitational
Field. Bending of Light-rays. Motion of the Perihelion of a
Planetary Orbit

To arrive at Newton’s theory as a first approximation we had to
calculate only one component, g,,, of the ten g, of the gravitational
field, since this component alone enters into the first approximation,
(67), of the equation for the motion of the material point in the gra-
vitational field. From this, however, it is already apparent that other
components of the g,, must differ from the values given in (4) by
small quantities of the first order. This is required by the condition
g=—1.

For a field-producing point mass at the origin of co-ordinates, we
obtain, to the first approximation, the radially symmetrical solution

XeXa

8o = —0p— 3 (0,0 =1,2,3)
(70) g94 = g49 - 0 (Q = 1, 2, 3) »
=1 %
&r—w7

where 8, is 1 or 0, respectively, accordingly as ¢ = ¢ or ¢ # o, and
r is the quantity ++/(x3+x2+x3). On account of (68a)

M
(70a) o« = A
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if M denotes the field-producing mass. It is easy to verify that the
field equations (outside the mass) are satisfied to the first order of
small quantities.

We now examine the influence exerted by the field of the mass M
upon the metrical properties of space. The relation

ds* = g, dx, dx,,

always holds between the “locally” (§ 4) measured lengths and times
ds on the one hand, and the differences of co-ordinates dx, on the
other hand.

For a unit-measure of length laid “parallel” to the axis of x, for
example, we should have to set ds? = —1; dxs = dx3=dx, = 0.
Therefore —1 = gy dx?. If, in addition, the unit-measure lies on the
axis of x, the first of equations (70) gives

—(1+*
g11 = ( r)'

From these two relations it follows that, correct to a first order of
small quantities,

o

The unit measuring-rod thus appears a little shortened in relation
to the system of co-ordinates by the presence of the gravitational
field, if the rod is laid along a radius.

In an analogous manner we obtain the length of co-ordinates in
tangential direction if, for example, we set

d? = —1; dxi=dxza=dxs=0; x1=1r, Xxe=x3=0.
The result is

(71a) —1 = gog dx3 = —dx}.

With the tangential position, therefore, the gravitational field of the
point of mass has no influence on the length of a rod.
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Thus Euclidean geometry does not hold even to a first approxima-
tion in the gravitational field, if we wish to take one and the same rod,
independently of its place and orientation, as a realization of the same
interval; although, to be sure, a glance at (70a) and (69) shows that
the deviations to be expected are much too slight to be noticeable in
measurements of the earth’s surface.

Further, let us examine the rate of a unit clock, which is arranged
to be at rest in a static gravitational field. Here we have for a clock
period ds = 1; dx; = dxs = dx3 = 0.

Therefore
1 =gu dxﬁ;
dxy= 1 = ! —1-1 —1);
T Veu V(I +(gu-D) 2 (gu—1);
or
(12) dx, = 1+§5f9$.

Thus the clock goes more slowly if set up in the neighbourhood of
ponderable masses. From this it follows that the spectral lines of
light reaching us from the surface of large stars must appear displaced
towards the red end of the spectrum.1?

We now examine the course of light-rays in the static gravitational
field. By the special theory of relativity the velocity of light is given

by the equation
—dx}—dxy,—dxi+dx; =0

and therefore by the general theory of relativity by the equation
(73) ds® = g, dx,dx, = 0.

If the direction, i.e. the ratio dx;: dxs: dx; is given, equation (73) gives
the quantities

dx, dxs dxs

dX4 ’ d.X'4 > d.X'4

12 According to E. Freundlich, spectroscopical observations on fixed stars of
certain types indicate the existence of an effect of this kind, but a crucial test of
this consequence has not yet been made.
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and accordingly the velocity

dx1 2 dX2 2 d)C3 2
V1) +(e) + (@) =2

defined in the sense of Euclidean geometry. We easily recognize that
the course of the light-rays must be bent with regard to the system
of co-ordinates, if the g, are not constant. If n is a direction perpen-
dicular to the propagation of light, the Huyghens principle shows
that the light-ray, envisaged in the plane (y, n), has the curvature
— oy/on.

We examine the curvature undergone by a ray of light passing by
a mass M at the distance A. If we choose the system of co-ordinates
in agreement with the accompanying diagram, the total bending of
the ray (calculated positively if concave towards the origin) is given
to a sufficient approximation by

_ [t o
B = f -é;]-dXZ,

—

while (73) and (70) give

1/ _8u\_ _=® x_ﬁ)
- (-2 5 3

Carrying out the calculation, this gives

2 wM
(74) B = T =30
According to this, a ray of light going past the sun undergoes a deflex-
ion of 1-7” and a ray going past the planet Jupiter a deflexion of
about 02",

If we calculate the gravitational field to a higher degree of approx-
imation, and likewise (with corresponding accuracy) the orbital
motion of a mass-point of relatively infinitely small mass, we find a
deviation of the following kind from the Kepler-Newton laws of
planetary motion. The orbital ellipse of a planet undergoes a slow
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Xa

y Light beam

>4

Fig. 1.

rotation, in the direction of motion, of amount

oc2

(75) = 24n3 TogE(i— )
per revolution. In this formula a denotes the major semiaxis, ¢ the
velocity of light in the usual measurement, e the eccentricity, T the
time of revolution in seconds.!3

Calculation gives for the planet Mercury a rotation of the orbit
of 43" per century, corresponding exactly to astronomical observa-
tion (Leverrier); for the astronomers have discovered in the motion
of the perihelion of this planet, after allowing for disturbances by
other planets, an inexplicable remainder of this magnitude.

13 For the calculation I refer to the original papers: A. Einstein, Sitzungsber. d.
Preuss. Akad. d. Wiss., 1915, p. 831; K. Schwarzschild, ibid., 1916, p. 189.






NOTES ONEXTRACT 5

WHEN the general theory of relativity had been formulated, there were two distinct
assumptions: (i) the geometry was Riemannian, and the physical meaning of this
was that the path of a particle was a geodesic; (ii) the geometry satisfied the field
equations. Now a small particle is represented by a singularity in the solution of the
field equations (source), so Einstein felt that (ii) should determine (i) without
further assumption. He had succeeded in proving this by 1938 but the present
paper with Infeld gives a much simpler development.
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On the Motion of Particles in General Relativity
Theory

A. EINSTEIN and L. INFELD

[Received February 12, 1949]

1. Introduction

The gravitational field manifests itself in the motion of bodies. There-
fore the problem of determining the motion of such bodies from
the field equations alone is of fundamental importance. This problem
was solved for the first time some ten years ago and then equations
of motion for two particles were deduced [1]. A more general and
simplified version of this problem was given shortly thereafter [2].

Mr. Lewison pointed out to us, that from our approximation pro-
cedure, it does not follow that the field equations ¢an be solved up to
an arbitrarily high approximation. This is indeed true. We believe
that the present work not only removes this difficulty, but that it
gives a new and deeper insight into the problem of motion. From the
logical point of view the present theory is considerably simpler and
clearer than the old one. But as always, we must pay for these logical
simplifications by prolonging the chain of technical argument.

The subject matter is presented here from the beginning and the
knowledge of previous work is not assumed. To facilitate the reading
for those who have studied the previous papers we use here essentially
the same notation as before.

Yt Can, J. Math. 1, 209 (1949).
175



176 GENERAL RELATIVITY

Let us start with some general remarks.

All attempts to represent matter by an energy-momentum tensor are
unsatisfactory and we wish to free our theory from any particular
choice of such a tensor. Therefore we shall deal here only with gravi-
tational equations in empty space, and matter will be represented by
singularities of the gravitational field.

In Newtonian mechanics, particles are represented as singularities
of a scalar field ¢, which satisfies Laplace’s equation everywhere out-
side the singularities. Because the classical equation is linear, the field
can be decomposed into partial fields, each part due to a single
particle. Each particle is in a field due to all other particles. The theory
is completed by the equation of motion, that is by putting the accele-
ration equal to the negative gradient of the field, the proportionality
factor being a universal constant. Thus classical physics postulates
the equations of motion independently of the field laws. The masses
of the sources of the field are assumed to be independent of time. The
laws of motion are supposed to be valid in an inertial system. Therefore
space-time appears as an independent physical entity. The concep-
tual weakness of such a space-time background in the classical theory
was already recognized by Newton.

If we compare this state of affairs with that in general relativity
theory, in its original formulation, we see striking similarities and
differences. Laplace’s equation

Ap =0
is replaced by the gravitational equation
Rkl = 0,

which, however, unlike the classical equation, satisfies the general
relativity principle. The classical principle of inertia becomes in
relativity theory the principle of the geodesic line valid for a particle
with infinitely small mass. True enough, the difficulty with the inertial
system disappears in relativity theory, as does the independent physical
reality of space-time. Yet the equations of motion still appear inde-
pendently of the field equations.
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Qur aim is to investigate to what extent the field equations alone
contain the equations of motion of particles; also to develop a method
that will allow us to find these equations of motion up to an arbitrary
approximation.

Let us start with a simple remark: a linear law always means that the
motion of singularities is arbitrary. If to a world-line of a singularity
with mass m; there belongs a field F;, and if to a world-line of a
singularity with mass m, there belongs a field F,, then the super-
position of these two fields, that is Fyy,+F,, is also a solution of the
linear field equations. In such a solution the same two world-lines
would appear together that before appeared singly. Therefore the
field with its linear laws cannot imply any interaction between the
singularities. Thus only non-linear field equations can provide us with
equations of motion because only non-linearity can express the inter-
action between singularities.

But the argument cannot be reversed. Non-linearity is necessary
but not sufficient for the equations of motion to follow from the
field equations.

The reason why the gravitational field equations do provide us
with equations of motion lies not in their non-linear character alone,
but also in the fact that these equations are not independent from
each other. Indeed. among the ten components four are free, this
being due to the freedom of choice in the co-ordinate system. The ten
equations are valid, so to speak, only for six effective functions. They
would be inconsistent were it not for the four (Bianchi) identities that
they satisfy. This must be so for every relativistic system of equations
derived from a variational principle. These identities are (besides the
non-linearity) responsible for the equations of motion being determined
by the field equations.

The ideas leading to the equations of motion are not easy and are
mutually interwoven.

One of the essential ideas in this paper is the treatment of gravi-
tational equations by a “new approximation method”. In it we treat
space and time differently. We regard the changes of the field in time
as small compared with those in space. Only then do we arrive at a
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consistent, manageable set of equations that can be solved step by step.
This idea is not new and was contained in the previous papers.

The other important idea is the deduction of the equations of
motion, which are ordinary differential equations, from the field
equations which are partial differential equations. This idea, treated
here differently than in the previous papers, leads to the use of surface
integrals taken around the singularities of the field. These surface
integrals will depend only on the motion of the singularities and not
on the shape of the surface.

These and other ideas will be treated in detail in this paper. To make
them clear we have decided to delegate all the more tedious calcula-
tions to the Appendices. (If we refer, for example, to A.4, this means
the Appendix belonging to Sec. 4.) But even so, many straightforward
but long calculations had to be omitted. This is especially true for the
calculations that lead beyond Newtonian motion. We included here
a short section on this subject, just for the sake of completeness. But,
as in [1], so here we have to refer those who would like to see the full
calculations to the manuscript which is deposited at the Institute for
Advanced Study.

Finally we should like to thank Mr. Lewison for his critical study
of our previous papers, and Mr. Schild for a careful and critical
reading of this manuscript.

2. Notations

Since in the greater part of our work we shall have to separate
space and time, our notation will not be the usual four-dimensional
one. We make the conventions: Latin indices take the values 1, 2, 3,
and they refer to space co-ordinates only. Greek indices refer to both
space and time, running over the values 0, 1, 2, 3. Repetition of indices
implies summation.

The expression

08

etc.
ox?® ¢

2.1 g ctc. stands for
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Av infinity the gravitational field takes the Galilean values 7,,,
that is:

(2.2) nmn = —6mn; ’)’]()n = 0; ,)700 — 1.
We write:
(23) L = N+ hﬂv; g = 7+ B,

where A, represents the deviation of space—time from flat space and it
is not assumed to be small.

The #** can be calculated as functions of /,, by means of the relation
(2.4) 8ua8” = &5

It turns out to be convenient to replace the /’s by »’s which are their
linear combinations:

(25) ')’,w = h,rw - ‘%”W;«v”?aghao’

or more explicitly:

(26) Yoo = ‘1‘h00+ %hsm
(2'7) Yon = hOm
(28) Ymn = hmn—';'amnhss‘*‘ %6mnh00-

This replacement is, of course, not very important but it does
simplify the calculations.

Thus we can, throughout, replace the A’s by the y’s. The equations
of the gravitational field for empty space,

(2.9) R, =0,

can be written (see A.2) in the following way:
(2.10) Doo+2400 = 0,
(2.11) Don+240n = 0,
(212) ¢mn‘|‘ 2Amn - 0:
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where:

(2.13) Do = —Y00/ss>

(214) Dy, = ~—Y0m|ss+ Pos|sms

(215) ¢mn = _anlss“l‘yms[ns‘*"}’nﬂmn_ anm'yrs[rn
and:

(216) 2/-100 = '}’srirs+ 2/1(’)05

(2.17) 2A0m = 'Yms]s(]_YOO]mO"l‘ 2A(’)ms

(218) 2Amn = '—'Y()m]()n""}’on|0m+26mn70sj0s

+ an[ 00— 6mn‘}’(](][()(] 4 2A1’nn-

In these formulae, all the linear terms are written out explicitly,
while A;w stands for all the non-linear terms in the 9’s. The division
of the linear expressions into those belonging to @, and those belong-
ing to A4, may seem artificial at this moment. In anticipation of
further development, we shall remark here, that, in theactual approx-
imation procedure, by which we shall solve the gravitational equa-
tions, these linear terms collected in A4, will behave like the non-
linear terms.

My

3. Lemma

We mentioned in the introduction that the differential equations of
motion will be derived by forming surface integrals. The technique
of calculating such surface integrals will reappear many times in this
paper and it is based on a lemma to which we shall refer as the lemma.
Here we shall give its formulation and its proof.

We have a set of functions:

(3.1) Fa.. -

It 1s immaterial whether these functions of x* have tensorial character,
or not. The bracketed indices are Greek, or Latin, and they will not
play any role in our argument. But we do assume that these functions
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are skew-symmetric in the indices &, /:
(3.2) Fo.ou=—F_ y.

We now form an integral

(3.3) f Fo oxymi dS
(S2)

over an arbitrary two-dimensional closed surface that does not pass
through the singularities of the field. In (3.3)

34 ng = cos (x¥, #)

are the components of the “normal unit” vector to the surface. The
words “normal”, and “unit” are used in the conventional sense to
designate the corresponding functions of the co-ordinates, which are
implied by these terms in Euclidean geometry. They have nothing
to do with any particular metric.

Our lemma is:

(35) f F(,__)kmnk ds = 0.
(S2)

We see that the integral (3.3) is certainly independent of the shape of
the surface, because

(3.6) Fe. oy = 0,

and because of Green’s theorem. We can also write the integral (3.3) in
the form

(3.7 J curl .4 dS,
(S2)

where
Fo.yps= A1 Fo 1= A2; Fr .y = Aa

But (3.7) and therefore (3.3) can be changed, by Stokes’ theorem,
into a line integral over the rim of the surface. If the surface is closed,
the rim is of zero length. Therefore, our lemma as expressed by (3.5) is
proved.
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4. Surface Integrals

We treat particles of matter as singularities of the field. Let us
assume p particles and the knowledge of their world lines. Thus we
denote by

4.1) Ek(x0); s=1,2,3,...,p,

the world-line of the sth singularity. Here and later, the index written
on the top will always label the particular singularity.
The gravitational field, that is the y’s, will depend on the x*’s but

also on the &’s and their time derivatives. The equations that the y’s
fulfil are

(4.2) ®,,+24,, = 0.

y 1l

At an arbitrary moment x%, let us surround the sth singularity, and
it alone, by a closed surface. Then:

4.3) f (@ +-24,9m, dS = O,

where the s over the integral indicates here, and later too, that the
integral is to be taken on a two-dimensional surface surrounding the
sth singularity and it alone.

We shall show that

(4.4) f "@,n, dS = 0.

Indeed it follows from the definition (2.14) and (2.15) of @, that it
can be written in the following form:

(4'5) D k= F(,u}kl{ls

7

(4.6) F okl == Yutik = Ykt — 6,uk?lr|r+ 5,4?kr1r-

But F,, is skew-symmetric in k and /. Therefore (4.4) is fulfilled.
From it and from (4.3) we deduce:

%) f "2 4, dS = 0.
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Also, because of the structure of @, we easily verify:
(4.8) D pin = 0,
therefore also:
4.9 A = 0.

Equation (4.9) tells us that no surface integral of the form (4.7) can
depend on the shape of the surface. But equation (4.7) tells us more;
namely that such an integral vanishes.

The 4p surface integrals in (4.7) can give us no relation between the
space co-ordinates of the field, because the surface is entirely arbitrary.
They can only give us relations between the co-ordinates of the sin-
gularities and their time derivatives. Thus we may have at most 4p
differential equations. Anticipating the later development, we may
remark here that these equations will determine 3p functions of time

EX(x9),

that is, the motion of singularities.

5. The Method of Approximation

The problem before us is to solve our field equations and to deduce
the equations of motion. This we shall do by a new approximation
procedure. Let us assume a function g(x*, A) developed into a power
series in the parameter A (for small 1):

(5.1) p(x*, A) = Mg+ Ao+ A2%p+ ... = ) Mp.
0 12 =0 1
The indices below indicate the order (I in A’ is always the exponent,
not the index).
If the function ¢ varies quickly in space, but slowly with x°, then
we are justified in not treating all its derivatives in the same fashion.
The derivatives with respect to x° will be of a higher order than space
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derivatives. We can formalize the procedure by introducing an
auxiliary time <,

(5.2) T = X%,

so that derivatives with respect to 7 can be treated on the same footing
as the space derivatives:

o 0
(5.3) Pio= 5 = 54 = dpso

We conclude: the “stroke differentiation” of a quantity with respect
to x% can be replaced by the “comma differentiation” with respect
to 7 if the power of 1 with which this quantity is associated is simul-
taneously raised by one. To express this explicitly we use numbers
under zeros, written after the'.comma, €.g.:

(54) l2lymn|0= ZZI+1')’mn, o Or: A2Iymn]00 = A2+ 2')"mn, 00-
21 2! 1 2/ 2] 2

From now on, all differentiations will be with respect to (z, x1, x2, x%)
and they will be denoted by commas:

(5.5) Yos = VY..ooss Yoo = 2’}’...,({-

Thus we shall develop all functions that appear in the field equations
in power series in 2. We start with the y’s in the following way:
[ Yoo = A2ygo+ A“Voo-i-lsg’oo-l- s
2 4
(56) Yom = 2Yom+ Byom+ ...,
3 3
Ymn = All'ymn‘l’ Aﬁymn“*‘ s
4 [}

Why do we start with different powers of 2? This is an assumption,
but it can be justified heuristically. Assuming for a moment the usual
energy momentum tensor for matter, we have, for a quasi-stationary
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field, approximately:

'A}’oo = —29,
dxm
(5.7) | Avom= ~20- 44,
_ ax™ dx* ,,
A A
therefore
(58) Ymn ~ )V'}’Om ~ /12'}’00’

and 1t is pure convention that we start with A2 for ygo.

The other question suggested by (5.6) is: why do we omit the odd
powers of A in the developments of 4, 7,..» and the even powers in
Yom! Indeed, we could have introduced all powers in (5.6). A more
thorough investigation shows that our choice (5.6) means that what we
are doing here is similar to the procedure in electromagnetic theory
when we take not the retarded, but the half-retarded plus haif-ad-
vanced potentials [3].

All the functions that will appear later are gained from the y’s by
summation, multiplication, differentiation. Thus to every component,
the following rule applies throughout: Any component having an

{Odd } number of zero suffixes willhave only { Odd} powers of A in its
even even

expansion.

6. Field Equations and the Approximation Method
We go back to the field equations
6.1) D,,+24,=0

into which we introduce the 9’s in their power-series development.
Thus the (00) equation in (6.1) can be written:

6.2 32 (Do -+ 2400) = O.
( ) ZI: (2100+ 2100)

Now we cut up (6.2), and the other field equations, into equations for
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each approximation step. We write them down in the following form:

(6.3a) Dog + 2400 = 0,
212 2[—2

(6.3b) Do+ 240m = 0,
2/—1 2/-1

(6.3c) D, +24,,, = 0.
2! 2l

Let us analyse more closely the structure of (6.3). Remembering
(2.13) to (2.15) we can write more explicitly:

(643) Dy = — Yoo, rrs
20-2 22
(64b) ¢0m = —%om, rrt Yor, mr»
2/—1 2I—1 2/—-1
(6.4C) ¢mn = —%Ymn, ret 'Ymr, mt ynr, mr— 6mlﬂ"rs, rss
2/ 27 2/ 2/ al
and:
(653) 2A00 = Ves, s 2A(’)0 s
2i—2 212 22
(6.5b) 240, = ~ Yoo, 0mt Yomur,0r+ 2405
271 2i—-21 2/—-21 2/-1
2Amn = —%Yom, 6n—Y0n, om-+ 2‘~'3mn'})0r, Or
(6 SC) 217 2l-11 2/-11 21-11
+ Youn, 00— 6mny00, 0 + ZA;RH .
21-2 2 2/-2 2 2

Let us now assume that:

(6.6a) Y00 . .. Yoo,
2 21—4
(6.6b) Yon: « . Yoms
3 2/-3
(6.6¢) Vin ««+ Vns
4 21-2
are all known. Then ygo can be found from (6.3a). Indeed g0 con-
2/—2 2l-2
tains only terms already known, since y,,, is known and Ay, is non-
2]-2 22

linear and can therefore depend only on the known y’s. The same is
true for (6.3b) and (6.3c). The unknown functions are contained in
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@’s; the known functions in the A°s. The #q0, already found from (6.3a),
2l—2
appears as a known function in A4, Similarly y,,, found from (6.3b)
2I-1 21—-1

appears as known in 4,,. Indeed we see now the reasons for our
2

division of linear terms.
Thus our equations (6.3), if solved, will give us

(6.7) Y00s Yon Ymn,
2]—2 2I-1 21

and if such a procedure converges, we can determine the field to any
approximation we wish.

The important question to consider is: are the equations (6.3)
always solvable?

7. The Divergence Condition
We go back to our equations (6.3). The first of them, that is

(7.1) @00"!"2/100 = 0
212 2[-2

is, because of (6.4a) and (6.5a), a Poisson equation, where Ago 15
2l—2

known. There is no difficulty in integrating this equation and finding
y0o. Next we have (6.3b), and because of (6.4b), we see:

21—-2

(1.2) Do, m = 0.

21—1
Thus the next three equations can be integrated only if

(7'3) A(lm,m = 0.

2l-1

But 4, is already known. Therefore we must be sure that our proce-
211
dure leads us to 4, satisfying (7.3). Similarly the last six equations
21—-1
(6.3c) lead us because of

(7'4) ®mn,n =0

21
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to the integrability condition:
(7.5) Apn,n = 0.

ai

We shall prove that (7.3) and (7.5) are satisfied, if the field equations
are satisfied in all the previous approximations.
The tensor

(7.6) G,uv = R,uu_%g,uvR

satisfies the Bianchi identity

(1.7) G;qﬂ+{°‘}ef—{5}<;;=0.

o Ve

We assume that all field equations up to the order (2/—2) are
satisfied, that is including

Doo+2400 = 0.

2l-2  2l-2
We know, that putting @424, = Oisequivalent to putting R, = 0.
From A.2 follows:
(7.8) D, +24,, = —2(R,,— 51,51 Rop)s

which means that our @, +24 , are a linear combination of the R,,,.
Thus, if our field equations are satisfied, then we have:

Goo = Goo = ... = Ggo =0,

2 4 212
(79) Gom = Gom = ... = Gom = 0,

3 5 21—3

Gmn = Gmn = ... = Gmn - 0-

2 4 21—-2

Let us write down the zere Bianchi identity of the order (2/—1).
From the left-hand side of (7.7) we have, putting » = 0, the following
linear terms:

(7.10) _GOm,m+ GOO, 0.
2I-1 2i1-21
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The non-linear part contains the products of the G’s and the y’s.
But because of (7.9), both the non-linear part of the Bianchi identity
and the second expression in (7.10) vanish. Thus the zero Bianchi
identity, together with the field equations give:

(7.11) Gom,m = 0.
2I—1

Because of (7.8), (7.6) and (7.2) this means:

(7.12) AOm,m = 0-
2/—1

Going on to the next approximation step, let us now assume that
besides (7.9), we have also:

(7.13) Gom = 0.
2l—-1

Putting into Bianchi identity (7.7) v = m, we have in the 2/ order,
because of (7.9) and (7.13):

(714) Gmn,n =0

2l

and therefore because of (7.4), (7.8):
(7.15) Amn, n = 0.
2!
Thus the divergence conditions are satisfied in each approximation

step, though not identically. They are satisfied because of the Bianchi
identities and because of the previous field equations.

8. The Surface Condition and the Equations of Motion

We now approach the most essential part of our argument. We are
faced with the task of solving the following system of equations:

(8.1a) Dog+-2400 = 0,
ol—2  2l-2

(Slb) ®0m+ 240m = 0,
211 211

(8.1c) D+ 2Amn = 0.
2

2l
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We know that because of the Bianchi identities and because (as we
assumed) similar equations had been solved in the previous approxi-
mations, we have
(8.2) Aomm =0; Apnn=0.

211 2l
Let us also remember that there is no difficulty in solving (8.1a)
which is a Poisson equation. But what about (8.1b) and (8.1¢)?

Before we return to this fundamental question, we wish to discuss
the start of our approximation procedure which determines the charac-
ter of our calculations.

In (8.1) we put / = 2 and write the first two equations explicitly:

(833) 72’00, ss — 09
(83b) —Yom, ss+Yos, ms = Yoo, om-
3 3 2 1

The character of the entire solution will depend on the choice of the
harmonic function we take as the solution of (8.3a). As we are inter-
ested in solutions representing particles, we shall write:

D ss
Yoo = 25 @ = Z {"2’"’/’}’
2 s=1 2

(8.4)

el )0

Here r is the “distance” in space of a point from the sth singularity.
s

We leave it undecided, for the moment, whether m is a function of
2

time, or a constant. Now we introduce this yeo into (8.3b) and again
2
obtain three equations for the three functions y,,,. But is (8.3b) always
3

solvable? True, the divergence of both sides vanishes. But this is not
sufficient. The surface integral of the left-hand side of (8.3b) vanishes,
as follows from the lemma. But then the surface integral of the right-
hand side of (8.3b) must vanish too. If we calculate the surface integral
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around each singularity, we find (see A.4) that it vanishes only if

d K s s
8.5 — = =m=0,
®5) i (m) =my=r

that is if the m’s do not depend on time. This is so, because
2

K} s 8 k
8.6) oo = —p.ilk; (ék - if?)

and because only expressions proportional to r~2 can give a contri-
bution to the surface integral. Thus, going back to (8.4), we have to
assume that

1 2 3 ?
8.7 m,m,m,....m
2 2 2 2

are constant.
These constants (8.7) can be positive or negative. We shall assume

s

that m are positive. Indeed, by taking the first particle and removing

2 1
all others, we see that m is its gravitational mass, since for large r the
2 1

field is that of a particle with gravitational mass m. This is the same
2

constant of integration that appears in the Schwarzschild solution,
since our field for one particle is that of a Schwarzschild singularity
when r is large. Thus we shall have to exclude from our solution negative
gravitational masses. But then we must also exclude dipoles and poles of
higher order.
Yet if we try to solve (8.1) we see (the details will be presented later)
that we cannot do so without adding certain poles and dipoles to y .
212
This we shall have to do, in order to insure the integrability of (8.1) in
each approximation. But then the solution of the total field will
contain dipoles which are not allowed, since they represent physically
meaningless solutions. We shall have to remove them after the total
field has been calculated. This can be done by restricting the motion of
particles. That is, the condition that the dipole field vanishes will give



192 GENERAL RELATIVITY

us 3p ordinary differential equations for the motion of p particles.
Thus the motion is undetermined in the approximation procedure.
It becomes determined after the approximation procedure is finished
and the dipole fields are removed.

In practice, we find solutions both for the field and for the equations
of motion only to a certain approximation, say 2n. We obtain the
equations of motion to the 2n approximation, by removing all the
dipole fields to such an approximation.

Although we have developed our field equations with respect to an
arbitrary parameter A, this A can be absorbed by the actual equations

of motion through the change of scale in m and 7, so that A is absent
2
from the final form of the equations.

We have given a general outline of our treatment. Turning to the
details, let us see why (8.1) will not, generally, be integrable. We know,
from the contents of Sec. 4, particularly from (4.4) that the surface
integrals of the @ functions vanish. Although this was proved for the
total field it is equally true in each approximation step, since the proof
made use only of the structure of the @’s, which is the same for the
total field, as for the field in each approximation. Thus we have:

(8.8) Dy, dS = 0; D,.n dS = 0.
2l—1 2/
But then our equations (8.1) can be self-consistent, only if we have:

(8.9) 2 Ao, dS = 0; f 2 Aty dS = 0.
2!

2/—-1

But the A’s in (8.1) are already known; they are functions of the
known field calculated in the previous approximation steps. Therefore
we can calculate the integrals (8.9) and find whether they vanish or not.

At this point it is convenient to introduce a new notation. Because
of (8.2) the surface integrals (8.9) will not depend on the shape of the
surface, but only on the singularities and their motion. Thus the
surface integrals, even if they do not vanish, can be functions of = only.
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We write:
(810) —!"*- 2/10,-11,- ds = Co('t’) = Co,
4n 2l—1 2l—1 2/—-1
1 s s s
(8] 1) E 2§"lmrnr ds = gm('c) = gm,

and assume that we have calculated the C’s. If they vanish identically,
and if they vanish always as we proceed with our approximation,
then our equations are self-consistent. '

Let us assume, however, that the C’s in (8.10) and (8.11) are not
zero. Then (8.1b, ¢) cannot be solved. There is no difficulty in solving
(8.1a). This equation is of the form

(812) 'Jz)IOO, r = 2A00:

-2 2/-1

where the right-hand side is known. We see that the solution of this
equation is determined only up to an additive harmonic function.
Thus we can add to any solution either single “poles” or “poles” and
“dipoles”.

By adding single poles we can insure the integrability of (8.1b).
Then by adding dipoles we can insure the integrability of (8.1c).
We could have done all that in one step, adding poles and dipoles,
but the division into two steps makes for a simpler presentation.

After finding yeo from (8.12), we calculate Cy and, in general, find

s 2/-2 21-1

Co # 0. We then replace in (8.1b):

2l-1

(8.13) Yoo by 7yeo—) 4my,
2]—-2 21—-2 s 2]-2

s

where m are certain functions of time to be determined soon, and
2/—2

y’s are the functions defined in (8.4). Of course this change in yoo

2/-2
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induces a change in Cy. Indeed,
21—1

24y changes now to

21—1
(8.14) ‘s

240m+Y, (4m 1/)), Om s

-1 F\ a2/ 1

as follows from (6.5b) because yoo appears in A, only as —ye, .0
212 2/-1 21—2 1

Now obviously the old surface integral

1 s s
8.15 — | 24pn,dS = C
( ) 4 2121 21—01
changes into A4
(8.16) Co—4m,

2i—1 2l—-1

therefore it can be made zero by choosing

8.17) am = C,.

2/1-1 21
Thus by adding a pole we can insure the integrability of (8.1b). The

next step is to insure the integrability of (8.1c). Thus we assume that

Yoo» Yo aT€ known, that (8.1b) is integrable and we have once more

2i—-2 2/-1

to return to oo looking for a different solution of (8.1a) so as to
2l-2

insure the integrability of (8.1c) without destroying the integrability

of (8.1b).

We replace now our y,, (containing the additional poles) by
2]-2

r I §
(8.18) Yoo— Y Sr,r.

2/—-1 s=12/-1

These are additional dipole solutions, and we assume that no other
dipole expressions are contained in y,, Again the S, are functions of
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7 only, to be determined later. The y,, now contain the single pole
2]-2
solutions so as to enforce the integrability of (8.1b). We can easily

see what change in y,,, is induced by (8.18). The answer is, that y,,,

2l-1 2l—-1

changes into
§ §
(8.19) yOm—Z(Smw),o.
2/—-1 s \2/-2 1
Indeed, if the old y,,, satisfies the original equation (8.1b):

2/-1

(820) Yom, ss—Yosm, s = Vms, 0s— Voo, mot 2Abm,
2I-1 2/-1 2/-21 2i-2 1 2I—-1

then Y49, Vo With the additional expressions written out in (8.18) and
2]-2 21-1
(8.19) satisfy the equation too. This is so, because 24, being non-
2/-1
linear can contain neither y,, nor y,,,. Therefore the addition of dipoles
2I—2 2l—1

does not affect the integrability of (8.1b).

Now the last and decisive step: we replace in (8.1¢) Y49, Yom DY the
2/—-2 2]-1
new expressions according to (8.18) and (8.19) and adjust the S’s so

that the surface integrals will vanis hidentically. This requires a some-
what more lengthy calculation.
Written out explicitly, equation (8.1¢) is:

Ymn, ss—Yms, ns— Vns, ms + amn'})rs, rs

2! al 2/ al
= —%Yom, on _'J}On, om + zamn')"[)r, 0r+ VYmn, 00— 6mn‘}"oo, 00+ 2A:m:
21-11 2/—-11 2/-11 2/-32 2/-22 2!
(8.21)
= 2A,mn.
27

We introduce into (8.21)

(8.22) Yoo— 2. Sr ¥, r,

2l-2 s 2l-2

(8.23) yom~); (§,,,J)),o

2/-1 2l-2 1
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for the old 4y, Von- We now obtain new expressions added to the old
21-22]-1

A, The difficulty is, that now the contributions come not only
2l

from the linear expressions, but also from A which will contain

terms of the type voo+yoo. The result of the calculations is given in
2lI-2 2

A.8, and contains many expressions of which we shall here write
only the first three which arise from the linear terms (the others, as
we shall see, are unimportant). Instead of the old 24, we have:

2Amn
2/

(8.24) +3 (Sm'q) S, m— OmnSep, r)
s \2! of 27

+ ...

where the dots at the end indicate the omitted expressions. As we are
here discussing the problem of surface integrals, we are justified in
omitting them because they do not give any contribution to the surface
integrals. We see too, that the expressions written out here have a
vanishing divergence, and this is true for the omitted terms also.
Calculating the surface integrals (A.4), we find that the old surface
integral

1 $ $
8-25 T 2Amnnn dS = Cm
(8.25) 4 2l 2l
changes into
(8.26) Cn—Sm.
27 2

Therefore it can be made zero, by choosing
(8.27) S = Chm.
2 o

Thus we can always, by adding dipole solutions in yeo, force the
2/—-2
surface integrals to vanish identically.
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By proceeding in this way, we accumulate single poles and dipoles,
and the additional expressions in y, are:

(8.28) _ya-2 § (4:11 P+, q))
i

s=1 2/-2 212

We violated our rule of not introducing dipoles. However, this was
done for yoo only. We can, at the end of the approximation procedure,
annihilate all these additional dipole expressions by taking

(8.29) ¥ 422§, = 0.
I 22
Differentiating this twice, we obtain, because of (8.27):
(8.30) ¥ xS, = ¥ A2C,, = 0.
T a2 T el

These are the 3p equations of motion. Thus the motion is determined,
if dipole solutions are rejected.
On the other hand, the 7’s can be calculated from the C,’s according

to (8.17). Denoting the total coefficient at y by —4M, we have:

s 5 5 5
(8.31) M = 22m+2Mm+ BmA- ...
2 4 [i]
5 8 s
where m, m, ... are functions of the original constants m and of
4 8 2

known functions of the time.

