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Preface

The first version of these lecture notes was drafted in 2010 for a course at the
Pennsylvania State University. The book is addressed to graduate students
in mathematics or other disciplines, who wish to understand the essential
concepts of functional analysis and their application to partial differential
equations. Most of its content can be covered in a one-semester course at
the first-year graduate level.

In writing this textbook, I followed a number of guidelines:

- Keep it short, presenting all the fundamental concepts and results,
but not more than that.

- Explain clearly the connections between theorems in functional
analysis and familiar results of finite-dimensional linear algebra.

- Cover enough of the theory of Sobolev spaces and semigroups of
linear operators as needed to develop significant applications to
elliptic, parabolic, and hyperbolic PDEs.

- Include a large number of homework problems and illustrate the
main ideas with figures, whenever possible.

In functional analysis one finds a wealth of beautiful results that could
be included in a monograph. However, for a textbook of this nature one
should resist such a temptation.

After the Introduction, Chapters 2 to 6 cover classical topics in linear
functional analysis: Banach spaces, Hilbert spaces, and linear operators.
Chapter 4 is devoted to spaces of continuous functions, including the Stone-
Weierstrass approximation theorem and Ascoli’s compactness theorem. In

xi



xii Preface

view of applications to linear PDEs, in Chapter 6 we prove some basic
results on Fredholm operators and the Hilbert-Schmidt theorem on compact
symmetric operators in a Hilbert space.

Chapter 7 provides an introduction to the theory of semigroups, ex-
tending the definition of the exponential function et to a suitable class
of (possibly unbounded) linear operators. We stress the connection with
finite-dimensional ODESs and the close relation between the resolvent oper-
ators and backward Euler approximations.

After an introduction explaining the concepts of distribution and weak
derivative, Chapter 8 develops the theory of Sobolev spaces. These spaces
provide the most convenient abstract framework where techniques of func-
tional analysis can be applied toward the solution of ordinary and partial
differential equations.

The first three sections in Chapter 9 describe applications of the pre-
vious theory to elliptic, parabolic, and hyperbolic PDEs. Since differential
operators are unbounded, it is often convenient to recast a linear PDE in a
“weak form”, involving only bounded operators on a Hilbert-Sobolev space.
This new equation can then be studied using techniques of abstract func-
tional analysis, such as the Lax-Milgram theorem, Fredholm’s theory, or the
representation of the solution in terms of a series of eigenfunctions.

The last chapter consists of an Appendix, collecting background mate-
rial. This includes: definition and properties of metric spaces, the contrac-
tion mapping theorem, the Baire category theorem, a review of Lebesgue
measure theory, mollification techniques and partitions of unity, integrals of
functions taking values in a Banach space, a collection of inequalities, and
a version of Gronwall’s lemma.

These notes are illustrated by 41 figures. Nearly 180 homework problems
are collected at the end of the various chapters. A complete set of solutions
to the exercises is available to instructors. To obtain a PDF file of the
solutions, please contact the author, including a link to your department’s
web page listing you as an instructor or professor.

It is a pleasure to acknowledge the help I received from colleagues, stu-
dents, and friends, while preparing these notes. To L. Berlyand, G. Crasta,
D. Wei, and others, who spotted a large number of misprints and provided
many useful suggestions, I wish to express my gratitude.

Alberto Bressan
State College, July 2012



Chapter 1

Introduction

This book provides an introduction to linear functional analysis, extend-
ing techniques and results of classical linear algebra to infinite-dimensional
spaces. With the development of a theory of function spaces, functional
analysis yields a powerful tool for the study of linear ordinary and partial
differential equations. It provides fundamental insights on the existence and
uniqueness of solutions, their continuous dependence on initial or boundary
data, the convergence of approximations, and on various other properties.

The following remarks highlight some key results of linear algebra and
their infinite-dimensional counterparts.
1.1. Linear equations

Let A be an n X n matrix. Given a vector b € R", a basic problem in linear
algebra is to find a vector x € R™ such that

(1.1) Ax = b.

In the theory of linear PDEs, an analogous problem is the following.
Consider a bounded open set ! C R™ and a linear partial differential oper-
ator of the form

(1.2) Lu = — Xn: (6% (2)tg, )z, + z": b (z)ug,; + c(z)u.
ij=1 i=1

Given a function f : Q — R, find a function u, vanishing on the boundary
of €, such that

(1.3) Lu = f.

1



) 1. Introduction

There are fundamental differences between the problems (1.1) and (1.3).
The matrix A yields a continuous linear transformation on the finite-dimen-
sional space R™. On the other hand, the differential operator L can be
regarded as an unbounded (hence discontinuous) linear operator on the
infinite-dimensional space L2(f2). In particular, the domain of L is not
the entire space L2(2) but only a suitable subspace.

In spite of these differences, since both problems (1.1) and (1.3) are
linear, there are a number of techniques from linear algebra that can be
applied to (1.3) as well.

(I): Positivity

Assume that the matrix A is strictly positive definite, i.e., there exists
a constant § > 0 such that

(Az,z) > Blz|?  for all x € R™.

Then A is invertible and the equation (1.1) has a unique solution for every
b € R™.

This result has a direct counterpart for elliptic PDEs. Namely, assume
that the operator L is strictly positive definite, in the sense that (after a

formal integration by parts)
(1.4)

n n
s = [ | 3 a9(@uss, + Y b+ oo | da

> Bllull?

for some constant 8 > 0 and all w € H(Q2). Here H}(Q) is a space of
functions which vanish on the boundary of 2 and such that

1/2
ey = ([ ds+ [ [oPds) < oo

see Chapter 8 for precise definitions. If (1.4) holds, one can then prove
that the problem (1.3) has a unique solution u € H}(Q2), for every given
f € L3(Q).

A key assumption, in order for the inequality (1.4) to hold, is that the
operator L should be elliptic. Namely, at each point z € §2 the n x n matrix
(a¥(z)) should be strictly positive definite.
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(II): Fredholm alternative

A well-known criterion in linear algebra states that the equation (1.1)
has a unique solution for every given b € R" if and only if the homogeneous
equation

Ax = 0

has only the solution x = 0. Of course, this holds if and only if the matrix
A is invertible.

In general, continuous linear operators on an infinite-dimensional space
X do not share this property. Indeed, one can construct a bounded linear
operator A : X — X which is one-to-one but not onto, or conversely.

Yet, the finite-dimensional theory carries over to an important class of
operators, namely, those of the form A = I — K, where I is the identity and
K is a compact operator. If A is in this class, then one can still prove the
equivalence

A is one-to-one = A is onto.

By an application of this theory it follows that, for a linear elliptic opera-
tor, the equation (1.3) has a unique solution u € H3(Q2) for every f € L%(Q2)
if and only if the homogeneous equation

Lu =0
has only the zero solution.
(III): Diagonalization
If one can find a basis {vi,...,V,} of R" consisting of eigenvectors of A,

then with respect to this basis the system (1.1) takes a diagonal form and
is thus easy to solve.

For a general matrix A with multiple eigenvalues, it is well known that
such a basis of eigenvectors need not exists. A positive result in this direction
is the following. If the m x n matrix A is symmetric, then one can find
an orthonormal basis {v1,...,v,} of the Euclidean space R™ consisting of
eigenvectors of A. Namely,

_J1 ifi=j, _
(Vz, V]) = { 0 if i 7& j, Avk = )\kvk .
Here A1,...,A\, € R are the corresponding eigenvalues. The solution x of

(1.1) can now be found by computing its coefficients cy, ..., c, with respect



4 1. Introduction

to the orthonormal basis:

n n n
X = Eckvk, Ax = Z)\kckvk =b = Z(b,vk)vk.
k=1 k=1 k=1
Notice that, thanks to the basis of eigenvectors, the problem becomes de-
coupled. Instead of a large system of n equations in n variables, we only
need to solve n scalar equations, one for each coefficient ci. If all eigenvalues
A are nonzero, we thus have the explicit formula

n
1
(1.5) X = Z -/vc- (b, Vk> Vi .
k=1

One can adopt the same 'apprc')‘ach in the analysis of the elliptic operator
L in (1.2), provided that a* = a’* and b*(z) = 0. Indeed, these conditions
make the operator “symmetric”. One can then find a countable orthonormal
basis {¢1,¢2, ...} of the space L?(Q2) consisting of functions ¢ € Hg (1)
such that

1 ifi=yj,

(16) (¢‘H ¢j>L2 = { 0 ifi 75.7 , L¢k = )‘k¢k)
for a suitable sequence of real eigenvalues Ay — +00. Assuming that A\x # 0
for all k, the unique solution of (1.3) can now be written explicitly as

(1.7) u = ; )\ik (f, k)12 Ok -

Notice the close resemblance between the formulas (1.5) and (1.7). In
essence, one only needs to replace the Euclidean inner product on R™ by
the inner product on L%(Q).

1.2. Evolution equations

Let A be an n X n matrix. For a given initial state b € R", consider the
Cauchy problem

(18) L x(t) = Ax(t), x(0) = b.
According to linear ODE theory, this problem has a unique solution:
(1.9) x(t) = etb,
where
© Lk gk
t*A
(1.10) et = )" -
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Notice that the right-hand side of (1.10) is defined as a convergent series of
n x n matrices. Here A% = I is the identity matrix. The family of matrices
{et4; t € R} has the “group property”, namely

f4=7, ethesd = t+9)A  forallt, seR.

If A is symmetric, then it admits an orthonormal basis of eigenvectors
{v1,...,Vn}, with corresponding eigenvalues \i,...,\,. In this case, the
solution (1.9) can be written more explicitly as

n
etAb = Z e”"“ (b, Vk) Vi .
k=1

The theory of linear semigroups provides an extension of these results
to unbounded linear operators in infinite-dimensional spaces. In particular,
it applies to parabolic evolution equations of the form

(1.11) %u(t) = —Lu(t), u(0) = g € L%(Q), v =0 on 69,
where L is the partial differential operator in (1.2) and 9Q denotes the
boundary of Q. When a¥ = a7* and b‘(z) = 0, the elliptic operator L
is symmetric and the solution can be decomposed along the orthonormal
basis {¢1, ¢2, ...} of the space L2(2) considered in (1.6). This yields the
representation

oo
(1.12) u(t) = Sig = Y e (g, dp)r2dr, t>0.

k=1
Notice that the operator L is unbounded (its eigenvalues satisfy Ay — 400
as k — 00). However, the operators S; in (1.12) are bounded for every ¢ > 0
(but not for ¢ < 0). The family of linear operators {S;; ¢ > 0} is called a
linear semigroup, since it has the semigroup properties

So =1, Sio8S; = Siys forall 5,6 >0.

Intuitively, we could think of S; as an exponential operator: S; = e~
However, since L is unbounded, one should be aware that an exponential
formula such as (1.10) is no longer valid. When the explicit formula (1.12)
is not available, the operators S; must be constructed using some different
approximation method. In the finite-dimensional case, the exponential of a
matrix A can be recovered by

Lt

(1.13) e = lim (I—1A>
n—roo n
and also by
(1.14) et = lim e, Ay = AT -X"t4)L,

A—00
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Remarkably, the two formulas (1.13)—(1.14) retain their validity also for a
wide class of unbounded operators on infinite-dimensional spaces.

The hyperbolic initial value problem

(1.15) uy + Lu = 0, { J:Eg; : ‘Z’ u =0 on 0%,

can also be treated by similar methods.
The finite-dimensional counterpart of (1.15) is the system of second-
order linear equations

d? d
(1.16) Wx(t) + Ax(t) = 0, x(0) = a, EX(O) = b.
Here x,a, b € R™ and A is an n X n matrix. Denoting time derivatives
by an upper dot and setting y = %, (1.16) can be written as a first-order

system:

am ()= (L)) ) - 6)

The same results valid for first-order linear ODEs can thus be applied here. If

A is symmetric, then it has an orthonormal basis of eigenvectors {vi,...,vn}
with corresponding eigenvalues A1, . .., A,. In this case, the solution of (1.16)
can be written as
n
(1.18) x(t) = > c(t)vk.
k=1

Each coefficient ck(-) can be independently computed, by solving the second-
order scalar ODE

d? d
ch(t) +)‘kck(t) = O, Ck(O) = (aa ’Uk), Eck(o) = (b, Uk)'

Returning to the problem (1.15), if the elliptic operator L is symmetric,
then the solution can again be decomposed along the orthonormal basis
{¢1,d2, ...} of the space L2(f2) considered in (1.6). This yields the entirely
similar representation

(1.19) u(t) = > cr(t) bk t>0,
k=1

where each function ¢ is determined by the equations

2

%Ck(t)-H\ka(t) =0, ¢c(0) = (9, dr)r2, %Ck(o) = (h, dr)12-
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1.3. Function spaces

In functional analysis, a key idea is to regard functions f : R™ — R as
points in an abstract vector space. All the information about a function is
condensed in one single number || f||, which we call the norm of f. Typically,
the norm measures the “size” of f and of its partial derivatives up to some
order k. It is remarkable that so many results can be achieved in such
an economical way, relying only on this single concept, coupled with the
structure of vector space. This accounts for the wide success of functional
analytic methods.

Toward all applications of functional analysis to integral or differential
equations, one needs to develop a theory of function spaces. In this direction,
it is natural to consider the spaces C¥ of functions with bounded continuous
partial derivatives up to order k. The “size” of a function f € C*¥(R™) is
here measured by the norm

I fllex = maxa,t.tan<k sSUp |9zt --- O f(z)]|.
z€eR”

The spaces C¥, however, are not always appropriate for the study of PDEs.
Indeed, from physical or geometrical considerations one can often provide
estimates not on the maximum value of a solution and its derivatives, but
on their L? norm, for some p > 1. This motivates the introduction of the
Sobolev spaces W¥*P, containing all functions whose derivatives up to order
k lie in LP. The “size” of a function f € W*P(R") is now measured by the
norm

1/p

o1+ 080 f(a)| du

fhwes = (5 [

o1+-+an<k

Because of their fundamental role in PDE theory, all of Chapter 8 will be
devoted to the study of Sobolev spaces.

1.4. Compactness

When solving an equation, if an explicit formula for the solution is not
available, a common procedure relies on three steps:

(i) Construct a sequence of approximate solutions (un)n>1.
(ii) Extract a convergent subsequence u,; — &.

(iii) Prove that the limit @ is a solution.

When we reach step (ii), a major difference between the Euclidean space
RY and abstract function spaces is encountered. Namely, in R" all closed
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bounded sets are compact. Otherwise stated, in RY the Bolzano-Weierstrass
theorem holds:

o From every bounded sequence (un)n>1 One can extract a convergent
subsequence.

As proved in Chapter 2 (see Theorem 2.22), this crucial property is valid in
every finite-dimensional normed space but fails in every infinite-dimensional
one. In a space of functions, showing that a sequence of approximate solu-
tions is bounded, i.e., ||un|| < C for some constant C' and all n > 1, does
not guarantee the existence of a convergent subsequence. To overcome this
fundamental difficulty, two main approaches can be adopted.

(i) Introduce a weaker notion of convergence. Prove that every bounded
sequence (also in an infinite-dimensional space) has a subsequence
which converges in this weaker sense.

A key result in this direction, the Banach-Alaoglu theorem, will
be proved at the end of Chapter 2. Weak convergence in Hilbert
spaces is discussed in Chapter 5.

(ii) Consider two distinct norms, say ||u|lweak < ||%||strong, With the
following property. If a sequence (un)n>1 is bounded in the strong
norm, i.e., ||un|strong < C, then there exists a subsequence that
converges in the weak norm: ||un; — @|lweak — 0, for some limit @.
Ascoli’s theorem, proved in Chapter 3, and the Rellich-Kondrahov
compact embedding theorem, proved in Chapter 8, yield different

settings where this approach can be implemented.

A large portion of the analysis of partial differential equations ultimately
relies on the derivation of a priori estimates. It is the nature of the problem
at hand that dictates what kind of a priori bounds one can expect, and
hence in which function spaces the solution can be found. This motivates
the variety of function spaces which are currently encountered in literature.

While the techniques of functional analysis are very general and yield
results of fundamental nature in an intuitive and economical way, one should
be aware that only some aspects of PDE theory can be approached by func-
tional analytic methods alone. Typically, the solutions constructed by these
abstract methods lie in a Sobolev space of functions that possess just the
minimum amount of regularity needed to make sense of the equations. For
several elliptic and parabolic equations, it is known that solutions enjoy a
much higher regularity. However, this regularity can only be established by
a more detailed analysis. Further properties, such as the maximum principle
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for elliptic or parabolic equations and the finite propagation speed for hyper-
bolic equations, also require additional techniques, specifically designed for
PDEs. For these issues, which are not within the scope of the present lecture
notes, we refer to the monographs [E, GT, McO, P, PW, RR, S, T|.






Chapter 2

Banach Spaces

Given a vector space X over the real or complex numbers, we wish to in-
troduce a distance d(-,-) between points of X. This will allow us to define
limits, convergent sequences and series, and continuous mappings.

Since X has the algebraic structure of a vector space, the distance d
should be consistent with this structure. It is thus natural to require the
following properties:

(p1) The distance d is invariant under translations. Namely: d(z,y) =
d(z + 2,y + z) for every z,y,2 € X. In particular, d(z,y) =
d(z —y, 0).

(p2) The distance d is positively homogeneous. Namely: d(\z,\y) =
|A]d(z,y), for any scalar number A and any z,y € X.

(p3) Every open ball B(zg,r) = {z € X; d(z,z0) < r} is a convex set.

The invariance under translations implies that the distance d(:,-) is en-
tirely determined as soon as we specify the function z — ||z|| = d(z,0), i.e.,
the distance of a point z from the origin. This is what we call the norm of
a vector x € X. It can be taken as the starting point for the entire theory.

2.1. Basic definitions

Let X be a (possibly infinite-dimensional) vector space over the field K of
numbers. We shall always assume that K is either the field of real numbers
R or the field of complex numbers C . A norm on X is a map z — ||z||
from X into R, with the following properties.

11



12 2. Banach Spaces

(N1) For every z € X one has ||z|| > 0, with equality holding if and only
ifz=0.

(N2) For every z € X and )\ € K one has || \z| = || ||z]|.

(N3) For every z,y € X one has ||z + y|| < ||z| + ||y]|-

A vector space X with a norm || - || satisfying (N1)-(N3) is called a normed
space. In turn, a norm determines a distance between elements of X.

Lemma 2.1 (Distance defined by a norm). Let || - | be a norm on the
vector space X. Then
(2.1) d(z,y) = llz -yl

defines a distance between points of X. Moreover, this distance has the
additional properties of translation invariance, positive homogeneity, and
convexity stated in (p1)—(p3) above.

Proof. 1. We check that, for all z,y, 2z € X, the three basic properties of a
distance are satisfied:
(D1) d(z,y) > 0 for all z,y € X with equality holding if and only if
T=1Y;
(D2) d(z,y) = d(y, z);
(D3) d(z, 2) < d(z,y) + d(y, 2).

Indeed, (D1) is an immediate consequence of (N1). To prove (D2) we write

dy,z) = ly—zll = I(=DE-yIl = |-1lz-yll = lz-yll = d(=z,v).

The triangle inequality follows from (N3), replacing z,y with z—y and y—z,
respectively:

d(z,2) = |lz—zll = l(z=y)+=2) < llz—yll+ly—2l = d(z,y)+d(y, 2).

2. The property (pl) of translation invariance follows immediately from
the definition. The homogeneity property (p2) follows from

dAz,xy) = Mz -yl = Nlz—-yll = |Ad(=z,y).

Finally, to check that every open ball is convex, by translation invariance it
suffices to prove that every ball centered at the origin is convex. If z,y €
B(0,7) and 0 < 8 < 1, then the convex combination satisfies

162 + (1 = 0)yll < [6]l«ll + 11— 6lllyll < 6r+(1—-0)r = r.



2.1. Basic definitions 13

Hence 0z + (1 — )y € B(0,r), which proves that the open ball B(0,r) is
convex. 0

The distance d(z,y) = ||z —y|| determines a topology on the vector space
X. We can thus talk about open sets, closed sets, convergent sequences, and
continuous mappings.

Throughout the following, the open and the closed balls centered at a
point z with radius r» > 0 are denoted respectively by

B(z,r) = {yeX; ly—zl <r}, B(z,r) = {yeX; ly—z| <r}.

We recall that a set V C X is open if, for every z € V, there exists r>0
such that B(z,7) C V. A set U C X is closed if its complement X \ U is
open.

A sequence (z,)p>1 converges to a point Z € X if
lim ||z, —Z|| = 0.
—00

Given a series of elements of X, we say that the series converges to Z, and
write

o0
Zyk =z,
k=1
if the sequence of partial sums converges to Z, namely
n
3=
k=1

Given two normed spaces X,Y, we say that a map f : X — Y is
continuous if, for every z € X and € > 0, there exists § > 0 such that

lim = 0.
n—o00

If(z') - f(z)|| < €  wheneverz’ € X, ||z’ —z| <é.

A sequence (z,,)n>1 is a Cauchy sequence if, for every € > 0, one can
find an integer N large enough so that

|zm —2zn|| < €  whenever m,n > N.

A normed space X is complete if every Cauchy sequence converges to
some limit point Z € X. A complete normed space is called a Banach
space.
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Figure 2.1.1. The unit balls in R? with norms | - || (left), || - ||2
(center), and || - ||co (right), described in Example 2.3.

2.1.1. Examples of normed and Banach spaces.

Example 2.2. The finite-dimensional space R"® = {z = (z1,...,%Zn), Zi
€ R} with Euclidean norm

(2.2) lzlls = /a3 +---+a2

is a Banach space over the real numbers. In particular, the field R of all real
numbers can be regarded as a 1-dimensional Banach space. In this case, the
norm of a number z € R is provided by its absolute value.

Example 2.3. On the space R” one can consider the alternative norms

. 1/p .
lally = (22l +-- -+ leal?) loloo = maxigin |2l

Here 1 < p < 0o. Each of these norms also makes R into a finite-dimen-
sional Banach space.

Example 2.4. For any closed bounded interval [a, b], the space C°([a, b]) of
all continuous functions f : [a,b] — R, with norm

(2.3) [fllce = maxsepp [f(2)],

is a Banach space.

Example 2.5. Let 2 be an open subset of R®. For every 1 < p < o0,
consider the space LP(Q2) of all Lebesgue measurable functions f : 2 — R
such that [, |f(z)|Pdz < oco. This is a Banach space, equipped with the
norm

(2.4 I = ([ If(w)l”dw>1/p-

Two functions f, f are regarded here as the same element of L?(Q) if they
coincide almost everywhere, i.e., if meas ({a: €N; f(z) # f(:c)}) =0.
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Similarly, the space L*°(2) of all essentially bounded, measurable func-
tions f :  — R is a Banach space with norm

(2.5) |fllLe = esssup |f(z)|.
€N

Example 2.6. For a fixed p > 1, consider the space of all sequences of real
numbers whose p-th powers are summable:

(2.6) ®P = { (z1,z2,. Zlmklp < oo}

This is a Banach space with norm
[o’s) 1/p
(2.7) Ixlp = (Z mv’)
k=1

Example 2.7. The space £*° of all bounded sequences of real numbers, with
norm

(2:8) [xlleo = sup |zxl,
k>1

is a Banach space. Within this space, one can consider the subspace ¢y of
all sequences (zx)x>1 that converge to zero as k — oo. This is also a Banach
space, for the same norm (2.8).

Remark 2.8. Within the space #P, 1 < p < 00, consider the family of unit
vectors
(2.9)

e; = (1,0,0,0,...), e2=(0,1,0,0,...), e3=(0,0,1,0,...),

These are linearly independent. The set of all linear combinations!

N
(2.10) span{ex; k> 1} = {Zekek; N >1, 6 GR}
k=1
does not coincide with the entire space 7, but is a dense subset of /. Indeed,
it consists of all sequences of the form z = (z1,z2,...,2zn,0,0,0,...), having

finitely many nonzero entries.

The set {ex; k > 1} is not an algebraic basis for ¢, but it provides
a topological basis. Namely, every element x = (z1,22,...) € P can be
obtained as the sum of the convergent series

oo
= Z:Ek e .
k=1

I Notice that by a linear combination one always means a finite sum, not a series.
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Remark 2.9. On the field of real or complex numbers, the absolute value
|| measures how big the number « is. Similarly, on a vector space X one
can think of the norm || f|| as measuring the size of an element f € X. We
observe, however, that it is possible to adopt different norms (and hence
different distances) on the same space of functions, obtaining quite different
convergence results. This is illustrated by the next example.

Example 2.10. Let X be the space of all polynomial functions on the
interval [0,1]. On X we can consider the two norms

1
@11)  Iflleo = maxeepy If@)),  Ifll = /0 ors

These norms yield different convergence results (see Figure 2.1.2). For ex-
ample, consider the sequence of monomials f,,(z) = z™. Letting n — oo one
has || fnllL: = 0. Therefore the sequence (fn)n>1 converges to zero (i.e., to
the identically zero function) in the L! norm. On the other hand, || fx|lco = 1
for all n > 1. In terms of the C° norm, this same sequence is not a Cauchy

sequence and does not have any limit.

1 0 1

=3 T
|

Figure 2.1.2. Left: the L! distance between the two functions f, g,
measured by the area of the shaded region, is small. However, their
C° distance, measured by ||f — gllco = |f(Z) — 9(Z)| is large. Right:
the sequence of polynomials f,(z) = z™ converges to zero in the
space L1([0, 1]) but does not have any limit in the space C°([0, 1)).

2.2. Linear operators

Let X,Y be normed spaces on the same field K of scalar numbers. A linear
operator is a mapping A from a subspace Dom(A) C X into Y such that

A(c1zy + caz2) = c1Azy + coAzo for all 21,22 € Dom(A), c1,c2 € K.
Here Dom(A) is the domain of A. The range of A is the subspace
Range(A) = {Az; z € Dom(A)} C Y.
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The null space or kernel of A is the subspace
Ker(A) = {z€e X; Az=0} C X.
Notice that A is one-to-one if and only if Ker(A) = {0}.

Next, consider a linear operator A : X — Y defined on the entire space
X, i.e., with Dom(A) = X. We say that A is bounded if

(2.12) Al = sup [[Az| < oo.

lzll<1
Theorem 2.11 (Continuity of bounded operators). A linear operator
A: X — Y is bounded if and only if it is continuous.

Proof. 1. If A is continuous, then in particular it is continuous at the
origin. Hence there exists § > 0 such that ||z|| < ¢ implies ||Az| < 1. By
linearity, this implies that
1
[Az]| < 5 whenever lz|| <1.

Hence A is bounded.

2. Conversely, let A be bounded, so that (2.12) holds. By linearity, we
obtain
r1 — X2
Al2L—=2
\ <||931 - lel)

[Az1—Azo|| = [[A(z1—z2)|| = [|lz1—22|l < ==zl |A]l-
Hence A is uniformly Lipschitz continuous with Lipschitz constant ||A||. O

If X,Y are normed spaces over the same field of scalar numbers, we
denote by B(X; Y) the space of bounded linear operators from X into
Y. Notice that here we require that the domain of these operators should
be the entire space X.

Theorem 2.12 (The space of bounded linear operators). The space
B(X;Y) of all bounded linear operators from X into Y is a normed space,
with norm defined at (2.12). IfY is a Banach space, then B(X;Y) is a
Banach space.

Proof. If Aj, A; are linear operators, and cj, ce € K, then their linear com-
bination is defined as

(01A1 + CzAz)(.’I)) = ciAiz + coMox.
We now check that the properties (N1)—(N3) of a norm are satisfied.

1. If A = 0 is the zero operator, then Az = 0 for all z € X, and ||A|| = 0.
On the other hand, if A is not the zero operator, then Az # 0 for some
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z # 0. Hence A("—“;"-) = ﬁAm # 0 and the supremum in (2.12) is strictly

positive. This proves (N1).

2. If a € K, then (N2) follows by the identities

leAll = sup [eAz| = |a| sup [[Az| = |of |A] .
[lzll<1 l=ll<1

3. To check the triangle inequality (N3), for every z € X with ||z|]| < 1 we
write

(A1 + A2)z|| = [Arz+ Agz|| < [[Asz|l + [|Azz]] < [|Ax]l + l|A2]]-
Taking the supremum over all z € X with ||z|| < 1 we obtain (N3).

4. Next, assume that Y is a Banach space. We need to show that B(X; Y)
is complete. Let (A, )n>1 be a Cauchy sequence of bounded linear operators.
For each z € X, this implies

limsup [|Amz — Apz| < limsup [|Am — Al [z = 0.
m,n—00 m,n—o00

Therefore the sequence of points (Apz)n>1 is Cauchy in Y. Since Y is
complete, this sequence has a unique limit, which we call Az.

Since every A, is a linear operator, it is clear that the A is linear as well.
We claim that A is also bounded (and hence continuous). By assumption,
we can choose N large enough such that

||Ak—AN|| <1 for all K > N.
Therefore, for any z € X with ||z|| < 1 one has
|Az|| = lim [[Agz| < [[Anz|+limsup [[Ax — Anll[lzl] < [AN]l+1.
k—o0 k—o0
Since z was an arbitrary point in the unit ball, this proves that the limit
operator A is bounded, and hence A € B(X; Y). O

2.2.1. Examples of linear operators.

Example 2.13 (Matrices as linear operators). Every n X m matrix
A = (ai;) determines a bounded linear operator A : R™ — R™ defined by

m
A(.’E]_,.--,.'Em) = (yl,---,yn), with Yi = Za"l.]mj
j=1

Example 2.14 (Diagonal operators on a space of sequences). Let
1 < p < 00, and consider the space X = £P of all sequences x = (z1, z2,...)
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of real numbers, with norm defined as (2.7) or (2.8). Let (A1, A2,...) be an
arbitrary sequence of real numbers, and define the operator A : X — X as

(2.13) A($1,$2,$3,...) = ()\1561, )\2562, )\3563, )

With reference to the basis of unit vectors {e1, ez, ...} in (2.9), we can think
of A as an infinite matrix:

with A1, Ag, ... along the diagonal and 0 everywhere else. We now have two
cases.

(i) If the sequence (Ag)k>1 is bounded, then the operator A is bounded.
Its norm is

(2.14) Al = sup Akl -

(ii) If the sequence (Ag)k>1 is unbounded, then the operator A is not
bounded. Its domain

Dom(A) = {wef”; A:cefp}

is a vector subspace, strictly contained in ¢P.

Example 2.15 (Differentiation operator). Consider the open interval
I =10, 7] and let X = BC(I) be the space of bounded continuous real-valued
functions on I, with norm

Ifll = sup [|f(z)].
0<z<

<z<lm

The differential operator Af = f’ is clearly a linear operator on X. To
see that this operator is not bounded, consider the sequence of functions
fr(x) = sinkz. Then f;(z) = k cos kz, hence

fell =1, |Afill =k  for all k> 1.

The domain Dom(A) of this differential operator is the space of all bounded
continuous functions f : I — R that are everywhere differentiable and have
a bounded, continuous derivative. This is a proper subspace of BC(I).

Example 2.16 (Shift operator on L?(R)). Let 1 < p < co. Fix any
a € R. Given a function f € LP(R), define (A.f)(z) = f(z — a). Clearly
|Afllte = ||f]lLe- Therefore, A, : LP — LP is a bounded linear operator,
with norm ||A4|| = 1. Notice that the operator A, is one-to-one and onto.
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Example 2.17 (Shift operators on ¢?). Let 1 < p < co. Define the
operators Ay : /P +— P and A_ : P+ (P as

A+($]_, Z2,X3, .. ) = (0,.’111, Z2,.. ) ’

A_(z1,22,23,...) = (z2,23,%4,...).
Observe that these are linear continuous operators, with ||A4| = ||A=| = 1.

Moreover, A is one-to-one but not onto, while A_ is onto, but not one-to-
one.

Example 2.18 (Multiplication operator). Let Q C R®andletg: Q — R
be a bounded, measurable function. For any 1 < p < oo, on the space
LP(Q) consider the multiplication operator: (Myf)(z) = g(z) f(x). This is
a continuous operator, with norm

(2.15) (Mgl = oy lgfllze = llgllLe -

fllLp<

Example 2.19 (Integral operator). Let a < b and consider the space
X = C%[a,d]) of real-valued continuous functions defined on the closed
interval [a, b]. Consider the integral operator

(Af)(@) = / " f()dy.

Then A : X — X is a bounded linear operator. Indeed,

an@| = | [ rwa|< [(116)ld < 6-0) mae @)
Hence [|A/]] < (b~ )] and A]l < (b~ a).

2.3. Finite-dimensional spaces

We say that two norms || - ||¢ and || - ||a on the same vector space X are
equivalent if there exists a constant C' > 1 such that

1
(2.16) Zlallo < llzla < Clizle  forallze X.

Equivalent norms yield the same Cauchy sequences and the same topology
on X. In general, an infinite-dimensional space X can have many nonequiv-
alent norms. As shown in Example 2.10, on the space of all polynomials in
one real variable, the L' norm and the C° norm defined in (2.11) are not
equivalent.

The next results show that, for a finite-dimensional vector space X,
all norms are equivalent. Indeed, every finite-dimensional normed space of
dimension N is equivalent to the Euclidean space K. We recall that the
Euclidean norm of a vector a = (ai,...,an) € KN is |laf| = /3ok |oxl?
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Theorem 2.20 (A finite-dimensional normed space is homeomor-
phic to KV). Let X be a finite-dimensional normed space over the field K
of real or complex numbers. Let B = {u1,us,...,un} be a basis of X. Then

(i) X s complete, and hence a Banach space.
(ii) For every o = (a1, g,...,on) € KV, define

(2.17) Aa = oajug + agus + -+ anyun .

Then the linear operator A : KN +— X is bijective and bounded. Moreover,
its inverse A™1 : X — KV is also bounded.

Proof. 1. The fact that {us,...,un} is a basis implies that A is one-to-one
and onto. Hence the inverse operator A1 : X s K¥ is well defined.

2. Writing
N N
IAell < D ewuell < Nlell D llwll,
k=1 k=1
we see that A : KN — X is a bounded linear operator, hence continuous.

3. We claim that A™! is also bounded. Otherwise there exists a sequence
(Zn)n>1 in X with ||z,|| < 1 for every n and such that
A7 z,|| = oo as n — 0o.

Consider the normalized vectors

= — € K.
P = TATan]
Then ||B,|| = 1 and AB, — 0 as n — oo. Since (Bn)n>1 is a bounded

sequence in the Euclidean space KV, it admits a convergent subsequence,
say Bn, = B € K". Clearly

= i = — i = lim —Fka  _
18l = kli)n;o 1Bnill = 1, AB = klglgo/\ﬂnk kli)ngo A=z, | 0,

because A is continuous. This contradicts the fact that A is one-to-one. We
thus conclude that A~! is bounded, hence continuous. This proves (ii).

4. To prove that X with norm || - || is complete, let (z,)n>1 be a Cauchy
sequence in X. Then A~lz, defines a Cauchy sequence in K", which con-
verges to some point 8 € KV because K" is complete. Since A is continuous,
the sequence xz,, converges to AS. O

Corollary 2.21. In a finite-dimensional space, all norms are equivalent.
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Proof. Let || - ||¢ and || - ||# be any two norms on the finite-dimensional
vector space X. Let B = {uy,...,un} be a basis of X and define the linear
map A : KV — X as in (2.17). By the previous theorem, both A and A~}
are bounded linear operators (in each of the two norms on X). Hence there
exist constants C’, C" such that

1 - —_—
A7zl < lallo < C'lIAT 3],
1 - —_—
GillA7ell < llalla < C"lIA7 s,
for all z € X. This implies (2.16). 0O

The classical theorem of Bolzano and Weierstrass states that every bound-
ed sequence in RN admits a convergent subsequence. The next theorem
shows that this compactness property is true for all finite-dimensional normed
spaces, and fails for all infinite-dimensional ones.

Theorem 2.22 (Locally compact normed spaces are finite-dimen-
sional). Let X be a normed space. The following are equivalent:

(i) X is finite-dimensional.

(ii) The closed unit ball By = B(0,1) = {z € X ; ||z|| < 1} is compact.

S

Figure 2.3.1. The construction used to prove Theorem 2.22.

Proof. (i)=>(ii). Let X have dimension N. Then by Theorem 2.20 there
exists a linear homeomorphism A : KV — X with bounded inverse. Since
the unit ball By € X is closed and bounded, the same is true of K =
A~1(B;) c KN. By the Bolzano-Weierstrass theorem, the closed bounded
set K is compact. Being the continuous image of a compact set, B; = A(K)
is compact as well.
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(ii)=>(i). Assume that the closed unit ball B; C X is compact. Then it
is pre-compact and can be covered with finitely many open balls B(p;,1/2)
centered at points p;, 2 = 1,...,n, and with radius 1/2. Consider the finite-
dimensional subspace V' = span{ps, ..., pn} (see Figure 2.3.1). Observe that
V is closed in X, because by Theorem 2.20 every finite-dimensional normed
space is complete.

We claim that V = X, hence X itself is finite-dimensional. If not, we
could find a point z € X \ V. Let p = d(z,V) = infyey ||y — z||. Notice
that p > 0 because V is closed. Hence there exists a point v € V such that

3
(2.18) p < llz=vl < 5p.
Consider the unit vector
P =:.:£::2_ [ fﬁ.
llz — vl

By construction, there exists a point p; € By such that ||z — p;|| < 1. We
thus have

z = v+lz—vlz = v+llz—vlpi+llz - v[|(z - pi) -
Since v + ||z — v||p; € V, we must have
e —vllllz —pill > d(z,V) = p.

Hence ||z — v|| > 2p, in contradiction to (2.18). This shows that X =V,
completing the proof. O

2.4. Seminorms and Fréchet spaces

To motivate the introduction of seminorms we observe that, for certain
spaces of functions, there is no natural way to define a norm.

Example 2.23. Consider the space X = C(]0, 1) of all continuous (possibly
unbounded) functions on the open interval |0, 1[. Then, by setting

p(f) = sup |f(z)|,
0<z<1
we do not obtain a norm on the entire space X. Indeed, the right-hand side

takes the value +o0o whenever f is unbounded.

On the other hand, given a closed subinterval [a,b] C ]0,1[, the “semi-
norm”

(2.19) p™(f) = maxgeeylf(2)]

is always a well-defined real number. Notice that the functional in (2.19)
does not satisfy all requirements of a norm, because there exist functions
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f € C(]0,1]) that vanish on [a,b] but are not identically zero. In this case,
p**(f) =0 but f #0.

Now let X be a vector space on the field K. A real-valued map z — p(z)
is called a seminorm on X if it satisfies the following properties:

(SN1) For every x € X one has p(z) > 0.
(SN2) For every z € X and ) € K one has p(Az) = |A| p(z).
(SN3) For every z,y € X, p(z +y) < p(z) + p(y).

Notice that (SN2)-(SN3) are exactly the same as in the definition of
a norm. The only difference is that in (SN1) we do not require the strict
positivity condition. In other words, we allow for p(z) = 0 even if = # 0.

If p(-) is a seminorm, by setting d(z,y) = p(z — y) we are not guaran-
teed to obtain a distance on the space X. Indeed, we may have d(z,y) =
p(z —y) = 0 even if z # y. There are, however, interesting cases where a
distance can be obtained by using not just one but countably many semi-
norms.

We say that a sequence (pg)x>1 of seminorms on X is separating if,
for every x € X with = # 0, there exists at least one index k such that

pi(z) > 0.

Lemma 2.24 (Distance generated by seminorms). Let (px)r>1 be a
separating sequence of seminorms on the vector space X. Then

. — & bk(z—1y)
(2.20) d(z,y) = ;2 Tro—9)

defines a distance on X.

Proof. The identities
d(z,z) = 0, d(z,y) = d(y,z)

are an immediate consequence of (SN2). The assumption that the sequence
(pk) is separating guarantees that d(z,y) > 0 as soon as = # y.

To prove the triangle inequality, we observe that, if a,b,¢ > 0 and ¢ <
a+ b, then

c < a+b < _8 + b
14+¢ l14a+b — 14a 140

because the function s — I3 is increasing and concave down. By (SN3) we
can use the above inequalities with a = pi(z—y), b = pr(y—2), ¢ = pr(z—2)
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and obtain

d(z,2) = iZ_kM

P 14+ pi(z — 2)

0 —k pr(z —y) pr(y — 2)
,;2 <1+pk(x—y) + 1+pk(y—z))

IA

= d(z,y) +d(y,2) .
This proves that d(-,-) is indeed a distance. a
From the definition, it is clear that the distance (2.20) is invariant under

translations, namely

d(z,y) = d(z+ 2, y+ 2) forall z,y,2 € X.

If the vector space X with the distance (2.20) is a complete metric space,
then we say that X is a Fréchet space.

Example 2.25. Let Q@ C R™ be any open set, with boundary 9. Then
the space C(2) of all (possibly unbounded) continuous functions f :  — R
does not have a natural norm. However, it can be given the structure of

a Fréchet space as follows. For every k > 1, consider the compact subset
(Figure 2.4.1)

(2.21) Ap = {x €Q; |z| <k, d(z,09) < k'l}.

Define the seminorms

(2.22) pe(f) = maxgeq, |f(z)|
and let d(-,-) be the corresponding distance as in (2.20).

Figure 2.4.1. The compact subsets Ay C Q.
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We show that C(2) with the above distance is a complete metric space,
hence a Fréchet space. Let (f;);>1 be a Cauchy sequence. For every k this
implies
(2.23) limsup pi(f; — f;) = limsup sup |fi(z) — fj(z)] = 0.

1,j—00 3,j—00 zTEAL
Since every point z €  is contained in one of the sets A, by (2.23) the
sequence f;(z) is Cauchy and hence converges to some limit f(z). More
generally, every compact subset K C 2 is contained in one of the sets Ay.
Again by (2.23), the convergence f; — f must be uniform on compact
subsets of €2, hence the limit f is continuous.

It now remains to prove that d(f;, f) — 0 as j — oco. For any fixed
m > 1, using the fact that f; — f uniformly on the compact set A, we
find

limsup d(fj, f)

j—o0

. ok Dk(fi— ) , = ok Pk(fi—f)
< hmsupz2 + lim sup 2 T+ e, = )

j=oo 11 14+pe(fi—f) i kb1

< 0+27™,

Since m is arbitrary, the convergence is proved.

Example 2.26 (The spaces LY ). As in the previous example, let @ C R"
be an open set. We say that an open set Q' is compactly contained in
Q, and write Q' CC Q, if the closure Oisa compact subset of 2.

For p € [1, oo[ we define L () to be the space of all measurable func-
tions f such that [, |f|P dz < oo for every open set Q' compactly contained
in Q. This space is not endowed with a natural norm. However, for each
k > 1 we can consider the seminorm

1/p
(2.24) pu(f) = ( / Iflpdcc) = Wiy,

where Ay is the set in (2.21). The corresponding distance (2.20) renders
L? () a Fréchet space.

loc

2.5. Extension theorems

Let X be a vector space over the field K. A linear map F : X — K is
called a linear functional on X. The eventual goal of this section is to
prove the existence of a large number of continuous linear functionals. In
this direction, we first prove an extension theorem: given a linear functional
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f + V = K defined on a subspace V C X, one can extend it to a func-
tional F' : X +— K defined on the entire space, preserving some additional
properties.

In the following, we consider a vector space X over the real numbers
and let p : X — R be a function such that

(2.25) p(z+y) < p(z)+p(y), p(tz) = tp(z) foralz,yeX,t>0.

Remark 2.27. If X is a normed space, the function p(z) = & ||z|| satisfies
the above properties for any kK > 0 . More generally, any seminorm also
satisfies (2.25).

Observe that (2.25) implies that the function p is convex. Indeed

p(fz + (1 —0)y) < p(fz) +p((1-0)y) = Op(z) + (1 - 0)p(y)

for all z,y € X, 6 € [0,1]. However, compared with a seminorm, here we
also allow for p(z) < 0. Moreover, we do not require p to be symmetric with
respect to the origin. In other words, one may well have p(z) # p(—z).

Example 2.28. Let X be a normed space and let 2 C X be a bounded,
open, convex set containing the origin. Then the functional

(2.26) p(z) = inf {A>0; z € \Q}

satisfies the assumptions (2.25).

Theorem 2.29 (Hahn-Banach extension theorem). Let X be a vector
space over the reals and let p : X — R be a map with the properties (2.25).
Consider a subspace V C X and let f : V — R be a linear functional such
that

(2.27) f(z) < p(z) forall z€V.

Then there exists a linear functional F : X — R such that F(z) = f(z)
forallz €V and
(2.28) —-p(—z) < F(z) < p(z) forallz e X.

Proof. 1. If V = X, observing that f(z) = —f(—z) > —p(—z), the conclu-
sion is clear. If V' # X, choose any vector z9 ¢ V and consider the strictly
larger subspace

Vo = {z+tzo; z€V, teR}
For every z,y € V, the bound on f yields

f@)+fy) = fz+y) < plz+y) < p(z—x0) +p(z0 +¥).
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Therefore

f(z) —p(z —z0) < p(y+20) — f(y) forall z,y € V.
Choosing f = sup,cy {f(m) —p(z - :vo)}, we have
(2.29) f(z) —p(z —z0) < B < ply+ z0) — f(¥) for all z,y e V.

2. We now extend f to a linear functional defined on the larger space Vj,
by setting

f(z +tzo) = f(z)+Bt, zeV, teR.
We claim that this extension still satisfies
(2.30) fz+tzo) < p(z+tzo) forallz eV, t eR.

Indeed, if t = 0, the above inequality follows from our initial assumptions.
If t > 0, replacing both z and y by z/t in (2.29) we obtain

t(F) -2 (G -m)] <98 < tlp(G+e0) -(5)]

f(z) —p(z —tzg) < tB8 < p(z+txo) — f(z).
Therefore, for x € V and ¢t > 0 we have

f(z—tzo) = f(z)—pt
f(z+tzo) = f(z)+ Bt

p(m - tmO) )
p(m + tmO))

INIA

proving (2.30).

3. The previous two steps show that every bounded linear functional f
defined on a proper subspace V C X can be extended to a strictly larger
subspace, still satisfying the inequality (2.27). To complete the proof, we
shall use a maximality principle.

Let F be the family of all couples (V, @), where V is a subspace of X
and ¢ : V — R is a linear functional such that

d(z) < p(z) forallz e V.
This family can be partially ordered by setting
(V,9) = (17,¢~)) if and only if V C V and ¢ coincides with the

restriction of ¢ to V.

By the Hausdorff Maximality Principle (see Theorem A.l in the Ap-
pendix), the partially ordered family F contains a maximal element, say
(vmax F). If V™aX £ X | then by the previous step the linear functional F
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could be extended to a strictly larger subspace, in contradiction to the max-
imality assumption. Hence V™* = X and F : X — R is a linear functional
such that

F(z) < p(z) forallze X.
By linearity, this implies that
-p(-z) < —F(-=z) = F(z),

completing the proof. a

Figure 2.5.1. By the Hahn-Banach theorem, a linear functional
f:V = R defined on a subspace V' C X and such that f(z) < p(z)
for all z € V can be extended to a linear functional F : X — R
satisfying F(y) < p(y) for all y € X.

The previous theorem has a natural application to the case where p(z) =
||| is a norm.

Theorem 2.30 (Extension theorem for bounded linear functionals).
Let X be a normed space over the field K of real or complex numbers. Let
f:V = K be a bounded linear functional defined on a subspace V C X.
Then f can be extended to a bounded linear functional F' : X — K having
the same norm:

IF]l = sup [|F()] = sup [|f(z)] = [|fl
=X |zl <1 z€V,lzl|<1

Proof. 1. First assume that K = R, so f is real-valued. Set k = || f||, and
define p(z) = «||z||. Then the result follows immediately from the previous
theorem.
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2. Next, consider the case where K = C is the field of complex numbers.
Notice that in this case, V and X can also be regarded as vector spaces
over the real numbers. The functional F' : X +— C will be obtained by
constructing separately its real and imaginary parts.

For z € V, define u(z) = Re f(z). This is a real-valued linear functional
on V with norm ||u|| < k = || f||. Hence by the previous steps it admits an
extension U : X — R with norm ||U|| < k. We claim that the map

F(z) = U(z) —iU(iz)
satisfies all requirements. Indeed, for z € V,
F(z) = Ref(z)—iRef(iz) = Ref(z)+iImf(z) = f(z).
Moreover, let a € C be such that |a| = 1, aF(z) = |F(z)|. Then
[F(@) = aF(z) = Ulag) < xllasl = xla.
Hence ||F|| < & =||f]|- a

Corollary 2.31. Let X be a Banach space. For any two vectors z,y € X
with x # y, there exists a continuous linear functional ¢ : X — K such that

#(z) # o(y)-

Corollary 2.32. Let X be a Banach space. For every vector x € X, there
exists a continuous linear functional ¢ : X — K such that ¢(z) = ||z|| and

ol = 1.

