
Lecture. Notes ;on
Functional Analysis
With Applications to
Linear Partial' Differential
Equations

Al be rto Bressan

rad'Ua- Stud ices
in Mathematics
Volume 143,

:an 'Mathematical Society



Lecture Notes on
Functional Analysis
With Applications to
Linear Partial Differential
Equations





Lecture Notes on
Functional Analysis
With Applications to
Linear Partial Differential
Equations

Alberto Bressan

Graduate Studies
in Mathematics

Volume 143

American Mathematical Society
Providence, Rhode Island



EDITORIAL COMMITTEE
David Cox (Chair)

Daniel S. Freed
Rafe Mazzeo

Gigliola Staffilani

2010 Mathematics Subject Classification. Primary 46-01; Secondary 35-01.

For additional information and updates on this book, visit
www.ams.org/bookpages/gsm-143

Library of Congress Cataloging-in-Publication Data
Bressan, Alberto, 1956-
[Lectures. Selections]
Lecture notes on functional analysis with applications to linear partial differential equations
Alberto Bressan.

pages cm. - (Graduate studies in mathematics ; volume 143)
Includes bibliographical references and index.
ISBN 978-0-8218-8771-4 (alk. paper)
1. Functional analysis. 2. Differential equations, Linear. I. Title.

QA321.B74 2012
515'.7-dc23

2012030200

Copying and reprinting. Individual readers of this publication, and nonprofit libraries
acting for them, are permitted to make fair use of the material, such as to copy a chapter for use
in teaching or research. Permission is granted to quote brief passages from this publication in
reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple reproduction of any material in this publication
is permitted only under license from the American Mathematical Society. Requests for such
permission should be addressed to the Acquisitions Department, American Mathematical Society,
201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by
e-mail to reprint-permission@ams. org.

Q 2013 by the American Mathematical Society. All rights reserved.
The American Mathematical Society retains all rights

except those granted to the United States Government.
Printed in the United States of America.

The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.

Visit the AMS home page at http : //www. ams . org/

10987654321 181716151413



To Wen, Luisa Mei, and Maria Lan





Contents

Preface xi

Chapter 1. Introduction

§1.1.

§1.2.

§1.3.

§1.4.

Linear equations

Evolution equations

Function spaces

Compactness

Chapter 2. Banach Spaces

§2.1.

§2.2.

§2.3.

§2.4.

§2.5.

§2.6.

§2.7.

§2.8.

Basic definitions

Linear operators

Finite-dimensional spaces

Seminorms and Frechet spaces

Extension theorems

Separation of convex sets

Dual spaces and weak convergence

Problems

Chapter 3. Spaces of Continuous Functions

§3.1.

§3.2.

§3.3.

§3.4.

§3.5.

Bounded continuous functions

The Stone-Weierstrass approximation theorem

Ascoli's compactness theorem

Spaces of Holder continuous functions

Problems

1

1

4

7

7

45

45

47

53

56

57

vii



viii Contents

Chapter 4. Bounded Linear Operators
§4.1.

§4.2.

§4.3.

§4.4.

§4.5.

§4.6.

The uniform boundedness principle
The open mapping theorem
The closed graph theorem
Adj oint operators

Compact operators
Problems

Chapter 5. Hilbert Spaces

§5.1.

§5.2.

§5.3.

§5.4.

§5.5.

§5.6.

§5.7.

§5.8.

Spaces with an inner product
Orthogonal projections
Linear functionals on a Hilbert space
Gram-Schmidt orthogonalization
Orthonormal sets
Positive definite operators
Weak convergence

Problems

Chapter 6. Compact Operators on a Hilbert Space
§6.1.

§6.2.

§6.3.

§6.4.

Fredholm theory
Spectrum of a compact operator
Selfadj oint operators

Problems

Chapter 7. Semigroups of Linear Operators
§7.1.

§7.2.

§7.3.

§7.4.

§7.5.

Ordinary differential equations in a Banach space
Semigroups of linear operators

Resolvents

Generation of a semigroup
Problems

Chapter 8. Sobolev Spaces

§8.1. Distributions and weak derivatives
§8.2. Mollifications

§8.3. Sobolev spaces

§8.4. Approximations of Sobolev functions

§8.5. Extension operators
§8.6. Embedding theorems

61

61

63

64

66

68

71

101

101

106

107

111

115

115

120

124

128

134

139

139

146

151

157

161

163



Contents ix

§8.7. Compact embeddings 175

§8.8. Differentiability properties 179

§8.9. Problems 180

Chapter 9. Linear Partial Differential Equations 185

§9.1. Elliptic equations 185

§9.2. Parabolic equations 200

§9.3. Hyperbolic equations 207

§9.4. Problems 212

Appendix. Background Material 217

§A.1. Partially ordered sets 217

§A.2. Metric and topological spaces 217

§A.3. Review of Lebesgue measure theory 222

§A.4. Integrals of functions taking values in a Banach space 226

§A.5. Mollifications 228

§A.6. Inequalities 233

§A.7. Problems 237

Summary of Notation 241

Bibliography 245

Index 247





Preface

The first version of these lecture notes was drafted in 2010 for a course at the
Pennsylvania State University. The book is addressed to graduate students
in mathematics or other disciplines, who wish to understand the essential
concepts of functional analysis and their application to partial differential
equations. Most of its content can be covered in a one-semester course at
the first-year graduate level.

In writing this textbook, I followed a number of guidelines:

- Keep it short, presenting all the fundamental concepts and results,
but not more than that.

- Explain clearly the connections between theorems in functional
analysis and familiar results of finite-dimensional linear algebra.

- Cover enough of the theory of Sobolev spaces and semigroups of
linear operators as needed to develop significant applications to
elliptic, parabolic, and hyperbolic PDEs.

- Include a large number of homework problems and illustrate the
main ideas with figures, whenever possible.

In functional analysis one finds a wealth of beautiful results that could
be included in a monograph. However, for a textbook of this nature one
should resist such a temptation.

After the Introduction, Chapters 2 to 6 cover classical topics in linear
functional analysis: Banach spaces, Hilbert spaces, and linear operators.
Chapter 4 is devoted to spaces of continuous functions, including the Stone-
Weierstrass approximation theorem and Ascoli's compactness theorem. In

xl



xii Preface

view of applications to linear PDEs, in Chapter 6 we prove some basic
results on Fredholm operators and the Hilbert-Schmidt theorem on compact
symmetric operators in a Hilbert space.

Chapter 7 provides an introduction to the theory of semigroups, ex-
tending the definition of the exponential function etA to a suitable class
of (possibly unbounded) linear operators. We stress the connection with
finite-dimensional ODES and the close relation between the resolvent oper-
ators and backward Euler approximations.

After an introduction explaining the concepts of distribution and weak
derivative, Chapter 8 develops the theory of Sobolev spaces. These spaces
provide the most convenient abstract framework where techniques of func-
tional analysis can be applied toward the solution of ordinary and partial
differential equations.

The first three sections in Chapter 9 describe applications of the pre-
vious theory to elliptic, parabolic, and hyperbolic PDEs. Since differential
operators are unbounded, it is often convenient to recast a linear PDE in a
"weak form", involving only bounded operators on a Hilbert-Sobolev space.
This new equation can then be studied using techniques of abstract func-
tional analysis, such as the Lax-Milgram theorem, Fredholm's theory, or the
representation of the solution in terms of a series of eigenfunctions.

The last chapter consists of an Appendix, collecting background mate-
rial. This includes: definition and properties of metric spaces, the contrac-
tion mapping theorem, the Baire category theorem, a review of Lebesgue
measure theory, mollification techniques and partitions of unity, integrals of
functions taking values in a Banach space, a collection of inequalities, and
a version of Gronwall's lemma.

These notes are illustrated by 41 figures. Nearly 180 homework problems
are collected at the end of the various chapters. A complete set of solutions
to the exercises is available to instructors. To obtain a PDF file of the
solutions, please contact the author, including a link to your department's
web page listing you as an instructor or professor.

It is a pleasure to acknowledge the help I received from colleagues, stu-
dents, and friends, while preparing these notes. To L. Berlyand, G. Crasta,
D. Wei, and others, who spotted a large number of misprints and provided
many useful suggestions, I wish to express my gratitude.

Alberto Bressan
State College, July 2012



Chapter 1

Introduction

This book provides an introduction to linear functional analysis, extend-
ing techniques and results of classical linear algebra to infinite-dimensional
spaces. With the development of a theory of function spaces, functional
analysis yields a powerful tool for the study of linear ordinary and partial
differential equations. It provides fundamental insights on the existence and
uniqueness of solutions, their continuous dependence on initial or boundary
data, the convergence of approximations, and on various other properties.

The following remarks highlight some key results of linear algebra and
their infinite-dimensional counterparts.

1.1. Linear equations

Let A be an n x n matrix. Given a vector b e W, a basic problem in linear
algebra is to find a vector x e W such that

(1.1) Ax = b.

In the theory of linear PDEs, an analogous problem is the following.
Consider a bounded open set SZ C W and a linear partial differential oper-
ator of the form

n ra

(1.2) Lu = - (a2 c(x)u.
i,j=1 2=1

Given a function f : SZ T, find a function u, vanishing on the boundary
of SZ, such that

(1.3) Lu = f.

1



2 1. Introduction

There are fundamental differences between the problems (1.1) and (1.3).
The matrix A yields a continuous linear transformation on the finite-dimen-
sional space R. On the other hand, the differential operator L can be
regarded as an unbounded (hence discontinuous) linear operator on the
infinite-dimensional space L2(12). In particular, the domain of L is not
the entire space LZ(St) but only a suitable subspace.

In spite of these differences, since both problems (1.1) and (1.3) are
linear, there are a number of techniques from linear algebra that can be
applied to (1.3) as well.

(I): Positivity

Assume that the matrix A is strictly positive definite, i.e., there exists
a constant 3 > 0 such that

(Ax, x) > ,81x12 for all x E 1[8Th.

Then A is invertible and the equation (1.1) has a unique solution for every
b E W.

This result has a direct counterpart for elliptic PDEs. Namely, assume
that the operator L is strictly positive definite, in the sense that (after a
formal integration by parts)
(1.4)

(Lu, u)LZ f
2 Q IIuIIHo(l)

n

a(x) uu
i,j=1

+ C(x)u2 dx
i=1

for some constant ,6 > 0 and all u E Ho (1k). Here Ho (St) is a space of
functions which vanish on the boundary of St and such that

1/2

\t IuI2dx+ fJ
I< oo;IIUIIH) - Js

see Chapter 8 for precise definitions. If (1.4) holds, one can then prove
that the problem (1.3) has a unique solution u E H'(1), for every given
feL2(1).

A key assumption, in order for the inequality (1.4) to hold, is that the
operator L should be elliptic. Namely, at each point x E 1 2 the n x n matrix
(ai3(x)) should be strictly positive definite.
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(II): Fredholm alternative

A well-known criterion in linear algebra states that the equation (1.1)
has a unique solution for every given b e ][8n if and only if the homogeneous
equation

Ax=O
has only the solution x = 0. Of course, this holds if and only if the matrix
A is invertible.

In general, continuous linear operators on an infinite-dimensional space
X do not share this property. Indeed, one can construct a bounded linear
operator A : X -+ X which is one-to-one but not onto, or conversely.

Yet, the finite-dimensional theory carries over to an important class of
operators, namely, those of the form A = I - K, where I is the identity and
K is a compact operator. If A is in this class, then one can still prove the
equivalence

A is one-to-one A is onto.

By an application of this theory it follows that, for a linear elliptic opera-
tor, the equation (1.3) has a unique solution u e H( 1l) for every f e L2(SZ)
if and only if the homogeneous equation

Lu=O

has only the zero solution.

(III): Diagonalization

If one can find a basis {vi,. . . , v?} of Rn consisting of eigenvectors of A,
then with respect to this basis the system (1.1) takes a diagonal form and
is thus easy to solve.

For a general matrix A with multiple eigenvalues, it is well known that
such a basis of eigenvectors need not exists. A positive result in this direction
is the following. If the n x n matrix A is symmetric, then one can find
an orthonormal basis {vi,. . . , v?} of the Euclidean space Rn consisting of
eigenvectors of A. Namely,

(vi, v3 { Avk = akvk.1 ifi=j,
0 ifi j,

Here A1,... , an E Ilk are the corresponding eigenvalues. The solution x of
(1.1) can now be found by computing its coefficients c1, ... , cn with respect



4 1. Introduction

to the orthonormal basis:
n n n

X = 2ckvk, AX = 2Akckvk = b = (b,Vk)Vk.
k=1 /c=1 k=1

Notice that, thanks to the basis of eigenvectors, the problem becomes de-
coupled. Instead of a large system of n equations in n variables, we only
need to solve n scalar equations, one for each coefficient ck. If all eigenvalues
ak are nonzero, we thus have the explicit formula

n
1x = -(b,vk)vk.

k=1

One can adopt the same approach in the analysis of the elliptic operator
L in (1.2), provided that air = and b2(x) = 0. Indeed, these conditions
make the operator "symmetric". One can then find a countable orthonormal
basis {¢i, 2, ... } of the space L2(1Z) consisting of functions k E H(1)
such that

(1.6) (/j, cb,)L = { Lqk = Akq!lc,
1 ifi= j,
0 ifi j,

for a suitable sequence of real eigenvalues Ak -4 +oo. Assuming that Ak ; 0
for all k, the unique solution of (1.3) can now be written explicitly as

00

(1.7) u = k (f,k)L2k.
k=1

Notice the close resemblance between the formulas (1.5) and (1.7). In
essence, one only needs to replace the Euclidean inner product on II81 by
the inner product on L2(S1).

1.2. Evolution equations

Let A be an n x n matrix. For a given initial state b E Rn, consider the
Cauchy problem

(1.8) dt x(t) = Ax(t), x(0) = b.

According to linear ODE theory, this problem has a unique solution:

(1.9) x(t) = etb,
where

(1.10)

00 tkAk

k!
k=o

etA =
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Notice that the right-hand side of (1.10) is defined as a convergent series of
n x n matrices. Here Ao = I is the identity matrix. The family of matrices
{etA; t e 1R} has the "group property", namely

eo A = I, etAesA = e(t+s)A for all t, s E ]R.

If A is symmetric, then it admits an orthonormal basis of eigenvectors
{vi,. . . , vn }, with corresponding eigenvalues A1,. . . ,A.. In this case, the
solution (1.9) can be written more explicitly as

n
etAb = eDc (b, Vk) Vk.

k=1

The theory of linear semigroups provides an extension of these results
to unbounded linear operators in infinite-dimensional spaces. In particular,
it applies to parabolic evolution equations of the form

(1.11) t u(t) _ -Lu(t), u(0) = g e L2(), u =0 on BSt,

where L is the partial differential operator in (1.2) and 8St denotes the
boundary of St. When az = and b(x) = 0, the elliptic operator L
is symmetric and the solution can be decomposed along the orthonormal
basis {q51i ¢2i ... } of the space L2(St) considered in (1.6). This yields the
representation

00

(1.12) u(t) = Stg e-tai (9, q5k)L2 cbk, t > 0.
k=i

Notice that the operator L is unbounded (its eigenvalues satisfy Ak -4 +oo
as k -+ oo). However, the operators St in (1.12) are bounded for every t > 0
(but not for t < 0). The family of linear operators {St; t > 0} is called a
linear semi group, since it has the semigroup properties

So = I, St o SS = St+s for all s, t > 0.

Intuitively, we could think of St as an exponential operator: St
However, since L is unbounded, one should be aware that an exponential
formula such as (1.10) is no longer valid. When the explicit formula (1.12)
is not available, the operators St must be constructed using some different
approximation method. In the finite-dimensional case, the exponential of a
matrix A can be recovered by

t(1.13) etA = lim I - - A
_n

n oo n
and also by

(1.14) etA = lim etA', AA = A(I -
a-+OO
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Remarkably, the two formulas (1.13)-(1.14) retain their validity also for a
wide class of unbounded operators on infinite-dimensional spaces.

The hyperbolic initial value problem

(1.15) utt + Lu = 0, { ut(0) = h, u = 0 on BSt,

can also be treated by similar methods.
The finite-dimensional counterpart of (1.15) is the system of second-

order linear equations
2

(1.16) d2 X(t) + AX(t) = o, x(0) = a, X(o) = b.

Here x , a, b e ][8n and A is an n x n matrix. Denoting time derivatives
by an upper dot and setting y = ic, (1.16) can be written as a first-order
system:

(1.17)
(* - (0 I (x (x(O) - (a

- -A 0) ky)' y(O)) -
The same results valid for first-order linear ODEs can thus be applied here. If
A is symmetric, then it has an orthonormal basis of eigenvectors {vi,.. . , v,z}
with corresponding eigenvalues A1,. . . , A. In this case, the solution of (1.16)
can be written as

n

X(t) _ >ck(t)vk.
k=1

Each coefficient can be independently computed, by solving the second-
order scalar ODE

a

dt2ek(t) + AkCk(t) - 0, Ck(0) - (a, vk), Ck(O) - (b, vk)

Returning to the problem (1.15), if the elliptic operator L is symmetric,
then the solution can again be decomposed along the orthonormal basis

of the space L2(1t) considered in (1.6). This yields the entirely
similar representation

00

(1.19) u(t) _ Ca(t)¢k t > 0,
k=1

where each function ck is determined by the equations
2

0, Ck(0) - (9, q5k)L2, Ck(O) - (h, k)L2.
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1.3. Function spaces

In functional analysis, a key idea is to regard functions f : Ian F-+ R as
points in an abstract vector space. All the information about a function is
condensed in one single number If II, which we call the norm of f. Typically,
the norm measures the "size" of f and of its partial derivatives up to some
order k. It is remarkable that so many results can be achieved in such
an economical way, relying only on this single concept, coupled with the
structure of vector space. This accounts for the wide success of functional
analytic methods.

Toward all applications of functional analysis to integral or differential
equations, one needs to develop a theory of function spaces. In this direction,
it is natural to consider the spaces Ck of functions with bounded continuous
partial derivatives up to order k. The "size" of a function f E C' (W) is
here measured by the norm

I

al ... an f ( )maxai+...+an_k sup Dxl Dxn x
xERn

The spaces Ck, however, are not always appropriate for the study of PDEs.
Indeed, from physical or geometrical considerations one can often provide
estimates not on the maximum value of a solution and its derivatives, but
on their U norm, for some p > 1. This motivates the introduction of the
Sobolev spaces containing all functions whose derivatives up to order
k lie in U. The "size" of a function f E W k'p (W) is now measured by the
norm

Ilfllwk.P
p

aai ... Dan f(x) dxIn
Because of their fundamental role in PDE theory, all of Chapter 8 will be
devoted to the study of Sobolev spaces.

1.4. Compactness

When solving an equation, if an explicit formula for the solution is not
available, a common procedure relies on three steps:

(i) Construct a sequence of approximate solutions (un)n>1

(ii) Extract a convergent subsequence - u.
(iii) Prove that the limit u is a solution.

When we reach step (ii), a major difference between the Euclidean space
llBN and abstract function spaces is encountered. Namely, in I[8N all closed
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bounded sets are compact. Otherwise stated, in ]R"1 the Bolzano-Weierstrass
theorem holds:

From every bounded sequence (un)n>1 one can extract a convergent
subsequence.

As proved in Chapter 2 (see Theorem 2.22), this crucial property is valid in
every finite-dimensional normed space but fails in every infinite-dimensional
one. In a space of functions, showing that a sequence of approximate solu-
tions is bounded, i.e., IIun C for some constant C and all n > 1, does
not guarantee the existence of a convergent subsequence. To overcome this
fundamental difficulty, two main approaches can be adopted.

(i) Introduce a weaker notion of convergence. Prove that every bounded
sequence (also in an infinite-dimensional space) has a subsequence
which converges in this weaker sense.
A key result in this direction, the Banach-Alaoglu theorem, will
be proved at the end of Chapter 2. Weak convergence in Hilbert
spaces is discussed in Chapter 5.

(ii) Consider two distinct norms, say IIUIIweak < lulistrong, with the
following property. If a sequence (u)>1 is bounded in the strong
norm, i.e., Ilunhistrong < C, then there exists a subsequence that
converges in the weak norm:

I
- u I I weak -+ 0, for some limit u.

Ascoli's theorem, proved in Chapter 3, and the Rellich-Kondrahov
compact embedding theorem, proved in Chapter 8, yield different
settings where this approach can be implemented.

A large portion of the analysis of partial differential equations ultimately
relies on the derivation of a priori estimates. It is the nature of the problem
at hand that dictates what kind of a priori bounds one can expect, and
hence in which function spaces the solution can be found. This motivates
the variety of function spaces which are currently encountered in literature.

While the techniques of functional analysis are very general and yield
results of fundamental nature in an intuitive and economical way, one should
be aware that only some aspects of PDE theory can be approached by func-
tional analytic methods alone. Typically, the solutions constructed by these
abstract methods lie in a Sobolev space of functions that possess just the
minimum amount of regularity needed to make sense of the equations. For
several elliptic and parabolic equations, it is known that solutions enjoy a
much higher regularity. However, this regularity can only be established by
a more detailed analysis. Further properties, such as the maximum principle
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for elliptic or parabolic equations and the finite propagation speed for hyper-
bolic equations, also require additional techniques, specifically designed for
PDEs. For these issues, which are not within the scope of the present lecture
notes, we refer to the monographs [E, GT, McO, P, PW, RR, S, T].





Chapter 2

Banach Spaces

Given a vector space X over the real or complex numbers, we wish to in-
troduce a distance d(.,.) between points of X. This will allow us to define
limits, convergent sequences and series, and continuous mappings.

Since X has the algebraic structure of a vector space, the distance d
should be consistent with this structure. It is thus natural to require the
following properties:

(p1) The distance d is invariant under translations. Namely: d(x, y) _
d(x + z, y + z) for every x, y, z e X. In particular, d(x, y) _
d(x-y, 0).

(p2) The distance d is positively homogeneous. Namely: d(Ax, y) _
Al d(x, y), for any scalar number A and any x, y e X.

(p3) Every open ball B(xo, r) = {x e X ; d(x, xo) <r} is a convex set.

The invariance under translations implies that the distance d(.,.) is en-
tirely determined as soon as we specify the function x H lxii = d(x, 0), i.e.,
the distance of a point x from the origin. This is what we call the norm of
a vector x e X. It can be taken as the starting point for the entire theory.

2.1. Basic definitions

Let X be a (possibly infinite-dimensional) vector space over the field K of
numbers. We shall always assume that ]K is either the field of real numbers
II8 or the field of complex numbers C. A norm on X is a map x H lxii
from X into II8, with the following properties.

11



12 2. Banach Spaces

(Ni) For every x E X one has lixil ? 0, with equality holding if and only
ifx=0.

(N2) For every x E X and A E IK one has IlAxil _ IAI lix II.

(N3) For every x, y E X one has lIx + yIl < lxii + liy

A vector space X with a norm satisfying (N1)-(N3) is called a normed
space. In turn, a norm determines a distance between elements of X.

Lemma 2.1 (Distance defined by a norm). Let II ' II be a norm on the
vector space X. Then

(2.1) d(x,y) lix-yli
defines a distance between points of X. Moreover, this distance has the
additional properties of translation invariance, positive homogeneity, and
convexity stated in (pl)-(p3) above.

Proof. 1. We check that, for all x, y, z E X, the three basic properties of a
distance are satisfied:

(D1) d(x, y) > 0 for all x, y E X with equality holding if and only if
x=y;

(D2) d(x, y) = d(y, x);

(D3) d(x, z) < d(x, y) + d(y, z).

Indeed, (D1) is an immediate consequence of (Ni). To prove (D2) we write

d(y,x) _ iy-xii _ II(-i)(x-y)Ii = i-il ix-yll _ lix-yli = d(x,y)
The triangle inequality follows from (N3), replacing x, y with x - y and y - z,
respectively:

d(5,z) _ llx-zii _ l:c ix-yii+iiy-zii = d(x,V)+d(i/,s)

2. The property (p1) of translation invariance follows immediately from
the definition. The homogeneity property (p2) follows from

d(Ax,Ay) = IIA(x-y)li = Ailix-yli = Ald(x,y).

Finally, to check that every open ball is convex, by translation invariance it
suffices to prove that every ball centered at the origin is convex. If x, y E
B(0, r) and 0 < B < 1, then the convex combination satisfies

lox + (1 - B)yIl < 91 lxii + ii - 0 I iiil < Or + (1 - 8)r = r.
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Hence 8x + (1 - 8)y E B(0, r), which proves that the open ball B(0, r) is
convex.

The distance d(x, y) _ lix-yll determines a topology on the vector space
X. We can thus talk about open sets, closed sets, convergent sequences, and
continuous mappings.

Throughout the following, the open and the closed balls centered at a
point x with radius r > 0 are denoted respectively by

B(x, r) = {yEX; lly-xll <r}, (x,r) = {yEX; IIy-xll < r}.

We recall that a set V C X is open if, for every x E V, there exists r > 0
such that B(x, r) C V. A set U C X is closed if its complement X \ U is
open.

A sequence (xn)n>1 converges to a point x E X if

lim llx-lI = 0.

Given a series of elements of X, we say that the series converges to x, and
write

k=1

if the sequence of partial sums converges to x, namely

lim
n-+oo

k=1

=0.

Given two normed spaces X, Y, we say that a map f : X F-+ Y is
continuous if, for every x E X and e> 0, there exists b > 0 such thatu< E whenever x' E X, lix' - xli <

A sequence (x)>1 is a Cauchy sequence if, for every e > 0, one can
find an integer N large enough so that

I Ixm - xnii < e whenever m, n > N.

A normed space X is complete if every Cauchy sequence converges to
some limit point x E X. A complete normed space is called a Banach
space.
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2. Banach Spaces
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Figure 2.1.1. The unit balls in R2 with norms 1 (left),
II

' 112

(center), and (right), described in Example 2.3.

2.1.1. Examples of normed and Banach spaces.

Example 2.2. The finite-dimensional space I[8' _ {x = (xi,. . . , xn), xi
E Ti} 8with Euclidean norm

(2.2) ilxli2

is a Banach space over the real numbers. In particular, the field Il8 of all real
numbers can be regarded as a 1-dimensional Banach space. In this case, the
norm of a number x E Il8 is provided by its absolute value.

Example 2.3. On the space W one can consider the alternative norms

lxllp - (ixilp + ... -+- Ixnl I1/P'

xiioo = Tri1.XiGi<n lxii.

Here 1 <p < oo. Each of these norms also makes Il8' into afinite-dimen-
sional Banach space.

Example 2.4. For any closed bounded interval [a, b], the space C°([a, b]) of
all continuous functions f : [a, b] H Il8, with norm

(2.3) Iiflico maxxE[a,b] if(x)l,

is a Banach space.

Example 2.5. Let Sl be an open subset of For every 1 < p c oo,
consider the space LP() of all Lebesgue measurable functions f : SZ H Il8
such that f lf(xW dx < oo. This is a Banach space, equipped with the
norm

(2.4) IIILP

Two functions f, f are regarded here as the same element of LP() if they
coincide almost everywhere, i.e., if meal({x E S2; f(x) # J(x)}) = 0.
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Similarly, the space L°°(l) of all essentially bounded, measurable func-
tions f : S2 H II8 is a Banach space with norm

(2.5) IIfIIL00 = ess sup If(x)I
xESZ

Example 2.6. For a fixed p > 1, consider the space of all sequences of real
numbers whose p-th powers are summable:

00

(2.6) {x = (x1,x2,...); IxI <o}.
k=1

This is a Banach space with norm
00 1/P

(2.7) IIxIIP I

k=1

Example 2.7. The space £°O of all bounded sequences of real numbers, with
norm

(2.8) IIxIIoo = sup frckI,
k>1

is a Banach space. Within this space, one can consider the subspace co of
all sequences (xk)k>l that converge to zero as k -+ oo. This is also a Banach
space, for the same norm (2.8).

Remark 2.8. Within the space £P, 1 < p < oo, consider the family of unit
vectors
(2.9)

e l = (1,0,0,0,...), e2 = (0,1,0,0,...), e3 = (0,0,1,0,...),
These are linearly independent. The set of all linear combinations)

(2.10) span{ek ; k > 1} = 0e; ; N > 1, 0k e Ilk
k=1

does not coincide with the entire space but is a dense subset of £. Indeed,
it consists of all sequences of the form x = (xi, X2,. . . , xpq, 0,0,0,. . .), having
finitely many nonzero entries.

The set {ek; k > 1} is not an algebraic basis for £', but it provides
a topological basis. Namely, every element x = (x1, x2,...) E can be
obtained as the sum of the convergent series

x = >xkek.

lc=1

1 Notice that by a linear combination one always means a finite sum, not a series.



16 2. Banach Spaces

Remark 2.9. On the field of real or complex numbers, the absolute value
I a measures how big the number a is. Similarly, on a vector space X one
can think of the norm hII as measuring the size of an element f E X. We
observe, however, that it is possible to adopt different norms (and hence
different distances) on the same space of functions, obtaining quite different
convergence results. This is illustrated by the next example.

Example 2.10. Let X be the space of all polynomial functions on the
interval [0, 1]. On X we can consider the two norms

(2.11)
1

If ilco = mxE[o,i] If(x)I, If ilL' _ J I

These norms yield different convergence results (see Figure 2.1.2). For ex-
ample, consider the sequence of monomials fn(x) = xn. Letting n -+ o0 one
has IIfn IlL' -+ 0. Therefore the sequence (fn)n>1 converges to zero (i.e., to
the identically zero function) in the Ll norm. On the other hand, IIfnIIco = 1
for all n > 1. In terms of the C° norm, this same sequence is not a Cauchy
sequence and does not have any limit.

g

0 x 1

Figure 2.1.2. Left: the L1 distance between the two functions f, g,
measured by the area of the shaded region, is small. However, their
C° distance, measured by If - gllco = I - g(x) is large. Right:
the sequence of polynomials fn (x) = xn converges to zero in the
space L1([0,1]) but does not have any limit in the space C° ([0,1]) .

2.2. Linear operators

Let X, Y be normed spaces on the same field IK of scalar numbers. A linear
operator is a mapping A from a subspace Dom(A) C X into Y such that

A(cixl + c2x2) = c1Ax1 + c2Ax2 for all xl, x2 E Dom(A), Cl, c2 E ]K.

Here Dom(A) is the domain of A. The range of A is the subspace

Range(A) = {Ax; x E Dom(A)} C Y.
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The null space or kernel of A is the subspace

Ker(A) = {xeX; Ax=O} C X.
Notice that A is one-to-one if and only if Ker(A) _ {0}.

Next, consider a linear operator A : X H Y defined on the entire space
X, i.e., with Dom(A) = X. We say that A is bounded if

(2.12) h= sup hiAxhi < oo.
Ilxll_<1

Theorem 2.11 (Continuity of bounded operators). A linear operator
A : X H Y is bounded if and only if it is continuous.

Proof. 1. If A is continuous, then in particular it is continuous at the
origin. Hence there exists S > 0 such that lIxhl < S implies hlAxhl < 1. By
linearity, this implies that

liAxil < whenever lix Ii <1.

Hence A is bounded.

2. Conversely, let A be bounded, so that (2.12) holds. By linearity, we
obtain

hlAxi-Ax2hl - h- iixl-x2hi A( xl I x2 ) C llxi-xll lAM.

Hence A is uniformly Lipschitz continuous with Lipschitz constant iA Ii. 0

If X, Y are normed spaces over the same field of scalar numbers, we
denote by 13(X; Y) the space of bounded linear operators from X into
Y. Notice that here we require that the domain of these operators should
be the entire space X.

Theorem 2.12 (The space of bounded linear operators). The space
13(X; Y) of all bounded linear operators from X into Y is a nonmed space,
with norm defined at (2.12). If Y is a Banach space, then 13(X; Y) is a
Banach space.

Proof. If A1, A2 are linear operators, and Cl, c2 E III, then their linear com-
bination is defined as

(C1A1+c2A2)(x) = C1A1x +C2A2x .

We now check that the properties (N1)-(N3) of a norm are satisfied.
1. If A = 0 is the zero operator, then Ax = 0 for all x e X, and hlAhi = 0
On the other hand, if A is not the zero operator, then Ax 0 for some
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x 0. Hence
Ilxll

Ax # 0 and the supremum in (2.12) is strictly
positive. This proves (Ni).

2. If a E K, then (N2) follows by the identities

llaAll = sup llaAxll _ al sup IlAxIl _ lal hIIxII<_1
IIxII_<i

3. To check the triangle inequality (N3), for every x E X with lixIl < 1 we
write

I+n2)xll = IlAix + A2x11 IlAlxll + 112x11 I+ 11211
Taking the supremum over all x E X with lix II < 1 we obtain (N3).

4. Next, assume that Y is a Banach space. We need to show that 23(X; Y)
is complete. Let (A)>u be a Cauchy sequence of bounded linear operators.
For each x E X, this implies

lim sup 1111mx - A x I I< lim sup 11Am - All 1 lIxIl = o.
m,n-400 m,n-400

Therefore the sequence of points (Ax)>u is Cauchy in Y. Since Y is
complete, this sequence has a unique limit, which we call Ax.

Since every A is a linear operator, it is clear that the A is linear as well.
We claim that A is also bounded (and hence continuous). By assumption,
we can choose N large enough such that

llAk-ANII < 1 for all k > N.

Therefore, for any x E X with lix II < 1 one has

IhAxli _ hlnkxhl c hIANxIl + lim sup ilAk - ANIIIIxil C ilnNIl + 1.

Since x was an arbitrary point in the unit ball, this proves that the limit
operator A is bounded, and hence A E ,Ci(X; Y).

2.2.1. Examples of linear operators.

Example 2.13 (Matrices as linear operators). Every n x m matrix
A = (a23) determines a bounded linear operator A : RH ][8 defined by

A(xl,... , xm) = (iii,. .., yn),
m

with y2 = aZj x j .

j=1

Example 2.14 (Diagonal operators on a space of sequences). Let
1 < p < oo, and consider the space X = 2a' of all sequences x = (xi, x2,...)
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of real numbers, with norm defined as (2.7) or (2.8). Let (A1, A2,...) be an
arbitrary sequence of real numbers, and define the operator A : X H X as

(2.13) A(xl,x2,x3,...) _ (Aixi, 2x2 , 3x3 , ... ).

With reference to the basis of unit vectors {ei, e2,. . .} in (2.9), we can think
of A as an infinite matrix:

A3

with al, A2,... along the diagonal and 0 everywhere else. We now have two
cases.

(i) If the sequence (Ak)k>1 is bounded, then the operator A is bounded.
Its norm is

(2.14) I=sup IAkl.
k

(ii) If the sequence (Ak)k>1 is unbounded, then the operator A is not
bounded. Its domain

Dom(A) _ {xE.e; Ax E FY}

is a vector subspace, strictly contained in

Example 2.15 (Differentiation operator). Consider the open interval
I = ]0, ir[ and let X = 13C(I) be the space of bounded continuous real-valued
functions on I, with norm

Il/Il Sun 1!(=)I
o<x<ir

The differential operator A f = f' is clearly a linear operator on X. To
see that this operator is not bounded, consider the sequence of functions
fk(x) =sinkx. Then fL(x) = k coskx, hence

hIlAfkII=k for all k > 1.

The domain Dom(A) of this differential operator is the space of all bounded
continuous functions f : I H l[8 that are everywhere differentiable and have
abounded, continuous derivative. This is a proper subspace of XiC(I).

Example 2.16 (Shift operator on Lp(][8)). Let 1 < p < oo. Fix any
a E R. Given a function f E LP(II8), define (Aaf)(X) = f(x - a). Clearly
IAfIILP = 11/ IILP. Therefore, Ad U H Lp is a bounded linear operator,

with norm IIAaII = 1. Notice that the operator Aa is one-to-one and onto.
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Example 2.17 (Shift operators on 2p). Let 1 < p < oo. Define the
operators A+ : 2p H .2and A_ :.2 H 2r as

A+(xi, X2, X3,.. .) (0, a;i, X2,...),

A-(xl,x2,x3,...) _ (x2,x3,x4,...).
Observe that these are linear continuous operators, with III+II = IA- II = 1
Moreover, A+ is one-to-one but not onto, while A_ is onto, but not one-to-
one.

Example 2.18 (Multiplication operator). Let S2 C 1[81 and let g : S2 H II8
be a bounded, measurable function. For any 1 < p < oo, on the space
LP(1) consider the multiplication operator: (M9f)(x) = g(x) f(x). This is
a continuous operator, with norm

(2.15) 11M911 = sup IgfIILP = II9IIL°°
IIfIILp<_1

Example 2.19 (Integral operator). Let a < b and consider the space
X = C° ([a, b]) of real-valued continuous functions defined on the closed
interval [a, b]. Consider the integral operator

(Af)(x) = ff()d.Then
A : X H X is a bounded linear operator. Indeed,

Ia
f(y)dy5 dY (6-a)

Hence IlAf (b-a)IIfII and hc (6-a).

maxxE[a,b] If(x)I.

2.3. Finite-dimensional spaces

We say that two norms ' and II ' on the same vector space X are
equivalent if there exists a constant C > 1 such that

(2.16) G, iIXiiG < ilxiio < C IIxII0 for all x E X .

Equivalent norms yield the same Cauchy sequences and the same topology
on X. In general, an infinite-dimensional space X can have many nonequiv-
alent norms. As shown in Example 2.10, on the space of all polynomials in
one real variable, the Li norm and the C° norm defined in (2.11) are not
equivalent.

The next results show that, for afinite-dimensional vector space X,
all norms are equivalent. Indeed, every finite-dimensional normed space of
dimension N is equivalent to the Euclidean space KN. We recall that the
Euclidean norm of a vector a = (ai,.. . , anr) E KN is laM - k iakI2.



2.3. Finite-dimensional spaces 21

Theorem 2.20 (A finite-dimensional normed space is homeomor-
phic to KN). Let X be afinite-dimensional nonmed space over the field ]K
of real or complex numbers. Let 8 = {Ui, u2i ... , uN} be a basis of X. Then

(i) X is complete, and hence a Banach space.
(ii) For every a = (al, a2,.. . , aN) E 1KN, define

(2.17) Aa = alul + a2u2 -F +anruN .

Then the linear operator A : lien' H X is bijective and bounded. Moreover,
its inverse A-1 : X H 1KN is also bounded.

Proof. 1. The fact that {Ui,. . . , up} is a basis implies that A is one-to-one
and onto. Hence the inverse operator A-1 : X H IKN is well defined.

2. Writing
N N

IIAaII IkkkII hail lkLkIl,
k=1 k=1

we see that A : IKN F-+ X is a bounded linear operator, hence continuous.

3. We claim that A-1 is also bounded. Otherwise there exists a sequence
(xn)n>1 in X with IIx < 1 for every n and such that

A- l xn, l l -+ 00 as 1Z -+ 00.

Consider the normalized vectors

lan = E
KN.

Then IIiII = 1 and A,6n -+ 0 as n -+ oo. Since (/3n)n>1 is a bounded
sequence in the Euclidean space IKN, it admits a convergent subsequence,
say ,6flk Q E IKn'. Clearly

IIihl h- 1, nl6 = !c lmoo nNnk - k
IA xx1 II

= 0,

because A is continuous. This contradicts the fact that A is one-to-one. We
thus conclude that A-1 is bounded, hence continuous. This proves (ii).

4. To prove that X with norm ' is complete, let (x)>1 be a Cauchy
sequence in X. Then A-lxn defines a Cauchy sequence in lien', which con-
verges to some point /3 E IKn' because is complete. Since A is continuous,
the sequence xconverges to A3. O

Corollary 2.21. In afinite-dimensional space, all norms are equivalent.
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Proof. Let and II ' be any two norms on the finite-dimensional
vector space X. Let 13 = {u,,. , uN} be a basis of X and define the linear
map A : KN H X as in (2.17). By the previous theorem, both A and A-1
are bounded linear operators (in each of the two norms on X). Hence there
exist constants C', C" such that

c, III-1x11 < IIxIIo < c' III-1x11

1<_ Ilxll <_ c" 11A-1x11

for all x E X. This implies (2.16).

The classical theorem of Bolzano and Weierstrass states that every bound-
ed sequence in RN admits a convergent subsequence. The next theorem
shows that this compactness property is true for all finite-dimensional normed
spaces, and fails for all infinite-dimensional ones.

Theorem 2.22 (Locally compact normed spaces are finite-dimen-
sional). Let X be a nonmed space. The following are equivalent:

(i) X is finite-dimensional.

(ii) The closed unit ball Bl = B(0,1) _ {x E X ; lxii < 1} is compact.

Figure 2.3.1. The construction used to prove Theorem 2.22.

Proof. (i)==(ii). Let X have dimension N. Then by Theorem 2.20 there
exists a linear homeomorphism ti : K"' H X with bounded inverse. Since
the unit ball Bl C X is closed and bounded, the same is true of K
A-1(Bl) C KI". By the Bolzano-Weierstrass theorem, the closed bounded
set K is compact. Being the continuous image of a compact set, Bl = t1(K)
is compact as well.
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(ii)==(i). Assume that the closed unit ball Bl C X is compact. Then it
is pre-compact and can be covered with finitely many open balls B(pz,1/2)
centered at points pi, i = 1, ... , n, and with radius 1/2. Consider the finite-
dimensional subspace V =span{pl, ... , pn} (see Figure 2.3.1). Observe that
V is closed in X, because by Theorem 2.20 every finite-dimensional normed
space is complete.

We claim that V = X, hence X itself is finite-dimensional. If not, we
could find a point x e X \ V. Let p = d(x, V) = infyEV IIy - xli Notice
that p> 0 because V is closed. Hence there exists a point v e V such that

(2.18) P < iIx-vii < Z p.

Consider the unit vector
z x - vE

Bl .

lix-vil
By construction, there exists a point pi e Bl such that liz - pdl <
thus have

12 We

x = v+lix -
v + lix -

lix - vii liz - pill d(x, V) p.

Hence lix - vii > 2p, in contradiction to (2.18). This shows that X = V,
completing the proof.

2.4. Seminorms and Frechet spaces

To motivate the introduction of seminorms we observe that, for certain
spaces of functions, there is no natural way to define a norm.

Example 2.23. Consider the space X = C(]0,1[) of all continuous (possibly
unbounded) functions on the open interval ]0, 1[ . Then, by setting

p(f) = sup i0<x<1

we do not obtain a norm on the entire space X. Indeed, the right-hand side
takes the value +oo whenever f is unbounded.

On the other hand, given a closed subinterval [a, b] C ]0, 1[ , the "semi-
norm"

(2.19) maxxE[a,6]if (x)

is always awell-defined real number. Notice that the functional in (2.19)
does not satisfy all requirements of a norm, because there exist functions
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f E C(]0,1[) that vanish on [a, b] but are not identically zero. In this case,
pa,b( f) = 0 but f 0.

Now let X be a vector space on the field ]K. Areal-valued map x H p(x)
is called a seminorm on X if it satisfies the following properties:

(SN1) For every x E X one has p(x) > 0.

(SN2) For every x E X and A E IK one has p(ax) _ AIp(x).

(SN3) For every x, y E X, p(x + y) < p(x) +P(y).

Notice that (SN2)-(SN3) are exactly the same as in the definition of
a norm. The only difference is that in (SN1) we do not require the strict
positivity condition. In other words, we allow for p(x) = 0 even if x 0.

If is a seminorm, by setting d(x, y) = p(x - y) we are not guaran-
teed to obtain a distance on the space X. Indeed, we may have d(x, y) _
p(x - y) = 0 even if x # y. There are, however, interesting cases where a
distance can be obtained by using not just one but countably many semi-
norms.

We say that a sequence (Pk)k>1 of seminorms on X is separating if,
for every x E X with x # 0, there exists at least one index k such that
po(x) > 0.

Lemma 2.24 (Distance generated by seminorms). Let (Pk)k>1 be a
separating sequence of seminorms on the vector space X. Then

Pk(XY)
(2.20) d(x, y) = 2 1 + pk (x - y)

defines a distance on X.

Proof. The identities

d(x, x) = 0, d(x, y) = d(y, x)

are an immediate consequence of (SN2). The assumption that the sequence
(Pk) is separating guarantees that d(x, y) > 0 as soon as x y.

To prove the triangle inequality, we observe that, if a, b, c > 0 and c <
a + b, then

c a+b a b
1+c - 1+a+b <- 1+a+l+b

because the function s H 1+3 is increasing and concave down. By (SN3) we
can use the above inequalities with a = pk(x - y), b = pk(y - z), c = pk(x - z)
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and obtain
00

d(x, z) _ pk(x - z)

1-I- pk(x - z)

00 2- pt (x - y) + z)

k=1

= d(x,y)+d(y,z).
This proves that d(.,.) is indeed a distance.

From the definition, it is clear that the distance (2.20) is invariant under
translations, namely

d(x, y) = d(x + z, y + z) for all x, y, z e X.

If the vector space X with the distance (2.20) is a complete metric space,
then we say that X is a Frechet space.

Example 2.25. Let S2 C W be any open set, with boundary 852. Then
the space C(St) of all (possibly unbounded) continuous functions f : S2 H ]I
does not have a natural norm. However, it can be given the structure of
a Frechet space as follows. For every k > 1, consider the compact subset
(Figure 2.4.1)

(2.21) Ak = {x e S2; lxi < k, d(x,BSt) < k-1}

Define the seminorms

(2.22) pk (f) = maxXEAk if(x)I

and let d(.,.) be the corresponding distance as in (2.20).

Figure 2.4.1. The compact subsets Ak C SZ.
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We show that C(12) with the above distance is a complete metric space,
hence a Frechet space. Let (f3)3>1 be a Cauchy sequence. For every k this
implies

(2.23) lim sup pk(fi - fj) = lim sup sup f(x) - f(x)I = 0.
i,j-+00 i,j-goo xEAk

Since every point x e 1 2 is contained in one of the sets Ak, by (2.23) the
sequence f3 (x) is Cauchy and hence converges to some limit f(x). More
generally, every compact subset K C Sl is contained in one of the sets Ak.
Again by (2.23), the convergence f3 -+ f must be uniform on compact
subsets of St, hence the limit f is continuous.

It now remains to prove that f) -+ 0 as j - oo. For any fixed
m > 1, using the fact that f3 -+ f uniformly on the compact set Ate, we
find

lim sup d(f3, f)
j->oo

< lim sup 2-k pk(fj/ - f) - lim sup
00

2-k p f - f
k_1 1 +1)k(fj - f) k_m+l 1 +plc(fj - f)

0+2.m

Since m is arbitrary, the convergence is proved.

Example 2.26 (The spaces As in the previous example, let SZ C Il8n
be an open set. We say that an open set 12' is compactly contained in
St, and write SZ' CC S2, if the closure SZ' is a compact subset of St.

For p e [l, oo[ we define L to be the space of all measurable func-
tions f such that fP dx < oo for every open set St' compactly contained
in SZ. This space is not endowed with a natural norm. However, for each
k > 1 we can consider the seminorm

11/p
(2.24) pk(f) - If Vdx) = If IILP(Ak),

\Ak /
where Ak is the set in (2.21). The corresponding distance (2.20) renders
L a Frechet space.

2.5. Extension theorems

Let X be a vector space over the field III. A linear map F : X H III is
called a linear functional on X. The eventual goal of this section is to
prove the existence of a large number of continuous linear functionals. In
this direction, we first prove an extension theorem: given a linear functional
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f : V H III defined on a subspace V C X, one can extend it to a func-
tional F : X H III defined on the entire space, preserving some additional
properties.

In the following, we consider a vector space X over the real numbers
and let p : X H ][8 be a function such that

(2.25) p(x + y) < p(x) + p(y), p(tx) = t p(x) for all x, y E X, t > 0.

Remark 2.27. If X is a normed space, the function p(x) _ /c lxii satisfies
the above properties for any ic > 0 . More generally, any seminorm also
satisfies (2.25).

Observe that (2.25) implies that the function p is convex. Indeed

p(9x + (1 - B)y) < p(ex) +p((1 - 8)y) = 9p(x) + (1 - 9)p(y)

for all x, y E X, B E [0, 1]. However, compared with a seminorm, here we
also allow for p(x) <0. Moreover, we do not require p to be symmetric with
respect to the origin. In other words, one may well have p(x) # p(-x).