The equations (8.30) and (8.31) will contain only a finite number of
terms depending on the order to which we wish to carry out the actual
calculations.

9. On the Choice of a Co-ordinate System

We shall now see that it is possible to simplify our equations through
the proper choice of a co-ordinate system. Let us assume that

(9.1) Yoos Yoms Vimn
2]—-2 2]-1 2f
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are solutions of our system (6.3), where the @’s and A’s are defined
by (6.4) and (6.5). Then we can show that any

Yoo = ?30,
2/—-2 2A-2
(9.2) 1 Yom= 7"0m+a0 ms

2/-1 21— 2/—-1

VYmn = ymn‘*’am n+an m amnar, r+ amnao, 0,
| 2f 21 2l 2l1—-11

with ao, a,, arbitrary are also solutions of our equations. This can be
2/-1 2]

shown just by straightforward substitution in (6.4). A simple calcu-
lation shows that al the a’s vanish from these equations. Thus we
can, at each approximation step, impose four conditions upon the field.
Let us choose, as is usually done, the following four co-ordinate
conditions:

(9-3&) Yoo, 0~ Yor,r = 09
2l-21 ¢2/-1
(93b) ')’Om (1 '}}mr,r - 0
al-11

Indeed, if y* do not satisfy such a condition, then a’s can be found
that ensure it. The equations for the a’s are:

(94&) Ao, rr = ‘Vﬁo, 0'—?31', r
2/-1 21-21 2i-1

(9.4b) Am,rr = 'J’(?m,[)_y:ir, re
2f ol-11 o

With the co-ordinate condition (9.3) our system of equations is
considerably simplified. Equations (6.3) now become:

(9.5a) Yeo, rr = Yoo, 00+ 2400,
-2 21-4 2 21-2

(95b) Yom, rr = Yom, 00+ 2/1(’)m’
2/—-1 2/1-3 2 2/—-1

(9.5C) ')"mn rr = ymn, 00+ 2Amm

21-2 2
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which together with the co-ordinate conditions

(9.6a) Y00, 0—Yor,r = 0,
2/-31 21-1

(9'6b) Yom, 06— Vmr,r = Os
211 2

now form a symmetrical system of equations, where in (9.5) all the
known functions on the right-hand side are at least two orders lower
than those on the left.

The surface integrals that must vanish and which give the equations
of motion are:

(9.7a) f (YOm 00— Yoo, 0m+2A0m)nmdS 0,

21-3 2 21-21

(97b) f (7’nm 00— 'Vrﬂ f‘m+2Anm)nm dS O
20-2 2 2-1%

We can deduce them from our old formulae, using the lemma, or
directly, differentiating (9.6), adding to (9.5) and using the lemma.

If, as in Sec. 8, we now introduce dipoles in order to satisfy (9.7b),
we do not violate (9.6a).

Sometimes it is more convenient to use other co-ordinate conditions.
For example, the one used in the actual calculations is:

(9.8a) Y00, 0—Yos, s = 0,
2/-21 2/-1
(9.8b) Vin, n = O.
3!
The equations then are:
(9.9a) Yoo, rr = 200,
213 2i—2
(99b) Yom, rr = 2Al')m,
2I-1 o1
(99C) Ymn, rr = ""}’Om, on—"Yon, om—+ 6mn’)’00 00+ Vmn, 0o+ 2Amn
1] —~1 al—11 2/—23 2/-2 2

= 2Amn
b
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and the surface conditions are:

(9.10a) f (2/16m—}'oo, Om)nmds' =0,
21-1 21-21 -
(9.10b) f 2 Apuntis dS = 0.
27

. The question arises: to what extent does the co-ordinate condition
influence the equations of motion? We shall return to this problem
in the last section and we shall show that the equations of motion.to
the sixth order do not depend on the choice of the co-ordinate system.

10. The Newtonian Approximation

We shall discuss now the first three equations for / = 2. The equa-
tions are: :

(101) Yoo, rr = 0,
2
(102) - Yom, rr = Oa
3
(0.3  Vumyr = 2l
4 4
‘The co-ordinate conditions that we accept are:
(10.4) 0 ponr—Yo0,0 = 0.
3 2 1
(10.5) Ve, r = O.
1

The explicit form of 4, is given in A.10.
4

The character of our entire solution will depend essentially upon
the choice of the harmonic function we take as the solution of (10.1).
As we are interested in solutions representing particles, we shall write:

§=1

[ -6

p T s s
N Yoo= 2905 @ =Y {—221#)}’
(10.6)
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From (10.2) we see that y,,, is a harmonic function too, which
3

must, however, satisfy the co-ordinate condition also. From (10.4) we
have:

(107) Yor,r = Yo0,0 = _Z {4m'w, rér}-
3 2 1 s 2 1

5

The constant m, which we identify with the gravitational mass of the
2

particles is assumed to be positive. Therefore the exclusion of dipoles,
together with the field equations and the co-ordinate condition

determine uniquely y,,:

3
§ss

(10.8) Yon = Y. dmpé".
3 8 2 1
To this y,, we could add, according to (9.2), the gradient of any
3
function and in this way obtain a general solution. But as our entire

procedure consists in employing only rational functions of (x’— &'),

any such addition would introduce new singularities (not of the charac-

ter of a single pole), or a non-Galilean field at infinity. Thus we should

regard y,, in (10.8) as characterizing the problem of particles, regard-
3

less of whether we introduce the co-ordinate condition (10.4) or not.

Just for the sake of simplicity, let us now restrict our consideration
y .

to two particles and write (omitting the indices below m, ¢, f, g):
¢ =f+8g,
11 2 2
(10.9) f=-2my; g= —2my,
1 2
Erz ,nr; Er v, Cr.

The next step then, since the surface integral (9.10a) vanishes for
! = 3, because

(]010) f (2/,1(’»11_'))00, Om)nm as = _f Yoo, 0mflm das = 03 .-
3 2 - )

1 2 1
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is to determine

1 1 1
Cm = 7 2Amrnr dSa
4 4n 4
(10.11) . { s
Cm = o 2/1""-7!,» dS.
4 4z 4

If we wish to finish our approximation procedure here, the equa-
tions of motion up to the fourth, or as we shall call it, the Newtonian
approximation, are:

2
m=0; Cp=0

4

(10.12)

el

All we have to do now is to calculate the surface integrals, according
to the method outlined in A.4. The result of this particular calculation
is given in A.10. It is:

[ 1 1
Cm(‘!:') = 4m {nm+——§,m} = Q,
4

(10.13) * é'm(f) = 4":! {C’"+%fm} =0,

g,m-—-g,m fOI‘ xs=?)",
| fm=fm for x* =70

The form (10.13) is actually independent of the variables x*. In the
last equations we see that g ,, say, is obtained by differentiating g
with respect to x* and then by replacing x* by %°. But the result will be
the same if we first replace x* by n* and then differentiate with respect
ton° or £°. Thus:

7, = 080) __ 20)
s 8 ans acs ’
(10.14) 2
2m
8y =—=—-3 r=@-{)n'-0).

We can, therefore, think of our equations of motion as involving
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the differentiation of functions depending only on the position of
singularities, as is characteristic of the theories based on the concept
of action at a distance. Indeed, we see that our equations are precisely
the Newtonian equations of motion, deduced here as the first approxi-
mation from the field equations. The treatment of p particles (in-
stead of two) does not add any new difficulties if we deal with the New-
tonian approximation only.

11. Transition to the Next Approximation

We wish to go now beyond the Newtonian approximation. But then

we must calculate y,,,, since Am,, depends on ym,, The characteris-
4

tic feature of this method is that generally, if we w1sh to find the equa-
tions of motion to the 2/ approximation (inclusive) then we do no%-

need to calculate y,,,, because C,, does not contain it. But now, if
2l 2l

we wish to go one step further we must find ym,, for which the equa-
tions are:

(11.1) Veoun, re = 2Lmn.
4 4

This is “the transition step” that we have to take before proceeding
to the next approximation. These equations are integrable only if we
do assume Newtonian motion. Otherwise we would have to add di-
poles. Yet if we wish to proceed only to the next approximation we may
assume Newtonian motion and additional expressions induced by the
dipole fields are not necessary.

If in (11.1) we assume Newtonian motion, then (11.1) can be integ-
rated, because the surface integral of A, vanishes then. But if we

4

do this, we introduce Newtonian motion into A4,,,. This is admissible
L4

because any difference between A calculated this way and A calcu-
8 8

lated with the proper motion is of order A. Thus since we do not

8
propose to go beyond 4 we may ignore the additional dipole fields.
8
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It is for this reason that the previous special calculations in [1] were
correct, but the general theory was not.

We shall now solve
(112) Yon,rr = 2Amn = —%Y0m, on—"Yon, om+ 23man, 00,

4 4 3 1 3 1
=209, =P, mP.n 3 e, P, s
assuming the Newtonian equation of motion, i.e. (10.13).

We can ignore the dipole expressions because we are interested
only in the equations of motion to the next approximation. But, for
the same reason, we are interested only in those expressions in vy,

4

which give a contribution to the corresponding surface integral of
A

[
o An inspection of 4,,, (A.12) shows that we need only the know-
' [

mn*

ledge of y,,, in the neighbourhood of the singularities, and we may
4 $

ignore in it the terms which do not become infinite as r — 0, since

the surface integral due to these terms must vanish (see A.12). On the

other hand y,, which also appears in 4 should and will be calculated
4 6
in the entire space.

In the equation (11.2) we have, on the right-hand side “cross pro-
ducts”, that is, products belonging to different singularities. Because
of them (11.2) can only be integrated in the neighbourhood of the
first singularity, say. The expression arising from the second singu-
larity can be expanded into a power series near the first singularity.
Retaining all the expressions that may give some contribution to the
surface integral and those only, we have in the neighbourhood of
the first singularity:

' Yn = {fT1G" ="+ (™ — 1" W7 — Ban(X* — W71}, 0
T e SRS

(11.3) | + 42 mf nt 518, €,

—fom(x"—1"8

L +mnf + Pmng-
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Here only the expression

—fmx"—")g; g=g for x* =1,

is due to the interaction terms. The two last expressions are the addi-
tive harmonic functions (dipoles are excluded) and they are deter-
mined by the co-ordinate condition

(11.4) Zm,, , = 0.

The result is:

ELmn = 21:’m,‘;]n+ 3mn§,
(11.5) Bon = 287C"+ Bmn [y
F=f); g§=2g@; r=0—) 00

But, let us say once more, that all this is true only if the Newtonian
motion is assumed.

Finally, as we mentioned before, y,, can be calculated rigorously.
The result is: ‘ 4

11 22
(11.6) Ver = —2mr, 00— 2mr, o0+ + 2+ af+Pg.
4

Here the o and 8 are determined so that near the singularity (11.6)
will be consistent with (11.3) for m = » = r. The result is:

& = 27:1S';7$+%g’
(11.7) {
B=200+41

Thus our transition steps are accomplished.

12. Beyond the Newtonian Approximation

We write down the next field equations:
(12.1a) ?;00, r= 2;/100 =—30.9n
(12.1b) Yom, = 2§16m = @, V05, m— P, smY0s — 3, 0P, m;
(12.1¢) Voun, rr = 2Amp.
8 ]
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The explicit expressions for 4,,, are quoted in A.12. The solution
of (12.1a) is simple: s
11 22

(12.2) Zoo = -—%902—4m1p—-4r:w.
s

As we know from the general theory, the arbitrary harmonic func-
tions have to be determined in such a way as to make (12.1b) self-
consistent, that is, the corresponding surface integral must vanish.

The co-ordinate conditions, are here, as before,

(12.3a) Z’Or, r—%o0,0 = 0,

4 1

(12.3b) Ve, = 0.
[
Because of this, the conditions for solvability of (12.1b, c) are:
1 s
(1243) —_ f {2A6m_'}’00, Om} n,y ds = Oa
4 5 4 1

l s
(12.4b) ZEI 2;:1,,,#:r ds = 0.

We have in (12.4a) the equations that determine m. The result of
4

evaluating the surface integrals in (12.4a), (see A.12) is:

12 1. _l2]
125 {m=gm {:s:s+ ]}:%(mé‘é“ o 1 )

1 1 2 2

m=m;m=m;r=@n-)0-).

The next step, after the self-consistency of (12.1b) has been insured,
is to calculate the yo,. We need them, because they enter into the

b
next surface integral. Including only relevant terms that can influ-
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ence the surface integral we find near the first singularity:

You = — 4L+ S

+ 5 =) (=), m
(12.6) — (" —n")fE, (7 — %)
+3(x* =) f, {8+ 8, (X" — 1))
+5(x* =) {f8, L7+ [ mBl7)
+xtomf .

Again «,,, is determined from the co-ordinate condition (12.3a) and
the result is:

(12.7) Gom = =707+ g — §E".

Now the scene is set for the last and most difficult calculation:
1
(12.3) Cn=-—| 24,.1,dS.

Some remarks about this calculation are made in A.12, and partial
results given. We obtain:

2 1
! il | PP R m| 0 (1
(12.9) CB',,,—--4mmHnn +5CC —an 47 57—1377—,,;(,)
o /1 1 o0%r o
v (7) *2 oo 5}'
Thus the equation of motion belonging to this stage of approxi-
mation is:

+ [47?’s(€m_7‘7m)+ 37-)mg:s_ 4csCm]

1 1
(12.10) AC,,+ 2°C,, = 0.
4 [{]

We can now re-absorb the A’s by substituting new units for 7 and
1 2

m, m:
old 7 = A-new 7; old mass = A~2.new mass.
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Preserving the old symbols for the new units we have for the equations
of motion of the first particle:

2 1
vy 20(1F)) R 734 sfs _assis M _cm| D

+ [4ﬁs(§m -"f]m)-l- 3,;7mCs . 4C=sCm] —3%.9— (1/,.)

I o°r : rl
The equations of motion for the other particle are obtained by
replacing

1 2 2 1
m,m,n, &, by mm n,
respectively.

These are the equations of motion of two particles. They can be
integrated and conclusions concerning perihelion motion of a double
star can be drawn from them [5]. The entire method can also be adapt-
ed for the case of a charged particle in an electromagnetic field [4].

13. The Equations of Motion and the Co-ordinate Condition

The contents of the last three sections are not new. Its presentation,
however, is different than that given before in [1] and [2], since it has
been adjusted to the new theory. There is one more question that we
wish to answer and which we did not treat before. It is possible to do
so only now after the general theory has been perfected. We ask: To
what extent do the equations of motion as formulated in (12.11) depend
on the particular choice of the coordinate system?

We reject any particular choice of co-ordinate system and write
the first two equations:

(131) (-pOO"I' 2A00 = —%Yoo,rr = Os
2 2 2

(132) ®0m+2A0m = —%Yom, rr+ Vor,mr— Y00, m0 = 0.
3 3 3 3 2 1
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We assume that we start our approximation procedure with the

same y,, and v,,, functions as we did before. But from now on, while
2 3

dealing with the rest of the equations we shall look for general solu-
tions not restricted by any additional co-ordinate conditions.
Thus the equations that we wish to consider now are:

(1333.) @mn+2Amn = 0,
5 4

(13.3b) Do +2400 = 0,
4 4

(133C) @om—f-Z/lom = 0.
5 5

In the previous three sections we solved these equations, using
special co-ordinate conditions. Let us now call the special solutions
that we obtained there:

(13.4) Vinns Vao> Vom-
4 4 5

Knowing them, as we do, we can find the general solution of (13.3).
The procedure is similar to that outlined in Sec. 9, only slightly dif-
ferent, because we have now a set of equations of order (2/), (2/), and
(21+ 1), whereas before we had a set of order (2/—2), (2/—1), and (2/).
But a straightforward substitution shows, that because of the linear
expressions in (13.3), (and they alone enter the argument), the general
solution of (13.3) is:

(13.5a) Vmn = 'V;:m+ Am,ntQn,m— 6mnar, rs
4 4 4 4 4
(135b) Yoo = y;e'}‘ar,r’
4 4
(1350) '))Um == ‘ng + ao, m+ am, 0
5 5 5 4 1

where a, are arbitrary. The question then is: If we substitute these
new expressions into the A’s do we change the integrals

(13.6) f Apen, dS, f/lo,n, ds, fAm,n, dsS?
5 6

4
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As far as the first two integrals are concerned the answer is easy;

A is not changed; only linear expressions in A are affected, but the
4 5
surface integral of the additional expressions disappears because of

the lemma. But it is different with the third surface integral. In A new
[}

terms appear containing the a’s. They appear both through the linear

and the non-linear expressions. But these additional expressions—

quoted in the last appendix—are such that their surface integral

vanishes. Thus in the sense explained here the equations of motion

do not depend on the choice of the co-ordinate system. This depend-

ence would appear probably in the next approximation steps (A1),
8

but it does not enter into the surface integral of /. This is a satisfying
]

result, because it is difficult to see the meaning of our co-ordinate
conditions

VYmr, r = Oa

4
(13.7) Yor,r—%Y00,0 = 05

5 4 1

ymr:r = 0!

6

and it is good to know that our equations of motion are independent

of it. This result is general. If we have a system

¢mn + 2Amn = Oa
21

2!

(13.8) Do +2400 = 0,
21 al
¢0m +2A0m =0,
2/+1 2I+1

then the surface integral of A4,,, is independent of the co-ordinate con-
204+2
ditions introduced in this particular approximation stage. This is so,

because the a’s combine with the ¢’s in the same way in each approx-
21

imation step.
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Appendices

A2

The field equations are:

O [ R 1 R AL WA R 1

Introducing here the A’s as defined in (2.3) and splitting (A.2, 1)
into linear and non-linear terms we have
(A2, 2a) Roo = ——;—hooasﬁ-hmms—% 55100+ Lgo

_ _ 1 1
ROn - _—2—h0n|ss+ ?hﬂslns

(A2, 2b) + 3Hnsj0s— 3 hssino+ Lon
Rmn - - %hm;ﬂss + %hmslns'i‘ ‘%“hns]ms - ‘; hss|mn
(A2, 2¢) + %hmnmo - %hmomo— %’hnogmo

+ 3h00jmn+ Loun.

Here L, are the non-linear expressions. We form now:

iy
(A2,3) —2(R,,— Nuw*R.p) = 0.

Substituting the 3’s for the A’s, we see that (A.2, 3) written out is
(2.10)—(2.18), where

(A2,4) Ay = Liy—30,,PLes.

A4

In calculating the surface integrals we need to take into account
only expressions that go to infinity like 2, because only such expres-
sions will give finite contributions. Since all the field functions are
finite (outside of the singularity), and since the contributions do not
depend on the shape of the surface, we may ignore all other expres-
sions. But we have to keep the surface fixed, because in our calcula-
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tions a complicated expression whose surface integral does not depend
on the shape of the surface, is split into partial expressions with non-
vanishing divergence. Thus in our calculations the surface is always
a two-dimensional “sphere” with radius shrinking to zero. Let us as-
sume, for the sake of stmplicity, that the space co-ordinate of the singu-
larity is (0, O, 0). We shall first give some examples of the surface in-
tegrals formed around such a singularity.
Example 1. We calculate:

0
j p,n:dS; p =171 12 = xX5x%;

We have:

0 0 ySyS
Jw,snst:—f x:: r*sin 0 df dp = —4x

Example 2. We calculate:

0 0 45
f W,snrdS:—f XX r?‘smﬁalﬂdtp-———43E L P

Example 3. We calculate:
0
J Y, mnhta(r) dS.

To find such a surface integral we expand x(r) as a power series in
the neighbourhood of the singularity:

z = 2(0)+ 1, (0)xs +

The only contribution is from the second expression, that is, we
have to calculate:

%, s(0) J Y, mattnX® dS = — 7, (0) I S A r2 sin 6 db dp

+ 3%,

&n

= T X, m(O)
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In the course of our calculations we shall have to find more com=
plicated surface integrals and the following table will prove to be useful:

Table of Surface Integrals

I L[ ds 1
 am | pmdS =—1.
1 fo 1
II. z;d 1p,sn,, dS —-""‘§' 6_;".
1 [0 2
I11. —4;.‘ XY, ushly = '“3—6”-.
IV L * ds ! 26,,0 38, m0ns — 36,50
. —4?“ XY, msPn = “*TS“‘{ ran9ms — I0rmUns — I0rs nm}-
1 (o 2
Y. _L]-;‘J XY, rshln ds = ?6173-
VI L ds =0
. Zﬂ; J XY nstin = .
viI L xS 0
. E ) XXY, ekt = Y.
VIL L [ 5 ttn dS = 2 810y 810> (S By5+ B B25)
' Ao J X ) nrdfln = 5 ms Qlr 3 ml Ors mr Ols).
A8
The linear terms of (8.26) give the following contribution to 24,,,:
2!
14 5 8 s 5
(AS’ 1) Z {Sm ,n+Sn ,m’_amnSﬂP, r}, 00.
s=1 \2—2 212 2[-2 2

The non-linear terms can be found in the following way: Inspect-

ing the terms in A4, (A.12, 3) we see products of oo and ygo or, as
8 4 2
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it 1s there called 2p. Thus, if we put there the expression in (8.18)

in place of yo0 and write for brevity:
4

(A8,2) Sa) =TS,

s 2/—

[ VRS

we get five new terms. Thus with the abbreviation (A.8, 2) we have in
every approximation the following additional terms:

{(Sm"/’), n+ (Sn'(P),m - 5mn(Sr'tP), r}, 00
+@(Srp), rmnt 5P, l(SeP), m
(A8,3)  +1o (S). 2 Omup, (SH). rs+ @, mnkS0), 1.

Only three of the linear terms give us a contribution to the surface
integral. It is more difficult to see that the non-linear terms do not
give any contribution, since it requires some knowledge of how to deal
with surface integrals which is outlined in A.4, and which we shall
here assume. We can write the non-linear terms in (A.8, 3), in the
following way:

{@, mn(Sv), e~ {p, e Su)}, r
+@, (S P, r
+ %{(P, a(Srp), m}, r— %{‘P, (Sup), m}, r
+ %"‘P. (Sw), mr
(A8, 4) — 3 80mp, (Ssp), sr-

These are the non-linear expressions, and their divergence vanishes
because ¢ is a harmonic function. The expressions written out in
pairs in (A.8, 4) do not give any contribution to the surface integrals,
because of our lemma in Sec. 3. Thus the only contribution could
come from the terms:

(A.8,5) 3PS, ms— 3 Smnp, $SeP, rs.

Here only the “cross products” could give contributions and we
find with the help of the table in A.4, that the result is zero.
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A.10

In the / = 2 approximation we have:
[ Yoo = Z(P = 27 +2g,

9
Yo = —2f0)"—28C" = ho,
3 3
hoop = ¢ = 1+ 8,
2
(A.].O, 1) 1 hUO — _h'OO — __(P
P)
ho" = ho, = Yon,
3 3 3
hmn = —h"" = amn(P-
2 2

L

A straightforward calculation gives:

( 2/100 = 0,
2
2/10m = —700, w0,
(A10,2) 1 3 21
2Amn = —%Yom, 0n —Yon, 0m+26mnq3, o0
4 3 1 3 1 2

—2(P(P, mn— @, mP, nt % 5mnfp, 5P, s-

The contributions to the surface integrals are (for the first singula-
rity):
1 ad
~Yom, on - 4m’l7m '471’,
1
— Hon, om -~ Smi™.dam,

1
25,,,,,(;3, 00 - — %Mﬁm'4ﬂ,

1
=299, mn - mg-4nm,
1
“(P,m(P,n - _%m§.4n’

1
%; 5mn‘P, sP, s > 2mé, m 47T,

(-
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A2

A straightforward calculation of A, 4, A gives
4 5 8

(A. 12, 1) 2/100 = —%{p’ sP, 5>
4
(A 12> 2) 2/51£}m = @, sZOs, m—@, sm%’ﬂs "'3(P, o, ms
2Amn = —Yom, on—"Yon, 0m~+ Omny 00, 00+ Ymn, 00—FY00, mn
8 5 5 4 4 4
—QVss, mn P, mnY 00— P, mn?ss+ @, ms¥ns
14 4 4 1
+ @, nsYms— 6mn9'3', st¥sr— Z(P, sVmn, st @, sVms, n
4 4 4 4
+ @, Yns,m— %(P, myss, n _%’(P, nYss, m _"%(P, ny 00, m
14 4 4 4
-‘%(P, mZOO, n+% amn(P, sz)rr, s+ _3_ an(P, §Y00,s
4
- ')/()s')}()n, ms ‘_'YOS'YOm, n.s'+ 2705"))05, mt
3 3 3 3 3 3
‘*’% 6man'VOs, r'YOr, s % an‘)fm, r'))()s, r + Vos, m'YOs, n
3 3 3 3 3 3
+ Yom, sYon, s— P, 0nYom — P, 0V on+ 20mYosp, 0s
3 3 3 3 3
—@,0Y0m, n—@,0Y08,m— P, nY0om, 0~ P, mYon, 0
3 3 3 3

+ 2(PZOm, ont 290%/0)»:, om==20mnP@, 00

+ 200, mn— PP, P, nt 3 Omm PP, . s
(A.12, 3) + % Bmnp, 0, 0-
The surface integral (12.4a) for s = 11is, because of (12.2), and (12.1b):

1

1 3 3
ZQ; ((P,r‘)/Or,m_qj,rm?;On_“i(P,O(P,m+2(P(P, 0m+4(m1,0)0m)nm dS = O

3 4

The contributions of these five expressions are respectively:

1
dm .. . . .
1 - —3& LS—amg_ a0,
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1

8m . .
(2) - -——3—g,s§',

1 1
(3) — 3m§',s+ mé, Shsﬁ
1
@) - 2mg, ',
1
5) - —4m.
4
Therefore:
1 1 . 1 . 1 1 - 1
—driv = mg, L5+ mg, i = 2m g —mg, i+ m§, £
a

1
= _m(2ﬁsri73+ g)) 0

From the last equation (12.5) follows immediately.

217

The last step is to calculate the surface integrals due to /4. Here a

6

skilful use of the lemma may save the calculation of many surface

integrals. Indeed, 24,, can be written in the following form:
6

2Amn = ((P, nYsm —@, s'ynm), s+ ((P'Yms, n_(Pymn, s), s
4 4 4 4
-+ (ﬁms(P, rZrn - 5mnfp, r?:rs), st (5mn(P, ser - 6ms(P, n;})rr), s
‘i" %(6mn(p')’rr, s Bmsqy}’rr, n), s+ (an}'m, 1 ams'))On, 0), H
4 4 5 5

+ %(’:J:Os, m?;ﬂn _;};On, mg)m), s+ (5mntp ,o‘:};c)s — s, O?;On), 5

+ (':J;Ong}Om, s —':};Os):;(}m,n), s+ %(5mn'y0s, rYor— Bms'))ﬂn,r')/or),s

3 3 3 3

+ (ams'}’()r, nyor— amn'yﬁi", 37)07).5‘

3 3 3 3
—Yom, 0n+'ymn, oo+ '}’Os'))l)s mn [d1+d2+d3]
5 4 3 3
- % 6mn‘)’Os aV0s, r— ((P, n'YOm), 0 [d4+ “5]
3 3 3
- ((P, m')fon), o+ ((P‘yom, n) o+ (fP‘YOn, m) 0 [oeg otz +ots)
3 3 3

- % amﬂ(P- op, —%(PZSS, mn [oc9+oc10]
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+ %(p AYss,m+ %q/, n?;OO, m [05 llJr‘al‘Z]
4

+ %gp, mZOO, n— % amnl/, sPoo, s [“13 4 14]

- Q’(P, 00 5mn _2(,”1', m@, n [a 15+O€13]

+ '174'1'(}7(]”, s@, s 6mn- [fx 17]

Because of the lemma we have to find now the surface integrals
of only 17 expressions denoted successively by a1, «s, ..., aur. The
result of this calculation is summarized in the table. Only ten types
of expressions (or their equivalents) appear in the result. The table
tells us what is the contribution of each of the «’s to the final result.
The only « that does not give a contribution is as = ¥, -

4

A3

The additional expressions in A,,, induced through rejection of the
coordinate condition are: 6

2(6:11,&0‘ 0, r0— amrfxo, nO), r
+ (QD, mEu, r — @ %y ,n), ¥
+ (P, nni, r =P, 1%, 1), r
-+ ((P, n&s, m— @, 0y, m), 5
_2(5mn(p s&s, r erq) %, ;z), r
+ 200 pnP, 5%, r— OunsP nOr, r),s -

They are written in such a way that the vanishing of each line is
evident, because of the lemma.
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NOTES ONEXTRACT 6

A somewHAT different view of relativity from Einstein’s (which yet agrees in nearly
all important details of calculation) is set out in this paper by Fock. This version
has been corrected by the author, Fock’s book The Theory of Space, Time and
Gravitation, has been published in English at the Pergamon Press in 1959 (first
edition) and in 1964 (second edition). The analysis of the notion of relativity has
been pursued in this book and also in Fock’s papers “The principles of relativity
and of equivalence in the Einsteinian gravitation theory’” (Kgl. Norske Videnskabers
Selskabs Forhandlinger, vol. 36, N2 4-5, Frondheinm, 1963) and “Les principes
physiques de la théorie de gravitation d’Einstein”, Ann. Inst, Henri Poincaré, vol,
V, No. 3, p. 205, Paris, 1966.)
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EXTRACT 6t

Three Lectures on Relativity Theory

V. Fock

Physical Institute, University of Leningrad, U.S.S.R.

(Delivered to the Colloguium of the Institute for Theoretical Physics,
Copenhagen, Denmark, February 18, 20, 22, 1957.)

First Lecture: on Homogeneity, Covariance, and Relativity

In my first lecture, I try to elucidate some general notions con-
nected with relativity theory. I speak on homogeneity, covariance, and
relativity. My considerations are of a very simple nature but, never-
theless, I hope that they may be of interest, because simple notions
are often the most difficult ones.

If we consider the geometrical aspect of the theory of space and
time, this theory naturally divides into the theory of homogeneous
(uniform) space-time and that of the nonhomogeneous (nonuniform)
space-time, The former may be called Galilean space and the latter
the Riemannian or Einsteinian space. (I sometimes use the word space
instead of space-time.)

The property of space-time of being homogeneous means that (a)
there are no privileged points in space and in times (b) there are no
privileged directions, and (c) there are no privileged inertial frames
(that all frames moving uniformly and in a straight line with respect
to one another are on the same footing).

The uniformity of space and time manifests 1tself in the existence
of the Lorentz group. In particular, the equality of points in space and

t Rev. Mod. Phys. 29, 325 (1957).
221
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time corresponds to the possibility of a displacement, the equality of
directions corresponds to that of spatial rotations, and the equality
of inertial frames corresponds to a special Lorentz transformation.
The displacements contain four parameters, the rotation three (the
three angles), and the transformation to a moving frame also three
(the three components of velocity). This gives together ten para-
meters—the maximum possible number, if we do not take into account
scale transformations x” = Ax.

The statement that the Lorentz transformation leaves invariant
the expression for the square of the line element is to be understood
in the following sense.

If one writes ds? as

ds® = dx%—dx}—dxi—dx}
or
ds® =, dx, dx,

then, after the transformation from (x) to (x’), we have

ds® = ), dx, dx,

with the same matrix

7wl =

o -=CO O

0 0
—1 0
0 — 0
0 —1

oo o -

In studying the properties of homogeneous (uniform) space-time,
the use of Galilean coordinates is convenient, but not essential. The
property of space-time of being uniform may be as well expressed
in general coordinates.

Let the substitution

X, = fu(xox1xexz) = f(X)

be performed in the expression for ds®. Then,

ds® = g,(x) dx, dx,
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changes into
ds* = g,,(x") dx, dx,

so that

;o Ox, Ox

(1) gix') = ;

8o Bx;, 0,

If the mathematical form of the functions g, is the same as that of
the g,,, that is, if

) Zil¥) = &%)

then the space admits a transformation group.
For an infinitesimal transformation

Xo = X+ (x);
this leads to
v'n'+ Vv = 0,

and these equations are completely integrable if

R'Llll, of = K(gva(g,uﬁ _g,uacgvﬁ) »

that is, for a space of constant curvature. Galilean space corresponds
to vanishing curvature

R,uv, «f — 0

What I wish to stress is that the properties of the uniform Galilean
space-time can be expressed in a generally covariant manner. On the
other hand, the Einsteinian gravitation theory supposes the space—
time to be nonuniform. It is just this fundamental assumption, and
not the general covariance of equations, that distinguishes the gravi-
tation theory from the theory of the Galilean space—time.

This distinction has not been sufficiently understood, or in any case
not sufficiently stressed, by many physicists and, paradoxical as it
may seem, by Einstein himself, although the French mathematician
Cartan has drawn attention to it many years ago. Einstein called
both theories relativity theories. But what is relativity ? This word has
been misused. It is natural to connect the notion relativity with uni-
formity of space and time. The uniformity of Galilean space with
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respect to positions, directions, and nonaccelerated motions may be
as well termed as relativity of positions, of directions, and of nonac-
celerated motions. That is the true content of Einstein’s principle of
relativity of 1905. Use of the word relativity in this sense is quite
legitimate.

But, if one does this, if one connects relativity with uniformity,
the relativity has nothing to do with general covariance, that is, with
covariance in which (1) is true but (2) is not necessarily satisfied. This
means also that, in the theory of nonuniform space-time, there is no
principle of relativity. The generalization of the theory which consists
in replacement of a uniform space-time by a nonuniform one means
a restriction and not a generalization of relativity. If one uses the
word relativity consistently, then the general principle of relativity is
nonsensical.