Figure 2.5.2. Left: if A is open, the disjoint convex sets A, B can
be separated by a hyperplane. Right: If A is compact and B is
closed, the disjoint convex sets A, B can be strictly separated.

2.6. Separation of convex sets

Consider the following problem. Given two disjoint convex sets A, B in a
normed space X, can one find a bounded linear functional ¢ : X — R such
that the images ¢(A) and ¢(B) are disjoint? The following theorem provides
a positive answer, relying on the Hahn-Banach extension theorem.
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Theorem 2.33 (Separation of convex sets). Let X be a normed space
over the reals, and let A, B be nonempty, disjoint convex subsets of X.

(i) If A is open, then there exists a bounded linear functional ¢ : X — R
and a number ¢c € R such that

(2.31) #a) < c < ¢(b) forall a€A, beB.

(ii) If A is compact and B is closed, then there exists a bounded linear
functional ¢ : X — R and numbers cy,ce € R such that

(2.32) d@) < a < ca < @) forall a€ A, be B.

Proof. 1. Choose points ay € A and by € B and set o = by — ap. Consider
the open set

Q= A-Biz = {(a—a0)+(bo—b); a€ A, beB}.

Since A, B are convex and A is open, it is clear that €2 is an open, convex
neighborhood of the origin. Moreover, =g ¢ €2, because otherwise

ro=a—b+xg, a—b=0, for some a € A, b € B.

This is a contradiction because AN B = 0.

2. Consider the functional
(2.33) p(z) = inf {A>0; z € \Q}.

Since (2 is a neighborhood of the origin, we have B(0, p) C 2 for some p > 0.
Hence

(2.34) p(z) < ui—” for all z € X.

Moreover, the convexity of 2 implies that
(2.35)
piz+y) < p()+p(y), ptz) = tp(z) forall z,yeX, t>0.

Notice that p(zo) > 1 because o ¢ Q.

3. On the one-dimensional subspace V = {tzg; t € R}, define the linear
functional f by setting f(tzg) = t. Observe that

flzo) = 1,  f(txo) = t < tp(zo) < p(tzo).

By the Hahn-Banach extension theorem, there exists a linear functional
¢ : X — R such that

—p(—z) < ¢(z) < p(x) forallzeX.
By (2.34) it is clear that ¢ is bounded. Indeed, ||¢|| < p~1.
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4. If now a € A and b € B, we have
¢p(a) —¢(0) +1 = ¢p(a—b+z0) < pla—bd+mp) < 1
because ¢(zo) = f(xo) = 1 while a — b+ z¢ € Q and Q is open. Therefore
#(a) < ¢(b) forall ac A, beB.

The sets ¢(A) and ¢(B) are nonempty, disjoint convex sets of R, with ¢(A)
open. Taking ¢ = sup,c4 ¢(a), the conclusion (2.31) is satisfied. This
proves (i).

5. To prove (ii), observe that the assumptions on A, B imply
d(A,B) = inf {||a—b||; acd, beB} > 0.

If we choose p = d(A, B), then the open neighborhood 4, = {z €
X; d(z,A) < p} of radius p around A does not intersect B. We can thus
apply part (i) to the disjoint convex sets A, and B. This yields a continuous
linear functional ¢ : X — R and a constant ce such that

d(x) < c2 < ¢o(y) forall z€A,, yeB.

‘We now observe that the set $(A) is compact, being the image of a compact
set by a continuous map. Hence ¢; = sup,c4 ¢(z) < c2. This achieves the

proof of (ii). O
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Figure 2.6.1. The construction used in the proof of the separation theorem.

2.7. Dual spaces and weak convergence

Let X be a Banach space over the field K of real or complex numbers. The
set of all continuous linear functionals ¢ : X +— K is called the dual space
of X and denoted by X*.

Observe that a linear functional ¢ : X — K can be regarded as a linear
operator ¢ : X — Y, in the special case where Y = K. We can thus use
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Theorem 2.12 and conclude that X* = B(X,K) is a Banach space, with
norm

(2.36) lolle = sup |o(z)].
<1

2.7.1. Weak convergence. A sequence zi,Z2,... in a Banach space X is
weakly convergent if there exists z € X such that

lim p(z,) = o(z) for all ¢ € X*.
n—00

In this case, we say that x is the weak limit of the sequence z,, and write
Zn — . We recall that the sequence z,, converges strongly to z if ||z, —z| —
0. Since by definition every ¢ € X™* is continuous, the strong convergence
Zn — z clearly implies the weak convergence z, — z.

If a weak limit exists, then it is necessarily unique: z, — z and z, = y
imply x = y. Indeed, assume y # z. Then by Corollary 2.31 there exists a
continuous linear functional ¢ € X™* such that ¢(z) # ¢(y). This leads to a
contradiction, because

¢(z) = lim ¢(zn) = $(y).

2.7.2. Weak-star convergence. One can take a different perspective, and
observe that each vector x € X determines a linear functional on X*, namely

(2.37) v = (), p e X
By Corollary 2.32, the norm of this functional is

(2.38) lzllex = sup |o(z)] = [l].

llell«<1
We thus have a canonical embedding ¢ : X +— (X*)*. To each element z € X
there corresponds a bounded linear functional ¢(z) on the dual space X*,
namely, the map ¢ — ¢(z). By (2.38), this embedding is isometric, i.e., it
preserves the norm.

If every bounded linear functional on X* is of the form (2.37) for some
z € X, then ¢(X) = (X*)* and we say that the space X is reflexive.
Examples of reflexive spaces include all finite-dimensional spaces, and the
spaces LP(2), #/ in Examples 2.5 and 2.6, with 1 < p < co.

One should be aware that, in general, the space (X*)* can be strictly
larger than ¢(X). Examples of spaces which are not reflexive include the
spaces L1(£2), L>°(), £, and £°°.
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The embedding ¢ : X — (X*)* can be used to introduce a weak topology
on the dual space X*. We say that a sequence of bounded linear functionals
pn € X* weak-star converges to ¢ € X*, and write Pn—o, if

(2.39) nll)rgo on(z) = () for every z € X .

This is a much weaker property than the convergence ¢, — ¢ in norm.
Indeed

On =@ means that |on(z) —p(z)] — 0 foreachze X,
on = @ means that sup  |en(z) —@(z)] = 0.
z€X, [lz[|<1

By Theorem 2.22, if the space X* is infinite-dimensional, then the closed
unit ball By C X* is not compact: one can find a sequence of linear func-
tionals ¢, € X*, with ||@,|l« < 1 for every n > 1 but without any convergent
subsequence (with respect to the norm topology of X*). On the other hand,
if instead of strong convergence we only ask for weak-star convergence, a
positive result can be achieved.

Theorem 2.34 (Banach-Alaoglu). Let X be a separable Banach space.
Then every bounded sequence of linear functionals @, € X* admits a weak-
star convergent .s"ubsequence.2

Proof. 1. Consider a bounded sequence of linear functionals ¢, € X*, say,
with ||pn|l« < C for all n > 1. Since X is separable, there exists a dense
countable set S = {z1,z2,...} C X.

2. We claim that there exists a subsequence (¢n;);>1 which converges point-
wise at each point %, so that

(2.40) Jim, on;(zk) = (Tk)

for some values (zx) and all k¥ > 1. This subsequence will be constructed
by a standard diagonalization procedure.

Since the sequence of numbers (¢, (z1))n>1 is bounded, there exists an
infinite set of indices I; C N such that the subsequence (¢, (z1))ner, con-
verges to some limit ¢(z1).

Similarly, the sequence of numbers (¢n(z2))n>1 is bounded. Hence
there exists an infinite set of indices Is C I; such that the subsequence
(pn(z2))ner, converges to some limit ¢(z2).

2The Banach-Alaoglu theorem remains valid even without the assumption that X is separa-
ble. For a proof in this more general case we refer to [C, R].
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By induction, for each k we can find an infinite set of indices I, C Ij_;
such that the subsequence (pn(Zk))ner, converges to some limit p(zx).

We now choose a subsequence n; < ny < ng < --- , with n; € I; for
every j. As j — oo, this yields the convergence ¢, (zx) — ¢(z) for every
k>1.

3. We claim that the limit function ¢ : S — K is Lipschitz continuous with
constant C' = sup,, ||¢n||« - Indeed, for every zp, zr € S we have

lo(zn) — o(zk)| = lim |@n;(zh) = on, (zk)]
j—roo
< limsup [l¢n; [l« lzn — zkll < Cllzn — 2kl -
j—roo

Therefore, the map ¢ can be uniquely extended by continuity to the closure
of S, i.e., to the entire space X. This continuous extension will still be
denoted by ¢ : X — K.

4. It remains to show that the subsequence ¢, weak-star converges to (.
Let any z € X and € > 0 be given. Since S is dense, we can choose a point
z € S such that ||zx — z|| < e. Recalling that all functions ¢, and ¢ are
Lipschitz continuous with constant C, we obtain

limsup |¢n,(z) — ¢(z)]

J—00

< lim sup I(Pnj (.’L') = Pn; (xk)l
j—o0

+lim sup |¢n; (zk) — (@k)| + |@(zk) — @()]

J—00

< Cllz—zk]| + 0+ Cllzx — z|| < 2Ce.

Since € > 0 was arbitrary, this implies that |¢n;(z) — ¢(z)| — 0 as j = oo,
proving the weak-star convergence L.

Being the pointwise limit of a uniformly bounded sequence of linear
functionals, it is clear that the map ¢ is bounded and linear as well. g

2.8. Problems

1. Check if the following are normed spaces. In the negative case, identify which
of the properties (N1)—(N3) fails. In the positive case, decide if they are Banach
spaces.
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(i) Let X =R, with

_ z ifz>0,
Izl =13 _2z ifz<o.

(if) Let X be the vector space whose elements are the sequences of real num-
bers £ = (21, Z2, 3, ...) such that z = 0 for all except finitely many k.
On X consider the norm (2.8).

(iii) Let X be the space of all polynomials (of any degree), with norm ||p|| =
maXge(o,1] Ip(z)|-

(iv) Let X be the space of all polynomials of degree < 2, with norm
lell = 1p(0)| + [p'(0) + [p"(0)I.

(v) Let X be the space of all continuous functions on the interval [0, 1], with

1
Il = /0 1f (@) de.

(vi) Fix x € R and let X be the space of all continuous functions f : [0, 00[+— R
such that

I£ll = sup e™|f(t)] < oo.
t>0

(vii) Let X = R2. Given z = (21, z2), for a fixed 0 < p < 1 define

. 1/p
lall = (laal? +l2al?) "
Note: in connection with (vii), it is interesting to check whether
d(z,y) = |z —y1[V? + |22 — yo|'/?

is a distance on R2. Are the open balls B(z,r) = {y; d(y,z) < r} convex? Is d(-,-)
translation invariant?

2. Let X,Y be Banach spaces. Prove that the Cartesian product
XxY = {(m,y); z € X, er}

is also a Banach space, with norm

(241) @9l = max{|lel, lyl}-

3. Let X be a Banach space over the field K of real or complex numbers. Notice
that X x X and K x X are Banach spaces, with product norms as in (2.41). Prove:

(i) The mapping (z,y) = z +y from X x X into X is continuous.
(ii) The mapping (o, z) — az from K x X into X is continuous.
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4. Let X be a normed space with norm || - ||. Prove that every subspace V' C X is
also a normed space, with the same norm. If X is a Banach space and V is closed,
then V is also a Banach space.

5. Prove that a normed space X is complete if and only if every absolutely conver-
gent series has a sum:

n
Z"wk" < oo  implies that Zxk = lim Zxk exists.
k>1 k>1 g1

6. Let X be a vector space. The convex hull of a set A C X is defined as the set
of all convex combinations of elements of A, namely

N N
oA = {Zakak; N>1, e € A, 6k €[0,1], Zok=1}.

Prove that (i) co A is convex, and (ii) co A is the intersection of all convex sets that
contain A.

7. Let X be a Banach space and let A, B C X. Prove the following statements.

(i) If A is open, then co A is open as well.
(ii) If A is bounded, then co A is bounded.

(iii) If A, B are bounded, then the set A+ B = {a+b; a € A, b € B} is
bounded as well.

(iv) If A is closed and B is compact, then A + B is closed.

(v) The sum of two closed sets may not be closed.

(vi) If Aisconvex, then A+A ={z+y; z€ A, y€ A} =2A={2z; z € A}.
(vii) If A is closed and A + A = 24, then A must be convex.

8. Let X be a normed space. We say that a set S C X is symmetric if a € S
implies —a € S. Prove that

(i) If S is convex, then its closure is convex as well.

(ii) If S is symmetric, then its closure is symmetric as well.

9. Let X,Y be Banach spaces over the real numbers, and let A : X — Y be a
bounded linear operator. Prove that

(i) If S is convex, then its image A(S) is convex.

(ii) If S is symmetric, then its image A(S) is symmetric.

10. Let A : X — Y be a linear operator. Assume that, for every sequence z, — 0,
the sequence (Az,)n>1 is bounded. Prove that A is continuous.
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11. Let X be an infinite-dimensional Banach space, and let S be a set of linearly
independent vectors. By span(S) we denote the set of all (finite) linear combinations
of elements of S. Prove that

(i) If S = {v1,...,vn} is a finite set, then span(S) is a closed subspace of X.

(ii) If S = {vg; k > 1} is an infinite sequence, then the vector space span(S)
cannot be closed in X.

12 (Spaces over the real and over the complex numbers). Let X be a
vector space over the complex numbers. Then X is also a vector space over the
real numbers. If ® : X — C is a complex linear functional and ¢(z) = Re ®(z) is
its real part, prove that ¢ is a real linear functional, and ®(z) can be reconstructed
from ¢ as

o(z) = o(z) —ig(iz).

13. Show that a normed space X is finite-dimensional if and only if its dual X* is
finite-dimensional.

14. Consider the spaces £P of sequences of real numbers, as in Examples 2.6 and 2.7.
If1 < p < g < 00, prove that £P C {9, with equality holding only if p = q. Moreover,
prove that the identity operator A : P — {2 defined as Ax = x is continuous, for
every p < g.

15. For 1 < p < 00, prove that the subspace V = span{ex; k > 1} introduced in
(2.10) is dense in the space #P. For p = 0o, show that the closure of V' coincides
with the subspace ¢y of all sequences that converge to zero.

16. (Properties of diagonal operators) For 1 < p < oo, consider the operator
A : fP — (P defined in (2.13). Prove the claims (i)—(ii) in Example 2.14.

17. Work out the details of Example 2.18. Namely, fix 1 <p < ocoandletg: Q— R
be any measurable function.

(i) If g € L°°(f2), prove that the multiplication operator My : f — gf from
L?(Q) into itself is bounded and has norm given by (2.15).

(ii) If g ¢ L°°(R2), prove that the linear operator f — gf from L?(2) into
itself is unbounded. Give a direct proof that Dom(M,) # LP(f2).

18. Fix 1 < p < 00. Let (fn)n>1 be a sequence of functions in L?(R), converging
weakly to a function f € LP(R). Prove that

b b
nll)l'{)loL fa(z)dz = /a f(z)dz  for all a <b.

19. Consider the sequence of functions

[ 1/n if z € [0,n],
fn(2) = { 0 otherwise.
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(i) Prove that f, — 0 strongly (i.e., ||f]| = 0) in every space L?(R) with
1<p<L oo

(i) On the other hand, show that in the space L!(R) this sequence is not
strongly convergent. In fact, this sequence does not even admit any
weakly convergent subsequence.

20. Let Y be a subspace of a Banach space X and let A : Y — R™ be a bounded
linear operator from Y" into the Euclidean space R™. Show that A can be extended
to a linear operator A : X — R™ with norm ||A|| < /7 ||A]l.

21. Let ¢ : R? — R be a linear functional, say ¢(z1,2) = az; +bzy. Give a direct
proof that

(i) If R? is endowed with the norm ||z||; = |z1]+|z2|, then the corresponding
operator norm (2.36) is ||¢|lcc = max{|al, |b]}.

(ii) If R? is endowed with the norm ||z|lcc = max{|z1|,|z2|}, then the corre-
sponding norm (2.36) is ||¢|l1 = |a| + |b].

(iii) If R? is endowed with the norm ||z||, = (|z1|P + |z2[P)}/P, with 1 < p <
00, then the corresponding norm (2.36) is ||¢|l, = (|a|? + [b]9)!/9, with
1,1
1yl
P q

22. Let X be a vector space. Let B C X be a convex subset such that, for every
nonzero vector £ € X, there exists a positive number 8, > 0 such that

az € B ifand only if |a|<6,.
For r > 0, call rB = {rb; b € B}. Prove that
|z|| = min {r >0; z € rB}
is a norm on X, and B = {z € X ; ||lz| < 1} is the unit ball in this norm.

23. Let  C R™ be an open set. On the space C(2) of (possibly unbounded)
continuous functions f : @ — R, consider the seminorms pi(-) and the distance
d(:,-) defined in (2.22), (2.20).

Next, consider any sequence of open sets A} compactly contained in Q and
such that (J;>; Ay = Q. Define the seminorms p;(-) and the distance d'(:,-) as
before, but replacing the sets Ay, in (2.21) with the sets A .

Prove that the two distances d,d’ are equivalent. Namely, given any sequence
of continuous functions (f;);>1, the following statements are equivalent:
(i) the sequence is Cauchy for the distance d,
(ii) the sequence is Cauchy for the distance d’,

(ili) the functions f; converge uniformly on each compact subset of Q.
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24. On the space C(2), consider the seminorms pi(-) defined in (2.22) and the
distance d(:, -) constructed in (2.20).

(i) Explain why ||f|| = Y pe; 2 *pk(f) does not yield a norm on C(2).

(ii) Consider the open unit ball B = {f € C(R?); d(f,0) < 1}, where 0 stands
for the identically zero function. Explain why

Iflo = inf {x>0; X7f € B

does not yield a norm on C(f2).

25. Let X be a Banach space. Consider any set S C X and assume z € span(S).
Prove that there exist points z; € S and coefficients ¢; € K, j = 1,..., N, such
that

k
§ :c:ixj

j=1

< 2||z|| foralk=1,...,N.

N
(2.42) z = chmj,
=1

26. Let S be a subset of a Banach space X. Prove that the following statements
are equivalent:

(i) z € span(S).
(il) = 3272,6i%; = limnyo0 D 5-;¢j; , for some points z; € S and numbers
cj € K.

27. Consider the Banach space ¢*° consisting of all bounded sequences z =
(x1,Z2, 3, . ..) of real numbers.

(i) Prove that there exists a bounded linear functional F : £*° +— R such that

(2.43) |F(z)| < |lzllee = sup|znl,
n>1
(2.44) F(z) = lim z, if the limit exists.
n—00

(ii) Show that, if F' : £*° — R satisfies the above properties (2.43)—(2.44),
then

liminfz, < F(z) < limsupz, for all z € £°°.
n—+oo n—oo

(iii) Using (ii) prove that, if there exists an integer N such that z, < y, for
alln > N, then F(z) < F(y).
(iv) Show that, for any sequence a = (ai,az,...) € £*, the continuous linear
functional
E,(z) = Z GnTn
n>1
cannot satisfy (2.44). Hence the space of all continuous linear functionals
on £ cannot be identified with £.
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(v) For every bounded sequence of real numbers z = (1, Zs,. . .), define

F(z) = % (lmgfmn) + % (lim sup zn) .

n—oo

Does F satisfy (2.43)-(2.44)? Is F a bounded linear functional on the
Banach space £°°?

28. In the Banach space X = L°°(R), consider the subspace V' consisting of all
bounded continuous functions.

Prove that there exists a bounded linear functional A : L*°(R) — R with
||A]l = 1 such that Af = f(0) for every bounded continuous function f. However,
show that there exists no function g € L*(R) such that Af = [ fgdz for every
f € L*(R).

Conclude that the dual space of L*(R) cannot be identified with L(R).

29. Let X be a normed space and let 8 C X be an open, convex set containing
the origin. Consider the functional

(2.45) p(z) = inf {A>0; z € \2}.
(i) Prove that p(-) satisfies the conditions
p(z+y) < p(x)+p(y), p(tz) = tp(z) forall z,ye X,t>0.

(ii) Assumingthat B, = {z € X; ||z|| <r} C Q, prove that p(z) < ||z|/r.
(iii) Assuming that Q@ = {x € X; ||z|| < 1} is the open unit ball, prove that
p(z) = ||

30. Let C°([0,1]) be the Banach space of all real-valued continuous functions f :
[0,1] = R, with norm || f|| = maxz¢o,1j|f(z)|-

(i) Show that X = {f € C°([0,1]); f(0) = 0} is a closed subspace of C°,
hence a Banach space.

(ii) Prove that the map f+— Af = fol f(z) dz is a continuous linear functional
on X. Compute its norm ||A|| = supjs <1 |Af|. Is this supremum over
the closed unit ball actually attained as a maximum?

31. Let X be a Banach space over the reals and let X* be its dual. Let Q C X be
a convex set containing the origin. Define

= {pe X*; ¢(z)<1lforallzeQ},

= {z€X; ¢(z) <1forall g € Q*}.
Prove that Q** is the closure of (2.
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32. Let £ be a nonzero vector in a Banach space X over the reals. Call U =
span{{} = {t{; t € R}.

Prove that there exists a closed subspace V' C X such that X = U®V. Namely,
every element z € X can be written uniquely as a sum

T = u+v with veU,veV.

Moreover, the projections z — u = my £ and = — v = my ¢ are continuous linear
operators.

33. On the Banach space X = L!([—1,1]), prove that there exists a continuous
linear functional ¢ : X — R with norm ||¢|| = 1, having the following property:

If f is a polynomial of degree 1, then ¢(f) = f'(0).

34. Given an open set 2 C R", we denote by C™(f2) the space of all continuous
functions f : Q — R with continuous partial derivatives up to order m. Let Ax be
the sets defined in (2.21). Show that the sequence of seminorms

(2.46) pi(f) = ) maxgea, |D*f(z)l
ler]<m
makes C™(2) into a Fréchet space. Here a = (a1, ..., @) is a multi-index of length

la| =y + -+ + an, and D*f = (%)alw-(%)anﬁ

35. Let Y be a closed subspace of a Banach space X and assume zo € X \Y. Show
that there exists a bounded linear functional ¢ € X™ such that ||¢|| < 1 and

p(zo) = d(z0,Y) = ylg{, lzo—yll, @) =0 forallyeY.

36. In the space #P of sequences of real numbers, consider the unit vectors e as in
(2.9). Prove that

(i) If 1 < p < 0o, the sequence (ex)xr>1 converges weakly to zero in £P.

(ii) In the space ¢!, the sequence (ex)r>1 does not admit any weakly conver-
gent subsequence.

37. Let ¢ : R — R be a smooth, increasing function, and consider the operator
(Af)(z) = f(¢(z)). Derive a condition on ¢ which implies that A is a bounded
linear operator from LP(R) into itself. Consider the cases 1 < p < co and p = oo
separately.

38. Show that the concept of Lebesgue measure cannot be extended to infinite-
dimensional spaces. More precisely, let X be an infinite-dimensional Banach space.
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Prove that there there cannot be a measure p, defined on the sigma-algebra of Borel
subsets of X, with the following properties:

(i) p(2) > 0 for every nonempty open set 2 C X;
(ii) p is translation-invariant: u(z + S) = u(S) for every z € X and S C X;
(iii) there exists a nonempty open set Qg such that p() < oo.

39. Let X be a Banach space over the reals.
(i) Let S C X be a closed convex set and assume y ¢ S. Prove that there
exists a bounded linear functional ¢ € X™* such that
ely) < inf o(z).

(if) Consider a weakly convergent sequence: z, — y. Let S = co{zn; n > 1}
be the smallest closed convex set containing all points z,,. Prove that
y€eS.

40. Given a function f € L*°(R), we say that
es;s_}lom flx) = A

if there exists a function f such that f(z) = f(z) for a.e. z € R, and moreover
limgso f(z) = A
(i) Prove that there exists a bounded linear functional ® : L°(R) — R such
that
o(f) = ess lim f(z)
whenever the limit exists.

(ii) Prove that the above conclusion fails if the space L (R) is replaced by
L!(R).






Chapter 38

Spaces of Continuous
Functions

3.1. Bounded continuous functions

Let E be a metric space. By C(E) we denote the space of all continuous
real-valued (possibly unbounded) functions f : E +— R. In general, this
space does not have a natural norm. For this reason, we shall also consider
the space BC(FE) of all bounded continuous functions f : E — R, with norm

(3.1) £l = sup|f(z)].
z€E

Most of this chapter will be concerned with the case where E is compact.
In this case every continuous function f : E — R is necessarily bounded,
hence C(F) = BC(E).

Lemma 3.1. BC(E) is a Banach space.

Proof. 1. Let (fn)n>1 be a Cauchy sequence in BC(E). Then for every
fixed x € E the sequence of numbers f,(z) is Cauchy and hence converges
to some limit, which we call f(z).

2. By assumption, for every € > 0 there exists /N large enough so that

sup |fn(z) — fm(z)] < € foralln,m>N.
z€E

Letting m — oo, since f(xz) — f(z) we obtain

sup sup |fa(z) — f(z)| < €.
n>N z€eE
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In turn, this implies

sup ||fn —fll < &, sup|f(z)] < e+sup|fn(z)] < oo.
n>N zeE z€eE

Since € > 0 was arbitrary, the first inequality shows the convergence
| f» — fll = 0. The second inequality shows that f is bounded.

3. Finally, we prove that f is continuous. Let any x € F and € > 0
be given. By uniform convergence, there exists an integer N such that
|fn(z) — f(z)| < €/3 for every z € E. Since fy is continuous, there exists
§ > 0 such that |fn(y) — fn(z)| < €/3 whenever d(y,z) < é. Putting
together the above inequalities, when d(y,z) < § we have

1F ) = f@)] < [f(¥) — In@)] +1fn() = In(@)] + | fn(z) - f=2)]

< £+5+5 = e,
proving that f is continuous at the point z. O

Remark 3.2 (Pointwise vs. uniform convergence). The previous ar-
gument shows that, if a sequence of continuous functions f, converges uni-
formly to a function f, then f is continuous as well. On the other hand, a
sequence of continuous functions can converge pointwise to a discontinuous
limit. For example, on the interval E = [0, 1], the sequence of functions
fn(z) = z™ converges pointwise to the discontinuous function

0 if 0<z<1,

f(x)={ 1 if z=1,

Clearly, here the convergence is not uniform on the whole interval [0, 1].

The following theorem describes a case where pointwise convergence im-
plies uniform convergence. We recall that a sequence of functions f, : E +— R
is increasing if m < n implies f(z) < fu(z) for all z € E.

Theorem 3.3 (Dini). Let E be a compact metric space. If (fn)n>1 i an in-
creasing sequence of functions in C(E), converging pointwise to a continuous
limit function f, then f, — f uniformly on E.

Proof. Fix any € > 0. By the assumption of pointwise convergence, for
every z € E there exists an integer N(x) such that |fy () (z) — f(z)| <e.
Since fy(s) and f are continuous, there exists an open neighborhood V,
of z such that |fy(s)(y) — fye)(z)| < € and |f(y) — f(z)| < & for every
y € V.
Since E is compact, we can cover E with finitely many of these neigh-
borhoods, say E C V;, U---UV,,..
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Choose the integer N = max {N(z1),...,N(zm)}. For every n > N and
y € E, assuming that y € V;, we have

ey < fn(y) < faly) £ f(y),

because the sequence is increasing. Therefore

lfn(y) = FW)| < |fn@) () — F®)]
< @) (W) = N (@)] + | e (@) — fz)| + | f(2:) = F(w)]

< €+e+e.

Since y € E and € > 0 were arbitrary, this establishes the uniform conver-
gence fr, — f. O

3.2. The Stone-Weierstrass approximation theorem

Given a domain E C R", for computational purposes it can be useful to
approximate a continuous, real-valued function f € BC(E) with special
functions: say, polynomials, exponential functions, or trigonometric polyno-
mials. It is thus important to understand whether every function f € BC(E)
can be uniformly approximated by such functions. In this section we will
prove a key result in this direction.

As a preliminary, observe that the space BC(FE) is an algebra. Namely,
it is closed under multiplication:

if f,g € BC(E), then also fg € BC(E).

Moreover, the norm of the product satisfies

Ifgll < 1I£Ilgll-

We say that a subspace A C BC(FE) is a subalgebra if f, g € A implies
fge A

Lemma 3.4 (Closure of a subalgebra). If A C BC(E) is a subalgebra,

then its closure A is a subalgebra as well.

Proof. Indeed, assume f,g € A. Then there exist uniformly convergent
sequences fr,gn € A with f, — f and g, — g. One has

Ifg— frgnll < 19— fagll+ 1 fag— fagnll < IIf = Fallllgl+ 11 /nll lg — gnll -

Since the sequence (fp)n>1 is uniformly bounded, the right-hand side ap-
proaches zero as n — oco. This shows the convergence fngn — fg. Since A
is an algebra, frgn € A for every n. Hence fg € A. a
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We say that a subset A C BC(E) separates points if, for every couple
of distinct points z,y € E, there exists a function f € A such that f(z) #

).

Theorem 3.5 (Stone-Weierstrass). Let E be a compact metric space. If
A is a subalgebra of C(E) that separates points and contains the constant
functions, then A =C(E).

Otherwise stated, let A be a family of continuous, real-valued functions
f : E — R with the following properties:

(i) If f,g € A and a, b € R, then the linear combination af + bg lies in
A.
(ii) If f, g € A, then the product fg lies in A as well.
(iii) The constant function f(z) =1 lies in A.
(iv) For every two distinct points z,y € E, there exists f € A such that

f(z) # 1 (y).

Then every continuous function f : E — R on the compact domain E can
be uniformly approximated by functions in .A.

Proof. 1. There exists a sequence of polynomials (p,)n>1 such that p,(t) —
v/t uniformly for ¢ € [0, 1].

To prove the above claim, the underlying idea is to construct approx-
imate solutions to the equation ¢t — p?(t) = 0 by iteration. We thus set
po(t) = 0 and, by inductiononn = 0,1,2,...,

1
(3.2) Pr+1(t) = pa(t) +5(¢ N A0)

(see Figure 3.2.1). By induction, one checks that p,(t) < pny1(t) < V1 for
every t € [0,1]. Indeed,

VE=puaal) = VE-palt) - 5t 22(0)

= (Vim0 (1- 3+ @) 2 0.

For every fixed ¢ € [0, 1], the sequence p,(t) is increasing and bounded
above. Hence it has a unique limit, say g(t). By (3.2), this limit satisfies
t — g%(t) = 0. Since g(t) > 0 we conclude that g(t) = v/%.

Finally, by Dini’s theorem, the convergence is uniform for ¢ € [0, 1].
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Figure 3.2.1. The first few polynomials in the sequence defined in (3.2).

2. For every function f € A, one has |f| € A.

Indeed, let K = maxzeg|f(z)|. We can assume « # 0. Then all functions
fn(z) = pn(f%(x)/K?) lie in A, because A is an algebra. Since f%(z)/x? €
[0,1], the previous step yields the convergence

P@ _ /@)

K2 K

fa(z) —

uniformly for z € E. Therefore |—£l € A, and hence |f| € A as well.

)

3. We now apply the previous argument to the subalgebra A and conclude
that, if f, g € A, then the functions

max{f,g} = 5(f+g+|f—g), min{f,0} = 3(f+g-1f ~g)

also lie in A.

4. For any two distinct points y1,y2 € E and any couple of real numbers
a1, ag, there exists a function f € A such that f(y1) = a1 and f(y2) = as.

Indeed, by assumption there exists a continuous function g € A such that

9(y1) # g(y2). Since A is an algebra and contains all constant functions, the

function () ()
. 9\r) — 9N

z) = a1+ (a2 — a1) >—"~F——"%

f(@) ( )g(yz) —g(y1)

lies in A and satisfies our requirements.

5. Given any continuous function f, a point y € F, and € > 0, there exists
a function g, € A such that

(3.3) w®) = f¥), gy(2) < f(z)+e foreveryz € E.
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y z
Figure 3.2.2. For a fixed y, taking the infimum of finitely many

functions hy, (here drawn as affine functions) we obtain a contin-
uous function g, < f + ¢, with gy(y) = f(y).

Indeed (see Figure 3.2.2), by the previous step, for every point z € E,
there exists a function hy, € A such that hy,(y) = f(y) and hy.(2) = f(2).

Since f and hy, are both continuous, there exists an open neighborhood
V. of z such that hy,(z) < f(z) + € for every z € V.

We can cover the compact set E with finitely many such neighborhoods:
ECV,U---UV, . Then the function

9,(z) = min {hyzl(:c),...,hyzm(x)}

lies in A and satisfies the conditions in (3.3).

Figure 3.2.3. Taking the supremum of finitely many functions g,
we obtain a continuous function g such that f —e <g< f +e.

6. The closure of A is the entire space C(E).

Indeed, let f € C(E) be any continuous function and let £ > 0 be given.
For each y € E, by the previous step there exists a function g, € A (see
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Figure 3.2.3) such that

o) = f), gy(x) < f(x)+e foreveryz € E.
By the continuity of f and gy, there exists a neighborhood Uy of y such that
gy(x) > f(x)—¢ forall z € Uy.

We now cover the compact set E with finitely many neighborhoods: E C
Uy, U---UU,,. Then the function

g(z) = max {gy1 (2),... ,gyv(w)}

lies in A and satisfies

f(z)—e < g(z) < f(z)+e forallze E. O

A natural example of an algebra that satisfies all the assumptions in the
Stone-Weiertrass theorem is provided by the polynomial functions.

Corollary 3.6 (Uniform approximation by polynomials). Let E be a
compact subset of R™. Let A be the family of all real-valued polynomials in
the variables (z1,...,zn). Then A is dense in C(E).

Indeed, the family of all real-valued polynomials in (zi,...,2Z,) is an
algebra that contains the constant functions and separates points in R™.
Hence, by Theorem 3.5 every continuous function f : E +— R can be uni-
formly approximated by polynomials.

3.2.1. Complex-valued functions. A key ingredient in the proof of The-
orem 3.5 was the fact that, if two real-valued functions f, g lie in a subalgebra
A, then max{f, g} and min{f, g} lie in A. Clearly, such a statement would
-be meaningless for complex-valued functions. In fact, in its original form
the Stone-Weierstrass theorem is NOT valid for complex-valued functions.

In order to obtain an approximation result valid for functions f : £+ C,
the main idea is to regard C = R @ iR as a two-dimensional space over the
reals. In the following, given a compact metric space E, we shall denote
by Cr(E;C) the space of all continuous complex-valued functions on E,
regarded as a vector space over the real numbers.

Theorem 3.7. Let E be a compact metric space. Let A be a subalgebra of
Cr(E; C) that separates points and contains the constant functions. More-
over, assume that whenever f € A, then also the complex conjugate function
f lies in A. Then A is dense in Cr(E; C).
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Proof. 1. By the assumptions, if f € A, then its real and imaginary parts
L F :

Re(f) = L2 m(p = L2
also lie in A. Let Ay be the subalgebra of A (over the real numbers), consist-
ing of all functions f € A with real values. Applying the Stone-Weierstrass
theorem to Ag, we conclude that A is dense in C(F) = Cr(E; R).

2. Given any f € Cr(E; C), we write f as a sum of its real and imaginary
parts f = Re(f) + ¢ Im(f). By the previous step, there exist two sequences
of real-valued functions gy, hn, € Ap such that

(3.4) gn = Re(f),  hn — Im(f)

as n — 00, uniformly on F.

Consider the sequence f, = gn +ihy €. Ao +iAy = A. By (3.4), we have
the uniform convergence f, — f. Hence A = Cr(E; C). a

Example 3.8 (Complex trigonometric polynomials). Let E be the
unit circumference {22 + y? = 1} in R2. Points on E will be parameterized
by the angle 6 € [0,27]. Let A be the algebra of all complex trigonometric
polynomials:

N
(35) po) = 3 cne™,
n=—N
where N > 0 is any integer and the coefficients c,, are complex numbers. It
is clear that A is an algebra, contains the constant functions, and separates
points. Moreover, p € A implies § € A as well. By Theorem 3.7, the family
of all these complex trigonometric polynomials is dense in Cr(E; C).

Relying on the previous example, we now show that a real-valued, con-
tinuous periodic function can be uniformly approximated with trigonometric
polynomials of the form

N N
(3.6) q(z) = Z ok coskz + Z Br sinkz .
k=0 k=1

Here N > 1 is any integer, while a,, 8, are real numbers.

Corollary 3.9 (Approximation of periodic functions by trigono-
metric polynomials). Let f : R — R be a continuous function, periodic
of period 2w. Then for any € > 0 there exists a trigonometric polynomial q
as in (3.6) such that

(3.7) lg(z) — f(z)] < €  forallz eR.
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Proof. By assumption, f(z + 27) = f(z) for every z € R. As shown in
Example 3.8, there exists a complex trigonometric polynomial p of the form
(3.5) such that

(3.8) lp(z) — f(z)] < e forall z € R.

Consider the complex coefficients ¢, = an + ib,, with a,,b, € R. Calling
g(z) = Re p(z) the real part of p, we compute

N N N N
q(z) = Z Qn COSNT — Z bpsinnzr = Zan cosnz + Z,Bn sinnz,
n=—N n=—N n=0 n=1

with
ap = ag, Qn = Qepn+ ap, Bn = b_p—0b, forn>1.
Since f is real-valued, by (3.8) we have

lg(z) — f(z)| = | Re p(z) — Re f()|
<|p(z) — f(z)| <e forallz eR. O

Remark 3.10. If the periodic function f is even, i.e., f(z) = f(—z), then
it can be approximated with a trigonometric polynomial of the form (3.6)
with Bx = 0 for every k > 1, that is, with a finite sum of cosine functions.

If f is odd, i.e., f(z) = —f(—z), then in (3.6) one can take o = 0 for
every k > 0. In other words, f can be approximated by a finite sum of sine
functions.

3.3. Ascoli’s compactness theorem

In a finite-dimensional space, by the Bolzano-Weierstrass theorem every
bounded sequence has a convergent subsequence. On the other hand, as
shown in Theorem 2.22 of Chapter 2, this compactness property fails in
every infinite-dimensional normed space. For example, in the space C([0, 1])
the sequences of continuous functions fr(z) = z" or fy(z) = sinnz are
bounded but do not admit any uniformly convergent subsequence. It is thus
natural to ask: what additional property of the functions f, can guarantee
the existence of a uniformly convergent subsequence? An answer is provided
by Ascoli’s theorem, relying on the concept of equicontinuity.

Let E be a metric space. A family of continuous functions 7 C C(FE)
is called equicontinuous if, for every x € E and € > 0, there exists § > 0
such that

(3.9) d(y,z) <d implies |f(y)— f(z)| < e



54 3. Spaces of Continuous Functions

for all functions f € F. Notice that here § > 0 can depend on z and ¢, but
not on the particular function f € F.

Lemma 3.11. Let E be a compact metric space and let F C C(E) be
equicontinuous. Then F is uniformly equicontinuous. Namely, for every
€ > 0 there exists 6 > 0 such that

(3.10) d(z,y) <& implies |f(z)— f(y)|<e forall z,yeE, feF.

Proof. Let € > 0 be given. For each z € E, choose § = §(x) > 0 such that
(3.9) holds simultaneously for all functions f € F. By compactness, we can
cover the space E with finitely many balls:

E C B(:L'l, 51) U---uU B(a:n,én),
where §; = §(z;). Choose p > 0 so small that, for every z € FE, the ball
B(z, p) is entirely contained inside one of the balls B(z;, d;).
Now assume d(z,y) < p. Then there exists an index k € {1,...,n} such
that z,y € B(xk,dk). This implies
|f(z) = f@)] < |f(z) = f@r)l + |f(y) — Fze)| < e+e

for every function f € F. Since € > 0 was arbitrary, this proves the lem-
ma. O

If E is a compact metric space, then C(E) = BC(F) is a Banach space.
By completeness, it follows that for a subset 7 C C(E) the following prop-
erties are equivalent:
(i) F is relatively compact, i.e., the closure F is compact.

(ii) F is precompact, i.e., for every € > 0 it can be covered by finitely
many balls with radius ¢.

(iii) From every sequence of continuous functions f; € F one can extract
a subsequence converging to some function f, uniformly on F.

Theorem 3.12 (Ascoli). Let E be a compact metric space. Let F C C(E)
be an equicontinuous family of functions, such that

(3.11) sup |f(z)] < oo  for everyz € E.
fer

Then F is a relatively compact subset of C(E).

Proof. It suffices to prove that F is precompact.

1. Let € > 0 be given. By Lemma 3.11, there exists § > 0 such that (3.10)
holds. Since F is compact, it can be covered by finitely many balls of radius
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d, say
n
E C |JB(=:,0).
=1

By the assumption (3.11),

M = maxeq1,. ) sup |f(zi)| < oo.
ferF

We now choose finitely many numbers a4, . . ., o, such that the balls B(a;, €)
cover the compact interval [—M, M].

2. Consider the set © of all maps 6 : {z1,...,2,} — {o1,...,am}. This
is a finite set. Indeed, there are exactly m™ such maps. For every 6 € O,
define the family of continuous functions

Fo = {f € F; f(z:) € BO(:), ) forall i=1,...,n}.

Since the interval [—M, M] is covered by the balls B(a;,¢€), we clearly have
ere ]'-0 = f

3. We claim that each set Fy has diameter < 4¢. Indeed, assume f, g € Fy.
For any z € E, choose an index % such that z € B(z;,d). We then have

|f(z) — g(=)]
< |f (@) = fl@a)l + 1f () — 0(zi)| + 16(z) — g(zi)| + g(:) — 9()]
< e4+ete+te.

Therefore

I —glle = maxzep|f(z) —g(z)| < 4e.

The above arguments show that, for any € > 0, the set F can be covered
with finitely many sets having diameter < 4¢. Hence it can also be covered
by finitely many closed balls of radius 4¢. Since ¢ is arbitrary, this proves
that F is precompact. O

The above theorem can be easily extended to functions taking values in
the complex domain C or in a Euclidean space R".

Corollary 3.13. Let E be a compact metric space. Let (fi)r>1 be a sequence
of continuous functions from E into R™ such that

(i) the family {fx} is equicontinuous;
(i) supg>1 [fe(z)| < 0o for every z € E.

Then the sequence (fx)k>1 admits a uniformly convergent subsequence.
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Proof. Let us write out the components:

fk(.’L‘) = (fk,l(w)’fk,Z(x)a"-afk,n(l')) € R".

Applying Theorem 3.12 to the sequence of scalar functions (fx,1)k>1, we can
extract a subsequence such that these first components converge uniformly
on E. From this subsequence we can extract a further subsequence such that
the second components converge uniformly, etc. After n steps we obtain a
subsequence where all components converge, uniformly on E. a

3.4. Spaces of Holder continuous functions

Let 2 C R™ be an open set, and 0 < v < 1. We say that a function f : @ — R
is Holder continuous with exponent + if there exists a constant C such
that

|f(2) = f(y)| < Clz—y[" forallz,yeQ.
We denote by C%7(Q2) the space of all bounded Hélder continuous functions
on Q, with norm

) 1£(=) ~ 1)l
(3.12) Wllconi@y = sup If@@)] +  swp o= m—

More generally, given an integer k > 0, we denote by C*7(Q2) the space
of all continuous functions with Holder continuous partial derivatives up, to
order k. This space is endowed with the norm?!

(3.13)

ey = 3 (suplD®s@) + 3 ( sup |D“f($)—D°‘f(y)l).

xz —ylv
loj<k N*F laj=k \ZYEDL 27y | yl

Theorem 3.14 (Holder spaces are complete). Let Q@ C R™ be an open
set. For every integer k > 0 and any 0 < v < 1, the space C*7(Q) is a
Banach space.

Proof. The fact that (3.13) defines a norm is clear. To prove that the space
Ck7(Q) is complete, let (fm)m>1 be a Cauchy sequence with respect to the
norm (3.13). Then, for every z € Q, the sequence fp,(z) is Cauchy and
converges to some value f(z) uniformly on Q.

The assumption also imply that, for every |a| < k, the sequence of
partial derivatives D* f,, is Cauchy; hence it converges to some continuous
function v, (z) = D®f(z) uniformly on Q.

1 ‘s . FRN 8 \%n
Given a multi-index @ = (a1,...,an), we use the notation D*f = (f) o (81 ) f
1 n

to denote a partial derivative of f of order |a| = a1 + - - + an.
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It remains to prove that the convergence f,, — f takes place also with
respect to the norm of C™7(2). In other words, for || = k we need to show
that

. D*(fn = )(@) = D*(fm = )W)
(3.14) lim sup = 0.

M= gyeQ, Ty |z —y|7

By assumption,

| [D*(fm = £)(@) = D(fm = )W)
lim sup

= 0.
MN—=00 4 4eQ, z#y ICC - yl’y

Hence, for any € > 0, there exists IV large enough so that

D®(fm — f2)(@) = D*(fm — f) W)
sup

z,Y€Q, Ty |z — y|

< e forallm,n>N.

Keeping m fixed and letting n — oo we obtain

|D*(fm = (@) = D*(fm = N)|

sup < € forallm>N.
T,YEQ, Y |z — y|7
Since € > 0 was arbitrary, this proves (3.14). a

3.5. Problems

1. Let E be a compact metric space. Assume that a family of real-valued continuous
functions F C C(E) satisfies the following two conditions:

(i) For every z,y € E and a,b € R, there exists a function f € F such that
f(z) =aand f(y) =b.

(ii) If f,g € F, then the functions max{f, g} and min{f, g} lie in the closure
F.

Prove that F is dense in C(E).

2. Prove or disprove the following statements.

(i) Given any continuous function f : R — R (possibly unbounded), there ex-
ists a sequence of polynomials (p,)n>1 such that p,(z) — f(z) uniformly
on every bounded interval [a,b]. (Note: Here the sequence of polynomials
should be independent of the interval [a, b].)

(ii) There exists a sequence of polynomials p,, that converges to the function
f(z) = e=*" uniformly on R.
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3. Let g : [0, 7] — R be a continuous function.

(i) Prove that, for any € > 0, there exists a trigonometric polynomial of the
form

N
p(z) = Zbk coskz
k=0

such that |p(z) — g(z)| < € for every z € [0, ).

(ii) If g(0) = g(w) = 0, prove that, for any € > 0, there exists a trigonometric
polynomial of the form

N
p(z) = Zak sin kz
k=1
such that [p(z) — g(z)| < € for every z € [0, 7].

4. Let f : R — R be continuously differentiable. Show that, for every bounded
interval [a,b], there exists a sequence of polynomials p, such that p, — f and
pl, — f', uniformly on [a, b].

5. Let E be the unit circle {z2 + y? = 1} in R%. Points on E will be parameter-
ized with the angle 6 € [0,27]. Let A be the family of all complex trigonometric
polynomials of the form

N
p(e) — Z cneina,
n=0

where N > 0 is any integer and the ¢, are complex-valued coefficients.

(i) Is A an algebra?
(if) Does A contain the constant functions and separate points?

(iii) Is A dense on the space of all continuous, complex-valued functions f :
E—C?

6. Let Q C R™ be a bounded open set. Prove that the family of all polynomials
p = p(z1,Z2,...,Z,) in n variables is dense on the space L?((2), for every 1 < p <
00.

7. Consider the rectangle Q = {(z,y); z € [0,a], y € [0,b]}.

(i) Given any continuous function f = f(z,y) on @ and any ¢ > 0, con-
struct a finite number of continuous functions gi,...,gn : [0,a] = R and
hi,y... hn : [0,0] — R such that

N
flz,y) — Zgi(x)hi(y) < e forall (z,y) € Q.

i=1



3.5. Problems 59

(ii) Given any continuous function f : @ — R that vanishes on the boundary
of @), show that one can choose an integer M > 1 and finitely many
coefficients ¢y, 1 < m,n < M, such that

M
flz,y) — Z Cmn SID T sin Y < e forall (z,y) € Q.
1 a b

m,n=

8. Let 2 C R™ be a bounded open set, and 0 < v < 1. Prove that the embedding
CO7(f2) CC C°(R) is compact. In other words, if (fn)n>1 is @ bounded sequence in
C%7(£2), then it admits a subsequence that converges in C°(R2).

9. Decide for which values of 0 < v < 1 the following functions lie in the Holder
space C®7(]0,1]):

@) = @, h) = VEsing,  fi(@) = zlina].