Example 2.28. Let X be a normed space and let St C X be a bounded,
open, convex set containing the origin. Then the functional

(2.26) p(x) = inf {A > 0; x E ASZ}

satisfies the assumptions (2.25).

Theorem 2.29 (Hahn-Banach extension theorem). Let X be a vector
space over the Teals and let p : X H ][8 be a map with the properties (2.25).
Consider a subspace V C X and let f : V H ll8 be a linear functional such
that

(2.27) f(x) < p(x) for all x E V.

Then there exists a linear functional F : X H II8 such that F(x) = f(x)
for all x E V and

(2.28) -p(-x) < F(x) < p(x) for all x E X.

Proof. 1. If V = X, observing that f(x) _ - f (-x) > -p(-x), the conclu-
sion is clear. If V X, choose any vector xo V and consider the strictly
larger subspace

Vp = {x+txo; x E V, t E 1[8}.
For every x, y E V, the bound on f yields

f(x) + f(y) = f(x + y) p(x + y) p(x - xo) + p(xo + y).
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Therefore

f(x) - p(x -gyp) <_ p(y + Xo) - f(y)

Choosing ,Q = {f(x) - p(x - xo) }, we have

(2.29) f(x) - p(x - xo) Q p(y + xo) - f(y)

for all x, y E V.

for all x, y E V.

2. We now extend f to a linear functional defined on the larger space T/o,
by setting

/(x+txo) = /(x)+13t, x E V, t E 1[8 .

We claim that this extension still satisfies

(2.30) /(x + two) < p(x + two) for all x E V, t E R.

Indeed, if t = 0, the above inequality follows from our initial assumptions.
If t> 0, replacing both x and y by x/t in (2.29) we obtain

t Lf \t/ -p\t -xo/J < t,Q < t [p(t -f \tIJ
f(x) -p(y -tip) < t13 < p(x + txp) - /(x).

Therefore, for x E V and t> 0 we have

f(x-txo) = /(x)-fit < p(x - txo) ,

f(x + two) = f(x) + Qt < p(x + txo),

proving (2.30).

3. The previous two steps show that every bounded linear functional f
defined on a proper subspace V C X can be extended to a strictly larger
subspace, still satisfying the inequality (2.27). To complete the proof, we
shall use a maximality principle.

Let .F be the family of all couples (V, ¢), where V is a subspace of X
and q5: V H 1[8 is a linear functional such that

q5(x) < p(x) for all x E V.

This family can be partially ordered by setting

(V, q5) (V, q5) if and only if V C V and q5 coincides with the
restriction of to V.

By the Hausdorff Maximality Principle (see Theorem A.1 in the Ap-
pendix), the partially ordered family .F contains a maximal element, say
(VrnaX, F). If V"'a" # X, then by the previous step the linear functional F
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could be extended to a strictly larger subspace, in contradiction to the max-
imality assumption. Hence V max = X and F : X R is a linear functional
such that

F(x) < p(x) for all x e X.

By linearity, this implies that

-p(-x) -F(-x) =
completing the proof.

Figure 2.5.1. By the Hahn-Banach theorem, a linear functional
f : V R defined on a subspace V C X and such that f (x) < p(x)
for all x E V can be extended to a linear functional F : X H R
satisfying F(y) < p(y) for all y E X.

The previous theorem has a natural application to the case where p(x) _
I lxii is a norm.

Theorem 2.30 (Extension theorem for bounded linear functionals).
Let X be a nonmed space over the field K of real or complex numbers. Let
f : V H K be a bounded linear functional defined on a subspace V C X.
Then f can be extended to a bounded linear functional F : X K having
the same norm:

IIFii = sup F(x)l = sup f(x) = ilfil.
xEX,IIxII<1 xEV,IIxII<1

Proof. 1. First assume that K _ ][8, so f is real-valued. Set ic = III, and
define p(x) = rcllxli Then the result follows immediately from the previous
theorem.
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2. Next, consider the case where K = C is the field of complex numbers.
Notice that in this case, V and X can also be regarded as vector spaces
over the real numbers. The functional F X H cC will be obtained by
constructing separately its real and imaginary parts.

For x E V, define u(x) =Ref (x). This is areal-valued linear functional
on V with norm h < 'c = hII. Hence by the previous steps it admits an
extension U : X H II8 with norm I ic We claim that the map

F(x) = U(x) - iU(ix)

satisfies all requirements. Indeed, for x E V,

F(x) =Ref (x) - i Re f (ix) = R.e f (x) + i Im f (x) = f(x).
Moreover, let a E C be such that al = 1, aF(x) _ IF(x)I. Then

IF(x)I = aF(x) = U(ax) < rcIIxII

Hence IIFII < 'c = hII.

Corollary 2.31. Let X be a Banach space. For any two vectors x, y E X
with x y, there exists a continuous linear functional ¢ : X H K such that

(x) qS(y).

Corollary 2.32. Let X be a Banach space. For every vector x E X, there
exists a continuous linear functional : X H K such that (x) _ Ihxhh and

Figure 2.5.2. Left: if A is open, the disjoint convex sets A, B can
be separated by a hyperplane. Right: If A is compact and B is
closed, the disjoint convex sets A, B can be strictly separated.

2.6. Separation of convex sets

Consider the following problem. Given two disjoint convex sets A, B in a
nonmed space X, can one find a bounded linear functional : X H II8 such
that the images ¢(A) and ¢(B) are disjoint? The following theorem provides
a positive answer, relying on the Hahn-Banach extension theorem.
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Theorem 2.33 (Separation of convex sets). Let X be a nonmed space
over the reals, and let A, B be nonempty, disjoint convex subsets of X.

(i) If A is open, then there exists a bounded linear functional q5 : X H Il8
and a number c e II8 such that

(2.31) q5(a) < c < q5(b) for all a e A, b e B.

(ii) If A is compact and B is closed, then there exists a bounded linear
functional q5: X -+ Il8 and numbers Cl, c2 E ][8 such that

(2.32) ¢(a) < Cl < c2 < q5(b) for all a E A, b E B .

Proof. 1. Choose points ao e A and bo E B and set xo = bo - ao. Consider
the open set

SZ = A-B+xo = {(a-ao)+(bo-b); aEA, beB .

Since A, B are convex and A is open, it is clear that SZ is an open, convex
neighborhood of the origin. Moreover, xo Il, because otherwise

xo = a - b + xo , a - b = 0, for some a E A, b E B.

This is a contradiction because A f1 B = 0.

2. Consider the functional

(2.33) p(x) = inf {A> O; x E AS2}.

Since S2 is a neighborhood of the origin, we have B(0, p) C St for some p> 0.
Hence

(2.34) p(x) for all x e X.

Moreover, the convexity of S2 implies that
(2.35)
p(x + y) < p(x) + p(y) , p(tx) = t p(x) for all x, y E X , t>

Notice that p(xo) > 1 because xo

0.

3. On the one-dimensional subspace V = {txo; t e ][8}, define the linear
functional f by setting f(txo) = t. Observe that

f(xo) = 1, f(txo) = t < tp(xo) p(txo)

By the Hahn-Banach extension theorem, there exists a linear functional
X I[8 such that

-p(-x) < fi(x) < p(x) for all x E X .

By (2.34) it is clear that q5 is bounded. Indeed, IIcI < p 1



32 2. Banach Spaces

4. If nowaEAand bEB, we have
q(a) - ¢(b) + 1 = ¢(a - b +xo) < p(a - b +xo) < 1

because cb(xo) = f(xo) = 1 while a - b + xo E St and 12 is open. Therefore

(a) < ¢(b) for all a E A, b E B.

The sets ¢(A) and (B) are nonempty, disjoint convex sets of I18, with ¢(A)
open. Taking e = SupaEA (a), the conclusion (2.31) is satisfied. This
proves (i).

5. To prove (ii), observe that the assumptions on A, B imply

d(A, B) = inf {IIa-bII; a E A, b E B} > 0 .

If we choose p = d(A, B), then the open neighborhood Ap = {x E
X; d(x, A) <p} of radius p around A does not intersect B. We can thus
apply part (i) to the disjoint convex sets AP and B. This yields a continuous
linear functional ¢ : X H I1 8 and a constant c2 such that

¢(x) < c2 < (y) for all x E A, y E B.
We now observe that the set ¢(A) is compact, being the image of a compact
set by a continuous map. Hence cl = supXEA fi(x) <c2. This achieves the
proof of (ii).

A - B + bo - ao

Figure 2.6.1. The construction used in the proof of the separation theorem.

2.7. Dual spaces and weak convergence

Let X be a Banach space over the field IK of real or complex numbers. The
set of all continuous linear functionals cc : X i-3 IK is called the dual space
of X and denoted by X.

Observe that a linear functional cc: X H IK can be regarded as a linear
operator : X H Y, in the special case where Y = IK. We can thus use
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Theorem 2.12 and conclude that X * = 13(X, III) is a Banach space, with
norm

(2.36) II(PII* =Sup I

2.7.1. Weak convergence. A sequence x1, X2,... in a Banach space X is
weakly convergent if there exists x E X such that

lim Sp(xn) = Sp(x) for all Sp E X.

In this case, we say that x is the weak limit of the sequence xn and write
xn x. We recall that the sequence xn converges strongly to x if IIx-xII -
0. Since by definition every Sp E X* is continuous, the strong convergence
xn -+ x clearly implies the weak convergence xn - x.

If a weak limit exists, then it is necessarily unique: x-i x and x-i y
imply x = y. Indeed, assume y # x. Then by Corollary 2.31 there exists a
continuous linear functional b E X* such that q(x) # q(y). This leads to a
contradiction, because

q(x) = lim q(xn) _ q(Y)-400

2.7.2. Weak-star convergence. One can take a different perspective, and
observe that each vector x E X determines a linear functional on X *, namely

(2.37) ( E- (x), cOEX*.

By Corollary 2.32, the norm of this functional is

(2.38) IIxII** = sup I_ lxii.

We thus have a canonical embedding c : X H (X*)*. To each element x E X
there corresponds a bounded linear functional a(x) on the dual space X*,
namely, the map cp cp(x). By (2.38), this embedding is isometric, i.e., it
preserves the norm.

If every bounded linear functional on X* is of the form (2.37) for some
x E X, then a(X) _ (X*)* and we say that the space X is reflexive.
Examples of reflexive spaces include all finite-dimensional spaces, and the
spaces LP(St), 21' in Examples 2.5 and 2.6, with 1 <p < oo.

One should be aware that, in general, the space (X*)* can be strictly
larger than c(X). Examples of spaces which are not reflexive include the
spaces Ll(St), L°O(12), Ql, and .2°°.
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The embedding t : X H (X*)* can be used to introduce a weak topology
on the dual space X*. We say that a sequence of bounded linear functionals
con e X * weak-star converges to P E X *, and write if

(2.39) lim cn(x) = (x) for every x E X .

This is a much weaker property than the convergence c°n - P in norm.
Indeed

*

c°n -4 o

means that I- (x) -+ 0 for each x E X,

means that sup I- (x) + 0.
xEx, IIxII<i

By Theorem 2.22, if the space X* is infinite-dimensional, then the closed
unit ball B1 C X * is not compact: one can find a sequence of linear func-
tionals con E X*, with IIconII* < 1 for every n > 1 but without any convergent
subsequence (with respect to the norm topology of X*). On the other hand,
if instead of strong convergence we only ask for weak-star convergence, a
positive result can be achieved.

Theorem 2.34 (Banach-Alaoglu). Let X be a separable Banach space.
Then every bounded sequence of linear f'unctionals cn e X * admits a weak-
star convergent subsequence.2

Proof. 1. Consider a bounded sequence of linear functionals c°n e X*, say,
with IkmII * < C for all n > 1. Since X is separable, there exists a dense
countable set S = {Xi, X2,. . .} C X.

2. We claim that there exists a subsequence (con )j>1 which converges point-
wise at each point xk, so that

(2.40) 3l? pn; (xk) _ P(xk)

for some values cp(xk) and all k > 1. This subsequence will be constructed
by a standard diagonalization procedure.

Since the sequence of numbers (con(xl))n>i is bounded, there exists an
infinite set of indices Ii C IY such that the subsequence (Pfl(X1))flEIi con-
verges to some limit cp(xl).

Similarly, the sequence of numbers (cofl(x2))fl>1 is bounded. Hence
there exists an infinite set of indices I2 C Ii such that the subsequence
(cofl(x2))flEI2 converges to some limit cp(x2).

2The Banach-Alaoglu theorem remains valid even without the assumption that X is separa-
ble. For a proof in this more general case we refer to [C, R].
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By induction, for each k we can find an infinite set of indices Ik C Ik_1
such that the subsequence (cpn(xk))nEIk converges to some limit cp(xk).

We now choose a subsequence nl < n2 < n3 < ,with n3 E I for
every j. As j -+ oo, this yields the convergence cpn (xk) - (xk) for every
k>1.

3. We claim that the limit function cp : S H lK is Lipschitz continuous with
constant C =supra III. Indeed, for every xh, xk e S we have

Ico(xh) - co(xk) I - im Iflj (xh) - con2 (xk) I

limSUp II cpnjll* IIXhXkII c xh - xkll
j-roo

Therefore, the map cp can be uniquely extended by continuity to the closure
of S, i.e., to the entire space X. This continuous extension will still be
denoted by cp : X F III.

4. It remains to show that the subsequence cpn weak-star converges to cp.
Let any x e X and e> 0 be given. Since S is dense, we can choose a point
xk e S such that IIxk - xli <. Recalling that all functions con and cp are
Lipschitz continuous with constant C, we obtain

limsup Pn;(x) - <P(x)
j-4oo

< ilm sup Icon3 (x) - on2 (xk)l

11m sup I Pn (xk) - co(xk)l + k(xk) -

cllx-xkll+o+cllxk-xll < Zce.
Since e > 0 was arbitrary, this implies that lco2 (x) - (x)l -+ 0 as j -+ oo,
proving the weak-star convergence cpn -cp.

Being the pointwise limit of a uniformly bounded sequence of linear
functionals, it is clear that the map 'p is bounded and linear as well.

2.8. Problems

1. Check if the following are normed spaces. In the negative case, identify which
of the properties (N1)-(N3) fails. In the positive case, decide if they are Banach
spaces.
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(i) Let X =1[8, with

lixil={
x ifx>0,

-2x if x < 0.

(ii) Let X be the vector space whose elements are the sequences of real num-
bers x = (x1, x2, x3,...) such that xk = 0 for all except finitely many k.
On X consider the norm (2.8).

(iii) Let X be the space of all polynomials (of any degree), with norm IlM _
lp(x)l.

(iv) Let X be the space of all polynomials of degree < 2, with norm

IlIl = I+ lp'(O)l + I

h = f If(x)Idx.

0

(vi) Fix lc E IR and let X be the space of all continuous functions f : [0, oo [ H IR
such that

11/ II sup et lf(t)l < oo.
t>0

(vii) Let X = 1R2. Given x = (x1, X2), for a fixed 0 <p < 1 define

lxii = (lxilP + I

d(x, y) 1/2

is a distance on IR2. Are the open balls B(x, r) _ {y; d(y, x) <r} convex? Is d(.,.)
translation invariant?

2. Let X, Y be Banach spaces. Prove that the Cartesian product

XxY= {(x,y); xX, yEY
is also a Banach space, with norm

(2.41) Ii(x, )II = max{Ilxii, IiyIi}.

3. Let X be a Banach space over the field IK of real or complex numbers. Notice
that X x X and K x X are Banach spaces, with product norms as in (2.41). Prove:

(i) The mapping (x, y) H x + y from X x X into X is continuous.
(ii) The mapping (a, x) H ax from K x X into X is continuous.
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4. Let X be a normed space with norm Prove that every subspace V C X is
also a normed space, with the same norm. If X is a Banach space and V is closed,
then V is also a Banach space.

5. Prove that a normed space X is complete if and only if every absolutely conver-
gent series has a sum:

IIxk < oo implies that x = lim x exists.
k>1 k>1 k=1

6. Let X be a vector space. The convex hull of a set A C X is defined as the set
of all convex combinations of elements of A, namely

N N
coA Bkak; N > 1, ak E A, 9k E [0, 1], 9k = 1

Prove that (i) co A is convex, and (ii) co A is the intersection of all convex sets that
contain A.

7. Let X be a Banach space and let A, B C X. Prove the following statements.

(i) If A is open, then co A is open as well.

(ii) If A is bounded, then co A is bounded.

(iii) If A, B are bounded, then the set A -I- B = {a + b ; a E A, b E B} is
bounded as well.

(iv) If A is closed and B is compact, then A -I- B is closed.

(v) The sum of two closed sets may not be closed.

(vi) If A is convex, then A+A = {x + y ; x E A , y E A} = 2A = {2x ; x E A}.

(vii) If A is closed and A -I- A = 2A, then A must be convex.

8. Let X be a normed space. We say that a set S C X is symmetric if a E S
implies -a E S. Prove that

(i) If S is convex, then its closure is convex as well.

(ii) If S is symmetric, then its closure is symmetric as well.

9. Let X, Y be Banach spaces over the real numbers, and let A : X H Y be a
bounded linear operator. Prove that

(i) If S is convex, then its image A(S) is convex.

(ii) If S is symmetric, then its image A(S) is symmetric.

10. Let A : X H Y be a linear operator. Assume that, for every sequence x-* 0,
the sequence (Ax)>1 is bounded. Prove that A is continuous.
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11. Let X be an infinite-dimensional Banach space, and let S be a set of linearly
independent vectors. By span(s) we denote the set of all (finite) linear combinations
of elements of S. Prove that

(i) If S = {vi,. . . , vN} is a finite set, then span(s) is a closed subspace of X.

(ii) If S = {vk; k > 1} is an infinite sequence, then the vector space span(s)
cannot be closed in X.

12 (Spaces over the real and over the complex numbers). Let X be a
vector space over the complex numbers. Then X is also a vector space over the
real numbers. If 4): X H C is a complex linear functional and q5(x) = Re (x) is
its real part, prove that q5 is a real linear functional, and (x) can be reconstructed
from b as

(x) _ fi(x) - Zq(Zx).

13. Show that a normed space X is finite-dimensional if and only if its dual X * is
finite-dimensional.

14. Consider the spaces £ of sequences of real numbers, as in Examples 2.6 and 2.7.
If 1 <p < q < oo, prove that £ C Qq, with equality holding only if p = q. Moreover,
prove that the identity operator A : £ ' H Qq defined as Ax = x is continuous, for
every p < q.

15. For 1 < p < oo, prove that the subspace V = span{ek ; k > 1} introduced in
(2.10) is dense in the space £. For p = oo, show that the closure of V coincides
with the subspace co of all sequences that converge to zero.

16. (Properties of diagonal operators) For 1 < P < oo, consider the operator
A : Qp defined in (2.13). Prove the claims (i)-(ii) in Example 2.14.

17. Work out the details of Example 2.18. Namely, fix 1 < p < oo and let g : S2 - 1R
be any measurable function.

(i) If g E L°°(12), prove that the multiplication operator My : f H gf from
Lp(12) into itself is bounded and has norm given by (2.15).

(ii) If g L°°(12), prove that the linear operator f H gf from LP(1l) into
itself is unbounded. Give a direct proof that Dom(M9) # Lp(St).

18. Fix 1 < p < 00. Let (f)> 1 be a sequence of functions in Lp (Ilk) , converging
weakly to a function f E Lp (Ilk) . Prove that

b

lim fn(x) dx
a

fb
foralla<b.

19. Consider the sequence of functions

I 1/n ifxE[0,n],f(x) =
0 otherwise.
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(i) Prove that fn -+ 0 strongly (i.e., J-+ 0) in every space Lp(II8) with
1 <p< 00.

(ii) On the other hand, show that in the space L' (R) this sequence is not
strongly convergent. In fact, this sequence does not even admit any
weakly convergent subsequence.

20. Let Y be a subspace of a Banach space X and let A : Y H II8" be a bounded
linear operator from Y into the Euclidean space ][fin. Show that A can be extended
to a linear operator A : X H II8" with norm JJAJJ

h

21. Let q5 :1152 k-+ R be a linear functional, say q5(xl, x2) = axl + bx2. Give a direct
proof that

(i) If II82 is endowed with the norm lxiii = x1i then the corresponding
operator norm (2.36) is ¢J= max{lai, lbi}.

(ii) If ][82 is endowed with the norm lix ii = max{lxli, ix2l}, then the corre-
sponding norm (2.36) is J= J+ Ibi.

(iii) If II22 is endowed with the norm lix lip = (lxi I" + x2with 1 <p <
oo, then the corresponding norm (2.36) is il¢iiy = with
P+q=1.

22. Let X be a vector space. Let B C X be a convex subset such that, for every
nonzero vector x e X, there exists a positive number 9 > 0 such that

ax e B if and only if al < Ox.

For r > 0, call rB = {rb; be B}. Prove that

lxii min {r > 0; x E rB}

is a norm on X, and B = {x e X ; lxii < 1} is the unit ball in this norm.

23. Let Q C Rn be an open set. On the space C (Q) of (possibly unbounded)
continuous functions f : Q k-+ 115, consider the seminorms pk and the distance
d(.,.) defined in (2.22), (2.20).

Next, consider any sequence of open sets A'' compactly contained in Q and
such that Uk> i A'' = Q. Define the seminorms p(.) and the distance d'(.,.) as
before, but replacing the sets Ak in (2.21) with the sets A''k.

Prove that the two distances d, d' are equivalent. Namely, given any sequence
of continuous functions (f3)3> 1, the following statements are equivalent:

(i) the sequence is Cauchy for the distance d,

(ii) the sequence is Cauchy for the distance d',

(iii) the functions f converge uniformly on each compact subset of Q.
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24. On the space C(St), consider the seminorms defined in (2.22) and the
distance constructed in (2.20).

(i) Explain why If II 12-Cpk(.f) does not yield a norm on C(St).

(ii) Consider the open unit ball B = {f E C(St) ; d(f, 0) < 1}, where 0 stands
for the identically zero function. Explain why

IIfIIO inf {A>O; )-1 f E B}

does not yield a norm on C(S2).

25. Let X be a Banach space. Consider any set S C X and assume x E span(s).
Prove that there exist points x3 E S and coefficients c3 E III, j = 1, ... , N, such
that

N

(2.42) x =
j=1

< 2xfor all k = 1,...,N.

26. Let S be a subset of a Banach space X. Prove that the following statements
are equivalent:

(i) x E span(s).
(ii) x = >lcjx3 = lim>2icjx3 ,for some points x3 E S and numbers

cj E 1K.

27. Consider the Banach space 2consisting of all bounded sequences x =
(x1, x2i x3,...) of real numbers.

(i) Prove that there exists a bounded linear functional F : 2°° H 1R such that

(2.43) I lix lIoo = sup lxnI>
n>1

(2.44) F(x) = lim xn if the limit exists.

(ii) Show that, if F : 2°O H 1R satisfies the above properties (2.43)-(2.44),
then

lim inf xn < F(x) < lim sup xn for all x E t.
n_+oo n_+oo

(iii) Using (ii) prove that, if there exists an integer N such that xn < yfor
all n > N, then F(x) < F(y).

(iv) Show that, for any sequence a = (al, a2,...) E 21, the continuous linear
functional

Fa(x) = anxn

n>1

cannot satisfy (2.44). Hence the space of all continuous linear functionals
on 2°O cannot be identified with 21.
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(v) For every bounded sequence of real numbers x = (x1, x2,. . .), define

N
F(x) = 1 (iim inf x + - (iim sup xn n

2 n-+oo 2

Does F satisfy (2.43)-(2.44)? Is F a bounded linear functional on the
Banach space P°°?

28. In the Banach space X = L°°(1R), consider the subspace V consisting of all
bounded continuous functions.

Prove that there exists a bounded linear functional A L°°(R) H II8 with
h= 1 such that Af = f(0) for every bounded continuous function f. However,
show that there exists no function g e L' (]R) such that A f = f f g dx for every
feL°°(R).

Conclude that the dual space of L°°(]R) cannot be identified with Ll(]R).

29. Let X be a normed space and let Il C X be an open, convex set containing
the origin. Consider the functional

(2.45) p(x) inf {A > 0; x E St}.

(i) Prove that satisfies the conditions

p(x + y) < p(x) + p(y), p(tx) = t p(x) for all x, y e X, t > 0.

(ii) Assuming that BT = {x e X ; <r} C St, prove that p(x) < llxhl/r.

(iii) Assuming that S2 = {x e X; lxii <1} is the open unit ball, prove that
p(x) _ lxii.

30. Let C°([0,1]) be the Banach space of all real-valued continuous functions f
[0,1] H ]R, with norm hii = maxXe[o,i] f (x)

(i) Show that X = {f e C°([0,1]) ; f(0) = 0} is a closed subspace of C°,
hence a Banach space.

(ii) Prove that the map f H A f = jo f (x) dx is a continuous linear functional
on X. Compute its norm h= SuPllfll<_1 iAf . Is this supremum over
the closed unit ball actually attained as a maximum?

31. Let X be a Banach space over the reals and let X * be its dual. Let Il C X be
a convex set containing the origin. Define

S2* _ {¢EX*; fi(x)<lforallxES2},

SZ** {xeX; q5(x)<lforallq5ESl*}.

Prove that 11 * is the closure of Il.



42 2. Banach Spaces

32. Let e be a nonzero vector in a Banach space X over the reals. Call U =
span{} _ {te; t E R}.

Prove that there exists a closed subspace V C X such that X = U ®V . Namely,
every element x E X can be written uniquely as a sum

x = u+v with uEU, vEV.

Moreover, the projections x H u = lru x and x H v = lrv x are continuous linear
operators.

33. On the Banach space X = L1([-1, 1]), prove that there exists a continuous
linear functional Sp : X H Ilk with norm IISpII = 1, having the following property:

1f f is a polynomial of degree 1, then (f) = f'(0).

34. Given an open set 1 C Rn, we denote by C(1) the space of all continuous
functions f : SZ H Ilk with continuous partial derivatives up to order m. Let Ak be
the sets defined in (2.21). Show that the sequence of seminorms

(2.46) pk(.f) IDf(x)I

makes C"z (SZ) into a Frechet space. Here a = (al,. . . , a7) is a multi-index of length

Ial _ a1 + + an, and D« f = awl
... aa(;f.

(:Y'
an

35. Let V be a closed subspace of a Banach space X and assume x0 E X \ V. Show
that there exists a bounded linear functional Sp E X * such that I I Sp I I <_ 1 and

P(xo) = d(xo>Y) - yEy xo - yl , 'p(y) = 0 for all y E Y.

36. In the space Q" of sequences of real numbers, consider the unit vectors ek as in
(2.9). Prove that

(i) If 1 <p < oo, the sequence (ek)k> 1 converges weakly to zero in £".

(ii) In the space £1, the sequence (ek)k> 1 does not admit any weakly conver-
gent subsequence.

37. Let q : Ilk H Ilk be a smooth, increasing function, and consider the operator
(Af)(x) = f (q(x)) . Derive a condition on q which implies that A is a bounded
linear operator from LP (Ilk) into itself. Consider the cases 1 < p < oo and p = oo
separately.

38. Show that the concept of Lebesgue measure cannot be extended to infinite-
dimensional spaces. More precisely, let X be an infinite-dimensional Banach space.
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Prove that there there cannot be a measure µ, defined on the sigma-algebra of Borel
subsets of X, with the following properties:

(i) µ(1Z) > 0 for every nonempty open set 1Z C X;

(ii) µ is translation-invariant: µ(x +8) = µ(S) for every x E X and S C X ;
(iii) there exists a nonempty open set SZo such that ,u(1o) < oo.

39. Let X be a Banach space over the reals.

(i) Let S C X be a closed convex set and assume y S. Prove that there
exists a bounded linear functional So E X* such that

SP(y) < ins SP(x)

(ii) Consider a weakly convergent sequence: xn -i y. Let S = co{xn ; n > 1}
be the smallest closed convex set containing all points xn. Prove that
yES.

40. Given a function f E L°° (Ilk), we say that

ess lim f (x) = A
x-+O

if there exists a function f such that f (x) = f (x) for a.e. x E R, and moreover
limo f (x) _ A.

(i) Prove that there exists a bounded linear functional 1 : L°° (R) H R such
that

(f) = esslimf(x)
whenever the limit exists.

(ii) Prove that the above conclusion fails if the space L°° (Ilk) is replaced by
L1(R).





Chapter 3

Spaces of Continuous
Functions

3.1. Bounded continuous functions

Let E be a metric space. By C(E) we denote the space of all continuous
real-valued (possibly unbounded) functions f E H ][8. In general, this
space does not have a natural norm. For this reason, we shall also consider
the space L3C(E) of all bounded continuous functions f : E H II8, with norm

(3.1) IlfIl = sup f (x)
xEE

Most of this chapter will be concerned with the case where E is compact.
In this case every continuous function f : E H ][8 is necessarily bounded,
hence C(E) _ ,t3C(E).

Lemma 3.1. L3C(E) is a Banach space.

Proof. 1. Let (f)>i be a Cauchy sequence in ,t3C(E). Then for every
fixed x e E the sequence of numbers fn(x) is Cauchy and hence converges
to some limit, which we call f(x).

2. By assumption, for every e> 0 there exists N large enough so that

sup I- fm(X)I < e for all n, m > N.
xEE

Letting m -+ oo, since fm(X) -+ f(x) we obtain

sup sup I- f(x)I C e.
n>N xEE

45
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In turn, this implies

supllfn-.fII C E,
n>N

sup I< E+ sup I.fN (x) I < 00.
xEE xEE

Since s > 0 was arbitrary, the first inequality shows the convergence
IIfn - f II - 0. The second inequality shows that f is bounded.

3. Finally, we prove that f is continuous. Let any x E E and e > 0
be given. By uniform convergence, there exists an integer N such that
IfN(x) - f(x)I <E/3 for every x E E. Since IN is continuous, there exists
8 > 0 such that I- fN(x)I < e/3 whenever d(y, x) < b. Putting
together the above inequalities, when d(y, x) <5 we have

I- f(x)I I - fr(y)I + I - fN(x)I + I- f(x)I

3+3+3 = E,
proving that f is continuous at the point x. O

Remark 3.2 (Pointwise vs. uniform convergence). The previous ar-
gument shows that, if a sequence of continuous functions fn converges uni-
formly to a function f, then f is continuous as well. On the other hand, a
sequence of continuous functions can converge pointwise to a discontinuous
limit. For example, on the interval E _ [0, 1], the sequence of functions
fn(x) = xn converges pointwise to the discontinuous function

f(x)=1 0 if 0<x<1,
1 if x=1.

Clearly, here the convergence is not uniform on the whole interval [0, 1].

The following theorem describes a case where pointwise convergence im-
plies uniform convergence. We recall that a sequence of functions fn : E H R
is increasing if m < n implies fm(X) < fn(x) for all x E E.

Theorem 3.3 (Dini). Let E be a compact metric space. If(f)>i is an in-
creasing sequence of functions in C(E), converging pointwise to a continuous
limit function f, then fn - f uniformly on E.

Proof. Fix any s > 0. By the assumption of pointwise convergence, for
every x E E there exists an integer N(x) such that IfN(x)(x) - f(x)l <.

Since fN(x) and f are continuous, there exists an open neighborhood V
of x such that IfN()(y) - fN(x)(x)I < e and f(y) - f(x)l < E for every

Since E is compact, we can cover E with finitely many of these neigh-
borhoods, say E C U U Vxm .
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Choose the integer N = max {N(xi),.. . , N(x,,,,)}. For every n > N and
y e E, assuming that y e Vwe have

fN(x2)(Y) fN(Y) .fn(Y)

because the sequence is increasing. ThereforeI- IfN(x2)(Y) - f y)

I- frS(xi)I + IfN(x)(xi) - f(x)I + I - f l

Since y E E and e > 0 were arbitrary, this establishes the uniform conver-
gence fn -4 f.

3.2. The Stone-Weierstrass approximation theorem

Given a domain E C for computational purposes it can be useful to
approximate a continuous, real-valued function f E BC(E) with special
functions: say, polynomials, exponential functions, or trigonometric polyno-
mials. It is thus important to understand whether every function f E 13C(E)
can be uniformly approximated by such functions. In this section we will
prove a key result in this direction.

As a preliminary, observe that the space BC(E) is an algebra. Namely,
it is closed under multiplication:

if f,g e BC(E), then also fg e 13C(E).
Moreover, the norm of the product satisfies

II/II Il/Il ugh.

We say that a subspace A C ,SC(E) is a subalgebra if f, g e ,A implies
.f9 E A.

Lemma 3.4 (Closure of a subalgebra). If ,A C 13C(E) is a subalgebra,
then its closure A is a subalgebra as well.

Proof. Indeed, assume /, g e A. Then there exist uniformly convergent
sequences fn, gn e A with / -* f and gn -* g. One has

II/9-.fn9nII <_ II/9-.fn9II +hI.fn9-.fn9nII I-,full II -gII
Since the sequence (/)> 1 is uniformly bounded, the right-hand side ap-
proaches zero as n -* oo. This shows the convergence fg-* fg. Since ,A
is an algebra, E A for every n. Hence fg e A.
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We say that a subset ,A C 13C(E) separates points if, for every couple
of distinct points x, y e E, there exists a function f e A such that f(x) #
f(y)

Theorem 3.5 (Stone-Weierstrass). Let E be a compact metric space. If
,,4 is a subalgebra of C(E) that separates points and contains the constant
functions, then A = C(E).

Otherwise stated, let A be a family of continuous, real-valued functions
f : E F Ilk with the following properties:

(i) If f, g e A and a, b e ][8, then the linear combination a f -I- bg lies in

(ii) If f, g e .A, then the product fg lies in ,,4 as well.

(iii) The constant function f(x) - 1 lies in A.

(iv) For every two distinct points x, y e E, there exists f e A such that
f(x) f(y).

Then every continuous function f : E H ][8 on the compact domain E can
be uniformly approximated by functions in A.

Proof. 1. There exists a sequence of polynomials (pn)n>i such that p(t) -3
uniformly for t e [0, 1].

To prove the above claim, the underlying idea is to construct approx-
imate solutions to the equation t - p2(t) = 0 by iteration. We thus set
po(t) - 0 and, by induction on n = 0,1,2,...,

pi(t) = P(t) + 2 (t-p(t))

(see Figure 3.2.1). By induction, one checks that p(t) i+i (t) for
every t e [0, 1]. Indeed,

-per,+i(t) _ -p(t) -2(t-pn(t))

For every fixed t e [0, 1], the sequence p(t) is increasing and bounded
above. Hence it has a unique limit, say g(t). By (3.2), this limit satisfies
t - g2(t) = 0. Since g(t) > 0 we conclude that g(t) = f.

Finally, by Dini's theorem, the convergence is uniform for t e [0, 1].
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0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 3.2.1. The first few polynomials in the sequence defined in (3.2).

2. For every function f E ,A, one has I/I E A.
Indeed, let ic = maxXEElf (x)I. We can assume ic 0. Then all functions

fn(x) = pn(f 2(x)/,c2) lie in ,A, because ,,4 is an algebra. Since f2(x)/k2 E
[0, 1], the previous step yields the convergence

f(x) -+
/f2(x) - If(x)I

V k2 k

uniformly for x E E. Therefore 11 E A, and hence I/I E A as well.

3. We now apply the previous argument to the subalgebra A and conclude
that, if f, g E A, then the functions

max{f,9} = (f+g+If-gI), min{f,9} = 2(f+9-If-9U
also lie in A.

4. For any two distinct points yl, y2 E E and any couple of real numbers
al, a2, there exists a function f E ,A such that f(i) = al and f(Y2) = a2.

Indeed, by assumption there exists a continuous function g E ,A such that
g(yl) g(y2). Since ,A is an algebra and contains all constant functions, the
function

f(x) = al +(a2 - al) 9(x) - 9(y1)
9(y2) - 9(y1)

lies in A and satisfies our requirements.

5. Given any continuous function f, a point y E E, and e > 0, there exists
a function gy E ,A such that

(3.3) gy(y) = f(y), gy(x) < f(x)+s for every x E E .
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y z

Figure 3.2.2. For a fixed y, taking the infimum of finitely many
functions hyz (here drawn as afne functions) we obtain a contin-
uous function gy < f + s, with gy (y) = f (y) .

Indeed (see Figure 3.2.2), by the previous step, for every point z E E,
there exists a function hyz E A such that h(y) = f(y) and hyz(z) = f(z).

Since f and are both continuous, there exists an open neighborhood
Vz of z such that hyz(x) <1(x) + e for every x E V.

We can cover the compact set E with finitely many such neighborhoods:
E C Vzl U U Vxm. Then the function

gy(x) =min {hyz1(x),... , hyx(x) }

lies in ,A and satisfies the conditions in (3.3).

y

Figure 3.2.3. Taking the supremum of finitely many functions gy
we obtain a continuous function g such that f - s < g < f + s.

6. The closure of ,A is the entire space C(E).
Indeed, let f E C(E) be any continuous function and let e > 0 be given.

For each y E E, by the previous step there exists a function gy E .A (see
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Figure 3.2.3) such that

gy(y) = f(y), gy(x) < f(x)+s for every x E E .

By the continuity of f and gy, there exists a neighborhood Uy of y such that

gy(x) > f(x)-s for all x E Uy .

We now cover the compact set E with finitely many neighborhoods: E C
Uyl U U U. Then the function

9(x) = max {gyp (x) ,... , gym (x)}

lies in A and satisfies

f(x)-s < g(x) < f(x)+s for all x E E .

A natural example of an algebra that satisfies all the assumptions in the
Stone-Weiertrass theorem is provided by the polynomial functions.

Corollary 3.6 (Uniform approximation by polynomials). Let E be a
compact subset of R. Let A be the family of all real-valued polynomials in
the variables (Xi,.. . , xn). Then A is dense in C(E).

Indeed, the family of all real-valued polynomials in (xi,. . . , x7) is an
algebra that contains the constant functions and separates points in R.
Hence, by Theorem 3.5 every continuous function f : E - Ilk can be uni-
formly approximated by polynomials.

3.2.1. Complex-valued functions. A key ingredient in the proof of The-
orem 3.5 was the fact that, if two real-valued functions f, g lie in a subalgebra
A, then max{ f, g} and min{ f , g} lie in A. Clearly, such a statement would
be meaningless for complex-valued functions. In fact, in its original form
the Stone-Weierstrass theorem is NOT valid for complex-valued functions.

In order to obtain an approximation result valid for functions f : E -+ C,
the main idea is to regard C = IIS ® ills as a two-dimensional space over the
reals. In the following, given a compact metric space E, we shall denote
by CR (E; C) the space of all continuous complex-valued functions on E,
regarded as a vector space over the real numbers.

Theorem 3.7. Let E be a compact metric space. Let ,A be a subalgebra of
CR(E; C) that separates points and contains the constant functions. More-
over, assume that whenever f e A, then also the complex conjugate function
flies in A. Then A is dense in CR(E; (C).
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Proof. 1. By the assumptions, if f e A, then its real and imaginary parts

Re(f) = f2f. Im(f) = f2f
also lie in A. Let ,Ao be the subalgebra of A (over the real numbers), consist-
ing of all functions f e A with real values. Applying the Stone-Weierstrass
theorem to ,Ao, we conclude that 4o is dense in C(E) = CR(E; ][8).

2. Given any f e CR(E; C), we write f as a sum of its real and imaginary
parts f =Re(f) + i Im(f ). By the previous step, there exist two sequences
of real-valued functions gn, hn e ..40 such that

(3.4) gam, -3 Re(f ), ham, -3 Im(f )

as n - oo, uniformly on E.
Consider the sequence f, = g. +ihn e Ao +i.,40 _ A. By (3.4), we have

the uniform convergence f-+ f. Hence A = CR(E; C). O

Example 3.8 (Complex trigonometric polynomials). Let E be the
unit circumference {x2 + y2 = 1} in I[82. Points on E will be parameterized
by the angle B E [0, 2ir]. Let A be the algebra of all complex trigonometric
polynomials:

(3.5) p(e) = cnezne

n=-N
where N > 0 is any integer and the coefficients cn are complex numbers. It
is clear that A is an algebra, contains the constant functions, and separates
points. Moreover, p e A implies p e A as well. By Theorem 3.7, the family
of all these complex trigonometric polynomials is dense in CR (E; C).

Relying on the previous example, we now show that areal-valued, con-
tinuous periodic function can be uniformly approximated with trigonometric
polynomials of the form

N N

(3.6) q(x) _ ak cos kx +
j

Qk sin kx.
k=0 k=1

Here N > 1 is any integer, while an, 13n are real numbers.

Corollary 3.9 (Approximation of periodic functions by trigono-
metric polynomials). Let f : ][8 H ][8 be a continuous function, periodic
of period 2ir. Then for any e > 0 there exists a trigonometric polynomial q
as in (3.6) such that

(3.7) q(x) - f (x) < e for all x E I[8.
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Proof. By assumption, f(x -F- 2ir) = f(x) for every x E ][8. As shown in
Example 3.8, there exists a complex trigonometric polynomial p of the form
(3.5) such that

(3.8) I< for all x E ]l .

Consider the complex coefficients c= a -f- ibn, with a, bE Calling
q(x) = Re p(x) the real part of p, we compute

q(x) = an cos nx - bn sin nx = an cos nx -}- n sin nx,
n=-N n=-N n=0 n=1

with

ap = as, a = a_+ an , Q= - b for n > 1.

Since f is real-valued, by (3.8) we have

I- f(x)I _ I Re p(x) - Re f(x)I
< Ip(x) - f(x)I < E for all x e II8.

Remark 3.10. If the periodic function f is even, i.e., f(x) = f(-x), then
it can be approximated with a trigonometric polynomial of the form (3.6)
with 13k = 0 for every k > 1, that is, with a finite sum of cosine functions.

If f is odd, i.e., f(x) _ -f(-x), then in (3.6) one can take ak = 0 for
every k > 0. In other words, f can be approximated by a finite sum of sine
functions.

3.3. Ascoli's compactness theorem

In a finite-dimensional space, by the Bolzano-Weierstrass theorem every
bounded sequence has a convergent subsequence. On the other hand, as
shown in Theorem 2.22 of Chapter 2, this compactness property fails in
every infinite-dimensional normed space. For example, in the space C([0, 1])
the sequences of continuous functions f(x) = xn or f(x) = sin nx are
bounded but do not admit any uniformly convergent subsequence. It is thus
natural to ask: what additional property of the functions fn can guarantee
the existence of a uniformly convergent subsequence? An answer is provided
by Ascoli's theorem, relying on the concept of equicontinuity.

Let E be a metric space. A family of continuous functions .F C C(E)
is called equicontinuous if, for every x e E and s > 0, there exists 6> 0
such that

(3.9) d(y, x) <6 implies I- f(x)I < e
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for all functions f e F. Notice that here S > 0 can depend on x and e, but
not on the particular function f e F.

Lemma 3.11. Let E be a compact metric space and let .F C C(E) be
equicontinuous. Then .F is uniformly equicontinuous. Namely, for every
e> 0 there exists S > 0 such that

(3.10) d(x, y) <6 implies I- f()I <e for all x, y E E, f E F.

Proof. Let e > 0 be given. For each x e E, choose S = S(x) > 0 such that
(3.9) holds simultaneously for all functions f e F. By compactness, we can
cover the space E with finitely many balls:

E C B(xl, Sl) U U Sam),

where Si = S(xi). Choose p > 0 so small that, for every x e E, the ball
B(x, p) is entirely contained inside one of the balls B(xz, Sz).

Now assume d(x, y) <p. Then there exists an index k e {1,. . . , n} such
that x, y e B(xk, Sk). This implies

I- f(y) I- f(xk)I + I- f(xj)I s + e

for every function f e F. Since e > 0 was arbitrary, this proves the lem-
ma.

If E is a compact metric space, then C(E) _ 13C(E) is a Banach space.
By completeness, it follows that for a subset .F C C(E) the following prop-
erties are equivalent:

(i) .F is relatively compact, i.e., the closure .F is compact.
(ii) .F is precompact, i.e., for every e> 0 it can be covered by finitely

many balls with radius e.
(iii) From every sequence of continuous functions fk e .F one can extract

a subsequence converging to some function f, uniformly on E.

Theorem 3.12 (Ascoli). Let E be a compact metric space. Let .F C C(E)
be an equicontinuous family of functions, such that

(3.11) sup I< oo for every x e E.
fEF

Then .F is a relatively compact subset of C(E).

Proof. It suffices to prove that F is precompact.

1. Let e > 0 be given. By Lemma 3.11, there exists 6> 0 such that (3.10)
holds. Since E is compact, it can be covered by finitely many balls of radius



3.3. Ascoli's compactness theorem 55

b, say
n

E C UB(x,6).
2=1

By the assumption (3.11),

M = maxiE{i,...,fl} fEP' I< oo.

We now choose finitely many numbers c , ... , a,n such that the balls B (a3, e)
cover the compact interval [-M, M].

2. Consider the set e of all maps 8 : {x1,.. . , xn } F-+ {ai,. . . , a}.. This
is a finite set. Indeed, there are exactly mn such maps. For every 8 E O,
define the family of continuous functions

Fe = {feF; f(x)EB(9(x),e) for all i = 1, ... , n .

Since the interval [-M, M] is covered by the balls B (a,, e), we clearly have
UeE® Fe = F.

3. We claim that each set FB has diameter < 4e. Indeed, assume f, g E Fe.
For any x e E, choose an index i such that x e B(x2, 8). We then have

If(x) -
f(x) - f(x) + f(x) - 9(x) + 9(x) -g(xj) + g(xj) -g(x)

Therefore

lif-glic = (x)- 9(x)I 4e.

The above arguments show that, for any e> 0, the set .F can be covered
with finitely many sets having diameter < 4e. Hence it can also be covered
by finitely many closed balls of radius 4e. Since e is arbitrary, this proves
that F is precompact.

The above theorem can be easily extended to functions taking values in
the complex domain C or in a Euclidean space R.

Corollary 3.13. Let E be a compact metric space. Let (fk)k>1 be a sequence
of continuous functions from E into ][8 such that

(i) the family {fk} is equicontinuous;

(ii) Ifk(x)I <00 for every x E E.

Then the sequence (fk)k>1 admits a uniformly convergent subsequence.
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Proof. Let us write out the components:

fk(X) = (fk,1(x), fk,2(x),. . . , fi,(x)) E RTh.
Applying Theorem 3.12 to the sequence of scalar functions (fk,1)k>1, we can
extract a subsequence such that these first components converge uniformly
on E. From this subsequence we can extract a further subsequence such that
the second components converge uniformly, etc. After n steps we obtain a
subsequence where all components converge, uniformly on E.

3.4. Spaces of Holder continuous functions

Let 1 C Rn be an open set, and 0 <'y < 1. We say that a function f : 1 Ilk

is Holder continuous with exponent y if there exists a constant C such
that

< C x - y' for all x, y E SZ .

We denote by C°''Y(SZ) the space of all bounded Holder continuous functions
on SZ, with norm

(3.12) IIflIco(c) =sup I+ sup If(x) - f( )I
xESt x,yESt, x#y I x - yI ry

More generally, given an integer k > 0, we denote by C'(SZ) the space
of all continuous functions with Holder continuous partial derivatives up, to
order k. This space is endowed with the norms
(3.13)

Ill IIck) (suPIDaf(x)I)+ sup llal«
xESt x,yE), x - YI ry

Theorem 3.14 (Holder spaces are complete). Let SZ C I[8 be an open
set. For every integer k > 0 and any 0 < ry < 1, the space C'1(1) is a
Banach space.

Proof. The fact that (3.13) defines a norm is clear. To prove that the space
C''''(SZ) is complete, let (fm)m>1 be a Cauchy sequence with respect to the
norm (3.13). Then, for every x E SZ, the sequence fm(x) is Cauchy and
converges to some value f(x) uniformly on SZ.

The assumption also imply that, for every al < k, the sequence of
partial derivatives D«fm is Cauchy; hence it converges to some continuous
function va(x) = D«f (x) uniformly on ft

1 Given a multi-index a = (a1, ... , an), we use the notation Da f =
(&)al (&)anf

i
to denote a partial derivative of f of order al = a 1 + + an.
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It remains to prove that the convergence f,,,, --+ f takes place also with
respect to the norm of Cm'7(St). In other words, for Ic = k we need to show
that

(3.14) lim sup
m-+oo x,yE 1, achy

By assumption,

lim sup
m,n-+oo x,yE 1, achy

Da(fm - f)(x) - Da(fm - f)(y)
0.