In saying this, I do not want to introduce any doubt as to the vali-
dity of the wonderful Einsteinian gravitation theory, but only to stress
the inconsistency of the use of the name “general relativity” when
applied to gravitation theory.

Einstein himself proposed for his theory the name “general rela-
tivity”, because the transformations considered in this theory are more
general than the Lorentz transformations. But he omitted to state
that, in the case of ordinary relativity, one has to consider transfor-
mations for which (2) must also be fulfilled, while, in the case of the
so-called general relativity, this equation does not have to be taken
into account. Thus, in the “general” theory, Einstein uses the word
relativity simply as covariance, while in the “special” theory, the same
word relativity is used as uniformity. Since covariance has nothing
to do with uniformity, there arises a confusion which is very harmful
to the understanding of Einstein’s theory. If one uses the word rela-
tivity in both senses, then one has to admit such statements as “in
general relativity there is no relativity” or “the Lagrangian form of
nonrelativistic equations of motion satisfies the requirements of gen-
eral relativity”, etc.

This confusion is more harmful than it would seem at first glance.
It leads to statements like “rotation is relative” which are obviously
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false, because the distinction between a geodetic and a nongeodetic
is absolute and not relative.

The general covariance of equations has been considered for a
long time as a specific property of the Einsteinian gravitation theory,
by which it is distinguished from other physical theories. But later on,
it was recognized that the covariance by itself cannot lead to any phy-
sical consequences. The true key to Einstein’s discovery and the
most difficult step was the limitation of the functions describing the
gravitational field to geometrical ones (to the g,,’s). Historically, the
covariance requirement played a great part also, but this is because
it was combined with other requirements, such as simplicity and beauty
of the theory.

Nevertheless, the covariance requirement is still considered in a
somewhat mystical way, as something prohibiting the use of well-
defined coordinate frames, like Galilean coordinates in uniform space—
time. The existence of Galilean coordinate frames is a characteristic
of the inherent properties of the uniform space-time of the “special”
theory. Likewise, there may be in “general” theory coordinate frames
distinguished by some remarkable properties and characteristic of
the kind of the nonuniform space-time considered.

In what follows, I wish to draw your attention to the fact that,
for a rather general class of problems of gravitation theory, there
exist such coordinate systems that may be considered as generali-
zations of ordinary inertial systems. I mean not the local geodetic
system valid in the vicinity of a point and of an instant of time, but the
nonlocal generalization of the inertial frames of reference, valid
throughout space.

In order to investigate whether such systems exist, it is necessary
to make definite assumptions as to the physical system considered
and as to the properties of space-time as a whole. This is necessary
because of the nonlocal character of the problem, that requires a solu-
tion of Einstein’s gravitational equations with conditions at infinity.

In the case of an isolated system of masses, it is natural to consider
the system as embedded in a Galilean space-time. In a Galilean
space—time, the following theorem holds.
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Let

Oy = +

1 0% (0% Oy
r _( 02 o2

0%y
or? 0x2 = 0y? '
If y satisfies the wave equation (Jy = 0 and is finite everywhere and
tends to zero at infinity like 1/r, as well as its derivatives, and if in
addition the radiation condition

lim {a(fw) . ﬁ(rwl}: 0

or ¢ Ot

oo

is satisfied for all values of the time ¢, then y vanishes identically. The
radiation condition states that only outgoing waves are allowed.

A similar theorem may be proved in the case that [Jy refers to a
static Einsteinian space-time which is Galilean at infinity. It is to be
supposed that the theorem holds also for a nonstatic Einsteinian
space-time, though a formal proof may be difficult.

Let the space-time be such that the aforestated theorem is valid.
Then, one can introduce auxiliary conditions for the coordinates in
such a way that they behave like Galilean coordinates and are deter-
mined like them throughout the space-time (a Lorentz transformation
remains of course arbitrary).

The auxiliary conditions are of the form Ox, =0;v =0, 1, 2, 3.
But we have

oy oy
— Y __qw_Yr
dy =g 5x, Ox, I A’
where
1 g™ 1
I'=——— & g = (—g)’g"
(—8)? ox,

Consequently, the condition is equivalent to
og/ox, = 0.

Let the coordinates x , satisfy this condition. To find the most general
form
X, = fHxox1X2X3)
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we put
= a,tegapxptn . (e =1; e1= e~ e3=—1).

The linear part of this is a Lorentz transformation. Now, n* must
satisfy the wave equation [17%* = 0, since f* and the linear part satisfy
it. Further, #* must vanish at infinity (because the transformation
must reduce there to a Lorentz transformation) and also %™ must
satisfy the radiation condition (this follows from the radiation con-
dition for the g*”’s):

7" = outgoing wave at infinity.

But the conditions imposed upon 7* are so stringent that, according
to the theorem, 7* = zero everywhere. Thus, the whole arbitrariness
of the coordinates resides in the Lorentz transformation.

We thus come to the conclusion that, in the case of an isolated
system of masses, there is no essential difference in the coordinate
question, between the so-called general and so-called special relati-
vity theory. In both cases, arbitrary coordinates are admissible, since
the equations are, or may be, written covariantly with respect to
general transformations. But, in both cases, auxiliary conditions may
be imposed upon the coordinates in such a way that only a Lorentz
transformation remains arbitrary.

The coordinates so defined——I call them harmonic—are particu-
larly adapted to the solution of Einstein’s equations, and all the
solutions that I shall discuss in the following lectures are obtained
in these coordinates. But the value of the harmonic coordinates resides
not only in their practical importance, but also in the fact that they
help us to understand the general features of gravitation theory.
Their existence shows that the usual sharp distinction between the
coordinate problem in special and in general theory is somewhat arti-
ficial. In both theories, coordinates exist that are determined to a
Lorentz transformation, but in both theories any other coordinate
system may be used.
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ONE of the most influential ideas in giving a new direction to general relativity is
contained in this paper of Pirani. It seeks to answer the problem: What is the
appropriate definition of radiation in gravitation theory?, and its answer is largely

that adopted later.
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Invariant Formulation of Gravitational
Radiation Theory

F. A. E. PIraNI

Department of Mathematics, King’s College, Strand, London, England
[Received October 18, 1956]

In this paper, gravitational radiation is defined invariantly within the framework
of general relativity theory. The definition is arrived at by assuming (@) that gravi-
tational radiation is characterized by the Riemann tensor, and (b) that it is propa-
gated with the fundamental velocity. Therefore a gravitational wave front should
appear as a discontinuity in the Riemann tensor across a null 3-surface; the
possible form of this discontinuity is here calculated from Lichnerowicz’s continuity
conditions.

The concept of an observer who follows the gravitational field is defined in
terms of the eigenbivectors of the Riemann tensor. It is shown that the 4-velocity
of this observer is timelike for one of Petrov’s three canonical types of Riemann
tensor, but null for the other two types. The first type is identified with the absence
of radiation, the other two with its presence. This constitutes the definition. It is
shown that the difference between the no-radiation type and one of the radiation
types can be made to correspond to the discontinuity possible across a null 3-
surface; this demonstrates the consistency of the wave front and foliowing-the-field
concepts.

A covariant approximation to the cancnical energy-momentum pseudo-tensor is
defined, using normal coordinates, which are given a physical interpretation. It is
shown thatf'when gravitational radiation is present, the approximate gravitational
energy-flux cannot be removed by a local Lorentz transformation, which supports
the definition of radiation.

It is proved that, as would be demanded of a sensible definition, there can be no
gravitational radiation present in a region of empty space-time where the metric is
static.

t Phys. Rev. 105, 1089 (1957).
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1. Introduction

The investigation of gravitational radiation in general relativity
theory is hampered by the lack of an invariant definition of that con-
cept. The presence of gravitational radiation must be distinguishable,
mathematically, from a peculiar choice of the coordinate system, and
physically, from a peculiar motion of the observer. In a covariant,
nonlinear theory, the definition should not, if the concept of radiation
has any real validity, depend on the weakness of fields or on special
coordinate conditions. An invariant definition is proposed in this
paper.

This definition is given in terms of the Riemann tensor. Just as it is
the Riemann tensor which indicates a genuine gravitational field in the
first place, so

(A) 1t is the Riemann tensor which characterizes the presence of
radiation.

Physically, this is because the Riemann tensor describes the varia-
tions in the gravitational field from event to event in space—time.
In accordance with the principle of equivalence, only the variations
in the field, and not the field itself, can produce any real physical
effects. The question is: what sort of variations in the field should
be classified as gravitational radiation?

To answer this question, one must first of all decide which attri-
butes of radiation, a concept until now familiar largely through elec-
tromagnetic theory, may be assumed to apply also to the gravitational
case. In making the present definition, it will be assumed that its essen-
tial attribute is:

(B) In empty space-time, gravitational radiation is propagated
with the fundamental velocity.

The two assumptions (A4) and (B) serve to characterize gravitational
radiation completely. Two main arguments are developed in the follow-
ing sections to support the definition; these arguments depend re-
spectively on the following consequences of (4) and (B):
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(C) A gravitational wave-front manifests itself as a discontinuity in
the Riemann tensor across a null 3-surface.

(D) The motion of an observer following the gravitational field is
determined by the Riemann tensor. In the presence of gravi-
tational radiation, such an observer would have to move with
the fundamental velocity in order to keep up with the field.

These ideas will now be developed in more detail. In connection
with (4), one may investigate the variations in the gravitational field
directly by writing down the equation of geodesic deviation. This
equation gives the variation in the field between neighboring space—
time events in terms of the Riemann tensor.! The physical effects so
represented are set out in detail in Sec. 2.

Assumption (B) is supported by very general considerations, as well
as some specific ones, like the result of Lichnerowicz? that the charac-
teristic surfaces of Einstein’s equations are null 3-surfaces. Lichnero-
wicz starts from continuity conditions which are sufficient to ensure
that the equations have physically unique solutions in empty space—
time.

In Sec. 2, Lichnerowicz’s conditions will be used to determine what
discontinuity in the Riemann tensor is permissible across a null 3-
surface. In accordance with statement (C) above, one would expect
to find such a discontinuity whenever a source of gravitational radia-
tion was switched on or off,

The idea of an observer following the field, introduced in statement
(D), is one already well known in the ordinary Maxwell-Lorentz
electromagnetic theory, and not difficult to generalize to gravitational
field theory. In the Maxwell-Lorentz theory, an observer is said to
be following the field if he moves so that in his restframe the Poynting
vector vanishes. He therefore observes no flux of field energy. If this
idea is restated covariantly (but still in the Maxwell-Lorentz theory)

LF. A. E. Pirani, Helv. Phys. Acta (to be published); and Acta Phys. Polon

(to be published).
z A. Lichnerowicz, Théories relativistes de la gravitation et de I’ électromagnétisme

(Masson et Cie, Paris, 1955), p. 33.
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in terms of the energy-tensor of the field, it is found that an observer
may always follow the field by acquiring a suitable 4-velocity, unless
it is a null field (self-conjugate field), in which case it would be neces-
sary to acquire the fundamental velocity in order to make the energy
flux vanish. This is because in a null field E and H are perpendicular
and of equal magnitude in every Lorentz frame. Plane waves and
spherical waves are common examples of null fields.? From the point
of view adopted here, only null fields will be counted as radiation.

The 1dea of following the field, expressed in such terms, does not
admit an immediate covariant generalization to the case of the gra-
vitational field, for, because of the principle of equivalence, there is
no covariant gravitational field energy-tensor. The generalization will
be achieved by considering the geometrical properties of the two fields.
It will be found that in each case certain eigenvectors of the field can
be defined. In the electromagnetic case it turns out that an observer
following the field has the timelike eigenvector for 4-velocity; when the
field is a null field this timelike vector collapses onto the null cone,®
and it is this which is characteristic of the presence of radiation.

In the same way, a timelike eigenvector may in general be defined,
in terms of the Riemann tensor, for the gravitational field in empty
space-time. This vector is interpreted as the 4-velocity of an observer
following the field, and in some fields this vector collapses onto the
null cone. As in the electromagnetic case, this situation is identified
with the presence of radiation.

These timelike eigenvectors can be given a further physical signi-
ficance in both gravitational and electromagnetic fields. For example,
in a non-null electromagnetic:ﬁeld, the 4-velocity which follows the
field yields, for a given field, an extreme magnitude for the Lorentz
force. Similarly, the (more complicated) physical effects of the gravi-
tational field also reach extreme values for an observer having the
4-velocity which follows the field. This will be discussed in detail
in Sec. 4.

3 For a detailed discussion of the geometrical and algebraic properties of the
electromagnetic field, see J. L. Synge, Relativity: the Special Theory (North-Holland
Publishing Company, Amsterdam, 1956), Chap. IX.
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The eigenvectors of the gravitational field are defined in Sec. 3,
with the aid of Petrov’s classification? of empty space-time Riemann
tensors into canonical types. The elegant geometrical-algebraic techni-
ques developed by Ruse® and others supply the basis for this classi-
fication, which yields two types with radiation present and one with
no radiation, It will be shown that the difference between the non-
radiation type and one of the radiation types can be made, by a suit-
able alignment of axes, to correspond exactly to the discontinuity in
the Riemann tensor across a wave front permitted by Lichnerowicz’s
conditions. This will demonstrate the consistency of the idea (Sec. 2}
of a gravitational wave front with the idea (Sec. 3) that an observer
following the gravitational radiation field must have the fundamental
velocity.

This geometrical approach is necessary because there is no cova-
riant gravitational energy-momentum tensor in Einstein’s theory. This
lack is to be expected, because of the principle of equivalence. In
Lorentz-invariant field theories the energy-momentum tensor depends
on the field strengths, but these have locally no absolute significance
for the gravitational field. The canonical energy-momentum pseudo-
tensor® ¢, is a quadratic function of the field strengths (Christoffel
symbols) and satisfies a conservation law, but it is not covariant—it
can in fact be made to vanish entirely along an arbitrary open curve
in space-time. Nevertheless, ¢;, has been used in definitions of gravi-
tational radiation by various authors,’ but always in weak field approx-
imations and under physically obscure coordinate conditions.

It might be possible to construct covariant, and therefore physi-
cally significant, expressions out of £, over extended regions of space-
time, into which only the variations in the gravitational field, not the

4 A. Z. Petrov, Sci. Not. Kazan State Univ. 114, 55 (1954).

5 H.S. Ruse, Proc. Roy. Soc. ( Edinburgh) 62,64 (1944); Quart. J. Math. (Oxford)
17, 1 (1946); Proc. London Math. Soc. 50, 75 (1947).

¢ Range and summation conventions: lower case Greek indices 0, 1, 2, 3;
lower case Latin indices 1, 2, 3.

7 E.g., L. Landau and E. Lifshitz, The Classical Theory of Fields (Addison-
Wesley Publishing Company, Inc., Cambridge, 1951); J. N. Goldberg, Phys.
Rev. 99, 1873 (1955).
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field itself, could enter, but no one seems to have succeeded in doing
this, or even to have attempted it. The difficulties could be resolved
if one could reformulate the weak-field approximation method in a
covariant way valid in an extended region.

The alternative to this, which is adopted in Sec. 4, is to develop a co-
variant local approximation method valid in arbitrarily strong fields
but only in small regions of space-time. This is done by introducing
normal coordinates,® which are given a physical interpretation. The
energy-momentum pseudotensor #), vanishes at the origin of normal
coordinates but not in a finite neighborhood of the origin, and may
be expanded in a power series with tensor coefficients which are func-
tions of the Riemann tensor and its covariant derivatives. By averag-
ing over a small 2-region, one may construct a covariant approxima-
tion #, to the mean energy-momentum pseudotensor in the region.
It is found that when no gravitational radiation is present, there exist
observers (with suitable 4-velocities) who observe no gravitational
energy flux, but that when gravitational radiation is present, such ob-
servers cannot be found. This corresponds exactly to the electromag-
netic field case, and supports the definition of gravitational radiation.

Various examples are discussed in Sec. 5, and some deficiencies of
the present approach are mentioned in Sec. 6.

2. Nature of a Gravitational Wave Front

The nature of a gravitational wave front will now be investigated,
by finding the discontinuity in the Riemann tensor permissible across
a null 3-surface. The calculation is based on Lichnerowicz’s conti-
nuity conditions,® which are conditions on the metric tensor and its
derivatives sufficient to ensure that Finstein’s equations in vacuo,1®

2.1) G, =0,

8 B. Riemann, Gdttingen Abhandl. 13, 1 (1862); see O. Veblen, Invariants of
Quadratic Differential Forms (Cambridge University Press, Cambridge, 1927),
for a lucid exposition.

9 Reference 2, Chap. L.

10 The cosmological term is disregarded throughout this paper. Itcould be restor-
ed to the work without any difficulty, but at some cost in conciseness,
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are physically unique. These conditions are essentially the same as
those found by O’Brien and Synge'' from assumptions about the
finiteness of certain quantities in the boundary layer between two re-
gions of a continuous medium.

Lichnerowicz postulates that space-time can be divided up into
overlapping regions, in each of which there exists a coordinate system
such that (i) the metric tensor g,, is continuous, (ii) the first partial
derivatives'* g, , are continuous, (iii) the second and third partial
derivatives of g, are piecewise continuous. Space—time is assumed be a
Riemannian manifold with certain differentiability properties which
do not affect the present argument.

Lichnerowicz’s analysis is developed by taking in one of the regions
a coordinate system such that, say, the surface S: x° = 0 is a surface
of discontinuity of the gravitational field. Then according to the postu-
lates, the coordinate system can be chosen so that all the g,,, all the
8, and all the g, . with the possible exception of g,, (, are conti-
nuous across S. Now the covariant components of the Riemann ten-
sor arel®

(22)  Roow = lov, 0l ,—[ou, o) . +17%lov, 7] =% on, n].

If the first two terms of this are written out in full, it may be seen
that the only components of R,,,, which admit discontinuities across
S are those with just two indices O, one in each of the pairs go, uv.
This is the same as a result of O’Brien and Synge.™

Results of this kind may be put into covariant form by transform-
ing to a local Minkowskian coordinate system and then introducing
a tetrad (orthonormal frame, quadruped, Vierbein, 4-nuple) of ortho-
gonal unit vectors directed along the axes of the Jocal Minkowskian
system. Tensor equations may then be rewritten as scalar equations
by contracting with tetrad vectors, and the special coordinate system
discarded.

11 (»Brien and J. L. Synge, Comm. Dublin Inst. A, No. 9 (1952).

12 Comma denotes partial differentiation: g,,, , = 0g,,/0x2.

B (0) = 8o, 0+ 8os, v—8o», 0} and I' = g7, [ow, 0] are Christoffel symbols
of the first and second kinds respectively.

14 Reference 11, Eq. (5.12).
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Physically, the timelike tetrad vector is identified as the 4-velocity
of an observer, making measurements at the event in question, who
uses space axes having the directions of the three spacelike tetrad
vectors. The scalars formed by contracting any tensor with tetrad
vectors are just the physical components of the tensor, measured by
this observer.1

For the present purpose, the 3-surface S is to be a null 3-surface.
It is not convenient to have any of the x* as a null coordinate; there-
fore one writes, say, & = 0 in place of x* = 0 for the equation of S.
One may by a linear transformation introduce at any point P of S
local Minkowskian coordinates such that ds? = 7, dx" dx’, where!®

'r],uv = diag(17 '—19 _1’ —1)9

_1
and 1n a finite neighborhood of P, one may take & = 2 *(x°—x1). If
_1
also £ = 2 *(x°+x%) in this neighborhood, then at P,

ds® = 2 dt di — (dx2)2 — (dx®)2.

Then if A denotes amount of discontinuity across S, Lichnerowicz’s
conditions require that at P,

Agn) =0,
N m,c) = A0/ 05) = A(Bg,,/]00) = 0,
_/](623'#,,/85 a(:) = A(a2g,uv/acz) = 09
but
A(0°8,,[05%) = A,

where a,, are any numbers. The possible discontinuities in R, are
now easily found from (2.2). A straightforward calculation shows that
the only a@’s contributing to the Riemann tensor in empty space—time

are
(23) —dos = dz3 = C and sz — (f),

15 For details, see the second paper of reference 1.
18 Units are chosen, throughout, so that ¢ = 1,
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where o and ¢ are arbitrary. These correspond exactly to the two types
of “transverse-transverse” waves found in the linear approximation
theory of gravitational radiation.?

All the terms in ¢ may be reduced to zero by a rotation of axes
through angle tan~Y(¢ /o) in the 23-plane.

The resulting discontinuity in the Riemann tensor will now be writ-
ten in covariant form by introducing a tetrad of unit vectors'® 2%,
which at P are directed along the coordinate axes, so that at P, A7, =
&8%. On account of the orthonormality, it is true everywhere that

BuhzAf = Tap.
Now define
LI ﬂaﬁ 2#,

so that A% = A4 A% = — A% Then it is not difficult to prove that
Magh%AP = Qs = g, 12z = 8,
and so forth. It is convenient to abbreviate
A=A =

This notation differs slightly from that of Eisenhart,?® who uses indi-
cators instead of 7,

It is convenient to introduce a simple 6-dimensional formalism for
discussing the Riemann tensor and other bivector-tensors. The 6-
dimensional pseudo-Euclidean space (the Klein space) is introduced
whose vectors are just the bivectors (skew tensors) in the local tangent

17 A. S. Eddington, Mathematical Theory of Relativity (Cambridge University
Press, New York, 1924), second edition, p. 247.

18 Here u is a vector index and o a label distinguishing the four vectors. The
Greek letters o, 3, ¥, §, € and Latin letters a, b, ¢, d, ¢ will be used only for labels,
but shall satisfy the same range and summation conventions (Greek 0, 1, 2, 3;
Latin 1, 2, 3) as ordinary vector and tensor indices u, », 0, ¢, 7, ... and m, n, p,
f, .... From now on, an index given a particular value will be understood to be
a label index, not a tensor index. This notation obviates the necessity of bracket-
ing indices,

15 1. P. Eisenhart, Riemannian Geometry (Princeton University Press, Prince-
ton, 1949), Chap. 3.
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Minkowski space defined by the tetrad A%, The rule for going over
to the 6-dimensional formalism is the following:

If H,; are the physical components, with respect to a given tetrad
at a given space-time event P, of any skew tensor H ,, then the cor-

responding 6-vector in the 6-space at P is?0 H ,, got by relabeling the
suffixes o8 according to the scheme

«f: 23 31 12 10 20 30,
(2.4) 4 1 2 3 4 5 6.

Accordingly, any bivector-tensor corresponds to a symmetric tensor
in the 6-space. The physical components Rz, of the Riemann ten-
sor, for example, go over to the components of a symmetric 6-tensor
R, each of the suffix pairs «f, 6 being relabeled according to the
scheme (2.4).

In order that the raising and lowering of indices in the 6-space
should correspond to the raising and lowering of index pairs in the
4-space of physical components, the metric tensor of the 6-space
must be chosen to be

(2.5) nag = diag(1,1,1, -1, —1, —1)

which corresponds to the bivector-tensor 7,,1,5—7,51g,-

The discontinuity in the Riemann tensor at any event on the null
3-surface S in empty space—time may be calculated straightforwardly
from (2.2) and (2.3) and written in terms of R ;. It turns out to be

—0 —¢ . =0 o

(2.6) ARyp = _¢ (f ? d)
—¢ e . e ¢

i o ¢ . ¢ -0

Here ¢ and ¢ are arbitrary numbers, but the terms in ¢ may be eli-
minated by a rotation, as stated above. It will be shown in Sec. 3

@ Upper case letters A, B, C range and sumover 1, 2, ..., 6.
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that the difference between the no-radiation and one of the radiation
canonical types of Riemann tensor, referred to a suitably oriented
tetrad, is precisely the array of ¢’s in (2.6), which supports the inter-
pretation of (2.6) as the discontinuity across a gravitational wave
front.

The physical effects of the discontinuities (2.6) may be studied in
terms of the equation of geodesic deviation?!

@) 8P [35* 4 Rigg 1012 = O,

which describes the relative acceleration of two neighboring (spheri-
cally symmetric) test particles.! In Eq. (2.7), A = dx*/dx is the unit
tangent vector to the geodesic world-line C of one of the particles, ©
is proper time along C, and " is the orthogonal displacement vector
to the (neighboring) world-line of the other particle. To reach this
physical interpretation directly, one has only to refer (2.7) to a tetrad
comprising A*, which is the 4-velocity of the particle with worid-
line C, and three spacelike vectors A% orthogonal to and parallelly
propagated along C. Then (2.7) becomes

(2.8) d2Xa/dv?+ K4(7)X® = 0,

where X = 727 are the physical components of the displacement
vector (X° vanishes) and

(2.9) 5 = Ripo

are some of the physical components of the Riemann tensor. In the
Newtonian equation corresponding to (2.8), X* are the coordinates
of the second particle relative to the first, and K} = 0°V/0x“0x?,
where V is the ordinary Newtonian gravitational potential. Thus
—K2X? is to be identified as the relative acceleration of two particles
with relative coordinates X, arising from the difference in gravitational
field between the particles.

It follows that as the gravitational wave front described by (2.6)

21 J, L. Synge and A. Schild, Tensor Celcrlus (University of Torcnto Press,
Toronto, 1949), p. 93.
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passes the pair of test particles, there will be a discontinuity

(2.10) AKs = |. —o ¢

across the wave front. The tetrads to which (2.6) and (2.8) are referred
have been (and always may te) chosen to coincide at the space-time
event where the wave front passes the particles. It can be seen that
the discontinuity in the relative acceleration depends on the relative
position of the particles, and in particular that there is no disconti-
nuity if the two particles are aligned in the direction of propagation
of the wave front, which is the 1-direction.

This result represents in an invariant manner the transverse charac-
ter of gravitational radiation. Two particles lying in the 23-plane
(which is perpendicular to the direction of propagation) will suffer
a discontinuous change in relative acceleration. If, for example, the
2-axis is chosen so that ¢ = 0, and the line joining the particles makes
an angle 0 with this axis, then according to (2.10) the change in the
relative acceleration will take place in a direction making an angle
— 0 with the same axis.

3. Canonical Forms for the Riemann tensor

In this section, the idea of following the gravitational field is made
precise. This is done by fairly straightforward generalization from the
case of the electromagnetic field. In that case, eigenvectors for the
field are defined by the equations

(3.1 T, = A5,

where T, is the electromagnetic energy tensor. It is found® that in a
general field both timelike, spacelike, and null eigenvectors exist;
these lie in two orthogonal 2-spaces but are otherwise undetermined.
In a null field, on the other hand, there is no timelike eigenvector;
all the eigenvectors are spacelike, except for one which is null, and all
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lie in a 3-space tangent to the null cone along the direction of the null
eigenvector.

The sense 1n which an observer follows the electromagnetic field
comes most easily out of consideration of the Poynting vector. Rather
than introduce a particular Lorentz frame, one may define a Poynting
4-vector in a covariant way, to be

(3.2) P, = (85—v2T 20",

where v* is the 4-velocity of the observer measuring the field. This is
easily seen to reduce to the usual definition when v* lies along the
time axis in a local Lorentz frame. Since

(3.3) Pt =0,

P, must be spacelike. If n, is the 4-normal to any small 2-surface 2
carried along by the observer with velocity v¢, then the electromagnetic
energy flux across 2'is

34) Pt =T, vn".

Now one says that such and such an observer is following the electro-
magnetic field if he measures zero energy flux across all 2-surfaces
which he carried along, however oriented. By (3.3) and (3.4) this
can occur only if

3.5) P,=0,
which implies that
(3.6) T = (Tut)p,

so that v, must be an eigenvector of T,,. This establishes the connec-
tion between the concept of following the electromagnetic field and
the eigenvectors of the electromagnetic energy tensor. As mentioned
above, a null field has no timelike eigenvector, so that the Poynting
vector will not vanish for any observer with a finite velocity. The energy
flow in a null field cannot be abolished by a Lorentz transformation.
A null field has one null eigenvector, say &, belonging to the eigen-
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value zero, so that
3.7 T, = 0.

Thus an “observer” moving with the speed of light in the direction
of & (which is essentially the propagation vector) would observe no
energy flux past him.

In the gravitational case, there is no energy-momentum tensor of
the gravitational field itself (the pseudotensor is discussed in Sec. 4),
but in accord with the arguments developed in Sec. 1, one may seek
in the geometrical structure of the Riemann tensor a definition of
“following the ficld” analogous to that developed in the electromag-
netic case. The definition is naturally more complicated, because the
Riemann tensor is a more complicated object than the Maxwell
energy tensor. The definition is made in two stages. First of all, eigen-
vectors (skew tensors) are defined for the Riemann tensor. By using
Petrov’s canonical forms,* these eigenbivectors may be written down
explicitly for the three algebraically distinct types of Riemann tensor
in empty space-time. The eigenbivectors correspond geometrically to
2-spaces, or pairs of 2-spaces, in space—time. The intersections of these
2-spaces with one another define a number of 4-vectors (assumed
normalized if they are not null), which will be referred to as Riemann
principal vectors.

An observer with a timelike Riemann principal vector as 4-velocity
is said to be following the gravitational field.

It turns out that for two of the three types of Riemann tensor,
this timelike principal vector collapses onto the null cone. The occur-
rence of these types of Riemann tensor is identified with the presence
of gravitational radiation.

The eigenbivectors P,, of the Riemann tensor are defined by the
equation
(3-8) R posP® = AP,

or
RapP® = P,

in the 6-dimensional formalism introduced in Sec. 2.
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Now Petrov? has shown that by a suitable choice of the reference
tetrad at any event in empty space—time, one may reduce the Riemann
tensor to a canonical form of one of the following three types:

Type I:
ot
o2
3.9 Rig=1,
( ) AB Bl )
Ba
3
3
k=
Type 11:
- —2a .
o*—C
(3.10) R4p = &.2,8 _
B
B o
Type 111:
- . —0
—a
(3.11)
| o

B1

o3

b .
B3
—y
—atg |
—28 . ) -
il o
. o B
4 2x .
—(x~0)
~ (et 0) |
[o2m

In Type I, the reference tetrad yielding the canonical form is in general
fully determined; accidental equality between different «’s or §’s may
introduce some freedom. In Types IT and ITI, the reference tetrad is
determined only up to a Lorentz rotation in the 10-plane and a spatial
rotation in the 23-plane. The «’s and §’s are scalar invariants of the
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Riemann tensor, but the value of o depends on the choice of axes in
the 10-plane.

These forms of R, ; are determined, first, by the limitation of trans-
formations in the 6-space to those generated by changes of tetrad
(i.e., by real Lorentz transformations, including rotations) in space-
time, and secondly, by the nonsymmetry of R4 (equivalently, by the
indefinite character of the metric 1,,). As a result, the elementary divi-
sors of R need not be simple, and Types IT and III result when they
are not.

The eigenbivectors of R ,,, defined by (3.8), are easily found from
(3.9)-(3.11); they are either simple bivectors, dual in pairs or of the
form P, = §,%i%S ,, where S, is simple and °S , 1s its dual.?2

Thus each eigenbivector P4 of R ,, defines a pair of orthogonal
2-spaces. The P* are readily found from (3.9)-(3.11) to be (conve-
niently normalized) the following:

Type I: Six independent eigenbivectors:

If B1 = 0, P4 = &{ and P4 = §{ (dual pair);

if B1 = 0, P4 = 8+ id{,
If B2 = 0, P4 = 6§ and P4 = ¢ (dual pair);

if By = 0, PA = 83+ id2,
If B3 = 0, P4 = 64 and P* = & (dual pair);

if B # 0, P4 = 8§+ i8¢

Type I1: Four independent eigenbivectors:

If B = 0, P4 = 64 and P4 = §¢ (dual pair), and
P4 = 64— 64 and P4 = 84+ 64 (dual pair).
If g = 0, P4 = §1ibf, and P1 = 84— 81 £ i(84+ 82).

22 A simple bivector may be characterized by det (S,,) = 0; it may always
be written in the form S, = X,Y,— XY, and defines a 2-space in space-time.
The dual of any bivector P, is

OP.uv = ;gyggvoegdrnprn(oPA = %gABeBCPC)v
where €™ = ++/(—g) is the alternating tensor, which will be understood to

take the negative sign when pgorn are in the order 0123. The dual of a simple
bivector S, defines a 2-space orthogonal to that defined by S, itself.
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Type 1I1: Two independent eigenbivectors:
P4 = 6464, and P4 = 844 4.
The different pairs of 2-spaces represented by these simple bivectors
are not orthogonal. Their intersections yield the Riemann principal
vectors r*, which are (conveniently normalized) as follows:

Type I: r* = 8}, &}, 03 05 The Riemann principal vectors are
just the vectors of the reference tetrad. One is timelike, three space-
like.

Type H: ¢ = 65— 0%, 85, 65. The first is null, the others space-
like. Because of the freedom of rotation in the 23-plane, the last two
may be replaced by any linear combination of themselves.

Type III: r* = §;—8]. There is only one Riemann principal
vector, and it is a null vector.

According to the criteria set out earlier, gravitational radiation is
now defined as follows:

At any event in empty space—time, gravitational radiation is present
if the Riemann tensor is of Type II or Type III, but not if it is
of Type 1.

Now 1t will be noticed that the ¢’s in (3.10) appear in the same
positions and with the same signs as the ¢’s in (2.6), which exhibits
the discontinuities permissible across a null 3-surface. This corre-
spondence has of course been achieved in part by orienting the two
reference tetrads so that the 1-direction is picked out for asymmetrical
treatment in each case. However, it has also the physical significance
that the discontinuities possible across a gravitational wave front,
according to Lichnerowicz’s conditions, are just what are required
for the transition from a space-time region without gravitational
radiation to one with gravitational radiation, according to the defini-
tion just proposed. This is of course precisely what one would wish,
to show the compatibility of the two approaches to the problem.

It will be noticed also that the transition from Type I to Type II
reduces the number of independent «’s and ’s from two each to one
each. This implies some additional symmetry in the radiation field,
which may at first sight be surprising. However, a physical interpre-
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tation which at once suggests itself is that because of the nonlinearity
of the field (that is, because the gravitational field effectively enters
its own source-function), gravitational waves without any kind of
symmetry would interfere with themselves to the extent of destruc-
tion.22?