10. Explain what is wrong with the following argument.

“Let 0 <y < 1 and let (fn)n>1 be a sequence of functions in the Holder space
C%7([0,1]), with ||fallcom < 1 for every n. Since the functions f, are uniformly
bounded and equicontinuous, by Ascoli’s theorem we can extract a subsequence
converging to some limit function f, uniformly for z € [0,1]. It is now easy to
check that ||f|lco.r < 1. This shows that the closed unit ball in C%7 is compact,
and hence by Theorem 2.22 in Chapter 2 the space C%” is finite-dimensional.”

11. Let ¢ : Ry — R4 be a smooth function such that
v(0) = 0, 0'(s)>0, ¢"(s)<0 forals>0.
Given an open set 2 C R™, consider the space of continuous functions
Co@) = { £ QR fllp = suplf()] + sup LDIWL o o f
z zH#Y SO(':E - yl)

Prove that C¥(f2) is a Banach space. (Note: Here the function ¢ can be regarded
as a modulus of continuity. In the case ¢p(s) = s with 0 < v < 1 one has
() =C%(Q).)

12. Prove the following more general version of Ascoli’s theorem. Let E be a
compact metric space and let K be a compact subset of a normed space X. Assume
that a sequence of maps ¢, : E — K is equicontinuous. Namely, for every z € E
and € > 0, there exists § > 0 such that

d(y,z) <d implies |Pn(y) —dn(z)|| < € foralln>1.

Then the sequence (¢,)n>1 admits a uniformly convergent subsequence.






Chapter 4

Bounded Linear
Operators

In this chapter we look in more detail at linear operators in Banach spaces.
As in Chapter 2, B(X,Y’) will denote the space of bounded linear operators
A: X — Y, with norm

Al = sup |[lAz].

lzll<1

We begin with some results based on the Baire category theorem.

4.1. The uniform boundedness principle

Theorem 4.1 (Banach-Steinhaus uniform boundedness principle).
Let X,Y be Banach spaces. Let F C B(X,Y) be any family of bounded
linear operators. Then either F is uniformly bounded, so that

sup Al < oo,
AeF

or else there exists a dense set S C X such that

(4.1) sup ||[Az| = o0  forall z€S.
AeF

Proof. For every integer n, consider the open set
(4.2) Sn = {z € X; ||Az|| > n for some A € F}.

If one of these sets, say Sk, is not dense in X, then there exists g € X and
a radius 7 > 0 such that the closed ball B(zg,r) does not intersect Sk. In

61
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other words,
|Az|| < k forall A€ F, =z€ B(xo,r).

If now ||z|| < r, then
|Az|| = ||A(zo+z)—Azo| < ||[A(zo+z)||+|Azoll < 2k forall A€ F.
Therefore
. 1 2k
Al = sup ||Az| = = sup [Az|| < —
llzll<1 T lzll<r r
for every A € F. In this case, the family of operators F is uniformly
bounded.
The other possibility is that the open sets Sy, in (4.2) are all dense in X.
By Baire’s category theorem, the intersection S = ﬂnZI Sy, is dense in X.
By construction, for each € S and n > 1 there exists an operator A € F
such that ||Az|| > n. Hence (4.1) holds. O

Remark 4.2. From the above theorem it follows that, if a family of opera-
tors A € B(X,Y) is pointwise bounded on the unit ball, then it is uniformly
bounded. In other words, the condition

sup ||Az|| < co for each z € X with |z]| <1
AeF

implies
sup sup [|Az] < oo.
AEF ||z||<1

This justifies the name “uniform boundedness principle”.

Corollary 4.3 (Continuity of the pointwise limit). Let X,Y be Banach
spaces. Let (An)n>1 be a sequence of bounded linear operators in B(X;Y).
Assume that the pointwise limit

(4.3) Az = lim Apz

n—ro0

exists for every x € X. Then the map A defined by (4.3) is a bounded linear
operator.

Proof. For every z € X, the sequence (A,z)n>1 is bounded. Hence by the
previous theorem the sequence of operators A, is uniformly bounded. This
implies

Al = sup ||Az|| = sup (lim ||An93||) < supl||Ay]| < oo,
lzll <1 lz|l<1 NP0 n>1

showing that the linear operator A is bounded. a
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4.2. The open mapping theorem

If X,Y are metric spaces, we say that a map f : X — Y is open if, for
every open subset U C X, the image f(U) is an open subset of Y. This is
the case if and only if, for every z € X and r > 0, the image f(B(z,r)) of
the open ball centered at z with radius 7 > 0 contains a ball centered at

f(@).

Theorem 4.4 (Open mapping). Let X,Y be Banach spaces. Let A : X —
Y be a bounded, surjective linear operator. Then A is open.

Proof. 1. By linearity, the image of an open ball B(z,r) can be written as
A(B(z,7)) = A(z) + A(B(0,7)) = A(z) +rA(B(0,1)).

Calling B, = B(0,r) the open ball centered at the origin with radius r, to
prove the theorem it thus suffices to show that the image A(B;) contains an
open ball around the origin in Y.

2. Since A is surjective, Y = ;2 ; A(Bp). Recalling that Y is a complete
metric space, by Baire’s theorem at least one of the closures A(B,) C Y has
nonempty interior.

By a rescaling argument, A(B;) = n~'A(B,) must also have nonempty
interior. Namely, there exist yg € Y and r > 0 such that B(yo, ) C A(By).

Since the open unit ball B; is convex and symmetric, the same is true
of its image A(B;) and of the closure A(Bj). In particular, by symme-

try B(—vo,7) € A(B1), while convexity implies that the ball B(0,7) C Y
satisfies

B(0,r) = 7B(uo,r)+ 5B(~u,7) € A(BL).

Using again the linearity of A, by rescaling we obtain

(4.4) B(0,2"r) C A(Byn) foralln>1.

3. We conclude the proof by showing that B(0,7/2) C A(B1). Indeed,
consider any point y € B(0,7/2). We proceed by induction.

- By density, we can find z; € By-1 such that ||y — Az;|| < 272r.
- In turn, we can find zo € By—2 such that ||(y — Az1) — Az < 2737,
- Continuing by induction, for each n we have

n—1
y—Zij € B(0,27"r) C A(Bg-n).
Jj=1
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Therefore we can select a point x, € By-» such that

n—1

(y — Zij) — Az, < 271,

j=1

Since X is a Banach space and ), ||lzn|| < oo, the series ), z, con-
verges, say » .o, Zn = z. We observe that

(oo} [eo}
ol < Yolloall < 3527 = 1, As = lim Yo Any = v,

Hence the image A(Bj) contains all points y € Y with ||y|| < r/2. O

Corollary 4.5. If X, Y are Banach spaces and A : X — Y is a continuous
bijection, then its inverse A™1 : Y — X is continuous as well.

Proof. Since A is a bijection, A is open if and only if the inverse mapping
A~ is continuous. O

4.3. The closed graph theorem

Let X,Y be Banach spaces. The product space X x Y is the set of all
ordered couples (z,y) with z € X and y € Y. This is a Banach space with
norm

(4.5) (@l = llzll +llyll-

Next, let A be a (possibly unbounded) linear operator, with domain Dom(A) C
X and values in Y. We say that A is closed if its graph

Graph(A) = {(w,y); z € Dom(A) C X, y=A:c} C XxY

is a closed subset of the product space X x Y. In other words, the linear
operator A is closed provided that the following holds:

Given two sequences of points z, € Dom(A) and y, = Az, € Y, if
Zn — T and yn, — y, then x € Dom(A) and Az = y.

Notice that every continuous linear operator A : X — Y is closed. The
next result shows that a converse is also true, provided that the domain
Dom(A) is the entire space X.

Theorem 4.6 (Closed graph). Let X,Y be Banach spaces, and let A :
X — Y be a closed linear operator defined on the entire space X. Then A
s continuous.
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Proof. Call I' = Graph(A). By assumption, I' is a closed subspace of the
Banach space X x Y, hence it is a Banach space as well.

Consider the projections 71 : I' = X and 79 : I' = Y, defined as
m(z,Az) =z, ma(z,Az) = Az.

The map m; is a bijection between I' and X, hence by Corollary 4.2, its
inverse ! is continuous. Therefore A = 50 T ! is the composition of two
continuous maps, hence continuous. (]

Y Graph(A)

Figure 4.3.1. Proving the closed graph theorem.

Example 4.7. Consider the space X = CO(R) of all bounded continuous
functions f : R — R, with norm || f||co = sup, |f(z)|. Let A be the differen-
tiation operator defined by Af = f’. Its domain is the subspace

Dom(A) = {feCO(]R); f’eCO(R)} = C{(R)

consisting of all continuously differentiable functions with bounded deriva-
tive.

Observe that the linear operator A is not bounded (hence not contin-
uous). For example, the functions f,(z) = sinnz are uniformly bounded:
|| fallco = 1 for all n > 1. However, the sequence of derivatives A f, = f} is
unbounded, because f},(z) = ncosnz and hence || f|lco = n.

On the other hand, the linear operator A : f — f’ has closed graph.
To see this, consider a sequence f, € Dom(A) such that, for some functions
f,g € C° one has

(4.6) Ilfa=fllco =0, [Ifn —gllco = 0.
If (4.6) holds, then f is continuously differentiable and f’ = g. Hence the
point (f,g) € X x X lies in the graph of A.

Notice that this example does not contradict the closed graph theorem,
because A is not defined on the entire space X.
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4.4. Adjoint operators

Let X be a Banach space on the field K. By definition, its dual is the space
X* of all bounded (hence continuous) linear functionals z* : X +— K, with
norm

=l = sup |e*(z)].
llefl<2

In turn, every element z € X induces a bounded linear functional on X*,
namely z* — z*(z) € K. Using this identification, we can thus write X C
(X*)*. Since the spaces X and X* often play a symmetric role, it will be
convenient to use the notation

(z*, z) = z*(z).

Now let X,Y be Banach spaces over the field K, and let X*, Y™ be their
duals. Let A : X — Y be a bounded linear operator. Then, for every
bounded linear functional ¥* : Y — K, the composed map z* : X — K
defined as z*(z) = y*(Az) is a bounded linear functional on X. The map

y* = A*y* = y* o A is a bounded linear operator from Y™ into X*, which
we call the adjoint of A. By definition (see Figure 4.4.1),

(A*y*, z) = (y*,Az) forallze X.
In the following, given a subset V' C X, we define its orthogonal set as
vt = {z*e X*; (z*,z) =0forallz € V}.
Similarly, if W C X*, we define
Wt = {zeX; (z*,z) =0 for all z* € W}.

A
x-D oy X X
y
N
L g K

Figure 4.4.1. The maps involved in the definition of adjoint operators.

Theorem 4.8 (Properties of adjoint operators). Let A : X — Y be
a bounded linear operator, and let A* : Y* — X* be its adjoint operator.
Then:

(@) [lA*]] = Al
(ii) Ker(A) = [Range(A*)]* and Ker(A*) = [Range(A)]*.
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Proof. The statement (i) follows from

IAl = sup {llAz]; ol <1}
= sup {I(y", Aa)l; flall < 1, [yl <1}
= sup {|(A%y", 25 llall < 1, Jy*l < 1]

= sup {JlA"y*ll; Iyl <1} = A7),

To prove (ii), we observe that the following statements are all equivalent:
z € Ker(A),
Az =0,
(y*, Az) =0 for all y* € Y™,
(A*y*, ) =0 for all y* € Y™,
z € [Range(A*)]*.
Similarly, the following statements are all equivalent:
y* € Ker(A*),
A*y* =0,
(A*y*, z) =0 for all z € X,
(y*, Az) =0 for all z € X,
y* € [Range(A)]". O

We conclude this section by showing a useful application of the uniform
boundedness principle.

Corollary 4.9 (Weakly convergent sequences are bounded). Let X
be a Banach space. Any sequence x, € X which converges weakly to some
z € X is necessarily bounded.

Proof. Let X* be the dual space of X. Each z, determines a linear func-
tional 9, on X*, namely

5 = PYa(z) = (2%, zn).

Here (-, -) denotes the duality between X and X*. By assumption, asn — oo
we have the pointwise convergence

Pn(z*) = (@%,20) — (2", 2)
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for each z* € X*. This implies

sup |Yn(z*)] < oo for every z* € X*.
n

Using the uniform boundedness principle, we conclude that the family of
linear functionals {1, ; n > 1} is uniformly bounded. Since

[l = sup |in(z¥)] = |lzall,

llz*li<1

this completes the proof. a

4.5. Compact operators

Let X,Y be Banach spaces. A bounded linear operator A : X — Y is
compact if, for every bounded sequence (z,)n>1 of points in X, there exists
a subsequence (Zn,);>1 such that Az,; converges. Equivalently, A is compact
if and only if, for any bounded set U C X, the image A(U) C Y has compact
closure.

Theorem 4.10 (Examples of compact operators).

(i) Let X,Y be Banach spaces, and let A : X — Y be a bounded linear
operator. If the range of A is finite-dimensional, then A is compact.

(ii) Let Ap : X — Y be a compact operator, for each n > 1. Assume
lim, 00 ||An — Al| = 0. Then the operator A is compact as well.

Proof. 1. A bounded linear operator A : X — Y is compact if and only
the unit ball B; C X has image A(B;) C Y whose closure is compact. If
Range(A) is finite-dimensional and A is bounded, then the closure A(B) is
a closed bounded subset of a finite-dimensional space, hence compact. This
proves (i).

2. To prove (ii) we observe that, since Y is complete, the closure A(B;) is
compact if and only if A(B;) is precompact. This means: for every € > 0,
the set A(B;) can be covered by finitely many balls of radius €.

Under the assumptions (ii), let € > 0 be given. Choose k such that
IIA — Ag|| < €/2. Since A is compact, we can select finitely many elements
Y1,...,YN € Y such that

N
(4.7) n(B) € UB(w 3)-
=1
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If ||z|| <1, then ||Az — Agz|| < €/2. By (4.7) there exists a point y; with
|Akz — yil| < €/2. By the triangle inequality, |Az — y;|| < €. This proves
that the finitely many balls B(y;, &) cover A(Bj). O

Theorem 4.11 (Adjoint of a compact operator). Let X,Y be Banach
spaces, and let A : X — Y be a bounded linear operator. Then A is compact
if and only if its adjoint A* : Y* — X™ is compact.

Proof. 1. Assume that A is compact. Let (y))n>1 be a sequence in Y™,
with ||lyx|| < 1 for every n. To prove that A* is compact we need to show
that the sequence (A*y};)n>1 admits a convergent subsequence.

Let By = {z € X; |z|]| < 1} be the closed unit ball in X. By
assumption, the image A(B;) has compact closure, which we denote by
E=AB)CY.

2. By definition, each y;; € Y* is a linear map from Y into the field K. Let
fn 1 B — K be the restriction of y}; to the compact set E. We claim that the
family of functions { f, ; n > 1} satisfies the assumptions of Ascoli’s theorem.
Indeed, all these functions are uniformly Lipschitz continous, because

1fn@) = fa@) < lwnlllly =9l < lly—y'll forally,y € E.
Moreover, observing that

sup |ly] = sup [|Az| = [|All,
yeE llzll<1

we obtain
lfan@)] < llunllllyll < 1-JJA|l forallye E.

Hence all functions f,, : E — K are uniformly bounded.
By Theorem 3.12, there exists a subsequence (fn,);j>1 Which converges
to a function f uniformly on the compact set E = A(Bj).

3. We now observe that
A yn; — A*yp. |l = sup  [(A*yp, — A"y, , )]

lell<1
= sup [(yy, —un,» Az)| = sup |fn,(Az) = fn,;(A2)],
llefl<1. el <1

where the right-hand side approaches zero as i, j — 0o. This shows that the
subsequence (A*yy );j>1 is Cauchy, hence it converges to a limit z* € X™.
Therefore A* is compact.

The converse implication can be proved by the same arguments. g
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4.5.1. Integral operators. Compact operators often arise in the form of
integral operators. To see an example, consider the Banach space C([a, b])
of all continuous, real-valued functions defined on the closed interval [a, b].

Theorem 4.12 (Compactness of an integral operator). Let K : [a, b] x
[a,b] — R be a continuous map. Then the integral operator

b
(48) (AN)@ = [ K o) dy
is a compact linear operator from C([a,b]) into itself.

Proof. Consider a bounded sequence of continuous functions f, € C([a, b]).
We need to prove that the sequence Af, admits a uniformly convergent
subsequence. By Ascoli’s compactness theorem, it suffices to show that the
functions A f, are uniformly bounded and equicontinuous.

1. Since K is continuous on the compact set [a, b] X [a, b], it is bounded and
uniformly continuous. Namely, there exists a constant « such that

|K(z,y)] < & for all z,y.
Moreover, for every € > 0 there exists 6 > 0 such that

(4.9) |K(z,y) — K(%,y)] < €  whenever |z—%| <4, z,%,y € [a,b].

2. By assumption, there exists a constant M such that

"fn” = IMaXge(q,b] lfn(a?)l < M forall n>1.

This implies
b
@@ < [ IKEawld < ©-asm,
a
proving that the functions A f, are uniformly bounded.

3. Next, let € > 0 be given. Choose § > 0 such that (4.9) holds. If
|z — Z| < 6, then for any n > 1 we have

b
(@) - W)@ < [ K@) - K@) 1h@ldy < (b-aeM.

Since € > 0 was arbitrary, this proves the equicontinuity of the sequence
(Afn)n>1. An application of Ascoli’s theorem completes the proof. a
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-1 y

Figure 4.5.1. The kernel function K in (4.11).

Example 4.13. For any continuous function f € C([—1,1]), let u = Af be
the solution to the two-point boundary value problem

(4.10) u'(z) + f(z) = 0, u(—1) =u(1) =0.

Observe that the solution must be unique. Indeed, if uj,us are solutions,
then the function w = u; — uy satisfies

w’(z) =0, w(=1) = w(1) =0,
hence w(z) = 0. A direct computation shows that
z _ 1 _
u(z) = /_1 W}‘(y) dy+/ u2(1L30)f(y)aly

provides a solution to (4.10). The solution operator A : f — u = Af is thus
a linear, compact operator on C([—1,1]). It can be written in the form (4.9),
with

0)4n) 3 _1<g<y,
(4.11) K(z,y) =

Uﬂz(lul if y<z<1.

Referring to Figure 4.5.1, the piecewise affine map z — K(z,y) for a fixed
y can be uniquely determined by the three equations

K(-1,y) = K(l,y) = 0,  K:(y+,9) — Kz(y—,y) = —1.

4.6. Problems

1. On the Banach space X = C([0,1]), decide whether the following operators are
(i) linear, (ii) bounded, (iii) compact:

(1) (Af)(=) = f(sinz).

2) (Af)(z) = sin(f(z)).

@) (Af)(=) = =zf(z).
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@) (Af)(@) = z £(0)+ [} f(s)ds.
(5) (Af)(z) = y(z), where y(-) is the solution to the Cauchy problem

Y(z)+y(z) = flz), y(0)=0.

2. Prove that L2([0,1]) is a vector subspace of L*([0, 1]) of first category. Indeed,
for each n > 1, the set E, = {f: [0,1] = R; fol |f|? dz < n} is a closed subset of
L! with empty interior.

3. Let X be a Banach space and let A : X — £ be a linear operator, so that
A(z) = (A1(z), A2(z),...) is a bounded sequence of real numbers, for every z € X.
Prove that the operator A is bounded if and only if each linear functional A, is
bounded.

4. Let 1 < p < oo. Consider a linear operator A : L?([0, 1]) — LP([0,1]) (defined
on the entire space L?) which has the following property. If a sequence of functions
fn € LP converges pointwise a.e. to some f € LP, then the sequence (Af,)(z)
converges to (Af)(z) for a.e. z € [0,1]. Prove that A is continuous.

5. Let X be an infinite-dimensional Banach space. Let K : X — X be a compact
linear operator. Show that, if K is one-to-one, then the range of K cannot be
closed.

6. Let X,Y,Z be Banach spaces and consider two linear operators A; : X +—
Y, Ay : Y — Z. Assume that one of the two operators is continuous while the
other is compact. Prove that the composition Az 0 A1 : X — Z is a compact linear
operator.

7. Let X be a Banach space and let A : X — X be a compact linear operator
such that A = A%, Namely, A(z) = A(A(z)) for all z € X. Prove that Range(A) is
finite-dimensional.

8. Let X be a Banach space. Let U C X be a closed, convex set such that
Un>1nU = X. Prove that U contains a neighborhood of the origin.

9. Let X,Y be infinite-dimensional Banach spaces. If K : X — Y is a compact
linear operator, prove that K(X) # Y, i.e.,, K cannot be surjective.

As an example, consider the map K : ¢! + ¢! defined as follows. If x =
(z1,%2, 23, ...) With ||x[les = 32,5, |2a| < 0o, then Kx = (311, B5, 5.
Find a point y € 1 \ K(£*).

10. Let f : R — R be a bounded function with closed graph. Prove that f is
continuous.

On the other hand, construct a function g : R — R which is one-to-one and
onto, has closed graph, but is not continuous.
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11. Let X,Y be Banach spaces. Prove that every continuous function f: X — Y
(not necessarily linear) has closed graph.

Construct a bounded function g : R + L!(R) which has closed graph but is
not continuous.

12. Let 1 < p < oo, and consider the Banach space #P of all sequences x =

1/p
(z1,%2,%3,...) of real numbers such that ||x|, = (ZkZI |a:k|”) < oo. Let

(A1, A2, A3,...) be a bounded sequence of real numbers, and define the bounded
linear operator A : ¢P — £P by setting

A((L‘]_,(EQ,SL‘&...) = (’\11"1)’\21"2;)‘31"31"')‘

Prove that A is compact if and only if limg_,00 A = 0.

13. Let X, Y, Z be Banach spaces. Let B : X XY + Z be a bilinear map.! Assume
that B is continuous at the origin. Prove that B is bounded; namely there exists a
constant C such that

IB(z,9)ll < Cllellllyll  forallze X, yeY.

14. Let X be the vector space of all polynomials in one real variable, with norm

1
lpll = /0 In(t)]dt.

Consider the bilinear functional B : X x X +— R defined as

1
B(p,q) = /0 p(t)q(t) dt.

Show that, for each fixed p € X, the map g — B(p, q) is a continuous linear func-
tional on X. Similarly, for ¢ € X fixed, the map p — B(p, q) is a continuous linear
functional. However, prove that B is not continuous from the product space X x X

into R. We recall that X x X has norm ||(p, ¢)|| = max{ fol |p(z)|dz, fol |q(a:)|d:c}.

15. Let S be a closed bounded subset of a Banach space X. Assume that for every
€ > 0 there exists a finite-dimensional subspace Y; C X such that

d(S,Y.) = sup d(z,Y:) < e
z€S
Prove that the set S is compact.
16. Let A be a bounded linear operator on the Banach space X. Assuming that

AK = K A for every compact operator K, prove that A is a scalar multiple of the
identity, i.e., there exists a number A such that A = AI.

1Saying that B is bilinear means that = — B(z, ) is a linear map for every given y € Y, and
y — B(z,y) is a linear map for every fixed z € X.
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17. Let X be a Banach space and let A : X — X be a bounded linear operator.
Assume that there exist € > 0 and an infinite-dimensional subspace V' C X such
that ||Az|| > ¢l|z|| for every € V. Prove that the operator A cannot be compact.

18. Let X be a Banach space and let X* be its dual space. Consider a sequence
of elements z; € X with the property that the series ZkZI(m*, z)) converges for
every z* € X*. Prove that

z* - p(z*) = Z(a:*, Zi)
k>1

is a bounded linear functional on X*.

19. On the Banach space X = C([0,1]) consider the linear operator A : X — X
defined by

ANHO) = fO), AN = % /0 f(s)ds fort>0.

(i) Prove that A is continuous.
(ii) Prove that A is one-to-one but not onto.
(i) Show that A is not compact.

20. Let @ C R™ be an open set and let g : @ — R be a bounded, measurable
function. As in Example 2.18, for any 1 < p < 00, on the space LP(2) consider the
multiplication operator (Mg f)(z) = g(z) f(z).
(i) Determine for which functions g the operator M, is one-to-one.
(i) Determine for which functions g the operator M, has closed range.
(iii) Determine for which functions g the operator M, is compact.

21. Find an example showing that, for an infinite-dimensional Banach space X,
the set of bounded linear operators A : X — X which are one-to-one may not be
an open subset of the space B(X; X) of all bounded linear operators.

Similarly, show that the set of bounded linear operators whose range is dense
may not be open in B(X; X).

22. Let X,Y be Banach spaces, and let A : X — Y be a linear continuous bijection.

(i) Prove that there exists 8 > 0 such that
[[Az|| > Bllz|| forallze X.

(ii) Let ¥ € B(X; Y) be any bounded linear operator with norm ||¥| < .
Using the contraction mapping theorem, prove that, for any f € Y, the
equation

u = A7Yf— Tu)
has a unique solution.

(iii) Prove that, within the Banach space B(X; Y), the set of all bijective
operators is open.
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23. Recalling the spaces introduced in Examples 2.6 and 2.7 of Chapter 2, define
the operator A : £%° — £*° by setting Az = y = (y1, Y2,¥3, - - -), Where

R
(4'12) Yn = ;zl:a:,
1=

(i) Prove that A is a bounded linear operator and compute its norm. Is A a
compact operator?

(i) Consider the operator A defined as in (4.12), but on the space ¢! of
absolutely summable sequences. Is A a bounded linear operator? Is it
compact?

24. Let X,Y be vector spaces, with Y C X. Assume that there exist norms such
that (X; || - llx) and (Y'; || - ||y) are both Banach spaces, with

lyllx < C-llylly forallyeY.

(i) f Y = X, prove that the two norms || - ||x and || - ||y are equivalent,
namely |z|ly < C'-|z||x for some constant C'.

(ii) If Y # X, prove that Y is a subset of first category in X. Namely, each
set S, = {y €Y, |lylly <n} is a closed, nowhere dense subset of X.






Chapter 5

Hilbert Spaces

The Euclidean space R is equipped with a natural inner product (-,-). This
inner product is useful in many ways:

o It defines the Euclidean norm ||x|| = 4/(x,x).

o It determines perpendicular spaces and perpendicular projections,
and it allows us to construct bases of mutually orthogonal vectors
{v1,...,Vn}. Thanks to the inner product, computing the compo-
nents of a vector v € R™ with respect to an orthogonal basis is an
easy matter.

e Every linear functional ¢ : R™ — R can be represented as an inner
product: ¢(x) = (w,x) for a suitable vector w € R™.

e Having an inner product, one can define a class of symmetric oper-
ators, with many useful properties. We recall that A : R® — R" is
symmetric if (Ax,y) = (x, Ay) for all z,y € R". In the standard
basis of R™, symmetric operators correspond to symmetric n X n
matrices.

o Always relying on the inner product, one can define a class of pos-
itive operators. We recall that A : R® — R" is strictly positive
definite if (Ax,x) > 0 for all x € R™, x # 0. In this case, the map
x — (Ax,x) is a positive definite quadratic form.

The goal of this chapter is to show how the definition and properties of
the Euclidean inner product can be extended to infinite-dimensional vector
spaces.
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5.1. Spaces with an inner product

Let H be a vector space over the field K of real or complex numbers. An
inner product on H is a map (-, -) that, to each couple of elements z,y € H,
associates a number (z,y) € K with the following properties. For every
z,y,z € H and a € K one has

(i) (z,y) = (y, ), where the upper bar denotes complex conjugation;
(i) (z+y, 2) = (z,2) + (v, 2);
(iil) (az,z) = a(z, 2);
(iv) (z,z) > 0, with equality holding if and only if z = 0.
Notice that the above properties also imply
(5.1) (@ y+2) = (z,y)+(z,2), (2, ) = a(=,y).

In the case where K = R, the properties (i)—(iii) simply say that an
inner product on a real vector space is a symmetric bilinear mapping. In
connection with the above inner product, we also define

(5.2) lzll = V(z,z).

The Minkowski inequality, proved below, shows that this is indeed a norm
on the vector space H.

Theorem 5.1 (Two basic inequalities). Let H be a vector space with
inner product (-,-). Then

@) [z, ) < Nzl vl (Cauchy-Schwarz inequality);

(i) llz+yl < ll=zll + Iyl (Minkowski inequality).

Proof. (i) If y = 0, the first inequality is trivial. To cover the general case,
set

a=(z,z), b=(zy), c=(yy)
For every scalar A\ € K one has

0 < (z4+My,z4+2y) = a+bA+bA+cA
Choosing A = —b/c, we obtain
0 < a-— @-
c

Since ¢ = (y,y) > 0, multiplying both sides by ¢ we obtain

0< ac— b = ||zl Iyl - I(z,9)P,

proving (i).
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(ii) By the Schwarz inequality,

Re(z,y) < |(z,9)] < Izl lyll-
Therefore
lz+yl> = (z+y,z+y) = |zI>+ lyl*> + 2Re(z,y)

2
ol + iyl + 2Nzl Il = (llzll + ol -

Taking square roots we obtain (ii). O

IA

A vector space H with an inner product (-,-), which is complete with
respect to the norm ||z|| = +/(z, z), is called a Hilbert space.

Example 5.2. The Euclidean space R™ with inner product (z,y) = 2191 +
-« + zpy, is a Hilbert space over the real numbers.

Example 5.3. The space £2 of all sequences of complex numbers z =
(z1,22,...) such that

oo 1/2
=l = (ZI%F) <00
k=1

is a Hilbert space over the complex numbers, with inner product

1)
('T:y) = kay_k
k=1

Example 5.4. Let Q C R™ be any open set. The space L?(£2; R) of square
summable maps f : 2 — R is a Hilbert space, with

(ha) = [ F@sta)da, I = ([, |f(a:)|2dm>l/2

5.2. Orthogonal projections

Given a subset S C H, by span(S) we denote the set of all finite linear
combinations of elements of S, namely

N
(5.3) span(S) = {Zcz:z:z, N>1,¢€eK, z; € S}.

i=1
In general, span(S) is a subspace of H, possibly not closed. The closure
V = span(S) is called the space generated by S. We say that the set S
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is total if it generates the whole space H. In other words, S is total if, for
every z € H, there exists a sequence of elements z, € span(S) such that
|zn — z|| — 0 as n — oo.

Two elements z,y in a Hilbert space H are said to be orthogonal if
(z,y)=0.
Given any subset S C H, its orthogonal subspace is defined as

St = {ye H; (y,z) =0 for all z € S}.

Notice that S* is always a closed subspace of H.

Theorem 5.5 (Perpendicular projections). Let H be a Hilbert space
and let V C H be a closed subspace. Then
(i) H =V@®V, in the sense that each x € H can be uniquely written
asxt=1y+z, wherey €V and z € V=L,
(if) y = Py(z) is the unique point in V having minimal distance from
x, while z = Py.(z) is the unique point in V+ having minimal
distance from x.
(iii) The perpendicular projections x — y = Py(z) and z — z = Py 1 ()
are linear continuous operators, with norm < 1.

Vln p
L
7% R | AU .X

Y -

Y,y v

Figure 5.2.1. Constructing the perpendicular projections on the
subspace V and on the orthogonal subspace V+.

Proof. 1. Given z € H, we begin by showing that there exists a unique
point y € V having minimal distance from z. Let

= d(z,V) = inf ||z —y|.
@ = d@V) = inf Ja-yl
Then there exists a sequence of points (Y5 )n>1 such that limy, 00 ||z —yn|| =

a. We claim that (yn)n>1 is a Cauchy sequence. Indeed, for any two points
u,v € H one has

llw+oll® + flu = ol* = 2]Ju]® + 20|
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Applying this equality to v = x — ¥, and v = z — y,, we obtain

_ym‘|‘yn 2
— |

54)  lym —vall® = 2|z — gml® + 2l — yall® — 4 Hw

2
Since ¥2t¥r € V', we have Il:c — ¥mt¥n |l > o2 Therefore

limsup ||ym — ¥al|? < 2 limsup ||z — ym||? + 2 limsup ||z — 3y |2
m,n—00 m—o00 n—00

2
—4 liminfy noyoo ”:c _ imitn

< 202+ 202 —4a? = 0,
proving our claim.
2. Since V is closed (and hence complete), the sequence (yn)n>1 converges
to a unique limit y such that ||z — y|| = d(x, V). We claim that this point

is unique: if ||z — ¥/|| = d(z,V) for some other point 3, then the same
argument used in (5.4) yields

2
ly=y'IP = 2llz—yl? +2llo -y~ 4o - L5L|" < 207 +207 - 40,

because yif-l € V. Hence y' = y. This proves that the map z — Py (z) is
well defined.
3. We now show that Py(z) can also be characterized as the unique point
y € V such that
(5.5) r—y e Vi
Choose any vector v € V. By step 1, for A € R, the real-valued map

A= =@+ M) = e -yl + MP[lvl* + 2Re(z — y, M)

attains its unique global minimum at A = 0. Therefore, its derivative at
A = 0 must be zero. This already proves that Re(z — y, v) = 0 for every
v € V. If H is a complex Hilbert space, we can replace v with —iv and
conclude that Im(z — y, v) = Re(z — y, —tv) = 0 as well. This proves (5.5).

4. Next, we prove that the point y € V such that z —y € V' is unique.
Indeed, if 4’ € V is another point such that z —y’ € V<, then

ly—I> = w-v,y-v) = w—v,z-y)-(y—y,z—-y) = 0
because y —y' € V whilez — 3 € V+ and z —y € VL.
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5. Finally, we show that the perpendicular projection Py : H — V is a
linear operator with norm || Py|| < 1.

If y = Py(z) and y' = Py ('), then for any scalars o, ¢’ € K one has
ay+dy €V, oz + oz’ — (ay+o'y') e V4

By step 3, this suffices to conclude that Py (az + o'z’') = ay + o'y/, proving
that the projection operator Py is linear. Similarly, the operator Py, =
I — Py is linear.

Since the vectors Py (z) and Py 1 (z) =  — Py(z) are perpendicular, by
Pythagoras’ theorem we have

1Py (@)|* + lle — Pr(2)I* = ||z
This proves that ||Py|| <1 and |Py.] < 1. O

Remark 5.6. In the previous theorem, if V' # {0}, then ||Py| = 1. If
V # H, then ||Py.|| = 1.

5.3. Linear functionals on a Hilbert space

The next theorem shows that a Hilbert space can be identified with its dual.
In other words, every element € H determines a bounded linear functional
¢® : H — K defined as ¢*(y) = (y,z). Conversely, every bounded linear
functional on H is of the form y — (y,z), for some z € H.

Theorem 5.7 (Riesz representation of linear functionals). Let H be
a Hilbert space.

(i) For every xz € H, the map y — (y,z) is a continuous linear func-
tional on H.

(ii) Let y — Ay be a continuous linear functional on H. Then there
exists a unique element a € H such that Ay = (y,a) for every
yeH.

Proof. (i) Let z € H be given. By the definition of inner product, the map
@® defined as ¢*(y) = (y,z) is linear. The boundedness of this linear map
is a consequence of the Cauchy-Schwarz inequality:

#°Il = sup |(y,z)| < sup |yllz] = |l=||.
llyll<1 lyll<1
(ii) Conversely, let a linear continuous functional y — Ay be given. If
Ay =0 for all y € H, then the conclusion clearly holds with a = 0 (the zero
vector in H).
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Ker (A)

Figure 5.3.1. If Ay = (y, a) for every y, the vector a must be per-
pendicular to Ker(A4). Since [Ker(A)]* is one-dimensional, given
any nonzero vector b € [Ker(A)]t, we must have a = tb, where
the number ¢ is determined by the identity Ab = (b, tb).

Otherwise, V' = Ker(A) is a closed hyperplane. The orthogonal com-
plement V1 is a subspace of dimension one. Choose any nonzero vector
b € V1 and define kK = Ab/||b||%, a = &b. This choice yields

(5.6) 0# Ab = k(b,b) = (b,kb) = (b,a).

Given any vector y € H, we can decompose y as a sum of a vector in V' and
a vector in V1:

y = Py(y)+ab

for some o € K. By (5.6) it now follows that

Ay = A(Py(y)) + A(ab) = 0+ aAb = 0+ a(b,a)
= (PV(?J), a) + (ab)a) = (y’a)' O

Remark 5.8. Let H be a Hilbert space over the reals. By the previous
theorem, the map z — ¢® is an isometric isomorphism between H and its
dual space H* (= the space of all bounded linear functionals on H). We
can thus identify the two spaces H and H*.

If now A : H — H is a bounded linear operator, its adjoint A* : H* —
H* can be identified with an operator A* : H — H. This adjoint is charac-
terized by the identities

(z, A*y) = (Az,y) forall z,ye H.
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5.4. Gram-Schmidt orthogonalization

Let H be a Hilbert space. We say that a vector x € H is normalized if
|z|| = 1. A subset E C H is orthonormal if every vector in E has unit
norm and any two vectors in F are orthogonal to each other.

Next, consider a set S = {v;,v2,...,vn} of finitely many linearly inde-
pendent vectors. Assume that z € span{vi,...,vn}, so that

n
r = Zekvk
k=1

for some coeflicients 0. To actually compute these coefficients, we observe
that, for every 7 = 1,...,n, one must have

(z,v5) = Zek(vk,vj).
k=1

Therefore the numbers 6,,...,0, are obtained by solving the system of n
linear equations

(v1,11) (Un,v1)\ (61 (z,v1)
(5.7) E : | o= :
(vla 'Un) R (Una 7-)'r'l,) en (.’17, 'Un)
This system is much easier to solve when the matrix is diagonal, namely

(vi,v;) = 0 for ¢ # j. This happens precisely when the vectors vq,v2,...,vn
are orthogonal to each other. The explicit solution is then computed as

0. = (.’L’, ‘Uk)
k= —~.
(vK, vk)
In the special case where the set {v1, ..., v, } is orthonormal, so that (vj,v;) =
1 for every j = 1,...,n, the above formula simplifies further to
O = (.’L‘, Uk)'

The previous analysis shows that, if we have an orthonormal basis at
our disposal, computations become much easier. Given a (finite or count-
able) linearly independent set S = {v1,v2,...}, we now describe a general
procedure to construct an orthonormal set {ej, e, ...} in such a way that

E, = span{ej,...,en} = span{vi,...,vp}

for every m > 1. This will be achieved by induction.
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Gram-Schmidt orthogonalization algorithm:
(i) Start by defining e; = ”—:11-"

(ii) If e1,. .., en—1 have been constructed, let v, be the perpendicular pro-
jection of vn on the subspace En_1 = span{vi,...,vn—1} = span{ej,...,en—1}.
Then define

’Un - 'i)n
5.8 en = ——.
5 " = on =l
Observe that v, # 9, because v, ¢ span{vi,...,vn—1}. Hence e, is

well defined and has norm one. Moreover, e, is perpendicular to all vectors
€1y+..9€n—1-
Notice that the projection of v, on the subspace E,_; is computed by

n—1

I = Z('vn,ek)ek.

k=1
By (5.8), this yields the explicit formula
Un — 3 a1 (vn, ex)ek

Un — Z;II(Unaek)ekH

en—

.

Figure 5.4.1. The Gram-Schmidt orthonormalization procedure,
applied to the two vectors v, vz .

5.5. Orthonormal sets

If {e1,e2,...,en} is an orthonormal basis of R™, then every vector z € R"

can be uniquely written as a linear combination
n

T = Z(m, ex)ek -

k=1
Notice that each term (z, ex)ex represents the perpendicular projection of
the vector z into the one-dimensional subspace spanned by ey.
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In an infinite-dimensional Hilbert space H, the above finite sum should
be replaced by an infinite series. For many applications, it is important to
understand in which cases the corresponding series converges and when we
achieve the equality

(5.9) z = Z(:c, ex)ek -

k>1

Lemma 5.9 (Properties of the orthogonal subspace). Let H be a
Hilbert space. For any subset S C H, the orthogonal subspace S+ is a closed
subspace of H. Moreover, the following are equivalent:

(i) span(S) is dense in H.
(i) S+ = {0}.

Proof. 1. The fact that S1 is a subspace of H is clear. Now assume that
zn € St and z, — z as n — co. Then for every a € S we have

(z,0) = nh_)r%o(:vn,a) = 0.

Hence z € S+ as well, showing that this subspace is closed.

2. To prove the implication (i) = (ii), assume that span(S) is dense in
H and let z € S*, so that (z,a) = 0 for every a € S. Then there exists a
sequence of linear combinations, say

Nn
Tn = Zon,kan,k
k=1

with ap i € S, such that z, — z as n — oo. This implies

Ny
@) = Jim (e = Jim (2,3 fnsons)

n—ro0

Nn
= lim Ze"’k (zyank) = 0,
k=1
showing that = = 0.

3. To prove the implication (ii) = (i), let V be the closure of span(S).
If (i) fails, then V # H and there exists an element y ¢ V. Consider the
perpendicular projection Py(y). Then w = y — Py(y) is a nonzero vector
perpendicular to V. Since w € S, this is a contradiction with (ii). a

Given an orthonormal sequence, the next theorem provides the conver-
gence of the series (5.9) and characterizes its sum.
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Theorem 5.10 (Sum of an orthogonal series). Let S = {ej,ez,...}
be a (finite or countable) orthonormal set in a Hilbert space H. Let V be
the closed subspace generated by S and call Py : H — V the perpendicular
projection. Then, for every x € H, one has the Bessel inequality

(5.10) Do l@ el = IPval® < =
k>1
Moreover,
(56.11) Z(x,ek)ek = Pyz.
k>1

Proof. 1. For any n > 1, call V,, = span{ei,...,en}. Then

n

Pyz = Z(x,ek)ek,

k=1
and hence, by orthonormality,
n n n
”Panllz = (Z(xa ej)ej ’ Z(x’ ek)ek) = Z (xaej)(x’ek)(ej’ek)
j=1 k=1 k,j=1

n
= Z |(£L', ek)lz'
k=1
Since || Py, z|| < ||z|| for every n, the inequality in (5.10) is proved.

2. If the set S is finite, the identity (5.11) is clear. To cover the case where
S is countable, we first show that the sequence of partial sums

n
Tn = ) (z,en)ex
k=1

is Cauchy. Indeed, all terms in the series (5.11) are orthogonal to each other.
"For m < n, using Pythagoras’ theorem and (5.10) we obtain
n
|Zn — zm|? = Z l(z,ex)> = 0 asm,n — co.
k=m+1
Since H is complete, we thus have the convergence z, — Z for some Z which
provides the sum of the series in (5.11).

3. To complete the proof, we need to show that Z = Pyz.

Since z, € V for every n > 1 and z, — Z, it is clear that Z lies in the
closed subspace V. Moreover,

(zx—2%, ex) = nli_)nolo(a:—a:n,ek)=0
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because (x — Zn,ex) = 0 as soon as n > k. This proves that z — Z is
perpendicular to all vectors ex, and hence to every linear combination of
these vectors. Therefore,  — Z is perpendicular to every vector v € V. The
two properties Z € V and z — # € V1 together imply # = Pyx. 0O

We say that an orthonormal set S = {ej,e2,...} C H is an orthonor-
mal basis if span(S) is dense in H. In this case, the closed subspace
generated by S is V = H. Hence Pyz = z for every z € H, and (5.10)-
(5.11) yield

(612 Yl@edl? = lal?, (@ ex)er = .

k>1 k>1

5.5.1. Fourier series. As an application of the previous theory, consider
the Hilbert space of complex-valued functions L2([—m,n]; C), with inner
product

(5.13) (f,9) = f(z) 9(z) dz.
-
Within this space, the set of functions
einz
= , € Z,
en () /o n

is orthonormal. Indeed,
i eim:c eg%dm — " ei(m—n)z dm — 0 if m # n,
- - 2’/T if m=n.

We claim that the countable set S = {*"®; n € Z} is an orthonormal
basis of L2([—, 7]).

To show that § is dense, consider any function f € L?([—m,n]; C). For
any € > 0 we can find a continuous function f, : [—m, 7] — C such that

(514) ”fe - .f”L2([—1r,1r]) < g, fE(_ﬂ-) = f€(7r)‘

In turn, as shown by Example 3.8 in Chapter 3, we can find a complex
trigonometric polynomial of the form

N
p(x) = Y ope™®
k=N

such that
(5.15) | fe _p”CO([—w,w]) = MaXgpe[—m,a] |fe(z) — p(z)| < €.
Observing that

™ 1/2
1o —plls = ( / |fe<w)—p<x)l2dz) < Varlfe - pleo,



5.6. Positive definite operators 89

it is clear that f. can be approximated by trigonometric polynomials p(:)
also with respect to the L? norm. Using (5.14) together with (5.15) we
conclude that span(S) = L2([—m, 7]).

Now consider the complex trigonometric series

T —zkz

(5.16) Z o e = () = "t o

By the previous theorems, this series converges to f in L2([—, ), namely

N
F= > arpx
k=—N

This result can be restated as

= 0.
L2([~m,x])

(5.17) lim

N—-oo

Corollary 5.11. Let f € L([—m,n];C) be a complez-valued, square sum-
mable function. Defining the coeﬁ‘icients

.1 —iky
= dy,
Gk = o f (y)e Y
one has the convergence
2
]\}1_r)n°° f(:c Z cke*®| dzr = 0.

-7

5.6. Positive definite operators

A basic problem of linear algebra is to solve the system of linear equations
Ax = b,

where A is an n X n matrix and b is a vector in R™®. One condition which
guarantees the existence and uniqueness of solutions is that A be strictly
positive definite. Indeed if the inner product satisfies (Ax,x) > 0 for every
x # 0, then A must have full rank. Hence the above system of linear
equations will have a unique solution. In this section we show that this
result remains valid also in an infinite-dimensional Hilbert space.

Let H be a Hilbert space over the real numbers. We say that a linear
operator A : H — H is strictly positive definite® if there exists 3 > 0
such that

(5.18) (Au,u) > B|lu|*>  forall ue€ H.

1In the literature, operators satisfying the inequality (5.18) are usually called strictly mono-
tone. Here we prefer to call them strictly positive definite, to stress the relationship with positive
definite matrices in linear algebra.
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Theorem 5.12 (Inverse of a positive definite operator). Let H be a
real Hilbert space. Let A : H — H be a bounded linear operator which is
strictly positive definite, so that (5.18) holds. Then, for every f € H, there
exists a unique u = A~ f € H such that

(5.19) Au = f.

The inverse operator A satisfies

_ 1
(5.20) 4 < <.

=

Proof. We need to show that, under the assumption (5.18), the continuous
map A is one-to-one and onto.

1. From (5.18) it follows that

Bllul* < (Au,u) < || Au| [lu] .
Hence
(5.21) Bllull < || Au]l.

If Au =0, then u = 0, proving that Ker(A4) = {0} and A is one-to-one.

2. Next, we claim that Range(A) is closed. Consider any sequence of points
v, € Range(A), such that v, — v. We need to show that v = Au for some
u€ H.

By assumption, v, = Au, for some u, € H. Using (5. 21) we obtain
lim sup ||um —un|| < limsup - ||Aum Auy|| = limsup — ||vm—vn||
m,n—o0 m,n—>00 m,n—>00

Hence the sequence (un)n>1 is Cauchy and converges to some limit u € H.
By continuity, Au = v, proving our claim.

3. We now claim that Range(A) = H. If not, since Range(A) is closed, we
could find a nonzero vector w € [Range(A4)]+. But this would imply
ﬂ||w||2 < (Aw,w) = 0,

reaching a contradiction.

4. By the previous steps, A : H — H is a bijection, hence the equation
(5.19) has a unique solution u = A~1f. By (5.21) it follows that

lal = ol < UL foran s,
proving (5.20). O
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The previous result can also be conveniently formulated in terms of
bilinear forms.

Theorem 5.13 (Lax-Milgram). Let H be a Hilbert space over the reals
and let B : Hx H — R be a continuous bilinear functional. This means that

Blau+ b/, v] = aB[u,v]+ bB[¥/,v],
Blu, av+ W' = aBlu,v] + bB[u,?],
|Blu,v]| < Cllull|lv]l,

for some constant C and all u,u',v,v' € H, a,b € R. In addition, assume
that B is strictly positive definite, i.e., there exists a constant B > 0 such
that

Blu,u] > Bllul|? forall ueH.

Then, for every f € H, there exists a unique u € H such that

(5.22) Blu,v] = (f,v) forall ve H.
Moreover,
(5.23) lull < BN

Proof. For every fixed u € H the map v — B[u,v] is a continuous linear
functional on H. By the Riesz representation theorem, there exists a unique
vector, which we call Au € H, such that

Blu,v] = (Au,v) forall ve H.

We claim that A is a bounded, positive definite linear operator.

The linearity of A is easy to check. To prove that A is bounded we
observe that, for every u € H,

|Au|| = sup |(Au,v)| = sup |B[u,v]| < Clull.
llvll=1 llvll=1
Hence ||A|| < C.
Moreover,

(Au,u) = Blu,u] > Blul?,

proving that A is strictly positive definite.