Da(fm_fn)(X)_Da(fm_fn)(y) -
Ix-yI7

- U.

Hence, for any e > 0, there exists N large enough so that

Da(fm - f)(x) - Dalfm - fn)(y)I
sup < e for all m, n > N .

x,yE1, Ix - YI7 - -
Keeping m fixed and letting n -+ 00 we obtain

sup
x,yESZ, achy Ix-yI'

<6 forallm>N.

Since e > 0 was arbitrary, this proves (3.14).

3.5. Problems

1. Let E be a compact metric space. Assume that a family of real-valued continuous
functions .F C C(E) satisfies the following two conditions:

(i) For every x, y E E and a, b E 1R, there exists a function f E F such that
f(x) = a and f(y) = b.

(ii) If f, g E F, then the functions max{f, g} and min{f, g} lie in the closure

Prove that F is dense in C(E).

2. Prove or disprove the following statements.

(i) Given any continuous function f : III F--+ III (possibly unbounded), there ex-
ists a sequence of polynomials (pn)n>i such that pn(x) -+ f (x) uniformly
on every bounded interval [a, b]. (Note: Here the sequence of polynomials
should be independent of the interval [a, b] . )

(ii) There exists a sequence of polynomials pn that converges to the function
f (x) = uniformly on III.

Da(fm - f)(x) - Da(fm - f)(y)
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3. Let g : [0, ir] H R be a continuous function.

(i) Prove that, for any e> 0, there exists a trigonometric polynomial of the
form

N
p(x) _ >bk cos kx

=o
such that p(x) - g(x)I <e for every x E [0,ir].

(ii) If g(0) =g(ar) = 0, prove that, for any e > 0, there exists a trigonometric
polynomial of the form

N
P(x) _ >ak sin kx

such that Ip(x) - g(x) <e for every x E [0, ir].

4. Let f : R H R be continuously differentiable. Show that, for every bounded
interval [a, b], there exists a sequence of polynomials pn such that p-+ f and
p' - f', uniformly on [a, b].

5. Let E be the unit circle {x2 + y2 = 1} in R2. Points on E will be parameter-
ized with the angle 8 E [0, 2ir]. Let A be the family of all complex trigonometric
polynomials of the form

N

p(9) = c eine

n=o

where N > 0 is any integer and the care complex-valued coefficients.

(i) Is A an algebra?

(ii) Does A contain the constant functions and separate points?

(iii) Is A dense on the space of all continuous, complex-valued functions f
E H C?

6. Let 1 C Rbe a bounded open set. Prove that the family of all polynomials
p = p(xl, X2,. .. , xn) in n variables is dense on the space LP(f ), for every 1 <_ p <
00.

7. Consider the rectangle Q = {(x, y) ; x E [0, a], y E [0, b] } .

(i) Given any continuous function f = f (x, y) on Q and any e > 0, con-
struct a finite number of continuous functions g,. . . , gN : [0, a] H R and
h1,. . . , h,1.: [0, b] H R such that

N
f (x, y) - gi(x)hz(y) < e for all (x, y) E Q.

z=
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(ii) Given any continuous function f : Q H Ilk that vanishes on the boundary
of Q, show that one can choose an integer M > 1 and finitely many
coefficients cmn, 1 < m, n < M, such that

M
irm x irn y

f (x, y) - cmn sin sin
a bm,n=1

for all (x,y) E Q.

8. Let 11 C IRn be a bounded open set, and 0 <y < 1. Prove that the embedding
C°"(11) CC C°(11) is compact. In other words, if (fn)n>1 is a bounded sequence in
C°''(11), then it admits a subsequence that converges in C°(11).

9. Decide for which values of 0 <y < 1 the following functions lie in the Holder
space C° 'y (] 0,1[):

f1 (x) = x13 , f2(x) _ / sin 1 , f3(x) = x IlnxI.

10. Explain what is wrong with the following argument.
"Let 0 <y < 1 and let (f)>_ 1 be a sequence of functions in the Holder space

C°"([0, with IIfnIIco,-y < 1 for every n. Since the functions fn are uniformly
bounded and equicontinuous, by Ascoli's theorem we can extract a subsequence
converging to some limit function f, uniformly for x E [0,1]. It is now easy to
check that If IIco,- < 1. This shows that the closed unit ball in C°'' is compact,
and hence by Theorem 2.22 in Chapter 2 the space C°'' is finite-dimensional."

11. Let cp : 1R+ H ][2+ be a smooth function such that

'p(0) = 0, cp'(s) > 0, 'p'(s) < 0 for all s > 0.

Given an open set 12 C consider the space of continuous functions

C`°(St) = f : St H R; If IIw ° sup I+ sup I - f ()I < oo
'p(Ix-yI)

Prove that C(St) is a Banach space. (Note: Here the function 'p can be regarded
as a modulus of continuity. In the case 'p(s) = sry with 0 < ry < 1 one has
C(11) = C°"Y(II).)

12. Prove the following more general version of Ascoli's theorem. Let E be a
compact metric space and let K be a compact subset of a normed space X. Assume
that a sequence of maps qn : E -+ K is equicontinuous. Namely, for every x E E
and > 0, there exists 5> 0 such that

d(y, x) <5 implies II q5( y) - q5( x) II < for all n > 1.

Then the sequence (cb)>i admits a uniformly convergent subsequence.





Chapter 4

Bounded Linear
Operators

In this chapter we look in more detail at linear operators in Banach spaces.
As in Chapter 2, 8(X, Y) will denote the space of bounded linear operators
A : X H Y, with norm

I=Sup IIAxII.
IIxII1

We begin with some results based on the Baire category theorem.

4.1. The uniform boundedness principle

Theorem 4.1 (Banach-Steinhaus uniform boundedness principle).
Let X, Y be Banach spaces. Let F C 8(X, Y) be any family of bounded
linear operators. Then either F is uniformly bonded, so that

sup h< oo,
AE.F

or else there exists a dense set S C X such that

(4.1) sup hlAxil = oo for all x E S.
AEF

Proof. For every integer n, consider the open set

(4.2) S, = {xeX; hIf

one of these sets, say Sk, is not dense in X, then there exists xo e X and
a radius r > 0 such that the closed ball B(xo, r) does not intersect Sk. In

61
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other words,

IlAxil < k for all A E F, x E B(xp,r).

If now < r, thenIlAxil = I< I< 2k for all A EF.

Therefore

sup lAxil = 1 sup lAx < 2k

IIxII<_1 r IIxII<_r r
for every A E F. In this case, the family of operators .F is uniformly
bounded.

The other possibility is that the open sets Sn in (4.2) are all dense in X.
By Ba,ire's category theorem, the intersection S = nn>1 Sn is dense in X.
By construction, for each x E S and n > 1 there exists an operator A E F
such that lAx> n. Hence (4.1) holds. O

Remark 4.2. From the above theorem it follows that, if a family of opera-
tors A E 8(X, Y) is pointwise bounded on the unit ball, then it is uniformly
bounded. In other words, the condition

sup IlAxil < oo for each x E X with lx < 1

implies

AEF

sup sup IlAxil < 00.
AEF IIxII <1

This justifies the name "uniform boundedness principle".

Corollary 4.3 (Continuity of the pointwise limit). Let X, Y be Banach
spaces. Let (An)n>1 be a sequence of bounded linear operators in 13(X; Y).
Assume that the pointwise limit

(4.3) Ax = lim Anx
n-+oo

exists for every x E X. Then the map A defined by (4.3) is a bounded linear
operator.

Proof. For every x E X, the sequence (Anx)n>1 is bounded. Hence by the
previous theorem the sequence of operators An is uniformly bounded. This
implies

h= sup lAx II = sup (lim llAnxhl) < sup lATh< oo,
n-+oo n>1

showing that the linear operator A is bounded. O
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4.2. The open mapping theorem

If X, Y are metric spaces, we say that a map f : X E-+ Y is open if, for
every open subset U C X, the image 1(U) is an open subset of Y. This is
the case if and only if, for every x E X and r > 0, the image f(B(x, r)) of
the open ball centered at x with radius r > 0 contains a ball centered at
f(x).

Theorem 4.4 (Open mapping). Let X, Y be Banach spaces. Let A : X -+
Y be a bounded, surjective linear operator. Then A is open.

Proof. 1. By linearity, the image of an open ball B(x, r) can be written as

n(B(x, r)) = n(x) + n(B(o, r)) =n(x) + r n(B(o, i)).

Calling BT = B(0, r) the open ball centered at the origin with radius r, to
prove the theorem it thus suffices to show that the image A(B1) contains an
open ball around the origin in Y.

2. Since A is surjective, Y = lJ1 A(B). Recalling that Y is a _complete
metric space, by Baire's theorem at least one of the closures A(B) C Y has
nonempty interior.

By a rescaling argument, A(Bl) = n lA(Bn) must also have nonempty
interior. Namely, there exist yo E Y and r > 0 such that B(yo, r) C A(Bl).

Since the open unit ball Bl is convex and symmetric, the same is true
of its image A(Bl) and of the closure A(Bl). In particular, by symme-
try B(-yo, r) C A(Bl), while convexity implies that the ball B(0, r) C Y
satisfies

B(O,r) = ZB(yo,r)+ 2B(-your) S A(Bi)

Using again the linearity of A, by rescaling we obtain

(4.4) B(0, C for all n > 1.

3. We conclude the proof by showing that B(0, r/2) C A(Bl). Indeed,
consider any point y E B(0, r/2). We proceed by induction.

- By density, we can find xl E BZ- such that IIy - Axle <2-Zr.
- In turn, we can find x2 E BZ-2 such that I y - Axl) - Axe I < 2-3r.
- Continuing by induction, for each n we have

n-1

y - Axe E B(0, C
j=1
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Therefore we can select a point xE B2- such that
n-1

(y - Axe) - Ax, < 21r.
j=1

Since X is a Banach space and n IIxII < oo, the series n xn con-
verges, say >j O° xn = x. We observe thatn=1

00

II=II -< II=nll <
00

2-n = 1,
n=1

n

Ax = lira Ax j = y.
n-+00

n=1 j=1

Hence the image A(B1) contains all points y e Y with IIM <r/2.

Corollary 4.5. If X, Y are Banach spaces and A : X F-+ Y is a continuous
bijection, then its inverse A-1 : Y F-+ X is continuous as well.

Proof. Since A is a bijection, A is open if and only if the inverse mapping
A-1 is continuous. D

4.3. The closed graph theorem

Let X, Y be Banach spaces. The product space X x Y is the set of all
ordered couples (x, y) with x e X and y e Y. This is a Banach space with
norm

(4.5) ii(x,y)ii lxii + iiii
Next, let A be a (possibly unbounded) linear operator, with domain Dom(A) C
X and values in Y. We say that A is closed if its graph

Graph(A) = {(x, y) ; x e Dom(A) C X, y= Ax} C X x Y

is a closed subset of the product space X x Y. In other words, the linear
operator A is closed provided that the following holds:

Given two sequences of points xn e Dom(A) and yn = Axn E Y, if
xn -+ x and yn -+ y, then x e Dom(A) and Ax = y.

Notice that every continuous linear operator A : X H Y is closed. The
next result shows that a converse is also true, provided that the domain
Dom(A) is the entire space X.

Theorem 4.6 (Closed graph). Let X,Y be Banach spaces, and let A
X H Y be a closed linear operator defined on the entire space X. Then A
is continuous.
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Proof. Call F = Graph(A). By assumption, F is a closed subspace of the
Banach space X x Y, hence it is a Banach space as well.

Consider the projections I1 : r F-+ X and 1r2 : F H Y, defined as

ir1(x, lax) = x, ire (x, lax) = Ax.

The map I1 is a bijection between r and X, hence by Corollary 4.2, its
inverse in1 1 is continuous. Therefore A = 1r2 o in1 1 is the composition of two
continuous maps, hence continuous. D

Y Graph(A)

?C 2

X

Figure 4.3.1. Proving the closed graph theorem.

Example 4.7. Consider the space X = C°(J8) of all bounded continuous
functions f : II8 H II8, with norm 11f Ilco = super ILet A be the differen-
tiation operator defined by A f = f'. Its domain is the subspace

Dom(A) _ {f E C°(][8); f' E C°(II8) } = C1(1[8)

consisting of all continuously differentiable functions with bounded deriva-
tive.

Observe that the linear operator A is not bounded (hence not contin-
uous). For example, the functions fn(x) =sinnx are uniformly bounded:
II/IIco = 1 for all n > 1. However, the sequence of derivatives A fn = fn is
unbounded, because fn(x) = ncosnx and hence II/IIco = n.

On the other hand, the linear operator A : f F-+ f' has closed graph.
To see this, consider a sequence fn e Dom(A) such that, for some functions
/,g e C°, one has

(4.6) II/n/IIoO, I/7gIIco0.
If (4.6) holds, then f is continuously differentiable and /' = g. Hence the
point (f, g) E X x X lies in the graph of A.

Notice that this example does not contradict the closed graph theorem,
because A is not defined on the entire space X.
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4.4. Adjoint operators

Let X be a Banach space on the field K. By definition, its dual is the space
X * of all bounded (hence continuous) linear functionals x* : X F-+ III, with
norm

IIx*II = sup IIIxII_<1

In turn, every element x E X induces a bounded linear functional on X *,
namely x* x* (x) E K. Using this identification, we can thus write X C
(X*)*. Since the spaces X and X * often play a symmetric role, it will be
convenient to use the notation

(x*, x) : x*(x)

Now let X, Y be Banach spaces over the field III, and let X *, Y* be their
duals. Let A : X F-+ Y be a bounded linear operator. Then, for every
bounded linear functional y* Y F-+ III, the composed map x* : X F-+ III
defined as x* (x) = y* (Ax) is a bounded linear functional on X. The map
y* F-+ A* y* = y* o A is a bounded linear operator from Y* into X *, which
we call the adjoint of A. By definition (see Figure 4.4.1),

(A*y*, x) _ (j*, Ax) for all x E X.

In the following, given a subset V C X, we define its orthogonal set as

V1 = {x* E X* ; (x*, x) = 0 for all x E V}.

Similarly, if W C X*, we define

W1 = {xEX; (x*,x)=Oforallx*EW}.

A
X Y

* A*
X Y

A

Figure 4.4.1. The maps involved in the definition of adjoint operators.

Theorem 4.8 (Properties of adjoint operators). Let A : X H Y be
abounded linear operator, and let A* : Y* H X* be its adjoint operator.
Then:

(i) IIA* II = hAil.
(ii) Ker(t1) _ [Range(A*)]1 and Ker(A*) _ [Range(A)]-'-.
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Proof. The statement (i) follows from

hAil = sup {iiAxII; lixil i}

= sup {i(y*,Ax)i; IIxII1, IIy*II1}

= sup {I(A*y*,x)I; IixII1, iIy*II1}

= sup {iin*y*II; IIy*iI 1} _ IIA*II.

To prove (ii), we observe that the following statements are all equivalent:

x e Ker(A),

Ax =0,
(y*, Ax) = 0 for all y* E y*,

(A*y*, x) = 0 for all y* E y*,

x e [Range (A* )] 1.

Similarly, the following statements are all equivalent:

y* E Ker(A*),

A*y* = 0
(A*y*,x)=OforallxEX,

Ax) =0 for all x E X,

y* E [Range(A)]'. 0

We conclude this section by showing a useful application of the uniform
boundedness principle.

Corollary 4.9 (Weakly convergent sequences are bounded). Let X
be a Banach space. Any sequence xn e X which converges weakly to some
x e X is necessarily bounded.

Proof. Let X * be the dual space of X. Each xn determines a linear func-
tional 5bn on X*, namely

x* bn (x*) = (x*,xn).

Here denotes the duality between X and X*. By assumption, as n -+ 00
we have the pointwise convergence

Sbn (x*) _ (x*,xn) (x*, x)
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for each x* E X*. This implies

sup I< oo for every x* E X.
n

Using the uniform boundedness principle, we conclude that the family of
linear functionals {/; n > 1} is uniformly bounded. Since

IkL'mII = Sup I=
this completes the proof.

4.5. Compact operators

Let X, Y be Banach spaces. A bounded linear operator A : X H Y is
compact if, for every bounded sequence (x)>1 of points in X, there exists
a subsequence (x3n . )j>1 such that Axn . converges. Equivalently, A is compact
if and only if, for any bounded set U C X, the image A(U) C Y has compact
closure.

Theorem 4.10 (Examples of compact operators).

(i) Let X, Y be Banach spaces, and let A : X E- Y be a bounded linear
operator. If the range of A is finite-dimensional, then A is compact.

(ii) Let An : X H Y be a compact operator, for each n > 1. Assume
limn_ IlAn -III = o. Then the operator A is compact as well.

Proof. 1. Abounded linear operator A : X H Y is compact if and only
the unit ball Bl C X has image A(B1) C Y whose closure is compact. If
Range(A) is finite-dimensional and A is bounded, then the closure A(B1) is
a closed bounded subset of afinite-dimensional space, hence compact. This
proves (i).

2. To prove (ii) we observe that, since Y is complete, the closure A(B1) is
compact if and only if A(Bl) is precompact. This means: for every E > 0,
the set A(B1) can be covered by finitely many balls of radius e.

Under the assumptions (ii), lets > 0 be given. Choose k such that
I IA - Ak II <s/2. Since Ak is compact, we can select finitely many elements
yl, , yN E Y such that

N

(4.7) nk(Bl) c UB(yi, 2) .

Z-i
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If lxii < 1, then Ax - Akxli < s/2. By (4.7) there exists a point 7j2 with
lIAkx - y< E/2. By the triangle inequality, Ax - y2Il < e. This proves
that the finitely many balls B(y2,E) cover A(Bl).

Theorem 4.11 (Adjoint of a compact operator). Let X, Y be Banach
spaces, and let A : X H Y be a bounded linear operator. Then A is compact
if and only if its adjoint A* : Y* H X* is compact.

Proof. 1. Assume that A is compact. Let (y)n>i be a sequence in Y*,
with lIy < 1 for every n. To prove that A* is compact we need to show
that the sequence (A*y)>1 admits a convergent subsequence.

Let Bl = {x e X ; lixil < 1} be the closed unit ball in X. By
assumption, the image A(B1) has compact closure, which we denote by
E = A(Bl) C Y.

2. By definition, each yn e Y* is a linear map from Y into the field 1K. Let
fn : E H ]K be the restriction of yn to the compact set E. We claim that the
family of functions {f.; n > 1} satisfies the assumptions of Ascoli's theorem.
Indeed, all these functions are uniformly Lipschitz continous, because

I- f(')l llyll ii y - y 'ii iIi - y 'II for all y, y E E.

Moreover, observing that

sup llli = sup lAx ii _ hyEE
IIxII<1

we obtain

i ii hill 1' hfor all y e E.
Hence all functions fn : E H 1K are uniformly bounded.

By Theorem 3.12, there exists a subsequence (fns )3>1 which converges
to a function f uniformly on the compact set E = A(Bl).

3. We now observe that

h ni - A*yni hI = sup li - A*yni , x) i
IIxII<1

= sup
l - yni , Ax) l = sup lfm2 (Ax) - fns (Ax)i,

IIxII <1 IIxII <1

where the right-hand side approaches zero as i, j -+ oo. This shows that the
subsequence (A*yni )> 1 is Cauchy, hence it converges to a limit x * E X * .
Therefore A* is compact.

The converse implication can be proved by the same arguments. 0
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4.5.1. Integral operators. Compact operators often arise in the form of
integral operators. To see an example, consider the Banach space C([a, b])
of all continuous, real-valued functions defined on the closed interval [a, b].

Theorem 4.12 (Compactness of an integral operator). Let K : [a, b] x
[a, b] H ][8 be a continuous map. Then the integral operator

6

(4.8) (Af) (x) f K(x, y) f(y) dy

is a compact linear operator from C([a, b]) into itself.

Proof. Consider a bounded sequence of continuous functions fn E C([a, b]).
We need to prove that the sequence A fadmits a uniformly convergent
subsequence. By Ascoli's compactness theorem, it suffices to show that the
functions A fare uniformly bounded and equicontinuous.

1. Since K is continuous on the compact set [a, b] x [a, b], it is bounded and
uniformly continuous. Namely, there exists a constant ic such that

IK(x,y)I < ic for all x, y.

Moreover, for every e > 0 there exists 8> 0 such that(4.9) l< e whenever Ix-I8, x, x, y E [a, b] .

2. By assumption, there exists a constant M such that

IIfII - maxxE[a,n] I< M for all n > 1.

This implies

b

a
f I< (b-a)M,

proving that the functions A fare uniformly bounded.

3. Next, let e > 0 be given. Choose b > 0 such that (4.9) holds. If
then for any n > 1 we have

(Af)(x) - (Af)(x I C f 6 I- If(y)Idy < (b-a)eM.
a

Since e > 0 was arbitrary, this proves the equicontinuity of the sequence
(Af)>1. An application of Ascoli's theorem completes the proof.
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1 Ui y i x

Figure 4.5.1. The kernel function K in (4.11).

Example 4.13. For any continuous function f e C([-1,1]), let u = Af be
the solution to the two-point boundary value problem

(4.10) u"(x) + 1(x) = 0, u(-1) = u(1) = 0.

Observe that the solution must be unique. Indeed, if u1, u2 are solutions,
then the function w = u1 - u2 satisfies

w"(x) = 0, w(-1) = w(1) = 0,

hence w(x) - 0. A direct computation shows that

u(x) _ /' i (1+ y)Z 1 - x)
f(y) dy + f 1

(1- yX1 + x)
f(y) dy

provides a solution to (4.10). The solution operator A : f ti u = Af is thus
a linear, compact operator on C([-1,1]). It can be written in the form (4.9),
with

(4.11) K(x, y)
1-x(+y)(- )

22

if -1<xy,
if y<x<1.

Referring to Figure 4.5.1, the piecewise affine map x H K(x, y) for a fixed
y can be uniquely determined by the three equations

K(-1,y) = K(1,y) = 0, -1.

4.6. Problems

1. On the Banach space X = C([0,1]), decide whether the following operators are
(i) linear, (ii) bounded, (iii) compact:

(1) (Af)(x) = f(sinx).
(2) (Af)(x) = sin(f (x)).
(3) (Af)(x) = xf(x).
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(4) (Af)(x) = x 1(0) + f0' f (s) ds.

(5) (Af)(x) = y(x), where is the solution to the Cauchy problem

y'(x)+y(x) = f(x), y(O)=O.

2. Prove that L2 ([0,1]) is a vector subspace of L' ([0, 1]) of first category. Indeed,
for each n > 1, the set En = {f: [0, 1] -+ R ; fo 1112 dx < n} is a closed subset of
L1 with empty interior.

3. Let X be a Banach space and let A : X H £°° be a linear operator, so that
A(x) = (Ai(x), A2 (x), ...) is a bounded sequence of real numbers, for every x e X.
Prove that the operator A is bounded if and only if each linear functional An is
bounded.

4. Let 1 < p < oo. Consider a linear operator A : LP ([0,1]) -+ LP ([0,1]) (defined
on the entire space LP) which has the following property. If a sequence of functions
fn e U converges pointwise a.e. to some f e then the sequence (Af)(x)
converges to (Af)(x) for a.e. x e [0,1]. Prove that A is continuous.

5. Let X be an infinite-dimensional Banach space. Let K : X H X be a compact
linear operator. Show that, if K is one-to-one, then the range of K cannot be
closed.

6. Let X, Y, Z be Banach spaces and consider two linear operators Al : X H
Y, A2 : Y H Z. Assume that one of the two operators is continuous while the
other is compact. Prove that the composition A2 o Al : X H Z is a compact linear
operator.

7. Let X be a Banach space and let A : X H X be a compact linear operator
such that A = A2. Namely, A(x) = A(A(x)) for all x e X. Prove that Range(A) is
finite-dimensional.

8. Let X be a Banach space. Let U C X be a closed, convex set such that
Un> 1 nU = X. Prove that U contains a neighborhood of the origin.

9. Let X, Y be infinite-dimensional Banach spaces. If K : X -+ Y is a compact
linear operator, prove that K(X) ; Y, i.e., K cannot be surjective.

As an example, consider the map K : £1 H 1 defined as follows. If x =
(x1, x2, x3,...) with IIxIIi = >n>1 IxI <00, then Kx = 1 , 2 , a,..., n , ...).
Find a point y e £1 \ K(?').

10. Let f : IR H IR be a bounded function with closed graph. Prove that f is
continuous.

On the other hand, construct a function g : IR H IR which is one-to-one and
onto, has closed graph, but is not continuous.
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11. Let X, Y be Banach spaces. Prove that every continuous function f : X F-+ Y
(not necessarily linear) has closed graph.

Construct a bounded function g : IR + L1(IR) which has closed graph but is
not continuous.

12. Let 1 <_ p < oo, and consider the Banach space Qp of all sequences x =
1/p

(xi, x2, x3,...) of real numbers such that lix lip = >k>i I< oo. Let

(A1, A2, A3,...) be a bounded sequence of real numbers, and define the bounded
linear operator A : Qp H £ by setting

A(xi, x2, x3, ...) = (Aixi,A2x2,A3x3,...

Prove that A is compact if and only if limy ak = 0.

13. Let X, Y, Z be Banach spaces. Let B : X x Y F-+ Z be a bilinear map.1 Assume
that B is continuous at the origin. Prove that B is bounded; namely there exists a
constant C such that

11B(x, y) ii C iixII Iiil forallxEX, yEY.

14. Let X be the vector space of all polynomials in one real variable, with norm

P(t)dt.iiII = f
Consider the bilinear functional B : X x X F-+ Ilk defined as

1

B(p, q) =
0

p(t)q(t) dt.

Show that, for each fixed p E X, the map q H B (p, q) is a continuous linear func-
tional on X. Similarly, for q e X fixed, the map p -+ B (p, q) is a continuous linear
functional. However, prove that B is not continuous from the product space X x X
into R. We recall that X x X has norm li(p, )ii = max J lp(x)ldx, J iq(x)idx}.

15. Let S be a closed bounded subset of a Banach space X. Assume that for every
e > 0 there exists a finite-dimensional subspace Ye C X such that

d(S,YE) = sup d(x,YE) <_ e.
xES

Prove that the set S is compact.

16. Let A be a bounded linear operator on the Banach space X. Assuming that
AK = KA for every compact operator K, prove that A is a scalar multiple of the
identity, i.e., there exists a number A such that A = Al.

'Saying that B is bilinear means that x H B (x, y) is a linear map for every given y E Y, and
y H B(x, y) is a linear map for every fixed x E X.
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17. Let X be a Banach space and let A : X H X be a bounded linear operator.
Assume that there exist e > 0 and an infinite-dimensional subspace V C X such
that I lAx II >_ e I I x I I for every x E V. Prove that the operator A cannot be compact.

18. Let X be a Banach space and let X * be its dual space. Consider a sequence
of elements xk E X with the property that the series >k>1 (x*, xk) converges for
every x * E X * . Prove that

x F-+ co(x*) (x*, Xk)
k>1

is a bounded linear functional on X.

19. On the Banach space X = C([0,1 ]) consider the linear operator A : X i-* X
defined by

rt
(Af)(0) = 1(0), (Af)(t) = t J f (s) ds fort > o.

(i) Prove that A is continuous.
(ii) Prove that A is one-to-one but not onto.

(iii) Show that A is not compact.

20. Let Sl C W be an open set and let g : Sl H Ilk be a bounded, measurable
function. As in Example 2.18, for any 1 < p < 00, on the space LP (S2) consider the
multiplication operator (M9f)(x) = g(x) f (x).

(i) Determine for which functions g the operator M9 is one-to-one.
(ii) Determine for which functions g the operator M9 has closed range.

(iii) Determine for which functions g the operator M9 is compact.

21. Find an example showing that, for an infinite-dimensional Banach space X,
the set of bounded linear operators A : X H X which are one-to-one may not be
an open subset of the space B(X; X) of all bounded linear operators.

Similarly, show that the set of bounded linear operators whose range is dense
may not be open in B(X; X).

22. Let X, Y be Banach spaces, and let A : X H Y be a linear continuous bijection.

(i) Prove that there exists /3> 0 such that

IlAxIl > 1311x11 for all x E X.

(ii) Let W E B(X; Y) be any bounded linear operator with norm llW II <I3.
Using the contraction mapping theorem, prove that, for any f E Y, the
equation

u = A-1(f - Wu)
has a unique solution.

(iii) Prove that, within the Banach space B(X; Y), the set of all bijective
operators is open.
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23. Recalling the spaces introduced in Examples 2.6 and 2.7 of Chapter 2, define
the operator A : Q°° H Q°° by setting Ax = y = (y1, y2, y3,. . .), where

(4.12) yn

n

(i) Prove that A is a bounded linear operator and compute its norm. Is A a
compact operator?

(ii) Consider the operator A defined as in (4.12), but on the space Q1 of
absolutely summable sequences. Is A a bounded linear operator? Is it
compact?

24. Let X, Y be vector spaces, with Y C X. Assume that there exist norms such
that (X; land (Y; 1are both Banach spaces, with

ilYlix < C llYliY for all y E Y.

(i) If Y = X, prove that the two norms lix and y are equivalent,
namely x Y < C' lix lix for some constant C'.

(ii) If Y X, prove that Y is a subset of first category in X. Namely, each
set Sn = {y E Y ; liil Y < n} is a closed, nowhere dense subset of X.





Chapter 5

Hubert Spaces

The Euclidean space ][8n is equipped with a natural inner product This
inner product is useful in many ways:

It defines the Euclidean norm lxii

It determines perpendicular spaces and perpendicular projections,
and it allows us to construct bases of mutually orthogonal vectors
{Vi,.. . ,v}. Thanks to the inner product, computing the compo-
nents of a vector v E Rn with respect to an orthogonal basis is an
easy matter.

Every linear functional cp : Rn F-+ R can be represented as an inner
product: (x) = (w, x) for a suitable vector w E R.

Having an inner product, one can define a class of symmetric oper-
ators, with many useful properties. We recall that A : Rn H Rn is
symmetric if (Ax, y) = (x, Ay) for all x, y E Rn. In the standard
basis of Rn, symmetric operators correspond to symmetric n x n
matrices.

Always relying on the inner product, one can define a class of pos-
itive operators. We recall that A : F-+ Rn is strictly positive
definite if (Ax, x) > 0 for all x E Rn, x 0. In this case, the map
x F- (Ax, x) is a positive definite quadratic form.

The goal of this chapter is to show how the definition and properties of
the Euclidean inner product can be extended to infinite-dimensional vector
spaces.

77
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5.1. Spaces with an inner product

Let H be a vector space over the field K of real or complex numbers. An
inner product on H is a map (.,.) that, to each couple of elements x, y e H,
associates a number (x, y) E K with the following properties. For every
x, y, z e H and a E K one has

(i) (x, y) _ (y, x), where the upper bar denotes complex conjugation;
(ii) (x + y, z) _ (x, z) + (y, z);
(iii) (ax, z) = a(x, z);
(iv) (x, x) > 0, with equality holding if and only if x = 0.

Notice that the above properties also imply

(5.1) (x,y+z) _ (x,y)+(x,z), (x, ay) = a(x, y).

In the case where K _ ][8, the properties (i)-(iii) simply say that an
inner product on a real vector space is a symmetric bilinear mapping. In
connection with the above inner product, we also define

(5.2) lixil

The Minkowski inequality, proved below, shows that this is indeed a norm
on the vector space H.

Theorem 5.1 (Two basic inequalities). Let H be a vector space with
inner product Then

(i) i(x,y)i lxii iili

(ii) lix + y lixil -I- liIi

(Cauchy-Schwarz inequality);

(Minkowski inequality).

Proof. (i) If y = 0, the first inequality is trivial. To cover the general case,
set

a(x,x), b(x,y), c(y,y).
For every scalar A E K one has

0 (x+Ay,x+Ay) = a+bA+bA+cA,\.
Choosing A _ -b/c, we obtain

0<a-bb
c

Since c = (y, y) > 0, multiplying both sides by c we obtain

0 < ac- 1b12 = i1x112 1y112 -
proving (i).
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(ii) By the Schwarz inequality,

Re(x,y) < l llxll Illl
Therefore

lix + y112 = (x + y, x + y) _ IlxIi2 + 11y112 +2 R.e(x, y)

lIxii2 + 11y112 + 2IIxii llii _ (lixil + ITaking

square roots we obtain (ii). D

A vector space H with an inner product which is complete with
respect to the norm lxii is called a Hilbert space.

Example 5.2. The Euclidean space IlSn with inner product (x, y) = x1y1 +
+ xn yn is a Hilbert space over the real numbers.

Example 5.3. The space £2 of all sequences of complex numbers x =
(x1, x2,...) such that

00 1/2

lxii - I 2 < o0
k=1

is a Hilbert space over the complex numbers, with inner product
00

(x,y) _ >xkyk.
k=1

Example 5.4. Let St C I[8Th be any open set. The space L2(; ][8) of square
summable maps f : St H ][8 is a Hilbert space, with

(.f,9) = ff(x)g(x)dx, iifiiL2
1/2

(Jst
i

Given a subset S C H, by span(s) we denote the set of all finite linear
combinations of elements of S, namely

N
(5.3) span(s) N> 1, c2 E ]K, xi E S

i=1

In general, span(s) is a subspace of H, possibly not closed. The closure
V = span(s) is called the space generated by S. We say that the set S
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is total if it generates the whole space H. In other words, S is total if, for
every x e H, there exists a sequence of elements xn e span(s) such that

I-+0asn-+oo.
Two elements x, y in a Hilbert space H are said to be orthogonal if

(x,y) = 0.
Given any subset S C H, its orthogonal subspace is defined as

S1 = {yeH; (y,x)=OforallxS}.
Notice that S1 is always a closed subspace of H.

Theorem 5.5 (Perpendicular projections). Let H be a Hilbert space
and let V C H be a closed subspace. Then

(i) H = V V1, in the sense that each x e H can be uniquely written
asx=y -Fz, where yEV andzEV1.

(ii) y = P( x) is the unique point in V having minimal distance from
x, while z = Pv± (x) is the unique point in V1 having minimal
distance from x.

(iii) The perpendicular projections x y = Pv (x) and x H z = Pvl (x)
are linear continuous operators, with norm < 1.

Jv

z
Pvl

V

Figure 5.2.1. Constructing the perpendicular projections on the
subspace V and on the orthogonal subspace V-1-.

Proof. 1. Given x e H, we begin by showing that there exists a unique
point y e V having minimal distance from x. Let

a = d(x, V ) = yEV II x - yJJ

Then there exists a sequence of points (yn)n>i such that icc -yn _
a. We claim that (yn)n>i is a Cauchy sequence. Indeed, for any two points
u, v e H one has

lu+vlP+llu-vIP = 2 IIwl12+211v112.
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Applying this equality to u = x - and v = x - yn we obtain
2

(5.4) IIYm - ynll2 = 2lix-ymll2-I-2lix-ynll2-4IIx-Ym2

Jnll

Since m2 n E V, we have x - m2 n II2 > a2. Therefore

lim sup IlYm - yn 112 < 2 lim sup lix - ym 112 + 2 lim sup lix - yn 112

m,n-+oo m-+oo n-+oo

- m+ n 2
-4 lim infm,n_ x 2

proving our claim.

< 2x2 + 2(x2 - 4(x2 = 0,

81

2. Since V is closed (and hence complete), the sequence (Yn)n>i converges
to a unique limit y such that lix - y= d(x, V). We claim that this point
is unique: if lix - y'll = d(x, V) for some other point y', then the same
argument used in (5.4) yields

ll - 'li2 = 2IIx-y112-I-2lix-y112-4IIx y 2y'll2 < 2a2+2a2-4a2,

because E V. Hence y' = y. This proves that the map x H Po(x) is
well defined.

3. We now show that PV (x) can also be characterized as the unique point
y e V such that

(5.5)

Choose any vector v e V. By step 1, for A E 1[8, the real-valued map

a H lix - (y + Av) ll2 = lix - il2 + iAi2ilvli2 -I- 2 Re(x - y, v)

attains its unique global minimum at A = 0. Therefore, its derivative at
a = 0 must be zero. This already proves that Re(x - y, v) = 0 for every
v e V. If H is a complex Hilbert space, we can replace vwith -iv and
conclude that Im(x - y, v) = Re(x - y, -iv) = 0 as well. This proves (5.5).

4. Next, we prove that the point y e V such that x - y e V' is unique.
Indeed, if y' E V is another point such that x - y' E V', then

ily-y'112 = (y-y',y-y') _ (y-y',x-y')-(y-y',x-y) = 0
because y- y' E V while x- y' E V and x- y e V.
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5. Finally, we show that the perpendicular projection PV : H H V is a
linear operator with norm IIPv II 1.

If y = Pv(x) and y' = then for any scalars a, a' E 1K one has

ay + any E V, ax + a'x' - (ay + any') E V a-.

By step 3, this suffices to conclude that Pv(ax + a'x') = ay + any', proving
that the projection operator Per is linear. Similarly, the operator Pv _
I -Per is linear.

Since the vectors PV(x) and Pvi (x) = x - PV(x) are perpendicular, by
Pythagoras' theorem we have

I+ lix - Pv(x)II Z = 11x112.
This proves that IiPvIi 1 and IIPviii 1. O

Remark 5.6. In the previous theorem, if V # {0}, then IiPvII = 1. If
V # H, then I= 1

5.3. Linear functionals on a Hilbert space

The next theorem shows that a Hilbert space can be identified with its dual.
In other words, every element x e H determines a bounded linear functional
q5X : H H IK defined as qY'(y) _ (y, x). Conversely, every bounded linear
functional on H is of the form y i-+ (y, x), for some x e H.

Theorem 5.7 (Riesz representation of linear functionals). Let H be
a Hilbert space.

(i) For every x e H, the map y i-+ (y, x) is a continuous linear func-
tional on H.

(ii) Let y i-+ Ay be a continuous linear functional on H. Then there
exists a unique element a e H such that Ay = (y, a) for every
yEH.

Proof. (i) Let x e H be given. By the definition of inner product, the map
q5X defined as q5X(y) = (y, x) is linear. The boundedness of this linear map
is a consequence of the Cauchy-Schwaxz inequality:

ic5x11 = sup (y,x)I < sup iyililxII _ lxii.
IIyII<1

(ii) Conversely, let a linear continuous functional y H Ay be given. If
Ay - 0 for all y e H, then the conclusion clearly holds with a = 0 (the zero
vector in H).
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Figure 5.3.1. If Ay = (y, a) for every y, the vector a must be per-
pendicular to Ker(A). Since [Ker(A)]-'- is one-dimensional, given
any nonzero vector b E [Ker(A)]-1-, we must have a = tb, where
the number t is determined by the identity Ab = (b, tb).

Otherwise, V = Ker(A) is a closed hyperplane. The orthogonal com-
plement V1 is a subspace of dimension one. Choose any nonzero vector
b E V1 and define ic = Ab/IIbII2, a = icb. This choice yields

(5.6) 0 y?Ab = ic(b, b) _ (b, mob) _ (b, a).

Given any vector y E H, we can decompose y as a sum of a vector in V and
a vector in V 1:

y = Pv (y) + ab

for some a E K. By (5.6) it now follows that

Ay = A(Pv(y)) + A(ab) =0+ aAb =0+ a(b, a)
= (Pv(y), a) + (ab,a) = (y,a).

Remark 5.8. Let H be a Hilbert space over the reals. By the previous
theorem, the map x H OX is an isometric isomorphism between H and its
dual space H* (= the space of all bounded linear functionals on H). We
can thus identify the two spaces H and H*.

If now A : H H H is a bounded linear operator, its adjoint A* : H* H
H* can be identified with an operator A* : H H H. This adjoint is charac-
terized by the identities

(x, A* y) _ (Ax, y) for all x, y E H .
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5.4. Gram-Schmidt orthogonalization

Let H be a Hilbert space. We say that a vector x e H is normalized if
lxii = 1. A subset E C H is ort honormal if every vector in E has unit
norm and any two vectors in E are orthogonal to each other.

Next, consider a set S = {v1, v2, ... , vn } of finitely many linearly inde-
pendent vectors. Assume that x e span{v1,... , vn}, so that

n

x = ekvk
k=1

for some coefficients 8k . To actually compute these coefficients, we observe
that, for every j = 1,... , n, one must have

n
(x,v) -

k=1

Therefore the numbers 81, ... , Bn are obtained by solving the system of n
linear equations

((vivi) (v,vi)\ (Oi ((xVi)

(vl,vn) ... (v,v)) en (x,vn)

This system is much easier to solve when the matrix is diagonal, namely
(vi, 0 for i j. This happens precisely when the vectors v1, v2, ... , vn
are orthogonal to each other. The explicit solution is then computed as

e = (x,vk)

In the special case where the set {Vi,. . . , vn} is orthonormal, so that (vi,
1 for every j = 1, ... , n, the above formula simplifies further to

Bk = (x,vk).

The previous analysis shows that, if we have an orthonormal basis at
our disposal, computations become much easier. Given a (finite or count-
able) linearly independent set S = {v1, V2,. . .}, we now describe a general
procedure to construct an orthonormal set {e1, e2, ...} in such a way that

En = span{e1,...,en} = span{v1,...,vn}

for every n > 1. This will be achieved by induction.
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Gram-Schmidt orthogonalization algorithm:
(i) Start by defining e1 =

Ilv II

(ii) If e1, ... , en_1 have been constructed, let vn be the perpendicular pro-
jection of vn on the subspace En_1 = span{v1,... , v_1} = span{e1,... , en_1 }.

Then define

en
IIvn - vnIL

Observe that vn vn because vn span{v1,... , vn_ 1 } . Hence en is
well defined and has norm one. Moreover, en is perpendicular to all vectors
el,... , en_1.

Notice that the projection of vn on the subspace En_1 is computed by
n-1

Nvn = (v,ek)ek.
k=1

By (5.8), this yields the explicit formula
_ n-1

vn k=1(vn ek) eke _n _ n-1vn k=1(vn ek) ek

Figure 5.4.1. The Gram-Schmidt orthonormalization procedure,
applied to the two vectors v1, V2.

5.5. Orthonormal sets

If {e1, e2, ... , en} is an orthonormal basis of W, then every vector x e
can be uniquely written as a linear combination

n

x =
k=1

Notice that each term (x, ek) ek represents the perpendicular projection of
the vector x into the one-dimensional subspace spanned by ek.
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In an infinite-dimensional Hilbert space H, the above finite sum should
be replaced by an infinite series. For many applications, it is important to
understand in which cases the corresponding series converges and when we
achieve the equality

(5.9) x = (x,ek)ek.
k>1

Lemma 5.9 (Properties of the orthogonal subspace). Let H be a
Hilbert space. For any subset S C H, the orthogonal subspace S1 is a closed
subspace of H. Moreover, the following are equivalent:

(i) span(s) is dense in H.
(ii) S' = {O}.

Proof. 1. The fact that 51 is a subspace of H is clear. Now assume that
xn E S1 and xn -+x as n -+oo. Then for every a E S we have

(x,a) = lim (x,a) = 0.

Hence x e as well, showing that this subspace is closed.

2. To prove the implication (i) = (ii), assume that span(S) is dense in
H and let x e so that (x, a) = 0 for every a e S. Then there exists a
sequence of linear combinations, say

Nn

xn = en,kan,k
k=1

with an,k e S, such that xn -+ x as n -+ oo. This implies
Nn

(x,x) = lim (x,x) = lim (x, 9n,kan,kn-oo n-oo
k=1

Nn

= llm 9n,k x, an,k = 0,
k=1

showing that x = 0.

3. To prove the implication (ii) == (i), let V be the closure of span(s).
If (i) fails, then V # H and there exists an element y V. Consider the
perpendicular projection PV(y). Then w = y -Pt(y) is a nonzero vector
perpendicular to V. Since w e S1, this is a contradiction with (ii).

Given an orthonormal sequence, the next theorem provides the conver-
gence of the series (5.9) and characterizes its sum.
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Theorem 5.10 (Sum of an orthogonal series). Let S = {ei, e2i ...}
be a (finite or countable) orthonormal set in a Hilbert space H. Let V be
the closed subspace generated by S and call Pjr : H H V the perpendicular
projection. Then, for every x e H, one has the Bessel inequality

(5.10) I= IIPvxII2 IIxII.
k>1

Moreover,

(5.11) >2(x,ek)ek = Pux .

k>1

Proof. 1. For any n > 1, call l/ = span{el,... , en}. Then
n

Pv x = (x,ek)ek,
k=1

and hence, by orthonormality,
n n

IIPvxII2 - ((x,ei)ei , 2(x,ek)ek)
j=1 k=1

n

(x,e)(x,ek)(e,ek)

n

k=1

Since IIPvxII < lxii for every n, the inequality in (5.10) is proved.

2. If the set S is finite, the identity (5.11) is clear. To cover the case where
S is countable, we first show that the sequence of partial sums

k=1

is Cauchy. Indeed, all terms in the series (5.11) are orthogonal to each other.
'Form <n, using Pythagoras' theorem and (5.10) we obtain

n

iiXnXmii2 = I i(x,ek)i2 -+ 0 as m,n -+oo.
k=m+1

Since H is complete, we thus have the convergence xn -+ x for some x which
provides the sum of the series in (5.11).

3. To complete the proof, we need to show that x = Pvx.
Since xn e V for every n > 1 and xn --f x, it is clear that x lies in the

closed subspace V. Moreover,

(x - x , ek) = lim (x - xn, ek) = 0
n-+oo



88 5. Hilbert Spaces

because (x - xn,ek) = 0 as soon as n > k. This proves that x - x is
perpendicular to all vectors ek, and hence to every linear combination of
these vectors. Therefore, x - x is perpendicular to every vector v e V. The
two properties x E Vand x - x E V1 together imply x = PVx.

We say that an orthonormal set S = {ei, e2i ...} C H is an orthonor-
mal basis if span(s) is dense in H. In this case, the closed subspace
generated by S is V = H. Hence PVx = x for every x e H, and (5.10)-
(5.11) yield

(5.12) I(x,ek)I2 = 11x112, >(x,ek)ek = x.
k>1 k>1

5.5.1. Fourier series. As an application of the previous theory, consider
the Hilbert space of complex-valued functions L2([-ir, ir] ; C), with inner
product

(5.13) (f,9) - ff(x)dx.
Within this space, the set of functions

con(x) nEZ,

is orthonormal. Indeed,

x i(m-n)x 0 if m
e dx = e dx =

2ir if m = n .I im

We claim that the countable set S = {eznx; n e 7G} is an orthonormal
basis of L2([-ir, ir]).

To show that S is dense, consider any function f e L2([-ir, ir] ; C). For
any e> 0 we can find a continuous function fe: [-ir, ir] N C such that

(5.14) lIfe - fllL2([_ir,ir]) < E f(i) = f(ir).
In turn, as shown by Example 3.8 in Chapter 3, we can find a complex
trigonometric polynomial of the form

N

p(x) _
k=-N

such that

(5.15) llfe -plle0([-ir,ir]) = l-p(x) < e.
Observing that

- (
dx1/2

life PIIL2 _ f IG llf-pllco,
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it is clear that fE can be approximated by trigonometric polynomials
also with respect to the L2 norm. Using (5.14) together with (5.15) we
conclude that span(s) = L2([-ir, ir]).

Now consider the complex trigonometric series
°O eik r e-ikx

(5.16) (f,) - ffxdx.
k=-oo

By the previous theorems, this series converges to f in L2 ([-ir, ir] ), namely
N

(5.17) N .f - 0.
L2([-ir,ir))

This result can be restated as

Corollary 5.11. Let f E L2 ([-ir, irJ ; C) be acomplex-valued, square sum-
mable function. Defining the coefficients

ck = 2 J f(y)e_dy,
one has the convergence

ir

lim
N-+oo _ir

f(x)
N

ck
e

k=-N
dx = 0.

2

5.6. Positive definite operators

A basic problem of linear algebra is to solve the system of linear equations

Ax=b,
where A is an n x n matrix and b is a vector in R. One condition which
guarantees the existence and uniqueness of solutions is that A be strictly
positive definite. Indeed if the inner product satisfies (Ax, x) > 0 for every
x L 0, then A must have full rank. Hence the above system of linear
equations will have a unique solution. In this section we show that this
result remains valid also in an infinite-dimensional Hilbert space.