The physical effects of gravitational waves may be investigated by
using the equation of relative acceleration (2.8), in exactly the same
way as the effects of discontinuities were investigated in Sec. 2. The
difference between Type I and Type II space-times shows up clearly
if one examines the behavior of test particles moving with velocities
different from that specified by the timelike tetrad vector. As an ex-
ample, consider the effect on K [defined by (2.9)] of the local Lorentz
transformation defined at an event by

2% = A% cosh 6+ 21 sinh 0,
(3.12) AL = 2%sinh 0+ 2] cosh 0,
B B
where the unbarred tetrad is that to which the canonical forms (3.9)

and (3.10) are referred. Then the comparative values of K, (omitting
K,,, which are unaltered) are

Type I:
Kas = —(2z—0), K2 = —(x—o cosh 20),
Kay = 0, Ks3 = 3(Bs—f2) sinh 20,
K33 = —(x+0), Kz = —(ax+ocosh 20).
Type II:

Ky = —(2—0), Kpp= —(z—0ce™ %),
Kaz = 0, Koz = 0,
K33 = —(06-1—0'), Egg = ~(oc+o‘e‘2‘9).

222 Note added in proof.—The remaining discussion, where it refers to particular
canonical types, is restricted to Types I and II. The absence of scalar invariants
in Type Il suggests that space-times of this type would represent radiation without
sources, but the interpretation of this is not obvious, and further consideration
of it is left to a subsequent paper. The writer knows of no example of a Type 1II
space-time; he would be grateful if new examples of empty space-time metrics
of any type were sent to him for study.
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Here the barred K’s are those referred to the tetrad 4%, and in Type
I, s and a3 have been replaced by « = L(xa+a3) and o = L(as—as),
for ready comparison with Type II.

An essential difference between the types is represented by the fact
that in Type I, the changes in Kay and Ka3 go as 62, for small 6, while
in Type 11, they go as 0. The Type I changes are essentially a special-
relativistic effect, in the sense of “being of the same kind as familiar
effects such as the Lorentz contraction”, but the Type II changes are
characteristic of a non-Lorentzian phenomenon. The first-order change
in Ka3, another instance of non-Lorentzian behavior, suggests that
the A’s may be connected with the rotational properties of the field.

For strong Lorentz transformations (large 0), the Type I K’s be-
come large in absolute value for both signs of 0, but the Type IT K’s
approach finite limits for large positive 8, so that in Type I the K’s
have extreme values for 8 = 0, while in Type II the extreme values
are approached only as 0 - oo, that is, as the observer’s velocity
approaches the fundamental velocity in the direction of propagation
of the radiation.

4. Reduction of the Energy-momentum Pseudotensor

As is well known, one may convert the covariant conservation
equations??
T.;»=0
into the form

{—oiri )= 0

by introducing the canonical energy-momentum pseudotensor f),.
This fact, and the canonical origin of £, lead one to identify it as the
“energy” momentum pseudotensor of the gravitational field”. The
physical argument is, roughly, that the deviations of space-time
from flatness introduce additional terms into the conservation equa-
tions, and that these deviations are consequences of the existence of
the gravitational field. All would be well, were it not that £, depends

23 A semicolon denotes a covariant derivative.
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on idiosyncrasies in the choice of coordinates as well as on actual
physical phenomena. The nonhomogeneous transformation proper-
ties of ¢, make it impossible to construct any scalar quantities out of
it, at least in a direct way, and so its physical interpretation must be
suspect, because of this essential dependence on the coordinate sys-
tem. It is hard to see how one can attach any physical meaning to
#;, unless one can first attach a physical meaning to the coordinate
system. The same difficulty would arise with vectors and tensors,
except that one can construct scalars (e.g., physical components) out
of them by contracting with other vectors or tensors, and these sca-
lars are of course independent of the coordinate system.

The usual procedure in dealing with £, is to make weak-field approx-
imations and to assume mathematically convenient coordinate con-
ditions. These methods are controversial and their physical signifi-
cance obscure. Difficulties in dealing with £/, might anyhow have been
expected from consideration of the principle of equivalence. Since
the gravitational field can be abolished at an event by a coordinate
transformation (in the sense that the I'%, can be made to vanish),
the gravitational energy, momentum and stress at an event can readily
be understood to be as ephemeral as the coordinate system. The
energy of the field resides not in its value at a single event, but in
its variation from one event to another. It is not surprising that one
cannot abolish #), throughout any finite 2-surface in a general space-
time. However, a mean value #, may be defined over the 2-surface
of a small 3-volume, and by a suitable physical prescription of the
coordinate system, such a definition can be made covariant.

The coordinates to be prescribed are well known to mathemati-
cians under the name normal coordinates,® and have been used in
general relativity theory before,?” * but it i1s nevertheless desirable to
give some physical justification for this choice.

The choice of coordinate system depends on the physical situation
involved. For many purposes it is enough to specify at an event a tetrad

24 G. D. Birkhoff, Relativity and Modern Physics (Harvard University Press,
Cambridge, 1923).
25 ‘T, Y. Thomas, Phil. Mag. 48,, 1056 (1924),
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of unit vectors, or the corresponding local Minkowskian coordinate
axes, representing the 4-velocity of an observer and rectangular
Cartesian axes in his local instantaneous 3-space. The essential thing
is that it should be possible in principle to identify the chosen system
with one which could be used by an observer in the given physical
situation. Recently,! the writer compared the behavior of test particles
in a gravitational field in the general relativity theory and in the New-
tonian theory (see Sec. 2 above). In that case it was appropriate to
introduce local Cartesian coordinate systems in the instantaneous
3-spaces along one of the particle world-lines, and the coordinate
systems at different events were related by parallelly propagating
along the world-line the tetrad vectors representing the coordinate
axes. As might be expected, it was found that this mode of propagation
led to a description of gravitational phenomena most closely resem-
bling that obtained in the Newtonian theory from the use of ordinary
Newtonian inertial frames. However, the whole formalism, being
designed for a comparison with the Newtonian theory, was essentially
nonrelativistic.

The present case is rather different. The formalism just described is
appropriate to the discussion of dynamical effects, as in the discussion
following Eq. (2.8) above, but the whole idea of the energy—-momentum
tensor is essentially a relativistic one, developed largely within the
framework of a relativistic theory—the Maxwell theory—and it
would be inappropriate to develop the same idea in general relativity
theory, regarded now specifically as a field theory of gravitation,
except in a relativistic manner. Therefore what is required is a conve-
nient 4-dimensional analog of the Minkowskian inertial systems of
special relativity, but one defined more completely than by a tetrad
of unit vectors. Some loss of general covariance is inevitable, and the
whole aim is anyhow a little artificial, the idea being to relate the
novel concept of gravitational radiation developed here to a conven-
tional idea of radiation developed specifically for electromagnetic
theory—although it must be admitted that the discussion of the Poyn-
ting vector at the beginning of Sec. 3 applies also to flows of other
sorts of energy.
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Having, then, the aim of investigating the energy-momentum
pseudotensor by analogy with Lorentz-invariant field theories, it is
appropriate to choose a coordinate system which approximates to
a Minkowskian system. In the weak-field approximation method this
is done by considering a metric which deviates slightly from the
Minkowski metric at sufficiently large distances from material particles.
The conceptual difficulties which arise in the use of that method can
be ascribed to the lack of a covariant formulation of the weak-field
approximation. The alternative adopted here 1s a local approximation
method capable of invariant formulation: the introduction, in the
neighborhood of any chosen space-time event, of a normal coordinate
system, which approximates to Minkowskian inertial system in
a mathematically and physically well-defined way.

The physical interpretation of normal coordinates comes out of
their exact correspondence to Minkowskian coordinates in one
particular respect, namely the measurement of interval. This is best
explained by summarizing the relevant properties of such a coordinate
system, which are the following:

Normal coordinates x“ can always be chosen so that at any chosen
space—time event O,

4.1) (1) xt =0,
4.2) () Lo = Tum
(4.3) (i) % = guw.=0,
(4.4) ) Zimor = s Rowot Renio),
and
(v) at every point P in the neighborhood of O,
(4.5) x* = upl,
where
(4.6) P = dx*/du

is a vector tangent at O to the geodesic OP, and
(a) if OP is timelike, u is the proper time 7 from O to P;
(b) if OP is spacelike, u is the properdistance s from O to P;
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(c) if OP is null, # is a preferred parameter in terms of which the
equatton of the null geodesic OP takes the form

d®x* dx’ dxe
halhad p
du? +I%, du du 0,

(this defines u up to a linear transformation on the null geodesics
through O. The origin of u is chosen to be at O, and x* defined by (4.5)
does not depend on the scale of u);

(vi) the normal coordinate systems at O are connected to one another
by homogeneous Lorentz transformations at O.

It is clear from examination of these properties that an observer
who assigns coordinates in the neighborhood of a given event O by
theodolite measurements at O and interval measurements from O
as if space-time were flat, will assign normal coordinates. Thus the
employment of normal coordinates exploits to the full the locally
Minkowskian properties of a Riemannian space. In order to connect
this to previous work, it is convenient again to introduce a tetrad
of unit vectors directed along the coordinate axes.

It is property (iv) which supplies the key to a covariant expression
for the energy-momentum pseudotensor £,. The latter is homogeneous
quadratic in the g, ., and so if it is expanded in a power series
about the origin of normal coordinates, the first nonvanishing term
has an invariant coefficient, a function of R,,,,. By taking an average
over a small 2-sphere, an invariant average expression is obtained.>*
The details of the calculation are as follows: The energy-momentum
pseudotensor is defined by

oL
(47) t:" =L6:‘_g9""‘6§;:: 5
where
(48) L= (—g)Eguv[szFgc_FﬁchgQ]

% Note added in proof.— This is perhaps rather an unusual definition of aver-
age, being in effect

10 = lim (4mr)~! f 9 d2S.

r—-0
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is the first-order Lagrangian for the field. A straightforward calcula-
tion yields for L this explicit expression in terms of the g,

1

(49) = %( _—g) ZSM#"QGgm, o8, 05

where

(4.10) Smwes = Qumroe . grT[jues ggcrU,uwIn_ greyw e  grejumo,
Lj#ves — g,uggvo' + g.uagvg _ g,uvgea.

From (4.7), (4.8), and (4.9) one may write f, explicitly in terms
of the g, ,:

4.11) 18 = 18088 —28608)(—£)38™g . Lo o

Differentiating (4.11) twice with respect to x¢ and setting g, , = 0
in agreement with (4.3), one obtains

(4.12) =0, the=0,

1
(4 1 3) tﬁ, &= é (636:?: - 26316?) ( _g) 2Smﬂ7(gnx, oré'gvy, on + gnx, myg,uv, QE)'

Now making use of (4.4) and the field equations for empty space-time
(2.1), one finds after a straightforward calculation

@.14) 15, = 50208 —28508) (5104 + 856D (R + R¥IR s

It follows from (4.9) that the mean value of #% over the surface
of a small sphere about O in the 3-space t = 0 will be

(4.15) 7 = Ly

Substituting from (4.14) into (4.15) and introducing the unit vector
Al= 8§ directed along the time axis, one obtains

(4.16) 75 = (1/27)(858,—28568) (2} — ) (R"+ RZ*)Rpyma-

This covariant expression is to be interpreted as the approximate
mean gravitational energy-momentum tensor determined by an
observer with 4-velocity A by measurements in his instantaneous
3-space. It will be observed that 7,, = g, 7% is a symmetric tensor.
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A straightforward but lengthy calculation yields the value of 7¢
for the Riemann tensor in canonical form. It is of importance to
compare the physical components for Types I and II. One finds for
Type I

3
= Q02 5 oA 08 3050

k=1

3
4.17) +35{:+26£+2)}—96£ 5 cxi].
k=1

It will be noticed that all the off-diagonal terms vanish. It follows that
an observer measuring these physical components in his rest frame
observes no gravitational energy flow. On the other hand, for Type
IT one finds
% = (1/27)[o®(— 4268+ 1658108 + 2258265
+228368) + doca (6265 — 6368)
(4.18) + 802(89+ 81) (85 — 69)).

This is of the form
# = a diagonal part + (8/27)02%,%%,

where £, = 8%+ 6! is a null vector in the direction of propagation
of the radiation represented by Type II. This part of # is of exactly
the same form as the energy tensor of an electromagnetic null field,
and so should be identified as that part arising purely from gravitatio-
nal radiation. The terms in a2, on the other hand, are to be associated
with the nonradiative part of the field, and the terms in ao with the
interaction between the two parts of the field. An observer measuring
a Type II field will, according to this definition of 7, observe
gravitational energy flow in the 1-direction.

These results lend plausibility to the definition of gravitational
radiation proposed in Sec. 3. If one accepts the energy-momentum
pseudotensor as a respectable part of Einstein’s theory, then the
calculations in this section show that when, according to the proposed
definition, gravitational radiation is present, there must be an energy
flux through a small 2-surface.
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5. Examples

It would not be satisfactory if empty static space-time regions could
admit the presence of radiation; that they cannot is shown ;by the
following rather clumsy proof.

A static space-time region, rigorously defined, is one in which there
is an everywhere-timelike group of motions of the region into itself
(apart from boundaries) whose generators form a normal congruence.

It follows that if the timelike tetrad vector A* is taken to be tangent
to the generators, then

(5.1) yﬂab = 0,
where y,,, = 4,.,A44; are some of the Ricci rotation coefficients.®
A standard formulal® then at once gives
(52) Rogpe = 0.

Then a rotation of the spacelike tetrad vectors will diagonalize the
symmetric 3-tensor R, and it follows from the field equations (2.1)
that R, must be simultaneously diagonalized. Hence the Riemann
tensor is now in Type I canonical form, and so no gravitational
radiation is present. It follows from a result of Taub?® that there can
be no plane gravitational waves filling all space-time.

The simplest empty space-time gravitational field is the Schwarz-
schild field. Taking the metric in the form

¥

—1
(5.3) ds? = (1—2—’") di— (1-27’") dr® — P{d0? +sin® 0 do?),

and labeling rO0¢t in the order 1230, one finds, with tetrad vectors
directed along the coordinate axes, a Type I Riemann tensor already
in canonical form with

(5.4) —%'“1 = 0lg = Olg = m/ra, ﬁk = 0
The Riemann principal vectors are not fully determined, however,

26 A. H. Taub, Ann. Math. 53, 472 (1951).
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because of the symmetries of the field, which show up in the equality
of oz and «;. According to Birkhoff’s theorem,2? there can be no
spherical waves, since the Schwarzschild field is the only spherically
symmetric empty space-time solution of Einstein’s Eq. (2.1).

The cylindrically symmetric metric introduced by Rosen,?® in
discussing cylindrical waves,

dSZ — e2?—2'ﬂ(dt2__dQ‘Z)_e—2wQ2 quZ__eZ'P dz2’
(5.5) p =y, 1), y=1lo 1),
is of Type 11, with

_ Oy

o 0% SOy Oy Op Oy .0y 0y
Opot

(56) T3 %0 o o o0 a0 o

as may readily be found by taking tetrad vectors along the coordinate
axes. Radiation will be present unless the above expression for o
vanishes.

6. Discussion

The definition proposed in this paper provides an unambiguous
local criterion of the presence of gravitational radiation, but it suffers
from several defects. In the first place it counts as radiation only those
gravitational disturbances which are propagated with the fundamental
velocity. If it should turn out to be desirable that phenomena propa-
gated with lower velocities be classified as radiation, then they would
not be included under this definition. In particular, standing waves
are not included. However, the analysis points to a new and powerful
tool for the investigation of gravitational fields in general, namely the
scalar invariants oy and §,.2°

27 Reference 24, p. 253.

28 N. Rosen, Bull. Research Council Israel 3, 328 (1954).

29 That these might become significant had already been emphasized by several
workers in the formal talks and the discussion at the Berne Conference on Rela-
tivity Theory, July, 1955 (unpublished).
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In the second place, the definition is a local geometric-algebraic
one, and does not reveal at all how the properties of the radiation
may vary along the path of propagation. This hiatus can be filled,
at least formally, by introducing Petrov’s canonical forms (3.9)—(3.11)
into the conservation law for the matter-free gravitational field:

(6.1) Riy =0,

which may readily be deduced from the Bianchi identities and the
field equations (2.1). The resulting equations, which bear a striking
similarity to the ordinary conservation laws for a medium with density
and pressures, will be discussed in a subsequent paper.

Another defect of the present discussion is that it gives no indication
of what secular changes may occur in radiating matter. Suppose for
example that a Schwarzschild particle is disturbed from static spherical
symmetry by an internal agency, radiates for some time, and finally
is restored to static spherical symmetry. Is its total mass necessarily
the same as before? This and similar problems required investigation.
Also the status of the scalar invariants of the Riemann tensor in the
Einstein, Infeld, and Hoffmann approximation theory deserves clari-
fication, and may be hoped to assist in resolving the annoying ambigui-
ties of interpretation which beset that theory.

I am much indebted to H. Bondi for a remark which stimulated this
research, and for many discussions, and to L. Bass for suggesting
a valuable improvement in presentation.






NOTES ON EXTRACT 8

THE notion of radiaticn clarified in Extract 7 is taken up in detail in this paper.
It is shown explicitly that gravitational radiation from an isolated system can
carry away mass, In finishing one line of research definitively the paper, in section C,
opens another when it considers the asymptotic form of the coordinate system
and the corresponding transformation group leaving it invariant.
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EXTRACT 8

Gravitational Waves in General Relativity:
VIl. Waves from Axisymmetric Isolated Systems

H. Bonbi, F.R.S., M. G. J. vAN DER BURG
AND A. W. K. METZNER

[Received 8 January, 1962—Revised 2 April, 1962]

This paper is divided into four parts. In part A, some general considerations about
gravitational radiation are followed by a treatment of the scalar wave equation in
the manner later to be applied to Einstein’s field equations.

In part B, a co-ordinate system is specified which is suitable for investigation of
outgoing gravitational waves from an isolated axi-symmetric reflexion-symmetric
system. The metric is expanded in negative powers of a suitably defined radial co-
ordinate r, and the vacuum field equations are investigated in detail. It is shown
that the flow of information to infinity is controlled by a single function of two
variables called the news function. Together with initial conditions specified on a
light cone, this function fully defines the behaviour of the system. No constraints of
any kind are encountered.

In part C, the transformations leaving the metric in the chosen form are deter-
mined. An investigation of the corresponding transformations in Minkowski space
suggests that no generality is lost by assuming that the transformations, like the
metric, may be expanded in negative powers of r.

In part D, the mass of the system is defined in a way which in static metrics
agrees with the usual definition. The principal result of the paper is then deduced,
namely, that the mass of a system is constant if and only if there is no news; if there is
news, the mass decreases monotonically so long as it continues. The linear approxi-
mation is next discussed, chiefly for its heuristic value, and employed in the analysis
of a receiver for gravitational waves. Sandwich waves are constructed, and certain
non-radiative but non-static solutions are discussed. This part concludes with a
tentative classification of time-dependent solutions of the types considered.

T Proc. Roy. Soc. A, 269, 21 (1962).
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PART A. GENERAL CONSIDERATIONS

H. BonbI, F.R.S.

1. Introduction

A great deal of work has been done on gravitational waves. In the
first instance the linearized theory has been developed extensively,
but it seems doubtful whether its results can be fully trusted. The non-
linearity of the gravitational field is one of its most characteristic
properties, and it is likely that at least some of the crucial properties
of the field show themselves only through the non-linear terms. More-
over, it is never entirely clear whether solutions derived by the usual
method of linear approximation necessarily correspond in every case
to exact solutions, or whether there might be spurious linear solutions
which are not in any sense approximations to exact ones. Next,
although a good deal is known about exact plane and cylindrical
wave solutions, it is doubtful whether these necessarily display the
most important characteristics of physically significant waves, that is,
of waves from bounded sources. General relativity is a peculiarly
complete theory and may not give sensible solutions for situations
too far removed from what is physically reasonable. The simplest
field due to a finite source is spherically symmetrical, but Birkhoff’s
theorem shows that a spherically symmetrical empty-space field is
necessarily static. Therefore there cannot be truly spherically symmet-
rical waves, and thus any description of radiation from a finite system
must necessarily involve three co-ordinates significantly. This enorm-
ously complicates the mathematical difficulties and thus we have to
make use of methods of approximation.

2, Causality

The equations of general relativity, like those of most other wave
theories, are symmetrical in time. The choice of the retarded solution
is as arbitrary in the gravitational case as any other, but whereas in
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electromagnetic theory it is the direct appeal to experience that forces
us to the retarded solution, no such appeal is possible in the gravitatio-
nal case. All we can say is that, if our usual notions of causality
and the flow of time are not to be upset by gravitational waves, if we
are to suppose, in other words, that even the most carefully constructed
gravitational receiver would not enable us to look into the future,
then we are forced to prescribe purely retarded solutions in this theory
as well.

The boundary conditions adopted, therefore, are that we have an
isolated material system in an empty space that tends to flatness at
infinity, where only outgoing waves are present, and we examine the
changes of space which are determined by changes in the material
system enclosed.

It might be argued that a closed material system cannot undergo any
change if it has been isolated for sufficiently long, but this is incorrect.
For the system may have an equation of state containing the time
explicitly. Moreover, this time dependence may contain a random
element and so produce motions in the system that could not have
been forecast from outside. This lack of the possibility of forecasting
is an important and characteristic point. It is well known that the
solutions of hyperbolic equations, such as we are dealing with in
general relativity, need not be analytic. On the contrary, it is typical
of hyperbolic systems that non-analytic behaviour can be propagated,
though only along characteristics which are the wave fronts defined
by the system of equations. It will, of course, be realized that an
analytic function of time is one whose entire future can be forecast
from an arbitrarily small section of time, whereas a non-analytic
function is one whose future is undetermined. We shall, therefore,
expect to find in our work that the behaviour of the system can be
described by functions that need not be analytic and can thus contain
the effects of the possible ““time-bomb’ character of the system enclosed.
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3. The Loss of Mass

The symmetry properties of gravitational waves are restricted by
conservation laws. The conservation of mass effectively prohibits
purely spherically symmetrical waves and, similarly, the conservation
of momentum prohibits waves of dipole symmetry. The lowest kind
of symmetry which we can associate with gravitational waves is that
of a quadrupole. However, the significance of this result is substantially
reduced by the non-linearity of the equations. In a linear theory the
absence of a purely spherically symmetrical mode implies that there
can be no spherically symmetrical component of any wave motion at
all, but this is not so in a non-linear theory; on the contrary, perhaps
the most important character of gravitational waves concerns just
this. For a wave to be a wave in any real physical sense it must convey
energy: accordingly, an outgoing wave must diminish the energy
of the source and, therefore, its mass.

Contemplate now a transmitter quiescent for a semi-infinite period
(so that during this time we have a static situation), then emitting by
moving in a suitable way for a finite period, with the field eventually
returning again to a static situation. If the waves are real physical
waves, i.e. if they carry energy, thenin the final situation the transmitter
must have less mass than in the initial situation. But the mass is the
spherically symmetrical part of the gravitational field and therefore
a diminution in mass means a change in the spherically symmetrical
component. No change can be expected if the whole situation is
purely spherically symmetrical throughout by virtue of Birkhoff’s
theorem. However, if the field was initially spherically symmetrical
and is eventually spherically symmetrical, yet there is an intermediate
non-spherically symmetrical wave-emitting period, a change of mass
may occur, that is, a change in the coefficient of the r~* term in the
static solution. Thus we would expect the higher terms to react back
through the non-linearities and to produce an effect on the spherically
symmetrical term which represents the mass and thus the energy of
the source. The situation is in marked contrast to the electromagnetic
case, for there the one thing that cannot be radiated away at all is
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source strength, that is, charge. In the gravitational case the source
strength must diminish if the wave carries energy. The case here men-
tioned of a transmitter initially and eventually quiescent is the case
that will receive most attention in the rest of this paper, because in
this case, and in this case alone, we are concerned with initial and final
situations that are static and therefore well understood.

The loss of energy, that is the loss of mass, is immediately connected
with the problem of the availability to receivers of the radiated energy.
This raises the question of what constitutes a receiver for gravitational
waves and how much energy it can absorb from such a wave. The
matter is discussed more fully in Section D of this paper, but it may
perhaps be worth pointing out now that in electromagnetic theory we
are familiar with the distinction between near-field transfer as, say,
in the case of electromagnetic induction of energy, and radiative
wave transfer of energy. The distinction between these two types of
transfer is normally clear-cut in the electromagnetic case, though even
there difficulties can occur (Bondi, 1961). We shall see that these diffi-
culties are very much greater in the gravitational case.

4. Huygens’s Principle and the Change of Wave Form

Different kinds of waves show a number of different properties and
one of the most important of these is whether or not they adhere to
Huygens’s principle. This means, briefly, whether after the end of
excitation the wave rings on (“*has a tail”’), or whether with the end of
excitation there is an end to the wave motion, propagated throughout
space with the fundamental velocity. It is well known that the ordinary
d’Alembert wave equation with an odd number of spatial dimensions
satisfies Huygens’s principle but that in an even number of spatial
dimensions or with suitable additive terms the wave equation does
not satisfy this principle, and therefore its solutions then possess
a tail. Whether gravitational waves have tails is one of the questions
that will be investigated in the course of this paper.
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5. Method of Treatment

The extreme complexity of the field equation for empty space makes
it clear that a method of expansion should be used to examine the
problem. The method that will be used here is that of expansion in
negative powers of a suitably defined radius. This seems to be a very
suitable method for a wave problem, and the difficulties that have
previously stood in the way of such an analysis are avoided by the
choice of a suitable system of co-ordinates. The problem of conver-
gence is, naturally, always a very real problem in such a method.
However, arguments will be given suggesting that the difficulties
arising from this can be contained. At the same time it must be empha-
sized that many of the strange features that appear in the course of
the work are due to this method rather than inherent in the equations.
It may therefore be useful to consider here the ordinary scalar wave
equation using the same methods as will later be applied to the gravi-
tational wave problem.! These methods are not the easiest methods
for dealing with the scalar wave equation, but they seem to be the
most promising for the gravitational wave case. Consider then

(I) 0Q/or = V2Q.

Separate now the part Q, of Q proportional to the surface harmonic
S, and introduce a null variable u by the relation # = ¢—r. The wave
equation (1) now takes the form

) 2( &0, 1 80, ) _ &, $2 80, n(n+1)

orou r ou ) o or r? -

We attempt to find solutions of this equation by an expansion in
negative powers of r

k
3) Qn = Y Ly 1.
2
Substitution readily yields the recurrence relation
k+1
dL,

@) 2k +1) 3L = (i— k)t k+ DL,

L
du
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The class of solutions of (1) that we expect to be able to represent
in form (3) is essentially the class of outward travelling waves, for with
general inward travelling waves we would expect to find arbitrary
functions of z+r, that is of #+2r, which only in the rarest cases
would admit expansion in powers of r~* Indeed the Sommerfeld
condition may be taken to be virtually equivalent to the validity of
the expansion (3).

The recurrence relation (4) shows

0 k
(i) L, is the lowest L, occurring, so that we have a satisfactory expan-

sion diminishing to zero at infinity.
nt+l

k

(ii) Since dL,/du = 0, the set of L, is divided into two disconnected
0 n nil

parts, one from L, to L,, the other from L, onwards.

n

(iif) L, is the only non zero term if we impose the condition that
Q, is static.
Consider again the combination of all the surface harmonics S

n
Calling L, the nth moment M, of the generating distribution, a static
system is therefore fully described by all its moments. Next, suppose
the system to vary in time, with each of the moments a given function
of the time or, rather, of the variable u. Again confining attention to
the part proportional to S,(n = 1), we have

ln;,, = M, (u) (given).

Then, by (4)
-1 dM, n—2 n—1 d2M, o 2! d'M,
) Ln = du L. = 2n—1 du2 ° 77 Ly = 2n)! du

0 o 0
The coefficient of r~1 in the expansion of Q, namely L = Y LS, will
1

be called the coefficient of the radiative part of the field. A field for

0
which all the L, vanish is called non-radiative. In addition to static

! This approach is considered in detail by Friedlander (1962).
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fields, all those fields for which M, varies like a polynomial of degree
not exceeding (n— 1) will also be non-radiative.
Suppose now that a field is originally static, is then radiative for
a finite period, and finally is non-radiative again (a so-called sandwich
0

wave). Therefore L differs from zero only for this finite period of time.
0

If a distant observer registers L and knows that before the wave period
the system was static, then he can decide by applying (5) whether the
final state is static or one of the more general non-radiative solutions.

For the wave period will lead from a static situation to a static
0

one only if not merely L, vanishes initially and finally, but also
1 2 n—1

L,L, ..., L, vanish initially and finally.
Therefore the (n— 1) additional conditions (wave period a < u =< b)

f L,(u) du = 0, fdufuon(u)du m_J‘ b- u)L,,(u)du_.O

(6) J duf du ... f L(u"")ydu" = J;b (l()k u);;'lo,,(u) du =0

k=12,...,n-1)

must be satisfied. This is an important result that will be required
later, and so it may be worth stressing how this should be applied to

the complete solution involving all S,. Then a distant observer aware
0

only of the complete coefficient L of the entire 1/r term must apply the
following necessary and sufficient conditions for a sandwich wave to
lead from a configuration known to be static to a static final configu-

ration:
0

(1) The S, part (i.e. spherically symmetrical part) of L is independent
of u for u = b.

0
(if) The S, part (dipole part) of L vanishes for u = b.
0

(iif) The Sz part (quadrupole part) of L vanishes for ¥ = & and its
integral with u from a to b vanishes.
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0

(iv) The S, part of L vanishes for u = b and the (n— 1) conditions
(6) apply to its integral over the radiative period (a, b).

Unless all these conditions are satisfied (note that n apply to the S,
part for n = 1) the final state will not be static, even if still non-radia-
tive.

If we consider a more complicated, and especially a non-linear,
hyperbolic equation, as we shall do later in this paper, then even if
an analysis of this type, with expansion in negative powers of the
radius (though not in surface harmonics) is possible, the right-hand
side of the equation corresponding to (4) will be vastly more compli-

cated. However, it turns out, in the case of the gravitational field in
k+1 0 1 k
empty space, that dL /du is determined entirely by L, L, ..., L, and

their angle derivatives. It need not cause surprise then to find an
infinite set of conditions for the field to go from a static state to
a static state via a radiative interlude, namely, the set corresponding
to (i) to (iv), but with the various S, unseparated. This situation sug-
gests therefore that Huygens’s principle applies to gravitational waves
so that after the excitation a completely static situation sets in.
However, this argument is no proof, and it is quite possible that there
are “tails” in the gravitational case. Perhaps one can pick up a hint of
how these tails arise by returning to the linear case (equation (4))

n

and considering the series beyond L,. It is clear that as we go along
the series each term will introduce a new arbitrary constant, since
each coefficient enters for the first time through its derivative. A simple
calculation and summation of the series occurring show that each
of these arbitrary constants is multiplied by an expression of the form

S,

u
D = ur

+2r

[polynomial in ” of degree (n+p— 1)],

where p is a positive integer. The process of summation and the final
result show that the series occurring converge only over a limited
range; in fact, r must be less than —%u. However, it is ascertained by
direct substitution that the sum (7) is everywhere a solution of equa-
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tion (2). We may, if we wish, look at expression (7) as a particular
type of combination of incoming and outgoing waves. It is clear that
every one of expressions (7) for fixed values of the radius tends to
zero as u becomes very large, that is to say, these terms all represent
declining modes.

We shall not further investigate the meaning of terms of type (7),
but conclude from this heuristic argument that equations of type (4)
may generate expressions that tend to zero as u - o which might
in the non-linear case represent tails. Moreover, they make it plausible
that in general we may obtain useful series for u/r less than some
positive constant.

PART B. A SUITABLE CO-ORDINATE SYSTEM

H. BonDI AND M. G. J. vAN DER BURG

1. The Character of the Metric

In most investigations of specific systems in general relativity the
work can be simplified considerably by a suitable choice of co-ordinate
system. In thecase of radiation from an isolated system, we are interest-
ed in the behaviour of the gravitational field at large distances.
As it seems unlikely that a solution in closed form can be found, the
main aim in the choice of the system of co-ordinates should be to make
an expansion appropriate to large distances as simple as possible.
Investigators have often been hindered by the appearance of terms in
log r which prevent expansion in negative powers of r. It is highly
desirable so to define the co-ordinates that such terms do not appear.
There seem to be two distinct ways in which logarithmic terms arise.
In the Schwarzschild and similar solutions, in the usual form, the
equation for the radial null geodesics contains a logarithm of 7. By
using a co-ordinate constant along such radial null geodesics, the
appearance of such a term can be avoided. Secondly, it is clear that
gravitational waves spread with distance from the source. If the area
of intersection of any bundle of these null geodesics with the surfaces
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of equal phase varies like 72, then the decay of fields with distance may
be expected to occur with suitable powers of 1/r. If these areas varied
like a more complicated function of r, as usually happens, one would
expect this function, which often includes logarithmic terms, to appear
also in the variation of the strength of the wave with distance.

The co-ordinate system that we shall use is designed to avoid both
these possible sources of logarithmic terms. It will first be defined in
an intuitive manner; later the definition will be made mathematically
more precise. Throughout this paper we shall suppose the 4-space to
be axially symmetrical and also reflexion symmetrical. We do not
think it likely that this restriction, which materially simplifies the
analysis, is too severe for the study of gravitational waves. From the
axial symmetry the azimuth angle ¢ is readily defined in an invariant
manner. Suppose we now put a source of light at a point O on the
axis of symmetry and surround it by a small sphere on which we can
produce the azimuth co-ordinate ¢ together with a co-latitude 6 and
a time co-ordinate u. We then define the u, 0, ¢ co-ordinates of an
arbitrary event E to be the u, 8, ¢ co-ordinates of the event at which the
light ray OE intersects the small sphere. In other words, along an
outward radial light ray the three co-ordinates u, 0, ¢ are constant.
If we wish to write down the metric for such a system of co-ordinates
(in which the part referring to the azimuth angle ¢ appears separately)
then we know that since only the co-ordinate » varies along a light ray,
the term g11 of the metric tensor must vanish, the four co-ordinates
u, r, 6, ¢ being denoted by 0, 1, 2, 3 in that order. Moreover, we must
have

)] N, =r;=0.

Owing to the restriction g1 = O this implies

9) 8%%801,1+8%g12,1 = 801,14+ 8%12,1 = 0.

Since neither g nor gss can vanish, the equations are equivalent to

(10) g12(g12801,1—Lo1812,1) = go1(g1zgo1,1—-g01g12,1) = 0.
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This implies either that ge1 = 0, or that g1» = 0, or that g1a2/go1 is
independent of r. If ge1 = 0, it may be shown that geo < O (for other-
wise the signature is incorrect), and thus that u is not a time-line
co-ordinate, contrary to its definition. Therefore we reject the possi-
bility go1 = 0. If g12/ge1 is independent of r then there exists a function
u(u, ) such that, with a suitable A(x, 9),

Replacing u by u reduces gia to zero. Accordingly we have arrived at
a metric distinguished by the condition

(12) g11 = g2 = 0.