We can now apply Theorem 5.12 and conclude that the equation Au = f
has a unique solution u = A~ f, satisfying ||u|| < 87| f||. By the definition
of A, this provides a solution to (5.22). O
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5.7. Weak convergence

Let H be a Hilbert space. We say that a sequence of points z, € H con-
verges weakly to a point € H, and write z, — z, if

(5.24) (¥, zn) = (y,2) for every y € H.

lim
n—00
If a weak limit exists, then it is necessarily unique. Indeed, assume that
Zn — z and z, — Z. Choosing y = = — Z in (5.24), one obtains

0 = nli_)IEo(w—:f:, xn)—nli_)n;o(cc—i:, z,) = (z—%, 2)—(z—%, &) = ||lz—%|°

Hence z = Z.

We recall that, if H is infinite-dimensional, then the closed unit ball
B, = {z € H; ||z| < 1} is not compact (with respect to the topology
determined by the norm). In particular, B; contains an orthonormal se-
quence {e1, ez, ...}, which does not admit any convergent subsequence. On
the other hand, replacing strong convergence by weak convergence, one can
still prove a useful compactness property.

Theorem 5.14 (Weakly convergent sequences). Let H be a Hilbert
space.

(i) Ewvery weakly convergent sequence is bounded. Namely, if z, — z,
then ||zn|| < C for some constant C and alln > 1.

(ii) Every bounded sequence of points x, € H admits a weakly conver-
gent subsequence: Tn; — x for some x € H.

Proof. 1. Every z, can be regarded as a continuous linear map, namely
y — (y,z,) from H into K (the field of reals, or of complex numbers). The
Hilbert norm of z,, coincides with the norm of z,, as a linear functional on
H, namely
lznll = sup |(y,2n)l.
llyll<1

By assumption, for every y € H, the set {(y,z,); n > 1} is bounded.
Hence by Remark 4.2 in Chapter 4 (the uniform boundedness principle), the
countable set of linear functionals {z,; n > 1} is uniformly bounded. This
establishes (i).

2. To prove (ii), consider the vector space X = span{z,; n > 1}, i.e., the
closure of the set of all linear combinations of the points z1,zs2,.... We
observe that X is separable. Indeed, consider the set of all finite linear
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combinations
N
> biz;
i=1
with N > 1 and 6,,...,0y rational. This is a countable set dense in X.

Since X C H is itself a Hilbert space, by Riesz’s theorem each z, can
be identified with a bounded linear functional on X. By Theorem 2.34
in Chapter 2 (Banach-Alaoglu), the sequence (z,)n,>1 admits a weak-star
convergent subsequence, say (xnj )j>1. This means that
lim (y,2;) = ¢(y) foral yeX,

J—00

for some bounded linear functional ¢ : X — K.

3. By Riesz’s representation theorem there exists a unique element x € X
such that p(y) = (y,z) for all y € X. We conclude the proof by showing that
the subsequence z,; converges weakly to z in the entire Hilbert space H.
Indeed, consider any y € H. Denoting by Px : H — X the perpendicular
projection, one has

lim (y,zn;) = lim (Pxy,zs;) = (v,2). ]
j—o0 j—oo

We conclude this section by showing that a compact operator maps
weakly convergent sequences into strongly convergent ones.

Theorem 5.15. In a Hilbert space H, consider a weakly convergent sequence
Tn = z. Let A : H — H be a compact operator. Then one has the strong
convergence

(5.25) |Azp, — Az|| — O.

Proof. To prove (5.25), it suffices to show that, from any subsequence
(n)ner, one can extract a further subsequence (5 )ner,, with Iz C I3, such
that
lim ||[Az, — Az| = 0.
n—o0,n€ly

Let a subsequence (z,)ner, be given. Since this sequence is weakly
convergent, by the previous theorem it is globally bounded, say ||z,|| < C
for every n € I .

Since A is compact, from this bounded sequence we can extract a further
subsequence (Zn)ner,, with Iy C Ih, such that the images converge strongly:

lim ||Az,—y| = 0

n—o0,n€ly

for some y € H. It remains to show that y = Az.
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Calling A* the adjoint operator, one has

(v, Azp —Az) = (A*v, zp—2) - 0 forall ve H,

proving the weak convergence Az, — Az. Since the weak limit is unique,
this implies Az = y, completing the proof. O

aladslely
/

OOPOOOO00000m
orNwbLOINDLO
/

oL,
/

alalalaly

O PPPOO0000m
omNWbhNmids

O Ll
~

ili!
|

poooooo000m
O=NWLNONOWVO

2.0 2.5 3.0 35

o
o

o .
al=
-

°

-

n

Figure 5.7.1. A plot of the functions f,(z) = sin®nz, for n =

1,5,25. As n — oo, the functions f, do not converge pointwise,
or in the L2 norm. However, we have the weak convergence f, —
f = 1/2, because the average value of f, on every interval [a, b]
converges to the constant 1/2.

Example 5.16. In the space L2([0, 71]), consider the sequence of functions
fn(z) = sin® nz (see Figure 5.7.1). We claim that this sequence converges
weakly to the constant function f(z) = 1/2. Indeed, consider any g €
L2([0, 7]). We need to prove that

(5.26)

™

lim g(z) sin?nzdr = / Md:z:
0

n—roo 0 2

In the special case where

(5.27)

_ 1 if z € [0,8],
9(z) = {o ifze]b,w],

the result is clear, because

b . .
lim sin?nzdz = lim (9__sm2nb) = b = / Q(ﬁ)_dx
0

n—roo 0 n—o0

2 4n 2
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By linearity, (5.26) remains true for every linear combination of functions of
the form (5.27), i.e., for every piecewise constant function.

Now consider any function g € L2. Given any € > 0, one can find a
piecewise constant function § such that ||g — g||p2 < €. This yields

/0 " 4(a) <sm na — -) do
— /0 " (@) <sin2n:c— %) dz + /0 "5(2) — 9(@)] - <sm ne — %) dz

= An+Bn.

Since g is piecewise constant, we already know that A, — 0 as n — co. On
the other hand, by Cauchy’s inequality,

1/2
< |lg — . 2 I Y
|Bn] < |1 — gllL2 (/0 <sm nx 2) da:) < g (4) .

Since € can be taken arbitrarily small, this proves the weak convergence
fn—f.

Notice that strong convergence does not hold. Indeed,

) T, 1\?2 1
Jim ||fn = fllge = ,}l,“&o/o <Sm "‘”‘5) dz = g

Next, consider the compact operator A from L2([0,7]) into itself defined
by

(Ag)(z) = /0 " o) dy.

This integral operator maps the sequence f,,(x) = sin?

nz into the sequence

x sin2nz

(Afp)(z) = /Omsinznydy =50

Moreover, (Af)(z) = z/2. Observe that Af, converges to Af uniformly on
[0, 7]. In particular, we have the strong convergence |Afn—Af|r2 — 0. This
provides an illustration of Theorem 5.15, stating that a compact operator
maps weakly convergent sequences into strongly convergent ones.

5.8. Problems

1. Let H be a Hilbert space. Using the definition of inner product, prove the two
identities in (5.1). Moreover, prove Pythagoras’ theorem: if two vectors z,y € H
are orthogonal to each other, then ||z||? + [|y[? = ||z + yl|2.
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2. Let H be a vector space with inner product (:,-). Prove that the inner product
is a continuous map from the product space H x H into K. In other words, if
zr — = and yi — y in the norm (5.2), then the sequence of inner products (zk, yx)
converges to (z,y). On H x H, consider the norm ||(z,)|| = ([|lz||> + llv]*)/2.

3. Let X be a Banach space over the reals, with norm | - ||. Does there exist an
inner product (+,-) on X such that ||z|| = 1/(z,z) for every z € X? To answer,
follow the two steps below.

(i) Let H be a real Hilbert space. Prove that its norm ||z|| = 1/(z, z) satisfies
the parallelogram identity

(5.28) lz+yll>+llz—yl> = 2z +2[lyl|? forall z,ye X.

(ii) Conversely, let X be a Banach space over the real numbers, whose norm
satisfies the parallelogram identity (5.28). Show that

=1 2 2 2) _ 1 2 2
(@9) = 5 (le+yl® — lall® ~ Iwl?) = 7 (ll=+9l* - Iz - vI?)

is an inner product on X, which yields exactly the same norm ||-||. Hints:
To prove that (z + z',y) = (z,y) + (¢/, y), first establish the identity

1 1
la+a'+yl? = ol + a7+ o+yl + o' +o1P - 5 le+y—='|P - 512’ +y—al.

To prove that (Az,y) = A(z,y), first show that this identity holds when
A is an integer, then for A rational, and finally by continuity for every
AeR

4. Using the above problem, prove that:

(i) On the vector space R?, for all p > 1 with p # 2, the norm ||x|, = (|z1|P+
|z2|?)Y/? is not generated by an inner product.

(i) On the space of real-valued continuous functions C([0, 1]), the norm || f|| =
maXze[o,1)| f(z)| is not generated by an inner product.

5. Consider the Hilbert space H = L2%([-1,1]), with inner product (f,g) =
f_ll fgdz. Show that the sequence of polynomials {1, z,z2,23,...} is linearly inde-
pendent, and its span is dense in H. Applying the Gram-Schmidt orthogonalization
procedure, construct an orthonormal sequence of polynomials {po,p1,D2,P3,- ..}
(proportional to the Legendre polynomials). Explicitly compute the first three
polynomials.

6. Let (en)n>1 be an orthonormal sequence in a Hilbert space H. Prove the
weak convergence e, — 0. In other words show that, for every z € H, one has

lim, 00 (2, €) = 0.

7. Let H be an infinite-dimensional Hilbert space and let any vector x € H be
given, with ||z|| < 1. Construct a sequence of vectors z, with ||z,| = 1 for every
n > 1, such that the weak convergence holds: z,, — z.
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8. Let (vk)k>1 be a sequence of unit vectors in a real Hilbert space H. Let (o )x>1
be a sequence of real numbers.

(i) If >pe; lak] < oo, prove that the series ) po ; vk converges.

(ii) Assume that the sequence (vi)x>1 is orthonormal. In this case, prove
that the series o, kv converges if and only if Y po ;| |ok|? < oo.

9. Let ¢ : R® — R™ be a smooth bijection. Assume that the determinant of
the Jacobian matrix satisfies det D¢(z) = 1 for all z € R™, so that ¢ is volume-
preserving. On the space L?(R™) consider the linear operator (Af)(z) = f(#(z)).
Prove that

Al = 1, A* = AL

Observe that A can be regarded as a rotation in the space L2(R™), because the
adjoint operator coincides with the inverse.

10. Consider the Hilbert space £2 of all sequences of real numbers x = (z;,Zs, .. .)
such that > 2, |zk|> < oo, with inner product (x,y) = Y po, Zxykr. Define the
operator A : H — H by setting A(z1,22,23,...) = (Z2,23,24,...). Compute the
adjoint operator A*. Are the operators A, A* surjective? One-to-one?

11. Let S be a convex set. We say that = € S is an extreme point of S if z cannot
be expressed as a convex combination of distinct points of S. In other words,

z # 0z + (1-0)z; whenever 0 < 0 < 1, 1,22 €S, T, # To.
Prove the following.

(i) If S is the closed unit ball in a Hilbert space H, then every point z € S
with ||z]] = 1 is an extreme point of S. This is true, in particular, for the
space H = L2([0, 1)).

(ii) On the other hand, consider the unit ball in L([0, 1]), i.e.,

B = {f:01R; /Ollf(t)ldt < 1}.

Prove that B does not contain any extreme point.

12. Let (zn)n>1 be a sequence of points in a Hilbert space H such that C =
liminf, o ||Zn|] < 00. Prove that there exists a weakly convergent subsequence
Tn; — z, for some point = € H satisfying ||z|| < C.

13. Let H be an infinite-dimensional, separable Hilbert space over the reals, and let
22 be the space of all sequences of real numbers a = (a1, az,...) such that ||alj,z =

(2, ai)l/ ? < 0. Construct a linear bijection A : H + £2 which preserves
distances, i.e., such that

|Az|lez = ||zlla forall z€ H.
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14. Given n vectors vy,vs,...,V, in a real Hilbert space H, define their Gram
determinant as the determinant of the n X n symmetric matrix in (5.7):
(v,v1) -+ (v, 1)
G(vi,...,vm) = det . :
(Uljv‘n) Tt (’Un,'Un)
(i) Using (5.7) with z = 0, prove that the vectors v,...,v, are linearly
independent if and only if G(vy,...,v,) #0.
(ii) Assuming that the vectors vy,...,v, are linearly independent, consider

the subspace V = span{vi,...,v,}. For any vector z € H, show that the
distance of z to V is

d(z,V) = |- Py(z)ll = \/

(iii) As shown in Figure 5.8.1, prove that the n-dimensional volume of the
parallelepiped with edges v, ..., v, can be expressed as

[lval -d('uz; span{'vl}) -d(v3; span{vl,vz}) d(vn; span{vl,...,vn_l}).

Using (ii), show that the volume of this parallelepiped is \/G(v1, v, - - . , Un).

G(z,v1,v2,...,Vp)
G('Ul,’Uz, . ,’Un) ’

/A

v, 3
h,
- A4
v V.

1 1

Figure 5.8.1. Computing the area of a parallelogram and the
volume of a parallelepiped. Here hy = d(v2, span{vi}), while
hs = d(vs , span{vy,v2}).

15. Let f € L%(R). Prove that there exists a unique even? function gy such that

If = goll = perain o I —gllze

Explicitly determine the function gg.

16. Let K € B(X; H) be a bounded linear operator from a Banach space X into a
Hilbert space H. Prove that the following conditions are equivalent.

(i) K is compact.
(if) For every € > 0 there exists an operator K. : X + H with finite-
dimensional range, such that |[K, — K|| < €.

2We recall that g is an even function if g(z) = g(—z) for all z € R.
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17. Let {un}n>1 and {”ﬂ}n>1 be two orthonormal sets in a Hilbert space H.
Assume that -

oo
> llun — vl < 1.
n=1
Show that if one set is complete, then the other set is also complete.

18. Let {un; n > 1} be a countable set of linearly independent unit vectors in a
Hilbert space H. Consider the vector v =Y oo 2 "u,.

(i) Assuming that all vectors u,, are mutually orthogonal, prove that the set
S = {v,u1,u2,us,...} is linearly independent.

(ii) Show by an example that, if the vectors u,, are not mutually orthogonal,
the above set S can be linearly dependent.

19. Given a sequence (Z,)n>1 in a Hilbert space H, show that the strong conver-
gence ||z, — z|| = 0 holds if and only if

|znll = lz]l and  z, — z (weak convergence).

20. Let @ = [0,1] x [0, 1] be the unit square. Within the space L%(Q), consider the
subspace of all functions depending only on the variable y:

U = {u € L%(Q); u(z,y) = o(y) for some function ¢ : [0,1] = R
and a.e. (z,y) € Q} .

(i) Find the orthogonal subspace W = U+.
(ii) Given any f € L%(Q), determine the function g € U such that
If = gllLa@y = min |If —ullezq) -
21. Let H be a Hilbert space, and let  C H be a closed, convex subset.

i) Prove that, for any z € H, there exists a unique point y € Q such that
y
lly—z|| = minyeq ||lw—z||. This point of minimum distance y = mq(z)
is called the perpendicular projection of z into Q.

(ii) Show that y = mq(z) if and only if (w—y, y —z) >0 forallw € Q.
22. On the Hilbert space H = L2(R), consider the subset
Q= {f; f(z) < e fora.e.zeR}.

(i) Prove that Q is a closed, convex subset of H.
(if) Prove that the perpendicular projection 7 : H + (2 is the map defined as

(rf)(z) = min{f(z), e*}.
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23. On the Hilbert space H = L?(R), consider the linear operator A : H — H
defined by (Af)(z) = f(|z]).
(i) Find the operator norm of A.
(ii) Find the kernel and the range of A.
(iii) Compute the adjoint operator A*.

24. On the Hilbert space H = L2([0, o), consider the operator (Af)(z) = f(e).

(i) Compute the norm of linear operator A.
(i) Find the kernel and the range of A.
(iii) Compute the adjoint operator A*.

25. Consider a bounded sequence of functions f, € L%([0,T]). As n — oo, show
that the weak convergence f, — f holds if and only if

b
lim / fa(z)dz = /b f(z)dz  for every b e [0,T].
0 0

n—0o0

26. On the space L?([0, 1]), consider the two sequences of functions

fa(z) = Vn-cosnz,  fao(z) = { n¥%  if zel0,n7Y],

0 if z>n"t.

(i) In both cases, prove that lim, fé’ fn(z)dz = 0 for every b € [0,1].
(ii) By taking linear combinations, show that lim, fol fngdz =0 for every
piecewise constant function g.
(iii) Is it true that f, =07

27. Given a sequence (Zn)n>1 in a Hilbert space H, prove that the following
statements are equivalent.
(i) The weak convergence holds: z, — z.

(ii) The sequence (z,) is bounded and (y,z,) — (y,z) for all y in a subset
S C H whose closure has nonempty interior.

28. Let 2 C R be an open set. Prove that a sequence of functions f, € L3(Q)
converges weakly to f if and only if there exists a constant C such that || fn||pz < C
for every n > 1 and moreover

li_)m/fnda: = /fdz:
n—=o0 Jo Q

for every box Q = [a1,b1] X [ag,b2] X -+ X [an,bn]| entirely contained in .

29. In a real Hilbert space H, consider a weakly convergent sequence: z, — y.
Let S = co{z,; n > 1} be the smallest closed convex set containing all points z.
Prove that y € S.
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Chapter 6

Compact Operators on
a Hilbert Space

For a linear operator A : R™ — R" in a finite-dimensional space, several
results are known concerning its kernel, range, eigenvalues, and eigenvectors.
In particular:

(i) A is one-to-one if and only if A is onto. Indeed, the subspaces
Ker(A) and [Range(A)]* have the same dimension.

(if) If A is symmetric, then its eigenvalues are real. Moreover, the space
R™ admits an orthonormal basis consisting of eigenvectors of A.

In this chapter we shall prove similar results, valid for operators A on an
infinite-dimensional Hilbert space H. Indeed, (i) remains valid for operators
of the form A = I — K, where I is the identity and K is a compact operator.
Moreover, the statements in (ii) can be extended to any compact, selfadjoint
operator A : H — H.

6.1. Fredholm theory

Let H be a Hilbert space. We recall that a bounded linear operator K :
H — H is compact if for every bounded sequence of points u, € H one can
extract a subsequence (uy;);>1 such that the images converge: Kun; — v
for some v € H.

The next theorem describes various relations between the kernel and
range of an operator having the form I — K and of its adjoint.

101
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Theorem 6.1 (Fredholm). Let H be a Hilbert space over the reals and let
K : H— H be a compact linear operator. Then
(i) Ker(I — K) is finite-dimensional;
(ii) Range(I — K) is closed;
(iii) Range(] — K) = Ker(I — K*)*;
(iv) Ker(I — K) = {0} if and only if Range(I — K) = H;
(v) Ker(I — K) and Ker(I — K*) have the same dimension.

Proof. 1. If the kernel of (I — K) is infinite-dimensional, one can find
an orthonormal sequence (ep)n>1 contained in Ker(I — K). In this case
Ke, = e, for every n. Moreover, by Pithagoras’ theorem, for m # n one
has
llem — eall® = llemll® + lleal® = 2.

Therefore | K en —Ken|| = ||lem—en|| = V2 for every m # n. Hence from the
sequence (Kepn)n>1 One cannot extract any convergent subsequence. This
contradiction establishes (i).

2. Toward the proof of (ii), we first show that there exists 8 > 0 such that
(6.1) lu— Ku|| > Bllull for all u € Ker(I — K)*.

Indeed, if (6.1) fails, we could find a sequence of points u, € Ker(I — K)*
such that ||us|| =1 and ||un, — Ku,|| < 1/n.

Since the sequence (un)n>1 is bounded, by extracting a subsequence and
relabeling, we can assume that this sequence converges weakly, say u, — u
for some u € H.

Since K is a compact operator, by Theorem 5.15 this implies the strong
convergence Ku, — Ku. We now have
|lun — Kul|| < ||un — Kup|| + ||Kun — Kul| - 0 asn — oo.
This yields the strong convergence u, — Ku. Recalling the weak conver-
gence u, — u, we conclude that v = Ku and u,, — u strongly.
By construction, we now have

. F _ _ 1
lull = lim flun|| = 1, & Ker(I - K),

while, at the same time, u — Ku = 0, hence u € Ker(I — K). We thus
reached a contradiction, proving (6.1).

3. We now prove that Range(/ — K) is closed. Consider a sequence of points
vy, € Range(I — K), with v, — v as n — 0o. We need to find some u such
that v = v — Ku. By assumption, for each n > 1, there exists u, such that
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Up, = Up — Ku,. Notice that, if u, — u for some v € H, then by continuity
we could immediately conclude that v = w — Ku. In general, however, there
is no guarantee that the sequence (u,)n>1 converges.

To overcome this difficulty, let 4, be the perpendicular projection of u,
on Ker(I — K), and let z, = up, — %n. These definitions yield

Zn = Up — Un EKer(I—K)J', Up = Un—Kup = 2o, — Kz .
Using (6.1), for every pair of indices m,n we obtain
lvm — vnll > Bllzm — znll-

Since the sequence (v, )n>1 is Cauchy, this proves that the sequence (zn)n>1
is a Cauchy sequence as well. Therefore there exists uw € H such that z, — u,
and hence

vu—Ku = lim z, — Kz, = lim v, = v.
n—00 n—00

Ker (I—K)L

Ker (I-K)

Figure 6.1.1. Left: by choosing z, € Ker(I — K) we achieve
the inequality B||2n|| < ||vn||, used in the proof of (ii). Right: if
I — K is one-to-one but not onto, the sequence of subspaces H,, =
(I — K)™(H) is strictly decreasing. This leads to a contradiction,
used in the proof of (iv).

4. Since Range(I — K) and Ker(I — K*)* are closed subspaces, the assertion
(iii) holds if and only if
(6.2) Range(I — K)* = Ker(I — K*).
This is proved by observing that the following statements are all equivalent:
z € Ker(I — K*),
(I-K*z = 0,
(y, I—K*z) =0 forallyeH,
(I-K)yy,z) =0 foralyeH,
z € Range(J/ — K)*.
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5. Toward a proof of (iv), assume that Ker(I — K) = {0}, so that the
operator I — K is one-to-one. If Range(I — K) # H, we shall derive a
contradiction.

Indeed, assume that this range is not the entire space: H; = (I —
K)(H) # H. By (ii), H; is a closed subspace of H. Since I — K is one-to-
one, we must have

Hy, = (I-K)(H1) C H;.
We can continue this process by induction: for every n, we set
H,=(I-K)"(H).
By induction, we see that each H, is a closed subspace of H, and
H>H  DHyD:--.

For each n > 1 we now choose a vector e, € H, N H-; with [le,| = 1.
Observe that, if m < n, then

Key, — Ken = —(em — Kem) + (en — Ken) + (em —€n) = em+ 2m

with 2z, = —(em — Kem) + (en — Kep) —en € Hpy1.
Since em € Hy. 1, by Pythagoras’ theorem this implies

|[Kem — Kenll 2 lemll = 1.

Therefore, the sequence (Ke,)n>1 cannot have any strongly convergent sub-
sequence, contradicting the compactness of K.

6. To prove the converse implication in (iv), we use a duality argument.
Assume that Range(] — K) = H. By Theorem 4.8, Ker(I — K*) =
Range(I — K)* = HY = {0}. Since K* is compact, by the previous
step we have Range(I — K*) = H. Using again Theorem 4.8, we obtain
Ker(I — K) = Range(I — K*)* = H' = {0}, as claimed.

7. Toward a proof of (v), we first show that the dimension of Ker(I — K) is
greater than or equal to the dimension of Range(I — K)*. Indeed, suppose
on the contrary that

(6.3) dim Ker(I — K) < dim Range(Il — K)*.

Then there exists a linear map A : Ker(I — K) + Range(I — K)' which
is one-to-one but not onto. We extend A to a linear map A : H —
Range(I — K)* defined on the whole space H, by requiring that Au = 0 if
u € Ker(I — K)'. Since the range of A is finite-dimensional, the operator
A is compact, and so is K + A.
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We claim that Ker(I — (K + A)) = {0}. Indeed, consider any vector
u € H and write

u=uy+uz, u €Ker(I—-K), wup€Ker(I-K)*

Then
(6.4)
(I-K—A)(u1+ug) = (I-K)ug—Au; € Range(I — K)@®Range(I - K)*.

Since (I — K)ug is orthogonal to Au;, the sum (I — K)ug + Au; can vanish
only if (I — K)uz = 0 and Au; = 0. Recalling that the operator I — K is
one-to-one on Ker(I — K)* and A is one-to-one on Ker(I — K), we conclude
that u; = ug = 0.

Applying (iv) to the compact operator K + A, we obtain Range(I —
(K + A)) = H. However, this is impossible: by construction, there exists a
vector v € Range(I — K)* with v ¢ Range(A). By (6.4), the equation

u—Ku—Au = v

has no solution. This contradiction shows that (6.3) cannot hold.

8. Recalling that Range(I — K*)* = Ker(I — K), from the previous step
we deduce that

dimKer(I — K*) > dimRange(I — K*)* = dimKer(I — K).
Interchanging the roles of K and K* we obtain the opposite inequality. O

Remark 6.2. When K is a compact operator, the above theorem provides
information about the existence and uniqueness of solutions to the linear
equation

(6.5) u—Ku = f.
Namely, two cases can arise.

CASE 1: Ker(I — K) = {0}. Then the operator I — K is one-to-one and
onto. For every f € H the equation (6.5) has exactly one solution.

CASE 2: Ker(I—K) # {0}. This means that the homogeneous equation
u — Ku = 0 has a nontrivial solution. In this case, the equation (6.5) has
solutions if and only if f € Ker(I — K*)*, i.e., if and only if

(6.6) (fy,u) = 0  for every u € H such that u — K*u =0.

The above dichotomy is known as the Fredholm alternative.
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6.2. Spectrum of a compact operator

Let H be a Hilbert space over the reals, and let A : H — H be a bounded
linear operator.

e The resolvent set of A, denoted as p(A), is the set of numbers n € R
such that nI — A is a bijection (i.e., one-to-one and onto). Notice that in
this case, by the open mapping theorem, the inverse operator (pI — A)~1 is
continuous.

e The complement of the resolvent set: o(A) = R\ p(A) is called the
spectrum of A.

e The point spectrum of A, denoted as op(A), is the set of numbers
n € R such that nI — A is not one-to-one. Equivalently, n € op(A) if there
exists a nonzero vector w € H such that

Aw = nw.

In this case, 7 is called an eigenvalue of A and w is an associated eigen-
vector.

e The essential spectrum of A, denoted as g.(A) = o(A) \ op(A), is
the set of numbers 7 € R such that nI — A is one-to-one but not onto.

Theorem 6.3 (Spectrum of a compact operator). Let H be an infinite-
dimensional Hilbert space, and let K : H — H be a compact linear operator.
Then

(i) 0 € o(K).
(i) o(K) = op(K) U {0}.
(iii) Either op(K) is finite, or else op(K) = {Ax; k > 1}, where the
eigenvalues satisfy limg_00 A = 0.

Proof. 1. To prove (i) we argue by contradiction. If 0 ¢ o(K), then K
has a continuous inverse K~! : H — H. We thus have ] = K o K1,
Since the composition of a continuous operator with a compact operator is
compact, this implies that the identity is a compact operator. But this is
false, because H is an infinite-dimensional space and the closed unit ball in
H is not compact.

2. To prove (ii), assume that A € o(K), with A # 0. If Ker(\] — K) = {0},
the Fredholm alternative would imply Range(A] — K) = H. By the open
mapping theorem, (A — K) would have a bounded inverse, against the
assumptions. This contradiction proves that A € op(K).
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3. To prove (iii), assume that (A)n>1 is a sequence of distinct eigenvalues
of K, with A\, = A\. We claim that A\ = 0.

Indeed, since A, € op(K), for each n > 1 there exists an eigenvector w,
such that Kw, = \w,. Call H, = span{wi,...,w,}. Since eigenvectors
corresponding to distinct eigenvalues are linearly independent, H, C Hp41.

Observe that, for every n > 2, one has (K — \,I)H, C H,_;. For each
n we can thus choose an element e, € H, N H-_; with |len|| = 1. If m < n,
then

and e, € H,, C H,_1 while e, € H ~ ;. Hence

|Ken — Ken|| = ”(Ken — Men) — (Kem — Amem) + Anen — )\mem“
> [[Anenll = |An].
Therefore
liminf ||Ke, — Ken| > lim |\ = |)].
m,n—>00 n—00
If |A\| > 0, then the sequence (Ke,)n>1 cannot have any convergent subse-
quence, contradicting the assumption that K is compact. O

6.3. Selfadjoint operators
Let A : H — H be a bounded linear operator on a real Hilbert space H. We

say that A is symmetric if
(Ax,y) = (x, Ay) for all x,y € H.
Notice that this is equivalent to saying that A is selfadjoint.

Example 6.4. Let A = (a;5)i j=1,.,n be a symmetric n X n matrix. Then
A determines a symmetric linear operator x — Ax from R™ into R™. It also
determines the quadratic form

x = (x, Ax) Z Qij TiTj .
i,j=1
The quantities
m = |n|1h} (x, Ax), M = maxy=; (X, Ax)
X|=

provide the smallest and the largest eigenvalue of A, respectively.

The theory of symmetric linear operators on a Hilbert space extends
many well-known properties of symmetric matrices to an infinite-dimensional
setting.
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Lemma 6.5 (Bounds on the spectrum of a symmetric operator).
Let A : H — H be a bounded linear selfadjoint operator on a real Hilbert
space H. Define the upper and lower bounds

inf Au,u), M = su Ay, u).
u€H, |lul|=1 ( ) u€H, Iﬁtll=1 ( )

Then

(i) The spectrum o(A) is contained in the interval [m, M].
(if) m, M € a(A).
(iii) [|A|| = max{—m, M}.

Proof. 1. Let n > M. Then
(nu—Au, w) > (n— M)|u|? for all w € H.

By the Lax-Milgram theorem, the linear continuous operator n/ — A is one-
to-one and onto. By the open mapping theorem, it has a continuous inverse.
This proves that every n > M is in the resolvent set of A. Similarly, replacing
A with —A, we see that every n < m lies in the resolvent set. This proves

(i).

2. From now on, to fix the ideas, we assume |m| < M. The opposite case,
where M < —m, can be handled by entirely similar arguments, replacing A
by —A.
For every u,v € H we have
4(Au,v) = (A(u+v),u+v)— (A(u—v), u—0)
M (Jlu+ ]2 + ffu = o)
2M ([[ufl? + |lv]?).

If Au # 0, setting v = (J|u||/||Au||)Au we obtain
2lull lAull = 2(Au,v) < M(Jlull® + lv]?) = 2M [[u]l®.

IA

Therefore
(6.7) |Aul| < M]||ul| forallue H.

Indeed, (6.7) trivially holds also if Au = 0.

Since ||A|| > supyy=1(Au,u) = M, from (6.7) it follows that ||A]| = M,
proving (iii).
3. Next, we claim that M € g(A). Choose a sequence (un)n>1 With

(Aun,un) - M, lun|| =1 for all n.
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Then
| Avr, — Mun”2 = ”Aun”2 2M (Atin, un) + M2||un||2
< 2M? — 2M (Aup,u,) — 0.
Therefore the operator A — M I cannot have a bounded inverse. O

According to a classical theorem in linear algebra, every symmetric n xn
matrix A can be reduced to diagonal form by an orthogonal transformation.
This can be achieved by choosing an orthonormal basis of R™ consisting
of eigenvectors of A. The following theorem shows that the result remains
valid for compact symmetric operators.

Theorem 6.6 (Hilbert-Schmidt; eigenvectors of a compact symmet-
ric operator). Let H be a separable real Hilbert space, and let K : H — H
be a compact symmetric linear operator. Then there exists a countable or-
thonormal basis of H consisting of eigenvectors of K.

Proof. 1. If H = R", this is a classical result in linear algebra. We thus
assume that H is infinite-dimensional. Let 79 = 0 and let {1, 72,...} be
the set of all nonzero eigenvalues of K. Consider the eigenspaces

Hy = Ker(K), H; =Ker(K —mI), Hy = Ker(K —nl),
Observe that 0 < dim(Hp) < oo, while 0 < dim(Hj) < oo for every k > 1.

2. We claim that, for m # n, the subspaces H,, and H,, are orthogonal.
Indeed, assume u € Hy,, v € H,. Then

Mm(u,v) = (Ku,v) = (u,Kv) = n,(u,v).
Since 7, # n, this implies (u,v) =0

3. Next, we show that the subspaces Hy generate the entire space H. More
precisely, consider the set of all linear combinations

N
H = {Zakuk; N > 1, ug € H, ag ER}.
k=1
We claim that
(6.8) H' C Ker(K) = Hp.

Indeed, K(H) C H. Moreover if u € H' and v € H, then Kv € H and
hence

(Ku,v) = (u,Kv) =
This shows that K(HL) C H*.
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Let K be the restriction of K to the subspace HL. Clearly K is a
compact, symmetric operator. By Lemma 6.5 we have

IK| = sup |(Ku,u)| = M.
u€HL, ||u||=1

If M # 0, then by the lemma either A = M or A = —M is in the spectrum
of K. In this case, since Ki is compact, A is in the point spectrum, and there
exists an eigenvector w € H H' such that

Kw = Kw = \w.

But this is impossible, because all eigenvectors of K corresponding to a
nonzero eigenvalue are already contained in the union of the subspaces Hy,
k > 1. We thus conclude that || K| = 0, proving (6.8).

In turn, (6.8) yields
H* C Hf nHy = {0},

proving that H is dense in H.

4. For each k > 1, the finite-dimensional subspace H}, admits an orthonor-
mal basis By = {ex,1, €x2, .- ek’N(k)}. Moreover, since H is separable,
the closed subspace Hy = Ker(K) admits a countable orthonormal basis
By = {e0,1, €02, -..}. Hence the union B = |J;5o B is an orthonormal
basis of H. - O

Remark 6.7. Let {w1,ws,...} be an orthonormal basis of a real Hilbert
space H, consisting of eigenvectors of a linear, compact, selfadjoint operator
K. Let A, Ag,... be the corresponding eigenvalues. For a given f € H,
consider the equation

(6.9) u—Ku = f.
If 1 ¢ o(K), then (6.9) admits a unique solution. Writing

(oo} (oo}
= > ckw, f= bews,

this solution can be computed as

oo [0 e]
b
(6.10) u = —* _ wy = Z (W) w
Remark 6.8. Given a countable set S = {u1,us,...} in a Banach space X
over the reals, a basic problem is to decide whether span(.S) is dense on X.
Positive answers can be provided in two important cases.
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(I) X =C(FE) is the space of all continuous real-valued functions on
a compact metric space E. In this case, if span(S) is an algebra
that contains the constant functions and separates points, then the
Stone-Weierstrass theorem yields span(S) = X.

(II) X is a separable Hilbert space, and there exists a compact selfad-
joint operator A : X +— X such that
(i) span(:S) contains all eigenvectors of A, and
(ii) span(S) contains the kernel of A.
In this case, the Hilbert-Schmidt theorem yields span(S) = X.

6.4. Problems

1. (i) Find two bounded linear operators Aj, Ay from L2([0,00[) into itself such
that Aj o A; = I (the identity operator), but Ap o Aj # I.

(ii) Let H be a real Hilbert space, and let A, K : H — H be bounded linear
operators, with K compact. Show that in this case

AI-K)=1 ifandonlyif (I-K)A=1I.

2. On the Hilbert space L2([0, 00[), consider the linear operator defined by
(Af)@) = 2(@+1), z>0.

(i) Is A a bounded operator? Is it compact?
(ii) Explicitly determine the adjoint operator A*.
(iii) Describe Ker(A) and Ker(A*).

3. Let H be a real Hilbert space, and let A : H — H be a bounded linear operator,
with norm ||A|| = M. Give a direct proof that o(A) C [-M, M].

4. On the Hilbert space H = L?([0, 1]), consider the linear operator

1
(6.11) (Af)(@) = /0 K(,y) fw)dy,

where K : [0,1] x [0,1] — R is a continuous map, satisfying
(6.12) K(z,y) = K(y,z), forallz,y € [0,1].

(i) Prove that A is a compact selfadjoint linear operator.

(ii) As a special case, note that the assumption (6.12) is satisfied by the
integral kernel

K(z,y) = { (1-z)y ify<z<1.
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Show that, when f is continuous, the function u(z) = (Af)(z) provides a
solution to the boundary value problem

v'(z) + f(z) = 0, u(0) = u(l) = 0.

5. On the Hilbert space H = L2([0,]), consider the multiplication operator
(Af)(z) = f(z) - sinz.

(i) Check whether A is selfadjoint.

(ii) Compute the operator norm ||A|| and check whether ||A| € op(A).

(iii) Is A compact?

6. On the space L2([0, 1]), consider the integral operator (Au)(t) = fot u(s) ds.

(i) Prove that for every u € L? the function Au is Hélder continuous, namely
Au € C%V/2([0,1)).

(if) Prove that the operator A is compact.
(iii) Compute the adjoint operator A*.
(iv) Given a function g € L2, does the equation u — Ku = g have a unique

solution? Assuming that g is continuously differentiable, write the ODE
satisfied by this solution.

7. Asin Remark 6.7, let {w1, Wz, ...} be an orthonormal basis of the Hilbert space
H, consisting of eigenvectors of the linear, compact, selfadjoint operator K. Assume
that 1 € o(K). Give a necessary and sufficient condition for the equation (6.9) to
have solutions. Write a formula, similar to (6.10), describing all such solutions.

8. Let A, B be continuous, selfadjoint linear operators on a Hilbert space H. Prove
that the composition AB is selfadjoint if and only if AB = BA.

9. Let A : H — H be a bounded linear operator. Prove that the following are
equivalent.

(i) A is compact.

(ii) limp—oo AV, = 0 for every orthonormal sequence (v,)n>1 of vectors in

H.

On the other hand, let H be a separable Hilbert space with orthonormal basis
{e1,ez,...}. Show that there exists a bounded linear operator A € B(H) which
satisfies lim,,_,, Ae, = 0 but is not compact.

10. Let K be a compact linear operator on the Hilbert space H. Prove that, for
every closed subspace V C H, the image (I —K)(V) = {z— Kz ; = € V} is a closed
subspace of H.



6.4. Problems 113

11. In the setting of Remark 6.7, consider the linear ODE on the Hilbert space H:

(6.1) Qu) = Ku@),  w0) = f,
for some f € H. Write the solution in the form

oo
(6.14) ut) = S cx(t)w,

k=1

computing the time-dependent coefficients c(-).

12. Extend the result of Problem 11 to equations of the more general form

-(%u(t) = Ku(t)-l-g(t), u(O) = f,

where f € H and t — g(t) € H is a continuous function.

13. In the setting of Remark 6.7, consider the second-order linear ODE on the

Hilbert space H:
(6.15) iﬁu(t) = Ku(t) u(0) = f iu(O) =g
dt? ’ Todt ’
for some f,g € H. Write the solution in the form (6.14), computing the coefficients

Ck(').

14. Let A : H — H be a bounded linear operator. Using Problem 22 in Chapter 4,
show that the resolvent set p(A) = {n € R; nI — A is a bijection} is open.






Chapter 7

Semigroups of Linear
Operators

7.1. Ordinary differential equations in a Banach space

The classical existence-uniqueness theory for ODEs with Lipschitz continu-
ous right-hand side can be extended to Banach spaces without any substan-
tial change. Let X be a Banach space, and let F' : X — X be a Lipschitz
continuous map, so that

(7.1) |F(z) - F(y)ll < Lllz -yl

for some Lipschitz constant L and every z,y € X.
Given an initial point Z € X, consider the Cauchy problem

(7.2) #(t) = F(z(t)), 2(0) = %.

Here and throughout the sequel, the upper dot denotes a derivative with
respect to time. As in the finite-dimensional case, the global existence and
uniqueness of a solution can be proved using the contraction mapping the-
orem.

Theorem 7.1 (Existence-uniqueness of solutions to a Cauchy prob-
lem for an ODE with Lipschitz continuous right-hand side). Let X
be a Banach space and assume that the vector field F : X — X satisfies the
Lipschitz condition (7.1). Then for every T € X the Cauchy problem (7.2)
has a unique solution t — z(t), defined for all t € R.

115
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Proof. Fix any T > 0 and consider the Banach space C([0,T]; X) of all
continuous mappings w : [0,T] — X, with the equivalent norm

(7.3) lwlly = maxsepr) e 2w (@) -
Observe that a function z : [0,T] — X provides a solution to the Cauchy
problem (7.2) if and only if z(-) is a fixed point of the Picard operator
t
(7.4) O(w)(t) = :E+/ F(w(s))ds, t e [0,T).
0

We claim that ® is a strict contraction, with respect to the equivalent
norm (7.3). Indeed, given any u,v € C([0,T]; X), set § = ||u — v||y. By the
definition (7.3), this implies

lu(s) —v(s)|| < de2Ls  forall se[0,T].

For every t € [0, T, the assumption of Lipschitz continuity in (7.1) implies

o)) - 20| = ¢ [ Futs) - Footo) as

<o [ Pts) - Foe| s < 2 / " Llfu(s) - v(s)]| ds

t
< e"w/ Lse*lsds < é
0 2

Therefore
1
(7.5) 12(u) = ()llt < 3 llw—vllt.

We can now apply the contraction mapping theorem, obtaining the ex-
istence of a unique fixed point for ®, i.e., a continuous mapping z(-) such
that

t
z(t) = i‘+/0 F(z(s))ds  for all te[0,T].

This function z(-) provides the unique solution to the Cauchy problem. By
reversing time, we can construct a unique solution on any time interval of
the form [-T,0]. a

There are two well-known methods for constructing approximate solu-
tions to the Cauchy problem (7.2), shown in Figure 7.1.1. In the following
we fix a time step h > 0 and define the times t; =j-h, 5 =0,1,2,....
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- y(t)

Xy

Figure 7.1.1. Euler approximations to the system &; = x5, 2 =
—z;. Here z(-) is an exact solution, y(-) is a piecewise affine ap-
proximation obtained by the forward Euler scheme, while 2(-) is
obtained by the backward Euler scheme.

e Forward Euler approximations. The values of the approximate
solution at the times t; are defined by induction, according to the
formula

(7.6) z(tjr1) = x(t;) + h F(z(t;))-

e Backward Euler approximations. The values of the approxi-
mate solution at the times ¢; are determined as

(7.7) z(tjt1) = x(tj) + h F(2(tjr1))-
In both cases, after the values z(t;) have been computed on the discrete

set of times t;, one can extend the approximate solution to all real values of
t > 0, letting ¢ — z(t) be an affine function on each interval [t;_1, t;].

Forward Euler approximations are easy to construct: during the whole
time interval [t;,t;+1] we let the derivative %(t) be constant, equal to the
value of F' at the initial point:

:L‘(t) = F(m(tj))a te [tj, tj+1]'

On the other hand, in a backward Euler approximation, for ¢ € [t;,t;41]
we let the derivative 2(t) be constant, equal to the value of F' at the terminal
point:

&(t) = F(z(tj+1),  tE€ [t tinl-
In this case, given z(t;), to find z(t;41) one needs to solve the implicit
equation (7.7). Backward Euler approximations thus require more compu-
tational work. On the other hand, they often have much better stability and
convergence properties.
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7.1.1. Linear homogeneous ODEs. Let A : R" — R" be a linear oper-
ator. Then the solution to the linear Cauchy problem

(7.8) z = Az, z(0) =z
is the map t > e*4Z, where
Xtk Ak
(7.9) td = AT
k!
k=0

This same formula remains valid for any bounded linear operator A on a
Banach space X. We observe that the series in (7.9) is absolutely convergent
for every t € R. Moreover, the exponential map has the following properties:

(i) €%4 = I, the identity map.
(ii) e*4et4 = e(s+1)4 (semigroup property).

(iii) For every Z € X, the map t > e*4Z is continuous.

According to (i)~(ii), the family {e4; ¢ > 0} is a group of linear operators.
More generally, the theory of linear semigroups studies the correspon-
dence
A« {4 t>0}
between a linear operator and its exponential.

When A is a bounded linear operator, its exponential function is com-
puted by the convergent series (7.9). Conversely, given the family of opera-

tors e*4, one can recover A as the limit
tA
. e -1
A = lim
t—0+ ¢t

There are important cases where the operators ¢4 are bounded for ev-

ery t > 0, while A is an unbounded operator. These are indeed the most
interesting applications of semigroup theory, useful in the analysis of PDEs
of parabolic or hyperbolic type.

Example 7.2. If A : R” — R"” is a diagonal matrix, then its exponential
can be readily computed. Indeed
A1 0 ! 0
A=|: N et = | :
0 An 0 et
Observe that the corresponding operator norms are

Al = max |kl el = maxg|e*|.
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Example 7.3. Let ¢! be the Banach space of all sequences of complex
numbers z = (1, 3,3, . ..) With norm

Izl = >l
k

Given any sequence of complex numbers (Ag)x>1, consider the linear opera-
tor

(7.10) Az = ()\151:1, )\2.’1:2, /\32173, .. )
The corresponding exponential operators are

ez = (eMxy, ey, g3, ).

It is important to observe that the quantity

Al = sup | Akl
may well be infinite, but at the same time the norm
e = sup |e¥|
k

can be bounded, for every ¢t > 0. Indeed, as shown in Figure 7.1.2, assume
that the real part of all eigenvalues Ay is uniformly bounded above, say

Ay = o+ ik, o < w forallk>1,
for some constant w € R. Then
(7.11) letM] = |ef*r| < e for all t > 0.

Therefore, for each ¢t > 0 the operator e*4 is bounded. Namely ||et4|| < et“.
Two further cases are worth exploring.
CASE 1: Assume that all real parts of the eigenvalues Ay are bounded
above and below, say
—w < o T w
for some constant w > 0 and all £ > 1. Then, for all £t € R we have the
estimate

(7.12) letk| = |etek| < eltlv,

Hence the operators e*# are all bounded, also for ¢ < 0. This shows that
the differential equation (7.8) can be solved both forward and backward in
time. The family of operators {e*4; t € R} forms a group of bounded linear
operators.

CASE 2: Assume that all eigenvalues A\y = o + 18k are contained in a
sector of the complex plane. More precisely, assume that there exists w € R



120 7. Semigroups of Linear Operators

and an angle 0 < < 7/2 such that, for every k, we can write
(7.13) o = w—rEcosby, Br = —rsinfy
for some ), > 0 and 6 € [—6,8).
In this case, since of < w, it is clear that (7.11) holds and the operator

llet4|| is bounded, for every ¢ > 0. However, much more is true: for every
t > 0, the composed operator Aet4 is bounded. Indeed

A€ = sup [e™] < sup (w+ ri)el ot

< sup (w_i_,r)e(w—rcose)t < sup (w+r)e(w—rcos§)t < o0,
r>0, |0]<8 r>0

because cosf > 0. In this case, A is called a sectorial operator.

Even if the initial datum Z does not lie in the domain of the operator
A, for every t > 0 we have z(t) = e!4Z € Dom(A).

iR . iR . R

. ) .xk ° . L] . . \
R ) R ’ (\ R
. . _ 4 — el .
. ° 0 "’ "’ * ’hk ’ . A’."&‘e"i:/

Figure 7.1.2. Left: when all the eigenvalues Ay of the operator A
in (7.10) have real part Re(Ax) < w, then for every ¢ > 0 the expo-
nential operator is bounded: ||et4|| < e®. Center: if all eigenvalues
A satisfy Re (\x) € [~w,w], then for every ¢t € R the exponential
operator is bounded: ||et4|| < el Right: if all eigenvalues Ay lie
in a sector of the complex plane with angle § < m/2, then for each
t > 0 the operator Aet4 is bounded as well.

7.2. Semigroups of linear operators

Consider a linear evolution equation in a Banach space X, say
d
T
For t > 0, one would like to express the solution as u(t) = ‘44, for some
family of linear operators {et4; ¢ > 0}.

(7.14) () = Au(t), w(0)=a€cX.
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Example 7.4. Consider the partial differential equation u; — u; = 0. This
can be recast in the form (7.14), where A = % is a differential operator.
As function space, we can take X = LP(R), for some p € [1,00[. Clearly,
the differential operator A is unbounded. Its domain is the set of absolutely
continuous functions u € LP(R) with derivative u, € LP(R). On the other
hand, for every initial data @ € LP, the solution of the initial value problem
U = Ug, u(0,z) = a(z)
can be explicitly computed:
u(t,z) = u(z+1t), teR.