Let H be a Hilbert space over the real numbers. We say that a linear
operator A : H F- H is strictly positive definitel if there exists Q > 0
such that

(5.18) (Au,u) > 1311u112 for all u E H.

1In the literature, operators satisfying the inequality (5.18) are usually called strictly mono-
tone. Here we prefer to call them strictly positive definite, to stress the relationship with positive
definite matrices in linear algebra.
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Theorem 5.12 (Inverse of a positive definite operator). Let H be a
real Hilbert space. Let A : H H H be a bonded linear operator which is
strictly positive definite, so that (5.18) holds. Then, for every f E H, there
exists a unique u= A1 f E H such that

(5.19) Au = f.
The inverse operator A-i satisfies

(5.20) 11A-i11

Proof. We need to show that, under the assumption (5.18), the continuous
map A is one-to-one and onto.

1. From (5.18) it follows that

Qs (Au,u) IlAull lull

Hence

(5.21) Q llAull.
If Au = 0, then u = 0, proving that Ker(A) _ {0} and A is one-to-one.

2. Next, we claim that Range(A) is closed. Consider any sequence of points
vn E Range(A), such that vn --+ v. We need to show that v = Au for some
u e H.

By assumption, vn = Aun for some un E H. Using (5.21) we obtain

- < li 1
- Au = li 1 - _lim sup I un I I - m sup IIAUm n I I m sup IIVm vn I I 0.

m,n-oo m,n-oo l8 m,n-+oo

Hence the sequence (u)>_ 1 is Cauchy and converges to some limit u e H.
By continuity, Au = v, proving our claim.

3. We now claim that Range(A) = H. If not, since Range(A) is closed, we
could find a nonzero vector w E [Range(A)}'. But this would imply

Qhlwhl2 (Aw,w) = 0,
reaching a contradiction.

4. By the previous steps, A : H H H is a bijection, hence the equation
(5.19) has a unique solution u = A-1 f . By (5.21) it follows that

llA1f II _ h< for all fEH,

proving (5.20).
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The previous result can also be conveniently formulated in terms of
bilinear forms.

Theorem 5.13 (Lax-Milgram). Let H be a Hilbert space over the reals
and let B : H x H H ][8 be a continuous bilinear functional. This means that

B [au + bu', v] = aB [u, v] + bB [u', v],
B [u , av + by'] = aB [u, v] + bB [u, v'],

IB[u, v] I <_ c Ilull Ilvll

for some constant C and all u, u', v, v' E H, a, b e R. In addition, assume
that B is strictly positive definite, i. e., there exists a constant ,Q > 0 such
that

B[u, u] > ,6 IluII2 for all u E H .

Then, for every f e H, there exists a unique u e H such that

(5.22) B [u, v]

Moreover,

(5.23)

= (f,v)

Il A-`IIJII

for all vEH.

Proof. For every fixed u e H the map v H B [u, v] is a continuous linear
functional on H. By the Riesz representation theorem, there exists a unique
vector, which we call Au E H, such that

B[u,v] = (Au,v) for all vEH.

We claim that A is a bounded, positive definite linear operator.
The linearity of A is easy to check. To prove that A is bounded we

observe that, for every u e H,

hIAuhI = sup (Au,v) = sup IB[u,v]l chiull
IIvII=1 11v11=1

Hence h< C.
Moreover,

(Au,u) B[u,u] /3hhuhI2,

proving that A is strictly positive definite.
We can now apply Theorem 5.12 and conclude that the equation Au = f

has a unique solution u = A-1 f ,satisfying lull Q-IIIf II. BY the definition
of A, this provides a solution to (5.22). O
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5.7. Weak convergence

Let H be a Hilbert space. We say that a sequence of points xn E H con-
verges weakly to a point x E H, and write xn - x, if

(5.24) lim (y, xn) _ (y, x) for every y E H.

If a weak limit exists, then it is necessarily unique. Indeed, assume that
xn - x and xn - x. Choosing y = x - x in (5.24), one obtains

0 = lim (x-, xn) - lim (x-, xn) = (x-, x) - (x - x, x) = IIx-II2.
n-+oo n-+00

Hence x = x .

We recall that, if H is infinite-dimensional, then the closed unit ball
Bl = {x E H; lxii < 1} is not compact (with respect to the topology
determined by the norm). In particular, Bl contains an orthonormal se-
quence {ei, e2i ...}, which does not admit any convergent subsequence. On
the other hand, replacing strong convergence by weak convergence, one can
still prove a useful compactness property.

Theorem 5.14 (Weakly convergent sequences). Let H be a Hilbert
space.

(i) Every weakly convergent sequence is bounded. Namely, if xn - x,
then lixIl <C for some constant C and all n> 1.

(ii) Every bounded sequence of points xE H admits a weakly conver-
gent subsequence: xn - x for some x e H.

Proof. 1. Every xn can be regarded as a continuous linear map, namely
y (y, xn) from H into K (the field of reals, or of complex numbers). The
Hilbert norm of xn coincides with the norm of xn as a linear functional on
H, namely

llx= sup
I

Ilyll<_1

By assumption, for every y E H, the set {(y, x); n > 1} is bounded.
Hence by Remark 4.2 in Chapter 4 (the uniform boundedness principle), the
countable set of linear functionals {x; n > 1} is uniformly bounded. This
establishes (i).

2. To prove (ii), consider the vector space X = span{xn ; n > 1}, i.e., the
closure of the set of all linear combinations of the points Xl, X2..... We
observe that X is separable. Indeed, consider the set of all finite linear
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combinations
N

eZx2

2=1

with N > 1 and °1,. . . , eN rational. This is a countable set dense in X.
Since X C H is itself a Hilbert space, by Riesz's theorem each xn can

be identified with a bounded linear functional on X. By Theorem 2.34
in Chapter 2 (Banach-Alaoglu), the sequence (xn)n>1 admits a weak-star
convergent subsequence, say (x9n . )j> 1. This means that-

lim (y, xn3) _ co (y) for all y e X,
-+00

for some bounded linear functional co : X H K.

3. By Riesz's representation theorem there exists a unique element x E X
such that co (y) _ (y, x) for all y e X. We conclude the proof by showing that
the subsequence xn3 converges weakly to x in the entire Hilbert space H.
Indeed, consider any y e H. Denoting by PX : H H X the perpendicular
projection, one has

lim (y, xn3) = lim (Pry, xn3) _ (y, x). 0-+00-+00
We conclude this section by showing that a compact operator maps

weakly convergent sequences into strongly convergent ones.

Theorem 5.15. In a Hilbert space H, consider a weakly convergent sequence
xn x. Let A : H H H be a compact operator. Then one has the strong
convergence

(5.25) IIAxn - Axil - 0.

Proof. To prove (5.25), it suffices to show that, from any subsequence
(xn)fEI1 one can extract a further subsequence (xn)fEI2, with 12 C Ii, such
that

lim IIAxn - Axil = 0.
n-+oo, nEI2

Let a subsequence (xn)fEI1 be given. Since this sequence is weakly
convergent, by the previous theorem it is globally bounded, say IIxII C
for every n e Ii.

Since A is compact, from this bounded sequence we can extract a further
subsequence with I2 C Ii, such that the images converge strongly:

lim IIAxn-yII = 0
n-+oo, nEI2

for some y e H. It remains to show that y = Ax.
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Calling A* the adjoint operator, one has

(v, Axn - Ax) _ (A*v, xn - x) -- 0 for all v E H,

proving the weak convergence Axn Ax. Since the weak limit is unique,
this implies Ax = y, completing the proof. 0
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Figure 5.7.1. A plot of the functions fn (x) = sine nx, for n =
1, 5, 25. As n -+ 00, the functions fn do not converge pointwise,
or in the L2 norm. However, we have the weak convergence fn
f . 1/2, because the average value of fn on every interval [a, b]
converges to the constant 1/2.

Example 5.16. In the space L2([0, ir]), consider the sequence of functions
fn(x) = sine nx (see Figure 5.7.1). We claim that this sequence converges
weakly to the constant function f(x) - 1/2. Indeed, consider any g E
L2([0, ir]). We need to prove that

(5.26)

J
g(x) sine nx dx =

J

gI2
dx.

0 0

In the special case where

(5.27) 9(x) _ {
l

1 if x E [0, b] ,

0 if x E ] b, ir] ,

the result is clear, because
b

2 b sin 2nb b " g(x)
lim sin 2 dx = lim - - _ - = dx.

n-*OO
U

n-*oo 2 4n 2 p 2
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By linearity, (5.26) remains true for every linear combination of functions of
the form (5.27), i.e., for every piecewise constant function.

Now consider any function g E L2. Given any e > 0, one can find a
piecewise constant function g such that II9 - 9IIr.2 <6. This yields

9(x)

f

(2sin nx - 2 I dx

g (sin2nx_(x)(x) Z I dx + J [g(x) - g(x)] (sin2 nx - Z I dx

An + Bn .

Since g is piecewise constant, we already know that An -+ 0 as n -+ oo. On
the other hand, by Cauchy's inequality,

1/2f 2 1
2 1/2

Bn <-
I l - g L2 (sin nx - - dx < -

2 4

Since e can be taken arbitrarily small, this proves the weak convergence

Notice that strong convergence does not hold. Indeed,
1\ 2

moo
fn - f IILZ - f (sin2 nx - Z I dx =

o \
1

8

Next, consider the compact operator A from L2([0, it]) into itself defined
by

(Ag)(x)
fXg(y)dy.

This integral operator maps the sequence fn(x) =sine nx into the sequence

(Af)(x) =
f

x
. 2 x sin 2nx

sin ny dy = .-2 4n

Moreover, (Af)(x) = x/2. Observe that A fconverges to A f uniformly on
[0, ]. In particular, we have the strong convergence lAi-Al 11L2 -+ 0. This
provides an illustration of Theorem 5.15, stating that a compact operator
maps weakly convergent sequences into strongly convergent ones.

5.8. Problems

1. Let H be a Hilbert space. Using the definition of inner product, prove the two
identities in (5.1). Moreover, prove Pythagoras' theorem: if two vectors x, y E H
are orthogonal to each other, then lix 112 + iiy 112 = lix + yii2
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2. Let H be a vector space with inner product Prove that the inner product
is a continuous map from the product space H x H into ]K. In other words, if
xk -+ x and yk - y in the norm (5.2), then the sequence of inner products (xk, yk)
converges to (x, y). On H x H, consider the norm l= (lix 112 + I

3. Let X be a Banach space over the reals, with norm ' Does there exist an
inner product (.,.) on X such that lix II _ x) for every x E X? To answer,
follow the two steps below.

(i) Let H be a real Hilbert space. Prove that its norm lix ii _ /j5 satisfies
the parallelogram identity

(5.28) lix + yi12 + lix - yII2 = 2IIxiI2 + 2IIyII2 for all x, y E X.

(ii) Conversely, let X be a Banach space over the real numbers, whose norm
satisfies the parallelogram identity (5.28). Show that

(x> y) (lix + yll2 - Ilxll2 - I= 4 (llx + yll2 -III - y112)

is an inner product on X, which yields exactly the same norm ' Hints:
To prove that (x + x', y) _ (x, y) + (x', y), first establish the identity

x+x'+yii2 = i1x112 + Iixhii2+ lix+yi12 + lix'+y1i2 - ilx+y_xIll2 - liixI+yxii2.

To prove that (fix, y) _ )(x, y), first show that this identity holds when
) is an integer, then for A rational, and finally by continuity for every
\EIIB.

4. Using the above problem, prove that:

(i) On the vector space R2, for all p > 1 with p # 2, the norm ilxiiP = (lxi I+
I x2iP)1/P is not generated by an inner product.

(ii) On the space of real-valued continuous functions C([0,1]), the norm iIi
maxXE[o,l]if(x)l is not generated by an inner product.

5. Consider the Hilbert space H = L2([-1,1]), with inner product (f, g) =
f9 dx. Show that the sequence of pofYnomials {1 x x2 x3>... } is linearly inde-f'1

pendent, and its span is dense in H. Applying the Gram-Schmidt orthogonalization
procedure, construct an orthonormal sequence of polynomials {Po, Pi, P2, P3,.. }
(proportional to the Legendre polynomials). Explicitly compute the first three
polynomials.

6. Let (en)n» be an orthonormal sequence in a Hilbert space H. Prove the
weak convergence en 0. In other words show that, for every x E H, one has
lim 0 (x, en) = 0.

7. Let H be an infinite-dimensional Hilbert space and let any vector x E H be
given, with lix II < 1. Construct a sequence of vectors xn with ilxnii = 1 for every
n > 1, such that the weak convergence holds: x, - x.
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8. Let (Vk)k>, be a sequence of unit vectors in a real Hilbert space H. Let (ak)k>i
be a sequence of real numbers.

(i) If >I, IakI <00, prove that the series 1 a/v/ converges.

(ii) Assume that the sequence (Vk)k>, is orthonormal. In this case, prove
that the series >, a/ v/ converges if and only if >, I ak 12 < oo.

9. Let q5 : RH RT be a smooth bijection. Assume that the determinant of
the Jacobian matrix satisfies det Dq5(x) = 1 for all x E RT, so that q5 is volume-
preserving. On the space L2 (R) consider the linear operator (Af)(x) = f (q5(x)) .
Prove that

I= 1, A* = A-1

Observe that A can be regarded as a rotation in the space L2 (R), because the
adjoint operator coincides with the inverse.

10. Consider the Hilbert space £2 of all sequences of real numbers x = (xi, x2,...)
such that >,IxkI2 <00, with inner product (x,y) = >°,xkyk. Define the
operator A : H -+ H by setting A(x1, x2, x3,...) = (x2, x3, x4,.. .). Compute the
adjoint operator A*. Are the operators A, A* surjective? One-to-one?

11. Let S be a convex set. We say that x E S is an extreme point of S if x cannot
be expressed as a convex combination of distinct points of S. In other words,

x 9x, + (1 - 9)x2 whenever 0 <9 < 1, xl, x2 E 5, xl X.

Prove the following.

(i) If S is the closed unit ball in a Hilbert space H, then every point x E S
with I lxii = 1 is an extreme point of S. This is true, in particular, for the
space H = L2([0, 1]).

(ii) On the other hand, consider the unit ball in V ([0,1]), i.e.,

{ f : [0,1] H IE ; If (t) Idt < 1 } .fB

Prove that B does not contain any extreme point.

12. Let (x)>, be a sequence of points in a Hilbert space H such that C
lim IIxhI < oo Prove that there exists a weakly convergent subsequence

- x, for some point x E H satisfying I lxii <_ C.

13. Let H be an infinite-dimensional, separable Hilbert space over the reals, and let
£2 be the space of all sequences of real numbers a = (a,, a2,...) such that I(> 1 ak)1/2 < oo. Construct a linear bijection A : H H Q2 which preserves
distances, i.e., such that

IIAxhIe2 = hfor all x E H.
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14. Given n vectors v1, V2,. . . , v, in a real Hilbert space H, define their Gram
determinant as the determinant of the n x n symmetric matrix in (5.7):

G(vl,... vm)

f(vi,vi) ... (v7,vi)
det

(v,v)
(i) Using (5.7) with x = 0, prove that the vectors v1,. . . , vare linearly

independent if and only if G(vl,... , v7) 0.

(ii) Assuming that the vectors v1,. . . , vare linearly independent, consider
the subspace V = span{vl,... , v,z}. For any vector x e H, show that the
distance of x to V is

d (x, V) = IIx-Pv(x)II = 'tI
G(vi, v2, ... , vim)

(iii) As shown in Figure 5.8.1, prove that the n-dimensional volume of the
parallelepiped with edges v1,. . . , v7 can be expressed as

lviii d v2 ; span{vl } d (v; ; span{vl, v2}) d vn ; span{vl, ... ,

Using (ii), show that the volume of this parallelepiped is /?(j, v2i ... , v)

vi

Figure 5.8.1. Computing the area of a parallelogram and the
volume of a parallelepiped. Here h2 = d(v2, span{vl }), while
h3 = d (v3 , span{vl, v2}).

15. Let f e L2 (Ilk) . Prove that there exists a unique event function go such that

If-goL2 = min I9 I I L2 .gEL2 (ll ), g even

Explicitly determine the function go.

16. Let K E 13(X; H) be a bounded linear operator from a Banach space X into a
Hilbert space H. Prove that the following conditions are equivalent.

(i) K is compact.
(ii) For every e > 0 there exists an operator K6 X H H with finite-

dimensional range, such that IlK6 - K I I <e.

2We recall that g is an even function if g(x) = g(-x) for all x E R.
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17. Let {u}>1 and {Vn}n>i be two orthonormal sets in a Hilbert space H.
Assume that

n=1

Show that if one set is complete, then the other set is also complete.

18. Let {u; n > 1} be a countable set of linearly independent unit vectors in a
Hilbert space H. Consider the vector v

(i) Assuming that all vectors un are mutually orthogonal, prove that the set
S = {v, u1, u2, u3,. .

.} is linearly independent.

(ii) Show by an example that, if the vectors un are not mutually orthogonal,
the above set S can be linearly dependent.

19. Given a sequence (x)>1 in a Hilbert space H, show that the strong conver-
gence - x - 0 holds if and only if

I IxnII -+ and x-k x (weak convergence).

20. Let Q = [0, 1] x [0, 1] be the unit square. Within the space Lz(Q), consider the
subspace of all functions depending only on the variable y:

U = {u e LZ(Q) ; u(x, y) = (y) for some function cp : [0,1] H I[

and a.e. (x,y) E Q}.

(i) Find the orthogonal subspace W = Ul.
(ii) Given any f e L2 (Q), determine the function g e U such that

IIf-gIIL2(Q) - uElU J - u11L2(Q)

21. Let H be a Hilbert space, and let S2 C H be a closed, convex subset.

(i) Prove that, for any x e H, there exists a unique point y e SZ such that
fly - xli = min,,,Ec 11w - xli This point of minimum distance y =
is called the perpendicular projection of x into ft

(ii) Show that y = 1rf(x) if and only if (w - y, y - x) > 0 for all w E SZ.

22. On the Hilbert space H = consider the subset

St {f; f (x) < eX for a.e. x e

(i) Prove that SZ is a closed, convex subset of H.

(ii) Prove that the perpendicular projection ir : H H St is the map defined as
(irf)(x) =min{ f (x), eX}.
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23. On the Hilbert space H = L2(R), consider the linear operator A : H H H
defined by (Af)(x) = f(IxI)

(i) Find the operator norm of A.
(ii) Find the kernel and the range of A.
(iii) Compute the adjoint operator A*.

24. On the Hilbert space H = L2([0, oo[), consider the operator (Af)(x) = f (ex).

(i) Compute the norm of linear operator A.
(ii) Find the kernel and the range of A.

(iii) Compute the adjoint operator A*.

25. Consider a bounded sequence of functions fE LZ([O,T]). As n -f oo, show
that the weak convergence f-i f holds if and only if

lim

J
6 fn (x) dx _ 6 1(x) dx for every b E [0, T].

26. On the space L2 ([0,1]), consider the two sequences of functions

f(x) _ /i COS 7bx, f n2/3 if x E [0, n-1]
"x l 0 if x > n-1

(i) In both cases, prove that lim_ fo f z (x) dx = 0 for every b E [0, 1].

(ii) By taking linear combinations, show that lim_ J fg dx = 0 for every
piecewise constant function g.

(iii) Is it true that f0 ?

27. Given a sequence (x)>i in a Hilbert space H, prove that the following
statements are equivalent.

(i) The weak convergence holds: xx.
(ii) The sequence (xn) is bounded and (y, x) -f (y, x) for all y in a subset

S C H whose closure has nonempty interior.

28. Let Sl C RN be an open set. Prove that a sequence of functions
f if and only if there exists a constant C such that IIfnhIL2 C

for every n > 1 and moreover

lim J fdx _ f dxn-oo 2 Q

for every box Q = [al, bl] x [a2, b2] x x [ajj, bN] entirely contained in S2.

29. In a real Hilbert space H, consider a weakly convergent sequence: xy.
Let S = co{x; n > 1} be the smallest closed convex set containing all points x.
Prove that y E S.



Chapter 6

Compact Operators on
a Hubert Space

For a linear operator A : IISn -+ IISn in a finite-dimensional space, several
results are known concerning its kernel, range, eigenvalues, and eigenvectors.
In particular:

(i) A is one-to-one if and only if A is onto. Indeed, the subspaces
Ker(A) and [Range(A)]- have the same dimension.

(ii) If A is symmetric, then its eigenvalues are real. Moreover, the space
][8n admits an orthonormal basis consisting of eigenvectors of A.

In this chapter we shall prove similar results, valid for operators A on an
infinite-dimensional Hilbert space H. Indeed, (i) remains valid for operators
of the form A = I - K, where I is the identity and K is a compact operator.
Moreover, the statements in (ii) can be extended to any compact, selfadjoint
operator A : H -+ H.

6.1. Fredholm theory

Let H be a Hilbert space. We recall that a bounded linear operator K
H -+ H is compact if for every bounded sequence of points un e H one can
extract a subsequence (un3 such that the images converge: Kung -k v
for some v E H.

The next theorem describes various relations between the kernel and
range of an operator having the form I - K and of its adjoint.

101
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Theorem 6.1 (Fredhoim). Let H be a Hilbert space over the reals and let
K: H H H be a compact linear operator. Then

(i) Ker(I - K) is finite-dimensional;
(ii) Range(I - K) is closed;
(iii) Range(I - K) = Ker(I - K*)1;
(iv) Ker(I - K) _ {0} if and only if R,ange(I - K) = H;
(v) Ker(I - K) and Ker(I - K*) have the same dimension.

Proof. 1. If the kernel of (I - K) is infinite-dimensional, one can find
an orthonormal sequence (en)n>1 contained in Ker(I - K). In this case
Ken = en for every n. Moreover, by Pithagoras' theorem, for m n one
has

hem - en 112 = Iiemii2 + lien 112 = 2.

Therefore lIKem. - Ken II _ h - en _ for every m n. Hence from the
sequence (Ken)n>i one cannot extract any convergent subsequence. This
contradiction establishes (i).

2. Toward the proof of (ii), we first show that there exists /3 > 0 such that

(6.1) llu-KuIl ? /311u11 for all u E Ker(I - K)1.

Indeed, if (6.1) fails, we could find a sequence of points un e Ker(I - K)1
such that IIunll = 1 and lk'n - KunII <1/n.

Since the sequence (un)n>1 is bounded, by extracting a subsequence and
relabeling, we can assume that this sequence converges weakly, say un -i u
for some u e H.

Since K is a compact operator, by Theorem 5.15 this implies the strong
convergence Kun -+ Ku. We now have

llu- Kull < llun - KunII + II1tn - 0 as n - oo.
This yields the strong convergence un -4 Ku. Recalling the weak conver-
gence un -i u, we conclude that u = Ku and un -4 u strongly.

By construction, we now have

lull _ llunIl = 1, u e Ker(I - K)1,

while, at the same time, u - Ku = 0, hence u e Ker(I - K). We thus
reached a contradiction, proving (6.1).

3. We now prove that Range(I - K) is closed. Consider a sequence of points
vn E Range (I - K), with vn -+ v as n -4 00. We need to find some u such
that v = u - Ku. By assumption, for each n > 1, there exists un such that
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vn = un - Kun . Notice that, if un -+ u for some u E H, then by continuity
we could immediately conclude that v = u - Ku. In general, however, there
is no guarantee that the sequence (un)n>1 converges.

To overcome this difficulty, let un be the perpendicular projection of un
on Ker (I - K), and let zn = un - un . These definitions yield

zn = un - un E Ker(I - K)1, vn = un - Kun = zn - Kzn .
Using (6.1), for every pair of indices m, n we obtain

IIVmVmII fiSince

the sequence (m)n>i is Cauchy, this proves that the sequence (Zn)m>i
is a Cauchy sequence as well. Therefore there exists u E H such that zn -+ u,
and hence

u - Ku = lim zn - Kzn = lim vn = v.
n-*oo n-*oo

Figure 6.1.1. Left: by choosing zn e Ker(I - K)1 we achieve
the inequality /3IIzn II < IIVn , used in the proof of (ii). Right: if
I - K is one-to-one but not onto, the sequence of subspaces Hn
(I - K)( H) is strictly decreasing. This leads to a contradiction,
used in the proof of (iv).

4. Since Range(I-K) and Ker(I-K*)1 are closed subspaces, the assertion
(iii) holds if and only if

(6.2) Range(I - K)1 = Ker(I - K'").

This is proved by observing that the following statements are all equivalent:

x E Ker(I_K*),

(I_K*)x = 0,
(y, (I - K*)x) = 0 for all y E H,
((I-K)y, x) = 0 forallyEH,
x E Range(I - K)1.
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5. Toward a proof of (iv), assume that Ker(I - K) _ {0}, so that the
operator I - K is one-to-one. If Range(I - K) H, we shall derive a
contradiction.

Indeed, assume that this range is not the entire space: Hl = (I -
K)(H) ,- H. By (ii), Hl is a closed subspace of H. Since I - K is one-to-
one, we must have

H2 (I-K)(Hi) C H1.
We can continue this process by induction: for every n, we set

Hn = (I - K)n(H).

By induction, we see that each Hn is a closed subspace of H, and

H2 ...
For each n > 1 we now choose a vector en E Hn f1 H+1 with lien ii = 1.
Observe that, if m < n, then

Kern - Ken = - (e,n - Kern) -I- (en - Ken) -I- (em - en) = em + zm

with zn = -(er - Kern) -I- (en - Ken) - en E Hm+1.

Since e7z E by Pythagoras' theorem this implies

ilKern - Ken ii > IIeil = 1.
Therefore, the sequence (Ken) n> 1 cannot have any strongly convergent sub-
sequence, contradicting the compactness of K.

6. To prove the converse implication in (iv), we use a duality argument.
Assume that Range(I - K) = H. By Theorem 4.8, Ker(I - K*) _
Range(I - K)1 = H1 = {0}. Since K* is compact, by the previous
step we have Range(I - K*) = H. Using again Theorem 4.8, we obtain
Ker(I - K) = Range(I - K*)1 = H1 = {0}, as claimed.

7. Toward a proof of (v), we first show that the dimension of Ker(I - K) is
greater than or equal to the dimension of Range(I - K)1. Indeed, suppose
on the contrary that

(6.3) dim Ker(I - K) < dim Range(I - K)1.

Then there exists a linear map A : Ker(I - K) H Range(I - K)1 which
is one-to-one but not onto. We extend A to a linear map A H H
Range(I - K)1 defined on the whole space H, by requiring that Au = 0 if
u E Ker(I - K)1. Since the range of A is finite-dimensional, the operator
A is compact, and so is K + A.
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We claim that Ker(I - (K + A)) _ {0}. Indeed, consider any vector
u E H and write

u=ul+u2, ul E Ker(I - K), U2 E Ker(I - K)1.

Then
(6.4)
(I-K-A)(ui+u2) _ (I-K)u2-Aui E Range(I-K)EBRange(I-K)1.
Since (I - K)u2 is orthogonal to Aul, the sum (I - K)u2 + Aul can vanish
only if (I - K)u2 = 0 and Aul = 0. Recalling that the operator I - K is
one-to-one on Ker(I - K)1 and A is one-to-one on Ker(I - K), we conclude
that ul = u2 = 0.

Applying (iv) to the compact operator K + A, we obtain Range(I -
(K + A)) = H. However, this is impossible: by construction, there exists a
vector v E Range(I - K)1 with v Range(A). By (6.4), the equation

u-Ku-Au = v
has no solution. This contradiction shows that (6.3) cannot hold.

8. Recalling that Range(I - K*)1 = Ker(I - K), from the previous step
we deduce that

dimKer(I - K*) > dimRange(I - K*)1 =dimKer(I - K).

Interchanging the roles of K and K* we obtain the opposite inequality.

Remark 6.2. When K is a compact operator, the above theorem provides
information about the existence and uniqueness of solutions to the linear
equation

(6.5) u-Ku = f.
Namely, two cases can arise.

CASE 1: Ker(I - K) _ {0}. Then the operator I - K is one-to-one and
onto. For every f E H the equation (6.5) has exactly one solution.

CASE 2: Ker(I-K) # {0}. This means that the homogeneous equation
u - Ku = 0 has a nontrivial solution. In this case, the equation (6.5) has
solutions if and only if f E Ker(I - K*)1, i.e., if and only if

(6.6) (f, u) = 0 for every u E H such that u - K*u = 0.

The above dichotomy is known as the Fredholm alternative.
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6.2. Spectrum of a compact operator

Let H be a Hilbert space over the reals, and let A : H '--* H be a bounded
linear operator.

The resolvent set of A, denoted as p(A), is the set of numbers rj E ]R
such that ruI - A is a bijection (i.e., one-to-one and onto). Notice that in
this case, by the open mapping theorem, the inverse operator (ruI - A)-1 is
continuous.

The complement of the resolvent set: (A) = II8 \ p(11) is called the
spectrum of A.

The point spectrum of A, denoted as Q(tl), is the set of numbers
rj E II8 such that ruI -11 is not one-to-one. Equivalently, rj E vp(A) if there
exists a nonzero vector w E H such that

Aw.= uw.

In this case, rj is called an eigenvalue of A and w is an associated eigen-
vector.

The essential spectrum of A, denoted as ve(A) = Q(A) \ Q(A), is
the set of numbers rj E l[8 such that -11 is one-to-one but not onto.

Theorem 6.3 (Spectrum of a compact operator). Let H be an infinite-
dimensional Hilbert space, and let K : H H H be a compact linear operator.
Then

(i) 0 E o(K).

(ii) (K) = o(K) U {O}.

(iii) Either o(K) is finite, or else o(K) _ {Ak; k > 1}, where the
eigenvalues satisfy limki,0 )'k = 0.

Proof. 1. To prove (i) we argue by contradiction. If 0 (K), then K
has a continuous inverse K-1 H H H. We thus have I= K o K-1.
Since the composition of a continuous operator with a compact operator is
compact, this implies that the identity is a compact operator. But this is
false, because H is an infinite-dimensional space and the closed unit ball in
His not compact.

2. To prove (ii), assume that ). E (K), with ). ; 0. If Ker()I - K) _ {0},
the Fredholm alternative would imply RangeI - K) = H. By the open
mapping theorem, (\I - K) would have a bounded inverse, against the
assumptions. This contradiction proves that ). E Qp(K).
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3. To prove (iii), assume that (An)n>1 is a sequence of distinct eigenvalues
of K, with An - A. We claim that A = 0.

Indeed, since An E 6p (K), for each n > 1 there exists an eigenvector wn
such that Kwn = Anwn. Call Hn = span{wi,... , wn}. Since eigenvectors
corresponding to distinct eigenvalues are linearly independent, Hn C Hn+i .

Observe that, for every n > 2, one has (K - AnI )Hn C Hn_1. For each
n we can thus choose an element en e Hn f1 H-_1 with I ien II = 1. If m < n,
then

(Ken - Anen) E H_1, (Kern - Amem) E Hm_1 C H_1,

and em E Hm C Hn_1 while en e H_1. Hence

liKen - Kem II = (Ken - Anen) - (Kem - Amem) + Anen - AmemM

>- Il\nenII = iAnl.

Therefore
lim inf liKen - Kem ii >- lim I An I = I Al.m,n oo

If IAI > 0, then the sequence (Ken )n> 1 cannot have any convergent subse-
quence, contradicting the assumption that K is compact.

6.3. Selfadjoint operators

Let A : H F-+ H be a bounded linear operator on a real Hilbert space H. We
say that A is symmetric if

(Ax, y) _ (x, Ay) for all x, y e H.

Notice that this is equivalent to saying that A is selfadjoint.

Example 6.4. Let A = (aij)i,j=i,...,n be a symmetric n x n matrix. Then
A determines a symmetric linear operator x F-+ Ax from Rn into IRE. It also
determines the quadratic form

n

x H (x, Ax) = ai
i,j=1

The quantities

m = min (x, Ax), M = max1X1=1 (x, Ax)
IXI=1

provide the smallest and the largest eigenvalue of A, respectively.

The theory of symmetric linear operators on a Hilbert space extends
many well-known properties of symmetric matrices to an infinite-dimensional
setting.
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Lemma 6.5 (Bounds on the spectrum of a symmetric operator).
Let A : H H H be a bounded linear selfadjoint operator on a real Hilbert
space H. Define the upper and lower bounds

m = inf (Au, u), M = sup (Au, u).
uEH, IInII=1 UEH, IInII=1

Then

(i) The spectrum v(A) is contained in the interval [m, M].

(ii) m, M E v(A).

(iii) h= max{-m, M}.

Proof. 1. Let ri> M. Then

(97u - Au, u) > (ri - M)11u112 for all u E H.

By the Lax-Milgram theorem, the linear continuous operator A is one-
to-one and onto. By the open mapping theorem, it has a continuous inverse.
This proves that every 97> M is in the resolvent set of A. Similarly, replacing
A with -A, we see that every r) < m lies in the resolvent set. This proves
(i)

2. From now on, to fix the ideas, we assume ml < M. The opposite case,
where M < -m, can be handled by entirely similar arguments, replacing A
by -A.

For every u,v e H we have

4(Au, v) _ (A(u + v), u + v) - (A(u - v), u - v)
<

2M(lluIl2 + 11v112).

If Au 0, setting v = (IluIl/IIAulI)Au we obtain

2lIuII IlAuhl = 2(Au,v) < M(11u112 + 11v112) = 2M 11u112.

Therefore

(6.7) IIAuIl < Milull for all u E H.

Indeed, (6.7) trivially holds also if Au = 0.
Since h> suP11u11=1(Au,u) = M, from (6.7) it follows that I= M,

proving (iii).

3. Next, we claim that M E v(A). Choose a sequence (ut.)>1 with

(Au, u) - M, IlunlI = 1 for all n.
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Then
IIAun - MuII2 - IIAunII2 - 2M(Aun,un)+ MZIIunII2

< 2M2 - 2M (Aun, un) - 0.
Therefore the operator A - MI cannot have a bounded inverse. LI

According to a classical theorem in linear algebra, every symmetric n x n
matrix A can be reduced to diagonal form by an orthogonal transformation.
This can be achieved by choosing an orthonormal basis of Rn consisting
of eigenvectors of A. The following theorem shows that the result remains
valid for compact symmetric operators.

Theorem 6.6 (Hubert-Schmidt; eigenvectors of a compact symmet-
ric operator). Let H be a separable real Hilbert space, and let K : H H H
be a compact symmetric linear operator. Then there exists a countable or-
thonormal basis of H consisting of eigenvectors of K.

Proof. 1. If H =1[8'x, this is a classical result in linear algebra. We thus
assume that H is infinite-dimensional. Let 0 and let {l7i, 72,.. .} be
the set of all nonzero eigenvalues of K. Consider the eigenspaces

Ho = Ker(K), Hl = Ker(K - 17iI), H2 = Ker(K - 1721).....

Observe that 0 < dim(Ho) < oo, while 0 < dim(Hk) < oo for every k > 1.

2. We claim that, for m n, the subspaces Hm and Hn are orthogonal.
Indeed, assume u E Hm, v E H. Then

llm(u, v) = (Ku, v) = (u,Kv) =
Since rim 7/n, this implies (u, v) = 0.

3. Next, we show that the subspaces Hk generate the entire space H. More
precisely, consider the set of all linear combinations

N

H = N> 1, uk E Hk , a, E Ilk .

=1
We claim that

(6.8)

Indeed, K(H) C H.
hence

FI1 C Ker(K) = H0.
Moreover if u E H' and v E H, then Kv E H and

(Ku, v) = (u, Ky) = 0.
This shows that K(H1) C H1.
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Let K be the restriction of K to the subspace H1. Clearly K is a
compact, symmetric operator. By Lemma 6.5 we have

N N
,iAii _ _ sup (Ku, u) = M.

uEH-1-, u=1

If M 0, then by the lemma either A = M or A = -M is in the spectrumN N
of K. In this case, since K is compact, A is in the point spectrum, and thereN
exists an eigenvector w e H1 such that

N
Kw = Kw = Aw.

But this is impossible, because all eigenvectors of K corresponding to a
nonzero eigenvalue are already contained in the union of the subspaces Hk,
k > 1. We thus conclude that IIK1I = 0, proving (6.8).

In turn, (6.8) yields

H1 c Ha n Ho ={0},
N

proving that H is dense in H.

4. For each k > 1, the finite-dimensional subspace Hk admits an orthonor-
mal basis 13k = {ek,1, ek,2, ... , ek,N(k) }. Moreover, since H is separable,
the closed subspace Ho = Ker (K) admits a countable orthonormal basis
,t3o = {eo,i, eo,2, ...}. Hence the union /3 = Uk>o 13k is an orthonormal
basis of H. D

Remark 6.7. Let {w1, w2,. . .} be an orthonormal basis of a real Hilbert
space H, consisting of eigenvectors of a linear, compact, selfadjoint operator
K. Let A1, A2,... be the corresponding eigenvalues. For a given f e H,
consider the equation

(6.9) u-Ku = f.
If 1 Q(K), then (6.9) admits a unique solution. Writing

u =
00

Ckwk,
k=1

f = bkwk,

this solution can be computed as
00 00

(6.10) u = 1 bkwk = (1 ') w .
k=1 k k=1

k

Remark 6.8. Given a countable set S = {Ui, U2,. . .} in a Banach space X
over the reals, a basic problem is to decide whether span(s) is dense on X.
Positive answers can be provided in two important cases.
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(I) X = C(E) is the space of all continuous real-valued functions on
a compact metric space E. In this case, if span(s) is an algebra
that contains the constant functions and separates points, then the
Stone-Weierstrass theorem yields span(s) = X.

(II) X is a separable Hilbert space, and there exists a compact selfad-
joint operator tl : X H X such that

(i) span(s) contains all eigenvectors of A, and
(ii) span(s) contains the kernel of A.

In this case, the Hilbert-Schmidt theorem yields span(s) = X.

6.4. Problems

1. (i) Find two bounded linear operators Al, A2 from L2 ([0, oo[) into itself such
that Al o AZ = I (the identity operator), but AZ o Al # I.

(ii) Let H be a real Hilbert space, and let A, K : H H H be bounded linear
operators, with K compact. Show that in this case

A(I - K) = I if and only if (I - K)A = I.

2. On the Hilbert space LZ([O,oo[), consider the linear operator defined by

(Af)(x) = 2f(x+1), xO.
(i) Is A a bounded operator? Is it compact?

(ii) Explicitly determine the adjoint operator A*.

(iii) Describe Ker(A) and Ker(A*).

3. Let H be a real Hilbert space, and let A : H H H be a bounded linear operator,
with norm I= M. Give a direct proof that v(A) C [-M, M].

4. On the Hilbert space H = L2([0,1]), consider the linear operator

(6.11) (Af)(x) _ f1 K(x,y) f (y) dy

where K : [0, 1] x [0, 1] H 1[ is a continuous map, satisfying

(6.12) K(x, y) = K(y, x), for all x, y E [0, 1].

(i) Prove that A is a compact selfadjoint linear operator.

(ii) As a special case, note that the assumption (6.12) is satisfied by the
integral kernel

K(x, y) f (1-y)x
if y < x< 1.
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Show that, when f is continuous, the function u(x) = (Af)(x) provides a
solution to the boundary value problem

u"(x)+f(x) = 0, u(O) = u(1) = 0.

5. On the Hilbert space H = L2 ([0, ir] ), consider the multiplication operator
(Af)(x) = f (x) sin x.

(i) Check whether A is selfadjoint.

(ii) Compute the operator norm tand check whether he
(iii) Is A compact?

6. On the space L2 ([0,1] ), consider the integral operator (Au) (t) = J u(s) ds.

(i) Prove that for every u e L2 the function Au is Holder continuous, namely
Au E C°"/2([O, 1])

(ii) Prove that the operator A is compact.

(iii) Compute the adjoint operator A*.

(iv) Given a function g e L2, does the equation u - Ku = g have a unique
solution? Assuming that g is continuously differentiable, write the ODE
satisfied by this solution.

7. As in Remark 6.7, let {wi, W2,.. .} be an orthonormal basis of the Hilbert space
H, consisting of eigenvectors of the linear, compact, selfadjoint operator K. Assume
that 1 E o(K). Give a necessary and sufficient condition for the equation (6.9) to
have solutions. Write a formula, similar to (6.10), describing all such solutions.

8. Let A, B be continuous, selfadjoint linear operators on a Hilbert space H. Prove
that the composition AB is selfadjoint if and only if AB = BA.

9. Let A : H H H be a bounded linear operator. Prove that the following are
equivalent.

(i) A is compact.

(ii) limner 0 Av= 0 for every orthonormal sequence (v)> 1 of vectors in
H.

On the other hand, let H be a separable Hilbert space with orthonormal basis
{ei, e2,. . .}. Show that there exists a bounded linear operator A E /3(H) which
satisfies lim0 Aen = 0 but is not compact.

10. Let K be a compact linear operator on the Hilbert space H. Prove that, for
every closed subspace V C H, the image (I-K)(V) = {x-Kx; x e V} is a closed
subspace of H.
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11. In the setting of Remark 6.7, consider the linear ODE on the Hilbert space H:

(6.13) ut = Kut u0 =
for some f E H. Write the solution in the form

(6.14) u(t) _ ck (t)wo ,
k=1

computing the time-dependent coefficients

12. Extend the result of Problem 11 to equations of the more general form

dtu(t) = Ku(t) + g(t) , u(0) = f,
where f E H and t H g(t) E H is a continuous function.

13. In the setting of Remark 6.7, consider the second-order linear ODE on the
Hilbert space H:

2

(6.15) j2u(t) = Ku(t), u(0) = f, tu(O) = g,

for some f, g E H. Write the solution in the form (6.14), computing the coefficients
Ck ().

14. Let A : H H H be a bounded linear operator. Using Problem 22 in Chapter 4,
show that the resolvent set p(A) = {r E R ; ruI -A is a bijection} is open.





Chapter 7

Semigroups of Linear
Operators

7.1. Ordinary differential equations in a Banach space

The classical existence-uniqueness theory for ODEs with Lipschitz continu-
ous right-hand side can be extended to Banach spaces without any substan-
tial change. Let X be a Banach space, and let F : X -+ X be a Lipschitz
continuous map, so that

(7.1) IIF(x) - F(y)ll L lix - ll

for some Lipschitz constant L and every x, y e X.
Given an initial point x e X, consider the Cauchy problem

(7.2) rh(t) = F(x(t)), x(O) =

Here and throughout the sequel, the upper dot denotes a derivative with
respect to time. As in the finite-dimensional case, the global existence and
uniqueness of a solution can be proved using the contraction mapping the-
orem.

Theorem 7.1 (Existence-uniqueness of solutions to a Cauchy prob-
lem for an ODE with Lipschitz continuous right-hand side). Let X
be a Banach space and assume that the vector field F : X F-+ X satisfies the
Lipschitz condition (7.1). Then for every x e X the Cauchy problem (7.2)
has a unique solution t H x(t), defined for all t e 1[8.

115
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Proof. Fix any T > 0 and consider the Banach space C([0, T]; X) of all
continuous mappings w : [O, T] H X, with the equivalent norm

(7.s) liwlit = maxtE[o,T] e-2LtIIw(t)II

Observe that a function x : [0, T] - X provides a solution to the Cauchy
problem (7.2) if and only if is a fixed point of the Picard operator

ft
(7.4) (w)(t) = x +

J
F(w(s)) ds, t e [O, T].

We claim that J is a strict contraction, with respect to the equivalent
norm (7.3). Indeed, given any u, v e C([0, T]; X), set S = Ilu - vIIt BY the
definition (7.3), this implies

Ilu(s) - v(s) ii < 8e2Ls for all s E [0,T].

For every t e [O, T], the assumption of Lipschitz continuity in (7.1) implies

e-2Lt I I (u)(t) - (v)(t)M = e2Lt f
t
(F(u(s)) - F(v(s))) ds

e-2r,t ft I F(u(s)) - F(v(s)) II ds < e2Lt ft Lilu(s) - v(s) ii ds

t
< e-2Lt LSe2Ls ds < Z .

0

Therefore(7.5) I 2 iiu-vlit.

We can now apply the contraction mapping theorem, obtaining the ex-
istence of a unique fixed point for , i.e., a continuous mapping

x t e [0, T].

This function provides the unique solution to the Cauchy problem. By
reversing time, we can construct a unique solution on any time interval of
the form [-T, 0].

There are two well-known methods for constructing approximate solu-
tions to the Cauchy problem (7.2), shown in Figure 7.1.1. In the following
we fix a time step h> 0 and define the times t3 = j h, j = 0,1, 2, ....
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Figure 7.1.1. Euler approximations to the system xl = x2, x2 =
- x 1. Here is an exact solution, y(.) is a piecewise affine ap-
proximation obtained by the forward Euler scheme, while z(.) is
obtained by the backward Euler scheme.

Forward Euler approximations. The values of the approximate
solution at the times t3 are defined by induction, according to the
formula

(7.6) x(t3+l) = x(t3) + hF(x(t3)).

Backward Euler approximations. The values of the approxi-
mate solution at the times t3 are determined as

(7.7) x(t3+l) = x(t3) + hF(x(t3+l))

In both cases, after the values x(t3) have been computed on the discrete
set of times one can extend the approximate solution to all real values of
t > 0, letting t -+ x(t) be an affine function on each interval [t_1, t3].

Forward Euler approximations are easy to construct: during the whole
time interval [ti, tl] we let the derivative x(t) be constant, equal to the
value of F at the initial point:

x(t) = F(x(t3)), t E [ti, t3+l]

On the other hand, in a backward Euler approximation, for t E [tj, tl]
we let the derivative x(t) be constant, equal to the value of F at the terminal
point

x(t) _ F(x(t3+l)), t E [t7, t.1+1I'

In this case, given x(t3), to find x(t3+l) one needs to solve the implicit
equation (7.7). Backward Euler approximations thus require more compu-
tational work. On the other hand, they often have much better stability and
convergence properties.
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7.1.1. Linear homogeneous ODES. Let A : Il8H ][8" be a linear oper-
ator. Then the solution to the linear Cauchy problem

(7.8) = Ax, x(O) =

is the map t ti etAx, where
00

kAk(7.9) etA - t k!

This same formula remains valid for any bounded linear operator A on a
Banach space X. We observe that the series in (7.9) is absolutely convergent
for every t E R. Moreover, the exponential map has the following properties:

(i) e°A = I, the identity map.
(ii) esAetA = e(s+t)A (semigroup property).

(iii) For every x E X, the map t etAx is continuous.

According to (i)-(ii), the family {etA; t > 0} is a group of linear operators.
More generally, the theory of linear semigroups studies the correspon-

dence

A +-+ {etA; t> 0}
between a linear operator and its exponential.

When A is a bounded linear operator, its exponential function is com-
puted by the convergent series (7.9). Conversely, given the family of opera-
tors etA, one can recover A as the limit

A= lim

There are important cases where the operators etA are bounded for ev-
ery t > 0, while A is an unbounded operator. These are indeed the most
interesting applications of semigroup theory, useful in the analysis of PDEs
of parabolic or hyperbolic type.

Example 7.2. If A : Rn H Rn is a diagonal matrix, then its exponential
can be readily computed. Indeed

al 0

A = '

0 an

etA =
(etX1 0

Observe that the corresponding operator norms are

IIAII = maxk IAkI, II6tAll = maxkletakl
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Example 7.3. Let 21 be the Banach space of all sequences of complex
numbers x = (xi, x2i x3,...) with norm

Given any sequence of complex numbers (Ak)k>1i consider the linear opera-
tor

(7.10) Ax = (Aixi, A2x2, A3x3,...).

The corresponding exponential operators are
etAx = (et1xi, eta2 x2 , eta3 x3 , ...

It is important to observe that the quantity

h= sup htki
k

may well be infinite, but at the same time the norm
etAll =sup

k

can be bounded, for every t > 0. Indeed, as shown in Figure 7.1.2, assume
that the real part of all eigenvalues Ak is uniformly bounded above, say

Ak = Gtik+ ZIQk ,

for some constant w e R. Then

(7.11) I ekI = let«ki

ak < w for all k > 1,

< etw for all t > 0.

Therefore, for each t > 0 the operator etA is bounded. Namely iletAII c etw

Two further cases are worth exploring.