Although we have defined the u, 0, ¢ co-ordinatives fairly closely
now, the radial co-ordinate r remains entirely indeterminate and can
be replaced by any function of r, ¥ and 0 without changing the charac-
ter of the metric or, indeed, the coefficients g2 and gz3. We accordingly
define the co-ordinate r by the condition

(13) risin? 0 = googss

which ensures that the area of the surface element u = constant
r = constant is in fact r? sin 6 df dp. We can now write the metric
in the form?

ds® = (Vr=t e — Us%*) du®+ 2% du dr
(14) +2Ur%% du d6—r¥(e® d0*+ e~% sin? 8 d¢?).

The peculiar form of the first coefficient is chosen for later convenience.
The four functions U, V, §, v, are functions of u, r and 0. All our inves-
tigations will be based on this form of the metric.

There is still considerable freedom in setting up such a metric,
but this is somewhat reduced by the following consideration. In our
problem, space tends to flatness at infinity. We infer from this that
tetrad vectors may be chosen such that the physical components of the
curvature tensor tend to zero at infinity. Accordingly, the mutual

2 First given in Bondi (1960).
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accelerations in a swarm of freely moving point particles at large
distances can be made arbitrarily small by having the swarm sufficiently
far away. We now choose such a swarm of particles so far away that
the effect of the accelerations can be neglected for a period sufficient
for our investigations, and attach the u and 8 co-ordinates to this
swarm of particles instead of to the small sphere. This ensures that
at sufficiently large distances u is a time-like co-ordinate—that is,
the coefficient of du? remains positive however large r is taken to be.?

In any metric in polar co-ordinate form conditions must be imposed
in the neighbourhood of the polar axis (sin § = 0) in order to insure
regularity there. It must be possible to choose a Minkowskian tangent
metric which in turn implies that, for a small circle around the axis,
the ratio of circumference to radius equals 2 to the second order in
the radius, and also that the metric has no kink as the axis is crossed.
In our case these conditions imply that, as sin § — 0,

(15) V, B, U/sind, p/sin? 0

each equals a function of cos 0 regular at cos § = +1. The metric
chosen is sufficiently general and chosen by such a physical reasoning
that we may suppose it to be valid for sufficiently large distances from
an isolated material system. In other words, while co-ordinate patches
are the rule rather than the exception, we may reasonably expect that
all the space sufficiently far from an isolated system may be covered
by one patch, and that this may be expressed in the form of the co-
ordinate system given. We next consider the field equations, then
impose an outgoing wave condition, and finally, using both these,
we further restrict the co-ordinated system.

3 The significance of this specification may be understood by considering what
happens in fiat space if the co-ordinate 8 is fixed on a small sphere surrounding
the origin, but is chosen to be a function of time. Then the ‘‘searchlight beam™
corresponding to a particular value of 8 moves about in space. At large distances
points with the same r, 0, ¢ co-ordinates, but different # co-ordinates will, owing
to the motion of the “searchlight beam”, have a space-like rather than a time-like
separation.
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2. The Structure of the Field Equations

It is advantageous to consider the relations between the field equa-
tions arising from the Bianchi identities before considering the field
equations themselves. First, note that the contravariant fundamental
tensor for our metric (14) is given by

0 g—2p 0 0
-2  _Ye—2p-1 Ue—28 0
16) g = | ©
(16) &* 0 Ue—28 —e~ W2 0
0 0 0 —eZr25in~20

A list of the three-index symbols is given in the appendix to this paper.
For the moment we require only the result

a7 g~ = —2e~%r 1,

The contracted Bianchi identities are

(18) &R 78k e = & (R o= 5 Roe,u—1%:Ru) = 0.
Suppose now that

(19) Ri11 = Rys = Ryy = R33 = 0.

Then the Bianchi identities reduce to

w=0: g"Roo,1+g"Ro1,1+8%(Ro1,2+ Ro,21)

(20) + 8% Rog,5— 8% Roo— 8] 2cRo1 — 8~ '%Ro2 = 0,
u = 1: —gaepgeROI = 0:
=2 g%Ros1— Ro1,2)—g%I'%Ro2 = 0.

We see that the four equations (19) are independent. They will be
referred to as “the main equations™. Next, we see from the second of
equations (20) that Ro; vanishes as a consequence of the main equa-
tions. Using this result and also equation (17), the last of equations
(20) may therefore be written

o 2 0
=28 7 4 = — p—22=28 " (2 —
(21) c (al‘ + ; ) Roz F “¢ Br (I‘ Roz) 0.
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Accordingly, as a consequence of the main equations (19) only, R
is of the form f(u, 6) r—2 Therefore, if Ry2 vanishes for some value of
r and all values of u and 0, it will vanish for all values of r. If this
condition is satisfied, the first of equations (20) also reduces to the
form (21). What we have said about Roy then applies equally to Roo.
Thus, a complete set of field equations resolves into the four main
equations (19), the trivial equation Ry = 0, and the two supplemen-
tary conditions, as we shall call them, which only imply that Roo
and Ry vanish for some finite value of r. If Roo and Rz can be expand-
ed in powers of r then the supplementary conditions merely state
that the coefficients of the r~2 terms vanish.

3. The Main Equations

We now write the main equations (19) in the following form:

(22) 0= Ry = —4[f1—3rilr .
0 = —2r2Ryp = [4rte® =AU 1212~y 12+ 2y1ys
(23) —28ar~1—2y4 cot 0].

0 = Rgpe™FM—pyR3e? = 2V + 3r%2—AU?2
—r2U 19— 4rUs—r?U  cot 0—4rUcot 0
(24) + 262N — 1 —(3y,—PBa) cot 0 —ypag+ Bas+ Bi+ 2ya(y2—B2)l-
0 = — R = 2¢(ry)or+ (1 —ry)V1i—(ryua+y)V
—r(1 —ry)Us—r¥(cot 0 —y2)U;
+ r(2ry12-+2y2+ry1 cot 6—3 cot HU
(25) + 2] — | —(3y3—282) cot 0 —yaa+ 2y2(va— P2l

Note that equations (22) to (24) involve only differentiation in the
hypersurface u = const. (hypersurface equations), while (25), the
“standard equation”, contains a derivative with respect to u. Consider
now the structure of these equations without, at first, worrying about
the functions of integration. If, for some value of u, y is given, equation
(22) will determine 8. Equation (23) will then determine U, and equa-
tion (24) will give V. From equation (25), the u-derivative of y may
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then be deduced. Thus the function ¥y may be found at the next
instant of u, and then we can again go through the whole cycle. In other
words, given y for some value of u, the future follows, apart from the
question of functions of integration, each of which is an arbitrary
function of u and 0, but independent of ». We can count them easily
enough. Equation (22) determines § apart from an additive function
H(u, 0). In equation (23), two such functions of integration occur,
one of them being an addition —6N(y, 0) to r'e®** AU, the other an
addition L{u, 0) to U itself. In equation (24), a function —2M(u, 6)
may be added to V. Finally, equation (25) determines yo apart from
a term co(u, 0)r~1 which goes out when the first term is formed. Thus
y contains a term c(u, 0)r—1 where co(, 0) is not determined by (24).

There are, accordingly, a total of five such functions, and we can
now re-state what we found before by saying that, given y for one
value of u, and given the five functions H(u, 6), N(u, 0), L(u, 6),
M(u, 0), c(u, 8), the entire development is determined by the four main
equations. We shall see below that, in certain circumstances, co-
ordinate considerations serve to eliminate two of these five functions,
and that the supplementary conditions yield two relations between
the three surviving functions.

The significance of this structure of the equations is readily under-
stood. If we know the situation for a particular value of u = constant
(which represents a light cone opening out into the future) then we
know everything about incoming waves owing to our knowledge of
the various functions for all radii. If the system is to do anything new,
then the information about this must be contained in the functions
of u and 0 that appear as functions of integration in our analysis.
Thus we see that all the news there is appears in these functions which,
as has been indicated, can be reduced to a single “news function.

4. The Outgoing Wave Condition

If we wish to adopt the principle of causality—in other words, if we
wish to eliminate inward travelling waves—we have to apply a suitable
condition to y, etc. This can be done in various ways. We may suppose,
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for instance, that at one value of u and for a little while beforehand,
the entire system was static, that is, without any radiation whatsoever.
In that case, the system can be described by the well-known Weyl
metric, and it may be shown (see appendix) that, in this case, ¥ and the
other variables have the form of power series in negative powers of r.
Alternatively, we may say that the absence of inward flowing radiation
is equivalent to the condition that y (and the other variables) should
be of the form, roughly speaking,

@9) y= L0 80D

which is equivalent to what we said before. Condition (26) is essentially
equivalent to Sommerfeld’s radiation condition which, in our case,
means that

[a(’")j)/ Orly—const. = 0

as ¥ — oo, Next consider the main equations in the light of (26). If y
has a term proportional to #~1, together with other terms tending to
zero more rapidly at infinity, then it follows from equation (22) that
B remains bounded as r — . Similarly equation (23) then shows that
U remains bounded as 7 — ==, and in fact lim U = L(u, 6). Substitut-
ing this into equation (24) and integrating one finds that the leading
term in ¥V is proportional to 72. Accordingly, the coefficient goo of the
metric is dominated by the second term, which is bound to make it
negative for sufficiently large values of #. This is contrary to the way
in which the co-ordinate system was defined according to which goo
had to remain positive for arbitrarily large values of r. Therefore
L(u, 0) = 0.4 This disposes of one of our functions of integration.

4 Tt might be suggested that a more general form of ¢ should be used with a
leading term Q(u, 6) independent of r. However, Q@ does not affect the argument
just given that L = 0 and, if L = 0, (14) proves that Q, = 0. The elementary

transformation tan 3§ = exp f e gin—! 0 4#, with a consequent adjustment of r,

then reduces Q to zero.
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On this basis, the leading terms of the various functions are given by

y=cu 0p 1+ ...,
U = 2H2Hy 14 ..,
B = Hu, 0)—icr2+ ...,
V = re2H[1+4-2H,cot 0-+4H2+-2H,0]+ ...

@7

As a final restriction on the co-ordinate system, we reduce H to zero
by a co-ordinate transformation

u= g(a, 9)+clz(a, Or1+ ...,
(28) r= f+2)(a, O+ ...,

6 = H+§(ﬁ, Or—1+4 ...

In order to preserve the character of the metric,

[ 1 1\2
g1 =0: 2ae®" = —(g) ,
0 1
(29) g12=10: aze?+2g =0,
0 1 1 0
8922833 = r4sin? 0: 2p+g5+4g cot § = azHye?H,

0
{ ggl = a,;eZH—F- 0(f_1)

1

0 1
For an arbitrary ¢ the second of these equations defines g, the first a,
0

the third one g, and similarly the higher-order equations determine the

0
higher-order coefficients. Then H = 0 if a is chosen so that

(30) a7 = exp (—2H).

Thus a suitable transformation of type (28) reduces H to zero.
It may be advantageous to recapitulate briefly how successive restric-
tions have been imposed on the co-ordinate system:
(i) du = df = d¢ = 01is an outgoing light-ray. This implies g11 = O.
(i) u 1s time-like, so that goo > 0, leading to g1z = 0.
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(iii) Area of 2-surface u = const. r = const. restricted to equal
4ar?, used to define r and to fix googas = rtsin? 0.

(iv) Field equations for empty space imposed, functions H, N, L, M,
¢ isolated.

(v) Outgoing wave condition imposed. With (ii) this implies L = 0.

(vi) H reduced to zero by suitable transformation.

The range of possible transformations of co-ordinate systems satis-
fying (i) to (vi) is investigated in part C of this paper. It should be noted
that in general the three surviving functions of integration ¢, M, N,
cannot be reduced to zero.

If the form (26) for y is substituted into the main equations it turns
out that the other variables do not satisfy the radiation condition
unless the r~2 term in y vanishes. (This occurs also in the static case
when the Weyl metric is translated into our form.) Carrying out this
expansion® and substituting into the main equations we obtain the
following relations:

@3y 1If y = c(u, Or 1+[Clu, 6)—5c3r 3+ ...,
then U = —(cs+2¢ cot Or—2+[2N(w, 0)+ 3cca+4c%kcot 01r—2
+3+(3C3+6C cot 0 —6¢N —8c2ca—8c3 cot A4+ . . .,

V = r—2M(u, 0)—[Ny+N cot 6 —c2—4ccy cot 0 —5cX(1+8 cot2B))r—1

(32)

(33) —~1[C32+43Ca cot 8 —2C+6N(ca+2c cot 6)
+8c(c®*+ 3cca+2c2 cot2 Hlr 2+ .. .,
(34) 4Cy = 2¢%¢o+2¢M -+ N cot 6 —N,.

Thus the form of 7y is preserved and the development of the system is
fully determined from initial conditions provided the functions c, N,
M are known.

5 No assumption of analyticity is implied. It is probably sufficient if the remain-
der after the first few terms vanishes suitably at infinity.
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5. The Supplementary Conditions

The full form of the equations Ros = 0 and Rgo = 0, which is
exceedingly complicated, is given in the appendix. It is no way obvious
how, in general, the substitution of the main equations reduces the
supplementary conditions to the inverse square-law term. However,
on the basis of the expansions given above, the supplementary condi-
tions reduce enormously. The sole surviving terms are of the 2 form
as, of course, they should be, and involve only relations between the
three functions ¢, M and N, namely

(35) M, = —ci+3(caa+ 3c2 cot 0 —2¢),,
(36) —3No = Mo+ 3ccoat+4ccy cot B+ cocs.

Thus we see that if M and N are given for one value of 4, and c is given
as a function of u and 0, the entire situation is fully determined. In
other words, the flow of information in the system is entirely controlled
by the single function ¢. In fact, as will be seen later, the whole charac-
ter of the developments can be read off from equations (35) and (36).
This is particularly satisfactory because these are in no way approxi-
mate equations, but are exact relations valid supposing only the series
expansions to be valid. In order to identify M and N to some extent
at least, we consider now static and therefore well understood metrics.

6. The Static Case

It is well known that the empty space axially symmetric static metric
can always be reduced to Wey!’s form

3D ds? = e dr? —e~¥[e2o(dp®+ dz?) -+ p? d¢?),
oy 1 Oy  O%
(38) where 50’ +E do + 52 = O

and y determines o by arelation not required here. It follows from (38)
that if the metric is Minkowskian at infinity then

(39) y=—Y ADR-"-1P,(cos@), o= Rsin®, z= RcosO.
n=0
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Here 49 is the mass m of the system, A® is the dipole moment D,
and

(40) AD = Q4+ 1md,

where Q is the quadrupole moment, defined so as to vanish for the
Weyl form of the Schwarzschild line element. A rather lengthy and
tedious transformation is required to connect the Weyl metric with
our metric.® Therefore only the result will be quoted here, in a form
chosen to fit in with the transformation equations given in part C.
These equations show that ¢ is an arbitrary function of € in the static
case, given in the general case as compared with the case ¢ = 0, in
terms of the transformation function « by

(41) ¢ = —*%06224- %'062 cot 6.
Then we have M=m,
(42) N = Dsin 0 —maos,

= 30 sin® 0 —azD sin 6+ ymod.

Equations (42) allow us to interpret the principal functions occuring
in our metric in the static case. The function M(u, 6) will now be
named the mass aspect, and the first of equations (42) shows that in
the static case the mass aspect equals the mass of the system and is
accordingly independent of both its arguments. The functions N and
C are seen to be closely related to the dipole and quadrupole moments
respectively.

7. The Curvature Tensor

In order to investigate the character of the solutions, it is necessary
to know the behaviour of the curvature tensor, and, to be able to
interpret it in physical terms, a tetrad formulation is required. Accor-
dingly, we need a system of orthogonal unit vectors, one time-like,
and three space-like. Moreover, to prevent spurious effects, we choose
the unique set of vectors that, by parallel transport along the null

8 This is given in appendix 4.
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geodesics du = df = d¢ = 0, turns at infinity into
T = (1, 0, 0,0), Rt =(~1,1,0,0),

St = (0, 0, L, 0), pr = (0, 0,0, %Lﬁ)
r rsin 0

To find this set at a general point define
qg= f [2re? Uy + Bar— 1%~ dr

(43) = (co+2c cot 0) r 1 —[3N+2c(ca+ccot B)r 2+ ...
The set can be shown to be
T =1, 31 +g¥e ¥ -1 Vr 1, Utqe ¥ 1,0]
= [1, Mr14L(No+Ncot O)r 24 ..., INr 34 ..., 0],
R=1-1, 5(1—gDe %+ ;Vr-1, —~U—ge~?r,0]
=[-1,1—-Mr ' -4(2N,+2N cot 0 —cH)r 2+ .. .,
—iNr34..., 0],
S* = [0, ge=%, e~ %r~1, 0]
= [0, (ca+2c cot )1 —F(BN+4c(ce+ccot O)) r 2+ ...,

-2+ 3%t L, 0,
Pr=10,0,0,¢c’r 1sin~10]
(44)  =1[0,0,0,r tsin 01+ cr- 1+ 32+ .. ).

Owing to the axial symmetry, the number of free components of the
curvature tensor is reduced to 12. The surviving components have been
worked out, with the use of the power series expansions for the field
variables. Again it turns out that, to the approximation worked, sev-
eral components coincide. We are then left with

[ Rirrssy = — Rarepy = — Rarssy = Rirrery = Rress)
= — RzrrepP)
= — oo 14 31cosa+ coz cot 0 —2¢o(1+2 cot? B)]r—2 ...+,
| Rarrs) = —Rarsw
= — Riasery = Rrsppy = —(Coz+2cocot O)r 2+ ...
Rarrry = —Rissppy = —2(M +-cco)r™3+ . ...
(45)
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PART C. PERMISSIBLE CO-ORDINATE
TRANSFORMATIONS

A. W. K. METZNER

1. Evaluation of the Transformations by Power Series

The purpose of this part is to discuss the permissible transformations
of co-ordinates that will leave unchanged the character of the metric
discussed in part B. By this we mean not only that the form of the
metric should remain the same but also that U, # and y should tend
to zero at infinity. It will be assumed throughout that not only the
metric but also the co-ordinate transformations can be expanded in
powers of 7. Thus, expressing the ordinary unbarred co-ordinates in
terms of barred ones, we have

U = a(@, O +a(@, 0)+a@, O+ ...,
0 1

r = K(i, 0)r+ (i, 0)+ o(@, 1+ ...,
0 1

0 = g(u, O)r+g(u, O)+g(a, O)F 1+ .

(46)

Evaluating the components of the new barred metric tensor in terms
of the old one by means of tensor transformations, we find

§11 = K2g27‘2+ ... = 0.
Since clearly K # 0, we must have g = 0. With this
g1 = a®+2aK+0(F 1) = 0.

Thus a = 0 or a = —2K. The second possibility merely corresponds
to a reversal of time, that is, to a consideration of advanced rather
than retarded solutions. We reject this, and take the first possibility.
Continuing the analysis we have

0 2
5o = K2(0g/07) P+ OF) = 1+ ...,
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Hence 0 0
g = g(0).
0 2
Next g2 = K2\dg/00) P2+ O(F) = 72+ O().
0
Thus kldg/ad) =+1.
Furthermore

0 2 0
Zaof3s = g22g33(dg/d9) +O0(r) = K44 sin? g+ O(73) = 7 sin2 6.

0 0
: dg , sing
(47) From the previous result a0 + sin B -

The minus signs are trivial alternatives and thus

0
(48) tan (%g) =e’tan (30) (v = const.),
(49) K = cosh v+cos @ sinh ».

Finally, from these results,

o9 = K —— o= 14 .
go u+ +

(50)  Thus o = /K@) +(0),

where « is an arbitrary function of its argument. Continuing in this
manner to compare coefficients, it turns out that no further freedom
exists. Thus the entire range of transformations possible is described
by the single constant » introduced in equation (48), together with the
single function o of a single variable introduced in equation (50).
What do this constant and this function represent? The constant »
enters the function K whose form immediately suggests that we are
dealing with aberration. At large distances, where space is effectively
flat, the v transformation is in fact fully equivalent to a Lorentz trans-
formation corresponding to motion along the axis of symmetry with
velocity —tanh ». Therefore we can regard the K transformation
as a generalized Lorentz transformation, that is to say, as a uniform
motion of the material system relative to the fixture of our system of
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co-ordinates at large distances. The significance of the transformation
introduced in equation (50) is a little less obvious. It will be recalled
that our system of co-ordinates was fixed in the end by tying down light
rays at infinity. In doing this we have dropped the restriction that all
the light rays for every angle should originate at the same position.
We can imagine, as it were, a different lamp for each angular co-ordi-
nate. In order to keep to the various orthogonality conditions implied
by our system of co-ordinates, we cannot introduce a very great deal
of freedom there but a kind of static deviation. We can fix, as it were,
a light for each angle at one time, and then the motions of these diffe-
rent lights are determined. In this way we account for the function of
one variable introduced in equation (50).

The equations (48) to (50) may be applied to find the other terms
in expansion (46) and may also be used in order to evaluate in the
new co-ordinates the functions defining the metric that were introduced
in part B. They tend to be somewhat complicated formulae and so are
listed in the appendix.

2, Rigorous Transformations of Minkowski Space

The assumption that the power series (46) represent all possible
transformations is open to criticism. No direct proof of this assumption
is possible but it is made plausible by the fact, demonstrated below,
that all transformations for flat space are of this form, together with
the assumption made in part B that the coefficients of the general
metric can be expanded in power series.

We may write the metric of flat space in the form

ds? = dir+ 2 dii dr — P(dfP + sin? 8 d¢?),

and ask for the most general transformation of this into co-ordinates
(u, r, 0, @) giving a metric as specified in part B. We first note that in
“mixed” co-ordinates (u, 7, 0, ¢) the metric still has g1; = g12 = 0.
Thus taking # = i(u, r, 6), etc., we have
(it;+ 1) = 1+ 7262,
ug(it;+ 1) = 20;0,.
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Solving for i7; and #,, we find that the compatibility condition for these
implies

(31) 6 = p(u, 0)—sin~* [q(u, 0)F 1],
(52) = (P--g)t—7+s(u, 0),
with Ss = qpg.

The functions p, q, s are otherwise arbitrary, except for the usual
regularity conditions and the need to make the old and new axes of
symmetry coincide, i.e.

53) p—~-0, g~0 as 6-0; p>m, gq—-0 as 06 - a.
After evaluating the coefficient of d62 we can find r and y:
(54) r*sin B = pg sin p(”*—g*)—(q sin p)s (7 —g*)*+4qqs cos p,

[(7*—a*)*ps—qq)] sin O Pe Sin 6 ~
5 2y — - - .
(5 ) € (f2_q2)‘} sin p—q cos p sin p as

Equation (54) shows that 7 — - implies r — <= unless p, sin p is not
positive, a case that must be excluded since otherwise the mapping
is incomplete. The requirement that ¥ - 0 as r - « then shows that
P, Sin 0 = sinp, ie. tan —;—p = exp »(u) tan %6. The condition that geo
remain positive as ¥ — oo implies p, = 0 and therefore » = const.

The r equation (54) can be solved for 7 and it is immediately clear
that 7 can be expanded in powers of r as required provided r is suffici-
ently large if g,, ¢/0 and q/(x— 6) are bounded which is a consequence
of the conditions imposed above. Moreover, ¥ — < uniformly as
r - o=, and so the expansion of all functions is guaranteed, as
required.

The work can readily be continued without resorting to the expan-
sions. Next, 8 — Oasr — o implies s, = 1, and so the transformation
has been reduced to the generality found above by series expansion.

To interpret the o transformation (p = 0, s = —a(f), g = —a'(0))
in flat space we use the exact equations which are valid everywhere.
(In the general case only the series expansion is available and this
precludes an approach to regions of small 7.) The co-ordinates 7, 8
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are ordinary spherical polars and thus the light ray 6 = const. has
equation

(56) 7sin (§—0) = «'(6).

Thus the ray is parallel to 8 = 0. If «'(f)/cos 0 > O it intersects the
equatorial plane § = %n at distance «'(f)/cos O from the origin, and
equally if a'(f)/cos B < O it intersects the axis of symmetry at distance
—a/(0)/sin 0 from the origin.

The interpretation of the K transformation is identical in the general
and flat space cases as a Lorentz transformation.

PART D. THE NATURE OF THE SOLUTIONS
H. BONDI, F.R.S.

1. News and Mass Loss

Consider an axi-symmetric system that is static for u < 0. As has
been shown, the Weyl metric for this system may be transformed to
our form, with all the coefficients ¢, M, N, C,... independent of u.
By (35) the vanishing of ¢, guarantees the vanishing of M,, but by
(36) M has to vanish also to secure the constancy of N. Similarly, by
(34), N has to be of the form (42) to assure the vanishing of Cy, and
so on. If ¢p = 0 for u > 0, the system must remain static, but if ¢
begins to deviate from zero the other coefficients in turn begin to vary.
Thus if anything happens at all at the source leading to changes in the
field, it can only do so by affecting ¢, and vice versa. Thus all the
news in the field is contained in ¢q, which there fore merits the name
news function. In general the structure of our equations indicates that
if y, M and N are known for u = a, and the news function ¢¢ is known
forallu in a < u < b, then the system is fully determined in the inter-
valla=<u <b.

Next we define the mass m(u) of the system as the mean value of
M(u, 0) over the sphere

(57) m(u) = % f " M(u, 0) sin 0 db.
0
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We note that in the static case m(u) = m. Now we integrate (35)
and obtain

L (=, .
(58) my = ——-f s sin 6 db,

2 0
since the last term in (35) goes out on integration because of condi-
tions (15). Thus we have the central result of this paper:

The mass of a system is constant if and only if there is no news. If
there is news, the mass decreases monotonically as long as the news
continues.

This result may appear to depend on the definition of mass given
above, but this can be avoided if we confine our attention to systems
initially and finally static, in which the physical significance of m as
mass is clear and unambiguous. Thus a dynamic period interposed
between two static periods is bound to imply a loss of mass. We can
ascribe this in the only physically reasonable way to the emission of
waves by the system. Note from (45) that the physical components
of the Riemann tensor have an r~1 term if and only if ¢go # 0.7

Clear-cut and precise though our result is for initially and eventu-
ally static systems, it depends for its validity on the possibility of
return to a static state. At first sight the conditions for such a return
look rather forbidding. If the series expansion of equation (31) were
taken beyond the terms given there and in equation (34), then it is
easily seen that all the equations for the higher terms have the same
general structure as equation (34). The derivative with respect to u
of the coefficient of every term is determined by an expression invol-
ving the previous coefficients but not involving any differentiation
with respect to u. Equations (35) and (36) must also be considered
in this connexion. The problem is essentially this—suppose the sys-
tem is static before u = 0, and then b is allowed to vary for a finite
period of time at the end of which it becomes constant. Can we so

? The reason for the appearance of ¢,, in the Riemann tensor against ¢, in (58)
will be discussed in § 5; very much the same situation occurs for electromagnetic
waves,
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choose the variation of b that at the end of this period of excitation we
return to a situation that (but possibly for a tail) will eventually be-
come static? Thus, when b stops varying, by equation (35) M stops
varying. Equation (36) then implies that unless Mg vanishes at this
stage, N will go on varying linearly with time. The first condition on ¢
is therefore that the final function M should be independent of 6.
Next, consider the variation of N through the period of wave motion.
Once again, the change in N must be such that when N ceases to vary,
equation (34) implies that C ceases to vary. Continuing like this one
obtains an infinity of conditions on ¢. To understand this we return
to the last section of part A. There it was shown that if we are analy-
zing the wave equation by means of the first term, that is by the equi-
valent of ¢o, then we first have to sort out the various angular depen-
dences, and the part corresponding to P, is then such that n conditions
have to be applied to this part in order to ensure that the system goes
from a static to a static situation. Owing to the non-linearity of our
equations, the sorting out into the different types of angular dependence
cannot be done in any exact form. What is, however, reasonably
plausible is that when we deal with these different forms of angular
dependence, the part involving P, need only be pursued as far as the
nth coefficient. For it does not matter if anything of this is left over
for the higher coefficients. In accordance with the last equation of
part A all this might do is to generate a tail to the wave.

To put it differently, if the ideas of the linear equation are applied
to our case, then the structure of the equations of condition becomes
reasonably clear. In part, these equations of condition make sure that
we return from a static to a static case and do not embark on a non-
radiative motion. For the rest, our equations may lead to the produc-
tion of tails. These tails, it is true, will upset the convergence of our
series but, once again following the first part, it appears that this diffi-
culty need only arise when u 1s allowed to exceed 2r. Therefore the
method can be applied with reasonable confidence as long as we are
dealing with a sandwich wave, that is, with ¢ constant outside a period
of finite length. If we want to investigate this situation, we have merely
got to go sufficiently far out for r to exceed substantially one-half of
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the period of fluctuation. Thus the structure of our equations does
not in this respect imply any essential difference from the scalar wave
equation considered in part A.

2. Linearized Form of the Equations

For some purposes it is useful to consider the linear form of our
equations. Since our co-ordinates have been chosen in order to sim-
plify the non-linear problem, the relation of our metric to the usual
linear ones requires elucidation. Assuming all our variables to be
small and to satisfy the boundary conditions at infinity previously
imposed, equation (22) shows that g is negligible, and equation (23)
becomes

(59) (U = —2/%(8/80+2 cot B)y1,

showing immediately that power series expansion of U implies the
vanishing of the =2 term in y. The integration of (24) turns out not
to be required beyond the zero order approximation ¥ = r, and then
(25) becomes

y 2n (@ 18 1
(60) 2(y01+r) yu—-! +(ae cotB)(2 = h)U 0.

Since all the terms in this equation tend to zero at infinity at least
like r~2, no information is lost by multiplying it by » and then differ-
entiating with respect to z. Similarly multiplication by

0/00+2cot b

does not involve any loss of information owing to the regularity con-
ditions on the axis. It is now possible to substitute for y from (59),
and after a little simplification we obtain

() () e

& o 1
(61) X (g He0t 05— sm29)(ar+r)Ul'
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Inspection of (61) shows that it does not serve to determine the r~2
part of U. Multiplying the equation by r5, integrating with respect to
r and dividing by 5 we obtain

0o 3 0 3)\? 1 7 o2 0 1
(e (o G e

6 x v, + 10,
where /(u, 6) is a function of integration which serves to make the r~2
part of U as indeterminate in (62) as it is in (61). If U(y, r, 6) differs
from U only by a term in 2 and satisfies (62) with / = 0, put r2U; =
Qa(u, r, ), substitute in (62), and integrate with respect to 6. Assu-
ming the part of Q independent of 6 (which is irrelevant for our pur-
poses) to satisfy the same equation as the rest of Q this is immediately
seen to be equivalent to equation (2). Accordingly Q satisfies the scalar
wave equation

(63) g = 0.

The procedure for constructing a linear approximation to solutions
of our main equations is therefore to take an axially symmetric solu-
tton of (63) representing outgoing waves tending to zero at infinity.
By forming

(64) U= —r %ﬁ dr,

U is found except for the leading term and, by (59), y is determined,
again except for the leading term. Thus all the higher coefficients have
been found, and N is known as the coefficient of #~3in U, butcand M
remain to be determined from the supplementary conditions which,
in linearized form, are

(65) —3N0 = M29
(66) M() = %(6'224—36'2 cot 6—26’)0.

Since Q can be expanded as a series of P,(cos 0), (64) shows that U
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(and with it F) is a series in P and, by (59), ¥ —# ¢ correspondingly
a series in P®, so that the boundary conditions (15) on the axis are
automatically satisfied except of course for the as yet undetermined
M and c. Next, (65) determines M but for a function A1) which may
be defined as the coefficient of Py in the expansion of M, the factors
of P(n = 1) being found from (65). The left-hand side of (66) thus
being known, the news function ¢, is readily obtained by a double
integration of (66), which yields no admissible complementary func-
tions. Moreover, it can be seen (e.g. by expansion of ¢o in PP) that
the ¢ so obtained will not satisfy the boundary conditions on the axis
unless dh/du = 0 and d2l(u)/du® = O, where I(u) is the coefficient of
PO in N. Thus the mass must be constant in time and the dipole
moment must vary linearly in time. Both these are direct consequences
of the conservation laws in the linear approximation.

The time-independent part of ¢ cannot be determined from Q and
is clearly irrelevant in the linear approximation. Putting, as before

k
(67) 0= kz Hul
we find in detail
(68) 6N = —Ls,
(69) —4M = 10,22+£2cot -+ const.,
(70) 2cosin? 0)y = —sin? OLos,
(71) 6Cs-+12C cot B = —Ly.

3. Non-radiative Motions

Consider a system in which ¢¢ vanishes but M is not independent
of 0, though, owing to the constancy of ¢, it is independent of u. A
system in this state is clearly non-radiative both because of the vanish-
ing of the leading terms of the curvature tensor and also because
there is no loss of mass. On the other hand, it follows from equation
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(36) and from the basic equations that the system is not at rest. This is,
therefore, a case of non-radiative motion. How can this be interpre-
ted?

One very simple case is clearly illustrated by the work in part C.
If a K transformation is applied to the Schwarzschild metric (y = 8 =
U=0,V =r—2m)we find

m

(72) ~ "(cosh v+cos O sinh v)?

Thus a mass m moving along the axis of symmetry with constant
velocity tanh » produces a field with M given by (72) and therefore
depending on 6. Also note that m = m cosh v contains the correct
contribution for the kinetic energy.

This interesting phenomenon represents a kind of Doppler shift
of the mass aspect. It is plausible to suggest that this is not confined
to the simple case displayed in equation (72). If we imagine that our
material system consists of several masses moving in various direc-
tions, then there would be some form of a superposition of these
Doppler shifts, leading to M being a function with complicated angu-
lar dependence but independent of u. We therefore get the notion that
there is a class of non-radiative motions in which different parts of
the material system move with constant velocity in various directions.
This case is easy to visualize when the different particles are sufficiently
far away from each other for their own gravitational effects on each
other to be negligible. Otherwise we know that their motions will
not be uniform and that, in particular, oscillations are likely to occur.
How would these show themselves in our equations? It follows from
(72) applied to (36) that N is a linear function of u, that C is a quadra-
tic function of u and so on. Of course this fits in perfectly with the
picture of the moving mass. The dipole moment represented by N
will increase linearly with time, the quadrupole moment represented
by C will increase quadratically with time and so on. In the case of
the moving single mass all these statements are strictly correct. In the
more complicated cases where M, though independent of u, depends
on angle in a more complex fashion, we will still have it that N increa-
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ses linearly with u, C quadratically and so on. However, the more
complicated angular dependence now implies that N no longer just
represents the dipole moment and C no longer represents the quad-
rupole moment. If we could sort out the terms and put together all
the terms representing the quadrupole moment and so on (which of
course because of the non-linearity are not independent of each other)
then each of them would be represented by a whole power series in u.
The accelerations which are known to occur may well be expressed
by such power series converging for all values of u, or convergence
may cease for some finite value of . In either case, we see that the
future behaviour of a system in this class is entirely determined by
the present, i.e. there is no news. This might suggest identification
of such behaviour with purely gravitational motions. This identifi-
cation is strongly supported by the work of Infeld (1960), who found
that a system of particles in motion need not radiate. On this basis,
we may tentatively identify non-radiative motions on the one hand
with the class of solutions in which M depends on angle but not on
time, and on the other with motion under purely gravitational forces.
The relation between the non-radiative motions discussed here and
those discussed in part A is clear.