This indicates that, although the differential operator A = % is unbounded,
the corresponding exponential operators et4 are uniformly bounded:
(e"a)(z) = a(z +1)

and hence ||e*4|| = 1 for every t € R.

In the theory of linear semigroups one considers two basic problems:

(1) Given a semigroup of linear operators {S;; ¢ > 0}, find its genera-

tor, i.e., the operator A such that S; = e*4.

(2) Given a linear operator A, decide whether it generates a semigroup
{et4; t > 0} and establish the properties of this semigroup.

For applications, (2) is clearly more important. However, for the develop-
ment of the theory it is convenient to begin with (1).

7.2.1. Definition and basic properties of semigroups.

Definition 7.5. Let X be a Banach space. A strongly continuous semi-
group of linear operators on X is a family of linear maps {S;; ¢ > 0}
with the following properties.

(i) Each S;: X — X is a bounded linear operator.

(ii) For every s,t > 0, the composition satisfies S;Ss = Si+s (semigroup
property). Moreover Sp = I (the identity operator).

(iii) For every u € X, the map ¢ — S;u is continuous from [0, oo into
X.

We say that {S;; t > 0} is a semigroup of type w if, in addition, the
linear operators S; satisfy the bounds

(7.15) IS < e* for all ¢ > 0.
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A semigroup of type w = 0 is called a contractive semigroup. Indeed,
in this case ||S¢|]| < 1 for every t > 0, hence

[|Stw — Sev|| < |lu—v|| for all u,ve X, t>0.
The linear operator

(7.16) Au = lim 2%
t—0+ t

is called the generator of the semigroup {S;; ¢t > 0}. Its domain Dom(A)
is the set of all u € X for which the limit in (7.16) exists.

For a given 4 € X, we regard the map ¢ — S;u as the solution to the
linear ODE (7.14). Notice that, in a sense, here we are approaching the
problem backwards: given the solution u(t) = S:u, we seek to reconstruct
the evolution equation, finding the operator A. Some elementary properties
of the semigroup S and its generator A are now derived.

Theorem 7.6 (Properties of semigroups). Let {S;; t > 0} be a strongly
continuous semigroup and let A be its generator. Assume @ € Dom(A).
Then

(i) For everyt > 0 one has Si¢u € Dom(A) and ASiu = S;Au.

(ii) The map t — u(t) = S is continuously differentiable and provides
a solution to the Cauchy problem (7.14).

Proof. 1. Let @ € Dom(A), so that the limit in (7.16) exists. Then
Ssﬂ - ’l-l,

lim M = lim M = 8 lim = S,Ad.
s—0+ S s—0+ S s—0+ S

Therefore S;@ € Dom(A) and ASiu = St A, proving (i).

2. Next, assume % € Dom(A), ¢t > 0. Then, by the semigroup property,

. St — Si_p 1 S Si_ptt — U _ _
i (B s - g o (250 s

) Sl — U _ _ _ _
= hl—l)I(I)1+ {St—h ( A — A'U,> + (St_hAu — StA'U,)} = 0.
Indeed, W — A, while ||S;—p|| < €. Moreover, since At € X is well
defined, the map s — S;A% is continuous. The above computation shows
that the map ¢ — u(t) = S¢@ has a left derivative:
) Sttt — Si_pU
lim ———

h—0+ h = SiAu.
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The right derivative is computed as

Y _ s,A4.

) Siint — S .
lim 2Hh-— 2t S; lim
h—0+ h h—0+

Therefore, for every t > 0, the map ¢ — S;u is differentiable, with derivative
a‘it-Stﬁ = S;Au = ASiu. Since Au € X, by the definition of semigroup the
map t — Si(Au) must be continuous. Hence the map ¢ — S;@ is continuously
differentiable. O

The following theorem collects some properties of the generator A. We
recall that a linear operator A : X — X is closed if its graph

Graph(4) = {(:c,y) €X xX; z€Dom(A4), y= A:v}
is a closed subset of the product space X x X.

Theorem 7.7 (Properties of generators). Let {S;; ¢t > 0} be a strongly
continuous semigroup on the Banach space X, and let A be its generator.
Then

(i) The domain of A is dense in X.

(ii) The operator A is closed.
Proof. 1. Fix any u € X and consider the approximation U, = ™! [ Ssuds.
Since the map ¢t — Siu is continuous, we have U, — u as € — 0+. To prove

(i), we now show that U, € Dom(A) for every € > 0. Since Dom(A) is a
vector subspace, it suffices to show that

€
ue = elU; = / Ssuds € Dom(A).
0
For 0 < h < £ we have
S"UEh {Sh / Suds / Suds }
=— / (Ss4nru — Ssu)ds
h Jo
1 e+h
ZE/ Ssuds——/ Ssuds — S;u—1u ash—0+.
£
This shows that u. € Dom(A) for every € > 0, proving (i).
2. Next, we prove that the graph of A is closed. Let (uk,vx) be a sequence

of points on the graph of A. More precisely, let ux € DomA, vy = Auyg, and
assume the convergence ur — u, v — v, for some u,v € X. We need to
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show that u € Dom(A) and Au = v. For each k > 1, since ux € Dom(A),
the previous theorem implies

h d h
Spup —up = / (astuk> dt = / St Auy, dt.
0 0

Letting £ — 00, we obtain

h
Spu—u = / Siv dt.
0

Therefore,
Spu—u h
—— = lim — dt =
hgrg_'_ h hi)r(r)1+ h Jo Siv v
By definition, this means that v € Dom(A) and Au = v. O
(.) h € t-;+h t

Figure 7.2.1. Left: the intervals of integration, in the proof of
Theorem 7.7 (i). Right: according to (7.20) or (7.28), the backward
Euler approximation with step A > 0 is the weighted average of
points on the trajectory t — S;u, with exponentially decreasing
weight w(t) = e~t/?/h.

7.3. Resolvents

The crucial link between a semigroup {S;; ¢t > 0} and its generator A is
provided by the so-called “resolvent”. This can be best understood in terms
of backward Euler approximations.

Assume that we want to solve (7.14) approximately, by backward Euler
approximations. We thus fix a time step A > 0 and iteratively solve

u(t+h) = u(t)+ hAu(t+ h).
At each step, given a value u(t) € X, we thus need to compute
u(t+h) = (I —hA) lu(t).
The backward Euler operator
(7.17) E; = (I-hA)™Y
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with h > 0 small, plays a crucial role in semigroup theory. Given A, there
are two main ways to recover the solution of the Cauchy problem (7.14), in
terms of this operator.

(I): As a limit of backward Euler approximations.

For a fixed 7 > 0, we consider the time step h = 7/n. After n steps, the
backward Euler approximation scheme yields

_ _ T -n _
u(r) =~ ET/no oET/n = (I—;A) 4.

Keeping 7 fixed and letting n — 0o, we expect to recover the exact solution
of (7.14) in the limit:

L T\
(7.18) u(t) = S;g = lim (I nA) .

n—oo

(II): As a limit of solutions to approximate evolution equations.

Fix again a time step h > 0 and set A = 1/h. We then define the
operator Ay : X — X as

Ayu = AEju = A(I —hA) tu.

In other words, Aju is the value of A computed not at u but at the nearby
point E} u, i.e., at the first step in a backward Euler approximation, with
h = 1/X. It turns out that, for A > 0 small enough, Ay = A,/ is a well
defined, bounded linear operator. We can thus consider the exponential
operators 4 = 3~ (tA4,)*/k! and define

(7.19) u(t) = S = lim e .
A—o00

Example 7.8. Consider the scalar ODE
z = ax, z(0)=Z.

Its solution is z(t) = e'*Z. In this case we trivially have

a t

ay = ayp = — e ta,/(l—ha,)‘,z..

Z = lim %"z = lim e
h—0 h—0+

This corresponds to the limit (7.19). On the other hand, the limit (7.18) is
related to the identity
e = lim (1 - Za)—n.

n—o0 n

Notice that, for 0 < h < a1, one also has the identities

00 o—t/h oo [ o—t/h
(7.20) / dt=1, (1-ha) 'z = / — | e*zdt.
0 h 0 h
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The second identity shows that the backward Euler operator E, T =
(1 — ha)~'Z can be obtained by taking an average of points along the tra-
jectory t — ef%Z, with the exponentially decreasing weight w(t) = h~le~ /",

Motivated by the previous analysis, we introduce some definitions.

Definition 7.9. Let A be a linear operator on a Banach space X. The
resolvent set of A is the set p(A) of all real numbers A such that the
operator

Al — A :Dom(A) —» X
is one-to-one and onto. If A € p(A), the resolvent operator Ry : X — X
is defined by
Ry = (M - A) lu.
We remark that, if A is a closed operator, then by the closed graph

theorem the operator Ry : X — Dom(A) C X is a bounded linear operator.
Moreover

ARyu = Ry Au  if u € Dom(A).

There is a close connection between resolvents and backward Euler opera-
tors. Namely

ARy = El_/A .
Theorem 7.10 (Resolvent identities). Let A be a closed linear operator.
If \, € p(A), then
(7.21) Ry—R, = (p—AN)R\R,,

(7.22) R\R, = R,R,.

Proof. For any u € X one has

v = Ryu—Ryu = (M — A)7u— (ul — A)~'u € Dom(A),

M =A)v = u— N —pl+pl — A)(ul — A u = (p—N)(ul — A)  u.

Applying the operator (\I — A)~! to both sides of the above identity, one
obtains (7.21).

Next, using (7.21), for any A # p in the resolvent set p(A) we obtain
R\—R, R,—R,
A—p  p=A

R\R, = = R,R,. m
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Theorem 7.11 (Integral formula for the resolvent). Let {S;; t > 0}
be a semigroup of type w, and let A be its generator. Then for every A > w
one has A € p(A) and

[o0]
(7.23) Ryu =/ e A Saudt.
0
Moreover,
1
. < .
(7.24) IRl <

Proof. 1. By assumption, the semigroup satisfies the bounds ||S;| < .
Therefore the integral in (7.23) is absolutely convergent:
(7.25)

(o)
/ e S dt
0

Define

A—w

o0 o0 1
[s/e%mwws/eWmes ull
0 0

~ (o o]
Rywu = / e~ Sudt.
0

The above estimate shows that ﬁt)\ is a bounded linear operator, with norm

~ 1
< —.
IR\l < 3=

2. We now show that

(7.26) (M —A)Ryu = u  forall ueX.
Indeed, for any h > 0 we have

Do, _ D o)
M — %/ e—/\t (St+hu_Stu) dt
0

o) h
= % / (e_)‘(t_h) —e_)‘t) Studt—% / e AE=h) G0, dt
0 0

A o) Y )
= (e 3 1) / e')‘t Studt - —67 / C_At Stu dt.
0 0

Taking the limit as A — 04 we obtain

) Sh}~2)\u - R)\’u,
lim —————
h—0+ h
By the definition of generator, this means that

Ry e Dom(A), ARyu = ARyu—u,

= )ﬁ,\u-—u.

proving (7.26).



128 7. Semigroups of Linear Operators

3. The identity (7.26) already shows that the map v — (Al — A)v from
Dom(A) into X is surjective. We now prove that this map is one-to-one. If
u € Dom(A), then

- 00 00
ARyu = A/ e MSudt = / e~ M ASudt
0 0

m ~
= / e MG Audt = R)Au.
0

This proves the commutativity relation
(7.27) Ry\(AM —Au = (M —A)Ryu  for all u € Dom(A).
If now (Al — A)u = (A — A)v, using (7.27) and (7.26) we obtain
u = R\(A\ —Au = R\(AM — A = v,
proving that the map (Al — A) is one-to-one.
We thus conclude that A € p(A) and Ry = (\] — A)~! = R,. a

Remark 7.12. According to the integral representation formula (7.23), the
resolvent operators Ry provide the Laplace transform of the semigroup S.
Taking 0 < h = A1, this same formula shows that the backward Euler
approximations can be obtained as

o0 o—t/h
(7.28) Eyu = (I—hA)u = / — Syudt.
0
Here the integral is convergent, provided that h is sufficiently small: if S is
a semigroup of type w, we need h < w™L.

Generalizing the identity (7.20), we see that the first step in an Euler
backward approximation coincides with an averaged value of the entire tra-
jectory t +— Sy, with the exponentially decreasing weight w(t) = h~le~t/h.

7.4. Generation of a semigroup

In this section we tackle the most important question. Namely, given an
operator A from Dom(A) C X into X, under which conditions does there
exist a semigroup {S;; t > 0} generated by A?

Theorem 7.13 (Existence of the semigroup generated by a linear
operator). Let A be a linear operator on a Banach space X. Then the
following are equivalent.

(i) A is the generator of a semigroup of linear operators {St; t > 0},
of type w.
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(ii) A is a closed, densely defined operator. Moreover, every real num-
ber A > w 1is in the resolvent set of A, and

(7.29) “(AI— A)-1” < ﬁ forall A>w.

Proof. The fact that (i) implies (ii) has already been proved. We shall thus
assume that (ii) holds and prove that A generates a semigroup of type w.
The proof will be achieved in several steps.

1. By assumption, for each A > w the resolvent operator Ry = (A\I — A)~!
is well defined. We can thus consider the bounded linear operator

(7.30) Ay = =M+ )2Ry = MR,.
Notice that, setting h = 1/, we can write
Ayu = A(I-hA) 'y = A(Eju).

In other words, Ayu is the value of A computed not at the point u but at
the point E, u obtained by a backward Euler step of size h = 1/}, starting
at u. It is thus expected that Ay should be a good approximation for the
operator A, at least when X is large (so that h = 1/) is small).

2. Since each A) is bounded, we can construct its exponential as

00 k 2t k Rk
tAy - Z(tf:!\) = e MAMR, _ ,\tz (A Y

We observe that, if A is unbounded, then ||Ay|| = co as A — co. However,
for t > 0 the norms of the exponential operators remain uniformly bounded
as A — o0o. Indeed, the assumption (7.29) together with the definition (7.30)
yields

et < e—/\ti()‘%)k | Ral¥ < e MAH/(—w) _ wt/(A-w)
B k=0 k! B

In particular, as soon as A\ > 2w, we have
(7.31) || < e*t  forall £>0.

3. In this step we establish the limit
(7.32) lim Ayv = Av  for all v € Dom(A).
A—00

To prove (7.32), we start with the identity
ARyu—u = ARyu = R)Au,
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which is valid for all 4 € Dom(A). This yields
1

INBxu—ull = [Radul < IRl IAu] < s=—[Aul — 0 as A oo,
Hence

lim ARyu = u  for all u € Dom(A).

A—o00
Using the fact that Dom(A) is dense in X, we now prove that the above
limit holds more generally for all v € X. Indeed, for every u € X and
€ > 0, there exists v € Dom(A) such that ||u — v|| < . Using the triangle

inequality, we obtain

lim sup || AR)u — ul|
A—o0

< limsup | AR xu — AR)v|| + limsup |[AR\v — v|| + ||v — u]|
A—o00

A—o00

INA

limsup [| AR [l —v]| + 0 + [lv — u]l
A—00

e+e = 2¢.

< limsup
A—o0 A—w

Since € > 0 was arbitrary, this proves that

(7.33) lim AR\u = u  forallu e X.
A—00

For the backward Euler approximations with time step A = 1/, (7.33)
yields

lim Eyu = u forallue X.
h—0+

If v € Dom(A), then in (7.33) we can take u = Av and conclude that
lim Ayv = lim MRyv = lim AR)Av = lim ARyu = u = Av.
A—o00 A—00 A—00 A—00

This proves (7.32).

4. Fix any t > 0. We claim that, as A — oo, the family of uniformly
bounded operators et4* converges to some linear operator, which we call S;.
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tA) tA,

To prove this, for A\, u > 2w we shall estimate the difference e*** — e
The commutativity relation Ry\R, = R,R) implies Ay\A, = A,A).

Therefore

(oo}
(tAy)*
A tAN Aﬂ Z )\) _ etA"A# .
For every u € X we thus have

t
etA"'u.—etA"u — / d [ (t— s)AuesA)‘u] ds
ds

t ¢
= / et (A, — At uds = / et AuesAN(Ayu — Ayu)ds.
0 0

By (7.31), this implies

t
ety — etAnuy|| < /0 29N Ayy — Ayullds = te®t||Ayu— Ayul.

If u € Dom(A), then (7.32) yields Ayu — Au and A u — Au as A,y — oo.
Therefore

limsup ||e? u — e?ey|| < te®t limsup || Ayu — Ajul| = 0.
A, u—00 A, u—00

Figure 7.4.1. Proving the convergence of the approximations et

as A — oco. The difference ||e!4*u — et4#y|| can be estimated by
the length of the curve s — e(t=%)4xes4xy, for s € [0,1].

Using the triangle inequality, we now show that the same limit is valid
more generally for every v € X, uniformly as ¢ ranges in bounded intervals.
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Indeed, given € > 0, choose u € Dom(A) with ||u — v|| < e. Then

limsup [|ef4rv — et4ry||
A, L—00

< limsup ||e v — eyl + limsup ||t u — et
A—00 /\,p,—)OO

+limsup, o [le"u — et4uy||
< 2limsup ||| v —ull < 2e*te.
A—»00
Since € > 0 was arbitrary, our claim is proved.

5. By the previous step, for every ¢t > 0 and u € X the following limit is
well defined:

Siu = lim et4ry,
A—00

We claim that {S;; ¢ > 0} is a strongly continuous semigroup of type w.
Indeed, the semigroup property follows from

S Ssu = lim e etMy = lim )Ny = S, u.
A—»00 A—»00

For a fixed u € X, the map t — S;u is continuous, being the limit of the
continuous maps ¢ — et4*u, uniformly for ¢ in bounded intervals.

Finally, for every t > 0 and u € X with |ju|| < 1 we have the estimate

ISeull = lim |l u)) < limsup [|e"* | |ul]
A—»00 A—>00
< lim /Oyl = elu.
A—»00
This proves that ||S|| < e*, i.e., that the semigroup is of type w.

6. It remains to prove that the linear operator A is indeed the generator
of the semigroup. Toward this goal, call B the generator of the semigroup
{St; t > 0}. By our earlier analysis, we know that B is a linear, closed
operator, with domain Dom(B) dense in X. We need to show that B = A.
tAy .

b

Since Ay is the generator of the semigroup {e t > 0}, for every

A > w we have
t
(7.34) ey —u = / e Ayuds.
0

Moreover, for u € Dom(A), the triangle inequality yields
(7.35)  ||e*M Apu — Sedul| < ||t | Aru — Aul| + ||e¥4 Au — S, Aul).
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As A — oo, the right-hand side of (7.35) goes to zero, uniformly for s in
bounded intervals. Taking the limit as A — oo in (7.34) we thus obtain

t
(7.36) Siu—u = / SsAuds for all ¢t >0, u € Dom(A).
0

As a consequence, Dom(B) 2 Dom(A) and

. Su—uw ., 1 [t
Bu = lim = lim - [ SsAuds = Au for all u € Dom(A).
h—0+ t =0+t Jo
To prove that A = B, it remains to show that Dom(B) C Dom(A). For
this purpose, choose any A > w. We know that the operators

M —A:Dom(A)—X and A —B:Dom(B)+— X

are both one-to-one and surjective. In particular, the restriction of A\ — B to
Dom(A) coincides with \I — A and is thus surjective. Hence this operator
Al — B cannot be extended to any domain strictly larger than Dom(A),
preserving the one-to-one property. This shows that Dom(B) = Dom(A),
completing the proof. O

We now investigate uniqueness. Given a semigroup of linear operators
{S¢; t > 0}, its generator is uniquely defined by the limit in (7.16). Con-
versely, given a linear operator A satisfying conditions (ii) in Theorem 7.13,
we now show that the semigroup generated by A is uniquely determined.

Theorem 7.14 (Uniqueness of the semigroup). Let {S;}, {8,} be two
strongly continuous _semigroups of linear operators, having the same gener-
ator A. Then Sy = S; for every t > 0.

Proof. Let u € Dom(A). Then S,u € Dom(A) and S;_,Ssu € Dom(A) for
every 0 < s <t. We can thus estimate

Sou—Su = / di[st_sssu] ds = / [S’t_sASsu—ASt_sSsu] ds = 0.
0 GS 0
Indeed,
d 5 1 St—s—h(§s+hu)_st—a§su
75 [Se-eBuu] = lim 3
ot StenGonn—8ew) Sy s n(Ssu) — Si-s(Sew)
h—0 h h—0 h

= S_s(ASsu) — AS,_o(Ssu) = 0.
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This shows that, for every fixed ¢ > 0, the bounded linear operators S; and
St coincide on the dense subset Dom(A). Hence S; = S;. O

Applications of the theory of semigroups to the solution of partial dif-
ferential equations of evolutionary type will be illustrated in Chapter 9.

7.5. Problems

1. Assume that the operator A in (7.10) is sectorial, so that (7.13) holds, for some
w € R and some angle § < 7/2.

(i) For ¢t > 0, give an a priori estimate on the norm of the operator || Ae*4||,
depending only on w, 6.

(ii) More generally, for t > 0 and k > 1, prove that the operator A*e?*4 is also
bounded. Estimate the norm ||A¥e4|.

2. Let A be the generator of a contractive semigroup. Show that, for every A > 0,
the bounded linear operator Ay in (7.30) also generates a contractive semigroup.

3. Fix A > 0 and consider the weight function

AN ift>0,
w(t) = { 0 ift<o.

By induction on n > 1, check that the n-fold convolution w, = w*w *---x w is
given by

A" n—1 _—At :
_— >
(7.37) wn®) = { m=D1" ¢ ift20,
0 ift<O.

Show that w(-) is the density of a probability measure with

*° 1
mean value = / tw(t)dt = —,
0 A

arianc —/oo t— 2 2w(t)dt—/00 gl w(t)dt = 1
variance = b )\ = A )\2 = /\2.

Therefore, w,(-) is the density of a probability measure with mean n/)\ and
variance n/)\2.
Now fix T > 0 and let A\, =n/T. For every n > 1, set

n
(7.38) Wa(t) = { (WJT)" g1 g=to/m if t > 0,
. () =

(n—1)!
0 ift <0.
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Show that Wy, (-), plotted in Figure 7.5.1, is the density of a probability measure
with mean value n/)\, = T and variance n/(n/T)? = T?/n. In particular, for every
€ > 0, one has

(7.39)
T—¢ oo T+e
lim Wat)dt+ [ Wat)dt| = o, lim Wa(t)dt = 1.
n—o0 0 T+€ n—o00 T—¢
1.2
1.0—-
1
0.8
0.6‘:
0.4-
0.2:
0.0 T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10

Figure 7.5.1. A plot of the weight functions W, defined in (7.38).
Here T' = 4, while n = 1,2,10,100. All these probability distribu-
tions have average value 4, while their variance (= 16/n) decreases
to zero as n — o0.

4. (Convergence of backward Euler approximations) Let {S;; t > 0} be a
contractive semigroup on a Banach space X, generated by the linear operator A.
Fix h > 0 and set A = 1/h. By induction on n > 1, extend formula (7.28) for
backward Euler approximations. Namely, prove that

(o o]
(I-hA)™™u = / W (t)Studt forallue X,
0

where wy, is the weight function defined in (7.37).

Set h = T'/n, so that A\, = n/T. Using (7.39) prove that, for every u € X, one
has the convergence

T\ ™" *°
(I - ;A) u = / Wy,(t)Siudt — Stu asn — oo.
0
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5. (Positively invariant sets) Let A be the generator of a contractive semigroup
{St; t > 0} on a Banach space X. Let @ C X be a closed, convex subset. Prove
that the following are equivalent.

(i) Q is positively invariant: if v € Q then Siu € Q for all t > 0.

(i) € is invariant with respect to the backward Euler operator: if u € §2, then
for every h > 0 one has (I — hA)~lu € Q.

6. Let {S;; t > 0} be a semigroup of type w, and let A be its generator. Prove
that, for every v € R, the family of bounded linear operators {€7%S;; t > 0} is a
semigroup of type w + v, having A + I as its generator.

7. On the space LP(R), consider the linear operators S; defined by

(Sef)(2) = e *f(z+1).

(i) Prove that the family of linear operators {S;; ¢ > 0} is a strongly con-
tinuous, contractive semigroup on L?(R), for all 1 < p < co. Find the
generator A of this semigroup. What is Dom(A)?

(ii) Show that the family of operators {S;; ¢t > 0} is NOT a strongly contin-
uous semigroup on L*®(R).

8. Let {S:; t > 0} be a strongly continuous semigroup of linear operators on R™.
Prove that there exists an n X n matrix A such that S; = e*4 for every t > 0.

9. (Semilinear equations) Let A be a linear operator on a Banach space X,
generating the contractive semigroup {S:; ¢t > 0}. Wesay that amap u: [0,T] —» X
is a mild solution of the semilinear Cauchy problem

(7.40) D) = Au(e) + (), u(0) =4

if

(7.41) u(t) = Siu+ /t St—sf(s,u(s))ds  forall te(0,T].
0

(i) Assuming that f:[0,T] x X — X is continuous and satisfies the bounds

IfE2a) < M,  |fEt2) - fEYl < Ljz—yll  forall ¢y,
prove that the Cauchy problem (7.40) admits a unique mild solution.

(ii) In the special case where A is a bounded operator, so that S; = e*4, prove
that u(-) satisfies (7.41) if and only if u is a continuously differentiable
solution to the Cauchy problem (7.40).

10. Fix a time T > 0. On the space X = L([0, 1]), construct a strongly continuous,
contractive semigroup of linear operators {S;; ¢ > 0} such that ||S¢|| = 1 for
0<t<Thbut|S=0fort>T.
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11. Let {S;; t > 0} be a strongly continuous, contractive semigroup of linear
operators on a Banach space X. Assume that, for a given time 7 > 0, the operator
S; is compact. Prove that, for every ¢ > 7, the operator S; compact as well.
Construct an example showing that the operators S; may not be compact for 0 <
t<T.

12. On the space L!(R), consider the operator Au = ;,%u with domain

Dom(4) = {u € L}(R); u is absolutely continuous, u; € L!(R) } .

(i) Describe the semigroup {S;; t > 0} generated by A.

(ii) For any u € L!(R) and h > 0, construct the backward Euler approxima-
tion E, u.

(iii) Let u € CX(R) be a smooth function with compact support, say with
u(z) =0 for z ¢ [a,b]. Given any time step h > 0, show that the forward
Euler approximations (Ej)"u = (I + hA)™u are well defined and have
support contained in [a, b].

(iv) Using (iii) show that, for every time 7 > 0 sufficiently large, the functions
(I + %A)n u cannot converge to S,u as n — oo.






Chapter 8

Sobolev Spaces

The present chapter covers the basic theory of Sobolev spaces, which provide
a very useful abstract framework for the analysis of both linear and nonlinear
PDEs. We begin with an introduction to the theory of distributions and
some motivating examples.

8.1. Distributions and weak derivatives

In the following, Li (R) denotes the space of locally summable func-
tions f : R — R. These are the Lebesgue measurable functions which are
summable over every bounded interval. The support of a function ¢, de-
noted by Supp(¢), is the closure of the set {z; ¢(z) # 0} where ¢ does
not vanish. By C°(R) we denote the space of continuous functions with
compact support, having continuous derivatives of every order.

Every locally summable function f € Lllo -(R) determines a linear func-
tional Ay : C°(R) — R, namely

(8.1) A@) = [ f@p(e)do.

Notice that this integral is well defined for every ¢ € C°(R). Moreover, if
Supp(¢) C [a, b], we have the estimate

82) ol < ([ @de) Il

Next, assume that f is continuously differentiable. Then its derivative

o) — 1 JETN) = 1(@)

h—0 h

139
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is continuous, hence locally summable. In turn, f’ also determines a linear
functional on C°(R), namely

63 Ao = [ F@e@ds = - [ f0) 4@ ds

At this stage, a key observation is that the first integral in (8.3) is defined
only if f'(z) exists for a.e. z and is locally summable. However, the second
integral is well defined for every locally summable function f, even if f does
not have a pointwise derivative at any point. Moreover, if Supp(¢) C [a, ],
we have the estimate

ol < ( blf(x)ldx) I9lc: -

This construction can also be performed for higher-order derivatives.

Definition 8.1. Given an integer k£ > 1, the distributional derivative of
order k of f € L (R) is the linear functional

Aps(¢) = / f(2)D*¢(z) da

If there exists a locally summable function g such that Ay = Apsy,
namely

[ s@ptz)dz = (-1 / f(@)D*p(z)dz  for all § € CO(R),
R R

then we say that g is the weak derivative of order & of f.

Remark 8.2. Classical derivatives are defined pointwise, as limits of dif-
ference quotients. On the other hand, weak derivatives are defined only in
an integral sense, up to a set of measure zero. By arbitrarily changing the
function f on a set of measure zero we do not affect its weak derivatives in
any way.

Example 8.3. Consider the function

) 0 ifz<0,
flz) = {:c ifrz>0.

Its distributional derivative is the map
A(¢)=—/x¢ dw=/H z)dz,
0

where

0 ifz<0,
(8.4) H(z) = { 1 ifz>0.

In this case, the Heaviside function H in (8.4) is the weak derivative of f.
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Example 8.4. The function H in (8.4) is locally summable. Its distribu-
tional derivative is the linear functional

A(p) = —/RH(:D)¢’(3:)d:c = —/Oooqb'(x)dz = ¢(0).

This corresponds to the Dirac measure, concentrating a unit mass at the
origin. We claim that the function H does not have any weak derivative,
i.e., there cannot exist any locally summable function g such that

(8.5) / 9(z)d(z)dz = $(0) for all ¢ € C.
Indeed, if (8.5) holds, then by the Lebesgue dominated convergence theorem
h
fim | lg(z)| dz = 0.

Hence we can choose § > 0 so that ffé lg(z)| dz < 1/2. Let ¢ : R+ [0,1] be
a smooth function, with ¢(0) = 1 and with support contained in the interval
[—6, 6]. We now reach a contradiction by writing

)
1 = ¢(0) = A() = /R o(2)p(z) do = / 9(e)o(s) de

N =

)
< max,lo(z)]- [ lo@)lde < 3.

Example 8.5. Consider the function

f(@) = 0 if z is rational,
2+sinz if z is irrational.

Being discontinuous at every point, the function f is nowhere differentiable.
On the other hand, the function g(z) = cosz provides a weak derivative for
f- Indeed, the behavior of f on the set of rational points (having measure
zero) is irrelevant. We thus have

—/f(a:)¢'(a:) dr = —/(2+sinm) ¢ (z)dz = /(cosx) #(z) dz.

Example 8.6. Consider the Cantor function f : R ~— [0, 1], defined by
(0 if <0,

1 if z> 1,
_ )12 if ze([1/8,2/3],
(8.6) f@ =914 i :;G [1/9,2/9],

3/4 if ze€[7)9,8/9],
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.
| | 1 A L

0 13 23 1 b x

Figure 8.1.1. The Cantor function f and a test function ¢ showing
that g(z) = 0 cannot be the weak derivative of f.

(see Figure 8.1.1). This provides a standard example of a continuous func-
tion which is not absolutely continuous. We claim that f does not have a
weak derivative. Indeed, assume on the contrary that g € L is a weak
derivative of f. Since f is constant on each of the open sets
1 2 12 7 8
]—O0,0[, ]1,+OO[, ]3a3[) ]5,6[’ ]5)5[)-'-,

we must have g(z) = f'(z) = 0 on the union of these open intervals. Hence
g(z) = 0 for a.e. z € R. To obtain a contradiction, it remains to show that
the function g = 0 is NOT the weak derivative of f. As shown in Figure
8.1.1, let ¢ € C° be a test function such that ¢(z) = 1 for z € [0, 1] while
#(z) =0 for z > b. Then

/ o(@)p(@)ds = 0 £ 1 = — / F(2)# () da.

8.1.1. Distributions. The construction described in the previous section
can be extended to any open domain in a multi-dimensional space. Let
€ C R™ be an open set. By L _(£2) we denote the space of locally summable
functions on . These are the measurable functions f : Q — R which are
summable restricted to every compact subset K C 2.

Example 8.7. The functions e® and In|z| are in Ll _(R), while z7! ¢
LL.(R). On the other hand, the function f(z) = z” is in Li(]0, 00[) for
every (positive or negative) exponent v € R. In several space dimensions,
the function f(z) = |z|~7 is in L} (R™) provided that v < n. One should
keep in mind that the pointwise values of a function f € Llloc on a set of

measure zero are irrelevant.

By C2°(£2) we denote the space of continuous functions ¢ : Q — R having
continuous partial derivatives of all orders and whose support is a compact
subset of Q. Functions ¢ € C°(Q) are usually called “test functions”. We



8.1. Distributions and weak derivatives 143

recall that the support of a function ¢ is the closure of the set where ¢
does not vanish:

Supp(¢) = {z € Q; ¢(z) # 0}.

We shall need an efficient way to denote higher-order derivatives of a
function f. A multi-index a = (a3, ag, ..., a,) is an n-tuple of nonnega-
tive integer numbers. Its length is defined as

la| = ar1+as+-+an.

Each multi-index o determines a partial differential operator of order |af,

namely
o _ a (o5} 6 a2 a On
s (8 (&) (2

Definition 8.8. A distribution on the open set 2 C R" is a linear func-
tional A : C°(R2) — R such that the following boundedness property holds:
For every compact K C {2 there exists an integer N > 0 and a constant C
such that

(8.7) A(P)] < C||}ew for every ¢ € C* with Supp(¢) C K .

In other words, for all test functions ¢ which vanish outside a given
compact set K, the value A(¢) should be bounded in terms of the maximum
value of derivatives of ¢, up to a certain order N.

Notice that here both N and C depend on the compact subset K. If there
exists an integer N > 0 independent of K such that (8.7) holds (with C =
Ck possibly still depending on K), we say that the distribution has finite
order. The smallest such integer N is called the order of the distribution.

Example 8.9. Let 2 be an open subset of R™ and consider a function
f € LL (). Then the linear map Ay : C2(2) — R defined by

(8.8) Ar(@) = /Q fda

is a distribution. Indeed, it is clear that Ay is well defined and linear. Given
a compact subset K C {2, for every test function ¢ with Supp(¢) C K we
have the estimate

IA7(@)] = /K f bds

Hence the bound (8.7) holds with C = [, |f|dz and N = 0. This provides
an example of a distribution of order zero.

< / |F(@)] dz - maxpex|(@)] < Cdlco-
K
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The family of all distributions on €2 is clearly a vector space. A remark-
able fact is that, while a function f may not admit any partial derivative (in
the classical sense), for a distribution A an appropriate notion of derivative
can always be defined.

Definition 8.10. Given a distribution A and a multi-index a, we define the
distribution D®A by setting

(8.9) D*A(¢) = (-1)PIA(D>9).

It is easy to check that DA is itself a distribution. Indeed, the linearity
of the map ¢ — D*A(¢) is clear. Next, let K be a compact subset of 2 and
let ¢ be a test function with support contained in K. By assumption, there
exists a constant C and an integer N > 0 such that (8.7) holds. In turn,
this implies

ID*A(¢)] = IA(D¢)| < CD%lev < Cllglicn+ial-
Hence DA also satisfies (8.7), with N replaced by N + |a|.
Notice that, if Ay is the distribution in (8.8) corresponding to a function

f which is |a|-times continuously differentiable, then we can integrate by
parts and obtain

DA(9) = (—1)IAg (D) = (-1) / £(2)D%¢(z) dz
- / D*f(2)p(z)dz = Apes(d).
This justifies the formula (8.9).

8.1.2. Weak derivatives. For every locally summable function f and ev-
ery multi-index o = (az, ..., o), the distribution Ay always admits a distri-
butional derivative DAy, defined according to (8.9). In some cases, one can
find a locally summable function g such that the distribution D*A s coincides
with the distribution Ag. This leads to the concept of weak derivative.

Definition 8.11. Let f € Li () be a locally summable function on the
open set {2 C R™ and let Ay be the corresponding distribution, as in (8.8).

Given a multi-index o = (o,...,ay), if there exists a locally summable
function g € Li () such that D*Af = Ay, i.e.,
(8.10)

/fD°‘¢ dz = (-1)k /gqbdac for all test functions @ € CX (),

then we say that g is the weak a-th derivative of f and write g = Df.
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In general, a weak derivative may not exist. In particular, Example 8.4
shows that the Heaviside function does not admit a weak derivative. Indeed,
its distributional derivative is a Dirac measure (concentrating a unit mass
at the origin), not a locally summable function. On the other hand, if a
weak derivative does exist, then it is unique (up to a set of measure zero).

Lemma 8.12 (Uniqueness of weak derivatives). Assume f € Ly ()
and let g,§ € L () be the weak a-th derivatives of f, so that

loc

[#D2ds = (-1 [gpds = (-1 [go s

for all test functions ¢ € CL (). Then g(z) = g(z) for a.e. z € Q.

Proof. By the assumptions, the function (g — g§) € Li () satisfies
/(g —g)¢dz = 0 for all test functions ¢ € C°(2).

By Corollary A.17 in the Appendix, we thus have g(z) — g(z) = 0 for
a.e. ¢ € . O

If a function f is twice continuously differentiable, a basic theorem of
calculus states that partial derivatives commute: f;y, = fr,z;. This prop-
erty remains valid for weak derivatives. To state this result in full gen-
erality, we recall that the sum of two multi-indices a@ = (ay,...,a,) and
B=(P1,...,Bn) is defined as a + B = (a1 + B1,- .-, 0n + Bn)-

Lemma 8.13 (Weak derivatives commute). Assume that f € Li ()
has weak derivatives D®f for every |a| < k. Then, for every pair of multi-
indices a, f with |a| + |B| < k one has

(8.11) D*(DPf) = DB(D®f) = DAy,

Proof. Consider any test function ¢ € C°(2). Using the fact that DP¢ €
C°(Q) is a test function as well, we obtain

/ D*fDPpdx = (—1)l / f (DB dx
Q [9]
= (~1)ll(—1)le+a / (D**Bf) ¢ da
9]

= (—1)|ﬂ|/(D°‘+ﬁf)¢d:L'.
Q
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By definition, this means that D*t8f = DB(D?f). Exchanging the roles of
the multi-indices & and S in the previous computation, one obtains D8 f =
D*(DPf), completing the proof. O

The next lemma extends another familiar result, stating that the weak
derivative of a limit coincides with the limit of the weak derivatives.

Lemma 8.14 (Convergence of weak derivatives). Consider a sequence
of functions fn, € L (Q). For a fized multi-indez o, assume that each fn
admits the weak derivative gn = D®f,. If f, = f and gn — g in Li (Q),
then g = D°f.

Proof. For every test function ¢ € C2°(f2), a direct computation yields

n—00

/gqbd:z: = lim [ gpo¢dr = lim (—1)|a|/an°‘¢da:
0 Q n—o0 Q

= (—1)""'/QfD°‘¢dm.

By definition, this means that g is the a-th weak derivative of f. O

8.2. Mollifications

As usual, let 2 C R™ be an open set. For a given € > 0, define the open
subset

(8.12) Q. = {z € R"; B(z,e) C Q}.

For every u € L (Q) the mollification
w(@) = Uexu)@) = [ Je-y)ut)dy
B(z,€)

is well defined for every z € .. Moreover, ue € C*(). A very useful
property of the mollification operator is that it commutes with weak differ-
entiation.

Lemma 8.15 (Mollifications). Let 2. C 2 be as in (8.12). Assume that a
function u € Llloc (Q) admits a weak derivative D*u, for some multi-indez o.
Then the derivative of the mollification (which ezists in the classical sense)
coincides with the mollification of the weak derivative:

(8.13) D%(Jexu) = JexD%  forallz €9,
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Proof. Observe that, for each fixed z € Q,, the function ¢(y) = Je(z—y) is
in C°(€2). Hence we can apply the definition of weak derivative D®u using
¢ as a test function. Writing D and Dy to distinguish differentiation with
respect to the variables x or y, we thus obtain

Due) = D2 ( [ sa-y)u dy)

/Q Dz Je(z — y) u(y) dy
= (-1)e /Q D2J(z - v) uly) dy
— (—1)laltla _ o
(-1) /Q Je(z — y) D2u(y) dy

= (JE * Dau) (2).

Figure 8.2.1. Left: the open subset . C Q of points having dis-
tance > € from the boundary. Right: the domain {2 can be covered
by countably many open subdomains V; = Q¢;—1) \ Q1/(j+1)-

This property of mollifications stated in Lemma 8.15 provides the key
tool to relate weak derivatives with partial derivatives in the classical sense.
As a first application, we prove

Corollary 8.16 (Constant functions). Let Q@ C R™ be an open, connected

set, and assume u € L} (). If the first-order weak derivatives of u satisfy

Dyu(z) = 0 fori=1,2,...,n and a.e. T € ,

then u coincides a.e. with a constant function.
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Proof. 1. For £ > 0, consider the mollified function v, = J * u. By the
previous analysis, 4 : {2 — R is a smooth function whose derivatives Dy, u,
vanish identically on ). Therefore, u, must be constant on each connected
component of €).

2. Now consider any two points z,y € 2. Since the open set € is connected,
there exists a polygonal path I' joining z with y and remaining inside (2.
Let § = min,erd(z,092) > 0 be the minimum distance of points in I to
the boundary of Q2. Then for every € < § the whole polygonal curve I' is in
Q¢. Hence z,y lie in the same connected component of €. In particular,

Ue(2) = ue(y)-

3. Let @(z) = lim,—0us(z). By the previous step, @ is a constant function
on ). Moreover, 4(z) = u(z) at every Lebesgue point of u, hence almost
everywhere on 2. This concludes the proof. O

g :

Figure 8.2.2. Left: even if Q is connected, the subdomain Q. =
{z € Q; B(z,e) C 2} may not be connected. Right: any two
points z,y € Q can be connected by a polygonal path I" remaining
inside . Hence, if € > 0 is sufficiently small, z and y belong to
the same connected component of ..

In the one-dimensional case, relying again on Lemma 8.15, we now char-
acterize the set of functions having a weak derivative in L1.

Corollary 8.17 (Absolutely continuous functions). Consider an open
interval |a,b] and assume that u € L] (]a,b]) has o weak derivative v €
L!(Ja,b[). Then there exists an absolutely continuous function i such that

(8.14) w(z) = u(z)  for a.e. z €]a,b|,

(8.15) o(z) = lim i(z + h}z — ii(x)

for a.e. z €]a,b].
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Proof. Let zg € |a,b[ be a Lebesgue point of u, and define

@) = u(ao)+ [ o(w)dy.

0
Clearly @ is absolutely continuous and satisfies (8.15).

In order to prove (8.14), let J. be the standard mollifier and let u, =
Jexu, Ve = Je *v. Then ue,ve € C*(Ja+¢€, b—egl), while Lemma 8.15 yields

T
(8.16) ue(z) = ue(xo) +/ ve(y) dy forallz €la+e, b—e¢l.
o
Letting € — 0, we obtain u.(zo) — u(zo) because zg is a Lebesgue point.
Moreover, the right-hand side of (8.16) converges to @(z) for every = €]a, b[,
while the left-hand side converges to u(z) at every Lebesgue point of v (and
hence almost everywhere). Therefore (8.14) holds. a

If f,g € L] () are weakly differentiable functions, for any constants
a,b € R it is clear that the linear combination af + bg is also weakly differ-
entiable. Indeed,

(8.17) Dq,(af +bg) = aDg,f +bDy.g.

We now consider products and compositions of weakly differentiable func-
tions. One should be aware that, in general, the product of two functions
f,9 € LL_ may not be locally summable. Similarly, the product of two
weakly differentiable functions on R™ may not be weakly differentiable (see
problem 20). For this reason, in the next lemma we shall assume that one
of the two functions is continuously differentiable with uniformly bounded
derivatives.

Given two multi-indices a = (a,...,a,) and B8 = (B, ..., Bn), we recall
that the notation 8 < o means B; < o; for every ¢ = 1,...,n. Moreover,

<a> . al . oq! ) a2! a2!
B)  Bla=B)!  Bi!(a1—pB) B! (ag—Po)! Ba2! (g — Ba)!

Lemma 8.18 (Products and compositions of weakly differentiable
functions). Let Q2 C R™ be any open set and consider a function u € L} ()
having weak derivatives D*u of every order |a| < k.

(i) If n € C*(Q), then the product nu admits weak derivatives up to
order k. These are given by the Leibniz formula

(8.18) D) = Y <g> DPp D> By

BLa
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(ii) Let Q' C R" be an open set and let ¢ : Q' + Q be a C* bijec-
tion whose Jacobian matriz has a uniformly bounded inverse. Then
the composition u o ¢ is a function in Ly (') which admits weak
derivatives up to order k.

Proof. 1. To prove (i), let J; be the standard mollifier and set ue = J; *u.
Since the Leibniz formula holds for the product of smooth functions, for
every € > 0 we obtain

(8.19) D¥(ue) = (g) DPy D> Py, .

BLa

For every test function ¢ € C°(f2), we thus have

(~1)ed /Q (ue) D dz = /ﬂ D®(1ue) da

=3 (g) /Q (DPy Do Puc) ¢ dz.

BLla

Notice that, if € > 0 is small enough so that Supp(¢) C Q¢, then the above
integrals are well defined. Letting € — 0, we obtain

(—1)led /Q (nu)D%pdz = /Q (Z (Z) D%Da-ﬁu) pdz.

BLla

By the definition of weak derivative, (8.18) holds.

2. We prove (ii) by induction on k. Call y the variable in Q' and z = ¢(y)
the variable in 2, as shown in Figure 8.2.3. By assumption, the n x n

Jacobian matrix (%%) has a uniformly bounded inverse. Hence the

,j=1,n
composition u o ¢ lies in Llloc (§'), proving the theorem in the case k = 0.

Next, assume that the result is true for all weak derivatives of order || <
k — 1. Consider any test function ¢ € C(Q') and define the mollification

ue = Je xu. For any € > 0 small enough so that go(Supp(qb)) C Qe, we have
- [ (weow)-Dupdy = [ Dutueos)- oy

= /Q / (Z ijus(so(y))'Dy,-Soj(y)) - ¢(y) dy -
j=1
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Letting ¢ — 0, we conclude that the composition u o ¢ admits a first-order
weak derivative, given by

n
(8.20) Dy, (uo p)( Z Dy, 0;(y)-

By the inductive assumption, each function Dy, (u o ¢) admits weak deriva-
tives up to order k — 1, while Dy,p; € C*~ 1(Q’ ). By part (i) of the lemma,
all the products on the right-hand side of (8.20) have weak derivatives up
to order k — 1. Using Lemma 8.13, we conclude that the composition u o ¢
admits weak derivatives up to order k. By induction, this concludes the
proof. O

Figure 8.2.3. The mappings considered in part (ii) of Lemma 8.18.

8.3. Sobolev spaces

Consider an open set & C R, fix p € [1,00], and let k¥ be a nonnegative
integer.

Definition 8.19. (i) The Sobolev space W*?(Q) is the space of all locally
summable functions u : € — R such that, for every multi-index a with
la| < k, the weak derivative D%u exists and belongs to LP().

On WP we shall use the norm

1/p
821)  [ullyes = / \DufP da if1<p < oo,
|a|<k
(8.22) lullwre = Z ess sup | D%y| if p=o00.
€N

|a|<k
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(ii) The subspace W:’p () C W¥P(Q) is defined as the closure of C°(Q2)
in W*P(Q). More precisely, u € Wéc P(Q) if and only if there exists a se-
quence of functions u, € C°(£2) such that

”u - Un“Wk,p — 0.

(iii) In addition, Wlﬁf(Q) denotes the space of functions which are locally
in W*P, These are the functions u : Q — R satisfying the following property:
If € is an open set compactly contained! in 2, then the restriction of u to
Q@ is in WkP(Q).

Intuitively, one can think of the closed subspace Wo1 P(Q) as the space
of all functions v € W1P(Q) which vanish along the boundary of Q. More
generally, Wéc’p (Q) is a space of functions whose derivatives D*u vanish
along 09, for |a| < k — 1.

Definition 8.20. In the special case where p = 2, we define the Hilbert-
Sobolev space H*(Q) = W*2(Q). The space H*(R) is endowed with the
inner product

(8.23) (u,v)ge = Z D%uD®vdx.
laf<k 7
Similarly, we define H¥(Q) = W2(9).

Theorem 8.21 (Basic properties of Sobolev spaces).

(i) Each Sobolev space W*P(Q) is a Banach space.

(ii) The space Wéc’p (R) is a closed subspace of W*P(Q). Hence it is a
Banach space, with the same norm.