CASE 1: Assume that all real parts of the eigenvalues Ak are bounded
above and below, say

-w<aj <w
for some constant w > 0 and all k > 1. Then, for all t e ][8 we have the
estimate

(7.12) ietl = ieti <
Hence the operators etA are all bounded, also fort < 0. This shows that
the differential equation (7.8) can be solved both forward and backward in
time. The family of operators {etA; t e II8} forms a group of bounded linear
operators.

CASE 2: Assume that all eigenvalues Ak = ai + i,Qk are contained in a
sector of the complex plane. More precisely, assume that there exists w e ][8
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and an angle 0 < 8 < ir/2 such that, for every k, we can write

(7.13) a = w - rj cos 9k, ,6k _ -rj sin 9k

for some rj > 0 and 9k E [-8, 8].
In this case, since a <w, it is clear that (7.11) holds and the operator

I Ielis bounded, for every t > 0. However, much more is true: for every
t> 0, the composed operator AetA is bounded. Indeed

I IAeAII =sup lAketa,c I sup

(w sup (w + r)e(W -r cos 8)t < +00,
r>0, IOI < r>0

because cos 0> 0. In this case, A is called a sectorial operator.
Even if the initial datum x does not lie in the domain of the operator

A, for every t> 0 we have x(t) = et 4 E Dom(A).

.

.
.

' k

0

R
w -0)

iR }

.

0

iR

.

.k

w
R

Figure 7.1.2. Left: when all the eigenvalues Ak of the operator A
in (7.10) have real part Re(Ak) < w, then for every t > 0 the expo-
nential operator is bounded: IIetAII < etW . Center: if all eigenvalues
Ak satisfy Re (Ak) E [-w, w], then for every t E R the exponential
operator is bounded: IletA < e11 w . Right: if all eigenvalues Ak lie
in a sector of the complex plane with angle 9 < it/2, then for each
t> 0 the operator AetA is bounded as well.

7.2. Semigroups of linear operators

Consider a linear evolution equation in a Banach space X, say

(7.14) dtu(t) = Au(t), u(0) = u E X.

Fort > 0, one would like to express the solution as u(t) = etAU, for some
family of linear operators {etA; t > 0}.
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Example 7.4. Consider the partial differential equation ut - ux = 0. This
can be recast in the form (7.14), where A = a is a differential operator.
As function space, we can take X = LP(I[8), for some p e [1, oo[. Clearly,
the differential operator A is unbounded. Its domain is the set of absolutely
continuous functions u E LP(R) with derivative u E Lp(l[8). On the other
hand, for every initial data u e Lp, the solution of the initial value problem

ut = ux, u(0, x) = u(x)

can be explicitly computed:

U(t,X) = i(x+t), teR.
This indicates that, although the differential operator A = is unbounded,
the corresponding exponential operators etA are uniformly bounded:

(etAi)(x) = u(x + t)

and hence IletA= 1 for every t E R.

In the theory of linear semigroups one considers two basic problems:

(1) Given a semigroup of linear operators {St; t > 0}, find its genera-
tor, i.e., the operator A such that St = e.

(2) Given a linear operator A, decide whether it generates a semigroup
{etA; t > 0} and establish the properties of this semigroup.

For applications, (2) is clearly more important. However, for the develop-
ment of the theory it is convenient to begin with (1).

7.2.1. Definition and basic properties of semigroups.

Definition 7.5. Let X be a Banach space. A strongly continuous semi-
group of linear operators on X is a family of linear maps {St; t > 0}
with the following properties.

(i) Each St : X H X is a bounded linear operator.
(ii) For every s, t > 0, the composition satisfies St Ss = St+s (semigroup

property). Moreover Sp = I (the identity operator).
(iii) For every u E X, the map t H Stu is continuous from [0, oo[ into

x.

We say that {St; t > 0} is a semigroup of type w if, in addition, the
linear operators St satisfy the bounds

(7.15) liSt II < etW for all t > 0.



122 7. Semigroups of Linear Operators

A semigroup of type w = 0 is called a contractive semigroup. Indeed,
in this case liSt Ii < 1 for every t > 0, hence

lIStu-StvII < u - vfor all u, v E X, t> 0.

The linear operator

(7.16) Au = lim Stu - ut-o+ t
is called the generator of the semigroup {St; t > 0}. Its domain Dom(A)
is the set of all u e X for which the limit in (7.16) exists.

For a given u e X, we regard the map t Stu as the solution to the
linear ODE (7.14). Notice that, in a sense, here we are approaching the
problem backwards: given the solution u(t) = Stu, we seek to reconstruct
the evolution equation, finding the operator A. Some elementary properties
of the semigroup S and its generator A are now derived.

Theorem 7.6 (Properties of semigroups). Let {St; t > 0} be a strongly
continuous semigroup and let A be its generator. Assume u E Dom(A).
Then

(i) For every t > 0 one has Stu E Dom(A) and AStu = StAu.
(ii) The map t H u(t) = Stu is continuously differentiable and provides

a solution to the Cauchy problem (7.14).

Proof. 1. Let u E Dom(A), so that the limit in (7.16) exists. Then

SSStu - Stu StSsu - Stu Ssu - uhm = lim = St lim = StAu.
S S s-0+ S

Therefore Stu E Dom(A) and AStu = StAu, proving (i).

2. Next, assume u E Dom(A), t> 0. Then, by the semigroup property,

{Stu t-hu - StAu } = {St_h I

St-hh - u)_StA}
J

Shu-
-h h - Au + (St-hAu - StAu) } = 0.

h-o+ { St

u

Indeed, S-h -+ Au, while liSt-h II etW . Moreover, since Au E X is well
defined, the map s H SsAu is continuous. The above computation shows
that the map t Hmo(t) = Stu has a left derivative:

h
t-hu = ,StA2u.
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The right derivative is computed as

. St+hu - Stu Shu - u
lim = St lim = StAu.

h h-o+ h

Therefore, for every t > 0, the map t -+ Stu is differentiable, with derivative
d Stu = StAu = AStu. Since Au E X, by the definition of semigroup the

map t -+ St (Au) must be continuous. Hence the map t -+ Stu is continuously
differentiable. 0

The following theorem collects some properties of the generator A. We
recall that a linear operator A : X H X is closed if its graph

Graph(A) _ {(x, y) E X x X; x e Dom(A), y= Ax}

is a closed subset of the product space X x X.

Theorem 7.7 (Properties of generators). Let {St; t > 0} be a strongly
continuous semigroup on the Banach space X, and let A be its generator.
Then

(i) The domain of A is dense in X.
(ii) The operator A is closed.

Proof. 1. Fix any u e X and consider the approximation U6 = e-1 fo SSu ds.
Since the map t -+ Stu is continuous, we have U6 -+ u as e -+ 0+. To prove
(i), we now show that U6 E Dom(A) for every e > 0. Since Dom(A) is a
vector subspace, it suffices to show that

For 0 < h <e we have

Shut - ue
h

f
6

Ssu ds E Dom(A).

PC PC 1

1_ -
o

(S8u - Ssu)ds
h

1
e+h 1 h_ - f Ssuds - -o Ssuds - u

h h

This shows that u6 E Dom(A) for every e > 0, proving (i).

ash-0+.

2. Next, we prove that the graph of A is closed. Let (Uk, vk) be a sequence
of points on the graph of A. More precisely, let uk E DomA, vk = Auk, and
assume the convergence uk -+ u, vk -+ v, for some u, v e X. We need to
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show that u e Dom(A) and Au = v. For each k > 1, since uk e Dom(A),
the previous theorem implies

LhGStuk)Sh26k 26k = Cat = J StAuk dt.

Letting k -+ oo, we obtain

Shu - u = Stv dt.
ph

Jo

Therefore,
h

, Stv dt = v.
h u h0

By definition, this means that u E Dom(A) and Au = v.

0 h c c+h t

Figure 7.2.1. Left: the intervals of integration, in the proof of
Theorem 7.7 (i). Right: according to (7.20) or (7.28), the backward
Euler approximation with step h > 0 is the weighted average of
points on the trajectory t H Stu, with exponentially decreasing
weight w(t) = e-t/h/h.

7.3. Resolvents

0

The crucial link between a semigroup {St; t > 0} and its generator A is
provided by the so-called "resolvent". This can be best understood in terms
of backward Euler approximations.

Assume that we want to solve (7.14) approximately, by backward Euler
approximations. We thus fix a time step h> 0 and iteratively solve

u(t + h) = u(t) + h Au(t + h).

At each step, given a value u(t) E X, we thus need to compute

u(t+h) = (I-hA)1u(t).
The backward Euler operator

(7.17) Eh = (I-hA),
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with h> 0 small, plays a crucial role in semigroup theory. Given A, there
are two main ways to recover the solution of the Cauchy problem (7.14), in
terms of this operator.

(I): As a limit of backward Euler approximations.
For a fixed T > 0, we consider the time step h = T/n. After n steps, the

backward Euler approximation scheme yields

u(T) , E
In

o ... o E
In

= T -'n(I-nA) u.

Keeping T fixed and letting n -+ oo, we expect to recover the exact solution
of (7.14) in the limit:

) u.n(7.18) u(T) = STu = C(I_rA

(II): As a limit of solutions to approximate evolution equations.
Fix again a time step h > 0 and set a = 1/h. We then define the

operator AA : X X as
Aau = AEh u = A(I - hA)-iu.

In other words, AAu is the value of A computed not at u but at the nearby
point Eh u, i.e., at the first step in a backward Euler approximation, with
h = 1/A. It turns out that, for h> 0 small enough, AA = Ai/h is a well
defined, bounded linear operator. We can thus consider the exponential
operators etk _ /k! and define

(7.19) u(t) = Stu = lim etA"u.

Example 7.8. Consider the scalar ODE

Its solution is x(t) = etax. In this case we trivially have
a at - tal h - to/(1-ha)as = al/h = e x = lim e / x = lime x .

1 - ha
This corresponds to the limit (7.19). On the other hand, the limit (7.18) is
related to the identity

eTa = lim (i_raiTh
n-+oo fl

Notice that, for 0 < h < a 1, one also has the identities
f0o e-t/h oo e-t/h

(7.20) J h dt = 1, (1-ha)-lx = f h etax dt .
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The second identity shows that the backward Euler operator Ex =
(1 - ha)-lx can be obtained by taking an average of points along the tra-
jectory t etax, with the exponentially decreasing weight w(t) = he-t/.

Motivated by the previous analysis, we introduce some definitions.

Definition 7.9. Let A be a linear operator on a Banach space X. The
resolvent set of A is the set p(A) of all real numbers A such that the
operator

AI - A : Dom(A) i-X

is one-to-one and onto. If A E p(A), the resolvent operator RA : X X
is defined by

RAU (AI-A)'u.

We remark that, if A is a closed operator, then by the closed graph
theorem the operator RA : X - Dom(A) C X is a bounded linear operator.
Moreover

ARau = RaAu if u E Dom(A).

There is a close connection between resolvents and backward Euler opera-
tors. Namely

ARA = Ei IA .

Theorem 7.10 (Resolvent identities). Let A be a closed linear operator.
If A, µ E p(A), then

(7.21) RA- Rµ = (p-A)RR,,

(7.22) RaR= R,Ra.

Proof. For any u E X one has

v = Rau - Rµu = (AI-A)'u-(I-A)'u E Dom(A),

(Al - A)v = u - (Al - µI + µI - A)(µI - A)-lu = (µ - A) (µI - A)-lu .

Applying the operator (Al - A)-1 to both sides of the above identity, one
obtains (7.21).

Next, using (7.21), for any A in the resolvent set p(A) we obtain

RA R _
Ra - R

=
R- RARA = R Ra . 0
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Theorem 7.11 (Integral formula for the resolvent). Let {St; t > 0}
be a semigroup of type w, and let A be its generator. Then for every A > w
one has A E p(A) and

(7.23)

Moreover,

(7.24)

Proof. 1. By assumption, the semigroup satisfies the bounds liSt Ii < et`''.
Therefore the integral in (7.23) is absolutely convergent:
(7.25)

IIJo e-taStudtll

<J00

eSt lull dt <
J00

dt < W1 lull.

Define

Rau = e-t\Studt.f0N
The above estimate shows that R), is a bounded linear operator, with norm

2. We now show that

Rau f
00

e-t \Studt .

iiRii < a 1 w

N
(7.26) (Al - A)Rau = u for all u E X.

Indeed, for any h > 0 we have
N N

ShRau - Rau 1

Ii h

00

0

e-at (St+hu - Stu) dt

1

h f0
(e_t_1) - e-atl Stu dt - hI

h -\(t-h) Studt
p

Je

0

eah - 1 00 -at eTh h at= e Studt - e_Studt
.

h o h o

Taking the limit as h -3 0+ we obtain
N N

ShRau - Rau N
lim = ARau - u .

h

By the definition of generator, this means that
N
Rau E Dom(A), ARau = ARau - u ,

proving (7.26).
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3. The identity (7.26) already shows that the map v H (Al - A)v from
Dom(A) into X is surjective. We now prove that this map is one-to-one. If
u e Dom(A), then

N
ARAu A f e-tStu dt = e-tAStu dt

0

f
00 N

e-tStAu dt = RAAu.

This proves the commutativity relation

(7.27) Ra(AI - A)u = (Al - A)Rau for all u e Dom(A).

If now (Al - A)u = (Al - A)v, using (7.27) and (7.26) we obtain

u = Ra(AI - A)u = Ra(aI - A)v = v,
proving that the map (Al - A) is one-to-one.

We thus conclude that A E p(A) and RA = (Al - A)-1 = RA. O

Remark 7.12. According to the integral representation formula (7.23), the
resolvent operators RA provide the Laplace transform of the semigroup S.
Taking 0 < h = A-1, this same formula shows that the backward Euler
approximations can be obtained as

(7.28) Eh u = (I - hA)-lu = f0o a-t/h

h
Studt.

Here the integral is convergent, provided that h is sufficiently small: if S is
a semigroup of type w, we need h <w1.

Generalizing the identity (7.20), we see that the first step in an Euler
backward approximation coincides with an averaged value of the entire tra-
jectory t H Stu, with the exponentially decreasing weight w(t) = h-le-t/h

7.4. Generation of a semigroup

In this section we tackle the most important question. Namely, given an
operator A from Dom(A) C X into X, under which conditions does there
exist a semigroup {St; t > 0} generated by A?

Theorem 7.13 (Existence of the semigroup generated by a linear
operator). Let A be a linear operator on a Banach space X. Then the
following are equivalent.

(i) A is the generator of a semigroup of linear operators {Sj; t > 0},
of type w.
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(ii) A is a closed, densely defined operator. Moreover, every real num-
ber A > w is in the resolvent set of A, and

(7.29) II (Al - A)-1 II <
A

1 for all A > w.

Proof. The fact that (i) implies (ii) has already been proved. We shall thus
assume that (ii) holds and prove that A generates a semigroup of type w.
The proof will be achieved in several steps.

1. By assumption, for each A > w the resolvent operator RA _ (Al - A)-1
is well defined. We can thus consider the bounded linear operator

(7.30) AA = -Al + AZRa = AARa.

Notice that, setting h = 1/A, we can write

Aau = A(I - hA)-lu = A(Eh u) .

In other words, AAu is the value of A computed not at the point u but at
the point Eh u obtained by a backward Euler step of size h = 1/A, starting
at u. It is thus expected that AA should be a good approximation for the
operator A, at least when A is large (so that h = 1/A is small).

2. Since each AA is bounded, we can construct its exponential as

tAa ( "A)k -at _A2tRa ..-at V' Ca2t)k RV' a

k=0 k=0

We observe that, if A is unbounded, then IIAA I I as A -+ oo However,
fort > 0 the norms of the exponential operators remain uniformly bounded
as A -+ oo. Indeed, the assumption (7.29) together with the definition (7.30)
yields

00 /t2i\k II n Ilk
I
et 4A

II
< e-at l^ bl II na II

:c
e-ateA2t/(a-w) = eawt/C \ )

kI
k=0

In particular, as soon as A > 2w, we have

(7.31) IIe4AlI < e2wt for all t > 0.

3. In this step we establish the limit

(7.32) lim AAv = Ay for all v e Dom(A).
A-+oo

k !
-- i-' k

To prove (7.32), we start with the identity

ARau - u = ARau = RaAu,
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which is valid for all u e Dom(A). This yields

IIARAU - uII = IIRAAuII <_ IIRII IlAull <
A

1 IIAuII 0 as a 00.

Hence

lim ARau = u for all u e Dom(A).i00
Using the fact that Dom(A) is dense in X, we now prove that the above
limit holds more generally for all u e X. Indeed, for every u E X and
e > 0, there exists v e Dom(A) such that Ilu - vii <e. Using the triangle
inequality, we obtain

lim sup 1IARAU - ulloo
< lim sup 1IARAu - ARavII + lim sup 11ARAv - vii + liv - ull

A-+oo

limsupllARaIIIIu - vii + 0+liv-ull
Ai00

_ lim sup e - 26.
A - w

Since e> 0 was arbitrary, this proves that

(7.33) lim ARau = u for all u E X.

For the backward Euler approximations with time step h = 1/A, (7.33)
yields

lim Eh u= u for all u E X.

If v e Dom(A), then in (7.33) we can take u = Av and conclude that

lim AAv = lim AARAv = lim ARAAv = lim ARau = u = Av.
a-+oo a-+oo

This proves (7.32).

4. Fix any t > 0. We claim that, as A -+ oo, the family of uniformly
bounded operators et 4A converges to some linear operator, which we call St.



7.4. Generation of a semigroup 131

To prove this, for A, p.> 2w we shall estimate the difference etAa - etAµ.

The commutativity relation RAR1 = R1RA implies AAA,L = AILAA.
Therefore

A etA' = A (tAA)' = etA'kA

k=o

For every u e X we thus have

t
tAa - tAµ = d

e u e u Ie(t_8)e8ku] ds
o ds

Jo

t

e(t-8)Aµ (AA - A,L)eBAau ds
f

t

e(t-8)Aµ eBAa (Aau - A/Lu) ds.

By (7.31), this implies

I I et&,u - etuII <

J
t ds = t e2' t IIAAu - AµuII.

0

If u e Dom(A), then (7.32) yields Aau -+ Au and Aµu -+ Au as A,/2 -+ oo.
Therefore

lim sup IIetAAu - etAµ u I I < t e2' t lim sup IIAAu - Aau I I = 0.

Figure 7.4.1. Proving the convergence of the approximations eM

as a -+ oo. The difference IIet4u - et 4 u I I can be estimated by
the length of the curve s H e(t-8)Aµ esAa u, for s e [0, t].

Using the triangle inequality, we now show that the same limit is valid
more generally for every v e X, uniformly as t ranges in bounded intervals.
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Indeed, given e > 0, choose u E Dom(A) with lu - v < E. Then

lim sup Ilet4Av _ etv
A,µ-+oo

urn sup llet4Av _ etAaull + lim sup (letAAu - etAµulI
x-300

lletAµu - etAµvil

21im sup IletAa II liv - ull < 2e2wt E.

Since e > 0 was arbitrary, our claim is proved.

5. By the previous step, for every t > 0 and u E X the following limit is
well defined:

Stu = lim etAAu .
x-300

We claim that {St; t > 0} is a strongly continuous semigroup of type w.
Indeed, the semigroup property follows from

St SS u = lim etAAe8Axu = lim e(t+S)Aau = St+Su.
x-300 x-300

For a fixed u E X, the map t -+ Stu is continuous, being the limit of the
continuous maps t F-+ etAau, uniformly for t in bounded intervals.

Finally, for every t > 0 and u E X with lull < 1 we have the estimate

liStull - a moo
lIetull < limsup ilet1ll lull

lim etW ilull

This proves that lISt Ii < et`"', i.e., that the semigroup is of type w.

6. It remains to prove that the linear operator A is indeed the generator
of the semigroup. Toward this goal, call B the generator of the semigroup
{ St ; t > 0}. By our earlier analysis, we know that B is a linear, closed
operator, with domain Dom(B) dense in X. We need to show that B = A.

Since AA is the generator of the semigroup {etA; t > 0}, for every
A>wwehave

(7.34)

t
etA u - u = esAA AAu ds .

0

Moreover, for u E Dom(A), the triangle inequality yields

(7.35) Ile3AaAau - SsAuIl < Ile8JHI IIAAu - Aull + SsAull
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As ) -+ oo, the right-hand side of (7.35) goes to zero, uniformly for s in
bounded intervals. Taking the limit as )¼ - oo in (7.34) we thus obtain

7.36) Su - u = SsAu ds for all t > 0, u E Dom(A) .f(

As a consequence, Dom(B) Dom(A) and
ft

Bu = hlm Stut u = tlm+ J SsAu ds = Au for all u e Dom(A).
0

To prove that A = B, it remains to show that Dom(B) C Dom(A). For
this purpose, choose any ) > w. We know that the operators

I - A : Dom(A) H X and )I - B : Dom(B) X

are both one-to-one and surjective. In particular, the restriction of )I - B to
Dom(A) coincides with Al - A and is thus surjective. Hence this operator
Al - B cannot be extended to any domain strictly larger than Dom(A),
preserving the one-to-one property. This shows that Dom(B) = Dom(A),
completing the proof.

We now investigate uniqueness. Given a semigroup of linear operators
{St; t > 0}, its generator is uniquely defined by the limit in (7.16). Con-
versely, given a linear operator A satisfying conditions (ii) in Theorem 7.13,
we now show that the semigroup generated by A is uniquely determined.

Theorem 7.14 (Uniqueness of the semigroup). Let {St}, {St} be two
strongly continuous semigroups of linear operators, having the same gener-
ator A. Then St = St for every t > 0.

Proof. Let U E Dom(A). Then Ssu e Dom(A) and St_3S3u E Dom(A) for
every 0 < s < t. We can thus estimate

td t

Stu - Stu =
o

[s_33u] ds =
o

[St_8A8u - ASt_383u ds = 0.
ds

Indeed,

d -- St_s_h(Ss+hu) - St_8SsuSt_8Ssu = lim
ds h-o h

St_ _h (Ss+hu - Ssu) St_ _h (Ssu) - St-s (Ssu)= lim + lim
h h

= St_s (ASsu) - ASt_s (Ssu) = 0.
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This shows that, for every fixed t > 0, the bounded linear operators St and
St coincide on the dense subset Dom(A). Hence St = St. O

Applications of the theory of semigroups to the solution of partial dif-
ferential equations of evolutionary type will be illustrated in Chapter 9.

7.5. Problems

1. Assume that the operator A in (7.10) is sectorial, so that (7.13) holds, for some
w E 1[8 and some angle 8 < ir/2.

(i) Fort > 0, give an a priori estimate on the norm of the operator IIAet9,
depending only on w, B.

(ii) More generally, fort > 0 and k > 1, prove that the operator AketA is also
bounded. Estimate the norm IIAcetAII

2. Let A be the generator of a contractive semigroup. Show that, for every A > 0,
the bounded linear operator A,, in (7.30) also generates a contractive semigroup.

3. Fix A> 0 and consider the weight function

t _ A e-at if t > 0,
u'() 0 ift<0.

By induction on n > 1, check that the n-fold convolution wn = w * w * * w is
given by

(7.37) w(t) _ {
n

to-1 e-at if t > 0,
(n 1).

0 ift<0.

Show that is the density of a probability measure with

mean value =

variance f
f

00

tw(t)dt = 1,

00(
t -

112
w(t) dt =

00 (---
Jo

2 I w(t) dt = .

Therefore, wn is the density of a probability measure with mean n/A and
variance n/a2.

Now fix T> 0 and let An = n/T. For every n > 1, set

e-(n/T)t if t > 0,
(7.38) Wn(t) _ (n-i)!

0 ift<0.
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Show that W(.),, plotted in Figure 7.5.1, is the density of a probability measure
with mean value n/an = T and variance n/ (n/T) 2 = T2/n. In particular, for every
e> 0, one has
(7.39)

T-s 00 T+
lim Wn (t) dt +- Wn (t) dt = 0, lim Wn (t) dt = 1.

o T+ T_

Figure 7.5.1. A plot of the weight functions Wn defined in (7.38).
Here T = 4, while n = 1,2, 10, 100. All these probability distribu-
tions have average value 4, while their variance (= 16/n) decreases
to zero as n -+ 00.

4. (Convergence of backward Euler approximations) Let {St; t > 0} be a
contractive semigroup on a Banach space X, generated by the linear operator A.
Fix h > 0 and set A = 1/h. By induction on n > 1, extend formula (7.28) for
backward Euler approximations. Namely, prove that

(I - hA) -nu = wn (t) Stu dt for all u E X ,
0

where wn is the weight function defined in (7.37).
Set h = T/n, so that an = n/T. Using (7.39) prove that, for every u E X, one

has the convergence
T -n

(I--A) u = Wn(t)Stu dt -+ STU as n -+oo.
n o
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5. (Positively invariant sets) Let A be the generator of a contractive semigroup
{St ; t > 0} on a Banach space X. Let 11 C X be a closed, convex subset. Prove
that the following are equivalent.

(i) 11 is positively invariant: if u E 11 then Stu e 11 for all t > 0.

(ii) 1 is invariant with respect to the backward Euler operator: if u e 11, then
for every h> 0 one has (I - hA) -1 u e SZ.

6. Let {St; t > 0} be a semigroup of type w, and let A be its generator. Prove
that, for every y e IR, the family of bounded linear operators {e1tSt; t > 0} is a
semigroup of type w + y, having A + yI as its generator.

7. On the space Lp(][8), consider the linear operators St defined by

(Stf)(x) = e-zt fix +t) .

(i) Prove that the family of linear operators {St; t > 0} is a strongly con-
tinuous, contrastive semigroup on Lp(R), for all 1 < P < oo. Find the
generator A of this semigroup. What is Dom(A)?

(ii) Show that the family of operators {St; t > 0} is NOT a strongly contin-
uous semigroup on L°° (R).

8. Let {St; t > 0} be a strongly continuous semigroup of linear operators on IRA.
Prove that there exists an n x n matrix A such that St = etA for every t > 0.

9. (Semilinear equations) Let A be a linear operator on a Banach space X,
generating the contrastive semigroup {St; t > 0}. We say that a map u : [0, T] H X
is a mild solution of the semilineax Cauchy problem

(7.40) dru(t) =Am(t) + .f (t, mo(t)), u(o) = u

if

7.41) u(t) = S+ St_s f (s, u(s)) ds for all t E [0, T] .f(

(i) Assuming that f : [0, T] x X H X is continuous and satisfies the bounds

IIf(t, x) l vi, IIf(t, x) - f (t, y) L lix - yfor all t, x, y,

prove that the Cauchy problem (7.40) admits a unique mild solution.

(ii) In the special case where A is a bounded operator, so that St = etA, prove
that satisfies (7.41) if and only if u is a continuously differentiable
solution to the Cauchy problem (7.40).

10. Fix a time T> 0. On the space X = L1([0,1]), construct a strongly continuous,
contractive semigroup of linear operators {St; t > 0} such that liSt Ii = 1 for
0<t<Tbut iiStil=Ofort>T.
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11. Let {St; t > 0} be a strongly continuous, contractive semigroup of linear
operators on a Banach space X. Assume that, for a given time 'r > 0, the operator
S,. is compact. Prove that, for every t > -r, the operator St compact as well.
Construct an example showing that the operators St may not be compact for 0 <
t <T.

12. On the space L1 (R), consider the operator Au = a u with domain

Dom(A) _ {u e Ll (R); u is absolutely continuous, u E Ll (R) }

(i) Describe the semigroup {St; t > 0} generated by A.
(ii) For any u e Ll (R) and h> 0, construct the backward Euler approxima-

tion Eh u.
(iii) Let u e C'°(R) be a smooth function with compact support, say with

u(x) = 0 for x [a, b]. Given any time step h > 0, show that the forward
Euler approximations (E)u = (I + are well defined and have
support contained in [a, b].

(iv) Using (iii) show that, for every time T > 0 sufficiently large, the functions
(I + n A)' u cannot converge to STu as n - oo.





Chapter 8

Sobolev Spaces

The present chapter covers the basic theory of Sobolev spaces, which provide
a very useful abstract framework for the analysis of both linear and nonlinear
PDEs. We begin with an introduction to the theory of distributions and
some motivating examples.

8.1. Distributions and weak derivatives

In the following, L( Ti) denotes the space of locally summable func-
tions f : 1[8 H ]L8. These are the Lebesgue measurable functions which are
summable over every bounded interval. The support of a function ¢, de-
noted by Supp(¢), is the closure of the set {x; ¢(x) # 0} where ¢ does
not vanish. By we denote the space of continuous functions with
compact support, having continuous derivatives of every order.

Every locally summable function f e L (Ti) determines a linear func-
tional A1 : C(1[8) H ]Lnamely

(8.1) ff(x)c(x)dx.

Notice that this integral is well defined for every ¢ E C'°(]L8). Moreover, if
Supp(¢) C [a, b], we have the estimate

6

IAi()I (f If(x)I dx) IlIco.

Next, assume that f is continuously differentiable. Then its derivative

f'(x) __ h o f(x+h)-f(x)

139
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is continuous, hence locally summable. In turn, f' also determines a linear
functional on C(l[8), namely

(8.3) A.f' f f'(x) (x) dx = - f 1(x) '(x) dx.

At this stage, a key observation is that the first integral in (8.3) is defined
only if f'(x) exists for a.e. x and is locally summable. However, the second
integral is well defined for every locally summable function f, even if f does
not have a pointwise derivative at any point. Moreover, if Supp(¢) C [a, b],
we have the estimate

b

Af'()I
a

This construction can also be performed for higher-order derivatives.

Definition 8.1. Given an integer k > 1, the distributional derivative of
order k of f e Li (][8) is the linear functional

ADkf(q5) (_1)kff(x)Dkq5(x)dx.

If there exists a locally summable function g such that A9 = ADk f,
namely

J dx = (_1)kf f(x)D(x)dx for all E C(][8),

then we say that g is the weak derivative of order k of f.

Remark 8.2. Classical derivatives are defined pointwise, as limits of dif-
ference quotients. On the other hand, weak derivatives are defined only in
an integral sense, up to a set of measure zero. By arbitrarily changing the
function f on a set of measure zero we do not affect its weak derivatives in
any way.

Example 8.3. Consider the function
0 ifx<0,
x ifx>0.

Its distributional derivative is the map
00f x . '(x) dx = fH(x)(x)dx,

a

where

(8.4) H(x)
= l

0 ifx < 0,
1 ifx>0.

In this case, the Heaviside function H in (8.4) is the weak derivative of f.
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Example 8.4. The function H in (8.4) is locally summable. Its distribu-
tional derivative is the linear functional

f H(x) '(x) dx = - J '(x) dx = (0) .

This corresponds to the Dirac measure, concentrating a unit mass at the
origin. We claim that the function H does not have any weak derivative,
i.e., there cannot exist any locally summable function g such that

(8.5) fg(x)(x)dx = ¢(0) for all E C.

Indeed, if (8.5) holds, then by the Lebesgue dominated convergence theorem
fh

lim g(x) dx = 0.
h->0 J_h

Hence we can choose 8> 0 so that f as g(x) dx < 1/2. Let b : 1[8 H [0, 1] be
a smooth function, with (0) = 1 and with support contained in the interval
[-S, S]. We now reach a contradiction by writing

I to
1 = cb(0) = I dx = I dx

a a

fa
maxx,(x)'.Jd 9(x) dx < 2 .

Example 8.5. Consider the function

J(am)
0 if x is rational,

2 + sin x if x is irrational.

Being discontinuous at every point, the function f is nowhere differentiable.
On the other hand, the function g(x) = cosx provides a weak derivative for
/. Indeed, the behavior of f on the set of rational points (having measure
zero) is irrelevant. We thus have

- J f dx = - J (2 + sin x) '(x) dx = f(cosx)(x)dx.

Example 8.6. Consider the Cantor function f : 1[8 H [0, 1], defined by

(8.6) /(x) =

0 if x< 0,
1 if x> 1,

1/2 if x e [1/3, 2/3],
1/4 if x e [1/9, 2/9],
3/4 if x E [7/9, 8/9],
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ii7
1/2

0

V m

b x

Figure 8.1.1. The Cantor function f and a test function q5 showing
that g(x) - 0 cannot be the weak derivative of f.

(see Figure 8.1.1). This provides a standard example of a continuous func-
tion which is not absolutely continuous. We claim that f does not have a
weak derivative. Indeed, assume on the contrary that g E is a weak
derivative of f. Since f is constant on each of the open sets

ii 2i ii 2i 17 81]-oo,O[, ]1,+oo[, iL i'L''
we must have g(x) = f'(x) = 0 on the union of these open intervals. Hence
g(x) = 0 for a.e. x E R. To obtain a contradiction, it remains to show that
the function g - 0 is NOT the weak derivative of f. As shown in Figure
8.1.1, let ¢ E be a test function such that ¢(x) = 1 for x E [0, 1] while
fi(x) = 0 for x > b. Then

fg(x)(x)dx = 0 1 = _ff(x)(x)dx.

8.1.1. Distributions. The construction described in the previous section
can be extended to any open domain in a multi-dimensional space. Let
St C ][8n be an open set. By Li (SZ) we denote the space of locally summable
functions on St. These are the measurable functions f : S2 ti l[8 which are
summable restricted to every compact subset K C 12.

Example 8.7. The functions ex and In lxi are in L( R), while x-1
L( R). On the other hand, the function 1(x) = i' is in L1oc(]0, oo[) for
every (positive or negative) exponent ry E R. In several space dimensions,
the function 1(x) _ lxl-" is in L(R) Provided that ry <n. One should
keep in mind that the pointwise values of a function f E Lion on a set of
measure zero are irrelevant.

By C°(1)(1) we denote the space of continuous functions b : SZ H R having
continuous partial derivatives of all orders and whose support is a compact
subset of SZ. Functions b E C'°(1) are usually called "test functions ". We
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recall that the support of a function is the closure of the set where
does not vanish:

Supp {xeII; fi(x) # 0}.

We shall need an efficient way to denote higher-order derivatives of a
function f. A multi-index a = (al, a2i ... , an) is an n-tuple of nonnega-
tive integer numbers. Its length is defined as

IcEl

Each multi-index a determines a partial differential operator of order Ic,
namely

Da f =
8xl eax1 laxq

a

axn

an

l

Definition 8.8. A distribution on the open set SZ C Rn is a linear func-
tional A : C(11) -+ Ilk such that the following boundedness property holds:
For every compact K C SZ there exists an integer N > 0 and a constant C
such that

(8.7) IA(cb)I < C IIIIcN for every b E C°O with C K.

In other words, for all test functions which vanish outside a given
compact set K, the value should be bounded in terms of the maximum
value of derivatives of , up to a certain order N.

Notice that here both N and C depend on the compact subset K. If there
exists an integer N > 0 independent of K such that (8.7) holds (with C =
CK possibly still depending on K), we say that the distribution has finite
order. The smallest such integer N is called the order of the distribution.

Example 8.9. Let 12 be an open subset of Rn and consider a function
f e L(11). Then the linear map A f : C(12) H R defined by

(8.8) ffdx
is a distribution. Indeed, it is clear that A f is well defined and linear. Given
a compact subset K C 12, for every test function with Supp(q5) C K we
have the estimate

IAf(cb)I = 1K f Co.IIGIICfx
Hence the bound (8.7) holds with C = JK If I dx and N = 0. This provides
an example of a distribution of order zero.
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The family of all distributions on Sl is clearly a vector space. A remark-
able fact is that, while a function f may not admit any partial derivative (in
the classical sense), for a distribution A an appropriate notion of derivative
can always be defined.

Definition 8.10. Given adistribution Aand a multi-index a, we define the
distribution DA by setting

(8.s) Dan(k) = (_1)IaIA(Dq5).

It is easy to check that DA is itself a distribution. Indeed, the linearity
of the map b H DaA(cb) is clear. Next, let K be a compact subset of St and
let b be a test function with support contained in K. By assumption, there
exists a constant C and an integer N > 0 such that (8.7) holds. In turn,
this implies

IA(D"cb)I s c IIDacbIIcN < c IIcbIIcN+,a,.

Hence DA also satisfies (8.7), with N replaced by N + Ia!.

Notice that, if A f is the distribution in (8.8) corresponding to a function
f which is al-times continuously differentiable, then we can integrate by
parts and obtain

Danf (-1)Af(D) _ (_1)II f f(x)D(x) dx

= fDaf(x)(x)dx = ADaf()

This justifies the formula (8.9).

8.1.2. Weak derivatives. For every locally summable function f and ev-
ery multi-index a = (ai,... , an), the distribution A f always admits a distri-
butional derivative DA f, defined according to (8.9). In some cases, one can
find a locally summable function g such that the distribution DA f coincides
with the distribution Ag. This leads to the concept of weak derivative.

Definition 8.11. Let f e L o (1) be a locally summable function on the
open set SZ C Rn and let A f be the corresponding distribution, as in (8.8).
Given a multi-index a = (al,.. . , an), if there exists a locally summable
function g e L o (1) such that DaA f = Ag, i.e.,
(8.10)

J f Dad dx = (_1)Ia f g b dx for all test functions E C(S2),

then we say that g is the weak a-th derivative of f and write g = Da f .
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In general, a weak derivative may not exist. In particular, Example 8.4
shows that the Heaviside function does not admit a weak derivative. Indeed,
its distributional derivative is a Dirac measure (concentrating a unit mass
at the origin), not a locally summable function. On the other hand, if a
weak derivative does exist, then it is unique (up to a set of measure zero).

Lemma 8.12 (Uniqueness of weak derivatives). Assume f E Li (SZ)
and let g, g E L(1) be the weak a-th derivatives of f, so that

f fDdx = (_1)f (_1)llfdx
for all test functions b E Then g(x) = g(x) for a.e. x e SZ.

Proof. By the assumptions, the function (g - g) E L(1) satisfies

J (g - )q5 dx = 0 for all test functions E

By Corollary A.17 in the Appendix, we thus have g(x) - g(x) = 0 for
a.e. x E S2.

If a function f is twice continuously differentiable, a basic theorem of
calculus states that partial derivatives commute: fxxk = fxkx3. This prop-
erty remains valid for weak derivatives. To state this result in full gen-
erality, we recall that the sum of two multi-indices a = (al,. . . , an) and
,Q = (flu,.. Qn) is defined as a + Q = (al +fl1, , an + flu).

Lemma 8.13 (Weak derivatives commute). Assume that f E L(1)
has weak derivatives D«f for every a < k. Then, for every pair of multi-
indices a + (,31 <k one has

(8.11) Da(DQ f) = DQ(D« f) - D«+13f..

Proof. Consider any test function ¢ E Using the fact that E
C(SZ) is a test function as well, we obtain

f DfDq5dx = (_1)klff(D3c5)dx

= (_i)lfI f(D3f) dx.
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By definition, this means that D/ 3f = D/3(Da f ). Exchanging the roles of
the multi-indices a and Q in the previous computation, one obtains Da+/3 f =
Da(D13f ), completing the proof.

The next lemma extends another familiar result, stating that the weak
derivative of a limit coincides with the limit of the weak derivatives.

Lemma 8.14 (Convergence of weak derivatives). Consider a sequence
of functions fE Li (St). For a firmed multi-index a, assume that each fn
admits the weak derivative g= Da fn. If f-+ f and gam. -+ g in L(1),
then g = Da f .

Proof. For every test function q e C(1), a direct computation yields

g dx = lim gn dx = lim (-1)1 I fn DdxfZ
r- fZ

= (_1)IaI fDqdx.f
By definition, this means that g is the a-th weak derivative of f.

8.2. Mollificat ions

As usual, let 1 C Rn be an open set. For a given s > 0, define the open
subset

(8.12) SlE = {x e Rn , B(x, e) C SZ} .

For every u e L( c1) the mollification

uE(x) = (J6*u)(x) = f JE(x - y)u(y) dy
(x,e)

is well defined for every x E S2E. Moreover, uE E C°O(S2E). Avery useful
property of the mollification operator is that it commutes with weak differ-
entiation.

Lemma 8.15 (Mollifications). Let SZE C 1 2 be as in (8.12). Assume that a
function u e L(1) admits a weak derivative Du, for some multi-index a.
Then the derivative of the mollification (which exists in the classical sense)
coincides with the mollification of the weak derivative:

(8.13) D«(JE * u) = JE * D«u for all x E S2E .
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Proof. Observe that, for each fixed x e SZf, the function (y) = JE(x - y) is
in C(Sl). Hence we can apply the definition of weak derivative Dau using
b as a test function. Writing D and D to distinguish differentiation with
respect to the variables x or y, we thus obtain

DauE(x) Dx (f JE(x - y) u(y) dy)

DJ (x - y) u(y) dy

(-1)f DJ (x - y) u(y) dy

(-1)f JE(x - y) Du(y) dy

CJf * Daul
(x)'

0

Figure 8.2.1. Left: the open subset 1 C 1 of points having dis-
tance > e from the boundary. Right: the domain 1 can be covered
by countably many open subdomains Vj = 11/(j _ 1) \ '/U+')

This property of mollifications stated in Lemma 8.15 provides the key
tool to relate weak derivatives with partial derivatives in the classical sense.
As a first application, we prove

Corollary 8.16 (Constant functions). Let St C 1[8n be an open, connected
set, and assume u e L(Sl) If the first-order weak derivatives of u satisfy

Du(x) = 0 for i = 1, 2, ... ,n and a. e. x E Sl ,

then u coincides a. e. with a constant function.
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Proof. 1. For s > 0, consider the mollified function u6 = J6 * u. By the
previous analysis, u6 : SZ6 H III is a smooth function whose derivatives Dxi u
vanish identically on SZ6. Therefore, u6 must be constant on each connected
component of SZ6.

2. Now consider any two points x, y e SZ. Since the open set SZ is connected,
there exists a polygonal path r joining x with y and remaining inside SZ.
Let S = minZEr d(z, DSZ) > 0 be the minimum distance of points in r to
the boundary of SZ. Then for every s <S the whole polygonal curve r is in
1. Hence x, y lie in the same connected component of SZi. In particular,
u6(x) = u6(y).

3. Let u(x) = limo u6 (x) . By the previous step, u is a constant function
on SZ. Moreover, u(x) = u(x) at every Lebesgue point of u, hence almost
everywhere on SZ. This concludes the proof. 0

Figure 8.2.2. Left: even if Il is connected, the subdomain SZ
{x E Il ; B (x, e) C 1Z} may not be connected. Right: any two
points x, y E Il can be connected by a polygonal path r remaining
inside Il. Hence, if e > 0 is sufficiently small, x and y belong to
the same connected component of 1l.

In the one-dimensional case, relying again on Lemma 8.15, we now char-
acterize the set of functions having a weak derivative in L1.

Corollary 8.17 (Absolutely continuous functions). Consider an open
interval ]a, b[ and assume that u e (]a, b[) has a weak derivative v e
Ll (Ia, b[). Then there exists an absolutely continuous function u such that

(8.14) u(x) = u(x) for a.e. x E]a,b[,

(8.15) v(x) =
h
0 (x + h -mi(x)

for a. e. x E ]a,b[.
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Proof. Let xo E ]a, b[ be a Lebesgue point of u, and define
px

u(x) a
Clearly u is absolutely continuous and satisfies (8.15).

In order to prove (8.14), let JE be the standard mollifier and let uE
JE * u, 'Ug = Jg * v. Then uE, vE E C°O (] a + E, b - E[), while Lemma 8.15 yields

(8.16) uE(x) = uE(xo) + J v£(y) dy for all x E )a + e , b - e[ .

o
Letting e -+ 0, we obtain uE(xo) -+ u(xo) because xo is a Lebesgue point.
Moreover, the right-hand side of (8.16) converges to u(x) for every x E ]a, b[,
while the left-hand side converges to u(x) at every Lebesgue point of u (and
hence almost everywhere). Therefore (8.14) holds. D

If f, g E L j(1)(1) are weakly differentiable functions, for any constants
a, b E R it is clear that the linear combination a f + bg is also weakly differ-
entiable. Indeed,

(8.17) DMZ (a f + bg) = a DxZ f + b

We now consider products and compositions of weakly differentiable func-
tions. One should be aware that, in general, the product of two functions
f, g E L o may not be locally summable. Similarly, the product of two
weakly differentiable functions on Rn may not be weakly differentiable (see
problem 20). For this reason, in the next lemma we shall assume that one
of the two functions is continuously differentiable with uniformly bounded
derivatives.

Given two multi-indices a = (al,... , and Q = (3i,. . . , /3), we recall
that the notation Q < a means f32 < ai for every i = 1,... , n. Moreover,

(a'\ at alb alt a2!
kp) - ! (a - 3)! - /3i! (ai - /3i)! I3! (a2 - 132)! 132! (a2 - 132)!

Lemma 8.18 (Products and compositions of weakly differentiable
functions). Let 1 2 C ][8n be any open set and consider a function u E L j(1)
having weak derivatives Du of every order al < k.

(i) If r E C'1), then the product riu admits weak derivatives up to
order k. These are given by the Leibniz formula

(8.18) Da (riu) _ (Q) D,6r Da-/u
.
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(ii) Let SZ' C W be an open set and let co : SZ' '-+ 1 be a C' bijec-
tion whose Jaco bian matrix has a uniformly bounded inverse. Then
the composition u o co is a function in L(1') which admits weak
derivatives up to order k.

Proof. 1. To prove (i), let J6 be the standard mollifier and set u6 = J * u.
Since the Leibniz formula holds for the product of smooth functions, for
every s > 0 we obtain

(8.19) D«(u6) _ I I
D«-QuE

For every test function b E we thus have

(_1)I f(ilu6)Daqdx = dxf

13<a
() / (DDu6) dx.

Notice that, if s > 0 is small enough so that C then the above
integrals are well defined. Letting s -+ 0, we obtain

(_1)IaI f (u)Ddx = J (a) Dark dx.

By the definition of weak derivative, (8.18) holds.

2. We prove (ii) by induction on k. Call y the variable in SZ' and x = co(y)
the variable in 1, as shown in Figure 8.2.3. By assumption, the n x n
Jacobian matrix (i).. has a uniformly bounded inverse. Hence theyj a,j=1,...,n
composition u o co lies in L j(1'),(1'), proving the theorem in the case k = 0.

Next, assume that the result is true for all weak derivatives of order al
k - 1. Consider any test function b E and define the mollification
u6 = J6 * u. For any s > 0 small enough so that co Supp(cb) C we have

- f (u6 o P) ' Dys dy _ f Dys (u6 o P) ' dy

n

Du6((y)) Dj(y) . (y) dy.

j=1



8.3. Sobolev spaces 151

Letting E -+ 0, we conclude that the composition u o ,P admits a first-order
weak derivative, given by

n

Dya(uO o)(y) _ >Dxu(co(y)).Dycoj(y).
j=1

By the inductive assumption, each function D(u op) admits weak deriva-
tives up to order k - 1, while Dye coy E C c l (1'). By part (i) of the lemma,
all the products on the right-hand side of (8.20) have weak derivatives up
to order k - 1. Using Lemma 8.13, we conclude that the composition u o P
admits weak derivatives up to order k. By induction, this concludes the
proof. D

Figure 8.2.3. The mappings considered in part (ii) of Lemma 8.18.

8.3. Sobolev spaces

Consider an open set 1 C W, fix p E [1, oo], and let k be a nonnegative
integer.

Definition 8.19. (i) The Sobolev space Wk>P(St) is the space of all locally
summable functions u S2 H ][ such that, for every multi-index a with
lc < k, the weak derivative D«u exists and belongs to LP(St).

On W we shall use the norm

(8.21) Ilullwk.o

1/p

ILPuIP dx if 1 < p < oo,

(8.22) IIUIIWk,00 ess sup IrPuI if p = oo .

xESEI«I<k
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(ii) The subspace W'(ci)'p (SZ) C Wp (SZ) is defined as the closure of C ° (SZ)
in W kip (SZ) . More precisely, u E W'(ci)'p (SZ) if and only if there exists a se-
quence of functions un e C ° (SZ) such that

IIUUnhIWk,p +O.

(iii) In addition, W o p (SZ) denotes the space of functions which are locally
in W k,p. These are the functions u : SZ i-+ Ilk satisfying the following property:
If 11' is an open set compactly contained) in SZ, then the restriction of u to
SZ' is in W''p(11').