4. Construction of Solutions

In this section we give a method for the construction of sandwich
wave solutions. We shall suppose that the system is static except
during an interval extending from u = —1 to ¥ = +1. Thus out-
side this interval ¢o vanishes and within the interval it may be given
in terms of the expansion

(73) Co = i Jop) Pr(w), —1l=su=l, = cos 0.
n=0

In order to ensure continuity at the beginning and end of the interval,
we must have

(74) S fan= 3 fansr = 0.

n=0
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In order to fit the boundary conditions on the axis we have
(75) Jll—u®H™t boundedas u — *1.

Now substitute in equation (35) and integrate throughout the inter-
val of emission. We obtain for the change in M

= [

(76) M) = -2 5 572+ s 0= 1)

If we wish to go from a static to a static solution then the change in
M must be independent of angle. It can readily be established that in
order to allow for the divisibility of the first term on the right-hand
side of (76) by (1— u?)?, as implied by (75), we must have

(7D fo=—I1-p?) B—ud)+g(p), I=const, g(u) ~ (1—p??
Then by substitution

(78) [M] = —161,
_ = 1 Jo \?
a1y 16—+ 5 oty ()
2 d? o _
(79) **60’—'(T“_T£2)2‘ & [(1 - g(p)] = 0.

Equation (79) is a condition on the higher terms of the series, which
together with (74) and (75) can be satisfied provided / is positive, which
by (78) implies a loss of mass.

A simple example may illustrate this part of the method. Suppose

80) g=0, fa=0 unless n=0,2,4, fot+tfot+fs=0,
2 2
(81) 4(3—uBPIR—601+ (1522) T [lfﬂ +K3— MZ)] ~ o,

82) = B3P 131411~ B — 21 (1 -

which is real provided 0 =< [ < %'

The method may be continued to evaluate the changes in N, C and
so on. With sufficient terms in the series we can make Ny, Co, etc.,
all vanish initially and finally. Though this method of ensuring change
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from a static system to a static system is laborious, it is very much like
the method applicable to the scalar wave equation when this is trea-
ted as in part A. Also the degree of freedom left appears to be the
same. Accordingly, it seems likely that the change from radiative
to static system is not only possible, but immediate, i.e. that Huygens’s
principle applies to gravitational waves. It may be worth mentioning
that the u derivative of each coefficient in the expansion of y is given
by an expression analogous to (34) in which the only coefficient to
enter linearly is the immediate predecessor which enters through the
associated Legendre operator for PP, There is little doubt that fur-
ther development of this method would lead to an improved understan-
ding of the equations.

5. The Reception of Gravitational Waves

In order to clarify the energy concept for gravitational waves the
problem of their reception is now considered. The simplest receiver
to discuss is freely falling, for otherwise one would not know whether
some of the energy obtained from the field was not derived from the
framework holding the receiver. In order that the gravitational terms
entering should be easy to express, the receiver should be small and it
should be as simple as possible. One wants, therefore, a device that
can make use of the curvature tensor, that is, of the relative accele-
ration of neighbouring particles. Qur ideal receiver of the simplest
type is then a quadrupole receiver. It consists of two massive particles
which are arranged with a motor between them, such that their dis-
tance from each other can be varied at will. Then the machinery in the
receiver will absorb energy whenever the motion of the particles is
such that the relative gravitational force, as given by the curvature
tensor, does work in the motion in question. On the other hand, the
receiver loses energy because, being a quadrupole of variable moment,
it will itself radiate gravitational waves and so energy to space. The
crucial question then is of how the particles should be moved in order
to maximizethe gain of energy, that is, the difference between energy
received and energy re-radiated. In this respect the gravitational
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receiver is completely analogous to the electromagnetic receiver studied
by Bondi (1961). Let the mass of each of the particles be M and let
the distance of each from the common centre of mass be x. Then the
quadrupole moment Q is given by

(83) 0 = 2Mx>.

We now suppose the receiver to fall freely, moving so that its time
axis coincides with the 7" axis of the tetrad used at the end of part B.
With the quadrupole lined up along the P axis of the tetrad, the gravi-
tational acceleration of each particle with respect to the mid-point
is the product xRrpp), and so we can regard the particles as being
acted upon by a Newtonian force

(84) iMCooX/l‘.

Multiplying this by the velocity of the particles with respect to the
mid-point and adding for the two particles, we obtain for the rate of
doing work of the field on the receiver

(85)

Next we have to consider the re-radiation from the receiver. For this
purpose the receiver has to be considered as a transmitter and all our
previous work can be applied. To avoid confusion, the corresponding
symbols will now be barred. Here, however, we have to proceed with
caution, making a certain number of approximations in order to ob-
tain manageable expressions and in order to be able to apply our pre-
vious work. In as far as this work was exact it never identified the
precise nature of the source. The quadrupole moment was not iden-
tified in the moving but only in the static case. We shall now suppose
that we can regard our receiver as quasistatic, so that the identifica-
tion of the quadrupole moment contained in equation (42) can be
applied and, moreover, we shall suppose the entire radiation from the
receiver to be so small that, until we come to the final stages, we may
work in the linear approximation. Then, from equation (42), we have

(86) C = 10®@)sin? 8.
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From (34)
(87 4Co = Ncot 5—N, so that N = 8Q,sin fcos 8.

Then (36) gives

(88) My = —3Ny. Thus M = —3Qo0 sin®0+p(u).
Substitute into (35) and obtain

(89) & = 4 Qoo sin? 0.

Still using the quasi-static approach and combining (35) and (57) we
have

47y = —2f"m sin 6 df = 2f"ag sin § dff = %ngfnsiﬁ g df
0 0 0

(90) = 1§5Q§00-
Thus the rate of radiation of energy is
(91) —#ig= {:0%0-

This is a well-known result.

The limitations of our approach are evident. We have supposed a
linear superposition of incident radiation and re-radiation and the
whole treatment of the re-radiation has been distinctly crude. Never-
theless, it seems unlikely that when the incident wave is weak there
should be any major mistake in this calculation. We arrive, therefore,
at the answer that the total amount of energy received in the interval
of reception is given by

62 | du[-; o g2 Oi

This expression is completely equivalent to the corresponding expres-
sion for the reception of electromagnetic waves (equation (3) of
Bondi, 1961) and the entire analysis given in that paper can be applied
here. The method in brief is to use the usual approach of the calculus
of variations to find that variation of quadrupole moment Q with
time that will maximize expression (92). The result is easily obtained
and shows that if initially ¢ was constant then the maximum possible
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rate of absorption of energy is given by

15 (c—Cinitiar)*
16 r

(93)

Comparing this with the electromagnetic case, where we suppose both
receiving and transmitting aerials to be magnetic dipoles, one sees
that this expression is identical (apart from a numerical factor) with
the electromagnetic one, provided c¢ is replaced by the time derivative
of the current in the transmitter coil. We are now faced with pre-
cisely the same problem as arises in electromagnetism in the case, there
very unusual, in which after the period of transmission the time de-
rivative of the transmitting current does not equal its value before the
period of transmission. It will be recalled that in that case no unam-
biguous treatment of energy reception can becarried out unless the near
field (induction) is considered as well as wave field. However, in the
gravitational case this is not the unusual but the only possible situ-
ation. For we cannot have ¢ returning to its initial value after the pe-
riod of transmission, except, possibly, in a few isolated directions. This
can immediately be verified by referring to equation (35) and consi-
dering its significance along the axis. Since ¢ vanishes on the axis, the
first term on the right-hand side vanishes there. Accordingly a change
in M on the axis is entirely due to a change in ¢ there. Since M, in
going from a static to a static situation, must change independently of
angle, as was previously shown, it follows that ¢, at least near the axis,
must differ from its previous value. This result can also be established
in 2 more comprehensive way by looking at equation (73). The change
in ¢ is given by 2f,. Equation (77) shows that in no circumstances can
fo vanish, which establishes the same result. Thus, as far as energy is
concerned we must be very careful in the consideration of reception
of energy from a wave. Energy can only be taken from the whole field,
including the non-wave parts. Serious though this consideration is,
one must remember that the change in ¢ following upon the change in
M is of the second order. Therefore the rate of energy reception can
be approximated to by expression (93), particularly for an oscillatory
type of wave. One must, however, be careful not to take this too far
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for otherwise the receiver will appear to be able to continue to absorb
energy ad infinitum after the wave has passed, that is, after ¢ has taken
on a fixed value different from its initial value. Looked at in a different
way, expression (93) underlines what has previously been said about
the desirability of considering only sandwich waves. The curvature
tensor is proportional to ¢,,, the rate of loss of mass to 2, and the
rate of energy absorption to the change in ¢ itself. If one did not stick
to sandwich waves, then one might be faced with the absurd situation
of ¢ varying linearly with time. This would have the effect that there
was no wave term in the curvature tensor but that, nevertheless, there
was a constant loss of mass and a constant ability to adsorb energy.
But all these difficulties arise only from the consideration of rather
unnatural situations. As long as one is determined to work only with
¢ constant initially and finally, that is with a sandwich wave, the inter-
nal connexions between the change in ¢, its first and its second deri-
vative are enough to ensure that one obtains only sensible results.

A problem that is as little solved in the general case in gravitational
theory as in electromagnetic theory is the maximum permissible pro-
ximity of receivers. In order to reconcile equation (93) with an energy
loss proportional to ¢2 requires one to make a statement about
receivers, in order that they may not interfere with each other, having
to be a distance of the order of the wavelength apart. Artificial as the
restriction to harmonic waves and perfectly definite wavelength is in
the electromagnetic case, there the linearity enables one to get over
the worst consequences. In the gravitational case no such escape is in
sight and the question of the maximum permissible number of recei-
vers remains in a rather unsatisfactory state. One can, however, pro-
ceed rather differently to show that the energy transmitted can indeed
eventually be absorbed. Suppose the transmitting region is enclosed
by a large empty region, which, in turn, is bounded by a material
shell of matter beyond which again space is empty. Within the outer
shell of matter the situation is exactly as described by our equations,
provided we suppose the shell not to send out any radiation inwards.
Suppose now, moreover, that outside the outer shell we have a sphe-
rically symmetrical solution, that is, a Schwarzschild solution with
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a necessarily fixed value of the mass. Then it will be possible to con-
ceive of a transition from the metric inside the shell to the meiric
outside the shell involving certain pressures and densities and stresses
in the shell. If the mass of the exterior solution is made large enough
one can always ensure that the density within the shell is everywhere
positive and large compared with the stresses, that is, that one has a
physical situation. We can hence speak of the outermost solution as
defining the mass of the entire system of central transmitter together
with shell, and this is constant in time. If then we have an initially
static situation in the interior and equally an eventually static situ-
ation which means a final mass of the transmitter necessarily less than
its initial mass, then the mass of the shell must increase by exactly
the amount by which the mass of the transmitter has diminished.
Hence such a shell constitutes a perfectly matched absorbing receiver.

6. The Classification of Time Variation

The work of this paper allows one to discriminate between various
types of time variation of empty space fields surrounding isolated
material system. Although only axially symmetric cases have been
considered here, the generalization of the work of this paper to arbit-
rary systems by Sachs (1962) enables one to apply this classification
without restriction.

(i) Radiative Class

This is characterized by the existence of news, and the non-vanish-
ing of the news function ¢, defines the class. A mass loss necessarily
occurs, and in general the physical components of the Riemann ten-
sor ~r~1 An exception occurs only if c¢go = 0 although c¢¢ # O.
Though this secems to be a case of little physical significance one
should perhaps put into subclass (i*): mass loss without radiative
Riemann tensor.
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(ii) Time-dependent Systems Without News

This occurs whenever some terms in the field are time dependent
but there is no news (co = 0) and accordingly no mass loss (M, = 0).
The physical interpretation of this class is perhaps the biggest out-
standing problem in the subject. What distinguishes locally those
source motions that do not give rise to a radiation field from those
that do? The methods of this paper do not lend themselves to an-
swering this question but perhaps the alternatives might be stated.

It may be that there is no locally significant way of distinguishing
between these types of motion, unsatisfactory as this would be. If
there is such a locally significant distinction it seems likely that it
will be related to whether one is dealing with free gravitational mo-
tion. The lack of radiation for freely falling particles emerges from
Infeld’s work, but one would like to generalize this to non-singular
equations of state. The most clear-cut case then would seem to be
pressure-free dust (I = pv“v"), but beyond this it is tempting to
suggest that perfectly elastic equations of state do not lead to radi-
ation, Pursuing this line of thought one is driven to the following
conclusion:

If the distinction between radiative and non-radiative motions is
locally significant then the clearest self-consistent distinction appears
to be between cases where the equations of state do not involve the
time explicitly and are time reversible (no dissipation), and others.
A system of the second kind clearly contains news, for either the time
enters explicitly into the equation of state (time bomb), or, through
the action of dissipation, the system continually reaches new states
in which its behaviour is not a consequence of its previous behaviour
(“fatigue”). A system of the first kind does not contain news in this
sense. Its future is a clear consequence of its past, and it would seem
difficult to draw a distinguishing line between different systems of this
kind though conceivably the pressure-free might be only nonradiative
material, all others radiating if in motion.

The distant field of time-dependent systems without news could
be divided into two subclasses:
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(a) M2 # 0 (natural non-radiative moving system),
(b) My = O (non-natural non-radiative moving system).

The presence of moving masses in (iia) is a clear consequence of the
case discussed in § 3, but the time dependence may only enter the
coefficient through N or C or later in the series, corresponding to
(iib). The necessarily very peculiar cancellation of mass motion terms
leads to the name suggested.

(iii) Stationary Systems

Time-independent metrics not reflexion symmetric and

(iv) Static Systems

are well known.

The author is deeply indebted to many colleagues for help in under-
standing and presenting the subject of this paper, particularly to Dr
F. A. E. Pirani and to Dr R. K. Sachs, who has recently been able to
extend this theory to the general case without any symmetries in a
paper now in the press.
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Appendix
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2. The Supplementary Conditions
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3. Transformation Formulae (Part C)
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4. Transformation of the Weyl Metric
Write the metric (37) in the form

ds? = e* dit—e*~?(dR*+ R? dO?)— e *R? s5in? O d¢?
and put t=ut+f(R,0), O =0(R,0),

in order to make g11 and g12 vanish. Hence

e¥fi = W1+ R?O%];  e¥frfo = €2 WRO 0.

Eliminate f: R*@g(e* W)y = Oy e _134_@_2&_
® 1+ RO% |,

R R R3

The case ¢ = 0 corresponds to lim @ = 1.

R-—>o0

’

_ . q—~6mp
Then O =06+ 73 RIS

+ o,

eP—2m* _ 5q—mp-+4m®

f= R+2mlog R— 2 7R

Introduce r in the usual way (13)
rtsin?f = e~*R? sin® O[e* 2 R*0F —*f7].

Solve for R

R = r—m—3g[yp’ cot 0+ p—3m*+4p"lr?

—315q" + 54 cot 0+ 59— mp+dnPlr—24 ...
We now express p and g by (39) and (40) in terms of the dipole mo-
ment D and the quadrupole moment Q.

p = 4D cos @+ m*(7+cos* 0),
q = 20(3 cos? @ — 1) +4mD(3 + cos? @)+ 6m3(1 +cos? O).
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Hence
R = r—m—3m*(1—cos? 0)r—1— 4 msin? 0[2D cos 0+ m?] r 2+ ..

(frRo+15)?
R @] (2"

Finally J;— e?frR, = e f e

Substitute and obtain

V 2m 2DcosB  Q(3 cos® 6—1) +

Zo=1=-"

r r r2 3

Thus from (33) M=m, N = Dsinf, C = 30Qsin?0.

With the transformation equations of Appendix 3 this gives equations
(42).
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Lixe Extract 7, this paper has had great influence on the development of the general
theory in recent years, but (probably because of the war) the lead it gave was not
taken up for a much longer time.
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On Continued Gravitational Contraction

J. R. OPPENHEIMER AND H. SNYDER

University of California, Berkeley, California
[Received July 10, 1939]

When all thermouuclear sources of energy are exhausted a sufficiently heavy star
will collapse. Unless fission due to rotation, the radia‘ion of mass, or the blowing
off of mass by radiation, reduce the star’s mass to the order of that of the sun, this
contraction will continue indefinitely. In the present paper we study the solutions
of the gravitational field equations which describe this process. In I, general and
qualitative argumentsare given on the behavior of the metrical tensor as the contrac-
tion progresses: the radius of the star approaches asymptotically its gravitational
radius; light from the surface of the star is progressively reddened, and can escape
over a progressively narrower range of angles. In I, an analytic solution of the
field equations confirming these general arguments is obtained for the case that
the pressure within the star can be neglected. The total time of collapse for an ob-
server comoving with the stellar matter is finite, and for this idealized case and
typical stellar masses, of the order of a day; an external observer sees the star
asymptotically shrinking to its gravitational radius.

I

Recently it has been shown? that the general relativistic field equa-
tions do not possess any static solutions for a spherical distribution
of cold neutrons if the total mass of the neutrons is greater than
~0-70. It seems of interest to investigate the behavior of nonstatic
solutions of the field equations.

In this work we will be concerned with stars which have large
masses, > 0-7©®, and which have used up their nuclear sources of

t Phys. Rev. 56, 455 (1939).
1J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374 (1939).
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energy. A star under these circumstances would collapse under the
influence of its gravitational field and release energy. This energy
could be divided into four parts: (1) kinetic energy of motion of the
particles in the star, (2) radiation, (3) potential and kinetic energy
of the outer layers of the star which could be blown away by the radi-
ation, (4) rotational energy which could divide the star into two or
more parts. If the mass of the original star were sufficiently small,
or if enough of the star could be blown from the surface by radiation,
or lost directly in radiation, or if the angular momentum of the star
were great enough to split it into small fragments, then the remaining
matter could form a stable static distribution, a white dwarf star. We
consider the case where this cannot happen.

If then, for the late stages of contraction, we can neglect the gravi-
tational effect of any escaping radiation or matter, and may still neg-
lect the deviations from spherical symmetry produced by rotation, the
line element outside the boundary r, of the stellar matter must take
the form

(D ds? = e di2—e* drt—r*(d+-sin2 0 dg?)
with e’ = (1 —rofr)
and e = (1—ro/r)~ 1.

Here ro is the gravitational radius, connected with the gravitational
mass m of the star by ro = 2mg/c?, and constant. We should now ex-
pect that since the pressure of the stellar matter is insufficient to sup-
port it against its own gravitational attraction, the star will contract,
and its boundary r, will necessarily approach the gravitational radius
ro. Near the surface of the star, where the pressure must in any case
be low, we should expect to have a local observer see matter falling
inward with a velocity very close to that of light; to a distant observer
this motion will be slowed up by a factor (1 —ro/r,). All energy emit-
ted outward from the surface of the star will be reduced very much in
escaping, by the Doppler effect from the receding source, by the large

1
gravitational red-shift, (1 —ro/r)?, and by the gravitational deflection
of light which will prevent the escape of radiation except through a
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cone about the outward normal of progressively shrinking aperture
as the star contracts. The star thus tends to close itself off from any
communication with a distant observer; only its gravitational field
persists. We shall see later that although it takes, from the point of
view of a distant observer, an infinite time for this asymptotic isola-
tion to be established, for an observer comoving with the stellar mat-
ter this time is finite and may be quite short.

Inside the star we shall still suppose that the matter is spherically
distributed. We may then take the line element in the form (1). For
this line element the field equations are

2) —8aT} = e [r+ 1)) —1/r%,
3 8T = e~ (A Jr—1/@)+1/r?,
—8aT% = —8aT$
. A
2 4 4 2r
) —e(1/24 12/4—]3/4),
) 8T} = — 8me* Tt = —e~2i/r;

in which primes represent differentiation with respect to r and dots
differentiation with respect to ¢.

The energy-momentum tensor 7% is composed of two parts: (1)
a material part due to electrons, protons, neutrons and other nuclei,
(2) radiation. The material part may be thought of as that of a fluid
which is moving in a radial direction, and which in moving coordi-
nates would have a definite relation between the pressure, density,
and temperature. The radiation may be considered to be in equili-
brium with the matter at this temperature, except for a flow of radia-
tion due to a temperature gradient.

We have been unable to integrate these equations except when we
place the pressure equal to zero. However, one can obtain some in-
formation about the solutions from inequalities implied by the differ-
ential equations and from conditions for regularity of the solutions.
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From Egs. (2) and (3) one can see that unless 4 vanishes at least as ra-
pidly as r2 when r — 0, T} will become singular and that either or
both T} and » will become singular. Physically such a singularity
would mean that the expression used for the energy-momentum ten-
sor does not take account of some essential physical fact which would
really smooth the singularity out. Further, a star in its early stage of
development would not possess a singular density or pressure; it is
impossible for a singularity to develop in a finite time.

If, therefore, A(r = 0) = 0, we can express A in terms of T}, for,
integrating Eq. (3)
6) A =—ln{1—8—“ "4y dr}.

r Jo

Therefore A = 0 for all r since T, = 0.

Now that we know A = 0, it is easy to obtain some information
about »' from Eq. (2);

)] v =0,

since A and —77 are equal to or greater than zero.
If we use clock time at r = -, we may take »(r = o) = 0. From
this boundary condition and Eq. (7) we deduce

3 y =< (.

The condition that space be flat for large r is A(r = o) = 0. Adding
Eqgs. (2) and (3) we obtain:

() 8r(T4i—T7) = (A" ++")/r.

Since T is greater than zero and 77 is less than zero we conclude
(10) A+ =0,

Because of the boundary conditions on A and » we have

1 Atr =<0.

For those parts of the star which are collapsing, i.e., all parts of the
star except those being blown away by the radiation, Eq. (5) tells us



OPPENHEIMER AND SNYDER ! GRAVITATIONAL CONTRACTION 313

that A is greater than zero. Since A increases with time, it may (a) ap-
proach an asymptotic value uniformly as a function of r; or (b) increase
indefinitely, although certainly not uniformly as a function of 7,
since A(r = 0) = 0. If A were to approach a limiting value the star
would be approaching a stationary state. However, we are supposing
that the relationships between the T}, do not admit any stationary
solutions, and therefore exclude this possibility. Under case (b) we
might expect that for any value of r greater than zero, 4 will become
greater than any preassigned value if ¢ is sufficiently large. If this were
so the volume of the star

(12) Y 4 f " euizga gy
0

would increase indefinitely with time; since the mass is constant, the
mean density in the star would tend to zero. We shall see, however,
that for all values of r except ro, 4 approaches a finite limiting value;
only for r = r, does it increase indefinitely.

II

To investigate this question we will solve the field equations with
the limiting form of the energy-momentum tensor in which the pressure
is zero. When the pressure vanishes there are no static solutions to
the field equations except when all components of T, vanish. With
p = 0 we have the free gravitational collapse of the matter. We believe
that the general features of the solution obtained this way give a valid
indication even for the case that the pressure is not zero, provided that
the mass is great enough to cause collapse.

For the solution of this problem, we have found it convenient to
follow the earlier work of Tolman? and use another system of coor-
dinates, which are comoving with the matter. After finding a solution,
we will introduce a coordinate transformation to put the line element
in form (1).

¢ R. C, Tolman, Proc. Nat. Acad. Sci. 20, 3 (1934).
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We take a line element of the form:
(13) ds® = dr?2—e® dR%2—e~(df%+sin? 0 dg?).

Because the coordinates are comoving with the matter and the pres-
sure is zero,

(14) Ti= o

and all other components of the energy momentum tensor vanish.
The field equations are:
2

(15) SVZT% =)= e v_e® i _'_w_i_%d)g — 0,
. 3 _ = wll w12 N E)le
8aT% = 8nT3 =0 = —e (2 T )

B w o e, bd
(16) Tyttt T

Tl ent 0 2,
(17) 8715T4:: 875@_—_: e"wﬂ_e—a(w11+%w,2hw2w ) ) Wi

(18) 8mereT) = —8aT?=0= .“35“—’“33—2“’—%)'

with primes and dots here and in the following representing differenti-
ation with respect to R and », respectively. The integral of Eq. (18)
is given by Tolman:?

19 ev = e°w'?[4f*R)

with f2(R) a positive but otherwise arbitrary function of R. We find
a sufficiently wide class of solutions if we put f(R) = 1.
Substituting (19) in (15) with fR) = 1 we obtain

(20) i+ 30 = 0.

2 We wish to thank Professor R. C. Tolman and Mr. G. Omer for making this
portion of the development available to us, and for helpful discussion.
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The solution of this equation is:
21) ev = (Ft+G)*3,

in which F and G are arbitrary functions of R.
The substitution of (19) in (16) gives a result equivalent to (20).
Therefore the solution of the field equations is (21).
For the density we obtain from (17), (19), and (21)

(22) 8mp = 4/3(v+ G/F) Y(v+G'[F') ..

There is less real freedom in (21) than is apparent from the two
arbitrary functions F and G ; for taking R a function of a new variable
R* the differential equations (15), (17) and (18) will remain of the same
form. We may therefore choose

(23) G = R,

At a particular time, say 7 equal zero, we may assign the density as
a function of R. Eq. (22) then becomes a first-order differential equa-
tion for F,

(24) FF’ = 9nR%(R).

The solution of this equation contains only one arbitrary constant.
We now see that the effect of setting f%R)equal to one allows us to
assign only a one-parameter family of functions for the initial values
of 0o, whereas in general one should be able to assign the initial values
of po arbitrarily.
We now take, as a particular case of (24):
const. X R%?; const. > 0; R < R,

(25) FF' =
0 s R = Rb.

A particular solution of this equation is:

—$riR/R); R <Ry
(26) F=

—37d 5 R> Ry
in which the constant ry is introduced for convenience, and is the
gravitational radius of the star.
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We wish to find a coordinate transformation which will change the
line efement into form (1). It is clear, by comparison of (1) and (13),
that we must take

27 e? = (Ft+G)t = r.
A new variable ¢ which is a function of ¥ and R must be introduced so

that the g, are of the same form as those in Eq. (1). Using the contra-
variant form of the metric tensor, we find that

(28) g =¢"= }2_,:2/',:2 — i‘Z(l —),
(29) = —et=—-(1-pP),
(30) gt =0=1tr-t)r.

Here (30) is a first-order partial differential equation for ¢. Using the
values of r given by (27) and the values of F' and G given by (26) and
(23) we find:
—(roRPRI-3rfr1"t 3 R=>R,
(31) vit=i =
—r3RR1,‘§[1 ——%r%tR;lz]*; R < R,
The general solution of (31) is:
t=I(x) for R=>Rp, with x = %(R?——rs‘)
r+rf
rt—r}
(32) t=M(y) for R< Ry with y= L[(R/R)*—11+Rer/roR
where L and M are completely arbitrary functions of their arguments.
Outside the star, where R is greater than R,, we wish the line element

to be of the Schwarzschild form, since we are again neglecting the
gravitational effect of any escaping radiation; thus

(33) et = (1—rofr)2,

(34) e = (1—rofr).

This requirement fixes the form of L; from (28) we can show that we
must take L(x) = x, or

(35) t

—2rro)¥+roln

i
o
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At the surface of the star, R equals R,, we must have L equal to M
for all T. The form of M is determined by this condition to be:

(36) t = M©Y) = 3rg (Rt —roiyt) —2rgyt+ro In i:-'_i .
Eq. (36), together with (27), defines the transformation from R, 7 to
r and ¢, and implicitly, from (28) and (29), the metrical tensor.

We now wish to find the asymptotic behavior of e?, ¢*, and 7 for
large values of . When ¢ is large we obtain the approximate relation
from Egs. (36) and (27):

37 t ~ —ryln {%[(R/Rb)2—3]+Rb/r0(1 —3riz/2R})%}.

From this relation we see that for a fixed value of R as ¢ tends
toward infinity, v tends to a finite limit, which increases with R. After
this time 7o an observer comoving with the matter would not be able
to send a light signal from the star; the cone within which a signal can
escape has closed entirely. For a star which has an initial density of
one gram per cubic centimeter and a mass of 103 grams this time 7,
1s about a day.

Substituting (27) and (37) into (28) and (29) we find

(38) e~ =~ 1 —(R/Rp)*{e "o+ 5[3—(R/Rs)*]} 1,
(39) e’ ~ ez—m/ro{e—ﬁro + %[3 _ (R/Rb)gl}-

For R less than R,, ¢* tends to a finite limit as ¢ tends to infinity.
For Requal to R,, € tends to infinity like e/™ as ¢ approaches infinity.
Where R is less than R,, e’ tends to zero like e=*/ and where R is
equal to R,, e’ tends to zero like e="",

This quantitative account of the behavior of ¢* and e* can supple-
ment the qualitative discussion given in I. For A tends to a finite limit
for r < r¢ as ¢ approaches infinity, and for r = ro tends to infinity.
Also for r = ry, » tends to minus infinity. We expect that this behavior
will be realized by all collapsing stars which cannot end in a stable
stationary state. Of course, actual stars would collapse more slowly
than the example which we studied analytically because of the effect
of the pressure of matter, of radiation, and of rotation.
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IF Extracts 7 and 9 provided new physical insights into the further developments of
the theory, a new mathematical calculus to carry them out was provided by the
present one. Although the idea of a spinor had been known for a long time,
Penrose’s method of using them is strikingly different in emphasis, and provides a
great simplification.
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A Spinor Approach to General Relativity

ROGER PENROSE
St. John’s College, Cambridge, England#

A calculus for general relativity is developed in which the basic role of tensors is
taken over by spinors. The Riemann-Christoffel tensor is written in a spinor form
according to a scheme of Witten. It is shown that the curvature of empty space can
be uniquely characterized by a totally symmetric four-index spinor which satisfies
a first order equation formally identical with one for a zero rest-mass particle of
spin two. However, the derivatives used here are covariant, so that on iteration,
instead of the usual wave equation, a nonlinear “source’ term appears. The case
when a source-free electromagnetic field is present is also considered. (No quantiza-
tion is attempted here.)

The “gravitational density” tensor of Robinson and Bel is obtained in a natural
way as a striking analogy with the spinor expression for the Maxwell stress tensor
in the electromagnetic case. It is shown that the curvature tensor determines four
gravitational principal null directions associated with flow of ““gravitational density
which supplement the two electromagnetic null directions of Synge. The invariants
and Petrov type of the curvature tensor are analyzed in terms of these, and a
natural classification of curvature tensors is given.

An essentially coordinate-free method is outlined, by which any analytic solu-
tion of Einstein’s field equations may, in principle, be found. As an elementary

example the gravitational and gravitational-electromagnetic plane wave solutions
are obtained.

1. Introduction

An essentially coordinate-free attitude to general relativity will be
adopted here. The tensors and spinors occurring are best thought of not

T Ann. of Phys. 10, 171 (1960).

I,'Present address: Palmer Physical Laboratory, Princeton University, Prince-
ton, New Jersey.
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as sets of components, but as geometric objects subject tocertain formal
rules of manipulation. A spinor formalism will be used instead of the
usual tensor one, spinors appearing to fit in with general relativity in
a remarkably natural way. This adds to a belief that spinors are basi-
cally simpler and perhaps more deep-rooted than tensors.

The usual correspondence between tensors and spinors (I, 2) is

obtained by the use of a mixed quantity’ 0%’ satisfying the e quation

A _ BC’ A BC' _ AB
(1'1) a,uC-"av +avC'0,u _‘g,uve ’

where 47, together with & 45, e*?, and e 4. is a skew-symmetric “met-
ric” spinor for the 2-dimensional complex spin space. The components
of the &’s may be taken as 1, 0. (To raise or lower a spinor index,
one of the &’smustbe used, e.g., &4 = 4%, &, = &4¢,,.) Primed indi-
cest refer to the complex conjugate spin space. Italic capitals are used
here for spinor indices and Greek letters for tensor indices. The spi-
nor equivalent of any tensor is a quantity which has an unprimed and
a primed spinor index replacing each tensor index. For example, for
a tensor X* | we have

XM o XABCD

‘s
where
'¢D* _ __ . AB' CD’
XAB cb EF = 03 0",_‘L vaayEF’
and
AB'CD’ EF"
X% = ¢* po*cp X EFOy " ,
(with 0%, 5. = £"0,P’¢c4.2p.p’). We have

B __ SRASB B'CD' _ _AC_B'D’
(1.2)  gupcp = €actnp 5’5})'—%513)', 8‘4 = &7Eem T,

The algebraic tensor operations can now all be interpreted as spinor
operations. Also the notions of reality of tensors, and of complex con-
jugate, are interpreted in spinor form with

X o XABCD,

1 For each of the four values of u, 64% is a (2X2) Hermitian matrix.
¥ Primed indices are used here rather than the more usual dotted indices, for

typographical reasons.
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so that the roles of primed and unprimed indices are interchanged.l
Thus reality of tensors is expressed as a Hermitian property of the
corresponding spinors.

In addition to the usual correspondence between tensors and spi-
nors given above, there is also a well-known correspondence between
real skew-symmetric second rank tensors and symmetric second rank
spinors (2). Thus if F,, is real and skew-symmetric, we have

(1.3) Fapcp = "%{‘PACEB'D"*” e4cPB D}

where ¢, is a uniquely defined symmetric spinor. The right-hand
side of (1.3) expresses F,5.cp as the sum of the part symmetric in 4,
C (and therefore skew in B’, D’) and the part skew in 4, C (and sym-
metric in B, D’). (Any skew pair of spinor indices may be split off as
an e-spinor.) A corresponding procedure can be applied to any skew-
symmetric pair of tensor indices. A tensor with r skew-symmetric
pairs of indices thus gives rise to 27 spinors each with r symmetric
pairs of indices in a decomposition similar to (1.3). If the tensor is
real, these spinors are paired off as complex conjugates. For an exam-
ple, see (2.2).
If the tensor H,, “dual” to F,, is defined by

(1.4) Hoy =5 V(—8)F8 50,
we have
(1.5) Hupcp = H{—ipacenp +icacppn,
since if
i = vV (—8)eoow8 8,
then
(1.6) CABCD, — iSABCHE 8D _isASCHESE..