(iii) The spaces H*(Q) and HE(Q) are Hilbert spaces.

Proof. 1. Let u,v € W*P(Q). For |a| < k, call D, D% their weak
derivatives. Then, for any A, 4 € R, the linear combination A\u + pv is a
locally summable function. One easily checks that its weak derivatives are
(8.24) D®(Au+ pv) = AD%u+ puD%.

Therefore, D*(Au+uv) € LP(Q) for every |a| < k. This proves that W*P(Q)
is a vector space.

1By definition, a set ' is compactly contained in § if the closure ¥’ is a compact subset
of Q.
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2. Next, we check that (8.21) and (8.22) satisfy the conditions (N1)—(N3)
defining a norm. For A € R and u € W*? one has

[Aullwse = 1Al lullwss,

lullwer > llulle = 0,

with equality holding if and only if v = 0.
Moreover, if u,» € W*P(Q), then for 1 < p < co Minkowski’s inequality
yields

1/p
lu+vllwes = [ D IID% + DI,
|a|<k
1/p
p
< [ X (IDulles + 1D%010)
|a|<k
1/p 1/p
< DD, |+ Y 1D,
|| <k |a|<k

= lullwes + l[vllwes-

In the case p = 0o, the above computation is replaced by

Jutvllwess = D ID%+ D < 3 (IDulliee + D°vljxeo)
le|<k || <k

lellw.co + [[vllws.co-

3. To conclude the proof of (i), we need to show that the space W*P(Q) is
complete; hence it is a Banach space.

Let (un)n>1 be a Cauchy sequence in W5P(Q). For any multi-index o
with |a| < k, the sequence of weak derivatives D*u,, is Cauchy in LP(Q2).
Since the space LP(f2) is complete, there exist functions u and uq, such that

8.25)  |lun—uflte =0,  |D%p —tale = 0  for all jaf < k.

By Lemma 8.14, the limit function u,, is precisely the weak derivative D%*u.
Since this holds for every multi-index o with |a| < k, the convergence u, —
u holds in W*P(Q). This completes the proof of (i).



154 8. Sobolev Spaces

4. The fact that Wéc’p (Q) is a closed subspace of W*P(Q) follows immedi-
ately from the definition. It is also straightforward to check that (8.23) is
an inner product, yielding the norm || - ||yyx.2 - O

Example 8.22. Let 2 =]a, b[ be an open interval. By Corollary 8.17, each
element of the space W?(]a, b[) coincides a.e. with an absolutely continuous
function f :]a, b[— R having derivative f’ € L?(]a, b|).

ux) = xI”Y

e
W X,
Figure 8.3.1. For certain values of p,n a function u € W1P(R")
may not be continuous, or bounded.

Example 8.23. Let 2 = B(0,1) C R” be the open ball centered at the
origin with radius one. Fix v > 0 and consider the radially symmetric
function

n —7/2
u(z) = |z|77 = (fo) , 0<|z| <1

i=1
Observe that u € C1(2\ {0}). We claim that, for 1 < p < oo,
(8.26) u € W'(Q) ifandonlyif 4 < %’ .

Outside the origin, the partial derivatives are computed as

—(v/2)-1
(8.27) Ug, = —21 En: z? p Y —
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Hence, the gradient Vu = (ug,,...,us,) has Euclidean norm

1/2
Y
|Vu(z) (2% ) =

Calling o, the (n—1)-dimensional measure of the unit sphere {z € R"; |z| =
1} ¢ R™, we compute

1 p
—— ) dz = / x| PO dg
/Q (|~’U|7+1) z€R™, |:c|<1| |

1
= an/ PO g
0

The right-hand side of (8.28) is finite if and only if n — 1 — p(y + 1) > —1,
Le., v < “ZE. After a similar computation for |u|P, we conclude that

(8.28)

n—p
P

To complete the proof of (8.26), we need to show that, if 0 < v < ”—;2 (and
hence n > 2), then the functions in (8.27) are indeed the weak derivatives
of u on the entire ball Q (and not only on the set 2\ {0}). For this purpose,
consider any test function ¢ € C°(Q2). Fix i € {1,...,n}. For convenience,
we extend ¢ to the entire space R™ by setting ¢(z) = 0 for z ¢ Q. Since
n > 2, the x;-axis has n-dimensional Lebesgue measure zero. An integration
by part yields

’sz = fyxz . . e
0 = fong (L ) - deatis

= _/ ||~ ¢s; dez,
Q

completing the proof.

/ (|u|p + |Vu|p) dz < oo ifandonlyif v <
Q

Observe that the previous computation relied on the fact that u is ab-
solutely continuous (in fact, smooth) on a.e. line parallel to one of the coor-
dinate axes. However, there is no way to change u on a set of measure zero,
so that it becomes continuous on the whole domain Q.

An important question in the theory of Sobolev spaces is whether one can
estimate the norm of a function in terms of the norm of its first derivatives.



156 8. Sobolev Spaces

The following result provides an elementary estimate in this direction. It is
valid for domains §2 which are contained in a slab, say

(8.29) Q C {z=(z1,22,...,2%p); a <z <b}.

Theorem 8.24 (Poincaré’s inequality. I). Let @ C R™ be an open set
which satisfies (8.29) for some a,b € R. Then every u € H} () satisfies

(8.30) lullLz@) < 2(b—a) [|DayullLz) -

Proof. 1. Assume first that u € C°(2). We extend u to the whole space
R™ by setting u(z) = 0 for z ¢ Q. Using the variables z = (z1,2’) with
z' = (z2,...,z,), we compute

T1
u?(z1, ") =/ 2uug, (t, ') dt .
a

An integration by parts yields

b 1
lullfs = /IR u?(z)de = / 1/ 1 </ 2uuz1(t,x/)dt) dz, dx’

b
= / (b — 1) 2uty, (1,2") dz1 dz’ < 2(b— a)/ [ul |ug, | dz
Rr—1 Jq Rn

IN

2(b — a)lull2|lus, [z -
Dividing both sides by ||u||p2, we obtain (8.30) for every u € C(Q).
2. Now consider any u € Hj(Q2). By assumption there exists a sequence of

functions u, € C(2) such that ||up — u||z1 — 0. By the previous step, this
implies

fulle = lim [lunllcz < lim 2(5— )| Daytinlizs = 2(b— ) [ Dayilge

O

To proceed in the analysis of Sobolev spaces, we need to establish some
additional facts about weak derivatives.

Theorem 8.25 (Properties of weak derivatives). Let 2 C R™ be an
open set, let p € [1,00], and let |a| < k. If u,v € WkP(Q), then:

(i) The restriction of u to any open set Q C § is in the space W*P ().
(i) D% € Wk-lelr(Q).
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(iii) If n € C*(Q), then the product satisfies nu € W*P(Q). Moreover
there exists a constant C, depending on Q and on ||n||cx but not on
u, such that

(8.31) Imullwesy < Cllullwes) -

(iv) Let ' C R™ be an open set and let ¢ : Q' +— Q be a C* diffeo-
morphism whose Jacobian matriz has a uniformly bounded inverse.
Then the composition satisfies u o o € WEP(Q). Moreover there
ezists a constant C, depending on ' and on ||¢||cx but not on u,
such that

(8.32) lue pllwrey < Cllullwere) -

Proof. Statement (i) is an obvious consequence of the definitions, while (ii)
follows from Lemma, 8.13.

To prove (iii), we observe that by assumption all derivatives of 7 are
bounded, namely

IDPnllLe < |nlles forall |B| < k.

Hence the bound (8.31) follows from the representation formula (8.18).

Recalling part (ii) of Lemma 8.18, we prove (iv) by induction on k. By
assumption, the n x n Jacobian matrix (Dg,¢;)ij=1,..,n» has a uniformly
bounded inverse. Hence the case k = 0 is clear.

Next, assume that the result is true for £k = 0,1,...,m — 1. Ifu €
W™P((Q2), we have

| Dz, (w0 @) lwm-1p@y < C'l[Vullwm-100) lellem@y < Cllullwmeq)

showing that the result is also true for ¥ = m. By induction, this achieves
the proof. O

8.4. Approximations of Sobolev functions

If w € WkP(R") is a function defined on the entire space R™, it can be
approximated by smooth functions simply by taking mollifications: u, =
Je * u. However, if u is only defined on some open subset 2 C R", a more
careful construction is needed.

Theorem 8.26 (Approximation with smooth functions). Let & C R"
be an open set. Let u € W*P(Q) with 1 < p < co. Then for any € > 0 there
ezists a function U € C*(Q) such that |U — ullyrrq) <e.
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Proof. 1. Let € > 0 be given. Consider the following locally finite open
covering of the set €2, shown in Figure 8.2.1:

v, = {er; d(x,69)>%},

v; = {zeq; J% < d(z,00) < J%l o =23
Using Theorem A.18 in the Appendix, let 71,72, . .. be a smooth partition of
unity subordinate to the above covering. By Theorem 8.25, for every 5 > 0
the product nju is in W*P(). By construction, it has support contained in

V.

2. Consider the mollifications Jg * (nju). By Lemma 8.15 and by Theo-
rem A.16 in the Appendix, for every |a| < k we have

D*(Je* (mju)) = Jex (D%(nju)) — D*(nju)

as € — 0. Since each 7; has compact support, here the convergence takes
place in L?(Q2). Therefore, for each j > 0 we can find 0 < &; < 277 small
enough so that

lInju — Je; * (mjw)lwewigy < €277

3. Consider the function
o0
U = Z‘]fj * (nju).
i=1

Notice that the above series may not converge in W*?. However, it is
certainly pointwise convergent because every compact set K C €2 intersects
finitely many of the sets V;. Restricted to K, the above sum contains only
finitely many nonzero terms. Since each term is smooth, this implies U €
C>(Q).

4. Consider the subdomains
. 1
Q= {xe Q; d(z,00) > ;}.

Recalling that ). 7n;(z) =1, for every n > 1 we obtain

n+2 n+2 .
U —ullwrr@,,,) < > limju — Je; * mu)llwer(g,,,) < Y e27d < e
=1 =1

This yields

U —ullwen@) = sup U= ulwes@,,) < €
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Since € > 0 was arbitrary, this proves that the set of C* function is dense
on Wk»(Q). a

Using the above approximation result, we obtain a first regularity theo-
rem for Sobolev functions (see Figure 8.4.1).

Theorem 8.27 (Relation between weak and strong derivatives). Let
u € WHH(Q), where  C R™ is an open set having the form

(8.33) Q = {a: =(2,2'); ' = (z2,...,20) €Y, a(z') <z1 < ﬂ(:c’)}

(possibly with a« = —o0 or B = +00). Then there exists a function @ with
(z) = u(zx) for a.e. x € Q, such that the following holds. For a.e. £’ =
(z2,...,2Zn) € Y C R (with respect to the (n — 1)-dimensional Lebesgue
measure), the map

z1 > (21, ')
is absolutely continuous. Its derivative coincides a.e. with the weak deriva-
tive Dy, u.

1

Figure 8.4.1. The domain 2 at (8.33). If u has a weak deriv-
ative Dy, u € L1(Q2), then (by possibly changing its values on a
set of measure zero) the function u is absolutely continuous on al-
most every segment parallel to the x;-axis and its partial derivative
Ou/dz; coincides a.e. with the weak derivative.

Proof. 1. By the previous theorem, there exists a sequence of functions
ug € C*°(Q) such that

(8.34) luk — ullwrr < 27%.
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We claim that this implies the pointwise convergence
uk(z) = u(z), Dy, ug(z) = Dz, u(zx) for a.e. z € Q.

Indeed, consider the functions

f@) = @)+ Y lura (@) — w (=),
(8.35) =
9(@) = |Dnur(e)| +)

k=1

Dz, uk+1(2) — Dayuk(z)| -

By (8.34),

lluk — vrallwrn < 2075
hence f,g € L'(Q2) and the series in (8.35) are absolutely convergent for
a.e. € {). Therefore, they converge pointwise almost everywhere. More-

over, we have the bounds

(8.36) |uk(z)| < f(=), |Dgu(z)] < g(z) foralln>1, z€Q.

2. Since f,g € L!(2), by Fubini’s theorem there exists a null set N’ C Q'
(with respect to the (n — 1)-dimensional Lebesgue measure) such that, for
every z’' € ' \ NV, one has

/

B(z') B(z')
(8.37) / f(z1,2")dz; < o0, / g(z1,2')dz1 < oo.
o(z’) o(z')
Fix such a point 2’ € ' \ V. Choose a point y; €]a(z’), B(z')| where the
pointwise convergence u(y1,2’) — u(y1,z’) holds. For every a(z') < z1 <
B(z'), since uy is smooth, we have
T1
(8.38) ug(z1,7') = up(y1,7’) + Dy, uk(s,z') ds.
Y
We now let n — oo in (8.38). By (8.36) and (8.37), the functions Dy, u(, z')
are all bounded by the integrable function g(-,z') € L. By the dominated
convergence theorem, the right-hand side of (8.38) thus converges to

1
(8.39) w(z1,z") = u(y,z')+ Dy, u(s, ') ds.
Y

Clearly, the right-hand side of (8.39) is an absolutely continuous function of
the scalar variable z;. On the other hand, the left-hand side satisfies

a(z1,2') = Jim ug(z1,7’) = u(z1,2’)  for ae. 21 € [a(z'), B(2)].

This achieves the proof. a
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Remark 8.28. (i) It is clear that a similar result holds for any other deriv-
ative Dgz,u, withi=1,2,...,n.

(i) If w € W*P(Q) and Q C Q, then the restriction of u to 2 lies in
the space W*P(Q). Even if the open set Q has a complicated topology, the
result of Theorem 8.27 can be applied to any cylindrical subdomain 2 C
admitting the representation (8.33).

(iii) If @ C R™ is a bounded open set and u € W*P(Q), then u € W*9(Q)
for every g € [1,p].

8.5. Extension operators

Let  C R™ be a bounded open domain with C! boundary.? Given a function
u defined on (2, the next theorem provides a way to extend it to the entire
space R™, retaining some control on the WP-norm.

Theorem 8.29 (Extension operators). Let Q CC Q C R™ be open sets,
such that the closure of Q0 is a compact subset of Q. Moreover, assume

that Q has C! boundary. Then there exists a bounded linear operator E :
WLP(Q) s WLP(R") and a constant C such that

(i) Fu(z) = u(z) for a.e. z € Q,
(ii) Bu(z) =0 forz ¢ Q,
(iil) one has the bound || Bullwiomny < Cllullwiei)-

Proof. 1. We first prove that the same conclusion holds in the case where
the domain is a half-space: Q = {z = (z1,22,...,2Zn); 21 > 0}, and 2 = R".
In this case, any function u € WP(Q2) can be extended to the whole space
R™ by reflection, i.e., by setting

(8.40) (BM)(z1,22,...,20) = u(|z1], Z2, Z3,..., Tn) .

By Theorem 8.27, for every ¢ € {1,...,n} the function u is absolutely con-
tinuous along a.e. line parallel to the z;-axis. Hence the same is true of
the extension Eu. A straightforward computation involving integration by
parts shows that the first-order weak derivatives of Elu exist on the entire
space R™ and satisfy

{ Dy, E'u(—21,20,...,%n) = —Dgu(z1,%2,...,%s),
Dszuu(—:z:l,m,...,xn) = Dg;u(z1,22,...,Zn) (G=2,...,n),

28aying that © has C! boundary means the following. For every boundary point z € 89
there exists a neighborhood VZ of z and a C! map ¢ : R® ~ R such that Vy(z) # 0 and
QNV® ={yeV=®; o(y) > 0}.



162 8. Sobolev Spaces

for all z; > 0, zg,...,2, € R. The extension operator E!} : WlP(Q)
W1P(R™) defined at (8.40) is clearly linear and bounded because

|E'ullwremny < 2lullwisg) -

y'=(y2""’yn) (pl

Figure 8.5.1. The open covering of the set Q. For every ball B; =
B(z;, ;) there is a C! bijection ¢; mapping the open unit ball
B C R™ onto B;. For those balls B; having center on the boundary
Q, the positive half-ball B* = BN {y; > 0} is mapped onto the
intersection B; N .

2. To handle the general case, we use a partition of unity. For every z €
(the closure of ), choose a radius r; > 0 such that the open ball B(z,r,)
centered at z with radius ;0 satisfies the following conditions:

o If z € Q, then B(z,r;) C Q.

o If z € 89, then B(x,r;) C Q. Moreover, calling B = B(0,1) the open
unit ball in R”, there exists a C! bijection ¢® : B +~ B(z, ), whose inverse
is also C!, which maps the half-ball

n
Bt = {y=(y1,yz,---,yn); dv<l,m >0}
i=1
onto the set B(z,7%) N .
Choosing 7, > 0 sufficiently small, the existence of such a bijection
follows from the assumption that  has a C! boundary.
Since  is bounded, its closure Q is compact. Hence it can be covered
with finitely many balls B; = B(z;,7;), 1 = 1,...,N. Let ¢; : B — B; be
the corresponding bijections. Recall that ¢; maps Bt onto B; N Q.
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3. Let m1,...,nn be a smooth partition of unity subordinate to the above
covering. For every z € 2 we thus have

N
(8.41) u(z) = > mi(z)u(z)
i=1

We split the set of indices as
{1,2,...,N} = TU J,
where T contains the indices with z; € Q while J contains the indices with
x; € 0N
For every i € J, we have n;u € WY?(B; N Q). Hence by Theorem 8.25
(iv), one has (mu) o p; € WLP(Bt). Applying the extension operator E*
defined at (8.40), one obtains

Eﬂ((mu) 0%) e WhP(BY), Eu((mu) °<Pz') op;t € WH(By).

Summing all these extensions together, we define

= D mu+t ZE"((WU) °<Pi) op;t.

i€L 1€J
It is now clear that the extension operator E satisfies all requirements.
Indeed, (i) follows from (8.41). Property (ii) stems from the fact that, for
every u € W1P(Q), the support of Eu is contained in Uf;l B; C . Finally,
since F is defined as the sum of finitely many bounded linear operators, the
bound (iii) holds, for some constant C. O

8.6. Embedding theorems

In one space dimension, a function u : R — R which admits a weak derivative
Du € LY(R) is absolutely continuous (after changing its values on a set of
measure zero). On the other hand, if @ C R™ with n > 2, there exist
functions v € WP(Q) which are not continuous and not even bounded.
This is indeed the case of the function u(z) = |z|7, for 0 < 7y < ”—;E.

In several applications to PDEs or to the calculus of variations, it is
important to understand the degree of regularity enjoyed by functions u €
WkP(R™). We shall prove two basic results in this direction.

1. (Morrey) If p > n, then every function u € WP(R") is Hélder contin-
uous (after a modification on a set of measure zero).

2. (Gagliardo-Nirenberg) If p < n, then every function u 6 WLP(R™)
lies in the space L?"(R™), with the larger exponent p* = p + —L
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In both cases, the result can be stated as an embedding theorem: after
a modification on a set of measure zero, each function u € W1?(Q) also lies
in some other Banach space X. Here X = C%Y or X = L9 for some q > p.
The basic approach is as follows:
(I): Prove an a priori bound valid for all smooth functions. Given
any function u € C®(Q) N W*P(Q), one proves that u also lies in another
Banach space X and that there exists a constant C' depending on k, p, {2 but
not on u, such that

(8.42) lullx < Cllullwre  for all u € C®(Q) NWHP(Q).

(II): Extend the embedding to the entire space, by continuity.
Since C* is dense in W¥P, for every u € W*P(Q) we can find a sequence of
functions u, € C*°() such that ||u — un|yyr» — 0. By (8.42),

limsup ||um — un|lx < limsup C ||um — un|lwrsr = 0.

m,n—00 m,n—00

Therefore the functions u, also form a Cauchy sequence in the space X.
By completeness, u, — @ for some % € X. Observing that 4(z) = u(z)
for a.e. z € 2, we conclude that, up to a modification on a set N' C Q of
measure zero, each function u € W*P(Q) also lies in the space X.

8.6.1. Morrey’s inequality. In thissection we prove that, if u € W1P(R"),
where the exponent p is bigger than the dimension n of the space, then u
coincides a.e. with a Holder continuous function.

Theorem 8.30 (Morrey’s inequality). Assume n < p < oo and set
y=1- % > 0. Then there exists a constant C, depending only on p and n,
such that

(8.43) lullcormny < Cllullwiemny
for every u € C1L(R™) N WLP(R™).

Proof. Before giving the actual proof, we outline the underlying idea. From
an integral estimate on the gradient of the function u, say

(8.44) / |Vu(z)|Pdz < Co,
]Rn

we seek a pointwise estimate of the form

(8.45) lu(y) —u(¥)| < Cily—¢|” forall y,y e R™
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oA

Figure 8.6.1. Proving Morrey’s inequality. Left: the values u(y)
and u(y’) are compared with the average value of v on an (n —1)-
dimensional ball (the shaded region) centered at the midpoint 2
and contained in the hyperplane H perpendicular to the vector
y —7'. Center and right: a point z in the cone I is described in
terms of the coordinates (r,£) € [0, p] X By .

To achieve (8.45), a natural attempt is to write

lu(y) —u(y)| = l /0 1 [d%u (0y + (1 - G)y')] da'
(8.46)

1
< / |Vu(6y + (1 - 0)y)|ly — v/l .
0

However, the integral on the right-hand side of (8.46) only involves values
of Vu over the segment joining y with 3. If the dimension of the space
is n > 1, this segment has zero measure. Hence the integral in (8.46) can
be arbitrarily large, even if the integral in (8.44) is small. To address this
difficulty, we shall compare both values u(y), u(y’) with the average value ug
of the function u over an (n — 1)-dimensional ball centered at the midpoint
z= l’;—yi, as shown in Figure 8.6.1, left. Notice that the difference |u(y) —u4|
can be estimated by an integral of |Vu| ranging over a cone of dimension n.
In this way the bound (8.44) can thus be brought into play.

1. We now begin the proof, with a preliminary computation. On R7,
consider the cone

n
' = {z=(z1,22,...,Zn); Zm?ﬁmf, O<z1<p
=
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and the function

(8.47) V(@) = —=.

po
Ty

Let g = ;z_;iLl be the conjugate exponent of p, so that % +% = 1. We compute

Wler = /( n1_1>‘1 dz = /”cn_lm’f‘1< 1_1)‘1 d
r \T; 0 7

= Cp—1 /p S(n_l)(l_Q) ds,
0

where the constant c,_; gives the volume of the unit ball in R®~!. Therefore,
9 € LY(T) if and only if n < p. In this case,

1
P n— q —-n —n
(848) |l = <Cn—l/ = ds)" - c(,;fﬁ) P— o,
0

for some constant ¢ depending only on n and p.

2. Consider any two distinct points y,9/ € R™. Let p = 3|y —y/|. The
hyperplane passing through the midpoint z = yizl’ and perpendicular to
the vector y — ¢/ has equation
H = {wER"; (z—2,y-9) = 0}'
Inside H, consider the (n — 1)-dimensional ball centered at z with radius p,
B, = {a:EH; |a:—z|<p}.

Calling u4 the average value of u on the ball B, the difference |u(y) —u(y’)|
will be estimated as

(8.49) u(y) — @)l < |uly) —ual + [ua —u(y)| -

3. By a translation and a rotation of coordinates, we can assume

n
y=(0,...,0) € R", B, = {:v = (21,2Z2,..-,Zn); T1 = P, Zm? sz}.
i=2
To compute the average value u4, let B; be the unit ball in R*!, and
let cp—1 be its (n — 1)-dimensional measure. Points in the cone I' will be
described using an alternative system of coordinates. To the point with

coordinates (r,€) = (7, &2,...,&) € [0,p] x By we associate the point
z(r, ) € T’ with components
(8.50) (z1,22,...y2n) = (1, 7€) = (r,r&2,...,7&).

Define U(r,&) = u(r, r€), and observe that U(0,£) = u(0) for every &.
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Therefore

U6, =009+ [*| 206 ar,

(8.51) wa —u(0) = %l_l /B 1 ( /0 ’ [%U(r,&)] dr) de .

We now change variables, transforming the integral (8.51) over [0, p] x B
into an integral over the cone I Computing the Jacobian matrix of the
transformation (8.50), we find that its determinant is 7»~!; hence

dxydry -+ dz, = ™ ldrdéy - d&,.

Moreover, since |{| < 1, the directional derivative of u in the direction of
the vector (1,&s,...,&,) is estimated by

< 2/Vu(r,¢)|.

(8.52) ‘%U(r, g)’ =

n
Uz, + E ,§1u$z
=2

Using (8.52) in (8.51) and using the estimate (8.48) on the L? norm of the
function (z) = z1™™, we obtain

fua —u(0)| < 2 / L\ Vu(z)) dz

Cn—1Jr xrlz—l
(8.53) < 2 __Pp
S lollLacry IVullLa(r) 9=

p—n
SCp 7 |lullwirmn

for some constant C. Notice that the last two steps follow from Holder’s
inequality and (8.48).

4. Using (8.53) to estimate each term on the right-hand side of (8.49) and
recalling that p = 1|y — ¢/|, we conclude that

_JN\ 5
83 )=l < 26 (D57 pulasee

This shows that u is Holder continuous with exponent v = 1’1'7".

5. To estimate sup, |u(y)|, we observe that, by (8.54), for some constant
C; one has

@) < (@) + Cillulwirgey  for all o € B, 1).
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Taking the average of the right-hand side over the ball centered at y with
radius one, we obtain
(8.55)

lu(y)| < ]é( ) |u(z)| dz + C1||lullwrr@ny < CollullLrwe) + Crllullwiemny-
Y,

6. Together, (8.54)—(8.55) yield

: |u(y) — w(¥)|
ul|cor(gry = sup |u(y)| + sup < Cllullwregre
llwllcor(rm) . (y) Sy Tyl llullw.e@ny s
for some constant C' depending only on p and n. O

Since C* is dense in WP, Morrey’s inequality yields

Corollary 8.31 (Embedding). Let Q C R™ be a bounded open set with C*
boundary. Assumen < p < oo and sety=1— % > 0. Then every function
f € WP(Q) coincides a.e. with a function f € C%(Q). Moreover, there
exists a constant C such that

(8.56) I fllcor < Clifllwre  for all f € WHP(Q).

Proof. 1. Let = {z € R"; d(z,9) < 1} be the open neighborhood
of radius one around the set 2. By Theorem 8.29 there exists a bounded
extension operator F, which extends each function f € W?(Q) to a function
Ef € WYP(R™) with support contained inside Q.

2. Since C}(R") is dense in WP(R"), we can find a sequence of functions
gn € C}(R™) converging to Ef in WP(R™). By Morrey’s inequality
limsup ||gm — gnllcovmny < C limsup ||gm — gnllwrrmny = 0.
m,n—00

m,n—00

This proves that the sequence (gn)n>1 is also a Cauchy sequence in the space
C%7. Therefore it converges to a limit function g € C%Y(R™), uniformly for
z € R™

3. Since g, — Ef in W1P(R"), we also have g(z) = (Ef)(z) for a.e. z € R".

In particular, g(z) = f(z) for a.e. z € 2. Since the extension operator E is
bounded, from the bound (8.43) we deduce (8.56). O

Remark 8.32. The conclusion of Corollary 8.31 remains valid if Q = R™.
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8.6.2. The Gagliardo-Nirenberg inequality. Next, we study the case
1 < p < n. We define the Sobolev conjugate of p as

. np
8.57 = —— > p.
(8.57) p n_p 7P
Notice that p* depends not only on p but also on the dimension n of the
space:
1 1 1
(8.58) - = -—=.
p p n
As a preliminary, we describe a useful application of the generalized
Holder inequality; see (A.26) in the Appendix. Let n — 1 nonnegative func-
1

tions g1, 92,-..,9n—1 € L1(Q) be given. Since g/~ € L""1(Q) for each i,
using the generalized Holder inequality, one obtains

1

1 1 1 n-l =, n—l 1
(8.59) /Q o7 T g7 gl ds < [[NoF Tl = [ loallF-
=1 =1

Theorem 8.33 (Gagliardo-Nirenberg inequality). Assume 1 < p < n.
Then there exists a constant C, depending only on p and n, such that

(8.60) Il ey < CUIVFllomny  for all f € CZ(R™).

(x,5%,:X,) (57:X5X )

X

Figure 8.6.2. Proving the Gagliardo-Nirenberg inequality. The
integral ff°°° |Dg, f(81,22,23)|ds1 depends on z2,z3 but not on
). Similarly, the integral [*_|Dg,f(z1,52,23)|dsz depends on
1,23 but not on zs.

Proof. 1. Foreachi € {1,...,n} and every point x = (21,...,%i,...,Zpn) €
R™, since f has compact support, we can write

x;
f(x1y oy Tiye ooy Tn) =/ Dy, f(x1,.- 85, %n)ds;.
—00
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In turn, this yields

f(21,. . 2n)| < /°°

—00

Dzif(wl)”')s‘ia”-awn) dSi, 1S2Sn,

1

861)  |f@) < H(/ D, f(a1,.. ,si,...,xn)|dsi>ﬁ.

We now integrate (8.61) with respect to z1. Observe that the first factor
on the right-hand side does not depend on z;. This factor behaves like a
constant and can be taken out of the integral. The product of the remaining
n — 1 factors is handled using (8.59). This yields

(8.62)

/_c::|f|7r7:T dx;
< ([P 'dsl>T [ Zg( /- |Dac,f|dsz)_hda:1
< </_ |Dz1f|dsl)T - (/ / IDx,fIdszd:n) wt

1=2

Notice that the second inequality was obtained by applying the generalized
Holder inequality to the n — 1 functions g; = [%_|Dg, fldsi, i =2,...,n
We now integrate both sides of (8.62) with respect to z2. Observe that
one of the factors appearing in the product on the right-hand side of (8.62)
does not depend on the variable zo (namely, the one involving integration
with respect to s2). This factor behaves like a constant and can be taken
out of the integral. The product of the remaining n — 2 factors is again
estimated using Holder’s inequality. This yields
(8.63)

00 foo n
[ [ 1017 dos o
—o00 J—00
o0 poo T ) T
< </ / |D:c1f| dmld$2> </ / | Dz, £ d.’L‘ld:L‘2>
—00 J—00 —00 J —00
n 0o  poo  poo ;L—_l_—f
X H </ / / |Dz1f| dS,,; d:rld:c2>
=3 —00 J—00 v —00
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Proceeding in the same way, after n integrations we obtain

(8.64)

(o o] {o o] n
/ / |f|72T day - - - dzp
—00 —00
n 00 00 ﬁ ﬁ
SH(/ - |Dzif|dx1---dxn) < (/ IVflda:)
i=1 —00 —00 ]Rn

%

This already implies

865 Wl = ([ 117 )" / IV 1de,

proving the theorem in the case where p = 1 and p* = 25

2. To cover the general case where 1 < p < n, we apply (8.65) to the
function

p(n—1)

(8.66) g = |fIP with B = e

Using the standard Hélder inequality, one obtains
(8.67)
n—1

(/ |f|%dx)7 < [ BP9 slds
Rn R"
=1 1
<p([n5Fa)” ([ wirw)

Our choice of § in (8.66) yields

G- _ n _ o _
p—1 n—1 n—p '

Therefore, from (8.67) it follows that

1

([ 1 dx)% <s([ 1 dx)%l (] IVfI”dxf

Observing that Z—‘;—l - %1 = ”7;2 = 1%, we conclude that

(/ |fIP* dw)% <C (/R |Vf|”dx>%. O
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If the domain Q@ C R” is bounded, then LI(Q) C LP"(Q) for every
q € [1,p*]. Using the Gagliardo-Nirenberg inequality, we obtain

Corollary 8.34 (Embedding). Let @ C R™ be a bounded open domain
with C' boundary, and assume 1 < p < n. Then, for every q € [1,p*] with

p* = n—’%, there exists a constant C such that

(8.68) IfllLe) < Clifllwir) for all f e WP(Q).

Proof. Let Q = {r € R"; d(z,Q) < 1} be the open neighborhood of
radius one around the set 2. By Theorem 8.29 there exists a bounded
extension operator E : W1P(Q) — WL1P(R"), with the property that Ef
is supported inside €2, for every f € WiP(Q). Applying the Gagliardo-
Nirenberg inequality to F f, for suitable constants C, Cy, C3 we obtain

IfllLa@) < Cilflluer@) < C2llEfllLer@ny < Callflwing). O

8.6.3. High-order Sobolev estimates. Let 2 C R™ be a bounded open
set with C! boundary, and let u € W*?(Q). The number

Ko™
p

will be called the net smoothness of u. As in Figure 8.6.3, let m be the
integer part and let 0 < v < 1 be the fractional part of this number, so that

(8.69) k—% = m+7.

In the following, we say that a Banach space X is continuously embedded
in a Banach space Y if X CY and there exists a constant C such that

luly < Cllullx forallue X.

=T

m+ Y

Figure 8.6.3. Computing the “net smoothness” of a function f €
Wwkp c cm,

Theorem 8.35 (General Sobolev embeddings). Let & C R"™ be a
bounded open set with C* boundary, and consider the space W*P(Q). Let
m, be as in (8.69). Then the following continuous embeddings hold.
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(i) If k=2 < 0, then WFP(Q) C LI(Q), with ; =

w(-%):

(ii) If k— % =0, then WkP(Q) C LI(Q) for every 1 < g < oo.
(iii) If m >0 and v > 0, then WkP(Q) C C™(Q).

(iv) If m > 1 and v = 0, then for every 0 < ' < 1 one has
wkr(Q) c cm 1Y (Q).

Remark 8.36. Functions in a Sobolev space are only defined up to a set of
measure zero. By saying that W*P() C C™7(Q) we mean the following.
For every u € W¥*P(Q) there exists a function % € C™7(Q) such that i(z) =
u(z) for a.e. z € Q. Moreover, there exists a constant C, depending on
k,p, m,~v but not on u, such that

lullemr@) < Cllillwreg)-

Proof of the theorem. 1. We start by proving (i). Assume k — 5 <0

and let u € WkP(Q). Since D*u € W1P(Q) for every |a| < k — 1, the
Gagliardo-Nirenberg inequality yields

D%l @) < Cllullwrr)y — laf <k-1.
Therefore u € W*~17"(Q), where p* is the Sobolev conjugate of p.
This argument can be iterated. Set py = p*, p2 = pj, ... ,p; = Pj_;.
By (8.58) this means
1 1 1 1 1
m p n 7 p  p on

provided that jp < n. Using the Gagliardo-Nirenberg inequality several
times, we obtain

(8.70) WHP(Q) C WEIP(Q) C WAP(Q) C - C WRIRI(Q).

After k steps we find that u € WOP(Q) = LP+(Q2), with Plk =
Hence py = ¢ and (i) is proved.

E_1

n q’

1
p

2. In the special case kp = n, repeating the above argument, after k£ — 1
steps we find

Therefore py_; = n and
Wk,p(Q) C Wl,n(Q) C Wl,n-—E(Q)
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for every € > 0. Using the Gagliardo-Nirenberg inequality once again, we
obtain

u € Whe(Q) C LI(Q),

nln—¢)  n?—en

T n-(m-¢ ¢

Since € > 0 was arbitrary, this proves (ii).

3. To prove (iii), assume that m > 0 and v > 0 and let u € W*P(Q). We
use the embeddings (8.70), choosing j to be the smallest integer such that
pj > n. We thus have

1 j 1 1 1 5-1 ;

Li 1 L1 gol o gking)

p n p; n p n
Hence, for every multi-index a with |a| < k — 7 — 1, Morrey’s inequality
yields

D% € WPi(Q) C CO7(Q)  withy =1 —pﬁ =1-24j.
j p
Since o was any multi-index with length < k — j — 1, the above implies
u e ck It (Q).

To conclude the proof of (iii), it suffices to check that

n n
k—— = (k—j—1 +(1——+‘>,
p (k—-3j—-1) Pl

so that m = k — j — 1 is the integer part of the number k — %, while 7 is its
fractional part.

4. To prove (iv), assume that m > 1 and that j = 2 is an integer. Let

u € WkP(Q), and fix any multi-index with || < j— 1. Using the Gagliardo-
Nirenberg inequality as in step 2, we obtain

D*y € Wk‘j'p(Q) c whi(Q)
for every 1 < ¢ < 0o. Hence, by Morrey’s inequality
D*ue Wh(Q) C %' 7e(Q).

Since g can be chosen arbitrarily large, this proves (iv). O

B3

Example 8.37. Let Q be the open unit ball in R®, and assume u € W42(Q).
Applying the Gagliardo-Nirenberg inequality two times and then Morrey’s
inequality, we obtain

w € W@ c wHF(Q) ¢ WAQ) c cHi(@).

Observe that the net smoothness of u is k — % =4 - g =14+ %
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8.7. Compact embeddings

Let QO C R™ be a bounded open set with C! boundary. In this section we
study the embedding W1P(Q) c L9(Q) in greater detail and show that,
1

when % > % — 5, this embedding is compact. Namely, from any sequence

(um)m>1 which is bounded in WP one can extract a subsequence which
converges in LY.

As a preliminary we observe that, if p > n, then every function u €
W1P(Q) is Holder continuous. In particular, if (um)m>1 is a bounded se-
quence in W1P(Q), then the functions u,, are equicontinuous and uniformly
bounded. By Ascoli’s compactness theorem we can extract a subsequence
(um;);j>1 which converges to a continuous function » uniformly on . Since
§2 is bounded, this implies [|um; — u||Le@) — O for every ¢ € [1,00]. This
already shows that the embedding W1P(Q) C L9(f2) is compact whenever
p>nand1<q<oo.

In the remainder of this section we thus focus on the case p < n. By
the Gagliardo-Nirenberg inequality, the space W1P(f2) is continuously em-
bedded in LP" (), where p* = n—nf—p. In turn, since 2 is bounded, for every

1 < g < p* we have the continuous embedding L?*(Q) C LI(Q).

Theorem 8.38 (Rellich-Kondrachov compactness theorem). Let Q) C
R™ be a bounded open set with C' boundary. Assume 1 < p <n. Then for
each1 < q<p*= n—"}p one has the compact embedding

(8.71) WiP(Q) cc LI(Q).

Proof. 1. Let (um)m>1 be a bounded sequence in WP(2). Using The-
orem 8.29 on the extension of Sobolev functions, we can assume that all
functions u,, are defined on the entire space R™ and vanish outside a com-
pact set K:

(8.72) Supp(um) € K C Q = B(Q,1).

Here the right-hand side denotes the open neighborhood of radius one around
the set (2.

Since q < p* and Q is bounded, we have
lumllzage) = lmllga@ < Cllumlgr@ < C lumlypnsg,

for some constants C,C’. Hence the sequence u,, is uniformly bounded in
LY(R"™).
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2. Consider the mollified functions uf, = J¢ * um. By (8.72) we can assume
that all these functions are supported inside 2. We claim that

(8.73) ||us, — um||Lq(§) —0 as &€—0, uniformly with respect to m.

Indeed, if uy, is smooth, then (performing the changes of variable y' = ey
and z = z — ety)

@) @) = [ ) ome ) i@

- / J(%)um(@ — €y) — um(2)] dy
lyl<1

= ~/|y|<1 J(y) (/01 %(um(w - sty)) dt) dy

= —¢ /|y|<1 J(y) (/01 Vum(z —ety) -y dt) dy.

E/ﬁ/lylsl J(y) (/01 |V (z — ety)| dt) dydz

E/ﬁ |Vum(2)| dz.

In turn, this yields

IA

/~ S0 () — i ()|
Q

INA

By approximating u,, in W1P with a sequence of smooth functions, we see
that the same estimate remains valid for all functions u,, € W1?(Q). We
have thus shown that

(8.74) ||ufn—um||1,1(§) < Ellvum”Ll(ﬁ) < eC ||Uml|W1,p(§),
for some constant C. Since the norms ||um|y1.» satisfy a uniform bound

independent of m, this already proves our claim (8.73) in the case ¢ = 1.

3. To prove (8.73) for 1 < ¢ < p* also, we now use the interpolation
inequality for LP norms (see (A.28) in the Appendix). Choose 0 < # < 1
such that

I g1+a-0 =,
q p
Then

B75)  lufy — vmllpagy < luin = wmlfs g - Nk = w8 < Coe’



8.7. Compact embeddings 177

for some constant Cy independent of m. Indeed, in the above expression,
the L! norm is bounded by (8.74), while the L?* norm is bounded by a
constant, because of the Gagliardo-Nirenberg inequality.

4. Fix any § > 0, and choose € > 0 small enough so that (8.75) yields
)
luzm — umllpq@ < Co e < 5 forallm>1.
Recalling that u:, = J; * up,, we have

[umllie < | ellue umll: < G,

IVugllLe < [[VIlLeo [Jumlli < Co,

where C;,C, are constants depending on € but not on m. The above in-
equalities show that, for each fixed € > 0, the sequence (u%,)m>1 is uniformly
bounded and equicontinuous. By Ascoli’s compactness theorem, there ex-
ists a subsequence (ufnj) which converges uniformly on € to some continuous
function u*. We now have

lim SUp 4, — g .

jk—o0

< limsup (||umj — uf, [lallusy, — e

+ v — v, e + llugn, — umk”Lq)
0 0
< = -,
< SH0+0+3

5. The proof is now concluded by a standard diagonalization argument. By
the previous step we can find an infinite set of indices I; C N such that the
subsequence (um)mer, satifies
limsup  |lug — um|lLe < 27
£m—o0, £ymel

By induction on j =1,2,..., after I;_; has been constructed, we choose an
infinite set of indices I; C Ij—y C N such that the subsequence (um)mel;
satisfies

limsup |jug — umlle < 277,
£,m—o0, {,m€El;

After the subsets I; have been constructed for all j > 1, again by induction
on j we choose a sequence of integers m; < mg < mg < --- such that
m; € I; for every j. The subsequence (um,;);j>1 satisfies

lim sup ||tm; — Um,|lLs = 0.

jyk—o00
Therefore this subsequence is Cauchy and converges to some limit v € L9.
This proves that the embedding (8.71) is compact when p < n. O
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Corollary 8.39. Let Q C R™ be a bounded open set with C! boundary. Then
one has the compact embedding

HY(Q) cc Li(Q).

Proof. For n > 2 the conclusion is a special case of Theorem 8.38 with
p = 2. When n = 1, every function in H'(Q) is Hélder continuous and
the result follows from Ascoli’s theorem. When n = 2, we can apply the
previous theorem with p = 3/2, p* = 6, ¢ = 2 and obtain

w2@Q) ¢ wh¥2%(Q) cc L¥(Q). O

As an application of the compact embedding theorem, we now prove an
estimate on the difference between a function u and its average value on a
domain Q.

Theorem 8.40 (Poincaré’s inequality. II). Let Q@ C R™ be a bounded,
connected open set with C' boundary, and let p € [1,00]. Then there exists
a constant C depending only on p and Q such that

U — ]lud:c
Q

for every u € W1P(Q).

(8.77) < ClVullLeg)

LP(Q)

Proof. If the conclusion were false, one could find a sequence of functions
ug € Wl’p(Q) with
U — ][ Uk dx
Q

for every k = 1,2,.... Then the renormalized functions

U — ][ukdm
Q

U — ][ukd:c
Q

> k|| Vug|le )
LP(Q)

LP(Q)
satisfy
(8.78)

1
kadw=0, lvellioy = 1, NDvkllio) < 2, k=12,....

Since the sequence (vk)k>1 is bounded in W1P(Q), if p < 0o, we can use the
Rellich-Kondrachov compactness theorem and find a subsequence that con-
verges in LP(Q2) to some function v. If p > n, then by (8.56) the functions v
are uniformly bounded and Hélder continuous. Using Ascoli’s compactness
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theorem, we can thus find a subsequence that converges in L>°(Q2) to some
function v.

By (8.78), the sequence of weak gradients also converges, namely Vg —
0 in LP(2). By Lemma 8.14, the zero function is the weak gradient of the
limit function v.

We now have

][ vdr = lim vgdr = 0.
Moreover, since Vv = 0 € LP(f2), by Corollary 8.16 the function v must be
constant on the connected set §2; hence v(z) = 0 for a.e. z € Q. But this is
in contradiction to

lvllLe) = Jim lvkllLe) = 1. a

8.8. Differentiability properties

By Morrey’s inequality, if @ C R™ and w € W'P(Q) with p > n, then w
coincides a.e. with a Holder continuous function. Indeed, after a modification
on a set of measure zero, we have

1/p
|Vw(z)P dz)
(:B, |y—$|)

(8.79)  |w(z) —w(y) < Clz—y|' > ( /B

This by itself does not imply that u should be differentiable in a classical
sense. Indeed, there exist Holder continuous functions that are nowhere
differentiable. However, for functions in a Sobolev space a better regularity
result can be proved.

Theorem 8.41 (Almost everywhere differentiability). Let @ C R
and let u € I/Vli’p (Q) for some p > n. Then u is differentiable at a.e. point

C
z € §2, and its gradient coincides with the weak gradient.

Proof. Let u € W.P(Q). Since the weak derivatives are in L? , the same

is true of the weak gradient Vu = (Dg,u,...,Dg,u). By the Lebesgue
differentiation theorem, for a.e. z € 2 we have

(8.80) ]/ Vu(z) — Vu(z)Pdz — 0 asr—0.
B(z,r)

Fix a point x for which (8.80) holds, and define

(8.81) w(y) = u(y) —u(z) — Vu(z) - (y — 2).
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Observing that w € W]}Jf(ﬂ), we can apply the estimate (8.79) and obtain
lw(y) —w(@)| = lw@)l = luy) - u(z) - Vu(z) - (y — )|

Cly—af"3 ( / Vu(z) — Va(2)P dz
Bz, ly—al)

1/p
<C'ly-=| <][ |Vu(z) — Vu(z)P dz)
B(z, ly—=)

for suitable constants C, C’. Therefore

1/p

IA

o) - w@l

as|ly—z| — 0.
ly — = Iy =4

By the definition of w in (8.81), this means that u is differentiable at z in
the classical sense and its gradient coincides with its weak gradient. a

8.9. Problems

1. Determine which of the following functionals define a distribution on Q2 C R.

(i) A(¢) = ‘2 k! D*¢(k), with Q@ =R.
k=1

(ii) A(®) = iz-k Dk¢(1/k), with Q@ =R.
k=1

(iii) A(p) = g QS(IT/]C), with @ =R.

(iv) A(g) = /000 %f—) dz, with Q =]0,00][.
2. Give a direct proof that, if f € WP(]a,b[) for some a < band 1 < p < oo,
then, by possibly changing f on a set of measure zero, one has

f@) = f@) < Cle—4'">  foralla,y €lab[.
Compute the best possible constant C.
3. Consider the open square
Q={(z1,72); 0<z1 <1, 0<zy <1} CRZ

Let f € Wh1(Q) be a function whose weak derivative satisfies D, f(z) = 0 for
a.e. £ € Q. Prove that there exists a function g € L!([0, 1)) such that

f(z1,22) = g(z2)  for ae. (z1,22) €Q.
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4. Let © C R™ be an open set and assume f € L (). Let g = Dy, f be the weak
derivative of f with respect to z;. If f is C! restricted to an open subset Q' C (2,

prove that g coincides with the partial derivative 8f/0z; at a.e. point z € §¥'.

5. (i) Prove that, if u € W1*°(Q) for some open, convex set & C R™, then u
coincides a.e. with a Lipschitz continuous function.

(ii) Show that there exists a (nonconvex), connected open set & C R™ and
a function u € Wh*(Q) that does not coincide a.e. with a Lipschitz continuous
function.

6. (Rademacher’s theorem) Let  C R™ be an open set and let v : @ — R be
a bounded, Lipschitz continuous function.

(i) Prove that u € W1 °(Q).

(ii) Prove that u is differentiable at a.e. point z € Q.

Hint for (i): Consider first the case where 2 is convex. To construct the weak deriva-
tive Dy, , for any fixed z1,...,%i—1, Zit+1,. - . , Tn, consider the absolutely continuous
function s = w(Z1,...,Zi—1,8, Tit1,-- -, Tn)-

7. Let Q@ = B(0,1) be the open unit ball in R™, with n > 2. Prove that the
unbounded function f(z) =Inln (1 + i) is in Wi n(Q).

|=]

8. (i) Let  =]—1,1[. Consider the linear map T : C}(Q) — R defined by
Tf = f(0). Show that this map can be continuously extended, in a unique way, to
a bounded linear functional T: W1(Q) — R.

(ii) Let Q@ = B(0,1) C R? be the open unit disc. Consider again the linear
map T : C}(Q2) — R defined by T'f = f(0). For which values of p can this map be
continuously extended to a bounded linear functional T : W1?(Q) — R?