Intuitively, one can think of the closed subspace W'(ci)'p (SZ) as the space
of all functions u e W "p (SZ) which vanish along the boundary of SZ. More
generally, W'(ci)'p (SZ) is a space of functions whose derivatives Dau vanish
along ac, for al <_ k - 1.

Definition 8.20. In the special case where p = 2, we define the Hilbert-
Sobolev space Hc(S2) = The space Hk(SZ) is endowed with the
inner product

(8.23) (u, v)Hk f Dau Day dx.
lal_k

Similarly, we define H(11) = Wo'2(11).

Theorem 8.21 (Basic properties of Sobolev spaces).

(i) Each Sobolev space is a Banach space.

(ii) The space W'(ci) is a closed subspace of Hence it is a
Banach space, with the same norm.

(iii) The spaces H'(St) and Ho (S2) are Hilbert spaces.

Proof. 1. Let u, v e W''p (SZ) . For Ic < k, call Dau, Day their weak
derivatives. Then, for any A, µ E Ilk, the linear combination Au + µv is a
locally summable function. One easily checks that its weak derivatives are

(8.24) Da(Au + µv) _ ADau + µDav .

Therefore, Da(au+µv) E LP(SZ) for every Ic < k. This proves that W'(ci)
is a vector space.

'By definition, a set SZ' is compactly contained in 1 if the closure SZ' is a compact subset
of l.
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2. Next, we check that (8.21) and (8.22) satisfy the conditions (N1)-(N3)
defining a norm. For a E 1l8 and u E Wk one has

Ilawllwk.n =ICI IIUIIWk,P,

!IUIIWk,P >_ !kIILP >_ o,

with equality holding if and only if u = 0.
Moreover, if u, v E WkT'(12), then for 1 < p < oo Minkowski's inequality

yields

IIU+VIIWk,p = I IIDaU+DaVIIiP

1/p

I+ IID«vllip

In the case p = oo, the above computation is replaced by

lu +vllwo IlD«u + DavIILOO < : (IIDaUIIL
+ IIaI<k

IaI<k

= Ilwllwk.00 +llvllwk,00.

3. To conclude the proof of (i), we need to show that the space is
complete; hence it is a Banach space.

Let (u)> 1 be a Cauchy sequence in WIc>p(St). For any multi-index a
with al < k, the sequence of weak derivatives Dais Cauchy in Lp(Sl).
Since the space LT'(12) is complete, there exist functions u and ua, such that

(8.25) uIILP -+ 0, IIDaUn - u«IhLP - 0 for all al < k.

By Lemma 8.14, the limit function ua is precisely the weak derivative D«u.
Since this holds for every multi-index a with hal < k, the convergence v,n
u holds in WIcp(12). This completes the proof of (i).
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4. The fact that Wo'p(St) is a closed subspace of Wkp(St) follows immedi-
ately from the definition. It is also straightforward to check that (8.23) is
an inner product, yielding the norm llWk,2

Example 8.22. Let S2 =]a, b[ be an open interval. By Corollary 8.17, each
element of the space b[) coincides a.e. with an absolutely continuous
function f : ]a, b[H I[8 having derivative f' E LP(]a, b[).

u(x) = 1x11

Figure 8.3.1. For certain values of p, n a function u e W "P (Rn )
may not be continuous, or bounded.

Example 8.23. Let St = B(0,1) C ][8n be the open ball centered at the
origin with radius one. Fix ry > 0 and consider the radially symmetric
function

n -'Y/2

0<lxi <1.
i==11

Observe that u e C'(1 t \ {0}). We claim that, for 1 < p < oo,

(8.26) u e W"p(St) if and only if ry < n p .

p
Outside the origin, the partial derivatives are computed as

n -('Y/2)-1

(8.27) 26yi = - ry L(x)Z 2x2 = ryx2
Z Ixlry+2'

i=
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Hence, the gradient Vu = (u1,. . . , uxn) has Euclidean norm

In 1/2

.(luX(x)l)2 I

i=1

Calling Q the (n-1)-dimensional measure of the unit sphere {x e IIBn , lxi _
1} C we compute

[( 1 p

Jci \ l

dx =
fxER, IxI<1

0

The right-hand side of (8.28) is finite if and only if n - 1 - p(ry + 1) > -1,
i.e., ry < !j2. After a similar computation for luV', we conclude that

f (iuv' + lVulP) dx < oo if and only if
n-p

.'7<
p

To complete the proof of (8.26), we need to show that, if 0 <'7 < (and
hence n > 2), then the functions in (8.27) are indeed the weak derivatives
of u on the entire ball S2 (and not only on the set S2 \ {0}). For this purpose,
consider any test function q5 E Fix i e {1,... , n}. For convenience,
we extend q5 to the entire space Rn by setting q5(x) = 0 for x St. Since
n > 2, the x-axis has n-dimensional Lebesgue measure zero. An integration
by part yields

-'Yxi ¢ dx 1 (1 -'Yxzx 'r+z
dxl ... dxi-1dxi+1... dxn

= - f
R

lxI dxl dx1... dxl_ 1dx2+1... dxn

n-1\{O}

7_ - fixl- xti dx,

completing the proof.

Observe that the previous computation relied on the fact that u is ab-
solutely continuous (in fact, smooth) on a.e. line parallel to one of the coor-
dinate axes. However, there is no way to change u on a set of measure zero,
so that it becomes continuous on the whole domain 1.

An important question in the theory of Sobolev spaces is whether one can
estimate the norm of a function in terms of the norm of its first derivatives.
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The following result provides an elementary estimate in this direction. It is
valid for domains SZ which are contained in a slab, say

(8.29) C {x = (X1,X2, ... ,x); a < xl <b}.

Theorem 8.24 (Poincare's inequality. I). Let SZ C IEBn be an open set
which satisfies (8.29) for some a, b e R. Then every u E H() satisfies

(8.30) IIUIIL2(f) < 2(b - a) IIDxluIIL2(f).

Proof. 1. Assume first that u E C°(1). We extend u to the whole space
Rn by setting u(x) = 0 for x SZ. Using the variables x = (x1, x') with
x' = (X2,. . , x?), we compute

xl
u2 (xl, x') = 2uux1(t, x') dt .

a

An integration by parts yields

IIuII2 = J u2(x) dx = J fi (fxi
2uu1(t, x') dt I dxl dx'1RIl

f fb f
=

J J
(b-xi)2uu1(xi,x')dxidx' < 2(b - a)

J
IuIIu1Idx

a ]R

2(b - a) IIuIIL2 IIuxi 11L2.

Dividing both sides by IIUIIL2, we obtain (8.30) for every u E C(S2).

2. Now consider any u E Ho (St). By assumption there exists a sequence of
functions u, E C(SZ) such that IIun - uIIx1 - 0. By the previous step, this
implies

IIUIIL2 = IlunhILa < 2(b - a)IlDaiunIlL2 = 2(b - a) IIDxluIIL2.

To proceed in the analysis of Sobolev spaces, we need to establish some
additional facts about weak derivatives.

Theorem 8.25 (Properties of weak derivatives). Let SZ C I[8n be an
open set, let p E [l, oo], and let Ici < k. If u, v e then:

(i) The restriction of u to any open set S1 C St is in the space
(ii) Dau E Wk-IaIP(c).
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(iii) If r E C'(SZ), then the product satisfies riu E Moreover
there exists a constant C, depending on St and on IIulIIck but not on
u, such that

(8.31) IIu1UIIwkP(c) <_ C IIUIIwkP(c).

(iv) Let SZ' C Il8n be an open set and let cp : St' H 1 2 be a Ck diffeo-
morphism whose Jacobian matrix has a uniformly bounded inverse.
Then the composition satisfies u o cp E Moreover there
exists a constant C, depending on Sty and on IkIIck but not on u,
such that

(8.32) lu ° (Pllwk,P(cz1) C l

Proof. Statement (i) is an obvious consequence of the definitions, while (ii)
follows from Lemma 8.13.

To prove (iii), we observe that by assumption all derivatives of ii are
bounded, namely

IlDulIlLoo Il+illck for all ,Q < k.

Hence the bound (8.31) follows from the representation formula (8.18).

Recalling part (ii) of Lemma 8.18, we prove (iv) by induction on k. By
assumption, the n x n Jacobian matrix has a uniformly
bounded inverse. Hence the case k = 0 is clear.

Next, assume that the result is true for k = 0,1, ... , in - 1. If u E
Wm P(Q), we have

Io p) IIWm-l,p(c,) < C' IlVulli'vm-1P(c) II(PIlCm(1') <- C IkLllWmP(c),

showing that the result is also true for k = in. By induction, this achieves
the proof. U

8.4. Approximations of Sobolev functions

If u E W ''p (Rn) is a function defined on the entire space Ian, it can be
approximated by smooth functions simply by taking mollifications: u6 =
J * u. However, if u is only defined on some open subset 1 C Ian, a more
careful construction is needed.

Theorem 8.26 (Approximation with smooth functions). Let SZ C I[8n
be an open set. Let u E W'°(Q) with 1 < p < oo. Then for any e > 0 there
exists a function U E C°O(SZ) such that lU - uIIwk,P(st) <S.
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Proof. 1. Let e > 0 be given. Consider the following locally finite open
covering of the set SZ, shown in Figure 8.2.1:

Vi {xEc;

1
1

j=2,3.....Vj {xE1; +1-1
Using Theorem A.18 in the Appendix, let 171, 172,... be a smooth partition of
unity subordinate to the above covering. By Theorem 8.25, for every j > 0
the product r , u is in W "P (f) . By construction, it has support contained in
Vj.

2. Consider the mollifications JE * (r3u). By Lemma 8.15 and by Theo-
rem A.16 in the Appendix, for every Ic < k we have

JE * v«(rlju)
as e - 0. Since each rhas compact support, here the convergence takes
place in Lp(St). Therefore, for each j > 0 we can find 0 < ej < 2- small
enough so that I< E2-'
3. Consider the function

00

j=1

Notice that the above series may not converge in Wp. However, it is
certainly pointwise convergent because every compact set K C 1 intersects
finitely many of the sets V3. Restricted to K, the above sum contains only
finitely many nonzero terms. Since each term is smooth, this implies U E

4. Consider the subdomains

S21/n = {xE1; d(x,aSZ) > 1 }n
Recalling that >3 17j(x) - 1, for every n > 1 we obtain

n+2

IIU - uII Wk,p(S 1,n) ii- Jej * (17ju)IlWk,p(11)
j=1

This yields

n-F2

j=1

IIU - u l l uwk,p (f) = Sup I,U - u I I wk,P (cl11) < S.
n>1
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Since s > 0 was arbitrary, this proves that the set of C°° function is dense
on Wkp(f ). U

Using the above approximation result, we obtain a first regularity theo-
rem for Sobolev functions (see Figure 8.4.1).

Theorem 8.27 (Relation between weak and strong derivatives). Let
U E W"(SZ), where St C 1[8n is an open set having the form

(8.33) SZ = {x = (x, x') ; x' = (x2,... , E SZ', a(x') < xi <13(x')}

(possibly with a - -oo or /3 . +oo). Then there exists a function u with
u(x) _ u(x) for a.e. x E SZ, such that the following holds. For a. e. x' _
(x2, ... , E SZ' C ][8n-1 (with respect to the (n - 1)-dimensional Lebesgue
measure), the map

x1 F-+ u(x1, x')

is absolutely continuous. Its derivative coincides a. e. with the weak deriva-
tive Dxl u.

X3
xi oc(x2, x3) xi R(x2, x 3)

i

X1

Figure 8.4.1. The domain 11 at (8.33). If u has a weak deriv-
ative Dx1 u e L1(SZ), then (by possibly changing its values on a
set of measure zero) the function u is absolutely continuous on al-
most every segment parallel to the x1-axis and its partial derivative
8u/8x1 coincides a.e. with the weak derivative.

Proof. 1. By the previous theorem, there exists a sequence of functions
uk E C°O(S2) such that

(8.34) Iluk - ullwi,i < 2- .
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We claim that this implies the pointwise convergence

uk(x) -+ u(x), -3 for a.e. x E Sl.

Indeed, consider the functions

(8.35)

By (8.34),

00

f(x) - l + l - uk (x)l ,
k=1

00

g(x) ° I + I Dx uk+l lx) - Dxi uk (x) I .

k=1

hence f, g e Ll (S2) and the series in (8.35) are absolutely convergent for
a.e. x e S2. Therefore, they converge pointwise almost everywhere. More-
over, we have the bounds

(8.36) I< f(x), IDxluk(x)I < g(x) for all n > 1, x e IL.

2. Since f, g e L' (IL), by Fubini's theorem there exists a null set Al C L'
(with respect to the (n - 1)-dimensional Lebesgue measure) such that, for
every x' E L' \ Al, one has

13(x') 13(x')
(8.37) f(xi,x')dxi < oo, g(xl, x') dx1 < oo.

«(x') «(x' )

Fix such a point x' E L' \ Al. Choose a point y1 E ]a(x'), 3(x')[ where the
pointwise convergence uk (y1, x') -+ u (y, x') holds. For every a (x') <x1 <
,(3(x'), since uk is smooth, we have

(8.38) uk(xl, x')
x'

uk (y1, x') + J Dam, uk (s, x') ds.
yl

We now let n -+ oo in (8.38). By (8.36) and (8.37), the functions x')
are all bounded by the integrable function x') E L1. By the dominated
convergence theorem, the right-hand side of (8.38) thus converges to

fx1

(8.39) u(xl, x') = u(yl, x') + J Dxlu(s, x') ds.
yi

Clearly, the right-hand side of (8.39) is an absolutely continuous function of
the scalar variable xl. On the other hand, the left-hand side satisfies

u(xi,x') = uk(xi,x') = u(xl,x) for a.e. xi E [a(x'), ,6(x )]

This achieves the proof. 0
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Remark 8.28. (i) It is clear that a similar result holds for any other deriv-
ative DMZ u, with i = 1, 2, ... , n.

(ii) If u E W''P (SZ) and SZ C 1, then the restriction of u to SZ lies in
N

the space W'' (SZ) . Even if the open set 1 has a complicated topology, the
result of Theorem 8.27 can be applied to any cylindrical subdomain SZ C SZ
admitting the representation (8.33).

(iii) If SZ C Rn is a bounded open set and u E W kP (SZ), then u E Wq (SZ)
for every q E [l,p].

8.5. Extension operators

Let SZ C W be a bounded open domain with C1 boundary.2 Given a function
u defined on SZ, the next theorem provides a way to extend it to the entire
space W1, retaining some control on the W 1 P-norm.

N
Theorem 8.29 (Extension operators). Let St CC S2 C I[8n be open sets,
such that the closure of S2 is a compact subset of ft Moreover, assume
that S2 has Cl boundary. Then there exists a bounded linear operator E
W1'(S2) H W°(W) and a constant C such that

(i) Eu(x) = u(x) for a. e. x E S2,

(ii) Eu(x) = 0 for x
(iii) one has the bound IlEuhlwlP(Rn) <

Proof. 1. We first prove that the same conclusion holds in the case where
the domain is a half-space: SZ = {x = (Xi, X2,. . . , xn) ; xl > 0}, and SZ = IfSn.
In this case, any function u E W "P (SZ) can be extended to the whole space
Rn by reflection, i.e., by setting

(8.40) (E)(i, X2,... , xn) = u (lxii, x2, x3, ... , xn) .

By Theorem 8.27, for every i E {1,. . . , n} the function u is absolutely con-
tinuous along a.e. line parallel to the x2-axis. Hence the same is true of
the extension E11u. A straightforward computation involving integration by
parts shows that the first-order weak derivatives of E u exist on the entire
space W and satisfy

E'1u(-xl , x2, ... , xn) = u(xl , x2, ... , xn),
E u(-xl x2, ... , xn) = Du(x1, x2, ... , xn) ( = 2, ... n)

2Saying that SZ has C1 boundary means the following. For every boundary point x E 8SZ
there exists a neighborhood VX of x and a C1 map cp : H R such that V(x) 0 and
SZ fl VX = {y E VX ; cP(y) > 0}.
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for all x1 > 0, X2,. . . , xn E R. The extension operator E : W"p(S2) H
W "P (Rn) defined at (8.40) is clearly linear and bounded because

IIEuIIw1P(Rn) <

fY'=(Y2...Y)

Figure 8.5.1. The open covering of the set SZ. For every ball BZ =
B(x2, r2) there is a C1 bijection cp2 mapping the open unit ball
B C R onto B. For those balls BZ having center on the boundary
SZ, the positive half-ball B+ = B f1 {y, > 0} is mapped onto the
intersection BZ f1 SZ.

2. To handle the general case, we use a partition of unity. For every x E 12
(the closure of 12), choose a radius rx > 0 such that the open ball B (x, rx )
centered at x with radius rx0 satisfies the following conditions:

If x E 12, then B (x, rx) C 1.

If x E 012, then B (x, rx) C 1. Moreover, calling B = B(0, 1) the open
unit ball in W, there exists a C' bij ection SPX : B H B (x, rx) , whose inverse
is also C1, which maps the half-ball

n

- (yl,y2,...,yn); y2 < 1, yl > 0
12=

onto the set B (x, rx) f1 SZ.

Choosing rx > 0 sufficiently small, the existence of such a bijection
follows from the assumption that SZ has a C1 boundary.

Since 12 is bounded, its closure 1 is compact. Hence it can be covered
with finitely many balls BZ = B (x, r2), i = 1,... , N. Let coz : B -+ BZ be
the corresponding bijections. Recall that coz maps B+ onto BZ f11.
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3. Let ... , be a smooth partition of unity subordinate to the above
covering. For every x e St we thus have

N
(8.41) u(x) _

z=1

We split the set of indices as

{1,2,...,N} = ZUJ,
where Z contains the indices with x2 E 1 while 3 contains the indices with
xi E aSZ.

For every i e 3, we have rhu E W "p (Bi n 1). Hence by Theorem 8.25
(iv), one has (jju) o cpi e W "p(B+). Applying the extension operator E
defined at (8.40), one obtains

E ((mu) o coi E W" (B+) , E ((mu) o coi o co 1 E W" (Bi) .

Summing all these extensions together, we define

Eu = mu + E (mu) o cp2 o cpi 1

iEZ iEJ

It is now clear that the extension operator E satisfies all requirements.
Indeed, (i) follows from (8.41). Property (ii) stems from the fact that, for
every u e W "P(1), the support of Eu is contained in U 1 Bi C i. Finally,
since E is defined as the sum of finitely many bounded linear operators, the
bound (iii) holds, for some constant C. 0

8.6. Embedding theorems

In one space dimension, a function u : Il8 H Il8 which admits a weak derivative
Du E Ll OR) is absolutely continuous (after changing its values on a set of
measure zero). On the other hand, if 1 2 C 1[8with n > 2, there exist
functions u e W"P(St) which are not continuous and not even bounded.
This is indeed the case of the function u(x) _ IxI-'Y, for 0 <'y <

In several applications to PDEs or to the calculus of variations, it is
important to understand the degree of regularity enjoyed by functions u e
W'>P(Il8n). We shall prove two basic results in this direction.

1. (Morrey) If p> n, then every function u e Wl>p(Il8n) is Holder contin-
uous (after a modification on a set of measure zero).

2. (Gagliardo-Nirenberg) If p < n, then every function u E W "p (W )
lies in the space LP* (RTh), with the larger exponent p* = p + n p
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In both cases, the result can be stated as an embedding theorem: after
a modification on a set of measure zero, each function u e W 1 p(1) also lies
in some other Banach space X. Here X = C0" or X = L" for some q > p.
The basic approach is as follows:

(I): Prove an a priori bound valid for all smooth functions. Given
any function u e C°°(1) (1 W'(1), one proves that u also lies in another
Banach space X and that there exists a constant C depending on k, p,1 but
not on u, such that

(8.42) IlulIx < C IIUIIWk,p for all U E C°°(St) fl Wc,p(St) .

(II): Extend the embedding to the entire space, by continuity.
Since C°O is dense in Wk,p, for every u e Wkp(12) we can find a sequence of
functions un e C°O(St) such that lu - unhIwk,P -+ 0. By (8.42),

lim sup IkLm - un I I x < lim sup C I - un I I W k,p = 0.
m,n-*oo m,n-*oo

Therefore the functions un also form a Cauchy sequence in the space X.
By completeness, un - u for some u e X. Observing that u(x) = u(x)
for a.e. x e 1, we conclude that, up to a modification on a set N C 1 of
measure zero, each function u e Wkp(SZ) also lies in the space X.

8.6.1. Morrey's inequality. In this section we prove that, if u e W 1,p (Rn) ,

where the exponent p is bigger than the dimension n of the space, then u
coincides a. e. with a Holder continuous function.

Theorem 8.30 (Morrey's inequality). Assume n < p < oo and set
1 - p > 0. Then there exists a constant C, depending only on p and n,

such that

(0.43) I< C Ifor
every u E C1(II8) n Wl'p(l[8).

Proof. Before giving the actual proof, we outline the underlying idea. From
an integral estimate on the gradient of the function u, say

(8.44) f l< Co,
we seek a pointwise estimate of the form

(8.45) b- u(y') < Ci t y - y'I for all y, y' E l[8'.
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Figure 8.6.1. Proving Morrey's inequality. Left: the values u(y)
and u(y') are compared with the average value of u on an (n -1)-
dimensional ball (the shaded region) centered at the midpoint z
and contained in the hyperplane H perpendicular to the vector
y - y'. Center and right: a point x in the cone T is described in
terms of the coordinates (r, ) E [0, p] x B1.

To achieve (8.45), a natural attempt is to write

lu(v)-u(v)I = [deu (ey + (1-Bay)] ae
pl

Jo

(8.46)

165

1

J Vu(Oy + (1 - O)y') - y'I dO.
o

However, the integral on the right-hand side of (8.46) only involves values
of Vu over the segment joining y with y'. If the dimension of the space
is n > 1, this segment has zero measure. Hence the integral in (8.46) can
be arbitrarily large, even if the integral in (8.44) is small. To address this
difficulty, we shall compare both values u(y), u(y') with the average value u,q
of the function u over an (n - 1)-dimensional ball centered at the midpoint
z = as shown in Figure 8.6.1, left. Notice that the difference bcan

be estimated by an integral of IVul ranging over a cone of dimension n.
In this way the bound (8.44) can thus be brought into play.

1. We now begin the proof, with a preliminary computation. On Rn,
consider the cone

n
F = x = (x1, x2, ... , xn) ; xj < x1 , 0 < x1 < p

j=2
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and the function

(8.47) i(x) = 1xn-1
1

Let q = p 1 be the conjugate exponent of p, so that 1 +
p p

IkbII
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1 = 1. We compute
q

q 1
q pp

n-1
Lq (r) = j': (n-1 ) dx = Cn-1 x 1

r xl o

P (n-1)(1-q)= Cn_ 1 s ds ,

0

where the constant cn_ 1 gives the volume of the unit ball in Rn-1. Therefore,
b E L(F) if and only if n <p. In this case,

P - n-1 4 p-n p-n
(8.48) IIIIL(T) = (Cn_iSdS) = C p'°-1 = c p

0

for some constant c depending only on n and p.

2. Consider any two distinct points y, y' E Let p = Iy - ill. The
hyperplane passing through the midpoint z and perpendicular to
the vector y - y' has equation

H = {xERn; (x-z, y-y') = o}.
Inside H, consider the (n -1)-dimensional ball centered at z with radius p,

B {xEH; Ix-zI<}.
Calling u,y the average value of u on the ball BP, the difference bu(y) -
will be estimated as

.(8.49) I I
3. By a translation and a rotation of coordinates, we can assume

n
y = (0, ... , 0) E Rn, Bp = {x=(xl,x2,...,xn); x1 = p , 2<2}pi=2

To compute the average value UA, let B1 be the unit ball in Rn-1, and
let Cn_ 1 be its (n - 1)-dimensional measure. Points in the cone r will be
described using an alternative system of coordinates. To the point with
coordinates (r, ) = (r, 2, ... , fin) E [0, p] x B1 we associate the point
x(r, ) E r with components

(xi,x2,. . .,xn) = (r, r) = (r, r2,. ..

Define U(r, ) = u(r, re), and observe that U(0, ) = u(0) for every .
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Therefore

U(p, ) = U(0, )
+f [(r e)] dr,

\P
[-U(r, e)] dr(8.51) uA-u(0) = 1 f 1 0Cn-i

We now change variables, transforming the integral (8.51) over [0, p] x Bl
into an integral over the cone F. Computing the Jacobian matrix of the
transformation (8.50), we find that its determinant is rn-1; hence

dxl dx2 ... dxn = rn-1dr 2 ... n ,

Moreover, since 1, the directional derivative of u in the direction of
the vector (1, e2,. . . ,fin) is estimated by

(8.52) aT U(r, )
n

= ux1 + < 2Vu(r, )I.
i=2

Using (8.52) in (8.51) and using the estimate (8.48) on the Lq norm of the
function (x) = xi-n, we obtain

uA - u(0) I C

(8.53)

for some

Cn1f
1 12

- r x
2

i-1 I

cn 1 IIVUIILP(r)

< CPS IIUIIW1P(lRn)

p
q=

p-

constant C. Notice that the last two steps follow from Holder's
inequality and (8.48).

4. Using (8.53) to estimate each term on the right-hand side of (8.49) and
recalling that p = 2 Ii - we conclude that

(8.54) Iu(y) - u(y )I 2C (Iy 2 J 1
lUll wl,v(Rn)

J

This shows that u is Holder continuous with exponent y = ppn

5. To estimate sups Iu(y)I, we observe that, by (8.54), for some constant
Ci one has

Iu(y)I Iu(x)I + CiIIuIIw1,P(Rn) for all x e B(y, 1).
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Taking the average of the right-hand side over the ball centered at y with
radius one, we obtain
(8.55)

lu(y)I <_ f lc211uIILP(Rn)+clllullwl,p(Rn).
Bcy,l>

6. Together, (8.54)-(8.55) yield

IIUIICoIl$n sup I+ sup CIIuIIwl,p(Rn),
Iy-yI'I ry

for some constant C depending only on p and n.

Since C°O is dense in WlP, Morrey's inequality yields

Corollary 8.31 (Embedding). Let S2 C II8T be a bounded open set with C1
boundary. Assume n <p < oo and set ry = 1 - > 0. Then every function
f e Wlp(SZ) coincides a. e. with a function f E C°'(SZ). Moreover, there
exists a constant C such that

(8.56) IIJIIco,Y <_ Cllfllwi.n for all f E W"p(SZ).

N
Proof. 1. Let SZ = {x e l[8'?; d(x, SZ) < 1} be the open neighborhood
of radius one around the set S2. By Theorem 8.29 there exists a bounded
extension operator E, which extends each function f e W"p(S2) to a function
Ef E with support contained inside S2.

2. Since C1(R) is dense in W" (R), we can find a sequence of functions
gn e C1(Rn) converging to E f in W "P (Rn) . By Morrey's inequality

lim sup IIm - gn II co(Rn) < C lim sup IIm - gn II wl,p(Rf) = 0.
m,n-+oo m,n-+oo

This proves that the sequence (gn)n>, is also a Cauchy sequence in the space
C°'. Therefore it converges to a limit function g e C°' Y (Rn) , uniformly for
x E Rn.

3. Since gn -+ E f in we also have g(x) _ (Ef)(x) for a.e. x E
In particular, g(x) = f(x) for a.e. x e SZ. Since the extension operator E is
bounded, from the bound (8.43) we deduce (8.56).

Remark 8.32. The conclusion of Corollary 8.31 remains valid if SZ = W.
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8.6.2. The Gagliardo-Nirenberg inequality. Next, we study the case
1 < p < n. We define the Sobolev conjugate of p as

(8.s7)
np* = p >p.n-p

Notice that p* depends not only on p but also on the dimension n of the
space:

(8.58)
1i 1

p* _-p
fi'

As a preliminary, we describe a useful application of the generalized
Holder inequality; see (A.26) in the Appendix. Let n - 1 nonnegative func-

tions gl, g2,. , gn_1 E L1(II) be given. Since g' E Ln-1(11) for each i,
using the generalized Holder inequality, one obtains

(8.59)
1 1 1

n-1 1 n-1 1

gi -1 g2 -1 ... gn=i ds < IIg'IILn_1 = IIgII'.
2=1 2=1f

Theorem 8.33 (Gagliardo-Nirenberg inequality). Assume 1 < p < n.
Then there exists a constant C, depending only on p and n, such that

(8.60) If IILP=(Rn) <_ c IlVfIILP(11J) for all f E C

X3

,X2 ,X 3) (s 1,X 2,X 3)

X
1

Figure 8.6.2. Proving the Gagliardo-Nirenberg inequality. The
integral f°° ID1 f (sl, x2, x3) ds1 depends on x2, x3 but not on
x1. Similarly, the integral Ji° ID2 f (x1, 82, x3) I ds2 depends on
x1, x3 but not on x2.

Proof. 1. For each i E {1,. . . , n} and every point x = (Xi,.. . , xjf ... , xn) E
fin, since f has compact support, we can write

xZ

f (Xi,. . . ,Xf...,xn) = DxZf(x1,...,SZ,...,xn)dsz.
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In turn, this yields

00

If(xi,...,x)I

(8.61)
n 00

If(x)I 11(1
i=1 -°O

1 <i cm,

, xn) I dsi

We now integrate (8.61) with respect to xl. Observe that the first factor
on the right-hand side does not depend on xi. This factor behaves like a
constant and can be taken out of the integral. The product of the remaining
n - 1 factors is handled using (8.59). This yields
(8.62)

00

f00
IfIdxi

00

5; ( IDfIdsi
- 00

$ (j:IDXfId8l

n-1

n-1

n-1

IDfIdsi dx 1

n-1
IDf I ds dxi

Notice that the second inequality was obtained by applying the generalized
Holder inequality to the n - 1 functions gi = f°°00 lDfIds, i = 2, ... , n.

We now integrate both sides of (8.62) with respect to x2. Observe that
one of the factors appearing in the product on the right-hand side of (8.62)
does not depend on the variable x2 (namely, the one involving integration
with respect to 82). This factor behaves like a constant and can be taken
out of the integral. The product of the remaining n - 2 factors is again
estimated using Holder's inequality. This yields
(8.63)

00 00

If Inn 1 dxl dx2

1

(100/00
00 00 n -1 00 00 n -1

I I

n 00 00 00 1n-1

x fi (j J J IDf I dsi dxldx2
i=3 -00 -00 -00
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Proceeding in the same way, after n integrations we obtain
(8.64)

[00 (00
...

I_oo o0

<
n o0

i=1 -0O

This already implies

I
< (f

(5.65) IIfIILn/n-i
(fRn If I" dx) < I

JRn

proving the theorem in the case where p = 1 and p* = nn 1.

171

2. To cover the general case where 1 < p < n, we apply (8.65) to the
function

(8.66) g = If Is with Q
n-p

Using the standard Holder inequality, one obtains
(8.67)

n-1

(f(
n

n-i dx(L)n
<_ f fif'VfIdx

R
P-1

(<3 IRn
L \
P-1 dx/ (IThIVfIdx).

Our choice of fi in (8.66) yields

(fi-l)p - fin - np - *

p-1 n-1 n-p
Therefore, from (8.67) it follows that

lfIdxi'dxn

(fn
If Ip dx)

<
fi (f- If Ip` d=) D (f orp dx) ° .

Observing that n-1 - _ _ * , We conclude thatn p np p

El
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If the domain Sl C ][8n is bounded, then L9(1t) C Lp* (1k) for every
q e [l, p*]. Using the Gagliardo-Nirenberg inequality, we obtain

Corollary 8.34 (Embedding). Let S2 C ][8be a bounded open domain
with Cl boundary, and assume 1 < p <n. Then, for every q e [l, p*] with
p* = there exists a constant C such that

(8.68) IIlL(c) < C lIfllw'P(cz) for all f E

Proof. Let St = {x e II8n ; d(x,1l) < 1} be the open neighborhood of
radius one around the set SZ. By Theorem 8.29 there exists a bounded
extension operator E : Wlp(St) H with the property that Ef
is supported inside St, for every f E WlP(Sl). Applying the Gagliardo-
Nirenberg inequality to E f , for suitable constants Cl, C2i C3 we obtain

lIfIIL(c) < C1 llflILp*(c) < C2 IIEfIILP*(Rn) < C3IIf

8.6.3. High-order Sobolev estimates. Let S1 C Rn be a bounded open
set with C' boundary, and let u e W kp (1) . The number

k-
n
p

will be called the net smoothness of u. As in Figure 8.6.3, let m be the
integer part and let 0 < y < 1 be the fractional part of this number, so that

(8.69) k- n = m +y.
p

In the following, we say that a Banach space X is continuously embedded
in a Banach space Y if X C Y and there exists a constant C such that

h< C ffullx for all u E X.

0 1 2 m

k-n
p k

-mar

m+ 7

Figure 8.6.3. Computing the "net smoothness" of a function f E
C Cm'.

Theorem 8.35 (General Sobolev embeddings). Let S2 C ][8be a
bounded open set with Cl boundary, and consider the space WkP(12). Let
m, ry be as in (8.69). Then the following continuous embeddings hold.
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(i) If k - P < 0, then C Lq(St), with q = p - n =
jCl

(ii) If k- P =0, then Wkp(St) C Lq(St) for every 1 < q < oo.

(iii) If m > 0 and -y> 0, then C C"t'7(1t).

(iv) If m > 1 and ry = 0, then for every 0 < ry' < 1 one has
jjTk>p(1Z) C

Remark 8.36. Functions in a Sobolev space are only defined up to a set of
measure zero. By saying that Wk P (SZ) C C'12'ry (SZ) we mean the following.
For every u E W k P (SZ) there exists a function u E Cm1(c) such that 11(x) =
u(x) for a.e. x E SZ. Moreover, there exists a constant C, depending on
k, p, m, y but not on u, such that

IIUIICmi1) <- C IIIIW'P(fz) .

Proof of the theorem. 1. We start by proving (i). Assume k - P < 0
and let u E Since Dau E W"P(St) for every Ic < k - 1, the
Gagliardo-Nirenberg inequality yields

Therefore u E Wc-1,P* (St), where p* is the Sobolev conjugate of p.

This argument can be iterated. Set pl = p*, p2 = pi, ,p, =
By (8.58) this means

1 11 1 1 j---, ..., _ ---,
pl P fl pj p n

provided that jp < n. Using the Gagliardo-Nirenberg inequality several
times, we obtain
(8.70) W c P (1Z) c W' " ' (1) c W /c-2,P2 (c) C ...

After k steps we find that u E W °,Pk (1) = Lpk (1), with i = 1 - n = i .

p p 4
Hence pk = q and (i) is proved.

2. In the special case lip = n, repeating the above argument, after k - 1
steps we find

1 1 k- 1 1

plc-1 p n n

Therefore pk_1 = n and

yykp(1Z) C Wl'n(SZ) C yV"n-e(1)
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for every E > 0. Using the Gagliardo-Nirenberg inequality once again, we
obtain

u E Wl'n-e(1) C L9(1), q= n(n - E) n2 - n

Since s > 0 was arbitrary, this proves (ii).

n-(n-E) E

3. To prove (iii), assume that m > 0 and 'y> 0 and let u e We
use the embeddings (8.70), choosing j to be the smallest integer such that
pj > n. We thus have

1 j 1 1 1 j-1< - < -- Wk-j,Pj 1
p n pj n p n

( ).u e

Hence, for every multi-index cx with Icx < k - j - 1, Morrey's inequality
yields

Dam E Wl'Pi(SZ) C with ry = 1 - n = 1 - n + j.p2 p

Since a was any multi-index with length < k - j - 1, the above implies

u e Ck-i-1,ry(SZ).

To conclude the proof of (iii), it suffices to check that

so that m = k - j - 1 is the integer part of the number k - p , while ry is its
fractional part.

4. To prove (iv), assume that m > 1 and that j = p is an integer. Let
u e W k'p (S1), and fix any multi-index with Icx < j -1. Using the Gagliardo-
Nirenberg inequality as in step 2, we obtain

Dau E WIc_i (1) C W'1)
for every 1 <q < oo. Hence, by Morrey's inequality

Dau e W1'q(c1) C C°'1-4 (1).

Since q can be chosen arbitrarily large, this proves (iv). 0

Example 8.37. Let 1 be the open unit ball in TI, and assume u e W4'2 (f ).
Applying the Gagliardo-Nirenberg inequality two times and then Morrey's
inequality, we obtain

u e W4'2 (1) C w'k (1) C W2'10 (1) C C1' 2 (SZ) .

Observe that the net smoothness of u is k - p = 4 - 2 = 1 + 2.
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8.7. Compact embeddings

Let SZ C Rn be a bounded open set with C1 boundary. In this section we
study the embedding W' P(1) C Lq(SZ) in greater detail and show that,
when 1 > 1 - n, this embedding is compact. Namely, from any sequence

q p
(um)m>1 which is bounded in W" p one can extract a subsequence which
converges in L.

As a preliminary we observe that, if p > n, then every function u e
W 1 p(SZ) is Holder continuous. In particular, if (um)m» is a bounded se-
quence in W 'P(11), then the functions um are equicontinuous and uniformly
bounded. By Ascoli's compactness theorem we can extract a subsequence
(um3 )>, which converges to a continuous function u uniformly on ft Since
SZ is bounded, this implies lktrnj - u l Lq (c) -+ 0 for every q e {1, oo]. This
already shows that the embedding W 1 p (SZ) C L" (II) is compact whenever
p>nand 1 q<00.

In the remainder of this section we thus focus on the case p < n. By
the Gagliardo-Nirenberg inequality, the space W 1'p (SZ) is continuously em-
bedded in LP* (11), where p* = . In turn, since SZ is bounded, for every

p
1 < q < p* we have the continuous embedding LP* (11) C L(11)..

Theorem 8.38 (Rellich-Kondrachov compactness theorem). Let SZ C
Rn be a bounded open set with C1 boundary. Assume 1 < p < n. Then for
each 1 < q < p* = p one has the compact embedding

W"(11) cc L(11).

Proof. 1. Let (um)n>1 be a bounded sequence in W 'P(11). Using The-
orem 8.29 on the extension of Sobolev functions, we can assume that all
functions um are defined on the entire space Rn and vanish outside a com-
pact set K:

(8.72) Supp(u.,,,,) C K C 12 = B(11,1).

Here the right-hand side denotes the open neighborhood of radius one around
the set SZ.

N
Since q <p * and SZ is bounded, we have

lkLrn,IlLq(][8n) _ lktmlIi,9(S2) < C C'

for some constants C, C'. Hence the sequence um is uniformly bounded in
Lq (Rn) .
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2. Consider the mollified functions u; L = J *Urn. By (8.72) we can assumeN
that all these functions are supported inside Il. We claim that

(8.73) IkLrn - 0 as e -+ 0, uniformly with respect to m.

Indeed, if urn is smooth, then (performing the changes of variable y' = sy
andz=x - ety)

u(x) - urn(x) Je(y') [um(x - y') - 26rn(x)] dy

J(y)[urn(x - ey) - urn(x)] dy

In turn, this yields

f k6n(x) - um(x)I dx

1

J(y) ( dt
(Urn(X_tY))dt) dy

1 \
-ef

yI<i J(y) (f Vu,,,,(x -sty) y dt) dy.

f f f
Jo IVurn(x - ety) I dt) dy dxeJ JyI<1

J(y) (
1

By approximating Urn in W1' with a sequence of smooth functions, we seeN
that the same estimate remains valid for all functions Urn e W 1' (1l) . We
have thus shown that

(8.74) IIntLrnIIL1() < EvU,,,IILi<_ Ec Ilumllwl,P(j),

for some constant C. Since the norms IIUrnIIW1,p satisfy a uniform bound
independent of m, this already proves our claim (8.73) in the case q = 1.

3. To prove (8.73) for 1 < q < p* also, we now use the interpolation
inequality for U norms (see (A.28) in the Appendix). Choose 0 < B < 1
such that

= 0.1+(1_0).I.
q p*

Then

e(8.7s) IIUn_UrnIIq() <_ IIum - umIIL1() ' II um - umllJ) < C0 E
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for some constant Co independent of m. Indeed, in the above expression,
the L1 norm is bounded by (8.74), while the LP* norm is bounded by a
constant, because of the Gagliardo-Nirenberg inequality.

4. Fix any S> 0, and chooses > 0 small enough so that (8.75) yields

IIum um I I Lq Co s -
2

Recalling that u ;z = J * u,n, we have

for all m > 1.

II'4nIIL0o -<
IIUmIIL1

-< C1,

IloumllL°° -< UrnL' _< C2,
where C1, C2 are constants depending on s but not on m. The above in-
equalities show that, for each fixed s > 0, the sequence (U)rn>i is uniformly
bounded and equicontinuous. By Ascoli's compactness theorem, there ex-
ists a subsequence (U) which converges uniformly on 1 to some continuous
function U. We now have

lim sup IIUrn3 - umk IILq
j,k-+oo

(8.76)

< lim sup IIumj - U. IILq Ilumj - U IILq
3,k-+oo

<

+ IIU - umk IILq + hunk -

2 2

um.llc=)

5. The proof is now concluded by a standard diagonalization argument. By
the previous step we can find an infinite set of indices I1 C N such that the
subsequence (Urn)rnEIi satifies

lim sup I- urIILq < 2-1.
Q,m-+oo, Q,rEIi

By induction on j = 1, 2, ..., after I j has been constructed, we choose an
infinite set of indices 13 C I j _ 1 C N such that the subsequence (Urn) ,nE I3

satisfies
lim sup I- um IILq <- 2 ' .

Q,m-+oo, Q,rEI3

After the subsets Ij have been constructed for all j > 1, again by induction
on j we choose a sequence of integers m1 < m2 < m3 < such that
m j E 13 for every j. The subsequence (u,n3 )>i satisfies

lim sup IIUrnj - umk I I Lq = 0.
j,k-+oo

Therefore this subsequence is Cauchy and converges to some limit U E U'.
This proves that the embedding (8.71) is compact when p < n. 0
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Corollary 8.39. Let SZ C II8n be a bounded open set with C1 boundary. Then
one has the compact embedding

Hl(St) cc L2(11).

Proof. For n > 2 the conclusion is a special case of Theorem 8.38 with
p = 2. When n = 1, every function in H1(11) is Holder continuous and
the result follows from Ascoli's theorem. When n = 2, we can apply the
previous theorem with p = 3/2, p* = 6, q = 2 and obtain

W1°2(SZ) C W"3/2(11) CC L2(11).

As an application of the compact embedding theorem, we now prove an
estimate on the difference between a function u and its average value on a
domain 11.

Theorem 8.40 (Poincare's inequality. II). Let 11 C Rn be a bounded,
connected open set with C1 boundary, and let p e [1, oo]. Then there exists
a constant C depending only on p and 11 such that

(s.77) u- u dx
LP(1)

< C

for every u e

Proof. If the conclusion were false, one could find a sequence of functions
uk E WlP(SZ) with

uk - uk dx
LP (1)

for every k = 1, 2..... Then the renormalized functions

vk

uk - -1 ukdx

LP(1)

satisfy
(8.78)

vkdx = 0, IIVkIILP(cO = 1, IIDVkIILP(co <
1

k'
k=1,2,....

Since the sequence (vk)k>1 is bounded in Wl'p(St), if p < oo, we can use the
Rellich-Kondrachov compactness theorem and find a subsequence that con-
verges in LP(11) to some function v. If p > n, then by (8.56) the functions vk
are uniformly bounded and Holder continuous. Using Ascoli's compactness
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theorem, we can thus find a subsequence that converges in L°°(1) to some
function v.

By (8.78), the sequence of weak gradients also converges, namely Vvk -+
0 in LP(12). By Lemma 8.14, the zero function is the weak gradient of the
limit function v.

We now have

v dx = lim vk dx = 0.
k-3oo SZ

Moreover, since Vv = 0 E LP(St), by Corollary 8.16 the function v must be
constant on the connected set St; hence v(x) = 0 for a.e. x E St. But this is
in contradiction to

IIVIILP(c) _ IIVkIILP(c) = 1.

8.8. Differentiability properties

By Morrey's inequality, if 1 C Rn and w E W1'p(11) with p> n, then w
coincides a.e. with a Holder continuous function. Indeed, after a modification
on a set of measure zero, we have

(8.79) w(x) - w(y) yIl-p
JB(x,ly-xl)

IVw(z)I dz

This by itself does not imply that u should be differentiable in a classical
sense. Indeed, there exist Holder continuous functions that are nowhere
differentiable. However, for functions in a Sobolev space a better regularity
result can be proved.

Theorem 8.41 (Almost everywhere differentiability). Let 1 2 C ][8Th
and let u E for some p> n. Then u is differentiable at a. e. point
x E 12, and its gradient coincides with the weak gradient.

Proof. Let u E Wlo p (1Z) . Since the weak derivatives are in L the same
is true of the weak gradient Vu = (D1u,. . . , Du). By the Lebesgue
differentiation theorem, for a.e. x E SZ we have

(8.80) Vu(x) - Vu(z) p dz 0 as r 0.
B(x,r)

Fix a point x for which (8.80) holds, and define

(8.81) w(y) = u(y) - u(x) - tu(x) (y - x).
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Observing that w E Wlop(SZ), we can apply the estimate (8.79) and obtain

= lw(y)I = u(y) - u(x) - Vu(x) (y - x)I

C y - xil-P IVu(x) - Du(z)Idz

' y - xi ( IVu(x) - Vu(z)Idz
B(x, I?/-xI)

for suitable constants C, C'. Therefore

Iw(y)-w(x)I
0ly-xI ashy-xI -+0.

By the definition of w in (8.81), this means that u is differentiable at x in
the classical sense and its gradient coincides with its weak gradient.

8.9. Problems

1. Determine which of the following functionals define a distribution on SZ C R.

(i) A(q5) _ k! with St =R.

(ii) 2-k D(1/k), with St = R.
k=1

00

(iii) (l/k), with 1-R .
k=i k

dx, with St = ]0, oo[ .('v)A()=J
°° q5(2)

x

2. Give a direct proof that, if f E W "P (]a, b[) for some a < b and 1 <p < oo,
then, by possibly changing f on a set of measure zero, one has

I CIx -yIl-p for all x, y E ]a, b[ .

Compute the best possible constant C.

3. Consider the open square

Q = {(xl, x2) ; 0 < xl < 1, 0 < x2 < 1} C R2.

Let f e W" (Q) be a function whose weak derivative satisfies f(x) = 0 for
a.e. x E Q. Prove that there exists a function g E Ll([0,1]) such that

f (xi,xa) = 9(x2) for a.e. (xi,x2) E Q
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4. Let Il C Rbe an open set and assume f E L o (1l) . Let g = f be the weak
derivative of f with respect to x. If f is C' restricted to an open subset SZ' C ci,
prove that g coincides with the partial derivative Of/Ox, at a.e. point x E SZ'.

5. (i) Prove that, if u E W 1 (SZ) for some open, convex set Il C R, then u
coincides a.e. with a Lipschitz continuous function.

(ii) Show that there exists a (nonconvex), connected open set Il C Rand
a function u E W"°° (Il) that does not coincide a.e. with a Lipschitz continuous
function.

6. (Rademacher's theorem) Let Il C Rbe an open set and let u : Il H Ilk be
a bounded, Lipschitz continuous function.

(i) Prove that u E W"°° (Il) .

(ii) Prove that u is differentiable at a.e. point x E Il.

Hint for (i): Consider first the case where Il is convex. To construct the weak deriva-
tive Dpi , for any fixed x 1, ... , x2-1,x2+1, ... , xn, consider the absolutely continuous
function s H u(x1,... , x2_1, s, x2+1, ... , x).

?. Let St = B(0,1) be the open unit ball in with n > 2. Prove that the
unbounded function f (x) =1nln (1 + is in W"'(SZ).

8. (i) Let St = ] - 1,1 [. Consider the linear map T : Cl (S2) H I[8 defined by
T f = f (O). Show that this map can be continuously extended, in a unique way, to
a bounded linear functional T : W" (Il) H R

(ii) Let S2 = B(0,1) C R2 be the open unit disc. Consider again the linear
map T : Cl (S2) H R defined by T f = f (O). For which values of p can this map be
continuously extended to a bounded linear functional T : W"p(S2) H R?