(Actually, formulas (1.5) and (1.6) are only correct for one class of
choices of o,% satisfying (1.1). If 0,*% had been chosen from the
other class of solutions, the signs of the right-hand sides of (1.5) and

! Many authors would omit the bar on the right-hand side. The coihce here
here is made for reasons of clarity.
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(1.6) would be reversed. It will be supposed that the o, have, in
fact, been selected from the appropriate class.) In a similar way any
tensor possessing a pair of skew-symmetric indices may be “dualized”
with respect to that pair of indices. The spinor decomposition of the
“dualized” tensor then differs from that of the original tensor in that
the relevant e, and &5, are, respectively, multiplied by i and by —i.
This again follows from (1.6). For an example, see (2.6).

General relativity requires, in addition to algebraic properties of
tensors, the notion of covariant derivative. The symbol &, or corres-
pondingly 0 ,, will be used here to denote covariant differentiation.
The covariant derivatives of g,, and of 0,*%" are both required to be
zero.2 This implies that

0.{eapecp} =0
(see 2). The stronger conditions
(17) 8,1 Eqp = 0 and a#SAaC, =0

will be adopted here (3). This enables one to raise and lower spinor
indices under the derivative symbol, but it precludes the use of phase
transformations of the spinors to generate the electromagnetic field.
However, the electromagnetic field will appear here as being associa-
ted with spinor transformations in a different way (see 3.13). These
two procedures do not appear to combine in an altogether natural
way. The simplest formalism, when charges are not present, seems
to be obtained when such phase transformations are not permitted.

The point of view adopted here is nearer to that of Rainich (4)
and of Misner and Wheeler (5) in which the electromagnetic field is
obtained from the curvature of space-time alone. These phase trans-
formations would not be related in any way to the geometry of the
space~time.

* “Spin affinities” I'* 5,,, I'*"p., are introduced to deal with the spinor indices.
The conditions (1.7} imply that these spin affinities can be expressed explicitly in
terms of a#“' and its coordinate derivatives {see Ruse (3)).
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2. The Curvature Spinors

Since the symbol 0, here stands for covariant differentiation, we
have
0,0, # 0,0,,

the commutation of two ©’s giving rise to the Riemann-Christoffel

tensor R . In fact, we have

@.1) (0.8,—0,0,)X, = R, X°.

LVOC

The tensor R, is skew-symmetric in ¢, v and in g, o. Thus, following
Witten (6), we can apply the procedure outlined in Section 1 and obtain

1
R g prcopa = 5{XABCDEE FEGH+ ECDPABG HEE F*
(2.2) + €ABPE F-CDEG H-+ EABECDXE F'G'H'}-

The spinors y,5cp and ¢ ,pey are the uniquely defined curvature spi-
nors. However, this differs from Witten’s form by a factor 4 which is
included here for reasons of convenience. From the symmetries of

R,,..0» 1t follows that

(2-3) X4BCD = XBACD = XABDC = XCDAB
and

(2.4) PABC'D* = PBAC'D* = PABDC = QC'D'AB-

Let the right dual S, of R, be defined by

uveo wuvoo

(2'5) Syvgo = % '\/(_g)Ryvaﬁsuﬁga'
Then from (1.6), we have

i
S4eBFCeDH = 7{-— XABCDEE FE€G' H + ECDPABG' HEE F’
(2.6) — €ABPE FrCDEG H -+ EABECDYE' F*G H' }»
Now, the symmetry relation R,,,,+ R+ R,,,, = 0 is equivalent to

S, =0,
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so that multiplying (2.6) by £8Pe"# should give zero (see 1.2). Hence,
—X4BCEp G —Pace B+ PEecat cacke e’ = 0.

The ¢ terms cancel by (2.4), so we have

2.7 xasc® = Ae4c,

where A is real and given by

1. EF
2 XE'FT

]

28) A= 5 1a5"®

The reality of 1 is, in fact, the only thing new we get out of this iden-
tity since (2.7) is implied by (2.3) in any case.

The relations (2.3), (2.4), and (2.8) are the only algebraic relations
necessarily satisfied by y,p5cp and @, pcp for a general Riemannian
space, since they imply that an R, . given by (2.2) has the required
symmetry properties. These relations are all to be found in Witten’s
paper. However, y pcp and ¢ 500 also satisfy a differential relation
obtained from the Bianchi identity

2Ryt OuRusor+ 0y Rypny = O.

This is equivalent to
0°S o = 0,
i.e., (by 2.6)

D H’ D - —
0 G'XABCDEEF— O¢ PABG 'HEEF+ E4B 0 G'PE'F'CD—EAB OcH XEFGH
= 0.

Separating this into the two equations obtained by, respectively, sym-
metrizing and skew-symmetrizing with respect to 4, B, we get

(2.9) 0P6xascp = 0c™ pase-u-

and its complex conjugate. The Bianchi identity is therefore equiva-
lent to (2.9).

There are also relations connecting x ,gcp and @ 4p6- 5 With covariant
second derivatives of spinors, corresponding to the vector relation
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(2.1). Let &, be an arbitrary spinor field and define
(2.10) Xpregs: = Epbgers:.
Now (2.1) generalizes to (and in fact implies)
2.11) {0,0,— 0,0} X6 = RippeX s+ RouvpaX "

But 0,0,— 8,0, is skew-symmetric in g, ¥ so that the decomposition
(1.3) can be applied:

04cOpp—0ppOac: = %Ec'pl{aAF'aBF'-F aBF'aAF’}
(2.12) + % eap{0ec0Fp + OppOFc}.

Thus, (2.11) can be split into two equations each of which must hold
separately, one symmetric in 4, B (and skew in C’, D) and the other
skew in A, B (and symmetric in C’, D). Also, any skew pair of indices
can be split off as an e-spinor and these may be cancelled throughout
the equation. Hence by (2.2), the equation symmetric in 4, B is

{04r. 08" + 0pr 047 YepEQeR"s: = YuBPCECEQER S
(2.13) 4+ 2asoctrtCers — PaprcErEpdS + P aps-ctrto 0% -

The ¢ terms cancel and, because of (1.7), the eg. ¢ term may be divided
out. Also,

0.04EpE0) = &p 00,80+ &0 0,.0,£p+(0:5p) (0.80) +(0uf0) (0s€p)s
whence
{6.0,—0,0.) (EpEp) = £p{0.0,— 0,0.)50+ £p{D.0, — 0,0,}p.
It follows that

{04r 08"+ 0pr 04"} (EpEQ) = Ep{Oar-08" + Opr-0." ¥g
+ §Q{aAF'aBF' + aBF'aAF'}EP
= EprapoctC+EoxanpcEC

by (2.13). Multiplying this equation by 552 where 74 is chosen arbi-
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trarily, we get

2(nPEp) (2B ur OpF + Opr 047 Yeg) = 2(nTER) (2440 cEC).
Since 7 is arbitrary, we may divide by 2(n"£,) and obtain
(2.149) {047 08" + Opr 04" Y0 = xuockC.

Also the equation obtained from (2.11) which is skew in 4, B and
symmetric in C’, D’ gives rise to

(2.15) {Opc.0Fp.+ Opp.05c)ep = Ppacntd

in an exactly similar way. The corresponding results for a primed spi-

nor {, are obtained by taking the complex conjugates of (2.14) and
(2.15). Thus,

(2.16) {Cec0Fp.+ Orp0FcYu = Yop-asl®
and
2.17) {04r 08" + Or0a" Yoo = Pascnl®.

The corresponding relations for spinors with more than one index can
be obtained from (2.14), ..., (2.17) since any spinor can be expressed
as a linear combination of products of one-index spinors. Spinors
with upper indices present no extra problem because the derivative
of an e-spinor is zero. As an example, we have

{aBAF'F'+ aBF'aAF '}ﬂcDE' = xABCPﬁPDE' +x ABDP.BCPE"I‘ ¢ABE'Q'ﬁCDQ'-

In particular, by applying this to a “vector” XP¥) and using (2.12)
and (2.2), we can get back to (2.1). (It is not so easy to obtain (2.14),
.« s (2.17) directly from (2.1) rather than from (2.11), since the fact
that the e-spinors are constant must be used somewhere in the argu-
ment.)

The geometry of a Riemannian space (with signature + — — —)
can thus be described entirely in spinor terms, with the role of the
curvature tensor being taken over by spinors ¥ ,gzcps ¢ Satisfy-
ing (2.3), (2.4), (2.8), (2.9), (2.19), (2.15), (2.16), and (2.17).
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3. The Einstein Conditions

The theory of Section 2 will now be specialized to two cases of

particular note, namely empty space-time and source-free electro-
magnetic field.

The Ricci tensor R, = R}, has the spinor form

1 — ’
Rucsp = 3{xeaFec:p-—20 apcn + €anXr-cf b}

= Ae4pecp— Pascp
by (2.2), (2.7, (2.8). The scalar curvature R = R is given by
3.1 R =42

because of the symmetry of ¢,z . The Einstein tensor G,, = R
— 38,,R takes the form

(3.2) G 4c8pr = —Aeapeon —QaBen-
Einstein’s equations G,, = 0 for empty space clearly give

(3.3) Pascp =0
and
A=0.

On the other hand, if it is required to include a cosmological term in
Einstein’s equations, we have only ¢ ,zcp = 0, the cosmological
constant being equal to 4 by (3.1).
Supposing for the moment that the cosmological constant is zero,
(2.7) gives
Xanc® =0,

that is,  ,gcp 18 Symmetric in B and D. But by (2.3), it is also symmetric
A, B and in C, D. It is therefore completely symmetric in all its indices.

It is a remarkable and perhaps significant fact, that only for a
manifold with the apparently arbitrary + —— — signature of our
space-time, and which satisfies the Enstein equations for empty
space, can its curvature be characterized by so natural an object as a
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totally symmetric four-index spinor. The geometry of this spmor will
be dealt with in Section 3.
If a cosmological term (or matter) is present, we can write

A
(3.4) X4BCD = W4pcb+ 3 {3.4 césp+ SADSBC}

and then vz, will be totally symmetric even if 4 3 0. The spinor
v, pcp defined by (3.4) will be called here the gravitational spinor (even
in cases where ¢ pop # 0). It corresponds uniquely to Weyl’s con-
formal tensor C

,umm'

(35) aDE"!/)ABCD =0

and of course 8?52 = 0 also. Equation (3.5) has the suggestive ap-
pearance of being formally identicalwith a spinor equation for a zero
rest-mass particle of spin two. (See Dirac (7) and compare (3.10).)
However, the differentiation used here is covariant, so that derivati-
ves do not commute. Hence, new features arise with second and higher
derivatives. In particular, it is not true that Eq. (3.5) leads to the co-
variant wave equation upon iteration with 0.5. We have

(36) aFE: 6DE' = %{GFE.GDE'+ aDE,GFE'}-i- -%SFD 0 »
where

D = a#a” = aFE,aFE'.
Also,

(3.7)  {BpeOp" + Opp0F )4 = "PFDAB‘EB_“ {EperatErepa)
by (2.14) and (3.4). Now (3.6) gives

0 = B 0p"ypapc” = ‘%{BFE'BDE'+ OO Wanc” —+ OWascr-
By (3.7), this leads to

ClYascp = ’PABEFTPCDE Fyvwaceryp+ yppeEf + WADEF#’BCEF —ZATPABCD
(3 -8) = 31P(ABEF YCDYEF — 2}~TPABCD
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where the indices between the brackets are to be symmetrized.? Thus,
even when A = 0 there is the nonlinear term on the right. This shows
that the y-field can perhaps be thought of as acting as its own source
to a certain extent. If 5., is small we have

Oyasep = 0

since A is small in any case. Equation (3.8) indicates that we can only
expect to have exact solutions for plane gravitational waves moving
with the velocity of light when A = 0 and vy, 5" cp)rr = 0. This ques-
tion will be returned to in Section 4 where this condition will be inter-
preted geometrically and in Section 5 where such an exact solution
will be given.

The tensor T,,,, whose spinor equivalent is given by

3.9 T 4e'Brcepr’ = YABCDPEF G H

15 of considerable interest. It has the properties of complete symmetry
in its tensor indices, vanishing traces (as easily follows from (3.9))
and vanishing covariant divergence (with or without A-term in Ein-
stein’s equations), since by (3.5)

P 4pcrPeren) = 0.

It would therefore appear that T,,,, is a multiple of the “gravitational
density” (or “super-energy”) tensor due independently to I. Robinson
(unpublished seminars) and to Bel (8, 9).* As is easily verified, T,,,, 1s,
in fact, proportional to the Robinson-Bel tensor. Equation (3.9) bears
a striking resemblance to the corresponding Eq. (3.11) for the elec-
tromagnetic case.

% The tensor form of this relation is
0 R#,,W = R#,“ﬁRaﬁea+4R°‘,1‘3[9Rﬁc,]“,,— 2/'1.JR,1,,Q,:r .

4 This tensor was also found by R. Sachs working with the group at Hamburg,
and by A. Komar. However, only Robinson noticed the rotal symmetry of the
tensor expression, It is not hard to see in the spinor formalism that, if R, = 0,
any four-index tensor, quadratic and homogeneous in R¥,,; and with vanishing
divergence, must be totally symmetric. Robinson’s tensor expression (with S0
asin (2.5)} is

T,uvga = yavﬂRgaaﬁ+SyuvﬂSQuaﬂ .
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Let us now suppose that there is a source-free electromagnetic field
present. The field tensor F,, can be expressed according to (1.3) in
terms of a symmetric spinor ¢ 5. This spinor can be used instead of
F,, to represent the electromagnetic field (2), and the Maxwell field
equations (in covariant form) become

(3.10) 04C 5 = 0.
The energy-momentum tensor T, for the electromagnetic field is
given by
(3.11) Tacp = _;"d’ABq;C'D’
(see 10). Now Einstein’s equations with cosmological term are

Gt A8y = —#T .
The A defined by (2.8) is still the cosmological constant, because
T", = 0 and by (3.1), 44 = R = —G*,. Choosing units suitably so
that » = 2 (or absorbing the constant into the definition of ¢ ,5) we
have, from (3.2), (3.11)

Papcp = ¢ABq§C'D'-

Equation (2.9) now gives

(3.12) 026 apcp = SEG'H'aCH' Pan

by (3.4) and (3.10) since A is necessarily constant. Thus the ¢-field
appears as a kind of source term to the y-field (here in the first-order
equation).

From (2.17) we have

(3.13) {0re0pF + OppOrf o = Pprdeualt

and (3.7) still holds. The second order equation arising from (3.10)
turns out to be

O¢as = Yapcod©P— %24)‘43

so that even the Maxwell field does not exactly satisfy the covariant
wave equation (compare Eddington, /1, Section 74). Also, (3.5) leads
to

O%ascp = 31P(ABEF YCeoyEF— Z}HPABCD - 2(56'H'6AG'63H'¢CD-
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4, The Geometry and Invariants of v ),

It is known that a general electromagnetic field determines two real
principal null directions at each point (12). These are given in the
general case by the real eigenvectors of the field tensor F*, considered
as a matrix, (There are also two complex null directions given by the
complex eigenvectors, but these add nothing to the geometry as they
are determined by their orthogonality with the real ones.) An alter-
native method of obtaining these principal null directions is to use
a spinor approach. Any null vector x* corresponds to the product
of a dotted with an undotted spinor

xAB = pAYF

If x* is real, 0% is a multiple of 7%, positive if x* points to the future.
Any direction along the light cone therefore corresponds uniquely
to a one-index spinor ray (set of spinors proportional to a given spinor).
Now F,, corresponds uniquely to ¢ 45 (by 1.3) and we have

FAC g = — %_{d)ABag:‘l' aﬁff’_c’u'}-

It is easily verified from this that the eigenvectors of F4%,, are
n4i7, CAL® (corresponding to the real null vectors) and 4C%, {45%
(corresponding to the complex null vectors) where

(4.1) P = %“{WACB-I- neLa} = n(ACB)-

See also Witten (13). A decomposition exactly analogous to (4.1)
exists for the gravitational spinor. We have

4.2) Yarco = XPBYcOpy,

which expresses the gravitational spinor uniquely (except for scale
factors) as a symmetrized product of one-index spinors. The bracket
here denotes symmetrization as before, so that written out in full,
there would be 24 terms on the right-hand side. The existence and
uniqueness of (4.2) follows from the fundamental theorem of algebra:

(4.3) 1}’ABCD§A§B§C§D = (e4&1) (B5EB) (’J’C&C) (6pEP)

expresses the general binary quartic formasa product of linear factors.
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These factors are essentially unique, and equating coefficients gives
4.2).

Now the spinors « 4, 8z, ¢, 0, determine four directions along the
light cone. These are uniquely determined by vy,gzcp and will be
called the gravitational principal null directions.® They supplement the
two electromagnetic principal null directions corresponding to n, and
£ 4~ The gravitational principal null directions are only undefined if
Ypcp = O but they may coincide in special cases. In particular, for
the case of the Schwarzschild solution, it follows from the symmetry
that they must coincide in pairs at every point, one pair pointing to-
wards the origin along the light cone and the other pair pointing
away from it. (Time reversal symmetry shows that they cannot all four
coincide or coincide three and one.) The coincidence of the two
electromagnetic null directions is the condition for the electromagnetic
field to be null. (The electromagnetic directions are, of course, only
undetermined if ¢ 5 = 0.) Thus, for an electromagnetic plane wave,
the principal null directions coincide and, naturally enough, point in
the direction of motion of the wave. Similarly, it turns out that for a
gravitational plane wave, all the gravitational null directions coincide.
This question will be returned to later. Gravitational radiation 1is
sometimes analysed in terms of the invariants of the Riemann tensor
(17) and it will be useful first to relate these invariants to the null
directions defined above.

The number of independent invariants of the Riemann tensor in
empty space is well known to be four. These may be interpreted as the
real and imaginary parts of two independent complex invariants of

YaBcp: €8
4.4) I = papcppA8€P, J = pABeppCPpryFf 4
(see Witten, 6, p. 359). These may be thought of as invariants of the

binary quartic form (4.3). According to the theory of invariants of
binary forms, I and J are independent and any invariant of the quartic

5 These four null directions are implicit in the work of Ruse (14). They corre-
spond to the self-conjugate lines of the Riemannian complex. Note added in proof:
They have been further exploited by Debever (13, 16).
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form (4.3) is a function of them (see Grace and Young, 18). Thus the
real and imaginary parts of I and J are a complete set of curvature
invariants for empty space. The invariants I and J take the following
tensor form if R, = 1g,,:

1 i 4
I = __2_ R#!'QUR'WQU"*"Z ,\/_“_gR,uvaﬁEaﬂng,uvgu . _3 ]'2,
1 i , 8
J = 3 ARt 5 v/ =GR Pepen t R R, =200 — 5 73

with 1 = ;}R. These relations are obtained from (2.2), (2.5), (2.6), and
(3.4). For a general curvature tensor,® the tensor R, , in the above
expressions must be replaced by

1 1
ERWQG + 88 Raﬁyoeaﬁ/uﬁydes .

Binary forms have a geometrical interpretation as sets of points on a
complex projective line. The equation

PapcpEAEBECED = ()

is satisfied if and only ifat least one of the factors « ,&4, B4£5, y &€, 8,&P
vanishes, each of the conditions « £ =0, ..., 8,52 = 0 represent-
ing a point on the line. Thus y ,z-p corresponds to four points 4, B,
C, D on a complex projective line, the coordinates of these points
being the components of «,, B, Y4, 04, respectively. Now any four
collinear points have a projective invariant, namely, their cross-ratio

_ (“AﬁA) (7’853)
#= (28 (yoBP) -

$ It is perhaps worth remarking that a general method of converting expressions
involving v 4 gop into the corresponding expressions for R, ., would be to use the
formuia
Yarop = %RAE'BF’OG’DE'SE’F'BG’E’ - leR{EAUSBb'l' € 4pEne)
but the conversion of spinor contractions to an equivalent tensor form is sometimes
complicated.
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This cross-ratio is the only independent invariant of the four points
and is therefore the only independent invariant of y,z-p which is
unchanged if y, p-p is multiplied by a non-zero complex number.
Thus, the four real invariants of the curvature of empty space can
be interpreted as a complex cross-ratio,? and a phase and a magnitude®
for v 4zcop-

This phase is associated with duality rotations of the curvature
tensor (suggested to me first by I. Robinson) which are exactly ana-
logous to electromagnetic duality rotations (5). In each case the
duality rotation invariance of the first-order equation (3.5), (3.10)
is broken only when sources are present. Letting

i
W4BCD —~ €°Y4BCD,

where 0 is a real constant, we have, assuming for simplicity that ¢ 4z p
and A both vanish,

by (2.2) and (2.6), S,,,, being the right (or equivalently the left) dual
of R,,,, defined by (2.5). This is exactly analogous to

L. ¢AB - eioquB
giving
F, — cos 6F,,—sin 0H,,

where the dual H,, of F,, is given by (1.4). Unlike the electromagnetic
case, however, duality rotations of the y-field of an empty space
solution do not in general give rise to new exact solutions of the field
equations. (See, for example, Eq. (3.8).)

It will be observed that the Robinson-Bel tensor v, zcp¥rron
determines v, z-p up to a duality rotation in the same way that

7 The idea of using a complex cross-ratio as an invariant defined by four nu
rays has also been independently suggested by I. Robinson (unpublished).

8 This phase and magnitude of y (z¢p can be interpreted in an invariant way as
the argument and modulus of, say, 1/I. This not really satisfactory, however, since
may vanish. It might be better to use the argument and modulus of the » which is
defined by the relations (4.5). This only need vanish if I = J = 0, the condition
for three of the null directions to coincide. Its definition depends on an arbitrary
ordering of the null directions, however, as does the definition of u.
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¢ 4ppcp determines ¢, up to a duality rotation. The principal null
directions are therefore associated even more closely with these
“energy” expressions than with the field quantities themselves. These
expressions are completely characterized by the principal null direc-
tions, apart from their actual magnitude. It might be expected that the
gravitational null directions are in some way associated with flow of
“gravitational density”. There does appear to be such a connection,
as may be seen from the following argument.

XA = EAEB' .

Then by (3.9) and (4.3)
T oo X X*x2x° = (9 4pcpEAEPECEDL) (P prr r EF EF ECTER")

= (ayx#) (bvxv) (chg) (dox"),
where

Gap = xady, bap = PuBy. cap =viPr, dip = d4dp.

The vectors a,, b, ¢, d# are null vectors, pointing into the future,
corresponding to the gravitational principal null directions. Thus
T ,0cx"x"x°x" only vanishes for null vectors x“ which point in one of
the gravitational principal null directions. Otherwise it is positive.
But for any time-like vector #“, the expression

T oet L1t
(t1")

measures the gravitational density for an observer whose time axis is
t“ (see Bel (8, 9)). It is positive (for empty space) unless R ,,,, = 0. Thus
the gravitational principal null directions are characterized by the
fact that for observers travelling with a given velocity infinitesimally
less than ¢, the gravitational density will be a minimum for those
observers who travel approximately along a principal null direction.

It is convenient, from a geometrical point of view, to represent null
directions as points on a sphere. This sphere may be thought of as the
field of vision of some observer. It may also be interpreted as a reali-
zation of the complex projective line mentioned above. (A complex

4.5)
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projective line is, topologically, a real 2-sphere.) This sphere is the
Argand sphere of the ratio of the two components of a one-index
spinor (see Penrose, 19, p. 138). Any Lorentz transformation corre-
sponds to a bilinear transformation of this ratio and therefore to a
projective (conformal) transformation of the sphere, which sends
circles into circles.

Four points on the sphere are concyclic if and only if their cross-
ratio is real. A particular case of this are harmonic points for which
the cross-ratiois — 1,2, or % according to the order in which the points
are taken. The symmetry of a harmonic set is best exhibited when the
points are equally spaced around a great circle. The symmetries are
then just the symmetries of a square. Any harmonic set can be brought
into this form by a suitable projective (Lorentz) transformation,
since any three points on the sphere can be transformed into any three
others. Harmonic sets are of interest here because they have a greater
symmetry than a general set of four points. They correspond to the
vanishing of the invariant J (see Grace and Young, I8, p. 206). Also
of interest is the equianharmonic set which has an even greater sym-
metry. The cross-ratio here is —w or —w? where v = %3, By a
suitable projective transformation these four points can be made the
vertices of a regular tetrahedron. Equianharmonic points correspond
to the vanishing of the invariant I (18, p. 206).

In the case of a general cross-ratio p, the symmetry is given by the
Klein 4-group (except that there are also some reflectional symmetries
if u is real or has modulus unity). There is a unique projective trans-
formation (involution) which interchanges any pair of the points
with the remaining pair. These and the identity constitute the complete
projective symmetry group provided that u is different from —1, 2, %,
—w, —w?, 0, 1, or o, the cases 0, 1, and = occurring when a pair
of points coincide. The value of u can be obtained from /3/J2 since it
can be shown that

@6) I=6utow) (ptod, J=6u+1)(u—1)([u-2)

for some x (see (16) p. 205). There are in general six values of u for a
given value of I?/J2 They correspond to different orders in which the
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four points can be taken. The values are p, 1—u, 1/p, 1—(1/p),
1/(1—p), u/(u—1). The symmetries in the general case can also be
realized as rotational symmetries of the sphere similarly to the two
cases considered above. By a suitable projective transformation the
four points, 4, B, C, D can be transformed into the vertices of a
tetrahedron which has opposite edges equal in pairs (a disphenoid).
Such a tetrahedron has three orthogonal dyad axes of symmetry.
These axes are the joins of the midpoint of opposite edges. If the
cross-ratio is real, the tetrahedron is flattened into a rectangle but the
three symmetry axes remain.

To see that such a transformation exists consider the three pairs (£,
F)), (G, H), (K, L) of united points for the three involutions which send
(4, B,C, D) into (B, A, D, C) (C, D, A, B) and (D, C, B, A), respec-
tively. Now the involution which sends. (4, B, C, D) into (B, 4, D, C)
transforms the other involutions into themselves. It therefore sends
G into H and K into L. Hence, (E, F) is harmonic with respect to
(G, H) and also with respect to (K, L). Similarly (G, H) is harmonic
with respect to (K, L). Now, E, G, F, H can be transformed (as above)
into four points equally spaced, in that order, around the equator.
K and L will then be the north and south poles, so that the six points
form the vertices of a regular octahedron. The three involutions are
then represented as rotations through 7 about the three axes EF, GH,
KL. The point A4 is rotated into B, C, D by means of these involutions
giving the symmetrical tetrahedron described above.

This symmetrical representation of the points 4, B, C, D is of
interest because it is related to Petrov’s canonical representation of the
Riemann tensor with R, = 0 (17, 20). The rest frame in which the
gravitational principal null directions appear to have this symmetrical
form determines the canonical time axis, the three canonical space
axes arising from the three axes of symmetry. These four axes are
orthogonal to each other and are called the Riemann principal di-
rections. They are uniquely defined provided that 4, B, C, D are all
distinct. If 4, B, C, D coincide in pairs they can still be considered
to exist but they are not uniquely defined.

The rotational symmetries of the tetrahedron 4 B C D in the gen-
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since

eral case give rise to the corresponding symmetries for R,
—R

being dyad axes the only other possibility would be R, —~ wvao
(a duality rotation of x).2 Such an alternative is easily ruled out as
impossible. It follows that, for the canonical choice of axes,

Rijry=0 whenever i =k and j =1

as is required in Petrov’s canonical form. Conversely, the above
condition is sufficient for the Riemann principal directions to be the
axes.

The usual definition of the Riemann principal directions is in
terms of the intersections of certain planes which are determined by
the “eigenbivectors” of R, i.e., from the nonzero (complex) skew
tensors x** which satisfy a relation

4. R, x® = ax!”.
Writing this in a spinor form with

XAC'BD" = L{ydB,C'D" | ABFC'D)
(see 1.3) '8 and {42 being symmetric, (4.7) becomes
PABppnEFeC'D’ 4 gABGC'D' [ FEF' — y{pABeC'D’ 4 c4BFC'D')

YAPprn =t = optB,  pABpplER = al4®,

One or the other of n*2, {*® may be zero. The eigenbivectors of R*,,

are thus expressible in terms of “eigenspinors™ of y*%.,, the eigen-
values of R*, being those of y4® ., and their complex conjugates.
Witten (6) also considers these eigenspinors.

9 In the special cases where the set of points A4, B, C, D has an additional rota-
tional symmetry, this does not always lead toa corresponding symmetry of R,,;00,
although it does for the case when A, B, C, D coincide in pairs. In particular, in
the equianharmonic case, the triad axes of symmetry give rise toduality rotations
through angles 27/3, 47/3.
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Now if the eigenvalues of y*2., are ai, as, a3 (the space of sym-
metric £42 being three-dimensional) we have

a1tog+as = pi8,p = 0,
o1t og?+ag? = pABopyCl p = I,

xP+agd+og® = pABopypCl eyt p = J.

With the expressions for I and J given in (4.6), it is easily verified that
these relations are satisfied by

(4.8) o1 = #(2u—1), as = x(2—p), as=x{—1—p).

The six eigenvalues of R., are therefore these three numbers and
their complex conjugates. It will be seen that the vanishing of just one
of the eigenvalues (4.8) is the condition for the principal null directions
to form a harmonic set. If two of them vanish they must all vanish and
I = J = 0. This is the condition for at least three of the principal
null directions to coincide (since they form both a harmonic and an
equianharmonic set). If two of the eigenvalues (4.8) coincide, this is
the condition F = 0, I, or < for a pair of principal null directions to
coincide. This is the case I? = 6J2 (18, p. 198).

The three eigenspinors 0%, {42, 848 of y42_, will next be con-
sidered. They are symmetric and therefore each is expressible as a
symmetrized product of a pair of one-index spinors (see 4.1). Each of
n48, {48, 648 corresponds to a pair of points on the projective line
considered earlier, so in the general case we have six points on this
line determined by A4, B, C, D. These can only be E, F, G, H, K, L
since a general quartic form has only one sextic covariant (18, pp. 92,
94). This sextic covariant is

Vrora¥ By pErEAEPECEPEELE,
whence
"PPQR(A"PPQBC"PRDEF) = W(ABCCDBEF),

choosing the scale factor suitably. The vanishing of this expression is
the condition for A4, B, C, D to coincide in pairs, since E, F, G, H, K, L
are not then defined uniquely. It does not vanish if just two of 4, B, C,
D coincide, or if they coincide three and one.
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The planes determined by the eigenbivectors of R*,, are those
determined by 1%, {4B, 645, They are therefore the three planes of
the pairs of null directions corresponding to EF, GH, KL and the
three orthogonal complements of these planes. Their intersections
give the Riemann principal directions defined here, as is required.
This is easily seen from the symmetrical representation of 4, B, C, D
given above.

These considerations have so far been essentially only concerned
with Petrov’s tensors R,,,, of Type L. This 1s the case when the eigen-
bivectors of R*,, span the six-dimensional space of bivectors. In
special cases these eigenbivectors span only a four-dimensional space
(Type II) and in very special cases, a two-dimensional space (Type III).
In spinor terms, this means that Type I occurs when the eigenspinors
of w48, span a three-dimensional space, Type II when they span a
two-dimensional space and Type III when they span only a one-
dimensional space. Thus, Type II can only occur when at least two
of the eigenvalues (4.8) are equal and Type III when they are all equal
(and therefore all zero). We have seen that equality of eigenvalues
implies coincidences among A, B, C, D so the cases where such
coincidences occur must now be considered.

There are six different cases to be distinguished including the general
case [1111] where the null directions are all distinct. There is the case
[211] where exactly two of them coincide, [22] where they coincide in
pairs, [31] where they coincide three and one, and [4] where all four
directions are the same. Finally, there is the case [—] when y zcp = 0
and the null directions are undefined. This gives us a natural classifi-
cation of Riemann tensors in empty space into six types (see also
Géhéniau (21) for a closely related procedure!®). In each case, the
eigenspinors can be obtained by observing what happens to E, F, G,
H, K, L when 4, B, C, D are specialized. However, this must be done
with care so that possible limiting positions of E, F, G, H, K, L are not
omitted. Figure 1 shows how the different special cases arise from
one another. The vertical specializations can be carried out keeping

10 Note added in proof: See also, more explicitly, Debever (15, 16).
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[1111] P62

4
[211] > [22] B =6J250
¥ v ¥
Petrov 111 I I

type:

FiG.1, Classification scheme for y 4 z¢p in terms of coincidences between principal
null directions,

the positions of E, F, G, H, K, L fixed, but in the diagonal speciali-
zations, further pairs of them are forced to coincide. (For example,
in the case [1111] — [211] if B — X and 4 — X, we have (G, H, —
- (X, X),(K,L) - (X, X)and (E, F) - (X, Y)where Y is the harmonic
conjugate of X with respect to the limiting positions of C and D.) The
Petrov type for each case may be obtained in this way and the results
are shown in Fig. 1. Each column corresponds to a particular type.
Thus, [1111], [22], and [—] are Type I, [211] and [4] are Type II,
while [31] is Type III. The different rows can be distinguished by the
invariants I and J (or by the eigenvalues). Hence the invariants and
Petrov type together serve to characterize v gcp-

It is of interest to see how this classification is in accord with that
given by the classical canonical form of y*B., considered as a
(3X3) matrix. These corresponding canonical forms are given in
Fig. 2.

The various algebraic conditions for each case (or one of its special-
1zations)

¥ v ¥
01 01 0
KARRINEN
0 0 0

F1G. 2. Classification in terms of matrix canonical form of y4%p.
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to occur may be collected together as follows:

[211]: B = 6J2, [22]: wPQR(A"PPQBC"PRDEF) =0, [31:1=J=0,
[4]: W(ABEF"PCD)EF =0, [-]:94Bcp = 0.

The only case that has not already been dealt with is the condition for
[4] to occur. The quartic form v, peperE EPECEP is the Hessian
of the form
TPABCDEA&BECED

and its vanishing is known to be the condition for the latter form to be
a perfect fourth power (I8, p. 235). The interest of this condition lies
in the fact that v ;" pep)pr is precisely the term (in the case A = 0)
which prevents Eq. (3.8) from being a covariant wave equation*! for
Y4pcp- Thus, plane wave solutions can only reasonably be expected
in case [4].1 This is Petrov’s Type II with vanishing invariants and is
apparently the case characteristic of a “pure” gravitational radiation
field (8, 22, and 23). The other cases which might conceivably also be
considered as “pure gravitational radiation” are [211] and [31] (see 17).
Case [211] would seem to be wrong since [22], which is a special case
of it, would also have to be considered as pure gravitational radiation.
But we have seen that the Schwarzschild solution is [22].