9. Determine for which values of p > 1 a generic function f € W1?(R3) admits a
trace along the z1-axis. In other words, set I" = {(£,0,0) ; ¢t € R} C R® and consider
the map T : C}(R3) — LP(T'), where Tf = fir is the restriction of f to I'. Find
values of p such that this map admits a continuous extension T' : W1P(R3) — L?(T').

10. Let V C R™ be a subspace of dimension m and let V+ be the perpendicular
subspace of dimension n —m. Let u € W1'P(R™) with m < p < n. Show that, after
a modification on a set of measure zero, the following hold.

(i) For a.e. y € V+ (with respect to the (n — m)-dimensional measure), the
restriction of u to the affine subspace y + V is Holder continuous with

exponent vy =1 — %.

(ii) The pointwise value u(y) is well defined for a.e. y € V+. Moreover

lu@)llLevey < C- lullwiemn)

for some constant C' depending on m,n,p but not on wu.
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11. Let Q C R™ be an arbitrary open set (without assuming any regularity of the
boundary) and assume p > n. Show that every function f € Wol”’ (Q) coincides
a.e. with a continuous function f . Moreover, there exists a constant C, depending
on p,n but not on 2 or f, such that

~ . n
Ifllcory < Clfllwrry  withy=1- .

12. When k = 0, by definition W%P(Q) = LP(Q). If 1 < p < oo, prove that
WEP(Q) = LP(Q) as well. What is Wg"*(Q)?
13. Let ¢ : R+ [0,1] be a smooth function such that
(r) = 1 if »r<0,
P =0 if r>1.

Given any f € WFP(R™), prove that the functions fx(z) = f(z) ¢(|z| — k) converge
to f in WkP(R™), for every k > 0 and 1 < p < co. As a consequence, show that

WP (R™) = Wk?(R™).

14. Let Ry = {z € R; z > 0} and assume u € W?P(R,). Define the symmetric
extension of u by setting Eu(z) = u(|z|). Prove that Eu € W1P(R) but Fu ¢
W2P(R), in general.

15. Let u € C}(R") and fix p,q € [1,00[. For a given A > 0, consider the rescaled
function u) (z) = u(Az).
(i) Show that there exists an exponent «, depending on n, g, such that
lurllLo®ny = A%[[ullLegn) -
(ii) Show that there exists an exponent (3, depending on n,p, such that
IVuallLe gy = A|VullLsge) -

(iii) Determine for which values of n, p, ¢ one has a = . Compare with (8.57).

16. Let @ C R™ be a bounded open set with C* boundary. Let (um)m>1 be
a sequence of functions which are uniformly bounded in H'(2). Assuming that
|t — ullz = 0, prove that u € H*(Q) and

lullzs < lmin iz

17. Let Q = {(z1,%2); 2% + 73 < 1} be the open unit disc in R?, and let Qp =
2\ {(0,0)} be the unit disc minus the origin. Consider the function f(z) =1 — |z|.
Prove that (see Figure 8.9.1)

{f € WoP() for 1 <p< oo,

f € WyP(Q) for1<p<2,
f & WyP(Qo) for2<p<oco.



8.9. Problems 183

Figure 8.9.1. Left: the function f can be approximated in WP
with functions f, having compact support in §2. Right: the func-
tion f can be approximated in W2 with functions g,, having com-
pact support in Q.

18. Let Q = {(z1,72); 0 <z, <1, 0 < z2 < 1} be the open unit square in R2.
(i) If u € H(Q) satisfies
meas({m €N; u(z) = 0}) > 0, Vu(z) =0 for a.e. z € Q,

prove that u(z) = 0 for a.e. z € .

(i) For every o > 0, prove that there exists a constant C, with the following
property. If u € H'(Q) is a function such that meas({z € Q; u(z) =
0}) > «, then

(8.82) lulluz(@) < Ca lIVullL2(a) -

19. Let  C R”™ be an open set, and let K C Q2 be a closed set which is “small”,
in the sense that its (n — 1)-dimensional measure is m,_;(K) = 0. More precisely,
assume that the projection of K on every (n — 1)-dimensional hyperplane has zero
(n — 1)-dimensional measure. Let u be continuously differentiable on the open set
2\ K, and assume u € LP(Q\ K), Vu € LP(Q2 \ K). Prove that u € WP (Q).

20. (i) Find two functions f, g € Ll (R™) such that the product f- g is not locally
summable.

(ii) Show that, if f,g € L} .(R) are both bounded and weakly differentiable,
then the product f - g is also weakly differentiable and satisfies the usual product
rule: Dz(fg) = (Dzf) - g+ f - (Dzg).

(iii) Find two functions f,g € Ll (R™) (with n > 2) with the following prop-
erties. For every ¢ = 1,...,n the first-order weak derivatives Dy, f, D, g are well
defined. However, the product f-g does not have any weak derivative (on the entire

space R"™).

21. Let © C R™ be a bounded, connected open set with C! boundary, let Q' C Q
be a nonempty open subset, and let p € [1,00]. Prove that there exists a constant
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C such that
lullpe@y < € ("ullm(nf) + "V“”LP(Q)) for every u € W?(Q2).

22. Consider the Banach space X = C°(]0, 1]) of all bounded continuous functions
on the open interval ]0, 1[, with norm || f||co = supg<z<1 |f(z)|. For a fixed constant
M > 0, let Spy € X be the subset consisting of all functions f € X such that
[Ifllwz.e < M. In other words, f € Sp provided that f has weak derivatives up
to second-order and

IfllLe < M, |10zfllue < M,  ||0zzflLe < M.

(i) Prove that Sy is a closed subset of X.

(ii) Prove that the differentiation operator f + 0, f is continuous when re-
stricted to the set Sps. In other words, if || fr — fllco — 0 and f, fn € Su
for all n > 1, then |85 fn — 8z f]lco — 0.

23. Let  C R” be a bounded open set with C! boundary. Given any u € W1P(Q)
with 1 < p < oo, prove that there exists a sequence of smooth functions u; €
C°(R™) such that the restrictions of uy to ( satisfy

Jm flue —ullwis@) = 0.

Moreover,
lukllwir@®ey < Cllullwrsie),
for some constant C depending on p and 2 but not on wu.

24. Let f : R — R be a weakly differentiable function, with weak derivative g €
L. .(R). Consider the sequence of divided differences g,(z) = n [ f (z + %) =i (a:)]

Prove that g,(z) — g(z) for a.e. z € R, and moreover ||g, — g|lL((a,3)) — O for
every bounded interval [a, b].

25. Let (un)n>1 be a sequence of functions in the Hilbert space HZ(R3) = W22(R3).
Assume that

nll)n;lo un(z) = u(z) for all z € R, lunllzz < M for all n.

Prove that the limit function u coincides a.e. with a continuous function.



Chapter 9

Linear Partial
Differential Equations

The goal of this chapter is to illustrate how the abstract techniques of func-
tional analysis can be applied to the solution of elliptic, parabolic, and
hyperbolic PDEs.

A linear elliptic equation is defined by a second-order differential oper-
ator, which is linear but unbounded. As a first step, one must thus provide
an alternative “weak” formulation of the boundary value problem, involving
bounded linear operators.

In some cases, unique solutions can be obtained by applying the Lax-
Milgram theorem to a suitable bilinear form on the Hilbert-Sobolev space
H(}. More general situations can be studied using Fredholm’s theory on the
space L2. When the operator is selfadjoint, relying on the Hilbert-Schmidt
theorem, we shall represent solutions by a series of mutually orthogonal
eigenfunctions.

Evolution equations of parabolic and hyperbolic type will be studied by
applying linear semigroup theory. When the defining operator is selfadjoint,
solutions can again be obtained as sum of a series of eigenfunctions.

9.1. Elliptic equations

Let  C R™ be a bounded open set. Given measurable functions a¥, b, c :
Q — R, consider the linear, second-order differential operator

n n

1) Iu = = 3 (@ (@)m)e; + D _(H(@)u)as +clz)u.

ij=1 i=1

185
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We shall study solutions to the boundary value problem

Lu = f, z €N,
(9-2) { u = 0, z € 09,

where f € L2(f) is a given function. The requirement that u vanishes along
0N is called Dirichlet’s boundary condition.

For future reference, we collect the main hypotheses used throughout
this chapter.

(H) The domain Q C R™ is open and bounded. The coefficients of L in
(9.1) satisfy

(9.3) a bt c € L®(Q).

Moreover, the operator L is uniformly elliptic. Namely, there

exists a constant @ > 0 such that
n

(9.4) > a(z)eg; > 01 forallzeQ, LR,

i,j=1
Remark 9.1. By definition, the uniform ellipticity of the operator L de-
pends only on the coefficients a¥/. In the symmetric case where a¥ = a’?,
the above condition means that for every z € Q) the n X n symmetric matrix
A(z) = (a¥(z)) is strictly positive definite and its smallest eigenvalue is > 6.

9.1.1. Physical interpretation. As an example, consider a fluid moving
with velocity b(z) = (b%,5%,5%)(z) in a domain Q C R3. Let u = u(t, )
describe the density of a chemical dispersed within the fluid.

Given any subdomain V' C €2, assume that the total amount of chemical
contained in V' changes only due to the inward or outward flux through the
boundary 0V. Namely,

(9.5) i/udac = / n-(aVu)dS — n-(bu)dS.
dt Jy ov ov

Here n(z) denotes the unit outer normal to the set V' at a boundary point z,
while @ > 0 is a constant diffusion coefficient. The first integral on the right-
hand side of (9.5) describes how much chemical enters through the boundary
by diffusion. Notice that this is positive at points where n-Vu > 0. Roughly
speaking, this is the case if the concentration of chemical outside the domain
V is greater than inside. The second integral (with the minus sign in front)
denotes the amount of chemical that moves out across the boundary of V'
by advection, being transported by the fluid in motion (Figure 9.1.1).

Using the divergence theorem, from (9.5) we obtain

(9.6) /utd:c = /aAudx—/div(bu)dm.
|4 |4 |4
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Figure 9.1.1. As the chemical is transported across the boundary
of V, the total amount contained inside V' changes in time.

Since the above identity holds on every subdomain V' C Q, we conclude that
u = u(t, z) satisfies the parabolic PDE

u — alAu + div(bu) = 0.
[diffusion] [advection]

A more general model can describe the following situations:

e The diffusion is not uniform throughout the domain. In other
words, the coefficient a is not a constant but depends on the lo-
cation z € Q. Moreover, the diffusion is not isotropic: in some
directions it is faster than in others. All this can be modeled by
replacing the constant diffusion matrix A(z) = al with a more
general symmetric matrix A(z) = (a¥(z)).

e The total amount of u is not conserved. Additional terms are
present, accounting for linear decay and for an external source.

In n space dimensions, this leads to a linear evolution equation of the form
(9.7

n n
u — ‘zl (a¥ (w)umi)mj + 21 ' (@)u), = —c@)u + f(z).
i,j= i=
[diffusion] [advection] [decay] [source]

Equation (9.7) can be used to model a variety of phenomena, such as mass
transport, heat propagation, etc. In many situations, one is interested in
steady states, i.e., in solutions which are independent of time. Setting u; =0
in (9.7), we obtain the linear elliptic equation

(9.8) -y (0¥ (@)us,),,, + > (i(z)u),, +c@)u = f(a).
=1

1,5=1

9.1.2. Classical and weak solutions. By a classical solution of the
boundary value problem (9.2) we mean a function v € C%(Q) which satisfies
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the equation and the boundary conditions at every point. In general, due to
the lack of regularity in the coefficients of the equation, problem (9.2) may
not have classical solutions. A weaker concept of solution is thus needed.

Definition 9.2. A weak solution of (9.2) is a function u € H}(2) such
that
(9.9)

n n
/ ( z aijumi'uzj—z bu vzi-i—cuv) dz = / fvdzx for allv € H(Q).
Q Q

i,j=1 i=1

Remark 9.3 (On the concept of weak solution). The boundary con-
dition u = 0 on < is taken into account by requiring that u € H}(£2). The
equality (9.9) is formally obtained by writing

9.10) /Q (Lu)vds = /Q fvdz  forall v € C(Q)

and integrating by parts. Notice that, if (9.9) holds for every test function
v € C(R), then by an approximation argument the same integral identity
remains valid for every v € H}(). It is important to observe that a func-
tion u € H} may not have weak derivatives of second-order. However, the
integral in (9.9) is always well defined, for all u,v € H}.

A convenient way to reformulate the concept of weak solution is the
following. On the Hilbert space H} (), consider the bilinear form

n n
(9.11) Blu,v] = /Q (Z a9 ugug; — b uvg, + cuv) dx.

i,j=1 i=1

A function u € H} is a weak solution of (9.2) provided that

(9.12) Blu,v] = (f,v)rz forallve H}.
Here and in the sequel we use the notation
(9.13) (ho)a = [ fods

for the inner product in L2(Q), to distinguish it from the inner product in
HY(Q)

(9.14) (f,9)m = Afgdm+‘/(22fm¢gmidx'
=1

Remark 9.4 (Choice of the sign). The minus sign in front of the second-
order terms in (9.1) disappears in (9.11), after a formal integration by parts.
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As will become apparent later, this sign is chosen so that the corresponding
quadratic form B[u,v] can be positive definite.

Remark 9.5 (General boundary conditions). Given a function g €
H1(Q), one can consider the nonhomogeneous boundary value problem

{Lu = f, z €N,

(9.15) u = g, x € 00.

This can be rewritten as a homogeneous problem for the function & =u—g,
namely

(9.16) {Lu = f—Lg, z€Q,

@ = 0, z € 00N.

Assuming that Lg € L?(2), problem (9.16) is exactly of the same type as
(9.2).

Remark 9.6 (Operators not in divergence form). A differential oper-
ator of the form

= — Z 9 (2)Ugiz; + Zbz Z)ug, + c(z)u
%3,5=1 =1
can be rewritten as
n (K d n . n ..
Lu = — Z (a¥ (w)umz)zJ + E (b’(m) + Za’{cj(m))uxi + c(z)u.

Assuming that a%, a* 25 b, c € L*°(Q), a weak solution of the corresponding
problem (9.2) can again be obtained by solving (9.12), where the bilinear
form B is now defined by

Blu,v] = / Z a" Ug; Vg, +Z(b’+2a” )uz1v+cuv dz .

4,J=1

As a first example, consider the boundary value problem

—Au+u = f, z €N,
(9-17) { u = 0, z € 0N.
Clearly, the operator —Au = — ), U5, is uniformly elliptic, because in this

case the n x n matrix A(z) = (a¥(z)) is the identity matrix, for every z € Q.
The existence of a weak solution to (9.17) can be proved by a remarkably
concise argument, based on the Riesz representation theorem.
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Lemma 9.7. Let Q C R™ be a bounded open set. Then for every f € L2(Q)
the boundary value problem (9.17) has a unique weak solution u € Hg(Q2).
The corresponding map f + u is a compact linear operator from L2(S2) into

Hg(Q).

Proof. By the Rellich-Kondrachov theorem, the canonical embedding ¢ :
H} () — L2(Q) is compact. Hence its dual operator ¢* is also compact.
Since Hj and L? are Hilbert spaces, they can be identified with their duals.
We thus obtain the following diagram:

Hy(Q) — L*(Q),
HY(Q) = (@) «— LX) = LXQ).
For each f € L2(f2), the definition of dual operator yields
f,vm = (e = (f,v)L2 for all f € L%(Q), v € H}(Q).
By (9.14) this means that .* f is precisely the weak solution to (9.17). O

(9.18)

9.1.3. Homogeneous second-order elliptic operators. We begin by
studying solutions to the elliptic boundary value problem

Lu = f, z €,
©19 {WZh e
assuming that the differential operator L contains only second-order terms:
n
(9.20) Lu = =) (0¥ (2)ug,)s, -
=1

We recall that a weak solution of (9.19) is a function u € H}(f2) such
that

(9.21) Blu,v] = (f,v)z  for allv € H}(Q),
where B : H} x H} — R is the continuous bilinear form
n
(9.22) Blu,v] = / Z 0 ug,vg, dz .
245=1

Theorem 9.8 (Unique solution of the elliptic boundary value prob-
lem). Let Q@ C R™ be a bounded open set. Let the operator L in (9.20) be
uniformly elliptic, with coefficients a¥ € L>®(Q). Then, for every f € L2(R),
the boundary value problem (9.19) has a unique weak solution u € H}(Q).
The corresponding solution operator, which we denote as L' : f — u, is a
compact linear operator from L2(Q) into H}(Q).
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Proof. The existence and uniqueness of a weak solution to the elliptic
boundary value problem (9.19) will be achieved by checking that the bi-
linear form B in (9.22) satisfies all the assumptions of the Lax-Milgram
theorem.

1. The continuity of B is clear. Indeed,

|B[u,v]| < Zj:l fQ |aijurci'"zj|dm < Zj:l ”aij”L“”umi”L2”Uzj”L2

IA

C llull g l|vl| 2 -

2. We claim that B is strictly positive definite, i.e., there exists § > 0 such
that

(9.23) Blu,u] > Bllulfng — for allu € Hy(9).

Indeed, since 2 is bounded, Poincaré’s inequality yields the existence of a
constant x such that

lulliz) < & /Q |[Vu|2dz  for all u € H}(R).

On the other hand, the uniform ellipticity condition implies
n . n
Blu,y] = / > atugu,, do > / 6 w2 do = 0 / Va2 dz.
ij=1 L - 2
Together, the two above inequalities yield

k+1
lullfn = lullfs + Vel < (+1)[IVulfs < —5— Blu,d].

This proves (9.23) with 8 =0/(k + 1).

3. By the Lax-Milgram theorem, for every f € H}(Q) there exists a unique
element u € H} such that
(9.24) Blu,v] = (f,v)p for all v € H}(Q).
Moreover, the map A : f — u is continuous, namely
luller < B7 I Fllar -
Choosing f = .*f € H}(Q), defined in (9.18), we thus achieve
(9.25) Blu,v] = (*f,v)m = (f,v)r2 for all v € H3(Q).

By definition, u is a weak solution of (9.19).
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4. To prove that the solution operator L™! : f + u is compact, consider
the the diagram

L3(Q) -5 HIQ) & HLQ).
By Lemma 9.7, the linear operator ¢* is compact. Moreover, A is continuous.
Therefore the composition L™! = A o * is compact. O

9.1.4. Representation of solutions in terms of eigenfunctions. Since
H}(Q) c L%(R), the solution operator L~! described in Theorem 9.8 can also
be regarded as a compact operator from L2(f) into itself. In the symmetric
case where a¥ = a%, the operator L~! is selfadjoint. Hence, by the Hilbert-
Schmidt theorem, it admits a representation in terms of a countable basis
of eigenfunctions.

Theorem 9.9 (Representation of solutions as a series of eigenfunc-
tions). Assume a¥ = a’* € L*®(Q). Then, in the setting of Theorem 9.8,
the linear operator L1 : L2(Q) — L2(Q) is compact, one-to-one, and self-
adjoint.

The space L2(QY) admits a countable orthonormal basis {¢r; k > 1}
consisting of eigenfunctions of L™, and one has the representation

(9.26) L7 = Mlfs dr)re -

k=1
The corresponding eigenvalues \i satisfy

(9.27) lim A\, =0, At >0 forallk > 1.
k—oo

Proof. 1. By Theorem 9.8, L~! is a compact linear operator from L2(Q2)
into itself.

To show that L~! is one-to-one, assume u = L™!f = 0. Then
0 = Blu,v] = (f,v)L2

for every v € H}(). In particular, for every test function ¢ € C(R) we

have
/f¢dw = 0.
9)

This implies f(z) = 0 for a.e. z € Q. Hence Ker(L™!) = {0} and the
operator L~} is one-to-one.

2. To prove that L~ is selfadjoint, assume

figel?(Q), w=L7'f, wv=L7g.
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By the definition of weak solution in (9.9), this implies u,v € H}(2) and
(oo = [ugde = [ Fausedo = [ fode = (£,170na.
Q QG Q

Note that the second equality follows from the fact that v = L~!g, using
u € H}(Q) as a test function. The third equality follows from the fact that
u= L71f, using v € H}(Q) as a test function.

3. Since L~ is a compact and selfadjoint operator on the separable space
L?(Q), by the theorem of Hilbert-Schmidt in Chapter 6, there exists of a
countable orthonormal basis consisting of eigenfunctions of L=!. This yields
(9.26).

By the compactness of the operator L™1, the eigenvalues satisfy A\r — 0.
Finally, choosing v = ¢y, as the test function in (9.21), one obtains

B{Xkok, ¢kl = (Sk, dr)rz = L.

Since the quadratic form B is strictly positive definite, we conclude that

1
B¢k, o] ~

Example 9.10. Let Q =]0,7[C R and Lu = —ug,. Given f € L2(]0,7[),
consider the elliptic boundary value problem

e = 0. O

(9:28) { u(0) = u(r) = 0.
As a first step, we compute the eigenfunctions of the operator Lu = —ugzg.

Solving the boundary value problem
—Ugg = UU, u(0) = u(m) =0,

we find the eigenvalues and the normalized eigenfunctions

we = k%, dr(z) = \/gsin kx.

Of course, the inverse operator L~! has the same eigenfunctions ¢, with
eigenvalues \; = 1/k2.
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In this special case, formula (9.26) yields the well-known representation
of solutions of (9.28) in terms of a Fourier sine series:

w@) = L7 = Y M (fr du)r2 ok

k=1

= Z% (/wa(y) \/gsinkydy) \/gsin kx

k=1

—~ 2 ([ : .
= kg = (/0 f(v) smkydy) sin kx .

1

9.1.5. More general linear elliptic operators. The existence and
uniqueness result stated in Theorem 9.8 relied on the fact that the bilin-
ear form B in (9.21) is strictly positive definite on the space H3(Q2). This
property no longer holds for the more general bilinear form B in (9.11),
where additional lower-order terms are present. For example, if the func-
tion c(z) is large and negative, one may find some u € H}(2) such that
Blu,u] < 0.

Example 9.11. Consider the open interval @ =]0,7[. Observe that the
operator
is uniformly elliptic on 2. However, the corresponding bilinear form

™
Blu,v] = / Uz Uz — duv dz
0

is not positive definite on H3(Q2). For example, taking u(z) = sinz, we find
3m

m
Blu,u] = / cos’z — 4sinzdx = -5
0

If f(z) = sin 2z, then the boundary value problem
—Uze — 4u = sin2z, z €]0,[,
u(0) = u(mr) =0

has no solutions. Indeed, choosing v(z) = sin2z, for every u € H}(Q) an
integration by parts yields

(9.29)

™ ™
Blu,v] = / Uy — duvdr = / (2uz cos 2z — 4u sin 2x) dx
0 0

™ mw
= / (2u sin2:c) dr = 0 # / sin? 2z dr = (f,v)Lz2.
0 z 0
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Therefore there is no function u € H} () that satisfies (9.12).

In this connection one should also notice that the corresponding homo-
geneous problem

_Uzm —4U = 0, x G]O,Tf[,
(9-30) { u(0) = u(r) =0
admits infinitely many solutions: u(z) = & sin2z, for any constant .

We now study the existence and uniqueness of weak solutions to the
more general boundary value problem (9.1)-(9.2). Our approach is based
on two steps.

STEP 1: By choosing a constant v > 0 sufficiently large, the operator
(9.31) Lyu = Lu+vyu

is strictly positive definite. More precisely, the corresponding bilinear form
(9.32)

n n

Bylu,v] = / (Z a' (x) UgVa; — Z b (2) uvg,; + c(z) wv + vuv) dx
2 \ij=1 i=1

satisfies

(9.33) By[u,u] > Blul?n for all u € H}(Q),

for some constant § > 0. Using the Lax-Milgram theorem, we conclude that
for every f € L%(Q) the equation

Lwu = f
has a unique weak solution u € H}(£2). Moreover, the map f +— u = Ly 1f

is a linear compact operator from L%(Q2) into H}(Q2) C L2(2). We regard
L3! as a compact operator from L%(R2) into itself.

STEP 2: The original problem (9.2) can now be written as
Lu = Lyu—vyu = f.
Applying the operator L ! to both sides, one obtains

-1, — 7-1
(9.34) u— L *yu = LI f.
Introducing the notation
- -1 - 71
(9.35) K = 4L}, h = L f,

we are led to the equation
(9.36) (I-K)u = h.
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Since K is a compact operator from L2(f2) into itself, Fredholm’s theory can
be applied. In particular, one has

Fredholm’s alternative: either

(i) for every h € L%(R) the equation u— Ku = h has a unique solution
u € L2(9),
or else

(ii) the equation u — Ku = 0 has a nontrivial solution u € L2(Q).

Calling K* : L2 — L? the adjoint operator, case (ii) occurs if and only
if the adjoint equation v — K*v = 0 has a nontrivial solution v € L2(Q).
Information about the existence and uniqueness of weak solutions to (9.2)
can thus also be obtained by studying the adjoint operator

n n
(9.37) L*v = — Z (a¥ () Vo )w; — Zbi(a:)vmi +c(z)v.

i,j=1 i=1
The remainder of this section will provide detailed proofs of the above claims.

Lemma 9.12 (Estimates on elliptic operators). Let the operator L in
(9.1) be uniformly elliptic, with coefficients a*,b*,c € L°(2). Then there
exist constants o, B3,y > 0 such that

(9.38) |Blu,v]| < allulmllv)lq,
(9:39) Bllulfn < Blu,u] +7]lulli,
for all u,v € H}(Q).

Proof. 1. The boundedness of the bilinear form B : H} x H} + R follows
from

|B[u, v]’ = /Q ( i a9 ug,vg; — Xn:biuvzi + cuv)dm

i,j=1 i=1

IA

n n
> Nla¥ oo luz,ll2llv; e + Y 15 lluee [lullgzllvz,lx2

ij=1 i=1
+lellwee l|ullLalv]L2

< afullgr vl -
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2. Concerning the second estimate, using the ellipticity condition (9.4) and
the elementary inequality ab < 25a? + §b%, we obtain

n n n
6 leum,lliz = 0/921/3“ dz < /S]Za”uziumj dx

i,5=1

n
= Blu,u] +/ (szuuzl — cu2> dz
Q

i=1

n
Blu,u] + ) 16 lveo lullie s 1Lz + llelle[ullf2

i=1

IA

n
1:_

1 o~ 6
< Blu,u] + (@ DI e e + 5 ||uziniz) + llelleelfullz
=1 =1

Therefore

0 n
Blua] > 5 lumilfa — Cllullfs  for all u € H(®),
=1

for a suitable constant C. Taking 8 = 0/2 and v = C + 0/2, the inequality
(9.39) is satisfied. 0O

Remark 9.13. By the above lemma, if the constant v > 0 is large enough,
then the bilinear form
B’Y[u’ 'U] = B[u, U] +7(u, U)L2
in (9.32) is strictly positive definite. Notice that, for v > 0 large, it would
be very easy to show that the bilinear form
B, = Blu,v] +~ (u,v)m

is strictly positive definite on HE(f2). However, Lemma 9.12 shows that we
can achieve strict positivity by adding the much weaker term v (u, v)g2.

Let v be as in (9.39) and define the bilinear form B., according to (9.32).
Since B, is strictly positive definite, we can apply the Lax-Milgram theorem
and conclude that, for every f € L%(f), there exists a unique u € H(1)
such that

(9.40) Bylu,v] = (f,v)re = (" f,v)m for all v € H ().

Since the map ¢* is compact, the solution operator f — u = L7 1f is a linear
compact operator from L2(Q) into H}(£2). Therefore, it is also a compact
operator from L2(Q) into itself.
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An entirely similar result holds for the adjoint problem

{Lfyv = g, z€eN,

(941) v = 0, z € 092,

where L* is the adjoint operator introduced in (9.37) and Liu = L*u + yu.
Given g € L?(Q), a weak solution of (9.41) is defined to be a function
v € H}() such that

(9.42) Bl[v,u] = By[u,v] = (u,g)r2 for all u € H}(Q).

Since B} is strictly positive definite, for every g € L? the Lax-Milgram
theorem yields a unique weak solution v of (9.41). The map g — v =
(L%)~1g is a linear, compact operator from L?(Q) into itself.

Lemma 9.14 (Adjoint operator). In the above setting, the operator
(L,*y)‘1 is the adjoint of the operator L, L

Proof. By definition, for every f,g € L2(Q) and u,v € H}(Q) one has

(f’v)L2 = B’)’ [L;lfa 'U] ) (uag)L2 = B’Y ['LL, (L;l)*g] .
In particular, choosing v = (L%)~'g and u = L3 f, we obtain
(f, (L3)7'9)a = By [LyF, (L7D)*9) = (L3, 9)1s - O

Lemma 9.15 (Representation of weak solutions). Given any f €
L2(Q), a function u € L2(Q) is a weak solution of (9.2) if and only if

(9.43) (I-Kyu = h, with K=+L;', h=LJ'f.
Proof. 1. Let u be a weak solution of (9.2). By definition, this means that
u € H}(Q) and

B,[u,v] = Blu,v]+y(u,v)2 = (f +yu,v)L2 for all v € H3(R).

Therefore
u = L;Y(f+u) = h+ Ku.

2. To prove the converse, let (9.43) hold. Then
u = yLy'u+ L7'f € Hy(Q).
Moreover, for every v € H}(Q2) we have

B[’LL, 'U] = B’Y[ua U] - ")’('LL,U)L2 = (f + 7uav)L2 - ’Y(uav)Lz = (f’ v)L2 .
O
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In order to apply Fredholm’s theory (Theorem 6.1), together with (9.2)
we consider the homogeneous problem

Lu = 0, T €N,
(949 {%I0 iem
and the adjoint problem

L*v = 0, z€N,
(9.45) { v = 0, T €00,

where L* is the adjoint linear operator defined at (9.37).

Theorem 9.16 (Unique solutions to the elliptic problem). Under the
basic hypotheses (H), the following statements are equivalent:

(i) For every f € L2(Q), the elliptic boundary value problem (9.2) has
a unique weak solution.
(i) The homogeneous boundary value problem (9.44) has the only so-
lution u(z) = 0.
(iii) The adjoint homogeneous problem (9.45) has the only solution v(z)
=0.

Proof. 1. Since K = yL3! is a compact operator from L2(Q) into itself,
Fredholm’s theorem can be applied. As a consequence, the linear opera-
tor I — K is surjective if and only if it is one-to-one, i.e., if and only if
Ker(I — K) = {0}.

2. By Lemma 9.15, u— Ku = 0 if and only if u is a weak solution of (9.44).
An entirely similar argument shows that v — K*v = 0 if and only if v is a
weak solution of (9.45).

By Fredholm’s theorem, Ker(I — K) and Ker(I — K*) have the same
dimension. We thus obtain a chain of equivalent statements:
I — K is surjective,
Ker(I — K) = {0},
Ker(I — K*) = {0},
u = 0 is the unique solution of (9.44),
v = 0 is the unique solution of (9.45). O

Theorem 9.16 covers the situation where I — K is one-to-one and Fred-
holm’s first alternative holds. In the case where I — K is not necessarily
one-to-one, the existence of solutions to

-1
u—Ku = L°f
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can be determined using the identity

(9.46) Range(I — K) = [Ker(I — K*)]*.

Theorem 9.17 (Existence of solutions to the elliptic problem). Un-
der the hypotheses (H), problem (9.2) has at least one weak solution if and
only if

(9.47) (f,v)r2 = 0

for every weak solution v € H}(Q) of the adjoint problem (9.45).

Proof. The boundary value problem (9.2) has a weak solution provided
that L7'f € Range(I — K). By (9.46), this holds if and only if LJ!f is
orthogonal to every v € Ker(I — K*), i.e., to every solution v of the adjoint
problem (9.45).

We claim that this holds if and only if f itself is orthogonal to every
solution v of (9.45). Indeed, if v — K*v = 0, one has

(f,v)ee = (LK) = (Kf,v)r2 = v(L3 fv)Le.
Since v > 0, this proves our claim. O

9.2. Parabolic equations

Let 2 C R™ be a bounded open set and let L be the operator in (9.1). In
addition to the standard hypotheses (H) stated at the beginning of the chap-
ter, we now assume that the coefficients a® satisfy the stronger regularity
condition

(9.48) al e Wh(Q).
In this section we study the parabolic initial-boundary value problem
us+ Lu = 0, t>0,z€eq,
(9.49) u(t,z) = 0, t>0, zedf,
u(0,2) = g(z), z€eN.

It is convenient to reformulate (9.49) as a Cauchy problem in the Hilbert
space X = L%(Q), namely

(9.50) ad?u = Au, u(0) = g,

for a suitable (unbounded) linear operator A : L%(Q) — L?(Q2). More pre-

cisely
(9.51) A= -L, Dom(A)= {u € HY(Q); Lue L2(Q)}.

In other words, u € Dom(A) if u is the solution to the elliptic boundary
value problem (9.2), for some f € L%(Q). In this case, Au = —f.
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Our eventual goal is to construct solutions of (9.50) using semigroup
theory. We first consider the case where the operator L is strictly positive
definite on H}(f2). More precisely, we assume that there exists 8 > 0 such
that the bilinear form B : H}(2) x H}(2) — R defined at (9.11) is strictly
positive definite: there exists 8 > 0 such that

(9.52) Blu,u] > Bllull?s for all u € H}(R).
Notice that this is certainly true if 4* =0 and ¢ > 0.

Theorem 9.18 (Semigroup of solutions of a parabolic equation.
I). Let the standard hypotheses (H) hold, together with (9.48). Moreover,
assume that the corresponding bilinear form B in (9.11) is strictly positive
definite, so that (9.52) holds.

Then the operator A = —L generates a contractive semigroup {S; t >
0} of linear operators on L2(R).

Proof. To prove that A generates a contraction semigroup on X = L2(f),
we need to check the following:
(i) Dom(A) is dense in L2(f).
(ii) The graph of A is closed.
(iii) Every real number A > 0 is in the resolvent set of A, and
I =47 < A7t

1. To prove (i), we observe that, if ¢ € C2(f), then the regularity assump-
tions (9.48) imply f = Ly € L?(2). This proves that Dom(A) contains the
subspace C2(f2) and therefore it is dense in L2(2).

2. If (9.52) holds, then, by the Lax-Milgram theorem, for every f € L(Q)
there exists a unique u € H(Q) such that

Blu,v] = (f,v)12 for all v € H}(Q).
The map f — u = L7!f is a bounded linear operator from L2(f2) into
L3(Q).
We observe that the pair of functions (u, f) lies in the graph of A if and

only if (—f,u) is in the graph L™!. Since L™! is a continuous operator, its
graph is closed. Hence the graph of A is closed as well.

3. According to the definition of A, to prove (iii) we need to show that, for
every A > 0, the operator A\I — A has a bounded inverse with operator norm

[l(AI — A)~Y| < A~L.. Equivalently, for every f € L?(f2), we need to show

UPBAL , Co
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that the problem

A+ Lu = f, z €N,
(9.53) { u = 0, x €090,
has a weak solution satisfying
1
(9.54) flull: < X 1 Fllez -

By the Lax-Milgram theorem, there exists a unique u € Hj(Q2) such that
(9.55) (M, v)12 + Blu,v] = (f,v)2  for all v € H}(Q).
Taking v = u in (9.55), we obtain

Mlullz + Blu,u] = (fw)rz < [Ifllea - ullce -

Since we are assuming Blu,u] > 0, this yields

AMlullee < (I fllez,
proving (9.54).

4. We can now use Theorem 7.13 and conclude that the linear operator A
generates a contractive semigroup. a

9.2.1. Representation of solutions in terms of eigenfunctions. Con-
sider the special case where a¥/ = a’* and L is the operator in (9.20), con-
taining only second-order terms. In this case, by Poincaré’s inequality, the
bilinear form B in (9.22) is strictly positive definite and Theorem 9.18 can
be applied.

Using Theorem 9.9, one obtains a representation of the semigroup tra-
jectories in terms of an orthonormal basis {¢r; k > 1} of eigenfunctions of
the compact selfadjoint operator L~!. By construction, for every k > 1 one
has

L7, = Mo,
where A\ > 0 is the corresponding eigenvalue. Therefore
1
(9.56) ¢ € Dom(L),  Lép = pkdks  pk= XN

Notice that Ay — 0 and ux — 00, as k — oo. For every k > 1, the function
u(t) = e Mgy

provides a C! solution to the Cauchy problem

d
U0 = ~Lu(t),  w(0)=¢x.
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Hence, by the uniqueness of semigroup trajectories, one must have
Sepr = e M.

By linearity, for any coefficients ci,...,cny € R one has

N N
St (Z Ck¢k> = ) ke Mgy
k=1 k=1

Since S; is a bounded linear operator, decomposing an arbitrary function
g € L%(Q) along the orthonormal basis {¢y; k > 1}, we thus obtain

(9.57) Sig = Y e (g, d)r2 bk
k=1

The above representation of semigroup trajectories is valid for every g €
L?(Q) and every t > 0.

Lemma 9.19. Let L be the operator in (9.20). Then for every g € L3(2)
the formula (9.57) defines a map t — uz = Sig from [0, 0o[ into L2(Q2). This
map is continuous for t € [0,00[ and continuously differentiable for t > 0.
Moreover, u(t) € Dom(L) C H}(Q) for every t > 0 and

d

(9.58) Eu(t) = Lu(t) forallt>0.

Proof. 1. Let g € L2(2). Since ux > 0 for every k, it is clear that

2
‘e_”kt(g)¢k)L2 < (g’¢k)]2:,2'
Therefore,
2
>l e dene| < Yo(9.0% = lgllEa < oo
k>1 k>1

Hence the series in (9.57) is convergent, uniformly for ¢ > 0. In particular,
since the partial sums are continuous functions of time, the map t — S;g is
continuous as well.

2. We claim that, even if g ¢ H}(f2), one always has
(9.59) Sig € Dom(L) C H}(Q)  forallt>0.

Indeed, a function u = ) cxdi lies in Dom(L) if and only if the coeffi-
cients cy, satisfy

D (cemr)? < 0.

k
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In the case where cx(t) = e #*(g, ¢x)L2, we have the estimate

060 Y (ua®)® < sup(wee) - Y(a. ok
k

k

An elementary calculation now shows that, for £ > 0 and ¢ fixed, the function
€ — £ e ¥ attains its global maximum at £ = 1/t. Therefore,

1
i e Mt < maxgsg te 8 = e
Using this bound in (9.60), we obtain
> (mer®) < gz llglia
k=1

Hence the series defining Lu(t) is convergent. This implies u(t) € Dom(L),
for each ¢ > 0.

3. Differentiating the series (9.57) term by term and observing that the
series of derivatives is also convergent, we achieve (9.58). a

Example 9.20. As in Example 9.10, let @ =]0,7[C R and Lu = —ug,.
Given g € L2(]0, 7[), consider the parabolic initial-boundary value problem

u(0,z) = g(z), 0< z <m,
u(t,0) = u(t,m) = 0.

In this special case, the formula (9.57) yields the solution as the sum of a
Fourier sine series:

> 2 —k2t 4 . .
u(t,z) = Z —e A 9(y) sinkydy | sinkz.
k=1

9.2.2. More general operators. To motivate the following construction,
we begin with a finite-dimensional example. Let A be an n X n matrix and
consider the linear ODE on R

(9.61) %x(t) — —Az(t).

If A is positive definite, i.e., if (Az, =) > 0 for all z € R™, then — A generates
a contractive semigroup. Indeed

4 e = 2 <%w<t>, x<t>> = 2(~Az(t), a(t)) < 0,

showing that the Euclidean norm of a solution does not increase in time.
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Next, let A be an arbitrary matrix. We can then find a number v >
0 large enough so that A + «[I is positive definite, and hence the matrix
—(A+~I) generates a contractive semigroup. In this case, if z(t) = e"*4z(0)
is a solution to (9.61), writing —A = vI — (A + «I), one obtains
lz(8)] = le=42(0)

= el I-(A+Dkg o)

(9.62) _ gte-Utadig )

< €”[z(0)].

According to (9.62), the operator —A generates a semigroup of type ~.

We shall work out a similar construction in the case where L is a general
elliptic operator, as in (9.1), and the corresponding bilinear form B[u,v] in
(9.11) is not necessarily positive definite. According to Lemma 9.12, there
exists a constant v > 0 large enough so that the bilinear form
(0.63) Byfu,] = Blu,o] +7(u,v)y2
is strictly positive definite on H}(£2). We can thus define

Lyu = Lu+vyu, B,[u,v] = Blu,v] +v(u,v)L2.
The parabolic equation in (9.49) can now be written as
Uy = —Lyu+yu.
By the previous analysis, the operator A, = —(L + I) generates a con-

tractive semigroup of linear operators, say {Sp); t > 0}. Therefore, the
operator A = —L = I — L., defined as in (9.51) generates a semigroup of
type . Namely {S:; t > 0}, with

Sy=emSM ¢>o.
Summarizing the above analysis, we have

Theorem 9.21 (Semigroup of solutions of a parabolic equation.
IT). Let Q@ C R™ be a bounded open set. Assume that the operator L in (9.1)
satisfies the regularity conditions (9.48) and the uniform ellipticity condition
(9.4).

Then the operator A = —L defined at (9.51) generates a semigroup
{S:; t >0} of linear operators on L2(0).

Having constructed a semigroup {S;; t > 0} generated by the operator
A, one needs to understand in which sense a trajectory of the semigroup
t — u(t) = S;f provides a solution to the parabolic equation (9.49). In the
case where L is the symmetric operator defined in (9.20), the representation
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(9.57) yields all the needed information. Indeed, according to Lemma 9.19,
for every initial data g € L?(Q) the solution ¢ — u(t) = Sig is a C! map,
which takes values in Dom(L) and satisfies (9.58) for every ¢ > 0.

A similar result can be proved for general elliptic operators of the form
(9.1). However, this analysis is beyond the scope of the present notes. Here
we shall only make a few remarks:

(1) Initial condition. The map t — u(t) = S:g is continuous from [0, oo[
into L2(Q) and satisfies u(0) = g. The initial condition in (9.49) is thus
satisfied as an identity between functions in L2(f2).

(2) Regular solutions. If g € Dom(A), then u(t) = S;g € Dom(A) for
all t > 0. Moreover, the map ¢t — wu(t) is continuously differentiable and
satisfies the ODE (9.50) at every time ¢ > 0. Since Dom(A) C H}(Q), this
also implies that u(t) satisfies the correct boundary conditions, for all £ > 0.

(3) Distributional solutions. Given a general initial condition f € L2(f),
one can construct a sequence of initial data f,, € Dom(A) such that || fn, —
fllLz = 0 as m — oo. In this case, if the semigroup is of type -, we have

St fm — SefllLe < €[l fm — fllLe-

Therefore the trajectory ¢ — u(t) = S;f is the limit of a sequence of C!
solutions t — 4, (t) = St fm. The convergence is uniform for ¢ in bounded
sets.

Relying on these approximations, we now show that the function u =
u(t, z) provides a solution to the parabolic equation

n

(9.64) u = Y (69(2)g,)a; — Y b (2)Us; — c(z)u
=1

3,j=1

in the distributional sense. Namely, for every test function ¢ € C°(€2x ]0, oo[),
one has

(9.65) // {wpt + z": u(aijgoxj)xi + éu(bigo)xi - cuga}d:c dt = 0.

3,J=1

To prove (9.65), consider a sequence of initial data f,, € Dom(A) such that
||fm — fllLz = 0. Then, for any fixed time interval [0,T], the trajectories
t — um(t) = Sifm converge to the continuous trajectory t — u(t) = Sif in
C°([0,T]; L2(R)). Since each uy, is clearly a solution in the distributional
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sense, writing

n n
// {'U'm‘Pt + Z um(aij‘ij)mi + Zum(bi‘:o)zi - Cum‘P}d"B dt =0

ij=1 i=1
and letting m — oo, we obtain (9.65).
9.3. Hyperbolic equations

In this last section we consider the linear hyperbolic initial-boundary value
problem

ug +Lu = 0, teR, z€Q,
(9.66) u(t,z) = 0, teR, z €99,
u(0,z) = f(z), u(0,z) = g(z), €.

Compared with (9.49), notice that here we are taking two derivatives with
respect to time. The system (9.66) can thus be regarded as a second-order
evolution equation in the space L?(f2). For simplicity, we shall only treat
the case where L is the homogeneous second-order elliptic operator

n
(9.67) Lu = =) (a9 (2)ug;)a: »
ij=1
assuming that the coefficients a¥ satisfy
(9.68)
n
a¥ =a e Whe(Q), > a¥(z)&g > 0)¢fF  forallz€Q, £€R™.

i,j=1
According to Theorem 9.9, the space L?(f2) admits an orthonormal basis
{#x; k > 1} consisting of eigenfunctions of L, so that

(969) ¢k € DOIII(L) ) L¢k = Mk ¢k )

for a sequence of strictly positive eigenvalues pr — +00 as k — oo. It is
thus natural to construct a solution of (9.66) in the form

o0
(9.70) u(t,z) = Y ck(t) du(z).
k=1
Taking the inner product of both sides of (9.70) with ¢, we see that each

coefficient ci(+) should satisfy the linear second-order ODE

” _ ck(0) = (dx, 9Lz,
(9.71) ck + ek = 0, { 0) = (¢, h)iz-

The following analysis will show that the formal expansion (9.70)—(9.71) is
indeed valid, provided that the initial data satisfy

(9.72) g € H} (), h e L¥Q).



208 9. Linear Partial Differential Equations

As a first step, let us rewrite (9.66) as a first-order system, setting v = ;.
On the product space

(9.73) X = H}(Q) x L%(Q)

we thus consider the evolution problem

o 0-(G 0 Go-0)

In the special case where

(9.75) f = axdx, g = bidi,

for a given k > 1 and ag, by € R, an explicit solution of (9.74) is found in
the form

u(t) = e,  v(t) = w(t) = c(t)dk,
where the coefficient ck(t) satisfies
k@) +ueck(t) = 0, (0 = ax, c(0) = b.

An elementary computation yields
b .
(t) = ap cos(y/kt) + = sin(VAR?)
k

Hence

u®)\ cos(y/fix t) — sin(y/Ax t) ak Bk
(9.76) (v(t)) - (—Msinwrkt) Y os(y/ T ) )(bm)‘

Observe that t — (u(t), v(t)) is a continuously differentiable map from R
into H}(2) x L%(Q2) which satisfies the initial conditions and the differential
equation in (9.74).

By taking linear combinations of solutions of the form (9.76), we now
obtain a group of linear operators:
(9.77)

£\ = s~ cos(vEx?) Ji= sin(y/Axt) (f, 1)1 B
2(]) = ,;(-«asmwm os(/r ) >(<g,¢k>m¢k)'

The next theorem shows that {S;; ¢ € R} is actually a group of linear
isometries on the product space X = H}(Q) x L%(Q), with the equivalent
norm

(9.78) lwo)lx = (Bluul +lolZs) "
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1

Figure 9.3.1. An elastic membrane, clamped along the boundary
of the domain 2, whose points vibrate in the vertical direction.

Remark 9.22. Consider an elastic membrane which occupies a region §2 in
the plane, is clamped along the boundary 052, and is subject to small vertical
vibrations (Figure 9.3.1). Let u(t,z) denote the vertical displacement of a
point z on this membrane, at time ¢. Then the quantity ||(u,ut)||% can be
regarded as the total energy of the vibrating membrane. Indeed, the term
Blu, u] describes an elastic potential energy, while ||ut||%2 yields the kinetic
energy.

Theorem 9.23 (Solutions of a linear hyperbolic problem). In the
above setting, the formula (9.77) defines a strongly continuous group of
bounded linear operators {S;; t € R} on the space X = H}(Q) x L2(Q).
Each operator S; : X — X is an isometry with respect to the equivalent
norm (9.78).

Proof. 1. The equivalence between the norm (9.78) and the standard prod-
uct norm

_ 1/2
I o)lenee = (Il + l1ol22)

is an immediate consequence of (9.23).

2. Let the functions f, g be given by
oo [eo}

F=) arde, 9= bdr with ar=(fidk)r2, bk = (9,6)r2-
k=1 k=1

Then

oo

B[f, f] = Z(#kak¢k, ak¢k)L2 =Y mai, lglfa = D 8
k=1 k=1

k=1
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Therefore 5 € X if and only if

(9.79)
[e o] oo [e o} oo
Z,Urkai = Z#k (fa¢k)%,2 < 00, Zbi = Z(g)d)k)%'-’ < 00.
k=1 k=1 k=1 k=1

If (ch) € X, then for every t € R the series defining S; (5) in (9.77) is

convergent. Introducing the coefficients

( 1
ax(t) = cos(y/pkt)ar + —— sin(y/pxt) by,
0s0) | k kt)ak N kt) O

| bk(t) = aip(t) = —y/ sin(y/ t) ag + cos(y/Hk t) bk

at any time t we have

s:(7) i - g,: " |ak(t)|2+:é s = | (4)

This shows that each linear operator S; is an isometry with respect to the
equivalent norm || - || x.