9. Determine for which values of p > 1 a generic function f E W 1'p (R3) admits a
trace along the x1-axis. In other words, set I' = {(t, 0,0); t E R} C R3 and consider
the map T : C(R3) H I,P(I'), where Tf =fir is the restriction of f to F. Find
values of p such that this map admits a continuous extension T : W"7'(R3) H Lp(I').

10. Let V C R be a subspace of dimension m and let Vl be the perpendicular
subspace of dimension n - m. Let u E W with m <p < n. Show that, after
a modification on a set of measure zero, the following hold.

(i) For a.e. y E V1 (with respect to the (n - m)-dimensional measure), the
restriction of u to the affine subspace y + V is Holder continuous with
exponent ry = 1 - p .

(ii) The pointwise value u(y) is well defined for a.e. y E V1. Moreover

IC C IkLIIW1P(Rn)
for some constant C depending on m, n, p but not on u.
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11. Let 11 C W be an arbitrary open set (without assuming any regularity of the
boundary) and assume p > n. Show that every function f E W'°(1l) coincides
a.e. with a continuous function f. Moreover, there exists a constant C, depending
on p, n but not on SZ or f, such that

IIfIIco-1) < C If wl,p(s1) with ry = 1 - n .
p

12. When k = 0, by definition W °'(1 l) = LP (1 l) . If 1 < p < oo, prove that
Wo'(1l) = LP(1l) as well. What is WD'°O(1Z)?

13. Let cp : R * [0, 1] be a smooth function such that

1 if r < 0 ,cp(r) _
0 if r>1.

Given any f E W k P (Rn) , prove that the functions f k (x) = f (x) cp (I x I - k) converge
to f in Wk P (Rn) , for every k > 0 and 1 < p < oo. As a consequence, show that
W' '(R)(R) = W k,P (Rn) .

14. Let R+ _ {x E x > 0} and assume u E WZ'T'(R+). Define the symmetric
extension of u by setting Eu(x) = Prove that Eu E W"T'(II8) but Eu
W2'P(R), in general.

15. Let u E C( R) and fix p, q E [1, oo [ . For a given A > 0, consider the rescaled
function ua(x) = u(Ax).

(i) Show that there exists an exponent a, depending on n, q, such that

IluAlILq(Rn) =
(ii) Show that there exists an exponent ,3, depending on n, p, such that

IIVuAIILP(Rn) = aI I Du I I Lp (Rn) .

(iii) Determine for which values of n, p, q one has a = ,3. Compare with (8.57).

16. Let 11 C Rn be a bounded open set with C1 boundary. Let (um)m>i be
a sequence of functions which are uniformly bounded in H' (Il). Assuming that
I - u I I L2 -+ 0, prove that u E H 1(Il) and

IIuIIHl < lm inf IIumIIHl.

17. Let 12 = {(x,, x2) ; xi + x2 < 1} be the open unit disc in R2, and let 12a
St \ {(0, 0)} be the unit disc minus the origin. Consider the function f (x) = 1- lxi.
Prove that (see Figure 8.9.1)

f E Wo'T'(St) for 1 < p < oo,
f E Wo'7'(Sto) for 1 < p < 2,
I for 2 < p < oo .
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11--
n

Figure 8.9.1. Left: the function f can be approximated in W1'°
with functions f n having compact support in Sl. Right: the func-
tion f can be approximated in W1'2 with functions gn having com-
pact support in 110.

18. Let S2 = {(Xi, x2); 0 < xl <1, 0 <X2 <1} be the open unit square in R2.

(i) If u e Hl (S2) satisfies

meal ({x e SZ ; u(x) = 0}) > 0, Vu(x) = 0 for a.e. x e SZ ,

prove that u(x) = 0 for a.e. x E SZ.

(ii) For every a > 0, prove that there exists a constant C with the following
property. If u e Hl(S2) is a function such that meas({x e St; u(x) _
0}) > a, then

(8.82) <C

19. Let Il C Rn be an open set, and let K C SZ be a closed set which is "small",
in the sense that its (n - 1)-dimensional measure is m_ 1(K) = 0. More precisely,
assume that the projection of K on every (n - 1)-dimensional hyperplane has zero
(n - 1)-dimensional measure. Let u be continuously differentiable on the open set
Il \ K, and assume u e LP(SZ \ K), Vu E L'(1l \ K). Prove that u E W1T'(Il).

20. (i) Find two functions f, g e L o (Rn) such that the product f g is not locally
summable.

(ii) Show that, if f, g e L( R) are both bounded and weakly differentiable,
then the product f g is also weakly differentiable and satisfies the usual product
rule: D(f9) _ (Df) ' 9 + f ' (Dig).

(iii) Find two functions f, g e L o (Rn) (with n > 2) with the following prop-
erties. For every i = 1, ... , n the first-order weak derivatives Dpi f, Dpi g are well
defined. However, the product f g does not have any weak derivative (on the entire
space Rn).

21. Let Il C Rn be a bounded, connected open set with C1 boundary, let Il' C Il
be a nonempty open subset, and let p e [1, oo]. Prove that there exists a constant



184 8. Sobolev Spaces

C such that

IIUIILP(c) $ C (IIuIILP(I) + I

22. Consider the Banach space X = C°(}0,1[) of all bounded continuous functions
on the open interval ]0,1[, with norm Ill Ilco = IFor a fixed constant
M > 0, let SM C X be the subset consisting of all functions f e X such that
If IIw < M. In other words, f e SM provided that f has weak derivatives up

to second-order and

Ill IIL°° <_ M, IIOXIIILOO <_ M, IIOxxfIIL0o <_ M.

(i) Prove that SM is a closed subset of X.
(ii) Prove that the differentiation operator f H Of is continuous when re-

stricted to the set SM. In other words, if IIf- f Ilco -* 0 and f, In E SM
for all n > 1, then II8xfn - 8xf llco -* 0.

23. Let 1 C W be a bounded open set with C1 boundary. Given any u E W1P(SZ)
with 1 < p < oo, prove that there exists a sequence of smooth functions uk E

(Rn) such that the restrictions of uk to 1 satisfy

lim
k-+

IIUkUIIW1,P(c) = 0.

Moreover,
lIUklIW1P(Rn) _< CIIv'IIW1,PcEZ>)

for some constant C depending on p and St but not on u.

24. Let f : R H R be a weakly differentiable function, with weak derivative g E
L(R) Consider the sequence of divided differences gn(u) = n [f(x 1(x)].
Prove that gn(x) -* g(x) for a.e. x e III, and moreover 1I9n - 9IIr.1([a,b]) -* 0 for
every bounded interval [a, b].

25. Let (un)n>1 be a sequence of functions in the Hilbert space H2(R3) = W2'2(R3).
Assume that

lim un(x) = u(x) for all x e R3, IlunIIx2 < M for all n.
n-3oo

Prove that the limit function u coincides a.e. with a continuous function.



Chapter 9

Linear Partial
Differential Equations

The goal of this chapter is to illustrate how the abstract techniques of func-
tional analysis can be applied to the solution of elliptic, parabolic, and
hyperbolic PDEs.

A linear elliptic equation is defined by a second-order differential oper-
ator, which is linear but unbounded. As a first step, one must thus provide
an alternative "weak" formulation of the boundary value problem, involving
bounded linear operators.

In some cases, unique solutions can be obtained by applying the Lax-
Milgram theorem to a suitable bilinear form on the Hilbert-Sobolev space
H. More general situations can be studied using F redholm's theory on the
space L2. When the operator is selfadjoint, relying on the Hilbert-Schmidt
theorem, we shall represent solutions by a series of mutually orthogonal
eigenfunctions.

Evolution equations of parabolic and hyperbolic type will be studied by
applying linear semigroup theory. When the defining operator is selfadjoint,
solutions can again be obtained as sum of a series of eigenfunctions.

9.1. Elliptic equations

Let SZ C Rn be a bounded open set. Given measurable functions azj , bz, c :
SZ + R, consider the linear, second-order differential operator

n 'n

(9.1) Lu = - -I->(b2(x)u)xi +c(x)u.
i,j=1 z=1

185
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We shall study solutions to the boundary value problem

(9.2)
fLu =f, x E SZ ,

l u = 0, x E aS2 ,

where f E L2(11) is a given function. The requirement that u vanishes along
(911 15 called Dirichlet's boundary condition.

For future reference, we collect the main hypotheses used throughout
this chapter.

(H) The domain St C lEBn is open and bounded. The coefficients of L in
(9.1) satisfy

(9.3) at3,b,c E L°°(11).
Moreover, the operator L is uniformly elliptic. Namely, there
exists a constant 0> 0 such that

n
(9.4) a2i(x)j > 8II2 for all x E St, eE1ETh.

i,j=1

Remark 9.1. By definition, the uniform ellipticity of the operator L de-
pends only on the coefficients az . In the symmetric case where air =
the above condition means that for every x E SZ the n x n symmetric matrix
A(x) _ (air (x)) is strictly positive definite and its smallest eigenvalue is > B.

9.1.1. Physical interpretation. As an example, consider a fluid moving
with velocity b(x) _ (b', b2, b3) (x) in a domain St C Il83. Let u = u(t, x)
describe the density of a chemical dispersed within the fluid.

Given any subdomain V C St, assume that the total amount of chemical
contained in V changes only due to the inward or outward flux through the
boundary 8V. Namely,

(9.5) dt J u dx = J n (a Vu) dS - J n (b u) d5 .
v av av

Here n(x) denotes the unit outer normal to the set V at a boundary point x,
while a> 0 is a constant diffusion coefficient. The first integral on the right-
hand side of (9.5) describes how much chemical enters through the boundary
by diffusion. Notice that this is positive at points where n Vu > 0. Roughly
speaking, this is the case if the concentration of chemical outside the domain
V is greater than inside. The second integral (with the minus sign in front)
denotes the amount of chemical that moves out across the boundary of V
by advection, being transported by the fluid in motion (Figure 9.1.1).

Using the divergence theorem, from (9.5) we obtain

(9.6) J ut dx = J a Du dx - J div(b u) dx.
v v v
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Figure 9.1.1. As the chemical is transported across the boundary
of V, the total amount contained inside V changes in time.
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Since the above identity holds on every subdomain V C S2, we conclude that
u = u(t, x) satisfies the parabolic PDE

ut - a 1u + div(b u) = 0.
[diffusion] [advection]

A more general model can describe the following situations:

The diffusion is not uniform throughout the domain. In other
words, the coefficient a is not a constant but depends on the lo-
cation x E SZ. Moreover, the diffusion is not isotropic: in some
directions it is faster than in others. All this can be modeled by
replacing the constant diffusion matrix A(x) - al with a more
general symmetric matrix A(x) _ (ai3(x)).
The total amount of u is not conserved. Additional terms are
present, accounting for linear decay and for an external source.

In n space dimensions, this leads to a linear evolution equation of the form
(9.7)

ut -

n

(a2
9

i,j=1
[diffusion]

+ = -c(x) + f(x).
%=Z

[advection] [decay] [source]

Equation (9.7) can be used to model a variety of phenomena, such as mass
transport, heat propagation, etc. In many situations, one is interested in
steady states, i.e., in solutions which are independent of time. Setting ut = 0
in (9.7), we obtain the linear elliptic equation

n n
(9.8) - (a(x)Ux) + (b(x)u) + c(x) U

z

i,j=1 i=1

9.1.2. Classical and weak solutions. By a classical solution of the
boundary value problem (9.2) we mean a function u E C2(SZ) which satisfies
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the equation and the boundary conditions at every point. In general, due to
the lack of regularity in the coefficients of the equation, problem (9.2) may
not have classical solutions. A weaker concept of solution is thus needed.

Definition 9.2. A weak solution of (9.2) is a function u E Ho (St) such
that
(9.9)

n nv- bZu dx = fv dx for all v E Ho (c) .f i,j=1 2=1

Remark 9.3 (On the concept of weak solution). The boundary con-
dition u = 0 on 8St is taken into account by requiring that u E Ho (St). The
equality (9.9) is formally obtained by writing

(9.10) f (Lu) v dx = f fv dx for all v E
t

and integrating by parts. Notice that, if (9.9) holds for every test function
v E C(SZ), then by an approximation argument the same integral identity
remains valid for every v E Ho (ci). It is important to observe that a func-
tion u E Ho may not have weak derivatives of second-order. However, the
integral in (9.9) is always well defined, for all u, v E H.

A convenient way to reformulate the concept of weak solution is the
following. On the Hilbert space Ho (52), consider the bilinear form

(9.11) B[u, v] f n n

a - b uv

u E Ho is a weak solution of (9.2) provided that

(9.12) B[u, v] _ (f,V)L2 for all v E Ho .

Here and in the sequel we use the notation

(9.13) (f,g)L2 f f g dx

for the inner product in L2 (SZ), to distinguish it from the inner product in
Hl (1l)

(9.14) (f,g)jqi ffgdx+f>
Z_1

f z dx.

Remark 9.4 (Choice of the sign). The minus sign in front of the second-
order terms in (9.1) disappears in (9.11), after a formal integration by parts.
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As will become apparent later, this sign is chosen so that the corresponding
quadratic form B [u, v] can be positive definite.

Remark 9.5 (General boundary conditions). Given a function g E
H' (1), one can consider the nonhomogeneous boundary value problem

(9.15)
Lu = f, xESZ,

x E aSZ .u =g,
This can be rewritten as a homogeneous problem for the function u = u - g,
namely

(9.16)
Lu = f-Lg, x E SZ ,

u =0, x E all .

Assuming that Lg E L2(1t), problem (9.16) is exactly of the same type as
(9.2).

Remark 9.6 (Operators not in divergence form). A differential oper-
ator of the form

Lu = - a2 j + b2 c(x)u
i,j=1 i=1

can be rewritten as

Lu = - (a(x)ux) +- (bi(x) + a.(x) uxZ + c(x)u.
9

i,j=1 i=1 j=1

Assuming that bi, c e L°°(1), a weak solution of the corresponding
problem (9.2) can again be obtained by solving (9.12), where the bilinear
form B is now defined by

B [u, v] f a v j + b2 + a v + c uv dx.
i=1 j =1

As a first example, consider the boundary value problem

(9.17)
pu+u = f, xESZ,

u = 0, x E aSZ .

Clearly, the operator -Du = - >i is uniformly elliptic, because in this
case the n x n matrix A(x) = (aij (x)) is the identity matrix, for every x e SZ.
The existence of a weak solution to (9.17) can be proved by a remarkably
concise argument, based on the Riesz representation theorem.
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Lemma 9.7. Let 1 2 C W be a bounded open set. Then for every f e L2(St)
the boundary value problem (9.17) has a unique weak solution u e Hp (St).
The corresponding map f H u is a compact linear operator from L2(1) into
Hp (St).

Proof. By the Rellich-Kondrachov theorem, the canonical embedding c
Ho (S2) H L2(1) is compact. Hence its dual operator t* is also compact.
Since Ho and L2 are Hilbert spaces, they can be identified with their duals.
We thus obtain the following diagram:

(9.18) H° L2
(1)'

H) = [H)]* [L)] =
For each f e L2(1Z), the definition of dual operator yields

(t*f,v)H1 _ (f,tV)L2 = (f,v)L2 for all f E L2(St), v E Ho (St) .

By (9.14) this means that a* f is precisely the weak solution to (9.17). O

9.1.3. Homogeneous second-order elliptic operators. We begin by
studying solutions to the elliptic boundary value problem

(9.19)
Lu = f, xESZ,
u = 0, x E Df ,

assuming that the differential operator L contains only second-order terms:

(9.20)

n
Lu = - (a(x)u).

i,j=1

We recall that a weak solution of (9.19) is a function u e Ho (St) such
that

(9.21) B[u, v] _ (f,V)L2 for all v E Ho (SZ) ,

where B : Ho x Ho H ][8 is the continuous bilinear form
n

(9.22) B [u, v] = auv j dx.
i,j=1

Theorem 9.8 (Unique solution of the elliptic boundary value prob-
lem). Let St C W be a bonded oven set. Let the operator L in (9.20) be
uniformly elliptic, with coefficients a2 E LO°(St). Then, for every f e L2(S2),
the boundary value problem (9.19) has a unique weak solution u e Hp (1).
The corresponding solution operator, which we denote as L-1 : f H u, is a
compact linear operator from L2(12) into Ho (S2).
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Proof. The existence and uniqueness of a weak solution to the elliptic
boundary value problem (9.19) will be achieved by checking that the bi-
linear form B in (9.22) satisfies all the assumptions of the Lax-Milgram
theorem.

1. The continuity of B is clear. Indeed,

B[u'v}l C >=, f 2 Iauv1 dx < >x,j=1 IIIL0 IIx IIL2 IIvxj IIL2

< CIIwIIH=IIvIIH1

2. We claim that B is strictly positive definite, i.e., there exists fi > 0 such
that

(9.23) B[u, u] > Q IIuIIHl(f) for all u E Ho (St) .

Indeed, since ft is bounded, Poincare's inequality yields the existence of a
constant ic such that

IIUIIL2(c) f IVuI2 dx for all u E Ho (St) .

On the other hand, the uniform ellipticity condition implies

B [u, u] = a22 uudx > J B udx
Zj=1 2=1

Together, the two above inequalities yield

IIUIIH1 = IIUIIL2 + IlouliL2 (,c + 1) IlouliL2

This proves (9.23) with fi = 8/(ic + 1).

of IVuI2dx.

k e 1 B [u, u] .

3. By the Lax-Milgram theorem, for every f E Ho (ft) there exists a unique
element u E Ho such that

(9.24) B[u, v] _ (f, v)H1 for all v E Ho (ft).

Moreover, the map A : f H u is continuous, namely

IIUI1H1 fi-1 IIfIIH'.

Choosing f = t* f E Ho (SZ), defined in (9.18), we thus achieve

(9.25) B[u, v] _ (t*f, v)H1 _ (f, v)La for all v E Ho (St) .

By definition, u is a weak solution of (9.19).

n n
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4. To prove that the solution operator L-1 : f -+ u is compact, consider
the the diagram

L2 (SZ) ` H1(11) -3 H1(11) .0 0

By Lemma 9.7, the linear operator t* is compact. Moreover, A is continuous.
Therefore the composition L-1 = A o t* is compact. 0

9.1.4. Representation of solutions in terms of eigenfunctions. Since
H( 1Z) C L2(S1), the solution operator L-1 described in Theorem 9.8 can also
be regarded as a compact operator from L2(S1) into itself. In the symmetric
case where a23 = a32, the operator L-1 is selfadjoint. Hence, by the Hilbert-
Schmidt theorem, it admits a representation in terms of a countable basis
of eigenfunctions.

Theorem 9.9 (Representation of solutions as a series of eigenfunc-
tions). Assume air = E L°O(S2). Then, in the setting of Theorem 9.8,
the linear operator L-1 : L2(S2) H L2(S1) is compact, one-to-one, and self-
adjoint.

The space L2(S2) admits a countable orthonormal basis {k; k > 1}
consisting of eigenfunctions of L-1, and one has the representation

(9.26)
k=1

The corresponding eigenvalues Ak satisfy

(9.27) lim Ak = 0, ak > 0 for all k > 1.

Proof. 1. By Theorem 9.8, L-1 is a compact linear operator from L2(S1)
into itself.

To show that L-1 is one-to-one, assume u = L1 f = 0. Then

0 = B[u,v] = (f,v)L2
for every v E Ho (St). In particular, for every test function qS E C°(1) we
have

f fqSdx = 0.

This implies f(x) = 0 for a.e. x E St. Hence Ker(L-1) _ {0} and the
operator L-1 is one-to-one.

L-l.f - Ak(.f,q5k)L2 q5k

2. To prove that L-1 is selfadjoint, assume

f,gEL2(1), u=171f, v=171g.
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By the definition of weak solution in (9.9), this implies u, v E H0'(1) and

(L-'f, g)LZ = fZ u g dx = fZ dx = f v dx = (f, L-'g)L2 .f
Note that the second equality follows from the fact that v = L-lg, using
u E Ho (S2) as a test function. The third equality follows from the fact that
u = L-1 f , using v E H() as a test function.

3. Since L-1 is a compact and selfadjoint operator on the separable space
L2(St), by the theorem of Hilbert-Schmidt in Chapter 6, there exists of a
countable orthonormal basis consisting of eigenfunctions of This yields
(9.26).

By the compactness of the operator L-1, the eigenvalues satisfy k -+ 0.
Finally, choosing v = ¢k as the test function in (9.21), one obtains

B[Ak/k, /k] - (q5, 75k)L2 = 1.

Since the quadratic form B is strictly positive definite, we conclude that

Ak
= B[q5k,q5k]

> 0. a

Example 9.10. Let S2 = ]0, ir[ C 1[8 and Lu = -u. Given f E L2(]0, ir[),
consider the elliptic boundary value problem

(9.28) f-uxx =f, 0 < x < 7r ,

1 u(0) = u(r) = 0.

As a first step, we compute the eigenfunctions of the operator Lu = -uxx
Solving the boundary value problem

-u xx = ECU , u(0) = u(ir) = 0,

we find the eigenvalues and the normalized eigenfunctions

µk = k2, ¢k(x) _ ` sin kx.

Of course, the inverse operator L-1 has the same eigenfunctions ¢k, with
eigenvalues ak = 1/k2.
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In this special case, formula (9.26) yields the well-known representation
of solutions of (9.28) in terms of a Fourier sine series:

00

u(x) = Ii-lf =
k=1

(ii;
f(Y) sin ky dy \/ sin kx

°O 2 f'r \2 (J f(y) sin ky dy) sin kx.

9.1.5. More general linear elliptic operators. The existence and
uniqueness result stated in Theorem 9.8 relied on the fact that the bilin-
ear form B in (9.21) is strictly positive definite on the space H(1). This
property no longer holds for the more general bilinear form B in (9.11),
where additional lower-order terms are present. For example, if the func-
tion c(x) is large and negative, one may find some u e H1) such that
B[u,u] <0.

Example 9.11. Consider the open interval SZ = ]0, ir[. Observe that the
operator

Lu = -u-4u
is uniformly elliptic on fZ. However, the corresponding bilinear form

B [u, v] = u v - 4uv dx
0

is not positive definite on H1).. For example, taking u(x) = sin x, we find

f"
B [u, u] =

J
cost x -4 sine x dx = - 2 .

n

If f(x) =sin 2x, then the boundary value problem

(9.29)
-u- 4u =sin 2x, x

u(0) = u(7r) = 0
has no solutions. Indeed, choosing v(x) =sin 2x, for every u e Ho (St) an
integration by parts yields

B[u, v] = J 4uv dx = J (2ux cos 2x - 4u sin 2x) dx
0 0

ir

= f (2u sin 2x) dx = 0 # J sine 2x dx = (f, v)Lz.
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Therefore there is no function u E Ho (St) that satisfies (9.12).
In this connection one should also notice that the corresponding homo-

geneous problem

(9.30) { -u- 4u 0, x E ] 0, 7r [ ,

admits infinitely many solutions: u(x) _ i sin 2x, for any constant i'c.

We now study the existence and uniqueness of weak solutions to the
more general boundary value problem (9.1)-(9.2). Our approach is based
on two steps.

STEP 1: By choosing a constant y> 0 sufficiently large, the operator

(9.31) L.yu = Lu + ryu

is strictly positive definite. More precisely, the corresponding bilinear form
(9.32)

f
n n

B[ u, v] a(x) b2 (x) uv uv dx
i,j=1 z=1

satisfies

(9.33) B.y[u, u] > ,6 IIuIIHl for all u E Ho (Sl) ,

for some constant ,Q > 0. Using the Lax-Milgram theorem, we conclude that
for every f E L2(S2) the equation

L.yu = f
has a unique weak solution u E H0 (f). Moreover, the map f H u = L' ff
is a linear compact operator from L2(Sl) into Ho (S2) C L2(St). We regard
L,yl as a compact operator from L2(St) into itself.

STEP 2: The original problem (9.2) can now be written as

Lu = L.yu - ryu = f.
Applying the operator L' to both sides, one obtains

(9.34)

Introducing the notation

(9.35) K

u(0) = u(ir) = 0

.u-L,ylryu = L,ylf.

h = L,y 1 f ,

we are led to the equation

(9.36) (I-K)u = h.
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Since K is a compact operator from L2(11) into itself, Fredholm's theory can
be applied. In particular, one has

Fredholm's alternative: either

(i) for every h E L2(11) the equation u - Ku = h has a unique solution
u E L2(S2),

or else

(ii) the equation u - Ku = 0 has a nontrivial solution u E L2(11).

Calling K* L2 H L2 the adjoint operator, case (ii) occurs if and only
if the adjoint equation v - K*v = 0 has a nontrivial solution v E L2(SZ).
Information about the existence and uniqueness of weak solutions to (9.2)
can thus also be obtained by studying the adjoint operator

n n
(9.37) L*v = - (a(x) vxj )xz - b2(x)vxz + c(x) v.

i,j=1 i=1

The remainder of this section will provide detailed proofs of the above claims.

Lemma 9.12 (Estimates on elliptic operators). Let the operator L in
(9.1) be uniformly elliptic, with coefficients bi, c E L°O(SZ). Then there
exist constants a, f3, 'y> 0 such that

(9.38) IB[u,v]I allullxlllvllHl

(9.39) Q< B[u,u]+'Y lluIIi2
for all u, v E H(1).

Proof. 1. The boundedness of the bilinear form B : Ho x Ho H R follows
from

n n

(auxvx3 - bZuvxZ + c uv dxf i,j=1 i=1

n n

-< Ila3llLc°IluxlIL2IlvxIlL2

+IIdIL00 IIullL2 liv 11L2

a Ilwllxl llvIIHl.
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2. Concerning the second estimate, using the ellipticity condition (9.4) and
the elementary inequality ab < a2 + 2b2, we obtain

e

n n

B u. dx < a2 u dxi1
n

f n
= B[u, u] +

/
J I

cue\

I dx
st \ z-1 /

n n
< B[u, u] + (2e lIbiIIL°° IIuII2 + Z Iluxi IILZ) + 11C11L00 IIUII2.

Z-1 Z=1

Therefore

B[u, u] > 2
i

lIUxiII2 - cIIuIIi2 for all u E Ho (S2),
i=1

for a suitable constant C. Taking fi = 0/2 and ry = C + 0/2, the inequality
(9.39) is satisfied.

Remark 9.13. By the above lemma, if the constant 'y> 0 is large enough,
then the bilinear form

B7[u,v] = BLUE v]+ 'y(uf v)L2

in (9.32) is strictly positive definite. Notice that, for ry > 0 large, it would
be very easy to show that the bilinear form

B[u,v]+'y(u,v)Hl

is.strictly positive definite on Ho(St). However, Lemma 9.12 shows that we
can achieve strict positivity by adding the much weaker term ry (u, v)L2.

Let ry be as in (9.39) and define the bilinear form B.y according to (9.32).
Since B.y is strictly positive definite, we can apply the Lax-Milgram theorem
and conclude that, for every f E L2(S2), there exists a unique u E Ho (St)
such that

(9.40) B.y[u, v] _ (f, v)Lz = (t*f, v)H1 for all v E Ho (St).

Since the map c* is compact, the solution operator f H u = Lf is a linear
compact operator from L2(12) into Ho (St). Therefore, it is also a compact
operator from L2 (St) into itself.
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An entirely similar result holds for the adjoint problem

(9.41)
v = 0,

xEIl,
au,

where L* is the adjoint operator introduced in (9.37) and L u = L*u + ryu.
Given g e LZ(SZ), a weak solution of (9.41) is defined to be a function
v e Ho (S2) such that

(9.42) By[v, u] = By[u, v] _ (u,g)2 for all u E Ho (S2) .

Since By is strictly positive definite, for every g e L2 the Lax-Milgram
theorem yields a unique weak solution v of (9.41). The map g H v =
(Ly)-lg is a linear, compact operator from L2(1Z) into itself.

Lemma 9.14 (Adjoint operator). In the above setting, the operator
(L4)' is the adjoint of the

Proof. By definition, for every f, g E L2 (1l) and u, v E Ho (S2) one has

(f,v)L2 = By [L'f, v] , (u,g)2 = B7 [u, (L)*g] .

In particular, choosing v = (L)'g and u = 1 f, we obtain

(.f, (L;)-') L2 = B.y [L'f, (Lryl)*9] _ (Lrylf, 9)L2

Lemma 9.15 (Representation of weak solutions). Given any f E
L2(S2), a function u E L2(1l) is a weak solution of (9.2) if and only if

(9.43) (I-K)u = h, with K = ryLy 1, h = 1 f .

Proof. 1. Let u be a weak solution of (9.2). By definition, this means that
u E H( 1l) and

B.y[u, v] = B[u, v] + ry(2t,11)I,z = (f+'yu,v)L2 for all v E Ho (SZ) .

Therefore

U = +ryu) = h+Ku.

2. To prove the converse, let (9.43) hold. Then

u = ryL,ylu+L,ylf E Ho(S2).

Moreover, for every v E Ho (S2) we have

B[u,v] - B'Y[u,vJ - "Y(u,v)L2 - (f + 'yu,v)L2 -'Y(u,v)L2 _ (f,v)L2.
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In order to apply Fredholm's theory (Theorem 6.1), together with (9.2)
we consider the homogeneous problem

x E St ,
(9.44)

fLu =0,
x E 8S2 ,l u =0,

and the adjoint problem

(9.45)
L*v = 0, xESZ,

v = 0, x E aSZ ,

where L* is the adjoint linear operator defined at (9.37).

Theorem 9.16 (Unique solutions to the elliptic problem). Under the
basic hypotheses (H), the following statements are equivalent:

(i) For every f e L2(12), the elliptic boundary value problem (9.2) has
a unique weak solution.

(ii) The homogeneous boundary value problem (9.44) has the only so-
lution u(x) - 0.

(iii) The adjoint homogeneous problem (9.45) has the only solution v(x)

Proof. 1. Since K = ryL,yl is a compact operator from L2(12) into itself,
Fredholm's theorem can be applied. As a consequence, the linear opera-
tor I - K is surjective if and only if it is one-to-one, i.e., if and only if
Ker(I - K) = {0}.

2. By Lemma 9.15, u - Ku = 0 if and only if u is a weak solution of (9.44).
An entirely similar argument shows that v - K*v = 0 if and only if v is a
weak solution of (9.45).

By Fredholm's theorem, Ker(I - K) and Ker(I - K*) have the same
dimension. We thus obtain a chain of equivalent statements:

I - K is surjective,
Ker(I-K) = {0},
Ker(I_K*) = {0},
u - 0 is the unique solution of (9.44),
v - 0 is the unique solution of (9.45). D

Theorem 9.16 covers the situation where I - K is one-to-one and Fred-
holm's first alternative holds. In the case where I - K is not necessarily
one-to-one, the existence of solutions to

u-Ku = Ly'f
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can be determined using the identity

(9.46) Range(I - K) _ [Ker(I_K*)]±.

Theorem 9.17 (Existence of solutions to the elliptic problem). Un-
der the hypotheses (H), problem (9.2) has at least one weak solution if and
only if

(9.47) (f, V)L2 = 0

for every weak solution v E Ho (S2) of the adjoint problem (9.45).

Proof. The boundary value problem (9.2) has a weak solution provided
that L' f f E Range(I - K). By (9.46), this holds if and only if L' f is
orthogonal to every v e Ker(I - K*), i.e., to every solution v of the adjoint
problem (9.45).

We claim that this holds if and only if f itself is orthogonal to every
solution v of (9.45). Indeed, if v - K*v = 0, one has

(f,v)L2 - (f,K*v)L2 - (Kf,v)L2 - 1' (j'ry l,f ,7))L2 .

Since y> 0, this proves our claim.

9.2. Parabolic equations

Let S2 C Il81 be a bounded open set and let L be the operator in (9.1). In
addition to the standard hypotheses (H) stated at the beginning of the chap-
ter, we now assume that the coefficients air satisfy the stronger regularity
condition

(9.48) azj E W1'°°(1).

In this section we study the parabolic initial-boundary value problem

(ut+Lu =0, t > 0 , x E S2 ,

(9.49) u(t, x) = 0, t > 0, x e 8S2 ,
I u(0,x) = g(x),

It is convenient to reformulate (9.49) as a Cauchy problem in the Hilbert
space X = L2(12), namely

(9.50) dt u = Au, u(0) = g ,

for a suitable (unbounded) linear operator A : L2(12) H L2(1t). More pre-
cisely

(9.51) A = -L, Dom(A) _ {u e Ho(12); Lu E L2(S2)} .

In other words, u e Dom(A) if u is the solution to the elliptic boundary
value problem (9.2), for some f e L2(S2). In this case, Au = -f.



9.2. Parabolic equations 201

Our eventual goal is to construct solutions of (9.50) using semigroup
theory. We first consider the case where the operator L is strictly positive
definite on Ho (St). More precisely, we assume that there exists /3 > 0 such
that the bilinear form B : Ho (St) x Ho (St) H ][8 defined at (9.11) is strictly
positive definite: there exists /3> 0 such that

(9.52) B[u, u] > /3IIuIIi for all u E Ho (St) .

Notice that this is certainly true if bz - 0 and c > 0.

Theorem 9.18 (Semigroup of solutions of a parabolic equation.
I). Let the standard hypotheses (H) hold, together with (9.48). Moreover,
assume that the corresponding bilinear form B in (9.11) is strictly positive
definite, so that (9.52) holds.

Then the operator A = -L generates a contractive semigroup {St; t >
0} of linear operators on L2(S2).

Proof. To prove that A generates a contraction semigroup on X = LZ(SZ),
we need to check the following:

(i) Dom(A) is dense in L2(S2).

(ii) The graph of A is closed.

(iii) Every real number \ > 0 is in the resolvent set of A, and

1. To prove (i), we observe that, if cp E C (SZ), then the regularity assump-
tions (9.48) imply f = Lcp E L2(St). This proves that Dom(A) contains the
subspace C(f2) and therefore it is dense in L2(S2).

2. If (9.52) holds, then, by the Lax-Milgram theorem, for every f E L2(St)
there exists a unique u E Ho (SZ) such that

B[u, v] _ (f, v)La for all v E Ho (S2) .

The map f -+ u = L' f is a bounded linear operator from L2(S2) into
L2(SZ).

We observe that the pair of functions (u, f) lies in the graph of A if and
only if (-f, u) is in the graph L-1. Since L-1 is a continuous operator, its
graph is closed. Hence the graph of A is closed as well.

3. According to the definition of A, to prove (iii) we need to show that, for
every )¼ > 0, the operator )I - A has a bounded inverse with operator norm
II(,\I - A)-'II < )-1.. Equivalently, for every f E L2(SZ), we need to show
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that the problem

(9.53)
x E SZ ,fAu+Lu =f,

U = 0, x E aSZ ,

has a weak solution satisfying

(9.54) IIuIIL2 :5;; If 11L2.

By the Lax-Milgram theorem, there exists a unique u E Ho (St) such that

(9.55) (Au, v)L2 + B[u, v] _ (f, v)L2 for all v E H(1).

Taking v = u in (9.55), we obtain

aIIuIIL2 + B[u, u] _ (f,u)L2 <_ If IIL2IIuIIL2.

Since we are assuming B(u, u] > 0, this yields

AIIuIIL2 <_ 11/ 11L2,

proving (9.54).

4. We can now use Theorem 7.13 and conclude that the linear operator A
generates a contrastive semigroup. U

9.2.1. Representation of solutions in terms of eigenfunctions. Con-
sider the special case where azj = a2 and L is the operator in (9.20), con-
taining only second-order terms. In this case, by Poincare's inequality, the
bilinear form B in (9.22) is strictly positive definite and Theorem 9.18 can
be applied.

Using Theorem 9.9, one obtains a representation of the semigroup tra-
jectories in terms of an orthonormal basis {k; k > 1} of eigenfunctions of
the compact selfadjoint operator L-1. By construction, for every k > 1 one
has

Akyk,

where Ak > 0 is the corresponding eigenvalue. Therefore

(9.56) E Dom(L), Lqk = /-k c5k, µk _ k .

Notice that Ak -f 0 and µk -f oo, as k -+ oo. For every k > 1, the function

u(t) =
provides a Ci solution to the Cauchy problem

tu(t) _ -Lu(t), u(0) _ k .
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Hence, by the uniqueness of semigroup trajectories, one must have

Stcbk = e-l`ktcbk

By linearity, for any coefficients cl,... , cjsr E R one has

N N

st(Ckk) = cke_tcbk.
k=1 k=1

Since St is a bounded linear operator, decomposing an arbitrary function
g E L2(1Z) along the orthonormal basis {q5,; k > 1}, we thus obtain

(9.57) st9 =
k=1

The above representation of semigroup trajectories is valid for every g E
L2(12) and every t > 0.

Lemma 9.19. Let L be the operator in (9.20). Then for every g E L2(St)
the formula (9.57) defines amap t H ut = Stg from [0, oo[ into L2(12). This
map is continuous for t E [0, oo[ and continuously differentiable fort > 0.
Moreover, u(t) E Dom(L) C H(1) for every t> 0 and

(9.58) tu(t) = Lu(t) for all t > 0.

Proof. 1. Let g E LZ(SZ). Since µ > 0 for every k, it is clear that
2

:c (g,q5k)2.

Therefore,

l c (g,q5k)2 - II9IIL2 < oo .
/c> 1 k> 1

Hence the series in (9.57) is convergent, uniformly fort > 0. In particular,
since the partial sums are continuous functions of time, the map t H Stg is
continuous as well.

2. We claim that, even if g Ho (1), one always has

(9.59) Stg E Dom(L) C H(1) for all t > 0.

Indeed, afunction u = >k lies in Dom(L) if and only if the coeffi-
cients ck satisfy

k
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In the case where ck(t) = e-µkt(g, q5k)L2, we have the estimate
2

(9.60) (lik Ck(t))2 SkP (µk e-1tl (9, k)L2.
1

An elementary calculation now shows that, for > 0 and t fixed, the function
e-t attains its global maximum at = 1/t. Therefore,

1µ e-I'`t < maxi>o e-tg -
to

Using this bound in (9.60), we obtain

2(ct)
k=1

1
t2e2 11911i2

Hence the series defining Lu(t) is convergent. This implies u(t) E Dom(L),
for each t> 0.

3. Differentiating the series (9.57) term by term and observing that the
series of derivatives is also convergent, we achieve (9.58).

Example 9.20. As in Example 9.10, let Sl = ]0, ir[ C R and Lu = -u.
Given g e L2(]0, ir[), consider the parabolic initial-boundary value problem

ut = t>0, 0<x<ir,
u(0,x) = g(x), 0< x <ir,

( u(t, 0) = u(t, ir) = 0.
In this special case, the formula (9.57) yields the solution as the sum of a
Fourier sine series:

u(t, x) _ V Z (J g(y) sin ky dy) sin kx.
k=1 o

9.2.2. More general operators. To motivate the following construction,
we begin with afinite-dimensional example. Let A be an n x n matrix and
consider the linear ODE on II8n

(9.61) tx(t) _ -Ax(t).

If A is positive definite, i.e., if (Ax, x) > 0 for all x e ][8n, then -A generates
a contractive semigroup. Indeed

dt Ix(t)I2 = Z (x(t), x(t)> = 2 (-Ax(t), x(t)) <_ o,

showing that the Euclidean norm of a solution does not increase in time.
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Next, let A be an arbitrary matrix. We can then find a number ry >
0 large enough so that A + ryI is positive definite, and hence the matrix
-(A+ryI) generates a contrastive semigroup. In this case, if x(t) = e-tAx(0)
is a solution to (9.61), writing -A = ryI - (A + ryI), one obtains

I x(t) = le-Atx(O)I

= IeI_M+lltx(0) I
(9.62)

= &7tIe_1)tx(0)I

C ex(0)I.
According to (9.62), the operator -A generates a semigroup of type ry.

We shall work out a similar construction in the case where L is a general
elliptic operator, as in (9.1), and the corresponding bilinear form B[u, v] in
(9.11) is not necessarily positive definite. According to Lemma 9.12, there
exists a constant 'y> 0 large enough so that the bilinear form

(9.63) B[u,v] = B[u,v]+'Y(u,v)r.2
is strictly positive definite on Ho (St). We can thus define

Lyu = Lu + ryu , B,y[u, v] = B[u, v] +ry(u, v)L2 .

The parabolic equation in (9.49) can now be written as

ut = -Lyu + ryu .
By the previous analysis, the operator A.y = -(L + ryI) generates a con-
tractive semigroup of linear operators, say {S; t > 0}. Therefore, the
operator A = -L = ryI - Ly defined as in (9.51) generates a semigroup of
type ry. Namely {St; t > 0}, with

St = eryt S, t> 0.

Summarizing the above analysis, we have

Theorem 9.21 (Semigroup of solutions of a parabolic equation.
II). Let S2 C ][8n be a bounded open set. Assume that the operator L in (9.1)
satisfies the regularity conditions (9.48) and the uniform ellipticity condition
(9.4).

Then the operator A = -L defined at (9.51) generates a semigroup
{St; t > 0} of linear operators on LZ(S2).

Having constructed a semigroup {St; t > 0} generated by the operator
A, one needs to understand in which sense a trajectory of the semigroup
t H U(t) = St f provides a solution to the parabolic equation (9.49). In the
case where L is the symmetric operator defined in (9.20), the representation
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(9.57) yields all the needed information. Indeed, according to Lemma 9.19,
for every initial data g e LZ(SZ) the solution t H u(t) = Stg is a Cl map,
which takes values in Dom(L) and satisfies (9.58) for every t > 0.

A similar result can be proved for general elliptic operators of the form
(9.1). However, this analysis is beyond the scope of the present notes. Here
we shall only make a few remarks:

(1) Initial condition. The map t H u(t) = Stg is continuous from [0, oo[
into L2(12) and satisfies u(0) = g. The initial condition in (9.49) is thus
satisfied as an identity between functions in L2(12).

(2) Regular solutions. If g e Dom(A), then u(t) = Stg E Dom(A) for
all t > 0. Moreover, the map t H u(t) is continuously differentiable and
satisfies the ODE (9.50) at every time t > 0. Since Dom(A) C H(1), this
also implies that u(t) satisfies the correct boundary conditions, for all t > 0.

(3) Distributional solutions. Given a general initial condition f E L2(12),
one can construct a sequence of initial data fn, E Dom(A) such that Il/rn -
/IlL2 -+ 0 as m -+ oo. In this case, if the semigroup is of type y, we have

II5t/rnSt/IIL2 < e"`IISm-fIILa.

Therefore the trajectory t H u(t) = St f is the limit of a sequence of Ci
solutions t H Urn(t) = St The convergence is uniform for t in bounded
sets.

Relying on these approximations, we now show that the function u =
u(t, x) provides a solution to the parabolic equation

n n

(9.64) ut = (a2 b2 c(x)u
i,j=1 i=1

in the distributional sense. Namely, for every test function Sp e C ° (f x JO, oo [) ,

one has

n n

(9.65) uSPt + u(a2 SP c dx dt = 0.
i,j=1 i=1

To prove (9.65), consider a sequence of initial data fn, E Dom(A) such that
Il/rn - /IlL2 -+ 0. Then, for any fixed time interval [O, T], the trajectories
t H Urn(t) = St converge to the continuous trajectory t H U(t) = St f in
C°([O,T] ; LZ(SZ)). Since each v,rn is clearly a solution in the distributional
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sense, writing
n n

{umot um (a2 um C umco dx dt = 0
i,j=1 i=1

and letting m -+ oo, we obtain (9.65).

9.3. Hyperbolic equations

In this last section we consider the linear hyperbolic initial-boundary value
problem

(9.66)
utt + Lu = 0,

u(t, x) = 0,
u(O,x) = f(x), ut(O,x) = g(x),

tEIf, xE1,
tEIf, xED1,
XEIl.

Compared with (9.49), notice that here we are taking two derivatives with
respect to time. The system (9.66) can thus be regarded as a second-order
evolution equation in the space L2(12). For simplicity, we shall only treat
the case where L is the homogeneous second-order elliptic operator

n
(9.67) Lu = -

2,7=1

assuming that the coefficients aZ satisfy
(9.68)

n
at2 = a22 E WIO°(S2), ai'(x)> 8ii2 for all x E SZ, E IIftn.

i,j=1

According to Theorem 9.9, the space L2(1l) admits an orthonormal basis
{¢k; k > 1} consisting of eigenfunctions of L, so that

(9.69) E Dom(L), Lqk = µk k,
for a sequence of strictly positive eigenvalues µk -+ +oo as k -+ oo. It is
thus natural to construct a solution of (9.66) in the form

00

(9.70) u(t, x) _ ck (t) k (x) .
k=1

Taking the inner product of both sides of (9.70) with k, we see that each
coefficient should satisfy the linear second-order ODE

(9.71) Cj' + Q ck(0) - (k, 9)L2
ck(0) - (k, h)L2.

The following analysis will show that the formal expansion (9.70)-(9.71) is
indeed valid, provided that the initial data satisfy

(9.72) g E Ho (S2) , h E LZ (SZ) .
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As a first step, let us rewrite (9.66) as a first-order system, setting v = ut.
On the product space

(9.73) X = H(1) X
we thus consider the evolution problem

d (U\ - (0 I'\ U'
(9.74) d Ivl I-L 01Iv1' (v)

(0) = Igl.

In the special case where

(9.75) f =
a bk e ll8, an explicit solution of (9.74) is found in

the form
U(t) = Ck(t)k, v(t) = Ut(t) = c'k(t)k,

where the coefficient ck(t) satisfies

ck'(t) +µk ca(t) = 0, ck(0) = ak, ck(0) = bk.

An elementary computation yields

Ck(t) = Clk COS( µk t) + bk
sin µk t).

Hence

(9.76)
u(t)v(t) - cos( µk t) µk sin( µk t)

- µ sin( /it) t) cos( µk t)
Cak kl
bk cbk,

Observe that t H (u(t), v(t)) is a continuously differentiable map from 1[8
into H0' (1) x L2(St) which satisfies the initial conditions and the differential
equation in (9.74).

By taking linear combinations of solutions of the form (9.76), we now
obtain a group of linear operators:
(9.77)

fl cos( µk t)
`9 k_1 - µk sin (/it)t)

sin( µk t)
cos( µ t)

((f, k)La cI5k 1

9,q5k)L2q5k%

The next theorem shows that {St; t e 1[8} is actually a group of linear
isometries on the product space X = H0' (1) x L2(1t), with the equivalent
norm

.(9.78) I= (
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xl

Figure 9.3.1. An elastic membrane, clamped along the boundary
of the domain 11, whose points vibrate in the vertical direction.

Remark 9.22. Consider an elastic membrane which occupies a region St in
the plane, is clamped along the boundary aSt, and is subject to small vertical
vibrations (Figure 9.3.1). Let u(t, x) denote the vertical displacement of a
point x on this membrane, at time t. Then the quantity IRu, ut) IIx can be
regarded as the total energy of the vibrating membrane. Indeed, the term
B[u,u] describes an elastic potential energy, while IIutII2 Yields the kinetic
energy.

Theorem 9.23 (Solutions of a linear hyperbolic problem). In the
above setting, the formula (9.77) defines a strongly continuous group of
bounded linear operators {St; t E I[8} on the space X = Ho (SZ) x L2(S2).
Each operator St X H X is an isometry with respect to the equivalent
norm (9.78).

Proof. 1. The equivalence between the norm (9.78) and the standard prod-
uct norm

Iv)Ilx' xc2
li2

_ (iiuiiii + I

is an immediate consequence of (9.23).

2. Let the functions f, g be given by

,f = 9 =
lc=1 k=1

with CElc = (f, k)L2, bk = (9, k)L2.

Then

B[f, f] _ (µk akq, akck)L2 = µc ak
k=1 lc=1

00

9i2 = bk

k=1
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Therefore (f) E X if and only if

(9.79)
00 00 00

µk ak = Pk (f, cbk/LZ <
k=1 k=1

00,

If (f) E X, then for every t E lI8 the series defining St (g)

convergent. Introducing the coefficients

(9.80)

cos( µk teak + µk sin( /it) t) bk,

in (9.77) is

a( t) _ - µk sin( µk t) ak + cos( µk t) bk,

at any time t we have

(9.81)
Il St \9l XII2

µk lak(t)l2 + bk(t)=
k=1 k=1 \9

2

x
This shows that each linear operator St is an isometry with respect to the
equivalent norm ' lix.