Case [31] is, however, worthy of consideration in this respect since
it shares with Case [4] the property that the gravitational density (4.5)
can be made as small as we please by a suitable choice of time axis
(“following the wave™). If

YaBCD = OL(AGCBOCCﬁD)
and
ty = QuteXy, Qap = %a%p> bap = f4fp,

where ¢ > 0is small and x, is time-like pointing to the future, we have

T yveaﬂ‘tﬂtgt ’ ~ % SalﬁA“AIZ(“BaC'xBC’)s _ (buaﬂ) (avxv)
@ 4e2(a,x") B 16

11 Case [4} therefore appears to be the only case (apart from [— ]} in which the
gravitationa! field has no “gravitational mass”. See also Bondi ef al. (23), p. 532.

12 However, a point perhaps worth mentioning is that in case [22], ¥4 8¢5 and
'P(ABEFVMD)EF are proportional.
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If 8, = o, the right-hand side would be of order &* instead of e.
Thus, the gravitational density tends to zero for observers, whose
velocity approaches the multiple principal null direction, both in Case
[31] and in Case [4], but it tends to zero more rapidly in Case [4].
1t would appear to be correct to call Case [4] “pure” radiation field13
but not Case [31]. Case [4] is like a null electromagnetic field (“pure”
electromagnetic radiation field) in that it determines only one null
direction, and in that it is the general limiting case obtained as a
result of a high velocity Lorentz transformation (see also 24).
(However, it is worth remarking that for a null electromagnetic field,
the energy T ,,“t"/(t,#") can only be made to tend to zero to order & by
“following the wave”, like Case [31] above.)

The invariants of y,pcp have been treated in considerable detail
above. It now remains to give a brief discussion of the combined
system ¥ zcps @ 4p for the case when electromagnetic field is present.
We expect to find just three more complex invariants, since ¢ ,p is
determined by its phase and magnitude, and by the positions relative
to A, B, C, D of the two complex points ¥ and Z on the argand sphere,
corresponding to the electromagnetic principal null directions. There
is the obvious invariant

K= ¢AB¢AB

of ¢, alone. This is the discriminant of the binary form ¢ 45,
the condition K = 0 being necessary and sufficient for the points X
and Y 1o coincide, that is, for the field to be null.1¥ The list is com-
pleted by the two independent invariants

L = ¢ pv4BcpdCP, M = ¢appBcpypCPprdpEF.

The fact that I, J, K, L, M are in general independent is most easily
seen if 8, is thought of as a matrix and ¢4% as a “vector” which
may then be expanded in terms of the eigenspinors of y*2., with

131t is probably preferable, however, to call case [4] simply a null gravitationa
field (as suggested by Robinson) analogously to the electromagnetic case.

132 The real and imaginary parts of K are the usual invariants F,,F** and
3V (— &) Fi®Fo%%,, ., respectively, of F,,.
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arbitrary coefficients. X, L, and M then become independent linear
functions of the squares of these coefficients.

However, I, J, K, L, and M do not form a complete system of in-
variants in the sense of invariant theory (I8). That is, not every

algebraic invariant of v,zcp and ¢ 5 can be expressed as a poly-
nomialin i, ..., M. The invariant

N = q’)ABwABCDwCDEFQbEGTPFGPQQSPQ

clearly is not even a rational function of I, ..., M since every such
function is of even order in ¢4, Also N does not vanish identically.
On the other hand, N is algebraically dependent on I, ..., M, there
being the syzygy

N2 = JJKLM —§J[3— M3 —$PK1?
— §IVRPL — {5 PK3+ (IKM2 + {12 M.

The system I, J, K, L, M, N does, in fact, form a complete system of
invariants for ¢ p-p and ¢ 4.

The condition for an electromagnetic principal null direction to
coincide with a gravitational principal null direction is that the resul-
tant of the quartic and quadratic forms should vanish. Expressed in
terms of invariants this condition turns out to be

2K -4KM+ 12 = 0.

The condition for both electromagnetic null directions to lie along a
gravitational null direction is therefore

K=0, L=0.

The electromagnetic and gravitational fields together have ten
independent real invariants, namely the real and imaginary parts of
I, J, K, L, M. However, only nine of these are determined by the cur-
vature R, since it is unaffected by duality rotations of the electro-
magnetic field. These are the nine independent real invariants of
Vapep @and ¢ zop = @ 4sP - The phase of ¢ ,, is undetermined
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by ¢ 4pcp» 50 We can take for these invariantsl
1, J,1K|, |L|, | M|
and the arguments of the two ratios
K:L:M.

(The invariants |K[%, |L|% |M |2, KL, LM, MK are easily expressible
in terms of ¢ pcp and ¢ pop)

5. Analytic Solutions of Einstein’s Equations

Let M be an analytic (connected) Riemannian manifold. Then
starting from any point O on M at which the curvature tensor R,
and all its covariant derivatives are known, it is possible to calculate
the curvature tensor (and its derivatives) at any other point by means
of a power series:

(5'1) (wagu)x = (R,uveo)0+xa(accRmoo 0+":'):1!_xuxﬁ(aaaﬂvaea)0+ e
The point x is that point on R whose geodesic distance from O is
v/ (x,x*) and which lies on the geodesic through O which starts off in
the direction of x* (Riemannian coordinates). (If x* is null this has to
be interpreted suitably.) The R,,,, at the point x is referred to axes
which are those at O transferred in parallel along this geodesic. If the
power series does not converge, the point x may be reached in several
steps, using intermediate points, in the manner of analytic continu-
ation. This power series expression and its convergence is considered
by Thomas (25, p. 234).

Equation (5.1) is a special case of the more general situation,
whereby any analytic tensor field may be calculated from a knowledge

1 When the electromagnetic field is null there still remain the seven real invari-
ants given by 1, J, | L|, [ M|and the argument of L/M. Thus Witten (6) is mistaken
when he claims that there remain only the four real invariants of ¥ ,z¢p in this
case. For example, the invariant ¢, pg pyp42ppF ¥ o g% 8" = |L]2, need not
vanish when K = 0. Such an invariant could appear as a quotient of invariants
built up from Witten’s list.
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of the tensor and all its covariant derivatives at the point O alone:

(F.. )y = (f+. Do+ XD.f. . .)O+51~!~ XXP(O,05f.. ot ..

. 1 "
(5.2) = [exp (x*D,)f. . .Jy= [lum (1 + -’:lx“&,) 7. ] .
R OO )
The 8,’s are to be taken as acting only on f... and not on x* (This
last expression can be used to obtain the power series expression
since

(f . ')e.\‘ = [(1 + Sxaaoc)f' . ]0+ 0(62)9

which may be applied » times with e = 1/n, giving (f. . .), correct to
order 1/n.)

These power series can be used as the basis for a coordinate-free
approach to Riemannian geometry. Instead of specifying a space by
giving the metric tensor g, as a function of some coordinates, the
space may be determined (except possibly for some of its topological
properties in the large) by specifying R,,,,.» 0,R 000 0,05R 00> ... 8t A
point Q. To specify a set of tensors at a point does not require coordi-
nates since their algebraic tensorial properties need only be given.
The metric tensors g, g and the alternating tensor 4/(£g)e,.  ,are
also supposed to be spectified at the point O. They are an essential
part of the tensor algebra at O.

A difficulty about specifying a space in this way is that R ,, ., 0,R,.000
0,05R 00 - .. are not algebraically (tensorially) independent of one
another. Relation (2.1) implies identities (Ricci) connecting second
derivatives with the curvature tensor, and also there is the Bianch:
identity which is the consistency condition for (2.1). The Bianchi
identity is in fact the only consistency condition required (25, pp. 131,
132). Applying these two types of identity to the higher derivatives of
R,,.c @ host of relations is obtained. It is therefore of importance to
be able to single out a set of tensors which are algebraically independ-
ent (in the general case) and from which R,,,, and all its derivatives
are obtainable by algebraic operations. It is possible to show that the
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following set of tensors, in fact, has all these properties:
QWQG = RH(Qva)s Qmedot = a(aRﬂgva)s Q'uvgaaﬁ — a(mBﬁ”R“g",,) etc.

Each Q... has the symmetry given by a Young tableau operator
corresponding to a partition (r—2, 2). That is to say, we have

Q,uvga...,ﬂ = Q(,uv)(ea...ﬁ) and Q,u(vga...ﬁ) = 0.

Apart from these symmetries and from certain considerations of
convergence, the Q’s may be chosen arbitrarily.’® Unfortunately,
however, if it is required to impose a condition such as Einstein’s
R*,, =0 (or Ag,) on the space, this implies a condition not only
on 0, but also on 0"’ ,, 0,4 etc. These conditions are not linear,
and they appear to be somewhat complicated. It seems for this reason
that an approach based explicitly on these Q’s would not be usually
very convenient for general relativity. (However, in a later paper it is
proposed to give a class of special solutions using this method.) On
the other hand, if a spinor approach is used, these conditions take on
a particularly simple form. This approach will now be described in
more detail.

Suppose that 3N has four dimensions and signature (+ — — —), and
that R”,,, = Ag,,. Then we have seen that R, can be represented
uniquely by a totally symmetric spinor v,z (4 being known).
We wish to find a set of algebraically independent spinors from which

(5.3) Yapcps O wamcp, O 0r%yancp, -
(at the point O) can be constructed by means of algebraic spinor

operations. The identities relating the spinors (5.3) arise from the
equivalent of the Bianchi identity, namely (3.5):

(5.4) 0P papcp = 0 or M0 papcp= 0

15 These (’s are somewhat analogous to (but different from) the “normal
tensors” (see Thomas 25, p. 102).
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and the equivalent of (2.1), namely, (2.14), (2.15), (2.16), and (2.17):

, , R A
er-s{06® 0g% + O™ 065Y4 = pomant®— 3 {tceaa+EnEG A}

(5.5)
er-s {06~ 0g° + 0u® 05" =0
eCH{OGR 0n% + 055 O0a®'}es =0,
(5.6)
’ ’ ’ ’ ’ rCt D ’ A ’ P ’ 7D
EGH{aGR aHS +aGS Ot }TlP — @RSP Q,T]Q _3{7712 &SP _}_T’ls SRP}

(see 3.7 and 3.3) applied to y 5cp and its derivatives.

The various derivatives of (5.4) must all hold identically also.
Hence the algebraic relations on the spinors (5.3) arising from (5.4)
are

5.7 BB ... 0™ 05 wancp) = 0.

This expresses a condition on (namely, the vanishing of) the part of
85" ... 045 pcp Which is skew in H, 4 and says nothing about
the part symmetric in H, 4. Moreover the relations (5.5) connect

ersAOer ... 0% 0% ... Ox” wancD)
+ers {0 ... Ou® 06~ ... 0x""papcD)

with lower derivatives of v pcp, while (5.6) connect

eCHOF ... 0% 05~ ... Ok " pancD)
+ 5@ ... 065 08" ... 0k "pancD)

with lower derivatives of v, z-,. These express conditions only on
parts of 8" ... 8 w.pcp, Which are skew in a pair of primed
indices or in a pair of unprimed indices. Thus the algebraic relations
arising from (5.4), (5.5), and (5.6) connecting the spinors (5.3) are all
concerned with parts of 85 ... 8, v pcp Which are skew in at
least one pair of indices. They imply no conditions on the parts
totally symmetric in all primed indices and in all unprimed indices.
(It might, perhaps, be thought that other relations could be obtained
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by expanding skew parts of &g ... 08 Yupcp in two different
ways. However, these all lead back to (5.7) which is the only consis-
tency condition implied.) Hence the spinors

Y4BCDs YapcDE = 6(EP'1PABCD), 'WABCDEFP’Q’ = B(E(P, aFQ')WABCD), co
(5.8)

are all algebraically independent and can therefore be specified arbit-
rarily (apart from convergence considerations) at the point 0.

The problem is now to show, conversely, that all the spinors (5.3)
can be obtained algebraically from the spinors (5.8). For then v 4pcp»
W 4BcpEPs ¥ aBCDEFPQ> - - - Will be a complete set of algebraically inde-
pendent spinors at O, which can be used to generate the space . In
order to show that they form such a complete set, an argument by
induction will be used. We wish to express 8z ... 05,9 pcp In
terms of 9, pcpe £ 7 and lower order derivatives of ¥,zcp
since it may be supposed as the inductive hypothesis that all these
lower derivatives have already been expressed algebraically in terms of
symmetrized derivatives 5 & '¥. Now if we add together all the
spinors obtained from 8" ... 8x"y4pcp by permuting P/, ..., V’
in all possible ways and 4, B, C, D, E, ... K in all possible ways, we
get a multiple of v 5 FV". Thus, if it can be shown that each of the
spinors obtained by such permutations differs from 85" ... 0x" % 4zcp
by expressions involving only lower derivatives of vz, the result
will be proved. The spinor 05" ... 0¢" v zcp Will then be seen to
differ from y,5 .~ =" by a spinor built up from lower derivatives

of ¥ 4pcp-
Any two spinors obtained by such a permutation of indices from

6EP’ <. aKV,"PABCD
will be called equivalent (denoted by ~ )} if they differ from each other
by expressions built up from lower order derivatives of v pcp. This is
clearly an equivalence relation. It is required to show that all such
spinors are, in fact, equivalent to one another. Now since
I 0y% —0vZ O™ = 5 X epn{Ow™ Oy + 0™ O}

+ % £ WYEST{aRX, 017 + asz'aTX'}
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(see 2.12), we have, applying (4.5) and (£.6)
. 6WX’6YZ’ «os Yapecp ~ ... ay ’ GWX’ «++ Y4aBCD-

Hence any permutation of the 8,," symbols gives rise to an equivalent
spinor. (Any permutation can be expressed as a product of transpo-

sitions of adjacent elements.) That is, any permutation of 7', ..., ¥V’
can be applied to 85 ... 8¢ v pcp provided that the same per-
mutation is applied to E, ..., K and an equivalent spinor is obtained.
It remains to show that E, ..., K, 4, B, C, D can be permuted inde-

pendently and an equivalent spinor is still obtained. The symmetry of
Y 8cp Implies that 4, B, C, D can be permuted without change.
Furthermore, from 5.7, K and 4 can be interchanged in 8; .

e oo Ok Wapcp. Also,

. ayzt e 6KV'TPABCD ~ .. BKV‘ ‘e ayZ’WBCD,
e 6KV' .o 6,;2'1/)”@ ~ .. 6,42' ‘e aKV'szBCD
so that A can be interchanged with any other unprimed index and an

equivalent spinor is obtained. It follows that any pair of unprimed
indices can be interchanged since

X‘r Z' X, ’
..GW 6Y ...wABCDN...GW ...aAZ...wYB(;D,

X’ z X’ ’
~6y 6,4 ...szBCDN...ﬁ'y ...GWZ...wABCD.

Hence all the spinors are equivalent and the result is proved.
As examples of the above, we have

aEP'WABCD = WABCDEP',
aEP'aFQ'V’ABCD = V)ABCDEFP’Q,'l‘ SEFEP'Q'{% "P(ABGHTPCD)GH_‘:II)-"PABCD}
+ & 'Q’{TP(ABCGV’D)EFG-F % MJE(ABCSD)F—F- % M)F(ABCSD)E}-
Higher derivatives involve v pcns Yancpep --- also. We have

, 1 . For
(yaBep)s = Yapep+ x5 aEP"'/’ABCD+“2—| xEP'xF 9gp. OpoWaBept - - -
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Hence

» 1 r ’
(Wasep)x = Wancp + X Yan pEp + 5XF XYW apcpEFPO

+ 3 (xepx®) % Vs’ epyea— 3P apcp} + O(x3).

It is possible to obtain a class of exact solutions for gravitational
plane waves using this method. Such solutions, obtained using more
conventional methods, have been known for some time (for references,
see Bondi et al., 23). Let

VABCD = XN 4TBTCT D, YABCDEP = X1TATBT DT ETp,

(5-9) YABCDEP'Qr = 2Ty ... npﬁp;ﬁg:, -

at the point O, where z, is a spinor corresponding to the null direc-
tion giving the direction of motion of the wave and «o, &1, ... are
complex numbers. Suppose 4 = 0. It will now be shown that the
unsymmetrized derivatives of ¥ 5., are all equal to the symmetrized
derivatives, so the situation is much simplified in this case. As an
inductive hypothesis we assume that all the derivatives of y,z-p Of

lower order than 8z ... 8"y 4pcp are already symmetric and there-
fore equal to the correspondmg express1ons 5.9. The argument given
above shows that 8 ... g ¥upcp differs from vpepe. x5 Y

by expressions obtained by applymg rule (5.5) and (5.6) to v pcp and
derivatives of vy, pcp, and perhaps differentiating further. Since
2 = 0, this leads to terms of the form

vxac.. .kl VypXp 25 or pyF TV  xkpa.. F7e 5
only. (By the inductive hypothesis all the derivatives of y g, which
occur are equal to the y -*’s.) These terms all involve contractions

betweenthey -’s. But with ¢ _-*’s given by (5.9), any contraction
must clearly vanish (since 7,* = 0). Hence

P .

(GEP e aKV"PABCD)O = (T4 ... TKKﬁ

as required.
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The curvature at points other than O can now be calculated:

(YascD)s = Ao 4 gD+ ot1xE 7 4

1 s ’ —
... azgﬁp.+‘2—‘oczx” xFry .. pfpig+ ...
= f(xEP'm pitp) mamtpmenp = f(x* D) AT BT CT D,

where

(510) f(S) = a0+a15+-‘2-1“" tZgSz"I- 31—‘ ags3+ e .
and p,p = n,7@,. Thus the curvature is a function of the one para-

meter x“p, only. Itis constant along the (null) 3-spaces x“p,, = constant.
Furthermore, by (5.2),

(Cepvascn)s = (Oepascp)ot xFL(Oro {Oeryanco})o
1 .
4 37 xFQ xCGR (aFQ'aGR‘{aEP'WABCD})o-{- ce

= f'(xX"p )M pN R DT ET P
(CepOroyancn)x = [ (X“p Y4 . . . wrpitp ity ,

etc. Hence v, pep» Yapcper > Yapcperrgs - - - are all constant along
the 3-space x‘p,= 0. It follows that the whole space It admits
the three-parameter group of translations'® in the directions lying in
this 3-space. The space 3t thus represents a plane wave which moves
uniformly with the velocity of light in the direction represented by p,.
The intensity and polarization of the wave are determined by the
modulus and argument of the function f(s).
Particular cases of interest are:

(i) the constant gravitational field with v ,,-p constant everywhere.

16 9 also admits a two parameter group of rotational (Lorentz) symmetries
given by the unimodular matrices 14 satisfying ¢4 zn® = + 74, and disconnected
from these, the rotations for which #4z7® = + in4, There may also be some
reflectional symmetries in special cases. This five parameter group of motions ser-
ves to characterize the plane wave solutions (see Bondi ef al., (23)).
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Here f(s) = constant, i.e., 1 = a2 = ... = 0, and M admits addi-
tional translational motions.
(ii) Sinusoidal waves;

f(8) = ae™+be™, ie., «, = a(in)"+ b(—iny.

In this case I admits an additional discrete group of translations-
(iii) Gravitational pulse; for example,

c c .
bexp(~;jc~1-—s+a) if —a<=s<a

0 if s=—a or s=a

Case (iii) is not strictly an analytic manifold. I has to be constructed
from three analytic pieces (two of which are flat). The middle piece
fits on smoothly to the other two pieces, the join being C™. The space
is exactly flat before the pulse arrives and is again exactly flat after
the pulse has departed (23, p. 523).

An advantage of a method such as this for obtaining spaces satis-
fying Einstein’s equations is that the usual problem of deciding whether
an effect is real or merely due to a bad choice of coordinates simply
does not arise. The curvature at any point is found directly. However,
it will naturally be convenient to be able to introduce coordinates
into a space defined in this way, if desired. A coordinate system on
It may be thought of as a set of four scalar fields u, (i =0, ... 3).
The symmetric derivatives &, ... 8,u, of each u, may be specified
arbitrarily at the point O. The values of the coordinates u, and their
derivatives at any other point may then be calculated using (5.2),
after some of the unsymmetrized derivatives have been obtained
using (2.1). The expression for the metric at each point can be ob-
tained from the first derivatives of the u, at that point. This method
will be described in detail in a later paper.

The case when an electromagnetic field is present in the space can
be treated by an extension of the coordinate-free method for empty
space described above. The spinors

wapcpk...¢T 0 F = 0" ... ¢ WancD)
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are defined as before and spinors ¢,z G 4pc’ > Punco Z» -+ are
introduced, defined similarly by
Gasc...gF R =0T ... OsR P 4p).

By the same kind of argument as before, it follows that ¢,
G anc’ » -+ o> Wapeps Yapepi » - - - are all algebraically independent.
Instead of (5.4) we have

eC0cFpap =0 and —eB40  pypep = ¢;P ‘0002 dc
from (3.10) and (3.12). The first of these states the symmetry of
Oct ... 0% dap
in E, A, while the second expresses the part of

O ... 0c®wanch

skew in G, A in terms of derivatives of ¢ ,, of at most the same order.
They imply no condition on the symmetrized derivatives of ¢ 45 or
Y 4pcp- Nor do the equivalents of (5.5) and (5.6), which differ from
them only in that the second relation (5.5) is replaced by

er 5 {06ROuS + 0pR 065 I = deud? on®
(see 3.13) and the first relation (5.6) by
eCH{DGR 05 + 065 OuR}Ea = Papt?

The argument to show that the unsymmetrized derivatives can be
expressed algebraically in terms of the symmetrized derivatives is
exactly analogous to that for pure gravitational case. The derivative
o ... 0" ¢ pdiffersfrom @ zc 4 & by expressions constructed
from lower order derivatives of ¢,, and v, pcp, while 857 ...
067y 4pcp differs from v peps & % by expressions constructed
from derivatives of ¢ ,, of the same order or lower and from lower
order derivatives of v 4pcp. Thus, we can construct 87 ¢ 45, 0% ¥ .4ncps
8" 052D 1p O 02V spcps - -+, inthat order, from the symmetrized
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derivatives. The symmetric spinors ¢ 4z, @ 45’ » Pancn Z» - - -» VapcDs
Yascpg » - .. can therefore be specified arbitrarily at a point O
(apart from convergence considerations) and ¢,z W pcp at any
other point can be determined from them by (5.2).

A simple example is the case of a combined gravitational-electro-
magnetic wave (see also 22). Here ¥ pcp, Yapcpee» - - - are given by
(5.9) and

Gap = Botamtp, Qapcr = Pranprciip,
P apcpr o = Pol AT BT T DAp Ty s -

at the point O. As was the case, considered earlier, with the pure
gravitational wave the unsymmetrized derivatives of ¢ ,5 and ¥ pcp
turn out to be equal to the symmetrized derivatives provided that
4 = 0. Hence

(Pun)s = 8X"pImaE, (Yavep)s = F(X'pIRspR D,

where
1
() = Bot-Pus+ 5 o+ ..

and f(s) is given by (5.10) as before. The discussion given in the pure
gravitational case applies here also. The function g(s) determines the
intensity and polarization of the electromagnetic part of the wave and
J(s) the “purely gravitational” part. The electromagnetic field is null
everywhere and the gravitational field is [4]. All six principal null
directions coincide and point in the direction p, giving the motion of
the wave.

Table I summarizes some of the many analogies between the electro-
magnetic and gravitational fields, that are brought out by the spinor
formalism.

I should like to offer my thanks to Dr. D. W. Sciama for his early
encouragement and for many invaluable discussions.

[Received : September 16, 1959]
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TABLE I. SUMMARY OF SOME OF THE RESULTS OF THIS PAPER ON THE COMPARISONS
BETWEEN ELECTROMAGNETIC AND GRAVITATIONAL FIELDS IN SPINOR FOoRrRM

Maxwell field Curvature tensor with
Ry, =0
Tensor-spinor Fppy %{q’; aBrne+ EasPor D,} Rivoo ~ $Wanopterréan
correspondence +E4880pP g m}
First order Maxwell equations: Bianchi identities:
equation 04%h 45 =0 04% 4 pep = 0
(Super-)energy Maxwel_l stress tensor < Robinso_n—Bel tensor <
tensor —}qb 45D pr YageoVerenm
Duallty rotations 4)43 = eia(l)AB Yapop ™ eie‘lpABgD
Canonical re- Pz = Naln Yasop = %4PBYedp)
presentation
Classification [11] K=0 [1111] B = 6J2
scheme ¥y | PER
2]1-{—) K=0 i1} = [221 B = 6J% = g
Ve
Bij—~4]->{—] I=7=0
Plane wave b4 5(x#) = g(-"”P;;)”A”B ¥ 480 p(X*)
= f(x"p,) 74 7pTcT p

References

1. L. INFELD AND B. L. VAN DER WAERDEN, Sitzber. preuss. Akad. Wiss. Physik.-
math. KI. 9, 380 (1933).

W. L. BADE AND H. JEHLE, Revs. Modern Phys. 25, 714 (1953).

H. S. RUSE, Proc. Roy. Soc. Edinburgh 57, 97 (1937).

G. Y. RamicH, Trans. Am. Math. Soc. 27, 106 (1925).

C. W. MiSNER AND J. A. WHEELER, Annals of Physics 2, 525 (1957).

L. WrITTEN, Phys. Rev. 113, 357 (1959).

P. A. M. Dirac, Proc. Roy. Soc. A155, 447 (1936).

L. BEL, Compt. rend. 247, 1094 (1958).

L. BeL, Compt. rend. 248, 1297 (1959).

0. E. M. CorsoN, Introduction to Tensors, Spinors, and Relativistic Wave-equa-
tions, Blackie, London, 1953.

11. A. S. EpDINGTON, The Mathematical Theory of Relativity, Cambridge Univ.
Press, London and New York, 1923.

12. J. L. SYNGE, Relativity: The Special Theory, North-Holland Publ. Co., Am-
sterdam, 1956.

13. L. WITTEN, Phys. Rev. 115, 206 (1959).

2.
3.
4.
5.
6.
7.
8.L.B
9.L.B
1



14
15
16
17
18

19
20
21
22
23
24
25

PENROSE; A SPINCR APPROACH 357

. H. 8. RUSE, Proc. Roy. Soc. Edinburgh A62, 64 (1944).

. R. DEBEVER, Compt. Rend. Acad. Sci. 249, 1324 (1959).

. R, DEBEVER, Compt. Rend, Acad. Sci. 249, 1744 (1959),

. F. A. E. PirANL, Phys. Rev. 105, 1089 (1957).

. J. H. GRACE AND A. YOUNG, Algebra of Invariants, Cambridge Univ. Press,
London and New York, 1903,

. R. PENROSE, Proc. Cambridge Phil. Soc. 55, 137 (1959).

. A. Z. PETROV, Doklady Akad. Nauk SSSR 105, 905 (1955).

. J. GEafniau, Compt. rend. 244, 723 (1957).

. A. LicaNnerowicz, Compt. rend. 246, 893 (1958).

. H. Bonpt, F. A, E. PIraNI AND 1. ROBINSON, Proc. Roy. Soc. A231, 519 (1959).

. F. A, E. Pi1raNI, Proc. Roy. Soc. A252, 96 (1959).

. T. Y. THoMAS, Differential Invariants of Generalized Spaces, Cambridge Univ.
Press, London and New York, 1934.



NOTES ON EXTRACT 11

THE experimental aspect of general relativity still leaves much to be desired. In
1959 it seemed as if a new era had been initiated by the experiment described in
this paper; it may still prove to be the case that the theory will be able to be tested
experimentally in the laboratory in numerous ways, but how this will come is no
longer clear. The momentum generated by the use of the Mossbauer effect has
dissipated in the l[ast decade.
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Gravitational Red-shift in Nuclear Resonance

R. V. PounD and G. A. REBKA, Jr.

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts
[Received October 15, 1959]

It is widely considered desirable to check experimentally the view
that the frequencies of electromagnetic spectral lines are sensitive to
the gravitational potential at the position of the emitting system. The
several theories of relativity predict the frequency to be proportional
to the gravitational potential. Experiments are proposed to observe the
timekeeping of a “clock” based on an atomic or molecular transition,
when held aloft in a rocket-launched satellite, relative to a similar one
kept on the ground. The frequency », and thus the timekeeping at
height 4 are related to that at the earth’s surface vy according to

Av;, = Pyp—Yo = 'Vogh/cz(l—l-h/R) 2 thX(IO9X 10“18),

where R is the radius of the earth and 4 is the altitude measure in cm.
Very high accuracy is required of the clocks even with the altitudes
available with artificial satellites. Although several ways of obtaining
the necessary frequency stability look promising, it would be simpler
if a way could be found to do the experiment between fixed terrestrial
points. In particular, if an accuracy could be obtained allowing the
measurement of the shift between points differing as little as one to ten
kilometers in altitude, the experiment could be performed between a
mountain and a valley, in a mineshaft, or in a borehole.

t Phys. Rev. Letters. 3, 439 (1959).
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Recently Mossbauer has discovered! a new aspect of the emission
and scattering of y rays by nuclei in solids. A certain fraction f of y
rays of the nuclei of a solid are emitted without individual nuclear
recoil. Instead, the recoil momentum is delivered to the crystal lattice
as a whole resulting in negligible Doppler shift. Such y rays are in
resonance with nuclei similarly bound in a lattice and a similar frac-
tion f of the electromagnetic resonant cross section

b

or = 2nl2( 2I.+1 ) 1

2[,+1 ] 14«

where I, and I, are the spins of the emitting and the ground states
respectively, and « is the internal conversion coefficient, pertains to the
scattering. Calculations based on the Debye model of lattice vibrations
yield for fat temperatures 7" much less than the Debye temperature 0,

3 E 2 (aT \?
f = exp {“’22117:2@; [”3‘ (77,;) ]}
where E, is the energy of the y ray, M is the nuclear mass, and & is
Boltzmann’s constant. The factor (E2/«aMc?k0p,) is the ratio of the
recoil energy that would be taken up by the free nucleus to k0. For y
rays much above the 129 keV employed by Mdssbauer the factor f
becomes very small even at absolute zero.

The most striking evidence for the existence of this effect is the
observation that the attenuation of the 129-keV y rays of Ir'*! in
passing through an iridium absorber is reduced if the source is moved.
The speed required to reduce the part of the attenuation caused by
resonant scattering to one-half its maximum value was found to be
approximately 1.5 cm/sec. From this a half-life of the excited state is
derived to be 0.1 mp. sec. Others have repeated this experiment, and
extended it to helium temperatures.”® One other case is reported,® that

' R. L. Méssbauer, Z. Physik 151, 124 (1958); Naturwissenschaften 45, 538
(1958); Z. Naturforsch. 14a, 211 (1959).

2 Craig, Dash, McGuire, Nagle, and Reiswig, Phys. Rev. Letters 3, 221 (1959).

? Lee, Meyer-Schutzmeister, Schiffer, and Vincent, Phys. Rev. Letters 3, 223
(1959),
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of W82 wherein a half-life of 0.6 my.sec is inferred by the Doppler
width of the resonance. This is half the accepted lifetime as measured
by delay coincidence techniques. It is not clear whether this discre-
pancy represents a limit of the technique or whether it is largely an
instrumental problem, as the authors suggest, enhanced by the com-
plex array of other v rays in the Ta'®® source. Of course, as has been
suggested, one should expect to see effects caused by hyperfine struc-
ture in these spectra when lifetimes are long enough to allow them
to be important. All the effects discussed in connection with the
directional correlation of cascade vy rays should have an influence.
For example, it would seem desirable to use a source that has a good
chance of being in a normal lattice site and electronic state at the
time of emission of the final y ray in question. One could have serious
after effects from § decays, from prior emission of high-energy y rays
or from electron captures as well as broadening from imperfections
in the crystal lattice or short spin-lattice relaxation.

Even if the further development of the technique does not yield still
narrower resonances, those already observed have fractional widths in
frequency well below those of all the reference lines yet proposed
for “atomic clocks”. If the scattering is reduced to one-half its
maximum by relative motion of the source and scatterer with velocity
v, the Q, the ratio of the frequency to the full width at half-height of
the resonance line being observed, is just ¢/2v. In the case of Mdoss-
bauer’s experiment Q is about 1X10% and in the case of W82 it is
7X10%, In general Q = 1.10E, (MeV) 7,(mp sec) X 102

2

A measurement of the gravitational red shift could be performed
by transmitting y rays from a source to a scatterer at an altitude
different by A and by observing what relative velocity yields maximum
scattering. For the predicted shift to be a full half-width of the line,
the altitude difference £ must be h = [4.18/E, (MeV) 1:1 (my sec)]

km. Thus, for the width reported for W82, 66 km dlﬂ'erence of height
would be required.

It is exciting to speculate about the possibilities opened up if cases
of even less breadth can be found. For example, Fe¥, for which E, =
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= 0.0144 MeV and 7, = 100 mpsec, would require only 2.9 km

2
separation were it to yield its natural breadth. Another example
might be Zn® with an excited level at 0.093 MeV, of half-life 9400 mp.
sec. For this, if the natural breadth were obtained, 4, would be 4.74
2

meters. This possibility represents a considerable extrapolation from
present data. We are undertaking to examine these and other isotopes
in various environments with the aim of selecting an isotope suitable for
a gravitational experiment. Among other things equivalence of or
absence of hyperfine structures in the sources and scatterers would be
desirable.

Obviously one of the difficulties with large separations between
source and scatterer arises from the inverse-square law of intensity. As a
consequence of the participation of a large number of identical nuclzi
in an individual recoil-free scattering process, one anticipates the exist-
ence of intense Bragg diffraction from thin crystals. Thus one has the
possibility of some degree of focusing with bent crystals. Further-
more one may use the Bragg reflection from thin crystals to separate
the 9 rays emitted without recoil from all others. In this way irrelevant
background y rays could be eliminated from the detector.

Total external reflection of low-energy y rays at grazing angles of
incidence offers a possibility of a “light-pipe” to increase the effective
solid angle that the scatterer subtends at the source. Within the limits
set by the small angle of total reflection, this pipe need not be optically
straight.t

The fixed baseline used for an experiment of this type reduces
unwanted Doppler shifts to only those resulting from thermal, seismic,
or similar disturbances. To equal the predicted gravitational shift
the fractional change required in the height difference is 3.27 1078
per second. Perturbing effects must be kept well below this value but
this is also true for the other methods of measuring the red shift.
Relative motion could be separated from the red shift by simultaneous
observations of beams traveling in both directions.

¢ We wish to thank E. M. Purcell for this suggestion.
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