2
(9.81) .
X

3. We claim that the family of linear operators {S; ; t € R} satisfies the
group properties

982)  So <£) - <£) 5,5, @) = Sirs (g) t,s€R.

Indeed, (9.82) is clearly satisfied for initial data f,g of the special form
(9.75). By linearity and continuity, it must hold for all initial data.

To complete the proof, we need to show that, for f,g fixed, the map

t— S g is continuous from R into X. But this is clear, because the
above map is the uniform limit of the continuous maps
f m m
(9.83) ¢+ S ( m) v Imo = D (A2 ks gm = D (9, 6k)L2 bk
9m
k=1 k=1
as m — oo. O

Having constructed the group of linear operators {S;; t € R}, we still
need to explain in which sense the trajectories

(9.84) t s <;‘Eg) = S, <£ )

provide a solution to the hyperbolic initial-boundary value problem (9.66).
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(1) The initial and boundary conditions are satisfied. Consider an
arbitrary initial data g € X = H}(Q) x L2(2). By the continuity of the
map in (9.84), it follows that

lu@) = fllgr =0, o) —glle =0 ast—0.

Hence the initial conditions in (9.66) are satisfied.

Moreover, by the definition of the space X, we have u(t) € Hg(Q) for
all t > 0. Hence the boundary condition u = 0 on 99 is also satisfied.

(2) The hyperbolic equation is satisfied in the distributional sense.
If both functions f and g are finite linear combinations of the eigenfunctions
@, then the corresponding trajectory (9.84) is a continuously differentiable
map from R into X, and it satisfies (9.74) at all times ¢ > 0.

More generally, given initial data f € H}(Q2) and g € L2(Q2), one can
construct a sequence of approximations fp,, gm as in (9.83), so that || frm —
fllgr = 0, |lgm — gllLz — 0 as m — oo. The corresponding semigroup

trajectories t — um(t)> = S <fm) converge to the trajectory (9.84),
'Um(t) 9m

uniformly for ¢ € R. Relying on these approximations, we now show that
the function u = u(t, z) provides a solution to the hyperbolic equation
n
Uty = Z (6" (2)ua;)a;
i,j=1

in the distributional sense. Indeed, consider any test function ¢ €
C(]0,00[ xf2). Since each uy, = um(t,z) is a distributional solution
of (9.66),

// {umcptt+ Z um)micp,;j}da;dt = 0.

1,j=1

Letting m — oo and using the convergence ||um, (t) —u(t)|| g2 — 0, uniformly
for t € R, we obtain

// {ucptt+ > a¥ uzlcpzj}da: = 0.

1,7=1

Example 9.24. Let Q =]0,7[C R and Lu = —ug,. Given f € H}(Q) and
g € L%(]0, 7[), consider the hyperbolic initial-boundary value problem

u(0,z) = f(z), w(0,z) = g(=), O<z<m,
u(t,0) = u(t,m) = 0.
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In this special case, the formula (9.77) yields the solution in terms of a
Fourier sine series:

u(t,z) = i %[coskt (/01r fy) sinkydy)

k=1
+su;ck:t ( / 9(y) sinky dy> ] sinkzx .
0

9.4. Problems

1. Let Q@ = {(z,y); %2 +y? < 1} be the open unit disc in R2. Prove that, for every
bounded measurable function f = f(z,y), the problem

Ugg + TUgy +Uyy = f on (2,
u =0 on 9N

has a unique weak solution.

2. Let Q = {(z,y); z2+y% < 1} be the unit disc in R%. On the space X = H} (1),
consider the inner product

(w,v)o = / [’Urm'vm + 2uy vy + y(uzvy + uyvz)] dzdy .
Q

(i) Prove that (-,-)¢ is indeed an inner product on X, which makes X a
Hilbert space.

(ii) Given f € L2(Q), show that there exists a unique u € X such that
(w,v)o = /fvdx forallv e X = Hy(Q).
Q
What elliptic equation does u solve ?

3. Consider the differential operator on R?
Lu = —(2ug)s — (Yuy)y + 2ugy + 3(ugz + uy) — 6u.

Determine for which bounded open sets  C R? it is true that the operator L is
uniformly elliptic on 2.

4. Let Q C R™ be a bounded open set. Let 5 > 0 be the best constant in Poincaré’s
inequality, namely

B = sup{|lullraca); u€ HQ), |Vullaq) < 1}
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(i) Establish a lower bound on the eigenvalues of the operator Lu = —Au.
More precisely, if ¢ € H(Q2) provides a nontrivial weak solution to

~A¢ = pé, z €,
¢ =0, T €N,

prove that u > 1/82.
(if) Prove that the solution of the parabolic initial-boundary value problem

u = Au, t>0,z€Q,
u(t,z) = 0, t>0, z €0,
u(0,z) = g(z), €,

decays to zero as t — co. Indeed, ||u(t)||Lz < e~t/P’ llg|lr> for every ¢ > 0.

5. Let 2 C © C R™ be bounded open sets. Let 0 < p; < pa < - -+ be the eigenvalues
of the operator —A on H}(, and let 0 < fi; < fip < --- be the eigenvalues of the
operator —A on H}(2). Prove that fi; < ;.

6. On the interval [0, T)], consider the Sturm-Liouville eigenvalue problem

()W) +qt)u = pu, 0<t<T,
(9-85) { pu(O) - i(T) o

Assume that
peC(0,T), qecC®(0,T]), p(t)>6>0 forallt.

Prove that the space L2([0,7]) admits an orthonormal basis {¢x; k > 1}
where each ¢, satisfies (9.85), for a suitable eigenvalue ug. Moreover, p — —o0
as k — oo.

7. In Theorem 9.9, take Lu = —Au. Let {¢x; k > 1} be an orthonormal basis
of L2(Q2) consisting of eigenfunctions of L~!. Show that in this special case the
eigenfunctions ¢y, are also mutually orthogonal with respect to the inner product
in H', namely (¢;, ¢x)m = 0 whenever j # k.

8. ‘Consider the open rectangle @ = {(z,y); 0 < z < a, 0 < y < b}. Define the

functions
¢m,n(z,y) = V% Sinﬁz—w Sin%) m,n>1.

(i) Check that ¢mn € H3(Q). Moreover, prove that the countable set of
functions {¢mn; m,n > 1} is an orthonormal basis of L%(Q) consist-
ing of eigenfunctions of the elliptic operator Lu = —Awu. Compute the
corresponding eigenvalues pim, », .

(ii) If © C R? is an open domain contained inside a rectangle Q with sides
a, b, prove that

ab 1
||UIIL2(Q) S NTW ”V’U,“LZ(Q) fOI' all u € HO (Q) .
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9. In the setting of Theorem 9.16, assume that, for every f € L?(f), the elliptic
boundary value problem (9.2) has a unique solution. Prove that the solution map
f — u is a compact operator from L2(f2) into itself.

10. (Galerkin approximations) Let  C R™ be a bounded open set. Let
{or; k> 1}, 0r € H}(), be an orthonormal basis of LZ(2) consisting of eigen-
functions of the Laplace operator A.

Let the operator L in (9.1) be uniformly elliptic and assume that the corre-
sponding bilinear form B[, -] in (9.11) is strictly positive definite.

Given f € L%(Q), construct a sequence of approximate solutions u,, to the
boundary value problem (9.2) as follows.

(i) For a fixed m > 1, define

m
(9.86) um(z) = Y ck pr(2)
k=1
choosing the coefficients ¢y, ..., ¢y, so that
(9.87) Blum, ¢;] = (f, ;)12 ji=1,...,m.
Show that (9.87) yields an algebraic system of m linear equations for the
m variables ¢, ..., Cy,. Prove that this system has a unique solution.

(ii) Letting m — oo, prove that the sequence u,, is uniformly bounded in
H} (), hence it admits a weakly convergent subsequence, say Um; — u.
Prove that v is a weak solution to (9.2). By uniqueness, show that the
entire sequence converges: U, — ¥ as mMm — 00.

11. On the open interval Q =]0, 3[, consider the boundary value problem

—Ugy = 1, 0<z<3,
u(0) = u(3) = 0.

Consider the two linearly independent functions ¢y, p2 € H}(]0,3[), defined by
z ifze€[0,1], 0 ifzel0,1],
pi1(z) = § 2—z ifze(l,2], pa(z) = $ z—-1 ifzell,2],
0 ifzel23, 3—z ifzel2,3.

Explicitly compute the Galerkin approximation U(z) = cip1(z) + capa(z) such
that

(9.88)

3 3
B[U,%]:/ Um"pi,zdw = / ]-(P‘de = (I’W‘i)Lz’ 1=1,2.
0 0

Compare U with the exact solution of (9.88).

12. Let = {(z,y); 22 + y? < 1} be the open unit disc in R?, and let u be a
smooth solution to the equation

1
(9.89) Ut = 2Ugz + Y Ugy + SUyy + 3 to) on Q x [0, 7],
u =0, on 90 x [0, T7.
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(i) Write the equation (9.89) in the form uy + Lu = 0, proving that the
operator L is uniformly elliptic on the domain .

(ii) Define a suitable energy e(t) = [kinetic energy| + [elastic potential en-
ergy], and check that it is constant in time.

13. Consider the homogenous linear elliptic operator L in (9.20) assuming that
(9.4) holds, together with a*/ = a7* € L°°(2). Extending the argument used in
Lemma 9.7, work out the following alternative proof of Theorem 9.8.

(i) Show that the bilinear functional B in (9.22) is an inner product on
H}(£2). The corresponding norm

" 1/2
lullo = (Z a“(fﬂ)umuzj)

ij=1
is equivalent to the H! norm. Namely,

1
Gl < Jullo < Cllullm for all u € Ho(2).

(ii) Call Hy, the Hilbert space H} endowed with this equivalent norm. Follow-
ing the proof of Lemma 9.7, construct the solution of (9.19) as u = ¢*f,
using the following diagram:

Ho(Q) — L¥(Q),

Ho(Q) = [Ho@) <~ [LXQ)* = LX(Q).

Here ¢ is the canonical immersion of H¢ into L2, while ¢* is its adjoint
operator.

14. Let @ C R be a bounded open set. In the same setting as in Lemma 9.19,
prove that the map t — u(t) is C* from )0, 7] into L%(Q2).

15. (Neumann’s problem) Let 2 be a bounded connected open set with smooth
boundary Q. By definition, a function u € H'(Q2) is a weak solution of Neumann’s

problem?
-Au = f, z €Q,

(9.90)

@ = 0, z € 01,

ov
if
(9.91) / Vu-Vudz = / fvdz  for all v € H}(Q).

Q Q

1Here and in the sequel, g—;‘ denotes the derivative of u in the direction of the outer normal

to the boundary of Q.
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Given f € L2(f2), prove that Neumann’s problem (9.90) has a weak solution if and

only if
/fda: = 0.
Q

Hint: As a first step, show that for -y > 0 the bilinear form
Bylu,v] = /(Vu - Vv + yuv) dz
Q

is strictly positive definite on H'(§2). Express the weak solution of (9.90) in terms
of the inverse operator L ! where Lyu = —Au+ yu.

16. (Biharmonic equation) Let & C R™ be a bounded open set with smooth
boundary. A function u € HZ(f) is a weak solution of the biharmonic equation

A%y = f, z €N,

(9.92)
= Ou = 0, z € 0N,
ov
if
(9.93) / AvAvdzr = / fvdz  for all v € HZ(Q).
Q Q

Given f € L2(f), prove that the boundary value problem (9.92) has a unique
weak solution. Hint: Show that the bilinear form Blu,v] on HZ(f2) defined by the
left-hand side of (9.93) is strictly positive definite on HZ(Q).
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Background Material

A.1. Partially ordered sets

A set S is partially ordered by a binary relation < if, for every a,b,c € S,
one has

(i) a < a,
(ii) @ < b and b < a implies a = b,
(iii) @ X b and b < c implies a < c.

A subset S’ C S of a partially ordered set S is said to be totally ordered
if, for every a,b € S’, one has either a < b or b < a. We say that the subset
S’ is maximal (with respect to the property of being totally ordered) if S’
is not strictly contained in any other totally ordered set.

Using Zorn’s lemma, or the axiom of choice, one can prove

Theorem A.1 (Hausdorff Maximality Principle). If S is any partially
ordered set, every totally ordered subset S’ C S is contained in a mazimal
totally ordered subset.

A.2. Metric and topological spaces

A distance on a set X is a map d : X x X — R, satisfying the following
three properties:

(1) positivity: d(z,y) >0, d(z,y) =0 if and only if z =y,
(2) symmetry: d(z,y) = d(y, z),

217
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(3) triangle inequality: d(z, z) < d(z,y) + d(y, 2).

A set X endowed with a distance function d(-,-) is called a metric
space.

The open ball centered at a point  with radius r > 0 is the set
B(z,r) = {y€X; d(y,z) <r}.

In turn, a metric d(-,-) determines a topology on X.

A subset A C X is open if, for every z € A, there exists a radius r > 0
such that B(z,r) C A.

A subset C C X is closed if its complement X \C ={z € X; z ¢ C}
is open.

If B(z,r) C A for some r > 0, we say that A is a neighborhood of the
point z, or equivalently that x is an interior point of A.

e The union of any family of open sets is open. The intersection of
finitely many open sets is open.

e The intersection of any family of closed sets is closed. The union of
finitely many closed sets is closed.

The entire space X and the empty set () are always both open and closed.
If there exists no other subset S C X which is at the same time open and
closed, we say that the space X is connected.

A sequence (z,)n>1 converges to a point z € X if
lim d(z,,z) = 0.
n—o0

In this case, we write lim, 00 z, = z or simply z, — z.

The closure of a set A, denoted by A, is the smallest closed set contain-
ing A. This is obtained as the intersection of all closed sets containing A. A
point z lies in the closure of the set A if and only if there exists a sequence
of points z,, € A that converges to z.

A subset S C X is dense in X if S = X. This is the case if and only if
S intersects every nonempty open subset of X. The space X is separable
if it contains a countable dense subset.

A sequence (zn)n>1 is a Cauchy sequence if for every € > 0 one can
find an integer N large enough so that

d(zm,zn) <€ whenever m,n > N.

The metric space X is complete if every Cauchy sequence converges to
some limit point z € X.
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If X,Y are two metric spaces, a map f : X — Y is continuous if, for
every open set A C Y, the pre-image f~!(A) = {z € X; f(z) € A} is an
open subset of X.

e A map f: X — Y is continuous if and only if, for every o € X and
€ > 0, there exists § > 0 such that

d(z,z0) < 6 implies  d(f(z),f(z0)) < e

We say that a function f : X — Y is Lipschitz continuous if there
exists a constant C' > 0 such that
d(f(z), f(z")) < C-d(z,2') forallz,z’'€X.
More generally, we say that f: X — Y is Holder continuous of exponent
0 < a < 1 if there exists a constant C' such that
d(f(z), f(z')) < C-[d(=z,2)]" forallz,z’ € X .

A collection of open sets {A;; i € T} such that K C J;c7 A; is called an
open covering of the set K. Here the set of indices Z may well be infinite.
A set K C X is compact if, from every open covering of K, one can extract
a finite subcovering.

A set S is relatively compact if its closure S is compact.

A set S is precompact if, for every € > 0, it can be covered by finitely
many balls with radius e.

Theorem A.2 (Compact subsets of R™). A subset S C R™ is compact
if and only if it is closed and bounded.

Theorem A.3 (Equivalent characterizations of compactness). Let S
be a metric space. The following are equivalent:

(i) S is compact.
(ii) S is precompact and complete.

(iii) From every sequence (zi)k>1 of points in S one can extract a sub-
sequence converging to some limit point x € S.

A.2.1. Fixed points of contractive maps. Let ¢ : X — X be a map
from a complete metric space X into itself. A point z* such that ¢(z*) = z*
is called a fixed point of ¢. For a strictly contractive map, the fixed point
is unique and can be obtained by a simple iterative procedure.

Theorem A.4 (Contraction Mapping Theorem). Let X be a complete
metric space, and let ¢ : X — X be a continuous mapping such that, for
some Kk < 1,

(A.1) d(¢(z), p(y)) < kd(z,y)  forallz,y € X.
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Then there exists a unique point x* € X such that

(A.2) ¥ = ¢(z*).
Moreover, for any y € X one has
(43) Ay, ") < 70— d(y, 4(3))

Proof. Fix any point y € X and consider the sequence
Yo=9 vy=0¢H%) ---» Ynt1=0Wn), ...
By induction, we have

d(y27yl) S K'd(yl)yO);
d(ys,y2) < kd(y2,y1) < &2d(y1,%),

dYn+1, Yn) < KdYn,Yn—1) < K d(y1,%0) = £"d(d(y), v)-

For m < n we have

(A.4)
n—1 n—1 m
d(yn,ym) < D dyieny) < Y K d(y, $(v)) < -llf"_—nd(y, ¢(y))-
j=m j=m

Since k < 1, the right-hand side of (A.4) approaches zero as m — oo.
Hence the sequence (yn)n>1 is Cauchy. Since X is complete, this sequence
converges to some limit point z*. By the continuity of ¢ one has

o = Jimve = Jim 9ar) = ¢ (Jimun-1) = #le)

hence (A.2) holds. The uniqueness of the fixed point z* is proved observing
that, if
T1 = ¢(z1), T2 = P(z2),
then by (A.1) it follows that
d(z1,z2) = d(¢(m1), ¢(a:2)) < kd(z1,z2).
The assumption k < 1 thus implies d(z1,z2) = 0 and hence z; = z.

Finally, using (A.4) with m = 0, for every n > 1 we obtain

d(yn, y) < %ﬁd(y, ¢(y))-

Letting n — oo, we obtain (A.3). O
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A.2.2, The Baire category theorem. Let X be a metric space. Among
all subsets of X we would like to define a family of “large sets” and a family
of “small sets” with the following natural properties:

(i) A set S C X is large if and only if its complement X \ S is small.
(ii) The intersection of countably many large sets is large.
(iii) A large set is nonempty.

If a probability measure u on X is given, one can call “large sets” the
sets having probability one, and “small sets” those with probability zero.
With such definition, all properties (i)—(iii) are clearly satisfied.

If the metric space X is complete, relying on Baire’s category theory,
one can still introduce a concept of “large sets” and “small sets”, based
exclusively on the topological structure. Namely, we say that a set S C X
is of second category (i.e., “topologically large”) if S is the intersection of
countably many open dense sets. On the other hand, a set S C X is said to
be of first category, or equivalently meager (i.e., “topologically small”), if
S is the union of countably many closed sets with empty interior. From the
definition, it is clear that these topologically large or small sets satisfy the
above properties (i) and (ii). The fact that (iii) also holds is an important
consequence of the following theorem.

Theorem A.5 (Baire). Let (Vi)k>1 be a sequence of open, dense subsets
of a complete metric space X. Then the intersection V = (\geq Vi is a
nonempty, dense subset of X.

Proof. Let 2 C X be any open set. We need to show that (ﬂ;‘;l Vk) n§
is nonempty.
Choose a point zg and a radius 9 < 1 such that B(zg, 3r¢) C Q.

By induction, for every & > 1 we choose a point x; and a radius ri such
that B(zk,3rx) C Vi N B(zk—1, Tk—1). This is possible because Vj is open
and dense. For each k > 1, the above choice implies

Tk 1
Tk+1 < 3 d(zk41, k) < 16 < 3

Therefore, the sequence (z)r>1 is Cauchy. Since X is complete, this se-
quence has a limit: xx — z* for some z* € X. We now observe that

fo's) 0o . 3
* ki
d(z*,zp) < Zd(l‘j+1,a}j) < er < 23 Ir, = '2'779-
=k j=k j=k
Therefore, for every k > 1,
z* € B(wg,3rt) C V.
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When k£ = 0, this same argument yields z* € B(zg,3ry) C Q. Hence
2 e (MR Vi) N9 O

A.3. Review of Lebesgue measure theory

A.3.1. Measurable sets. A family F of subsets of R™ is called a o-

algebra if
(i) @ € F and R™ € F,

(ii) if A€ F, then R™\ A € F,
(iii) if Ag € F for every k > 1, then [Jzo; Ax € F and (3o, Ak € F.

Theorem A.6 (Existence of Lebesgue measure on R™). There exists
a o-algebra F of subsets of R™ and a mapping A — my(A), from F into
[0, +o0], with the following properties.

(i) F contains every open subset of R™ and hence also every closed
subset of R™.

(i) If B is a ball in R™, then my(B) equals the n-dimensional volume

of B.
(ii) If Ax € F for every k > 1 and if the sets Ay are pairwise disjoint,
then
oo o 0]
Mn ( U) = Zmn(Ak) (countable additivity).
k=1 k=1
(iv) If A C B with B € F and my(B) = 0, then also A € F and
mn(A) =0.

The sets contained in the o-algebra F are called Lebesgue measurable
sets, while m,(A) is the n-dimensional Lebesgue measure of the set
AeF.

If a property P(z) is true for all points z € R", except for those in
a measurable set A with m,(N) = 0, we say that the property P holds
almost everywhere (a.e.).

A function f : R™ — R is measurable if
fIU) = {zeR"*; f(z)eU}eF
for every open set U C R.

Every continuous function is measurable. If f, g are measurable, then
f+ g and f - g are measurable. Given a uniformly bounded sequence of
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measurable functions (fi)x>1, the functions defined as
f*(z) = limsup fe(z),  fu(z) = liminf fi(z)
k—o00 k—o0

are both measurable. The essential supremum of a measurable function
f is defined as

esssup f = inf {aeR; f(z) < o for a..e.a:e]R”}.

Theorem A.7 (Egoroff). Let (fi)r>1 be a sequence of measurable func-
tions, and assume the pointwise convergence

fu(z) = f(z) for a.e. z € A,
for some measurable function f and a measurable set A C R™ with mp(A) <
00. Then for each € > 0 there exists a subset E C A such that
(i) mn(A\ E) <,
(ii) fx — f uniformly on E.

A.3.2. Lebesgue integration. In order to define the Lebesgue integral,
one begins with a special class of functions. The characteristic function

of aset Ais
ifxz € A,

X, @ =1
A 0 ifzé¢ A
A function taking finitely many values, i.e., having the form

N
(A5) o(z) = Yocix, (@)
i=1

for some disjoint measurable sets A;, ..., Ay C R™ and constants ci,...,cny €
R, is called a simple function. If the function g in (A.5) is nonnegative,
its Lebesgue integral is defined by

/ gdx = Eczmn(A)

As before, m,(A;) denotes the n—dlmensmnal Lebesgue measure of the set
A;. More generally, if f : R™ — R is a nonnegative measurable function, its
Lebesgue integral is defined as

/ fdz = sup{/ gdx; g is simple, ggf}.
n ]Rn

For any measurable function f : R™ — R, its positive and negative parts
are denoted as

f+ = ma,x{f, 0}) f— = max{—f, 0}
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We then define the Lebesgue integral of f as

(A.6) Anfdm = /]Rnf.l_da:—/Rnf_dm

provided that at least one of the terms on the right-hand side is finite. In
this case we say that f is integrable. Notice that the integral in (A.6) may
well be 400 or —oo.

A measurable function f : R® — R is summable if

/ If|dz < oo.
]Rn

We say that f is locally summable if the product f - x K is summable for

every compact set K C R™.

The Lebesgue integral has useful convergence properties.

Theorem A.8 (Fatou’s lemma). Let (fi)r>1 be a sequence of functions
which are nonnegative and summable. Then

/ (hm inf fk) dz < lminf | fido.
n —>

k—o0 oo JRn

Theorem A.9 (Monotone convergence). Let (fx)k>1 be a sequence of
measurable functions such that fi is summable and fi < fo < -+ < fi <
fe+1 < ---. Then

L (im ) do = jim [ o

Theorem A.10 (Lebesgue dominated convergence). Let (fx)k>1 be a
sequence of measurable functions such that

fre(z) = f(z) for a.e. z € R™.
Moreover, assume that there exists a summable function g such that
| fe(z)| < g(x) for every k > 1 and a.e. x € R™.

Then
lim fedz = fdz.
Rn

k—oo Jrn

Given a Lebesgue measurable set U C R”, the integral of a measurable
function f : U — R with respect to Lebesgue measure can be defined as

/dew = Rnfd;v, where f(z) = {f(ox) iﬁi;g
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For 1 < p < oo, LP(U) denotes the space of all Lebesgue measurable
functions f : U — R such that

(A7) I fllLry = (/U |f|”da:>1/p < .

Moreover, L°°(U) denotes the space of all measurable functions f: U — R
which are essentially bounded, i.e., such that

(A.8) | fllLeo(uy = ess-sup |f(z)|] < oo.
zeU

Two functions whose values coincide outside a set of measure zero are re-
garded to be the same element of LP, or L°.

Given an open set & C R™ and 1 < p < oo, by L¥ (Q) we denote the
space of all measurable functions f : Q — R such that f € LP(U) for every
bounded open set U whose closure is contained in . If 0 < m,(Q) < oo,
the average value of f on the set Q is defined as

]{]fdxi #(Q)/Qfdx.

Observe that a function f is continuous at the point zg if and only if

A9 lim su z) — f(z = 0.
(A.9) Jim sw |f(@) = )]

Replacing the supremum with an average, we say that f is quasi-continuous
at the point zg if

(A.10) Ly |f(z) = f(zo)|dz = 0.

Theorem A.11 (Lebesgue). Let f : R™ — R be locally summable. Then
f is quasi-continuous at a.e. point xg € R”.

A point zg where (A.10) holds is called a Lebesgue point of f.
Given an interval [a,b] C R, a function F : [a,b] — R is absolutely

continuous if, for every € > 0, there exists § > 0 such that, for any finite
family of disjoint intervals [a1,b1], ..., [an, bn] contained in [a,b] one has

n n
Z(b,- —a;) <6 implies Z |F(b;) — F(a;)| < e
i=1 =1
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Theorem A.12 (Absolutely continuous functions). The following are
equivalent.

(i) F:[a,b] — R is absolutely continuous.
(ii) There exists a function f € L'([a,b]) such that

F(z) = F(a) -l—/[ ]f(a:) dz  forall z € [a,b].

If (i) and (ii) hold, then F is a.e. differentiable, with derivative F'(z) = f(z)
for a.e. z € [a,b].

Next, consider two measurable subsets X C R™ and Y C R", so that
the Cartesian product

XxY = {(m,y); meX,er}

is a measurable subset of R™*". Given a function of two variables f :
X xY — R, for each fixed  we consider the function y — f*(y) = f(z,y)
of the variable y alone. Similarly, for each fixed y we consider the function
x> f¥(z) = f(z,y) of the variable = alone.

Theorem A.13 (Fubini). Let X CR™, Y C R" be measurable sets, and
assume f € LY(X xY). Then

o fYeLY(X) forae. y €Y,

o ffeL(Y) for a.e. x € X,

o the integral function F(y) = [y f¥(x)dz is in L}(Y),
o the integral function G(z) = [, f*(y)dy is in L}(X).
Moreover, one has the identity

JI. f@wdaty = [ |[ paela = [ ][ roa]a

For detailed proofs of all the above theorems we refer to [F].

A.4. Integrals of functions taking values in a Banach space

Let X be a Banach space with norm || - ||. Let X* be its dual space. Every
x* € X* thus determines a linear continuous mapping z +— (z*,z) from X
into R. In this section we show how to construct the integral of a function
f:00,T]— X.
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A function g : [0,T] — X is simple if it has the form

N
(A11) 9t) = Yux, (0, teoT)
i=1

where, for each i =1,...,N, u; € X and A; C [0,T] is a measurable set.

A function f : [0,7] — X is strongly measurable if there exists a
sequence of simple functions g : [0,7] — X such that

gk(t) = f(t)  for a.e. t €[0,T].

Moreover, we say that f is summmable if there exists a sequence of simple
functions gx such that

T
(A.12) /O lo(®) — £ dt — 0.

A function f : [0,T] — X is weakly measurable if, for each z* € X*,
the scalar function ¢ — (z*, f(¢)) is measurable.

A function f : [0,T] — X is almost separably valued if there exists a
subset V' C [0, 7] with zero measure such that the set of images {f(t); t €
[0,T]\ NV} is separable (i.e., it admits a countable dense subset).

Theorem A.14 (Pettis). A map f: [0,T] — X is strongly measurable if

and only if f is weakly measurable and almost separably valued.

The integral of a function f with values in a Banach space is defined in
two steps.

If g is the simple function in (A.ll), we define

/ gdt = Z’qul

Here m; is the one-dimensional Lebesgue measure on the interval [0, T.

If f is summable, we define

T T
/ fdt = lim / gk(t) dt
0 k—o0 0

where (gx)r>1 is any sequence of simple functions for which (A.12) holds.

Theorem A.15 (Bochner). A strongly measurable function f : [0,T] — X
is summable if and only if the scalar function t — || f(t)|| is summable. In
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this case one has

JRCEE [ isla

Moreover, for every x* € X*,

<a:*, /OTf(t)dt> = /0T<a:*,f(t)>dt.

Proofs of the above theorems can be found in [Y].

A.5. Mollifications

In the analysis of Sobolev spaces, an important technique is the approxi-
mation of a general function with smooth functions. This can be done by
means of mollifications.

The standard mollifier on R" is defined as

Chn exp{m%_—l} if |lz| < 1,
(A.13) J(z) =
0 if |z| > 1,

where the constant C,, is chosen so that fRn J(z)dxz = 1. For eache >0
we also define the rescaled function

.1 x
(A.14) J@) = & J(;) .
Notice that J. € C°(R™) and that

]R Je =1, SuPp(Je) = {I:DIS&‘}

Figure A.5.1. A standard mollifier J and its rescaling J,.
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Now let  C R™ be an open set and let f € LL () be a locally integrable
function. We then define the mollification of f in terms of a convolution:
fe = Jex f.

Since f is defined on €2 and J, has support in the ball centered at the origin
with radius €, this convolution is well defined at all points in the subset

Qe = {xeﬂ; B(z,¢) gz}.
Indeed

fela) = /B DIy = / J.(2)f(@ - 2)dz.

(0,6)

Theorem A.16 (Properties of mollifiers). Let Q& C R" be an open set
and let f € LL _(Q). Then:

loc
(i) For every e > 0 one has f. € C®().
(ii) As € — 0, one has the pointwise convergence fe(x) — f(z) for

a.e. €.

(iii) If f is continuous, then fo — f uniformly on compact subsets of
Q.

(iv) If1<p<oco and f € LY (), then f. — f in Lf ().

Proof. 1. Notice that each Q. is open. Indeed, if the closed ball B(zo,¢)
is entirely contained in the open set {2, the same holds for the ball B(z,¢),
whenever |z — x| is sufficiently small.

Let {e1,...,en} be the standard orthonormal basis of R”. Fix a point
z € Qe and 1 € {1,...,n}. If his so small that « + he; € €2, then the
difference quotient is computed as

fe(z + he;) — fe(z)

h
SUN 1 B(x’e)%[.](x‘}'heﬂ>_J<%)] Fw)dy.

Since the closed ball B(z,e) is entirely contained in €2, we have f €
L!(B(z,€)). Moreover, since J € C*®, we have the uniform convergence

lim Ly (2theizy) _;(2-y =l_a_.] T7YY.
h—0 h € € € Ox; €
Letting h — 0 in (A.15), we obtain the existence of the partial derivative

9 0
_.x—ife(x) = /B(m’e)—g;Je(x—y)f(y)dy-

1
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A similar argument shows that, for every multi-index «, the derivative D¢ f,
exists and

Dfu(z) = / DUz — ) f(y) dy.

B(z,€)

This proves (i).

2. By the Lebesgue differentiation theorem, for a.e. z € 2 we have
A.16 lim fly) — f(z)|dy =0.

(A.16) i f,150) - F@ldy

If z is a point for which (A.16) holds, then

1fe(@) - f(2)] = / =)l - f@)]dy

k)

L] a(Z=) o sl

en B(z,e) €

<c ]{3 ICORCIE?

As € — 0, the right-hand side goes to zero because of (A.16). This proves

(i).

)

Figure A.5.2. The sets 2. C ) and the compact sets K CC
K, CC §, used in the analysis of mollifiers.

3. Assume that f is continuous, and let K C 2 be a compact subset. Then
we can choose § > 0 small enough so that the compact neighborhood

(A.17) K,={z eR"; d(z,K) < p}

is still contained inside 2. Since f is uniformly continuous on the compact
set K,, the previous calculations show that f.(z) — f(z) uniformly for
z € K. This proves (iii).
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4. To prove (iv), assume 1 < p < oo and f € LY (). Let K C Q be a

loc
compact subset and choose p > 0 so that the compact neighborhood K, in

(A.17) is still contained in Q. We claim that, for every 0 < € < p,
(A.18) | fellLezy < I fllecx,) -

Indeed, for z € K an application of Hoélder’s inequality with ¢ = ;f—l yields

fel@) = /B L) fw dy

< [ (o) (2e-0)* ol

p—1

(/ Je(w—y)dy> ’ (/ Je(w—y)lf(y)lpdy>p-
B(z,e) B(z¢)

Recalling that [ Blze) Je(@ — y)dy = 1, for 0 < & < p the above inequality
yields

Ji|fe(z)Pdz < /K (/B(M) Je(w—y)lf(y)lpdy> dz

< /K |f )P (/B(y’s) Je(w—y)dw> dy = /Kplf(y)lpdy-

P

IA

This proves (A.18).

Next, for any § > 0, we choose g € C(K),) such that

If = 9llLex,y < 0.
Together with (A.18), this yields

I fe = fllLery < Nfe = Gellr(xy + ll9e — 9llLox) + 19 — FllLo(x)
< f = gllLex,) + 19e — gllLrx) + lg — fllre )

< 04 g — glleqx) +9-

Since g is continuous, by (ii) it follows that |ge — g| — O uniformly on the
compact set K,. Hence limsup,_q ||fe — fllLr(x) < 26. Since § > 0 was
arbitrary, this proves (iv). d
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Corollary A.17. Let f € Li (Q) and assume

loc

/f¢da:=0 for every ¢ € CZ(Q).
Q

Then f(x) =0 for a.e. x € Q.

Indeed, let z € €2 be a Lebesgue point of f and let J. be the standard
mollifier. Taking ¢(y) = Je(z — y) and letting € — 0, one obtains

0 — /Q (@ —v)f)dy = / e 0)f@dy — f@)

Hence f(z) = 0 for a.e. z € Q.

A.5.1. Partitions of unity. Let S C R" and let V4, Va,... be open sets
that cover S, so that

S C UVk.
k>1

We say that a family of functions {¢x; k > 1} is a smooth partition of
unity subordinate to the sets Vj, if the following hold.
(i) For every k > 1, ¢ : R™ — [0,1] is a C* function with support
contained inside the open set V.

(ii) Each point z € S has a neighborhood which intersects the support
of finitely many functions ¢. Moreover

(A.19) Zq&k(x) =1 forallz € S.
k

Note that, by assumption (ii), at each point € S the summation in (A.19)
contains only finitely many nonzero terms.

Figure A.5.3. A partition of unity subordinate to the sets V1, V3, V3.
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Theorem A.18 (Existence of a smooth partition of unity). Let S C
R™ and let {Vi; k > 1} be a family of open sets covering S. Then there
exists a smooth partition of unity subordinate to the sets V.

A.6. Inequalities

A.6.1. Convex sets and convex functions. A set Q C R"” is convex if
z,y €N, 0€0,1] implies bz + (1 -0y € Q.

In other words, if {2 contains two points z, y, then it also contains the entire
segment joining x with y.

Let & C R™ be a convex set. We say that a function f : @ — R is
convex if
(A.20) fez+(1-0)y) < 0f(x)+(1—-6)f(y)
whenever z,y € Q and 0 € [0, 1]. Notice that (A.20) holds if and only if the
epigraph of f, i.e., the set

{@.2)eaxRr; 2> f()},

is a convex subset of R"® x R.

A twice differentiable function f : R™ — R is uniformly convex if
its Hessian matrix of second derivatives is uniformly positive definite. This
means that, for some constant x > 0,

D frio;(@) &€ > £ > & forallz, £ €R™
i=1

,j=1

Figure A.6.1. A convex function f and its epigraph. A support
hyperplane at the point x.
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Theorem A.19 (Supporting hyperplanes). Let f : R™ — R™ be a convez
function. Then for every zg € R™ there exists a (subgradient) vector w such
that

f(z) > f(zo) +(w,z—=z0)  forallz e R™.

The hyperplane {(z,2); z = (w,z —x0)} C R™*! touches the graph of
f at the point o and remains below this graph at all points x € R™. It is
thus called a supporting hyperplane to f at zo.

Theorem A.20 (Jensen’s inequality). Let f: R — R be a convez func-
tion, and let @ C R™ be a bounded open set. If u € L1() is any integrable
function, then

(A.21) f(ﬁudx) < ]{zf(u)da:.

Here fnudx = m fQ udx is the average value of u on the set 2,

while ; f(u)dz = m Jq f(u)dz is the average value of f(u). Notice
that we do not require that the set {2 be convex.

Proof. Set ug = §, u(y) dy. Then there exists a support hyperplane to the
graph of f at the point ug, say f(u) > f(ug)+(w,u—wup) for some constant
w € R and all u € R. Hence

@) = 1 (f uwan) o+ (@) - f uway).

Taking the average value of both sides on the set §2, we obtain (A.21). O

A.6.2. Basic inequalities.
1. Cauchy’s inequality.
a? + b2
2
Indeed, 0 < (a—b)? = a2+ b2 — 2ab.
For any € > 0, replacing a with v/2ca and b with b/v/2¢, from (A.22)
we obtain the slightly more general inequality

(A.22) ab < for all a,b € R.

2
(A.23) ab < ea2+% (a,beR, €>0).

2. Young’s inequality.

P B
(A.24) ab < L4+ (a,b>0,1<p<q<oo,l+l=1)_
p q P gq
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Indeed, since the map f(u) = e* is convex, one has exp{} + ¢} < % +
—eq: . Therefore

ab = enotnb — exp{llna”+llan} < leln“p—i-lelan = a—p+ﬁ.
p q p q p q

3. Holder’s inequality. If f € LP(Q2), g € LY(Q) with 1 < p,q < o0
and %+ % =1, then

(4.25) [ 1fslds < 1o lolusce
Indeed, in the special case where ||fllLr) = llgllLeey = 1, Young’s
inequality yields
[itolde < 3 [1fPdo+= [ lgtrds = 42 = 1= flus ol
< - —_ = - _— = = Lr La.
Q pbJa qJa g P q

To cover the general case, we simply replace the functions f,g with f =
f/Ifllue and § = g/|\gllLe, respectively.

By induction, one can establish the following more general version of
Holder’s inequality. Let 1 < p1,...,pm < 00, with pll +- 4 z% = 1.
Assume f € LP%(Q) for k= 1,...,m. Then

(A.26) Llflfz--'fmldw < IT Ifellzes sy -
k=1

4. Minkowski’s inequality. For any 1 < p < oo and f,g € LP(),
one has

(A.27) If +gllLe@)y < IIfllLe) + N9llec) -

Indeed, in the case p = 1 the result is trivial. If p > 1, applying Hélder’s
inequality with exponents p and q = ;;Ll, one obtains

I+ 0oy = [[17+oPdz = [ 1 +aP1+ oD do

(Lrvsrea) ™ [ re) ([

= ||f+9|11j,;(1g)(||f||m(n) + ”9”LP(Q)> :

Dividing both sides by || f + g”i;(lm, we obtain (A.27).

IN
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5. Interpolation inequality. Let 1 < p <r < ¢ < 00, with
1 0 1-86

- = —+——  forsome# € [0,1].
rop
If f € LP(2) N L4(R2), then we also have f € L"(Q2) and
(A.28) I fllLr < ||f||%p(n) “f“i;(en) :

Indeed, observing that %+% = 1, by Holder’s inequality one obtains

T — Or| ¢1(1-6)r
[israe = [ 15r170-0r aa

(1-)r

or-& g (1) Sy 7
< (/Qlfl dx) (/Qm ; dx)

6. Discrete Holder and Minkowski inequalities. The inequalities
(A.25) and (A.27) hold, more generally, when 2 is any measure space. In

particular, one can take @ = {1,...,n} with the counting measure. For any
collection of numbers ay,...,a, and b1,...,b, and for 1 < p,q < oo with
% + % = 1, one has the discrete Holder inequality

1 1
n n p [ M q
(A.29) > lade| < (Z 'aklp) (Z |bk|q>
k=1 k=1 k=1

and the discrete Minkowski inequality
1 1 1
n P n P n P
(A.30) (Z lax + w) < (Z w) + (Z lbklp)
k=1 k=1 k=1

Given two vectors £ = (z1,...,2Zn) and ¥y = (y1,...,¥Yn), using the dis-
crete Holder inequality (A.29) with p = ¢ = 2, one obtains the Cauchy-
Schwarz inequality for the inner product on R™:

(A.31) (z, 9| < lzllyl.
Indeed,

[(z,9)| =

< lmeul < (Z |$k|2> (Z kalz) = |z| |yl
k=1 k=1 k=1

n
> Tk
k=1




A.7. Problems 237

A.6.3. A differential inequality.

Theorem A.21 (Gronwall’s inequality). Lett — z(t) be a nonnegative,

absolutely continuous function defined for t € [0,T). Assume that the time

. . ! __ i .
derivative 2’ = gz satisfies

Z(t) < ¢@t)z(t)+v({t)  forae tel0,T],
where ¢, € L*([0,T]) are nonnegative functions. Then

t t t
(A.32) z(t) < elo®®)ds;(0) + / el #@V 4oy (s)ds  for allt € [0,T).
0

Notice that the right-hand side of (A.32) is precisely the solution to the
Cauchy problem

Z'(t) = ¢(t)Z(t) +9(t),  Z(0) = 2(0).
To prove (A.32), we write
& (e o019 4(5)) = e () —g(s)a(s)) < &= #(s),
Integrating over the interval [0,%], one finds

t
e ho #(@)doy() — 2(0) < / e~ Jo #@)doy,(5) ds.
0
Multiplying by elo ¢(9)d7 we thus obtain (A.32).

A.7. Problems

1. Let {A;; i € T} be an open covering of a compact metric space K. Prove that
there exists p > 0 such that, for every z € K, the ball B(z, p) is entirely contained
in one of the sets A;.

2. Let (zn)n>1 be a sequence of points in a metric space E. Prove the following
statements.

1 e sequence converges to a point Z it and only if from every subsequence
i) Th t int Z if and only if f; b
(xnj )j>1 one can extract a further subsequence converging to Z.

(i) If d(Zm, zn) > & > 0 for all m # n, then no convergent subsequence can
exist.

(iii) Let F be complete and assume that, for every € > 0, from any sequence
one can extract a further subsequence (:vnj) j>1 such that

limsup d(zn;, Tn,) < €.
Jrk—o00

Then the sequence admits a convergent subsequence.
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3. Consider the function

1

z(lnz)? ’

N =

fo<z<
fz) =

0 otherwise.
Let fo = J. = f be the corresponding mollifications, and let

F(z) = S fe(z).

Prove that f € L'(R) but F ¢ L(R). As a consequence, although f. — f
pointwise, one cannot use the Lebesgue dominated convergence theorem to prove

that || fe — fllL: ) — 0.

4. Let f, : R— R, n > 1, be a sequence of absolutely continuous functions such
that
(i) at the point z = 0, the sequence f,(0) is bounded,
(i) there exists a function g € L!(R) such that the derivatives f. satisfy
|fi(z)] < g(z) for every n > 1 and a.e. z € R.

Prove that there exists a subsequence (f»;);j>1 which converges uniformly on the
entire real line.

5. Consider a sequence of functions f, € L!(R) with || fs|l: < C for every n > 1.
Define

fz) = nll)ngo fa(z) if the limit exists,
o) = 0 otherwise.

Prove that f is Lebesgue measurable and || f||r: < C.

6. Let £ : R — R be an absolutely continuous function. Prove that f maps sets of
Lebesgue measure zero into sets of Lebesgue measure zero.

7. (i) If (fn)n>1 is a sequence of functions in L' ([0, 1]) such that || f, [l — 0, prove
that there exists a subsequence that converges pointwise for a.e. z € [0, 1].

(ii) Construct a sequence of measurable functions f, : [0,1] — [0, 1] such that
| fallL: — O but, for each z € [0, 1], the sequence fn(z) has no limit.

8. For every (nonempty) open set 2 C R™ and for 1 < p < oo, prove that the space
L?(Q) is infinite-dimensional. Construct a sequence of functions (f;);>1 such that

Ifille = 1, [lfi= fillLe 21 forallé,j>1, i#;.
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9. Consider the set R? with the partial ordering
Tz <y ifandonly if z; <y;andzy<y,.
Let f: R — R be a continuous, nondecreasing function. Show that the set

§ = Graph(f) = {(t, f(+)); t € R}

is a maximal totally ordered subset of R2. Is every maximal totally ordered subset
obtained in this way?

10. Give a proof of the generalized Holder inequality (A.26).






Summary of Notation

R, the field of real numbers.

C, the field of complex numbers.

K, a field of numbers, either R or C.

Re z and Im 2z, the real and imaginary parts of a complex number z.
Z = a — ib, the complex conjugate of the number z = a + ib € C.

[a, b]? a closed interval; |a, b[, an open interval; ]a, b, [a, b[ half-open intervals.
R"™, the n-dimensional Euclidean space.

(-, ), scalar product on the Euclidean space R".

|v.| = 4/{v,v), the Euclidean length of a vector v € R™.

A\ B = {z € A, z ¢ B}, a set-theoretic difference.

A, the closure of a set A.

OA, the boundary of a set A.
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242 Summary of Notation

Q' cc Q, the closure of Q' is a compact subset of Q.
1 ifzeA,

X 4> the indicator function of a set A. XA(cc) = { 0 ifo¢A

f: A~ B, a mapping from a set A into a set B.

a — b= f(a), the function f maps the element a € A to the element b € B.
=, equal by definition.

<, if and only if.

C(E) = C(E,R), the vector space of all continuous, real-valued functions
on the metric space F.

C(E,C), the vector space of all continuous, complex-valued functions on the
metric space E.

BC(E), the space of all bounded, continuous, real-valued functions f : E —
R, with norm ||f|| = sup,eg |£()!-

21, P, 1>, spaces of sequences of real (or complex) numbers.
L(Q), LP(2), L>®(R), Lebesgue spaces.

WkP(§), the Sobolev space of functions whose weak partial derivatives up
to order k lie in LP(Q2), for some open set 2 C R™.

HE(Q) = W*2(Q), Hilbert-Sobolev space.

Ck7(92), the Holder space of functions u : 2 — R whose derivatives up to
order k are Holder continuous with exponent v €10, 1].

Il = |l llx, the norm on a vector space X.

(-,+) = (-,*)H, the inner product on a Hilbert space H.
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X*, the dual space of X, i.e., the space of all continuous linear functionals
zr: XK

(z*, z) = z*(z), the duality product of z* € X* and z € X.
Zn — x, strong convergence in norm; this means ||z, — z|| — 0.
xn — x, weak convergence.

*
pn — ¢, weak-star convergence.
f * g, the convolution of two functions f,g : R® — R.
Vu = (ug,, Ug,, - - - , Uz, ), the gradient of a function u : R™ — R.

F) a) F.) a2 8 Qn . . .
D = (a_xl> (m) (&D_n) = 051052 - Ogn, a partial differential

operator of order |a| = a1+ ag+ - + an.

meas(Q2), the Lebesgue measure of a set  C R™.

1
][ o fdz = m /Q f dz, the average value of f over the set (2.
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by polynomials, 51
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closed, 13
open, 13

Banach space, 13
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orthonormal, 85, 88
Bessel, 87
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Bochner, 227
boundary condition, 189

Cantor, 141

Cartesian product, 36

Cauchy, 78, 234

Cauchy problem, 115

closed graph theorem, 64

closure, 218

contraction mapping theorem, 115, 219

convergence
of weak derivatives, 146
pointwise, 46
strong, 33
uniform, 46
weak, 33, 92
weak star, 33
convex hull, 37

derivative
distributional, 140
of a distribution, 144
pointwise, 140
strong, 159
weak, 140, 144, 156, 159
diffusion, 186
Dini, 46
Dirac, 141
Dirichlet’s boundary condition, 186
distance, 11, 217
induced by seminorms, 24
distribution, 143
order of, 143
domain of an operator, 16
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Gagliardo-Nirenberg, 172
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Morrey, 168
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epigraph, 233
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Euler, 117
exponential
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of a matrix, 118
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of a linear functional, 27
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fixed point, 219
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Fredholm, 101
alternative, 105, 196
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