3. We claim that the family of linear operators {St ; t E ][8} satisfies the
group properties

(9.82) Sp l g l = (), 5t59 1 g 1 = 5t+9 (), t, s E ][8.

Indeed, (9.82) is clearly satisfied for initial data f, g of the special form
(9.75). By linearity and continuity, it must hold for all initial data.

To complete the proof, we need to show that, for f, g fixed, the map

t - St (f)
g

is continuous from II8 into X. But this is clear, because the

above map is the uniform limit of the continuous maps

(9.83) t H St (gm)
,

m m

,fm = (f,cbk)L2cbk, 9m = (g,cbk)2cbk,
k=1 k=1

&S17L-00.

Having constructed the group of linear operators {St; t E ][8}, we still
need to explain in which sense the trajectories

(9.84) t H I vet) I St 19 I

provide a solution to the hyperbolic initial-boundary value problem (9.66).



9.3. Hyperbolic equations 211

(1) The initial and boundary conditions are satisfied. Consider an

arbitrary initial data (f) E X = Ho (S2) x L2(12). By the continuity of the
9

map in (9.84), it follows that

IIu(t) - fIIH' - 0, IIv(t) - 0 as t - 0.
Hence the initial conditions in (9.66) are satisfied.

Moreover, by the definition of the space X, we have u(t) E Ho (St) for
all t > 0. Hence the boundary condition u = 0 on 811 is also satisfied.

(2) The hyperbolic equation is satisfied in the distributional sense.
If both functions f and g are finite linear combinations of the eigenfunctions
cbk, then the corresponding trajectory (9.84) is a continuously differentiable
map from ][8 into X, and it satisfies (9.74) at all times t> 0.

More generally, given initial data f e Ho (St) and g e L2(11), one can
construct a sequence of approximations f,,,,, g71, as in (9.83), so that IIfrn -
fIIH' + 0, IIrn - 9IIL2 -+ 0 as m -+ oo. The corresponding semigroup

trajectories t H St I gm I converge to the trajectory (9.84),

uniformly for t e R. Relying on these approximations, we now show that
the function u = u(t, x) provides a solution to the hyperbolic equation

n
utt = ( a23( x } uxZ }x

in the distributional sense. Indeed, consider any test function p E
C'°(]0, oo [ x SZ } . Since each u,n = Urn (t, x) is a distributional solution
of (9.66),

n

{urn cott + a(x) (um)xZcox }dx dt = 0.

Letting m -+ oo and using the convergence I-u(t)IIx1 -+ 0, uniformly
for t e ][8, we obtain

n

{ucott + a2j (x} cp dx = 0.

Example 9.24. Let 12 = ]0, ir[ C I[8 and Lu = -u. Given f e H(11) and
g e LZ(]O,ir[), consider the hyperbolic initial-boundary value problem

utt = uxx, t>0, 0CxG7f,
u(0, x) = f(x), ut(0, x) = g(x), 0 <x < ir,

( u(t,0) = u(t,ir) = 0.
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In this special case, the formula (9.77) yields the solution in terms of a
Fourier sine series:

00

u(t, x) = ! L

cos kt (ff(Y) sin kydy)
k=1

sin kt

C

/'" ) 1
+

k
J g(y) sin ky dy J J sin kx.

0

1. Let 1 = {(x, y) ; x2+Y2 < 1 } be the open unit disc in R2. Prove that, for every
bounded measurable function f = f (x, y), the problem

r 16XX + x'lbXy + 16yy = f on Q,
Sl u = 0 on all

has a unique weak solution.

2. Let Il = {(X, y) ; x2 + y2 < 11 be the unit disc in R2. On the space X = Ho (1),
consider the inner product

(u, V) O = Jn [uxvx + 2uyvy + y(uxvy + uyvx)] dxdy.

(i) Prove that is indeed an inner product on X, which makes X a
Hilbert space.

(ii) Given f E L2(1), show that there exists a unique u E X such that

(u,v)p = forall vX=H(1).
z

What elliptic equation does u solve ?

3. Consider the differential operator on ]R2

Lu = -(xux)x - (yuy)y + 2uxy + 3(ux + uy) - 6u.

Determine for which bounded open sets 1 C ]R2 it is true that the operator L is
uniformly elliptic on Q.

4. Let 12 C ]Rn be a bounded open set. Let /3 > 0 be the best constant in Poincar6's
inequality, namely

0 = sup 5 IIuIILz(c) ; u E H o (1l), II VUIILZ(n) < 1} .
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(i) Establish a lower bound on the eigenvalues of the operator Lu = -Au.
More precisely, if 0 E Ho (1) provides a nontrivial weak solution to

0 = p0, x E 0,
q = 0, xE8S2,

prove that p > 1/192.

(ii) Prove that the solution of the parabolic initial-boundary value problem

Ut = Du, t>0, X E SZ ,
u(t, x) = 0, t>0, x E 8St ,
u(0, x) = g(x), x E Q,

decays to zero as t -+ oo. Indeed, HUM IIL2 < e-t/a2 II9IIL2 for every t > 0.

5. Let Il C Il C R' be bounded open sets. Let 0 < pi < µ2 < ... be the eigenvalues
of the operator -A on H1Q, and let 0 < µl < µ2 < ... be the eigenvalues of the
operator -A on Ho (1l). Prove that µl < pl.

6. On the interval [0, T], consider the Sturm-Liouville eigenvalue problem

(9.85)
(p(t)u')'+ q(t)u = M u, 0 < t < T ,

1 u(0) = u(T) = 0.
Assume that

pECl(]0,T[), qEC°([0,T]), p(t)>9>0 forallt.

Prove that the space L2([0, T]) admits an orthonormal basis {!pk ; k > 1}
where each cbk satisfies (9.85), for a suitable eigenvalue µk. Moreover, µk -+ -00
as k -+ oo.

7. In Theorem 9.9, take Lu = -Au. Let {cbk ; k > 1} be an orthonormal basis
of L2 (Il) consisting of eigenfunctions of L'. Show that in this special case the
eigenfunctions cbk are also mutually orthogonal with respect to the inner product
in Hl, namely (0j, 0k)H1 = 0 whenever j # k.

8. Consider the open rectangle Q (x, y) ; 0 < x < a, 0 < y < b}. Define the
functions

cbm,n(x,y) = b
sinmax sinnby, m,n> 1.

(i) Check that cbm,n E Ho (Q). Moreover, prove that the countable set of
functions {cbm,n ; m, n > 1} is an orthonormal basis of L2(Q) consist-
ing of eigenfunctions of the elliptic operator Lu = -Au. Compute the
corresponding eigenvalues µm,n .

(ii) If Il C R2 is an open domain contained inside a rectangle Q with sides
a, b, prove that

IIuIIL2(c) <-
a2+ 62 IIVUIIL2(c) for all u E Ho (0) .
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9. In the setting of Theorem 9.16, assume that, for every f E L2(1), the elliptic
boundary value problem (9.2) has a unique solution. Prove that the solution map
f u is a compact operator from L2(1) into itself.

10. (Galerkin approximations) Let 11 C RT be a bounded open set. Let
IV,,; k > 1},'Pk E Ho '(Q), be an orthonormal basis of L2(Q) consisting of eigen-
functions of the Laplace operator A.

Let the operator L in (9.1) be uniformly elliptic and assume that the corre-
sponding bilinear form B[., ] in (9.11) is strictly positive definite.

Given f E L2(Q), construct a sequence of approximate solutions um to the
boundary value problem (9.2) as follows.

(i) For a fixed m > 1, define
m

(9.86) um(x) _ > ck (vk(x)
k=1

choosing the coefficients c1 i . . . , c,,,, so that

(9.87) B[um., c C j I= (f, Vj)L2, 7 = 1, ... , m .

Show that (9.87) yields an algebraic system of m linear equations for the
m variables cl i ... , c,,,,. Prove that this system has a unique solution.

(ii) Letting m - oo, prove that the sequence um is uniformly bounded in
H01(0), hence it admits a weakly convergent subsequence, say umi U.

Prove that u is a weak solution to (9.2). By uniqueness, show that the
entire sequence converges: um - u as m -* oo.

11. On the open interval SZ = ]0, 3[ , consider the boundary value problem

(9.88)
uxx = 1, 0 < x < 3,
u(0) = u(3) = 0.

Consider the two linearly independent functions V1, cp2 E Ho (]0, 3[ ), defined by

I x if x E [0,1] , 0 if x E [0,1] ,

V1 (x) = 2 - x if x E [1, 2], V2 (X) = x - 1 if x E [1, 2] ,

0 if x E [2, 3] , 3 - x if x E [2, 3] .

Explicitly compute the Galerkin approximation U(x) = cicpl(x) + c2cp2(x) such
that

3

fo

3

B[U, ci] = J U. . ci,x dx = 1 Vi dx
0

Com pare U with the exact solution of (9.88).

= (1, Vi)L2,

12. Let f = {(x, y) ; x2 + y2 < 1} be the open unit disc in R2, and let u be a
smooth solution to the equation

(9.89) utt = 2uxx + yuxy + 3uyy + tux, on Q x [0, T],

u = 0, on of x [0, T1.
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(i) Write the equation (9.89) in the form utt + Lu = 0, proving that the
operator L is uniformly elliptic on the domain Q.

(ii) Define a suitable energy e(t) = [kinetic energy] + [elastic potential en-
ergy], and check that it is constant in time.

13. Consider the homogenous linear elliptic operator L in (9.20) assuming that
(9.4) holds, together with air = ajz E L°°(52). Extending the argument used in
Lemma 9.7, work out the following alternative proof of Theorem 9.8.

(i) Show that the bilinear functional B in (9.22) is an inner product on
Ha (52). The corresponding norm

1/2

Ilullo = a2'(x)uxju.,
2.7=1

is equivalent to the H1 norm. Namely,

C, IIuIIH1 < JJuJI0 < CIjuIIH1 for all u E Ho (52) .

(ii) Call Hp the Hilbert space Ho endowed with this equivalent norm. Follow-
ing the proof of Lemma 9.7, construct the solution of (9.19) as u = t* f ,
using the following diagram:

Hp (S2) -L L2 (52),

HO(f) = [HO(S2)]* 4- [L 2(c)]* = L2(52) .
Here t is the canonical immersion of Hp into L2, while t* is its adjoint
operator.

14. Let SZ C RN be a bounded open set. In the same setting as in Lemma 9.19,
prove that the map t a u(t) is C° from ] 0, T] into L2 (52).

15. (Neumann's problem) Let 52 be a bounded connected open set with smooth
boundary 852. By definition, a function u c H1(52) is a weak solution of Neumann's
problems

(9.90)

-Du = f, xE52,

8u

8V-
= 0, x E 852,

if

fVu.Vvdx
r

(9.91) = J f v dx for all v E Hs ().
s sa

'Here and in the sequel,
TV-

denotes the derivative of u in the direction of the outer normal
to the boundary of ).
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Given f E L2(c), prove that Neumann's problem (9.90) has a weak solution if and
only if

L
> 0 the bilinear formHint: As a first step, show that for ry

j(Vu.Vv+7uv)dxBry[u,v] =

is strictly positive definite on H1 (0). Express the weak solution of (9.90) in terms
of the inverse operator L-1, where L..U = -DU + ryU.

16. (Biharmonic equation) Let SZ C R.' be a bounded open set with smooth
boundary. A function u E HO '(Q) is a weak solution of the biharmonic equation

(9.92)

A,U = f, xESt,

8U = 0 x E 00
8v

, ,

if

f
f

(9.93) Au Av dx = J f v dx for all v E Ho (SZ).
sz

Given f E L2(SZ), prove that the boundary value problem (9.92) has a unique
weak solution. Hint: Show that the bilinear form B[u, v] on Ha (SZ) defined by the
left-hand side of (9.93) is strictly positive definite on Ho (SZ).



Appendix

Background Material

A.1. Partially ordered sets

A set S is partially ordered by a binary relation -< if, for every a, b, c E S,
one has

(i) aa,
(ii) a-<bandbaimplies a=b,
(iii) a b and b c implies a c.

A subset S' C S of a partially ordered set S is said to be totally ordered
if, for every a, b E S', one has either a -< b or b -< a. We say that the subset
S' is maximal (with respect to the property of being totally ordered) if S'
is not strictly contained in any other totally ordered set.

Using Zorn's lemma, or the axiom of choice, one can prove

Theorem A.1 (Hausdorff Maximality Principle). If S is any partially
ordered set, every totally ordered subset S' C S is contained in a maximal
totally ordered subset.

A.2. Metric and topological spaces

A distance on a set X is a map d : X x X -+ R+ satisfying the following
three properties:

(1) positivity: d(x, y) > 0, d(x, y) = 0 if and only if x = y,

(2) symmetry: d(x, y) = d(y, x),

217



218 Appendix. Background Material

(3) triangle inequality: d(x, z) < d(x, y) + d(y, z).

A set X endowed with a distance function is called a metric
space.

The open ball centered at a point x with radius r > 0 is the set

B(x, r) = {y E X ; d(y, x) < r}.

In turn, a metric determines a topology on X.
A subset A C_ X is open if, for every x E A, there exists a radius r > 0

such that B(x, r) C A.
A subset C C X is closed if its complement X \ C = {x E X ; x C}

is open.

If B(x, r) C_ A for some r > 0, we say that A is a neighborhood of the
point x, or equivalently that x is an interior point of A.

The union of any family of open sets is open. The intersection of
finitely many open sets is open.

The intersection of any family of closed sets is closed. The union of
finitely many closed sets is closed.

The entire space X and the empty set 0 are always both open and closed.
If there exists no other subset S C X which is at the same time open and
closed, we say that the space X is connected.

A sequence (xn)n>l converges to a point x E X if

lim d(xn, x) = 0 .
n-3oo

In this case, we write limnioo xn = x or simply xn -+ x.
The closure of a set A, denoted by A, is the smallest closed set contain-

ing A. This is obtained as the intersection of all closed sets containing A. A
point x lies in the closure of the set A if and only if there exists a sequence
of points xn E A that converges to x.

A subset S C X is dense in X if S = X. This is the case if and only if
S intersects every nonempty open subset of X. The space X is separable
if it contains a countable dense subset.

A sequence (xn)n>i is a Cauchy sequence if for every E > 0 one can
find an integer N large enough so that

d(xm, xn) < E whenever m, n > N.

The metric space X is complete if every Cauchy sequence converges to
some limit point x E X.
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If X, Y are two metric spaces, a map f : X H Y is continuous if, for
every open set A C Y, the pre-image f -1(A) = {x E X ; f (x) E Al is an
open subset of X.

A map f : X -* Y is continuous if and only if, for every xo E X and
e > 0, there exists S > 0 such that

d(x, xo) < S implies d(f (x), f (xo)) < e.

We say that a function f : X F-3 Y is Lipschitz continuous if there
exists a constant C > 0 such that

d(f (x), f (x')) < C C. d(x, x') for all x, x' E X.

More generally, we say that f : X -4 Y is Holder continuous of exponent
0 < cY < 1 if there exists a constant C such that

d (f (x), f (x')) < C C. [d(x, x')] « for all x, x' E X.

A collection of open sets {Ai ; i E Z} such that K C UiEZ Az is called an
open covering of the set K. Here the set of indices I may well be infinite.
A set K C X is compact if, from every open covering of K, one can extract
a finite subcovering.

A set S is relatively compact if its closure S is compact.
A set S is precompact if, for every e > 0, it can be covered by finitely

many balls with radius e.

Theorem A.2 (Compact subsets of R"). A subset S C R1 is compact
if and only if it is closed and bounded.

Theorem A.3 (Equivalent characterizations of compactness). Let S
be a metric space. The following are equivalent:

(i) S is compact.
(ii) S is precompact and complete.

(iii) From every sequence (xk)k>1 of points in S one can extract a sub-
sequence converging to some limit point x E S.

A.2.1. Fixed points of contractive maps. Let 0 : X -+ X be a map
from a complete metric space X into itself. A point x* such that O(x*) = x*
is called a fixed point of 0. For a strictly contractive map, the fixed point
is unique and can be obtained by a simple iterative procedure.

Theorem A.4 (Contraction Mapping Theorem). Let X be a complete
metric space, and let : X -+ X be a continuous mapping such that, for
some n < 1,

(A.1) d(O(x), q(y)) < rsd(x, y) for all x, y E X.
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Then there exists a unique point x* E X such that

(A.2) x* = q(x*).

Moreover, for any y E X one has

(A.3) d(y, x*) :
1

1 d(y, 0(y))

Proof. Fix any point y E X and consider the sequence

Yo = y, y1 = O(yo), ..., yn+1 = cb(yn),

By induction, we have

d(y2, y1) < rc d(y1, yo),

d(y3, y2) rcd(y2, y1) < ic2 d(y1, yo),

d(yn+l, yn) < rc d(yn, yn-1) < lcnd(y1, yo) ,cnd(O(y), y)

For m <n we have
(A.4)

n-1 n-1 ,n,

d(yn,ym) :5 d(yj+l,yj) :5 ,j d(y, c(y)) < 1k d(y, 0(y))
j=m j=m

Since rc < 1, the right-hand side of (A.4) approaches zero as m -3 00.
Hence the sequence (yn)n>l is Cauchy. Since X is complete, this sequence
converges to some limit point x*. By the continuity of 0 one has

x* myn cb(yn-1) = 0 ( I Yn-1) = O(x*)i

hence (A.2) holds. The uniqueness of the fixed point x* is proved observing
that, if

XI = q5(xl), x2 = Y'(x2),

then by (A.1) it follows that

d(x1,x2) = d(O(xl), ¢(x2)) : rcd(xl,x2)

The assumption rc < 1 thus implies d(x1i X2) = 0 and hence x1 = x2.
Finally, using (A.4) with m = 0, for every n > 1 we obtain

d(yn, y) : 1 1
K
d(y, 0(y))

Letting n -3 oo, we obtain (A.3).
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A.2.2. The Baire category theorem. Let X be a metric space. Among
all subsets of X we would like to define a family of "large sets" and a family
of "small sets" with the following natural properties:

(i) A set S C X is large if and only if its complement X \ S is small.
(ii) The intersection of countably many large sets is large.

(iii) A large set is nonempty.

If a probability measure p on X is given, one can call "large sets" the
sets having probability one, and "small sets" those with probability zero.
With such definition, all properties (i)-(iii) are clearly satisfied.

If the metric space X is complete, relying on Baire's category theory,
one can still introduce a concept of "large sets" and "small sets", based
exclusively on the topological structure. Namely, we say that a set S C_ X
is of second category (i.e., "topologically large") if S is the intersection of
countably many open dense sets. On the other hand, a set S C_ X is said to
be of first category, or equivalently meager (i.e., "topologically small"), if
S is the union of countably many closed sets with empty interior. From the
definition, it is clear that these topologically large or small sets satisfy the
above properties (i) and (ii). The fact that (iii) also holds is an important
consequence of the following theorem.

Theorem A.5 (Baire). Let (Vk)k>1 be a sequence of open, dense subsets
00of a complete metric space X. Then the intersection V = n 1 Vk is a

nonempty, dense subset of X.

Proof. Let 0 C X be any open set. We need to show that (n-k1 Vk) n n
is nonempty.

Choose a point xo and a radius ro < 1 such that B(xo, 3ro) C Q.
By induction, for every k > 1 we choose a point Xk and a radius rk such

that B(xk, 3rk) C Vk fl B(xk_1i rk_1). This is possible because Vk is open
and dense. For each k > 1, the above choice implies

rk 1
rk+1

3
, d(xk+1, Xk) :5 rk < 3k

Therefore, the sequence (xk)k>1 is Cauchy. Since X is complete, this se-
quence has a limit: xk -+ x* for some x* E X. We now observe that

00 00 00
32rkd(x*, xk) < E d(xj+1, xj) < E rj < 3k-jrk

j=k j=k jj=k

Therefore, for every k > 1,

x* E B(xk, 3rk) C Vk .
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When k = 0, this same argument yields x* E B(xo, 3ro) C Q. Hence

x* E ((lk 1 vk) n Q. o

A.3. Review of Lebesgue measure theory

A.3.1. Measurable sets. A family F of subsets of Rn is called a a-
algebra if

(i) 0EFandRnEF,
(ii) if A E F, then R' \ A E F,
(iii) if Ak E F for every k > 1, then U' 1 Ak E F and (lo 1 Ak E F.

Theorem A.6 (Existence of Lebesgue measure on Rn). There exists
a a-algebra F of subsets of Rn and a mapping A H mn(A), from F into
[0, +oo], with the following properties.

(i) F contains every open subset of Rn and hence also every closed
subset of R n.

(ii) If B is a ball in Rn, then mn(B) equals the n-dimensional volume
of B.

(iii) If Ak E F for every k > 1 and if the sets Ak are pairwise disjoint,
then

00 00

Mn U = Emn(Ak) (countable additivity).
k=1 k=1

(iv) If A C B with B E F and mn(B) = 0, then also A E F and
mn(A) = 0.

The sets contained in the a-algebra F are called Lebesgue measurable
sets, while mn(A) is the n-dimensional Lebesgue measure of the set
AEF.

If a property P(x) is true for all points x E Rn, except for those in
a measurable set N with mn (N) = 0, we say that the property P holds
almost everywhere (a.e.).

A function f : II8n -+ R is measurable if

f -1(U) {x E R ; f (x) E U} E F

for every open set U C R.

Every continuous function is measurable. If f, g are measurable, then
f + g and f g are measurable. Given a uniformly bounded sequence of
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measurable functions (fk)k>1, the functions defined as

f *(x) = limsup fk(x) , f. (x) = lim inf fk(x)
k-+oo

are both measurable. The essential supremum of a measurable function
f is defined as

ess sup f = inf {a E R; f (x) < a for a.e. x E Rn}.

Theorem A.7 (Egoroff). Let (fk)k>1 be a sequence of measurable func-
tions, and assume the pointwise convergence

fk(x) - f (x) for a.e. x E A,

for some measurable function f and a measurable set A C Rn with mn(A) <
oo. Then for each e > 0 there exists a subset E C A such that

(i) mn(A \ E) < e,
(ii) fk f uniformly on E.

A.3.2. Lebesgue integration. In order to define the Lebesgue integral,
one begins with a special class of functions. The characteristic function
of a set A is

1 ifxEA,
XA(x) 0

A function taking finitely many values, i.e., having the form
N

(A.5) g(x) _ Ci XAi (x),
i=1

for some disjoint measurable sets A,,. . . , AN C R1 and constants cl, ... , cN E
R, is called a simple function. If the function g in (A.5) is nonnegative,
its Lebesgue integral is defined by

fgdx = cimn(Ai)
i=1

As before, mn(Ai) denotes the n-dimensional Lebesgue measure of the set
Ai. More generally, if f : Rn H R is a nonnegative measurable function, its
Lebesgue integral is defined as(

f f dx = sup { f g dx ; g is simple, g < f } .

S l n

For any measurable function f : Il8n H R, its positive and negative parts
are denoted as

f+ = max{ f, 0}, f_ = max{- f, 0}.
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We then define the Lebesgue integral of f as

(A.6) f f dx = f f+ dx - f f_ dx
n n n

provided that at least one of the terms on the right-hand side is finite. In
this case we say that f is integrable. Notice that the integral in (A.6) may
well be +oo or -oo.

A measurable function f : Rn H R is summable if

I f I dx < oo.

We say that f is locally summable if the product f
XK

is summable for

every compact set K C R.

The Lebesgue integral has useful convergence properties.

Theorem A.8 (Fatou's lemma). Let (fk)k>1 be a sequence of functions
which are nonnegative and summable. Then

J (lim inf f k) dx < lim infJ fk dx.
fn k-ioo 1R

Theorem A.9 (Monotone convergence). Let (fk)k>1 be a sequence of
measurable functions such that fl is summable and fl < f2 < < fk <
fk+l <_ . Then

f (urn fk) dx = lim f fk dx.
n k-+oo k-+oo n

Theorem A.10 (Lebesgue dominated convergence). Let (fk)k>1 be a
sequence of measurable functions such that

fk(x)-4 f(x) for a. e. x E Rn.

Moreover, assume that there exists a summable function g such that

I fk(x)I <_ 9(x)

Then

for every k > 1 and a. e. x E Rn.

lim J fk dx = J f dx.
k--oo Rn Rn

Given a Lebesgue measurable set U C R, the integral of a measurable
function f : U -+ JR with respect to Lebesgue measure can be defined as

-'
f (x) if x E U,f dx J f dx, where j (x)

U Rn 0 if x V U.
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For 1 < p < oo, LP(U) denotes the space of all Lebesgue measurable
functions f : U -+ R such that

1/p

(A.7) II!IILP(U) (fu If I P dx) < 00.

Moreover, L°°(U) denotes the space of all measurable functions f : U -+ R
which are essentially bounded, i.e., such that

(A.8) IIf IILO0(U) = ess- sup If (x)I < oo.
xEU

Two functions whose values coincide outside a set of measure zero are re-
garded to be the same element of LP, or L°°.

Given an open set Sl C R and 1 < p < oo, by LP10C(Q) we denote the
space of all measurable functions f : S2 H R such that f E LP(U) for every
bounded open set U whose closure is contained in Q. If 0 < mn(l) < 00,
the average value of f on the set S2 is defined as

+ fdx = )

f is continuous at the point xo if and only if

(A.9) lim sup If() - f (xo) I = 0.
r-*O+ xEB(xo,r)

Replacing the supremum with an average, we say that f is quasi-continuous
at the point xo if

(A.10) lim + I f (x) - f (xo) I dx = 0.
r-*O+ JB(xo,r)

Theorem A.11 (Lebesgue). Let f : Rn H R be locally summable. Then
f is quasi-continuous at a.e. point xo E Rn.

A point xo where (A.10) holds is called a Lebesgue point of f.

Given an interval [a, b] C R, a function F : [a, b] -+ R is absolutely
continuous if, for every e > 0, there exists S > 0 such that, for any finite
family of disjoint intervals [a1, b1], ... , [an, bn] contained in [a, b] one has

n n

E(bi - ai) < S implies E IF(bi) - F(ai)l < s.
i=1 i=1
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Theorem A. 12 (Absolutely continuous functions). The following are
equivalent.

(i) F : [a, b] -+ IR is absolutely continuous.

(ii) There exists a function f E L' ([a, b]) such that

F(x) = F(a) +
J f (x) dx for all x E [a, b] .

[d,xl

If (i) and (ii) hold, then F is a.e. differentiable, with derivative F'(x) = f (x)
for a. e. x E [a, b].

Next, consider two measurable subsets X C_ Rz and Y C_ Rn, so that
the Cartesian product

XxY = {(x,y); xEX,yEY}

is a measurable subset of Rl+n. Given a function of two variables f :
X x Y -+ R, for each fixed x we consider the function y -+ f x (y) = f (x, y)
of the variable y alone. Similarly, for each fixed y we consider the function
x -+ fly (x) = f (x, y) of the variable x alone.

Theorem A.13 (Fubini). Let X C R1, Y C Rn be measurable sets, and
assume f E L'(X x Y). Then

fY E L'(X) for a.e. y E Y,
fx E Ll(Y) for a. e. x E X,
the integral function F(y) = fx fY(x)dx is in L'(Y),
the integral function G(x) = f,, fx(y)dy is in L'(X).

Moreover, one has the identity

= fy [fX f
Y(x)dx] dy Ix [f] dx.fff(X,Y)dXdY

For detailed proofs of all the above theorems we refer to [F].

A.4. Integrals of functions taking values in a Banach space

Let X be a Banach space with norm 11 11. Let X* be its dual space. Every
x* E X* thus determines a linear continuous mapping x H (x*, x) from X
into R. In this section we show how to construct the integral of a function
f : [0, T] -+ X.
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A function g : [0, T] H X is simple if it has the form
N

(A.11) g(t) _ E ui
XAi

(t), t E [0, T],
i=1

where, for each i = 1, ... , N, ui E X and Ai C [0, T] is a measurable set.
A function f : [0, T] -+ X is strongly measurable if there exists a

sequence of simple functions gk : [0, T] -+ X such that

gk (t) -+ f (t) for a.e. t E [0, T].

Moreover, we say that f is summable if there exists a sequence of simple
functions gk such that

T
(A.12) f I Igk (t) - f (t) I I dt -+ 0.

A function f : [0,T] -+ X is weakly measurable if, for each x* E X*,
the scalar function t (x*, f (t)) is measurable.

A function f : [0, T] -+ X is almost separably valued if there exists a
subset Al C [0, T] with zero measure such that the set of images If (t) ; t E
[0, T] \ N} is separable (i.e., it admits a countable dense subset).

Theorem A.14 (Pettis). A map f : [0,T] H X is strongly measurable if
and only if f is weakly measurable and almost separably valued.

The integral of a function f with values in a Banach space is defined in
two steps.

If g is the simple function in (A.11), we define

jTgdt
ui m1(Ai).

i=1

Here m1 is the one-dimensional Lebesgue measure on the interval [0, T].

If f is summable, we define

fT fT

J f dt = lim J gk(t) dt
0 k-oo 0

where (9k)k>1 is any sequence of simple functions for which (A.12) holds.

Theorem A.15 (Bochner). A strongly measurable function f : [0,T] X
is summable i f and only i f the scalar function t H I I f (t) I

I
is summable. In
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this case one has
T

f f (t) dt
T

< f IIf(t)II dt.

Moreover, for every x* E X*,

x*
, f T f (t) dt > = fT f (t)) dt .

0

Proofs of the above theorems can be found in [Y].

A.5. Mollifications

In the analysis of Sobolev spaces, an important technique is the approxi-
mation of a general function with smooth functions. This can be done by
means of mollifications.

The standard mollifier on Rn is defined as

(A.13) J(x)
I Cn exp{I} if IxI < 1,

0 if lxI > 1,
where the constant Cn is chosen so that fR J(x) dx = 1. For each E > 0
we also define the rescaled function

(A.14) Je (x)

Notice that J. E C,-(R'') and that

fJe = 1, Supp(JE) = {1xI < E}.

Figure A.5.1. A standard mollifier J and its rescaling J.
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Now let St C ll8n be an open set and let f E Li C(cl) be a locally integrable
function. We then define the mollification of f in terms of a convolution:

fE JE* f
Since f is defined on Il and JE has support in the ball centered at the origin
with radius e, this convolution is well defined at all points in the subset

S2E = {xci; B(x,e)CSt}.

Indeed

fE (x) f
JE(x - y)f(y) dy = f(x,E)(O,E)

Theorem A.16 (Properties of mollifiers). Let SZ C Rn be an open set
and let f E Li C(S2). Then:

(i) For every e > 0 one has fE E C°°(c6) .

(ii) As e 0, one has the pointwise convergence fE (x) -4 f (x) for
a.e.xEQ.

(iii) If f is continuous, then fE -+ f uniformly on compact subsets of
S2 .

(iv) If 1 < p < oo and f E L OC(S2), then fE - f in LOC(c) .

Proof. 1. Notice that each iE is open. Indeed, if the closed ball B(xo, e)
is entirely contained in the open set S2, the same holds for the ball B(x, e),
whenever Ix - xol is sufficiently small.

Let {el,... , en} be the standard orthonormal basis of Rn. Fix a point
x E iE and i E {1, ... , n}. If his so small that x +hei E cE, then the
difference quotient is computed as

fE(x + hei) - ff(x)

h(A.15) [J(x+hei-yl JIx ey IJ f(y)dy
en

LL

f
h

e

B(x,E) J

Since the closed ball B(x, e) is entirely contained in S2, we have f E
L'(B(x, 6)). Moreover, since J E C°°, we have the uniform convergence

1 = 1 o9 /x-y
h Oh

[J(x+hei-y)_J(x-y)]
e e6 9x2 6

I.

Letting h -+ 0 in (A.15), we obtain the existence of the partial derivative

a fE(x) = f a JE(x - y) f (y) dy
axi B(X E) axi
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A similar argument shows that, for every multi-index a, the derivative Daf6
exists and

Dafe(x) = f DaJe(x-y)f(y)dy
(x,e)

This proves (i).

2. By the Lebesgue differentiation theorem, for a.e. x E Sl we have

(A.16) lim f lf (y) - f (x) dy =0.
r- 0 B (x,r)

If x is a point for which (A.16) holds, then

I fe(x) - f (x) I = If (x,e)
Je (x - y) [f (y) - f (x)] dyl

1 f J(x_Y)
If(y)-f(x)I dy<

/JE B(x e) E

< C f
B ( x E)

I f (y) - f (X) I dy.

As e -* 0, the right-hand side goes to zero because of (A.16). This proves
(ii).

Figure A.5.2. The sets 1 E C f and the compact sets K CC
Kp cc St, used in the analysis of mollifiers.

3. Assume that f is continuous, and let K C Sl be a compact subset. Then
we can choose 6 > 0 small enough so that the compact neighborhood

(A.17) Kp = {x E Rn ; d(x, K) < p}

is still contained inside Q. Since f is uniformly continuous on the compact
set Kp, the previous calculations show that fe(x) -* f (x) uniformly for
x E K. This proves (iii).
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4. To prove (iv), assume 1 <_ p < oo and f E L'10C
(Q). Let K C SZ be a

compact subset and choose p > 0 so that the compact neighborhood Kp in
(A.17) is still contained in Q. We claim that, for every 0 < E < p,

(A.18) IIf6IILP(K) < IIfIILP(K,)

Indeed, for X E K an application of Holder's inequality with q = P
11

yields

I fE(x)I =

< J (Je(x_y)) (J6(x_y))" I f (y)I dy
B(x,E)

P

< JE(x - y) dy

(fB(X,E)

P-1

JE(x-y)If(y)IPdy
(JB(X'6)

i
P

Recalling that fB(x
E)

J, (x - y) dy = 1, for 0 < E < p the above inequality
yields

fK I fE (x) I P dx < f
(fB(X,E)

J,. (x - y) I f (y) I P dy dx
K

fP

If (y) I P (fB(Y"-) JE (x - y) dx dy = fKP I f (y) I P dy .

This proves (A.18).

Next, for any b > 0, we choose g E C(Kp) such that

IIf -9IILP(KP) < S.

Together with (A.18), this yields

IIfE - fhILP(K) IIfe-9EIILP(K)+II9E-9IILP(K)+II9-fIILP(K)

-< 11f - 9IILP(KP) + II9E - 9IILP(K) + 119 - f IILP(K)

< 5 +II9E-9IILP(K)+s.

Since g is continuous, by (ii) it follows that Ig6 - 9I -+ 0 uniformly on the
compact set K,,. Hence limsup6,O IIfE - f II LP(K) < 2S. Since 6 > 0 was
arbitrary, this proves (iv).
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Corollary A.17. Let f E L10C(Q) and assume

fn
fq5dx=0 for every 0EC'°(1).

Then f (x) = 0 for a. e. X E Q.

Indeed, let x E S2 be a Lebesgue point of f and let JE be the standard
mollifier. Taking q5(y) = JE(x - y) and letting e -* 0, one obtains

0 = fJ(s_y)f(y)dy = f J(x - y) f (y) dy -4 f (x)
(a,E)

Hence f (x) = 0 for a.e. x E Q.

A.5.1. Partitions of unity. Let S C Rn and let V1, V2,... be open sets
that cover S, so that

SCUVk.
k>1

We say that a family of functions 10k; k > 1} is a smooth partition of
unity subordinate to the sets Vk if the following hold.

(i) For every k > 1, ck : Rn H [0, 1] is a C°° function with support
contained inside the open set Vk.

(ii) Each point x E S has a neighborhood which intersects the support
of finitely many functions qk. Moreover

(A.19) qk(x) = 1 forallxES.
k

Note that, by assumption (ii), at each point x E S the summation in (A.19)
contains only finitely many nonzero terms.

1
2

-----------------

V,

V2

03

V3
x

Figure A.5.3. A partition of unity subordinate to the sets V1, V2, V3.
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Theorem A.18 (Existence of a smooth partition of unity). Let S C_
Rn and let {Vk ; k > 11 be a family of open sets covering S. Then there
exists a smooth partition of unity subordinate to the sets Vk.

A.6. Inequalities

A.6.1. Convex sets and convex functions. A set Il C Rn is convex if

x, y E Q, 0 E [0, 1] implies Ox + (1 - 9)y E Q.

In other words, if Il contains two points x, y, then it also contains the entire
segment joining x with y.

Let Il C Rn be a convex set. We say that a function f : f H R is
convex if

(A.20) f (9x + (1 - 9)y) < 0 f (x) + (1 - O) f (y)

whenever x, y E Il and 0 E [0, 1]. Notice that (A.20) holds if and only if the
epigraph of f, i.e., the set

{(x,z)EI1xR; z> f(x)},

is a convex subset of Rn x R.
A twice differentiable function f : Rn H R is uniformly convex if

its Hessian matrix of second derivatives is uniformly positive definite. This
means that, for some constant n > 0,

n n

fxixj (x) z for all x, E W2.

i>7=1 i=1

z

x0 x

Figure A.6.1. A convex function f and its epigraph. A support
hyperplane at the point xo.
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Theorem A.19 (Supporting hyperplanes). Let f : R H R be a convex
function. Then for every xo E Rn there exists a (subgradient) vector w such
that

f(x) > f(xo)+(w,x-xo) for all xEIR .

The hyperplane { (x, z) ; z = (w, x - xo) } C Rn+1 touches the graph of
f at the point xo and remains below this graph at all points x E Rn. It is
thus called a supporting hyperplane to f at xo.

Theorem A.20 (Jensen's inequality). Let f : R H R be a convex func-
tion, and let S2 C R be a bounded open set. If u E L' (S2) is any integrable
function, then

(A.21) f I jl u dx) ff(u)x.

Here f. u dx - meas(SZ) fo udx is the average value of u on the set Q,
while fn f (u) dx - mess I l fn f (u)dx is the average value of f (u). Notice
that we do not require that the set S2 be convex.

Proof. Set uo = f. u(y) dy. Then there exists a support hyperplane to the
graph of f at the point uo, say f (u) > f (uo) + (w, u - uo) for some constant
w E R and all u E R. Hence

f (U (x)) > f (f u(y) dy) dx + (w, u(x) - fn u(y) dy/) .

Taking the average value of both sides on the set S2, we obtain (A.21).

A.6.2. Basic inequalities.
1. Cauchy's inequality.

2 2

(A.22) ab a
2

b for all a, b E R.

Indeed, 0 < (a - b)2 = a2 + b2 - 2ab.
For any e > 0, replacing a with 2s a and b with b/ 2e, from (A.22)

we obtain the slightly more general inequality

(A.23) ab < ea2 + 4e (a, b E R, e > 0).

2. Young's inequality.
1

(A.24) ab <

p
+ qq l a,b>O, 1<p<q<oo, p+q = l l .
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Indeed, since the map f (u) = eu is convex, one has exp{
P

+ 4 }

q . Therefore
P

ab = em n a+ln b = exp 1
in aP +

1
In bq <

1
eIn aD + 1 eIn b4 aP bq- - - - = a b

p q p q p q

3. Holder's inequality. If f E LP(1 ), g E Lq(1l) with 1 < p, q < 00
and P + q = 1, then

(A.25) < IIfIILD(1) II9IIL4(n)

Indeed, in the special case where IIf IILD(Q) = II9IIL9(1) = 1, Young's
inequality yields

IfgIdx < p f p+q = 1= IIfIILD II9IIL4

To cover the general case, we simply replace the functions f, g with f =
f/IIfIILD and g = g/II9IIL9, respectively.

By induction, one can establish the following more general version of
Holder's inequality. Let 1 <. pi, .. , p,,.,,, < oo, with i + + i = 1.
Assume f k E LPk (SZ) for k = 1, ... , m. Then

P1 rM

m

(A.26) f< U IIfkIILDk(n)
k=1

4. Minkowski's inequality. For any 1 < p< oo and f, g E LP(1 ),
one has

(A.27) If +9IILD(c) < IIfIILD(c) + II9IILD(sT)

Indeed, in the case p = 1 the result is trivial. If p > 1, applying Holder's
inequality with exponents p and q = , one obtains

IIf+9IILD(0) = fn If+9IPdx = fn If+9IP-1(IfI +I9I)dx

5 U If + gI (P-1). PP1 dx) CL If IPdx) + Cf IgpPdx)

= IIf + 9IILD(0) (IIfIILP(n) + II9IILD(c))

Dividing both sides by IIf + we obtain (A.27).
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5. Interpolation inequality. Let 1 < p < r < q < oo, with

1
=

0 + 1-0
for some 0 E [0, 1].

r p q

If f E LP(1l) n L9(SZ), then we also have f E L'(92) and

(A.28) IIJ L'(si) <- II.f IILP(s)) II.f IIL9(c)

Indeed, observing that Pr+ (1 9e)r = 1, by Holder's inequality one obtains

flflrdx = LIfIonIfI(19)rdx

J I f I0r e dx) P 1

J
I f I (1-e)r ( dx)

s1 \ s1

6. Discrete Holder and Minkowski inequalities. The inequalities
(A.25) and (A.27) hold, more generally, when Il is any measure space. In
particular, one can take ft = {1, ... , n} with the counting measure. For any
collection of numbers al, . . . , an and b1, ... , bn and for 1 _< p, q < oo with
P + 9 = 1, one has the discrete Holder inequality

(A.29)
k=1 k=1

1 1
n n P n q

Iakbkl <- (IakIP) E(IbkI)°
k=1

and the discrete Minkowski inequality

(A.30)
n P n P n P

EIak+bkIP <- EIakIP + EIbkIP
k=1 k=1 k=1

Given two vectors x =-(X1, .. , xn) and y = (yi, . . . , yn), using the dis-
crete Holder inequality (A.29) with p = q = 2, one obtains the Cauchy-
Schwarz inequality for the inner product on I[8n:

(A.31)

Indeed,

I (x, y) I =

I (x, y) I <- IxIIyI

n

Exkyk
k=1

n n 2 n 2

E Ixkykl <- E(xk2) E(IYkI2) = IxI IyI
k=1 (k=1 (k=1

Or (1-O)r
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A.6.3. A differential inequality.

Theorem A.21 (Gronwall's inequality). Let t H z(t) be a nonnegative,
absolutely continuous function defined for t E [0, T1. Assume that the time
derivative z' = dt z satisfies

z'(t) < 0(t) z(t) + 0(t) for a.e. t E [0, T] ,

where E L'([O, T]) are nonnegative functions. Then

ftefs(a)(s)ds(A.32) z(t) efz(0) + for all t E [0, T].

Notice that the right-hand side of (A.32) is precisely the solution to the
Cauchy problem

Z'(t) = 0(t) Z(t) + fi(t) , Z(0) = z(0).

(ef(z(s))
To prove (A.32), we write

ds
= e- fo g5(a) da I Z' (S) - 0(s)z(s)) < e- fo O(a)

(s)

Integrating over the interval [0, t], one finds

e- fo O(a) daz(t) - z(0) < Lte_fos(cT)dcT?,b(S)dS.

Multiplying by efot 0(,,) da, we thus obtain (A.32).

A.7. Problems

1. Let {A;, ; i E Z} be an open covering of a compact metric space K. Prove that
there exists p > 0 such that, for every x E K, the ball B(x, p) is entirely contained
in one of the sets A.

2. Let (xn)n>1 be a sequence of points in a metric space E. Prove the following
statements.

(i)

(ii)

The sequence converges to a point x if and only if from every subsequence
(xnj)j>l one can extract a further subsequence converging to t.
If d(x,,,,, xn) > 6 > 0 for all m # n, then no convergent subsequence can
exist.

(iii) Let E be complete and assume that, for every e > 0, from any sequence
one can extract a further subsequence (xn,)j>i such that

lim sup d(xn3 ) xnt.) < e.
j,k-+oo

Then the sequence admits a convergent subsequence.
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3. Consider the function

f(x) =

0 otherwise.

Let fe = Je * f be the corresponding mollifications, and let

F(x) --' sup f.-(x).
O<e<1

Prove that f E L1(R) but F L1(R). As a consequence, although ff -a f
pointwise, one cannot use the Lebesgue dominated convergence theorem to prove
that Ilfe - fIIW(R) - 0-

4. Let fn : R H R, n > 1, be a sequence of absolutely continuous functions such
that

(i) at the point x = 0, the sequence fn(0) is bounded,

(ii) there exists a function g E L1(R) such that the derivatives f, satisfy
Ifn(x)I < g(x) for every n > 1 and a.e. x E R.

Prove that there exists a subsequence (fns )j>1 which converges uniformly on the
entire real line.

5. Consider a sequence of functions fn E L1(R) with IIfnIILI <- C for every n > 1.
Define

li fn(x) if the limit exists,m

f(x )

1
2

x)2
if 0 < x < ,

x(ln

0 otherwise.

Prove that f is Lebesgue measurable and 11f 11W < C-

6. Let f : R -+ R be an absolutely continuous function. Prove that f maps sets of
Lebesgue measure zero into sets of Lebesgue measure zero.

7. (i) If (fn) n> 1 is a sequence of functions in L 1([0,1]) such that II fn II L' -+ 0, prove
that there exists a subsequence that converges pointwise for a.e. x E [0, 1].

(ii) Construct a sequence of measurable functions fn : [0, 1] H [0, 11 such that
IIfnIILI -+ 0 but, for each x E [0, 1], the sequence fn(x) has no limit.

8. For every (nonempty) open set 1 C Wn and for 1 < p < oo, prove that the space
LP(1) is infinite-dimensional. Construct a sequence of functions (fj)j>1 such that

I I f , I I LP = 1 , 11A - f 3 I I LP >- 1 for all i, j > 1, i j .
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9. Consider the set R2 with the partial ordering

x y if and only if x1 <y1 and X2 <y2.

Let f : R -- R be a continuous, nondecreasing function. Show that the set

S = Graph(f) = { (t, f (t)) ; t E R}

is a maximal totally ordered subset of R2. Is every maximal totally ordered subset
obtained in this way?

10. Give a proof of the generalized Holder inequality (A.26).





Summary of Notation

R, the field of real numbers.

C, the field of complex numbers.

K, a field of numbers, either R or C.

Re z and Im z, the real and imaginary parts of a complex number z.

z = a - ib, the complex conjugate of the number z = a + ib E C.

[a, b], a closed interval; ]a, b[, an open interval; ]a, b], [a, b[ half-open intervals.

I , the n-dimensional Euclidean space.

scalar product on the Euclidean space RI.

(v, v), the Euclidean length of a vector v E Rh.

A B= {x E A, x B}, a set-theoretic difference.

A, the closure of a set A.

aA, the boundary of a set A.

241
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0' cc 1, the closure of 1' is a compact subset of Q.

, the indicator function of a set A. X
1 if x E A,

XA A(x) =
0 if x A.

f : A i-4 B, a mapping from a set A into a set B.

a i-* b = f (a), the function f maps the element a E A to the element b E B.

equal by definition.

I , if and only if.

C(E) = C(E, R), the vector space of all continuous, real-valued functions
on the metric space E.

C(E, C), the vector space of all continuous, complex-valued functions on the
metric space E.

13C(E), the space of all bounded, continuous, real-valued functions f : E H
R, with norm I I f 11 = SUPXEE I f (x)

21, 2P, $°O, spaces of sequences of real (or complex) numbers.

L'(1), LP(1), L°°(1), Lebesgue spaces.

Wk,P(S2), the Sobolev space of functions whose weak partial derivatives up
to order k lie in LP(1), for some open set Il C R.

HIc(1) = W''2(1), Hilbert-Sobolev space.

C',7(cl), the Holder space of functions u : 0 + R whose derivatives up to
order k are Holder continuous with exponent -y E ]0, 1].

II II = II IIx, the norm on a vector space X.

the inner product on a Hilbert space H.
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X*, the dual space of X, i.e., the space of all continuous linear functionals
x*.XHK.

(x*, x) = x*(x), the duality product of x* E X* and x E X.

x, - x, strong convergence in norm; this means I I xn - x -+ 0.

x,, x, weak convergence.

W,, W, weak-star convergence.

f * g, the convolution of two functions f, g : Rn -+ R.

Vu = (UX1, uy2, ... , uIJ , the gradient of a function u : R'z R.

D« _
Tx1)CI1

(
)a2 (_O!xLn)cen

= 49x'11 aX ' ' ' 8x + a partial differential

operator of order Ian = al + a2 + + an.

meas(1), the Lebesgue measure of a set 1 C Rn.

} f dx = 1 f f dx, the average value of f over the set 0.
st meas(SZ) si
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